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Abstract 

This thesis studies surfaces which minimize area, subject to a fixed boundary and 
to a free boundary with length constraint. Based pn physical experiments, I make 
two conjectures. First, I conjecture that minimizers supported on generic wires have 
finitely many surface components. I approach this conjecture by proving that surface 
components of near-wire minimizers are Lipschitz graphs in wire Frenet coordinates, 
and appear near maxima of wire curvature. Second, I conjecture and prove that surface 
components of near-wire minimizers are C1 at corners where the thread touches the 
wire interior. Moreover,. the limit of the surface normal field is the Frenet binormal of 
the wire at the corner point. This shows local wire geometry dominates global wire 
geometry in influencing the surface corner. Third, I show that these two conjectures 
are related: assuming additional regularity up to the corner, the finiteness conjecture 
follows. 
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Notation index 

We say a C' curve a is a regular curve if its derivative 

never vanishes. The constant C may have different val- 

ues in different equations. The expressions C(I'), R ( r )  

indicate positive constants depending only on the geom- 

etry of a wire curve I?. Marks like hat (^), tilde (-), star 

(*)  do not have defined meanings. The prime symbol (') 
does not have a defined meaning for sets. 

Symbol 

n 
S2(1) 

U 0  

dU 
- 
U 

( )I 

Bx(c, r )  
Tub,U 

Figure 0-1: Arcs of the 

unit circle. 
Usage 

unit disc, lying in R2 or C 
unit sphere, or Gauss sphere 

interior of a set U in a topological space 

set of boundary points of a set U in a topological space 

closure of a set U in a topological space 

differentiation of an expression ( ) by x 
rnetric ball in metric space X with radius r ,  center c 

r-tubular neighborhood of a set U in Euclidean space 

"maps to" (used to  define inline functions, such as t H 2 t )  

the composed function x H f (9(x)) 

function f restricted to subset C of its domain 

image of a function f 

domain of a function f 

image of a subset U of the domain of a function f 

preimage of a subset U of the target of a function f 

differential d p  f : TpM -+ Tf(pl  N of a manifold map f : M -+ N 

cardinality of a set U 
ima.ginary unit, unless obviously not in the complex context 

cross-product in R3 

the x component function for the curve r; similarly for y, z .  



Chapter 1 

Introduction 

In the winter of 2002-2003, I was thinking about how 

to count and describe the stable minimal surfaces 

spanning a contour. Working with wire, thread, and 

soap-water , I demonstrated a thread-pull method of 
" 

creating stable soap-water surfaces spanning a con- 

tour. (See Figure 1-1, also Section 8.) My method 0 
worked for many contours, and the robustness of the 

process inspired me. The thread-wire surfaces I oh- 
.) served usually had several surface components, each 

tapering to two cusp-corners where the thread re- 

joined the wire tangentially. I called these surface 

components crescents because of their typical shape. 

Through experiment I gained intuition about thread- 

wire surfaces and their crescents. I observed sev- Figure 1-1: Thought ex- 

era1 phenomena which I thought should be theorems periment. 

about a corresponding mathematical idealization. 

I then looked in the literature and found that 

such an idealization had been studied. In 1973 H.W. Alt defined the thread problem 

?(r, L) to be (roughly1) the problem of finding a least-area surface consisting of discs 

spanning a wire curve r and a thread curve of length L. Alt proved the existence of a 

minimizer to his thread problem [I]. Several other authors also studied the problem,2 

lSee Assumption 2.15, p. 29, for the full definition. 
2See Section 2. 
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but I found that many of my observations had not. been proved as theorems. 

1.1 Two related conjectures 

First, I conjectured that minimizers supported on generic wires have finitely many 

surface components. I approached this conjecture by proving that small surface com- 

ponents are Lipschitz graphs in wire Frenet coordinates, and appear near maxima of 

wire curvature. Second, I conjectured a,nd proved that near-wire surface components 

are C1 at  corners where the thread touches the wire interior. Moreover, the limit of the 

surface normal field is the Frenet binormal of the wire at  the corner point. This shows 

local wire geometry dominates global wire geometry in influencing the surface corner. 

Third, I showed that these two conjectures are related: given additional regularity at  

the corner, the finiteness conjecture follows. We discuss each of these three points 

below 

Here is the first conjecture: 

Conjecture 1.1. [Crescent Finiteness] For each generic wire curve I?, there is a constant 

C(r )  depending on the geometry of I?, so that any minimizer t o  Alt's thread problem 

?(I?, L )  has at most C(T) surface components. 

A wire is generic if it is C4, has curvature which is 

a nonvanishing Morse function, and has torsion which 

C*-!, crosses zero transversely and only where the curva- 

ture is not critical. (See Assumption 2.15.) The idea 
k 'Y 

of the finiteness conjecture is that experimentally I 

always see small surface components straddled on lo- 

cal maxima of wire curvature. I thus propose that 

the number of maxima of wire curvature of I? should 

control the number of surface components that may 
Figure 1-2: Non- appear in Alt minimizers. This is a strong statement 
generic wire with infinite- relative to Alt 's existence result, which only guaran- 
component Alt minimizer. tees a minimizer with a, countable number of surface 

components. Conjecture 1.1 also uses genericness in 

a meaningful way. Indeed, it is easy to demonstrate a non-generic wire supporting an 

Alt minimizer with infinitely many surface components. See Figure 1-2. 



The second conjecture concerns how the normal vector field of an Alt minimizer 

behaves a t  the cusp-corners which typically appear in Alt minimizers: 

Conjecture 1.2. [C1 Corner Regularity], Let I? be a generic embedded wire curve. 

There is a small R so any Alt minimizer p lying in the R-tubular neighborhood has the 

following property at any cusp-corner P in the interior of the wire. The surface is a C1 
graph in the Frenet coordinates of the wire at P, and the Frenet binormal of the wire is 

attained as the limit o f the normal vector field of p.'  

The idea behind this conjecture is that a t  the. corner, local and global effects 

compete. On the one hand, the local curvedness of the wire encourages the surface 

and the free thread to come in to  meet the wire in a way which osculates the I?', I?'' 
plane. On the other hand, the global shape of the wire may work against this effect. 

Depending on the path one takes to approach the corner, one could imagine the surface 

n&al behaving in different ways-having one limit, having another limit, not having 

a limit. Conjecture 1.2 makes the bold claim that the local effect completely wins at  

the level of the first derivative of surface position. Regardless of the path one takes 

to approach the corner, the normal field approaches a limit. Moreover, no matter the 

path taken, it approaches the same limit. Even better, it approaches a limit which is 

dictated by the geometry of the fixed wire exactly at the place where the thread joins 

the wire. Even better, the limit is simply described: the Frenet binormal of the wire 

a t  that point. 

We would like to remove the tubular neighborhood assumption in Conjecture 1.2. 

However, a result limited by this assumption is just enough to prove the Crescent 

Finiteness Conjecture (Conj. 1.1). This is our third point: 

Lemma 1.3. Assume Conjecture 1.2 holds with the stronger conclusion that the surface 

has C1.' norm bounded by C ( r )  for a certain constant C(r ) .  Then Conjecture 1.1 follows. 

Having listed the three points (two conjectures and a lemma) at the center of the 

thesis, we now state our results. 

1.2 Results 

Our first theorem is aimed at  proving the Crescent- Finiteness Conjecture (Conj. 1.1). 

It shows that near-wire crescents are Lipschitz graphs, supported by small wire seg- 

ments near maxima of wire curvature. This does not prove the Crescent Finiteness 



Conjecture (Conj. 1.1) because infinitely many crescents could appear near a single 

maximum of wire curvature. However, our theorem st ill makes significant progress; 

indeed, Alt minimizers are a priori immersed and could be quite complicated. For 

example, according to the existing regularity theory, they could come into a wire at a 

cusp-corner by spinning repeatedly around the wire. My theorem prohibits this. 

