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of the Requirements for the Degree of Master of Science in Nuclear Engineering

Abstract

The international maritime container trade, which imports an average of 19,000
largely uninspected cargo containers to United States ports each day, has been identified
as a potential avenue of attack for nuclear terrorism. Currently envisioned and deployed
defensive measures that seek to detect and interdict concealed fissile material once
containers have already reached a U.S. port do not adequately protect against nuclear
threats due to the unique power and range of nuclear weapon effects. This thesis
describes and examines a novel "ship-based" approach to container-borne fissile material
detection where suites of radiation detectors with imaging capabilities are enclosed in
standard, non-descript cargo containers and shipped in limited numbers aboard
commercial containerships. Outfitted with communication hardware, these dedicated
containerized units could provide crucial advance detection and notification of an
inbound nuclear threat while the danger is still safely removed from U.S. shores.

Attributes of the container shipping trade that would impact the performance and
viability of the proposed ship-based approach were identified and investigated. Average
available count times, based on the duration of shipping voyages, for container imports to
representative ports on the east and west coasts of the U.S. where found to be 19.2 days
and 13.3. days, respectively. These long count times will enhance the ability of the ship-
based approach to confidently detect heavily shielded and well-concealed fissile material.
A distribution for the average distributed density of commercial cargo, which affects
radiation attenuation between the source and detectors, was also derived and found to
have a favorably low mean value of 0.198 g/cm3 .

The coverage efficiency (i.e. the number of containerized units required to
provide detection coverage over a given percentage of a reference vessel) variations
associated with prospective modes of deployment were also investigated using Matlab-
based computer simulations. Evaluated deployment strategies ranged from fully random
placement of detection units to completely constrained optimal placement. Despite
holding important advantages in terms of stealth, random deployment was found to
require an average of between 2.2 to 3.3 times more detectors than optimal deployment,
depending on the desired level of detection coverage. This result suggests that some
combination of random and constrained deployment might yield an optimized balance
between stealth and coverage efficiency. This analysis also identified significant
efficiency and deployment flexibility benefits associated with units that could detect
sources at ranges equal to, or greater than, 70 ft (21.3 m).

Overall, no results were obtained that seriously challenged the potential efficacy
and viability of the proposed ship-based approach.

Thesis Supervisor: Richard C. Lanza
Title: Senior Research Scientist in Nuclear Engineering

2



Acknowledgments

I would first like to thank my research advisor, Dr. Richard Lanza. His patient guidance
and continuous stream of ideas were extremely helpful throughout this effort. I would
also like to thank Professor Emeritus Michael Driscoll for agreeing to serve as my thesis
reader. His insightful comments were invaluable to this thesis.

I owe an enormous debt of gratitude to Shawn Gallagher who first conceived of the topic
about which I wrote. Without his selfless collaboration and intellectual ingenuity this
thesis literally would not have been possible.

I would also like to thank Dr. Richard Wagner for his valuable feedback and continued
support.

The Federal government and the fine people at the U.S. Defense Nuclear Facilities Safety
Board provided financial support for this academic enterprise.

Rachel Batista was very helpful in making this thesis sound more like English, in
addition to generally making life more pleasant around the office.

Antonio Damato was gracious enough to share his cultural sophistication and his Matlab
expertise with an ugly American.

Finally, I'd like to thank Michael Pope for his many contributions and for sharing his
proficiency in a number of areas, not the least of which was his extensive knowledge and
appreciation of scientific jargon.

3



Table of Contents

Abstract .......... ................................................................. 2
Acknowledgments . ... .......................
Table of Contents ...................................... ....... ................................. 4
Table of Figures .......................................................... .............................
List of Tables ............................................ ....................................... 8
1 Nuclear Terrorism Threat ..................... ................ ..... 11

1.1 Objectives and Organization of Thesis ....... .... ................ 11
1.2 Introduction ......... 11.. .................... .........
1.3 Threat Dynamics .............................................................. 12
1.4 Container Scenario Development ... ..................... .......... 15

2 Fissile Material Detection ................. ............................................. 20
2.1 Fissile Material Characteristics ........................................................ 20

2.1.1 HEU Radiation Signature .................. .................... 24
2.1.2 Pu Radiation Signature . ......................................................... 30
2.1.3 233U Radiation Signature ............................ 33

2.2 Detection Techniques ...................................... ............................. 34
2.2.1 Active Detection ............................................................. 34

2.2.1.1 Induced Fission ......... ......... ......... .................................34
2.2.1.2 Radiography ........................................... 35

2.2.2 Passive Detection ................................................................ 37
3 Detection Schemes ................... 4...................0............................

3.1 Current Approaches .................................................................. 40
3.1.1 Customs-Based .................. ............................. 40
3.1.2 Smart Containers ................................................................ 41

3.2 Ship-Based Approach ........ ................... 42
3.2.1 Attributes ................... 4...................2............................

3.2.1.1 Sensitivity ................... ....................................... 43
3.2.1.2 Stealth ................................. 44
3.2.1.3 Standoff .................................................................... 44

3.2.2 External Uncertainties ............................................................ 45
4 Shipping and Cargo Analysis .. .... ........................................................... 47

4.1 Container Shipping Overview ........ ..... ............................................47
4.2 Count Time ................... 4...................9............................

4.2.1 Distance Between Ports ................... .................... 50
4.2.2 Vessel Speeds . ....... ................ 65
4.2.3 Voyage Times ...... ........ ........ ...............................................68

4.3 Vessel Container Capacities ....................... ....................................75
4.4 Cargo Density .. ........... ...................... 77

5 Deployment Simulator ................. 81
5.1 Introduction .............................................................................. 81
5.2 Model Development ..................................................................... 83

5.2.1 Assumptions ........ ... ...... ......... ......... 83
5.2.2 Input/Output ..... .. ......... ... ..... ......................85
5.2.3 Algorithm ..... .. ...... 85........ ..........

4



5.2.4 Validation and Verification ...................................................... 89
5.3 Random Deployment ........................ . .......................................... 91
5.4 Constrained Deployment .............................................................. 114
5.5 Centerline Deployment . ...................... ........................................ 126
5.6 Deployment Comparison . ...................... ...................................... 139
5.7 Total Detector Estimates ................... ...................................... 141

6 Summary, Conclusion, Recommendations . ...... ......................................... 143
6.1 Summary ... ............................................................................... 144
6.2 Conclusions ............................................................................... 147
6.3 Recommendations for Future Work ................................................... 149

References .......................................................................................... 152
Appendix A ......................................................................................... 156
Appendix B . ................... 174

5



Table of Figures

Figure 2-1. High resolution HEU spectrum .......... .......... .............................25

Figure 2-2. Dominant regions for different photon interactions ............................. 26

Figure 2-3. Thorium series ................................................................ 28

Figure 2-4. Photon interaction cross-sections for aluminum and lead ...................... 36

Figure 2-5. Schematic representation of source detection through
intervening material ................................................................ 38

Figure 4-1. Map of upper North America showing selected ports ........................... 52

Figure 4-2. Map of the United States, Central America, and the Caribbean
showing selected ports . .................................................... 53

Figure 4-3. Map of Africa showing selected ports ............................................ 54

Figure 4-4. Map of Europe showing selected ports ........................................... 55

Figure 4-5. Map of the Middle East and India showing selected ports ..................... 56

Figure 4-6. Map of the Far East showing selected ports ...................................... 57

Figure 4-7. Map of Australia showing selected ports ......................................... 58

Figure 4-8. Vessel speed CDF .................. ................................. 67

Figure 4-9. Vessel capacity CDF ............................................................... 76

Figure 4-10. Cargo distributed density, Pdist, CDF ............................................. 80

Figure 5-1. Container orientation for simulation .............................................. 86

Figure 5-2. Cube bounding the detection sphere .............................................. 87

Figure 5-3. Coverage vs. Detectors plot for the 1440 TEU array [Random] ............. 102

Figure 5-4. Coverage vs. Detectors plot for the 2496 TEU array [Random] ........... 103

Figure 5-5. Coverage vs. Detectors plot for the 3600 TEU array [Random] ........... 103

Figure 5-6. Coverage vs. Detectors plot for the 4800 TEU array [Random] ........... 104

6



Coverage vs. Detectors plot for the 6460 TEU array [Random] ............. 104

Graphical determination of detectors required for various
coverage levels ........................................... ..........................105

Figure 5-9.

Figure 5-10.

Figure 5-11.

Figure 5-12.

Figure 5-13.

Figure 5-14.

Figure 5-15.

Figure 5-16.

Figure 5-17.

Figure 5-18.

Figure 5-19.

Figure 5-20.

Figure 5-21.

Figure 5-22.

Figure 5-23.

Figure

Figure

Figure

5-24.

5-25.

5-26.

Figure 5-27.

Figure 5-28.

Required Detectors

Required Detectors

Required Detectors

Required Detectors

Required Detectors

Required Detectors

Required Detectors

Required Det

Required Det

Required Det

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

Coverage vs.

ectors

ectors

ectors

vs. Range for the 1440 TEU

vs. Range for the 2496 TEU

vs. Range for the 3600 TEU

vs. Range for the 4800 TEU

vs. Range for the 6460 TEU

(with 45 ft. range) vs. Array

(with 55 ft. range) vs. Array

(with 65 ft. range) vs. Array

(with 75 ft. range) vs. Array

(with 85 ft. range) vs. Array

Detectors plot for the 1440

Detectors plot for the 2496

Detectors plot for the 3600

Detectors plot for the 4800

Detectors plot for the 6460

Detectors plot

Detectors plot

Detectors plot

Detectors plot

Detectors plot

for the

for the

for the

for the

for the

1440

2496

3600

TEU

TEU;

TEU;

TEU;

TEU;

TEU

TEU

TEU

4800 TEU

6460 TEU

array [Random] .......... 109

array [Random] .......... 109

array [Random] .......... 110

array [Random] .......... 110

array [Random] .......... 111

Capacity [Random]...... 1 12

Capacity [Random]...... 1 12

Capacity [Random]...... 1 13

Capacity [Random]...... 1 13

Capacity [Random]......1 14

array

array

array

array

array

array

array

array

[Constrained] ........ 122

[Constrained] ......... 123

[Constrained] ......... 123

[Constrained] ......... 124

[Constrained] ........ 124

[Centerline] .......... 135

[Centerline] .......... 136

[Centerline] .......... 136

array [Centerline] .......... 137

array [Centerline] .......... 137

7

Figure 5-7.

Figure 5-8.



List of Tables

Densities of common weapons-grade fissile materials ......... .............. 23

Ratios of MFPs in selected materials to HEU ................................... 23

208T1 gamma lines and branching ratios ................... .........................28

Decay rates for selected gamma emissions from plutonium
and its daughters ......... ......... ........ ........................ 31

Containerized cargo volume by U.S. port (CY 2003) ........................... 48

Foreign container import data (CY 2003) ........................................ 49

Nautical distances from selected ports to New York
and Los Angeles ................................................................. 61

Vessel database capacity benchmark results ...................................... 66

Vessel speed statistics ............................................................... 68

Voyage times from selected ports to New York and Los Angeles ............. 69

Mean voyage times to New York and Los Angeles ............................. 74

Vessel capacity statistics .......... ........................................ 76

Average distributed density, Pdist, values for imported cargo ................... 79

Properties of the OR operator ...................................................... 88

Spherical volume error .............................................................. 91

Reference array dimensions ...................................................... 92

Mean fractional coverage results for variable run sizes ......................... 93

Random deployment simulation results ......................................... 94

Estimated number of detectors needed for various scenarios [Random]....106

Double assignment probabilities for 20' and 40' containers [Random].....108

Constrained deployment simulation results ...................................... 116

8

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 4-9.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-8.



Table 5-9. Estimated number of detectors needed for various scenarios
[Constrained] .................................................................... 125

Table 5-10. Centerline deployment simulation results ......... .. ......... .. 127

Table 5-11. Estimated number of detectors needed for various scenarios
[Centerline] .......... ............................................................ 138

Table 5-12. Random vs. Centerline deployment comparison ................................ 140

Table 5-13. Average R/C values ................................................................. 141

Table 5-14. U.S. port calls by vessel capacity ................................................. 141

Table 5-15. Total detector estimates ........................................................... 143

Table 6-1. Results summary for deployment environment analyses ...................... 145

Table 6-2. Random deployment results summary ............................................ 146

Table 6-3. Centerline deployment results summary ......................................... 146

9



[This page left blank intentionally.]

10



Chapter 1: Nuclear Terrorism Threat

1.1 Objectives and Organization of Thesis

The objective of this thesis is to describe and analyze a novel "ship-based" approach,

proposed by Gallagher at the Massachusetts Institute of Technology (MIT), for the

detection of fissile material concealed in waterborne cargo containers. The need for new

thinking will be established by investigating the nature of the threat posed by

unconventional nuclear attack and nuclear terrorism and then highlighting the critical

shortcomings of currently deployed approaches that seek to address this threat. The

attributes and advantages of the ship-based approach will then be examined in the context

of the threat and compared to existing detection and interdiction methodologies. Once a

case for the promise and utility of the proposed approach has been presented, analysis

will be performed to remove or constrain important remaining uncertainties related the to

potential efficacy and viability of a ship-based fissile material detection regime.

1.2 Introduction

The specter of nuclear weapons has loomed large over the Earth since their

dramatic introduction to the world in 1945. The nature of the threat that these weapons

pose to the United States, however, has evolved over time. The end of the Cold War

brought with it a relaxation of the conventional nuclear threat stemming from blast

hardened silos dotting the land, strategic bombers roaming the skies, and ballistic missile

submarines prowling the seas. Yet, the dissolution of the Soviet Union and the

ascendance of transnational terrorism has brought with it a new challenge for the nuclear

age, that of devising and implementing effective strategies to prevent the acquisition and

deployment of nuclear weapons by individuals and organizations who are not restrained

by the same means that had deterred nuclear catastrophes for more than half a century.

Although the dynamics of the threat have changed, what remains constant is the

understanding that the detonation of a single nuclear device on American soil would have
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profound and lasting impacts on this country and the world, the scale and breadth of

which are difficult to comprehend.

1.3 Threat Dynamics

The September 1 1 th attacks clearly demonstrated that transnational terrorist

organizations have supplanted state-based actors as the primary (or at least most

immediate) threat to the security of the United States. To strengthen our homeland

security posture and develop more effective strategies to defend against attack, including

those involving unconventional weapons, we must seek to understand how the emergence

of this new adversary alters the nature of threats faced by the United States. The

transnational terrorist organizations we must combat today are not only fundamentally

different than the state-based adversary faced during the Cold War, they are also

markedly different from terrorist organizations that have been encountered in decades

past. Some critical differences, at least as they pertain to the threat of nuclear attack, can

be generally described in terms of deterability, material access, and motivation.

Nuclear aggression during the Cold War was deterred through the doctrine of

mutually assured destruction. This conventional means of deterrence was effective

because the primary belligerents were state-based actors having well-defined borders

with citizens and national assets to protect. Both the United States and the Soviet Union

developed nuclear arsenals massive enough, and deployment platforms and delivery

systems diverse enough, that any offensive nuclear strike was sure to be met with a

devastating retaliatory counterattack [Knorr, 1985]. Therefore, the motivation to unleash

nuclear weapons to destroy the enemy was checked by the understanding that a decisive

blow could not be struck without the assurance of a crippling reprisal. However, unlike

states, transnational terrorist organizations, in general, are highly mobile, have no

delineated territorial borders, and no populace to defend. Without fixed targets to be held

in jeopardy of counter-attack, a terrorist organization can hope to deliver a devastating

blow without the prospect (or at least the assurance) of immediate annihilation.
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Therefore, a transnational terrorist adversary contemplating a nuclear attack remains

undeterred by conventional means.

Unlike a large state-based actor, a terrorist organization is unlikely to have open

access to a military-industrial infrastructure dedicated to the production of fissile material

and the design and assembly of nuclear weapons. Numerous barriers, both physical and

political, have been erected by international institutions to inhibit the flow of fissile

material from established nuclear states, which are susceptible to conventional means of

deterrence, to undeterred terrorist organizations [Bunn et. al, 2003]. As such, even highly

motivated, well financed terrorist groups will likely find gaining access to fissile material

the most difficult and daunting aspect of initiating a nuclear attack. The difficulty

associated with the procurement or acquisition of fissile material, and the resulting

scarcity of the commodity, has important implications for how an attack might be

planned and executed.

In the past, terrorist organizations used attacks primarily in an attempt to achieve

political objectives [NCT, 2000]. With this political motivation, it was thought that

terrorist organizations would eschew attacks that claimed large numbers of civilian lives,

because such an act would promote public outcry, inspire widespread condemnation of

the perpetrators and ultimately weaken support for their cause [Hoffman, 1995]. The

transnational terrorist organizations threatening the United States today, however, are

increasingly found to have at their core fanatical religious and ideological, rather than

purely political, motivations [Laqueur, 1998]. With radical religious ideology serving as

the basis, attacks are no longer carried out with the express purpose of meeting political

ends. Instead, they are executed to destroy infidels and punish the enemies of God/Allah.

As such, religiously inspired terrorist organizations now tend to view attacks that cause

mass casualties as desirable rather than taboo [Morgan, 2004]. This motivational shift

was summed up succinctly by former CIA director James Woolsey who said, "Today's

terrorists don't want a seat at the table, they want to destroy the table and everyone sitting

at it." [NCT, 2000]
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Another key to understanding the threat posed by unconventional nuclear attack is

to appreciate the unique destructive capabilities of nuclear weapons. Although they are

often grouped alongside chemical and biological weapons under the generic banner of

weapons of mass destruction (WMD), nuclear weapons stand markedly apart even from

their other WMD brethren. The totality of destruction that can be wrought, together with

the massive spatial and instantaneous temporal scales over which their effects are

unleashed, combine to make the gravity of threats posed by nuclear weapons wholly

unique. Unlike chemical and biological agents that inflict harm by specifically targeting

and damaging human biological functions, nuclear weapons destroy in a much more

indiscriminate manner. With their combined thermal, blast, and radiation effects, nuclear

weapons inflict their damage on all forms of matter in their vicinity, including people,

buildings, and economically vital infrastructure. These effects can be devastating even at

distances far removed from the location of the actual detonation. Finally, the primary

effects of a nuclear detonation are all experienced more or less instantaneously and

simultaneously, and without warning. As such, there is no time for affected populations

to evacuate or seek refuge once a nuclear weapon has been actuated.

Given the destructive potential of nuclear weapons, the motivation and stated

desire of transnational terrorist organizations to obtain and use these weapons, and the

ineffectiveness of conventional means to deter terrorist-mounted nuclear attacks, it is

unacceptable to rely solely on existing barriers meant to prevent unauthorized parties

from gaining access to fissile material or assembled weapons. Realizing that no

individual barrier or safeguard is going to provide perfectly reliable protection, we must

develop multiple, redundant and diverse layers of protection that can impede or disrupt

all phases of attack from fissile material procurement to final operational deployment.

One important step in effectively implementing this type of defense-in-depth protection

philosophy is to identify and assess potential avenues of attack that could be used by a

terrorist adversary that had somehow managed to obtain fissile material. The

vulnerabilities of each potential avenue of attack should then be evaluated so that

deficiencies can be identified and remediated.
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1.4 Container Scenario Development

One potentially vulnerable avenue of attack flows through US seaports where an

average ofjust over 19,000 cargo containers arrive by ship each day [MARAD(1), 2004],

any one of which could be used by an adversary to conceal fissile material or an

assembled nuclear device. Only about 4% of these incoming cargo containers currently

undergo any type of physical inspection [Lok, 2004]. The vulnerability associated with

thousands of opaque, largely uninspected, and loosely controlled cargo containers

arriving on U.S. shores everyday is compounded by the proximity of major seaports to

large metropolitan population centers. As a result of this collocation, a weapon arriving

in a major U.S. port is often already in range to cause massive casualties, regardless of

the intended ultimate target of the device. Despite security concerns, seaports and the

international container shipping trade are critical to sustaining modern global commerce

and to maintaining a healthy U.S. economy. The transaction of international commerce

requires an open architecture, where containerized goods can move freely and efficiently

between countries and across borders. Therefore a critical and urgent challenge remains

to develop and implement protective measures that can enhance the U.S. security posture

with respect to seaports and incoming containers of foreign origin, without unduly

burdening the free flow of commerce.

As a first step in meeting the challenge of successfully addressing port and cargo

container related vulnerabilities, a conservative threat scenario will be developed based

on carefully chosen and logically defended assumptions. Scenario development will

frame the problem, allowing helpful insights to be drawn. The resulting product will then

provide a means to evaluate the efficacy and highlight weaknesses of potential solutions.

The overarching assumption used in scenario development is that a rational,

determined adversary would always seek to maximize the probability of a successful

attack. (Despite fanatical religious ideologies, transnational terrorist organizations have

repeatedly proven themselves rational in the context of operational planning,

coordination and execution.) As discussed later, in detail, the following propositions are
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some logical implications of the "rational enemy assumption" as applied to a

transnational terrorist adversary: 1) if an enemy somehow procures fissile material, they

will seek to weaponize it (if not already in the form of a functional nuclear weapon) and

use it; 2) an enemy will seek to weaponize unassembled fissile material prior to container

shipment to the U.S.; and 3) an enemy may provide some means (e.g. booby-trapping or

remote detonation capability) to thwart the successful interdiction and neutralization of a

deployed (i.e. shipped) weapon.

The assertion that a transnational terrorist organization, having obtained fissile

material, will weaponize it and attempt to use it is perhaps the most easily justified of the

preceding discussion. A number of leading figures in transnational terrorist organizations

(including al Qaeda) have openly professed their desire to obtain nuclear weapons and

there have been several well-documented attempts to purchase fissile material [Lee,

2003]. Additionally, these groups have demonstrated the motivation and ability to carry

out well planned, large-scale attacks that result in mass civilian casualties. Finally, as

noted previously, highly mobile, borderless terrorist organizations are not stymied by

conventional means of deterrence based on the threat of massive retaliation. Given the

vigor with which fissile material procurement has been pursued, the repeatedly

demonstrated willingness to employ ever more lethal tactics to carry out high-casualty

attacks, and the undeterred nature of the adversary, it is reasonable, and certainly

conservative, to posit that if a sufficient quantity of fissile material is obtained, a terrorist

organization would seek to assemble it into a weapon and use it for an attack.

The belief that an enemy would seek to ship a functional weapon to the U.S., as

opposed to unassembled fissile material, follows from the rational enemy assumption for

the following two reasons. First, to maximize the probability of a successful attack, an

adversary that had obtained unassembled fissile material would clearly want to avoid

disruption or detection during the device assembly process. Unfettered weapon assembly

and preparation would presumably be far easier to achieve abroad, in a location of the

terrorists' choosing, where they could enjoy a substantially stronger and more secure

support network, in addition to a less menacing intelligence gathering and law
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enforcement presence than would be encountered in the United States. Second, a rational

adversary would seek to ship a functioning weapon rather than attempt to smuggle

unassembled fissile material into the U.S. to create the possibility that some degree of

operational success (i.e. a nuclear detonation causing significant casualties and physical

damage) could still be achieved even in the event that the device was somehow detected

or discovered prior to reaching its intended target. There is no such possibility of limited

success if the fissile material has not been weaponized prior to shipment.

The assertion that an adversary would seek to implement countermeasures such as

"booby traps" or remote detonation provisions to guard against interdiction and

disarmament prior to detonation can also be defended using the rational enemy

assumption. "Booby-traps" are defined here as a feature or features intended to trigger

detonation of the device if certain perturbations, such as mechanical or radiation probing,

are experienced. A remote detonation capability would give an adversary the opportunity

to detonate a detected weapon before it could be isolated and rendered safe. Despite the

technological difficulty of implementing such features, the presence of countermeasures

to guard against interdiction cannot be ruled out since the rational-enemy assumption

dictates that an adversary would aggressively seek to ensure detonation once the weapon

was deployed. The desire to ensure detonation, using any available means, would only

be amplified by the extremely limited availability of fissile material and the extraordinary

efforts that were likely required to obtain it. Even if the device did not reach its intended

target, a nuclear explosion impacting any Western port or territory would presumably be

a marginally successful outcome for a terrorist organization.

Finally, to accept the rational enemy assumption but to reject the possibility of

countermeasures being present requires the assumption that an enemy is not capable, for

whatever reason, of implementing them. However, the fact that we concern ourselves

with screening cargo containers for fissile material in the first place implies that we are

willing to accept that an enemy possesses a level of sophistication high enough to

procure, transport, (possibly) assemble and deploy a nuclear weapon, all without being

detected or exposed by any military, law enforcement or intelligence gathering
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organization. It seems, therefore, wholly irrational to then assume that the same enemy is

not sophisticated enough to devise and implement effective countermeasures.

Consistent with the assumptions discussed in the previous paragraphs, we now

postulate a scenario in which a functional nuclear weapon is concealed in a standard, full

sized (40' long, 8' wide and 8.5' high) cargo container and deployed from a foreign

location aboard a transoceanic container vessel that is due to call on a major United

States seaport that is in or adjacent to a large urban population center (e.g. New York

City or Los Angeles). We conservatively assume that the weapon is surrounded with

some level of shielding appropriate for the fissile material used in the weapon (i.e. high

atomic number material for uranium or both low and high atomic number material for

plutonium). We further assume that the device has been outfitted with counter-

interdiction features, including a remote detonation capability and booby-traps that

trigger the weapon in the event that certain mechanical or radiation insults are

experienced.

We consider the above scenario (referred to hereafter as "the container scenario")

to be conservative and bounding. As such, it is assumed that an approach that can defeat

this extremely challenging scenario can similarly defeat any number of less conservative,

less challenging scenarios. We further believe that the highly conservative nature of the

container scenario is appropriate considering the extraordinarily dire consequences of a

successful nuclear attack on U.S. soil and the fact that none of the (admittedly)

improbable elements of the scenario can be confidently excluded as incredible.

Using the postulated container scenario we can now make a number of useful

observations regarding the capabilities that will be required to successfully address the

specific vulnerabilities associated with the commercial maritime container trade as an

avenue for nuclear attack. First, it is clear that the only way to ensure adequate protection

from this threat is to keep the weapon (or the container concealing the weapon) from ever

reaching U.S. shores. To do this, not only must the weapon be detected prior to the

threat-bearing vessel reaching a U.S. port of call, but the presence of this threat must also
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be communicated to appropriate parties in time for an effective response to be mobilized

prior to port entry. Additionally, the initial threat detection must be made in a manner

that accounts for the possibility that countermeasures may be present, which could

function the weapon if intrusive perturbations are experienced.

The ultimate success criterion for any defensive measure (or measures) in

defeating the container scenario or any other postulated nuclear attack is not the detection

of the device; it is the ability to prevent a nuclear detonation that physically impacts the

United States. Detecting the weapon is a necessary but not sufficient step toward

defeating this threat. Stated differently, the deployment of a defensive measure that

detects incoming fissile material with perfect effectiveness and reliability (even if this

were possible) fails to adequately protect against the threat of nuclear attack if the

weapon isn't detected until it is already in range to impact the United States (e.g. in a

U.S. port).
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Chapter 2: Fissile Material Detection

2.1 Fissile Material Characteristics

It is clear both intuitively and from the earlier discussion of the container scenario

that no nuclear attack will be thwarted if the concealed weapon is never detected. As

such, it is useful to investigate the common properties of fissile material and the various

ways in which these properties can be exploited to remotely detect the presence of this

material without the luxury of having physical access to the inside of each cargo

container.

