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ABSTRACT

A number of boron neutron capture therapy (BNCT) clinical trials are currently underway
around the world. Due to the small number of patients at each of the individual centers, it
is desirable to pool the clinical data from each into one patient database. Before this can
be done, a number of differences between the clinical centers must be evaluated. The
patients treated at the BNCT centers at Brookhaven National Laboratory and that at
Harvard-MIT will be evaluated as a start to the ultimate pooling of all the BNCT centers.
One difference involves the difference between the normal tissue composition definition
between the institutions. In particular, the difference in weight percent of 4N must be
evaluated. This particular component of tissue is of importance due to the dose to tissue
resulting from the 4N(n,p)l C reaction. The difference between the 1.8% '4N
composition used at BNL and the 2.2% used at MIT has a negligible effect on the total
dose. Most importantly, differences in dosimetry techniques between the different
centers must be computed. Once these differences are quantified, the patients can be
pooled, and a better estimate of the normal brain tolerance to BNCT can be determined.
The thermal neutron doses calculated from thermal flux measurements are 8% lower
when measured by MIT, the gamma dose measurements are 26% lower, and the in-air
fast neutron measurements are 27% lower in the same beam. The endpoint used for the
tolerance of normal brain to BNCT is somnolence syndrome. A 50% somnolence
response can be seen at 5.5 Gy-Eq.

Thesis Supervisor: Jeffrey A. Coderre
Title: Associate Professor of Nuclear Engineering and Rasmussen Professor of Nuclear
Engineering
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I. Background

1. BNCT

Boron neutron capture therapy (BNCT) is an experimental binary radiation treatment

modality currently being tested against types of cancer that have proven difficult to treat

by traditional means, such as the primary brain tumor glioblastoma multiforme (GBM).

BNCT relies on the thermal neutron interaction with 10B, which has a high thermal

neutron capture cross-section. A tumor-selective boron-labeled compound is

administered to the patient, followed by neutron irradiation. When the °B nucleus

interacts with a thermal neutron, it emits an alpha particle and a 7Li ion through the

'(B(n,a)7 Li reaction. These emitted particles both have very short path lengths in tissue

(about 9m for the alpha particles and about 5m for the 7Li [1]); these distances are

about the same as the diameter of a cell. Because of this, the damage caused by the

energy deposition of the alpha particles will occur close to the location of the original 10B

interaction.

BNCT treatment of tumors is quite different than conventional radiotherapy treatment

of tumors. The photon beams used for conventional radiotherapy are targeted to the

tumor. They are sharply collimated, and can be shaped according to the best treatment

plan. For instance, in gamma knife treatment, multiple pencil beams are used, and they

all cross at the tumor, which allows for maximum dose to be administered to the tumor

tissue, while sparing the normal tissue. Therefore, in conventional radiotherapy, normal

tissue sparing comes from beam geometry and collimation. In BNCT, low-energy

neutrons are needed for the neutron capture reaction in boron. These low-energy

neutrons scatter once they enter tissue. Because of this, a dose is administered to the

entire treatment region. Both the tumor and a considerable volume of surrounding

normal tissue are exposed to neutrons, and there is always a non-specific background

beam dose administered to the normal tissues. If capture compounds with good

selectivity are used, then the dose to normal tissue is less than the dose to tumor tissue.

Thus, in BNCT, normal tissue sparing comes from selective accumulation of boron in the

tumor, and BNCT can be used to destroy tumor cells that microscopically infiltrate into

normal tissues. BNCT should be thought of as a tumor-targeting therapy at the cellular
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level. With suitable compounds and neutron beams, BNCT can, in principle, control

cancer in large tissue volumes such as whole brain without unacceptable damage to

normal brain. BNCT can also, in principle, kill individual tumor cells while sparing the

adjacent normal cells. Average therapeutic ratios of about 3 to 4 can be calculated for

BNCT using the currently available capture compound boronophenylalanine (BPA).

In clinical trials, BNCT has mainly been used to treat malignant gliomas, particularly

glioblastoma multiforme (GBM). GBM accounts for about 80% of all malignant

gliomas, and is one of the most intractable brain tumors. Despite conventional treatments

(surgery, chemotherapy, traditional radiotherapy), patients with GBM have a median

survival time of 9 to 10 months, and a 5-year survival rate of <5% [2]. GBM is a highly

invasive tumor, with tumor cells infiltrating deeply into the surrounding brain tissue,

creating microscopic islands of tumor cells set apart from the main tumor. These

infiltrating tumor cells cannot be killed by conventional radiotherapy because a dose

large enough to kill them would be administered to normal brain tissue as well, and such

a high dose could cause brain damage. Because of this, BNCT is being investigated as an

alternative means of treating these types of tumors. Given sufficient tumor-selectivity of

the boron-containing compounds, BNCT would have the ability to treat these infiltrating

tumor cells without causing significant damage to the surrounding normal brain tissue by

allowing for a much lower total dose of radiation to be administered to the normal brain.

2. BNCT Clinical Trials

Table 1 lists the details of the major clinical trials of BNCT around the world [3].

The first clinical trial of BNCT for patients with GBM began in 1951 at Brookhaven

National Laboratory (BNL), in the Brookhaven Graphite Research Reactor (BGRR).

Over the next 8 years, three series of patients were irradiated there. The BGRR was

originally built as a physics facility and therefore was not ideal for BNCT (it had no

medical facility, no treatment room, no beam shutter, etc.). Results from clinical trials

run at this facility were unsuccessful. The lack of success in these clinical trials was due

mainly to problems with the boron compounds available at the time. These compounds

did not exhibit tumor selectivity; they instead relied on the blood brain barrier to keep '°B
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out of the normal brain tissue. This led to high concentrations of '°B in the blood, which

resulted in damage to the brain and skin. In the mid 1950's the Brookhaven Medical

Research Reactor (BMRR) was designed and constructed primarily for use in BNCT.

The BMRR became operational in 1959. Over the following two years, a number of

patients with brain tumors received BNCT at the BMRR [1]. During these trials, patients

were given one of a number of boron-carrying compounds and irradiated with a thermal

neutron beam.

At the same time (between 1959 and 1961), patients were also being treated with

BNCT at the Massachusetts Institute of Technology reactor (MITR). During these trials,

a number of different boron compounds and thermal neutrons were used in combination

with a variety of surgical interventions. Results from both the BNL and MIT studies

were disappointing and all clinical trials of BNCT in the United States were halted in

1961. The disappointing results arose from two primary causes. The first was that the

thermal neutron beams did not penetrate very far into tissue. Because of this, there was

inadequate thermal neutron fluence at depth (i.e., if the tumors were deep-seated enough),

and some damage was also observed in the patients' skin. Secondly, low tumor to blood

ratios were achieved with the boron-containing compounds available at the time. Both of

these problems led to damage to the scalp and to the blood vessels in the brain.

The late Hiroshi Hatanaka began BNCT trials in Japan in 1968 at the Hitachi Training

Reactor (HTR). Prior to this, Hatanaka had worked with Dr. William Sweet, who was

pioneering much of the U.S. BNCT research, at Massachusetts General Hospital where

he had learned surgical intraoperative procedures for BNCT. Over the course of the next

33 years (between August 1968 and July 2001), 183 patients with malignant brain tumors

were treated with BNCT using a boron "cluster" compound Na 2B1 2H SH, or BSH, and

thermal neutron irradiation at 6 different reactors in Japan (however 10 patients since

1998 have been treated with epithermal neutrons under a new protocol). The tumor-to-

blood boron concentration ratio was typically around 1.2-1.69 for BSH in these trials [4].

Results from these patients were more promising than those previously treated in the

United States. Out of 105 patients, 29 with Grade 2, Grade 3, or Grade 4 gliomas

survived for longer than 3 years [4].

11



BNCT reemerged in the United States after improvements were made in both boron

compounds and neutrons beams in the late 1980s. At this point, higher-energy

epithermal neutron beams (0.5 eV < E < 10 keV) were created at both the BMRR and the

MITR. These higher energy neutrons are moderated as the beam penetrates into tissue to

become low-energy thermal neutrons, which can then be captured by the boron-

containing compound in tumor tissue. This allows for tumors that are found deeper in the

brain to be treated with BNCT, and it decreases the risk of damage to skin, since the

thermal neutron flux is low at the surface in contrast to the thermal neutron beams where

the highest flux is at the skin.

In 1997, a Phase I trial for BNCT began in Petten, the Netherlands. Three years later,

another trial began in the Czech Republic. These two studies treat brain tumors using the

boron compound, sodium borocaptate [5]. Two other European trials, one in Finland and

one in Sweden, have been treating GBM patients using the boron compound

boronophenylalanine (BPA). All of the European studies have used epithermal neutron

beams. A detailed review of all BNCT clinical trials is beyond scope of this thesis.

The most recent clinical trial at BNL ran from 1994 until 1999. During this time, 53

patients were treated with BNCT [2, 6]. Over the course of those 5 years, a number of

changes in the treatment occurred. One change was simply prescribed by the definition

of the clinical study. The clinical trial was a dose-escalating study, and therefore both the

peak brain dose and the whole-brain average dose received by the patients was increased

over time. Also, the treatment at BNL changed from a one-field treatment to a two-field

treatment, and ultimately to a three-field treatment. Increasing the number of fields

allowed for more uniform dose delivery to tumor and target volumes (target volume was

defined as tumor volume plus a 2 cm margin around the tumor). Combining fields also

allows for a higher peak in the target region, and lower doses to normal tissue.

Additionally, a new collimator was created (the old collimator was 8 cm in diameter with

a 13.1 cm thickness, and the new collimator was 12 cm in diameter with a 20.7 cm

thickness), and the fuel rods in the reactor were rearranged in 1996. This caused

desirable changes in neutron and photon flux intensities.

In 1994, epithermal neutron BNCT irradiation of peripheral metastatic melanoma

were initiated at the MIT reactor (MITR), and this was followed by the brain tumor
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clinical trial at Harvard-MIT begun in 1996 to evaluate normal tissue tolerance as well as

tumor response. Between that time and May 1999, 22 patients were treated with BNCT

using the MIT M67 beam. All of these patients were treated for either GBM or

melanoma. As with the BNL trial, the number of fields used varied from one to three

over the three years of the clinical trial, resulting in a progressive increase in both the

peak dose and the whole-brain average dose. Harvard-MIT used the compound BPA, at

doses of either 250mg/kg over the course of 1 hour, 300mg/kg over 1.5 hours, or

350mg/kg over 1.5-2 hours. The M67 epithermal neutron beam was used at MIT for the

22-patient phase-I trial, and it was equipped with a 15cm collimator [7]. This beam was

located underneath the MITR, and the beam was directed downwards from the ceiling.

Due to limitations in the M67 beam (such as low flux of epithermal neutrons and patient

positioning difficulties), in 2001 a new fission converter beam (FCB) was constructed at

MIT. This new beam has higher neutron intensity and less contamination from fast

neutrons, slow neutrons, and photons [24]. Since this beam was built, 6 patients have

been irradiated in a Phase I/II trial of BNCT with epithermal neutrons there. These

patients are not included in this thesis because the data have not yet been published and

the clinical records are unavailable at this time.
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Table 1: Description of BNCT clinical trials around the world over the past 40 years [3]

Infusion Peak Brain Ave. Brain

10B Infusion Amount Ave. BBC' Dose Dose

Facility # of Patients Compound Time (mg/kg) (g 'l°B/g) (Gy-Eq) (Gy-Eq)

HTR,

MuITR,

JRR, KUR

Japan

The

183

(1968-

present)

26

(1997-

Netherlands present)

LVR-15

Rez

BSH Ihr 100 -20-30

100

BSH mg/kg/min 100 303

5

Czech Rep. (2001 -pres.)

BMRR

BSH 1 hr 100 -20-30

53

(1994-1999) BPA 2 hr 250-330 12-16

225

MIT, USA (1996-1999)

MITR-II,

BPA 1-1.5 hr 250-350 10-12

6

MIT, USA (2001-pres.)

Studsvik

BPA 1.5 hr

17 (30)6

Sweden (2001-pres.)

18

BPA

350 -15 7.0-7.7 6.90-7.80

24

(range: 15-

6 hr 900 34) 7.3-15.5 3.3-6.1

Fir I (1999-pres.)

Finland protocol P-01

3

Fir I

BPA 2 hr 290-400 12-15

(2001 -pres)7

Finland protocol P-03 BPA 2 hr 290 12-15

' BBC = blood boron concentration during the irradiation. 2 "B physical dose component dose to a
point 2 cm deeper than the air-filled tumor cavity. 3 4 fractions, each with a BSH infusion, 100 mg/kg the

first day, enough to keep the average blood concentration at 30 mg 'B/g during treatment on days 2-4. 4

10B physical dose component at the depth of the thermal neutron fluence maximum. 5 Includes 2

intracranial melanomas. 6 J. Capala, unpublished, personal communication with J. Coderre. 7 Retreatment
protocol for recurrent glioblastoma.