Theorem 1.4. [Near-wire Crescent] Let I? be an embedded generic wire in R3. For 

R less than a constant R ( r )  depending on the geometry o f  I?, the following will hold. If 

A is any Al t  minimizer lying in an R tubular neighborhood of  the wire, then the thread of 

A is C1 and touches the interior o f  I? only tangentially. Each crescent p of  A satisfies the 

following. 

(2) The wire supporting the crescent p is short (arclength bounded by ~ ( r )  R1ll2). 

(22) Let I?(so) be a corner o f  p on the interior o f  I?. Then so is within C(I?)R'/'~ of  a 

maximum of  wire curvature. 

(222) Let x, y, t be the Frenet coordinates of  I? at I?(so). Then the crescent p may be 

expressed as a graph 

2 = f (x, Y) 

over a domain with y 2 0. See Figure 1-3. Here f is a Lipschitz function 

with additional slope control 

(iv) Where the wire supports the crescent p, r;r i s  within C(r) R1/12 of the free thread 

curvature K .  

(v) The Frenet frame of the thread i.s within C(F)R ' / '~  of the Frenet coordinates x, y, z. 



1.2 Results 

Figure 1-3: Crescent as a graph in Frenet coordinates. The crescent p vertically 
projects to a domain dom f lying in either the first or second quadrant of the x-y 
plane. The boundary of the domain is defined by the wire shadow curve y = r(x) 
and thread shadow curve y = - y(x). The domain tapers to a cusp at the origin: 
0 < F(x) 5 - y(x) 5 nx2 + o(x2). 



1 Introduction 

Our second theorem proves Conjecture 1.2 and also shows many other properties 

of the Gauss image of near-wire Alt minimizers. 

Theorem 1.5. [C1 Corner Regularity] Let I? be a generic embedded wire. There is 

a small R so any Alt minimizer p lying in the R-tubular neighborhood has the following 

property. Let C be any crescent supported in the interior of I?. Let N be a unit normal 

vector field to  C. 

(i) The normal vector field is continuous up to  each corner of C. The limit of N as one 

approaches a corner r(s) is the Frenet binormal qr(s). 

(22) The Gauss map for C is injective and is an embedding on its interior. 

(ziz) The Gauss image of the thread and wire curves bounding C have the properties 

described in Figure 1-4. 

(iv) Consider the first eigenvalue X1 of the Laplacian on the Gauss image of C with 

Dirichlet boundary condition on the Gauss image of the wire and Neumann condition 

on the Gauss image. This eigenvalue is large: 

Showing property (iu) fulfills a prerequisite for future work imitating the bea,utiful 

result of do Carmo and Barbosa [2]. They considered a minimal disc D spanning a 

wire loop. They showed that D is stable, provided that the Laplacian on the Gauss 

image of D with Dirichlet conditions on the boundary is at  least that of the upper 

hemisphere of the Gauss sphere. Formal calculations by the author show that a similar 

a8rgument for stationary thread-wire surfaces would depend on the eigenvalue bounded 

in (1.1). 



1.2 Results 

Figure 1-4: Gauss image control. The above diagram takes place in a small 
neighborhood of w ( P )  (the Fkenet binormal of the wire at the corner point). In this 
neighborhood, we may project the sphere to the tangent plane at qr to get x and y 
coordinates on the sphere: We may do the same at the other corner of the crescent to 
get xi and y' coordinates. The Gauss image of the thread is a graph over the x axis 
in x-y coordinates and also a graph over the x' axis in XI-y' coordinates. Its geodesic 
curvature has a definite sign. The Gauss image of the thread satisfies something close 
to a graph condition: it may be parametrized as exp,(,)(v(s)y.(s)) for some continuous 
function v(s). For more information see Section 5. 
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1.3 Outline of thesis 

In Section 2 we review the existing work on Alt's thread problem and make the nec- 

essary definitions for this thesis. We define generic wires and discuss their properties. 

In Section 3 we study Alt minimizers in general. Here we present a new first variation 

property that came out of my experimental observation and which will be important 

later. We also study how Alt minimizers interact with planes. In Section 4 we apply 

our tools to near-wire Alt minimizers in order to prove Theorem 1.4. Section 5 d e  

scribes the Gauss image of near-wire crescents and proves Theorem 1.5. In Section 6 

we prove Lemma 1.3; this shows that sufficient C1ll corner regularity implies the Cres 

cent Finiteness Conjecture (Conj . 1.1). Section 7 examines mathematical examples 

of thread-wire surfaces. Section 8 surveys experimental examples and provides com- 

mentary on videos of my experiments (see www.bkstephens.net). Some of the more 

technical or mundane proofs have been relegated to Appendices A and B. 
The author has tried to choose notation that is clear and concise. As an aid to the 

reader, a general notation index is provided on page 10. To look up more specific 

notation or definitions, the reader may consult the index at the end of the thesis. 



Chapter 2 

Background and preliminaries 

PHYSICAL QUESTION. Given a piece of rigid wire B e d  in place and a flexible thread 

ti& to the ends of the wire, what stable soap-water surfaces span the wire and thread? 
b .$. 

In the physical world, a length of wire or thread has thickness. The thread resists 

curving or twisting on a small scale. Gravity and air currents affect threads and soap 

surfaces. However, in this thesis we will assume that these objects have no thickness, 

no weight, and are not under any net pressure. 

Having made these general physical assumptions, we must define a mathematical 

model suitable to our purposes. We adopt Alt's original model [l] of competiton 

for the minimization problem called the "thread problem." This is a good model for 

showing the existence of a solution which has disc-type components. It exploits the 

same idea that J. Douglas and T. Rad6 exploited. to solve the Plateau problem minimal 

discs-namely, minimizing the Dirichlet energy furnishes a minimum of area.' 

Alt's set of competiton admits calculus of variations for variations of each ex- 

tant component. However, emerging or disappearing components are problematic. In 

experiment we see components appear or disappear smoothly. (See for example the 

heart thread-pull in Section 8.2.) When a component disappears, it becomes very thin, 

and its Dirichlet-energy-minimizing parametrization by the unit disc might vary wildly. 

This is unfortunate, for we would like such a continuous variation in our physical ex- 

periment to correspond to a continuous variation in our mathematical model. For now 

'See [5, p. 276-3021 for a detailed discussion of historical progress on the Plateau problem. We 
mention here a paper of Douglas [8] and a summary by Rad6 of the work of Haar, Douglas and Rad6 
[241. 
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we may get around this problem, but in the future, once the regularity at zero-angle 

corners of thread-wire surfaces is better understood, we would like to define a new 

space suitable for doing calculus with all variations, 

even crescent-creating and crescent-destroying ones. 

The author has created examples of such spaces, but 

is waiting until the corner regularity is resolved before 

proceeding. 

We should note that K. Ecker [13] has treated 

the thread problem from the point of view of geo- 

metric measure theory. This has the advantage of 

allowing surface com~onents with more com~licated u 

Figure 2-1: This physi- 
1 

to~ologies than the disc. The GMT ~ o i n t  of view has 
A u 

cal thread-wire surface is not 
limitations. of course. For exam~le  one could not reb- 

orientable. It cannot be 
, 

resent the non-orient able ~hvsical t hread-wire surface 
A U 

modelled by an integral cur- 
shown in Figure 2-1 because it does not correspond 

rent. 
to an orientable surface. 

2.1 Wires 

Definition 2.1. A wire I? is a C1 map of a compact interval into R31 parametrized by 

arclength. A Fremt wire is a wire which is C2 and has curvature that never vanishes. 

Such a wire has a continuously-varying (right-handed) Frenet frame 

consisting of the tangent vector dl the Frenet normal vector v,, and the Frenet 

binormal vector r),. The torsion of the curve is 

See Figure 2-2. 

In this thesis we will typically treat embedded wires, to streamline the presenta- 

tion. However the phenomena that we discuss naturally applies to immersed wires. As 
a technical point, we allow the following to count a s  an embedded wire: 



2.2 Alt competitors 

Definition 2.2. An embedded wire loop is a C1 wire curve 

I' : [O, b] + R3 which intersects itself only at r(0) = r(b). 
Moreover, we require r'(0) = r'(b). 