In the current context, a nuclide is defined as fissile if it can undergo neutron-

induced fission with the absorption of a neutron of any energy. The ability to fission

readily when interacting with neutrons of any energy regime makes fissile isotopes

critically important in producing and sustaining the fission chain reactions that give

nuclear weapons their explosive power. For the purposes of this analysis, fissile

materials will be generally defined as materials containing fissile isotopes in sufficient

quantities to make them suitable for use in nuclear weapons. Although nuclear weapons

can theoretically be constructed using more exotic materials, such as neptunium or

americium [Albright et. al, 1999], the following discussion will focus on materials that

contain the fissile isotopes 239pu, 235U, and 233U.

Natural uranium has an isotopic composition of 99.28% (by weight) 238U, 0.72%

235U, and 0.0055% 234U. Uranium is considered enriched if the abundance of the fissile

235 U constituent is artificially increased above its naturally occurring level. Uranium that

is greater than 20% 235U is classified as highly enriched. The 20% cutoff corresponds to

the minimum enrichment, as identified by the International Atomic Energy Agency

(IAEA), required for materials that can be used in nuclear weapons [IAEA, 2001].

Unlike the fissile 235U isotope, 238U can only be made to fission with neutrons exceeding

a threshold energy of approximately 1 MeV [Krane, 1988]. This threshold makes
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uranium with a high 238U content unsuitable for creating and sustaining chain reactions

because not all neutrons produced during a given generation of fissions will exceed the

238U energy threshold and be available to create subsequent fission events. The

population of neutrons energetic enough to fission 238U would be further decreased as

neutrons undergo inelastic scattering events that transfer some of their energy to the

nuclei with which they interact. As a result, the highly enriched uranium (HEU) used in

nuclear weapons typically has an enrichment of greater than 90% 235U [Bunn et. al,

1997].

Plutonium, unlike uranium, is not a naturally occurring element and must be

produced artificially. Fissile 239 Pu is typically bred in a nuclear reactor through the

following transmutation chain and then chemically separated.

238U (n,y) >239 U 2d >239 Np 65 >239 P
23.5m P 56.5h

Weapons grade plutonium is rich in the fissile 239Pu isotope (again above 90%) and is

defined as containing less than 7% of the 240Pu isotope [DOE, 1994], which is considered

a contaminant by weapons designers. Reactor grade plutonium also contains 239Pu, but is

defined as containing greater than 7% 240pul . Each type of plutonium also contains

varying amounts of other plutonium isotopes including 238 Pu, 241pu, and 242pu. Although

weapons grade plutonium (as the name implies) is vastly preferable for use in fabricating

a nuclear weapon, reactor grade plutonium can also be used to produce an explosive that

delivers a nuclear yield2 [Mark et. al, 1987]. For this reason, and because a terrorist

organization is unlikely to be picky if an opportunity to obtain this material avails itself,

reactor grade plutonium has been included in the discussion, despite the added weapon

design and assembly difficulties associated with its use.

' Plutonium containing between 7 and 18% 2 4 0Pu is sometimes referred to as fuel grade.
2 In 1977 the United States declassified the existence of an underground test conducted in 1962 where a
nuclear device fabricated with reactor grade plutonium was successfully detonated.
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233U is not a constituent of naturally occurring uranium and, like plutonium, must

be produced artificially. This fissile nuclide is bred from thorium in nuclear reactors

through the following transmutation chain.

232 Th (n,) 233 Th - 233 Pa 6 >233 U
22.3- 27.0d

Uranium bred and chemically separated from thorium blankets is contaminated with

varying amounts of 232U. 233U is not nearly as popular as 235U and 239 Pu for use in

nuclear weapons (no country is publicly known to have produced weapons using 233U

[NTI, 2003]) because of radiation dose concerns arising from the 232U contaminant.

However, this material is very capable of producing a nuclear explosion, evidenced by a

bare sphere critical mass3 smaller than that of 235U [NERAC, 2000]. Currently, the

worldwide availability of 233U is rather small compared to other fissile materials that are

likely being coveted by terrorist organizations. However, a number of countries, most

notably India (already a nuclear weapon state), are considering the use of a 233U-

producing thorium fuel cycle for nuclear power generation [Gopalakrishnan, 2002].

Despite their many physical, chemical, and metallurgical differences, fissile

materials have a number of common traits that can be used as a basis for detection. One

characteristic that is obviously shared by all fissile materials is that they can be made to

fission. When fissile materials are bombarded with neutrons of any energy or gamma

rays above a threshold energy4, fission (or so-called photo-fission in the case of gamma

bombardment) will occur and neutrons and prompt gamma rays will be released

immediately as a result of the fission event, followed by delayed gamma rays (and

occasionally delayed neutrons) emitted by subsequent decay and de-excitation of the

fission products. Unlike the heavy ionized fragments created during fission and the beta

particles that are typically emitted as these fission products decay toward stability,

neutrons and gammas are uncharged. Due to their lack of electronic charge, these

particles do not undergo Coulomb interactions with the atomic electrons of the matter

3 The bare sphere critical masses of 233U and 235U are 16.4 kg and 47.9 kg, respectively.
4For 235U and 239 Pu, the photo-fission threshold energy is about 5.3 MeV [Fetter(l), 1990]
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through which they pass so they can travel a relatively long distance before and between

interactions. The long-range nature (relative to other forms of nuclear radiation) of

neutrons and gammas makes them particularly well suited to the task of detecting fissile

material at a distance using conventional equipment and well-understood methods.

Another useful characteristic shared by all fissile materials is that they have high

densities, and are able to readily absorb gamma rays and neutrons. Densities of some

common weapons-grade fissile materials are shown in Table 2-1 [Mark et. al, 1987].

Table 2-1: Densities of common weapons-grade fissile materials
HEU Weapons Grade Pu

(94% U-235) alpha phase delta phase

18.7 g/cmA3 19.86 g/cmA3 15.6 g/cm^3

One way to quantify how effectively a material can absorb a particular type of radiation

is to define the mean free path of that radiation in the material. The mean free path is the

average distance traveled between interactions. Since each interaction creates the

opportunity for scattering or absorption, a short mean free path, or equivalently, more

average interactions per unit length, indicates that the material is effective in absorbing or

shielding that particular radiation. Table 2-1 below shows the mean free path ratios

between HEU and a number of other materials for neutrons and gamma rays of several

different energy regimes [Fetter(l), 1990].

Table 2-2: Ratios of MFPs in selected materials to HEU

Energy Ratio of MFP in element to that in HEU
MeV C Al Fe W Pb

0.4 22 19 6.7 1.4 2.0
Gamma Rays 10 23 16 4.3 1.1 1.8

100 56 27 5.5 1.1 1.7
thermal 50 240 24 40 70

Neutrons 0.001 3.0 16 2.2 1.6 4.1
10 2.2 2.4 1.5 0.94 1.5

Ratios in Table 2-1 greater than unity indicate a larger mean free path in the reference

material than in HEU. Plutonium with its similar density, atomic number, and ability to
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fission (even with thermal neutrons) would produce comparably small mean free paths

for gamma rays and neutrons at energies tabulated above.

Fissile materials are also radioactive. However, since each type of fissile material

has a distinct isotopic composition, which in turn gives rise to distinct populations of

decay progeny, each of the materials produce intrinsic radiation signatures that can differ

in terms of character and intensity. The characteristic emission signatures for each type

of fissile material will now be identified and discussed separately in the context of how

they can be used to facilitate remote detection.

2.1.1 HEURadiation Signature

The isotopic composition of a radioactive material determines both the nature and

energy of the radiation emitted. Therefore to begin discussing the radiation signature of

HEU, the general composition of this material must first be revisited in greater detail.

The primary constituents of HEU are the naturally occurring 238U, 235U, and 234U

isotopes. To produce weapons-usable material, some means of enrichment (e.g. gaseous

diffusion or centrifuge enrichment) must be employed to artificially raise the relative

abundance of the fissile 235U isotope to well above its natural level of 0.72%. Because

most means of enrichment exploit the fractional mass differences between isotopes, the

trace amount of 234U found in natural uranium is also preferentially enriched along with

235U due to its comparatively low atomic mass. If none of the material used as input, or

feedstock, to the enrichment process had ever been irradiated in a nuclear reactor, than

the naturally occurring nuclides listed above would be the only uranium isotopes present

in the resulting HEU. However, if even a minute fraction of the enrichment feedstock

had been irradiated (and subsequently reprocessed), the HEU output would likely be

contaminated with small amounts of the non-naturally occurring 232U, 236U, and 237U

isotopes [Peurrung, 1998].

As the 235U, 238U, and 234U isotopes (as well as the 232U, 236U, and 237U

contaminants that may be present) begin down their long decay chains toward stable
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nuclides, alpha and beta particles are emitted as individual nuclei decay. While these

short-range, charged particles are generally unhelpful for remote detection, the long-

range characteristic photons that often accompany these decays can be usefully exploited.

The gamma rays emitted as the excited daughter nuclei created during alpha or beta

decay transition to lower excited states or their ground states, give rise to a rich and

complex spectrum of photons that can penetrate surrounding material and be detected at a

physically removed location. Since gamma ray energies are determined by the

characteristics of the emitting nucleus, peaks in the measured spectrum can be used to

unambiguously identify the presence of specific isotopes. The HEU spectrum, as

measured using a high resolution, high purity germanium (HPGe) detector, is shown in

Figure 2-1 [Gosnell, 2000].
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Figure 2-1: High resolution HEU spectrum

As indicated by the magnified region of Figure 2-1, the characteristic gamma

lines emitted by 235 U are concentrated at the low energy end of the spectrum. The most

intense of the 59 discrete lines emitted by 23 5U is at 186 keV and the most energetic line

emitted with a reasonably high intensity is at 205 keV. Unfortunately, these photons are
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not highly penetrating because most types of matter have large linear attenuation

coefficients in this energy regime, with a particularly large contribution from the photon-

absorbing photoelectric process. Figure 2-2 shows the dominant regions for various

types of photon interactions as functions of the atomic number of the transmission

medium [Evans, 1955].
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Figure 2-2: Dominant regions for different photon interactions

As a result of the high probability of photoelectric interaction, which results in the loss of

the photon in the process, dense matter shields low energy gamma lines emitted by 235U

very efficiently. In uranium the mean free path of 200 keV gamma rays is 0.5 mm, so a

significant fraction of these low energy photons are subject to self-absorption within the

HEU from with they originate [Fetter(2), 1990].

The most notable contribution to the HEU spectrum stemming from residual 238U

is the 1001 keV line arising from the isomeric transition of 234 mPa that is created through

the following series of decays.

a >234 Th d >234m Pa
4.5 Gy 24.3d

Although this line is highly penetrating and emitted with reasonably high intensity, the

use of gamma rays that arise from 238U (or its daughters) for fissile material detection
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purposes is inherently problematic. This is due in part to the fact that the presence of

238 U doesn't necessarily indicate the presence of HEU. Additionally, the ubiquitous

nature of the 238U isotope, particularly in terrestrial settings, produces a significant

amount of nuisance background that can confound detection efforts.

Because gamma lines emitted by 235U are intense but not highly penetrating and

lines emitted by 238U (and its daughters) are less than ideal for fissile material detection,

gamma emissions stemming from the decay of 232U and its daughter products can prove

extremely useful for remote detection applications. 232U is produced primarily through

the following reactions in a nuclear reactor [Peurrung, 1998].

(1) 235 U a 231 Th 231 (n) 232 Pa >232 U
704My 25.5h 31.4h

(2) '234 U a >230 Th (r) 231 Th V >231 Pa (ny) >232 Pa >232 U
246ky 25.5h 31 .4 h

(3) 235U (n,y) >236 U (n,y) >237 U > 237 Np n,2n) >
6.8 > 2

236m Np a- >236 PU a >232 U

(4) 238 U (n,2n) >237 U >237 Np ,2 ) >236m Np - >236 PU a >232 U
6.8d '1 22.5h 2.9y

The reactions shown above (particularly the first two listed) are the most significant

pathways by which 232U is produced in a reactor, provided that actinide impurities arising

from previous irradiations have been removed from the initial fuel prior to loading

[Perrung, 1998]. If present in HEU, 232U will decay through a long chain of successive

alpha and beta decays through the so-called thorium series depicted below in Figure 2-3

[Krane, 1988].
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Figure 2-3: Thorium series

The thorium series is shown in detail because several of the distant daughter products of

23 2 U emit high energy, highly penetrating gamma lines that can significantly enhance the

distance at which HEU can be remotely detected. Of the daughter products found in the

thorium series, the one with the most utility for detection is 208T1. The beta decay of 208T1

to stable 208Pb is accompanied by one or more high-energy photons emitted as the

daughter nucleus de-excites. Table 2-2 shows the energies of the most intense gamma

ray lines produced by 208T1 decay, as well as the branching ratios of these lines [Fetter(3),

1990].

Table 2-3: 208TI gamma lines and branching ratios

Gamma Energy Branching Ratio
(keV) (% per decay)
583.0 86.0
860.3 12.0
1620.7 1.51
2614.4 99.79
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Because of their significant branching ratios and highly penetrating nature, the 583 and

2615 keV 208T1 gamma lines can be particularly useful in detecting HEU that is

contaminated with the 232U parent nuclide, even if 232U is found in concentrations less

than 1 ppb [Fetter(1), 1990]. The prominence of these two peaks in the HEU spectrum

can be seen in Figure 2-1. The 2615 keV photon is especially noteworthy because photon

interaction cross-sections at this energy are generally quite low, which allows this gamma

line to be powerfully penetrating and quite long range. Also, as shown in Figure 2-2 the

Compton scattering process dominates the overall interaction cross-section at 2615 keV,

so even when an interaction does take place, the photon will most likely be scattered

(albeit losing some energy in the process) instead of absorbed. Additionally, in general,

the background rate in this high-energy region of the spectrum is fairly low, so a source

that emits gammas in this regime can usually be detected more easily than a low energy

gamma emitter. Unfortunately, as the thorium series in Figure 2-3 demonstrates, 232U is

not the only potential source of 208T1 and its 2615 keV decay photon. 232Th, an isotope

that represents greater than 99% of naturally occurring thorium and is 3 times more

abundant in the earth's crust than natural uranium [WNA, 2003], also decays down to
208Tl and can produce a very strong background signal, which inhibits confident detection

of HEU.

Like many other extremely heavy isotopes, 238U and 234U can undergo

spontaneous fission. In general, spontaneous fission is more likely in nuclides with even

numbers of protons and neutrons and becomes increasingly important as atomic number

increases. However, it does not seriously compete with alpha emission as the dominant

decay process until atomic mass increases above about 250 [Krane, 1988]. As a result,

238U and 234U both have partial half-lives for spontaneous fission that are significantly

longer than their total half-lives. (Partial half-lives are defined as the time necessary for

half of the nuclei in a given sample to decay if only a single specified decay process were

allowed to occur.) 238U has a partial half life for spontaneous fission of 8.20x1015 yr

versus a total half life of 4.468x 109 yr and 2 34 U has a spontaneous fission half life of

2.04x1016 yr versus a total half life of 2.455x10 5 yr [Fetter(4), 1990].
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Several other processes contribute to neutron generation in HEU. One is the

production of neutrons through (a,n) reactions that can occur when light element

impurities (e.g. carbon and oxygen) in the material interact with alpha particles emitted

by the uranium nuclides and their daughter products [Fetter(2), 1990]. The other process

influencing the neutron population in HEU is the multiplication that occurs when an

existing neutron induces fission in the fissile material thereby releasing additional

neutrons. The degree of multiplication is strongly dependant on the geometry of the

material.

Despite the effects of multiplication and the neutron production that could occur

due to (a,n) reactions in light element contaminated material, spontaneous fission events

in 238U and 234U occur infrequently enough that the intrinsic neutron signature of HEU is

very small and essentially undetectable for the remote detection application of interest.

2.1.2 Plutonium Radiation Signature

Both weapons grade and reactor grade plutonium contain essentially the same

plutonium isotopes (238pu, 2 39 Pu, 240pU, 24 1pu and 24 2 Pu) but in different concentrations.

Weapons grade plutonium is typically composed of greater than 93% 239Pu, around 6%

24 0Pu, and small quantities (less than 1%) of 238 Pu, 241pu, and 2 42pu [Fetter(1), 1990].

Reactor grade plutonium, a material that does not have uniquely specified isotopics, has

been produced and separated from higher burnup fuel than weapons grade plutonium,

giving it a lower concentration of 239Pu and higher relative concentrations of the 238Pu,

240pu, 241pu, and 242 Pu isotopes [Mark, 1990].

All of the plutonium isotopes identified above are radioactive, and just as in the

case with HEU, the alpha and beta decays undergone by these isotopes and their daughter

products are accompanied by the emission of one or more characteristic photons. The

most prominent gamma lines in the plutonium spectrum arise from the decay of 239pu,

and the decay of the 241pu isotope's daughter product. 239 Pu is an alpha emitter with a

half-life of 2.41 lx105 yr. The two most intense gamma lines arising from the 239 Pu alpha
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decay are at 375 and 414 keV with branching ratios (% per decay) of 0.00158 and

0.00151 respectively [Fetter(3), 1990]. The most energetic line emitted by 239 Pu with a

useful intensity is at 769 keV, and has a branching ratio of 0.000011. 241 Pu has a half-life

of 14.35 yr and beta decays to 24 1Am 99.9976% of the time [Oetting, 1968]. The 241Am

daughter then alpha decays with a 432.2 yr half-life emitting gammas at 662, 721.96 and

722.70 keV with respective branching ratios of 0.00036, 0.00006 and 0.00013 [Fetter(3),

1990]. The peak energies of the later two photons are exceedingly difficult to resolve,

using even high-quality semiconductor detectors, because the peak energies are so close

together. As such, the counts from these two photons can be aggregated into one peak

centered at approximately 722.5 keV, with a combined branching ratio of 0.00019. Table

2-4 shows the decay rates of the gamma emissions discussed above5 [Fetter(3), 1990].

Table 2-4: Decay rates for selected gamma emissions from plutonium and its daughters
Parent Isotope Gamma Energy Decay Rate

(keV) (g x s)^-1

Pu-239 375 36300
Pu-239 414 34600
Pu-239 769 252
Pu-241 662 174000
Pu-241 722.5 92000

In the case of weapons grade plutonium, the 239 Pu and 241Am gamma lines

identified above can be fairly helpful for remote detection due to their reasonable

intensity and good penetrating power in most materials. Since reactor grade plutonium

has a significantly higher concentration of both 241pu and 241Am, the highly penetrating

662 and (averaged) 722.5 keV can become quite intense. Consequently these gamma

lines can be extremely helpful in remotely detecting reactor grade material.

It should also be noted that because 239 Pu and 241 Am are not naturally occurring

isotopes, the detection of plutonium using the gamma lines discussed above does not

suffer from the same problems associated with natural background that can complicate

HEU detection. However, 241Am is used in commercial products such as smoke detectors

5 Decay rates in Table 2-4 assume 10-year-old plutonium (i.e. 10 years of decay time starting with I g of
the pure parent nuclides).
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and the popular radiation source 13 7Cs, emits a gamma ray at 661 keV, which is

essentially indistinguishable from the 662 keV line emitted by 241 Am. Although the

spectral peak overlap with 137Cs could frustrate unambiguous identification of 241Am, the

unexpected detection of this line emanating from a cargo container would still

presumably be of intense interest due to the potential use of 137Cs (particularly in its

powdery chloride form [Stone, 2002]) in a radiological dispersion device.

A potentially more important aspect of plutonium's intrinsic radiation signature,

in terms of remote detection, is neutron emission. Plutonium has a high rate of internal

neutron generation due largely to the spontaneous fissioning of its nuclei. All of the

plutonium nuclides present in weapons grade and reactor grade materials undergo

spontaneous fission more readily (i.e. they have shorter spontaneous fission partial half

lives) than 238U [Fetter(4), 1990]. The 238pu, 240pu, and 242Pu nuclides, with their even

number of protons and neutrons, are particularly active contributors to the neutron

population with relatively short spontaneous fission partial half lives of 4.77x 101°,

1.31 x 10, and 6.84x10 10 years respectively [Fetter(4), 1990].

As is the case with HEU, alpha particles interacting with light element impurities

can cause (a,n) reactions, giving rise to another potentially important neutron production

mechanism. However, reactions of the (a,n) variety are more significant in plutonium

than HEU because the dramatically higher alpha activity in plutonium creates more

opportunity for these reactions to occur. Likewise, neutron multiplication can also play a

more significant role in plutonium because more spontaneous fission and (a,n) neutrons

are present to begin the multiplication process by inducing fission.

There is also some evidence to suggest that a significantly enhanced high-energy

(above 1.6 MeV) gamma flux can be observed in the vicinity of plutonium-based nuclear

weapons [Baryshevsky et. al, 1994]. These energetic photons would most likely be the

result of radiative capture reactions occurring as materials in the surrounding chemical

high explosive absorb neutrons emitted by the plutonium. Due to the low natural
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background flux in this energy regime, these highly penetrating gamma rays could prove

quite useful for remote detection.

2.1.3 23 3U Radiation Signature

The isotopic composition of uranium that is chemically separated from thorium

targets irradiated in a reactor varies depending on the reactor type and burnup. Although

the relative concentrations may vary, all uranium produced from thorium irradiation will

be contaminated with 232U produced primarily through the following reaction chains.

232Th (n,2n) >231 Th fl >231 Pa (ny) >232 Pa A3- >232 U

232Th (n,y) >233 Th A- >233 Pa - >233 U (n,2n) >232 U

The limiting reactions for both 232U production mechanisms are the (n,2n) reactions that

have threshold neutron energies of around 6 MeV. As a result, uranium bred in reactors

with relatively large neutron populations in the high-energy (i.e. > 6 MeV) portion of the

spectrum will typically be contaminated with higher levels of 232U. 232U contamination

also increases with burnup [Kang, 2001].

As noted above for HEU, 232U, with its 69.8 yr half-life and its 208T1 progeny can be

very helpful for remote detection even at 232U contamination levels on the order of 100

ppt. In contrast to the minute concentrations of 232U that can be found in contaminated

HEU, 233U is considered to be "clean" if it has levels of 232U contamination less than 1

ppm. [Kang, 2001]. The intense radiation field given off by the 232U decay chain is the

root of radiation protection concerns that have kept 233U from being pursued by states as

the basis for nuclear weapons production. This intense, high-energy radiation will also

help to facilitate fairly straightforward remote detection of concealed 233U.
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2.2 Detection Techniques

Detection techniques that seek to exploit the common properties of fissile material

discussed in the previous section can be generally categorized as either active or passive.

Active methods involve the application of external radiation sources to induce fission

events in fissile material that may be present or to take photon transmission

measurements that can indicate the presence and location of dense materials. Passive

techniques do not probe with radiation, but instead measure the intrinsic radiation emitted

by the fissile material to achieve detection. Methods using both active and passive

techniques will now be discussed in additional detail and their applicability to the

postulated container scenario will be assessed.

2.2.1 Active Detection

There are a number of disparate detection methods that fall under the category of

active techniques. The commonality between these methods is that they all employ some

dedicated photon or neutron source to bombard an object or material with intense

radiation to measure its response. In some cases the response of interest is the induced

radiation emitted by the object or material being interrogated and in other cases the

measured response is the amount of radiation that is effectively transmitted through (or

absorbed in) the test object. Methods concerned with stimulating radiation in fissile

material using external radiation sources will be referred to here as induced fission

techniques and methods that measure radiation transmission will be referred to as

radiography.

2.2.1.1 Induced Fission

As discussed earlier, fissile materials can be made to fission with neutrons of any

energy and by gamma rays above certain nuclide-specific threshold energies. Fission

events are accompanied by the emission of about 7 prompt gamma rays and anywhere

between 2 to 5 prompt neutrons depending on the isotope undergoing fission and the type
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and energy of the particle that induced the event [Fetter(4), 1990]. Induced fission

techniques interrogate an object with intense beams of radiation and detect evidence of

induced fission in the form of prompt neutrons and/or gammas.

Induced fission techniques have a number of attractive attributes. The intense

probing radiation can penetrate significant amounts of intervening material such that even

well-shielded fissile material can normally be detected. Additionally, by artificially

inducing a strong signal that is unique to the class of materials that are being screened

for, induced fission techniques require a much smaller detection time than other methods,

particularly those that are passive in nature. Disadvantages associated with this method

include radiation protection concerns for workers and bystanders stemming from the use

of intense and energetic radiation sources. An additional concern for methods that would

employ neutrons as probing radiation arises from the possible activation of benign

materials in the test object.

In terms of suitability to the container scenario, induced fission techniques are not

a particularly desirable option. Although the ability to detect fissile material despite

shielding is an important virtue of this method, the insult to the device arising from the

bombardment of probing radiation is a critical drawback. A booby-trap provision, such

as the one postulated by the container scenario, could be triggered by intense radiation

resulting in detonation of the weapon.

2.2.1.2 Radiography

As photons pass through material they can interact with surrounding matter

through a number of different processes. The most notable of these photon interactions

are photoelectric absorption, Compton scattering, and (if the photon has an energy greater

than 1.022 MeV) pair production. Examples of photon interaction cross-sections for

aluminum and lead, illustrating the energy dependence of the three primary interaction

processes, are shown in Figure 2-4 [Krane, 1988].
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Figure 2-4: Photon interaction cross-sections for aluminum and lead

The denser the material being traversed by a photon, the more matter is available

to cause these interactions per unit length traveled. As such, a test object with unknown

contents can be exposed to a beam of photons with a known intensity and transmission

measurements can be carried out to detect the presence of particularly dense material,

which could indicate the presence of either fissile material or shielding. Sophisticated

radiographic techniques can image the contents of an unknown test object using the

contrast provided by the varying linear attenuation coefficients of different materials.

These contrast images can be used to indicate both the presence and geometry of

suspicious dense material.

An advantage of radiography is that it can provide visual insights into the contents

of sealed, opaque containers without requiring them to be physically opened. The

sensitivity to very dense materials could also easily detect the presence of engineered

shielding. However, high densities are not unique to fissile materials or shielding that is

being used to conceal a nuclear weapon. As such, this method (and other more exotic
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radiographic methods including those using muons) could be prone to high false alarm

rates that could create a potentially costly commercial choke point. Additionally, the

bombardment of high-energy photons can damage some radiation-sensitive types of

commercial cargo, such as photographic film.

Evaluated in terms of the container scenario, radiography warrants an assessment

similar to that of induced fission techniques. The ability to readily detect the presence of

material that could be used as shielding is desirable (although unlike induced fission

methods, radiography cannot unambiguously detect the presence of fissile material

behind potential shielding). However, the overall desirability of this technique, at least

with respect to the postulated container scenario, is severely limited by the fact that the

bombardment of a booby-trapped nuclear device with intense external radiation could

trigger the weapon.

2.2.2 Passive Detection

Whereas active techniques use externally applied radiation to exploit common

properties of fissile material related to fissionability and density, passive techniques focus

on the intrinsic radiation that is emitted in varying forms by all fissile material as a means

of detection. Using large static arrays of gamma and neutron detectors to obtain gross

count measurements can identify the presence of a radiation source. This technique

cannot, however, discriminate between fissile material and any other type of radiation

emitting material. More advanced techniques using gamma spectroscopy can be used to

detect and identify individual types of fissile material.