14

15 Gy2

8.6-

11.4Gy 4

o0B

component

NA

NA

Brookhaven,

USA

MITR-II,

M67

< 14.2 <2

FCB

8.4-14.8 1.8-8.5

8.7-16.4 3.0-7.4

8-13.5

3-6

<7

<8

2-3

<6



3. Boron compounds and radiobiology

Over the years, a number of different compounds have been developed which show

preferential accumulation in tumors, though only two of these have reached the stage of

BNCT clinical trial: p-boronophenylalanine fructose (BPA-F, or simply BPA) and

sulfhydryl borane (BSH). BPA was first synthesized in the late 1950s for BNCT, but was

initially set aside due to the fact that it penetrates the blood-brain barrier, which at the

time was seen as a significant disadvantage. BPA was later used for treatment of

melanomas due to its structural similarity to melanin precursors [8]. In biodistribution

studies, BPA was found to selectively accumulate in rat 9L gliosarcomas [9]. While the

brain-to-blood boron concentration ratio was approximately 1, the tumor-to-blood/brain

boron concentration ratios were found to be closer to 3:1 or 4:1 [13]. This is most likely

due to elevated transport of amino acids at the tumor cell membranes [11]. Using ion

microscopy, intracellular boron was found to be uniformly distributed across the

cytoplasm and the nucleus in vitro and in implanted 9L brain tumors in rats injected with

BPA. The boron concentration in tumor clusters infiltrating the normal brain was found

to be about 50% of that in the main tumor for the BPA administration protocol that was

used [12]. BPA-based BNCT produced long-term control of over 90% of rats having

implanted 9L brain tumors [13].

As opposed to BPA, BSH does not cross the blood-brain barrier. It is able to

accumulate in tumors due to the fact that blood vessels in intracranial tumors lack a

properly functioning blood-brain barrier. Animal models showed a tumor to blood boron

concentration ratio of about 0.5:1 to 1:1 [14], but this ratio has been found to be

somewhat higher in human GBM patients. Hatanaka and Nakagawa have found a tumor-

to-blood boron concentration ratio of about 2:1 at 17.5 hours after the end of the

compound infusion in 39 patients, and four European centers showed ratios of about

1.3:1 to 2:1 [15].

Currently, BSH is mainly used in the Japanese trials, as well as a few of the European

trials. BPA was the compound used during the BNL trials and was used at the Harvard-

MIT trials, as well as in trials in Sweden. Patients treated with doses of 250 mg BPA/kg

at BNL showed no signs of toxicity after a 2-hour infusion [16], and in fact levels up to
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350mg BPA/kg have been administered to patients in the Harvard-MIT trials with a 1.5-

hour infusion time [7]. In Sweden, doses up to 900mg/kg administered over 6 hours,

resulting in average blood-boron concentrations of 24gtg/g at the time of irradiation, have

been administered to patients during a 6-hour infusion with no toxicity [17]. Both BPA

and BSH are administered to the patient intravenously. Using subcellular secondary ion

mass spectrometry (SIMS) on human glioblastoma cells incubated in vitro with l°B-

labeled BPA-F or l"B-labeled BSH, or both, intracellular levels of l°B from BPA-F were

found to nearly double between 1 h and 6 h incubations, with a 3:1 intracellular to

nutrient medium partitioning, while intracellular levels of BSH remained essentially

unchanged in both single- and mixed-drug treatments [18].

The total radiation dose received by a BNCT patient is comprised of several different

components; this is due in part to beam contaminants (photons), different neutron

interactions that occur in tissue (protons from the 14N(n,p)14C reaction and photons from

neutron capture in tissue hydrogen, the 'H(n,y)2 H reaction), and differences in the

distribution patterns of the boron compounds, as described above. Therefore, the total

dose is made up of a thermal neutron component, a fast neutron component, a gamma

component, and a boron component. To sum all these together requires expressing each

in a "photon-equivalent" unit to make it possible to compare against conventional photon

irradiation. To do this, relative biological effectiveness (RBE) factors must be applied to

each component. The RBE for each dose component has been determined

experimentally [14]. Typically, the RBE of a given type of radiation is due only to the

radiation's linear energy transfer (LET). In the case of the boron dose component in

BNCT, this is not true; the biological effect of boron also depends on which compound is

being used (i.e., specific microscopic distribution characteristics of the boron compound

must be taken into account). Because of this, instead of RBE, the term compound

biological effectiveness (CBE) factor is used. A "beam RBE" can be determined in the

absence of boron-10 by comparing a neutron beam dose with an X-ray dose sufficient to

produce an isoeffect. Once this beam RBE has been determined, the boron CBE can be

determined. Additionally, the individual fast and thermal neutron RBE factors can be

determined once the beam RBE has been determined. For each tissue and each boron

compound, the RBE and CBE factors can be determined using appropriate normal tissue
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irradiation models and comparing the x-ray dose, the neutron-only dose, and the neutron

plus boron dose required to produce an isoeffect [14]. Once each of the RBE factors has

been determined, they can be multiplied by their corresponding dose components and

summed together to obtain a total weighted dose, in units of gray-equivalent (Gy-Eq).

4. BNCT Treatment Planning

There are two primary treatment planning software programs available for BNCT.

Since this thesis focuses mainly on combining clinical data from the BNL and Harvard-

MIT programs and the differences in dosimetry and treatment plans between these

centers, discussion of treatment planning software will be limited to those used at these

two facilities: namely, Radiation Treatment Planning Environment (RTPE), as well as

some mention of its successor, Simulation Environment for Radiotherapy Applications

(SERA), both of which were used at BNL, and MacNCTPlan/NCTPlan, which is used at

MIT. RTPE and SERA were developed by a collaboration of the Idaho National

Engineering Laboratory (INEL) and the computer science department at Montana State

University [1.9], and were used by the BNCT group at BNL. The BNCT group in

Sweden is also currently using SERA. MacNCTPlan and NCTPlan were developed and

used by the BNCT group at MIT. These programs all rely on Monte Carlo codes to

transport particles through tissue. However, beyond this basic similarity, there are a

number of other differences in the software programs, and these differences may give rise

to differences in patient treatment plans. Therefore a description of the main

characteristics of each program is necessary for a complete comparison of clinical trials

at different institutions.

Before BNCT treatment planning software was developed, scientists determined that

a Monte Carlo (MC) code would be the most useful tool to use in creating a patient

treatment plan. In conventional MC codes, it is difficult to obtain the necessary detailed

edits for BNCT. While volume-integrated results are typically obtained automatically

with most MC codes, special edits must be performed to obtain the necessary output for

BNCT, such as dose volume histograms and isodose contours. Additionally, the patient

geometry would need to be modeled by hand for use in MCNP, instead of being able to
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utilize CT or MRI scans. This would result in a significant increase in total treatment

planning time, due to the time it would take to create the special edits and then the extra

time it would take to run enough particles for statistical significance. This led to the

development of BNCT_edit, which is based on a Monte Carlo code called Raffle. Raffle

was developed at the Idaho National Engineering Laboratory (INEL) in the 1970's, and

in the 1980's it was extended to incorporate the most recent Evaluated Neutron Data File

(ENDF-V), resulting in Raffle V. By the 1990's, BNCT_edit was replaced with

BNCT_rtpe, which was first used in the BNL BNCT clinical trials in 1994 [19]. This

program is more commonly referred to as Radiation Treatment Planning Environment, or

RTPE. Contained in this program is the particle transport code called radiation transport

in tissue by Monte Carlo (better known as rtt_MC), which is the part of RTPE that runs

particles through a specified geometry and makes tallies of information that is of

particular interest to the user.

In rttMC, the true patient geometry is used rather than an approximation in order to

obtain the detailed edits necessary for BNCT. CT or MRI images taken of the patient are

loaded directly into RTPE, and a three-dimensional mesh is imposed over the top of these

images. This "subelement mesh" does not affect particle transport or tracking, being that

it is virtual and does not actually exist anywhere on the patient. As the particles are

tracked through this mesh, tallies are performed to determine total dose, boron dose,

gamma dose, nitrogen dose, fast neutron dose, neutron fluence for a specified number of

energy bins, and induced gamma production [19].

RTPE makes use of non-uniform rational b-splines, or NURBS. NURBS provide a

free-form curve and surface representation system, which incorporate the properties of b-

splines, interpolating splines, and Bezier curves and surfaces [19]. The NURBS replaced

a polygonal representation, in which simple geometric figures (such as cubes, cones, and

cylinders) are used to model certain bodies. NURBS can model more complex shapes

than polygonal geometry, and can more accurately depict the bodies on a CT or MRI

scan. The "non-uniform" aspect refers to a knot vector. This knot vector is actually a

series of nondecreasing scalar values that direct the curve about the control points [19].

In the RTPE environment, the user enters a number of control points to outline the

surface of the different regions of interest on the individual MRI or CT scans, such as
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skull, brain, and tumor. From these control points, the knot vector allows for continuity

in the curves. The b-spline uses a weighting scheme to determine the contribution each

control point makes to the position vector. At this point, RTPE then generates a file that

is a NURBS representation of a three-dimensional model based on the MRI or CT images

provided from the patient.

During the next few years of use, changes were made to the RTPE program to fix

problems that arose with the program during the clinical trials. Ultimately, an entirely

new program known as the Simulation Environment for Radiotherapy Applications

(SERA) was created. While both programs were created with the same basic structure,

SERA is different from RTPE in a few important ways. First, SERA is based on a pixel-

by-pixel uniform volume element (known as a "univel") reconstruction. Different bodies

are identified on the computer by filling in the pixels associated with each with a

different color. A name is given to each of these bodies, and information about each of

these bodies is available in the program: information such as elemental composition,

RBE factors of the various dose components, etc. The use of these univels gives SERA

the advantage of much shorter execution time for the transport calculations than RTPE.

Beam alignment in RTPE is done in the input file. The user specifies the beam

alignment by entering on the required line of the input file the beam's distance from a

point in the patient's head, the rotation about the azimuthal angle, as well as the rotation

about the polar angle. While the user-specified target point on the patient's head remains

fixed, the neutron source is rotated about this point. Both RTPE and SERA allow for

different types of output from the patient treatment plan. For instance, the user can

choose to output a dose-volume histogram (either for the whole brain, a particular

hemisphere, the tumor, etc.). Additionally, the user can output an isodose contour, which

will allow the user to determine if the chosen plan is administering too high a dose to a

particular region of the patient's brain.

The program used in the Harvard-MIT clinical trials is called NCTPlan. It was

initially designed around 1990, and was created to optimize the existing beam design

(dimensions, orientation, energy). The brain model used in this program is called

Neutron Photon Brain Equivalent (NPBE) model, and is created by two non-concentric
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ellipsoids. The elemental composition of this model has been documented by Zamenhof

et al. [20].

In 1996, after computational improvements were implemented, a new version of

NCTPlan was developed. This new version was written in Pascal, and called

MacNCTPlan because it was developed for a Macintosh platform. This MacNCTPlan

contains two major parts. Part I is where the three-dimensional mathematical model of

the patient's head is created from a set of MRI or CT scans using a "voxel" technique.

Part II is where the graphical environment exists, allowing the development of dose

patterns from the results of the particle transport calculations. It is here that the dose

distribution results can then be displayed in a one- two- or three-dimensional format.

Part I involves reconstructing the patient's head into a geometry form that the

computer can use. To do this requires the use of "voxels". Voxels are cubes of volume 1

cm3 (or possibly smaller), which are stacked in a three-dimensional array. A material is

assigned to each voxel, and the definitions of these materials can be found in a separate

material file. In MacNCTPlan, two sets of CT images are used: one with and one without

an iodinated contrast agent. The images with no contrast are used to determine what type

of tissue will make up the three-dimensional model for the MC calculations. The

contrast-enhanced images are used to identify the tumor and other bodies within the head.

This step is necessary to determine the region of interest (ROI), which contains the

tumor. From the chosen ROI, a diagram of pixel number versus Hounsfield number (H),

which is the measure of the X-ray absorbency, or density, of tissue, can be constructed.

This diagram will yield three peaks: one for the soft tissue (cancerous or normal), one for

the skull and one for the air. Each pixel is given a material assignment depending on its

corresponding H value. The final model contains 11,025 calculation cells, each

containing between 500-1000 voxels. A material is assigned to each cell by averaging

between four basic materials (air, tumor, normal soft tissue, and bone), with a weighing

factor depending on the number of voxels in a particular cell corresponding to each

material [20].

An important step in any treatment plan is setting up the beam alignment. In

MacNCTPlan, this means identifying the entrance and exit points of the beam's central

axis on the patient. Up to four different beams can be used for treatment. Two
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orthogonal viewing planes can be used through CT image data in MacNCTPlan. This

allows for real-time updating when changes are made to the beam orientation, and thus

the interaction of the beam with the patient's head model can be seen immediately. Also,

the locations of the beam entrance and exit points are necessary for patient positioning

during treatment. In MacNCTPlan, the neutron source is a plane source in a fixed

position with regards to the three-dimensional head model. When the user changes the

beam orientation, the software changes the location of the source plane, while the head

model remains the same. Once the model is created, a Fortran 77 program, called

MPREP, provides the MCNP input deck from a series of files. These files contain all the

information required for computing the doses within the model, including angular and

energy characteristics of the neutron and photon beams, material definitions, and values

for the kinetic energy released in matter (KERMA).