Usually we will work with wires that have ad- 

ditional regularity and generic properties. This is 

because we are interested in phenomena observed 

in experiments which relate to high order geometric 

quantities like curvature and torsion. We will not 

work with wires less regular than C1 (such as rec- 

tifiable Jordan curves), even though Alt worked in 

that setting. 

I Figure 2-2: Renet frame. 

2.2 Alt competitors 

In Alt's original work related to our Physical Question, Alt considered surfaces in 

R3 parametrized by countably many discs overlaid on the real interval [-1-11. See 

Figure 2-3. 

Figure 2-3: Alt competitor (B, M). The shaded region on the left is an admissible 
domain B. Its image under X is the shaded surface shown in W3. The dashed upper 
boundary of B maps to the dashed "thread" curve in R3. The dotted lower boundary 
of B maps to the dotted wire curve in R3. The latter must be monotonic relative 
to the fixed parametrization of the wire. Note that the competitor pictured is not a 
minimizer. For example its Dirichlet energy could be improved by pushing in parts of 
the free thread, or straightening out the free thread where it meets the wire. 
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He considered only the case where the wire I' and thread length L satisfy 

Obviously the thread cannot be shorter than the distance between its endpoints. 

On the other hand, if the thread length meets or exceeds the length of the wire, then 

in the physical system one may achieve zero area by letting the thread trace the wire 

(possibly backtracking on itself to use up excess length).. 

We will call these objects Alt compet~tors.~ 

Definition 2.3. Let I' be a wire3 and let L satisfy (2.1). The set of Alt competitors 

eAIt(r, L) consists of pairs (B, M),  where 

(2) The set B consists of [-I, 11 unioned with unit discs lying in A centered on the 

real line such that the discs' interiors are pairwise disjoint. Let p f  : [-I, 11 -t A 

parametrize the points on the upper boundary of B as by their x-coordinate. Similarly 

let p f  parametrize the lower boundary of B. 

(zz) The map M is H1(BO,  R3) $3)n Co(B, R3). 

(222) The curve M o p+ has length at most L. 

(zv) There is a Lipschitz non-decreasing map 4 : [-I, 11 + [-1,1] so 4 is the identity 

where pf lies on the x-axis and 

Here E is the fixed identification E : [-I, 11 -, dom r; s H t(r) (s + 1)/2. 

See Figure 2-3 for an example of an Alt competitor. 

Definition 2.4. In an Alt competitor (B, M), the portion of thread not adhering to  the 

wire is called the free thread. It is parametrized by M restricted to  the upper boundary 

of  B, minus the real line. The portion of the thread which adheres to  the wire is wire- 

adhering thread. It is parametrized by M restricted to  aB n [-I, 1). 

2He called them "admissible maps." 
3Alt treated the case of a rectifiable Jordan arc. 
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The Alt competitors compete to have minimal Dirichlet energy: 

Definition'2.5. We define the Dirichlet energy of an Alt competitor (B, M) to  be 

Requiring M to be fil(BO) means that we require D(B,  M) to be finite. 

Figure 2-4 shows an example of an Alt competitor which minimizes Dirichlet 

energy. See Section 8.2 for a physical experiment corresponding to this picture. 

Here is a version of Alt 's result in our setting: 

Theorem 2.6. Assuming (2.1), there exists an Alt minimizer (B, M) E eAl,(I', L) which 

minimizes the Dirichlet energy on &(I?, L) and has the properties 

in BO. Moreover, the free boundary attains the maximum allowed length: 

t ( M  o p f )  = L. 

We say that ( B ,  M) solves the thread problem P(r, L). 

We will need to do analysis on individual surface components of Alt minimizers, 

which we call crescents. Figure 2-5 shows how to parametrize the middle crescent of 

the Alt minimizer (B, M) in Figure 2-4 by pulling back hf on the middle disc of B to 

the unit disc. To describe this middle crescent we need this new map X : A + R3 and 

the gluing information which tells us how the lower boundary of the disc, a- A, attaches 

to the wire. This information is contained in the glving map, a homeomorphism 4- : 

d- A. Together the pair (X, 4-) encodes the middle crescent of (B, M) . 
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Figure 2-4: Alt minimizer (B, M). On the left we see the admissible domain B 
sitting in the unit disc in @. It consists of three osculating closed discs, union the 
interval [- 1 , 11. The map M sends this closed set to the thread-wire surface shown at 
right. It lies in R3, although this example is planar for simplicity. We see that the 
dashed region on the left maps to (dashed) thread lying on wire. The dotted region on 
the left maps to (dotted) pieces of free thread. The solid bottom boundary aB maps 
to  the wire. The conditions of Definition 2.3 mandate that M map the horizontal 
pieces of 3B to I' in a manner prescribed by (. The map M may send the rest of 8-B 
arbitarily, so long as it does so weakly monotonically. 
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2-5: An Alt crescent ( X ,  &) of Alt minimizer (B, M) shown in Figure 2-4. 
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Figure 2-6: Arcs of the 

unit circle. 

Below is the general definition of Alt crescent. 

(Also, see notation in Figure 2-6.) 

Definition 2.7. Let I? be a wire. Let (B, M) be an Alt 

minimizer for some thread problem ?(I?, L). For each disc 

B%f BO we may obtain an Alt crescent as follows: 

Let X : A + R3 be M pulled back by the affine map 

from A to  B~ which sends [-I, 11 to  B% [-I, 11 in 

an increasing manner. 

Let 4- be the homeomorphism from 9-A --+ [O, [(I")] 
which satisfies 

r o + - = x  (2.3) 

The map 4- is the gluing map. 

Definition 2.8. The part of the wire bounding the crexent is called the crescent's sup- 

porting wire; it is parametrized on the domain Im +-. The (possibly empty) portion I" 
which does not support any crescent is called threadbearing wire. 

Lemma 2.9. In the above definition, the gluing map 4- is in fact an isomorphism. 

Proof. The idea is that if X mapped an interval of &A to a point on the wire, we 

could show that X maps all of A to that point. See [5, p. 248, Thm. 31. 

Theorem 2.10. Let X : A -+ R3 be an Alt crexent of an Alt minimizer ( B ,  M) for 

a thread problem ?(I", L). Let y(s) reparametrize the free boundary XIa+* by arclength. 

Then on the interior of the free thread, (O,l(y)), 

where K is a constant associated to  (B, M). If  this crescent is isolated (there are postive 

length pieces of wire-clinging thread on either side of it) and the wire r is smooth, then 

Alt also shows that the free thread meets the wire tangentially.* 

4See [I] and [6, p. 2731. For the last sentence, see [6, p. 2923. 
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Note that because only the magnitude of the curvature vector is controlled, we 

cannot conclude that the thread is C2 on [O,l(r)]. So all we can say is that ~ ( s )  is 

C .  In this thesis we will show that near-wire crescents meet the wire tangentially 

whether they are isolated or not. We will also show the existence of limits of ;j. a t  the 

endpoints of the free thread in the case of near-wire crescents. This will establish the 

full C2 property for the free thread bounding these crescents. Note that if one looks 

past the corner of an isolated crescent, the thread curvature might very well change, 

because there the thread coincides with the wire. For example, Figure 2-4 shows such 

a change in thread curvature at the left boundary of the first crescent. 

What about the regularity of the free thread in its interior? Here we have a very 

strong result of Dierkes-Hildebrandt-L~W~:~ 

Theorem 2.11. Let X : A 4 R3 be an Alt crescent. Then X may be continued 

analytically across the free boundary aTA and on this boundary it has no branch points of 

odd order nor any true branch points of even order. Moreover, if X is assumed to  be an 

embedding, then X(w) has no false branch points of even order on a:A. In this case the 

free trace C = XIayA is a regular, real analytic curve of constant curvature n. 

In any case, we have on the interior of the free thread (except at branch points), 

;j.(s) = nv(s) (2-4) 

where v(s) is the outer side-normal to  the surface. That is, v(s) is perpendicular to the 

thread and tangent to  the surface. 