By relying on intrinsic radiation emitted by fissile material instead of radiation

induced by powerful external sources, passive techniques are non-invasive and do not

present radiation protection concerns. However, the intrinsic signal emitted by fissile

material is significantly less intense than the signal that can be artificially induced using

active methods. In general, the number of counts detected from an isotropic point source

can be expressed as follows,
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SAet -'ii (1)

where is the intensity of a point source, A is the detector area normal to the incident2

where S is the intensity of a point source, A is the detector area normal to the incident

radiation, e is the detector efficiency, t is count time, r is the linear distance between the

source and the detector, /u is the linear attenuation coefficient of a given intervening

material, and ris the thickness of a given intervening material. The situation described

by Eq. (1) is shown schematically in Figure 2-5.

Apt

Ad T2

|t---- r 

Figure 2-5: Schematic representation of source detection through intervening material

Assuming that the detector or detectors will be placed as close to the source as the

situation permits and that detectors with efficiencies as high as feasible were employed,

Eq. (1) shows that the only remaining options for increasing the magnitude of the

detected signal are to increase the effective detector area or increase the count time. As a

result, either large detectors, arrays of detectors, long count times or some combination

thereof are likely to be required to make a confident detection of fissile material using

passive techniques. An additional difficulty encountered using passive detection methods

arises from the relative ease with which the low energy characteristic gamma emissions

from some types of fissile material (most notably HEU with very limited or no 232U

contamination) can be shielded by dense materials. Shielding can cause already weak

intrinsic signals to become even weaker and can be a serious obstacle to confident

detection.
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Assessed against the container scenario, passive techniques have the critical

advantage of not perturbing radiation-sensitive booby-traps in the course of detection.

The trade-off for this desirable attribute is the potential for significantly longer count

times if the weakly penetrating intrinsic radiation from fissile material is to be detected

despite the presence of intentional shielding. Increased count times may or may not be

tolerable.
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Chapter 3: Detection Schemes

3.1 Current Approaches

The preceding section discussed general methods for detecting concealed fissile

material without consideration for how and where within the international container

shipping architecture these techniques could be implemented. Identifying suitable

deployment strategies for selected detection techniques is often complicated by the

potentially competing interests of enhancing security and preserving the free flow of

commerce. A number of deployment approaches seeking to strike a balance between

security and commerce have been envisioned or even implemented. Some of the more

prominent approaches that have been proposed or realized to date will now be discussed

in terms of their abilities to address the conservative postulated threat.

3.1.1 Customs-Based Approach

The vast majority of detection schemes that are currently deployed or slated for

deployment, can be generally characterized as customs-based approaches. These

approaches strive to integrate detection systems using either active or passive techniques

into existing infrastructure elements at U.S. ports. Examples include outfitting cranes

that transfer containers from cargo vessels onto shore with passive large-area detectors,

processing incoming containers through inspection facilities where they are subjected to

active interrogation, or using mobile detection units to scan containers with photons for

signs of fissile material. The development of in-port detection regimes, such as the

examples cited above, represents a natural extension of conventional strategies based on

the customs model for finding and seizing contraband as the material is coming into the

country. Nuclear weapons, however, are utterly unlike conventional forms of contraband

due to the power and range of their effects. As such, when an attack is mounted by a

rational and determined adversary, the discovery of a nuclear weapon in a major U.S.

port simply cannot ensure protection from the device's destructive power and reach.
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3.1.2 "Smart" Containers

Another approach that has been vigorously discussed recently is the deployment

of so-called "smart" containers. This approach would retrofit containers used for

maritime commerce with small radiation detectors to sense the presence of concealed

fissile material. Aside from the extremely daunting logistical challenges that would be

presented by installing, maintaining, and mentoring detection equipment in the

approximately 11 million [WSC, 2003] cargo containers in circulation worldwide, there

are a number of critical limitations associated with this approach. First, the detectors

employed in "smart" containers would be very susceptible to tampering. It is the sender

who loads and seals the cargo container prior to shipment, so if a "smart container"

approach was adopted and it was well known that each container was outfitted with a

small detector or detectors, the enemy would have ample opportunity to disable or defeat

the detection devices given their unlimited access to the container prior to shipment.

Even if an enemy did not successfully defeat the detector or if sensors in neighboring

containers detected radiation, the presence of a threat would still not be known until the

container entered port unless the alarm could be communicated in a quasi-real time

fashion. Equipping all containers with detectors that can transmit alarm information

would most likely render the "smart" container approach cost prohibitive. Therefore, like

customs-based approaches, "smart" containers would not identify the presence of a

nuclear weapon until it has already reached a U.S. port, which is not adequately

protective when faced with a sophisticated and determined adversary.

These and other current approaches that subscribe to the conventional notion that

threats can be successfully detected and interdicted as they enter the country (in this case

when the threat has come ashore in port) are critically flawed because they do not take

into account the unique destructive dimensions of the nuclear threat they seek to address.

Even if they make detections with perfectly reliability, these approaches and any others

that propose to look for fissile material in containers that have already entered port cannot

ensure that a nuclear detonation that physically impacts the United States can be
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prevented. Therefore, with respect to the challenges posed by the threat of container-

borne nuclear attack, these approaches do not meet the ultimate success criterion.

3.2 Ship-Based Approach

3.2.1 Attributes

The primary drawbacks of the approaches discussed above relate to the critical

issue of how and where defensive measures are to be deployed. For conventional

contraband, shipping ports are logical locations to field inspection and detection

capabilities because they represent choke points where many elements (i.e. containers) of

a generally diffuse threat (i.e. container borne contraband) come together. Domestic

ports are also convenient deployment nodes because, unlike foreign ports and

commercially owned property, the U.S. government has wide access to the facilities and

infrastructure. To ensure protection from the effects of nuclear weapons, however, the

threat must be interdicted prior to reaching, or even coming into range of, U.S. shores.

Large ocean-going container vessels represent another choke point where many

cargo containers, each representing a potential threat, come together en route to the

United States. If the presence of a concealed nuclear weapon could be detected and

communicated while the ship carrying it was still at sea, a defensive response could be

mounted while the threat was still safely removed from U.S. shores. The U.S.

government cannot unilaterally deploy and maintain control over detection equipment

deployed on the actual vessels themselves since they are the property and dominion of

private concerns. However, akin to the terrorists who may seek to exploit it as an avenue

of attack, the U.S. government does have access to the open architecture of international

maritime commerce that allows any party to ship containers to and from just about any

destination aboard these ships.

Therefore, Gallagher at MIT has proposed an approach whereby suites of

commercial off the shelf (COTS) gamma and neutron detectors are mounted inside
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standard, non-descript cargo containers. These dedicated units could then be shipped

clandestinely using existing commercial channels where they would be deployed

alongside potentially threat-bearing containers aboard vessels sailing for U.S. ports. On

board the container ship, the detection units will be able to utilize passive neutron

counting and imaging-enhanced gamma spectroscopy techniques to detect and potentially

identify any threat-related nuclear signature being emitted from nearby containers with a

count time constrained only by the duration of the voyage. The containerized detection

units would also be outfitted with a transmission capability such that the presence of

potential threats could be communicated as they were detected and prior to entering U.S.

ports. The primary advantages of this "ship-based approach" can be summarized as

sensitivity, stealth, and most importantly, standoff.

3.2.1.1 Sensitivity

Characteristics of the ship-based deployment environment and the containerized

detection units themselves combine to promote good detection sensitivity. Standard full-

sized cargo containers, which would be used to house detectors, have dimensions

measuring 40' in length, 8' in width and 8.5' in height. The 2720 ft3 interior volume of

these containers provides ample space to mount neutron detection equipment and arrays

of gamma detectors that can be configured to present a large effective area when viewed

from any incident direction. Additionally, the long transoceanic voyages required to ship

containers from many foreign ports of call to U.S. shores provide extremely long count

times. From most foreign ports, count times of a week or more would be available.

Referring back to Eq. (1), it is clear that a large detector area and very long count

times will enhance signal strength and help to offset the unknown and variable distance to

the fissile source. However, the signal strength defined in Eq. (1) is not the only relevant

factor in confidently detecting the presence of fissile material. Background radiation

being emitted by benign sources can mimic or obscure the emissions from a genuine

threat. Two particularly problematic contributors of background radiation are cosmic ray

induced neutrons and naturally occurring radionuclides. Cosmic rays, composed
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primarily of energetic protons and alpha particles, produce neutrons predominantly

through spallation interactions with matter [Frank et. al, 2000]. The distributed neutron

background flux at an interface between air and iron (e.g. on the deck of a containership)

has been found to be approximately 12 times greater than the background flux at an

interface between air and ground [O'Brien, et. al, 1978]. This distributed neutron

background enhancement, sometimes referred to as the "Ship Effect", is the result of a

massive object composed of dense material (e.g. iron) serving as an effective medium for

the production of cosmic ray-induced neutrons. Naturally occurring uranium and thorium

can also frustrate detection efforts because these radioactive materials and their daughter

products produce characteristic gamma emissions that are identical in energy to those

emitted by some fissile materials of interest. Unlike many terrestrial settings, the

uranium and thorium concentrations of seawater are small at 3.3 p.g/L [Turekian, 1976]

and 9.2 ng/L [Emsley, 1998] respectively, and these concentrations are not expected to

fluctuate substantially. Therefore the background sources likely to interfere with ship-

based fissile material detection are diffuse uranium and thorium impurities in the ship's

structural steel and distributed benign sources in commercial containers. Imaging

techniques provide a means for identifying localization of incident radiation. As a result,

threatening point-like sources can be distinguished from the benign distributed

background sources described above.

3.2.1.2 Stealth

The nondescript nature of the containerized ship-based detection systems allows

these units to operate surreptitiously. The stealth afforded by these sealed, containerized

units will frustrate attempts by adversaries to disable or defeat the embedded detection

equipment. Additionally, while the exact number and location of the detection units

would not be obvious to an enemy, the knowledge that they are operationally deployed

may produce sufficient uncertainty regarding mission success to dissuade the enemy from

using this means of delivery. This could achieve an important degree of deterrence.

3.2.1.3 Standoff

44



The most important advantage of the ship-based approach is the physical location

of the material when a positive detection is made and communicated. Instead of

identifying the presence of concealed fissile material once it has already entered the

country, a ship-based approach could detect the presence of a threat while the container

was still safely removed from American shores. The warning time provided by a

transmitter equipped, ship-based detection system would allow protective measures to be

taken to ensure that a minimum level of standoff distance between the container vessel

and the United States coastline could be established and maintained. Not only would

early warning prevent a concealed weapon from ever becoming a threat to the American

homeland, it would also ensure that responders had the greatest possible degree of

flexibility in how to safely contain and neutralize the threat.

3.2.2 External Uncertainties

It is difficult to overstate the critical advantages of a system that uses COTS

equipment and well understood techniques to provide advance detection and notification

of an incoming container borne nuclear threat. However, before the effectiveness,

reliability, and practicality of this conceptual approach can be persuasively demonstrated,

a number of important remaining uncertainties must be investigated and resolved. Some

of these uncertainties involve aspects of design and performance verification concerned

with elements internal to the containerized detection units. Other uncertainties are

external to the detection units and relate to facets of the international shipping trade and

characteristics of the deployment environment. A concerted effort is underway to

remove or constrain these uncertainties and to produce defensible assessments of the

efficacy and viability of the ship-based approach. Research and development activities

supporting this effort have been roughly divided along the lines of whether they address

uncertainties that are internal or external to the detection units. The remainder of this

thesis will address some of the more pressing external uncertainties. These uncertainties

include the count times available on container voyages originating from different regions

of the world, the number of detection units needed to adequately cover a vessel of a given
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size, and the number of detection units needed for a fully deployed system. Internal

uncertainties are being investigated by Gallagher at MIT and are outside the scope of this

thesis. Some important internal issues that are explicitly excluded are detection suite

design and quantification of internal performance parameters such as the expected

maximum distance (or range) at which a detection unit will be able to confidently and

reliably detect fissile sources under realistic conditions. Although concerns internal to

the detection unit will not be addressed here, there is an extremely high degree of

coordination and collaboration between the two functional areas and as work is produced

on one track it is immediately fed into ongoing activities on the parallel track.
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Chapter 4: Container Shipping and Cargo Analysis

Some important uncertainties associated with a ship-based detection regime

cannot be meaningfully addressed and resolved outside the context of the international

container trade and its attendant infrastructure, equipment, and cargo diversity. The

following analysis seeks to gain insights into relevant external uncertainties by examining

the imported container traffic at U.S. ports and deconstructing it terms of where the

containers came from, how far containers traveled to get here, what kinds of vessels (with

respect to container capacity and speed) were used to transport them, and what are the

relevant material properties of the cargo found within them.

4.1 Container Shipping Overview

In 2003, commercial vessels of all types, including tankers, bulk material carriers,

vehicle transports, and containerships, made 56,759 calls at U.S. ports [MARAD(1),

2004]. Containerships accounted for 17,271 (31.7%) of these calls with 1,025 separate

vessels importing over 13,900,000 containers, measured in twenty-foot equivalent units6

(TEUs). In the same year, containerships averaged about 17 calls per vessel and had an

average nominal capacity of 3,144 TEU. Table 4-1 shows the volume of imported and

exported containers that are processed through the top 30 U.S. ports in 2003

[MARAD(2), 2004].

6 Cargo containers come in lengths of 20', 40', and 45'. For the sake of normalization, TEU is the standard
measure for container statistics even though 40' containers are the most commonly used. A TEU is
nominally defined as a 20' x 8' x 8' container. A standard 40' container therefore counts as 2 TEU.

47



Table 4-1:

Rank

1

2
3
4
5
6
7
8
9
10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Containerized cargo volume by U.S. port (CY 2003)

Port

Los Angeles
Long Beach
New York

Charleston SC
Savannah

Norfolk
Oakland
Houston
Tacoma
Seattle
Miami

Port Everglades
Baltimore

New Orleans
Portland OR

Wilmington DE
San Juan

Gulfport MS
West Palm Beach

Jacksonville
Philadelphia

Boston
Newport News

Chester PA
Wilmington NC

San Diego
Freeport TX

Richmond VA
Honolulu

Port Bienville MS
Total (Top 30)
All Other Ports
Grand Total

Table 4-2 shows the origin and volume of containers imported in 2003 from the top 25

U.S. containerized cargo trading partners [MARAD(3), 2004].
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Total
(TEU x 1000)

4664
3091
2803
1250
1124
1093
1064
933
931

815
764
423
307
237
210
195
185
179
140
113
103
93
80
72
72
53
50
41
37
25

21148
141

21289

Export
(TEU x 1000)

1022
723
838
529
529
460
548
483
337
329
336
236
115
139
147
29
39
71
106
72
9

34
32
28
28
9

23
20
18
23

7312
77

7389

Import
(TEU x 1000)

3642
2368
1965
721

595
633
517
450
594
486
428
187
192
98
63
166
147
108
34
42
95
58
48
44
44
44
28
21
19
2

13837
62

13899
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Table 4-2: Foreign container import data (CY 2003)
Country Imports Total Trade
of Origin (TEU x 1000) (TEU x 1000)

China 4447 5656
Hong Kong 1292 1619

Japan 722 1603
Taiwan 651 946
Korea 469 898

Germany 467 650
Italy 473 602

Brazil 388 533
Thailand 378 496

United Kingdom 206 429
Belgium 156 392

Indonesia 261 391
Netherlands 225 390

India 253 389
Malaysia 239 299
France 195 280

Honduras 152 275
Guatemala 156 268

Spain 158 246
Costa Rica 166 245
Philippines 141 221

Dominican Republic 98 216
Australia 78 210
Turkey 114 196
Chile 135 190
Total 12019 17637

All Others 1880 3650
Grand Total 13899 21287

4.2 Count Time

The amount of available count time is a critical factor in determining the efficacy

of the proposed ship-based approach. Count times for ship-based detection are

constrained only by the duration of the containership voyage. The voyage time between

any two ports is determined primarily by the total nautical distance between the ports of

interest and the average speed of the vessel. The following focuses on nautical distances

between ports and vessel speeds separately and then combines the results of these

analyses to derive defensible count time estimates for container shipments originating

anywhere in the world.
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4.2.1 Distance Between Ports

The nautical distance a vessel travels between a foreign port and a given U.S. port

is dominated by the location of the originating port and world geography (i.e. intervening

land masses). This distance, however, can also be heavily influenced by the number of

intermediate calls made between the ports of interest and by the size of the containership.

Many international shipping lines offer regularly scheduled service routes that call on

multiple ports en route to the United States. These additional port calls add distance to

the overall voyage and each call results in some idle time while the ship is berthed during

the container discharge and loading process. The size of containerships is relevant to the

travel distance because some important navigational short cuts have physical dimensions

that limit the size of vessels that can safely access them. The most important of these

size-limited navigational conveniences for containerships is the Panama Canal, which has

a 32.2 m maximum width restriction [Ircha, 2002]. Vessels with a beam width exceeding

this dimension (i.e. vessels that can fit more than 13 containers across the weather deck)

cannot transit the canal and must instead sail around the tip of South America. Despite

the additional voyage distances, economies of scale associated with larger, higher

capacity vessels drove many international shipping companies to build containerships

with deck widths that exceed 32.2 m [Wijnolst, 1999]. These so-called "Post-Panamax"

vessels, with capacities greater than 4,000 TEU, now account for 30% of the worldwide

containership fleet, by capacity [Tozer, 2003].

Several important assumptions were made prior to carrying out distance to port

calculations that would ultimately serve as input to count time estimates. First, New

York was selected as a representative destination for the east coast of the United States

and Los Angeles was chosen as a representative west coast destination port. In addition

to being the largest U.S. ports on their respective coasts, these ports were chosen because

their proximity to large urban population centers with vast cultural and economic

significance presumably makes them especially attractive targets for attack. Another

assumption was that all voyages made from foreign ports to the reference ports (i.e. New
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York and Los Angeles) were direct, with no intermediate calls. This assumption was

made to ensure conservatism, since intervening port calls add time and distance to the

voyage. Finally, it was assumed that the originating port used in a nuclear attack (i.e. the

port from which a fully functional device is operationally deployed to the United States)

could be anywhere in the world.

A total of 133 foreign ports were included in the distance analysis. An effort was

made to select a set of foreign ports that provided reasonably comprehensive coverage of

the world's navigable coastlines when taken as a whole. Therefore, some ports were

selected for inclusion because of their prominence in the international container trade

(e.g. Singapore and Hong Kong), and others were chosen to fill in geographical gaps. By

providing quasi-continuous coastal coverage, the distance from any port not included in

this analysis can be reasonably approximated by interpolation. Figures 4-1 through 4-8

show the geographic locations [Hammond, 1999] of the selected ports by region.
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North America
Map Number Port Country

1 Halifax Canada
2 Prince Rupert Canada

Figure 4-1: Map of upper North America showing selected ports
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Central America / Caribbean
Map Number Port Country Map Number Port Country

3 Havana Cuba 22 Georgetown French Guyana
4 Kingston Jamaica 23 Paramaribo Suriname
5 Port au Prince Haiti 24 Natal Brazil
6 Santo Domingo Dom. Rep. 25 Salvador Brazil
7 Fort de France Martinique 26 Rio de Janeiro Brazil
8 Tampico Mexico 27 Porto Alegre Brazil
9 Belize City Belize 28 Monte Video Uruguay
10 Puerto Barrios Guatemala 29 Buenos Aires Argentina
11 Puerto Cortes Honduras 30 Bahia Blanca Argentina
12 Limon Costa Rica 31 Comodoro Rivadavia Argentina
13 Panama Panama 32 Puenta Arenas Chile
14 Puntarenas Costa Rica 33 Puerto Montt Chile
15 Corinto Nicaragua 34 Valparaiso Chile
16 Acajutla El Salvador 35 Antofagasta Chile
17 Champerico Guatemala 36 Mollendo Peru
18 Acapulco Mexico 37 Callao Peru
19 Mazatlan Mexico 38 Guayaquil Ecuador
20 Cartagena Colombia 39 Esmeraldes Ecuador
21 Maracaibo Venezuela 40 Buenaventura Colombia

Figure 4-2: Map of the United States, Central America and the Caribbean
showing selected ports
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Port
Port Said
Tunis
Banghazi
Algiers
Casablanca
Las Palmas
Dakar
Freetown
Lagos
Boma
Luanda
Cape Town
Durban
Beira
Dar Es Salaam
Mombasa
Mogadishu
Djibouti
Tamatave

Country
Eygpt
Tunisia
Libya
Algeria
Morocco
Canary Islands
Senegal
Sierra Leone
Nigeria
Congo
Angola
South Africa
South Africa
Mozambique
Tanzania
Kenya
Somalia
Djibouti
Madagiascar

Figure 4-3: Map of Africa showing selected ports
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Africa
Map Number

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



Europe
Map Number Port Country Map Number Port Country

60 Batumi Georgia 77 Zeebrugge Belgium
61 Odessa Ukraine 78 Antwerp Belgium
62 Constanza Romania 79 Rotterdam Netherlands
63 Varna Bulgaria 80 Hamburg Germany
64 Istanbul Turkey 81 Copenhagen Denmark
65 Piraeus Greece 82 Gdynia Poland
66 Durres Albania 83 Klaipeda Lithuania
67 Split Croatia 84 Oslo Norway
68 Koper Slovenia 85 Stockholm Sweden
69 La Spezia Italy 86 Helsinki Finland
70 Barcelona Spain 87 St. Petersburg Russia
71 Lisbon Portugal 88 Riga Latvia
72 Coruna Spain 89 Tallinn Estonia
73 Bordeaux France 90 Murmansk Russia
74 Le Havre France 91 Arkhangelsk Russia
75 Southampton England 92 Reykjavik Iceland
76 Dublin Ireland

Figure 4-4: Map of Europe showing selected ports
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Middle East / Indi
Map Number

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Port
Calcutta
Madras
Colombo
Bombay
Karachi
Bandar Abbas
Bushehr
Abu Dhabi
Umm Said
Mina Raysut
Manama
Ad Damman
Mina al Ahmadi
Aden
Rabigh
Eilat
Haifa
Beirut
Al Latakia
Al Basrah

Country
India
India
Sri Lanka
India
Pakistan
Iran
Iran
U.A.E.
Qatar
Oman
Bahrain
Saudi Arabia
Kuwait
Yemen
Saudi Arabia
Israel
Israel
Lebanon
Syria
Iraq

Figure 4-5: Map of the Middle East and India showing selected ports
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Far East
Map Number Port Country

113 Vladivostok Russia
114 Yokohama Japan
115 Weonsan North Korea
116 Busan South Korea
117 Nampo North Korea
118 Tianjin China
119 Shanghai China
120 Kaohsiung Tiawan
121 Hong Kong China
122 Manilla Philippines
123 Ho Chi Minh Vietnam
124 Selat Lombok Indonesia
125 Jakarta Indonesia
126 Singapore Singapore
127 Port Kelang Malaysia
128 Bangkok Thailand
129 Chittagong Bangladesh

Figure 4-6: Map of the Far East showing selected ports
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Australia
Map Number Port

130 Brisbane
131 Port Moresby
132 Port Darwin
133 Freemantle
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Figure 4-7: Map of Australia showing selected ports
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The nautical distances between the two U.S. reference ports and the 133 selected

foreign ports shown above were calculated using information tabulated in "Publication

151 - Distance Between Ports" (referred to hereafter as DBP) prepared by the National

Imagery and Mapping Agency [NIMA, 2001]. Information on over 1400 worldwide

ports is compiled in this document and all published distances are based on accepted

maritime routes and charted nautical sailing lanes. Because of the impracticality of

listing distances between every possible combination of these ports, distance calculations

using this document typically have to be carried out in several intermediate steps using

specified "junction points". The DBP identifies 25 junction points where international

shipping routes converge and through which ships pass when sailing from one major

maritime area to another (e.g. the Strait of Gibraltar or the Cape of Good Hope).

Distances between any two tabulated world ports can then be calculated by summing the

distances to, and between, these junction points. Some voyage distances vary

considerably depending on whether the Panama Canal can be transited. Because a

significant fraction of the international containership fleet is Post-Panamax, distances

between a given foreign port and the two U.S. reference ports were calculated with and

without access to the Panama Canal. When the two distances differed depending on

canal access, the following expression was used to calculate a weighted average,

Dvg = 0.3Dos_,,anamax + 0.7Dpanaax (2)

where Dpost Panamax is the voyage distance without access to the Panama Canal and

Dpanaa,, is the distance with access. The weighting factors were chosen because 30% of

the current fleet (by capacity) is Post-Panamax and the balance is not. Therefore, a

container heading to the U.S. should have a 0.3 probability of being on a ship that can't

gain access to the Panama Canal and a 0.7 probability of being on a ship that can.

Distances from the 133 foreign ports to New York and Los Angeles in nautical

miles 7 are shown in Table 4-3. The Panamax, Post-Panamax and weighted average

7 1 nautical mile = 1.15 statute miles = 1.85 km
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distances are captured for each foreign port to the 2 U.S. reference ports. Highlighted

cells illustrate the shorter of the voyage distances between the two reference ports.
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4.2.2 Vessel Speed

The diverse fleet of international containerships has a broad spectrum of nominal

cruising speeds. Although point estimates, such as mean values, can be used to convey

information about large and diverse data sets, the character of a wide spectrum of values

is better and more completely captured by a statistical distribution. To develop an

appropriate and representative distribution, a containership database was created using

publicly available Lloyd's Register information provided online by large commercial

shipping lines and U.S. ports. This database was populated with nominal speed (in

knots8) and/or container capacity (in TEU) data for 1,734 commercial container vessels.

Information on both capacity and speed could not be found for every vessel included in

the database so there are 1,184 vessel speed entries and 1,706 vessel capacity entries.

The full database can be found in Appendix A. No size threshold was initially imposed

to exclude any vessel from the database, however, since the subject of interest is

international shipping, some screening criterion had to be devised to bar small domestic

feeder ships from further consideration. In its annual breakdown of commercial shipping

statistics the Maritime Administration (MARAD) of the Department of Transportation

imposes a vessel size threshold of 10,000 deadweight tons9 [MARAD(1), 2004]. This

threshold was adopted as a screening criterion for the containership database to facilitate

fair comparison with the MARAD statistical abstract and was found heuristically to

correspond to vessels with a capacity of roughly 715 TEU. The screened database

contained speed information for 910 vessels and capacity data for 1,313 vessels. For

comparison, MARAD reported that 1,025 containerships called on U.S. ports in 2003.

The speed and capacity information contained in the database were assumed to be

reasonably representative of vessels importing containers to U.S. ports for the following

reasons. All information used to populate the database was available through U.S. ports

or major container shipping lines that service the U.S. Additionally, the size of the data

sets for speed and capacity are comparable to, or exceed, the total number of

8 1 knot = 1 nautical mile/hour = 1.85 km/hour
9 Deadweight tonnage is the amount of cargo, fuels, water, stores, and crew that a vessel can carry when
fully loaded. It is measured in long tons (1 long ton = 2,240 lbs.).
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containerships that called on U.S. ports in all of 2003. However, to obtain some

benchmark of how well the vessel information in the database comported with the

containership fleet that actually serviced U.S. ports in 2003, the mean capacity of

(screened) database vessels was compared to the actual mean capacity reported by

MARAD. The results are shown in Table 4-4 below.

Table 4-4: Vessel database capacity benchmark results
Mean Capacity (TEU)
Database MARAD Error (%)

3047 3144 3.085

Although this benchmark used only a single parameter (because it was the only value that

invited straightforward comparison), the excellent agreement between the database and

the MARAD data suggests that conclusions drawn using the vessel database will be

reasonably representative of the actual containership fleet servicing the U.S.

