Systems-Based Analysis of a Ship Borne Approach for the Detection of Fissile Material Concealed in Cargo Containers

by

Brett P. Broderick

B.S. Electrical Engineering (2001) Texas A&M University

Submitted to the Department of Nuclear Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering

at the

Massachusetts Institute of Technology

September 2004

© 2004 Massachusetts Institute of Technology All rights reserved

Systems-Based Analysis of a Ship Borne Approach for the Detection of Fissile Material Concealed in Cargo Containers

By

Brett P. Broderick

Submitted to the Department of Nuclear Engineering On August 31, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering

Abstract

The international maritime container trade, which imports an average of 19,000 largely uninspected cargo containers to United States ports each day, has been identified as a potential avenue of attack for nuclear terrorism. Currently envisioned and deployed defensive measures that seek to detect and interdict concealed fissile material once containers have already reached a U.S. port do not adequately protect against nuclear threats due to the unique power and range of nuclear weapon effects. This thesis describes and examines a novel "ship-based" approach to container-borne fissile material detection where suites of radiation detectors with imaging capabilities are enclosed in standard, non-descript cargo containers and shipped in limited numbers aboard commercial containerships. Outfitted with communication hardware, these dedicated containerized units could provide crucial advance detection and notification of an inbound nuclear threat while the danger is still safely removed from U.S. shores.

Attributes of the container shipping trade that would impact the performance and viability of the proposed ship-based approach were identified and investigated. Average available count times, based on the duration of shipping voyages, for container imports to representative ports on the east and west coasts of the U.S. where found to be 19.2 days and 13.3. days, respectively. These long count times will enhance the ability of the shipbased approach to confidently detect heavily shielded and well-concealed fissile material. A distribution for the average distributed density of commercial cargo, which affects radiation attenuation between the source and detectors, was also derived and found to have a favorably low mean value of 0.198 g/cm^3 .

The coverage efficiency (i.e. the number of containerized units required to provide detection coverage over a given percentage of a reference vessel) variations associated with prospective modes of deployment were also investigated using Matlabbased computer simulations. Evaluated deployment strategies ranged from fully random placement of detection units to completely constrained optimal placement. Despite holding important advantages in terms of stealth, random deployment was found to require an average of between 2.2 to 3.3 times more detectors than optimal deployment, depending on the desired level of detection coverage. This result suggests that some combination of random and constrained deployment might yield an optimized balance between stealth and coverage efficiency. This analysis also identified significant efficiency and deployment flexibility benefits associated with units that could detect sources at ranges equal to, or greater than, 70 ft (21.3 m).

Overall, no results were obtained that seriously challenged the potential efficacy and viability of the proposed ship-based approach.

Thesis Supervisor: Richard C. Lanza

Title: Senior Research Scientist in Nuclear Engineering

Acknowledgments

I would first like to thank my research advisor, Dr. Richard Lanza. His patient guidance and continuous stream of ideas were extremely helpful throughout this effort. I would also like to thank Professor Emeritus Michael Driscoll for agreeing to serve as my thesis reader. His insightful comments were invaluable to this thesis.

I owe an enormous debt of gratitude to Shawn Gallagher who first conceived of the topic about which I wrote. Without his selfless collaboration and intellectual ingenuity this thesis literally would not have been possible.

I would also like to thank Dr. Richard Wagner for his valuable feedback and continued support.

The Federal government and the fine people at the U.S. Defense Nuclear Facilities Safety Board provided financial support for this academic enterprise.

Rachel Batista was very helpful in making this thesis sound more like English, in addition to generally making life more pleasant around the office.

Antonio Damato was gracious enough to share his cultural sophistication and his Matlab expertise with an ugly American.

Finally, I'd like to thank Michael Pope for his many contributions and for sharing his proficiency in a number of areas, not the least of which was his extensive knowledge and appreciation of scientific jargon.

Abstract	2
Acknowledgments	3
Table of Contents	4
Table of Figures	6
List of Tables	8
1 Nuclear Terrorism Threat	11
1.1 Objectives and Organization of Thesis	11
1.2 Introduction	11
1.3 Threat Dynamics	12
1.4 Container Scenario Development	15
2 Fissile Material Detection	20
2.1 Fissile Material Characteristics	20
2.1.1 HEU Radiation Signature.	24
2.1.2 Pu Radiation Signature	
2.1.3 ²³³ U Radiation Signature	33
2.2 Detection Techniques	34
2.2 Detection recting	34
2.2.1 Induced Fission	34
2.2.1.1 Induced Physical	35
2.2.1.2 Radiography	37
3 Detection Schemes	40
3.1 Current Annroaches	<i></i> <i>1</i> 0
3.1.1 Custome Based	0 ب
3.1.2 Smart Containers	/11
2.2 Shin Based Approach	۲+ ۱۲
3.2 Ship-Based Approach	42
3.2.1 Autobules	42
3.2.1.1 Sensitivity	45
3.2.1.2 Stealth	44
3.2.1.3 Standoll.	44
3.2.2 External Uncertainties	45
4 Shipping and Cargo Analysis	4/
4.1 Container Shipping Overview	4/
4.2 Count Time	49
4.2.1 Distance Between Ports	50
4.2.2 Vessel Speeds	65
4.2.3 Voyage Times	68
4.3 Vessel Container Capacities	75
4.4 Cargo Density	77
5 Deployment Simulator	81
5.1 Introduction	81
5.2 Model Development	83
5.2.1 Assumptions	83
5.2.2 Input/Output	85
5.2.3 Algorithm	85

Table of Contents

 5.3 Random Deployment	9
 5.4 Constrained Deployment)1
5.5 Centerline Deployment	4
	:6
5.6 Deployment Comparison	9
5.7 Total Detector Estimates14	1
6 Summary, Conclusion, Recommendations14	3
6.1 Summary14	4
6.2 Conclusions	7
6.3 Recommendations for Future Work14	9
References15	2
Appendix A15	6
Appendix B17	'4

Table of Figures

Figure 2-1.	High resolution HEU spectrum	25
Figure 2-2.	Dominant regions for different photon interactions2	:6
Figure 2-3.	Thorium series	28
Figure 2-4.	Photon interaction cross-sections for aluminum and lead	6
Figure 2-5.	Schematic representation of source detection through intervening material	8
Figure 4-1.	Map of upper North America showing selected ports	2
Figure 4-2.	Map of the United States, Central America, and the Caribbean showing selected ports	3
Figure 4-3.	Map of Africa showing selected ports	;4
Figure 4-4.	Map of Europe showing selected ports	5
Figure 4-5.	Map of the Middle East and India showing selected ports	6
Figure 4-6.	Map of the Far East showing selected ports	7
Figure 4-7.	Map of Australia showing selected ports	8
Figure 4-8.	Vessel speed CDF	57
Figure 4-9.	Vessel capacity CDF	'6
Figure 4-10	. Cargo distributed density, ρ _{dist} , CDF	30
Figure 5-1.	Container orientation for simulation	36
Figure 5-2.	Cube bounding the detection sphere	37
Figure 5-3.	Coverage vs. Detectors plot for the 1440 TEU array [Random]10)2
Figure 5-4.	Coverage vs. Detectors plot for the 2496 TEU array [Random]10)3
Figure 5-5.	Coverage vs. Detectors plot for the 3600 TEU array [Random]10)3
Figure 5-6.	Coverage vs. Detectors plot for the 4800 TEU array [Random]10)4

Figure 5-7. Coverage vs. De	tectors plot for the 6460 TEU array [Random]104
Figure 5-8. Graphical determ coverage levels.	ination of detectors required for various
Figure 5-9. Required Detect	ors vs. Range for the 1440 TEU array [Random]109
Figure 5-10. Required Detect	ors vs. Range for the 2496 TEU array [Random]109
Figure 5-11. Required Detect	ors vs. Range for the 3600 TEU array [Random]110
Figure 5-12. Required Detect	ors vs. Range for the 4800 TEU array [Random]110
Figure 5-13. Required Detect	ors vs. Range for the 6460 TEU array [Random]111
Figure 5-14. Required Detect	ors (with 45 ft. range) vs. Array Capacity [Random]112
Figure 5-15. Required Detect	ors (with 55 ft. range) vs. Array Capacity [Random]112
Figure 5-16. Required Detect	ors (with 65 ft. range) vs. Array Capacity [Random]113
Figure 5-17. Required Detect	ors (with 75 ft. range) vs. Array Capacity [Random]113
Figure 5-18. Required Detect	ors (with 85 ft. range) vs. Array Capacity [Random]114
Figure 5-19. Coverage vs. De	tectors plot for the 1440 TEU array [Constrained]122
Figure 5-20. Coverage vs. De	tectors plot for the 2496 TEU array [Constrained]123
Figure 5-21. Coverage vs. De	tectors plot for the 3600 TEU array [Constrained]123
Figure 5-22. Coverage vs. De	tectors plot for the 4800 TEU array [Constrained]124
Figure 5-23. Coverage vs. De	tectors plot for the 6460 TEU array [Constrained]124
Figure 5-24. Coverage vs. De	etectors plot for the 1440 TEU array [Centerline]135
Figure 5-25. Coverage vs. De	etectors plot for the 2496 TEU array [Centerline]136
Figure 5-26. Coverage vs. De	etectors plot for the 3600 TEU array [Centerline]136
Figure 5-27. Coverage vs. De	etectors plot for the 4800 TEU array [Centerline]137
Figure 5-28. Coverage vs. De	etectors plot for the 6460 TEU array [Centerline]137

List of Tables

Table 2-1.	Densities of common weapons-grade fissile materials23
Table 2-2.	Ratios of MFPs in selected materials to HEU23
Table 2-3.	²⁰⁸ Tl gamma lines and branching ratios28
Table 2-4.	Decay rates for selected gamma emissions from plutonium and its daughters
Table 4-1.	Containerized cargo volume by U.S. port (CY 2003)48
Table 4-2.	Foreign container import data (CY 2003)49
Table 4-3.	Nautical distances from selected ports to New York and Los Angeles
Table 4-4.	Vessel database capacity benchmark results
Table 4-5.	Vessel speed statistics
Table 4-6.	Voyage times from selected ports to New York and Los Angeles69
Table 4-7.	Mean voyage times to New York and Los Angeles74
Table 4-8.	Vessel capacity statistics76
Table 4-9.	Average distributed density, ρ_{dist} , values for imported cargo
Table 5-1.	Properties of the OR operator
Table 5-2.	Spherical volume error91
Table 5-3.	Reference array dimensions92
Table 5-4.	Mean fractional coverage results for variable run sizes
Table 5-5.	Random deployment simulation results94
Table 5-6.	Estimated number of detectors needed for various scenarios [Random]106
Table 5-7.	Double assignment probabilities for 20' and 40' containers [Random]108
Table 5-8.	Constrained deployment simulation results116

Table 5-9.	Estimated number of detectors needed for various scenarios [Constrained]	125
Table 5-10.	Centerline deployment simulation results	127
Table 5-11.	Estimated number of detectors needed for various scenarios [Centerline]	138
Table 5-12.	Random vs. Centerline deployment comparison	140
Table 5-13.	Average R/C values	141
Table 5-14.	U.S. port calls by vessel capacity	141
Table 5-15.	. Total detector estimates	143
Table 6-1.	Results summary for deployment environment analyses	145
Table 6-2.	Random deployment results summary	146
Table 6-3.	Centerline deployment results summary	146

[This page left blank intentionally.]

Chapter 1: Nuclear Terrorism Threat

1.1 Objectives and Organization of Thesis

The objective of this thesis is to describe and analyze a novel "ship-based" approach, proposed by Gallagher at the Massachusetts Institute of Technology (MIT), for the detection of fissile material concealed in waterborne cargo containers. The need for new thinking will be established by investigating the nature of the threat posed by unconventional nuclear attack and nuclear terrorism and then highlighting the critical shortcomings of currently deployed approaches that seek to address this threat. The attributes and advantages of the ship-based approach will then be examined in the context of the threat and compared to existing detection and interdiction methodologies. Once a case for the promise and utility of the proposed approach has been presented, analysis will be performed to remove or constrain important remaining uncertainties related the to potential efficacy and viability of a ship-based fissile material detection regime.

1.2 Introduction

The specter of nuclear weapons has loomed large over the Earth since their dramatic introduction to the world in 1945. The nature of the threat that these weapons pose to the United States, however, has evolved over time. The end of the Cold War brought with it a relaxation of the conventional nuclear threat stemming from blast hardened silos dotting the land, strategic bombers roaming the skies, and ballistic missile submarines prowling the seas. Yet, the dissolution of the Soviet Union and the ascendance of transnational terrorism has brought with it a new challenge for the nuclear age, that of devising and implementing effective strategies to prevent the acquisition and deployment of nuclear weapons by individuals and organizations who are not restrained by the same means that had deterred nuclear catastrophes for more than half a century. Although the dynamics of the threat have changed, what remains constant is the understanding that the detonation of a single nuclear device on American soil would have profound and lasting impacts on this country and the world, the scale and breadth of which are difficult to comprehend.

1.3 Threat Dynamics

The September 11th attacks clearly demonstrated that transnational terrorist organizations have supplanted state-based actors as the primary (or at least most immediate) threat to the security of the United States. To strengthen our homeland security posture and develop more effective strategies to defend against attack, including those involving unconventional weapons, we must seek to understand how the emergence of this new adversary alters the nature of threats faced by the United States. The transnational terrorist organizations we must combat today are not only fundamentally different than the state-based adversary faced during the Cold War, they are also markedly different from terrorist organizations that have been encountered in decades past. Some critical differences, at least as they pertain to the threat of nuclear attack, can be generally described in terms of deterability, material access, and motivation.

Nuclear aggression during the Cold War was deterred through the doctrine of mutually assured destruction. This conventional means of deterrence was effective because the primary belligerents were state-based actors having well-defined borders with citizens and national assets to protect. Both the United States and the Soviet Union developed nuclear arsenals massive enough, and deployment platforms and delivery systems diverse enough, that any offensive nuclear strike was sure to be met with a devastating retaliatory counterattack [Knorr, 1985]. Therefore, the motivation to unleash nuclear weapons to destroy the enemy was checked by the understanding that a decisive blow could not be struck without the assurance of a crippling reprisal. However, unlike states, transnational terrorist organizations, in general, are highly mobile, have no delineated territorial borders, and no populace to defend. Without fixed targets to be held in jeopardy of counter-attack, a terrorist organization can hope to deliver a devastating blow without the prospect (or at least the assurance) of immediate annihilation.

Therefore, a transnational terrorist adversary contemplating a nuclear attack remains undeterred by conventional means.

Unlike a large state-based actor, a terrorist organization is unlikely to have open access to a military-industrial infrastructure dedicated to the production of fissile material and the design and assembly of nuclear weapons. Numerous barriers, both physical and political, have been erected by international institutions to inhibit the flow of fissile material from established nuclear states, which are susceptible to conventional means of deterrence, to undeterred terrorist organizations [Bunn et. al, 2003]. As such, even highly motivated, well financed terrorist groups will likely find gaining access to fissile material the most difficult and daunting aspect of initiating a nuclear attack. The difficulty associated with the procurement or acquisition of fissile material, and the resulting scarcity of the commodity, has important implications for how an attack might be planned and executed.

In the past, terrorist organizations used attacks primarily in an attempt to achieve political objectives [NCT, 2000]. With this political motivation, it was thought that terrorist organizations would eschew attacks that claimed large numbers of civilian lives, because such an act would promote public outcry, inspire widespread condemnation of the perpetrators and ultimately weaken support for their cause [Hoffman, 1995]. The transnational terrorist organizations threatening the United States today, however, are increasingly found to have at their core fanatical religious and ideological, rather than purely political, motivations [Laqueur, 1998]. With radical religious ideology serving as the basis, attacks are no longer carried out with the express purpose of meeting political ends. Instead, they are executed to destroy infidels and punish the enemies of God/Allah. As such, religiously inspired terrorist organizations now tend to view attacks that cause mass casualties as desirable rather than taboo [Morgan, 2004]. This motivational shift was summed up succinctly by former CIA director James Woolsey who said, "Today's terrorists don't want a seat at the table, they want to destroy the table and everyone sitting at it." [NCT, 2000]

Another key to understanding the threat posed by unconventional nuclear attack is to appreciate the unique destructive capabilities of nuclear weapons. Although they are often grouped alongside chemical and biological weapons under the generic banner of weapons of mass destruction (WMD), nuclear weapons stand markedly apart even from their other WMD brethren. The totality of destruction that can be wrought, together with the massive spatial and instantaneous temporal scales over which their effects are unleashed, combine to make the gravity of threats posed by nuclear weapons wholly unique. Unlike chemical and biological agents that inflict harm by specifically targeting and damaging human biological functions, nuclear weapons destroy in a much more indiscriminate manner. With their combined thermal, blast, and radiation effects, nuclear weapons inflict their damage on all forms of matter in their vicinity, including people, buildings, and economically vital infrastructure. These effects can be devastating even at distances far removed from the location of the actual detonation. Finally, the primary effects of a nuclear detonation are all experienced more or less instantaneously and simultaneously, and without warning. As such, there is no time for affected populations to evacuate or seek refuge once a nuclear weapon has been actuated.

Given the destructive potential of nuclear weapons, the motivation and stated desire of transnational terrorist organizations to obtain and use these weapons, and the ineffectiveness of conventional means to deter terrorist-mounted nuclear attacks, it is unacceptable to rely solely on existing barriers meant to prevent unauthorized parties from gaining access to fissile material or assembled weapons. Realizing that no individual barrier or safeguard is going to provide perfectly reliable protection, we must develop multiple, redundant and diverse layers of protection that can impede or disrupt all phases of attack from fissile material procurement to final operational deployment. One important step in effectively implementing this type of defense-in-depth protection philosophy is to identify and assess potential avenues of attack that could be used by a terrorist adversary that had somehow managed to obtain fissile material. The vulnerabilities of each potential avenue of attack should then be evaluated so that deficiencies can be identified and remediated.

1.4 Container Scenario Development

One potentially vulnerable avenue of attack flows through US seaports where an average of just over 19,000 cargo containers arrive by ship each day [MARAD(1), 2004], any one of which could be used by an adversary to conceal fissile material or an assembled nuclear device. Only about 4% of these incoming cargo containers currently undergo any type of physical inspection [Lok, 2004]. The vulnerability associated with thousands of opaque, largely uninspected, and loosely controlled cargo containers arriving on U.S. shores everyday is compounded by the proximity of major seaports to large metropolitan population centers. As a result of this collocation, a weapon arriving in a major U.S. port is often already in range to cause massive casualties, regardless of the intended ultimate target of the device. Despite security concerns, seaports and the international container shipping trade are critical to sustaining modern global commerce and to maintaining a healthy U.S. economy. The transaction of international commerce requires an open architecture, where containerized goods can move freely and efficiently between countries and across borders. Therefore a critical and urgent challenge remains to develop and implement protective measures that can enhance the U.S. security posture with respect to seaports and incoming containers of foreign origin, without unduly burdening the free flow of commerce.

As a first step in meeting the challenge of successfully addressing port and cargo container related vulnerabilities, a conservative threat scenario will be developed based on carefully chosen and logically defended assumptions. Scenario development will frame the problem, allowing helpful insights to be drawn. The resulting product will then provide a means to evaluate the efficacy and highlight weaknesses of potential solutions.

The overarching assumption used in scenario development is that a rational, determined adversary would always seek to maximize the probability of a successful attack. (Despite fanatical religious ideologies, transnational terrorist organizations have repeatedly proven themselves rational in the context of operational planning, coordination and execution.) As discussed later, in detail, the following propositions are

some logical implications of the "rational enemy assumption" as applied to a transnational terrorist adversary: 1) if an enemy somehow procures fissile material, they will seek to weaponize it (if not already in the form of a functional nuclear weapon) and use it; 2) an enemy will seek to weaponize unassembled fissile material prior to container shipment to the U.S.; and 3) an enemy may provide some means (e.g. booby-trapping or remote detonation capability) to thwart the successful interdiction and neutralization of a deployed (i.e. shipped) weapon.

The assertion that a transnational terrorist organization, having obtained fissile material, will weaponize it and attempt to use it is perhaps the most easily justified of the preceding discussion. A number of leading figures in transnational terrorist organizations (including al Qaeda) have openly professed their desire to obtain nuclear weapons and there have been several well-documented attempts to purchase fissile material [Lee, 2003]. Additionally, these groups have demonstrated the motivation and ability to carry out well planned, large-scale attacks that result in mass civilian casualties. Finally, as noted previously, highly mobile, borderless terrorist organizations are not stymied by conventional means of deterrence based on the threat of massive retaliation. Given the vigor with which fissile material procurement has been pursued, the repeatedly demonstrated willingness to employ ever more lethal tactics to carry out high-casualty attacks, and the undeterred nature of the adversary, it is reasonable, and certainly conservative, to posit that if a sufficient quantity of fissile material is obtained, a terrorist organization would seek to assemble it into a weapon and use it for an attack.

The belief that an enemy would seek to ship a functional weapon to the U.S., as opposed to unassembled fissile material, follows from the rational enemy assumption for the following two reasons. First, to maximize the probability of a successful attack, an adversary that had obtained unassembled fissile material would clearly want to avoid disruption or detection during the device assembly process. Unfettered weapon assembly and preparation would presumably be far easier to achieve abroad, in a location of the terrorists' choosing, where they could enjoy a substantially stronger and more secure support network, in addition to a less menacing intelligence gathering and law

enforcement presence than would be encountered in the United States. Second, a rational adversary would seek to ship a functioning weapon rather than attempt to smuggle unassembled fissile material into the U.S. to create the possibility that some degree of operational success (i.e. a nuclear detonation causing significant casualties and physical damage) could still be achieved even in the event that the device was somehow detected or discovered prior to reaching its intended target. There is no such possibility of limited success if the fissile material has not been weaponized prior to shipment.

The assertion that an adversary would seek to implement countermeasures such as "booby traps" or remote detonation provisions to guard against interdiction and disarmament prior to detonation can also be defended using the rational enemy assumption. "Booby-traps" are defined here as a feature or features intended to trigger detonation of the device if certain perturbations, such as mechanical or radiation probing, are experienced. A remote detonation capability would give an adversary the opportunity to detonate a detected weapon before it could be isolated and rendered safe. Despite the technological difficulty of implementing such features, the presence of countermeasures to guard against interdiction cannot be ruled out since the rational-enemy assumption dictates that an adversary would aggressively seek to ensure detonation once the weapon was deployed. The desire to ensure detonation, using any available means, would only be amplified by the extremely limited availability of fissile material and the extraordinary efforts that were likely required to obtain it. Even if the device did not reach its intended target, a nuclear explosion impacting any Western port or territory would presumably be a marginally successful outcome for a terrorist organization.

Finally, to accept the rational enemy assumption but to reject the possibility of countermeasures being present requires the assumption that an enemy is not capable, for whatever reason, of implementing them. However, the fact that we concern ourselves with screening cargo containers for fissile material in the first place implies that we are willing to accept that an enemy possesses a level of sophistication high enough to procure, transport, (possibly) assemble and deploy a nuclear weapon, all without being detected or exposed by any military, law enforcement or intelligence gathering

organization. It seems, therefore, wholly irrational to then assume that the same enemy is not sophisticated enough to devise and implement effective countermeasures.

Consistent with the assumptions discussed in the previous paragraphs, we now postulate a scenario in which a functional nuclear weapon is concealed in a standard, full sized (40' long, 8' wide and 8.5' high) cargo container and deployed from a foreign location aboard a transoceanic container vessel that is due to call on a major United States seaport that is in or adjacent to a large urban population center (e.g. New York City or Los Angeles). We conservatively assume that the weapon is surrounded with some level of shielding appropriate for the fissile material used in the weapon (i.e. high atomic number material for uranium or both low and high atomic number material for plutonium). We further assume that the device has been outfitted with counterinterdiction features, including a remote detonation capability and booby-traps that trigger the weapon in the event that certain mechanical or radiation insults are experienced.

We consider the above scenario (referred to hereafter as "the container scenario") to be conservative and bounding. As such, it is assumed that an approach that can defeat this extremely challenging scenario can similarly defeat any number of less conservative, less challenging scenarios. We further believe that the highly conservative nature of the container scenario is appropriate considering the extraordinarily dire consequences of a successful nuclear attack on U.S. soil and the fact that none of the (admittedly) improbable elements of the scenario can be confidently excluded as incredible.

Using the postulated container scenario we can now make a number of useful observations regarding the capabilities that will be required to successfully address the specific vulnerabilities associated with the commercial maritime container trade as an avenue for nuclear attack. First, it is clear that the only way to ensure adequate protection from this threat is to keep the weapon (or the container concealing the weapon) from ever reaching U.S. shores. To do this, not only must the weapon be detected prior to the threat-bearing vessel reaching a U.S. port of call, but the presence of this threat must also

be communicated to appropriate parties in time for an effective response to be mobilized prior to port entry. Additionally, the initial threat detection must be made in a manner that accounts for the possibility that countermeasures may be present, which could function the weapon if intrusive perturbations are experienced.

The ultimate success criterion for any defensive measure (or measures) in defeating the container scenario or any other postulated nuclear attack is not the detection of the device; it is the ability to prevent a nuclear detonation that physically impacts the United States. Detecting the weapon is a necessary but not sufficient step toward defeating this threat. Stated differently, the deployment of a defensive measure that detects incoming fissile material with perfect effectiveness and reliability (even if this were possible) fails to adequately protect against the threat of nuclear attack if the weapon isn't detected until it is already in range to impact the United States (e.g. in a U.S. port).

.

Chapter 2: Fissile Material Detection

2.1 Fissile Material Characteristics

It is clear both intuitively and from the earlier discussion of the container scenario that no nuclear attack will be thwarted if the concealed weapon is never detected. As such, it is useful to investigate the common properties of fissile material and the various ways in which these properties can be exploited to remotely detect the presence of this material without the luxury of having physical access to the inside of each cargo container.

In the current context, a nuclide is defined as fissile if it can undergo neutroninduced fission with the absorption of a neutron of any energy. The ability to fission readily when interacting with neutrons of any energy regime makes fissile isotopes critically important in producing and sustaining the fission chain reactions that give nuclear weapons their explosive power. For the purposes of this analysis, fissile materials will be generally defined as materials containing fissile isotopes in sufficient quantities to make them suitable for use in nuclear weapons. Although nuclear weapons can theoretically be constructed using more exotic materials, such as neptunium or americium [Albright et. al, 1999], the following discussion will focus on materials that contain the fissile isotopes ²³⁹Pu, ²³⁵U, and ²³³U.

Natural uranium has an isotopic composition of 99.28% (by weight) ²³⁸U, 0.72% ²³⁵U, and 0.0055% ²³⁴U. Uranium is considered enriched if the abundance of the fissile ²³⁵U constituent is artificially increased above its naturally occurring level. Uranium that is greater than 20% ²³⁵U is classified as highly enriched. The 20% cutoff corresponds to the minimum enrichment, as identified by the International Atomic Energy Agency (IAEA), required for materials that can be used in nuclear weapons [IAEA, 2001]. Unlike the fissile ²³⁵U isotope, ²³⁸U can only be made to fission with neutrons exceeding a threshold energy of approximately 1 MeV [Krane, 1988]. This threshold makes

uranium with a high ²³⁸U content unsuitable for creating and sustaining chain reactions because not all neutrons produced during a given generation of fissions will exceed the ²³⁸U energy threshold and be available to create subsequent fission events. The population of neutrons energetic enough to fission ²³⁸U would be further decreased as neutrons undergo inelastic scattering events that transfer some of their energy to the nuclei with which they interact. As a result, the highly enriched uranium (HEU) used in nuclear weapons typically has an enrichment of greater than 90% ²³⁵U [Bunn et. al, 1997].

Plutonium, unlike uranium, is not a naturally occurring element and must be produced artificially. Fissile ²³⁹Pu is typically bred in a nuclear reactor through the following transmutation chain and then chemically separated.

$$^{238}U \xrightarrow{(n,\gamma)} >^{239}U \xrightarrow{\beta^{-}} >^{239}Np \xrightarrow{\beta^{-}} >^{239}Pu$$

Weapons grade plutonium is rich in the fissile ²³⁹Pu isotope (again above 90%) and is defined as containing less than 7% of the ²⁴⁰Pu isotope [DOE, 1994], which is considered a contaminant by weapons designers. Reactor grade plutonium also contains ²³⁹Pu, but is defined as containing greater than 7% ²⁴⁰Pu¹. Each type of plutonium also contains varying amounts of other plutonium isotopes including ²³⁸Pu, ²⁴¹Pu, and ²⁴²Pu. Although weapons grade plutonium (as the name implies) is vastly preferable for use in fabricating a nuclear weapon, reactor grade plutonium can also be used to produce an explosive that delivers a nuclear yield² [Mark et. al, 1987]. For this reason, and because a terrorist organization is unlikely to be picky if an opportunity to obtain this material avails itself, reactor grade plutonium has been included in the discussion, despite the added weapon design and assembly difficulties associated with its use.

¹ Plutonium containing between 7 and 18% ²⁴⁰Pu is sometimes referred to as fuel grade.

² In 1977 the United States declassified the existence of an underground test conducted in 1962 where a nuclear device fabricated with reactor grade plutonium was successfully detonated.

²³³U is not a constituent of naturally occurring uranium and, like plutonium, must be produced artificially. This fissile nuclide is bred from thorium in nuclear reactors through the following transmutation chain.

$$^{232}Th \frac{(n,\gamma)}{2} > ^{233}Th \frac{\beta^{-}}{22.3m} > ^{233}Pa \frac{\beta^{-}}{27.0d} > ^{233}U$$

Uranium bred and chemically separated from thorium blankets is contaminated with varying amounts of ²³²U. ²³³U is not nearly as popular as ²³⁵U and ²³⁹Pu for use in nuclear weapons (no country is publicly known to have produced weapons using 233 U [NTI, 2003]) because of radiation dose concerns arising from the ²³²U contaminant. However, this material is very capable of producing a nuclear explosion, evidenced by a bare sphere critical mass³ smaller than that of ²³⁵U [NERAC, 2000]. Currently, the worldwide availability of ²³³U is rather small compared to other fissile materials that are likely being coveted by terrorist organizations. However, a number of countries, most notably India (already a nuclear weapon state), are considering the use of a ²³³Uproducing thorium fuel cycle for nuclear power generation [Gopalakrishnan, 2002].

Despite their many physical, chemical, and metallurgical differences, fissile materials have a number of common traits that can be used as a basis for detection. One characteristic that is obviously shared by all fissile materials is that they can be made to fission. When fissile materials are bombarded with neutrons of any energy or gamma rays above a threshold energy⁴, fission (or so-called photo-fission in the case of gamma bombardment) will occur and neutrons and prompt gamma rays will be released immediately as a result of the fission event, followed by delayed gamma rays (and occasionally delayed neutrons) emitted by subsequent decay and de-excitation of the fission products. Unlike the heavy ionized fragments created during fission and the beta particles that are typically emitted as these fission products decay toward stability, neutrons and gammas are uncharged. Due to their lack of electronic charge, these particles do not undergo Coulomb interactions with the atomic electrons of the matter

³ The bare sphere critical masses of ²³³U and ²³⁵U are 16.4 kg and 47.9 kg, respectively. ⁴ For ²³⁵U and ²³⁹Pu, the photo-fission threshold energy is about 5.3 MeV [Fetter(1), 1990]

through which they pass so they can travel a relatively long distance before and between interactions. The long-range nature (relative to other forms of nuclear radiation) of neutrons and gammas makes them particularly well suited to the task of detecting fissile material at a distance using conventional equipment and well-understood methods.

Another useful characteristic shared by all fissile materials is that they have high densities, and are able to readily absorb gamma rays and neutrons. Densities of some common weapons-grade fissile materials are shown in Table 2-1 [Mark et. al, 1987].

HEU	Weapons Grade Pu		
(94% U-235)	alpha phase	delta phase	
18.7 g/cm^3	19.86 g/cm^3	15.6 g/cm^3	

 Table 2-1: Densities of common weapons-grade fissile materials

One way to quantify how effectively a material can absorb a particular type of radiation is to define the mean free path of that radiation in the material. The mean free path is the average distance traveled between interactions. Since each interaction creates the opportunity for scattering or absorption, a short mean free path, or equivalently, more average interactions per unit length, indicates that the material is effective in absorbing or shielding that particular radiation. Table 2-1 below shows the mean free path ratios between HEU and a number of other materials for neutrons and gamma rays of several different energy regimes [Fetter(1), 1990].

	Energy	Ratio of MFP in element to that in			to that in H	HEU
	MeV	С	Al	Fe	W	Pb
	0.4	22	19	6.7	1.4	2.0
Gamma Rays	10	23	16	4.3	1.1	1.8
-	100	56	27	5.5	1.1	1.7
	thermal	50	240	24	40	70
Neutrons	0.001	3.0	16	2.2	1.6	4.1
	10	2.2	2.4	1.5	0.94	1.5

Table 2-2: Ratios of MFPs in selected materials to HEU

Ratios in Table 2-1 greater than unity indicate a larger mean free path in the reference material than in HEU. Plutonium with its similar density, atomic number, and ability to

fission (even with thermal neutrons) would produce comparably small mean free paths for gamma rays and neutrons at energies tabulated above.

Fissile materials are also radioactive. However, since each type of fissile material has a distinct isotopic composition, which in turn gives rise to distinct populations of decay progeny, each of the materials produce intrinsic radiation signatures that can differ in terms of character and intensity. The characteristic emission signatures for each type of fissile material will now be identified and discussed separately in the context of how they can be used to facilitate remote detection.

2.1.1 HEU Radiation Signature

The isotopic composition of a radioactive material determines both the nature and energy of the radiation emitted. Therefore to begin discussing the radiation signature of HEU, the general composition of this material must first be revisited in greater detail. The primary constituents of HEU are the naturally occurring ²³⁸U, ²³⁵U, and ²³⁴U isotopes. To produce weapons-usable material, some means of enrichment (e.g. gaseous diffusion or centrifuge enrichment) must be employed to artificially raise the relative abundance of the fissile ²³⁵U isotope to well above its natural level of 0.72%. Because most means of enrichment exploit the fractional mass differences between isotopes, the trace amount of ²³⁴U found in natural uranium is also preferentially enriched along with ²³⁵U due to its comparatively low atomic mass. If none of the material used as input, or feedstock, to the enrichment process had ever been irradiated in a nuclear reactor, than the naturally occurring nuclides listed above would be the only uranium isotopes present in the resulting HEU. However, if even a minute fraction of the enrichment feedstock had been irradiated (and subsequently reprocessed), the HEU output would likely be contaminated with small amounts of the non-naturally occurring ²³²U, ²³⁶U, and ²³⁷U isotopes [Peurrung, 1998].

As the ²³⁵U, ²³⁸U, and ²³⁴U isotopes (as well as the ²³²U, ²³⁶U, and ²³⁷U contaminants that may be present) begin down their long decay chains toward stable

nuclides, alpha and beta particles are emitted as individual nuclei decay. While these short-range, charged particles are generally unhelpful for remote detection, the longrange characteristic photons that often accompany these decays can be usefully exploited. The gamma rays emitted as the excited daughter nuclei created during alpha or beta decay transition to lower excited states or their ground states, give rise to a rich and complex spectrum of photons that can penetrate surrounding material and be detected at a physically removed location. Since gamma ray energies are determined by the characteristics of the emitting nucleus, peaks in the measured spectrum can be used to unambiguously identify the presence of specific isotopes. The HEU spectrum, as measured using a high resolution, high purity germanium (HPGe) detector, is shown in Figure 2-1 [Gosnell, 2000].

As indicated by the magnified region of Figure 2-1, the characteristic gamma lines emitted by ²³⁵U are concentrated at the low energy end of the spectrum. The most intense of the 59 discrete lines emitted by ²³⁵U is at 186 keV and the most energetic line emitted with a reasonably high intensity is at 205 keV. Unfortunately, these photons are

not highly penetrating because most types of matter have large linear attenuation coefficients in this energy regime, with a particularly large contribution from the photonabsorbing photoelectric process. Figure 2-2 shows the dominant regions for various types of photon interactions as functions of the atomic number of the transmission medium [Evans, 1955].

Figure 2-2: Dominant regions for different photon interactions

As a result of the high probability of photoelectric interaction, which results in the loss of the photon in the process, dense matter shields low energy gamma lines emitted by 235 U very efficiently. In uranium the mean free path of 200 keV gamma rays is 0.5 mm, so a significant fraction of these low energy photons are subject to self-absorption within the HEU from with they originate [Fetter(2), 1990].

The most notable contribution to the HEU spectrum stemming from residual ²³⁸U is the 1001 keV line arising from the isomeric transition of ^{234m}Pa that is created through the following series of decays.

$$^{238}U_{\frac{\alpha}{4.5\,Gy}} > ^{234}Th_{\frac{\beta^{-}}{24.1d}} > ^{234m}Pa$$

Although this line is highly penetrating and emitted with reasonably high intensity, the use of gamma rays that arise from 238 U (or its daughters) for fissile material detection

purposes is inherently problematic. This is due in part to the fact that the presence of ²³⁸U doesn't necessarily indicate the presence of HEU. Additionally, the ubiquitous nature of the ²³⁸U isotope, particularly in terrestrial settings, produces a significant amount of nuisance background that can confound detection efforts.

Because gamma lines emitted by 235 U are intense but not highly penetrating and lines emitted by 238 U (and its daughters) are less than ideal for fissile material detection, gamma emissions stemming from the decay of 232 U and its daughter products can prove extremely useful for remote detection applications. 232 U is produced primarily through the following reactions in a nuclear reactor [Peurrung, 1998].

(1)
$$^{235}U_{\frac{\alpha}{704My}} > ^{231}Th_{\frac{\beta}{25.5h}} > ^{231}Pa_{\frac{(n,\gamma)}{31.4h}} > ^{232}Pa_{\frac{\beta}{31.4h}} > ^{232}U$$

(2)
$$^{234}U_{\frac{\alpha}{246\,ky}} > ^{230}Th_{\frac{(n,\gamma)}{25.5\,h}} > ^{231}Th_{\frac{\beta}{25.5\,h}} > ^{231}Pa_{\frac{(n,\gamma)}{31.4\,h}} > ^{232}Pa_{\frac{\beta}{31.4\,h}} > ^{232}U$$

(3)
$${}^{235}U \xrightarrow{(n,\gamma)} > {}^{236}U \xrightarrow{(n,\gamma)} > {}^{237}U \xrightarrow{\beta^-} {}^{6.8d} > {}^{237}Np \xrightarrow{(n,2n)} > {}^{236m}Np \frac{\beta^-}{22.5h} > {}^{236}Pu \frac{\alpha}{2.9y} > {}^{232}U$$

(4)
$$^{238}U^{(n,2n)} >^{237}U^{\frac{\beta^{-}}{6.8d}} >^{237}Np^{(n,2n)} >^{236m}Np^{\frac{\beta^{-}}{22.5h}} >^{236}Pu^{\frac{\alpha}{2.9y}} >^{232}U$$

The reactions shown above (particularly the first two listed) are the most significant pathways by which ²³²U is produced in a reactor, provided that actinide impurities arising from previous irradiations have been removed from the initial fuel prior to loading [Perrung, 1998]. If present in HEU, ²³²U will decay through a long chain of successive alpha and beta decays through the so-called thorium series depicted below in Figure 2-3 [Krane, 1988].

Figure 2-3: Thorium series

The thorium series is shown in detail because several of the distant daughter products of ²³²U emit high energy, highly penetrating gamma lines that can significantly enhance the distance at which HEU can be remotely detected. Of the daughter products found in the thorium series, the one with the most utility for detection is ²⁰⁸Tl. The beta decay of ²⁰⁸Tl to stable ²⁰⁸Pb is accompanied by one or more high-energy photons emitted as the daughter nucleus de-excites. Table 2-2 shows the energies of the most intense gamma ray lines produced by ²⁰⁸Tl decay, as well as the branching ratios of these lines [Fetter(3), 1990].