Part II of MacNCTPlan allows for viewing the dose patterns extracted from the

transport calculations that are performed by MCNP. These results (such as RBE isodose

contours) can then be displayed in one- two- or three-dimensional format. Dose-volume

histograms (DVHs) for the tumor, target volume, and whole brain can be generated as

well. This gives the user information on dose distribution, and the percent of particular

volumes subjected to a certain dose or dose rate. If multiple beams are to be used during

treatment, MacNCTPlan combines them in the treatment plan according to their weight,

which is generally defined as a function of the irradiation time.

A few years after MacNCTPlan was created, a new PC-based version of

MacNCTPlan, again named NCTPlan, was created in collaboration with the Comision

Nacional de Energia Atomica in Argentina (CNEA), Harvard Medical School, and MIT.

It was written in Microsoft Visual BasicTM 6.0 and runs under Windows 95/98/NT and

2000 [21]. This code was developed in order to update certain parts of MacNCTPlan, as

well as to create a software program that can be used on a more common computing

platform. MPREP was integrated into this program, and NCTPlan can superimpose

isodose contours on multiple orthogonal planes of the CT or MRI images. Another

difference between MacNCTPlan and NCTPlan is in the material assignment model.

Each image slice is constructed of a number of cells, and each of these cells is defined

based on its mixture of air, soft tissue, tumor, and bone. The percent composition of each
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of these materials is rounded off to the nearest percentage, but occasionally, the

procedure of rounding does not yield a total percentage of 100% in each cell. When this

happens, MacNCTPlan assigns to the cell the last admissible mixture calculated.

NCTPlan on the other hand searches for the mixture that minimizes the sum of the

relative differences (in absolute values). If this minimum value is not unique, the code

chooses the arrangement that has the least effect on the particle transport [21].

Additionally, changes in the calculation of DVHs were performed, which reduce the

errors due to the interpolation method.

As can be seen, RTPE and NCTPlan differ in a number of ways. Geometry

reconstruction, material definition, and kerma coefficients are among the significant

differences in the two programs. This thesis will not go into the effects of these

differences on the patient treatment plans, but they should be considered for a complete

pooling of patient data.

5. BNCT Intercomparison

Because of the small number of patients treated with BNCT, it is desirable to pool

patient data from different BNCT facilities. As is clear from the above discussion, it is

quite difficult to compare a patient treatment plan at one institution to one at a different

institution. Therefore, before a complete pooling of patient data can take place, each of

these differences must be evaluated. In particular, this thesis will focus on the differences

between the clinical trials at MIT and BNL. Among these differences are material

definitions (particularly elemental composition of 14N in normal brain tissue),

measurement of thermal neutron flux, fast neutron dose, and gamma dose at each

institution, and geometry definitions.

Over the years, there has been no single common source of elemental compositions of

tissue for all the institutions to use, and therefore different institutions use a different

value for the weight percent of 4N found in normal brain tissue. While BNL used a 14N

weight percent of 1.8 (the recommended value from an MIT workshop in 1989 [23]),

Petten and Harvard-MIT have most recently been using a value of 2.2% (MIT originally

used a value of 1.8%, however then switched in the past few years to use 2.2%), which is

22



the value recommended by the ICRU report 46 (see Table 2) [22]. The 4N composition

is particularly important because of the thermal neutron interaction that takes place with

14N. Because of this difference in assumed 14N concentration, the two institutions are

actually stating that different 14N doses will be administered to a patient. If these doses

are significantly different, the effects may be seen in the total prescribed dose to the

patients.

Another difference is the definition and measurement of thermal neutron flux, as well

as fast and gamma dose measurement from one institution to another. Each institution

measures its beam dosimetry in the way that they feel is most accurate. However, this

means that most institutions are using different kinds of detectors, measuring in different

phantoms, measuring at different depths down the center line of the beam axis, etc. For

instance, at BNL, thermoluminescent dosimeters (TLDs) were used to measure the

photon dose rate, while at MIT, ion chambers were used. This has caused a systematic

difference in the doses reported by these different institutions for their respective beam

components. TLDs are small and produce a minimum perturbation of the neutron field,

but also are somewhat sensitive to thermal neutrons. This creates a high background that

must be subtracted. Each type of detector has its own advantages and disadvantages, as

well as each having its own associated error in a particular application. Because of this,

even in the same beam, the two types of detectors could give different readings. When

looking at a dose calculated from these measured values (such as thermal neutron dose

calculated from thermal neutron flux measurements), the error will propagate, which

causes concern when attempting to compare exposure from beams at different

institutions. The error associated with the neutron beam measurements must be evaluated

to determine the error associated with the prescribed dose. These measuring differences

make an intercomparison of patient doses from the two different trials even more

difficult.

Patient geometry at MIT and BNL is reconstructed using MRI or CT scans. When

phantoms such as the Lucite cube are run in RTPE, a simple combinatorial geometry

reconstruction is typically used. This is because phantoms such as the cube are more

easily modeled using a geometric reconstruction, and CT scans are unnecessary.

However, it is necessary to determine what effect the type of geometry (combinatorial vs.
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NURBS) has on the peak and whole brain average doses. Differences in patient

geometry within a single treatment planning system will be addressed later in this thesis.

As is quite obvious, the characteristics of the beams at different institutions are quite

different from one another. When a neutron beam is extracted from a reactor,

contaminating photons inevitably become part of the neutron beam. The extent to which

these contaminants are a part of the beam is different from one facility to another. Each

beam component must be thoroughly analyzed at each institution, and a direct means of

comparing each component from one institution to another must be determined. This

boils down to calculating a scaling factor for each dose component, allowing for a

comparison of prescribed peak dose between two institutions.

The use of different treatment planning software programs can also cause problems

when trying to compare patient data. For instance, NCTPlan and RTPE create the model

geometry in very different ways. So, while both model the same patient's head, neither

has created the head exactly, and the error associated with each modeling technique will

lead to slight differences in the ultimate treatment plans. Additionally, no two codes are

written exactly the same, and therefore differences in the particle transport and dose

calculations may arise.

Since ultimately, a full pooling of BNCT patient data is desired, all of the differences

between the participating facilities must be analyzed and evaluated. The effect of

different 14N concentrations, as well as scaling factors between the beam components

must be determined. Once these differences are understood, the MIT and BNL patient

data can be combined. The only normal brain side-effect observed in BNCT patients

suitable for use in a combined data set has been somnolence, and when the MIT and BNL

patients are combined, a more complete evaluation of the cause of this endpoint can be

examined.

The objective of these Phase-I clinical trials at BNL and H-MIT is to determine safety

and an estimate of normal tissue tolerance. The side effect observed in the central

nervous system (CNS) of some of these patients was a somnolence syndrome. The

objective of this thesis is to combine the clinical data from the BNL and MIT trials to

create a stronger set of data for evaluation of the BNCT dose-response relationship in

normal brain: in other words, an estimate of the tolerance of the normal brain to the
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complex radiation field produced in tissue during BCNT. Such information on brain

tolerance to BNCT will be of great importance in planning future clinical trials at MIT, as

well as at all other clinical BNCT sites worldwide.
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II. Materials and Methods

In comparing patient brain doses between clinical trials at two different clinical

centers, it is necessary to quantify any differences in dose measurements based on

systematic differences between different dosimetry techniques. Since the

intercomparison of the patient doses in this thesis is based upon the dosimetry

intercomparison reported by Riley et al. [1], a discussion of dosimetry techniques at BNL

and MIT is warranted. MIT and BNL used different phantoms to perform routine

dosimetry checks on their own beams, and also used different techniques to perform these

measurements. To directly compare the dosimetry techniques, measurements were

performed in the BNL beam by the MIT group in 1997 and 2000 using the standard BNL

phantom, as well as the standard MIT phantom [1] and the results were compared to the

published data from the BNL group [2]. The paper by Riley et al. [1] provides the basic

data required for the brain dose comparison in this thesis. Since all factors were the same

in both cases except for measurement techniques, a scaling factor between the MIT

measured doses and the RTPE output can be obtained for each dose component. These

scaling factors are a direct measure of the systematic differences in techniques. Again,

since this thesis mainly focuses on the differences between clinical trials at MIT and

BNL, only the dosimetry methods performed by each of these institutions will be

detailed. Both the BNL and MIT phantoms can be run in the RTPE treatment planning

system to benchmark the treatment plan against known measurements and to provide

preliminary insight as to differences between the two treatment planning systems.

1. Dosimetry Phantoms

Routine dosimetry measurements were performed by MIT in their own beam using

the MIT ellipsoidal water-filled phantom [3]. The ellipsoidal head phantom dimensions

are 13.6 cm in the x-direction, 19.6 cm in the y-direction, and 16.6 cm in the z-direction,

with a total volume of 2502 cm3 . The top two-thirds of the shell are made of acrylic, and

the bottom third is made of acrylic plates. The definition of these materials can be found

in Table 2. The shell is filled with distilled water, and watertight butyrate tubes are
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inserted from the bottom of the phantom. This allows gold foils or ionization chambers

that can be driven remotely by a computer-controlled stepper motor to be positioned

within the water medium. During the gold foil irradiations the tube containing the foils is

filled with water. When measurements are taken, the phantom is aligned with the beam

on the patient treatment table along the phantom's x-axis. It is positioned so that there is

no gap between the phantom and the plane of the end of the collimator. Figure 1 shows

the Deutsch and Murray model of the head. This was used as the basis for the MIT head

phantom. Figure 2 shows the dimensions and details of this phantom.

Table 2: Elemental composition for materials in the MIT ellipsoidal

Normalized Atomic Fractions

head phantom

Material H1 016 N14 Ca C Si

H20

Air

Acrylic

Quartz Mat. +

Acrylic Resin

1 ,6cm
- 13.6 cm 

12cm -*
Z axis.

Y axis
p _i _-r a ' l· .. '

Figure 1: A drawing of the Deutsch and Murray model of the head and brain using ellipsoids for the
inner and outer surfaces of the skull [3]
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Figure 2: Side and bottom view of the ellipsoidal water-filled head phantom showing how detectors
and activation foils can be inserted in hollow tubes into the internal water volume [3]

The phantom routinely used for dosimetry measurements at BNL was a solid Lucite

cube. The Lucite cube has dimensions 14 cm x 14 cm x 14 cm (total volume of

2744cm 3) and the composition is defined as 8% H, 60% C, and 32% N by weight. This

cube has a hole in the front face that extends down the centerline of the cube, as well as

off-axis holes, to accommodate various Lucite rods of 1.59 cm diameter. Slits are cut in

the rods at 3.5, 7.0, and 10.5 cm from the front face of the phantom, allowing for

measurements to be made at these depths by TLDs that can be placed in the slits. Rods

containing Au foils or Cd capsules with Au foils in them can also be placed in the Lucite
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cube for additional measurements. For thermal neutron flux measurements, these slits

can hold either a bare Au foil or a cadmium capsule in which an Au foil is placed. The

Au foils are square shaped and weighed between 3.02 + 0.03 and 25.59 + 0.26 mg [1].

Additionally, for gamma dose measurements or fast neutron dose measurements, an ion

chamber can be inserted instead of the Lucite rod, and can be located at a desired depth

by using spacers. To make measurements at additional depths, slits were created at 1.0,

2.0, 5.0, and 9.0 cm. For this study, the Lucite cube phantom was placed with its front

face touching the patient collimator, and its central axis aligned with the beam axis [1].

A diagram of the Lucite cube can be seen in Figure 3.

cm

I--

Figure 3: Diagram of 14cm x 14cm x 14cm BNL Lucite cube phantom

2. Dosimetry methods

For the BNL/MIT dosimetry intercomparison, measurements were performed by MIT

researchers in the BNL beam with the 12-cm collimator in place using both the MIT

ellipsoidal head phantom and the BNL Lucite cube. Data are available in the Lucite cube

from BNL using both the original 8-cm collimator, as well as the 12-cm collimator,

which was installed in 1996 [2]. Since the MIT measurements were performed only with
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the 12-cm collimator in place, a comparison of the BNL beam with the 8-cm collimator

cannot be performed at this time.

MIT researchers measured each beam component in December of 1997 and again in

July and September of 2000. Measurements were performed in the Lucite cube and the

ellipsoidal phantom for gamma dose, thermal neutron flux, and fast neutron dose. In-air

fast neutron dose measurements were also performed.

a. MIT gamma and fast neutron doses

Photon and fast neutron dose rates were measured in the Lucite cube phantom as well

as in-air using the dual chamber technique of Attix [4]. This technique involves using

two chambers: one that is neutron sensitive and one that is neutron insensitive. Using the

neutron insensitive chamber, the photon dose rate can be measured. The neutron-

sensitive chamber measures both gamma and fast neutron dose. Once these

measurements are known, the data from the neutron-insensitive chamber can be

subtracted from the data obtained from the neutron-sensitive chamber to determine the

neutron dose rate. The neutron sensitive chamber used by MIT is a 2.51 mm-thick A-

150-walled, muscle tissue-equivalent, ionization chamber (IC-18 Far West Technology)

that has an active volume of 0.1 mL and is flushed with tissue-equivalent gas (64.4%

CH4, 32.4% CO2, and 3.2% N2) at a rate of 20mlmin [1, 5]. The neutron-insensitive

chamber used by MIT is similar but has a 1.65 mm-thick wall made of graphite and is

flushed with CO 2 gas. Both chambers are operated with an applied voltage of +250 V

and have calibration certificates traceable to the National Institute of Standards and

Technology (NIST) [1, 5]. In-air measurements were also performed with the chambers

located along the central axis of the beam: the plane that defines the exit end of the

patient collimator. Overall uncertainties of about 9.0% are associated with the MIT

photon dose rate measurements [1, 5]. For the fast neutron dose rate measurements,

overall uncertainties in the Lucite cube are about 32.5% at a depth of 1 cm, and of 100%

at 4 cm and deeper, and uncertainties in-air are about 17% [1, 5]. In-phantom gamma

and fast neutron dose were made at 1 cm depth increments from 1 cm to 11 cm depth.

b. MIT thermal neutron flux

Thermal fluxes were determined using the cadmium difference technique. Au foils of

thickness 0.005 cm were used with 0.051 cm-thick Cd covers. Bare foils were irradiated
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at the surface of the phantom and at depths of 1 cm increments up to 8.0 cm, as well as at

10.0 cm and 12.0 cm. To minimize thermal flux suppression, the Cd-covered foils were

irradiated at the surface of the phantom and at depths with 2-cm increments up to 10.0

cm. MIT assumes that the thermal neutron activation occurs solely due to neutrons with

a velocity of 2200 m/s and have an absorption cross section of 98.8 barns [1].