To extract meaningful statistical information from the 910 nominal vessel speeds

tabulated in the containership database, a cumulative distribution function (CDF) was

constructed. A CDF is a statistical distribution that relates the value of a parameter to the

probability that the given parameter value, or a lesser value, will be observed. In this

case, the CDF gives the probability that a containership calling on a U.S. port will have a

nominal speed equal to or less than any given value.

To construct a CDF, the raw vessel speed data from the screened containership

database was first sorted into ascending order. Then the frequency of each distinct

nominal speed was computed by simply counting how many times a given speed was

observed in the database. The probability, or relative frequency, of each nominal speed

was then calculated using the following general expression,

P . (3)
n = n,Zn,
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where Pi is the probability of the ith value, and ni is the frequency of the ith value. The

CDF was then found using the following general formula,

(4)
F
o

where F[xi] is the discrete CDF value for the ith element. In this case, xi represents each

distinct nominal vessel speed. Figure 4-9 is a plot of the vessel speed CDF with the 25th,

5 0th, 7 5 th, 9 5 th , and 9 9th percentile values identified graphically.

Vessel Speed - Cumulative Distribution Function
(N = 910 Vessels)

1.00
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0.00
10.0 15.0 20.0 25.0

Nominal Speed (knots)

Figure 4-8: Vessel speed CDF

The mean, median, and mode values of the nominal speed from the screened

containership database are shown in Table 4-5 along with interpolated numerical values

of the 25th, 75th 95th, and 99th percentiles.
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Table 4-5: Vessel speed statistics

Speed (knots)
MEDIAN 21.43

MEAN 21.29
MODE 21.00
25TH 18.88
75TH 23.86
95TH 25.77
99TH 26.33

4.2.3 Voyage Times

The distance and speed analyses performed in the previous sections can now be

used to generate estimated non-stop voyage times for the 133 foreign ports. Weighted

average distances between foreign ports and the U.S. reference ports were used to

calculate voyage times to account for the additional expanse that must be traveled by

Post-Panamax vessels on some routes. Also, acknowledging the inherent variability of

vessel speeds, voyage times were calculated using both the expected, or mean, value of

21.29 knots and the conservative 9 5 th percentile value of 25.77 knots. Voyage times, in

days, were found using the following expression,

D g (5)T =D (5)
voyage 24 * V

where Tvoyage is the voyage time (in days), Davg is the weighted average distance between

the ports of interest (in n.m.) and vx is the mean or 9 5 th percentile vessel speed (in knots).

Table 4-6 shows calculated voyage times, by region.
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Highlighted cells in Table 4-6 illustrate whether the voyage is shorter between the

given foreign port and New York or Los Angeles. The highlighted 9 5th percentile voyage

time represents a conservative lower bound for the amount of count time that will be

available if an attack is mounted from this port. Count times for non-stop voyages from

almost any port in the world to New York or Los Angeles can now be approximated by

interpolating between the tabulated values shown in Table 4-6.

The information above is useful for determining the minimum count time

available for a container shipment being deployed from a particular port or region of the

world. However, it cannot be used directly to give an accurate measure of the expected,

or average, count time that would be available on incoming containerships. This is

because containers are not uniformly imported to the U.S. from all parts of the globe. To

derive a reasonable estimate of how much count time will actually be available on

average, the voyage times from ports that ship more containers to the U.S. must be given

higher relative weightings. The information in Table 4-2 documenting the volume of

container imports broken down by country can be used to assign weighting factors. Since

the 25 countries listed in Table 4-2 make up 86.5% of the total containerized imports to

the United States, using voyage times from ports located in these countries alone should

yield a reasonable estimate. Using this approximation, weighting factors were then

calculated as follows,

n TEU (6)

E 'nTEU

where Wi is the weighting factor for the ith country in Table 4-2 and nTEUi is the number

of imported containers from the ith country (in TEU). Distances from the countries listed

in Table 4-2 to the U.S. reference ports were obtained using information from the

distance analysis presented above. Each country of interest has at least one port listed in

Table 4-3. For countries with multiple ports listed in Table 4-3, the arithmetic mean of

the port distances from that country was used to establish a single representative distance.
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Voyage times from the countries in Table 4-2 were then calculated using the mean vessel

speed of 21.29 knots (because an expected value was being sought). The appropriate

weighting factors were then applied to the voyage times for each country to find expected

count time values for ships calling on New York and Los Angeles. Results are shown in

Table 4-7.

Table 4-7: Mean voyage times to New York and Los Angeles

Country Imports Weighting New York Los Angeles
(TEU x 1000) Factor Avg. Distance (n.m.) Time [Mean] (days) Avg. Distance (n.m.) Time [Mean] (days)

China 4447 0.36997 11991 23.5 6057 11.9
Hong Kong 1292 0.10749 11981 23.4 6380 12.5
Japan 722 0.06007 11371 22.3 4839 9.5
Taiwan 651 0.05416 11774 23.0 6011 11.8
Italy 473 0.03935 4067 8.0 9643 18.9
Korea 469 0.03902 11771 23.0 5374 10.5
Germany 467 0.03885 3654 7.2 9661 18.9
Brazil 388 0.03228 4413 8.6 7366 14.4
Thailand 378 0.03145 13257 25.9 7775 15.2
Indonesia 261 0.02171 12042 23.6 8392 16.4
India 253 0.02105 11730 23.0 9758 19.1
Malaysia 239 0.01988 12160 23.8 8087 15.8
Netherlands 225 0.01872 3391 6.6 9402 18.4
United Kingdom 206 0.01714 3169 6.2 9181 18.0
France 195 0.01622 3211 6.3 9167 17.9
Costa Rica 166 0.01381 3537 6.9 4243 8.3
Spain 158 0.01314 3314 6.5 9183 18.0
Belgium 156 0.01298 3358 6.6 9365 18.3
Guatemala 156 0.01298 1804 3.5 6546 12.8
Honduras 152 0.01265 1764 3.5 6535 12.8
Philippines 141 0.01173 13543 26.5 6530 12.8
Chile 135 0.01123 6073 11.9 5135 10.0
Turkey 114 0.00948 4997 9.8 10471 20.5
Dominican Republic 98 0.00815 1489 2.9 6290 12.3
Australia 78 0.00649 11321 22.2 7271 14.2
Total 12020 1 Weighted Avg. = 13.3

The mean count times available for vessels calling on New York and Los Angeles are on

the order of 2 weeks. This represents a significant amount of time to make a confident

detection of fissile material. Finally, even though the average count times shown above

were calculated using mean vessel speeds, the assumption that all voyages are non-stop

still makes these numbers reasonably conservative.
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4.3 Vessel Container Capacities

Modem containerships vary considerably in size, with the largest vessels in the

current fleet able to carry over 8,000 TEU [MacGregor, 2003]. The number of detection

units needed to provide adequate coverage of a given vessel will depend on the

dimensions of that particular vessel's container array and the number of commercial

containers being transported. Therefore, to gauge the number of containerized detections

units that will be necessary to implement a comprehensive ship-based detection regime, a

container capacity distribution must be derived for the commercial fleet.

Information from the containership database that was discussed in the vessel

speed section was used to construct a similar CDF for container capacity. The screened

database contained 1,313 capacity entries ranging from 724 TEU to 8,200 TEU. The

CDF development process used for vessel speed was employed again for container

capacity. The general formulae shown in Eqs. (3) and (4) were used, with the frequency

of each distinct container capacity serving as n in Eq. (3) and container capacity (in TEU)

being represented by x in Eq. (4). The resulting capacity CDF is shown in Figure 4-9,

with the 25th, 50th , 75th , 95th , and 9 9 th percentile values illustrated graphically.
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Vessel Capactiy - Cumulative Distribution Function
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Figure 4-9: Vessel capacity CDF

The mean, median, and mode values of the container capacity from the screened

containership database are shown in Table 4-8 along with interpolated numerical values

of the 25th, 75th, 95th, and 9 9 th percentiles.

Table 4-8: Vessel capacity statistics
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The container capacity CDF generated here will be used in subsequent analysis to

develop defensible estimates for the total number of containerized detection units that

will be needed for a fully implemented system.

4.4 Cargo Density

For a ship-based approach to be effective, the signal emitted by concealed fissile

material must be strong enough to be confidently distinguished from natural background

fluctuations by a passive detection unit some distance removed from the source. The

signal will be attenuated by intentional shielding that is likely to be present in the

container bearing the weapon and by the commercial cargo in containers that are oriented

between the source and detector. The maximum amount of intentional shielding is

constrained by the physical dimensions of the container and the 32-ton weight restriction

imposed by international shippers [Lok, 2004]. Although they still allow for a very

substantial amount of intentional shielding, the space and weight constraints do bound the

problem and worst-case signal attenuation can be calculated. What is less

straightforward is the extent to which the intervening commercial cargo will attenuate the

signal.

Density is a cargo parameter that is helpful when trying to accurately model

radiation transport through intervening commercial material. One way to obtain a rough

but useful measure of the density of imported cargo material is to assume that the

contents of a container (and the mass of the contents) are equally distributed throughout

the volume of the container. This "distributed density" (in g/cm3 ) can then be found

using the following expression,

m (7)
Pdist =

VOlcontainer

where m is the total mass of the cargo, VOlcontainer is the interior volume of the container.

Although the homogeneous distribution of mass throughout the container is clearly
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unphysical, it can be a helpful measure for benchmarking computer simulations. When

simulations are run where representative types of cargo (e.g. furniture, electronics,

clothing, etc.) have been explicitly modeled, it is important to know how the aggregate

distributed density of the modeled cargo compares with the average distributed density of

actual imported cargo (i.e. is the model more, less, or similarly attenuating as actual

cargo). A simple method for obtaining a point estimate of the average distributed density

of actual imported cargo is given by,

mtot (8)
Pdist -

TEU VOITEU

where mtot is the total tonnage of a large sample of imported containers, nTEU is the

number of imported containers, and VOlTEU is the interior volume of a TEU. Using

imported cargo data for calendar year 2001 (the most recent year for which MARAD

reported total tonnage information) as the large container sample, mtot, nTEU, and VOITEU

are 80,725 metric tons (MT), 11,268 TEU, and 1360 ft2 respectively [MARAD, 2002].

Converting these values into appropriate units and plugging into Eq. (3) gives an average

distributed density of 0.1977 g/cm3 . However, a single point estimate of the average

distributed density is less instructive than a distribution that reflects the relative

probabilities of a range of distributed densities.

The 2001 data for container imports at the top 25 U.S. ports was used construct an

average distributed density CDF. Table 4-9 below shows mtot, nTEu and the calculated

average densities for the top 25 ports [MARAD, 2002].
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Table 4-9: Average distributed density, Pdist, values for imported cargo

Port n TEU m tot
(TEU x 1000) (MT x 1000) Avg Density (glcc)

Los Angeles 2614 16221 0.1712
Long Beach 2376 14355 0.1667
New York 1588 12758 0.2217

Charleston 612 4890 0.2204
Seattle 500 2993 0.1652
Norfolk 454 3556 0.2161

Savannah 431 2998 0.1919
Oakland 419 3058 0.2014
Houston 381 3656 0.2647
Tacoma 356 2111 0.1636
Miami 347 3120 0.2481

Baltimore 178 1942 0.3010
PT Everglades 171 1235 0.1993

San Juan 108 1006 0.2570
Wilmington (DE) 103 965 0.2585

New Orleans 86 891 0.2858
Gulfport 74 599 0.2233

Philadelphia 71 913 0.3548
Boston 51 445 0.2407

Portland 47 350 0.2055
Wilmington (NC) 37 232 0.1730

Chester (PA) 31 316 0.2812
Ponce 30 332 0.3053

W Palm Beach 27 195 0.1993
Jacksonville 25 210 0.2318

All Other 153 1379 0.2487
Total 11268 80725 0.1977

By specifying mtot and nTEu for 26 separate sample populations (i.e. the top 25 ports and

the lumped data for all others) this data can be used to construct an approximate CDF.

The same CDF derivation procedure outlined earlier is used here with the tabulated

values of nTEu serving as the frequency of the given average distributed density value.

The resulting CDF is plotted in Figure 4-10.
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Figure 4-10: Cargo distributed density, Pdist, CDF

Ideally the mass of every individual imported cargo container would be known so that an

exact CDF for Pdist could be derived. In this case, however, the data points used to

construct the CDF were themselves already point estimates of larger data sets. Although

some useful information about the character of the original data is lost when a single

point estimate is used to represent a population of data, these point estimates encapsulate

the most important aggregated attributes of the original data. Therefore, even though it is

based on aggregated point estimates instead of exhaustive raw data, the approximate

average distributed density CDF is still a useful measure of the probability that the

distributed density of a cargo container will exceed a given value.
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Chapter 5: Deployment Simulation

5.1 Introduction

The fact that the proposed ship-based approach would deploy containerized

detection units aboard commercial containerships has been discussed, but the manner in

which these units would be deployed (i.e. how they are loaded onto the ship and

distributed throughout the vessel's container array) has not been addressed. Ideally, the

detection units could be loaded in a manner that simultaneously allowed completely

clandestine deployment and maximum detection coverage with the minimum number of

units. If this could be accomplished, total system costs would be minimized and

adversaries would be kept utterly unaware of the number and location of deployed

detection units that could interrupt or thwart their efforts. In reality, however, there is a

trade-off between the precision with which one can dictate or predict the placement of the

detection units and the covert nature of the deployment process. Specifying exactly

where or how certain cargo containers are to be loaded into the container array can

optimize the amount of the containership covered per detection unit, but it could also

provide enemies with valuable information about the defensive measures being employed

against them. This fundamental trade-off leads to a potential clash between coverage

efficiency and stealth.

A computer-based deployment simulator was created using Matlab to help inform

the process of striking an appropriate balance between coverage efficiency and stealth.

This simulator was used to quantify the coverage efficiency gains that could be reaped by

adopting increasingly constrained (and consequently less stealthy) deployment strategies.

Three strategies were investigated, including a random deployment where units could be

placed anywhere in the container array, a partially constrained deployment where units

were randomly placed anywhere except a specified exclusion zone one container deep

around the surface of the array, and a fully constrained deployment where units could

only be placed along a row down the length of the array. Hereafter, these strategies are

referred to as random, constrained, and centerline deployment, respectively.
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An extremely important remaining uncertainty (that is outside the scope of this

thesis) is the effective detection range of a deployed unit. The effective range is the

maximum distance at which a unit is expected to reliably detect the presence of fissile

material when deployed amongst commercial containers with realistic and representative

cargo. Once a reasonable estimate for the effective range is obtained, it is a

straightforward problem to determine the expected detection coverage provided by

centerline deployment. The relative ease of calculating centerline coverage stems from

the highly constrained nature of this deployment strategy, which uniquely determines the

spatial distribution of detection units for any given container array. The spatial

distributions arising from the other two strategies, however, are determined either totally

or partially by chance. Mean attributes, such as expected detection coverage, of systems

with this stochastic character are often difficult or impossible to derive analytically and

instead lend themselves to Monte Carlo analysis.

Monte Carlo techniques use random numbers to sample distributions for

parameters to be used in a calculation, or calculations, of interest. The calculation is then

carried out a large number of times with each iteration using different randomly sampled

parameter values. The large population of outputs from the calculation of interest can

then be statically analyzed to gain meaningful insights. The speed with which modem

digital computers can carry out large numbers of computations makes Monte Carlo

analysis a very powerful tool for solving complex problems.

Detection coverage calculations for container arrays of arbitrary sizes were

carried out using Monte Carlo methods for both random and constrained deployment.

Random numbers were used to sample the uniform distributions representing Cartesian

coordinates that determined the placement location of a given detection unit within the

container array. Once a given number of detection units with a specified detection range

were randomly distributed throughout a container array with known dimensions, the

detection coverage calculation could be carried out for this geometry. The output was

then logged and the entire detector placement and coverage calculation process was
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carried out again until the output population was large enough to yield good statistics.

Expected values, along with corresponding standard deviations, for random and

constrained deployment could then be determined through statistical analysis.

5.2 Model Development

The deployment simulator was programmed in Matlab and takes advantage of the

ease with which the Matlab environment can create and manipulate n-dimensional

matrices. The entire container array of a hypothetical vessel is modeled in matrix space

with each cubic foot of actual volume represented by an individual element in a 3-

dimensional matrix. Detection units are then distributed through the container array in a

manner consistent with the constraints of the scenario (i.e. random, constrained, or

centerline) being studied. With the geometry of the problem now uniquely specified, the

fractional volume of the actual container array that would be effectively covered by the

detectors in the generated configuration can be calculated using a few simple matrix

operations in Matlab. If Monte Carlo analysis were being used, as would be the case for

random and constrained deployment, this process of detector placement and fractional

coverage calculation would be repeated many times.

5.2.1 Assumptions

Key assumptions will be identified, and explained before a detailed treatment of

the simulator's algorithm and mechanics is offered. First, it was assumed that all

container arrays were continuous rectangular prisms. This is an approximation given that

large vessels often have container arrays that taper below deck (to accommodate hull

dimensions) and some discontinuity created by the ship's superstructure. These effects

were not explicitly modeled because the degree of tapering and the location and

magnitude of superstructure discontinuities vary depending on the size and design of the

containership and cannot be meaningfully generalized.
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Since the detection suite is not necessarily confined to the center of a

containerized unit, it was also assumed that detectors could be centered at any (non-

constrained) location in the container array and not limited solely to coordinates that

corresponded to the midpoints of containers. This assumption simplifies calculation but

was made primarily to conserve computation time. It was noted that this assumption

could lead to the non-physical situation of two or more detectors being randomly

assigned to the volume corresponding to a single container. The probability of any two

detectors being randomly assigned to the same (TEU) °0 container volume is represented

by the following expression,

p = 1 fnl (xyz-i) = (xyz- 1)! (9
(xyz)( i- xyz - ' (xyz - n)!

where x, y, and z are the number of unconstrained TEUs arrayed in the respective x, y,

and z directions and n is the number of detectors being deployed. In general, the

probability of 2 detectors being assigned to the same container volume increases as n

increases and as the total number of TEUs (i.e. [xyz]) decreases. The effects of this

"double-assignment" will be examined in more detail in subsequent sections.

Another important assumption is that deployed units provide coverage of a

perfectly spherical volume with a radius determined by the effective detection range.

(Estimates for the effective detection range are being developed by Gallagher at MIT and

are still evolving as design decisions and improvements are made, so a series of range

values were assumed as part of a parameter study). This is an approximation of a real-

world setting, where shielding effects manifested by the specific loading and cargo

characteristics of surrounding commercial containers and the threat container itself would

render the effective detection volume non-spherical. It is further assumed that fissile

material located anywhere within the idealized coverage sphere will be detected with

equal probability. In reality, a source close to the detector will be more easily detected

'0 The probability that any two detectors will be assigned to the same 40' container can also be found using
Eq. (9) by substituting (xyz/2) for each (xyz) term.
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than one at the outer edge of the sphere (along the same line of sight) as a result of

shielding by intervening materials and the inverse square nature of detector solid angles.

This assumption was deemed acceptable because the definition of the effective detection

range is the expected maximum distance at which a source can be confidently and

reliably detected with a given count time under realistic conditions. Also, by not

considering or crediting the enhanced ease of detection afforded by source proximity and

detection sphere overlap, the analysis gains a measure of conservatism.

5.2.2 Input/Output

The Matlab-based deployment simulator accepted user-defined inputs for

container array dimensions (length, width, and height in TEUs), the number of detectors

to be distributed through the array, the effective detection range (in ft.) and the number of

runs to be completed for Monte Carlo analysis. Output for Monte Carlo calculations

were statistics (mean, median, standard deviation, minimum, and maximum values) that

described the set of fractional detection coverages calculated for each run, or iteration, of

the simulation. Output for the deterministic centerline analysis consisted of a fractional

detection coverage corresponding to the evaluated scenario.

5.2.3 Algorithm

The simulation of each deployment strategy (i.e. random, constrained, and

centerline) used the same algorithm to generate a virtual container array and then

calculate the fractional volume that was "covered" by deployed detectors. Differences in

random, constrained, and centerline deployment simulation were limited primarily to the

manner in which the detectors were placed into (or distributed through) the virtual array.

For clarity, the algorithm will be explained in its entirety using random deployment as an

example. Differences in the detector placement step for constrained and centerline

deployment will then be identified and discussed. The actual Matlab codes used to

simulate each type of deployment are found in Appendix B.
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The simulation began by creating a matrix representation of the physical space to

be modeled by employing user inputs that defined the desired container array dimensions.

The inputs specify array dimensions in terms of how many (TEU) containers are to be

aligned along the length, width, and height of the array. Figure 5-1 shows the assumed

orientation of the containers along the 3 Cartesian axes.

20'

8'

(height)

z
0ength)

Figure 5-1: Container orientation for simulation

A 3-dimensional matrix was then constructed in which each cubic foot of physical space

in the user-specified container array was represented by a matrix element with an initial

value of 0. This "geometry matrix" had dimensions [(x*8),(y*8),(z*20)], where x, y, and

z were the user inputs for the number of containers along the respective height, width,

and length of the array and the scaler multipliers are the corresponding height, width, and

length dimensions of (TEU) containers in feet.

Detector placement was the next step in simulation. For random deployment,

Matlab's random number generator was used to assign arbitrary coordinates (referred to

here as dx, dy, and dz) to fix the center-point of an emplaced detector. Once dx, dy, and

dz had been identified, a new null matrix, referred to hereafter as the "detector matrix",

was created. The detector matrix was of the same dimensions as the geometry matrix and

the element at (dx,dy,dz) representing the emplaced detector was assigned a value of 1.
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Next the coverage sphere associated with the emplaced detector was generated.

An approximated sphere can be created within a 3-dimensional matrix by serially

evaluating individual elements to determine the linear distance between the given

element and the emplaced detector using the following expression,

D= (i dx)2 + (j -dy)2 + (k -dz)2 (10)

where i,j, and k are the respective x, y, and z coordinates of the matrix element being

evaluated. If this distance is greater than the effective detection radius, R, then the

element under evaluation is outside the detection sphere and the value of that element

remains 0. If the distance is less than or equal to R, the element in question is within the

detection sphere and its value in the detector matrix is changed to 1. To save

computation time, only matrix elements inside a cube centered at (dx, dy, dz) with sides

measuring 2R were evaluated using Eq. (10). This cube bounding the detection sphere is

shown (2-dimensionally) in Figure 5-2.

2R

I 2R(dx4yjdz) 2R

Figure 5-2: Cube bounding the detection sphere

Once the entire coverage sphere, represented by elements with a value of 1, had

been generated, an element-by-element comparison of the detector matrix and the

geometry matrix was performed using the logical OR operator, whose properties are

shown in Table 5-1.
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Table 5-1: Properties of the OR operator
X Y x (OR)Y
O 0 0
0 1 1

1 0 1

1 1 1

The matrix resulting from this operation becomes the updated geometry matrix. The

process of detector placement is then repeated and a new detector matrix is created. The

new detector matrix is then compared to the updated geometry matrix, again using the

logical OR operator, and the result becomes the new geometry matrix. Each time the

geometry matrix is updated, the OR operation imprints it with another coverage sphere.

The OR operator is used in lieu of matrix addition to avoid overlapping coverage regions

being double counted in the final fractional coverage calculation.

The process of emplacing detectors, creating detector matrices, and updating the

geometry matrix continues until the user specified number of detectors has been

deployed. At this point, the geometry matrix holds the placement and coverage

information of every detector, in addition to information defining the overall dimensions

of the simulated container array. An element of the geometry matrix with a value of 1

represents physical space that is within the effective detection range of an emplaced

detector, and is therefore "covered". Matlab can then sum the values of all the elements

in the geometry matrix to find the volume covered by deployed detectors. The coverage

volume, represented by the summation of the geometry matrix, can then be divided by the

total number of elements in the geometry matrix, which represents the total volume of the

simulated container array, to find the fractional coverage volume. The fractional

coverage volume calculation is shown symbolically as follows,

V (11)

Vtotal
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where F is the fractional coverage volume, Vcov is the volume of the array that is

"covered" by deployed detectors, and Vtotal is the total volume of the array.

This entire process is repeated until the user-defined number of fractional

coverage volume outputs has been generated. At the end of each run, the calculated

fractional coverage value is added to an output vector. Once the vector has been fully

populated, Matlab performs statistical analysis on the output data and returns the mean,

median, standard deviation, minimum and maximum values for the fractional coverage.

Detector placement for constrained and centerline deployment is the only major

difference from the simulation process described above. Matlab's random number

generator is also used to determine coordinates for detector placement in constrained

deployment simulations. However, before a detector matrix is generated reflecting a

given placement location, the coordinates are checked to ensure that the detector is not

being placed in physical space that would be in a container that is along the surface of the

array (i.e. the first or last [TEU] container in any row, column, or span of the array). If

the prospective placement coordinates fall in this exclusion zone, then they are discarded

and new sets of random numbers are generated until coordinates are obtained that satisfy

the constraints. When coordinates are found that do not place the detector in the

exclusion zone, a detector matrix is generated and the element representing the placement

coordinates is given a value of 1. For deterministic centerline deployment calculations,

detector placement is determined by the user inputs concerning the geometry of the

container array and the number of detectors to be deployed.

5.2.4 Validation and Verification

During development, a 2-dimensional version of the each simulation code was

created to facilitate validation and debugging. Once the 2-dimensional models were

found to work as expected with high confidence, they were scaled up to the full 3-

dimensional simulations of interest. Prior to actual data collection, the output from 3-

dimensional test simulations, starting with small scale runs (i.e. modestly sized arrays
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with a small number of deployed detectors) and concluding with a limited number of

larger scale runs, were extensively checked against hand calculations.

This validation and verification process also sought to ensure that reality was

being modeled with reasonable accuracy. One problem with representing physical space,

and especially spherical regions of space, with elements of 3-dimensional matrices is the

discretization error introduced by the non-continuous nature of matrix space. To provide

reasonably high fidelity models of coverage spheres, each matrix element represented 1

cubic foot. For reference, at this resolution, it takes 2720 matrix elements to model the

interior of one full sized 40' cargo container. To check the error introduced by

discretization, the calculated volume values for spheres generated in matrix space were

compared to the theoretical volume (in ft3) given by the following formula,

4 (12)
V = -'r

3

where r is the radius of the sphere (in ft). Table 5-2 shows the discretization error

observed for spheres of varying radii.
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Table 5-2: Spherical volume error
Radius (ft) Simulation (ftA3) Theoretical (ftA3) Error (%)

45 381615 381703.5 0.0232
50 523305 523598.8 0.0561
55 696507 696910 0.0578
60 904089 904778.7 0.0762
65 1149651 1150346.5 0.0605
70 1436385 1436755 0.0258
75 1767063 1767145.9 0.0047
80 2143641 2144660.6 0.0475
85 2571711 2572440.8 0.0284

The errors tabulated above are quite small, so the volume underestimation caused by the

discrete nature of matrix space will not significantly impact the accuracy of the fractional

coverage values output by the simulations.

5.3 Random Deployment

A deployment methodology where containerized detection units are randomly

loaded onto containerships is vastly preferable in terms of both logistics and stealth. By

imposing no constraints on the placement of these units, there is no opportunity for an

adversary to identify their presence due to abnormal or preferential treatment during the

loading process. Therefore, the enemy is not afforded an opportunity to study and probe

the defense posture prior to attack or the opportunity to take compensatory action during

an attack. The logistics of random deployment are also favorable in that the detection

units can be simply delivered to the embarkation port or commercial shipper and then

monitored from afar without the need for further direct involvement.