Gamma Energy	Branching Ratio	
(keV)	(% per decay)	
583.0	86.0	
860.3	12.0	
1620.7	1.51	
2614.4	99.79	

Table 2-3: ²⁰⁸Tl gamma lines and branching ratios

Because of their significant branching ratios and highly penetrating nature, the 583 and 2615 keV ²⁰⁸Tl gamma lines can be particularly useful in detecting HEU that is contaminated with the ²³²U parent nuclide, even if ²³²U is found in concentrations less than 1 ppb [Fetter(1), 1990]. The prominence of these two peaks in the HEU spectrum can be seen in Figure 2-1. The 2615 keV photon is especially noteworthy because photon interaction cross-sections at this energy are generally quite low, which allows this gamma line to be powerfully penetrating and quite long range. Also, as shown in Figure 2-2 the Compton scattering process dominates the overall interaction cross-section at 2615 keV, so even when an interaction does take place, the photon will most likely be scattered (albeit losing some energy in the process) instead of absorbed. Additionally, in general, the background rate in this high-energy region of the spectrum is fairly low, so a source that emits gammas in this regime can usually be detected more easily than a low energy gamma emitter. Unfortunately, as the thorium series in Figure 2-3 demonstrates, ²³²U is not the only potential source of ²⁰⁸Tl and its 2615 keV decay photon. ²³²Th, an isotope that represents greater than 99% of naturally occurring thorium and is 3 times more abundant in the earth's crust than natural uranium [WNA, 2003], also decays down to ²⁰⁸Tl and can produce a very strong background signal, which inhibits confident detection of HEU.

Like many other extremely heavy isotopes, ²³⁸U and ²³⁴U can undergo spontaneous fission. In general, spontaneous fission is more likely in nuclides with even numbers of protons and neutrons and becomes increasingly important as atomic number increases. However, it does not seriously compete with alpha emission as the dominant decay process until atomic mass increases above about 250 [Krane, 1988]. As a result, ²³⁸U and ²³⁴U both have partial half-lives for spontaneous fission that are significantly longer than their total half-lives. (Partial half-lives are defined as the time necessary for half of the nuclei in a given sample to decay if only a single specified decay process were allowed to occur.) ²³⁸U has a partial half life for spontaneous fission of 8.20x10¹⁵ yr versus a total half life of 4.468x10⁹ yr and ²³⁴U has a spontaneous fission half life of 2.04x10¹⁶ yr versus a total half life of 2.455x10⁵ yr [Fetter(4), 1990].

Several other processes contribute to neutron generation in HEU. One is the production of neutrons through (α,n) reactions that can occur when light element impurities (e.g. carbon and oxygen) in the material interact with alpha particles emitted by the uranium nuclides and their daughter products [Fetter(2), 1990]. The other process influencing the neutron population in HEU is the multiplication that occurs when an existing neutron induces fission in the fissile material thereby releasing additional neutrons. The degree of multiplication is strongly dependent on the geometry of the material.

Despite the effects of multiplication and the neutron production that could occur due to (α ,n) reactions in light element contaminated material, spontaneous fission events in ²³⁸U and ²³⁴U occur infrequently enough that the intrinsic neutron signature of HEU is very small and essentially undetectable for the remote detection application of interest.

2.1.2 Plutonium Radiation Signature

Both weapons grade and reactor grade plutonium contain essentially the same plutonium isotopes (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu and ²⁴²Pu) but in different concentrations. Weapons grade plutonium is typically composed of greater than 93% ²³⁹Pu, around 6% ²⁴⁰Pu, and small quantities (less than 1%) of ²³⁸Pu, ²⁴¹Pu, and ²⁴²Pu [Fetter(1), 1990]. Reactor grade plutonium, a material that does not have uniquely specified isotopics, has been produced and separated from higher burnup fuel than weapons grade plutonium, giving it a lower concentration of ²³⁹Pu and higher relative concentrations of the ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu isotopes [Mark, 1990].

All of the plutonium isotopes identified above are radioactive, and just as in the case with HEU, the alpha and beta decays undergone by these isotopes and their daughter products are accompanied by the emission of one or more characteristic photons. The most prominent gamma lines in the plutonium spectrum arise from the decay of ²³⁹Pu, and the decay of the ²⁴¹Pu isotope's daughter product. ²³⁹Pu is an alpha emitter with a half-life of 2.411x10⁵ yr. The two most intense gamma lines arising from the ²³⁹Pu alpha

decay are at 375 and 414 keV with branching ratios (% per decay) of 0.00158 and 0.00151 respectively [Fetter(3), 1990]. The most energetic line emitted by ²³⁹Pu with a useful intensity is at 769 keV, and has a branching ratio of 0.000011. ²⁴¹Pu has a half-life of 14.35 yr and beta decays to ²⁴¹Am 99.9976% of the time [Oetting, 1968]. The ²⁴¹Am daughter then alpha decays with a 432.2 yr half-life emitting gammas at 662, 721.96 and 722.70 keV with respective branching ratios of 0.00036, 0.00006 and 0.00013 [Fetter(3), 1990]. The peak energies of the later two photons are exceedingly difficult to resolve, using even high-quality semiconductor detectors, because the peak energies are so close together. As such, the counts from these two photons can be aggregated into one peak centered at approximately 722.5 keV, with a combined branching ratio of 0.00019. Table 2-4 shows the decay rates of the gamma emissions discussed above⁵ [Fetter(3), 1990].

Parent Isotope	Gamma Energy (keV)	Decay Rate (g x s)^-1
Pu-239	375	36300
Pu-239	414	34600
Pu-239	769	252
Pu-241	662	174000
Pu-241	722.5	92000

Table 2-4: Decay rates for selected gamma emissions from plutonium and its daughters

In the case of weapons grade plutonium, the ²³⁹Pu and ²⁴¹Am gamma lines identified above can be fairly helpful for remote detection due to their reasonable intensity and good penetrating power in most materials. Since reactor grade plutonium has a significantly higher concentration of both ²⁴¹Pu and ²⁴¹Am, the highly penetrating 662 and (averaged) 722.5 keV can become quite intense. Consequently these gamma lines can be extremely helpful in remotely detecting reactor grade material.

It should also be noted that because ²³⁹Pu and ²⁴¹Am are not naturally occurring isotopes, the detection of plutonium using the gamma lines discussed above does not suffer from the same problems associated with natural background that can complicate HEU detection. However, ²⁴¹Am is used in commercial products such as smoke detectors

⁵ Decay rates in Table 2-4 assume 10-year-old plutonium (i.e. 10 years of decay time starting with 1 g of the pure parent nuclides).

and the popular radiation source ¹³⁷Cs, emits a gamma ray at 661 keV, which is essentially indistinguishable from the 662 keV line emitted by ²⁴¹Am. Although the spectral peak overlap with ¹³⁷Cs could frustrate unambiguous identification of ²⁴¹Am, the unexpected detection of this line emanating from a cargo container would still presumably be of intense interest due to the potential use of ¹³⁷Cs (particularly in its powdery chloride form [Stone, 2002]) in a radiological dispersion device.

A potentially more important aspect of plutonium's intrinsic radiation signature, in terms of remote detection, is neutron emission. Plutonium has a high rate of internal neutron generation due largely to the spontaneous fissioning of its nuclei. All of the plutonium nuclides present in weapons grade and reactor grade materials undergo spontaneous fission more readily (i.e. they have shorter spontaneous fission partial half lives) than ²³⁸U [Fetter(4), 1990]. The ²³⁸Pu, ²⁴⁰Pu, and ²⁴²Pu nuclides, with their even number of protons and neutrons, are particularly active contributors to the neutron population with relatively short spontaneous fission partial half lives of 4.77x10¹⁰, 1.31x10¹¹, and 6.84x10¹⁰ years respectively [Fetter(4), 1990].

As is the case with HEU, alpha particles interacting with light element impurities can cause (α ,n) reactions, giving rise to another potentially important neutron production mechanism. However, reactions of the (α ,n) variety are more significant in plutonium than HEU because the dramatically higher alpha activity in plutonium creates more opportunity for these reactions to occur. Likewise, neutron multiplication can also play a more significant role in plutonium because more spontaneous fission and (α ,n) neutrons are present to begin the multiplication process by inducing fission.

There is also some evidence to suggest that a significantly enhanced high-energy (above 1.6 MeV) gamma flux can be observed in the vicinity of plutonium-based nuclear weapons [Baryshevsky et. al, 1994]. These energetic photons would most likely be the result of radiative capture reactions occurring as materials in the surrounding chemical high explosive absorb neutrons emitted by the plutonium. Due to the low natural

background flux in this energy regime, these highly penetrating gamma rays could prove quite useful for remote detection.

2.1.3²³³U Radiation Signature

The isotopic composition of uranium that is chemically separated from thorium targets irradiated in a reactor varies depending on the reactor type and burnup. Although the relative concentrations may vary, all uranium produced from thorium irradiation will be contaminated with ²³²U produced primarily through the following reaction chains.

$$^{232}Th_{\frac{(n,2n)}{25.5h}} >^{231}Th_{\frac{\beta^{-}}{25.5h}} >^{231}Pa_{\frac{(n,\gamma)}{27.0d}} >^{232}Pa_{\frac{\beta^{-}}{31.4h}} >^{232}U$$

$$^{232}Th_{\frac{(n,\gamma)}{22.3m}} >^{233}Th_{\frac{\beta^{-}}{22.3m}} >^{233}Pa_{\frac{\beta^{-}}{27.0d}} >^{233}U_{\frac{(n,2n)}{232}} >^{232}U$$

The limiting reactions for both ²³²U production mechanisms are the (n,2n) reactions that have threshold neutron energies of around 6 MeV. As a result, uranium bred in reactors with relatively large neutron populations in the high-energy (i.e. > 6 MeV) portion of the spectrum will typically be contaminated with higher levels of ²³²U. ²³²U contamination also increases with burnup [Kang, 2001].

As noted above for HEU, ²³²U, with its 69.8 yr half-life and its ²⁰⁸Tl progeny can be very helpful for remote detection even at ²³²U contamination levels on the order of 100 ppt. In contrast to the minute concentrations of ²³²U that can be found in contaminated HEU, ²³³U is considered to be "clean" if it has levels of ²³²U contamination less than 1 ppm. [Kang, 2001]. The intense radiation field given off by the ²³²U decay chain is the root of radiation protection concerns that have kept ²³³U from being pursued by states as the basis for nuclear weapons production. This intense, high-energy radiation will also help to facilitate fairly straightforward remote detection of concealed ²³³U.

2.2 Detection Techniques

Detection techniques that seek to exploit the common properties of fissile material discussed in the previous section can be generally categorized as either active or passive. Active methods involve the application of external radiation sources to induce fission events in fissile material that may be present or to take photon transmission measurements that can indicate the presence and location of dense materials. Passive techniques do not probe with radiation, but instead measure the intrinsic radiation emitted by the fissile material to achieve detection. Methods using both active and passive techniques will now be discussed in additional detail and their applicability to the postulated container scenario will be assessed.

2.2.1 Active Detection

There are a number of disparate detection methods that fall under the category of active techniques. The commonality between these methods is that they all employ some dedicated photon or neutron source to bombard an object or material with intense radiation to measure its response. In some cases the response of interest is the induced radiation emitted by the object or material being interrogated and in other cases the measured response is the amount of radiation that is effectively transmitted through (or absorbed in) the test object. Methods concerned with stimulating radiation in fissile material using external radiation sources will be referred to here as induced fission techniques and methods that measure radiation transmission will be referred to as radiography.

2.2.1.1 Induced Fission

As discussed earlier, fissile materials can be made to fission with neutrons of any energy and by gamma rays above certain nuclide-specific threshold energies. Fission events are accompanied by the emission of about 7 prompt gamma rays and anywhere between 2 to 5 prompt neutrons depending on the isotope undergoing fission and the type

and energy of the particle that induced the event [Fetter(4), 1990]. Induced fission techniques interrogate an object with intense beams of radiation and detect evidence of induced fission in the form of prompt neutrons and/or gammas.

Induced fission techniques have a number of attractive attributes. The intense probing radiation can penetrate significant amounts of intervening material such that even well-shielded fissile material can normally be detected. Additionally, by artificially inducing a strong signal that is unique to the class of materials that are being screened for, induced fission techniques require a much smaller detection time than other methods, particularly those that are passive in nature. Disadvantages associated with this method include radiation protection concerns for workers and bystanders stemming from the use of intense and energetic radiation sources. An additional concern for methods that would employ neutrons as probing radiation arises from the possible activation of benign materials in the test object.

In terms of suitability to the container scenario, induced fission techniques are not a particularly desirable option. Although the ability to detect fissile material despite shielding is an important virtue of this method, the insult to the device arising from the bombardment of probing radiation is a critical drawback. A booby-trap provision, such as the one postulated by the container scenario, could be triggered by intense radiation resulting in detonation of the weapon.

2.2.1.2 Radiography

As photons pass through material they can interact with surrounding matter through a number of different processes. The most notable of these photon interactions are photoelectric absorption, Compton scattering, and (if the photon has an energy greater than 1.022 MeV) pair production. Examples of photon interaction cross-sections for aluminum and lead, illustrating the energy dependence of the three primary interaction processes, are shown in Figure 2-4 [Krane, 1988].

Figure 2-4: Photon interaction cross-sections for aluminum and lead

The denser the material being traversed by a photon, the more matter is available to cause these interactions per unit length traveled. As such, a test object with unknown contents can be exposed to a beam of photons with a known intensity and transmission measurements can be carried out to detect the presence of particularly dense material, which could indicate the presence of either fissile material or shielding. Sophisticated radiographic techniques can image the contents of an unknown test object using the contrast provided by the varying linear attenuation coefficients of different materials. These contrast images can be used to indicate both the presence and geometry of suspicious dense material.

An advantage of radiography is that it can provide visual insights into the contents of sealed, opaque containers without requiring them to be physically opened. The sensitivity to very dense materials could also easily detect the presence of engineered shielding. However, high densities are not unique to fissile materials or shielding that is being used to conceal a nuclear weapon. As such, this method (and other more exotic
radiographic methods including those using muons) could be prone to high false alarm rates that could create a potentially costly commercial choke point. Additionally, the bombardment of high-energy photons can damage some radiation-sensitive types of commercial cargo, such as photographic film.

Evaluated in terms of the container scenario, radiography warrants an assessment similar to that of induced fission techniques. The ability to readily detect the presence of material that could be used as shielding is desirable (although unlike induced fission methods, radiography cannot unambiguously detect the presence of fissile material behind potential shielding). However, the overall desirability of this technique, at least with respect to the postulated container scenario, is severely limited by the fact that the bombardment of a booby-trapped nuclear device with intense external radiation could trigger the weapon.

2.2.2 Passive Detection

Whereas active techniques use externally applied radiation to exploit common properties of fissile material related to fissionability and density, passive techniques focus on the intrinsic radiation that is emitted in varying forms by all fissile material as a means of detection. Using large static arrays of gamma and neutron detectors to obtain gross count measurements can identify the presence of a radiation source. This technique cannot, however, discriminate between fissile material and any other type of radiation emitting material. More advanced techniques using gamma spectroscopy can be used to detect and identify individual types of fissile material.

By relying on intrinsic radiation emitted by fissile material instead of radiation induced by powerful external sources, passive techniques are non-invasive and do not present radiation protection concerns. However, the intrinsic signal emitted by fissile material is significantly less intense than the signal that can be artificially induced using active methods. In general, the number of counts detected from an isotropic point source can be expressed as follows,

$$C = \frac{SA\varepsilon t}{4\pi r^2} e^{-\sum_{i} \mu_i \tau_i} \tag{1}$$

where S is the intensity of a point source, A is the detector area normal to the incident radiation, ε is the detector efficiency, t is count time, r is the linear distance between the source and the detector, μ is the linear attenuation coefficient of a given intervening material, and τ is the thickness of a given intervening material. The situation described by Eq. (1) is shown schematically in Figure 2-5.

Figure 2-5: Schematic representation of source detection through intervening material

Assuming that the detector or detectors will be placed as close to the source as the situation permits and that detectors with efficiencies as high as feasible were employed, Eq. (1) shows that the only remaining options for increasing the magnitude of the detected signal are to increase the effective detector area or increase the count time. As a result, either large detectors, arrays of detectors, long count times or some combination thereof are likely to be required to make a confident detection of fissile material using passive techniques. An additional difficulty encountered using passive detection methods arises from the relative ease with which the low energy characteristic gamma emissions from some types of fissile material (most notably HEU with very limited or no ²³²U contamination) can be shielded by dense materials. Shielding can cause already weak intrinsic signals to become even weaker and can be a serious obstacle to confident detection.

Assessed against the container scenario, passive techniques have the critical advantage of not perturbing radiation-sensitive booby-traps in the course of detection. The trade-off for this desirable attribute is the potential for significantly longer count times if the weakly penetrating intrinsic radiation from fissile material is to be detected despite the presence of intentional shielding. Increased count times may or may not be tolerable.

Chapter 3: Detection Schemes

3.1 Current Approaches

The preceding section discussed general methods for detecting concealed fissile material without consideration for how and where within the international container shipping architecture these techniques could be implemented. Identifying suitable deployment strategies for selected detection techniques is often complicated by the potentially competing interests of enhancing security and preserving the free flow of commerce. A number of deployment approaches seeking to strike a balance between security and commerce have been envisioned or even implemented. Some of the more prominent approaches that have been proposed or realized to date will now be discussed in terms of their abilities to address the conservative postulated threat.

3.1.1 Customs-Based Approach

The vast majority of detection schemes that are currently deployed or slated for deployment, can be generally characterized as customs-based approaches. These approaches strive to integrate detection systems using either active or passive techniques into existing infrastructure elements at U.S. ports. Examples include outfitting cranes that transfer containers from cargo vessels onto shore with passive large-area detectors, processing incoming containers through inspection facilities where they are subjected to active interrogation, or using mobile detection units to scan containers with photons for signs of fissile material. The development of in-port detection regimes, such as the examples cited above, represents a natural extension of conventional strategies based on the customs model for finding and seizing contraband as the material is coming into the country. Nuclear weapons, however, are utterly unlike conventional forms of contraband due to the power and range of their effects. As such, when an attack is mounted by a rational and determined adversary, the discovery of a nuclear weapon in a major U.S. port simply cannot ensure protection from the device's destructive power and reach.

3.1.2 "Smart" Containers

Another approach that has been vigorously discussed recently is the deployment of so-called "smart" containers. This approach would retrofit containers used for maritime commerce with small radiation detectors to sense the presence of concealed fissile material. Aside from the extremely daunting logistical challenges that would be presented by installing, maintaining, and mentoring detection equipment in the approximately 11 million [WSC, 2003] cargo containers in circulation worldwide, there are a number of critical limitations associated with this approach. First, the detectors employed in "smart" containers would be very susceptible to tampering. It is the sender who loads and seals the cargo container prior to shipment, so if a "smart container" approach was adopted and it was well known that each container was outfitted with a small detector or detectors, the enemy would have ample opportunity to disable or defeat the detection devices given their unlimited access to the container prior to shipment. Even if an enemy did not successfully defeat the detector or if sensors in neighboring containers detected radiation, the presence of a threat would still not be known until the container entered port unless the alarm could be communicated in a quasi-real time fashion. Equipping all containers with detectors that can transmit alarm information would most likely render the "smart" container approach cost prohibitive. Therefore, like customs-based approaches, "smart" containers would not identify the presence of a nuclear weapon until it has already reached a U.S. port, which is not adequately protective when faced with a sophisticated and determined adversary.

These and other current approaches that subscribe to the conventional notion that threats can be successfully detected and interdicted as they enter the country (in this case when the threat has come ashore in port) are critically flawed because they do not take into account the unique destructive dimensions of the nuclear threat they seek to address. Even if they make detections with perfectly reliability, these approaches and any others that propose to look for fissile material in containers that have already entered port cannot ensure that a nuclear detonation that physically impacts the United States can be

prevented. Therefore, with respect to the challenges posed by the threat of containerborne nuclear attack, these approaches do not meet the ultimate success criterion.

3.2 Ship-Based Approach

3.2.1 Attributes

The primary drawbacks of the approaches discussed above relate to the critical issue of how and where defensive measures are to be deployed. For conventional contraband, shipping ports are logical locations to field inspection and detection capabilities because they represent choke points where many elements (i.e. containers) of a generally diffuse threat (i.e. container borne contraband) come together. Domestic ports are also convenient deployment nodes because, unlike foreign ports and commercially owned property, the U.S. government has wide access to the facilities and infrastructure. To ensure protection from the effects of nuclear weapons, however, the threat must be interdicted prior to reaching, or even coming into range of, U.S. shores.

Large ocean-going container vessels represent another choke point where many cargo containers, each representing a potential threat, come together en route to the United States. If the presence of a concealed nuclear weapon could be detected and communicated while the ship carrying it was still at sea, a defensive response could be mounted while the threat was still safely removed from U.S. shores. The U.S. government cannot unilaterally deploy and maintain control over detection equipment deployed on the actual vessels themselves since they are the property and dominion of private concerns. However, akin to the terrorists who may seek to exploit it as an avenue of attack, the U.S. government does have access to the open architecture of international maritime commerce that allows any party to ship containers to and from just about any destination aboard these ships.

Therefore, Gallagher at MIT has proposed an approach whereby suites of commercial off the shelf (COTS) gamma and neutron detectors are mounted inside

standard, non-descript cargo containers. These dedicated units could then be shipped clandestinely using existing commercial channels where they would be deployed alongside potentially threat-bearing containers aboard vessels sailing for U.S. ports. On board the container ship, the detection units will be able to utilize passive neutron counting and imaging-enhanced gamma spectroscopy techniques to detect and potentially identify any threat-related nuclear signature being emitted from nearby containers with a count time constrained only by the duration of the voyage. The containerized detection units would also be outfitted with a transmission capability such that the presence of potential threats could be communicated as they were detected and prior to entering U.S. ports. The primary advantages of this "ship-based approach" can be summarized as sensitivity, stealth, and most importantly, standoff.

3.2.1.1 Sensitivity

Characteristics of the ship-based deployment environment and the containerized detection units themselves combine to promote good detection sensitivity. Standard full-sized cargo containers, which would be used to house detectors, have dimensions measuring 40' in length, 8' in width and 8.5' in height. The 2720 ft³ interior volume of these containers provides ample space to mount neutron detection equipment and arrays of gamma detectors that can be configured to present a large effective area when viewed from any incident direction. Additionally, the long transoceanic voyages required to ship containers from many foreign ports of call to U.S. shores provide extremely long count times. From most foreign ports, count times of a week or more would be available.

Referring back to Eq. (1), it is clear that a large detector area and very long count times will enhance signal strength and help to offset the unknown and variable distance to the fissile source. However, the signal strength defined in Eq. (1) is not the only relevant factor in confidently detecting the presence of fissile material. Background radiation being emitted by benign sources can mimic or obscure the emissions from a genuine threat. Two particularly problematic contributors of background radiation are cosmic ray induced neutrons and naturally occurring radionuclides. Cosmic rays, composed

primarily of energetic protons and alpha particles, produce neutrons predominantly through spallation interactions with matter [Frank et. al, 2000]. The distributed neutron background flux at an interface between air and iron (e.g. on the deck of a containership) has been found to be approximately 12 times greater than the background flux at an interface between air and ground [O'Brien, et. al, 1978]. This distributed neutron background enhancement, sometimes referred to as the "Ship Effect", is the result of a massive object composed of dense material (e.g. iron) serving as an effective medium for the production of cosmic ray-induced neutrons. Naturally occurring uranium and thorium can also frustrate detection efforts because these radioactive materials and their daughter products produce characteristic gamma emissions that are identical in energy to those emitted by some fissile materials of interest. Unlike many terrestrial settings, the uranium and thorium concentrations of seawater are small at 3.3 μ g/L [Turekian, 1976] and 9.2 ng/L [Emsley, 1998] respectively, and these concentrations are not expected to fluctuate substantially. Therefore the background sources likely to interfere with shipbased fissile material detection are diffuse uranium and thorium impurities in the ship's structural steel and distributed benign sources in commercial containers. Imaging techniques provide a means for identifying localization of incident radiation. As a result, threatening point-like sources can be distinguished from the benign distributed background sources described above.

3.2.1.2 Stealth

The nondescript nature of the containerized ship-based detection systems allows these units to operate surreptitiously. The stealth afforded by these sealed, containerized units will frustrate attempts by adversaries to disable or defeat the embedded detection equipment. Additionally, while the exact number and location of the detection units would not be obvious to an enemy, the knowledge that they are operationally deployed may produce sufficient uncertainty regarding mission success to dissuade the enemy from using this means of delivery. This could achieve an important degree of deterrence.

3.2.1.3 Standoff

The most important advantage of the ship-based approach is the physical location of the material when a positive detection is made and communicated. Instead of identifying the presence of concealed fissile material once it has already entered the country, a ship-based approach could detect the presence of a threat while the container was still safely removed from American shores. The warning time provided by a transmitter equipped, ship-based detection system would allow protective measures to be taken to ensure that a minimum level of standoff distance between the container vessel and the United States coastline could be established and maintained. Not only would early warning prevent a concealed weapon from ever becoming a threat to the American homeland, it would also ensure that responders had the greatest possible degree of flexibility in how to safely contain and neutralize the threat.

3.2.2 External Uncertainties

It is difficult to overstate the critical advantages of a system that uses COTS equipment and well understood techniques to provide advance detection and notification of an incoming container borne nuclear threat. However, before the effectiveness, reliability, and practicality of this conceptual approach can be persuasively demonstrated, a number of important remaining uncertainties must be investigated and resolved. Some of these uncertainties involve aspects of design and performance verification concerned with elements internal to the containerized detection units. Other uncertainties are external to the detection units and relate to facets of the international shipping trade and characteristics of the deployment environment. A concerted effort is underway to remove or constrain these uncertainties and to produce defensible assessments of the efficacy and viability of the ship-based approach. Research and development activities supporting this effort have been roughly divided along the lines of whether they address uncertainties that are internal or external to the detection units. The remainder of this thesis will address some of the more pressing external uncertainties. These uncertainties include the count times available on container voyages originating from different regions of the world, the number of detection units needed to adequately cover a vessel of a given

size, and the number of detection units needed for a fully deployed system. Internal uncertainties are being investigated by Gallagher at MIT and are outside the scope of this thesis. Some important internal issues that are explicitly excluded are detection suite design and quantification of internal performance parameters such as the expected maximum distance (or range) at which a detection unit will be able to confidently and reliably detect fissile sources under realistic conditions. Although concerns internal to the detection unit will not be addressed here, there is an extremely high degree of coordination and collaboration between the two functional areas and as work is produced on one track it is immediately fed into ongoing activities on the parallel track.

Chapter 4: Container Shipping and Cargo Analysis

Some important uncertainties associated with a ship-based detection regime cannot be meaningfully addressed and resolved outside the context of the international container trade and its attendant infrastructure, equipment, and cargo diversity. The following analysis seeks to gain insights into relevant external uncertainties by examining the imported container traffic at U.S. ports and deconstructing it terms of where the containers came from, how far containers traveled to get here, what kinds of vessels (with respect to container capacity and speed) were used to transport them, and what are the relevant material properties of the cargo found within them.

4.1 Container Shipping Overview

In 2003, commercial vessels of all types, including tankers, bulk material carriers, vehicle transports, and containerships, made 56,759 calls at U.S. ports [MARAD(1), 2004]. Containerships accounted for 17,271 (31.7%) of these calls with 1,025 separate vessels importing over 13,900,000 containers, measured in twenty-foot equivalent units⁶ (TEUs). In the same year, containerships averaged about 17 calls per vessel and had an average nominal capacity of 3,144 TEU. Table 4-1 shows the volume of imported and exported containers that are processed through the top 30 U.S. ports in 2003 [MARAD(2), 2004].

⁶ Cargo containers come in lengths of 20', 40', and 45'. For the sake of normalization, TEU is the standard measure for container statistics even though 40' containers are the most commonly used. A TEU is nominally defined as a 20' x 8' x 8' container. A standard 40' container therefore counts as 2 TEU.

Pank	Port	Total	Export	Import
Marin		(TEU x 1000)	(TEU x 1000)	(TEU x 1000)
1	Los Angeles	4664	1022	3642
2	Long Beach	3091	723	2368
3	New York	2803	838	1965
4	Charleston SC	1250	529	721
5	Savannah	1124	529	595
6	Norfolk	1093	460	633
7	Oakland	1064	548	517
8	Houston	933	483	450
9	Tacoma	931	337	594
10	Seattle	815	329	486
11	Miami	764	336	428
12	Port Everglades	423	236	187
13	Baltimore	307	115	192
14	New Orleans	237	139	98
15	Portland OR	210	147	63
16	Wilmington DE	195	29	166
17	San Juan	185	39	147
18	Gulfport MS	179	71	108
19	West Palm Beach	140	106	34
20	Jacksonville	113	72	42
21	Philadelphia	103	9	95
22	Boston	93	34	58
23	Newport News	80	32	48
24	Chester PA	72	28	44
25	Wilmington NC	72	28	44
26	San Diego	53	9	44
27	Freeport TX	50	23	28
28	Richmond VA	41	20	21
29	Honolulu	37	18	19
30	Port Bienville MS	25	_23	2
	Total (Top 30)	21148	7312	13837
	All Other Ports	141	77	62
	Grand Total	21289	7389	13899

Table 4-1: Containerized cargo volume by U.S. port (CY 2003)

Table 4-2 shows the origin and volume of containers imported in 2003 from the top 25 U.S. containerized cargo trading partners [MARAD(3), 2004].

Country	Imports	Total Trade
of Origin	(TEU x 1000)	(TEU x 1000)
China	4447	5656
Hong Kong	1292	1619
Japan	722	1603
Taiwan	651	946
Korea	469	898
Germany	467	650
Italy	473	602
Brazil	388	533
Thailand	378	496
United Kingdom	206	429
Belgium	156	392
Indonesia	261	391
Netherlands	225	390
India	253	389
Malaysia	239	299
France	195	280
Honduras	152	275
Guatemala	156	268
Spain	158	246
Costa Rica	166	245
Philippines	141	221
Dominican Republic	98	216
Australia	78	210
Turkey	114	196
Chile	135	190
Total	12019	17637
All Others	1880	3650
Grand Total	13899	21287

 Table 4-2: Foreign container import data (CY 2003)

4.2 Count Time

The amount of available count time is a critical factor in determining the efficacy of the proposed ship-based approach. Count times for ship-based detection are constrained only by the duration of the containership voyage. The voyage time between any two ports is determined primarily by the total nautical distance between the ports of interest and the average speed of the vessel. The following focuses on nautical distances between ports and vessel speeds separately and then combines the results of these analyses to derive defensible count time estimates for container shipments originating anywhere in the world.

4.2.1 Distance Between Ports

The nautical distance a vessel travels between a foreign port and a given U.S. port is dominated by the location of the originating port and world geography (i.e. intervening land masses). This distance, however, can also be heavily influenced by the number of intermediate calls made between the ports of interest and by the size of the containership. Many international shipping lines offer regularly scheduled service routes that call on multiple ports en route to the United States. These additional port calls add distance to the overall voyage and each call results in some idle time while the ship is berthed during the container discharge and loading process. The size of containerships is relevant to the travel distance because some important navigational short cuts have physical dimensions that limit the size of vessels that can safely access them. The most important of these size-limited navigational conveniences for containerships is the Panama Canal, which has a 32.2 m maximum width restriction [Ircha, 2002]. Vessels with a beam width exceeding this dimension (i.e. vessels that can fit more than 13 containers across the weather deck) cannot transit the canal and must instead sail around the tip of South America. Despite the additional voyage distances, economies of scale associated with larger, higher capacity vessels drove many international shipping companies to build containerships with deck widths that exceed 32.2 m [Wijnolst, 1999]. These so-called "Post-Panamax" vessels, with capacities greater than 4,000 TEU, now account for 30% of the worldwide containership fleet, by capacity [Tozer, 2003].

Several important assumptions were made prior to carrying out distance to port calculations that would ultimately serve as input to count time estimates. First, New York was selected as a representative destination for the east coast of the United States and Los Angeles was chosen as a representative west coast destination port. In addition to being the largest U.S. ports on their respective coasts, these ports were chosen because their proximity to large urban population centers with vast cultural and economic significance presumably makes them especially attractive targets for attack. Another assumption was that all voyages made from foreign ports to the reference ports (i.e. New

York and Los Angeles) were direct, with no intermediate calls. This assumption was made to ensure conservatism, since intervening port calls add time and distance to the voyage. Finally, it was assumed that the originating port used in a nuclear attack (i.e. the port from which a fully functional device is operationally deployed to the United States) could be anywhere in the world.

A total of 133 foreign ports were included in the distance analysis. An effort was made to select a set of foreign ports that provided reasonably comprehensive coverage of the world's navigable coastlines when taken as a whole. Therefore, some ports were selected for inclusion because of their prominence in the international container trade (e.g. Singapore and Hong Kong), and others were chosen to fill in geographical gaps. By providing quasi-continuous coastal coverage, the distance from any port not included in this analysis can be reasonably approximated by interpolation. Figures 4-1 through 4-8 show the geographic locations [Hammond, 1999] of the selected ports by region.

Figure 4-1: Map of upper North America showing selected ports

Central America					
Map Number	Port	Country	Map Number	Port	Country
3	Havana	Cuba	22	Georgetown	French Guyana
4	Kingston	Jamaica	23	Paramaribo	Suriname
5	Port au Prince	Haiti	24	Natal	Brazil
6	Santo Domingo	Dom. Rep.	25	Salvador	Brazil
7	Fort de France	Martinique	26	Rio de Janeiro	Brazil
8	Tampico	Mexico	27	Porto Alegre	Brazil
9	Belize City	Belize	28	Monte Video	Uruguay
10	Puerto Barrios	Guatemala	29	Buenos Aires	Argentina
11	Puerto Cortes	Honduras	30	Bahia Blanca	Argentina
12	Limon	Costa Rica	31	Comodoro Rivadavia	Argentina
13	Panama	Panama	32	Puenta Arenas	Chile
14	Puntarenas	Costa Rica	33	Puerto Montt	Chile
15	Corinto	Nicaragua	34	Valparaiso	Chile
16	Acajutla	El Salvador	35	Antofagasta	Chile
17	Champerico	Guatemala	36	Mollendo	Peru
18	Acapulco	Mexico	37	Callao	Peru
19	Mazatlan	Mexico	38	Guayaquil	Ecuador
20	Cartagena	Colombia	39	Esmeraldes	Ecuador
21	Maracaibo	Venezuela	40	Buenaventura	Colombia

Figure 4-2: Map of the United States, Central America and the Caribbean showing selected ports

THE REAL YOU			
	Map Number	Port	Country
	41	Port Said	Evapt
	42	Tunis	Tunisia
	43	Banghazi	Libva
	44	Algiers	Algeria
	45	Casablanca	Morocco
	4 6	Las Palmas	Canary Islands
	47	Dakar	Senegal
	48	Freetown	Sierra Leone
	49	Lagos	Nigeria
	50	Boma	Congo
	51	Luanda	Angola
	52	Cape Town	South Africa
	53	Durban	South Africa
N N N N N N N N N N N N N N N N N N N	54	Beira	Mozambique
	55	Dar Es Salaam	Tanzania
	56	Mombasa	Kenya
	57	Mogadishu	Somalia
	58	Djibouti	Djibouti
	59	Tamatave	Madagascar

Figure 4-3: Map of Africa showing selected ports

Europe

Map Number	Port	Country	Map Number	Port	Country
60	Batumi	Georgia	77	Zeebrugge	Belgium
61	Odessa	Ukraine	78	Antwerp	Belgium
62	Constanza	Romania	79	Rotterdam	Netherlands
63	Varna	Bulgaria	80	Hamburg	Germany
64	Istanbul	Turkey	81	Copenhagen	Denmark
65	Piraeus	Greece	82	Gdynia	Poland
66	Durres	Albania	83	Klaipeda	Lithuania
67	Split	Croatia	84	Oslo	Norway
68	Koper	Slovenia	85	Stockholm	Sweden
69	La Spezia	Italy	86	Helsinki	Finland
70	Barcelona	Spain	87	St. Petersburg	Russia
71	Lisbon	Portugal	88	Riga	Latvia
72	Coruna	Spain	89	Tallinn	Estonia
73	Bordeaux	France	90	Murmansk	Russia
74	Le Havre	France	91	Arkhangelsk	Russia
75	Southampton	England	92	Reykjavik	Iceland
76	Dublin	Ireland			

Figure 4-4: Map of Europe showing selected ports

A	lic	ldle	East /	'India
---	-----	------	--------	--------

Map Number	Port	Country
93	Calcutta	India
94	Madras	India
95	Colombo	Sri Lanka
96	Bombay	India
97	Karachi	Pakistan
98	Bandar Abbas	Iran
99	Bushehr	Iran
100	Abu Dhabi	U.A.E.
101	Umm Said	Qatar
102	Mina Raysut	Oman
103	Manama	Bahrain
104	Ad Damman	Saudi Arabia
105	Mina al Ahmadi	Kuwait
106	Aden	Yemen
107	Rabigh	Saudi Arabia
108	Eilat	Israel
109	Haifa	Israel
110	Beirut	Lebanon
111	Al Latakia	Syria
112	Al Basrah	Iraq

Figure 4-5: Map of the Middle East and India showing selected ports

Sutzhensk	Kansk Bratsk Ust-Ka	The set Mark	Stanoven				
Kanstravo	Nonoversk Tayabac	BONN		Contra Diana			
k Kametsky vevsk	fore Ins" that		Stovarofine Zeye				
Biyak	Strange Checambbovo Sibility	skoye, bacharin Buistohadha, bacharin Chita		Y/A			
Gomo-Akayat	time and the second	Ulan-Ude Arman	Sinhodnyy Kor	somel'sk-			
and the second			lingovesischensk	Sathabo			
e de la compañía				Mintereraje Maria			
	MONDO	Contract of the second					
	Nor Carriege	1 Sector					
	Presidente de la companya de la comp						
				Hattaido			
			a an				
0.000		V Selferingson T	All a station of management				
and the second	の前の かくます		Contraction States				
		ang tabliga seng pangangan Tabliga pangangangan	and the second second	1000			
		Second and Second	Sterning St.				
				1114			
	and the second second		AND THE	AAG Some b			
Street State			Paral dimen	Pileno la			
undel BA	A STATE OF A STATE		》在19月1日,19月11日,19月110月110月110月110月110月110月110月110月110月1	Aug Jime			
	· · · · · · · · · · · · · · · · · · ·		AND A REAL PROPERTY OF A	Strate in the Date Bern Latter St.			
calcutte	ATYANINAL .			Entertion			
Calcutta	(HUEMAS)	and an and a second		e-Tort	Far East		
nov Calcutte Pute agenteen	(PUBMA)			e-Tort Mine Main Main Adapting to Adapting to Adapting to Main Adapting to Main Main Main Main Main Main Main Main	Far East Map Number	Port	Country
Calcutter Calcut refer 7 / Aven apartmen ************************************	(PURMAT) (PURMAT) Inverter ADS			er Tork Uran Uran Ademoutin Ademoutin Ademoutin Ademoutin Ademoutin	Far East Map Number 113	Port Vladivostok	Country Russia
Calour 129	HTANKAL (HUBRO) Jacob (A)			Providence Services	Far East Map Number 113 114	Port Vladivostok Yokohama	Country Russia Japan
Calcutt 7 7 129				P. Con With With With Markin Agentum A	Far East Map Number 113 114 115	Port Vladivostok Yokohama Weonsan	Country Russia Japan North Korea
Calcum 7 7 129	A Constraint of the second sec			P Tor When	Far East Map Number 113 114 115 116	Port Vladivostok Yokohama Weonsan Busan	Country Russia Japan North Korea South Korea
Calcute TI20				e Tor Wang an Annone Market Annone Market Annon	Far East Map Number 113 114 115 116 117	Port Vladivostok Yokohama Weonsan Busan Nampo	Country Russia Japan North Korea South Korea North Korea
				Anna Constanting C	Far East Map Number 113 114 115 116 116 117 118	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin	Country Russia Japan North Korea South Korea North Korea China
				Anna Anna Anna Anna Anna Anna Anna Anna	Far East Map Number 113 114 115 116 117 118 119	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai	Country Russia Japan North Korea South Korea North Korea China China
				Anna Constanting of the second	Far East Map Number 113 114 115 116 117 118 119 120	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung	Country Russia Japan North Korea South Korea North Korea China China Tiawan
Calcute 				Annual Province of the second	Far East Map Number 113 114 115 116 117 118 119 120 121	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong	Country Russia Japan North Korea South Korea North Korea China China Tiawan China
Calcute 				Annual Province of the second	Far East Map Number 113 114 115 116 117 118 119 120 121 122	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla	Country Russia Japan North Korea South Korea North Korea China China Tiawan China Philippines
	And and a second		Anna Coop	e Tor We want to the second s	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh	Country Russia Japan North Korea South Korea North Korea China China Tiawan China Philippines Vietnam
	And			e Tor We want to the second s	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123 124	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh Selat Lombok	Country Russia Japan North Korea South Korea North Korea China China Tiawan China Philippines Vietnam Indonesia
	And		A Constraint of the Constraint	e Tor No No No Annual Ann	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123 124 125	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh Selat Lombok Jakarta	Country Russia Japan North Korea South Korea North Korea China China Tiawan China Philippines Vietnam Indonesia Indonesia
	result parative construction co		A Construction of the second s	e Tor No No No Sector No Sector	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123 124 125 126	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh Selat Lombok Jakarta Singapore	Country Russia Japan North Korea South Korea North Korea China China China Tiawan China Philippines Vietnam Indonesia Indonesia Singapore
Calcut 	ranker and a second se		A CONTRACT OF CONT	e Tor No No No No Sumari	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh Selat Lombok Jakarta Singapore Port Kelang	Country Russia Japan North Korea South Korea North Korea China China China Tiawan China Philippines Vietnam Indonesia Indonesia Singapore Malaysia
	ranker and an and a second se		A Construction of the second s	e Tor No No No No No No No No No No	Far East Map Number 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128	Port Vladivostok Yokohama Weonsan Busan Nampo Tianjin Shanghai Kaohsiung Hong Kong Manilla Ho Chi Minh Selat Lombok Jakarta Singapore Port Kelang Bangkok	Country Russia Japan North Korea South Korea North Korea China China China Tiawan China Philippines Vietnam Indonesia Indonesia Singapore Malaysia Thailand

Figure 4-6: Map of the Far East showing selected ports

Australia		
Map Number	Port	Country
130	Brisbane	Australia
131	Port Moresby	Papua New Guinea
132	Port Darwin	Australia
133	Freemantle	Australia

Figure 4-7: Map of Australia showing selected ports

The nautical distances between the two U.S. reference ports and the 133 selected foreign ports shown above were calculated using information tabulated in "Publication 151 – Distance Between Ports" (referred to hereafter as DBP) prepared by the National Imagery and Mapping Agency [NIMA, 2001]. Information on over 1400 worldwide ports is compiled in this document and all published distances are based on accepted maritime routes and charted nautical sailing lanes. Because of the impracticality of listing distances between every possible combination of these ports, distance calculations using this document typically have to be carried out in several intermediate steps using specified "junction points". The DBP identifies 25 junction points where international shipping routes converge and through which ships pass when sailing from one major maritime area to another (e.g. the Strait of Gibraltar or the Cape of Good Hope). Distances between any two tabulated world ports can then be calculated by summing the distances to, and between, these junction points. Some voyage distances vary considerably depending on whether the Panama Canal can be transited. Because a significant fraction of the international containership fleet is Post-Panamax, distances between a given foreign port and the two U.S. reference ports were calculated with and without access to the Panama Canal. When the two distances differed depending on canal access, the following expression was used to calculate a weighted average,

$$D_{avg} = 0.3D_{Post_Pana\max} + 0.7D_{Pana\max}$$
(2)

where $D_{Post_Panamax}$ is the voyage distance without access to the Panama Canal and $D_{Panamax}$ is the distance with access. The weighting factors were chosen because 30% of the current fleet (by capacity) is Post-Panamax and the balance is not. Therefore, a container heading to the U.S. should have a 0.3 probability of being on a ship that can't gain access to the Panama Canal and a 0.7 probability of being on a ship that can.