Note that a false branch point is one where the surface may be locally reparametrized 

to make it an immersion. We will show using other methods than those of Dierkes- 

Hildebrant-Lewy that near-wire components of thread-wire surfaces have no branch 

points and are in fact Lipschitz graphs. The main reason we need Theorem 2.11 is that 

it allows us to extend Alt minimizers across the thread in a real-analytic way. 

One consequence of this regularity theory is that each crescent (X, qL) of an Alt 

minimizer has a Gauss map g defined on A \ ((-1, O), ( 1 , O ) )  except at  countably many 

points on &A where VX = 0. If the crescent is locally a graph near one of these 

points, and the wire is smooth enough, we will be able to continue the Gauss map 

across the point. We will see this in Section 4.3. 

5 ~ h i s  statement is adapted from [6, p. 2731. Also see [7], (161, and [17]. 
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From the Plateau problem, we a>lso have a regularity result for Alt minimizers at  

the wire boundary: We ada,pt the following result from [6, p. 33, Thm I]. 

Theorem 2.12. Consider a minimal surface defined by a map X : A -+ R3 which is 

continuous on AO U o where o is an open subarc of dA, and which maps a onto a Jordan 

arc I? of R3 which is a regular curve of class Cm+ for some integer m 2 1 and some 

,Y E ( 0 , l ) .  Then X is of class CmJ-'(AO U 0) .  Moreover, if I? is a regular real analytic 

Jordan arc, then X can be extended as a minimal surface across a. 

Finally, the following lemma relates the Dirichlet-minimizing property of Alt min- 

imizers to area. 

Lemma 2.13. Let (B, M )  E eAl,(l?, L)  be the minimizer found in Theorem 2.6. Then 

(B, M) also minimizers area relative t o  the competitors in eAl,(I', L) .  

We prove this lemma using Morre y 's 6-Conformal Lemma.We reprint a version of 

it here? 

Lemma 2.14. Let X be of class Co(A, R3) n H1 (A0, R3). Then, for every E > 0, there 

exists a homeomorphism r, of A onto itself which is of class H 1  on A which reparametrizes 

X as Z, = X o r, so that 

and 

D(Z,)  5 A(X) + €. 

Here A ( X )  is the area 
r 

TVe may now prove our lemma. 

Proof-Lemma 2.13. If to the contrary there were an Alt competitor (B', M')  with 

A(M') < A ( M )  then we employ Morrey's E-conformal lemma to reparametrize each 

disc of (B', Ad') to get a map M, : B' -+ R3 with 

D(M,)  5 A(M' )  + c .  

'See [5, p. 2521 and original sources [19, pp. 141-1431 and 120, pp. 814-8151 
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For small enough E we have a competitor with D(M,) < A(M1).  But since MI is 

conformally parametrized, we have A(M1) = D(M1) so we've shown D(M,) < D(M')  .. 
I 

2.3 Generic wires 

In this section we make precise what we mean by generic wires. We then interpret our 

definition in terms of how planes intersect the tubular neighborhoods of wires. 

Assumption 2.15. [Generic Wire] We say a wire is generic if the following hold. 

(2) The wire r is C4. 

(22) The curvature ~r does not vanish. Hence is a Frenet curve (Definition 2.1). 

:c (zzz) The curvature K r  is a Morse function. In other words, whereever its first derivative . 

vanishes, its second derivative does not. 

(zv) The torsion Tr crosses zero transversely. In other words, wherever it vanishes, its 
. . first derivative does not. 

(v) The torsion TI. does not vanish at any critical point of curvature K r .  

In this definition we don't allow the curvature to vanish. We should not ask the 

same of the torsion, however, because then C3 wire loops would be required to have 

their binormals wind at least once around the wire as one traverses the wire loop. 

In order to avoid encoding this topological requirement, we find it natural to let the 

torsion vanish. 

Definition 2.16. Let be a wire curve. We define the wire-plane intersection number 

in the tubular neighborhood Tub$ to  be 

where the maximum is taken over connected components C of VnTubR(r) for every plane 

V in R3. 

We interpret our generic wire assumptions in terms of the wire-plane intersection 

number. 
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Lemma 2.17. [Wire-Plane Intersection Number] Let I' be a generic wire. Then: 

(ij For any R > 0, we have nwire.plane(r, R) 2 3. 

(iij For sufficiently small R, we have nwi,,pl,,,(r, R) 5 4 (modulo an assumption7). 

(iii) For any critical point m of r;r there is a subarc of  I' containing rn so for sufficiently 

small R, we have nwire-plane(I': R) = 3. 

We prove this in Section A.5 of Appendix A. 

7 ~ o r  claim (22)-and claim (ii) only-we must make the additional assumption that  r is C5. 
Claim (ii) is not used in this thesis, since we work with C4 generic wires. However, the author feels 
it illustrates a useful property of the wire-plane intersection number. 



Chapter 3 

Alt minimizers 

In this' section we describe some global properties of Alt minimizers. Unlike later in 

this thesis, we do not assume that the Alt minimizers lie near a wire. 

3.1 New first variation property ' . 

The properties of stationary solutions to Altls thread 

problem given in the literature (as represented in 

[6]) do not capture all the properties of stationary 

thread-wire surfaces that I observed in experiment. 

In this section we show additional properties of Alt's 

minimizer related to it being stationary under first 'c 

variation. The author thinks that these variation 
Figure 3-1: An Alt corn- results are still weaker than what is suggested by ex- 
petitor with n < 0 may be periment. To progress farther, we will need to bet- 
improved. 

ter understand of the regularity of Alt minimizers at 

cusp-corners. 

Lemma 3.1. If (B, M) is an Alt minimizer, then it has free thread curvature n 2 0. 

Proof. This is straightforward. If the thread has negative curvature, we can find a 

point p E a:A which is not a branch point. We may then pick a plane perpendicular 

to the side normal to the surface at  X ( p )  and translate the plane towards the surface a 

small amount. Then we have a situation like the one shown in Figure 3-1. Projecting 
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the thread and surface onto that plane reduces the Dirichlet energy of the map X ,  

and it also reduces the length of the free thread. In this way we show that there is 

another Alt competitor in (?(I?, L) with strictly less Dirichlet energy. This contradicts 

the minimizing property of (B, M). I 

Theorem 3.2. [Thread-Bearing Wire Curvature Bound] If (B, M) is an A l t  

minimizer with positive free thread curvature K ,  then anywhere the thread adheres t o  a 

positive length o f  wire, the wire curvature nr (s) is dominated by the free thread curvature: 

Proof. We remember first that Alt's assumption (equation (2.1), p. 22)--that the 

thread length is less than the wire length--guarantees us that (B,  M) has at  least 

one component. Let q E B parametrize a thread point X(q). Let y reparametrize 

X restricted to  the upper boundary of B near q so that y ~ara~metrizes the thread 

boundary by arclength, with y(0) = X(q). By Theorem 2.11 we may assume that X 

does not have any branch points a t  q or within arclength X of q. 

Assume to the contrary of Thread-Bearing Wire Curvature Bound Theorem that 

there is a small positive length arc of wire I' parameterized by [sl, s2] where the thread 

adheres and 

~ r ( s )  L (1 + c ) ~  (3.1) 

for c > 0, s E [sl , s 2 ]  Here we consider c and s l  to  be fixed. However, we set 

and below we will impose smallness restrictions on w. This means moving s 2  toward 

s l .  For one, we require 

lu < X/2. (3.3) 

We illustrate our situation in Figure 3-2a. The idea is that we can then create a 

new surface component on the arc rl I,, ,,,I whidi increases Dirichlet energy but decreases 

length. Meanwhile, we may modify an existing surface component to reduce Dirichlet 

energy and increase thread length. (See Figure 3-2b.) Because of (3.1) we will end 

up making a net profit, and finding a new element with strictly less Dirichlet energy 

and strictly less length. This will then contradict the assumption that (B, X )  was an 
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Alt minimizer. 