Despite these important advantages, randomly placed detection units can lead to

highly inefficient container array geometries due to spatial clustering of units or

deployment on or near the fringes of the array. Due to the possibility of poor container

array geometries, additional units must be deployed to ensure that an adequate level of

detection coverage will be provided. Simulation was carried out in an attempt to better

quantify the effects of placement randomization on coverage efficiency (i.e. the fractional

coverage provided by a given number of detection units) and to estimate the number of
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units that would be required for different levels of coverage for containerships of a given

size.

The simulation explained in Section 5.2.3 calls for the specification of container

array dimensions, effective detection range, number of deployed detectors, and number of

runs as inputs. Five standard container array geometries were selected for use throughout

this analysis to facilitate comparison between the deployment strategies. The dimensions

of these "reference arrays" are shown in Table 5-3.

Table 5-3: Reference array dimensions

Reference Array Dimensions Capacity
Height (cont) Width (cont) Length (cont) (TEU)

8 9 20 1440
8 12 26 2496
10 12 30 3600
10 15 32 4800
10 17 38 6460

Reference arrays shown above were selected to provide a representative sample of the

capacities and array geometries of the contemporary containership fleet.

Gallagher at MIT is currently investigating the effective detection range.

Preliminary analysis and modeling suggests that the range may be somewhere around 65

ft. Using this uncertain estimate as a point of departure, detection ranges spanning from

45 ft. to 85 ft. (in 5 ft. increments) were studied.

To determine the appropriate number of iterations to obtain high confidence

results with good statistics, a sample simulation was run using 1, 5, 10, 50, 100, 200, 500

and 1000 iterations. Results of the test, which used 15 detectors with 65 ft. ranges

randomly deployed within the 4800 TEU reference array, are shown in Table 5-4.
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Table 5-4: Mean fractional coverage results for variable run sizes

Runs 1 5 10 50 100 200 500 1000
Mean 0.7133 0.7308 0.7750 0.7577 0.7522 0.7523 0.7566 0.7553

Std Dev 0 0.0646 0.0922 0.0673 0.0566 0.0584 0.0583 0.0587

Table 5-4 shows that the mean fractional coverage begins to converge at around 50

iterations and the standard deviation has been reduced to the extent practicable by the

100th run. These results are similar to those obtained for cases using different test

parameters. As a result, 200 was chosen to be the standard number of iterations used in

the simulation of each scenario. This number of runs was large enough to provide high

confidence results with good statistics, but small enough to make efficient use of limited

computational resources.

Simulations were carried out as follows. Starting with the smallest reference

array, the shortest effective detection range was held fixed and the number of deployed

units was varied until a distribution of outputs with mean fractional detection coverage

values having a nominal span of at least 0.75 to 0.95 was obtained. Then 5 ft. was added

to the effective detection range input and the process was carried out again. Once this

had been completed for each 5 ft. increment of effective detection range from 45 ft to 85

ft. the next reference array was selected and the entire process began anew. Inputs and

output statistics for each simulated scenario are shown in Table 5-5.
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To distill the information captured in Table 5-5 for easier inspection and analysis, Figures

5-2 through 5-6 show plots that relate the mean values of fractional coverage volume, as

defined in Eq. (1 1), to the number of deployed detectors for each reference array.

Coverage vs. Detectors (1440 TEU)
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Figure 5-3: Coverage vs. Detectors plot for the 1440 TEU array [Random]
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Coverage vs. Detectors (2496 TEU)
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Figure 5-4: Coverage vs. Detectors plot for the 2496 TEU array [Random]

Coverage vs. Detectors (3600 TEU)
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Figure 5-5: Coverage vs. Detectors plot for the 3600 TEU array [Random]
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Coverage vs. Detectors (4800 TEU)
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Figure 5-6: Coverage vs. Detectors plot for the 4800 TEU array [Random]

Coverage vs. Detectors (6460 TEU)
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Figure 5-7: Coverage vs. Detectors plot for the 6460 TEU array [Random]
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It is unclear what minimum acceptable level of detection coverage is appropriate,

given the reality that it will not always be possible to provide 100% coverage of every

containership and that attempting to do so will likely prove to be cost prohibitive.

Acknowledging this uncertainty, all subsequent analysis will measure the system against

three potential choices for minimum acceptable coverage. These three levels are 75%,

85%, and 95%.

To identify the number of detectors with a given range that are required to

provide 75%, 85%, and 95% coverage for each of the 5 reference arrays, the mean

fractional coverages for each simulated scenario were plotted and graphical techniques

were employed. Figure 5-7 shows an example using the 1440 TEU reference array and

detectors with a 65 ft. effective range (error bars represent +/- 1 standard deviation).

Figure 5-8: Graphical determination of detectors required for various coverage levels

For the example case illustrated in Figure 5-7, it was estimated that 75%, 85%, and 95%

fractional detection coverage could be provided with 6, 8, and 14 detectors, respectively.
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Results of these graphical analyses showing the estimated number of detectors needed to

provide various levels of coverage for each scenario are listed in Table 5-6.

Table 5-6: Estimated number of detectors needed for various scenarios [Random]

One clear trend observed in the Figures above (particularly 5-2 through 5-6) are

the diminishing returns in coverage afforded by the deployment of each additional

detector, especially in the high coverage region (i.e. above around 0.80). It takes the

addition of considerably more detectors to get from 85% to 95% coverage than it took to

get from 75% to 85%. Using the scenario where detectors with a 65 ft. range were

deployed in the 6460 TEU reference array as an example, it took 7 additional detectors to

go from 75% to 85% coverage and 18 additional detectors to go from 85% to 95%.
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Reference Array Capacity (TEU)Random Deployment
Range (ft) Coverage 1440 2496 3600 4800 6460Range (ft) Coverage

0.75 13 21 30 37 59
45 0.85 19 31 40 52 68

0.95 32 50 69 88 117
0.75 11 17 22 29 37

50 0.85 15 23 31 40 52
0.95 25 39 53 69 88
0.75 9 13 18 23 30

55 0.85 12 19 25 31 41
0.95 19 30 41 53 70
0.75 7 11 15 18 24

60 0.85 10 15 20 26 33
0.95 15 25 34 43 55
0.75 6 9 12 15 20

65 0.85 8 12 17 20 27
0.95 14 21 27 34 45
0.75 5 8 10 13 16

70 0.85 7 11 14 18 22
0.95 11 18 23 29 38
0.75 5 7 9 11 14

75 0.85 6 9 12 15 18
0.95 10 15 19 24 31
0.75 4 6 8 9 12

80 0.85 6 8 10 13 17
0.95 9 14 17 21 29
0.75 4 5 7 8 10

85 0.85 5 8 9 11 15
0.95 8 12 15 19 25



The primary cause of this phenomenon is the fact that random deployment does

not promise uniform distribution of detectors throughout a container array. As a result,

randomized placement will unavoidably give rise to some well-covered regions with

significant coverage overlap and some sparsely covered regions with little to no detection

coverage. Detectors cannot be preferentially deployed to uncovered or inadequately

covered areas. Therefore, to enhance the fractional coverage area with additional

detectors, one must rely on the capricious nature of random placement to fortuitously

deploy added units to sparsely covered regions. Inefficiencies associated with this

process lead to the diminishing marginal returns observed in the simulation results. The

extent to which random deployment is less efficient than optimal centerline deployment

will be discussed in a later section.

Although the mechanism discussed above is the primary determinant, there is

another factor at work in the deployment simulation that artificially magnifies the

diminishing returns effect. Given that the simulation used for this analysis assumed that

the center point of detectors could be placed at any point in space within the container

array, there is a non-negligible probability, given by Eq. (9), that 2 detectors could be

randomly assigned to the space that corresponds to a single container. The probability of

this "double assignment" increases as the number of deployed detectors increases. Since

double assignment is an inefficient distribution of detectors, it could make a small

contribution to the diminishing returns effect. Table 5-7 shows the probability that any 2

detectors will be randomly assigned to the same 20' and 40' container volumes for a

sampling of simulated scenarios.
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Table 5-7: Double assignment probabilities for 20' and 40' containers [Random]
Capacity Detectors Double Assign. Double Assign. Capacity Detectors Double Assign. Double Assign.

1440 3 0.002 0.004 3600 60 0.390 0.630
1440 5 0.007 0.014 3600 70 0.491 0.743
1440 10 0.031 0.061 4800 5 0.002 0.004
1440 15 0.071 0.137 4800 10 0.009 0.019
1440 20 0.124 0.234 4800 20 0.039 0.076
1440 25 0.189 0.344 4800 30 0.087 0.166
1440 30 0.262 0.458 4800 40 0.150 0.279
1440 35 0.341 0.568 4800 50 0.226 0.402
2496 3 0.001 0.002 4800 60 0.310 0.525
2496 5 0.004 0.008 4800 70 0.397 0.638
2496 10 0.018 0.036 4800 80 0.484 0.736
2496 15 0.041 0.081 4800 90 0.568 0.816
2496 20 0.074 0.142 6460 5 0.002 0.003
2496 25 0.114 0.215 6460 10 0.007 0.014
2496 30 0.161 0.296 6460 20 0.029 0.057
2496 39 0.258 0.451 6460 30 0.065 0.126
2496 47 0.353 0.584 6460 40 0.114 0.215
2496 52 0.414 0.660 6460 50 0.173 0.317
3600 3 0.001 0.002 6460 60 0.240 0.424
3600 5 0.003 0.006 6460 70 0.313 0.529
3600 10 0.012 0.025 6460 80 0.388 0.627
3600 20 0.052 0.101 6460 90 0.464 0.714
3600 30 0.114 0.216 6460 100 0.537 0.787
3600 40 0.195 0.354 6460 110 0.607 0.847
3600 50 0.290 0.497 6460 120 0.671 0.893

Table 5-7 shows the probability that any two detectors will be assigned to a single

container becomes quite large as the number of deployed detectors gets large and in some

extreme cases, double assignment is almost assured. Since this inefficient double

assignment is non-physical, the fractional detection coverage output by the simulation

will be marginally underestimated and the diminishing returns effect will be slightly

exaggerated.

Another notable feature of the results captured in Table 5-6 is the strong relation

between the number of detectors needed to provide a given fractional coverage level and

the effective detection range of the deployed units. This dependence is illustrated in

Figures 5-8 through 5-12 where the estimated number of detectors required for 75%,

85%, and 95% coverage are plotted against detection range for each of the 5 reference

arrays.
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Figure 5-9: Required Detectors vs. Range for the 1440 TEU array [Random]

Detectors vs. Range (2496 TEU)
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Figure 5-10: Required Detectors vs. Range for the 2496 TEU array [Random]
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Detectors vs. Range (3600 TEU)
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Figure 5-11: Required Detectors vs. Range for the 3600 TEU array [Random]
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Figure 5-12: Required Detectors vs. Range for the 4800 TEU array [Random]
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Detectors vs. Range (6460 TEU)

Figure 5-13: Required Detectors vs. Range for the 6460 TEU array [Random]

The pronounced "range effect" illustrated in Figures 5-8 through 5-12 can be

explained by the relation between the effective detection range and the volume of

coverage provided by a detection unit. Equation (12) shows that the volume of the

idealized detection sphere increases as the cube of the effective detection radius.

Therefore, the volume of a detection sphere created by a detector with an 85 ft. radius is

6.74 times greater than that of a detector with a 45 ft. radius. By covering a significantly

larger detection volume per unit, fewer long-range detectors are needed, on average, to

provide a given fractional coverage.

Finally, although the 6460 TEU reference array represents a larger container

capacity than the 95th percentile vessel in the current fleet, it is likely that the trend to

build and deploy larger and larger containerships will continue in the coming years until

capacities exceed 10000 TEU [Ircha, 2002]. Figures 5-13 through 5-17 plot the number

of detectors needed for given coverage levels versus vessel capacity for a representative

sampling of ranges.
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Detectors vs. Capacity (Range = 45 ft)

, , 

Figure 5-14: Required Detectors (with 45 ft. range) vs. Array Capacity [Random]

Figure 5-15: Required Detectors (with 55 ft. range) vs. Array Capacity [Random]
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Detectors vs. Capacity (Range = 65 ft)
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Figure 5-16: Required Detectors (with 65 ft. range) vs. Array Capacity [Random]
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Figure 5-17: Required Detectors (with 75 ft. range) vs. Array Capacity [Random]
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Detectors vs. Capacity (Range = 85 ft)

Figure 5-18: Required Detectors (with 85 ft. range) vs. Array Capacity [Random]

Figures 5-13 through 5-17 show relationships between the number of required

detectors and vessel container capacities that are linear to a very good approximation.

This linearity could be used in the future to estimate the number of detectors needed to

provide coverage of proposed vessels with capacities exceeding those of containerships

in the fleet today.

5.4 Constrained Deployment

Deviation from random deployment could challenge and potentially comprise the

desired surreptitious nature of the ship-based approach and invite serious logistical

difficulties. However, given the coverage inefficiencies that are an unavoidable

consequence of completely random deployment, the constrained deployment strategy was

investigated to determine the efficiency gains that could be reaped by imposing minimum

loading constraints. In an effort to limit the undesirable and inefficient situation in which

detectors are placed close to the edge or surface of the container array, the constrained
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deployment simulation explicitly barred the assignment of detectors to space that

corresponded to the first or last (TEU) container in any row, column, or span of the array.

It is unclear whether even this limited constraint would be possible to impose in practice.

Constrained deployment simulation was carried out in the same manner as

described above for random deployment. The only modification to the simulation

schedule was the exclusion of scenarios with detectors having 45 ft. and 85 ft. effective

ranges. Limited computing resources necessitated the tailoring of the simulation

schedule and the excised scenarios were the most computationally intensive1 . Table 5-8

shows the output statistics for constrained simulations.

" 45 ft. range scenarios were intensive due to the large number of detectors that had to be deployed to
achieve desired fractional coverages. 85 ft. range scenarios were intensive because of the large number of
computations required to construct their detection spheres.
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For ease of inspection, the mean fractional coverage volumes for each scenario and

reference array are plotted in Figures 5-18 through 5-22.

Coverage vs. Detectors (1440 TEU)
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Figure 5-19: Coverage vs. Detectors plot for the 1440 TEU array [Constrained]
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Coverage vs. Detectors (2496 TEU)
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Figure 5-20:
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Coverage vs. Detectors plot for the 2496 TEU array [Constrained]

Coverage vs. Detectors (3600 TEU)
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Figure 5-21: Coverage vs. Detectors plot for the 3600 TEU array [Constrained]
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Coverage vs. Detectors (4800 TEU)
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Figure 5-22: Coverage vs. Detectors plot for the 4800 TEU array [Constrained]

Coverage vs. Detectors (6460 TEU)
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Figure 5-23: Coverage vs. Detectors plot for the 6460 TEU array [Constrained]
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The number of detectors needed to provide 75%, 85%, and 95% coverage for

each scenario were estimated in the same manner as described in the previous section and

results are shown in Table 5-9.

Table 5-9: Estimated number of detectors needed for various scenarios [Constrained]

Constrained Capacity (TEU)

Depl ent 1440 2496 3600 4800 6460
Range (ft) Coverage

0.75 9 14 20 25 33
50 0.85 12 20 28 35 48

0.95 21 38 51 65 86
0.75 7 12 16 20 26

55 0.85 10 16 21 28 37
0.95 18 28 39 50 65
0.75 6 9 12 15 21

60 0.85 8 13 18 23 29
0.95 15 23 31 40 51
0.75 5 8 11 13 18

65 0.85 7 11 15 18 24
0.95 11 19 25 32 43
0.75 5 8 9 11 15

70 0.85 7 10 12 16 20
0.95 11 16 20 28 36
0.75 4 7 8 10 15

75 0.85 6 9 11 13 20
0.95 9 14 18 23 35
0.75 4 6 7 9 11

80 0.85 5 8 10 11 15
0.95 9 13 15 20 26

When the numbers tabulated above for constrained deployment are compared to

the random deployment results shown in Table 5-7, the differences are not particularly

striking. Surprisingly, very little is gained in terms of coverage efficiency by

constraining placement in containers along the surface of the array. It appears, that by

excluding placement in such a large volume fraction of the total container array, that

inefficient overlapping was promoted in the center. This seems to have offset efficiency

gains that were realized by limiting coverage volume "losses" at the surface of the array.

Double assignment effects also played a larger role in the constrained simulation because

the (xyz) term in Eq. (9) was smaller due to the imposed placement constraint.
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5.5 Centerline Deployment

Centerline deployment, where detectors are optimally distributed along the length

of the middle row and column of the container array, is the least secure of the examined

deployment strategies, in terms of concealing the location of detection units. It is also

dubious as to whether this approach would be logistically feasible in practice. However,

the completely constrained nature of this strategy does afford extremely efficient

utilization of detector coverage. As a result, this deployment approach is useful for

establishing a lower bound for the number of detectors that would be needed to cover a

vessel with a given capacity. This lower bound can also be used to quantify the coverage

efficiency losses resulting from full randomization.

Since the imposed constraints dictate that detectors could only be placed along the

centerline of the reference arrays, the geometry of each scenario was uniquely specified

so only one calculation (as opposed to multi-run Monte Carlo analysis) was needed to

determine the coverage. For the purposes of these calculations, the centerline of each

array was assumed to consist of 40' containers to more accurately model arrays

encountered aboard actual containerships. It was further assumed that detectors were

only placed in the center of these full-sized containers. The first scenario for each

reference array would place a detector in each of the available full containers along the

centerline. The next scenario would place detectors in every other container, then every

third container, and so on. Sometimes using placement patterns of this fashion did not

uniquely specify the arrangement of detectors. For example, if detectors are to be placed

in every third full sized container and there are 15 containers along the length of the

centerline, then the desired placement pattern can be realized with an equal number of

detectors when the pattern is begun with a detector in the first, second, or third container

in the line. Whenever there were degrees of freedom associated with which container to

place the first detector in, the coverage for each available geometry was calculated and

the arrangement with the highest coverage was used. The results of these calculations

are shown in Table 5-10.
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For ease of inspection, the fractional coverage volumes provided by selected detector

loading patterns 1 2 in each reference array are plotted in Figures 5-23 through 5-27.

Coverage vs. Detectors (1440 TEU)
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Figure 5-24: Coverage vs. Detectors plot for the 1440 TEU array [Centerline]

12 When two or more loading patterns resulted in the same number of detectors being deployed, only the
result from the pattern with the highest fractional coverage was plotted.
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Coverage vs. Detectors (2496 TEU)
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Figure 5-25: Coverage vs. Detectors plot for the 2496 TEU array [Centerline]

Coverage vs. Detectors (3600 TEU)
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Figure 5-26: Coverage vs. Detectors plot for the 3600 TEU array [Centerline]

136

E

0.7
0
Ol

o 0.6

* 0.5

iL

I 0.4

0.3

0.2

0.1

-e-- R_45

-- R50
R_55

- R60
- R65
-- R-70
-- R75
-R80

R R-85

-e-- R_45
-- R_50

R_55
"R_60

--- R65
-- R_70
--- R75

R-R-80
--- R 85

L
"··."li·.:.:�i: ;··

''' c i"t'i· .�..'' "
1···-- ,- �·� ::r:..�.sar·�:: ;r�-·i·::r*ma·�·.i�· -:;-··z�lni .:

.··i: ·r `;='"f �-.:·bi : 2* il.·'. iii.it: ' \1J":;'"- '".· -. ·-,··

. :

r·:

y·

·:(::·

:·

-:L

'::-"�T�:·-�
.r: r·'-i;. -·. -· -. ·� :-:"� · �"

·�ti ·; I:E4�S�?i'r

:·F- ·

* Q < r | S a :, z a z w r s s s E W a e . s A c; k a se ~ ~ ~ ~ ~ ~ ~ ~ w. A . . -r~~~'·w'r;2;;,. zm.X;,,;_ I
I

-·_LI

t

V//
·· ? yi

:·: IPSP, i--��:Q,;··:1··

In

Hill

r,·T·i-:n------·i·--r i·;-·;·t·e nrr-

,·.· �...;

::

.;·; ' o,r·--· ,,,�:·�-;1 �Y�·-�-�_�� .



Coverage vs. Detectors (4800 TEU)
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Figure 5-27: Coverage vs. Detectors plot for the 4800 TEU array [Centerline]

Coverage vs. Detectors (6460 TEU)
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Figure 5-28: Coverage vs. Detectors plot for the 6460 TEU array [Centerline]
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The number of centerline deployed detectors needed to provide 75%, 85%, and

95% coverage for each evaluated range and reference array are shown in Table 5-11.

Table 5-11: Estimated number of detectors needed for various scenarios [Centerline]

Centerline Reference Array Capacity (TEU)

Depi oment 1440 2496 3600 4800 6460
Range (ft) Coverage

0.75 5 10 N/A N/A N/A
45 0.85 7 N/A N/A N/A N/A

0.95 10 N/A N/A N/A N/A
0.75 5 6 8 N/A N/A

50 0.85 5 9 13 N/A N/A
0.95 7 N/A N/A N/A N/A
0.75 4 6 7 12 N/A

55 0.85 5 6 8 N/A N/A
0.95 5 10 N/A N/A N/A
0.75 4 5 5 7 12

60 0.85 4 6 6 12 N/A
0.95 5 7 9 N/A N/A
0.75 3 5 5 6 8

65 0.85 4 5 5 7 15
0.95 4 6 7 14 N/A
0.75 3 4 4 4 7

70 0.85 4 5 5 6 8
0.95 4 5 6 8 19
0.75 3 4 4 4 6

75 0.85 3 5 4 5 7
0.95 4 5 5 7 9
0.75 2 3 4 4 5

80 0.85 3 4 4 5 6
0.95 3 5 5 7 8
0.75 2 3 3 4 5

85 0.85 3 4 4 4 5
0.95 3 4 4 5 6

Depending on the effective range of the detection unit, there are some levels of

coverage for certain reference arrays that cannot be achieved through the use of detectors

deployed exclusively along the centerline (denoted in Table 5-11 as N/A). However, in

cases where the range is sufficient to provide desirable coverage using only centerline

deployment, the deployment efficiency resulting from the preferential placement

attendant to this approach allows high levels of coverage to be achieved with a significant

economy of detection units.
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5.6 Deployment Comparison

The most germane comparison that can be drawn between the deployment

strategies examined in the previous sections is to contrast the number of detectors

required by each method to achieve given levels of fractional coverage when faced with

identical range and array capacity scenarios. Since constrained deployment was not

found to hold any significant efficiency advantages over random deployment (despite its

stealth and logistical disadvantages), only random and centerline deployment will be

considered in the following analysis.

Table 5-12 shows the number of detectors required for each scenario using both

random and centerline deployment. It also tabulates the ratio of randomly deployed

detectors to centerline deployed detectors for each case so that a measure of the

efficiency cost of randomization can be obtained.
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Table 5-12: Random vs. Centerline deployment comparison
Random vs. Reference Array Capac (TEU
Centerline 1440 2496 3600 4800 6460

Ranae ftl Coveraae R C IR/C R C IR/C R C IR/C R C IRIC C I R C
I . 0.75 -- '113 5D- 2 ,-I -

0.75 13 5 2.6 21 10 2.1 30
45 0.85 19 7 2.7 31

0.95 32 10 3.2 50
I'~ '" E A ' I

40
69

37
52
88
9I IIIf - I - / n I Z ^Iv. , .v .v v .v v .v &.v

50 0.85 15 5 3.0 23 9 2.6 31 13 2.4 40
0.95 25 7 3.6 39 53 ' 69

7 Ia A 4 'I n '1 14 7 OR N

55 0.85 12 5 2.4 19 6 3.2 25 8 3.1 31
0.95 19 5 3.8 30 10 3.0 41 : . 53
1n 7 1 7 A I I 1 1 1I1 .; r I n I g a

59
68
117
?7
V,

52
88
,fan

41

70
'A

60 0.85 10 4 2.5 15 6 2.5 20 6 3.3 26 12 22 33
0.95 15 5 3.0 25 7 3.6 34 9 3.8 43 55
0.75 6 3 2.0 9 5 1.8 12 5 2.4 15 6 2.5 20

65 0.85 8 4 2.012 2.417 5 3.4 20 7 2.9 27 15 1.8
0.95 14 4 3.5 21 6 3.5 27 7 3.9 34 14 2.4 45
0.75 5 3 1.7 8 4 2.0 10 4 2.5 13 4 3.3 16 7 2.3

70 0.85 7 4 1.8 11 5 2.2 14 5 2.8 18 6 3.0 22 8 2.8
0.95 11 4 2.8 18 5 3.6 23 6 3.8 29 8 3.6 38 19 2.0
0.75 5 3 1.7 7 4 1.8 9 4 2.3 11 4 2.8 14 6 2.3

75 0.85 6 3 2.0 9 5 1.8 12 4 3.0 15 5 3.0 18 7 2.6
0.95 10 4 2.5 15 5 3.0 19 5 3.8 24 7 3.4 31 9 3.4
0.75 4 2 2.0 6 3 2.0 8 4 2.0 9 4 2.3 12 5 2.4

80 0.85 6 3 2.0 8 4 2.0 10 4 2.5 13 5 2.6 17 6 2.8
0.95 9 3 3.0 14 5 2.8 17 5 3.4 21 7 3.0 29 8 3.6
0.75 4 2 2.0 5 3 1.7 7 3 2.3 8 4 2.0 10 5 2.0

85 0.85 5 3 1.7 8 4 2.0 9 4 2.3 11 4 2.8 15 5 3.0
0.95 8 3 2.7 12 4 3.0 15 4 3.8 19 5 3.8 25 6 4.2

Comparisons between random and centerline deployment could be rendered moot

if the centerline strategy is definitively judged to be logistically infeasible or if it is

determined to be an unacceptable compromise of the stealth characteristics that are so

important to the ship based approach. Additionally, centerline deployment, by itself,

would presumably stop receiving serious consideration if the effective detection range is

found to be too low to provide the minimum acceptable detection coverage for all vessels

of interest. That said, Table 5-12 clearly illustrates the efficiency gains realized through

centerline deployment. Table 5-13 shows the average random to centerline, R/C, values

for the three analyzed fractional coverage volume targets.
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Table 5-13: Average R/C values

Fractional Coverage Volume
0.75 0.85 0.95

R/C 2.249 2.531 3.306

As Table 5-13 illustrates, the efficiency advantage enjoyed by centerline deploy

increases as the desired level of coverage increases. This stems from the diminishing

marginal returns phenomenon associated with random deployment. Unlike the random

case, when additional detectors are deployed along the centerline to achieve a higher

level of fractional detection coverage they will preferentially "fill in" uncovered or

sparsely covered areas of the container array. Therefore, marginal returns are greater

when employing the centerline approach and as a greater number of detectors are added

to provide higher levels of coverage this amplifies the efficiency advantages over random

deployment.

5.7 Total Detector Estimates

To estimate the total number of detectors required to field a comprehensive

system (i.e. to cover every inbound commercial containership) the data compiled in the

previous sections must be combined with information from the shipping industry and

U.S. ports. If all classes of containerships called on U.S. ports with uniform frequency

then the capacity distribution derived in Chapter 4 could be used directly to determine the

total number of detectors. Some types of container vessels, however, make more port

calls than others, so these vessels should receive a higher importance weighting in the

analysis. Table 5-14 shows the relative frequency of calls at U.S. ports broken down by

vessel size (i.e. container capacity) [MARAD, 2000] and the number of calls that these

vessel classes would make out of the CY 2003 call total of 17287 [MARAD(1), 2004].