Distances from the 133 foreign ports to New York and Los Angeles in nautical miles⁷ are shown in Table 4-3. The Panamax, Post-Panamax and weighted average

⁷ 1 nautical mile = 1.15 statute miles = 1.85 km

distances are captured for each foreign port to the 2 U.S. reference ports. Highlighted cells illustrate the shorter of the voyage distances between the two reference ports.

			Die	tance to New Yo	rk (n.m.)	Dista	ince to Los Ang	eles (n.m.)
Map	Поч	Country	Panamax	Post-Panamax	Weighted Avg.	Panamax	Post-Panamax	Weighted Avg.
	Halifax	Canada	600	600	600	5251	12670	7477
- 2	Prince Rupert	Canada	6321	14181	8679	1432	1432	1432
m	Havana	Cuba	1199	1199	- 4199 	3954	12671	6569
4	Kinaston	Jamaica	1474	1474	A74	3507	11934	6035
J.	Port au Prince	Haiti	1372	1372	1372	3730	12587	6387
9 (2)	Santo Domingo	Dom. Rep.	1489	1489	- 148 9	3759	12194	6290
~ ~	Fort de France	Martinique	1717	1717	ТМЕ	4115	11321	6277
. ∞	Tampico	Mexico	2029	2029	F 2029	4441	13381	7123
00	Belize Citv	Belize	1699	1699	÷ 1699	3772	13520	6696
, 0	Puerto Barrios	Guatemala	1804	1804	1804	3736	13104	6546
2 =	Puerto Cortes	Honduras	1764	- 1764	764	3689	13174	6535
12	Limon	Costa Rica	2047	2047	2047	3147	12614	5987
13	Panama	Panama	2018	2018	2018	2913	2913	2913
14	Puntarenas	Costa Rica	2489	10944	5026	2499	2499	2499
15	Corinto	Nicaragua	2701	10114	4925	2281	2281	2281
16	Acaiutla	El Salvador	2851	11243	5369	1932	1932	1932 3
17	Champerico	Guatemala	2972	11022	5387	1995	1995	1995
18	Acapulco	Mexico	3444	11516	5866	1501	1501	ing i
19	Mazatlan	Mexico	4024	12111	6450	1011	1011	
20	Cartagena	Colombia	2018	2018	2018	2913	2913	2913
21	Maracaibo	Venezuela	2489	10944	5026	2499	2499	2499
53	Georgetown	French Guyana	2217	2217	2217	4471	10901	6400
23	Paramaribo	Suriname	2334	2334	2334	4604	11078	6546 7010
24	Natal	Brazil	3532	3532	3532	6101	9271	790/
25	Salvador	Brazil	4089	4089	4089	6654	8791	/295
26	Rio de Janeiro	Brazil	4762	4762	4762	7324	8109	7560
27	Porto Alegre	Brazil	5267	5267	5267 C	7556	7556	7556
28	Monte Video	Uruguay	5749	5749	6749	7171	7171	7171
29	Buenos Aires	Argentina	5871	5871	587 (7265	497 <i>/</i>	502 <i>1</i>
30	Bahia Blanca	Argentina	6154	6154	10 DH	6875	6875	6789 6770
31	Comodoro Rivadavia	Argentina	6349	6349	6349	6456	6456	0450
32	Puenta Arenas	Chile	6934	6934	6934	5871	1/85	
33	Puerto Montt	Chile	5195	7926	6014	5431	5431	

Table 4-3: Nautical distances from selected foreign ports to New York and Los Angeles

4808	4430		3655	218	3010	3051	10316	9572	10108	9189	8586	8844	7895	8003	9083	9269	11760	9605	10369	11059	11909	11854	11478	11666	11466	11058	10819	10668	10631	10471	10203	10185	10350	10526	9643	
4808	4430	4144	3655	3218	3010	3051	12902	13043	13579	12660	12057	11576	10799	10602	11696	10869	11760	10133	10897	11587	11909	11854	11478	14196	11542	14293	14054	13902	13854	13706	13674	13853	14035	14212	13114	10001
4808	4430	4144	3655	3218	3010	3051	9207	8084	8620	7701	7098	7673	6651	6889	7963	8583	11760	9379	10143	10833	11909	11854	11478	10581	11434	9672	9433	9282	9250	9085	8715	8613	8771	8946	8155	
5754	5590	4926	5239	5062	4870	4871	5119	3996	4532	3613	3210	2965	3335	13757	4883	5567	<u>5670</u>	6801	7565	8255	E.S.	9273	9656	6493	8856	5684	5345	<u>5</u> 194	- 6162	4997	4627	34 <u>62</u> 5	4683	4858	100F	「日日の一般のないない」というないないないない。
8366	8930	8873	9605	10241	10420	10731	5119	3996	4532	3613	3210	2965	3335	3757	4883	5567	5670	6801	7565	8255	9131	9273	9656	6493	8856	5584	5345	5194	5162	4997	4627	4525	4683	4858	4067	
4634	4158	3235	3368	2842	2492	2360	5119	3996	4532	3613	3210	2965	3335	3757	4883	5567	5670	6801	7565	8255	9131	9273	9656	6493	8856	5584	5345	5194	5162	4997	4627	4525	4683	4858	4067	
Chile	Chile	Peru	Peru	Ecuador	Ecuador	Colombia	Eygpt	Tunisia	Libya	Algeria	Morocco	Canary Islands	Senegal	Sierra Leone	Nigeria	Congo	Angola	South Africa	South Africa	Mozambique	Tanzania	Kenya	Somalia	Djibouti	Madagascar	Georgia	Ukraine	Romania	Bulgaria	Turkey	Greece	Albania	Croatia	Slovenia	Italy	1
Valoaraiso	Antofagasta	Mollendo	Callao	Guayaquil	Esmeraldes	Buenaventura	Port Said	Tunis	Banchazi	Aldiers	Casablanca	Las Palmas	Dakar	Freetown	Lados	Boma	Luanda	Cape Town	Durban	Beira	Dar Es Salaam	Mombasa	Moqadishu	Djibouti	Tamatave	Batumi	Odessa	Constanza	Varna	Istanbul	Piraeus	Durres	Solit	Koper	l a Snezia	
34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	<i>`</i>

8626	8890	9132	9201	9181	9112	9331	9399	9402	9661	9836	10013	10074	9904	10177	10299	10453	10229	10277	10646	10948	9771	9516 2516	1945U	9448 A.	03085	10749 F	11248	11604	11384	11497	11045	11519	11548	11692	10874	105/2
12269	12973	12915	13100	13080	13145	13237	13298	13301	13560	13735	13912	13973	13803	14076	14198	14352	14128	14176	15626	15097	16187	9516	9450	9448	10308	10749	11248	11604	11384	11497	11045	11519	11548	11692	11498	12241
7065	7140	7510	7530	7510	7383	7657	7728	7731	2060	8165	8342	8403	8233	8506	8628	§ 782	8558	8606	8512	9170	7021	9516	9450	9448	10308	10749	11248	11604	11384	11497	11045	11519	11548	11692	10607	9857
1	2917	3241	3180	3 169	3028	3330	3386	3391	9654	3826	4003	4064	3884	416 7	4289	443	4219	4267	8844	4734	2495	12245	11591	11118	11355	11459	7961	11833	8063	8218	3607 ×	8251	8261	6405	× 6519	15769
2980	2917	3241	3180	3169	3028	3330	3386	3391	3654	3826	4003	4064	3884	4167	4289	443	4219	4267	3844	4734	2495	12245	11591	11118	11355	11459	7961	11833	8063	8218	7098	8251	8261	8405	6519	5769
0800	2917	3241	3180	3169	3028	3330	3386	3391	3654	3826	4003	4064	3884	4167	4289	443	4219	4267	3844	4734	2495	12245	11591	11118	11355	11459	7961	11833	8063	8218	7098	8251	8261	8405	6519	5769
	Snain	France	France	Fnoland	Ireland	Belnium	Belnium	Netherlands	Germany	Denmark	Poland	l ithuania	Norway	Sweden	Finland	Russia	l atvia	Estonia	Russia	Russia	Iceland	India	India	Sri Lanka	India	Pakistan	Iran	Iran	U.A.E.	Qatar	Oman	Bahrain	Saudi Arabia	Kuwait	Yemen	Saudi Arabia
		Pordeniiv	l a Havra	Southamnton	Dublin	Zahrinne	Antwarn	Dotterdam	Homburg	Coponhadon	Cupernayer	Klainada	Asipeua Oslo	Stockholm	Haleinki	St Petershiird	Cit. Forcesson g	Tallinn	Murmansk	Arkhandelsk	Revkiavik	Calcutta	Madras	Colombo	Bombav	Karachi	Bandar Abbas	Bushehr	Abu Dhabi	Umm Said	Mina Ravsut	Manama	Ad Damman	Mina al Ahmadi	Aden	Rabigh
i	5 5	7 7	0	76	07 87	2.4	10	07	60	00	10	200	89	40 7	со ЯВ	200	88	58	80	6	5 6	63	94	95	96	20 20	98	66 66	100	101	102	103	104	105	106	107

10532	10428	10448	9265	1/783	1967	4839	5181	5229	5713 ····	6304	5810	109 E	6380	6530	7403	7519	8392	1 7 2 8 6 7	1 to 18087	S 32/2				- 1.6954 - 4	8284 ···
12735	13073	13132	13212	11783	4981	4839	5181	5229	5711	6304	5810	6011	6380	6530	7403	7519	8392	7867	8087	7775	9374	6274	5901	6954	8584
9588	9295	9298	7574	11783	4981	4839	5181	5229	5711	6304	5810	6011	6380	6530	7403	7,519	8392	7867	8087	7775	9374	6274	5901	6954	8584
5500 ×	16207	5210	5205	12033	11892	11371	11596	11720	11996	12197	11785	11774	11981	13543	13029	12262	12042	12380	12160	13257	12293	10693	11366	11713	11556
5500	5207	5210	5205	12033	16873	15269	15188	14882	15001	15203	14587	14290	13772	13543	13029	12262	12042	12380	12160	13257	12293	12997	13831	12901	11556
5500	5207	5210	5205	12033	9757	9700	10056	10365	10708	10909	10584	10695	11213	13543	13029	12262	12042	12380	12160	13257	12293	9705	10310	11204	11556
Israel	Israel	l ehanon	Svria	lrad	Russia	Japan	North Korea	South Korea	North Korea	China	China	Tiawan	China	Philippines	Vietnam	Indonesia	Indonesia	Singapore	Malaysia	Thailand	Bangladesh	Australia	Papua N. G.	Australia	Australia
Filat	Haifa	Raint	Al Latakia	Al Basrah	Vladivostok	Yokohama	Weonsan	Busan	Nampo	Tianiin	Shandhai	Koashuing	Hona Kona	Manilla	Ho Chi Minh	Selat Lombok	Jakarta	Singapore	Port Keland	Banakok	Chittadona	Brisbane	Port Moresby	Port Darwin	Freemantle
108	001 100	110	2 7	110	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133

4.2.2 Vessel Speed

The diverse fleet of international containerships has a broad spectrum of nominal cruising speeds. Although point estimates, such as mean values, can be used to convey information about large and diverse data sets, the character of a wide spectrum of values is better and more completely captured by a statistical distribution. To develop an appropriate and representative distribution, a containership database was created using publicly available Lloyd's Register information provided online by large commercial shipping lines and U.S. ports. This database was populated with nominal speed (in $knots^{\delta}$) and/or container capacity (in TEU) data for 1,734 commercial container vessels. Information on both capacity and speed could not be found for every vessel included in the database so there are 1,184 vessel speed entries and 1,706 vessel capacity entries. The full database can be found in Appendix A. No size threshold was initially imposed to exclude any vessel from the database, however, since the subject of interest is international shipping, some screening criterion had to be devised to bar small domestic feeder ships from further consideration. In its annual breakdown of commercial shipping statistics the Maritime Administration (MARAD) of the Department of Transportation imposes a vessel size threshold of 10,000 deadweight tons⁹ [MARAD(1), 2004]. This threshold was adopted as a screening criterion for the containership database to facilitate fair comparison with the MARAD statistical abstract and was found heuristically to correspond to vessels with a capacity of roughly 715 TEU. The screened database contained speed information for 910 vessels and capacity data for 1,313 vessels. For comparison, MARAD reported that 1,025 containerships called on U.S. ports in 2003.

The speed and capacity information contained in the database were assumed to be reasonably representative of vessels importing containers to U.S. ports for the following reasons. All information used to populate the database was available through U.S. ports or major container shipping lines that service the U.S. Additionally, the size of the data sets for speed and capacity are comparable to, or exceed, the total number of

⁸ 1 knot = 1 nautical mile/hour = 1.85 km/hour

⁹ Deadweight tonnage is the amount of cargo, fuels, water, stores, and crew that a vessel can carry when fully loaded. It is measured in long tons (1 long ton = 2,240 lbs.).

containerships that called on U.S. ports in all of 2003. However, to obtain some benchmark of how well the vessel information in the database comported with the containership fleet that actually serviced U.S. ports in 2003, the mean capacity of (screened) database vessels was compared to the actual mean capacity reported by MARAD. The results are shown in Table 4-4 below.

Î	Mean Cana	city (TFL)	
	Database	MARAD	Error (%)
	3047	3144	3.085

Table 4-4: Vessel database capacity benchmark results

Although this benchmark used only a single parameter (because it was the only value that invited straightforward comparison), the excellent agreement between the database and the MARAD data suggests that conclusions drawn using the vessel database will be reasonably representative of the actual containership fleet servicing the U.S.

To extract meaningful statistical information from the 910 nominal vessel speeds tabulated in the containership database, a cumulative distribution function (CDF) was constructed. A CDF is a statistical distribution that relates the value of a parameter to the probability that the given parameter value, or a lesser value, will be observed. In this case, the CDF gives the probability that a containership calling on a U.S. port will have a nominal speed equal to or less than any given value.

To construct a CDF, the raw vessel speed data from the screened containership database was first sorted into ascending order. Then the frequency of each distinct nominal speed was computed by simply counting how many times a given speed was observed in the database. The probability, or relative frequency, of each nominal speed was then calculated using the following general expression,

$$P_i = \frac{n_i}{\sum n_i} \tag{3}$$

where P_i is the probability of the i_{th} value, and n_i is the frequency of the i_{th} value. The CDF was then found using the following general formula,

$$F[x_i] = \sum_{0}^{i} P_i \tag{4}$$

where $F[x_i]$ is the discrete CDF value for the i_{th} element. In this case, x_i represents each distinct nominal vessel speed. Figure 4-9 is a plot of the vessel speed CDF with the 25th, 50th, 75th, 95th, and 99th percentile values identified graphically.

Vessel Speed - Cumulative Distribution Function (N = 910 Vessels)

Figure 4-8: Vessel speed CDF

The mean, median, and mode values of the nominal speed from the screened containership database are shown in Table 4-5 along with interpolated numerical values of the 25th, 75th, 95th, and 99th percentiles.

	Speed (knots)
MEDIAN	21.43
MEAN	21.29
MODE	21.00
25TH	18.88
75TH	23.86
95TH	25.77
99TH	26.33

Table 4-5: Vessel speed statistics

4.2.3 Voyage Times

The distance and speed analyses performed in the previous sections can now be used to generate estimated non-stop voyage times for the 133 foreign ports. Weighted average distances between foreign ports and the U.S. reference ports were used to calculate voyage times to account for the additional expanse that must be traveled by Post-Panamax vessels on some routes. Also, acknowledging the inherent variability of vessel speeds, voyage times were calculated using both the expected, or mean, value of 21.29 knots and the conservative 95th percentile value of 25.77 knots. Voyage times, in days, were found using the following expression,

$$T_{voyage} = \frac{D_{avg}}{24 * v_x}$$
(5)

where T_{voyage} is the voyage time (in days), D_{avg} is the weighted average distance between the ports of interest (in n.m.) and v_x is the mean or 95th percentile vessel speed (in knots). Table 4-6 shows calculated voyage times, by region.

Man	Man	Part		New York			Los Angeles	
	Number		Weighted	Time [Mean]	Time [95th]	Weighted	Time [Mean]	Time [95th]
			Distance (n.m.)	(days)	(days)	Distance (n.m.)	(days)	(days)
North America		Halifax (Canada)	600		014	5251	10.3	8.5
North America	2	Prince Rupert (Canada)	8679	17.0	14.0	1432	2.8	212 ST2
C. America/Carib.	3	Havana (Cuba)	1199	. 87	(1) - 1 ,9 - 1	3954	7.7	6.4
C. America/Carib.	4	Kingston (Jamaica)	1474	2.9.4	12 4	3507	6.9	5.7
C. America/Carib.	5	Port au Prince (Haiti)	1372	27.1	1223	3730	7.3	6.0
C. America/Carib.	9	Santo Domingo (Dom. Rep.)	1489	2.9	15 7	3759	7.4	6.1
C. America/Carib.	7	Fort de France (Martinique)	1717	34	2.8	4115	8.1	6.7
C. America/Carib.	80	Tampica (Mexico)	2029	40.05		4441	8.7	7.2
C. America/Carib.	თ	Belize City (Belize)	1699	33	27	3772	7.4	6.1
C. America/Carib.	10	Puerto Barrios (Guatemala)	1804	3.6.1	6.2	3736	7.3	6.0
C. America/Carib.	11	Puerto Cortes (Honduras)	1764	3.5	2.9	3689	7.2	6.0
C. America/Carib.	12	Limon (Costa Rica)	2047	4.0	. 98	3147	6.2	5.1
C. America/Carib.	13	Panama (Panama)	2018	3.9		2913	5.7	4.7
C. America/Carib.	14	Puntarenas (Costa Rica)	5026	9.8	8.1	2499	67	3.4.9
C. America/Carib.	15	Corinto (Nicaragua)	4925	9.6	8.0	2281	State State	ν. 1. γκ{ς.
C. America/Carib.	16	Acajutla (El Salvador)	5369	10.5	8.7	1932	38.	
C. America/Carib.	17	Champerico (Guatemala)	5387	10.5	8.7	1995	3,91	
C. America/Carib.	18	Acapulco (Mexico)	5866	11.5	9.5	1501	672	214
C. America/Carib.	19	Mazatlan (Mexico)	6450	12.6	10.4	1011	20	1) (5)
C. America/Carib.	20	Cartagena (Colombia)	2018	3.9	3.3	2913		
C. America/Carib.	21	Maracaibo (Venezuela)	5026	9.8	8.1	2499	60	
C. America/Carib.	22	Georgetown (Fren. Guyana)	2217	4. 8		4471	8.8	7.7
C. America/Carib.	23	Paramaribo (Suriname)	2334	46	1.1.2.8 W.	4604	9.0	4.7
C. America/Carib.	24	Natal (Brazil)	3532	6.9	1. 4517 E	6101	11.9	9.9
C. America/Carib.	25	Salvador (Brazil)	4089	(i) (i) (i) (i)		6654	13.0	10.8
C. America/Carib.	26	Rio de Janeiro (Brazil)	4762	90	1/2/2	7324	14.3	11.8
C. America/Carib.	27	Porto Alegre (Brazil)	5267	$T \approx 10^{10}$		7556	14.8	12.2
C. America/Carib.	28	Monte Video (Uruguay)	5749		1)3. -	7171	14.0	11.6
C. America/Carib.	29	Buenos Aires (Argentina)	5871		(9): 51 (1997)	7265	14.2	1.1.7
C. America/Carib.	30	Bahia Blanca (Argentina)	6154	2.00 million	0101	68/5	13.5	
C. America/Carib.	31	Comodoro Rivadavia (Arg.)	6349			0450	12.0	10.4
C. America/Carib.	32	Puenta Arenas (Chile)	6934	13.6	11.2	1/80	C.L.	2.2 A.S.

Table 4-6: Voyage times from selected foreign ports to New York and Los Angeles

8.8				6'6'		49	975 A.9	14.9	13.1	13.9	12.5	11.5	12.4	10.8	11.1	12.9	13.9	19.0	15.2	16.4	17.5	19.3	19.2	18.6	17.1	18.5	15.6	15.3	15.0	15.0	14.7	14.1	13.9	14.2	14.5	13.2	
10)6	9.4	8:7:6	8.4 3.4	72		5 .9	× 12 0.0 ×	18.0	15.8	16.9	15.1	13.9	15.0	13.0	13.5	15.6	16.8	23.0	18.4	19.9	21.2	23.3	23.2	22.5	20.7	22.4	18.9	18.5	18.2	18.1	17.8	17.1	16.9	17.2	17.5	16.0	
5431	4808	4430	4144	3655	3218	3010	3051	9207	8084	8620	7701	7098	7673	6651	6889	7963	8583	11760	9379	10143	10833	11909	11854	11478	10581	11434	9672	9433	9282	9250	9085	8715	8613	8771	8946	8155	
9.7	9.3	0.0	8.0	8.5	8.2	7.9	7.9	1.283		: 7.3	5.8	- 52	4.8		199 July 199	14 <u>6 7</u>		201	0.11.0	100	112.3	STR.	0.5			STATES -	1910 1910 1910 1910	(13)							1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	1016) 1016]	いたがなど時に「時間にない」は、
11.8	11.3	10.9	9.6	10.3	6.6	9.5	9.5	0.0			<u> </u>	63	58		474	9.6	6.01											101 - 101 -		and the second							「「日本」「「「「日本」」」
6014	5754	5590	4926	5239	5062	4870	4871	5119	3996	4532	3613	3210	2965	3335	3757	4883	5567	5670	6801	7565	8055 8055	0230	0.73	9213	9020	0450 8856	5584	5345	5194	5162	4997	4627	4525	4683	4858	4067	1001
Puerto Montt (Chile)	Valparaiso (Chile)	Antofagasta (Chile)	Mollendo (Peru)	Callao (Peru)	Guayaquil (Ecuador)	Esmeraldes (Ecuador)	Buenaventura (Colombia)	Port Said (Eygpt)	Tunis (Tunisia)	Banghazi (Libya)	Algiers (Algeria)	Casablanca (Morocco)	Las Palmas (Canary Is.)	Dakar (Senegal)	Freetown (Sierra Leone)	l acos (Nigeria)	Boma (Condo)	Luanda (Anrola)	Cane Town (South Africa)	Durhan (South Africa)		Der Es Saloom (Tonzonia)		Mombasa (Kenya)	Mogadishu (Somalia)	Ujibouli (Ujibouli) Temetavo (Medecarcer)	Tatriatave (Madagascar) Botrimi (Georgia)	Odessa (1 kraine)	Constanta (Romania)	Vorna (Buldaria)	kanna (burgana) Istanburi (Turkew)	Diractic (Crace)	Durres (Albania)	Calit (Croatia)	Spili (Croatia) Manar (Slavania)	Koper (Slovenia)	La Spezia (Italy)
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	205	2 <u>7</u>	2 6	2 22	3	4 4 4	6 6 7	ខ្ល	5/	200	60	9 6	- u	07 83	3	t 4	00 99	200	10	80	20
C. America/Carib.	C. America/Carib.	C. America/Carib.	C. America/Carib.	C. America/Carib.	C. America/Carib.	C. America/Carib.	C. America/Carib.	Africa	Africa	Africa	Africa	Africa	Africa	Africa	Africa	Africa	Africa	Africa	Africo	Allica	Allica	Africa	Airica	Africa	Africa	Alrica	Allica	Europe	Europe	Europe	Europe	edoina	Europo	Luiope	Europe	Europe	Europe

3 12.6	8 11.4	0 11.5	7 12.1	7 12.2	7 12.1	4 11.9	0 12.4	1 12.5	1 12.5	6 12.9	0 13.2	3 13.5	4 13.6	1 13.3	6 13.8	9 14.0	2 14.2	7 13.8	13.9	7 13.8	9 14.8	7 11.4	0. state 15.4	5) 	6)	21.010 miles in 21.01		0 18.2	7	3 18.4	5 18.6	6 17.9	5 18.6	6 18.7	
7798 15.3	7065 13.1	7140 14.0	7510 14.	7530 14.	7510 14.	7383 14.	7657 15.0	728 15.	731 15.	7990 15.(3165 16.(3342 16.:	3403 16.4	3233 16.1	3506 16.(3628 16.1	3782 17.5	3558 16.	3606 16.1	3512 16.	170 17.	7021 13.	9516 18 1	9450	9448	0308	0749	1248 22.1	1604	1384 22.3	1497 22.1	1045 21.(1519 22.4	1548 22.0	
7	7 4.8 7	2 - 1	1.15.2	Ver 612 7	61 7	14.9	1.104	· 33.615 · 7	(1 .15 .6) 7	1 6.9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.5 1 8	e 6.6	6.3 8	6.7	69	· 72 8	. 6.8 . 8	8	6.2	6 <u>22</u>	7 7	19.8 9	18.7 9	18.0	18.4	18.5	12.9	19.1 1.	1. 13.0	1. 1018) and 1.	1. 1. I.	1.		においますりになった。このでもないでは、
7.3	58	6742	6.31	6:2 +5	102 2 2 1 1 1		10.0 States	16.0	1010 010 10 10 10 10 10 10 10 10 10 10 1	125 A	1 -9 -1	- 1 7 .8	8.0	7.6		78	<u>78</u>	83	100	176 C	5.9.3 (4.9	24.0	22.7	21.8	22.2	22.4	315:0	23.2	198 A.			19 E		
3710	2980	2917	3241	3180	3169	3028	3330	3386	3391	3654	3826	4003	4064	3884	4167	4289	4443	4219	4267	3844	4734	2495	12245	11591	11118	11355	11459	7961	11833	8063	8218	7098	8251	8261	
Barcelona (Spain)	Lisbon (Portugal)	Coruna (Spain)	Bordeaux (French)	Le Havre (French)	Southampton (England)	Dublin (Ireland)	Zeebrugge (Belgium)	Antwerp (Belgium)	Rotterdam (Netherlands)	Hamburg (Germany)	Copenhagen (Denmark)	Gdynia (Poland)	Klaipeda (Lithuania)	Oslo (Norway)	Stockholm (Sweden)	Helsinki (Finland)	St. Petersburg (Russia)	Riga (Latvia)	Tallinn (Estonia)	Murmansk (Russia)	Arkhangelsk (Russia)	Reykjavik (Iceland)	Calcutta (India)	Madras (India)	Colombo (Sri Lanka)	Bombay (India)	Karachi (Pakistan)	Bandar Abbas (Iran)	Bushehr (Iran)	Abu Dhabi (U.A.E.)	Umm Said (Qutar)	Mina Raysut (Oman)	Manama (Bahrain)	Ad Damman (Saudi Arabia)	•
70	71	72	73	74	75	76	17	78	62	80	81	82	83	84	85	86	87	88	89	6	91	92	93	94	95	96	97	3 8	66	100	101	102	103	104	
iurope	rope	rope	Irope	lrope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	urope	East/India	East/India	East/India	East/India	East/India	East/India	East/India	East/India	East/India	East/India	East/India	East/India	

15.9	15.5	15.0	15.0	12.2	1918	1.838	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	38.4	- 18 16	5 29.2	at 10.2 -	5 19 4 *	7.67	1.2.103	₹ <u>₹10.6</u>	12.0	12.2	13,6	→< 1 2 .7	kt (18,1.	6.6 1216			5.0 .0	Sec. 11.2	13/9/1
19.3	18.8	18.2	18.2	14.8	23.11	1/16	<u>05</u>	10H	102	11 2 C	12.3 4		11.6	125	12.8	14.9	14.7	16.4	154 1	1 <u>6</u> .8 eV			12:3: 21:	1499 PP	136 2	161814
9857	9588	9295	9298	7574	11783	4981	4839	5181	5229	5711	6304	5810	6011	6380	6530	7403	7519	8392	7867	8087	7775	9374	6274	5901	6954	8584
	6.9.5	i		8.4	19.5	19.2	18.4	18.7	24.1	19.4	19.7	19.1	19.0	19.4	21.9	21.1	19.8	19.5	20.0	19.7	21.4	19.9	17.3	18.4	18.9	18.7
113	10.6	10.2		10.2	23.5	23.3	22.3	22.7	29.1	23.5	23.9	23.1	23.0	23.4	26.5	25.5	24.0	23.6	24.2	23.8	25.9	24.1	20.9	22.2	22.9	22.6
5769	5500	5207	5210	5205	12033	11892	11371	11596	14882	11996	12197	11785	11774	11981	13543	13029	12262	12042	12380	12160	13257	12293	10693	11366	11713	11556
Rabigh (Saudi Arabia)	Eilat (Israel)	Haifa (Israel)	Beirut (Lebanon)	Al Latakia (Syria)	Al Basrah (Iraq)	Vladivostok (Russia)	Yokohama (Japan)	Weonsan (North Korea)	Busan (South Korea)	Nampo (North Korea)	Tianjin (China)	Shanghai (China)	Hua-Lien Kang (Tiawan)	Hong Kong (China)	Manilla (Phillapines)	Ho Chi Minh (Vietnam)	Selat Lombok (Indonesia)	Jakarta (Indonesia)	Singapore (Singapore)	Port Kelang (Malaysia)	Bangkok (Thailand)	Chittagong (Bangladesh)	Brisbane (Australia)	Pt. Moresby (Papua N. G.)	Port Darwin (Australia)	Freemantle (Australia)
107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133
Middle East/India	Middle East/India	Middle East/India	Middle East/India	Middle East/India	Middle East/India	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Far East	Australia	Australia	Australia	Australia
Highlighted cells in Table 4-6 illustrate whether the voyage is shorter between the given foreign port and New York or Los Angeles. The highlighted 95th percentile voyage time represents a conservative lower bound for the amount of count time that will be available if an attack is mounted from this port. Count times for non-stop voyages from almost any port in the world to New York or Los Angeles can now be approximated by interpolating between the tabulated values shown in Table 4-6.

The information above is useful for determining the minimum count time available for a container shipment being deployed from a particular port or region of the world. However, it cannot be used directly to give an accurate measure of the expected, or average, count time that would be available on incoming containerships. This is because containers are not uniformly imported to the U.S. from all parts of the globe. To derive a reasonable estimate of how much count time will actually be available on average, the voyage times from ports that ship more containers to the U.S. must be given higher relative weightings. The information in Table 4-2 documenting the volume of container imports broken down by country can be used to assign weighting factors. Since the 25 countries listed in Table 4-2 make up 86.5% of the total containerized imports to the United States, using voyage times from ports located in these countries alone should yield a reasonable estimate. Using this approximation, weighting factors were then calculated as follows,

$$W_i = \frac{n_{TEU_i}}{\sum n_{TEU_i}} \tag{6}$$

where W_i is the weighting factor for the i_{th} country in Table 4-2 and n_{TEUi} is the number of imported containers from the i_{th} country (in TEU). Distances from the countries listed in Table 4-2 to the U.S. reference ports were obtained using information from the distance analysis presented above. Each country of interest has at least one port listed in Table 4-3. For countries with multiple ports listed in Table 4-3, the arithmetic mean of the port distances from that country was used to establish a single representative distance. Voyage times from the countries in Table 4-2 were then calculated using the mean vessel speed of 21.29 knots (because an expected value was being sought). The appropriate weighting factors were then applied to the voyage times for each country to find expected count time values for ships calling on New York and Los Angeles. Results are shown in Table 4-7.

Country	Imports	Weighting	New	York	Los An	geles							
	(TEU x 1000)	Factor	Avg. Distance (n.m.)	Time [Mean] (days)	Avg. Distance (n.m.)	Time [Mean] (days)							
China	4447	0.36997	11991	23.5	6057	11.9							
Hong Kong	1292	0.10749	11981	23.4	6380	12.5							
Japan	722	0.06007	11371	22.3	4839	9.5							
Taiwan	651	0.05416	11774	23.0	6011	11.8							
Italy	473	0.03935	4067	8.0	9643	18.9							
Korea	469	0.03902	11771	23.0	5374	10.5							
Germany	467	0.03885	3654	7.2	9661	18.9							
Brazil	388	0.03228	4413	8.6	7366	14.4							
Thailand	378	0.03145	13257	25.9	7775	15.2							
Indonesia	261	0.02171	12042	23.6	8392	16.4							
India	253	0.02105	11730	23.0	9758	19.1							
Malaysia	239	0.01988	12160	23.8	8087	15.8							
Netherlands	225	0.01872	3391	6.6	9402	18.4							
United Kingdom	206	0.01714	3169	6.2	9181	18.0							
France	195	0.01622	3211	6.3	9167	17.9							
Costa Rica	166	0.01381	3537	6.9	4243	8.3							
Spain	158	0.01314	3314	6.5	9183	18.0							
Belgium	156	0.01298	3358	6.6	9365	18.3							
Guatemala	156	0.01298	1804	3.5	6546	12.8							
Honduras	152	0.01265	1764	3.5	6535	12.8							
Philippines	141	0.01173	13543	26.5	6530	12.8							
Chile	135	0.01123	6073	11.9	5135	10.0							
Turkey	114	0.00948	4997	9.8	10471	20.5							
Dominican Republic	98	0.00815	1489	2.9	6290	12.3							
Australia	78	0.00649	11321	22.2	7271 14.2								
Total	12020		Weighted Avg. =	19.2	Weighted Avg. =	13.3							

Table 4-7: Mean voyage times to New York and Los Angeles

The mean count times available for vessels calling on New York and Los Angeles are on the order of 2 weeks. This represents a significant amount of time to make a confident detection of fissile material. Finally, even though the average count times shown above were calculated using mean vessel speeds, the assumption that all voyages are non-stop still makes these numbers reasonably conservative.

4.3 Vessel Container Capacities

Modern containerships vary considerably in size, with the largest vessels in the current fleet able to carry over 8,000 TEU [MacGregor, 2003]. The number of detection units needed to provide adequate coverage of a given vessel will depend on the dimensions of that particular vessel's container array and the number of commercial containers being transported. Therefore, to gauge the number of containerized detections units that will be necessary to implement a comprehensive ship-based detection regime, a container capacity distribution must be derived for the commercial fleet.

Information from the containership database that was discussed in the vessel speed section was used to construct a similar CDF for container capacity. The screened database contained 1,313 capacity entries ranging from 724 TEU to 8,200 TEU. The CDF development process used for vessel speed was employed again for container capacity. The general formulae shown in Eqs. (3) and (4) were used, with the frequency of each distinct container capacity serving as n in Eq. (3) and container capacity (in TEU) being represented by x in Eq. (4). The resulting capacity CDF is shown in Figure 4-9, with the 25th, 50th, 75th, 95th, and 99th percentile values illustrated graphically.

1 0.9 0.8 0.7 0.6 F[capacity] 0.5 0.4 0.3 0.2 0.1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0

Vessel Capactiy - Cumulative Distribution Function (N = 1313 Vessels)

Figure 4-9: Vessel capacity CDF

Capacity (TEU)

The mean, median, and mode values of the container capacity from the screened containership database are shown in Table 4-8 along with interpolated numerical values of the 25^{th} , 75^{th} , 95^{th} , and 99^{th} percentiles.

Га	ble	4-8:	V	essel	capa	city	stat	isti	ics
----	-----	------	---	-------	------	------	------	------	-----

	Capacity (TEU)
MEDIAN	2722
MEAN	3047
MODE	4300
25TH	1666
75TH	4173
95TH	6204
99TH	6782

The container capacity CDF generated here will be used in subsequent analysis to develop defensible estimates for the total number of containerized detection units that will be needed for a fully implemented system.