Let p(s) : [0, w] -+ R be a smooth function which equals 1 on [w/4,3w/4] and 

then decays montonically to zero at 0 and w. Define the surface 

Z(S, t) = r(s) + tp(s - sl)vr (s) 

where vr(s) is from the Frenet frame of I?. Then we have 

1 - nr(s)p(s - si) t  

tp'(s - s1) 

-Tr(s)p(s - si) t  

with respect to the Frenet frame i'(s), y. (s) , qr (s) of r .  (See Section A. 1, p. 145, for 

Frenet differentiation formulas.) The area form is 13, x Zt 1 = p(s - sl) + O(t). For small 

positive tI we may thus consider the surface parameterized by E on [sl, s2] x [0, tI]. Our 

first modification ("modification I") to (B, M) is to add a surface component attached ' 

to the wire on [sl , s2] c dom r, parametrized by E. (Formally, we pull back Z to the 

appropriate disc in the unit circle, so that our modification obeys the rules of Definition 

2.3.) This modification affects the area and thread length of (B, M) as follows: 

(A Thread Length)I = - / ~ I K ~ ( s ) ~ ( s  - sl)ds + ~ ( m a x ( w ,  
s=s1 

We perform a second modification ("modification II") of (B, M )  near our pre- 

selected point M(q). The surface is real-analytic near M(q) and is' locally a graph over 

its tangent plane V. (Here we use (3.3) to rule out branch points.) Let w be small 

enough so y (s), Is1 5 w lies in this local picture. Let v,(O) be the outer side-normal 

to the surface at y(0). We may modify M near q by retracting it inward along itself. 

This gives sends each point y(s) on the thread curve to a new point y(s). Specifically, 

we modify M so 
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Figure 3-2: Thread-Bearing-Wire Curvature Bound variation.. If an element 
in Alt's set has a region of wire which is more curved than the free thread curvature 
(as in the left part of (a)), then we may create a new surface component in this region 
and diminish an existing surface component to reduce the overall area. 

where tII is a small positive constant to be determined later. We may then calculate 

the effects of this second modification on total area and total thread length: 

w 

(A Thread Length)II = t ~ r ~ p ( s ) d s  + O(rnax(w, t ~ ) ~ )  

Combining (3.4) and (3.5) we see that the total effect of our modications is: 

A Area = (tI - tII) p(s)ds + O(max(w, t ~ ,  ~ I I ) ~ )  (3.6) 
w 

A Thread Length = ( t ~ ~ r ( s l  f s) - t r r~)p(s)ds  + O(max(w, t ~ ,  ~ I I ) ~ ) .  

By choosing tII = (1 +c/2)tI and then making tI and w sufficiently small, we may ensure 

that the net affect is a decrease in total area and an increase in total thread length. 

Using Morrey's E-conformal lemma we may reparameterize to translate our decrease 

of area into a decrease of Dirichlet energy. (See Lemma 2.13.) This contradicts the 

assumption that (B, M) is a minimizer of Dirichlet energy in Alt's set e(r, L). We 

conclude that there does not exist any positive length arc of I? on which nr exceeds K. 

rn 

3.2 The Gauss image of a crescent 

Stability of classical minimal surfaces was profitably studied by pulling back normal 

variations to the Gauss sphere via the Gauss map (see [Z]). In this section we describe 
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Figure 3-3: Gauss image of thread. In this diagram, the slightly dotted curve 
is the Gauss image of the wire, and the cursped curve with the arrow is the Gauss 
image of the thread. We see that the Gauss image of the thread always turns left and 
towards the Gauss image of the interior of the surface. Cusps occur in the thread's 
Gauss image when the torsion of the thread changes signs. In the diagram we do not 
show any branch points in the Gauss map, although these may occur on the interior or 
at the boundary. They may occur when the Gauss curvature of the surface vanishes. 

the Gauss image of an Alt crescent. We show that the Gauss image of the thread 

always turns convexly-towards the Gauss image of interior crescent points near the 

thread boundary. The only exception to this is when the thread torsion is zero; then 

the Gauss image of the thread curve may have non-convex cusps. See Figure 3-3. 

Let (X, $-) be an Alt crescent. For this section we assume that X does not have 

any branch points. This assumption is valid for near-wire crescents. (See Slicewise 

Parametrization Lemma (Lem. 4.4).) Let C refer to the immersed surface parametrized 

by X. We may then define a manifold (A, h) with metric h being the pull-back along 

X of the standard metric on R3. 
In this section we adopt the notation g for the Gauss map: that is, for each x E A, 

we get a unit vector g(x) E S2(1) normal to C at X(x). We refer to the unit sphere 

S2(1) as the Gauss sphere. We use the standard outward normal vectorfield to make 
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S2(1) an oriented manifold. Let 4, : d+A + R be a bijection reparametrizing the free 

thread: 

Y ( ~ + ( x ) )  = X ( x )  

for x E a+A so that y(s)  is parametrized by arclength. Then N(s)  = g((g5+)-'(s)) is 

the corresponding field of normal vectors. Because of the Lagrange multiplier condition 

on the free thread, the Frenet frame of the thread curve aligns with the surface C. We 

have that the Frenet normal to the curve v(s) is the sidenormal of the surface at  y(s).  

Finally, we orient the surface C by picking a normal vectorfield which at the thread 

boundary equals the binormal of y. 

Standard differential geometry tells us for s (0, [(y)): 

and along a+A: 

V,N = Ty ' .  

Here V is the Levi-Civita connection of the metric h. It is defined on dTA because the 

.41t crescent may be continued across the thread boundary as a minimal surface. 

So the thread maps to the Gauss sphere with velocity T,(s)v(s). We care how the 

points on C near the thread boundary map near the Gauss image of the thread bound- 

ary. The basic idea is that the Gauss map is orientation-reversing (the determinant of 

its Jacobian is the Gauss curvature of C which is almost everywhere negative). Thus 

we expect the interior of C, which lay to the right of the thread y(s) as it moved in the 

direction of increasing s ,  to lie on the the left of the Gauss image of the thread curve 

as it moves in the direction of increasing s. 

We may see this directly in our coordinate system, using the orientations chosen 



3.2 The Gauss image of a crescent 37 

above. Our coordinate system on C has the the thread oriented so the interior of the 

surface is to its right-in the -v direction-as it moves in the direction of positive s. 

We see that points near the thread on the surface map to the Gauss sphere so they lie 

in the dg(-v) = -T,yl direction from the thread. (Here dg is the differential of the 

Gauss map g.) NOW for x E dTA and s = 4+(x), , 

dgx(-l(s)) x dgz(-4s)) = -T,(S)~U(~) x .yl(s) = ~ , ( s ) ~ g ( x ) .  

The normal vector g(x) points outward from the Gauss sphere at the base point g(x). 

So for T,(s) # 0, the above equation shows that dg,(-v(s)) points to the right of 

dg,(yf(s)). In other words, points nearby the thread boundary get mapped to lie 
on the right of the oriented curve g(a+A). We can also detect the effect g has on 

orientation: the ordered basis ( y' (s) , -v(s)) is negatively oriented on the immersed 

Alt crescent because 

yf(s) x ( -4s))  = -g(x)- 

The image of this basis under dgx gives a pair which is positive oriented, because its 

cross product ~ , ( s ) ~ ~ ( z )  points outward (for T,(s) # 0). 

What is the curvature of the Gauss image of the thread, defined by the curve . 

: s H N (s)? For s E [0, [(y)] and x = d;' (s) we calculate 

Here N,(x) is short for V,N at  x. This gives us the curvature measured relative to the 

inward side normal of the Gauss image of dTA. So the image of the thread always turns 

left-towards the Gauss image of the interior of the thread surface. See Figure 3-3. 
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3.3 Convex hull results for thread-wire surfaces 

The following follows by applying the Maximum Principle:' 

Lemma 3.3. If Y E Co(A) n C2(A0) is a minimal surface, then it lies within the convex 

hull of its boundary: 

Y(A) c Convex Hull (Y(dA)).  