Once the Au foils were activated, they were measured at MIT using a high-purity

germanium (HPGe) detector that had been energy-and-efficiency-calibrated using a

Standard Mixed Radionuclide Source (SRM 4275C-45) from NIST [1, 5]. This source

consists of a thin deposit about 0.6 cm in diameter on a polyester tape, and reproduces the

geometry of a Au foil. It is placed about 13 cm away from the face of the detector to

minimize coincidence-summing errors. Overall uncertainties of about 7.4% are

associated with the MIT thermal neutron flux measurements [1, 5].

c. BNL gamma and fast neutron dose rates

BNL researchers used the mixed-field ionization chamber dosimetry technique, based

on the methodology of Attix [4] for both gamma and fast neutron absorbed dose

measurements in air. This technique is the same as the one used by MIT, with one

neutron sensitive and one neutron insensitive ionization chamber. Both chambers are the

same as those used by MIT. Both chambers were calibrated at Far West Tech., Inc. by

'37Cs source irradiation [2]. They were covered with 6LiF thermal neutron shields made

by two 0.0794 cm-thick cellulose acetate butyrate cylindrical tubes, separated by -4 mm

thick 6LiF (-95% enriched isotopic 6Li) compressed powder and sealed at each end [2].

BNL measured gamma absorbed dose rates in the Lucite cube phantom by using LiF-

700 thermoluminescent dosimeters (TLDs) (Harshaw Chemical Company, Solon, Ohio

[2]). These TLDs are made of lithium fluoride, 99.93% enriched in 7Li, and are about

lmm x mm x 6mm. Unfortunately, they do contain small amounts of 6Li, which

responds strongly to thermal neutrons in the phantom. Because of this, each batch of

TLDs was calibrated for thermal neutron response at the Brookhaven Medical Research

Reactor's Thermal Neutron Irradiation Facility. The TLDs were calibrated for gamma

dose response in a calibrated 60Co source at BNL [2]. The TLD rods were covered with a

2 mm thick 6Li metal shield to measure the absorbed dose from gamma rays in the beam

at the irradiation aperture. The uncertainty in the measured photon dose rates is about
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10% [2]. The uncertainty in the fast neutron dose measurements in air is about 15% [2].

BNL researchers did not perform fast neutron measurements in the Lucite cube. Instead,

they relied on the in-air surface fast neutron measurement and calculations to generate

fast neutron depth-dose information.

d. BNL thermal neutron flux

BNL performed measurements to determine thermal and epithermal neutron fluence

rates, gamma dose rates, and fast neutron dose rates either in air or in the Lucite cube

phantom. Bare and cadmium-covered Au foils 0.00127 cm thick and with an average

diameter of 0.8 cm were used to measure thermal neutron fluence rates. However,

instead of using an HPGe detector to measure the activated foils as MIT did, BNL used a

NaI(T1) well-type detector to measure the Au foil activation. Calibration sources were

obtained from DuPont, and satisfied NIST standards [2, 6]. Uncertainty in the BNL-

measured thermal neutron fluence rates in both collimators is about 6% [2].

BNL assumes that thermal neutron activation occurs due to neutrons with a range of

energies. BNL calculates the energy distribution for thermal neutrons at each depth in

the phantom and determines an effective cross section associated with each position.

They calculated cross sections of 80.0, 83.0, and 86.0 barns at depths of 3.5, 7.0, and 10.5

cm, respectively [1]. This is different from the MIT definition of thermal neutrons, and

therefore when making a thermal neutron comparison, the fluxes cannot be directly

compared. However, when thermal neutron dose is calculated from the measured flux,

the difference caused by these different thermal neutron definitions disappears due to the

different kerma factors associated with the different cross sections.

e. Routine BNL dosimetry measurements in the Lucite cube

Beam measurements were performed by BNL on a monthly basis in the Lucite cube

at 3.5, 7.0, and 10.5 cm, between 1994 and 1999 as part of the BNCT clinical trial quality

control program. Figure 4 shows the photon dose and thermal neutron flux

measurements at 3.5 cm versus the date on which those measurements were taken. The

uncertainty in the experimental measurements over a one-year period of time in the 8 cm

collimator was about 5% [2]. The dosimetry methods used to obtain these measurements

are as described above. Between February 7, 1996 and March 27, 1996, a new collimator

was put in place at the BMRR. This new collimator was 12 cm in diameter and 7.6 cm
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thicker than the former 8-cm-diameter collimator. There is a clear decrease in thermal

neutron flux and gamma dose rate at this point. The thermal neutron flux decreases on

average by about 23% and the gamma dose rate decreases on average by about 34%.

This is due to the fact that while the 12-cm collimator has a larger neutron source area, it

is offset by the decrease in flux caused by the longer beam path (since the 12-cm

collimator is 7.6 cm longer than the 8-cm collimator). At the peak, the thermal neutron

flux decreases by 18% at 3MW power [2]. Additionally, some of the fuel rods were

shuffled between 2/10/98 and 3/12/98. The effect of this core shuffle can be observed in

both graphs by about a 15% increase in photon dose rate and 11% increase in thermal

neutron flux. When applying these changes to the RTPE source files, it was discovered

that the increase in flux and gamma dose rate after the core shuffle yielded an

insignificant change in the prescribed dose to the patient. Because of this, only three

treatment plans in the BNL clinical trial made use of a separate source definition after

2/10/98. All subsequent treatment plans used the source definition used before the core

shuffle. This means that two different source definition files were used to calculate the

treatment plans for these two groups of patients: those treated before and those treated

after the new collimator was put in place. Since MIT measurements were only performed

when the 12 cm collimator in place, all evaluation of adjustment factors will be

determined for this group. Without having the MIT measurements with the 8 cm

collimator, it is impossible to know whether or not two different sets of adjustment

factors should actually be applied to the patients. Thus, the adjustment factors calculated

below for the 12 cm collimator are used for all BNL patients.

All calculations in this thesis were performed specifically to compare the MIT clinical

trial to the BNL clinical trial. Access was available to all original patient treatment

planning information from both the BNL and MIT clinical trials, as well as to the original

computer used at BNL to run patient treatment plans using RTPE. It was important to

rerun patients treated at BNL on the BNL software because this would eliminate possible

errors associated with differences in treatment planning software. Particularly when

rerunning patient treatment plans, the original files (source, input, material, cross section,

etc) were used, and only one or two parameters were changed at a time, which allows for

the effect of these individual parameters on the treatment plans to be seen.
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With this information, a direct comparison of MIT measurements and BNL RTPE

output in the Lucite cube and the ellipsoidal head phantom can be performed. This will

allow for a calculation of the scaling factors that must be applied to all the BMRR dose

components so that they match MIT measurements. Ultimately, these scaling factors can

be applied to the BNL patient data, and a combined analysis of patient brain doses at MIT

and BNL can be achieved.

BNL Measurements Over Time
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Figure 4: Results of the routine gamma dose rate (bottom) and thermal neutron flux measurements
(top) performed by BNL from December 1994 to June 1999 [7]
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III. Differences in 14N Concentration

There is no standard reference that all centers must follow when defining tissue

composition, and therefore during the BNCT clinical trials, different centers used

different brain compositions, particularly '4N weight percent. The recommended values

changed over the years (as well as different values being recommended by different

groups), however the clinical centers treating patients with BNCT chose for themselves

whether or not to change the 14N values they used according to these recommended

values. For instance, while both MIT and BNL originally used a value of 1.8 weight

percent 14N for many years, MIT currently uses a value of 2.2 weight percent, as does

Petten. ICRU 46 defined normal brain as having 1.8% 14N [1]. These two percentages

are the two extremes of the 4N values used in BNCT. When attempting to pool the

patient data, the question arose as to what effect this difference in composition would

make in the ultimate definition of dose given to the patient, and what adjustment would

need to be made to patient treatment plans in order to compare patient data from an

institution using a nitrogen weight percent of 1.8% to one using 2.2%. By evaluating

these differences, a determination can be made as to whether or not a correction needs to

be made to BNL doses and RTPE output to match doses that would be as measured by

MIT in the same phantom.

The dose received by the patient during treatment is comprised of several different

components: a gamma component (from gamma rays in the neutron beam and a larger

component from the hydrogen capture reaction), a 14N dose component from the nitrogen

capture reactions in tissue (which creates a 615 keV proton), a fast neutron component

(from proton recoils produced by fast neutrons colliding with hydrogen in tissue), and a

boron-10 component (which is another thermal neutron dose and is proportional to the

amount of 10B in the tissue). The dose-depth distribution of each of these components in

a Lucite cube, containing no l°B, obtained from RTPE in the BNL beam can be seen in

Figure 5. The doses for this figure were calculated as the dose to normal brain tissue. All

doses stated in this thesis are calculated at a reactor power of 3MW.
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Physical Dose vs. Depth in Lucite Cube
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Figure 5: Depth-dose profile in Lucite cube (with no boron) for all components, using 12 cm
collimated source as calculated with RTPE

Table 3 shows the material definition of normal brain in RTPE with only the natural

concentration of boron in blood (which is almost zero). Table 4 shows the definition of

normal brain tissue as defined by ICRU 46 and MIT in 2002 [1, 2]. As can be seen from

Figure 5, the 14N dose is only a small contributor at all depths. It is in fact typically less

than 13% of the total dose at all depths. This is because 14N makes up such a small

fraction of normal brain tissue, and the fraction of the total dose that is from the 4N

reaction will depend on the weight percent 14N in tissue.
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Table 3: Material definition for normal brain in RTPE [3]

Material Atom Density Wt %

(atoms/barn-cm)

H 6.663E-02 10.57

0 2.886E-02 73.27

C 4.742E-03 9.03

N 8.283E-04 1.84

B 4.402E-09 0.00

Na 3.840E-05 0.15

Cl 5.340E-05 0.30

K 6.289E-05 0.39

P 7.939E-05 0.39

Table 4: Normal brain composition as defined by ICRU 46 [1] and by Harvard-MIT, as of 2002 [2]

Element ICRU 46 weight % Harvard-MIT weight %

H 10.7 10.57

C 14.5 13.94

N 2.2 1.84

O 71.2 72.59

Na 0.2 0

Mg 0 0

P 0.4 0.39

S 0.2 0

Cl 0.3 0.14

K 0.3 0.39

Ca 0 0

Density (g/cm3) 1.04 1.047

The first step in comparing the effect of 14N differences on patient doses at BNL or

Harvard-MIT is to make changes to a simple common phantom. In this case the 14cm x

14cm x 14cm Lucite cube containing no boron was chosen. While the particle transport

takes place through the material defined as Lucite (see Table 5), the dose is calculated in

normal brain tissue (see Table 3). The 14N weight percent in normal brain tissue can be

changed in the RTPE input file and the effect of this change on the calculated total dose

rate can be observed. By making the necessary material definition changes in RTPE and
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keeping all other input the same, the user is able to determine what effect changing the

nitrogen concentration has on the calculated dose to tissue.

Table 5: Material definition for Lucite as defined in RTPE

Material Atom Density

(atoms/barn-cm)

H 0.05777

O 0.01444

C 0.03511

With a nitrogen concentration of 1.8% (i.e., the BNL model), the nitrogen depth-dose

profile in the cube in the BNL beam is shown in the bottom curve in Figure 6. With a

nitrogen concentration of 2.2% (i.e., the MIT model), the nitrogen depth-dose profile in

the cube in the BNL beam is shown in the top curve in Figure 6. Figure 7 shows the

effect that varying the nitrogen concentration has on the total dose, which is the more

relevant parameter from a clinical point of view. This graph shows the total dose with no

boron present. As is clear from this graph, the difference between the two total doses is

very small. In fact, the two numbers are within 3% everywhere, including at the peak.

As mentioned before, the 14N dose comprises only a small percent of the total dose.

Because the other dose components (which can be seen in Figure 5) comprise a more

significant portion of the total dose, a small change in a component that makes up less

than 13% of the total dose will lead to an even smaller change in the total dose.