4.4 Cargo Density

For a ship-based approach to be effective, the signal emitted by concealed fissile material must be strong enough to be confidently distinguished from natural background fluctuations by a passive detection unit some distance removed from the source. The signal will be attenuated by intentional shielding that is likely to be present in the container bearing the weapon and by the commercial cargo in containers that are oriented between the source and detector. The maximum amount of intentional shielding is constrained by the physical dimensions of the container and the 32-ton weight restriction imposed by international shielding, the space and weight constraints do bound the problem and worst-case signal attenuation can be calculated. What is less straightforward is the extent to which the intervening commercial cargo will attenuate the signal.

Density is a cargo parameter that is helpful when trying to accurately model radiation transport through intervening commercial material. One way to obtain a rough but useful measure of the density of imported cargo material is to assume that the contents of a container (and the mass of the contents) are equally distributed throughout the volume of the container. This "distributed density" (in g/cm³) can then be found using the following expression,

$$\rho_{dist} = \frac{m}{Vol_{container}} \tag{7}$$

......

where m is the total mass of the cargo, $Vol_{container}$ is the interior volume of the container. Although the homogeneous distribution of mass throughout the container is clearly unphysical, it can be a helpful measure for benchmarking computer simulations. When simulations are run where representative types of cargo (e.g. furniture, electronics, clothing, etc.) have been explicitly modeled, it is important to know how the aggregate distributed density of the modeled cargo compares with the average distributed density of actual imported cargo (i.e. is the model more, less, or similarly attenuating as actual cargo). A simple method for obtaining a point estimate of the average distributed density of actual imported cargo is given by,

$$\rho_{dist} = \frac{m_{tot}}{n_{TEU} * Vol_{TEU}}$$
(8)

where m_{tot} is the total tonnage of a large sample of imported containers, n_{TEU} is the number of imported containers, and Vol_{TEU} is the interior volume of a TEU. Using imported cargo data for calendar year 2001 (the most recent year for which MARAD reported total tonnage information) as the large container sample, m_{tot} , n_{TEU} , and Vol_{TEU} are 80,725 metric tons (MT), 11,268 TEU, and 1360 ft² respectively [MARAD, 2002]. Converting these values into appropriate units and plugging into Eq. (3) gives an average distributed density of 0.1977 g/cm³. However, a single point estimate of the average distributed density is less instructive than a distribution that reflects the relative probabilities of a range of distributed densities.

The 2001 data for container imports at the top 25 U.S. ports was used construct an average distributed density CDF. Table 4-9 below shows m_{tot} , n_{TEU} and the calculated average densities for the top 25 ports [MARAD, 2002].

Port	n_TEU	m_tot							
	(TEU x 1000)	(MT x 1000)	Avy Density (g/cc)						
Los Angeles	2614	16221	0.1712						
Long Beach	2376	14355	0.1667						
New York	1588	12758	0.2217						
Charleston	612	4890	0.2204						
Seattle	500	2993	0.1652						
Norfolk	454	3556	0.2161						
Savannah	431	2998	0.1919						
Oakland	419	3058	0.2014						
Houston	381	3656	0.2647						
Tacoma	356	2111	0.1636						
Miami	347	3120	0.2481						
Baltimore	178	1942	0.3010						
PT Everglades	171	1235	0.1993						
San Juan	108	1006	0.2570						
Wilmington (DE)	103	965	0.2585						
New Orleans	86	891	0.2858						
Gulfport	74	599	0.2233						
Philadelphia	71	913	0.3548						
Boston	51	445	0.2407						
Portland	47	350	0.2055						
Wilmington (NC)	37	232	0.1730						
Chester (PA)	31	316	0.2812						
Ponce	30	332	0.3053						
W Palm Beach	27	195	0.1993						
Jacksonville	25	210	0.2318						
All Other	153	1379	0.2487						
Total	11268	80725	0.1977						

Table 4-9: Average distributed density, ρ_{dist} values for imported cargo

By specifying m_{tot} and n_{TEU} for 26 separate sample populations (i.e. the top 25 ports and the lumped data for all others) this data can be used to construct an approximate CDF. The same CDF derivation procedure outlined earlier is used here with the tabulated values of n_{TEU} serving as the frequency of the given average distributed density value. The resulting CDF is plotted in Figure 4-10.

Figure 4-10: Cargo distributed density, pdist, CDF

Ideally the mass of every individual imported cargo container would be known so that an exact CDF for ρ_{dist} could be derived. In this case, however, the data points used to construct the CDF were themselves already point estimates of larger data sets. Although some useful information about the character of the original data is lost when a single point estimate is used to represent a population of data, these point estimates encapsulate the most important aggregated attributes of the original data. Therefore, even though it is based on aggregated point estimates instead of exhaustive raw data, the approximate average distributed density CDF is still a useful measure of the probability that the distributed density of a cargo container will exceed a given value.

Chapter 5: Deployment Simulation

5.1 Introduction

The fact that the proposed ship-based approach would deploy containerized detection units aboard commercial containerships has been discussed, but the manner in which these units would be deployed (i.e. how they are loaded onto the ship and distributed throughout the vessel's container array) has not been addressed. Ideally, the detection units could be loaded in a manner that simultaneously allowed completely clandestine deployment and maximum detection coverage with the minimum number of units. If this could be accomplished, total system costs would be minimized and adversaries would be kept utterly unaware of the number and location of deployed detection units that could interrupt or thwart their efforts. In reality, however, there is a trade-off between the precision with which one can dictate or predict the placement of the detection units and the covert nature of the deployment process. Specifying exactly where or how certain cargo containers are to be loaded into the container array can optimize the amount of the containership covered per detection unit, but it could also provide enemies with valuable information about the defensive measures being employed against them. This fundamental trade-off leads to a potential clash between coverage efficiency and stealth.

A computer-based deployment simulator was created using Matlab to help inform the process of striking an appropriate balance between coverage efficiency and stealth. This simulator was used to quantify the coverage efficiency gains that could be reaped by adopting increasingly constrained (and consequently less stealthy) deployment strategies. Three strategies were investigated, including a random deployment where units could be placed anywhere in the container array, a partially constrained deployment where units were randomly placed anywhere except a specified exclusion zone one container deep around the surface of the array, and a fully constrained deployment where units could only be placed along a row down the length of the array. Hereafter, these strategies are referred to as random, constrained, and centerline deployment, respectively.

An extremely important remaining uncertainty (that is outside the scope of this thesis) is the effective detection range of a deployed unit. The effective range is the maximum distance at which a unit is expected to reliably detect the presence of fissile material when deployed amongst commercial containers with realistic and representative cargo. Once a reasonable estimate for the effective range is obtained, it is a straightforward problem to determine the expected detection coverage provided by centerline deployment. The relative ease of calculating centerline coverage stems from the highly constrained nature of this deployment strategy, which uniquely determines the spatial distribution of detection units for any given container array. The spatial distributions arising from the other two strategies, however, are determined either totally or partially by chance. Mean attributes, such as expected detection coverage, of systems with this stochastic character are often difficult or impossible to derive analytically and instead lend themselves to Monte Carlo analysis.

Monte Carlo techniques use random numbers to sample distributions for parameters to be used in a calculation, or calculations, of interest. The calculation is then carried out a large number of times with each iteration using different randomly sampled parameter values. The large population of outputs from the calculation of interest can then be statically analyzed to gain meaningful insights. The speed with which modern digital computers can carry out large numbers of computations makes Monte Carlo analysis a very powerful tool for solving complex problems.

Detection coverage calculations for container arrays of arbitrary sizes were carried out using Monte Carlo methods for both random and constrained deployment. Random numbers were used to sample the uniform distributions representing Cartesian coordinates that determined the placement location of a given detection unit within the container array. Once a given number of detection units with a specified detection range were randomly distributed throughout a container array with known dimensions, the detection coverage calculation could be carried out for this geometry. The output was then logged and the entire detector placement and coverage calculation process was

carried out again until the output population was large enough to yield good statistics. Expected values, along with corresponding standard deviations, for random and constrained deployment could then be determined through statistical analysis.

5.2 Model Development

The deployment simulator was programmed in Matlab and takes advantage of the ease with which the Matlab environment can create and manipulate n-dimensional matrices. The entire container array of a hypothetical vessel is modeled in matrix space with each cubic foot of actual volume represented by an individual element in a 3-dimensional matrix. Detection units are then distributed through the container array in a manner consistent with the constraints of the scenario (i.e. random, constrained, or centerline) being studied. With the geometry of the problem now uniquely specified, the fractional volume of the actual container array that would be effectively covered by the detectors in the generated configuration can be calculated using a few simple matrix operations in Matlab. If Monte Carlo analysis were being used, as would be the case for random and constrained deployment, this process of detector placement and fractional coverage calculation would be repeated many times.

5.2.1 Assumptions

Key assumptions will be identified, and explained before a detailed treatment of the simulator's algorithm and mechanics is offered. First, it was assumed that all container arrays were continuous rectangular prisms. This is an approximation given that large vessels often have container arrays that taper below deck (to accommodate hull dimensions) and some discontinuity created by the ship's superstructure. These effects were not explicitly modeled because the degree of tapering and the location and magnitude of superstructure discontinuities vary depending on the size and design of the containership and cannot be meaningfully generalized.

Since the detection suite is not necessarily confined to the center of a containerized unit, it was also assumed that detectors could be centered at any (non-constrained) location in the container array and not limited solely to coordinates that corresponded to the midpoints of containers. This assumption simplifies calculation but was made primarily to conserve computation time. It was noted that this assumption could lead to the non-physical situation of two or more detectors being randomly assigned to the volume corresponding to a single container. The probability of any two detectors being randomly assigned to the same (TEU)¹⁰ container volume is represented by the following expression,

$$P = \frac{1}{(xyz)^{(n-1)}} \prod_{i=1}^{n-1} (xyz - i) = \frac{(xyz - 1)!}{xyz^{n-1}(xyz - n)!}$$
⁽⁹⁾

where x, y, and z are the number of unconstrained TEUs arrayed in the respective x, y, and z directions and n is the number of detectors being deployed. In general, the probability of 2 detectors being assigned to the same container volume increases as n increases and as the total number of TEUs (i.e. [xyz]) decreases. The effects of this "double-assignment" will be examined in more detail in subsequent sections.

Another important assumption is that deployed units provide coverage of a perfectly spherical volume with a radius determined by the effective detection range. (Estimates for the effective detection range are being developed by Gallagher at MIT and are still evolving as design decisions and improvements are made, so a series of range values were assumed as part of a parameter study). This is an approximation of a real-world setting, where shielding effects manifested by the specific loading and cargo characteristics of surrounding commercial containers and the threat container itself would render the effective detection volume non-spherical. It is further assumed that fissile material located anywhere within the idealized coverage sphere will be detected with equal probability. In reality, a source close to the detector will be more easily detected

¹⁰ The probability that any two detectors will be assigned to the same 40' container can also be found using Eq. (9) by substituting (xyz/2) for each (xyz) term.

than one at the outer edge of the sphere (along the same line of sight) as a result of shielding by intervening materials and the inverse square nature of detector solid angles. This assumption was deemed acceptable because the definition of the effective detection range is the expected maximum distance at which a source can be confidently and reliably detected with a given count time under realistic conditions. Also, by not considering or crediting the enhanced ease of detection afforded by source proximity and detection sphere overlap, the analysis gains a measure of conservatism.

5.2.2 Input/Output

The Matlab-based deployment simulator accepted user-defined inputs for container array dimensions (length, width, and height in TEUs), the number of detectors to be distributed through the array, the effective detection range (in ft.) and the number of runs to be completed for Monte Carlo analysis. Output for Monte Carlo calculations were statistics (mean, median, standard deviation, minimum, and maximum values) that described the set of fractional detection coverages calculated for each run, or iteration, of the simulation. Output for the deterministic centerline analysis consisted of a fractional detection coverage corresponding to the evaluated scenario.

5.2.3 Algorithm

The simulation of each deployment strategy (i.e. random, constrained, and centerline) used the same algorithm to generate a virtual container array and then calculate the fractional volume that was "covered" by deployed detectors. Differences in random, constrained, and centerline deployment simulation were limited primarily to the manner in which the detectors were placed into (or distributed through) the virtual array. For clarity, the algorithm will be explained in its entirety using random deployment as an example. Differences in the detector placement step for constrained and centerline deployment will then be identified and discussed. The actual Matlab codes used to simulate each type of deployment are found in Appendix B.

The simulation began by creating a matrix representation of the physical space to be modeled by employing user inputs that defined the desired container array dimensions. The inputs specify array dimensions in terms of how many (TEU) containers are to be aligned along the length, width, and height of the array. Figure 5-1 shows the assumed orientation of the containers along the 3 Cartesian axes.

A 3-dimensional matrix was then constructed in which each cubic foot of physical space in the user-specified container array was represented by a matrix element with an initial value of 0. This "geometry matrix" had dimensions [(x*8),(y*8),(z*20)], where x, y, and z were the user inputs for the number of containers along the respective height, width, and length of the array and the scaler multipliers are the corresponding height, width, and length dimensions of (TEU) containers in feet.

Detector placement was the next step in simulation. For random deployment, Matlab's random number generator was used to assign arbitrary coordinates (referred to here as dx, dy, and dz) to fix the center-point of an emplaced detector. Once dx, dy, and dz had been identified, a new null matrix, referred to hereafter as the "detector matrix", was created. The detector matrix was of the same dimensions as the geometry matrix and the element at (dx,dy,dz) representing the emplaced detector was assigned a value of 1. Next the coverage sphere associated with the emplaced detector was generated. An approximated sphere can be created within a 3-dimensional matrix by serially evaluating individual elements to determine the linear distance between the given element and the emplaced detector using the following expression,

$$D = \sqrt{(i - dx)^{2} + (j - dy)^{2} + (k - dz)^{2}}$$
(10)

where *i*, *j*, and *k* are the respective *x*, *y*, and *z* coordinates of the matrix element being evaluated. If this distance is greater than the effective detection radius, *R*, then the element under evaluation is outside the detection sphere and the value of that element remains 0. If the distance is less than or equal to *R*, the element in question is within the detection sphere and its value in the detector matrix is changed to 1. To save computation time, only matrix elements inside a cube centered at (dx, dy, dz) with sides measuring 2R were evaluated using Eq. (10). This cube bounding the detection sphere is shown (2-dimensionally) in Figure 5-2.

Figure 5-2: Cube bounding the detection sphere

Once the entire coverage sphere, represented by elements with a value of 1, had been generated, an element-by-element comparison of the detector matrix and the geometry matrix was performed using the logical OR operator, whose properties are shown in Table 5-1.

Table 5-1: Pi	roperties of t	the OR operator
X	Y	X (OR) Y
0	0	0
0	1	1
1	0	1
1	1	1

The matrix resulting from this operation becomes the updated geometry matrix. The process of detector placement is then repeated and a new detector matrix is created. The new detector matrix is then compared to the updated geometry matrix, again using the logical OR operator, and the result becomes the new geometry matrix. Each time the geometry matrix is updated, the OR operation imprints it with another coverage sphere. The OR operator is used in lieu of matrix addition to avoid overlapping coverage regions being double counted in the final fractional coverage calculation.

The process of emplacing detectors, creating detector matrices, and updating the geometry matrix continues until the user specified number of detectors has been deployed. At this point, the geometry matrix holds the placement and coverage information of every detector, in addition to information defining the overall dimensions of the simulated container array. An element of the geometry matrix with a value of 1 represents physical space that is within the effective detection range of an emplaced detector, and is therefore "covered". Matlab can then sum the values of all the elements in the geometry matrix to find the volume covered by deployed detectors. The coverage volume, represented by the summation of the geometry matrix, can then be divided by the total number of elements in the geometry matrix, which represents the total volume of the simulated container array, to find the fractional coverage volume. The fractional coverage volume calculation is shown symbolically as follows,

$$\Gamma = \frac{V_{\rm cov}}{V_{\rm total}} \tag{11}$$

where Γ is the fractional coverage volume, V_{cov} is the volume of the array that is "covered" by deployed detectors, and V_{total} is the total volume of the array.

This entire process is repeated until the user-defined number of fractional coverage volume outputs has been generated. At the end of each run, the calculated fractional coverage value is added to an output vector. Once the vector has been fully populated, Matlab performs statistical analysis on the output data and returns the mean, median, standard deviation, minimum and maximum values for the fractional coverage.

Detector placement for constrained and centerline deployment is the only major difference from the simulation process described above. Matlab's random number generator is also used to determine coordinates for detector placement in constrained deployment simulations. However, before a detector matrix is generated reflecting a given placement location, the coordinates are checked to ensure that the detector is not being placed in physical space that would be in a container that is along the surface of the array (i.e. the first or last [TEU] container in any row, column, or span of the array). If the prospective placement coordinates fall in this exclusion zone, then they are discarded and new sets of random numbers are generated until coordinates are obtained that satisfy the constraints. When coordinates are found that do not place the detector in the exclusion zone, a detector matrix is generated and the element representing the placement coordinates is given a value of 1. For deterministic centerline deployment calculations, detector placement is determined by the user inputs concerning the geometry of the container array and the number of detectors to be deployed.

5.2.4 Validation and Verification

During development, a 2-dimensional version of the each simulation code was created to facilitate validation and debugging. Once the 2-dimensional models were found to work as expected with high confidence, they were scaled up to the full 3-dimensional simulations of interest. Prior to actual data collection, the output from 3-dimensional test simulations, starting with small scale runs (i.e. modestly sized arrays

with a small number of deployed detectors) and concluding with a limited number of larger scale runs, were extensively checked against hand calculations.

This validation and verification process also sought to ensure that reality was being modeled with reasonable accuracy. One problem with representing physical space, and especially spherical regions of space, with elements of 3-dimensional matrices is the discretization error introduced by the non-continuous nature of matrix space. To provide reasonably high fidelity models of coverage spheres, each matrix element represented 1 cubic foot. For reference, at this resolution, it takes 2720 matrix elements to model the interior of one full sized 40' cargo container. To check the error introduced by discretization, the calculated volume values for spheres generated in matrix space were compared to the theoretical volume (in ft^3) given by the following formula,

$$V = \frac{4}{3}\pi r^3 \tag{12}$$

where r is the radius of the sphere (in ft). Table 5-2 shows the discretization error observed for spheres of varying radii.

Radius (ft)	Simulation (ft ³)	Theoretical (ft^3)	Error (%)
45	381615	381703.5	0.0232
50	523305	523598.8	0.0561
55	696507	696910	0.0578
60	904089	904778.7	0.0762
65	1149651	1150346.5	0.0605
70	1436385	1436755	0.0258
75	1767063	1767145.9	0.0047
80	2143641	2144660.6	0.0475
85	2571711	2572440.8	0.0284

Table 5-2: Spherical volume error

The errors tabulated above are quite small, so the volume underestimation caused by the discrete nature of matrix space will not significantly impact the accuracy of the fractional coverage values output by the simulations.

5.3 Random Deployment

A deployment methodology where containerized detection units are randomly loaded onto containerships is vastly preferable in terms of both logistics and stealth. By imposing no constraints on the placement of these units, there is no opportunity for an adversary to identify their presence due to abnormal or preferential treatment during the loading process. Therefore, the enemy is not afforded an opportunity to study and probe the defense posture prior to attack or the opportunity to take compensatory action during an attack. The logistics of random deployment are also favorable in that the detection units can be simply delivered to the embarkation port or commercial shipper and then monitored from afar without the need for further direct involvement.

Despite these important advantages, randomly placed detection units can lead to highly inefficient container array geometries due to spatial clustering of units or deployment on or near the fringes of the array. Due to the possibility of poor container array geometries, additional units must be deployed to ensure that an adequate level of detection coverage will be provided. Simulation was carried out in an attempt to better quantify the effects of placement randomization on coverage efficiency (i.e. the fractional coverage provided by a given number of detection units) and to estimate the number of units that would be required for different levels of coverage for containerships of a given size.

The simulation explained in Section 5.2.3 calls for the specification of container array dimensions, effective detection range, number of deployed detectors, and number of runs as inputs. Five standard container array geometries were selected for use throughout this analysis to facilitate comparison between the deployment strategies. The dimensions of these "reference arrays" are shown in Table 5-3.

Referen	ice Array Dime	ansions	Capacity
Height (cont)	Width (cont)	Length (cont)	(TEU)
8	9	20	1440
8	12	26	2496
10	12	30	3600
10	15	32	4800
10	17	38	6460

Table 5-3: Reference array dimensions

Reference arrays shown above were selected to provide a representative sample of the capacities and array geometries of the contemporary containership fleet.

Gallagher at MIT is currently investigating the effective detection range. Preliminary analysis and modeling suggests that the range may be somewhere around 65 ft. Using this uncertain estimate as a point of departure, detection ranges spanning from 45 ft. to 85 ft. (in 5 ft. increments) were studied.

To determine the appropriate number of iterations to obtain high confidence results with good statistics, a sample simulation was run using 1, 5, 10, 50, 100, 200, 500 and 1000 iterations. Results of the test, which used 15 detectors with 65 ft. ranges randomly deployed within the 4800 TEU reference array, are shown in Table 5-4.

Runs	1	5	10	50	100	200	500	1000
Mean	0.7133	0.7308	0.7750	0.7577	0.7522	0.7523	0.7566	0.7553
Std Dev	0	0.0646	0.0922	0.0673	0.0566	0.0584	0.0583	0.0587

Table 5-4: Mean fractional coverage results for variable run sizes

Table 5-4 shows that the mean fractional coverage begins to converge at around 50 iterations and the standard deviation has been reduced to the extent practicable by the 100th run. These results are similar to those obtained for cases using different test parameters. As a result, 200 was chosen to be the standard number of iterations used in the simulation of each scenario. This number of runs was large enough to provide high confidence results with good statistics, but small enough to make efficient use of limited computational resources.

Simulations were carried out as follows. Starting with the smallest reference array, the shortest effective detection range was held fixed and the number of deployed units was varied until a distribution of outputs with mean fractional detection coverage values having a nominal span of at least 0.75 to 0.95 was obtained. Then 5 ft. was added to the effective detection range input and the process was carried out again. Once this had been completed for each 5 ft. increment of effective detection range from 45 ft to 85 ft. the next reference array was selected and the entire process began anew. Inputs and output statistics for each simulated scenario are shown in Table 5-5.

results	
simulation	
deployment	
Random	
Table 5-5:	

Capacity	S	pecific Geome	etry	Range (ft)	Detection		Cove	rage Statis	stics		Runs
(TEU)	width (cont)	height (cont)	length (cont)		Units	Mean	Median	Std. Dev.	Min	Max	
1440	6	ω	20	45	10	0.6511	0.659	0.0683	0.4555	0.8262	200
1440	6	8	20	45	13	0.7475	0.7513	0.0634	0.5311	0.8946	200
1440	6	8	20	45	15	0.7878	0.789	0.0612	0.5194	0.9098	200
1440	6	8	20	45	18	0.843	0.8463	0.0494	0.6761	0.9497	200
1440	თ	8	20	45	20	0.8707	0.8761	0.0463	0.681	0.9602	200
1440	0	8	20	45	23	0.898	0.9055	0.0409	0.7509	0.9742	200
1440	თ	8	20	45	25	0.9159	0.9217	0.0325	0.8009	0.9839	200
1440	6	8	20	45	30	0.9456	0.9523	0.0308	0.7579	0.9876	200
1440	0	8	20	45	31	0.9477	0.9522	0.0283	0.806	0.9947	200
1440	6	8	20	45	35	0.9652	0.9697	0.02	0.8643	0.9949	200
1440	റ	8	20	50	7	0.6238	0.6238	0.0778	0.4372	0.8008	200
1440	6	8	20	50	10	0.7371	0.74	0.0708	0.4554	0.8952	200
1440	6	8	20	50	11	0.7758	0.7811	0.0721	0.5508	0.9198	200
1440	თ	8	20	50	13	0.8265	0.8349	0.0602	0.6497	0.9662	200
1440	6	8	20	50	14	0.8418	0.85	0.0626	0.5801	0.9569	200
1440	6	8	20	50	16	0.8854	0.8927	0.0515	0.7284	0.9701	200
1440	6	80	20	50	20	0.9251	0.9326	0.0408	0.7283	0.9888	200
1440	6	8	20	50	25	0.9554	0.964	0.0307	0.8434	0.9957	200
440	6	80	20	55	7	0.6955	0.7033	0.0884	0.459	0.8883	200
1440	6	8	20	55	10	0.8232	0.8355	0.0742	0.5177	0.971	200
440	6	80	20	55	11	0.8412	0.8472	0.0739	0.5759	0.9755	200
440	6	ø	20	55	13	0.8841	0.8931	0.0593	0.7113	0.9768	200
440	6	8	20	55	14	0.906	0.9143	0.0496	0.7789	0.9826	200
440	6	80	20	55	16	0.9299	0.9411	0.0459	0.7491	0.9959	200
440	6	8	20	55	17	0.9361	0.9475	0.0458	0.7299	0.9945	200
1440	6	8	20	55	19	0.953	0.9673	0.0374	0.8156	0.9975	200
1440	6	8	20	60	5	0.6625	0.6608	0.0857	0.4472	0.9006	250
440	0	8	20	60	7	0.7604	0.7708	0.1009	0.4673	0.9721	200
440	6	8	20	60	10	0.8774	0.8902	0.0685	0.684	0.984	200
440	6	8	20	60	12	0.9048	0.9269	0.069	0.6072	0.9937	200
440	6	8	20	60	15	0.9513	0.9677	0.0464	0.7638	0.9982	200
440	6	ø	20	65	с С	0.5262	0.5235	0.091	0.29	0.7096	200
440	6	8	20	65	5	0.7105	0.7234	0.1081	0.3678	0.9658	200

			1															1																		
200	200	250	200	200	200	200	200	200	250	250	250	250	200	250	250	250	250	250	250	250	250	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.9848	0.9888	~	-	0.857	0.9651	0.9908	0.99999	-	0.8849	0.9997	0.9996	-	-	0.9358	0.999		1	0.9903	0.9999	~	-	0.7606	0.8941	0.9432	0.9769	0.9855	0.989	0.7164	0.8455	0.9336	0.9759	0.9925	0.8121	0.9123	0.9588	0.9802
0.4819	0.605	0.6532	0.7542	0.3003	0.3103	0.385	0.6746	0.5985	0.2244	0.4303	0.5793	0.6577	0.6989	0.286	0.4072	0.5528	0.6672	0.3039	0.3763	0.4725	0.6904	0.468	0.6168	0.6724	0.8313	0.8517	0.8781	0.3884	0.5616	0.687	0.7712	0.8515	0.4395	0.6395	0.7253	0.7987
0.0948	0.0803	0.0592	0.0466	0.111	0.1177	0.0954	0.0698	0.0579	0.1171	0.1142	0.0872	0.0686	0.0535	0.1332	0.1227	0.0868	0.0639	0.1373	0.1133	0.0899	0.0496	0.0514	0.0454	0.0409	0.0271	0.0228	0.0175	0.0626	0.0561	0.0475	0.0374	0.0272	0.0714	0.0597	0.0463	0.0317
0.8492	0.9044	0.9596	0.9843	0.603	0.7775	0.883	0.9458	0.9764	0.6306	0.8047	0.9203	0.967	0.9872	0.6817	0.8595	0.9323,	0.988	0.7178	0.8789	0.9698	0.9956	0.6321	0.7786	0.8606	0.9141	0.9445	0.9608	0.5927	0.7277	0.8596	0.9242	0.9568	0.6619	0.7994	0.874	0.9352
0.835	0.887	0.942	0.965	0.5963	0.7601	0.8653	0.9204	0.9529	0.6257	0.7933	0.9011	0.9381	0.964	0.664	0.8336	0.9111	0.9593	0.7065	0.8636	0.9311	0.974	0.6295	0.7773	0.8564	0.9118	0.9421	0.958	0.5917	0.7253	0.8495	0.9182	0.9497	0.6592	0.7979	0.8672	0.9273
7	. თ	12	15	3	5	7	6	11	3	5	7	თ	1	с С	5	7	6	m	5	7	6	15	23	31	39	47	52	10	15	23	31	39	10	15	20	25
65	65 65	65	65	20	20	20	20	202	75	75	75	75	75	80	80	80	80	85	85	85	85	45	45	45	45	45	45	50	50	50	50	50	55	55	55	55
20	20	20	2 0	20	200	20	202	20	20	20	20	20	20	20	00	20	20	20	20	20	20	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
œ	οα	۰ «	οα) œ	οœ) œ	0 00	8	0 00	0 00	0 00) œ	. «) œ	, a	۵ ۵ ۵) œ) œ) œ	ω	8) œ) œ	0 00	0 00	8	8	8	0 00	0 00	8	8	οœ	0 00	8
σ	הס	n 0	n 0	n 0	οσ	n 0	οσ	o 0.	5	0 0	o 0.	o 0.	ი თ	σ	σ	n 0	οσ	σ	o 0	ი თ	0	12	15	<u>i ¢</u>	: 5	: 6	12	12	: 5	: 5	: 5	5	12	1 5	: 0	12
1440	1440	1440	1440	1440	0440	1440		1440	1440	1440	1440	1440	1440	1440		0441	1440	1440	1440	1440	1440	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496
																						-						-					•			

																																			-	
200	250	200	200	200	200	250	250	250	200	200	250	200	200	200	200	200	250	200	200	200	200	200	250	250	250	250	250	200	200	250	250	250	250	250	200	250
0.997	0.6953	0.8991	0.9622	0.9867	0.9977	0.7515	0.9586	0.982	0.9964	0.9986	0.8287	0.9239	0.9746	0.996	0.9998	0.9999	0.9059	0.967	0.9898	0.9985	-	-	0.7613	0.9406	0.9842	0.9905	~	.	-	0.7994	0.9702	0.9907	0.9998	~		0.7347
0.7945	0.2677	0.4198	0.6549	0.7447	0.8676	0.2885	0.5377	0.7231	0.7422	0.7928	0.3735	0.4913	0.5875	0.7208	0.7314	0.8382	0.3062	0.4947	0.6561	0.7694	0.794	0.9228	0.2068	0.4239	0.5171	0.6293	0.6153	0.6902	0.7769	0.2456	0.4371	0.4935	0.6286	0.7205	0.7967	0.4921
0.0306	0.075	0.0811	0.0591	0.0451	0.0273	0.082	0.0763	0.0551	0.0394	0.0329	0.092	0.0885	0.0833	0.0535	0.0383	0.0234	0.1048	0.0879	0.0708	0.0422	0.0253	0.0106	0.1006	0.1031	0.0968	0.0787	0.0639	0.0565	0.043	0.1106	0.1114	0.0935	0.0715	0.0584	0.0445	0.0453
0.956	0.5008	0.738	0.8619	0.929	0.9589	0.5573	0.8131	0.9034	0.9628	0.9736	0.6122	0.7217	0.8572	0.9427	0.9746	0.9914	0.6635	0.7837	0.8982	0.9638	0.9873	0.9976	0.5218	0.7091	0.8345	0.8987	0.9451	0.9682	0.9792	0.5698	0.7673	0.8634	0.9377	0.9682	0.9835	0.6216
0.9497	0.5028	0.7265	0.8525	0.9188	0.9543	0.5508	0.7998	0.8925	0.9485	0.9637	0.6098	0.7261	0.8365	0.9283	0.963	0.9835	0.6618	0.7756	0.8829	0.9541	0.9806	0.9936	0.5208	0.7042	0.8241	0.88	0.9287	0.9474	0.9637	0.5576	0.752	0.8449	0.915	0.945	0.9639	0.6225
30	5	10	15	20	25	5	10	15	20	23	5	7	10	15	20	25	5	7	10	15	20	25	e	5	7	6		13	15	n	5	7	0	11	13	20
55	60	09	60	60	60	65	65	65	65	65	70	20	20	20	20	20	75	75	75	75	75	75	80	80	80	80	80	80	80	85	85	85	85	85	85	45
26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	30
æ	8) œ) œ	0 @	ο α	8	0 00	0 @	0 00	8	æ	8	ω	0	0 00) œ	0 @	0 00	0 @	8	0 @	ω	8	ω	œ	ω	8	8	Ø	8	8	8	8	0 @	8	10
12	12	i C	; 0	: 0	12	12	i C	i C	12	12	12	12	12	: 6	; 5	15	10	: 6	i C	i C	: 5	12	12	12	12	12	12	12	12	12	12	12	12	: 0	15	12
2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2406	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	3600

250	250	200	200	200	200	250	250	250	200	200	200	250	250	250	200	200	200	200	200	200	200	200	500	500	200	200	200	200	200	250	200	200	200	200	200	200
0.8428	0.9229	0.944	0.9771	0.9816	0.6048	0.8296	0.9151	0.9614	0.9853	0.9915	0.6932	0.9014	0.9599	0.9843	0.9926	0.7809	0.8957	0.9347	0.9723	0.9874	0.9939	0.6289	0.8717	0.9626	0.9789	0.9919	0.9941	0.7108	0.8266	0.9218	0.9791	0.9915	0.9969	0.9995	0.7678	0.9024
0.6497	0.7155	0.8143	0.8455	0.9025	0.3432	0.5676	0.7001	0.7918	0.8804	0.8553	0.3967	0.5543	0.7623	0.8381	0.8821	0.4578	0.593	0.7169	0.7542	0.8314	0.8515	0.255	0.4525	0.6369	0.7029	0.7999	0.8659	0.2873	0.3919	0.5012	0.6077	0.751	0.8323	0.8948	0.2473	0.4504
0.0399	0.031	0.0247	0.0214	0.016	0.0472	0.0501	0.0383	0.0303	0.0201	0.0174	0.0545	0.0496	0.0372	0.0242	0.0203	0.0633	0.0585	0.0482	0.0408	0.0331	0.0244	0.0712	0.07177	0.0591	0.0487	0.0335	0.0237	0.0763	0.0824	0.0784	0.097	0.0432	0.0287	0.0216	0.0897	0.0827
0.7585	0.8488	0.8977	0.9343	0.9553	0.4795	0.7186	0.8473	0.9103	0.9453	0.9606	0.5624	0.7958	0.8982	0.9516	0.9658	0.6309	0.7734	0.8533	0.9128	0.9453	0.9625	0.4735	0.7074	0.8313	0.9087	0.9484	0.9697	0.5248	0.6304	0.7551	0.8899	0.9448	0.9712	0.987	0.5741	0.6955
0.7572	0.8482	0.8964	0.9314	0.9538	0.4767	0.7137	0.8424	0.9075	0.9449	0.9584	0.5598	0.7947	0.8935	0.9478	0.9607	0.6324	0.7693	0.8506	0.9067	0.9376	0.9583	0.4633	0.702	0.827	0.8988	0.939	0.9639	0.5248	0.6275	0.7514	0.8787	0.9332	0.9627	0.9783	0.5706	0.6913
30	40	50	60	20	10	20	30	40	50	55	10	20	30	40	45	10	15	20	25	30	35	2	10	15	20	25	30	5	7	10	15	20	25	30	5	7
45	45	45	45	45	50	50	50	50	50	50	55	55	55	55	55	60	60	09	09	60	60	65	65	65	65	65	65	02	20	70	70	20	70	70	75	75
30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
12	i 5	i 6	1 5	1 5	12	12	12	12	12	12	12	12	1 0	12	12	12	12	12	1 6	i C	i <u>C</u>	12	: 5	<u>i ¢</u>	12	12	12	12	12	12	12	12	12	12	12	12
3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600

-

2600	, 1	10	30	75	10	0.8024	0.8126	0.0792	0.5682	0.9317	200
3600	7 č	<u>0</u>	90 08	75	15	0.908	0.9226	0.0563	0.705	0.9953	200
3600	7 č	0 6	30	75	20	0.9599	0.9689	0.0332	0.7872	0.9973	200
3600	10		30	80	5	0.6283	0.6353	0.096	0.3307	0.8343	200
3600	1 ¢	0	30	80	7	0.7327	0.7436	0.0905	0.5193	0.9383	200
3600	<u>1</u> 5	2 0	30	80	10	0.8535	0.8677	0.0713	0.6325	0.9774	200
3600	1 6	0	30	80	15	0.937	0.9527	0.05	0.735	0.9981	200
3600	12	10	30	80	20	0.9749	0.9842	0.0278	0.8212	0.9999	200
3600	12	10	30	85	3	0.4846	0.487	0.0915	0.1938	0.7061	250
3600	1 5	10	30	85	9	0.7224	0.739	0.0927	0.4851	0.9329	200
3600	12	10	30	85	6	0.8605	0.8767	0.0834	0.5156	0.9907	200
3600	12	10	30	85	12	0.9213	0.9374	0.0639	0.6492	0.9992	200
3600	12	10	30	85	15	0.9574	0.9735	0.046	0.7684	0.9996	200
4800	15	10	32	45	30	0.679	0.6832	0.0408	0.5607	0.7698	200
4800	5	10	32	45	40	0.7782	0.7813	0.0305	0.6777	0.8761	200
4800	15	10	32	45	50	0.839	0.8403	0.0272	0.7527	0.9036	200
4800	0 1 1	2 0	32	45	60	0.8861	0.8859,	0.0211	0.8289	0.9453	200
4800	5. 12	10	32	45	20	0.9138	0.9156	0.021	0.8404	0.9589	200
4800	15	10	32	45	80	0.9381	0.9402	0.0172	0.8774	0.9747	200
4800	15	10	32	45	06	0.955	0.9557	0.0129	0.9045	0.9828	200
4800	15	10	32	50	20	0.6321	0.6314	0.0457	0.5204	0.7247	200
4800	15	10	32	50	30	0.7673	0.7739	0.0406	0.5997	0.8749	200
4800	15	10	32	50	40	0.8513	0.8542	0.0335	0.7304	0.9289	200
4800	ירי היו	10	32	50	50	0.9009	0.9042	0.0262	0.8209	0.9574	200
4800	15	20	32	50	60	0.9342	0.9368	0.0215	0.8525	0.9761	200
4800	15 15	10	32	50	. 02	0.9552	0.957	0.0166	0.8919	0.9912	200
4800	15	10	32	50	80	0.9699	0.9725	0.0135	0.9152	0.9944	200
4800	15	10	32	55	20	0.7161	0.72	0.0473	0.5522	0.8802	200
4800	15	10	32	55	30	0.8375	0.8423	0.0403	0.7229	0.9325	200
4800	15	10	32	55	40	0.908	0.9113	0.027	0.7929	0.9615	200
4800	15	10	32	55	50	0.9442	0.9472	0.0227	0.8442	0.9853	200
4800	15	10	32	55	55	0.957	0.9616	0.0202	0.8612	0.9865	200
4800	15	10	32	60	15	0.6875	0.6929	0.0553	0.5412	0.8236	200
4800	15	10	32	60	20	0.7794	0.7847	0.0511	0.6428	0.8981	200
4800	15	10	32	60	30	0.89	0.8946	0.0378	0.7518	0.9578	200
4800	15	10	32	60	40	0.9425	0.9467	0.026	0.8305	0.9891	200
4800	15	10	32	60	20	0.9697	0.9727	0.0153	0.9135	0.996	200