Table 5-14: U.S. port calls by vessel capacity

Vessel Capacity (TEU)
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<2000 2001-3000 3001-4000 4001-5000 >5000 Total
Relative Freq. 0.3491 0.2853 0.2129 0.1147 0.038 1

Calls 6035 4932 3680 1983 657 17287



Since one of the reference arrays described in the previous analysis fits

approximately in the middle of each of the capacity bins shown in Table 5-14, the

number of detectors found to be required to cover a given reference array can be

considered roughly representative of the entire binned vessel class. Estimates for the

total number of detectors needed for comprehensive deployment can now be made using

the following expression,

DetTotal = (13)
Avgclv i

where Avgc/v is the average number of calls made per vessel, Ci is the number of calls for

a given vessel class, and Deti is the number of detectors required for a given vessel class.

In 2003, the average number of calls made by containerships was 17 [MARAD(1), 2004].

Since the detection units have no inland destination and are intended solely for

deployment aboard containerships, once they are discharged from a given vessel they can

be redeployed with minimal downtime. Downtime that could be required for

maintenance and calibration is not considered. For the purposes of this analysis, it is

assumed that turn-around can occur immediately, so the discharged detection unit can be

shipped out (i.e. transported back to a foreign port where it can be deployed for its

intended purpose) without delay. It should be noted that the export leg of the detection

unit's voyage could be used to perform performance reliability tests and to monitor for

the unlikely event that a fissile or radiological source was being smuggled out of the

United States, for use abroad. Stops between foreign ports on the export leg could also

be used to monitor for radioactive material movement abroad, which could discourage or

thwart international smuggling attempts and augment the ability of other nations to

defend against nuclear or radiological attack.

Eq. (13) was applied to the results from the random and centerline deployment

simulations and estimates for the total number of detectors that would be necessary using

either deployment strategy are shown in Table 5-15.
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Table 5-15: Total detector estimates

Total Detector
Estimoatea Deployment StrategyI Fatimtnt I I

I Rnna fft nvarnna DAnrm
, ,- .. I G I% __., a l ll 1

0.75 23798
45 0.85 33091

0.95 55589
0.75 18412

50 0.85 25384
0.95 43112
0.75 14705

55 0.85 20385
0.95 33211

7 4O.x4

60 0.85 16539
0.95 27079 _ _ __ _

0.75 9861 4607
65 0.85 13378 5349

0.95 22612 
0.75 8395 3828

70 0.85 11657 4962
0.95 18957 5837
0.75 7578 3790

75 0.85 9784 4235
0.95 16012 5117
0.75 6406 3106

80 0.85 8789 3906
0.95 14507 4724
0.75 5706 2890

85 0.85 7907 3751
0.95 12751 3906

I

Table 5-15 shows that if only purely random or purely centerline deployment strategies

are being considered, the option space is limited if the effective detection range of the

containerized units is less than 70 ft. An additional advantage to units with effective

ranges equal to or greater than 70 ft is the significant reduction in the number of detectors

required to provide any of the evaluated fractional coverage volumes. Table 5-15 also

demonstrates the reduction in detection units required for full deployment if the fractional

coverage volume is chosen to be less than 95%.
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Chapter 6: Summary, Conclusions, and Recommended Future Work

6.1 Summary

The rise of highly mobile, religiously motivated transnational terrorist

organizations that are not restrained by conventional means of deterrence has changed the

dynamics of the threat that nuclear weapons pose to the United States. The international

commercial container trade that delivers over 19,000 cargo containers to U.S. ports every

day is one possible avenue that could be exploited by a terrorist organization to mount an

unconventional nuclear attack. Due to the unique power and range of nuclear weapons,

defensive measures that have been envisioned or deployed that would not detect threats

until they come ashore at U.S. ports do not provide adequate protection against attacks

that are planned and executed by rational, determined adversaries.

We propose a new ship-based approach to fissile material detection where large

effective area, commercial off the shelf, radiation detectors, enhanced with imaging

capabilities, are enclosed in standard, non-descript cargo containers and shipped

alongside commercial containers. When deployed in limited numbers aboard commercial

vessels the detection units would passively measure any nuclear signature emitted by

nearby containers with count times limited only by the duration of the voyage. By

outfitting the dedicated detection units with communication hardware, identification and

notification of a potential threat could be made while the danger was still safely removed

from U.S. shores.

To better characterize the feasibility of the proposed ship-based approach,

"external" uncertainties associated with the deployment environment and potential modes

of deployment were investigated. Characteristics of the deployment environment that

were evaluated included the count times that would be available on container import

voyages terminating at U.S. ports, the container capacities of the vessel fleet that ply the

international container trade, and the average densities of cargo being imported to the

U.S. Table 6-1 summarizes the salient results of these analyses.
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Table 6-1: Results summary for deployment environment analyses

Vessel Capacity Avg. Density* Count Time (days)
(TEU) (q/cmA3) To NY To LA

Mean 3047 0.1977 19.2 13.3
Median 2722 0.1708 19.1 13.3

25th 1666 0.1664 21.7 15.1
75th 4173 0.2208 17.2 11.9
95th 6204 0.2620 15.9 11
99th 6782 0.2998 15.6 10.8

* 0.1977 g/cm3 corresponds to 15.23 metric tons / 40'container

To study different potential modes of deployment, a Matlab-based simulator was

developed. The simulator was used to evaluate and compare detection coverage

efficiencies for fully random detector deployment, partially constrained deployment

where containerized detection units could not be placed along the surface of container

array, and fully constrained deployment where detectors could only be placed along the

centerline of the array. Partially constrained deployment was not found to have any

particularly desirable attributes. The number of detection units required to provide

various degrees of coverage for random and centerline deployment are summarized in

Tables 6-2 and 6-3 respectively. Coverage is defined as the fractional volume of a

vessel's container array that is within the effective detection range of one of the deployed

containerized detection units. The effective detection range is the expected maximum

distance at which a source can be confidently and reliably detected in a given count time,

under realistic conditions.

145



Table 6-2: Random deployment results summary

Random Deployment

Range (ft) Coverage
0.75

45 0.85
0.95
0.75

50 0.85
0.95
0.75

55 0.85
0.95
0.75

60 0.85
0.95
0.75

65 0.85
0.95
0.75

70 0.85
0.95
0.75

75 0.85
0.95
0.75

80 0.85
0.95
0.75

85 0.85
0.95

Reference Arrav Caoacitv (TEUI

1440 2496

13 21
19 31
32 50
11 17
15 23
25 39
9 13
12 19
19 30
7 11
10 15
15 25
6 9
8 12
14 21
5 8
7 11
11 18
5 7
6 9
10 15
4 6
6 8
9 14
4 5
5 8
8 12

3600 4800 6460

30 37 59
40 52 68
69 88 117
22 29 37
31 40 52
53 69 88
18 23 30
25 31 41
41 53 70
15 18 24
20 26 33
34 43 55
12 15 20
17 20 27
27 34 45
10 13 16
14 18 22
23 29 38
9 11 14
12 15 18
19 24 31
8 9 12
10 13 17
17 21 29
7 8 10
9 11 15
15 19 25

Table 6-3: Centerline deployment results summary
I __ntene eployment I Reference Array Capacity (TEU)
ICenterl-ne Deployment . . I . .I

1440 2496 3600 4800 6460

0.75 5 10 N/A N/A N/A
45 0.85 7 N/A N/A N/A N/A

0.95 10 N/A N/A N/A N/A
0.75 5 6 8 N/A N/A

50 0.85 5 9 13 N/A N/A
0.95 7 N/A N/A N/A N/A
0.75 4 6 7 12 N/A

55 0.85 5 6 8 N/A N/A
0.95 5 10 N/A N/A N/A
0.75 4 5 5 7 12

60 0.85 4 6 6 12 N/A
0.95 5 7 9 N/A N/A
0.75 3 5 5 6 8

65 0.85 4 5 5 7 15 5349
0.95 4 6 7 14 N/A
0.75 3 4 4 4 7 3828

70 0.85 4 5 5 6 8 4962
0.95 4 5 6 8 19 6837
0.75 3 4 4 4 6 3790

75 0.85 3 5 4 5 7 4235
0.95 4 5 5 7 9 5117
0.75 2 3 4 4 5 3106

80 0.85 3 4 4 5 6 3906
0.95 3 5 5 7 8 4724
0.75 2 3 3 4 5 2890

85 0.85 3 4 4 4 5 3751
0.95 3 4 4 5 6 3906
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Total Detectors
23798
33091
55589
18412
25384
43112
14705
20385
33211
11951
16539
27079
9861
13378
22612
8395
11657
18957
7578
9784
16012
6406
8789
14507
5706
7907
12751
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Tables 6-2 and 6-3 show that the geometrically optimal centerline deployment provides

significantly more efficient detection coverage than the stealthier and more logistically

appealing random deployment. The efficiency advantage of centerline deployment is

evidenced by the finding that an average of 2.249, 2.53 1, and 3.306 times more randomly

deployed detection units are required to provide 75%, 85%, and 95% fractional

coverages, respectively, for vessels with a given container array. The preceding tables

also demonstrate the considerable benefit to developing detection units with an effective

detection range equal to, or greater than, 70 ft. Units with ranges at or exceeding 70 ft.

will yield maximum flexibility in terms of deployment options and will significantly

reduce the number of units required to cover a given vessel and to field a comprehensive

ship-based detector network.

6.2 Conclusions

Since this work was performed as one element of an integrated effort, not all of

the calculations and evaluations documented in this thesis may carry significant relevance

and meaning when viewed alone. These results will be combined with, and serve as

input to, ongoing work being conducted by Gallagher at MIT on system design and

performance modeling. The end product of this continuing effort will yield crucial

information regarding the expected performance of the detection units and the overall

efficacy of the ship-based approach. Despite the essentially unfinished nature of system

development, there are a number of notable conclusions that can be drawn strictly from

the analysis presented and discussed in this document.

First, and perhaps most importantly, none of the results obtained in the preceding

analyses serve to discredit the overall feasibility of the ship-based approach. A

primary objective of this thesis was to assess the practical viability of this new

detection methodology and nothing was discovered that suggested the ship-based

approach could not be viable and effective if prudent design and deployment

decisions are made.
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Mean count time estimates for the representative East Coast and West Coast ports

were particularly encouraging. With an average of 19.2 days and 13.3 days of

available count time for voyages to New York and Los Angeles respectively, the

ship-based detection units will have a lengthy window of opportunity to passively

detect incoming fissile material and communicate warning to responders while the

threat is still safely at sea.

The results of deployment simulation highlighted the effective detection range of

containerized units as being especially important to promoting and ensuring the

viability of the ship-based approach. Special consideration should be paid to

maximizing this parameter during upcoming design and optimization activities.

Design decisions that increase the expected detection range at the expense of unit

costs should be vigorously examined in light of the dramatic reductions in per

vessel and total detectors required as effective range was increased. The observed

relationship between the required number of detectors and the effective range

suggests that while unit costs may increase as range enhancing features are

incorporated, the total system costs could fall as less detectors are required on the

whole.

Simulation also helped to quantify the efficiency costs associated with random

deployment. While a purely random deployment strategy is very desirable from

both stealth and logistical standpoints, the use of this approach necessitates the

deployment of 2.2 to 3.3 times more detectors (depending on the fractional

coverage target) than the less covert strategy of deploying detection units only

along the ship's centerline. This inefficiency could become quite costly.

Therefore, some combination of random and centerline deployment may prove to

be the most attractive strategy. In such a "hybrid" deployment scenario, if even a

small number of detectors could be deployed along or near the array's centerline

with the remaining detectors randomly distributed, an important degree of stealth

would be preserved by the random component and a helpful boost in efficiency

will be afforded by the centerline component.
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6.3 Recommendations for Future Work

The deployment strategies described and modeled in this thesis were selected to

represent archetypal cases useful in studying the fundamental trade-off between

deployment stealth and coverage efficiency. Random deployment is at one end of the

spectrum, being the stealthiest approach, but having less than optimal efficiency.

Centerline deployment (i.e. fully constrained placement of detectors along the ship's

centerline) resides at the opposite end of the spectrum, affording optimal efficiency, but

being among the least covert of any potential strategies. Simulations documented in

Chapter 5 provide some quantitative insights into the trade-offs involved when going

from one end of the deployment spectrum to the other. This analysis, however, was

somewhat divorced from important practical considerations that arise from the common

practices and capabilities of the international shipping trade. For instance, it is unclear

whether centerline deployment would be logistically feasible in practice. Therefore, a

clear priority for any future deployment analysis should be to conduct more in-depth

consultations with individuals possessing intimate knowledge of the shipping trade

(particularly the loading and discharging of containerships) to better understand what

types of placement constraints are and are not practicable. This practical knowledge is

essential to understanding the true performance capabilities of a ship-based system and to

developing an effective deployment strategy that can be reliably implemented in the real

world.

Future deployment modeling conducted either to refine the results of this analysis

or to study alternative deployment strategies could employ an enhanced version of the

Monte Carlo simulation codes used to produce the results presented in this thesis.

Simulation codes used in this analysis (and documented in Appendix B) assumed that

detectors could be placed anywhere within a container being used as a dedicated

detection unit. This assumption saved considerable computation time but also created the

opportunity for unphysical situations (e.g. multiple detectors in a single container) to

arise that underestimated the actual performance of the ensemble of deployed detectors.
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Reality would be more accurately modeled if the locations where detectors could be

randomly placed were limited to the centerpoints of simulated containers. Output

distortions caused by double-assignment situations would be eliminated with this

modification. Additionally, by imposing a minimum separation distance between

detectors (i.e. the distance separating the centers of adjacent containers) better overall

distribution should be observed. Therefore, the enhanced simulation would be expected

to show better and more realistic coverage efficiencies than the results shown above.

Another assumption used in deployment modeling that warrants further attention

is the geometry of the coverage volume provided by deployed detectors. In the preceding

analysis, this volume was represented by a perfect sphere centered at a detector and

having a radius equal to the effective detection range of the unit. A focus of future efforts

should be to investigate factors that morph or distort this idealized sphere. This includes

better characterization of important radiation transport phenomena, such as the effects of

potential radiation streaming through tiny openings, or "pinholes", in commercial cargo

packed in containers. More thorough understanding of these mechanisms can lead to

more realistic and appropriate coverage patterns that can be incorporated in future

performance and deployment models.

Another useful extension of the work presented above would be to model a

number of different hybrid deployment scenarios where some detectors were placed

along the ship's centerline (assuming this mode of deployment is found to be practicable)

and the balance were randomly distributed. By performing parameter studies, an optimal

ratio or mix of centerline to random detectors may be identified. The results from this

optimized hybrid deployment could then be compared to the results of pure random and

pure centerline deployment.

Some of the results presented and discussed in this thesis have direct and

important implications for the on going design and performance assessment activities

being conducted by Gallagher at MIT. One outcome with direct bearing on the

continuing design process is the pronounced benefit of detectors that can achieve
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effective detection ranges equal to, or greater than, 70 feet. Results of the parameter

study undertaken as part of the deployment simulation demonstrated that significant gains

in coverage efficiency and deployment flexibility were realized when detection units had

effective ranges of 70 ft or higher. These findings strongly suggest that any available

means to augment the detection range of the containerized detection suite should be

investigated and seriously considered. Even design features that enhance range while

increasing unit costs should be considered since the eventual reduction in the number of

longer-range detectors required to provide a given degree of coverage may ultimately

offset the unit cost increases.

Finally, while computer simulations are very instructive in guiding the design

process and estimating the performance of the proposed ship-based containerized

detection units, there is a limit to what can be confidently demonstrated on the strength of

computer modeling alone. Therefore, at the earliest practical juncture, a full-scale

prototype of a containerized unit, complete with a full detection suite, should be built and

vigorously tested in environments as close to those that would be realistically

encountered as possible.
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Vessel name

A.P. Moller
Agnete Maersk
Albert Maersk
Alva Maersk
Amersham

Axel Maersk
Caroline Maersk
Carsten Maersk
Cecilie Maersk

Charlotte Maersk
Chastine Maersk

Chesham
Christian Maersk

Claes Maersk
Clara Maersk

Clementine Maersk
Clifford Maersk

Columbine Maersk
Cornelia Maersk
Cornelius Maersk

Denham
Dirch Maersk

Glasgow Maersk
Gosport Maersk

Grasmere Maersk
Greenwich Maersk

Jens Maersk
Jeppesen Maersk
Johannes Maersk
Josephine Maersk

Karen Maersk
Kate Maersk

Katrine Maersk
Kirsten Maersk
Knud Maersk
Laura Maersk
Laust Maersk
Leda Maersk
Lexa Maersk
Lica Maersk
Luna Maersk

Madison Maersk
Maersk Aberdeen

Maersk Ahram
Maersk Antwerp

Maersk Arun
Maersk Atlantic

Maersk Avon
Maersk Carolina
Maersk Gairloch

Capacity
(TEU)
6600
1100
1100
1100
658
6600
6600
6600
1750
6600
6600
658
1550
1750
1550
6600
6600
6600
6600
6600
658

4300
4300
4300
4300
4300
2840
2840
2840
2840
6000
6000
6000
6000
6000
3700
3700
3700
3700
3700
3700
4300
1100
1100
1100
1100
1100
1100
4300
4300

Speed
(knots)

24.6
18.0
18.0
18.0
14.8
24.6
24.6
24.6
19.0
24.6
24.6
14.8
18.9
19.0
18.9
24.6
24.6
24.6
24.6
24.6
14.8
24.2
24.2
24.2
24.2
24.2
22.4
22.5
22.5
23.0
24.6
24.6
24.6
24.6
24.6
24.7
27.7
24.7
24.7
25.0
25.0
23.5
18.0
18.0
18.0
18.0
18.0
18.0
24,20
24.2

Vessel name Capacity Speed

(TEU) (knots)
Yun Long

Yu Quan Shan
Yu Xi Quan

Zeus II

Zhao Gang No.1
Zhao Qing He

Zhen He
Zhen Wu

Zhi Shan 1
Zhong Hang 608
Zhong Hang 901
Zhong Hang 903
Zhong Hang 905
Zhong Hang 909
Zhong Hang 912
Zhong Hang 913
Zhong Hang 915
Zhong Hang 916
Zhong Hang 917
Zhong Hang 919
Zhong Hang 920

Zhong He
Zhuang He

Zhu Chuan 992
Zhu Hai 203
ZIM Adriatic
ZIM America

ZIM Asia
ZIM Atlantic

ZIM Barcelona
ZIM Buenos Aires

ZIM California
ZIM Canada
ZIM China
ZIM Dalian
ZIM Eilat I

ZIM Europa
ZIM Florida
ZIM Haifa I

ZIM Hong Kong
ZIM Iberia
ZIM Israel
ZIM Italia

ZIM Jamaica
ZIM Japan

ZIM Keelung
ZIM Korea

ZIM Mediterranean
ZIM New York

ZIM Pacific

83
345

2728
72

3801
108
36
36
80
80
80
60
104
104
120
96
118
118
118

4215
1668
42
72

12.0

12.6
20.5

16.5
22.5

22.0
15.5

2810 19.0
3029 21.0
3429 21.7
3429 21.7
4992 24.0

19.5
4992 24.0
3029 21.0
3429 21.7
2998 21.0
2606 21.0
3429 21.7
3005 20.0
2810 19.0
3029 21.0
3429 21.7
3029 21.0
3029 21.0
3429 21.7
3029 21.0
2810 19.0
3029 21.0

24.0
4992 24.0
3429 21.0
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Maersk Gateshead
Maersk Georgia
Maersk Gironde
Maersk Missouri
Maersk Virginia
Magleby Maersk
Majestic Maersk
Marchen Maersk
Maren Maersk

Margrethe Maersk
Marie Maersk
Marit Maersk

Marstal Maersk
Mathilde Maersk
Mayview Maersk

Mc-Kinney Maersk
Mette Maersk

Munkebo Maersk
Nele Maersk

Nexoe Maersk
Nicolai Maersk

Nikoline Maersk
Nora Maersk

Nysted Maersk
Regina Maersk

Sea-Land Champion
Sea-Land Charger
Sea-Land Comet
Sea-Land Eagle

Sea-Land Freedom
Sea-Land Intrepid

Sea-Land Lightning
Sea-Land Mariner
Sea-Land Mercury
Sea-Land Meteor
Sea-Land Pride
Sea-Land Racer
Sea-Land Value

Sally Maersk
Sine Maersk

Skagen Maersk
Sofie Maersk

Soroe Maersk
Sovereign Maersk

Susan Maersk
Svend Maersk

Svendborg Maersk
Taasinge Maersk

Thies Maersk
Thomas Maersk
Thuroe Maersk
Tinglev Maersk

4300
4300
4300
4300
4300
4300
4300
4300
4300
4300
4300
4300
4000
4300
4300
4300
4300
4000
2200
2200
2200
2200
2200
2026
6000
3733
3733
3733
3733
2344
3733
3733
2344
3733
3733
3918
3733
3612
6600
6600
6600
6600
6600
6600
6600
6600
6600
1750
1350
1500
1350
1500

24.0
24.2
24.2
24.3
24.0
23.5
23.5
23.0
23.0
23.0
23.5
23.0
24.5
23.0
23.5
23.5
23.0
24.5
21,80
21,80
21,80
21,80
21,80
21.8
24.6
24.0
24.0
24.0
24.0
20.3
24.0
24.0
20.3
24.0
24.0
21.0
24.0
21.0
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
19.0
18.6
18.9
18.6
18.9

ZIM Panama
ZIM Piraeus

ZIM Ravenna I
ZIM Shanghai
ZIM Shenzhen

ZIM Singapore I
ZIM USA

ZIM Venezia II
ZIM Virginia

Zi Ya He
Hyundai Republic
Hyundai Kingdom
Hyundai National

Hyundai Dominion
Hyundai Patriot

Hyundai Independence
Hyundai Liberty

Hyundai Discovery
Hyundai Freedom
Hyundai Fortune
Hyundai General
Hyundai Highness
Hyundai Admiral
Hyundai Baron

Hyundai Commandore
Hyundai Duke

Hyundai Emporer
Hyundai Federal
Hyundai Explorer
Hyundai Poineer
Hyundai Frontier

Hyundai Commander
Hyundai Vladivostok

Hyundai Future
Hyundai Stride

Hyundai Advance
Hyundai Sprinter

Hyundai Progress
Hyundai Highway
Hyundai Bridge

Hyundai Primorskiy
Hyundai Infinity
Hyundai Nobility

Suzuran
Asian Zephyr
Cape Canet
Doris Waluff

Saturn
Star Eagle

Star Evanger
Star Evviva
Star Florida
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4992
5000
2998
4992
2633
2474
3429
2682
4992
764

6479
6479
6479
6479
6479
5551
5551
5551
5551
5551
5551
5551
4411
4411
4411
4411
4411
4411
3014
3014
3014
3014
2174
2174
2174
2174
2174
2174
2174
2174
628

2241
2241
1177
1032
834
1203
1129

24.0

21.0
24.0
21.0
21.0
21.7
21.0
24.0
19.2
26.4
26.4
26.4
26.4
26.4
25.6
25.6
25.6
25.6
25.6
25.6
25.6
25.1
25.1
25.1
25.1
25.1
25.1
21.7
21.7
21.7
21.7
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
15.8
23.0
23.0
18.1

18.5
18.0
19.5
18.5
15.0
15.0
15.0
15.0



Tobias Maersk
Torben Maerks
Tove Maersk
Trein Maersk

Troense Maersk
Achim

ACX Dahlia
ACX Hibiscus

ACX Lily
ACX Magnolia

ACX Marguerite
ACX Marigold
ACX Primrose
ACX Raffiesia

Agios Dimitrios I
Akashi Bridge

Akinada Bridge
Alexandria
Al Mariyah
Alva Star
Al Wajba

Ambassador Bridge
America Senator

Anan Bhum
An Rong 1

Aotea
Apollon I

Arafura
Aramac

Aris I

Asian Glory
Asian Gyro

Astoria Bridge
Atlantic Cartier

Atlantic Companion
Atlantic Compass
Atlantic Concert

Atlantic Conveyor
Australia Bridge

Bai Yun He
Baltrum Trader

Banga Bijoy
Banga Biraj
Banga Birol

Banga Bodor
Banga Bonik
Banga Borak
Banga Borat
Banga Lanka
Bao Zhong 23
Bao Zhong 68

Barcelona Bridge

1300
1300
1350
1300
1350

1430
1430
1250
181

1480
1467
820

1430
3428
3456
5600
400

2199
3209
2199

2661
993
116

1842
1566
2432
2732
1810
357
1032
2258
3100
3100
3100
3100
3110
2400
1674
2470
456
669
606
510
500
510
846
538
66

140
3965

18.0
18.0
18.6
18.0
18.6
15.5
19.5
19.5
19.0
19.5
19.0
19.0
19.5
19.5
18.5
23.0
25.0
17.5

21.0

21.5

16.5

21.0

14.3
18.5
20.0
18.0
18.0
18.0
18.0
18.0

20.0
21.0

23.1

Star Fraser
Star Fuji

Star Geiranger
Star Gran

Star Grindanger
Star Grip

Star Hidra
Star Hoyanger
Star Ikebana

Star Inventana
Star Isoldana

Star Istind
Star Isfjord

Star Ismene
Adeline Delmas

Africa
Alpana
Astrid

Blandine Delmas
Bougainville

Caroline Delmas
Delmas Acacia

Delmas Aloe
Delmas Blosseville

Delmas Cartier
Delmas Casablanca

Delmas Charcot
Delmas Forbin

Delmas Fjacaranda
Delmas Kenya

Delmas Kerguelen
Delmas Mascareignes

Delmas Sycamore
Delmas Tourville
Delphine Delmas

Eax Sanctity
Elisa Delmas
Flora Delmas
Gaby Delmas

Giorgia
Heide

Kaduna
Kamina
Kwanza

La Bourdonnais
Laura Delmas

Lauren
Lucie Delmas
Madagascar

Marie Delmas
Mirella

Mol Horizon
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15.0
15.0
15.0
15.0
15.0
15.0
16.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
13.5
18.0
20.0
13.5
13.5

13.5
18.5
18.5
19.0
20.0
15.5
19.6
21.0
18.5
17.0
20.5
18.5
18.0
20.0
13.5

20.3
20.3
20.3
18.0
15.5
15.3
16.5
19.0

19.0
23.0
19.0

22.6
19.0
16.5

937
1935
1664
574
937
1730
937
676
676
1202
1728
518

1706
1740
676
1158
1740
1466
789
1730
937
940
1614
1614
1614
1935
582
511
1113
4355
1600
4473
2150
4473
1346
2207
2152
1113