In this section we show that a stronger enclosure results holds for an Alt minimizer- 

the minimizer lies in the convex hull of just the wire part of its boundary. 

Theorem 3.4. [TWS Convex Hull] Let p = (X,#-) be an Alt crescent with non- 

negative free thread curvature. Then the surface X ( A )  lies in the convex hull o f  supporting 

wire r ( I m  4 - ) .  

Proof. It will suffice to show that the thread curve lies in the convex hull of the wire 

curve. Indeed, we have 

X(d+A) c Convex Hull (&A) implies X ( A )  c Convex Hull (dA) = Convex Hull (&A) 

(3.7) 
by Lemrna 3.3. 

When the free thread curvature K, of (X ,  4-) is zero, the free thread is a straight 

segment. We thus fulfill the condition of (3.7) a,nd our lemma follows. Otherwise, we 

have by Lemma 3.1 that n > 0. Consider a point p E d:A parametrizing a thread 

point X ( p ) .  Let F he an arbitrary linear function on R3. By ( 3 3 ,  proving our lemma 

reduces to showing 

F (X(p) )  < maxa-A F o X .  

W-e do this by showing that the harmonic function h = F o X does not attain a local 

maximum at p. To see this, extend h across the boundary i).+A near p. It has an 

expansion whose lead term in a homogeneous llarrnonic polynomial P ( x ,  y). If this 

polynomial is degree 2 or higher, it is easy to find larger values of h by moving into 

the interior of A from p. If P ( x ,  y)  is linear, then consider ( V h )  ( p ) .  If this vector does 

not point normally out of A ,  then we may move along a pa.th in A from p  and find h 

increasing to first order. If this vector points normally out of A,  then we may use the 

fact that K, > 0 to show that as we move along a A  away from p ,  we have h increasing 

to  second order. 
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Figwe 3-4: Alt crescent lies in cowex hull of sup+&ing wire. On the left 
we show an example of an.Alt . On the right we show the convex hull of its 
supporting wire. 

See Figure 3-4. As an aside, we show a slightly more complicated property for the 

adjoint surfaces to Alt crescents. An adjoint surface to (X, 4- ) is a map X* : A + W3 
where the respective components of X* are harmonic conjugates of the components 

of X. We do not use adjoint surfaces elsewhere in this thesis. See Figure 3-5 and 

Figure 3-6. 

Theorem 3.5. [TWS Adjoint Convex Hull] Let p = (X, 4-) be an Alt crescent 

with positive free thread curvature n. Let X* be a minimal surface adjoint to X. Then 

by previous work,2 the adjoint thread X*le+A is a c u m  lying in a @here S of radius K-I 

and c e n t d  at some point p. We show the surface X*(A) lies in the convex hull of the 

adjoint wire X*(O-A) union {p). 

Proof. Following the reasoning at the beginning of the previous proof, we reduce to 

having to show for arbitrary linear function F and p E a",: 

F(X*(q)) 5 ( F ( p ) ,  m a m ~  F X * )  . (3.9) 

To see this, extend h across the boundary a+A near q. It has sn expansion whose lead 

term in a homogeieous harmonic polynosnid P(x, g). If this polynomial is degree 2 or 

higher, it is easy to find larger values of h by moving into the interior of A from q. If 

P(x,  y) is linear, then consider (V h) (q) . If this vector does not point normally out of 

A, then we may move along a path in A from q and find h increasing to first order. If 

this vector points normally out of A, then we may conclude that the outer normal v 

'See, for example, [5, p. 369, Cor. I]. 
2See (6, p. 275, Thm. 21 and [6, p. 281, Lem. 41. 
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Figure 3-5: The adjoint of an Alt crescent, satisfying the adjoint convex 
hull property. Here we see a adjoint surface of the one shown in Figure 3-4. It is 
a stationary point of the free boundary problem for surfaces bounded by the adjoint 
wire and a curve lying in the surface of the sphere. Experimentally this can be realized 
with wire, a glass sphere, and soap-water. In the diagram, we see that the surface lies 
in the convex hull of its wire and the center of the sphere. 

at X * (q)  satisfies 

Then the Lagrange multiplier condition for the adjoint surface [6, p. 2751 dictates that 

v points from X*-(q) towards the center p of the sphere. We have 

We have thus shown (3.9), and our result follows. 
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Figure 3-6: An adjoint surface of an Alt crescent, which does not lie in the 
convex hull of its supporting wire. This is a surface which satisfies the adjoint 
free boundary problem. If Y is a harmonic, conformal parametrization of this surface, 
then the adjoint surface X = -Y* is a stationary thread-wire surface. We see that Y 
lies in the convex hull of its supporting wire and the center of the sphere. However, it 
does not lie in the convex hull of just its supporting wire. This suggests the necessity 
of including the sphere's center in TWS Adj oint Convex Hull Theorem (Thm. 3.5). 
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3.4 How planes may intersect crescents 

In this section we investigate what the intersection between a plane and an Alt min- 

imizer can look like. Essentially, we show that if a connected component of the in- 

tersection contains finitely many wire points, then that component has the structure 

of a finite graph. Moreover, this graph can only touch the thread curve in one point. 

We state the full lemma below. The full statement is more technical. It only requires 

knowledge about how a compact piece of the plane intersects the wire. Moreover, there 

is a technical issue which arises in the case that the free thread curvature is zero. 

Lemma 3.6. [Intersection Graph] Let be an embedded nonplanar C1 wire curve. 

Let V be a plane in R3. 

(a) Let W be a compact subset of V which I? intersects at most a finite number m times. 

(b) Let (X, 4-)  be an Alt crescent with Im X disjoint from &W (the boundary of W 

in the topology of V). 

(See Figure 3-7.) Then the pre-image X-'(w) has at most m connected components. 

Each connected component is either 

(2) a single point of &A, or 

(22) a finite tree graph 

(a) with all interior nodes having even valence of at least 4, 

(b) with at least one node on &A, 

(c) with at most one node on a+A. 

(222) a set containing all of a+A. Moreover, in this case, the free thread curvature of 

(X, 4-)  is zero. 

In particular, if K > 0 and m = 0, then the Alt minimizer does not touch the set W. If 

n > 0 and m 5 2, then the pre-image Xn(W) has no interior nodes; this implies that the 

interior of the Alt crescent (Xlao) never oscullates the set W. 

In this lemma, case (ii) is by far the most important. Case (iii) is only relevant 

in the special case where the free thread curvature is zero and the free thread consists 

of straight segments. 
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Figure 3-7: Conditions for Intersection Graph Lemma (Lem. 3.6). 

We may reduce the proof of this lemma to a statement about the level sets of 

harmonic functions on the unit disc. Below we prove the relevant lemma. Then we 

prove the Intersection Graph Lemma. 

3.5 Level sets of harmonic functions on the disc 

Consider a minimal surface Y : A -r R3 spanning a contour. Let us cut this surface 

with a plane, expressed as F = a for F a linear function on R3. Assume that Y is 

parametrized conformally and harmonically on AO, so as to minimize Dirichlet energy. 

Then we may pull back a linear function F by Y to obtain a function F o Y on A 
which is harmonic on AO. The intersection of the minimal surface with the plane is 

parametrized by Y on the subdomain F o Y = a. 

In this context, Rad6's lemma helps us understand intersections between planes 

and minimal surfaces. 

Lemma 3.7. [Radb's lemrnaI3 if h : A -t R is harmonic in AO and if its derivatives 

vanish to orders O,l, .  . .m at some point p E Ao, then h changes sign on dA a t  least 

2(m + 1) times. 

3See [5, p. 2721. For more about Rad6's work, see [24]. 
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Roughly speaking, the idea of Rad6's lemma is that the level set h = 0 lookslike 

a graph. The graph cannot have cycles (closed loops) because then by the Maximum 

Principle an entire open set would have h = 0, whence by analytic continuation h 

vanishes on all of A. Since the graph does not have cycles, we expect that an interior 

zero of order m + 1-which gives a node with valence 2(m + 1)-propogates outward 

to force at least 2(m i- 1) sign changes on the boundary. The type of result we need is 

similar, but it has a special condition on the top boundary d+A of the unit disc. There 

we assume that h does not achieve any strict local extrema. Under that assumption, 

we are able to guarantee a certain number of sign changes on the lower boundary &A. 