						1						1					· 1					I														
500	500	500	500	200	200	200	500	200	500	500	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.7788	0.8057	0.8971	0.949	0.9767	0.9796	0.9899	0.884	0.9028	0.9399	0.9701	0.9835	0.9935	0.9253	0.9469	0.9562	0.9847	0.9975	0.7612	0.9419	0.9829	0.9944	0.9982	0.8104	0.9424	0.9725	0.989	0.9988	0.9999	0.678	0.7667	0.8469	0.8807	0.901	0.9415	0.9557	0.9712
0.401	0.4143	0.5518	0.6546	0.746	0.7621	0.8598	0.4592	0.5098	0.6042	0.6833	0.8156	0.8769	0.5096	0.5141	0.6856	0.7553	0.8491	0.3195	0.5192	0.6802	0.7517	0.8355	0.3512	0.4585	0.4874	0.687	0.7939	0.8213	0.4824	0.5894	0.6749	0.7322	0.7624	0.8257	0.8534	0.8733
0.061	0.0641	0.0583	0.0479	0.0405	0.0319	0.0251	0.0707	0.0683	0.0603	0.0501	0.0371	0.024	0.071	0.0705	0.0531	0.0414	0.0287	0.0822	0.0774	0.056	0.0409	0.0313	0.0844	0.0901	0.0764	0.0542	0.0365	0.0207	0.0352	0.0304	0.0283	0.026	0.0243	0.0222	0.0199	0.0174
0.626	0.6556	0.7566	0.8536	0.9057	0.9406	0.9573	0.6847	0.7442	0.8179	0.895	0.9329	0.9641	0.7457	0.8065	0.8655	0.9329	0.9624	0.5525	0.7926	0.9056	0.9555	0.9696	0.5878	0.724	0.8385	0.9303	0.9697	0.9896	0.5815	0.6873	0.7609	0.8183	0.858	0.8933	0.9121	0.9326
0.6206	0.6544	0.7551	0.8479	0.8988	0.9358	0.9539	0.6772	0.74	0.8107	0.8861	0.9266	0.9598	0.7346	0.7951	0.8595	0.9247	0.9549	0.5467	0.7862	0.8959	0.9449	0.9602	0.5895	0.7152	0.827	0.9184	0.9592	0.984	0.5806	0.6846	0.7594	0.8152	0.8545	0.8893	0.9121	0.9302
10	-	15	20	25	30	35	10	12	15	20	25	30	10	12	15	20	25	5	10	15	20	23	5	7	10	15	20	25	30	40	50	60	20	80	06	100
65	65 65	65	65	65	65	65	20	70	70	70	20	20	75	75	75	75	75	80	80	80	80	80	85	85	85	85	85	85	45	45	45	45	45	45	45	45
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	38	38	38	38	38	38	38	38
10	<u></u>	2 0	2 0	2 0	9	10	10	2 0	2 0	10	10	10	10	10	10	2 🖯	2 0	10	2 0	2 🗧	2 €	10	10	2 0	2 🖯	2 0	2 0	10	10	10	10	10	2 0	2 C	0	10
ч	<u></u> z tr	<u>5</u> 4	5	0 1 1	2 12	22	15	2	5 5 7	15	15	15	15	15	, r ,	21	15	15	2 12	5 7	27	15	15	<u>, r</u>	5 C	<u>5</u>	<u>, r</u>	15	17	17	17	17	17	17	17	17
0007	4000	1800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	6460	6460	6460	6460	6460	0460 6460	6460	6460

																															_		-		-	
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.9719	0.9824	0.7545	0.8491	0.9065	0.9414	0.9576	0.9726	0.9804	0.7294	0.8403	0.9162	0.9656	0.9758	0.9824	0.8081	0.8773	0.9167	0.9614	0.9788	0.9878	0.6828	0.908	0.9441	0.986	0.9917	0.7454	0.85	0.9147	0.9686	0.9788	0.9918	0.8185	0.9343	0.9565	0.9847	0.9948
0.899	0.9159	0.5659	0.6929	0.7261	0.8	0.8632	0.8905	0.9011	0.5344	0.6187	0.7358	0.7704	0.8507	0.8845	0.5532	0.6623	0.6313	0.8028	0.8304	0.884	0.3922	0.6125	0.7175	0.8021	0.8764	0.3822	0.5392	0.6795	0.7236	0.7524	0.8384	0.4788	0.6139	0.7094	0.7484	0.8158
0.0138	0.0125	0.0367	0.0314	0.029	0.0266	0.0192	0.0161	0.0144	0.0403	0.0408	0.0323	0.0305	0.0203	0.0175	0.0487	0.0431	0.0443	0.0308	0.0232	0.0173	0.055	0.0482	0.0386	0.0292	0.0197	0.0634	0.0588	0.0514	0.0446	0.036	0.0233	0.0661	0.056	0.0444	0.0367	0.0264
0.9464	0.9575	0.6792	0.7796	0.8397	0.8863	0.9164	0.9405	0.9567	0.626	0.7571	0.8465	0.8999	0.9331	0.9566	0.6988	0.7762,	0.826	0.8994	0.9406	0.9644	0.5307	0.7602	0.8777	0.9372	0.9677	0.5883	0.7242	0.8259	0.8857	0.9236	0.9664	0.6467	0.7838	0.8743	0.9185	0.9495
0.9456	0.9553	0.6749	0.776	0.8395	0.8842	0.9159	0.9396	0.9546	0.6262	0.7579	0.8452	0.8953	0.9313	0.9526	0.6971	0.7731	0.8262	0.8966	0.9375	0.9606	0.5262	0.7614	0.875	0.9324	0.9639	0.5886	0.7247	0.8193	0.8785	0.9169	0.9602	0.6477	0.7803	0.8651	0.915	0.9466
110	120	30	40	50	60	02	80	60	20	30	40	50	60	20	20	25	30	40	50	60	10	20	30	40	50	10	15	20	25	30	40	10	15	20	25	30
45	45	50	50	50	50	50	50	50	55	55	55	55	55	55	60	60	60	60	60	60	65	65	65	65	65	70	70	70	70	70	70	75	75	75	75	75
38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460
		I							I						I						I					I						ł				

6460	17	10	38	75	33	0.956	0.9596	0.0245	0.8858	0.9965	200
6460	17	10	38	80	10	0.6953	0.6993	0.0682	0.5124	0.8598	200
0400		2	38	80	12	0.7627	0.768	0.0659	0.5601	0.891	200
0400 6460	17	0	38	80	15	0.8301	0.8344	0.061	0.592	0.9669	200
0400 6460	17	0	38	80	20	0.8956	0.9057	0.0475	0.727	0.9832	200
0400 6460	17	10	38	80	25	0.9343	0.9417	0.0396	0.752	0.9972	200
0400 6460	17	10	38	80	30	0.9616	0.9703	0.0283	0.8485	0.9991	200
6460	17	10	38	85	5	0.4982	0.4989	0.0778	0.3106	0.7061	200
0400 6460	17	0.0	38	85	10	0.7447	0.7471	0.071	0.5581	0.8866	200
0400 6460	17	01	38	85	15	0.8591	0.8683	0.0641	0.601	0.9702	200
0400 6460	17	10	38	85	20	0.9249	0.9386	0.0451	0.7239	0.9873	200
6460	17	10	38	85	25	0.9532	0.9652	0.0401	0.7122	0.9991	200
6460	17	10	38	85	30	0.976	0.9826	0.0224	0.8727	0.9994	200

*

To distill the information captured in Table 5-5 for easier inspection and analysis, Figures 5-2 through 5-6 show plots that relate the mean values of fractional coverage volume, as defined in Eq. (11), to the number of deployed detectors for each reference array.

Coverage vs. Detectors (1440 TEU)

Figure 5-3: Coverage vs. Detectors plot for the 1440 TEU array [Random]

Figure 5-4: Coverage vs. Detectors plot for the 2496 TEU array [Random]

Coverage vs. Detectors (3600 TEU)

Figure 5-5: Coverage vs. Detectors plot for the 3600 TEU array [Random]

Figure 5-6: Coverage vs. Detectors plot for the 4800 TEU array [Random]

Coverage vs. Detectors (6460 TEU)

Figure 5-7: Coverage vs. Detectors plot for the 6460 TEU array [Random]

It is unclear what minimum acceptable level of detection coverage is appropriate, given the reality that it will not always be possible to provide 100% coverage of every containership and that attempting to do so will likely prove to be cost prohibitive. Acknowledging this uncertainty, all subsequent analysis will measure the system against three potential choices for minimum acceptable coverage. These three levels are 75%, 85%, and 95%.

To identify the number of detectors with a given range that are required to provide 75%, 85%, and 95% coverage for each of the 5 reference arrays, the mean fractional coverages for each simulated scenario were plotted and graphical techniques were employed. Figure 5-7 shows an example using the 1440 TEU reference array and detectors with a 65 ft. effective range (error bars represent $^+/- 1$ standard deviation).

Figure 5-8: Graphical determination of detectors required for various coverage levels

For the example case illustrated in Figure 5-7, it was estimated that 75%, 85%, and 95% fractional detection coverage could be provided with 6, 8, and 14 detectors, respectively.

Results of these graphical analyses showing the estimated number of detectors needed to provide various levels of coverage for each scenario are listed in Table 5-6.

Random [Deployment		Referenc	e Array Capa	city (TEU)	
		1440	2496	3600	4800	6460
Range (ft)	Coverage	1440	2400	0000	4000	0400
	0.75	13	21	30	37	59
45	0.85	19	31	40	52	68
	0.95	32	50	69	88	117
	0.75	11	17	22	29	37
50	0.85	15	23	31	40	52
	0.95	25	39	53	69	88
	0.75	9	13	18	23	30
55	0.85	12	19	25	31	41
	0.95	19	30	41	53	70
	0.75	7	11	15	18	24
60	0.85	10	15	20	26	33
	0.95	15	25	34	43	55
	0.75	6	9	12	15	20
65	0.85	8	12	17	20	27
	0.95	14	21	27	34	45
	0.75	5	8	10	13	16
70	0.85	7	11	14	18	22
	0.95	11	18	23	29	38
	0.75	5	7	9	11	14
75	0.85	6	9	12	15	18
	0.95	10	15	19	24	31
	0.75	4	6	8	9	12
80	0.85	6	8	10	13	17
	0.95	9	14	17	21	29
	0.75	4	5	7	8	10
85	0.85	5	8	9	11	15
	0.95	8	12	15	19	25

Table 5-6: Estimated number of detectors needed for various scenarios [Random]

One clear trend observed in the Figures above (particularly 5-2 through 5-6) are the diminishing returns in coverage afforded by the deployment of each additional detector, especially in the high coverage region (i.e. above around 0.80). It takes the addition of considerably more detectors to get from 85% to 95% coverage than it took to get from 75% to 85%. Using the scenario where detectors with a 65 ft. range were deployed in the 6460 TEU reference array as an example, it took 7 additional detectors to go from 75% to 85% coverage and 18 additional detectors to go from 85% to 95%. The primary cause of this phenomenon is the fact that random deployment does not promise uniform distribution of detectors throughout a container array. As a result, randomized placement will unavoidably give rise to some well-covered regions with significant coverage overlap and some sparsely covered regions with little to no detection coverage. Detectors cannot be preferentially deployed to uncovered or inadequately covered areas. Therefore, to enhance the fractional coverage area with additional detectors, one must rely on the capricious nature of random placement to fortuitously deploy added units to sparsely covered regions. Inefficiencies associated with this process lead to the diminishing marginal returns observed in the simulation results. The extent to which random deployment is less efficient than optimal centerline deployment will be discussed in a later section.

Although the mechanism discussed above is the primary determinant, there is another factor at work in the deployment simulation that artificially magnifies the diminishing returns effect. Given that the simulation used for this analysis assumed that the center point of detectors could be placed at any point in space within the container array, there is a non-negligible probability, given by Eq. (9), that 2 detectors could be randomly assigned to the space that corresponds to a single container. The probability of this "double assignment" increases as the number of deployed detectors increases. Since double assignment is an inefficient distribution of detectors, it could make a small contribution to the diminishing returns effect. Table 5-7 shows the probability that any 2 detectors will be randomly assigned to the same 20' and 40' container volumes for a sampling of simulated scenarios.

Capacity (TEU)	Detectors	Double Assign. Probability (20')	Double Assign. Probability (40')	Capacity (TEU)	Detectors	Double Assign. Probability (20')	Double Assign. Probability (40')
1440	3	0.002	0.004	3600	60	0.390	0.630
1440	5	0.007	0.014	3600	70	0.491	0.743
1440	10	0.031	0.061	4800	5	0.002	0.004
1440	15	0.071	0.137	4800	10	0.009	0.019
1440	20	0.124	0.234	4800	20	0.039	0.076
1440	25	0.189	0.344	4800	30	0.087	0.166
1440	30	0.262	0.458	4800	40	0.150	0.279
1440	35	0.341	0.568	4800	50	0.226	0.402
2496	3	0.001	0.002	4800	60	0.310	0.525
2496	5	0.004	0.008	4800	70	0.397	0.638
2496	10	0.018	0.036	4800	80	0.484	0.736
2496	15	0.041	0.081	4800	90	0.568	0.816
2496	20	0.074	0.142	6460	5	0.002	0.003
2496	25	0.114	0.215	6460	10	0.007	0.014
2496	30	0.161	0.296	6460	20	0.029	0.057
2496	39	0.258	0.451	6460	30	0.065	0.126
2496	47	0.353	0.584	6460	40	0.114	0.215
2496	52	0.414	0.660	6460	50	0.173	0.317
3600	3	0.001	0.002	6460	60	0.240	0.424
3600	5	0.003	0.006	6460	70	0.313	0.529
3600	10	0.012	0.025	6460	80	0.388	0.627
3600	20	0.052	0.101	6460	90	0.464	0.714
3600	30	0.114	0.216	6460	100	0.537	0.787
3600	40	0.195	0.354	6460	110	0.607	0.847
3600	50	0.290	0.497	6460	120	0.671	0.893

Table 5-7: Double assignment probabilities for 20' and 40' containers [Random]

Table 5-7 shows the probability that any two detectors will be assigned to a single container becomes quite large as the number of deployed detectors gets large and in some extreme cases, double assignment is almost assured. Since this inefficient double assignment is non-physical, the fractional detection coverage output by the simulation will be marginally underestimated and the diminishing returns effect will be slightly exaggerated.

Another notable feature of the results captured in Table 5-6 is the strong relation between the number of detectors needed to provide a given fractional coverage level and the effective detection range of the deployed units. This dependence is illustrated in Figures 5-8 through 5-12 where the estimated number of detectors required for 75%, 85%, and 95% coverage are plotted against detection range for each of the 5 reference arrays.

Figure 5-9: Required Detectors vs. Range for the 1440 TEU array [Random]

Figure 5-10: Required Detectors vs. Range for the 2496 TEU array [Random]

Figure 5-11: Required Detectors vs. Range for the 3600 TEU array [Random]

Figure 5-12: Required Detectors vs. Range for the 4800 TEU array [Random]

Figure 5-13: Required Detectors vs. Range for the 6460 TEU array [Random]

The pronounced "range effect" illustrated in Figures 5-8 through 5-12 can be explained by the relation between the effective detection range and the volume of coverage provided by a detection unit. Equation (12) shows that the volume of the idealized detection sphere increases as the cube of the effective detection radius. Therefore, the volume of a detection sphere created by a detector with an 85 ft. radius is 6.74 times greater than that of a detector with a 45 ft. radius. By covering a significantly larger detection volume per unit, fewer long-range detectors are needed, on average, to provide a given fractional coverage.

Finally, although the 6460 TEU reference array represents a larger container capacity than the 95th percentile vessel in the current fleet, it is likely that the trend to build and deploy larger and larger containerships will continue in the coming years until capacities exceed 10000 TEU [Ircha, 2002]. Figures 5-13 through 5-17 plot the number of detectors needed for given coverage levels versus vessel capacity for a representative sampling of ranges.

Figure 5-14: Required Detectors (with 45 ft. range) vs. Array Capacity [Random]

Figure 5-15: Required Detectors (with 55 ft. range) vs. Array Capacity [Random]

Figure 5-16: Required Detectors (with 65 ft. range) vs. Array Capacity [Random]

Figure 5-17: Required Detectors (with 75 ft. range) vs. Array Capacity [Random]

Figure 5-18: Required Detectors (with 85 ft. range) vs. Array Capacity [Random]

Figures 5-13 through 5-17 show relationships between the number of required detectors and vessel container capacities that are linear to a very good approximation. This linearity could be used in the future to estimate the number of detectors needed to provide coverage of proposed vessels with capacities exceeding those of containerships in the fleet today.

5.4 Constrained Deployment

Deviation from random deployment could challenge and potentially comprise the desired surreptitious nature of the ship-based approach and invite serious logistical difficulties. However, given the coverage inefficiencies that are an unavoidable consequence of completely random deployment, the constrained deployment strategy was investigated to determine the efficiency gains that could be reaped by imposing minimum loading constraints. In an effort to limit the undesirable and inefficient situation in which detectors are placed close to the edge or surface of the container array, the constrained

deployment simulation explicitly barred the assignment of detectors to space that corresponded to the first or last (TEU) container in any row, column, or span of the array. It is unclear whether even this limited constraint would be possible to impose in practice.

Constrained deployment simulation was carried out in the same manner as described above for random deployment. The only modification to the simulation schedule was the exclusion of scenarios with detectors having 45 ft. and 85 ft. effective ranges. Limited computing resources necessitated the tailoring of the simulation schedule and the excised scenarios were the most computationally intensive¹¹. Table 5-8 shows the output statistics for constrained simulations.

¹¹ 45 ft. range scenarios were intensive due to the large number of detectors that had to be deployed to achieve desired fractional coverages. 85 ft. range scenarios were intensive because of the large number of computations required to construct their detection spheres.

Table 5-8: Constrained deployment simulation results

-

Capacity	Sp	ecific Geomet	۲. آ	Range (ft)	Detection		Cov	erage Stat	istics		Rine
(TEU)	width (cont)	height (cont)	length (cont)		Units	Mean	Median	Std. Dev.	Min	Мах	
1440	6	ω	20	50	5	0.5894	0.5893	0.0707	0.4263	0.8495	200
1440	6	80	20	50	80	0.7295	0.7349	0.0922	0.2961	0.9292	200
1440	6	8	20	50	11	0.8309	0.8431	0.0726	0.4976	0.9554	200
1440	6	80	20	50	14	0.885	0.8929	0.0572	0.6397	0.9827	200
1440	6	8	20	50	17	0.9167	0.9308	0.0531	0.6639	0.9883	200
1440	6	8	20	50	21	0.9519	0.9617	0.0332	0.8216	0.9963	200
1440	6	8	20	50	24	0.9619	0.9715	0.0319	0.7597	0.995	200
1440	0	8	20	55	5	0.6446	0.6435	0.0921	0.404	0.8587	200
1440	თ	8	20	55	8	0.7974	0.8024	0.091	0.5096	0.9709	200
1440	6	ø	20	55	11	0.8786	0.8853	0.0699	0.5955	0.9798	200
1440	6	8	20	55	14	0.9219	0.9418	0.0599	0.7143	0.9969	200
1440	6	8	20	55	17	0.9479	0.9623	0.0474	0.7405	0.9986	200
1440	6	8	20	55	20	0.9633	0.9774	0.0433	0.7319	0.9996	200
1440	თ	8	20	60	5	0.7096	0.7194	0.1036	0.3249	0.9107	200
1440	ი	8	20	60	8	0.8574	0.8838	0.0851	0.5651	0.99	200
1440	თ	8	20	60	11	0.9151	0.936	0.0709	0.6208	0.9947	200
1440	თ	8	20	60	14	0.947	0.966	0.0537	0.6923	0.9994	200
1440	6	8	20	60	17	0.9666	0.9817	0.0402	0.7232	0.9999	200
1440	თ	8	20	65	4	0.6941	0.7041	0.107	0.3183	0.9225	200
1440	6	8	20	65	5	0.7521	0.7568	0.1207	0.3912	0.9852	200
1440	0	8	20	65	8	0.8931	0.914	0.0926	0.5764	0.9988	200
1440	თ	8	20	65	11	0.9504	0.9744	0.0572	0.7274	0.9998	200
1440	6	8	20	65	14	0.9641	0.9853	0.0499	0.7591	-	200
1440	0 ·	œ	20	20	e	0.631	0.6421	0.1198	0.3177	0.8896	200
1440	6	œ	20	70	5	0.7844	0.7948	0.1073	0.4709	0.9884	200
1440	0	ω	20	20	7	0.8807	0.9008	0.1031	0.494	0.9998	200
1440	0 ·	ω -	20	20	0	0.9302	0.9602	0.0792	0.5846		200
1440	6	ω	20	20	11	0.9545	0.9844	0.0653	0.6535	-	200
1440	0	Ø	20	75	e	0.6607	0.6702	0.1251	0.2978	0.9542	200
1440	0	ω	20	75	5	0.8351	0.8505	0.1158	0.3682	0.9999	200
1440	თ	8	20	75	7	0.9053	0.9335	0.0896	0.512	-	200
1440	0	8	20	75	6	0.9496	0.9788	0.0693	0.6389	*	200
1440	6	ø	20	75	11	0.9609	0.9929	0.0597	0.6951	-	200

				1	I						ł					ı										1									Т	
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	250	200	200	200	200	200	200	200	200	200
0.9714	0.9997	-	-	+	0.7705	0.8819	0.9349	0.9667	0.9842	0.9904	0.9953	0.8565	0.9662	0.9779	0.9948	0.9951	0.7045	0.9519	0.9851	0.99	0.9989	0.8411	0.9651	0.9925	0.999	0.99999	0.8798	0.9876		~		0.9176	0.9852	0.9988	1	0.9857
0.408	0.4884	0.5527	0.6645	0.6821	0.4337	0.581	0.667	0.7529	0.8241	0.8408	0.8729	0.4235	0.6644	0.7509	0.7393	0.875	0.3036	0.5901	0.6554	0.8052	0.8403	0.3189	0.5694	0.7165	0.7825	0.8426	0.3393	0.617	0.7437	0.7802	0.8736	0.3685	0.4838	0.6551	0.7803	0.3937
0.1365	0.1141	0.0866	0.0617	0.05	0.0671	0.0559	0.0506	0.0391	0.0314	0.0288	0.0227	0.0792	0.0613	0.0437	0.0362	0.0271	0.0787	0.0761	0.0543	0.0379	0.0319	0.0918	0.0786	0.0545	0.0375	0.0248	0.099	0.0848	0.0497	0.0346	0.0196	0.106	0.0903	0.0706	0.0462	0.1159
0.7206	0.8619	0.9522	0.9845	0.999	0.6399	0.7783	0.856	0.9054	0.9362	0.9504	0.9617	0.7223	0.8458	0.9036	0.948	0.9639	0.5408	0.7833	0.8913	0.9425	0.9731	0.6009	0.8392	0.9296	0.9681	0.9844	0.6524	0.8843	0.9579	0.9835	0.9933	0.6903	0.8523	0.9213	0.9697	0.7529
0.7195	0.844	0.9229	0.9542	0.9762	0.6353	0.7713	0.8464	0.8983	0.929	0.9448	0.9585	0.7088	0.8356	0.8977	0.9392	0.9577	0.5377	0.7852	0.8856	0.9368	0.9618	0.5931	0.8305	0.9162	0.9578	0.9769	0.6471	0.8641	0.9426	0.9714	0.9859	0.6881	0.8409	0.9089	0.9539	0.7439
с С	5	7	თ	11	10	15	20	25	30	35	40	10	15	20	25	30	5	10	15	20	25	5	10	15	20	25	5	10	15	20	25	5	8	11	14	5
80	80	80	80	80	50	50	50	50	50	50	50	55	55	55	55	55	60	60	60	60	60	65	65	65	65	65	70	70	70	70	70	75	75	75	75	80
20	20	20	20	20	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
œ	ο α) œ	ο α	0 00	∞	8	8	0 00	8	ω	8	ω	ω	8	8	8	0	0 00	0 @	0 00	0 00	ω	0 00	0 00	8	ω	8	8	8	8	ω	8	8	8	8	ω
σ	ი თ	σ	σ	ით	12	101	101	12	12	1 5	12	12	12	12	: 0	: 0	10	: 0	: ¢	i t	: 5	12	10	12	1 5	12	12	12	12	12	12	12	12	12	12	12
1440	1440	1440	1440	1440	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496

200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.9959	0.9999	~	0.6525	0.8773	0.9515	0.975	0.9856	0.9897	0.7438	0.9387	0.9718	0.9933	0.9965	0.8387	0.9489	0.9668	0.9797	0.9908	0.9955	0.9241	0.9674	0.993	0.9965	0.7426	0.8846	0.9426	0.9823	0.9972	0.8485	0.9415	0.9826	0.9979	0.9996	0.8927	0.9765	0.985
0.5871	0.5976	0.741	0.3553	0.624	0.7543	0.8314	0.8662	0.8763	0.4349	0.7121	0.7648	0.8352	0.8576	0.459	0.6277	0.7415	0.785	0.7803	0.8742	0.4998	0.6878	0.7305	0.7809	0.3103	0.4187	0.5283	0.6775	0.7629	0.3183	0.4452	0.4776	0.7042	0.7967	0.2881	0.428	0.5687
0.0845	0.074	0.0498	0.0504	0.0473	0.0356	0.0266	0.0214	0.0199	0.0648	0.0458	0.0326	0.0265	0.0176	0.0658	0.0558	0.0494	0.0363	0.0326	0.0218	0.0854	0.0594	0.0426	0.0351	0.0886	0.0863	0.0816	0.0572	0.038	0.0962	0.0966	0.0956	0.0604	0.037	0.1057	0.1012	0.0807
0.8905	0.9564	0.9822	0.531	0.7664	0.8687	0.9247	0.9532	0.9631	0.6208	0.8353	0.9142	0.9599	0.9785	0.6977	0.8214	0.8879	0.9366	0.9565	0.9718	0.7541	0.8727	0.9318	0.963	0.5599	0.6907	0.8169	0.9162	0.9578	0.6354	0.7432	0.8557	0.9426	0.9802	0.6767	0.7997	0.8902
0.8748	0.9291	0.9611	0.5282	0.7606	0.8657	0.9209	0.9495	0.9597	0.6168	0.8315	0.9133	0.9532	0.9737	0.6935	0.8175	0.8792	0.9276	0.9484	0.9669	0.7385	0.8631	0.9252	0.9525	0.5541	0.6815	0.8045	0.9022	0.9503	0.6253	0.7333	0.8376	0.9224	0.965	0.6674	0.7827	0.8727
8	11	14	10	20	30	40	50	55	10	20	30	40	50	10	15	20	25	30	35	10	15	20	25	5	7	10	15	20	5	7	10	15	20	5	7	10
80	80	80	50	50	50	50	50	50	55	55	55	55	55	60	60	60	60	60	60	65	65	65	65	70	70	20	, 07	70	75	75	75	75	75	80	80	80
26	26	26	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
				0	~	~	~	_	(_	_	_		_	_	_																				
ω	ω	8	1	Ŧ	Ŧ	Ŧ	¥	1(10	5	Ę	5	Ę	10	10	10	10	0	10	10	10	10	10	10	10	10	10	9	10	10	10	10	9	10	10	10
12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
2496	2496	2496	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600

-

																												_							
200 200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.9993 1	0.7857	0.8958	0.941	0.9614	0.9804	0.9862	0.9859	0.7936	0.863	0.9522	0.9652	0.9905	0.8643	0.9123	0.9771	0.9901	0.9969	0.8163	0.9063	0.9593	0.9872	0.9937	0.9975	0.91	0.9649	0.9814	0.9942	0.9981	0.7569	0.9258	0.9815	0.995	0.9988	0.7738	0.9824
0.7262 0.6676	0.5536	0.7103	0.7861	0.8448	0.86	0.8841	0.9049	0.4997	0.5994	0.7212	0.822	0.7755	0.5806	0.6626	0.781	0.8703	0.863	0.4289	0.6308	0.7329	0.758	0.8038	0.8299	0.4505	0.6156	0.7838	0.7419	0.8593	0.2932	0.5733	0.6283	0.7916	0.8197	0.2934	0.5624
0.0482 0.0409	0.0442	0.0351	0.0314	0.0234	0.0218	0.0197	0.0171	0.0535	0.047	0.0393	0.0269	0.0248	0.0572	0.0467	0.0334	0.0225	0.0162	0.0694	0.0549	0.0431	0.0384	0.032	0.0258	0.0777	0.0638	0.0444	0.0389	0.0261	0.0795	0.0702	0.067	0.0385	0.0332	0.0902	0.0752
0.9859	0.6822	0.8108	0.8783	0.9183	0.9448	0.9528	0.9606	0.6711	0.7588	0.8703	0.9255	0.955	0.7411	0.8349	0.9167	0.9546	0.9737	0.6844	0.8001	0.8834	0.9269	0.9486	0.9676	0.7281	0.8475	0.9124	0.9499	0.9713	0.5491	0.7735	0.895	0.9459	0.971	0.5966	0.8296
0.9532 0.9708	0.6794	0.808	0.876	0.9162	0.9418	0.9496	0.9574	0.6661	0.7565	0.8654	0.9214	0.9507	0.7379	0.8279	0.9122	0.9518	0.9719	0.6735	0.7993	0.8789	0.9211	0.9434	0.961	0.7268	0.8396	0.9047	0.9395	0.9637	0.5426	0.7681	0.8829	0.9379	0.9625	0.5906	0.8229
15 20	20	30	40	50	60	65	70	15	20	30	40	50	15	20	30	40	50	10	15	20	25	30	35	10	15	20	25	30	5	10	15	20	25	5	10
80	20	20	50	50	50	50	50	55	55	55	55	55	60	60	60	09	60	65	65	65	65	65	65	20	20	20	20	20	75	75	75	75	75	80	80
30 30	33	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
10		2 €	2 0	2 €	0	10	10	10	10	0	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
12	15	οų	0 10	5 7	0 10 10	15	5 5 7	15	15	15	15	<u>, 1</u>	15) 2 2	<u>, r</u>	2 12	15	15	15	15	15	15	15	15	15	15	15	10	15	15	5 1	- - - - - - - - - - - - - - - - - - -	15	15	15
3600	3000	4800	4800		4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800
								1					1											1								-		1	

																													· .							
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
0.9913	0.9992	٢	0.8117	0.8645	0.9257	0.9592	0.9962	0.9794	0.9846	0.7702	0.8808	0.9413	0.9752	0.9841	0.9861	0.8476	0.9415	0.9789	0.9867	0.995	0.71	0.899	0.9793	0.9898	0.9953	0.7643	0.9515	0.991	0.9976	0.8258	0.9205	0.9681	0.9932	0.9971	0.9985	0.8916
0.7379	0.8112	0.8222	0.6076	0.7135	0.7797	0.8102	0.859	0.8621	0.9038	0.5223	0.6942	0.7598	0.8182	0.8822	0.9076	0.5936	0.6984	0.8246	0.8892	0.9049	0.3929	0.5836	0.7821	0.8438	0.899	0.4363	0.6727	0.8283	0.874	0.427	0.6069	0.701	0.7635	0.7827	0.836	0.4949
0.0563	0.0392	0.0295	0.0372	0.0294	0.0283	0.0253	0.0215	0.0168	0.0139	0.0452	0.0343	0.0332	0.0269	0.0202	0.0152	0.0468	0.0409	0.0268	0.0205	0.0179	0.0589	0.0555	0.0371	0.0272	0.0186	0.0652	0.0519	0.0324	0.0221	0.0625	0.0622	0.045	0.0394	0.0339	0.0245	0.0761
0.9275	0.9671	0.9833	0.7249	0.8097	0.8622	0.9034	0.9258	0.9456	0.9571	0.6704	0.7989	0.8687	0.9139	0.9426	0.9565	0.7421	0.8583	0.9205	0.9525	0.9702	0.5738	0.7983	0.9043	0.9513	0.9727	0.6409	0.8507	0.933	0.9717	0.6881	0.8167	0.8912	0.9272	0.9574	0.9772	0.7387
0.9119	0.9532	0.9741	0.7231	0.8075	0.8606	0.9004	0.922	0.9437	0.9561	0.6692	0.7985	0.866	0.9119	0.9396	0.9574	0.7462	0.8553	0.9187	0.9487	0.9661	0.573	0.795	0.9014	0.9447	0.9688	0.6352	0.8452	0.9276	0.9666	0.6904	0.8105	0.8853	0.9249	0.949	0.9695	0.7348
15	20	25	30	40	50	60	70	80	06	20	30	40	50	60	70	20	30	40	50	60	10	20	30	40	50	10	20	30	40	10	15	20	25	30	35	10
80	80	80	50	50	50	50	50	50	50	55	55	55	55	55	55	60	60	60	60	60	65	65	65	65	65	70	20	20	70	75	75	75	75	75	75	80
2	10	। <u>ल</u>	8		æ	æ	ω	æ	æ	8	8	æ	8	~ œ	ω	8	œ	ω	8	æ	8	œ	æ	Ø	8	8	8	8	æ	8	æ	8	8	8	8	Ø
e.	о с.) (C)	6) (N	° m	° m	က	· က	° m	с С	e	c	ς Γ	6	i n	(C)	° CO	· က	e	e	3	n	c	• m	e	e e	e	e	e	(C)	e	e	e	e	3	en I
10	2 Ç	0	10	10	10	10	9	10	10	10	10	10	10	10	2 0	P	10	10	9	10	9	10	10	2 0	10	1 0	10	10	10	₽	10	10	10	10	10	10
15	<u>,</u>	s te	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
1800	4800	4800	6460	0400 6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460 6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460
			-							-						-					-					-				-						

200	200	200	200	202
0.949	0.9911	0 9971	0 9995	00000
0.6062	0.7372	0.8316	0.8879	010010
0.0614	0.0474	0.032	0.0248	
0.8591	0.9216	0.9547	0.9714	
0.8512	0.9126	0.9484	0.9656	
15	20	25	30	
80	80	80	80	
38	38	38	38	
10	10	10	10	
17	17	17	17	
6460	6460	6460	6460	

•---

*

For ease of inspection, the mean fractional coverage volumes for each scenario and reference array are plotted in Figures 5-18 through 5-22.

Coverage vs. Detectors (1440 TEU)

Figure 5-19: Coverage vs. Detectors plot for the 1440 TEU array [Constrained]

Figure 5-20: Coverage vs. Detectors plot for the 2496 TEU array [Constrained]

Coverage vs. Detectors (3600 TEU)

Figure 5-21: Coverage vs. Detectors plot for the 3600 TEU array [Constrained]

Coverage vs. Detectors (4800 TEU)

Figure 5-22: Coverage vs. Detectors plot for the 4800 TEU array [Constrained]

Coverage vs. Detectors (6460 TEU)

Figure 5-23: Coverage vs. Detectors plot for the 6460 TEU array [Constrained]

The number of detectors needed to provide 75%, 85%, and 95% coverage for each scenario were estimated in the same manner as described in the previous section and results are shown in Table 5-9.

Cons	trained		(Capacity (TE	U)	
Deplo	oyment	1440	2496	3600	4800	6460
Range (ft)	Coverage	1440	2400	0000	4000	0100
	0.75	9	14	20	25	33
50	0.85	12	20	28	35	48
	0.95	21	38	51	65	86
	0.75	7	12	16	20	26
55	0.85	10	16	21	28	37
	0.95	18	28	39	50	65
	0.75	6	9	12	15	21
60	0.85	8	13	18	23	29
	0.95	15	23	31	40	51
	0.75	5	8	11	13	18
65	0.85	7	11	15	18	24
	0.95	11	19	25	32	43
	0.75	5	8	9	11	15
70	0.85	7	10	12	16	20
	0.95	11	16	20	28	36
	0.75	4	7	8	10	15
75	0.85	6	9	11	13	20
	0.95	9	14	18	23	35
	0.75	4	6	7	9	11
80	0.85	5	8	10	11	15
	0.95	9	13	15	20	26

Table 5-9: Estimated number of detectors needed for various scenarios [Constrained]

When the numbers tabulated above for constrained deployment are compared to the random deployment results shown in Table 5-7, the differences are not particularly striking. Surprisingly, very little is gained in terms of coverage efficiency by constraining placement in containers along the surface of the array. It appears, that by excluding placement in such a large volume fraction of the total container array, that inefficient overlapping was promoted in the center. This seems to have offset efficiency gains that were realized by limiting coverage volume "losses" at the surface of the array. Double assignment effects also played a larger role in the constrained simulation because the (*xyz*) term in Eq. (9) was smaller due to the imposed placement constraint.

5.5 Centerline Deployment

Centerline deployment, where detectors are optimally distributed along the length of the middle row and column of the container array, is the least secure of the examined deployment strategies, in terms of concealing the location of detection units. It is also dubious as to whether this approach would be logistically feasible in practice. However, the completely constrained nature of this strategy does afford extremely efficient utilization of detector coverage. As a result, this deployment approach is useful for establishing a lower bound for the number of detectors that would be needed to cover a vessel with a given capacity. This lower bound can also be used to quantify the coverage efficiency losses resulting from full randomization.

Since the imposed constraints dictate that detectors could only be placed along the centerline of the reference arrays, the geometry of each scenario was uniquely specified so only one calculation (as opposed to multi-run Monte Carlo analysis) was needed to determine the coverage. For the purposes of these calculations, the centerline of each array was assumed to consist of 40' containers to more accurately model arrays encountered aboard actual containerships. It was further assumed that detectors were only placed in the center of these full-sized containers. The first scenario for each reference array would place a detector in each of the available full containers along the centerline. The next scenario would place detectors in every other container, then every third container, and so on. Sometimes using placement patterns of this fashion did not uniquely specify the arrangement of detectors. For example, if detectors are to be placed in every third full sized container and there are 15 containers along the length of the centerline, then the desired placement pattern can be realized with an equal number of detectors when the pattern is begun with a detector in the first, second, or third container in the line. Whenever there were degrees of freedom associated with which container to place the first detector in, the coverage for each available geometry was calculated and the arrangement with the highest coverage was used. The results of these calculations are shown in Table 5-10.