Additionally, this analysis included no boron in the normal tissue. Once the boron

component is added back in, the 14N component will comprise an even smaller percent of

the total dose, and the effect of changing this dose component will be even smaller.

Figure 8 shows a comparison of the 14N dose and the total dose in the Lucite cube for

tissue composition of both 1.8% and 2.2% 14N.
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N14 Dose Comparison in Lucite Cube
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Figure 7: Comparison of total dose rates in the Lucite cube
of either 1.8 % or 2.2 %

with no 10B, with nitrogen concentrations
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Total and N14 Dose Comparisons for 1.8% and 2.2% N14 in Lucite Cube
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Figure 8: Depth-dose profiles of both the 14N dose rates and the total dose rates in the Lucite cube
with no 10B, for nitrogen concentrations of either 1.8% or 2.2%

The results obtained from the Lucite cube indicate that the difference in peak dose

received by the patient due to differences in tissue nitrogen composition will be

negligible. However, to check this hypothesis, it is important to examine a sample

patient treatment plan, to be sure that the effect seen in the Lucite cube is representative

of that seen in a patient. Figure 9 shows the comparison of the 14N dose for a

representative 1-field patient treatment plan run with both 1.8% ' 4N in tissue and 2.2%

'4N in tissue. The comparison of the total dose can be seen in Figure 10, along with the

14N dose. The peak dose for the 1-field patient is changed by less than 3%, and the total

dose actually changes by less than 3% everywhere along the curve. The 'normal brain'

for this patient was assumed to have a blood boron concentration of 10 ptg '°B/g. Almost

all patients treated in the BNL and MIT clinical trials had blood-boron concentrations of

between 10 and 20ptg/g.
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N14 Dose Comparison at 1.8% and 2.2% N14 in 1-field Patient
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Figure 9: 14N dose rate comparison for a 1-field BNL
normal brain tissue using the 12-cm collimator

patient with either 1.8% or 2.2% nitrogen in
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Figure 10: Total and 14N dose rate comparison for a 1-field
nitrogen in normal brain tissue using the 12-cm collimator

BNL patient with either 1.8% or 2.2%
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The dose administered to normal tissue is dependent upon the amount of '4N found in

the tissue. While different clinical centers use slightly different definition for the percent

composition of 14N in normal brain tissue, it is clear that the effect this difference has on

the total prescribed dose is negligible. Therefore, it is safe to say that a direct comparison

between BNL patient doses and MIT patient doses can be performed without the need of

any sort of scaling factor to account for the change in tissue nitrogen composition.
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IV. Comparison of Patient Dose Component Measurements in the
BNL Beam by BNL and MIT

In order to pool BNCT patient data from the various BNCT facilities, a direct

comparison of the dose administered to patients by two facility's neutron beams must be

made. To do this, an assessment of each facility's measurement techniques must be

performed. Every BNCT facility's neutron beam is unique in its dose component make-

up, and each component must be compared individually. For this evaluation, two

different phantoms will be used: the Lucite cube phantom routinely used by BNL, and the

ellipsoidal water-filled head phantom routinely used by MIT. These phantoms were both

simulated in RTPE using both a combinatorial geometry (CG), as well as geometry

reconstructed from CT images and compared to measurements in the actual phantoms. A

comparison of the CT to the CG geometry in each phantom showed that the same results

could be obtained regardless of geometry, and therefore all results will show the CG

geometry output. While the Lucite cube is the simplest geometry, it may actually be too

simple to rely upon for good results due to the fact that it does not closely resemble any

aspect of a potential patient to be treated with BNCT. Since the shape of the ellipsoidal

head phantom is more representative of an actual patient, it will therefore serve as a good

check of the accuracy of the model created from the Lucite cube.

1. Error Analysis of MIT & BNL Measurements

Before proceeding to examine the difference between the MIT and BNL dose

measurement techniques, it is necessary to examine the doses measured and published by

each group more closely [1, 2]. All of the BNL and MIT measurements have errors

associated with them (from measurement error, errors associated with the detectors, etc.).

These errors depend on number of counts in the detector and properties of the detector

itself, among others. It is important to fully understand these errors before doing further

evaluation.

Table 6 and Table 7 detail the measurements made by MIT and BNL in the BMRR

epithermal neutron beam with either the 8-cm collimator or the 12-cm collimator. These

measurements were all made in the Lucite cube phantom. The MIT measurements were
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performed in September 2000, and Ben Liu et al performed the BNL dose measurements

in 1996 [2]. The monthly quality control dosimetry measurements detailed previously

are in good agreement with the published BNL measurements [2, 3].

Table 6: MIT-measured dose rates, thermal neutron flux, and calculated 14N dose rates in Lucite
cube in the BMRR at a reactor power of 3MW with the 12-cm collimator (September 2000) [1]

Depth in Gamma Fast Dose Rate Thermal Flux '4N Thermal Dose
Cube Dose Rate (cGy/min) (cm-2s-l)*108 (calculated)
(cm) (cGy/min) (cGy/min)
1.0 4.84±0.44 2.38+0.70 -- --

2.0 5.62+0.51 2.00+ 1.00 -- --

3.5 5.76±0.52 1.25+1.00 13.73+1.02 1.10±0.08

5.0 4.93+0.44 0.36+035 -- --

7.0 3.75+0.34 0.38+0.37 4.88+0.36 0.39+0.03

10.0 1.60+0.14

10.5 1.29-0.12 1.13+0.08 0.09±0.01

Table 7: BNL-measured dose rates, thermal neutron flux, and calculated 14N dose rates in Lucite
cube in the BMRR at a reactor power of 3 MW with the 8-cm and 12-cm collimator [2]

Depth in 8-cm

Lucite collimator

Cube Gamma

(cm) Dose Rate

(cGy/min)

3.5 4.71±0.47

7.0 2.5+0.25

10.5 1.28±0.13

8-cm

collimator

Thermal Flux

(cm- 2 s-l)*108

19.4+1.2

6.41+0.38

1.53±0.09

8-cm 12-cm
collimator

'4N Thermal collimator
Dose Gamma

(calculated) Dose Rate
(cGy/min)

(cGy/min)

1.56+0.10 3.87+0.39

0.516±0.031 2.45+0.25

0.123+0.007 1.27+0.13

12-cm

collimator

Thermal Flux

(cm-2s-l)*108

15.9±1.0

5.7±0.34

1.38±0.08

Measurements were also taken in the BNL beam by MIT in the ellipsoidal head

phantom. Unfortunately, equivalent measurements were not performed by BNL in the

same phantom. However, the MIT measurements in the head phantom will be useful as a

check on the accuracy of the scaling factor results obtained later in this thesis. The MIT

measurements in the ellipsoidal head phantom are detailed in Table 8.
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12-cm
collimator

'4N Thermal
Dose

(calculated)
(cGy/min)

1.279+0.080

0.459+0.027

0.111±0.006
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Table 8: MIT-measured dose rates, thermal neutron flux, and calculated 14N dose rates in the
ellipsoidal head phantom in the BMRR epithermal neutron beam at a reactor power of 3 MW with
the 12-cm collimator [1]

14N Thermal

Depth in Gamma Dose Thermal Neutron Dose
Lucite cube Rate Flux (calculated)

(cm) (cGy/min) (cm-2 s-l )*10 8 (cGy/min)

1.00 5.55+0.40 12.2±0.6 2.02+0.10
2.00 6.05+0.40 14.6±0.8 2.42±0.13
3.00 6.20±0.35 14.0±0.8 2.32+0.13
4.00 5.90±0.30 12.0+0.7 1.99±0.12
5.00 5.40±0.25 9.30±0.6 1.54+0.10
6.00 4.55±0.25 7.00+0.4 1.16±0.07
7.00 4.00+0.20 -- --

8.00 3.50±0.20 3.20+0.1 0.53±0.02

9.00 2.85+0.10 -- --

10.00 2.50±0.08 1.50±0.1 0.25±0.02

11.00 2.00+0.05 --

a. MIT measurement errors

The thermal flux was measured directly at a reactor power of 3MW in the solid

Lucite cube phantom by gold foil activation analysis [1]. With this flux value known, the

'4N and 10B doses can be calculated by (assuming kerma coefficients for '4N and l°B of

0.745*108 and 8.66* 10-6 cGy-cm 2, respectively):

DN14 = (44.7 * 10-9)Fno in cGy/min (Eq. 1, [4])

DBIO = (5.196 * 10-4)Fb in cGy/min (Eq. 2, [4])

Where,

Fn = the fraction by weight of the nitrogen in tissue = 1.8%

Fb = the fraction by weight of the 10B in tissue = 10-20[xg/g

0 = the thermal neutron flux in neutrons/cm2s

Average 10B concentrations in the BNCT patients were typically between about 10

and 20tg/g, and therefore these values were used to calculate the minimum and

maximum °B dose rates to get an idea of the range of doses from U°B. The gamma dose

was measured by MIT directly in the cube in the manner described previously.

As can be seen from Table 6, the errors on the fast neutron measurements in the

Lucite cube are very large. Fast neutron doses in the cube were calculated using an A-

150 plastic walled ionization chamber, subtracting for the photon and thermal neutron

responses. Because the photon dose in the cube is higher than the photon dose in air, the
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error when measuring fast neutron dose in the Lucite cube is larger than measuring the

same way in air (greater subtraction is necessary in the cube, which allows for greater

error in the fast neutron measurement). Therefore, when calculating the total dose, it

would be more accurate to use the fast neutron measurement in air and scale the RTPE

fast neutron curve to this measurement, allowing for minimum error on the calculated

total dose. The MIT-measured fast neutron dose in air in July of 2000 was 1.71 + 0.29

cGy/min [1].

b. BNL measurement errors

In the same BNL beam, BNL researchers performed similar measurements. Bare

gold foils were used to measure the thermal neutron flux in the beam. These activated

gold foils were then measured with a NaI(T1) well-type detector [2]. It is important to

note that the thermal neutron flux measurements cannot be directly compared between

the two institutions. This is because the MIT group makes the assumption that thermal

neutron activation of the Au foils is due solely to neutrons with a velocity of 2200 m/s

(which have an absorption cross section of 98.8 barns [1]), while BNL calculates the

energy distribution for thermal neutrons at each depth in-phantom, and then determines

an associated average absorption cross section at each position. The values used by BNL

for thermal neutron absorption cross section are 80.0, 83.0, and 86.0 barns at 3.5, 7.0, and

10.5 cm, respectively [1]. Since calculation of the 14N and '0 B thermal neutron doses

take these kerma factors into consideration, the thermal neutron dose calculated from the

measured flux values at MIT and BNL must be compared instead. The gamma dose rates

in the cube were measured using LiF-700 TLD rods, the measurements from which can

be seen in Table 7. Since no measurements were made by MIT using the 8-cm

collimator, these numbers cannot be used for a comparison. Again, the most accurate fast

neutron dose will be obtained by scaling the RTPE output to the in-air fast neutron

measurements. The BNL-measured fast neutron dose in air with the 12-cm collimator

was 2.33 + 0.35 cGy/min [2].

Since no measurements were performed by BNL in the ellipsoidal head phantom,

only the Lucite cube will be used for the rest of this error analysis and dose comparison

between the two institutions.
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c. Physical dose comparison

From these data, the total physical dose in the Lucite cube can be calculated at

specific depths in the cube by:

Total Physical Dose = G + N + B + F [cGy/min] (Eq. 3)

Where,

G = gamma dose (cGy/min)

N = 14N dose (cGy/min)

B = l°B dose (cGy/min)

F = fast neutron dose (cGy/min)

And, assuming the uncertainties on these measurements are independent, the absolute

error on this calculated physical dose could be determined from the equation

+ + + (Eq. 4)

Where,

EG = error on the measured gamma dose

EN = error on the measured thermal neutron dose

eB = error on the measured boron dose

EF = error on the measured fast neutron dose

Using these equations, the values for total physical dose at 3.5, 7.0, and 10.5 cm and

their associated errors can be seen in Table 9.

Table 9: Calculated physical dose rates in the Lucite cube from published MIT and BNL
measurements. Errors represent the quadrature for summation. The calculations were performed
with either 10 or 10 jpg/g 10B

Depth MIT Physical Dose BNL Physical Dose MIT Physical Dose BNL Physical Dose

(cm) (l°B = 0lg/g) (l°B = 10 g/g) (l°B = 20 gg/g) ('°B = 20 g/g)

(cGy/min) (cGy/min) (cGy/min) (cGy/min)

3.5 14.57 ± 0.75 16.45 + 0.84 21.70 + 1.19 24.72 + 1.23

7.0 6.87 + 0.39 7.66 + 0.45 9.41 + 0.51 10.62 ± 0.55

10.5 2.68 0.18 2.83 + 0.18 3.27 + 0.19 2.55 + 0.19

d. Weighted Dose Comparison

The equation to calculate weighted dose is

Total Weighted Dose = RGG + RNN + RBB + RFF [cGy-Eq/min] (Eq. 5)
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Where all notation is the same as above and

RG = RBE factor for gamma dose = 1.0

RN = RBE factor for ' 4N thermal neutron dose = 3.2

RB = CBE factor for °1 B thermal neutron dose = 1.3

RF = RBE factor for fast neutron dose = 3.2

It is interesting to note that during the MIT clinical trials, a value of 0.5, instead of

1.0, was used for the RBE factor for gamma dose [5]. This was done because the dose in

the M-67 beam was delivered slowly and was fractionated (it was delivered over two

days). When calculating weighted doses, the question arises as to what error should be

associated with the RBE factors. These RBE and CBE factors have all been determined

experimentally [5], and unfortunately, the uncertainty on these numbers is unknown (and

possibly somewhat large). This problem will be addressed first by determining the error

on the weighted total dose assuming there is no error in the RBE factors, and secondly by

assuming the error on the RBE factors to be as large as 20%. While the errors on the

RBE factors have not been evaluated in great detail, it is known that they could possibly

be quite large. A value of 20% was assumed to be a reasonable, conservative estimate of

the RBE error. With no error on the RBE factors, the total dose error can be calculated

by

(Eq. 6)ew =/(R262 ) + (R2Fe2 ) + (RBeB2)+ (RFe ) (Eq. 6)

Where all notation is the same as that used previously. From this information, we get

values for the weighted total dose (Gy-Eq) and its associated errors at each depth in Table

10.