The following lemma characterizes a level set h = a of a harmonic function h on the 

unit disc A. It is written in a form that allows it to be applied when we know properties 

of h only for a part U of the level set. To understand the essence of the lemma, the 

reader may find it helpful to read it in the case that U is the entire level set. Our final 

preparation is to clarify some notation in Figure 3-8 and the following definition. 

Figure 3-8: Arcs of the 

unit circle. 

Definition 3.8. A (planar) graph is a set of points V 
(nodes)in R2 and a set of continuous curves (edges) from 

V to V. We allow multiple edges to connect the same pair 

of nodes and to connect a node to itself. The valence 

of a node is the number of edges emanating from it. We 

assume that every node has valence at least 1. A graph is 

a tree graph if it is connected and simply connected. 

Lemma 3.9. [Harmonic Level Set] Let h E Co(A, R) 
be harmonic and real-analytic on A \ &A. Let U be a 

nonempty union of connected components of a level set 

h = a on A. Assume that: 

(a)  The function h is nonconstant on d+A and does not 

attain any local extrema on the domain A at points 

of the set %A. In other words, for each point p in . 

%A and each neighborhood N of p in A, 



3.5 Level sets of harmonic functions on the disc 

(b) We have h = a at only m points of U n &A. 

Then U consists of a t  most m connected components. Each component P is either a single 

point on 8-A or is a planar graph 

(2) which is a finite tree graph, 

(22) with all interior nodes having even valence of at least 4, 

(222) with at least one node on &A, 

(zv) with at most one node on a+A. 

In this section we prove the Harmonic Level Set Lemma by proving several sup- 

porting lemmas. 

..,.:, . 
Lemma 3.10. Let h E p ( A ,  W) be a nonconstant function which is harmonic and real- 

analytic on A \ &A. Then 

(i) the level set h = a cannot contain a Jordan curve; 

Moreover, if assumption (a) of Harmonic Level Set Lemma (Lem. 3.9) holds then: 

(i2) the level set h = a cannot contain a curve y : [0, b] 4 A mapping (0, b) t o  AO and 

0, b to  aA. 

Proof. If the level set did contain a Jordan curve, then the interior of the Jordan curve 

would be an open set V for which h = a on dV. Then by the ~ a x i m u m  Principle, 

we would have h = a on V.  By analytic continuation we get h = a on A, contrary to 

assumption. So the level set did not contain a Jordan curve in the first place. 

As for (ii), we again have an open set V formed by the curve and the top bound- 

ary d+A. We again apply the Maximum Principle. To avoid the contradiction that 

threatened to occur in the previous paragraph, an extremal value other than a must be 

attained by h on dV. This means'that aV attains an extremal value for V on aVndr A .  

But then assumption (a) of the Harmonic Level Set Lemma has been violated. rn 

Lemma 3.11. Let h E Co(A,  W) be harmonic and real-analytic on A \ &A. Let P be 

a connected component of the level set h = a on Awhich intersects a-A at only finitely 

many points. Then P is a planar graph in the following sense. Let N be the set of critical 

points of h in A \ &A.  Let B- be the (finite) set of places where h = a on &A. Let B+ 
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be the places where h = a on df;A and Vh # 0. Let E be the remainder o f  P. Then E is 

a disjoint union of  continuous curves with ends in N U  BuB+. The curves are real-analytic 

on their interiors, and they remain real-analytic up to  any end points lying in N U B+. The 

valence of any node of  P in A0 is at least 4. 

Proof. Let E be the subset of P\ d- A where Vh is non-zero. Let N be the remainder 

of P, where Vh vanishes. For each n E N not lying in we examine the convergent 

expansion for h near n. The lead term must be a homogeneous harmonic polynomial4 

Real (azk), for a a nonzero con~plex number and k 2 2.5 It is easy to show that in 

some "nodal" neighborhood U, of n, P has the structure of a graph which consists 

of 2k 3 4 edges, each connecting n to a point in aUn. Now consider a point e E E. 

For E a small positive value, let W 9 e  the set of points x of A not lying in any nodal 

neighborhood U, and having (Vh)(x) exceeding E .  For sufficiently small E ,  there is 

a connected component C,' of E n WE containing e. Applying the Implicit Function 

Theorem to h at  each point of and taking a finite subcover, we conclude that C,' is 

a continuous curve from dWf to itself. As we let E decrease, we obtain extensions of 

this curve. For each end of the curve, one of two things happens. 

(2) Either at some value of E the curve touches a boundary of a nodal neighborhood 

U, for some n. In this case we can use our analysis of h in Un to demonstrate 

that the curve in this direction connects the point e to the node n. 

(zi) Case ( 2 )  never occurs as E goes to zero. In case (ii), we have that the curve 

terminates closer and closer to &A. By the compactness of dA, it must have 

limit point(s) on dA. Can it have more than one? Say it did, at ql, qz. Then by 

assumption (b) of Harmonic Level Set Lemma (Lem. 3.9), we can draw a segment 

on A from dgA to a point q* in aEA between ql and qz with h(q*) # a. By 
construction, the curve Cz crosses this segment at an infinite sequence of distinct 

places as E goes to zero. These intersections must accumulate somewhere on the 

segment. But they cannot: not at q* because h(q*) # a and h is continuous; not 

elsewhere on the segment by real analyticity of h. So the curve C,' approaches a 

unique limit point as E goes to zero. 

4 ~ h e  Real() function extracts the real part of a complex number. 
5 ~ e  cannot have k = 0 because then by analytic continuation, h would be constant on all of A; 

this would violate both assumptions (a) and (b) of the Harmonic Level Set Lemma (Lem. 3.9). 
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We have shown that P consists of interior nodes N, boundary nodes B-, B+, and a 

set E which decomposes into continuous curves connecting these nodes. Curves which 

connect N U B+ to N U B+ stay a positive distance from 3-A and so are real-analytic. 

Lemma 3.12. Let h E Co(A,R) be harmonic and real-analytic on A \ &A. Let U be 

a union of some connected components of the level set h = a which intersects 3-A in at 

most finitely many places. Consider the set Z defined by either h 2 a in U or h 5 a in A. 
Let p be any point on dZ in A*. Then there is a continuous simple curve y : [-I, 11 -+ 32 
which passes through p at y(0) and intersects 3A at two places, y(1) and y(-1). 

Proof. We define the curve y iteratively. For k = 1,2 , .  . ., consider Z restricted to the 

closed disc Lk = B(0 , l -  1/(2k)) centered on the origin. Say that Lko contains p. Then 

for k 2 b, the set LkndZ has a graph structure inherited from that of P. We may trace 

32 from p in either direction, following an edge to a new node in each step. Operating 

in this way we can never encounter a node we've already been to, for that would imply 

a closed loop in the h = a level set and would violate Lemma 3.10. ( 2 ) .  Moreover, our 

operation must end after finitely many steps because there are only finitely many nodes 

in Lk. (Indeed, nodes are zeroes of Vh, which is real analytic up to the boundary of 

Lk.) In this way we can define .a curve yk : [-(I - 1/(2k)), 1 - 1/(2k)] + d Z  n Lk which 

is continuous and non-self-intersecting and has yk(0) = p. Moreover, we can define such 

a curve so yk+l extends yk. Taking y to be the limit of such curves, we obtain a curve 

defined on (- 1, l ) .  Now consider the sequence y(1- 11 ( 2 k ) ) .  It must approach a point 

b* of B arbitrarily closely. Moreover, it cannot have two points of B as limit points. 