126

Capacity	S	pecific Geome	try	Range (ft)	40' Containers	Loading	Container w/	Detection	Coverade
(TEU)	width (cont)	height (cont)	length (cont)		Along Length	Pattern	1st Detector	Units	
1440	ი	8	20	45	10	Every	1st	10	0.9682
1440	6	8	20	45	10	Every 2nd	1st	5	0.7968
1440	6	8	20	45	10	Every 3rd	1st	4	0.6065
1440	6	8	20	45	10	Every 4th	1st	ю	0.4720
1440	6	8	20	45	10	Every 5th	3rd	2	0.3398
1440	6	ø	20	50	10	Every	1st	10	0.9961
1440	6	8	20	50	10	Every 2nd	1st	5	0.9008
1440	0	8	20	50	10	Every 3rd	1st	4	0.7100
1440	თ	ø	20	50	10	Every 4th	1st	ო	0.5572
1440	6	8	20	50	10	Every 5th	3rd	2	0.4069
1440	6	8	20	55	10	Every	1st	10	1.0000
1440	6	æ	20	55	10	Every 2nd	1st	5	0.9552
1440	6	8	20	55	10	Every 3rd	1st	4	0.8029
1440	6	8	20	55	10	Every 4th	1st	ი	0.6345
1440	6	8	20	55	10	Every 5th	3rd	7	0.4686
1440	6	8	20	60	10	Every	1st	10	1.0000
1440	6	8	20	60	10	Every 2nd	1st	5	0.9794
1440	6	8	20	60	10	Every 3rd	1st	4	0.8906
1440	6	8	20	60	10	Every 4th	1st	ო	0.7076
1440	6	8	20	60	10	Every 5th	3rd	2	0.5270
1440	6	8	20	65	10	Every	1st	10	1.0000
1440	0	8	20	65	10	Every 2nd	1st	5	0.9926
1440	6	8	20	65	10	Every 3rd	1st	4	0.9596
1440	ი	8	20	65	10	Every 4th	1st	ი	0.7764
1440	6	8	20	65	10	Every 5th	3rd	2	0.5839
1440	თ	80	20	70	10	Every	1st	10	1.0000
1440	6	8	20	20	10	Every 2nd	1st	5	0.9985
1440	6	8	20	20	10	Every 3rd	1st	4	0.9926
1440	6	8	20	70	10	Every 4th	1st	e	0.8380
1440	6	8	20	70	10	Every 5th	3rd	2	0.6394
1440	6	8	20	75	10	Every	1st	10	1.0000
1440	6	8	20	75	10	Every 2nd	1st	5	0.9999
1440	6	8	20	75	10	Every 3rd	1st	4	0.9996

Table 5-10: Centerline deployment simulation results

0.8939	0.6940	1.0000	1.0000	1.0000	0.9477	0.7477	1.0000	1.0000	1.0000	0.9870	0.8011	0.8099	0.6803	0.4829	0.3777	0.3154	0.2103	0.9055	0.8131	0.6019	0.4688	0.3992	0.2661	0.9710	0.9126	0.7193	0.5581	0.4835	0.3223	0.9957	0.9699	0.8255	0.6383	0.5617	0.3745	nnnn. I
ო	2	10	5	4	ę	2	10	5	4	ო	5	13	7	5	4	ო	2	13	7	ស	4	ო	2	13	7	5	4	ო	2	13	7	5	4	e	5	13
1st	3rd	1st	1st	1st	1st	3rd	1st	1st	1st	1st	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st
Every 4th	Every 5th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th,	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every
10	10	10	10	10	10	10	10	10	10	10	10	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
75	75	80	80	80	80	80	85	85	85	85	85	45	45	45	45	45	45	50	50	50	50	50	50	55	55	55	55	55	55	60	60	60	60	60	60	65
20	20	20	2 6	2 2	20	20	20	20	20	20	20	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
α	οα		οα	ο α	οœ	0 00	o œ) œ	0 00	0 00	8	8	ο α	8	8	0 00	• œ	000	~ œ) oc	0 @	ο α	. œ	n œ	0 00	0 00	ω	ω	8	œ	0 00	, œ) aC) œ	8	8
a	ກເ	n 0	ით	n 0	n 0	σ	σ	o 0.	ი თ	0 00	50	12	15	12	12	: 5	1 5	12	: 5	i 5	: 5	12	: 5	10	15	i 5	12	12	1 0	12	: 5	: 5	: 5	i 5	15	12
0777	1440	1440	1440	1440	1440	1440	1440	1440	1440	1440	1440	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2406	2496	2496	2496	2496	2496	2496	2496	2406	2496	2496	2496	2496

			ı																																
0.9099	0.7110	0.6310	0.4227	1.0000	0.9995	0.9624	0.7797	0.6899	0.4685	1.0000	1.0000	0.9890	0.8461	0.7408	0.5128	1.0000	1.0000	0.9985	0.9108	0.7863	0.5559	1.0000	1.0000	1.0000	0.9624	0.8292	0.5985	0.7426	0.6038	0.4034	0.3227	0.2420	0.1614	0.8578	0.7491
5	4	ი	2	13	7	5	4	က	2	13	7	5	4	ო	2	13	7	5	4	ო	5	13	7	5	4	ო	5	15	8	5	4	ო	2	15	Ø
1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	1st	1st	2nd	3rd	1st	1st	2nd	2nd	3rd	4th	1st	1st
Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th,	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 7th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd
13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	15	15	15	15	15	15	15	15
65	65	65	65	20	20	20	70	70	20	75	75	75	75	75	75	80	80	80	80	80	80	85	85	85	85	85	85	45	45	45	45	45	45	50	50
26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	30	30	30	30	30	30	30	30
0 00	ω	- œ	ο α	ω	ø	ω	0 00	8	8	ω	8	8	8	8	8	8	8	ω	ω	ω	8	ω	ω	8	8	80	ω	10	10	10	10	10	10	10	10
: 5	12	: 5	101	12	1 0	10	:5	12	12	12	12	12	12	12	12	12	12	12	15	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	2496	3600	3600	3600	3600	3600	3600	3600	3600
	2406 12 8 26 65 13 Every 3rd 1st 5 0.9099	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3nd 2 0.4227 2496 12 8 26 65 13 Every 7th 3nd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 5 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3nd 2 0.4227 2496 12 8 26 70 13 Every 7th 3nd 2 0.4227 2496 12 8 26 70 13 Every 7th 3nd 2 0.4227 2496 12 8 26 70 13 Every 7th 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995	2496 12 8 26 65 13 Every 3rd 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2	2496 12 8 26 65 13 Every 3rd 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3	2496 12 8 26 65 13 Every 3rd 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 4th 1st 4 0.7110 2496 12 8 26 65 13 Every 5th 3rd 2 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 5 0.9099 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7	2496 12 8 26 65 13 Every 3rd 14 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 5 0.9099 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 2 0.6395 2496 12 8 26 70 13 2 0.9624 <	2496 12 8 26 65 13 Every 3rd 1st 5 0.0909 2496 12 8 26 65 13 Every 4th 1st 5 0.0909 2496 12 8 26 65 13 Every 5th 2nd 3 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0 0.7110 2496 12 8 26 70 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9639 2496 12 8 26 70 13 Every 5th 2nd 3 0.6639 2496 12 8 26 70 13	2496 12 8 26 65 13 Every 3rd 1st 5 0.9099 2496 12 8 26 65 13 Every 4th 1st 5 0.9099 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 1 0.000 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 3nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 1st 0.7797<	2496 12 8 26 65 13 Every 3rd 1st 5 0.0009 2496 12 8 26 65 13 Every 4th 1st 5 0.0099 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.427 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 5th 2nd 3 0.6899 2496 12 8 26 70 13 Every 7th 1st 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2496128266513Every 3rd1st50.03092496128266513Every 4th1st50.03092496128266513Every 7th3rd240.71102496128266513Every 7th3rd20.63102496128267013Every 7th3rd20.63102496128267013Every 7th3rd20.63102496128267013Every 7th3rd20.63102496128267013Every 3rd1st70.99952496128267013Every 5th2rd70.90952496128267013Every 7th3rd20.66392496128267013Every 7th3rd20.66852496128267013Every 7th3rd20.68902496128267513Every 7th3rd20.68902496128267513Every 7th3rd20.68902496128267513Every 7th3rd20.689024961282675 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>2496 12 8 26 65 13 Every 3rd 1st 5 0.0909 2496 12 8 26 65 13 Every 4th 1st 5 0.0310 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 2nd 1st 7 0.9039 2496 12 8 26 70 13 Every 7th 3rd 2 0.6899 2496 12 8 26 70 13 Every 7th 3rd 2 0.9824 2496 12 8 26 70 13 Every 7th 3rd 2</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>2496 12 8 26 65 13 Every 3rd 1st 5 0.9093 2496 12 8 26 65 13 Every 4th 1st 5 0.9093 2496 12 8 26 65 13 Every 7th 3rd 2 0.7110 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 3rd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 2 0.707 2496 12 8 26 70 13 Every 7th 3rd 2 0.4685 2496 12 8 26 70 13 Every 7th 3rd 2 0.4685 2496 12 8 26 70 13 Every 7th 3 0.6899</td></t<> <td>2490 12 8 26 65 13 Every 3rd 14 5 0.099 2496 12 8 26 65 13 Every 4th 1st 5 0.099 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 13 1.0000 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 13 1.0000 2496 12 8 26 70 13 Every 7th 3rd 13 1.000 2496 12 8 26 75 13 Every 7th 3rd 2 0.703 2496 12 8 26 75 13 Every 7th 3rd 2</td> <td>2400 12 8 26 65 13 Every 3rd 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 5 0.0099 2496 12 8 26 65 13 Every 7th 3rd 2 0.710 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7nh 3rd 2 0.7797 2496 12 8 26 70 13 Every 7nh 3 0.6899 2496 12 8 26 75 13 Every 7nh 3 0.790 2496 12 8 26 75 13 Every 7nh 3 0.700 2496</td> <td>2460 12 8 26 65 13 Every 3rd 15t 5 0.009 2496 12 8 26 65 13 Every 3rd 1st 5 0.009 2496 12 8 26 65 13 Every 7rd 1st 1 0 0.110 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.4277 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.707 2496 12 8 26 70 13 Every 7rd 1st 7 0.9924 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.7101 2496 12 8 26 70 13 Every 7rd 1st 7 0.9099 2496 12 8 26 70 13</td> <td>2400 12 8 26 65 13 Every 3rd 1st 5 0.0093 2496 12 8 26 65 13 Every 4th 1st 7 0.0110 2496 12 8 26 65 13 Every 7th 3rd 2 0.4271 2496 12 8 26 65 13 Every 7th 3rd 2 0.4271 2496 12 8 26 70 13 Every 2nd 1st 7 0.9095 2496 12 8 26 70 13 Every 7nd 1st 7 0.9024 2496 12 8 26 70 13 Every 7nd 1st 7 0.9035 2496 12 8 26 75 13 Every 7nd 1st 7 0.0000 2496 12 8 26 75 13 Every 7nd 1st 7</td> <td>2400 12 6 5 13 Every 3rd 1st 5 0.0310 2496 12 8 26 65 13 Every 4th 1st 5 0.100 2496 12 8 26 65 13 Every 4th 1st 5 0.4217 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 0.700 2496 12 8 26 70 13 Every 7th 3rd 0.710 2496 12 8 26 70 13 Every 7th 3rd 0.700 2496 12<</td> <td></td> <td>2400 12 8 26 65 13 Every 3rd 15 5 0.0000 2496 12 8 26 65 13 Every 4rd 14 4 0.1110 2496 12 8 26 55 13 Every 4rd 151 13 0.0000 2496 12 8 26 70 13 Every 3rd 151 13 0.0000 2496 12 8 26 70 13 Every 3rd 151 13 0.0000 2496 12 8 26 70 13 Every 7rd 151 13 0.0000 2496 12 8 26 70 13 Every 7rd 151 10.0000 2496 12 8 26 75 13 Every 7rd 151 10.000 2496 12 8 26 75 13 Every 7rd 151 13 0.0000 <</td> <td>2400 12 8 26 65 13 Every 3rd 15 5 0.0000 2496 12 8 26 55 13 Every 4rd 14 5 0.0000 2496 12 8 26 55 13 Every 4rd 15 7 0.000 2496 12 8 26 70 13 Every 3rd 15 1 10 000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 13 Every 7rd 151 1 <td< td=""><td></td><td></td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td></td<></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2496 12 8 26 65 13 Every 3rd 1st 5 0.0909 2496 12 8 26 65 13 Every 4th 1st 5 0.0310 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 65 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 7th 3rd 2 0.6310 2496 12 8 26 70 13 Every 2nd 1st 7 0.9039 2496 12 8 26 70 13 Every 7th 3rd 2 0.6899 2496 12 8 26 70 13 Every 7th 3rd 2 0.9824 2496 12 8 26 70 13 Every 7th 3rd 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2496 12 8 26 65 13 Every 3rd 1st 5 0.9093 2496 12 8 26 65 13 Every 4th 1st 5 0.9093 2496 12 8 26 65 13 Every 7th 3rd 2 0.7110 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 3rd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 2 0.707 2496 12 8 26 70 13 Every 7th 3rd 2 0.4685 2496 12 8 26 70 13 Every 7th 3rd 2 0.4685 2496 12 8 26 70 13 Every 7th 3 0.6899	2490 12 8 26 65 13 Every 3rd 14 5 0.099 2496 12 8 26 65 13 Every 4th 1st 5 0.099 2496 12 8 26 65 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 7th 3rd 13 1.0000 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 13 1.0000 2496 12 8 26 70 13 Every 7th 3rd 13 1.000 2496 12 8 26 75 13 Every 7th 3rd 2 0.703 2496 12 8 26 75 13 Every 7th 3rd 2	2400 12 8 26 65 13 Every 3rd 1st 5 0.0099 2496 12 8 26 65 13 Every 4th 1st 5 0.0099 2496 12 8 26 65 13 Every 7th 3rd 2 0.710 2496 12 8 26 70 13 Every 7th 3rd 2 0.4227 2496 12 8 26 70 13 Every 2nd 1st 7 0.9995 2496 12 8 26 70 13 Every 7nh 3rd 2 0.7797 2496 12 8 26 70 13 Every 7nh 3 0.6899 2496 12 8 26 75 13 Every 7nh 3 0.790 2496 12 8 26 75 13 Every 7nh 3 0.700 2496	2460 12 8 26 65 13 Every 3rd 15t 5 0.009 2496 12 8 26 65 13 Every 3rd 1st 5 0.009 2496 12 8 26 65 13 Every 7rd 1st 1 0 0.110 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.4277 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.707 2496 12 8 26 70 13 Every 7rd 1st 7 0.9924 2496 12 8 26 70 13 Every 7rd 1st 1 0 0.7101 2496 12 8 26 70 13 Every 7rd 1st 7 0.9099 2496 12 8 26 70 13	2400 12 8 26 65 13 Every 3rd 1st 5 0.0093 2496 12 8 26 65 13 Every 4th 1st 7 0.0110 2496 12 8 26 65 13 Every 7th 3rd 2 0.4271 2496 12 8 26 65 13 Every 7th 3rd 2 0.4271 2496 12 8 26 70 13 Every 2nd 1st 7 0.9095 2496 12 8 26 70 13 Every 7nd 1st 7 0.9024 2496 12 8 26 70 13 Every 7nd 1st 7 0.9035 2496 12 8 26 75 13 Every 7nd 1st 7 0.0000 2496 12 8 26 75 13 Every 7nd 1st 7	2400 12 6 5 13 Every 3rd 1st 5 0.0310 2496 12 8 26 65 13 Every 4th 1st 5 0.100 2496 12 8 26 65 13 Every 4th 1st 5 0.4217 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 4th 1st 7 0.9995 2496 12 8 26 70 13 Every 7th 3rd 0.700 2496 12 8 26 70 13 Every 7th 3rd 0.710 2496 12 8 26 70 13 Every 7th 3rd 0.700 2496 12<		2400 12 8 26 65 13 Every 3rd 15 5 0.0000 2496 12 8 26 65 13 Every 4rd 14 4 0.1110 2496 12 8 26 55 13 Every 4rd 151 13 0.0000 2496 12 8 26 70 13 Every 3rd 151 13 0.0000 2496 12 8 26 70 13 Every 3rd 151 13 0.0000 2496 12 8 26 70 13 Every 7rd 151 13 0.0000 2496 12 8 26 70 13 Every 7rd 151 10.0000 2496 12 8 26 75 13 Every 7rd 151 10.000 2496 12 8 26 75 13 Every 7rd 151 13 0.0000 <	2400 12 8 26 65 13 Every 3rd 15 5 0.0000 2496 12 8 26 55 13 Every 4rd 14 5 0.0000 2496 12 8 26 55 13 Every 4rd 15 7 0.000 2496 12 8 26 70 13 Every 3rd 15 1 10 000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 70 13 Every 4rd 15 1 0.000 2496 12 8 26 13 Every 7rd 151 1 <td< td=""><td></td><td></td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td></td<>				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

0.5260	0.4208	0.3156	0.2104	0.9408	0.8679	0.6518	0.5214	0.3911	0.2607	0.9825	0.9448	0.7713	0.6170	0.4628	0.3085	0.9974	0.9837	0.8717	0.7038	0.5295	0.3530	1.0000	0.9971	0.9408	0.7799	0.5918	0.3945	1.0000	0.9998	0.9794	0.8471	0.6512	0.4341	1.0000	1.0000	0.9954
5	4	e	2	15	8	5	4	ю	2	15	8	5	4	ო	2	15	8	5	4	e	2	15	8	5	4	e	2	15	8	5	4	e	2	15	8	5
2nd	2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	2nd
Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every ,	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
50	50	50	50	55	55	55	55	55	55	60	60	60	60	60	60	65	65	65	65	65	65	20	20	70	20	70	70	75	75	75	75	75	75	80	80	80
30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
10	10	10	: C	10	2 0	2 9	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	2 0	10	10	10	10	10	10	10	10	10	10	10	10
12	15	12	1 0	12	10	10	10	10	10	12	12	12	1 0	12	12	12	12	12	1 0	12	12	12	15	15	10	12	12	12	12	12	12	15	15	12	12	12
3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600

0.9077	0.7086	0.4724	1.0000	1.0000	0.9995	0.9565	0.7651	0.5101	0.5905	0.4619	0.3380	0.2409	0.2176	0.1807	0.6996	0.5850	0.4417	0.3184	0.2825	0.2388	0.7995	0.7019	0.5553	0.4042	0.3531	0.3032	0.8951	0.8117	0.6787	0.4982	0.4296	0.3736	0.9630	0.9026	0.7946	0.5930
4	ю	2	15	8	ភ	4	ო	2	16	8	9	4	4	3	16	8	9	4	4	3	16	8	9	4	4	က	16	8	9	4	4	с С	16	8	9	4
2nd	3rd	4th	1st	1st	2nd	2nd	3rd	4th	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd
Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 8th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th
15	15	15	15	15	15	15	15	15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
80	80	80	85	85	85	85	85	85	45	45	45	45	45	45	50	50	50	50	50	50	55	55	55	55	55	55	60	60	60	60	60	60	65	65	65	65
30	30	30	30	30	30	30	30	30	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
10	01	0 0	10	2 0	10	10	2 (10	10	10	10	10	10	10	10	10	2 0	2 (10	0	10	<u>5</u>	2 (10	10	10	10	10	10	10	10	10	10	10	10	10
12	1 5	<u>1</u>	10	1 5	1 5	: 5	i 5	12	15	15 5	15		5 5 5	15	15) 5	5 72	<u>ہ</u> در	212	15	15	2, 12	<u>, r</u>	27	15	15	15	15	15	15	15	15	15	15	15	15
3600	3600	3600	3600	3600	3600	3600	3600	3600	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800		4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800

0.5057	0.4445	0.9922	0.9612	0.8827	0.6801	0.5749	0.5091	0.9998	0.9883	0.9415	0.7581	0.6374	0.5665	1.0000	0.9970	0.9767	0.8291	0.6953	0.6182	1.0000	0.9994	0.9943	0.8896	0.7513	0.6664	0.5210	0.4227	0.2959	0.2238	0.1790	0.1617	0.6173	0.5329	0.3873	0.2957	0.2366
4	e	16	80	9	4	4	e	16	8	9	4	4	e	16	8	9	4	4	з	16	8	9	4	4	з	19	10	7	5	4	4	19	10	7	. ئ	4
1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	1st	2nd	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd
Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th
16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	19	19	19	19	19	19	19	19	19	19	19
65	65	20	20	70	20	20	70	75	75	75	75	75	75	80	80	80	80	80	80	85	85	85	85	85	85	45	45	45	45	45	45	50	50	50	50	50
32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	38	38	38	38	38	38	38	38	38	38	38
10	10	10	2 0	10	2 0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	<u>0</u>	10	10	10	10	10	10	10	10	10	10	10	10
15	15	15	- 1 - 12	<u>, r</u>	2 12	15	15	15	15	15	15	15	15	15	15	15	- 1 5	0 1 1	15	15	15	15	, r.	2 12	15	17	17	17	17	17	17	17	17	17	17	17
4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	4800	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460

0.2099	0.7055	0.6361	0.4877	0.3754	0.3004	0.2624	0.7898	0.7314	0.5968	0.4627	0.3702	0.3192	0.8718	0.8206	0.7079	0.5565	0.4455	0.3805	0.9484	0.9043	0.8108	0.6544	0.5248	0.4456	0.9870	0.9631	0.8900	0.7454	0.5995	0.5063	0.9990	0.9915	0.9437	0.8261	0.6667	0.5608
4	19	10	7	5	4	4	19	10	7	5	4	4	19	10	7	5	4	4	19	10	7	5	4	4	19	10	7	£	4	4	19	10	7	£	4	4
1st	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd	1st	1st	1st	1st	2nd	2nd	1st
Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th	Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th
19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
50	55	55	55	55	55	55	60	60	60	60	60	09	65	65	65	65	65	65	20	20	20	70	20	20	75	75	75	75	75	75	80	80	80	80	80	80
38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460

1 0000	0.9991	0.9768	0.8924	0.7281	0.6111
19	10	2	5	4	4
1st	1st	1st	2nd	2nd	1st
Every	Every 2nd	Every 3rd	Every 4th	Every 5th	Every 6th
19	19	19	19	19	19
85	85	85	85	85	85
38	38	38	38	38	38
10	10	10	10	10	10
17	17	17	17	17	17
6460	6460	6460	6460	6460	6460

For ease of inspection, the fractional coverage volumes provided by selected detector loading patterns¹² in each reference array are plotted in Figures 5-23 through 5-27.

Coverage vs. Detectors (1440 TEU)

Figure 5-24: Coverage vs. Detectors plot for the 1440 TEU array [Centerline]

¹² When two or more loading patterns resulted in the same number of detectors being deployed, only the result from the pattern with the highest fractional coverage was plotted.

Figure 5-25: Coverage vs. Detectors plot for the 2496 TEU array [Centerline]

Coverage vs. Detectors (3600 TEU)

Figure 5-26: Coverage vs. Detectors plot for the 3600 TEU array [Centerline]

Coverage vs. Detectors (4800 TEU)

Figure 5-27: Coverage vs. Detectors plot for the 4800 TEU array [Centerline]

Coverage vs. Detectors (6460 TEU)

Figure 5-28: Coverage vs. Detectors plot for the 6460 TEU array [Centerline]

The number of centerline deployed detectors needed to provide 75%, 85%, and 95% coverage for each evaluated range and reference array are shown in Table 5-11.

Cent	erline	Reference Array Capacity (TEU)									
Deplo	yment	1440	2496	3600	4800	6460					
Range (ft)	Coverage	1440	2490	3000	4000	0400					
	0.75	5	10	N/A	N/A	N/A					
45	0.85	7	N/A	N/A	N/A	N/A					
	0.95	10	N/A	N/A	N/A	N/A					
	0.75	5	6	8	N/A	N/A					
50	0.85	5	9	13	N/A	N/A					
	0.95	7	N/A	N/A	N/A	N/A					
	0.75	4	6	7	12	N/A					
55	0.85	5	6	8	N/A	N/A					
	0.95	5	10	N/A	N/A	N/A					
	0.75	4	5	5	7	12					
60	0.85	4	6	6	12	N/A					
	0.95	5	7	9	N/A	N/A					
	0.75	3	5	5	6	8					
65	0.85	4	5	5	7	15					
	0.95	4	6	7	14	N/A					
	0.75	3	4	4	4	7					
70	0.85	4	5	5	6	8					
	0.95	4	5	6	8	19					
	0.75	3	4	4	4	6					
75	0.85	3	5	4	5	7					
	0.95	4	5	5	7	9					
	0.75	2	3	4	4	5					
80	0.85	3	4	4	5	6					
	0.95	3	5	5	7	8					
	0.75	2	3	3	4	5					
85	0.85	3	4	4	4	5					
	0.95	3	4	4	5	6					

Table 5-11: Estimated number of detectors needed for various scenarios [Centerline]

Depending on the effective range of the detection unit, there are some levels of coverage for certain reference arrays that cannot be achieved through the use of detectors deployed exclusively along the centerline (denoted in Table 5-11 as N/A). However, in cases where the range is sufficient to provide desirable coverage using only centerline deployment, the deployment efficiency resulting from the preferential placement attendant to this approach allows high levels of coverage to be achieved with a significant economy of detection units.

5.6 Deployment Comparison

The most germane comparison that can be drawn between the deployment strategies examined in the previous sections is to contrast the number of detectors required by each method to achieve given levels of fractional coverage when faced with identical range and array capacity scenarios. Since constrained deployment was not found to hold any significant efficiency advantages over random deployment (despite its stealth and logistical disadvantages), only random and centerline deployment will be considered in the following analysis.

Table 5-12 shows the number of detectors required for each scenario using both random and centerline deployment. It also tabulates the ratio of randomly deployed detectors to centerline deployed detectors for each case so that a measure of the efficiency cost of randomization can be obtained.

Rando	Reference Array Capacity (TEU)															
Cente	erline		1440			2496			3600			4800)	6460		
Range (ft)	Coverage	R	С	R/C	R	С	R/C	R	С	R/C	R	C	R/C	R	С	R/C
	0.75	13	5	2.6	21	10	2.1	30			37			59		
45	0.85	19	7	2.7	31			40			52			68		
	0.95	32	10	3.2	50			69		а А 1995 г.	88			117		
	0.75	11	5	2.2	17	6	2.8	22	8	2.8	29	ð.		37		
50	0.85	15	5	3.0	23	9	2.6	31	13	2.4	40			52		
	0.95	25	7	3.6	39	and a		53			69			88		
	0.75	9	4	2.3	13	6	2.2	18	7	2.6	23	12	1.9	30		
55	0.85	12	5	2.4	19	6	3.2	25	8	3.1	31			41		
	0.95	19	5	3.8	30	10	3.0	41	<u>Ma</u>		53			70		
	0.75	7	4	1.8	11	5	2.2	15	5	3.0	18	7	2.6	24	12	2.0
60	0.85	10	4	2.5	15	6	2.5	20	6	3.3	26	12	2.2	33		
	0.95	15	5	3.0	25	7	3.6	34	9	3.8	43			55		
	0.75	6	3	2.0	9	5	1.8	12	5	2.4	15	6	2.5	20	8	2.5
65	0.85	8	4	2.0	12	5	2.4	17	5	3.4	20	7	2.9	27	15	1.8
	0.95	14	4	3.5	21	6	3.5	27	7	3.9	34	14	2.4	45		
	0.75	5	3	1.7	8	4	2.0	10	4	2.5	13	4	3.3	16	7	2.3
70	0.85	7	4	1.8	11	5	2.2	14	5	2.8	18	6	3.0	22	8	2.8
	0.95	11_	4	2.8	18	5	3.6	23	6	3.8	29	8	3.6	38	19	2.0
	0.75	5	3	1.7	7	4	1.8	9	4	2.3	11	4	2.8	14	6	2.3
75	0.85	6	3	2.0	9	5	1.8	12	4	3.0	15	5	3.0	18	7	2.6
	0.95	10	4	2.5	15	5	3.0	19	5	3.8	24	7_	3.4	31	9	3.4
	0.75	4	2	2.0	6	3	2.0	8	4	2.0	9	4	2.3	12	5	2.4
80	0.85	6	3	2.0	8	4	2.0	10	4	2.5	13	5	2.6	17	6	2.8
	0.95	9	3	3.0	14	5	2.8	17	5	3.4	21	7	3.0	29	8	3.6
	0.75	4	2	2.0	5	3	1.7	7	3	2.3	8	4	2.0	10	5	2.0
85	0.85	5	3	1.7	8	4	2.0	9	4	2.3	11	4	2.8	15	5	3.0
	0.95	8	3	2.7	12	4	3.0	15	4	3.8	19	5	3.8	25	6	4.2

Table 5-12: Random vs. Centerline deployment comparison

Comparisons between random and centerline deployment could be rendered moot if the centerline strategy is definitively judged to be logistically infeasible or if it is determined to be an unacceptable compromise of the stealth characteristics that are so important to the ship based approach. Additionally, centerline deployment, by itself, would presumably stop receiving serious consideration if the effective detection range is found to be too low to provide the minimum acceptable detection coverage for all vessels of interest. That said, Table 5-12 clearly illustrates the efficiency gains realized through centerline deployment. Table 5-13 shows the average random to centerline, R/C, values for the three analyzed fractional coverage volume targets.

	Fractio	nal Coverage	Volume
	0.75	0.85	0.95
R/C	2.249	2.531	3.306

Table 5-13: Average R/C values

As Table 5-13 illustrates, the efficiency advantage enjoyed by centerline deploy increases as the desired level of coverage increases. This stems from the diminishing marginal returns phenomenon associated with random deployment. Unlike the random case, when additional detectors are deployed along the centerline to achieve a higher level of fractional detection coverage they will preferentially "fill in" uncovered or sparsely covered areas of the container array. Therefore, marginal returns are greater when employing the centerline approach and as a greater number of detectors are added to provide higher levels of coverage this amplifies the efficiency advantages over random deployment.

5.7 Total Detector Estimates

To estimate the total number of detectors required to field a comprehensive system (i.e. to cover every inbound commercial containership) the data compiled in the previous sections must be combined with information from the shipping industry and U.S. ports. If all classes of containerships called on U.S. ports with uniform frequency then the capacity distribution derived in Chapter 4 could be used directly to determine the total number of detectors. Some types of container vessels, however, make more port calls than others, so these vessels should receive a higher importance weighting in the analysis. Table 5-14 shows the relative frequency of calls at U.S. ports broken down by vessel size (i.e. container capacity) [MARAD, 2000] and the number of calls that these vessel classes would make out of the CY 2003 call total of 17287 [MARAD(1), 2004].

	Table 5-14. 0.5. port cans by vessel capacity								
		Ves	sel Capacity	(TEU)					
	<2000	2001-3000	3001-4000	4001-5000	>5000	Total			
Relative Freq.	0.3491	0.2853	0.2129	0.1147	0.038	1			
Calls	6035	4932	3680	1983	657	17287			

Table 5-14: U.S. port calls by vessel capacity

Since one of the reference arrays described in the previous analysis fits approximately in the middle of each of the capacity bins shown in Table 5-14, the number of detectors found to be required to cover a given reference array can be considered roughly representative of the entire binned vessel class. Estimates for the total number of detectors needed for comprehensive deployment can now be made using the following expression,

$$Det_{Total} = \frac{1}{Avg_{c/v}} \sum_{i} C_{i} Det_{i}$$
(13)

where $Avg_{c/v}$ is the average number of calls made per vessel, C_i is the number of calls for a given vessel class, and Det_i is the number of detectors required for a given vessel class. In 2003, the average number of calls made by containerships was 17 [MARAD(1), 2004].

Since the detection units have no inland destination and are intended solely for deployment aboard containerships, once they are discharged from a given vessel they can be redeployed with minimal downtime. Downtime that could be required for maintenance and calibration is not considered. For the purposes of this analysis, it is assumed that turn-around can occur immediately, so the discharged detection unit can be shipped out (i.e. transported back to a foreign port where it can be deployed for its intended purpose) without delay. It should be noted that the export leg of the detection unit's voyage could be used to perform performance reliability tests and to monitor for the unlikely event that a fissile or radiological source was being smuggled out of the United States, for use abroad. Stops between foreign ports on the export leg could also be used to monitor for radioactive material movement abroad, which could discourage or thwart international smuggling attempts and augment the ability of other nations to defend against nuclear or radiological attack.

Eq. (13) was applied to the results from the random and centerline deployment simulations and estimates for the total number of detectors that would be necessary using either deployment strategy are shown in Table 5-15.

Total D Estin	etector nates	Deployme	ent Strategy					
Range (ft)	Coverage	Random	Centerline					
	0.75	23798						
45	0.85	33091						
	0.95	55589						
	0.75	18412						
50	0.85	25384						
	0.95	43112						
	0.75	14705						
55	0.85	20385						
	0.95	33211						
	0.75	11951	5233					
60	0.85	16539						
	0.95	27079						
	0.75	9861	4607					
65	0.85	13378	5349					
	0.95	22612						
	0.75	8395	3828					
70	0.85	11657	4962					
	0.95	18957	5837					
	0.75	7578	3790					
75	0.85	9784	4235					
	0.95	16012	5117					
	0.75	6406	3106					
80	0.85	8789	3906					
	0.95	14507	4724					
	0.75	5706	2890					
85	0.85	7907	3751					
	0.95	12751	3906					

Table 5-15: Total detector estimates

Table 5-15 shows that if only purely random or purely centerline deployment strategies are being considered, the option space is limited if the effective detection range of the containerized units is less than 70 ft. An additional advantage to units with effective ranges equal to or greater than 70 ft is the significant reduction in the number of detectors required to provide any of the evaluated fractional coverage volumes. Table 5-15 also demonstrates the reduction in detection units required for full deployment if the fractional coverage volume is chosen to be less than 95%.

Chapter 6: Summary, Conclusions, and Recommended Future Work

6.1 Summary

The rise of highly mobile, religiously motivated transnational terrorist organizations that are not restrained by conventional means of deterrence has changed the dynamics of the threat that nuclear weapons pose to the United States. The international commercial container trade that delivers over 19,000 cargo containers to U.S. ports every day is one possible avenue that could be exploited by a terrorist organization to mount an unconventional nuclear attack. Due to the unique power and range of nuclear weapons, defensive measures that have been envisioned or deployed that would not detect threats until they come ashore at U.S. ports do not provide adequate protection against attacks that are planned and executed by rational, determined adversaries.

We propose a new ship-based approach to fissile material detection where large effective area, commercial off the shelf, radiation detectors, enhanced with imaging capabilities, are enclosed in standard, non-descript cargo containers and shipped alongside commercial containers. When deployed in limited numbers aboard commercial vessels the detection units would passively measure any nuclear signature emitted by nearby containers with count times limited only by the duration of the voyage. By outfitting the dedicated detection units with communication hardware, identification and notification of a potential threat could be made while the danger was still safely removed from U.S. shores.

To better characterize the feasibility of the proposed ship-based approach, "external" uncertainties associated with the deployment environment and potential modes of deployment were investigated. Characteristics of the deployment environment that were evaluated included the count times that would be available on container import voyages terminating at U.S. ports, the container capacities of the vessel fleet that ply the international container trade, and the average densities of cargo being imported to the U.S. Table 6-1 summarizes the salient results of these analyses.
	Vessel Capacity	Avg. Density*	Count Tir	ne (days)
	(TEU)	(g/cm^3)	Το ΝΥ	To LA
Mean	3047	0.1977	19.2	13.3
Median	2722	0.1708	19.1	13.3
25th	1666	0.1664	21.7	15.1
75th	4173	0.2208	17.2	11.9
95th	6204	0.2620	15.9	11
99th	6782	0.2998	15.6	10.8

 Table 6-1: Results summary for deployment environment analyses

* 0.1977 g/cm³ corresponds to 15.23 metric tons / 40'container

To study different potential modes of deployment, a Matlab-based simulator was developed. The simulator was used to evaluate and compare detection coverage efficiencies for fully random detector deployment, partially constrained deployment where containerized detection units could not be placed along the surface of container array, and fully constrained deployment where detectors could only be placed along the centerline of the array. Partially constrained deployment was not found to have any particularly desirable attributes. The number of detection units required to provide various degrees of coverage for random and centerline deployment are summarized in Tables 6-2 and 6-3 respectively. Coverage is defined as the fractional volume of a vessel's container array that is within the effective detection range of one of the deployed containerized detection units. The effective detection range is the expected maximum distance at which a source can be confidently and reliably detected in a given count time, under realistic conditions.

Random D	enlovment]				
	Contraction	1440	2496	3600	4800	6460	
Range (ft)	Coverage					0100	Total Detectors
	0.75	13	21	30	37	59	23798
45	0.85	19	31	40	52	68	33091
	0.95	32	50	69	88	117	55589
	0.75	11	17	22	29	37	18412
50	0.85	15	23	31	40	52	25384
	0.95	25	39	53	69	88	43112
	0.75	9	13	18	23	30	14705
55	0.85	12	19	25	31	41	20385
	0.95	19	30	41	53	70	33211
	0.75	7	11	15	18	24	11951
60	0.85	10	15	20	26	33	16539
	0.95	15	25	34	43	55	27079
	0.75	6	9	12	15	20	9861
65	0.85	8	12	17	20	27	13378
	0.95	14	21	27	34	45	22612
	0.75	5	8	10	13	16	8395
70	0.85	7	11	14	18	22	11657
	0.95	11	18	23	29	38	18957
	0.75	5	7	9	11	14	7578
75	0.85	6	9	12	15	18	9784
	0.95	10	15	19	24	31	16012
	0.75	4	6	8	9	12	6406
80	0.85	6	8	10	13	17	8789
	0.95	9	14	17	21	29	14507
	0.75	4	5	7	8	10	5706
85	0.85	5	8	9	11	15	7907
	0.95	8	12	15	19	25	12751

 Table 6-2: Random deployment results summary

Table 6-3: Centerline deployment results summary

Centerline	Deployment						
Range (ft)	Coverage	1440	2496	3600	4800	6460	Total Detectors
	0.75	5	10	N/A	N/A	N/A	
45	0.85	7	N/A	N/A	N/A	N/A	
	0.95	10	N/A	N/A	N/A	N/A	
	0.75	5	6	8	N/A	N/A	
50	0.85	5	9	13	N/A	N/A	
	0.95	7	N/A	N/A	N/A	N/A	
	0.75	4	6	7	12	N/A	
55	0.85	5	6	8	N/A	N/A	
	0.95	5	10	N/A	N/A	N/A	
	0.75	4	5	5	7	12	5233
60	0.85	4	6	6	12	N/A	
	0.95	5	7	9	N/A	N/A	
	0.75	3	5	5	6	8	4607
65	0.85	4	5	5	7	15	5349
	0.95	4	6	7	14	N/A	
	0.75	3	4	4	4	7	3828
70	0.85	4	5	5	6	8	4962
	0.95	_ 4	5	6	8	19	5837
	0.75	3	4	4	4	6	3790
75	0.85	3	5	4	5	7	4235
	0.95	4	5	5	7	9	5117
	0.75	2	3	4	4	5	3106
80	0.85	3	4	4	5	6	3906
	0.95	3	5	5	7	8	4724
	0.75	2	3	3	4	5	2890
85	0.85	3	4	4	4	5	3751
	0.95	3	4	4	5	6	3906

Tables 6-2 and 6-3 show that the geometrically optimal centerline deployment provides significantly more efficient detection coverage than the stealthier and more logistically appealing random deployment. The efficiency advantage of centerline deployment is evidenced by the finding that an average of 2.249, 2.531, and 3.306 times more randomly deployed detection units are required to provide 75%, 85%, and 95% fractional coverages, respectively, for vessels with a given container array. The preceding tables also demonstrate the considerable benefit to developing detection units with an effective detection range equal to, or greater than, 70 ft. Units with ranges at or exceeding 70 ft. will yield maximum flexibility in terms of deployment options and will significantly reduce the number of units required to cover a given vessel and to field a comprehensive ship-based detector network.

6.2 Conclusions

Since this work was performed as one element of an integrated effort, not all of the calculations and evaluations documented in this thesis may carry significant relevance and meaning when viewed alone. These results will be combined with, and serve as input to, ongoing work being conducted by Gallagher at MIT on system design and performance modeling. The end product of this continuing effort will yield crucial information regarding the expected performance of the detection units and the overall efficacy of the ship-based approach. Despite the essentially unfinished nature of system development, there are a number of notable conclusions that can be drawn strictly from the analysis presented and discussed in this document.

• First, and perhaps most importantly, none of the results obtained in the preceding analyses serve to discredit the overall feasibility of the ship-based approach. A primary objective of this thesis was to assess the practical viability of this new detection methodology and nothing was discovered that suggested the ship-based approach could not be viable and effective if prudent design and deployment decisions are made.

- Mean count time estimates for the representative East Coast and West Coast ports were particularly encouraging. With an average of 19.2 days and 13.3 days of available count time for voyages to New York and Los Angeles respectively, the ship-based detection units will have a lengthy window of opportunity to passively detect incoming fissile material and communicate warning to responders while the threat is still safely at sea.
- The results of deployment simulation highlighted the effective detection range of containerized units as being especially important to promoting and ensuring the viability of the ship-based approach. Special consideration should be paid to maximizing this parameter during upcoming design and optimization activities. Design decisions that increase the expected detection range at the expense of unit costs should be vigorously examined in light of the dramatic reductions in per vessel and total detectors required as effective range was increased. The observed relationship between the required number of detectors and the effective range suggests that while unit costs may increase as range enhancing features are incorporated, the total system costs could fall as less detectors are required on the whole.
- Simulation also helped to quantify the efficiency costs associated with random deployment. While a purely random deployment strategy is very desirable from both stealth and logistical standpoints, the use of this approach necessitates the deployment of 2.2 to 3.3 times more detectors (depending on the fractional coverage target) than the less covert strategy of deploying detection units only along the ship's centerline. This inefficiency could become quite costly. Therefore, some combination of random and centerline deployment may prove to be the most attractive strategy. In such a "hybrid" deployment scenario, if even a small number of detectors randomly distributed, an important degree of stealth would be preserved by the random component and a helpful boost in efficiency will be afforded by the centerline component.