Bay Bridge
Beauty River

Berlin Senator
Bimba 1

Bin Cheng
Bin Dong Shan

Bing He
Blue Moon

Bonn Express
Bonvoy 88

Bo Shi Ji 386
Bosporus Bridge

BPW 2031
Bremen Bridge

Bremen Senator
Bunga Mas Empat

Bu Yi He
Cai Yun He

California Luna
California Senator
Camilla Rickmers

Cap Colville
Cap Delgado

Cape Campbell
Cape Canaveral

Cape Canet
Cape Coldbek

Cape Cook
Caraka JN3-9
Caraka JN319

Carinthia
Caroline Schulte
CEC Mayflower

CEC Morning
Centre Point 28
Chang An 104

Chang Jiang Bridge
Chang Sheng 301
Chang Xing 108
Chang Xing 208

Chao He
Chao Shan He

Cherokee Bridge
Chesapeak Bridge

Chesapeak Bay Bridge
Chicago Bridge
Chiswick Bridge

Chuan He
Chun He
Concord

Concord Bridge
Conti Arabian

2257
1932
3007
74

724
78

1696
614

2803
279
45

3210
350

5576
1730
135

3400
1432
2916
2850
1728
1510
2442
834
356
590
834
834

128
2824
2532
650
650
80
104

3456
74
48
48

1322
836

4226
4226
3400
5576
5600
5446
1322
1452
3482
1466

20.0
17.5
21.0

15.5
9.0
14.5
16.0
22.8
11.5

24.0

21.0
19.0
22.0

20.0

21.5
18.5
16.0
18.5
18.5
18.5
10.0
10.0
24.0
21.0
20.2
20.2

24.0

17.2
17.0
24.5
24.5
21.0
25.0
25.0
22.5
16.0

23.0
18.5

Mol Karina
Nicolas Delmas

Paraguay
Parana

Patricia Delmas
Ponl Mahe

Rejane Delmas
Reunion

Rokia Delmas
Roland Delmas
Romain Delmas

Rosa Delmas
Roxanne Delmas

Saint Roch
Santa Barbara I

Santa Margherita
Sassandra

St Pauli
Trave Trader

CSAV Shanghai
Copiapo
Ikoma

CSAV Callao
CSAV Shenzhen

Buxfavourite
IGA

Sea Puma
IZU

Alice Rickmers
Donna Schulte
CSAV Livorno
CCNI Ancud

CSAV Barcelona
CSAV Genova
Alianca Bahia
Alianca Brasil

Alianca Europa
Alianca Hong Kong
Alianca Ipanema

Alianca Macarena
Alianca Sao Paulo
Alianca Shanghai
Alianca Singapore

Alianca Urca
Ankara
Arnis

Berulan
Cabo Creus
Cap Aguilar
Cap Blanco

Cap Bonavista
Cap Carmel
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22.6
18.0
17.5
16.5

18.0

16.0
17.0
17.0
16.0
15.5
17.0
19.2
20.0
19.0
14.0
21.0

770
2207
1935
2129
1113
1104
1684
1364
5278
3308
3308
2578
3590
3308
1742
1895
4355
411
1608
2214
2074
1613
2524
2450
2456
1613
2205
1613
1900
2256
1878
1816
1878
1829
2460
2045
2045
2468
2233
2233
2524
2442
2456
1151
1388
1208
907

2524
1740
2154
2442
2542



Conti Cartagena
Conti Jork

Conti Valencia
Cosco Antwerp
Cosco Atlantic

Cosco Cape Town
Cosco Felixstowe
Cosco Hamburg

Cosco Hong Kong
Cosco Kiku

Cosco New York
Cosco Norfolk

Cosco Qingdao
Cosco Ran

Cosco Redsea
Cosco Rotterdam

Cosco Sakura
Cosco Sao Paulo
Cosco Shanghai
Cosco Singapore

Cosco Tianjin
CRC No. 1

Da He
Dainty River
Da Qing He

Daxin
Delaware Bridge

Diman II

Donau Bridge
Dong He

Dong Rong
Dong Xu

Dong Yun 009
Dong Yun 030
Dong Yun 556

Dubai
Duburg

Eagle Express
Eagle Strength

E Cheng
Elbe Bridge

Elisabeth Schulte
Empress Dragon
Empress Heaven
Empress Phoenix

Empress Sea
En Hui

En Yuan
Ever Able
Ever Ally

Ever Apex
Ever Dainty

2432
1597
2305
5446
2054

5446
5446
5446
542

2728
3330
5446
542
1164
5446
542

5446
5446
5752
96

3801
1932
764
588

4452
1822
4038
2761

58
83
36
24
96

2199
1464
1704
725
680

2532
3494
3494
3494
3494
88
88

1164
1164
1164
4211

20.0
18.0
21.0
24.5
21.4
22.2
24.5
24.5
24.5
18.0
17.5
22.0
24.5
18.0
18.7
24.5
18.0
22.2
24.5
24.5
26.3

24.0
18.5
19.2
15.6

19.0

18.5

9.5

21.0
17.0
18.3
24.5
21.9
21.0
21.0
21.0
21.0

20.5
20.5
20.5
25.0

Cap Castillo
Cap Colorado
Cap Colville
Cap Cortes

Cap Domingo
Cap Ferrato

Cap Finisterre
Cap Frio

Cap Lobos
Cap Norte

Cap Ortegal
Cap Pasado

Cap Pilar
Cap Polonio
Cap Reinga
Cap Roca

Cap San Antonio
Cap San Augustin
Cap San Lorenzo
Cap San Marco

Cap San Nicolas
Cap San Raphael

Cap Velas
Cap Vilano

Cap Vincent
Castor

City of Glasgow
City of Hamburg
City of Istanbul

City of Manchester
City of Tunis

Columbian Express
Columbus Australia
Columbus Canada
Columbus China
Columbus Florida

Columbus Victoria
Columbus Waikato

Copacabana
Courier

Damaskus
Flamengo

Independente
Intrepido

Kairo
Kapitan Kurov

Karthago
Leblon

Mekhanik Kalyuzhniy
Santa Felicita

Santa Fiorenza
Santa Francesca
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2442
1510
1510
1651
2100
2478
2023
2456
1645
2468
2442
1550
1581
2023
1651
2640
3739
3739
3739
3739
3739
3739
1709
1742
1835
1129
956

2228
1232
300
1709
752

2062
1215
2524
1651
1229
1837
1402
1452
1645
1254
1138
1138
1709
1250
1354
1157
1167
2169
2169
2169



Ever Delight
Ever Deluxe
Ever Diadem

Ever Diamond
Ever Dynamic
Ever Gaining
Ever Gallant
Ever Garden
Ever Gather
Ever General
Ever Genius
Ever Gentle
Ever Gentry
Ever Gifted
Ever Given

Ever Glowing
Ever Golden
Ever Goods
Ever Govern
Ever Growth
Ever Guest
Ever Guide
Ever Uberty
Ever Ultra

Ever Union
Ever Unique
Ever Unison
Ever United
Ever Uranus
Ever Urban
Ever Useful
Fair Wind 18
Fair Wind 28

Faith I

Fang Gang 1001
Fang Gang 3
Fang Gang 6

Fei He
Fei Yun He

Feng Da 328
Feng Guang 2
Feng Shun 8
Feng Yun He
Fo Hang 906

France
Franconia

Franklin Strait
Fu Feng

Fu Feng Shan
Fu Gang 811
Fu Gang 812
Fu Gang 815

4211
4211
4211
4211
4211
3428

2728
2728
3428
2868
2868
2868
2728
3428

2868
3428
2868
2728
3428
2390
5364
5625
5364
5364
5364
5364
5652
5652
5652
120
120

3428
54
32
45

3764
1702

16
80

208
1432
60

4158
946
518
132
132
96
52
96

25.0
25.0
25.0
25.0
25.0
21.7
22.1
21.7
20.5
20.7
21.3
21.3
21.3
21.0
22.2
21.9
21.3
22.2
21.3
22.5
22.2
22.0
25.0

25.0
25.0
26.7

25.0

18.5
8.0

8.0
23.0
20.2
7.0

19.0

23.1
20.0
15.5

Santa Isabella
Santos Express

Sea Tiger
Stoja

Tausala Samoa
Uranus

Vernuda
Westmed II

Global Rio
Bruarfoss
Dettifoss
Godafoss
Manafoss
Selfoss

Skogafoss
Heinrich S
Agiasofia
Angeln

Athena I

Birk
Cala Paestum
Caribbean Sea

Conti Barcelona
Dimitra II

Ever Gleamy
Ever Grade
Ever Peace
Ever Pearl
Ever Racer
Ever Reach
Ever Refine

Ever Renown
Ever Repute
Ever Result

Ever Reward
Ever Right

Ever Round
Ever Royal
Ever Unific
Ever Unity

Green Modest
Green Moral
Hansa Africa
Hansa India
Hatsu Ethic
LT Going

Pelopensian Pride
Poseidon VII
Rhoneborg
UNI Accord
UNI Ahead
UNI Ardent
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2400
2532
2562
703
1116
1835
703

1181

724
1457
1457
518
724
416

2474
1555
657
1894
657

1645
3681
1597
1894
2728
2728
1618
1618
4229
4229
4229
4229
4229
4229
4229
4229
4229
4229
5652
5652
951
951

3424
3424
6332
2728
3428
1894
1643
1164
1164
1164

14.0

21.0
17.6
17.5
21.0
17.0
21.0
24.0
18.0
21.0
20.5
20.5
19.3
19.3
23.0
23.0
23.2
23.2
23.2
23.2
23.2
23.0
23.0
23.0
25.0
25.0
15.5
15.5
23.5
22.8
24.5
20.5
18.0
21.0
17.5
18.7
18.7
18.7



Fu Gang 816
Fu Gang 818

Fu Tai
Gallant Wave
Ganta Bhum
Gao Cheng

Gao He
Gao Yao Gang No. 1

Genoa Bridge
George Washington Bridge

Gigi
Gihock
Gijoo
Gikim

Gileong
Gi Lian
Gimeng

Ginter Star
Giseng
Gisiang
Gisoon
Giswee
Global 3
Glory D

Golden Cloud
Golden Gate Bridge

Golden Star
Great Pride

Guang Da Lun
Guang Liong Lun
Guang Xing Lun
Guan Hang 109
Guan Hang 238
Guan Hang 278
Guan Hang 362
Guan Hang 393

Gulf Bridge
Guo Dian 1001
Haifenglianfa

Hai Feng Shan
Hakone

Han Bo 1 Hao
Han Bo 2 Hao

Han Da
Hang Feng
Ha Ni He

Han Jiang He
Hanjin Amsterdam

Hanjin Athens
Hanjin Barcelona

Hanjin Basel
Hanjin Beijing

96
96
63

1510
1094
724

2761
36

5600

152
504
152
276
597
396
235
278
191

384
191

202
100
946
618
5610
208
538
45
45
45
64
60
60
84
45

1984
106
358
283
1864
66
66
51

140
3400
422

5618
5618
4024
5753
5302

10.0
18.0
18.0
15.6
18.5
9.0

25.0
21.5
11.0
14.0
11.0
10.5
14.0
12.0
12.5
15.0
11.0
13.5
11.0
11.0
8.0

18.0

24.4

14.2

10.0

9.0

19.0

13.5
11.5

10.0

21.0
17.5
26.3
26.3
24.0
26.3
26.4

UNI Assent
UNI Forever
UNI Fortune
UNI Oasis

UNI Onward
UNI Order
UNI Orient

UNI Phoenix
Vlaherna

Vladivostok
Kapitan Afanasyev

Fesco Voyager
Amsteldiep

Anna J
APL Manaus

Argana
Argonaut

Astor
Aynur Urkmez

Baltimar Boreas
Beliz Urkmez
Cape Falcon

Castor
Chesapeak Bay

City of Cape Town
City of Stuttgart
Colombo Bay

Columbus New Zealand
Delaware Bay

Endeavor
Endurance
Enterprise

Genua Express
Heemskerck

Heide J
Ijsseldijk

Jervis Bay
Karin B

Luetjenburg
Marivia

Mercosul Palometa
Mercosul Pescada
Mercosul Uruguay

Merkur Lake
Mount Ida

Nedlloyd Africa
Nedlloyd America

Nedlloyd Asia
Nedlloyd Clarence
Nedlloyd Clement
Nedlloyd Europa

Nedlloyd Hong Kong
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18.7
16.5
16.5
15.6
14.8
15.6
14.8
18.7
17.6
18.5
18.5
20.0

1164
978
953

1170
1278
1170
1182
1618
1555
1748
1748
1684
446
198
1016
353
1236
1129
580
256
580

1200
446

2411
3126
1900
4224
4112
2411
1928
1928
1928
2157
3230
202
301

4224
350

3510
2082
1512
1730
740

1012
724

3604
3604
3604
2515
2470
3604
4169



Hanjin Bremen
Hanjin Brussels

Hanjin Cairo
Hanjin Chicago
Hanjin Colombo

Hanjin Copenhagen
Hanjin Elisabeth

Hanjin Felixstowe
Hanjin Geneva

Hanjin Gothenburg
Hanjin Hamburg
Hanjin Helsinki

Hanjin Kaohsiung
Hanjin Kelung
Hanjin Lisbon
Hanjin London

Hanjin Los Angeles
Hanjin Madrid
Hanjin Malta

Hanjin Marseilles
Hanjin Nagoya

Hanjin New York
Hanjin Osaka
Hanjin Oslo

Hanjin Ottawa
Hanjin Paris

Hanjin Pennsylvania
Hanjin Philadelphia

Hanjin Phoenix
Hanjin Portland
Hanjin Praha

Hanjin Pretoria
Hanjin Rome

Hanjin San Francisco
Hanjin Savannah
Hanjin Shanghai
Hanjin Singapore

Hanjin Taipei
Hanjin Tokyo

Hanjin Valencia
Hanjin Vancouver

Hanjin Vienna
Hanjin Washington
Hanjin Wilmington

Han Long
Hansa Stavanger

Hanseduo
Han Shui He
Han Tao He

Han Zhong He
Hao Sheng 101

Happy Island

2692
5618
5447
5752
4024
5618
2846
2692
5752
5447
2692
5447
2692
2668
5752
5306
4024
5752
4024
4024
4024
4038
4024
5308
5618
5302
4389
4389
4389
4024
4389
4389
5308
4024
4038
4024
2666
5447
4024
4024
2692
5752
5302
4024

52

500
422
422
422
96

400

22.0 Nedlloyd Honshu
26.3 Nedlloyd Oceania
25.9 Newport Bay
26.3 Olivia
24.0 Oriental Bay
26.3 P&O Nedlloyd Abidjan
21.0 P&O Nedlloyd Acapulco
21.0 P&O Nedlloyd Accra
26.3 P&O Nedlloyd Aconcagua
24.0 P&O Nedlloyd Adelaide
21.0 P&O Nedlloyd Adriana
24.2 P&O Nedlloyd Agulhas
21.0 P&O Nedlloyd Algoa
22.0 P&O Nedlloyd Altiplano
26.3 P&O Nedlloyd Andes
26.4 P&O Nedlloyd Antisana
24.0 P&O Nedlloyd Apapa
26.3 P&O Nedlloyd Araucania
24.0 P&O Nedlloyd Atacama
24.0 P&O Nedlloyd Bantam
24.0 P&O Nedlloyd Barentsz
22.0 P&O Nedlloyd Barossa Valley
24.0 P&O Nedlloyd Beirut
26.0 P&O Nedlloyd Botany
26.3 P&O Nedlloyd Brisbane
26.4 P&O Nedlloyd Brunel
24.3 P&O Nedlloyd Buenos Aires
24.3 P&O Nedlloyd Cagliari
24.3 P&O Nedlloyd Calypso
24.0 P&O Nedlloyd Caracas
24.3 P&O Nedlloyd Caribbean
24.3 P&O Nedlloyd Cesme
26.4 P&O Nedlloyd Chania
24.1 P&O Nedlloyd Christine
22.0 P&O Nedlloyd Chusan
24.0 P&O Nedlloyd Cobra
22.0 P&O Nedlloyd Cook
25.9 P&O Nedlloyd Curacao
24.0 P&O Nedlloyd Damietta
24.0 P&O Nedlloyd Dejima
21.0 P&O Nedlloyd Drake
26.3 P&O Nedlloyd Dubai
26.4 P&O Nedlloyd Encounter
24.0 P&O Nedlloyd Houston
10.0 P&O Nedlloyd Houtman
20.0 P&O Nedlloyd Hudson
16.0 P&O Nedlloyd Hunter Valley
17.5 P&O Nedlloyd Inca
17.5 P&O Nedlloyd Juliana
17.5 P&O Nedlloyd Kobe

P&O Nedlloyd Kowloon
15.0 P&O Nedlloyd Los Angeles
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4181
3604
4224
1452
4180
2506
2556
2506
2556
3005
2556
2506
2506
2556
2556
2556
2506
1102
2556
3430
5468
2602
1717
4112
2686
2080
1779
970
1730
4253
4253
1022
1012
856

3430
4038
6802
1012
3607
3430
5468
2732
4112
1779
6802
5468
2478
923

2556
6690
6690
1548



Hatsu Eagle
Hatsu Elite

Hatsu Envoy
Hatsu Excel
Hatsu Pride
Hatsu Prima

Heidelberg Express
Henry Hudson Bridge

Hera
Hermes III

Hong Kong Senator
Hong Yun He
Honor River

Hope
Howrah Bridge

Hsh Ubin
Hua Chang Hai 16

Hua Hang 229
Huai Ji He

Huai Lai He
Hua Lun 1
Hua Tai He
Hua Yun He
Hui Long 7

Hui Xin Hang 508
Humber Bridge
Humen Bridge
Hunsa Bhum
Hu Tuo He

Hyundai Challenger
Hyundai Innovator

Ibn Sina
Indonesian Star

Intra Bhum
Jade Trader

James River Bride
Japan Senator

Jaru Bhum
Ji Hai Xiang
Jing Po He

Jin Hai Feng
Jin Hai Yan

Jin He
Jin Long Jiang

Jin Sheng
Jing Yun He
Jun Chuan 9

Jupiter Bridge
Jurong Bauhinia

Kaido
Kai Fa

Kai Yue

6332
6332
6332
6332
1618
1618
3468

2728
1926
2850
1700
1932
3480
2257
2097
150
36

424
724
100
1216
1700

3456
3008
1094
764

3014
3014
2850
1203

1122
5610
2661
640
96

3400
36
52

5446
71

386
1432
120

5551
802
450
90
113

24.5 P&O Nedlloyd Magellan
24.5 P&O Nedlloyd Mahe
24.5 P&O Nedlloyd Mairangi
24.5 P&O Nedlloyd Malindi

P&O Nedlloyd Marita
18.7 P&O nedlloyd Maxima
22.0 P&O Nedlloyd Mercator
21.5 P&O Nedlloyd Muisca
18.5 P&O Nedlloyd Nina

P&O Nedlloyd Obock
21.3 P&O Nedlloyd Olinda
20.0 P&O Nedlloyd Palliser
16.5 P&O Nedlloyd Panama
21.0 P&O Nedlloyd Pantanal
20.0 P&O Nedlloyd Pinta
17.0 P&O Nedlloyd Regina

P&O Nedlloyd Remuera
P&O Nedlloyd Rotterdam

16.9 P&O Nedlloyd Salsa
17.3 P&O Nedlloyd Samba

P&O Nedlloyd San Francisco
24.8 P&O Nedlloyd Seattle
20.0 P&O Nedlloyd Shackleton
154.0 P&O Nedlloyd Singapore
60.0 P&O Nedlloyd Southampton
21.0 P&O Nedlloyd Stuyvesant
21.0 P&O Nedlloyd Surat
18.0 P&O Nedlloyd Susana
19.2 P&O Nedlloyd Taranaki
20.5 P&O Nedlloyd Tasman
20.5 P&O Nedlloyd Tema

P&O Nedlloyd Teslin
16.0 P&O Nedlloyd Thekwini
14.5 P&O Nedlloyd Torres
19.8 P&O Nedlloyd Trinidad
25.0 P&O Nedlloyd Valentina
19.5 P&O Nedlloyd Vera Cruz
14.5 P&O Nedlloyd Vespucci

P&O Nedlloyd Xiamen
21.0 Peninsula Bay
8.5 Providence Bay
8.5 Repulse Bay

23.0 San Lorezo I
10.0 Santa Federica
18.0 Shenzhen Bay
19.0 Singapore Bay

Stadt Kiel
25.9 Sydney Express
16.5 Tai Chuang
15.0 Ulsnis

Volkers
Providence
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5642
1104
4112
1116
2556
2556
5468
1102
2014
384
3430
4112
3014
2474
2394
2556
4112
6690
2061
1742
1716
3450
6802
2169
6690
6802
3430
2556
1270
5468
1511
2556
1055
5642
384

2556
1779
5642
2986
4180
4224
4224
1512
2169
4224
4224
373

4112
1034
1388
374
1624



Kasuga 1

Khaled Ibn Al Waleed
Kota benar

Kota Bintang
Ksh Kusu

Kuoyu
Kwong Ta No. 8

Lan Shi 10
Lausanne
Lian Fa 66
Lian Fa 67
Lian Feng
Liao He
Lilium

Ling Chang He
Ling Quan He
Ling Yun He
Lin Hai 103

Lions Gate Bridge
London Senator

Long Beach Bridge
Long He

Long Lun 103
LT Garland
LT Genova

LT Giant
LT Grand
LT Greet
LT Guard

LT Lloydiana
LT Pearl

LT Popular
LT Power
LT Trieste
LT Ulysees
LT Unica

LT Unicorn
LT Unity

LT Universo
LT Ursula

LT Usodimare
LT Utile
Lu He

Lumoso Express
Lunar River
Luo Ba He

Luo He
Lu Sheng

Lykes Ambassador
Lykes Deliverer

Lykes Discoverer
Lykes Explorer

2450
2211
764
476
1674
1169
132
64

2826
140
140

1234
387
377
672
1702
54

5610
2850
5576
725
52

3428
2987
2728
2728
2728
2868
2511
1618
1566
1618
2820
5652
4948
5652
5652
5346
5652
4948
5652
5446
138
494
3400
1234
127

3266
4051
3026
3026

17.0
15.0
17.5
18.0

24.0

12.0
17.7
15.0
12.5
16.1

20.3

25.0

25.0
18.9
10.0
21.0
21.0
17.5
20.5
17.5

20.0
19.3
21.0
18.7
17.5
25.0
25.0
25.0
25.0
25.0

25.0
25.0
24.5

19.5
21.0
18.3

11.5

18.8
18.8

Karukera
Anterpen Express

Tokyo Express
Bremen Express

Rotterdam Express
Kuala Lumpur Express

New York Express
Singapore Express

Kobe Express
Dusseldorf Express

London Express
Hannover Express

Leverkusen Express
Dresden Express
Hoechst Express

Ludwigshafen Express
Essen Express

Stuttgart Express
Paris Express

Busan Express
San Francisco Express

Bankok Express
Los Angeles Express

Berlin Express
Hong Kong Express
Hamburg Express
Shanghai Express
Santiago Express
Humboldt Express
Frankfurt Express

Abu Dhabi
Al Abdali

Al Farahidi
Alnoof
Asir

Deira
Fowairet

AlMutanabbi
Najran

Al Sabahia
MSC Brasilia
MSC Carla

MSC Germany
MSC Levina

MSC Maria Laura
MSC Pretoria
Hammurabi
Hanjin Berlin

Al Ihsa'a
PONL Beirut

Port Said Senator
AL Manakh
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24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
25.6
25.6
25.6
25.6
25.0
25.0
25.0
25.0
18.0
18.0
23.0

1624
4890
4890
4890
4890
4890
4890
4890
4612
4612
4612
4639
4639
4639
4639
4639
4639
4639
4639
6732
6732
6732
6732
7506
7506
7506
7506
2181
2181
3430
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3074
3022
2708
2900
2557
2829
2199
5302
2199
1665
1718
2199



Lykes Hero
Lykes Innovator
Lykes Liberator
Lykes Motivator
Lykes Navigator
Lykes Pathfinder
Mackinac Bridge

Maersk Doha
Maersk Norfolk

Man Fu
Manhattan Bridge

Maple River
Mare Balticum
Mare Doricum
Mare Lycium

Mare Thracium
Margret Knueppel

Mathu Bhum
Matsuko

Med Taipei
Mentor

Mercury Bridge
Merkur Bay
Methi Bhum

Mild Lin
Mild Star
Mild Sun

Mild Union
Min Feng

Ming America
Ming Asia

Ming Bamboo
Ming Cheng

Ming Cosmos
Ming Cypress

Ming East
Ming Europe
Ming Green

Ming Longevity
Ming North

Ming Ocean
Ming Orchid
Ming Pine
Ming Plum
Ming South
Ming West

Ming Zenith
Min He
Min Su

Min Tai No.2
Min Tai No.4
Min Tai No.5

3026
2808
3026
2954
3026
2280
2875
4158
2300
72

2157
1054
1054
3900

532
1080
564

2550
294

5551

928
746
422
422
443
308

3494
3604
5551
724

5551

3502
3604
5551
1984
3502
1984
5551
5551
5551
3502
3502
3052
2761
144
106
140
80

21.0
22.0
18.8
21.7
18.8
19.8
21.5

20.0

22.4
18.0
17.5
17.5
24.0
21.0
16.0
17.0
20.7
21.0

25.9
23.0
17.0
15.5
15.0
15.0
14.0

21.2
21.2
25.9
15.6
25.9
25.9
24.0
21.2
25.9
19.0
24.0
19.0
25.9
25.9
25.9
24.0
24.0
24.0
18.5

Canmar Bravery
Canmar Endurance

Canada Senator
Canmar Glory

Canmar Triumph
Canmar Valour
Canmar Victory

Al Mirqab
Qatari Ibn Al Fuja'a
Norasia Valparaiso
CMA-CGM Eiffel

Norasia Enterprise
CMA-CGM Vernet
CMA-CGM Vega

CMA-CGM Mercure
CMA-CGM Neptune

DAL Kalahari
DAL Madagascar

Karonga
OOCL Hamburg

OOCL Long Beach
OOCL Ningbo

OOCL Qingdao
OOCL Rotterdam
OOCL Shenzhen
OOCL Chicago

OOCL San Francisco
OOCL Netherlands
OOCL Singapore
OOCL America
OOCL Britain

OOCL California
OOCL China

OOCL Hong Kong
OOCL Friendship

OOCL Fair
OOCL Fidelity

OOCL Freedom
OOCL Envoy

OOCL Exporter
OOCL Montreal
OOCL Belgium
MV Helgafell
MV Arnafell

MV Skaftafell
MS Jokulfell
MV Regina J
MV Kurske
MV Adele J
MV Carina
MV Virtsu

MV Dirhami
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1737
1952
2017
1074
1061
1061
1053
2199
2199
4100
3900
4444
3538
3900
4369
4365
3177
1730
1191
8063
8063
8063
8063
8063
8063
5714
5714
5390
5390
5344
5344
5344
5344
5344
3218
3161
3161
3161
2544
2544
4402
2808
703
703
364
140
395
266
202
202
266
266

16.5
16.5
15.5
13.8
15.0
13.0
12.5
12.5
14.0
14.0



Min Tai No.6
Min Yun He
Mol Glory

Mol Triumph
mol Wellington

Montreal Senator
MSC New Plymouth

Na Xi He
Nevelsk

New Blessing
Newpac Cirrus

Newpac Cumulus
Newport Bridge

Nicolas Delamus
Nithi Bhum
Noble River
Nordseas

Nordstrand
Nordsun

Norfolk Express
Normandie Bridge
Northern Fortune
Northern Virtue
NYK Prosperity
OOCL Atlantic
OOCL Europe
OOCL Faith