Table 10: Calculated weighted dose rates from MIT and BNL measurements in the Lucite cube with
either 0lpg/g or 20pg/g 10B, with no error on the RBE factors

Depth MIT Weighted Dose BNL Weighted Dose MIT Weighted Dose BNL Weighted Dose

(cm) (boron = 10 gg/g) (boron = 10 gg/g) (boron = 20 iag/g) (boron = 20 glg/g)

(cGy-Eq/min) (cGy-Eq/min) (cGy-Eq/min) (cGy-Eq/min)

3.5 20.38 + 0.95 22.77 + 1.00 29.66 + 1.53 33.51 + 1.54

7.0 8.92 + 0.44 9.91 + 0.49 12.22 ± 0.61 13.76 ± 0.63

10.5 4.63 ± 0.41 4.68 t 0.41 5.39 ± 0.42 5.79 ± 0.42

If a 20% error on the RBE factors is now assumed, the error equation becomes
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e i2(R)((e d2 22))(N )(Rf )(() E .2 22))B )(R )((-) ( 0.2 ))+(F )(RF)((-) 0.2 )) (Eq.7)

The weighted total doses and their associated errors at each depth calculated from this

equation can be seen in Table 11.

Table 11: Calculated weighted dose rates from MIT and BNL measurements in the Lucite cube with
either 10lpg/g or 20pg/g 10B with 20% error on the RBE factors

Depth MIT Weighted Dose BNL Weighted Dose MIT Weighted Dose BNL Weighted Dose

(cm) (boron = 10 ,ug/g) (boron = 10 gg/g) (boron = 20 g/g) (boron = 20 gg/g)

(cGy-Eq/min) (cGy-Eq/min) (cGy-Eq/min) (cGy-Eq/min)

3.5 20.38 + 2.51 22.77 + 2.83 29.66 ± 4.25 33.51 4.82

7.0 8.92 + 1.13 9.91 + 1.26 12.22 + 1.66 13.76 ± 1.88

10.5 4.63 + 0.69 4.86 ± 0.70 5.39 ± 0.74 5.79 ± 0.77

2. Phantom Evaluation

To begin a comparison of the patient doses at BNL and MIT, the Lucite cube is used

to determine scaling factors between measurements made by the two institutions.

Measurements were taken at the BNL beam with the 12-cm collimator by MIT

researchers in June and September of 2000, and are summarized in Table 6 [1].

Measurements by BNL researchers were also taken in the same beam with both the 8-cm

collimator and the 12-cm collimator in place, and are summarized in Table 7 [2].

Systematic differences in measured values between BNL and MIT groups in the same

beam have been documented [1]. To compare and combine patient data from both MIT

and BNL clinical trials, it is necessary to analyze these dosimetry measurement

differences and apply a "correction factor" to one set. In this thesis, the BNL patient

dosimetry data will be adjusted to agree with MIT measurements.

Since the prescribed patient doses were generated from RTPE, and these are the

numbers that ultimately need to be evaluated, the RTPE output, not the BNL

measurements, should be compared against the MIT measurements for the sake of

consistency. Since the RTPE source definition models the BMRR epithermal neutron

beam very closely, the BNL measurements and the RTPE output should match up very

well. This can be checked for gamma dose and thermal neutron flux. Figure 11 and

Figure 12 show the thermal neutron flux and gamma dose rate measurements,
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respectively, compared to the RTPE output. These graphs show that the BNL

measurements do in fact match up well with the RTPE output, particularly the thermal

neutron flux, which has the greatest effect on the total dose. Therefore, it is valid to

compare the RTPE output to the MIT measurements.

Thermal Flux Comparison

2.50E+09

2.00E+09 -

1.50E+09 -

1.OOE+09 -

5.00E+08 -

0.00
i i I I -_

2.00 4.00 6.00 8.00 10.00 12.00 14.00

Depth (cm)

* rtpe output

O BNL meas.

16.00

Figure 11: BNL thermal neutron flux measurements [2] compared to RTPE output in the Lucite
cube with the 12-cm collimator
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Gamma Comparison (Lucite Cube)

8-

7-

84
3

2-

1-

0 

* rtpe output

O BNL meas.

0 2 4 6 8 10 12 14

Depth (cm)

Figure 12: BNL gamma dose rate measurements [2] compared to the RTPE gamma dose rate output
in the Lucite cube for the 12-cm collimator

Since the approach taken for this combination of patient data is to adjust the BNL

patient doses to match the MIT measurements of the BMRR epithermal neutron beam, it

is necessary to examine each dose component individually and to compare the depth-dose

curves in the Lucite cube for both the MIT measurements with the RTPE output. Once

scaling factors have been determined in the Lucite cube, they can be applied to the

ellipsoidal head phantom. Using this additional phantom will provide a check on the

scaling factors calculated from the Lucite cube. It is expected that with the use of the

scaling factors, the output from the ellipsoidal head phantom will match up well with the

measurements performed in the BMRR epithermal neutron beam by MIT in the same

phantom.

3. Thermal Neutron Dose

As mentioned above, the thermal neutron flux was measured by MIT, and thus the

thermal neutron doses due to 14N and l°B can be calculated using Equations 1 and 2.
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Different cross sections were used for thermal neutrons by MIT and BNL, so the fluxes

cannot be directly compared. Because of this, it is important that the thermal doses (14N

and 10B) instead be calculated and compared. In determining the scaling factors, the

simple ratio of MIT dose divided by the BNL dose at the same depth is calculated. When

this is done, a scaling factor can be calculated that scales the RTPE thermal neutron dose

output to match the MIT measurements using a least squares fit. The fractional error on

the scaling factor is equal to the fractional error for each of the MIT measurements. The

scaling factor calculated in the Lucite cube for this dose component is 0.90+0.07.

Because both the 14N and l°B dose components are calculated from the thermal neutron

flux, both should have a similar scaling factor between the BNL doses and the MIT

measurements. When calculated, the scaling factor for the l°B component in the Lucite

cube was 0.93_0.07. As it is clearly seen, the two are in fact very close, and the error

bars overlap. Therefore, one scaling factor for both thermal neutron dose components

will be calculated by averaging the two individual scaling factors, and a thermal neutron

scaling factor of 0.92+0.07 will be used. Figure 13 and Figure 14 show the 14N dose and

the l°B dose in the Lucite cube with and without this adjustment factor of 0.92.
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N14 Dose Comparison (Lucite Cube)

* rtpe output

O MIT meas.

Acube-scaled (0.92)

0 2 4 6 8 10 12 14

Depth (cm)

Figure 13: 14N dose rate scaling in Lucite cube with scaling factor 0.92 compared to original RTPE
14N dose rate output and 14N dose rates calculated from MIT measurements

B10 Dose Comparison (Lucite Cube)

* rtpe output

] MIT meas.

A rtpe-scaled (0.92)

0 2 4 6 8 10 12 14

Depth (cm)

Figure 14: J°B dose scaling in Lucite cube with 15ppm 0°B with scaling factor 0.92 compared to
original RTPE °B dose rate output and 10B dose rates calculated from MIT measurements
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4. Gamma Dose

The same sort of comparison is performed on the gamma dose rates. When the least

squares fitting is applied to the Lucite cube RTPE gamma dose rate output, a scaling

factor of 0.74±0.06 is calculated by dividing the MIT measurement by the BNL

measurement at each depth that a measurement was performed. The output from RTPE

with and without this scaling factor can be seen in Figure 15.

Gamma Comparison (Lucite Cube)

9

8-

7-

.S 6-
c, 5 
a'

S3

2

1-

0 

0 2 4 6 8 10 12

Depth (cm)

* rtpe output

O MIT meas.

Artpe-scaled (0.74)

14

Figure 15: Photon dose rate in the Lucite cube with a scaling factor of 0.74 compared to original
unscaled RTPE photon dose rate output and MIT photon dose rate measurements

5. Fast Neutron Dose

As mentioned previously, the error on the fast neutron measurements in the phantoms

is quite large due to the greater subtraction for photons in-phantom. Since the error on

the in-air measurements is much smaller, these measurements will be used to obtain the

fast neutron scaling factor. The MIT in-air fast neutron measurement was 1.71±0.29

cGy/min [1], and the BNL in-air fast neutron measurement was 2.33±0.35 cGy/min [1].

The scaling factor obtained from these measurements is 0.73+0.12. To obtain this scaling
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factor, the MIT in-air measurement was divided by the BNL in-air measurement, and the

fractional error on the scaling factor is the same as the greater fractional error on the two

measurements (17%). Figure 16 shows the Lucite phantom fast neutron dose output,

both scaled and unscaled, compared to the in-air fast neutron measurements by MIT and

BNL.

Fast Neutron Adjustment

O.UU -

2.50 -

._ 2.00

1.50

1.00

0.50 -

0.00

* rtpe

O MIT meas.

A BNL meas.

X rtpe-scaled

-2 0 2 4 6 8 10 12 14

Depth (cm)

Figure 16: In-air fast neutron measurements by both BNL and MIT compared to fast neutron RTPE
output in Lucite cube phantom with a scaling factor of 0.73 and original, unscaled RTPE output

6. Ellipsoidal Head Phantom

To check these scaling factors, the ellipsoidal head phantom can be used. Since

measurements were performed in the BMRR epithermal neutron beam by MIT in this

phantom, running the head phantom through RTPE with the scaling factors applied

should yield dose curves that match with the MIT measurements. The curves for each of

the dose components can be seen in Figure 17, Figure 18, Figure 19, and Figure 20.

These graphs show that the results from the head phantom do, in fact, match up fairly

well with the MIT measurements, especially when the error on the scaled RTPE curve is

taken into consideration. The error on the scaled RTPE curve arises mainly from the
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error on the scaling factors, but partially from the error inherent with RTPE. This error

comes to between about 5% and 10%, and will cause the scaled RTPE curve to overlap

with the MIT measurements.

N14 Dose Comparison - EIIHP

* rtpe

O mit meas.

A rtpe-scaled (0.92)

0 1 2 3 4

Depth (cm)

5 6 7

Figure 17: Unscaled RTPE '4N doses in the ellipsoidal head phantom, 14N doses calculated from MIT
measurements, and the scaled RTPE output using a scaling factor of 0.92
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B10 Dose Comparison (EIIHP)
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Figure 18: Unscaled RTPE 1°B doses in the ellipsoidal head phantom, L°B doses calculated from MIT
measurements, and the scaled RTPE output using a scaling factor of 0.92

Gamma Comparison (ellipsoidal head phantom)
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Figure 19: Unscaled RTPE gamma doses in the ellipsoidal head phantom,
MIT, and the scaled RTPE output using a scaling factor of 0.74
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Fast Neutron Comparison (ellipsoidal head phantom)
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Figure 20: Unscaled RTPE fast neutron doses in the ellipsoidal head phantom, in air fast neutron
doses measured by MIT and BNL, and the scaled RTPE output using a scaling factor of 0.73

7. Total Physical Dose

The final adjustment factors are summarized in Table 12.

Table 12: Adjustment factors necessary to scale RTPE output to match MIT measurements

4N 'B Gamma Fast Neutron

Scaling Factor: 0.92 0.92 0.74 0.73

Now that the individual adjustment factors have been determined, it is necessary to

see how these factors must be combined to ultimately adjust the BNL patient brain doses

(both peak and whole brain average). By applying all the factors together, we determine:

D = 0.74DG + 0.92DN + 0.92DB+ 0.73DF in cGy/min (Eq. 8)

Where DG is the gamma component of the total dose, DN is the ' 4N thermal neutron

component of the total dose, DB is the boron component of the total dose, and DF is the

fast neutron component of the total dose. The top curve in Figure 21 shows the original

RTPE output in the Lucite cube, along with this new lower adjusted total dose in the

Lucite cube and the MIT total physical dose calculated from the MIT measurements.
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Total Dose Adjustment in Lucite Cube
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Figure 21: Total physical dose rate output from RTPE with and without adjustment factors in Lucite
cube with 15ppm 10B compared to total physical dose calculated from MIT measurements

The difference between the two physical dose rate curves ranges from 15% to 25%

depending on depth in the cube. At the peak, the adjusted curve is 15% lower than the

original curve for the Lucite cube. On average the adjusted curve is about 18% lower

than the original curve in the cube.