6.3 Recommendations for Future Work

The deployment strategies described and modeled in this thesis were selected to represent archetypal cases useful in studying the fundamental trade-off between deployment stealth and coverage efficiency. Random deployment is at one end of the spectrum, being the stealthiest approach, but having less than optimal efficiency. Centerline deployment (i.e. fully constrained placement of detectors along the ship's centerline) resides at the opposite end of the spectrum, affording optimal efficiency, but being among the least covert of any potential strategies. Simulations documented in Chapter 5 provide some quantitative insights into the trade-offs involved when going from one end of the deployment spectrum to the other. This analysis, however, was somewhat divorced from important practical considerations that arise from the common practices and capabilities of the international shipping trade. For instance, it is unclear whether centerline deployment would be logistically feasible in practice. Therefore, a clear priority for any future deployment analysis should be to conduct more in-depth consultations with individuals possessing intimate knowledge of the shipping trade (particularly the loading and discharging of containerships) to better understand what types of placement constraints are and are not practicable. This practical knowledge is essential to understanding the true performance capabilities of a ship-based system and to developing an effective deployment strategy that can be reliably implemented in the real world.

Future deployment modeling conducted either to refine the results of this analysis or to study alternative deployment strategies could employ an enhanced version of the Monte Carlo simulation codes used to produce the results presented in this thesis. Simulation codes used in this analysis (and documented in Appendix B) assumed that detectors could be placed anywhere within a container being used as a dedicated detection unit. This assumption saved considerable computation time but also created the opportunity for unphysical situations (e.g. multiple detectors in a single container) to arise that underestimated the actual performance of the ensemble of deployed detectors.

149

Reality would be more accurately modeled if the locations where detectors could be randomly placed were limited to the centerpoints of simulated containers. Output distortions caused by double-assignment situations would be eliminated with this modification. Additionally, by imposing a minimum separation distance between detectors (i.e. the distance separating the centers of adjacent containers) better overall distribution should be observed. Therefore, the enhanced simulation would be expected to show better and more realistic coverage efficiencies than the results shown above.

Another assumption used in deployment modeling that warrants further attention is the geometry of the coverage volume provided by deployed detectors. In the preceding analysis, this volume was represented by a perfect sphere centered at a detector and having a radius equal to the effective detection range of the unit. A focus of future efforts should be to investigate factors that morph or distort this idealized sphere. This includes better characterization of important radiation transport phenomena, such as the effects of potential radiation streaming through tiny openings, or "pinholes", in commercial cargo packed in containers. More thorough understanding of these mechanisms can lead to more realistic and appropriate coverage patterns that can be incorporated in future performance and deployment models.

Another useful extension of the work presented above would be to model a number of different hybrid deployment scenarios where some detectors were placed along the ship's centerline (assuming this mode of deployment is found to be practicable) and the balance were randomly distributed. By performing parameter studies, an optimal ratio or mix of centerline to random detectors may be identified. The results from this optimized hybrid deployment could then be compared to the results of pure random and pure centerline deployment.

Some of the results presented and discussed in this thesis have direct and important implications for the on going design and performance assessment activities being conducted by Gallagher at MIT. One outcome with direct bearing on the continuing design process is the pronounced benefit of detectors that can achieve effective detection ranges equal to, or greater than, 70 feet. Results of the parameter study undertaken as part of the deployment simulation demonstrated that significant gains in coverage efficiency and deployment flexibility were realized when detection units had effective ranges of 70 ft or higher. These findings strongly suggest that any available means to augment the detection range of the containerized detection suite should be investigated and seriously considered. Even design features that enhance range while increasing unit costs should be considered since the eventual reduction in the number of longer-range detectors required to provide a given degree of coverage may ultimately offset the unit cost increases.

Finally, while computer simulations are very instructive in guiding the design process and estimating the performance of the proposed ship-based containerized detection units, there is a limit to what can be confidently demonstrated on the strength of computer modeling alone. Therefore, at the earliest practical juncture, a full-scale prototype of a containerized unit, complete with a full detection suite, should be built and vigorously tested in environments as close to those that would be realistically encountered as possible.

References

Albright, D., O'Neill K. (eds.), <u>The Challenges of Fissile Material Control</u>, Institute for Science and International Security Press, Washington D.C., 1999.

Baryshevsky, V.G., A.A. Khrutchinsky, V.I. Moroz, M.D. Dezhurko, "Gamma-ray Spectroscopic System for Remote Detection and Monitoring of Fissile Materials," *IEEE Trans. on Nucl. Sci.*, Vol. 41, August 1994.

Bunn, M., A. Weir, J. Holdren, "Controlling Nuclear Warheads and Materials: A Report Card and Action Plan," Nuclear Threat Initiative, March 2003.

Bunn, M., J. Holdren, "Managing Military Uranium and Plutonium in the United States and the Former Soviet Union," *Annu. Rev. Energy Environ.*, Vol. 22, November 1997.

Carter, A., J. Deutch, P. Zelikow, "Catastrophic Terrorism," *Foreign Affairs*, Vol. 77, December 1998.

DOE (Department of Energy), "Additional Information Concerning Underground Weapon Test of Reactor-Grade Plutonium," *DOE Openness Press Conference Fact Sheets*, Washington, D.C., June 27, 1994.

Emsley, J., <u>The Elements 3rd Ed.</u>, Oxford University Press, New York, 1999.

Evans, R., The Atomic Nucleus, McGraw Hill, New York, 1955.

Fetter(1), S., V. Frolov, M. Miller, R. Mozely, O.Prilutskii, S. Rodionov, R. Sagdeev, "Detecting Nuclear Warheads," *Science and Global Security*, Vol. 1, No. 3-4, 1990.

Fetter(2), S., V. Frolov, O. Prilutskii, R. Sagdeev, "Appendix A: Fissile Material and Weapons Design," *Science and Global Security*, Vol. 1, No. 3-4, 1990.

Fetter(3), S., T. Cochran, L. Grodzins, H. Lynch, M. Zucker, "Gamma-Ray Measurements of a Soviet Cruise-Missile Warhead," *Science*, Vol. 248, May 1990.

Fetter(4), S., R. Mozely, "Appendix B: Emission and Absorption of Radiation," Science and Global Security, Vol. 1, No. 3-4, 1990.

Frank, M., S. Prussin, P. Peterson, M. Tobin, "A Monte Carlo Model of Sea-Level Neutron Background: Directionality, Spectra, and Intensity," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 249, December 2000.

Gopalakrishnan, A., "Evolution of the Indian Nuclear Power Program," Annu. Rev. Energy Environ., Vol. 27, November 2002. **Gosnell**, T., "Detecting Fissile Material: Limitations of Current Technology," presentation for the Alternative Signatures for Detecting Fissile Materials Workshop, Livermore, CA, March 29, 2000.

Hammond, <u>World Map</u>, International Collector's Series Wall Map, Hammond Publishing, 1999

Hoffman, B., "Holy Terror: Implications of Terrorism Motivated by a Religious Imperative," *Studies in Conflict and Terrorism*, Vol. 18, December 1995.

IAEA (International Atomic Energy Agency) "IAEA Safeguards Glossary, 2001 Edition," *International Nuclear Verification Series No. 3*, 2001.

Ircha, M., "Handling Tomorrow's Mega-Size Container Ships," Association of European Civil Engineering Facilities Newsletter, January 2002.

Kang, J., F. Von Hippel, "U-232 and the Proliferation-Resistance of U-233 in Spent Fuel," *Science and Global Security*, Vol. 9, 2001.

Knorr, Klaus, "Controlling Nuclear War," International Security, Vol. 9, No. 4, Spring 1985.

Krane, K, Introductory Nuclear Physics, John Wiley & Sons, New York, 1988.

Laqueur, W., "Terror's New Face," Harvard International Review, Vol. 20, Fall 1998.

Lee, R., Nuclear Smuggling: Patterns and Responses, Parameters, Vol. 33, Spring 2003.

Lok, C. "Cargo Security," Technology Review, Vol. 107, June 2004.

MacGregor, "Now Samsung Steps Up to 8100 TEU Series," *MacGregor News*, Autumn 2003.

MARAD(1), "Vessel Calls at U.S. Ports: 2003," U.S. Department of Transportation Maritime Administration, July 2004.

MARAD(2), "Top 30 U.S. Container Ports by Direction CY 2003," U.S. Department of Transportation Maritime Administration, available online at <u>http://www.marad.dot.gov/</u> Marad Statistics/Container-03.htm, March 2004.

MARAD(3), "Top 25 Container Trading Partners CY 2003," U.S. Department of Transportation Maritime Administration, available online at <u>http://www.marad.dot.gov/</u> <u>Marad Statistics/PIERS TRADING PARTNERS 2003.pdf</u>, April 2004. **MARAD**, "Top 15 U.S. Containership Ports by Port Calls and Vessel Size (CY 1999)," U.S. Department of Transportation Maritime Administration, May 2000.

MARAD, "Top 25 U.S. Ports by Direction (CY 2001)," U.S. Department of Transportation Maritime Administration, available at <u>http://www.marad.dot.gov/</u><u>Marad_Statistics/C-Port-Dir.html</u>, October 2002.

Mark, C., "Reactor-grade Plutonium's Explosive Properties," Nuclear Control Institute, available online at <u>www.nci.org/NEW/NT/rgpu-mark-90.pdf</u>, August 1990.

Mark, C., T. Taylor, E. Eyster, W. Maraman, J. Wechsler, "Can Terrorists Build Nuclear Weapons?" Nuclear Control Institute, 1987.

Morgan, M., "The Origins of the New Terrorism," Parameters, Vol 34, Spring 2004.

NCT (National Commission on Terrorism), "Countering the Changing Threat of International Terrorism: Report of the National Commission on Terrorism," Government Printing Office, 2000.

NERAC (Nuclear Energy Research Advisory Committee), "Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems," issued by the U.S. Department of Energy, October 2000.

NIMA (National Imagery and Mapping Agency), "Publication 151 – Distance Between Ports," issued by the U.S. Department of Defense, 2001.

NTI (Nuclear Threat Initiative) "Technical Background: A Tutorial on Nuclear Weapons and Nuclear-Explosive Materials," NTI Research Library, available online at <u>http://www.nti.org/e_research/cnwm/overview/technical2.asp</u>, accessed April 2003.

O'Brien, K., H. Sandmeier, G. Hansen, J. Campbell, "Cosmic Ray Induced Neutron Background Sources and Fluxes for Geometries of Air Over Water, Ground, Iron, and Aluminum," *Journal of Geophysical Research*, Vol. 83, January 1978.

Oetting, F., "Average Beta Energy of ²⁴¹Pu by Calorimetry," *Phys. Rev.*, Vol. 168, April 1968.

Peurrung, A. "Predicting ²³²U Content in Uranium," PNNL-12075, issued by Pacific Northwest National Laboratory, December 1998.

Sampson, E.A., J.L. Parker, "Application of Gamma-ray Spectrometry in the Quantitative Non-Destructive Assay of Special Nuclear Materials," *Nucl. Instr. and Meth.*, Vol 299A, December 1990.

Stone, R., "Radiological Terrorism: New Effort Aims to Thwart Dirty Bombers," *Science*, Vol. 296, June 2002.

Tozer, D., "Ultra-Large Container Ships: the Green Ships of the Future?" *Shipping World & Shipbuilder*, October 2003.

Turekian, K., Oceans, Prentice Hall Scientific, 1976.

Wijnolst, N., M. Scholtens, F. Waals, <u>Malacca-max: The Ultimate Container Carrier</u>, Delft University Press, 1999.

WNA (World Nuclear Association), "Information and Issue Briefs: Thorium," World Nuclear Association, available online at <u>http://world-nuclear.org/info/inf62.htm</u>, November 2003.

WSC (World Shipping Council), "In-Transit Container Security Enhancement," World Shipping Council, available at <u>http://www.worldshipping.org/security_white_paper.pdf</u>, September 2003.

Appendix A

Vessel name	Capacity	Speed	Vessel name	Capacity	Speed
	(TEU)	(knots)		(TEU)	(knots)
A.P. Moller	6600	24.6	Yun Long		12.0
Agnete Maersk	1100	18.0	Yu Quan Shan	83	
Albert Maersk	1100	18.0	Yu Xi Quan	345	12.6
Alva Maersk	1100	18.0	Zeus II	2728	20.5
Amersham	658	14.8	Zhao Gang No.1	72	
Axel Maersk	6600	24.6	Zhao Qing He		16.5
Caroline Maersk	6600	24.6	Zhen He	3801	22.5
Carsten Maersk	6600	24.6	Zhen Wu	108	
Cecilie Maersk	1750	19.0	Zhi Shan 1	36	
Charlotte Maersk	6600	24.6	Zhong Hang 608	36	
Chastine Maersk	6600	24.6	Zhong Hang 901	80	
Chesham	658	14.8	Zhong Hang 903	80	
Christian Maersk	1550	18.9	Zhong Hang 905	80	
Claes Maersk	1750	19.0	Zhong Hang 909	60	
Clara Maersk	1550	18.9	Zhong Hang 912	104	
Clementine Maersk	6600	24.6	Zhong Hang 913	104	
Clifford Maersk	6600	24.6	Zhong Hang 915	120	
Columbine Maersk	6600	24.6	Zhong Hang 916	96	
Cornelia Maersk	6600	24.6	Zhong Hang 917	118	
Cornelius Maersk	6600	24.6	Zhong Hang 919	118	
Denham	658	14.8	Zhong Hang 920	118	
Dirch Maersk	4300	24.2	Zhong He	4215	22.0
Glasgow Maersk	4300	24.2	Zhuang He	1668	15.5
Gosport Maersk	4300	24.2	Zhu Chuan 992	42	
Grasmere Maersk	4300	24.2	Zhu Hai 203	72	
Greenwich Maersk	4300	24.2	ZIM Adriatic	2810	19.0
Jens Maersk	2840	22.4	ZIM America	3029	21.0
Jeppesen Maersk	2840	22.5	ZIM Asia	3429	21.7
Johannes Maersk	2840	22.5	ZIM Atlantic	3429	21.7
Josephine Maersk	2840	23.0	ZIM Barcelona	4992	24.0
Karen Maersk	6000	24.6	ZIM Buenos Aires		19.5
Kate Maersk	6000	24.6	ZIM California	4992	24.0
Katrine Maersk	6000	24.6	ZIM Canada	3029	21.0
Kirsten Maersk	6000	24.6	ZIM China	3429	21.7
Knud Maersk	6000	24.6	ZIM Dalian	2998	21.0
Laura Maersk	3700	24.7	ZIM Eilat I	2606	21.0
Laust Maersk	3700	27.7	ZIM Europa	3429	21.7
Leda Maersk	3700	24.7	ZIM Florida	3005	20.0
Lexa Maersk	3700	24.7	ZIM Haifa I	2810	19.0
Lica Maersk	3700	25.0	ZIM Hong Kong	3029	21.0
Luna Maersk	3700	25.0	ZIM Iberia	3429	21.7
Madison Maersk	4300	23.5	ZIM Israel	3029	21.0
Maersk Aberdeen	1100	18.0	ZIM Italia	3029	21.0
Maersk Ahram	1100	18.0	ZIM Jamaica	3429	21.7
Maersk Antwerp	1100	18.0	ZIM Japan	3029	21.0
Maersk Arun	1100	18.0	ZIM Keelung	2810	19.0
Maersk Atlantic	1100	18.0	ZIM Korea	3029	21.0
Maersk Avon	1100	18.0	ZIM Mediterranean		24.0
Maersk Carolina	4300	24,20	ZIM New York	4992	24.0
Maersk Gairloch	4300	24.2	ZIM Pacific	3429	21.0

Maersk Gateshead	4300	24.0	ZIM Panama	4992	24.0
Maersk Georgia	4300	24.2	ZIM Piraeus	5000	24.0
Maersk Gironde	4300	24.2	ZIM Ravenna I	2998	21.0
Maersk Missouri	4300	24.3	ZIM Shanghai	4992	21.0
Maersk Virginia	4300	24.0	ZIM Shenzhen	2633	24.0
Magleby Maersk	4300	23.5	ZIM Singapore I	2474	21.0
Majestic Maersk	4300	23.5	ZIMUSA	3429	21.0
Marchen Maersk	4300	23.0	ZIM Venezia II	2682	21.7
Maren Maersk	4300	23.0		4992	24.0
Margrethe Maersk	4300	23.0	Zi Ya He	764	10.2
Marie Maersk	4300	23.5	Hyundai Republic	6479	19.Z
Marit Maersk	4300	23.0	Hyundai Kingdom	6479	20.4
Marstal Maersk	4000	24.5	Hyundai National	6479	20.4
Mathilde Maersk	4300	23.0	Hyundai Dominion	6479	20.4
Mayview Maersk	4300	23.5	Hyundai Patriot	6479	20.4
Mc-Kinney Maersk	4300	23.5	Hyundai Independence	5551	20.4
Mette Maersk	4300	23.0	Hyundai Liberty	5551	20.0
Munkebo Mærsk	4000	24.5	Hyundai Discovery	5551	20.0
Nele Maersk	2200	21.80	Hyundai Ereedom	5551	20.0
Nexoe Maersk	2200	21,80	Hyundai Fortune	5551	20.0
Nicolai Maersk	2200	21,80	Hyundai General	5551	20.0
Nikoline Maersk	2200	21,00		5551	25.0
Nora Maersk	2200	21,80	Hyundai Admiral	3331	20.0
Nysted Maersk	2026	21,00	Hyundai Baron	4411	20.1
Regina Maersk	6000	24.6	Hyundai Commandoro	44 1	25.1
Sea-Land Champion	3733	24.0	Hyundai Duko	4411	25.1
Sea-Land Charger	3733	24.0	Hyundai Emporor	4411	20.1
Sea-Land Comet	3733	24.0	Hyundai Endorel	44	25.1
Sea-Land Fagle	3733	24.0	Hyundai Federal	4411	25.1
Sea-L and Freedom	2344	24.0		3014	21.7
Sea-L and Intrepid	3733	20.5		3014	21.7
Sea-L and Lightning	3733	24.0		3014	21.7
Sea-Land Mariner	2344	24.0		3014	21.7
Sea-Land Mercury	2044	20.5		2174	21.5
Sea-L and Meteor	3733	24.0		2174	21.5
Sea-L and Pride	3918	24.0		2174	21.5
Sea-Land Racer	3733	21.0	Hyundai Advance	2174	21.5
Sea-Land Value	3612	24.0		2174	21.5
Sally Maersk	6600	21.0		2174	21.5
Sine Maersk	6600	24.0		2174	21.5
Skagen Maersk	6600	24.0		2174	21.5
Sofie Maersk	6600	24.0		628	15.8
Soroe Maersk	6600	24.0		2241	23.0
Sovereign Maersk	6600	24.0		2241	23.0
Susan Maersk	6600	24.0		11//	18.1
Svend Maersk	6600	24.0	Asian Zephyr	1032	18.5
Svendhorg Maersk	6600	24.0		834	18.0
Taasinge Maersk	1750	24.0 10.0		1203	19.5
Thies Maersk	1350	19.0	Saturn Stor Ecolo	1129	18.5
Thomas Maersk	1500	18.0	Star Evonast		15.0
Thuroe Maersk	1350	18.6	Star Evalue		15.0
Tinglev Maersk	1500	18 0	Star Elorida		15.0
	1000	10.3	Stal FIUHUa		15.0

Tobias Maersk	1300	18.0	Star Fraser		15.0
Torben Maerks	1300	18.0	Star Fuii		15.0
Tove Maersk	1350	18.6	Star Geiranger		15.0
Trein Maersk	1300	18.0	Star Gran		15.0
Troense Maersk	1350	18.6	Star Grindanger		15.0
Achim		15.5	Star Grip		15.0
ACX Dahlia	1430	19.5	Star Hidra		16.0
ACX Hibiscus	1430	19.5	Star Hovanger		16.0
ACX Lily	1250	19.0	Star Ikebana		10.0
ACX Magnolia	181	19.5	Star Inventana		17.0
ACX Marguerite	1480	19.0	Star Isoldana		17.0
ACX Marigold	1467	19.0	Star Istind		17.0
ACX Primrose	820	19.5	Star Isfiord		17.0
ACX Rafflesia	1430	19.5	Star Ismene		17.0
Agios Dimitrios I	3428	18.5	Adeline Delmas	037	12.5
Akashi Bridge	3456	23.0	Africa	1035	13.5
Akinada Bridge	5600	25.0	Alnana	1664	20.0
Alexandria	400	17.5	Astrid	574	12.5
Al Marivah	2199		Blandine Delmas	027	13.0
Alva Star	3209	21.0	Bougainville	1720	13.5
Al Waiba	2199		Caroline Delmas	027	12 5
Ambassador Bridge	2.00	21.5	Delmas Acacia	937	10.0
America Senator	2661	21.0		676	10.0
Anan Bhum	993	16.5	Delmas Blosseville	1202	10.0
An Rong 1	116	10.0	Delmas Cartier	1202	19.0
Aotea	1842		Delmas Casablanca	519	20.0
Apollon I	1566	21.0	Delmas Charcot	1706	10.0
Arafura	2432	21.0	Delmas Forbin	1740	19.0
Aramac	2732		Delmas Fiacaranda	676	21.0 19.5
Aris I	1810		Delmas Kenva	1159	10.0
Asian Glory	357	14.3	Delmas Kerquelen	1740	20.5
Asian Gyro	1032	18.5	Delmas Mascareignes	1740	20.5
Astoria Bridge	2258	20.0	Delmas Sycamore	780	10.0
Atlantic Cartier	3100	18.0	Delmas Tourville	1730	20.0
Atlantic Companion	3100	18.0	Delphine Delmas	037	20.0
Atlantic Compass	3100	18.0	Eax Sanctity	937	13.5
Atlantic Concert	3100	18.0	Elisa Delmas	940 1617	20.2
Atlantic Convevor	3110	18.0	Elora Delmas	1614	20.3
Australia Bridge	2400		Gaby Delmas	1614	20.3
Bai Yun He	1674	20.0	Giorgia	1014	20.3
Baltrum Trader	2470	21.0	Heide	582	10.0
Banga Bijoy	456		Kaduna	511	15.0
Banga Biraj	669		Kamina	1113	10.0
Banga Birol	606		Kwanza	4355	10.0
Banga Bodor	510		La Bourdonnais	1600	19.0
Banga Bonik	500		Laura Delmas	4473	10.0
Banga Borak	510			2150	19.0 22.0
Banga Borat	846			4473	10.0
Banga Lanka	538		Madagascar	1346	13.0
Bao Zhong 23	66		Marie Delmas	2207	22 F
Bao Zhong 68	140		Mirella	2152	19.0
Barcelona Bridge	3965	23.1	Mol Horizon	1113	16.5
				· · · •	

Bay Bridge	2257	20.0	Mol Karina	770	
Beauty River	1932	17.5	Nicolas Delmas	2207	22.6
Berlin Senator	3007	21.0	Paraguay	1935	18.0
Bimba 1	74		Parana	2129	17.5
Bin Cheng	724	15.5	Patricia Delmas	1113	16.5
Bin Dong Shan	78	9.0	Ponl Mahe	1104	10.0
Bing He	1696	14.5	Rejane Delmas	1684	18.0
Blue Moon	614	16.0	Reunion	1364	
Bonn Express	2803	22.8	Rokia Delmas	5278	16.0
Bonvoy 88	279	11.5	Roland Delmas	3308	17.0
Bo Shi Ji 386	45		Romain Delmas	3308	17.0
Bosporus Bridge	3210	24.0	Rosa Delmas	2578	16.0
BPW 2031	350		Roxanne Delmas	3590	15.5
Bremen Bridge	5576		Saint Roch	3308	17.0
Bremen Senator	1730		Santa Barbara I	1742	19.2
Bunga Mas Empat	135		Santa Margherita	1895	20.0
Bu Yi He	3400	21.0	Sassandra	4355	19.0
Cai Yun He	1432	19.0	St Pauli	411	14.0
California Luna	2916	22.0	Trave Trader	1608	21.0
California Senator	2850		CSAV Shanghai	2214	
Camilla Rickmers	1728	20.0	Copiapo	2074	
Cap Colville	1510		Ikoma	1613	
Cap Delgado	2442	21.5	CSAV Callao	2524	
Cape Campbell	834	18.5	CSAV Shenzhen	2450	
Cape Canaveral	356	16.0	Buxfavourite	2456	
Cape Canet	590	18.5	IGA	1613	
Cape Coldbek	834	18.5	Sea Puma	2205	
Cape Cook	834	18.5	IZU	1613	
Caraka JN3-9		10.0	Alice Rickmers	1900	
Caraka JN319	128	10.0	Donna Schulte	2256	
Carinthia	2824	24.0	CSAV Livorno	1878	
Caroline Schulte	2532	21.0	CCNI Ancud	1816	
CEC Mayflower	650	20.2	CSAV Barcelona	1878	
CEC Morning	650	20.2	CSAV Genova	1829	
Centre Point 28	80		Alianca Bahia	2460	
Chang An 104	104		Alianca Brasil	2045	
Chang Jiang Bridge	3456	24.0	Alianca Europa	2045	
Chang Sheng 301	74		Alianca Hong Kong	2468	
Chang Xing 108	48		Alianca Ipanema	2233	
Chang Xing 208	48		Alianca Macarena	2233	
Chao He	1322	17.2	Alianca Sao Paulo	2524	
Chao Shan He	836	17.0	Alianca Shanghai	2442	
Cherokee Bridge	4226	24.5	Alianca Singapore	2456	
Chesapeak Bridge	4226	24.5	Alianca Urca	1151	
Chesapeak Bay Bridge	3400	21.0	Ankara	1388	
Chicago Bridge	5576	25.0	Arnis	1208	
Chiswick Bridge	5600	25.0	Berulan	907	
Chuan He	5446	22.5	Cabo Creus	2524	
Chun He	1322	16.0	Cap Aguilar	1740	
	1452		Cap Blanco	2154	
Concora Bridge	3482	23.0	Cap Bonavista	2442	
Conti Arabian	1466	18.5	Cap Carmel	2542	

Conti Cartagena	2432	20.0	Cap Castillo	2442
Conti Jork	1597	18.0		1510
Conti Valencia	2305	21.0	Cap Colville	1510
Cosco Antwerp	5446	24.5	Cap Cortes	1651
Cosco Atlantic	2054	21.4		2100
Cosco Cape Town		22.2	Cap Ferrato	2100
Cosco Felixstowe	5446	24.5	Cap Finisterre	2470
Cosco Hamburg	5446	24.5	Cap Frio	2025
Cosco Hong Kong	5446	24.5	Cap Lobos	1645
Cosco Kiku	542	18.0	Cap Norte	2468
Cosco New York	2728	17.5	Cap Ortegal	2400
Cosco Norfolk	3330	22.0	Cap Pasado	1550
Cosco Qingdao	5446	24.5	Cap Pilar	1581
Cosco Ran	542	18.0		2023
Cosco Redsea	1164	18.7	Can Reinga	1651
Cosco Rotterdam	5446	24.5	Can Roca	2640
Cosco Sakura	542	18.0	Can San Antonio	3730
Cosco Sao Paulo	- · -	22.2	Can San Augustin	3739
Cosco Shanghai	5446	24.5	Can San Lorenzo	3739
Cosco Singapore	5446	24.5	Can San Marco	3739
Cosco Tianiin	5752	26.3	Cap San Nicolas	3739
CRC No. 1	96	20.0	Can San Panhael	3739
Da He	3801	24.0	Cap Velas	1700
Dainty River	1932	18.5	Cap Velas Cap Vilano	1709
Da Qing He	764	19.2	Cap Vilario	1025
Daxin	588	15.6	Cap Vincent	1000
Delaware Bridge	4452	10.0	City of Glasgow	056
Diman II	1822	19.0	City of Hamburg	900
Donau Bridge	4038	10.0	City of Istanbul	1000
Dona He	2761	18 5	City of Manchester	1232
Dona Rona	58	10.0		1700
Dona Xu	83	95	Columbian Express	752
Dong Yun 009	36	0.0	Columbus Australia	752
Dong Yun 030	24		Columbus Canada	2002
Dong Yun 556	96		Columbus China	1210
Dubai	2199		Columbus Elorida	2024
Dubura	1464		Columbus Victoria	1001
Eagle Express	1704	21.0	Columbus Waikato	1229
Eagle Strength	725	17.0	Conacabana	1007
E Chena	680	18.3	Courier	1402
Elbe Bridge		24.5	Damaskus	1452
Elisabeth Schulte	2532	21.0	Elamendo	1040
Empress Dragon	3494	21.0	Independente	1139
Empress Heaven	3494	21.0	Intrenido	1130
Empress Phoenix	3494	21.0	Kairo	1700
Empress Sea	3494	21.0	Kanitan Kurov	1709
En Hui	88	21.0	Karthago	1250
En Yuan	88			1304
Ever Able	1164	20.5	Mekhanik Kaburahaiy	110/
Ever Allv	1164	20.5	Santa Felicita	2160
Ever Apex	1164	20.5	Santa Fiorenza	2109
Ever Dainty	4211	25.0	Santa Francesca	2109
•				2103

Ever Delight	4211	25.0	Santa Isabella	2400	
Ever Deluxe	4211	25.0	Santos Express	2532	
Ever Diadem	4211	25.0	Sea Tiger	2562	
Ever Diamond	4211	25.0	Stoia	703	
Ever Dynamic	4211	25.0	Tausala Samoa	1116	
Ever Gaining	3428	21.7	Uranus	1835	
Ever Gallant		22.1	Vernuda	703	
Ever Garden	2728	21.7	Westmed II	1181	
Ever Gather	2728	20.5	Global Rio	1101	14.0
Ever General	3428	20.7	Bruarfoss	724	14.0
Ever Genius	2868	21.3	Dettifoss	1457	
Ever Gentle	2868	21.3	Godafoss	1457	
Ever Gentry	2868	21.3	Manafoss	518	
Ever Gifted	2728	21.0	Selfoss	724	
Ever Given	3428	22.2	Skogafoss	124	
Ever Glowing		21.9	Heinrich S	2474	21.0
Ever Golden	2868	21.3	Aciasofia	1555	21.0
Ever Goods	3428	22.2	Angeln	657	17.0
Ever Govern	2868	21.3	Athena I	1904	01.0
Ever Growth	2728	22.5	Birk	1094	21.0
Ever Guest	3428	22.0	Cala Paestum	007 1645	17.0
Ever Guide	2390	22.2	Caribboon Soo	1040	21.0
Ever Uberty	5364	25.0	Conti Barcelono	3001	24.0
Ever Ultra	5625	20.0		1097	18.0
Ever Union	5364		Ever Gloomy	1894	21.0
Ever Unique	5364	25.0	Ever Greatly	2728	20.5
Ever Unison	5364	25.0	Ever Boooo	2728	20.5
Ever United	5364	26.7	Ever Peace	1018	19.3
Ever Uranus	5652	20.7	Ever Pearl	1618	19.3
Ever Urban	5652			4229	23.0
Ever Useful	5652	25.0	Ever Reach	4229	23.0
Fair Wind 18	120	20.0	Ever Renne	4229	23.2
Fair Wind 28	120		Ever Renown	4229	23.2
Faith I	3428	18 5	Ever Repute	4229	23.2
Fang Gang 1001	54	8.0	Ever Result	4229	23.2
Fang Gang 3	32	0.0	Ever Reward	4229	23.2
Fang Gang 6	45	8.0	Ever Right	4229	23.0
Fei He	3764	23.0	Ever Round	4229	23.0
Fei Yun He	1702	20.2		4229	23.0
Feng Da 328	16	20.2		5652	25.0
Feng Guang 2	80	7.0		5652	25.0
Feng Shun 8	208		Green Modest	951	15.5
Feng Yun He	1432	10.0		951	15.5
Fo Hang 906	60	19.0		3424	23.5
France	4158	23.1		3424	22.8
Franconia	946	20.0		6332	24.5
Franklin Strait	519	20.0	LT Going	2728	20.5
Fu Feng	122	10.0	Perceiden Mil	3428	18.0
Fu Fena Shan	132		Phonohorr	1894	21.0
Fu Gano 811	96			1043	17.5
Fu Gang 812	52			1104	18.7
Fu Gang 815	96			1104	18.7
				1104	1ð./

Fu Gang 816	96		UNI Assent	1164	18 7
Fu Gang 818	96		UNI Forever	978	16.5
Fu Tai	63	10.0	UNI Fortune	953	16.5
Gallant Wave	1510	18.0	UNI Oasis	1170	15.6
Ganta Bhum	1094	18.0	UNI Onward	1278	14.8
Gao Cheng	724	15.6	UNI Order	1170	15.6
Gao He	2761	18.5	UNI Orient	1182	1/ 8
Gao Yao Gang No. 1	36	9.0	UNI Phoenix	1618	19.0
Genoa Bridge	5600	25.0	Vlaherna	1555	17.6
George Washington Bridge		21.5	Vladivostok	1748	18.5
Gigi	152	11.0	Kapitan Afanasyev	1748	18.5
Gihock	504	14.0	Fesco Voyager	1684	20.0
Gijoo	152	11.0	Amsteldien	1004	20.0
Gikim	276	10.5	Anna J	108	
Gileong	597	14.0	API Manaus	1016	
Gi Lian	396	12.0	Argana	252	
Gimeng	235	12.5	Argonaut	1000	
Ginter Star	278	15.0	Astor	1230	
Gisena	191	11.0	Asioi Avnur Urkmoz	F 90	
Gisiang	384	13.5	Baltimar Baraga	580	
Gisoon	191	11.0	Boliz Urkmoz	200	
Giswee	202	11.0		580	
Global 3	100	8.0		1200	
Glory D	946	18.0	Casioi Chasanack Bay	446	
Golden Cloud	618	10.0	City of Cone Town	2411	
Golden Gate Bridge	5610	24.4	City of Stutteent	3126	
Golden Star	208	27.4	City of Stutigart	1900	
Great Pride	538	14.2	Columbus New Zeeland	4224	
Guang Da Lun	15 15	14.2	Columbus New Zealand	4112	
Guang Liong Lun	45			2411	
Guang Liong Lun	4J 45		Endeavor	1928	
Guan Hang 109	40	10.0	Endurance	1928	
Guan Hang 238	60	10.0	Enterprise	1928	
Guan Hang 200	60	0.0	Genua Express	2157	
Guan Hang 362	94 94	9.0	Heemskerck	3230	
Guan Hang 302	0 4 45			202	
Gulf Bridge	40	10.0	IJSSEIdijk	301	
Guo Dian 1001	1904	19.0	Jervis Bay	4224	
Haifenglianfa	100	40 F		350	
Hai Eena Shan	300 202	13.5	Luetjenburg	3510	
Hakono	200	11.5	Marivia	2082	
Han Bo 1 Hao	1004		Mercosul Palometa	1512	
	00		Mercosul Pescada	1730	
	00	40.0	Mercosul Uruguay	740	
	51	10.0	Merkur Lake	1012	
	140		Mount Ida	724	
	3400	21.0	Nedlloyd Africa	3604	
	422	17.5	Nedlloyd America	3604	
Haniin Athana	5018	26.3	Nedlloyd Asia	3604	
Haniin Baraalana	2018	26.3	Nedlloyd Clarence	2515	
Hanjin Barcelona	4024	24.0	Nedlloyd Clement	2470	
Haniin Poiling	5/5J	26.3	Nedlloyd Europa	3604	
nanjin beljing	5302	26.4	Nedlloyd Hong Kong	4169	

Hanjin Bremen	2692	22.0	Nedlloyd Honshu	4181
Hanjin Brussels	5618	26.3	Nedlloyd Oceania	3604
Hanjin Cairo	5447	25.9	Newport Bay	4224
Hanjin Chicago	5752	26.3	Olivia	1452
Hanjin Colombo	4024	24.0	Oriental Bay	4180
Hanjin Copenhagen	5618	26.3	P&O Nedllovd Abidian	2506
Hanjin Elisabeth	2846	21.0	P&O Nedllovd Acapulco	2556
Hanjin Felixstowe	2692	21.0	P&O Nedllovd Accra	2506
Hanjin Geneva	5752	26.3	P&O Nedllovd Aconcagua	2556
Hanjin Gothenburg	5447	24.0	P&O Nedllovd Adelaide	3005
Hanjin Hamburg	2692	21.0	P&O Nedllovd Adriana	2556
Hanjin Helsinki	5447	24.2	P&O Nedllovd Agulhas	2506
Haniin Kaohsiung	2692	21.0	P&O Nedllovd Algoa	2506
Haniin Kelung	2668	22.0	P&O Nedllovd Altiplano	2556
Haniin Lisbon	5752	26.3	P&O Nedllovd Andes	2556
Haniin London	5306	26.4	P&O Nedllovd Antisana	2556
Haniin Los Angeles	4024	24.0	P&O Nedllovd Apapa	2506
Haniin Madrid	5752	26.3	P&O Nedllovd Araucania	1102
Haniin Malta	4024	20.0	P&O Nedlloyd Atacama	2556
Haniin Marseilles	4024	24.0	P&O Nedilovd Bantam	3430
Haniin Nagova	4024	24.0	P&O Nedllovd Barentsz	5468
Haniin New York	4038	22.0	P&O Nedilovd Barossa Valley	2602
Haniin Osaka	4000	24.0	P&O Nedllovd Beirut	1717
Haniin Oslo	5308	26.0	P&O Nedllovd Botany	4112
Haniin Ottawa	5618	26.3	P&O Nedllovd Brisbane	2686
Haniin Paris	5302	20.0	P&O Nedllovd Brunel	2000
Haniin Penneylyania	1380	20.4	P&O Nedllovd Buenos Aires	1770
Hanjin Pelinsylvania Hanjin Philadelphia	4309	24.3	P&O Nedlovd Cadiari	070
Haniin Dhoeniy	4380	24.5	P&O Nedlovd Calvoso	1730
Hanjin Pridenix Hanjin Portland	4009	24.0	P&O Nedilovd Caracas	1750
	4024	24.0	P&C Nedlloyd Caribboan	4255
Hanjin Protoria	4309	24.3		4200
	4309	24.0	P&O Nedlloyd Cesille	1022
Hanjin San Francisco	3306	20.4	Pao Neulloyu Chana BRO Neulloyu Christino	056
Hanijin San Francisco	4024	24.1	P&O Nedlloyd Chuson	2420
Hanjin Savannan Hanjin Shanahai	4036	22.0	Pao Neulloyd Chusan	3430
Hanijin Shanyhai	4024	24.0	Pao Nedilova Coola	4030
	2000	22.0	PaO Nedlloyd Cook	1012
	0447 4004	20.9	Pao Nedlloyd Culacao	2607
Hanjin Tokyo	4024	24.0		3007
	4024	24.0	P&O Nedilova Dejima	3430
Hanjin Vancouver	2092	21.0	P&O Nedlloyd Drake	5468
Hanjin Vienna	5752	26.3	P&O Nediloyd Dubai	2/32
Hanjin Wasnington	5302	26.4	P&O Nealloya Encounter	4112
Hanjin wiimington	4024	24.0	P&O Nedlloyd Houston	1//9
Han Long	52	10.0	P&O Nedlloyd Houtman	6802
Hansa Stavanger		20.0	P&O Nedlloyd Hudson	5468
Hanseduo	500	16.0	P&O Nedlloyd Hunter Valley	2478
Han Shui He	422	17.5	P&O Nedlloyd Inca	923
Han Tao He	422	17.5		2556
Han Zhong He	422	17.5	P&O Nedlloyd Kobe	6690
Hao Sheng 101	96		P&O Nedlloyd Kowloon	6690
Happy Island	400	15.0	P&O Nedlloyd Los Angeles	1548