OOCL Fortune
OOCL Harmony

OOCL Japan
OOCL Japan

Oriental Bright
Orient Brilliancy

OSG Argosy
Oxford

P&O Nedkowlown
P&O Nedlloyd Auckland
P&O Nedlloyd Genoa
P&O Nedlloyd Jakarta

P&O Nedlloyd Marseille
P&O Nedlloyd Newark
P&O Nedlloyd Sydney

Pac Bali
Pac Banda
Pac Bintan

Pacific Envoy
Pacific Senator

Palermo Senator
Panagia Tinou
Pancaran Sinar

Pan He
Patmos Senator

72
1432
2400
2400
1600
1174
1550
3400
270
706
650
650

3456
2207
928
969

1400
2280
1158
3607

1899
2987

3607

3161
2880
2500
5344
2762
1001

545
279
821

6690
2890
2890
2890
2890
2720
2890
306
314
306
728

2661
2661

916
725

2661

19.0
20.6
22.0

18.0

21.0
12.5
16.5
20.2
20.2
23.0
21.8
17.0
15.0
20.0
20.0
17.0
23.5
23.0
19.3
22.0
22.5
23.5
23.8
20.5
20.5
22.0
23.0
22.0
17.0
15.0

21.5
21.5
21.5
21.5
22.0
21.5

16.3
18.0
18.0
22.0
16.0
16.8
18.0

MV Kalana
MV Muuga

CMA-CGM Rodin
Libra New York
Ocean Trader

Libra Buenos Aires
MV Marienborg

ACX Cherry
ACX Cosmos
ACX Hokuto
ACX Lilac

ACX Sakura
ACX Swan
Angela J

California Jupiter
California Mercury

Cape Charles
Cape May

Commodore
Conti Malaga

Hansa Constitution
Hotaka Maru

Ipanema
Iris

Iwaki
Iwashiro

Kaedi
Kaga

Kamakura
Katsuragi

Kitano
NYK Andromeda

NYK Antares
NYK Aphrodite

NYK Apollo
NYK Aquarius

NYK Argus
NYK Artemis
NYK Athena

NYK Canopus
NYK Castor

NYK Fantasia
NYK Freesia

NYK Kai
NYK Leo

NYK Libra
NYK Lodestar

NYK Lynx
NYK Lyra

NYK Pegasus
NYK Phoenix

NYK Pride
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14.0
13.0
21.5
21.7
21.0
22.0
19.0

266
266

2602
2526
1608
2470
1684
1048
1048
338
1430
1350
484
260

2841
2990
2829
2826
2764
2432
2760
1939
1613
2113
1613
1613
2020
3618
3611
3609
3618
6141
6141
6200
6200
6238
6238
6200
6200
6135
6135
2532
3468
3618
6200
6200
6200
6200
6200
6200
6238
2641



Peking Senator
Penang Senator

Pira Bhum
Pohang Senator

Ponl Nelson
Portland Senator
Portugal Senator
Potomac Bridge
Precious River

Pretty Lake
Pretty Ripple
Pretty River
Pretty Sea

Pretty Wave
Progress 3

Pudong Senator
Pugwash Senator

Pu He
Punjab Senator
Pusan Senator
Qian Jin 303
Qian Jin 310

Qian Yuan Shan
Quin Yun He

Qing Yun No.2
Qui He

Qi Yun He
Rainbow Bridge

Ratha Bhum
Ratstor

Reestborg
Resourceful
Rhein Bridge
Rialto Bridge

Ri Feng
River Aquamarine

River Crystal
River Elegance
River Wisdom

Rong Feng
Rotterdam Bridge

Rui Yun He
Saipan Winner

San Pedro Bridge
Santa Elena

Santa Giovanna
Santiago

Savannah
Sea Breeze
Seabright

Sea Dragon
Seto Bridge

4545
4545
628

4545
1600
4545
4545
3965
969
420
420
1932
316
316
126

4545
4545
2716
4545
4545

16
36

137
1702
30

1318
1432

628
516
558
100

3681
65

542
2157
3802
3802
524

5576
1702
428
3482

1664
2000
2868
261
517
424
2310

23.7
23.7
15.5
23.7

23.7
23.7
23.1
15.0

14.0
18.5
15.9
14.0
7.0

23.7
23.7
18.0
23.7
23.7

20.3
9.0
15.5
19.1

21.5
15.5
16.0
17.5
16.0
23.0
23.0

18.0
18.0
25.2
22.5
14.5
25.0
21.0
14.5
21.5
21.5
17.5
19.0
21.0
12.5
15.0
15.1

23.0

NYK Procyon
NYK Sirius

NYK Springtide
NYK Starlight

Provider
Sagar

Sakura
Sandra Azul

Sandra Blanca
Santa Barbara

Santa Cruz
Santa Monica

Sanuki
Satsuki
Settsu
Shima
Shion
Soga

Sophia Britannia
Sumida
Sumire

Victory 1

America Feeder
Angelica Schulte

ANL Australia
ANL Bass Trader

ANL Emblem
ANL Explorer
ANL Pacific

ANL Progress
Anne Catharina

APL Cyprine
Aron

Asturia
Athlete F

Baltic Tern
Banjaard
Barrier

Burak Bayraktar
Cap Canaille
Cap Melville

Carola
Cervantes

Cimil
City of Lisbon
City of Oporto

CMA CGM Aegean
CMA CGM Alabama

CMA CGM Alger
CMA CGM Amazonia

CMA CGM Arno
CMA CGM Balzac
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4895
6135
2893
2918
1782
1005
4931
4895
4895
2893
2918
2905
1157
1181
1152
1152
1122
1091
3618
1100
1181
3066
584
366

2668
642

3300
2266
4250
910
298

5016
333

2202
369
357
550
912
860
133

2532
1107
538
426
700
700

2811
2758
678
405
1668
6447

17.5
15.3
19.0
16.0
22.5
21.0
23.3
19.0
12.5
22.5
13.5
20.0
15.0
13.5
14.5
17.0
16.0
16.0
21.5
18.5
15.5
13.5
16.5
16.5
22.0
21.5
17.0
15.0
19.5
25.9



Sha He
Shamrock

Shang Cheng
Shanghai Bridge

Shanghai Senator
San He

Sheng He
Shi Gang 233
Shi Gang 388
Shimanami

Shi Tai 3 Hao
Shuang Feng Shan

Sinar Bali
Sinar Bangka
Sinar Batam
Sinar Bintan

Sinar Bontang
Sinar Java

Sinar Lombok
Sinar Salju
Sinar Solo

Sinar Sunda
Sinar Surya
Sing Ping
Siri Bhum
Sky Light
Sky River

Sky Success
Song Cheng

Song He
Song Yun He

Star River
Steamers Prudence

St Petersburg Mariner
Su Da

Suez Canal Bridge
Sui Da 3

Sui Jian Hang JI 129
Sui Jian Hang JI 131

Sui Jian Hang 133
Sui Shun 101

Sui Shun Hang 28
Sui Shun Hang 32

Sui Sun 77
Sui Wu 501
Sui Xing 3

Sui Yue 2 Hao
Sun Hop Lee

Synthesis No.28
Tai Hang 302
Tai Heng 8

Takeko

1234
350
724

5576
2661
3801
725
45
75

450
90
140

1060
1054
1556
1054
1054
1146
816
197

1060
1556
1556
96

550
746

1960
617
724
1688
1432
494
779

3005
288
5608
36
45
45
45
100
45
45
48
24
36
39

124
96
42
51

564

18.3 CMA CGM Baudelaire
16.0 CMA CGM Belem
15.5 CMA CGM Bellini
25.0 CMA CGM Berlioz
18.0 CMA CGM Bizet
22.0 CMA CGM Capella
18.0 CMA CGM Caribbean

CMA CGM Chardin
11.0 CMA CGM Chopin
15.0 CMA CGM Claudel

CMA CGM Colombie
CMA CGM Condor

18.0 CMA CGM Constellation
18.0 CMA CGM Debussy
18.5 CMA CGM Eygpt
18.0 CMA CGM Elbe
18.0 CMA CGM Emerald
17.0 CMA CGM Energy
18.0 CMA CGM Falcon
16.0 CMA CGM Force
18.0 CMA CGM Fort St Georges
18.5 CMA CGM Fort St Louis
18.5 CMA CGM Fort St Pierre

CMA CGM St Marie
14.5 CMA CGM Greece
16.5 CMA CGM Hispaniola
23.0 CMA CGM Hudson
14.0 CMA CGM Hugo
15.5 CMA CGM Impala
15.5 CMA CGM Kalamata
19.0 CMA CGM Kingston
19.2 CMA CGM Kiwi
17.5 CMA CGM Komodo
20.0 CMA CGM La Bourdonnais
14.0 CMA CGM Latour
25.0 CMA CGM Lea

CMA CGM Licorne
9.0 CMA CGM Maghreb
9.0 CMA CGM Makassar
7.5 CMA CGM Manet

CMA CGM Marmara
CMA CGM Matisse
CMA CGM Mozart

CMA CGM Normandie
CMA CGM Okapi

9.0 CMA CGM Oran
CMA CGM Papagayo

CMA CGM Pasteur
CMA CGM Potomac

10.0 CMA CGM Puccini
9.5 CMA CGM Puget

20.7 CMA CGM Puma
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6447
1162
5700
6627
6627
3538
516

3300
5700
2602
2113
1354
3359
6627
2811
2917
2458
2438
2432
2438
2260
2260
2260
2260
2824
1367
1668
8200
1726
2917
4250
1730
2917
1684
2272
541
1728
580

2917
2272
2811
2262
5700
4688
1708
352

1354
2023
1645
5700
4404
1716

25.9
17.0
24.5
25.9
25.9
22.5
15.5
22.5
24.5
21.5
20.0
19.5
22.5
25.9
22.0
22.0
21.0
20.5
21.0
20.5
21.5
21.5
21.5
21.5
24.0
17.8
19.5
24.5
19.6
22.0
23.3
20.0
22.0
18.0
21.5
15.0
20.0
17.0
22.0
21.5
22.0
20.5
24.5
24.0
19.8
13.0
19.5
19.0
19.5
24.5
24.0
21.8



Teng He
Teng Yun He

TMM Campeche
TMM Yucatan

Tong Jie
Tong Wei

Tower Bridge
Trade Eternity
Trade Freda
Trade Hallie

Trade Harvest
Trade Selene
Trade Tesia

Trade Worlder
Trisk

Tsing Ma Bridge
Twadika
Umeko

UNI Active
UNI Adroit
UNI Ample
UNI Angel
UNI Arise

UNI Aspire
UNI Assure
UNI Chart

UNI Concert
UNI Concord
UNI Corona
UNI Crown

UNI Forward
UNI Pacific
UNI Patriot
UNI Perfect
UNI Popular
UNI Premier
UNI Probity

UNI Promote
UNI Prosper
UNI Prudent
UNI Ahead

UNI Phoenix
Van Xuan

Vega Diamond
Venus Bridge
Victoria Bridge
Victoria Strait
VN Sapphire

Wadi Alrayan
Wang Foong 18
Wang Foong 9

WanHai 215

3764
1702
3032
3200
80
75

2140
2480
4038
4038
2227
2480
4038
442
204
5610
267
564

1164
1164
1164
1164
1164
998
998
998
998
998
956
1618
1618
1618
1618
1618
1618
1618
1618
1618

594
784
5551
3482
1118
1020
2500
228
130
500

22.0
20.2
20.5
21.6

20.6
19.0
24.0
24.0
20.0
19.0
24.0

25.0
12.5
20.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7
17.0
17.0
17.0
17.0
17.0
16.5
18.7
18.7
18.0
18.0
18.0
18.0
18.0
18.0
18.7
18.7
18.7
15.0
19.6
25.9
23.0
19.2
17.0
21.6

CMA CGM Rabat
CMA CGM Ravel

CMA CGM Rio Para
CMA CGM Romania
CMA CGM Rossini

CMA CGM Santiago
CMA CGM Sapphire
CMA CGM Seagull
CMA CGM Seine

CMA CGM Skikda
CMA CGM Springbok
CMA CGM St Laurent
CMA CGM St Martin
CMA CGM Strauss

CMA CGM Tage
CMA CGM Tatiana
CMA CGM Tucano
CMA CGM Turkey
CMA CGM Ukraine
CMA CGM Utrillo
CMA CGM Verdi

CMA CGM Verlaine
CMA CGM Virginia
CMA CGM Vivaldi
CMA CGM Voltaire
CMA CGM Wagner
CMA CGM Wallaby
CMA CGM Yantian

Corona
Denizhan Bayraktar

Doerte
Dollart Trader
Dutch Runner

Enforcer
Engiadina
Er Caen

Er Calais
Er Camargue

Er Cannes
Er Sydney

Euro Storm
Fas Damman

Fas Gulf
Fas Provence

Fas Var
Gascogne

Holger
Iduna

Indamex Delaware
Indamex Godavari

Ingo J
Jan D
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976
6712
511

2478
5700
370

2986
2732
2917
516
1608
1162
1162
5700
1645
822

2008
2811
2824
2262
5700
6456
2811
8200
6456
5700
1684
4250
372
470
448
1608
221
750

2824
2556
2556
2556
2556
3359
686
847
1102
581
601
558
508
325

2890
3607
202
440

17.5
25.8
15.3
21.7
24.5
15.3
21.5
22.5
22.0
16.0
21.0
17.0
17.0
24.5
19.5
18.5
21.5
22.0
24.0
20.5
24.5
25.8
22.0
24.5
25.8
24.5
20.0
23.3
15.5
15.0
15.5
21.0
12.5
18.0
24.0
21.5
21.5
21.5
21.5
22.5
17.6
17.5
20.0
15.5
14.3
17.5
15.0
14.5
21.8
23.5
11.5
14.0



WanHai 262
Wan Hai 266
Wan Hai 301
Wan Hai 302
Wan Hai 303
Wan Hai 305
Wan Hai 307

Wan He
Washington Senator

Wehr Bille
Wehr Havel

Wei Xing
Welcome

Well Grace
Well Union

Westerhever
Wide Tech 23
Wide Tech 33

Wing Hing NO.18
Wing Lee No.1
Wing On 838

World D
Xetha Bhum
XHSJ 0288
Xiang Da

Xiang Dan
Xiang He

Xiang Kun
Xiang Lain
Xiang Peng
Xiang Qian

Xiang Tan Huo 0029
Xiang Xing

Xiang Yun He
Xi Bo He

Xie Hang 1
Xie Hang 12

Xie Hang 198
Xie Hang 2

Xie Hang 28
Xie Hang 313
Xie Hang 88
Xie Hang 9

Xing He
Xin Hai Run
Xin Hui He

Xin Hui JI 12
Xin Hui JI 13
Xin Hui JI 15
Xin Hui JI 16
Xin Hui JI 19
Xin Hui J 20

1240
2496
2496
2496
2496
2496
2496
5446
2850
2546
2526

65
437
132
124

1572
72
100
120
120
120
934
1080
64

200
200
1686
582
200
576
582
392
316
1702
3400
36
36
120
60
45
96
80
96

1328
612
836
10
36
48
48
16
12

21.0
22.0
22.0
22.0
22.0
22.0
22.0
22.5

19.8
22.0
10.0
14.0

20.0

17.0

12.0
12.0
14.5
15.0
12.0
15.0
15.0

14.0
20.3
21.0

10.0

17.6
15.5
16.5
8.0
9.0
9.0
9.0
9.0
8.0

Janina
Kappel N

Karina
Madeleine Rickmers

Margaretha
Maria Schulte

Neva
Nicola

Nordmed
Northern Dignity
Orient Aishwarya

Pacheco
Priwall

Promoter N
Rahana

Renate Schulte
Rigena
Rybno

Sadan Bayraktar
Saipan Carrier

Saipan Harvester
Saipan Voyager

Sea Explorer
Sieltor
Stella J

Sunshine II

Sylvette
VD Mina Qaboos
Ville D'Antares
Ville D'Aquarius
Ville De Dubai
Ville De Mars
Ville De Mijo

Ville De Mimosa
Ville De Tanya
Ville De Taurus
Ville De Virgo
Ville D'Orion
Westerland

Wotan
Xiang Ling
Andalusia

Safmarine Cotonou
Alicantia

Safmarine Maluti
Safmarine Cameroun
Safmarine Concord

Safmarine Asia
Safmarine Europe
Safmarine Lobito
Safmarine Soyo

Elise D

172

678
657
847
1728
868
366
263
847

2478
3607
1020
300

2480
756

1122
1354
1810
261
596
602
576
701

384
516
520
347
844
132

4030
3961
847

2954
601

3961
4031
3961
4030
3961
2764
297
210

2262
1737
2262
2063
2096
1799
1972
1972
428
428
428

17.0
17.5
17.5
19.6
18.5
15.3
12.5
17.5
21.7
23.8
17.0
13.5
20.0
13.5
18.5
19.5
17.0
12.5
15.0
14.0
14.0
14.0
15.0
15.5
16.0
13.5
17.5
12.0
23.7
23.7
17.5
21.5
14.3
23.7
23.8
23.7
23.7
23.7
22.0
12.5
12.5
21.5
19.5
21.5
21.5
21.0
17.5
17.5
17.5
14.5
15.0
14.5



Xin Hui JI 22
Xin Hui JI 23
Xin Hui JI 3
Xin Hui JI 5
Xin Hui JI 9
Xin Tong 16

Xiu Shan
Yang Jiang He

Yang Xian 8
Yan He

Yantra Bhum
Yellow Sea

Yin He
YM Athens

YM Bremens
YM Earth

YM Fountain
YM Genova II

YM Great
YM March
YM Milano
YM Napoli

YM New york
YM Pearl River I

YM People
YM Savannah

YM Sky
YM Success
YM Tacoma
YM Wealth

YM Wilmington
YM Yantian

Yokohama Senator
Yong Ding He

Yong Feng
Yong Hang 9
Yongyue No.6
Young Liberty

Yuan He
Yu Chang 2

Yue An Yun 05
Yue Feng 902
Yue Feng 903
Yue Hai 1028

Yue He
Yu Feng

Yu Gu He
Yu He

Yun Bao
Yun He

12
36
16
16
36
24
66

8.0

8.0
8.0
8.0

16.5
54
725
1080
3681
1328
5618
5576
1620
5551
1400
5576
5576
2800
3359
4038
1464
1620
4038
1620
5551
3456
5551
4038
3916
4545
764
140
45

631
1295
3764
118
72
60
60
96

5446
65

3400
1686
98

5446

16.8
17.0

16.5
26.3

19.7
25.9

25.0
25.0
22.0
22.4
22.2
18.0
19.7
22.2
19.7
25.9
24.0
25.9
22.2
22.5
23.7
17.0

12.0
17.0
24.0

24.7

20.0
14.5

24.5

Safemarine Gabon
Theofano

Safmarine Bioko
Safmarine Onne

Safmarine Houston
Safmarine Douala

Safmarine Evagelia
Safmarine Meroula
Safmarine Congo

Elizabeth
Portlink Caravel
Portlink Pacer
Sven Oltmann
SA Winterberg

Maersk Constantia
SA Sederberg
SA Helderberg

Safmarine Letaba
Safmarine Mgeni

Safmarine Kei
Pongola

Safmarine Zambezi
Safmarine Tugela

Maersk Dakar
Safmarine Igoli

Safmarine Ibhayi
Safmarine Ikapa

LT Grace
LT Greet

LT Garland
LT Glamor

LT Usodimare
LT Unica

LT Universo
MV R.J. Pfeiffer
MV Mahimahi
MV Mokihana

MV Manoa
MV Manukai

S.S. Maui
S.S. Chief Gadao

S.S. Lurline
S.S. Kauai
S.S. Lihue
S.S. Ewa

S.S. Matsonia
Independent Trader
Independent Venture

Independent Endeavor
Independent Action
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428
640
925
519
525
925
414
414
414
448
390
523
510

3101
3101
3101
3101
2080
1730
2474
797

2496
2063
2106
3152
2732
2732
2728
2728
3428
3428
5652
5652
5652
2229
2824
2824
2824
2600
2600
1981
1379
1626
1979
2015
1712
1208
1468
1452
1388

14.5
13.0
15.0
15.5
15.5
14.0
14.0
14.0
14.0
15.5
15.0
15.5
16.5
20.5
20.5
20.5
20.5
21.0
20.0
22.2
18.0
21.7
21.5
21.0
22.0
22.5
22.5
20.5
20.5
20.7
20.7
25.0
25.0
25.0
23.0
23.0
23.0
23.0
22.5
22.5
21.0
21.5
22.5
21.0
21.0
21.5
17.5
18.5
19.0
17.5
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%Random Deployment Simulation

function cov = cov_3d(X,Y,Z,r,num det,N) % X: Height of container array (in TEUs)
% Y: Width of container array (in TEUs)
% Z: Length of container array (in TEUs)
% r: Effective detection range (in feet)
% num_det: Number of detectors to be deployed
% N: Number of runs

tic

x = 8 * X; % Conversion from TEUs
y = 8 * Y; % Conversion from TEUs
z = 20 * Z; % Conversion from TEUs

to

to

to

feet
feet
feet

for 1 = :N % Number of runs loop

DO = logical(zeros(x,y,z));

count = 1;

pos = rand(1,3);

while count < (numdet + 1)

D1 = logical(zeros(x,y,z));

pos = rand(1,3);
dx = ceil(pos(l)*x);

dy = ceil(pos(2)*y);
dz = ceil(pos(3)*z);

Dl(dx,dy,dz) = 1;

% Constructs initial geometry matrix

% Generates random number vector

% Number of detectors loop

% Constructs a new detector matrix

% Fixes the x-coordinate of the detector
% Fixes the y-coordinate of the detector
% Fixes the z-coordinate of the detector
% Establishes the detector's center-point
% in the detector matrix

for i = dx-r:dx+r % x-axis loop
if ((i < 1) I (i > x)) % Ensures detector & geometry matrices

% remain equi-dimensional
continue

end

for j = dy-r:dy+r % y-axis loop
if ((j < 1) I (j > y)) % Dimension control

continue
end

for k = dz-r:dz+r % z-axis loop
if ((k < 1) I (k > z)) % Dimension control

continue
end

if sqrt((i-dx)^2+(j-dy)^2+(k-dz)^2) <= r % Checks whether
% element is within
% the detection
% sphere
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Dl(i,j,k) = 1; % Fills in the detector matrix
end

end
end

end

DO = DO D1; % Current geometry matrix and detector matrix are 'OR'ed together
count = count + 1;

end.

det cov = sum(sum(sum(D0)));
cov(l) = det_cov/(x*y*z);

end

cov = coy'
mean cov = mean(cov)
mediancov = median(cov)
stdcov = std(cov)
min cov = min(cov)
max cov = max(cov)

% Sums the number of elements within detection spheres
% Calculates fractional coverage volume and writes it
% to an output vector

% Statistical analysis of full output vector

% Statistical analysis of full output vector

%

toc
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% Constrained Deployment Simulator

function cov = new_3d(X,Y,Z,r,num_det,N) % X: Height of container array (in TEUs)
% Y: Width of container array (in TEUs)
% Z: Length of container array (in TEUs)
% r: Effective detection range (in feet)
% num_det: Number of detectors to be deployed
% N: Number of runs

tic

x = 8 * X; % Conversion from TEUs to feet
y = 8 * Y; % Conversion from TEUs to feet
z = 20 * Z; % Conversion from TEUs to feet

for 1 =- :N

DO = logical(zeros(x,y,z)); % Constructs initial geometry matrix
count = 1;

pos = rand(1,20); % Generates random number vector

while count < (numdet + 1) % Number of detectors loop

D1 = logical(zeros(x,y,z)); % Constructs a new detector matrix

pos = rand(l,20);
rnd cnt = 1;

x switch = 0; %

y_switch = 0; % Initializes constraint test variables
z switch = 0; %

while x switch < 1 %
dx_test = ceil(pos(rnd_cnt)*x); %
if ((dx_test > 8) & (dx_test < (x-7))) % Checks if x-coordinate

dx = dx test; % satisfies constraints
rndcnt = rndcnt +1; %
x switch = 1; %

else
rnd cnt = rnd cnt + 1;

end
end

while y_switch < 1 %
dy_test = ceil(pos(rnd_cnt)*y); %
if ((dy_test > 8) & (dy test < (y-7))) % Checks if y-coordinate

dy = dy_test; % satisfies constraints
rnd cnt = rnd cnt + 1; %
y_switch = 1; %

else
rndcnt = rnd cnt + 1;
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end
end

while z switch < 1

dz_test = ceil(pos(rnd_cnt)*z);
if ((dztest > 20) & (dz test < (z-19)))

dz = dz test;
rnd cnt = rnd cnt + 1;

z switch = 1;

else
rnd cnt = rndcnt + 1;

end
end

Dl(dx,dy,dz) = 1;

% Checks if z-coordinate
% satisfies constraints

% Establishs detector center-point
% in the detector matrix

for i = dx-r:dx+r

if ((i < 1) I (i > ))

continue
end

for j = dy-r:dy+r

if ((j < 1) ( > ))

continue
end

for k = dz-r:dz+r

if ((k < 1) I (k > z))

continue
end

% x-axis loop
% Dimension control

% y-axis loop
% Dimension control

% z-axis loop
% Dimension control

if sqrt((i-dx)^2+(j-dy)^2+(k-dz) 2) <= r

Dl(i,j,k) = 1;

% Checks whether
% element is within
% the detection
% sphere

% Fills in the detector matrix
end

end
end

end

DO = DO D1; % Current geometry matrix and detector matrix are 'OR'ed together
count = count + 1;
rnd cnt = 1;
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end

det_cov = sum(sum(sum(DO)));
cov(l) = det_cov/(x*y*z);

end

% Sums the number of elements within detection spheres
% Calculates fractional coverage volume and writes it
% to an output vector

File = strcat(num2str(X), '',num2str(Y) , ',num2str(Z),' ',num2str(r),' ',num2str(numdet 
), ' ' ,num2str(N))

meancov = mean(cov)
median cov = median(cov)
stdcov = std(cov)
min cov = min(cov)
max cov = max(cov)

% Statistical analysis of full output vector

toc
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% Centerline Deployment Simulator

function cov = centerline(X,Y,Z,r,det_start,det_step,det_stop)

tic

x = 8 * X; % Conversion from TEUs to feet
y = 8 * Y; % Conversion from TEUs to feet
z = 20 * Z; % Conversion from TEUs to feet

DO = logical(zeros(x,y,z)); % Constructs initial geometry matrix

for det = det_start : det_step : det_stop % Detector placement loop

D1 = logical (zeros(x,y,z)); % Constructs a new detector matrix
dx = ?; % 1440 TEU -> dx = 28

% 2496 TEU -> dx = 36
% 3600 TEU -> dx = 36
% 4800 TEU -> dx = 36
% 6460 TEU -> dx = 36

dy = ?; % 1440 TEU -> dy = 36
% 2496 TEU -> dy = 44
% 3600 TEU -> dy = 44
% 4800 TEU -> dy = 60
% 6460 TEU -> dy = 68

dz = det % Places detectors along the length

Dl(dx,dy,dz) = 1; % Fixes center-point of detector in
% the detector matrix

for i = dx-r:dx+r % x-axis loop
if ((i < 1) I (i > x)) % Dimension control

continue
end

for j = dy-r:dy+r % y-axis loop
if ((j < 1) (j > y)) % Dimension cont:

continue
end

for k = dz-r:dz+r % z-axis
if ((k < 1) I (k > z)) % Dimension cont:

continue
end

if sqrt((i-dx)^2+(j-dy)A2+(k-dz)A2) <= r

rol

rol

% Checks whether
% element is within
% the detection
% sphere
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Dl(i,j,k) = 1; % Fills in the detector matrix
end

end
end

end

DO = DO Dl;

detco = sum(sum(sum(DO)));
co = det_cov/(x*y*z);

% Current geometry matrix and detector matrix are 'OR'ed together

% Sums the number of elements within detection spheres
% Calculates fractional coverage volume

% Outputs fractional coverage volume

toc
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