Further analysis of this curve (i.e., finding a more accurate, single adjustment factor

for the total dose curve) will not be done because this adjustment factor would only apply

to two-dimensional analyses. Since we are more interested in the effect on patient dose-

volume histograms and peak and whole brain average doses, further work with the

phantoms is unnecessary.

8. Weighted Doses

Prescribed patient doses are quoted in terms of weighted doses (Gy-Eq), so it is

important to observe the effect of the adjustment factors on weighted doses in the

phantoms. The weighted doses can be obtained by applying the RBE factors mentioned
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previously. When the adjustment factors are applied to the Lucite cube and compared to

the weighted doses calculated from the MIT measurements, Figure 22 is obtained. These

calculated MIT doses assumes no error in the RBE factors. Figure 23 shows the total

weighted dose calculated assuming a 20% error on the RBE factors.

Weighted Dose Comparison in Lucite Cube
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Figure 22: Adjusted and unadjusted total weighted dose in Lucite cube with 15ppm 0°B from RTPE
compared to total weighted dose calculated from MIT measurements
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Weighted Dose Comparison in Lucite Cube
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Figure 23: Adjusted and unadjusted total weighted dose rates in the Lucite cube with 15ppm l°B
from RTPE compared to total weighted dose calculated from MIT measurements assuming 20%
error on RBE factors
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V. Application of Scaling Factors

1. Applying Adjustment to Patient Data

Now that the comparison of the beam components is complete, the values determined

to be the necessary adjustment factors can be applied to the BNL patient data. All the

patients have a different I°B concentration, and the adjustment must be applied to a three-

dimensional output, and therefore a single adjustment factor cannot be applied to the

existing defined peak and whole-brain average doses. To apply the adjustment, the

patient treatment plans were rerun in RTPE, with the adjustment factors included in the

input file. The actual particles need not be rerun; only the dose calculation edits need to

be rerun. Therefore, changes were made to the definitions of the RBE factors in the edit

directives section of the input file. By multiplying the existing RBE factors by the new

scaling factors corresponding to the same dose component, both the RBE factors and the

adjustment factors can be applied to this dose component. Table 13 shows the new peak

and average brain doses obtained when all of the BNL patients are rerun in RTPE. As

can be seen, the new peak dose numbers are about 16% lower than the original numbers.

The new whole-brain average doses are about 18% lower than the original RTPE output.

It is of particular interest to observe the effect the adjustment factors have on the dose

distribution in normal brain tissue. This can be viewed by looking at the integral dose-

volume histogram (DVH) information RTPE outputs. Figure 24, Figure 25, and Figure

26 show representative DVHs for 1, 2, and 3-field patient treatment plans, respectively.

The solid line in each figure represents the original DVH, and the dotted line represents

the DVH of the treatment plans rerun with the adjustment factors. These plots show that

the general shape of the curve remains the same, but the curves are simply shifted.

Therefore, the fractional dose distribution in the normal brain tissue does not change

significantly when the BNL dose is adjusted to match the MIT dose, even though the

peak dose changes by about 16%. Table 13 shows all BNL patients from protocols 1-8

with and without the adjustment factors applied to their peak and whole-brain average

dose values.
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Sample DVH for 1-field BNL Patient

1.2

1.0

c 0.8

0 00.6
.o

U. 0.4

0.2

0.0
0 2 4 6 8 10

Dose (Gy-Eq)
no adjustment

-- w/adjustm ent

12

Figure 24: Dose volume histogram for 1-field BNL treatment plan with and without adjustment
factors

Sample DVH for 2-field BNL Patient

1.2

1 .0

C 0.8

m

c 0.6

LL. 0.4

0.2

0.0
0 2 4 6 8 10 12

Dose (G y-Eq)
no adjustment

.... w/adjustm ent

14

Figure 25: Dose volume histogram for 2-field BNL treatment plan with and without adjustment
factors
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Sample DVH for 3-field BNL Patient
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Figure 26: Dose volume histogram for 3-field BNL treatment plan with and without adjustment
factors
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Table 13: BNL data on patients treated with BNCT - date of treatment, number of fields each
patient was treated with, and unadjusted and adjusted peak and whole brain average weighted doses

# of Original Peak Adjusted Peak Original Average Adjusted Average
Pt # Date fields (Gy-Eq) (Gy-Eq) (Gy-Eq) (Gy-Eq)

1 9/13/94

2 2/2/95

3 4/13/95

4 4/27/95

5 6/15/95

6 6/22/95

7 6/29/95

8 6/30/95

9 7/13/95

10 7/20/95

11 10/5/95

12 10/13/95

13 11/30/95

14 2/1/96

15 2/22/96

16 6/6/96

17 6/13/96

18 7/11/96

19 7/25/96

20 8/1/96

21 9/12/96

22 9/19/96

23 10/17/96

24 11/7/96

25 11/14/96

26 12/11/96

27 12/18/96

28 1/9/97

29 1/23/97

30 1/30/97

31 5/29/97

32 6/11/97
33 6/18/97

34 8/13/97

35 10/8/97

36 11/12/97

37 12/31/97

38 2/4/98

39 6/3/98

40 6/24/98
41 8/19/98

42 10/21/98
43 11/25/98

44 12/2/98

1 10.08

1 8.88

1 10.52

1 10.53

1 10.86

1 10.51

1 10.28

1 13.26

1 10.97

1 10.67

1 10.80

1 11.63

1 10.62

1 12.65

1 13.14

2 11.94

1 12.60

2 12.95

2 12.86

2 13.75

1 14.22

1 13.16

1 14.39

1 12.45

1 12.27

1 12.61

2 11.90

2 12.19

2 11.94

1 12.48

1 13.80

1 13.05

2 12.60

2 12.45

2 12.78

1 14.83

2 13.34

2 12.57

2 12.73

2 12.21

2 12.40

3 14.59

3 14.91

3 15.63

8.40

7.45

8.79

8.79

9.06

8.83

8.58

11.01

9.22
9.01

9.07

9.65

8.88

10.52

10.95

10.06

10.70

10.72

10.63

11.42

11.85

11.01

12.08

11.03

10.22

10.57

9.83

10.07

10.07

10.73

11.56

10.90

10.58

10.45

10.77

12.66

11.22

10.59
10.67

10.16

10.50

12.03

12.55

13.26

2.31

2.04
2.13

2.23

1.93

2.24

2.27

2.66
2.85

2.09

2.27

2.23

2.64

2.44

2.40

4.55

3.35

4.93

4.50
5.72
4.16
3.72

3.74

3.41

3.26

3.76

5.24
4.08
4.84
3.70

3.59

3.73

5.30
5.00
5.27

3.79

5.95

4.69
5.46
6.57

5.31
9.38

7.99
8.36

1.87

1.67

1.74

1.81

1.57

1.84

1.85

2.16
2.34

1.72

1.86

1.80

2.15

1.98

1.94

4.14

2.87
4.00
3.72

4.67
3.38

3.02
3.13

2.80

2.65

3.08

4.22
3.38

3.93

3.12

2.93

3.03

4.35
4.12
4.39
3.23

4.89
3.86
4.46
5.35

4.49
7.60
6.60
6.97
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45 12/9/98 2 12.92 10.94 5.22 4.32

46 12/10/98 3 14.65 12.38 8.09 6.70

47 12/16/98 3 15.43 12.88 8.13 6.65

48 12/17/98 2 11.29 9.54 4.78 3.95

49 1/13/99 3 15.64 13.05 9.07 7.41

50 3/10/99 3 14.13 11.99 8.70 7.21

51 3/26/99 3 14.77 12.40 6.71 5.50

52 4/28/99 3 9.5 7.97 4.4 3.60

53 5/7/99 3 12.6 10.58 7.6 6.24

54 5/20/99 3 14.0 11.77 7.5 6.15

2. Applying Adjustment to Tumor Data

Another important application of these scaling factors is to tumor doses. It is

important to know what dose the tumors are getting because it is these cells that the

treatment is targeting. If the tumor cells do not get sufficient dose, they will not die, and

the tumor will recur following treatment. Unfortunately, since the limiting factor in how

much dose can be administered during BNCT is normal tissue tolerance, the tumors

frequently do not get enough dose and do in fact recur. However, it will be interesting to

pool tumor doses along with the whole brain doses. Table 14 shows the doses applied to

BNL patients' tumors before and after the scaling factors have been applied. It is

important to note that researchers are more uncertain of the 1°B CBE factor in tumor.

The CBE factor used for BPA is 3.8 [2]. Ideally, CBE factors for BPA and BSH should

be derived using survival data, but this has been difficult with the intracranial 9L

gliosarcoma due to the normal tissue complications resulting from the large single

fractions of X rays needed to control this tumor [2]. Additionally, it is not known

whether or not all tumor cells accumulate boron. Figure 27 shows a sample tumor DVH

for a 1-field patient with and without the adjustment factors.
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Table 14: Adjusted and unadjusted peak and average weighted doses to tumor for each patient
treated with BNCT at BNL

Original Adjusted Original Adjusted
Pt # Peak Peak Average Average

(Gy-Eq) (Gy-Eq) (Gy-Eq) (Gy-Eq)

1 47.60

2 53.79

3 49.46

4 48.69

5 50.53

6 47.52
7 48.60

8 64.36

9 54.50

10 55.57

11 51.52

12 53.82

13 50.73

14 56.37

15 60.67

16 60.00

17 63.00

18 56.00

19 54.00

20 58.00
21 62.00

22 61.00

23 69.00

24 68.00

25 55.00

26 60.00
27 49.00

41.39
40.02

45.09

43.91

46.00
48.22
43.41

53.92
49.66

50.77
48.64
46.53
44.87
51.18

55.15

63.78

57.88
50.46
49.20
56.22
57.94
52.22
62.78

62.15

50.21

54.60

44.66

42.37
45.45
41.89

37.67

37.55

40.48

37.30
48.10
43.45
46.23

48.29

37.33

44.08
42.43
38.52
49.36

53.00
37.00
45.00
47.00
48.00

48.00
59.00
58.00
51.00
47.00
36.00

38.35

40.61

38.35

33.67

33.83

41.95

33.32
42.27
40.23

42.02
45.06

33.24
40.92
38.35

35.00
51.98
48.16

30.75

39.53
45.65
44.18
43.50
53.42
53.09
46.11

42.77

32.13

Original Adjusted Original Adjusted
Pt # Peak Peak Average Average

(Gy-Eq) (Gy-Eq) (Gy-Eq) (Gy-Eq)

28 56.00

29 66.00
30 58.00

31 66.00

32 59.00

33 68.00

34 65.00
35 65.00

36 83.70

38 63.83

39 59.23
41 66.11

45 69.37

48 59.09
37 65.99
40 53.00

42 60.19
43 76.84
44 86.31
46 78.57
47 72.28
49 73.20
50 77.93
51 77.72

52 54.14
53 48.22
54 75.33

50.74
52.86
53.48
59.91

54.06
61.88
59.97

59.03
76.69
58.40
53.86
60.45
63.45

53.99
58.62
48.13
54.45

70.14
78.54
71.83
65.77

66.59
71.33
70.73
49.27
43.88

68.55

52.00
55.00

50.00
57.00

55.00
65.00
55.00

52.00
74.90

63.31

46.35
56.69
39.04
55.14
54.61

47.00

54.11

64.40

79.19
69.73
53.80
64.96
63.16
63.08
43.97
31.74
54.19

47.26
50.25

45.73
51.64
50.38
59.15

50.21

47.65

68.65

57.83

42.05

51.91

35.54
50.27
49.98
42.52

48.80
58.66
72.40
63.72
48.81

58.94

57.68
57.40

40.01

28.88
49.31
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Tumor DVH for Sample 1-field Patient
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Figure 27: Dose volume histogram to tumor for sample 1-field BNL treatment plan with and without
adjustment factors
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VI. Somnolence Endpoint

With traditional photon therapy administered to tumors in the brain, there are a

number of side effects the radiation can cause. These side effects are divided into two

categories: acute and delayed. Acute effects occur immediately following radiation

treatment (a few days to a few weeks), and are generally temporary or can be managed

with medical interventions. Acute effects in the CNS are not necessarily due to damage

to the normal brain. One acute effect reported in both the BNL and the MIT BNCT

clinical trials is an increase in intracranial pressure due to the response of residual tumor

volumes that were larger than 60 cc [1, 2]. Delayed effects occur much later, and can be

classified as either early or late. Early delayed effects typically occur between one and

six months following treatment. Late delayed effects occur six months or more after

therapy and are usually irreversible. One delayed side effect is necrosis, which is death

of normal cells or tissue. Necrosis in normal brain tissue can lead to undesirable effects

on the patient's motor skills, speech, etc, depending on the location and the volume of the

area involved. Necrosis is characterized as a late delayed effect, is irreversible, and can

be lethal [3]. Another delayed side effect is somnolence syndrome, which is

characterized by periods of drowsiness, lethargy, loss of appetite, and irritability

following radiation treatment. Somnolence is an early delayed effect. The somnolence

syndrome was first observed in children treated with brain irradiation as part of a whole-

body irradiation-conditioning regimen prior to bone marrow transplant, but it is also

frequently observed in adults treated for brain tumors [4]. Both necrosis and somnolence

have also been observed in BNCT. Necrosis has been reported in some of the long-term

survivors of the Japanese BNCT protocols [5].