Hatsu Eagle	6332	24.5	P&O Nedlloyd Magellan	5642
Hatsu Elite	6332	24.5	P&O Nedlloyd Mahe	1104
Hatsu Envoy	6332	24.5	P&O Nedlloyd Mairangi	4112
Hatsu Excel	6332	24.5	P&O Nedlloyd Malindi	1116
Hatsu Pride	1618		P&O Nedlloyd Marita	2556
Hatsu Prima	1618	18.7	P&O nedlloyd Maxima	2556
Heidelberg Express	3468	22.0	P&O Nedlloyd Mercator	5468
Henry Hudson Bridge		21.5	P&O Nedlloyd Muisca	1102
Hera	2728	18.5	P&O Nedlloyd Nina	2014
Hermes III	1926		P&O Nedlloyd Obock	384
Hong Kong Senator	2850	21.3	P&O Nedlloyd Olinda	3430
Hong Yun He	1700	20.0	P&O Nedlloyd Palliser	4112
Honor River	1932	16.5	P&O Nedlloyd Panama	3014
Hope	3480	21.0	P&O Nedlloyd Pantanal	2474
Howrah Bridge	2257	20.0	P&O Nedlloyd Pinta	2394
Hsh Ubin	2097	17.0	P&O Nedllovd Regina	2556
Hua Chang Hai 16	150		P&O Nedlloyd Remuera	4112
Hua Hang 229	36		P&O Nedllovd Rotterdam	6690
Huai Ji He	424	16.9	P&O Nedllovd Salsa	2061
Huai Lai He	724	17.3	P&O Nedllovd Samba	1742
Hua Lun 1	100		P&O Nedllovd San Francisco	1716
Hua Tai He	1216	24.8	P&O Nedllovd Seattle	3450
Hua Yun He	1700	20.0	P&O Nedllovd Shackleton	6802
Hui Long 7		154.0	P&O Nedllovd Singapore	2169
Hui Xin Hang 508		60.0	P&O Nedllovd Southampton	6690
Humber Bridge	3456	21.0	P&O Nedllovd Stuvvesant	6802
Humen Bridge	3008	21.0	P&O Nedllovd Surat	3430
Hunsa Bhum	1094	18.0	P&O Nedllovd Susana	2556
Hu Tuo He	764	19.2	P&O Nedlovd Taranaki	1270
Hyundai Challenger	3014	20.5	P&O Nedllovd Tasman	5468
Hvundai Innovator	3014	20.5	P&O Nedllovd Tema	1511
Ibn Sina	2850	20.0	P&O Nedllovd Teslin	2556
Indonesian Star	1203	16.0	P&O Nedllovd Thekwini	1055
Intra Bhum	1200	14.5	P&O Nedllovd Torres	5642
Jade Trader	1122	19.8	P&O Nedllovd Trinidad	384
James River Bride	5610	25.0	P&O Nedllovd Valentina	2556
Japan Senator	2661	19.5	P&O Nedlloyd Vera Cruz	1779
Jaru Bhum	640	14.5	P&O Nedllovd Vespucci	5642
Ji Hai Xiang	96	14.0	P&O Nedllovd Xiamen	2986
ling Po He	3400	21.0	Peninsula Bay	4180
Jin Hai Feng	36	85	Providence Bay	4700
Jin Hai Yan	52	8.5	Repulse Bay	4224
lin He	5446	23.0	San Lorezo I	1512
Jin Long Jiang	71	10.0	Santa Federica	2169
lin Shena	386	18.0	Shenzhen Bay	4224
ling Vun He	1/32	10.0	Singapore Bay	4224
lun Chuan 9	120	19.0	Stadt Kiel	373
Juniter Bridge	5551	25.0	Sudney Express	A112
Jurona Rauhinia	802	20.9 16 5	Tai Chuang	1034
Kaido	450	15.0	l llenie	1388
Kai Fa	90 90	10.0	Volkere	374
Kai Yue	113		Providence	1624
	110		I I VINGING	1024

Kasuga 1	2450		Karukera	1624	
Khaled Ibn Al Waleed	2211		Anterpen Express	4890	24.0
Kota benar	764	17.0	Tokyo Express	4890	24.0
Kota Bintang	476	15.0	Bremen Express	4890	24.0
Ksh Kusu	1674	17.5	Rotterdam Express	4890	24.0
Kuoyu	1169	18.0	Kuala Lumpur Express	4890	24.0
Kwong Ta No. 8	132		New York Express	4890	24.0
Lan Shi 10	64		Singapore Express	4890	24.0
Lausanne	2826	24.0	Kobe Express	4612	24.0
Lian Fa 66	140		Dusseldorf Express	4612	24.0
Lian Fa 67	140		London Express	4612	24.0
Lian Feng		12.0	Hannover Express	4639	23.0
Liao He	1234	17.7	Leverkusen Express	4639	23.0
Lilium	387	15.0	Dresden Express	4639	23.0
Ling Chang He	377	12.5	Hoechst Express	4639	23.0
Ling Quan He	672	16.1	Ludwigshafen Express	4639	23.0
Ling Yun He	1702	20.3	Essen Express	4639	23.0
Lin Hai 103	54		Stuttgart Express	4639	23.0
Lions Gate Bridge	5610	25.0	Paris Express	4639	23.0
London Senator	2850		Busan Express	6732	25.6
Long Beach Bridge	5576	25.0	San Francisco Express	6732	25.6
Long He	725	18.9	Bankok Express	6732	25.6
Long Lun 103	52	10.0	Los Angeles Express	6732	25.6
LT Garland	3428	21.0	Berlin Express	7506	25.0
LT Genova	2987	21.0	Hong Kong Express	7506	25.0
LT Giant	2728	17.5	Hamburg Express	7506	25.0
LT Grand	2728	20.5	Shanghai Express	7506	25.0
LT Greet	2728	17.5	Santiago Express	2181	18.0
LT Guard	2868		Humboldt Express	2181	18.0
LT Lloydiana	2511	20.0	Frankfurt Express	3430	23.0
LT Pearl	1618	19.3	Abu Dhabi	3800	
LT Popular	1566	21.0	Al Abdali	3800	
LT Power	1618	18.7	Al Farahidi	3800	
LT Trieste	2820	17.5	Alnoof	3800	
LT Ulysees	5652	25.0	Asir	3800	
LT Unica	4948	25.0	Deira	3800	
LT Unicorn	5652	25.0	Fowairet	3800	
LT Unity	5652	25.0	AlMutanabbi	3800	
LT Universo	5346	25.0	Najran	3800	
LT Ursula	5652		Al Sabahia	3800	
LT Usodimare	4948	25.0	MSC Brasilia	3074	
LT Utile	5652	25.0	MSC Carla	3022	
Lu He	5446	24.5	MSC Germany	2708	
Lumoso Express	138		MSC Levina	2900	
Lunar River	494	19.5	MSC Maria Laura	2557	
Luo Ba He	3400	21.0	MSC Pretoria	2829	
Luo He	1234	18.3	Hammurabi	2199	
Lu Sheng	127		Hanjin Berlin	5302	
Lykes Ambassador	3266	11.5	Al Ihsa'a	2199	
Lykes Deliverer	4051		PONL Beirut	1665	
	3026	18.8	Port Said Senator	1718	
Lykes Explorer	3026	18.8	AL Manakh	2199	

Lykes Herc	3026	21.0	Canmar Bravery	1737	
Lykes Innova	tor 2808	22.0	Canmar Endurance	1052	
Lykes Liberat	tor 3026	18.8	Canada Senator	1952	
Lykes Motiva	tor 2954	21.7	Canmar Glopy	2017	
Lykes Naviga	tor 3026	18.8	Canmar Triumph	1074	
Lykes Pathfine	der 2280	19.8	Canmar Valour	1001	
Mackinac Brid	lae 2875	21.5	Canmar Victory	1001	
Maersk Doh	a 4158	21.0		1053	
Maersk Norfo		20.0	Arivirgab Ostori Ibn Al Evisio	2199	
Man Fu	72	20.0		2199	
Manhattan Brid	dae 72	22.4		4100	
Maple River	· 2157	18.0		3900	
Mare Balticur	m 1054	17.5		4444	
Mare Doricur	n 1054	17.5		3538	
Mare Lycium	n 3000	17.5		3900	
Mare Thraciu	n 3900	24.0	CMA-CGM Mercure	4369	
Marcret Knuon	nol 520	21.0	CMA-CGM Neptune	4365	
Mathu Phum	pei 532	16.0	DAL Kalahari	3177	
Motouko	1080	17.0	DAL Madagascar	1730	
Mad Tairai	564	20.7	Karonga	1191	
	2550	21.0	OOCL Hamburg	8063	
Mentor	294		OOCL Long Beach	8063	
Mercury Bridg	je 5551	25.9	OOCL Ningbo	8063	
Merkur Bay		23.0	OOCL Qingdao	8063	
Methi Bhum	928	17.0	OOCL Rotterdam	8063	
Mild Lin	746	15.5	OOCL Shenzhen	8063	
Mild Star	422	15.0	OOCL Chicago	5714	
Mild Sun	422	15.0	OOCL San Francisco	5714	
Mild Union	443	14.0	OOCL Netherlands	5390	
Min Feng	308		OOCL Singapore	5390	
Ming America	a 3494	21.2	OOCL America	5344	
Ming Asia	3604	21.2	OOCL Britain	5344	
Ming Bamboo	o 5551	25.9	OOCL California	5344	
Ming Cheng	724	15.6	OOCL China	5344	
Ming Cosmos	s 5551	25.9	OOCL Hong Kong	5344	
Ming Cypress	3	25.9	OOCL Friendship	3218	
Ming East	3502	24.0	OOCL Fair	3161	
Ming Europe	3604	21.2	OOCL Fidelity	3161	
Ming Green	5551	25.9	OOCL Freedom	3161	
Ming Longevit	y 1984	19.0	OOCL Envoy	2544	
Ming North	3502	24.0	OOCL Exporter	2544	
Ming Ocean	1984	19.0	OOCL Montreal	4402	
Ming Orchid	5551	25.9	OOCL Belgium	2808	
Ming Pine	5551	25.9	MV Helgafell	703	16.5
Ming Plum	5551	25.9	MV Arnafell	703	16.5
Ming South	3502	24.0	MV Skaftafell	364	15.5
Ming West	3502	24.0	MS Jokulfell	140	13.8
Ming Zenith	3052	24.0	MV Regina J	395	15.0
Min He	2761	18.5	MV Kurske	266	13.0
Min Su	144		MV Adele J	200	12.0
Min Tai No.2	106		MV Carina	202	12.5
Min Tai No.4	140		MV Virtsu	266	14 0
Min Tai No.5	80		MV Dirhami	266	14.0
					17.0

Min Tai No.6	72		MV Kalana	266	14.0
Min Yun He	1432	19.0	MV Muuga	266	13.0
Mol Glory	2400	20.6	CMA-CGM Rodin	2602	21.5
Mol Triumph	2400	22.0	Libra New York	2526	21.7
mol Wellington	1600		Ocean Trader	1608	21.0
Montreal Senator	1174	18.0	Libra Buenos Aires	2470	22.0
MSC New Plymouth	1550		MV Marienborg	1684	19.0
Na Xi He	3400	21.0	ACX Cherry	1048	.0.0
Nevelsk	270	12.5	ACX Cosmos	1048	
New Blessing	706	16.5	ACX Hokuto	338	
Newpac Cirrus	650	20.2	ACX Lilac	1430	
Newpac Cumulus	650	20.2	ACX Sakura	1350	
Newport Bridge	3456	23.0	ACX Swan	484	
Nicolas Delamus	2207	21.8	Angela J	260	
Nithi Bhum	928	17.0	California Jupiter	2841	
Noble River	969	15.0	California Mercury	2990	
Nordseas	1400	20.0	Cape Charles	2829	
Nordstrand	2280	20.0	Cape May	2826	
Nordsun	1158	17.0	Commodore	2764	
Norfolk Express	3607	23.5	Conti Malaga	2432	
Normandie Bridge		23.0	Hansa Constitution	2760	
Northern Fortune	1899	19.3	Hotaka Maru	1939	
Northern Virtue	2987	22.0	Ipanema	1613	
NYK Prosperity		22.5	Iris	2113	
OOCL Atlantic	3607	23.5	lwaki	1613	
OOCL Europe		23.8	lwashiro	1613	
OOCL Faith	3161	20.5	Kaedi	2020	
OOCL Fortune	2880	20.5	Kaga	3618	
OOCL Harmony	2500	22.0	Kamakura	3611	
OOCL Japan	5344	23.0	Katsuragi	3609	
OOCL Japan	2762	22.0	Kitano	3618	
Oriental Bright	1001	17.0	NYK Andromeda	6141	
Orient Brilliancy	545	15.0	NYK Antares	6141	
OSG Argosy	279		NYK Aphrodite	6200	
Oxford	821		NYK Apollo	6200	
P&O Nedkowlown	6690		NYK Aquarius	6238	
P&O Nedlloyd Auckland	2890	21.5	NYK Argus	6238	
P&O Nedlloyd Genoa	2890	21.5	NYK Artemis	6200	
P&O Nedlloyd Jakarta	2890	21.5	NYK Athena	6200	
P&O Nedlloyd Marseille	2890	21.5	NYK Canopus	6135	
P&O Nedlloyd Newark	2720	22.0	NYK Castor	6135	
P&O Nedlloyd Sydney	2890	21.5	NYK Fantasia	2532	
Pac Bali	306		NYK Freesia	3468	
Pac Banda	314		NYK Kai	3618	
Pac Bintan	306		NYK Leo	6200	
Pacific Envoy	728	16.3	NYK Libra	6200	
Pacific Senator	2661	18.0	NYK Lodestar	6200	
Palermo Senator	2661	18.0	NYK Lvnx	6200	
Panagia Tinou		22.0	NYK Lvra	6200	
Pancaran Sinar	916	16.0	NYK Pegasus	6200	
Pan He	725	16.8	NYK Phoenix	6238	
Patmos Senator	2661	18.0	NYK Pride	2641	

Peking Senator	4545	23.7	NYK Procyon	4805	
Penang Senator	4545	23.7	NVK Sirius	4035	
Pira Bhum	628	15.5	NYK Springtide	20133	
Pohang Senator	4545	23.7	NVK Starlight	2093	
Ponl Nelson	1600	20.7	Provider	2910	
Portland Senator	4545	23.7	Fiovidei	1782	
Portugal Senator	4545	23.7	Sayar	1005	
Potomac Bridge	3965	23.1	Sakura Sondro Arul	4931	
Precious River	969	15.0	Sandra Dianas	4895	
Pretty Lake	420	15.0	Sanura Bianca	4895	
Pretty Ripple	420	14.0		2893	
Pretty River	1032	14.0	Santa Cruz	2918	
Pretty Sea	316	10.0	Santa Monica	2905	
Pretty Wave	310	15.9	Sanuki	1157	
Progress 3	106	14.0	Satsuki	1181	
Pudona Senator	120	7.0	Settsu	1152	
Pugwash Sonator	4040	23.7	Shima	1152	
	4040	23.7	Shion	1122	
Fu ne Dunich Senator	2/16	18.0	Soga	1091	
Pullab Seriator	4545	23.7	Sophia Britannia	3618	
Pusan Senator	4545	23.7	Sumida	1100	
Qian Jin 303	16		Sumire	1181	
Qian Jin 310	36		Victory 1	3066	
Qian Yuan Shan	137		America Feeder	584	17.5
	1702	20.3	Angelica Schulte	366	15.3
Qing Yun No.2	30	9.0	ANL Australia	2668	19.0
Qui He	1318	15.5	ANL Bass Trader	642	16.0
Qi Yun He	1432	19.1	ANL Emblem	3300	22.5
Rainbow Bridge		21.5	ANL Explorer	2266	21.0
Ratha Bhum	628	15.5	ANL Pacific	4250	23.3
Ratstor	516	16.0	ANL Progress	910	19.0
Reestborg	558	17.5	Anne Catharina	298	12.5
Resourceful	100	16.0	APL Cyprine	5016	22.5
Rhein Bridge		23.0	Aron	333	13.5
Rialto Bridge	3681	23.0	Asturia	2202	20.0
Ri Feng	65		Athlete F	369	15.0
River Aquamarine	542	18.0	Baltic Tern	357	13.5
River Crystal	2157	18.0	Banjaard	550	14.5
River Elegance	3802	25.2	Barrier	912	17.0
River Wisdom	3802	22.5	Burak Bayraktar	860	16.0
Rong Feng	524	14.5	Cap Canaille	133	16.0
Rotterdam Bridge	5576	25.0	Cap Melville	2532	21.5
Rui Yun He	1702	21.0	Carola	1107	18.5
Saipan Winner	428	14.5	Cervantes	538	15.5
San Pedro Bridge	3482	21.5	Cimil	426	13.5
Santa Elena		21.5	City of Lisbon	700	16.5
Santa Giovanna	1664	17.5	City of Oporto	700	16.5
Santiago	2000	19.0	CMA CGM Aegean	2811	22 0
Savannah	2868	21.0	CMA CGM Alabama	2758	21.0
Sea Breeze	261	12.5	CMA CGM Alger	678	17 0
Seabright	517	15.0	CMA CGM Amazonia	405	15.0
Sea Dragon	424	15.1	CMA CGM Arno	1668	10.0
Seto Bridge	2310	23.0	CMA CGM Balzac	6447	25.9
					LU.U

Sha He	1234	18.3	CMA CGM Baudelaire	6447	25.0
Shamrock	350	16.0	CMA CGM Belem	1162	17.0
Shang Cheng	724	15.5	CMA CGM Bellini	5700	24.5
Shanghai Bridge	5576	25.0	CMA CGM Berlioz	6627	24.0
Shanghai Senator	2661	18.0	CMA CGM Bizet	6627	25.9
San He	3801	22.0	CMA CGM Capella	3538	20.9
Sheng He	725	18.0	CMA CGM Caribbean	516	22.0
Shi Gang 233	45		CMA CGM Chardin	2200	10.0
Shi Gang 388	75	11.0	CMA CGM Chardin	5700	22.0
Shimanami	450	15.0		2602	24.0
Shi Tai 3 Hao	90	10.0	CMA CGM Colombia	2002	21.0
Shuang Feng Shan	140		CMA CGM Condor	1254	20.0
Sinar Bali	1060	18.0	CMA CGM Constellation	2250	19.5
Sinar Bangka	1054	18.0	CMA CGM Debussy	5509	22.0
Sinar Batam	1556	18.5	CMA CGM Event	0027	25.9
Sinar Bintan	1054	18.0		2011	22.0
Sinar Bontang	1054	18.0		2917	22.0
Sinar Java	1146	17.0		2400	21.0
Sinar Lombok	816	18.0		2430	20.5
Sinar Saliu	197	16.0		2432	21.0
Sinar Solo	1060	18.0		2438	20.5
Sinar Sunda	1556	19.5	CMA CGM Fort St Georges	2260	21.5
Sinar Surva	1556	10.0	CMA CGM Fort St Louis	2260	21.5
Sing Ping	06	10.0		2260	21.5
Siri Bhum	550	145		2260	21.5
Sky Light	746	14.0		2824	24.0
Sky River	1960	10.0		1367	17.8
Sky Success	617	23.0	CMA CGM Hudson	1668	19.5
Song Cheng	710	14.0	CMA CGM Hugo	8200	24.5
Song Ho	1699	15.5	CMA CGM Impala	1726	19.6
	1000	15.5	CMA CGM Kalamata	2917	22.0
Star Bivor	1432	19.0	CMA CGM Kingston	4250	23.3
Star River	494	19.2		1730	20.0
Steamers Frudence	779	17.5	CMA CGM Komodo	2917	22.0
	3005	20.0	CMA CGM La Bourdonnais	1684	18.0
Su Da Suoz Copol Bridgo	288	14.0	CMA CGM Latour	2272	21.5
	5608	25.0	CMA CGM Lea	541	15.0
Sui Da 3	36		CMA CGM Licorne	1728	20.0
Sui Jian Hang JI 129	45	9.0	CMA CGM Maghreb	580	17.0
	45	9.0	CMA CGM Makassar	2917	22.0
Sui Jian Hang 133	45	7.5	CMA CGM Manet	2272	21.5
Sui Shun 101	100		CMA CGM Marmara	2811	22.0
Sui Shun Hang 28	45		CMA CGM Matisse	2262	20.5
Sui Shun Hang 32	45		CMA CGM Mozart	5700	24.5
	48		CMA CGM Normandie	4688	24.0
	24		CMA CGM Okapi	1708	19.8
Sul Xing 3	36	9.0	CMA CGM Oran	352	13.0
Sul Yue 2 Hao	39		CMA CGM Papagayo	1354	19.5
Sun Hop Lee	124		CMA CGM Pasteur	2023	19.0
Synthesis No.28	96		CMA CGM Potomac	1645	19.5
Tai Hang 302	42	10.0	CMA CGM Puccini	5700	24.5
Takels	51	9.5	CMA CGM Puget	4404	24.0
IAKEKO	564	20.7	CMA CGM Puma	1716	21.8

Tena He	3764	22.0	CMA COM Dehet	070	
Tena Yun He	1702	20.2		976	17.5
TMM Campeche	3032	20.2		6/12	25.8
TMM Yucatan	3200	20.5		511	15.3
	80	21.0		2478	21.7
Tong Wei	75			5700	24.5
Tower Bridge	2140	20.6	CMA CGM Santiago	370	15.3
Trade Eternity	2140	20.6	CMA CGM Sapphire	2986	21.5
Trade Ereda	2400	19.0		2732	22.5
Trade Hallie	4030	24.0	CMA CGM Seine	2917	22.0
Trade Hanvest	4038	24.0	CMA CGM Skikda	516	16.0
Trade Solono	2227	20.0	CMA CGM Springbok	1608	21.0
Trade Tesis	2480	19.0	CMA CGM St Laurent	1162	17.0
Trade Worlder	4038	24.0	CMA CGM St Martin	1162	17.0
	442		CMA CGM Strauss	5700	24.5
	204		CMA CGM Tage	1645	19.5
	5610	25.0	CMA CGM Tatiana	822	18.5
Iwadika	267	12.5	CMA CGM Tucano	2008	21.5
Umeko	564	20.7	CMA CGM Turkey	2811	22.0
UNI Active		18.7	CMA CGM Ukraine	2824	24.0
UNI Adroit		18.7	CMA CGM Utrillo	2262	20.5
UNI Ample	1164	18.7	CMA CGM Verdi	5700	24.5
UNI Angel	1164	18.7	CMA CGM Verlaine	6456	25.8
UNI Arise	1164	18.7	CMA CGM Virginia	2811	22.0
UNI Aspire	1164	18.7	CMA CGM Vivaldi	8200	24.5
UNI Assure	1164	18.7	CMA CGM Voltaire	6456	25.8
UNI Chart	998	17.0	CMA CGM Wagner	5700	24.5
UNI Concert	998	17.0	CMA CGM Wallaby	1684	20.0
UNI Concord	998	17.0	CMA CGM Yantian	4250	23.3
UNI Corona	998	17.0	Corona	372	15.5
UNI Crown	998	17.0	Denizhan Bavraktar	470	15.0
UNI Forward	956	16.5	Doerte	448	15.5
UNI Pacific	1618	18.7	Dollart Trader	1608	21.0
UNI Patriot	1618	18.7	Dutch Runner	221	12.5
UNI Perfect	1618	18.0	Enforcer	750	12.0
UNI Popular	1618	18.0	Engladina	2824	24.0
UNI Premier	1618	18.0	Er Caen	2024	24.0
UNI Probity	1618	18.0	Er Calais	2000	21.0
UNI Promote	1618	18.0	Fr Camarque	2000	21.0
UNI Prosper	1618	18.0	Er Cannes	2000	21.0
UNI Prudent	1618	18.7	Er Sydnov	2000	21.5
UNI Ahead	1010	18.7	El Sydney	3359	22.5
UNI Phoenix		18.7	Euro Storm	080	17.6
Van Xuan	504	10.7		847	17.5
Vega Diamond	784	10.0		1102	20.0
Venus Bridge	5551	19.0		581	15.5
Victoria Bridge	2400	20.9	Fas Var	601	14.3
Victoria Strait	J40Z	23.0	Gascogne	558	17.5
VIN Sannhira	1110	19.2	Holger	508	15.0
Wadi Alravan	1020	17.0	Iduna	325	14.5
Wang Econg 19	2000	21.6	Indamex Delaware	2890	21.8
Wang Foong 0	228		Indamex Godavari	3607	23.5
Wany Fuong 9	130		Ingo J	202	11.5
wannai 215	500		Jan D	440	14.0

WanHai 262	1240	21.0	Janina	678	17.0
Wan Hai 266	2496	22.0	Kappel N	657	17.0
Wan Hai 301	2496	22.0	Karina	847	17.0
Wan Hai 302	2496	22.0	Madeleine Rickmers	1728	10.6
Wan Hai 303	2496	22.0	Margaretha	868	19.0
Wan Hai 305	2496	22.0	Maria Schulte	266	10.0
Wan Hai 307	2496	22.0	Neva	300	10.3
Wan He	5446	22.5	Nicola	203	12.5
Washington Senator	2850	22.0	Nordmod	047	17.5
Wehr Bille	2546	19.8	Northern Dignity	24/8	21.7
Wehr Havel	2526	22.0		3607	23.8
Wei Xing	65	10.0	Bachaga	1020	17.0
Welcome	437	14.0	Prival	300	13.5
Well Grace	132	14.0	Filwdii Bromotor N	2480	20.0
Well Union	124		Politoler N	/56	13.5
Westerbever	1572	20.0	Ranana Depete Sebulte	1122	18.5
Wide Tech 23	72	20.0	Renate Schulte	1354	19.5
Wide Tech 33	100		Rigena	1810	17.0
Wing Hing NO 18	100		Rybno	261	12.5
Wing Lee No.1	120		Sadan Bayraktar	596	15.0
	120		Saipan Carrier	602	14.0
World D	120		Saipan Harvester	576	14.0
Vond D	934		Saipan Voyager	701	14.0
	1080	17.0	Sea Explorer	384	15.0
XHSJ 0288	64		Sieltor	516	15.5
	200	12.0	Stella J	520	16.0
Xiang Dan	200	12.0	Sunshine II	347	13.5
Xiang He	1686	14.5	Sylvette	844	17.5
	582	15.0	VD Mina Qaboos	132	12.0
Xiang Lain	200	12.0	Ville D'Antares	4030	23.7
Xiang Peng	576	15.0	Ville D'Aquarius	3961	23.7
Xiang Qian	582	15.0	Ville De Dubai	847	17.5
Xiang Tan Huo 0029	392		Ville De Mars	2954	21.5
Xiang Xing	316	14.0	Ville De Mijo	601	14.3
Xiang Yun He	1702	20.3	Ville De Mimosa	3961	23.7
Xi Bo He	3400	21.0	Ville De Tanya	4031	23.8
Xie Hang 1	36		Ville De Taurus	3961	23.7
Xie Hang 12	36		Ville De Virgo	4030	23.7
Xie Hang 198	120		Ville D'Orion	3961	23.7
Xie Hang 2	60		Westerland	2764	22.0
Xie Hang 28	45	10.0	Wotan	297	12.5
Xie Hang 313	96		Xiang Ling	210	12.0
Xie Hang 88	80		Andalusia	2262	21.5
Xie Hang 9	96		Safmarine Cotonou	1737	10.5
Xing He	1328	17.6	Alicantia	2262	21 5
Xin Hai Run	612	15.5	Safmarine Maluti	2063	21.5
Xin Hui He	836	16.5	Safmarine Cameroun	2005	21.0
Xin Hui JI 12	10	8.0	Safmarine Concord	2090	21.0
Xin Hui JI 13	36	9.0	Safmarine Asia	1072	17.5
Xin Hui JI 15	48	9.0	Safmarine Furone	1072	17.5 17 E
Xin Hui JI 16	48	9.0	Safmarine Lulope	1912	17.5
Xin Hui JI 19	16	9.0	Safmarine Sovo	420	14.5
Xin Hui JI 20	12	8.0	Elico D	420 400	15.0
	• =	0.0		428	14.5

Xin Hui JI 22	12	8.0	Safemarine Gabon	428	14.5
Xin Hui JI 23	36		Theofano	640	13.0
Xin Hui JI 3	16	8.0	Safmarine Bioko	925	15.0
Xin Hui JI 5	16	8.0	Safmarine Onne	519	15.5
Xin Hui JI 9	36	8.0	Safmarine Houston	525	15.5
Xin Tong 16	24		Safmarine Douala	925	14.0
Xiu Shan	66		Safmarine Evagelia	414	14.0
Yang Jiang He		16.5	Safmarine Meroula	414	14.0
Yang Xian 8	54		Safmarine Congo	414	14.0
Yan He	725	16.8	Elizabeth	448	15.5
Yantra Bhum	1080	17.0	Portlink Caravel	390	15.0
Yellow Sea	3681		Portlink Pacer	523	15.5
Yin He	1328	16.5	Sven Oltmann	510	16.5
YM Athens	5618	26.3	SA Winterberg	3101	20.5
YM Bremens	5576		Maersk Constantia	3101	20.5
YM Earth	1620	19.7	SA Sederberg	3101	20.5
YM Fountain	5551	25.9	SA Helderberg	3101	20.5
YM Genova II	1400		Safmarine Letaba	2080	21.0
YM Great	5576	25.0	Safmarine Mgeni	1730	20.0
YM March	5576	25.0	Safmarine Kei	2474	22.2
YM Milano	2800	22.0	Pongola	797	18.0
YM Napoli	3359	22.4	Safmarine Zambezi	2496	21.7
YM New york	4038	22.2	Safmarine Tugela	2063	21.5
YM Pearl River I	1464	18.0	Maersk Dakar	2106	21.0
YM People	1620	19.7	Safmarine Igoli	3152	22.0
YM Savannah	4038	22.2	Safmarine Ibhayi	2732	22.5
YM Sky	1620	19.7	Safmarine Ikapa	2732	22.5
YM Success	5551	25.9	LT Grace	2728	20.5
YM Tacoma	3456	24.0	LT Greet	2728	20.5
YM Wealth	5551	25.9	LT Garland	3428	20.7
YM Wilmington	4038	22.2	LT Glamor	3428	20.7
YM Yantian	3916	22.5	LT Usodimare	5652	25.0
Yokohama Senator	4545	23.7	LT Unica	5652	25.0
Yong Ding He	764	17.0	LT Universo	5652	25.0
Yong Feng	140		MV R.J. Pfeiffer	2229	23.0
Yong Hang 9	45		MV Mahimahi	2824	23.0
Yongyue No.6	631	12.0	MV Mokihana	2824	23.0
Young Liberty	1295	17.0	MV Manoa	2824	23.0
Yuan He	3764	24.0	MV Manukai	2600	22.5
Yu Chang 2	118		S.S. Maui	2600	22.5
Yue An Yun 05	72		S.S. Chief Gadao	1981	21.0
Yue Feng 902	60		S.S. Lurline	1379	21.5
Yue Feng 903	60		S.S. Kauai	1626	22.5
Yue Hai 1028	96		S.S. Lihue	1979	21.0
Yue He	5446	24.7	S.S. Ewa	2015	21.0
Yu Feng	65		S.S. Matsonia	1712	21.5
Yu Gu He	3400	20.0	Independent Trader	1208	17.5
Yu He	1686	14.5	Independent Venture	1468	18.5
Yun Bao	98		Independent Endeavor	1452	19.0
Yun He	5446	24.5	Independent Action	1388	17.5

Appendix B

```
%Random Deployment Simulation
function cov = cov_3d(X,Y,Z,r,num det,N)
                                         % X: Height of container array (in TEUs)
                                            % Y: Width of container array (in TEUs)
                                            % Z: Length of container array (in TEUs)
                                            % r: Effective detection range (in feet)
                                            % num det: Number of detectors to be deployed
                                            % N: Number of runs
tic
x = 8 * X; % Conversion from TEUs to feet
y = 8 * Y; % Conversion from TEUs to feet
z = 20 * Z; % Conversion from TEUs to feet
for l = 1:N % Number of runs loop
    D0 = logical(zeros(x, y, z));
                                    % Constructs initial geometry matrix
    count = 1;
    pos = rand(1,3);
                                    % Generates random number vector
    while count < (num det + 1) % Number of detectors loop
        D1 = logical(zeros(x,y,z)); % Constructs a new detector matrix
        pos = rand(1,3);
        dx = ceil(pos(1) * x);
                                   % Fixes the x-coordinate of the detector
        dy = ceil(pos(2)*y);
                                   % Fixes the y-coordinate of the detector
        dz = ceil(pos(3)*z);
                                   % Fixes the z-coordinate of the detector
                                   % Establishes the detector's center-point
        D1(dx, dy, dz) = 1;
                                    % in the detector matrix
                                        % x-axis loop
            for i = dx - r : dx + r
                if ((i < 1) | (i > x)) % Ensures detector & geometry matrices
                                        % remain equi-dimensional
                    continue
                end
                                            % y-axis loop
                for j = dy - r \cdot dy + r
                    if ((j < 1) | (j > y)) % Dimension control
                        continue
                    end
                     for k = dz - r \cdot dz + r
                                               % z-axis loop
                         if ((k < 1) | (k > z)) % Dimension control
                            continue
                         end
                         if sqrt((i-dx)^2+(j-dy)^2+(k-dz)^2) <= r
                                                                     % Checks whether
                                                                     % element is within
                                                                     % the detection
                                                                     % sphere
```

```
D1(i, j, k) = 1; % Fills in the detector matrix
                        end
                    end
                end
            end
        D0 = D0 | D1; % Current geometry matrix and detector matrix are 'OR'ed together
        count = count + 1;
   end
   det_cov = sum(sum(sum(D0)));
                                     % Sums the number of elements within detection spheres
   cov(l) = det_cov/(x*y*z);
                                     % Calculates fractional coverage volume and writes it
                                     % to an output vector
end
                                     ¥
cov = cov'
mean cov = mean(cov)
                                     ક્ષ
                                     % Statistical analysis of full output vector
median_cov = median(cov)
std_cov = std(cov)
                                     €
                                     ક્ષ
\min_{cov} = \min(cov)
                                     ક્ર
\max_{cov} = \max(cov)
```

```
toc
```

- -

```
% Constrained Deployment Simulator
function cov = new_3d(X, Y, Z, r, num det, N)
                                            % X: Height of container array (in TEUs)
                                            % Y: Width of container array (in TEUs)
                                            % Z: Length of container array (in TEUs)
                                            % r: Effective detection range (in feet)
                                            % num_det: Number of detectors to be deployed
                                            % N: Number of runs
tic
x = 8 * X; % Conversion from TEUs to feet
y = 8 * Y; % Conversion from TEUs to feet
z = 20 * Z; % Conversion from TEUs to feet
for l = 1:N
    D0 = logical(zeros(x,y,z)); % Constructs initial geometry matrix
    count = 1;
    pos = rand(1,20);
                                   & Generates random number vector
    while count < (num det + 1)
                                % Number of detectors loop
        D1 = logical(zeros(x,y,z)); % Constructs a new detector matrix
        pos = rand(1, 20);
        rnd cnt = 1;
        x switch = 0;
                                    ዮ
        y_switch = 0;
                                    % Initializes constraint test variables
        z_switch = 0;
                                    ¥
        while x switch < 1
                                                     ₽
            dx test = ceil(pos(rnd cnt)*x);
                                                     ₽
            if ((dx_test > 8) & (dx_test < (x-7))) % Checks if x-coordinate
                                                     % satisfies constraints
                dx = dx_{test};
                rnd_cnt = rnd_cnt +1;
                                                     ₽
                x switch = 1;
                                                     ¥
            else
                rnd_cnt = rnd_cnt + 1;
            end
        end
        while y_switch < 1
                                                     ⴻ
            dy_test = ceil(pos(rnd cnt)*y);
                                                     옿
             if ((dy_test > 8) & (dy_test < (y-7))) % Checks if y-coordinate
                                                     % satisfies constraints
                dy = dy_test;
                rnd cnt = rnd cnt + 1;
                                                     ₽
                                                     ₽
                y_switch = 1;
            else
                rnd_cnt = rnd_cnt + 1;
```

```
end
   end
   while z switch < 1
                                                   ક્ષ
       dz_test = ceil(pos(rnd_cnt)*z);
                                                   ₽
       if ((dz_test > 20) & (dz_test < (z-19)))
                                                   % Checks if z-coordinate
           dz = dz_test;
                                                   % satisfies constraints
           rnd cnt = rnd cnt + 1;
                                                   ₽
           z_switch = 1;
                                                   ₽
       else
           rnd_cnt = rnd_cnt + 1;
       end
   end
                                    .
D1(dx, dy, dz) = 1;
                                           % Establishs detector center-point
                                           % in the detector matrix
       for i = dx - r : dx + r
                                          % x-axis loop
            if ((i < 1) | (i > x))
                                          % Dimension control
               continue
           end
                                          % y-axis loop
            for j = dy-r:dy+r
               if ((j < 1) | (j > y))
                                         % Dimension control
                   continue
               end
                for k = dz-r:dz+r % z-axis loop
                    if ((k < 1) | (k > z)) % Dimension control
                        continue
                    end
                    if sqrt((i-dx)^2+(j-dy)^2+(k-dz)^2) <= r
                                                               % Checks whether
                                                                % element is within
                                                                % the detection
                                                                % sphere
                                                  % Fills in the detector matrix
                       D1(i,j,k) = 1;
                    end
                end
            end
        end
    D0 = D0 | D1; % Current geometry matrix and detector matrix are 'OR'ed together
    count = count + 1;
    rnd_cnt = 1;
```

.....

end

```
det_cov = sum(sum(sum(D0))); % Sums the number of elements within detection spheres
cov(l) = det_cov/(x*y*z); % Calculates fractional coverage volume and writes it
% to an output vector
```

_.

end

```
median_cov = median(cov)
std_cov = std(cov)
min_cov = min(cov)
max_cov = max(cov)
%
```

toc

```
% Centerline Deployment Simulator
function cov = centerline(X,Y,Z,r,det_start,det_step,det_stop)
tic
x = 8 * X; % Conversion from TEUs to feet
y = 8 * Y; % Conversion from TEUs to feet
z = 20 * Z; % Conversion from TEUs to feet
    for det = det_start : det_step : det_stop % Detector placement loop
       D1 = logical (zeros(x,y,z));
                                               % Constructs a new detector matrix
                                               % 1440 TEU -> dx = 28
       dx = ?;
                                               % 2496 TEU -> dx = 36
                                               3600 \text{ TEU} \rightarrow dx = 36
                                               % 4800 \text{ TEU} \rightarrow dx = 36
                                               \% 6460 TEU -> dx = 36
        dy = ?;
                                               % 1440 TEU -> dy = 36
                                               2496 TEU -> dy = 44
                                               3600 \text{ TEU} \rightarrow dy = 44
                                               % 4800 TEU -> dy = 60
                                               % 6460 TEU -> dy = 68
        dz = det
                                               % Places detectors along the length
        D1(dx, dy, dz) = 1;
                                               % Fixes center-point of detector in
                                               % the detector matrix
            for i = dx - r \cdot dx + r
                                              % x-axis loop
                                            % Dimension control
                if ((i < 1) | (i > x))
                   continue
                end
                for j = dy-r:dy+r
                                               % y-axis loop
                    if ((j < 1) | (j > y))
                                            % Dimension control
                        continue
                    end
                    for k = dz - r \cdot dz + r
                                              ∛ z-axis
                        if ((k < 1) | (k > z)) % Dimension control
                            continue
                        end
                        if sqrt((i-dx)^2+(j-dy)^2+(k-dz)^2) <= r % Checks whether
                                                                   % element is within
                                                                   % the detection
                                                                   % sphere
```
```
Dl(i,j,k) = 1; % Fills in the detector matrix
end
end
end
D0 = D0 | D1; % Current geometry matrix and detector matrix are 'OR'ed together
end
det_cov = sum(sum(sum(D0))); % Sums the number of elements within detection spheres
cov = det_cov/(x*y*z); % Calculates fractional coverage volume
cov % Outputs fractional coverage volume
```

. –

toc

Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 Email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain color pictures or graphics that will not scan or reproduce well.