It has been of great interest to determine the cause of these radiation side effects. The

mechanism of radiation induced side effects in the brain and other tissues is still a matter

of considerable debate: the question is whether the target cell population is the vascular

endothelial cells or the functional brain cells [6]. The cause has been thought to be a

primary cell population, the inactivation of which, following irradiation, results in these

side effects [3]. Additionally, it has been observed that the lesions in the central nervous

system (CNS) following irradiation are similar to the lesions created following other

types of CNS damage, and therefore the reaction of the CNS to irradiation may have
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similar mechanisms to other forms of damage. Direct damage to the CNS results in acute

cell death, secondary reactive processes, and enhanced cytokine gene expression [3].

These responses have all been observed following radiation injury as well.

During BNCT, as with other types of radiation therapy, the cause of the side effects is

simply the administration of too high a dose, either to the whole brain or to a specific

region of the brain. During the BNCT clinical trials, one of the objectives was to

determine what this brain tolerance was. There are three phases of clinical trials. A

phase I clinical trial is a safety and dose-escalation study. The dose administered to small

groups of patients is slowly increased over time until an unsatisfactory endpoint is

reached. A phase II clinical trial is performed after the phase I trial is completed, and is

performed to further determine side effects and how to manage them, as well as to

determine the most effective dose to use during treatment. In a phase III trial, the new

treatment is compared against currently existing treatments and to determine how

effective these new treatments are. Phase mII trials use large enough numbers of patients

for statistical significance.

During the BNCT clinical trials, the question arose as to what endpoint should be

used to determine the maximum brain dose acceptable to administer to the patient.

Death, or length of survival post-BNCT, is an unacceptable endpoint due to a couple of

factors. One is that before a radiation dose high enough to cause death is administered,

effects on the patient's mental status will be seen. Secondly, the unfortunate fact is that

even with BNCT, all the patients will die, usually within a year, and it is almost

impossible to know how much the BNCT contributed to that death. In other words,

patients with GBM generally do not live long enough to develop the classic late effects in

the brain. Additionally, a patient may receive another form of therapy following BNCT,

and it is impossible to know to what extent BNCT contributed to the patient's quality of

life following all of his or her treatments. The only other side effect that has been seen as

a reasonable endpoint is somnolence.

In traditional radiotherapy, somnolence has been found to occur in a somewhat

cyclical pattern. It has been found that somnolence occurs in patients typically between

about day 11 and day 21 and from about day 31 to day 35 following radiotherapy. While

the severity of the symptoms was shown to increase due to accelerated fractionation, the
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cyclical pattern of the symptoms did not change [2]. It has been determined that necrosis

is related to location of the irradiation and the total volume of brain tissue that receives

greater than 12 Gy of photons [7]. Flickinger et. al. [8] showed that the volume of tissue

receiving 12 Gy or more (termed the "12-Gy-Volume") accurately reflected the risk of

postradiosurgery MRI images showing changes indicating radiation damage. It is well

recognized that the occurrence of side effects are directly related to the volume of brain

tissue irradiated. This most likely holds for BNCT as well as for conventional

radiotherapy. In BNCT, the dose is administered as a whole-brain dose. Because of this,

the occurrence of somnolence could be a combination of multiple locations receiving a

dose sufficient to cause somnolence.

1. Peak and whole brain average dose relationship

54 patients were treated with BNCT at BNL during the duration of their clinical trial.

Of these 54 patients, 11 showed symptoms of somnolence. These 11 included 9 patients

treated with 3 fields (7 from protocol 5 and 2 from protocol 6), and two patients treated

with 2 fields (protocol 4b). When all the patients' whole-brain average doses are plotted

against their peak brain doses, Figure 28 is generated. This figure shows that the risk of

somnolence greatly increases above a whole-brain average dose of about 6 Gy-Eq.

Figure 29 shows the actual dose response curve for this data. From this curve, it can be

observed that at 6.1 Gy-Eq, the risk of producing somnolence is about 50%.
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Figure 28: Original prescribed peak vs. whole-brain average weighted doses for all BNL patients
with data on which patients showed somnolence following treatment
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Figure 29: Dose response curve for somnolence for all BNL patients treated with BNCT

To get a more accurate representation of the cause of somnolence syndrome, the

patients treated with the MIT M67 beam should be included in this study. With the BNL

scaling factors determined previously based on the dosimetry intercomparison [9], this

patient pooling can now be done. To do this, the BNL patient doses from Table 13 must

now be used. When the BNL and M67 patient data are combined, Figure 30 is obtained.

This figure shows MIT and BNL patients who did and did not exhibit somnolence, along

with two MIT metastatic melanoma patients treated with BNCT, neither of which

exhibited somnolence. This figure singles out the BNL patients in protocols 6, 7, and 8

because these patients were either treated with fractionated BNCT (protocols 6 and 7), or

were treated for recurrent GBM (protocol 8), and therefore their treatment was different

from the other BNL patients (protocols 1-5) and should be noted. From this figure, it is

clear that there is no longer a clear-cut dose, either on the whole brain average axis or the

peak dose axis, above which all patients exhibit somnolence and below which none
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exhibit somnolence. It does appear, however, that patients receiving a whole-brain

average dose of greater than about 5 Gy-Eq have a higher chance of exhibiting

somnolence syndrome than those below this dose. By including patients from more

clinical trials, a better idea of exactly what the relationship is between whole brain

average dose and somnolence syndrome can be determined. Looking at a dose response

curve, Figure 31 gives a better idea of the risk of causing somnolence associated with the

various doses.
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Figure 30: BNL and MIT patient peak vs. whole-brain average doses (adjustment factors applied to
BNL patient doses) along with data on which patient showed symptoms of somnolence following
treatment [1]
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Dose Response Curve for Pooled MIT and BNL BNCT Patient Data
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Figure 31: Whole
patients
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brain average dose response curve for somnolence for pooled BNL and MIT

2. Patient Details

It is important to make sure that the patients included in the study do not have any

abnormalities in their treatment or follow-up, and that there are no other factors that

might influence whether or not the patient shows symptoms of somnolence. One major

factor that must be taken into account in the pooling of patients is that different

physicians are in charge of different patients. Because of this, and because somnolence is

not a clear-cut endpoint, the physicians may not be scoring the somnolence in the same

manner (i.e., while one physician might claim a patient is showing symptoms of

somnolence, another might disagree). In calculating the dose response curve, it was

decided that one of the MIT patients should excluded. This was the metastatic melanoma

patient seen in Figure 30 to have a whole brain average dose of about 7 Gy-Eq. This

patient was excluded from the dose responses curve because he or she received

chemotherapy following the BNCT, and slipped into a coma before a full evaluation of

whether or not he or she exhibited somnolence could be performed. Therefore, it is
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difficult to say whether or not he or she showed symptoms of somnolence, and in fact

after a discussion with the doctor monitoring the patient, it was decided that this patient

might in fact have been exhibiting symptoms of somnolence, though it was never

recorded. It is also important to remember that the BNL patients in protocols 6, 7, and 8

were either treated with fractionated BNCT or for recurrent GBM. Because this has no

effect on the whole brain average dose received during the BNCT treatment, these four

patients were left in the patient pool when calculating the dose response curve. All of the

MIT patients also received fractionated BNCT (two fractions on consecutive days).

3. Dose response

It is important to look at a dose response curve for the patient data to determine a

more precise correlation between absorbed dose and risk of somnolence. The whole-

brain average dose-response curve of the BNL and MIT patients, after the adjustment

factors have been applied to the BNL patients, can be seen in Figure 31. With the applied

adjustment factors, the MIT and BNL patients can be combined, and with more patients

in the pool of data, the numbers in the dose response curve will be more statistically

significant. Ultimately, by combining patient data from all BNCT institutions,

researchers will be able to determine with good accuracy the risk associated with

administering various whole-brain average doses.

Figure 31 shows the dose response curve for the pooled patient data from BNL and

MIT. In this figure, the x-axis shows whole-brain average weighted dose in Gy-Eq, and

the y-axis shows the fractional probability of developing somnolence. From this plot, the

whole-brain average dose required to produce 50% response in BNCT patients appears to

be about 5.5 Gy-Eq. By administering a whole-brain average dose of just over 6.0 Gy-

Eq, the treatment has a 75% chance of producing somnolence syndrome in the patient.

From this patient data, it is impossible to determine what dose is required to produce

100% response, but it appears to be somewhere between 7 and 8 Gy-Eq. With additional

patients included in the study, a more accurate dose response curve can be calculated.
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VII. Conclusions and Future Work

1. Summary of Conclusions

This thesis makes it possible to pool BNCT patient data from two different clinical

centers. This approach is desirable because of the small number of patients treated at any

one center. By pooling patient data, it becomes easier to determine a cause of the

somnolence endpoint and efficacy of BNCT as a function of dose.

In order to pool BNCT patient data, a number of differences between the BNCT

centers had to be taken into consideration. The differences addressed in this thesis are

tissue definition differences and dosimetry measurements. Once these differences were

evaluated, the patient data were pooled, and a correlation between prescribed patient

whole-brain average dose and the endpoint was determined. From this correlation, the

tolerance of normal brain for somnolence was evaluated, which will be of great use in

future BNCT trials.

While MIT uses a 14N concentration of 2.2% in normal brain tissue, BNL used a 14N

concentration of 1.8% when calculating treatment plans for their respective BNCT

patients. It was found that this difference leads to a difference in peak brain dose of less

than 3%. Therefore, it was decided that this difference is small enough that no correction

factor needed to be applied to the BNL patients because of the '4N difference when

attempting to pool patient data.

Systematic differences in dosimetry techniques were a major hurdle in the

intercomparison process. By breaking down the beam components of the BNL beam,

scaling factors between gamma, '4N, 0°B, and fast neutron dose definitions in

measurements between BNL and MIT were calculated. ' 4N and 10B dose measurements

were found to be 8% lower when measured by MIT in the BNL beam, gamma dose

measurements were found to be 26% lower, and fast neutron dose measurements were

found to be 27% lower (when calculated from in-air measurements). This led to scaling

factors of 0.92, 0.92, 0.74, and 0.73 for the '4N, 10B, gamma, and fast neutron doses,

respectively. These scaling factors were applied to the BNL patient input files, which

were then run through the RTPE treatment planning software, and adjusted peak and
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whole-brain average doses were obtained for all patients treated at BNL. These new peak

and whole-brain average doses were then used, in conjunction with the MIT patient peak

and whole-brain average doses, to determine the correlation between the somnolence

endpoint and dose. It was determined that there appears to be a correlation between

whole-brain average dose and somnolence. When looking at the dose response curve for

the combined MIT and BNL patient data, the probability of producing somnolence

increases to 50% with a whole-brain average dose of about 5.5 Gy-Eq. This tolerance

level is consistent with tissue tolerances previously published [1].

It is also important to note the error on these weighted whole-brain average dose

values. The error on the MIT and BNL measurements were previously calculated, and,

for the weighted dose values, range between about 5% and 15%, depending on the depth

in tissue.

2. Recommendations for Future Work

While this thesis evaluated the differences between two BNCT facility's beams and

normal tissue definition, this research is just the first step to a complete pooling of BNCT

patient data. In order for it to be complete, a few other differences need to be examined

and evaluated. The most predominant difference is the use of different treatment

planning software systems. Differences in treatment planning systems arise mainly from

methods used to calculate dose, but also occur due to differences in the way the patient

geometry is modeled. Therefore, the next step in this process should be a complete

evaluation of treatment-planning software programs.

In order to compare treatment-planning software, it is important to have a common

phantom that can be or has been modeled and simulated using all the software programs.

For instance, the MIT ellipsoidal water-filled phantom has already been run in NCTPlan.

Additionally, access is available to CT scans of the head phantom, and it can thus be run

through RTPE and the output can be compared to that of NCTPlan. Also, if access is

available to MRI scans from a sample patient treated at MIT, this patient can be run in

RTPE, and the treatment plan generated from this program can be compared against that

generated from NCTPlan. In order to compare the treatment planning systems, the
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results from this thesis must be taken into consideration, in order to eliminate the

differences between different facility's measurements. Dosimetry intercomparisons have

already been performed on the clinical epithermal neutron beams at 6 or 7 different

centers [K. Riley, P. Binns, unpublished data].

It is quite important to note that different clinicians were in charge of the follow-up

monitoring of the different BNCT patients, and different clinicians do not evaluate the

somnolence endpoint in the same manner. This presents a significant source of error in

the evaluation of a threshold for somnolence. In the future, it would be best to have a

way for all clinicians to evaluate somnolence to eliminate this error.

Lastly, it will be important to apply a comparison such as the one outlined in this

thesis to other BNCT clinical centers, specifically those using BPA-F. Including

treatment centers that use BSH will necessitate other differences to be taken into

consideration. The more patients that can be combined into one patient pool, the more

accurate results can be obtained. For instance, a more accurate somnolence tolerance

dose could be obtained by including the patients from the other BNCT clinical trials

around the world. By understanding the systematic dosimetry differences between the

BNCT clinical trials, this patient pooling can be done.
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