Indeed, construct a circle C* about b* cutting it off from the other points of B. Then 

y cannot intersect C* infinitely many times, because these intersection points would 

have to accumulate and they can't (not in the interior of A by real analyticity of h, 

and not at C* n 3A because h # a there). We conclude that y(s) stays inside C* after 

sufficiently large s, and converges to b'. Similarly we can show that ~ ( s )  converges as 

s goes to -1. rn 

Lemma 3.13. Let y,p ,  Z be as in Lemma 3.12. Additionally assume that Lemma 3.10.(iz) 

holds. Then the curve y may be extended to a curve y2 which exhausts the component of 

32 containing p and has a t  most one endpoint in 3+A. 
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Proof. Let CZ be the component of d Z  containing C. Applying Lemma 3.12 to each 

point of Cz n A", we get many curves lying in 8 2 .  Observing Lemma 3.10, we see that 

they must join together to form a curve which does not self-intersect, touches d-A at 

most once in each of the finitely many points of B, and touches a+ A at most once. . 
We may now marshal1 our supporting lemmas to prove the main analytic result of 

this section: Harmonic Level Set Lemma (Lem. 3.9). 

Proof-Lemma 3.9. We consider the component P defined in the lemma. There are 

several cases. 

(i) The component P does not venture into the interior of the unit disc. Then 

it is a closed arc of aA,  possibly degenerate. If its intersection with dD,A is 

an arc of positive length, then by analytic continuation we can show that h is 

constant on a+ A; this contradicts assumptsion (a). Combining this observation 

with assumption (b) of the Harmonic Level Set Lemma, we see that P must be a 

point in 8A. It cannot be a point in %A, because then if we study the expansion 

for h at P, we see that the only way to achieve a single point level set is for h 

to have Vh non-zero and be perpendicular to dA. But that would then violate 

assumption (a) of the Harmonic Level Set Lemma. So we conclude that if the 

component P does not contain points of AO; it must consist of a single point of 

8-A. 

(ii) The alternative is that P contains a point in A". By Lemma 3.11, the set P has a 
graph structure. We demonstrate that it in fact is a finite tree graph. First pick 

an edge point e E P n AO and apply Lemma 3.13. For E > 0, we can consider the 

connected component P, of e in P restricted to the shrunken unit disc B(0 , l -  E ) .  

Because of the real analyticity of h, edges and nodes of P, cannot accumulate; 

therefore, it has the structure of a finite graph. Applying Lemma 3.10 we see 

that P, does not have cycles, and so is a tree graph. Moreover, by applying 

Lemma 3.12 we are able to take P, and augment it by extending each node on 

a B ( 0 , l -  E )  and each edge exiting through B ( 0 , l -  E )  by a path which reaches a 

point on dA. These paths do not intersect each other or P,, at peril of violating 

the first part of Lemma 3.10. Also, the augmented P, touches d+A at most once, 

at peril of violating the second part of Lemma 3.10. In this way we see that P, 

has been augmented by adding at most m + 1 paths where m is the finite number 

of times that h attains a on &A. Since P, is a tree graph with interior node 
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valence of at  least 4 (see Lemma 3.11)) this means that P, has n~ nodes and n~ 

edges bounded like 

For E' < E ,  the graph P,l extends the graph P,. But the number of nodes and 

edges of P, is uniformly bounded. So for sufficiently small E ,  the augmented graph 

of P, has no nodes of P on the augmenting paths. We thus show that P is a 

finite tree graph. Moreover, it must touch d+A at most once.. This then forces 

P to touch d-A at least once. 

This completes our proof of Harmonic Level Set Lemma (Lem. 3.9). rn 

With the Harmonic Level Set Lemma (Lem. 3.9) in hand, we may prove the main 

-.:, geometric result of this section. 

Proof-Lemma 3.6. Consider an Alt crescent (X, 4-).  Define the function h = F O X .  

It is harmonic (and therefore real-analytic) on AO because F has constant derivative 

and X is harmonic. We get that it is harmonic and real-analytic on %A because the 

Alt minimizer is real-analytic on the interior of the free thread and can be extended 

real-analytically across the boundary as a minimal surface (Theorem 2.11). If h is 

constant on a+A then the free thread lies in a plane. This means it has torsion 

T, = 0. If the free thread curvature  is nonzero, then we may look at  the expansion 

of the surface at a non-branch point on the interior of the thread and show that the 

surface is locally planar. (See the proof of Series Solutions to ThIP problem Theorem 

(Thm. B.6, p. 168) .) By analytic continuation the whole Alt crescent is planar, contrary 

to assumption. We conclude that if h is constant on d+A then the free thread curvature 

is not positive; by Lemma 3.1 we must have n = 0. This establishes conclusion (iii) of 

the lemma we are proving. Otherwise, we may assume that h is nonconstant on &A. 

Next we show that conclusion (ii) of Lemma 3.10 holds. If there were any path y 

in th level set h = a beginning and ending in a+A, with its interior lying in A*, then its 

image X 0 y is a curve lying in the plane F = a. Let U be theregion of with nonempty 

interior defined by y and &A. By TWS Convex Hull Theorem (Thm. 3.4)) the piece of 

surface X l r r  is planar. By analytic continuation, the whole crescent is planar, contrary 

toassumption. So we see that conclusion (ii) of Lemma 3.10 holds. It suffices to show 

that this condition holds, instead of showing that condition (a) of Harmonic Level Set 
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Lemma (Lem. 3.9) holds. The reason this suffices is that the proof of Harmonic Level 

Set Lemma only depends on the conclusion Lemma 3.10. (22). 

Condition (b) of the Harmonic Level Set Lemma is already met by assumption (a) 

of Intersection Graph Lemma (Lem. 3.6). We have thus confirmed that the function 

f satisfies the conditions of Harmonic Level Set Lemma. Now we define U to be the 

preimage X-'(W). We would like to show that U is a union of connected components 

of the level set f-'(a) = X-'(V). It suffices to show for each q E U that the connected 

component Ch of q in U is the same as the connected component Cq of q in the entire 

level set. 

We have that 

where S are sets in X-'(V) which contain q and are simultaneously open and closed 

(open-and-closed) in the X-'(V) topology. Now consider the operations on subsets 

S C X-'(V), 

The first sends closed subsets to closed subsets as W is compact; the second sends open 

subsets to  open subsets (it can be rewritten as the pre-image of set which is open in R3). 
But because we assume that X-'(XI) is empty, these are actually the same operakion, 

which we can call n. The map T sends sets open-and-closed subsets of X-'(V) to 

possibly smaller open-and-closed subsets of X-'(V). Moreover, if S contains q then 

sr(S) will contain q. We obtain 

where Sf are open-and-closed subsets of X-'(W) which contain q. This confirms that 

Cq = Ch. And so we know that the set U defined above is indeed a union of connected 

components of the level set f - ' ( a ) .  

Having verified that the conditions of the Harmonic Level Set Lemma are all met, 

we may now employ its conclusions about U ,  which is a union of connected components 

of X - ' ( V ) .  They are exactly sufficient for our purposes. I 
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Near-wire Crescent Theorem 

In this section we use the plane-crescent intersection analysis of the last section to 

control the geometry of Alt minimizers which are near the wire. By the end of the 

section we prove Near-wire Crescent Theorem (Thrn. 1.4). This theorem was stated in 

the Introduction; we reprint it here. 

Theorem 4.1. [Near-wire Crescent] Let I" be an embedded generic wire in R3. For 

R less than a constant R(r )  depending on the geometry of I?, the following will hold. If 

A is any Alt minimizer lying in an R tubular neighborhood of the wire, then the thread of 

A is C1 and touches the interim of F only tangentially. Each crescent p of A satisfies the 

following. 

(2) The wire supporting the crescent p is short (arclength bounded by c(~)R' / '~) .  
\ 

(22) Let I'(so) be a corner of p on the interior of I?. Then so is within c ( ~ ) R ' / ' ~  of a 

maximum of wire cuivature. 

(iii) Let x, y, t be the Frenet coordinates of r at T'(so). Then the crescent p may be 

expressed as a graph 

= f (x>Y) 

over a domain with y 2 0. See Figure 4-1. Here f is a Lipschitz function 
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Figure 4-1: Crescent as a graph in Fkenet coordinates. The crescent p vertically 
projects to a domain dom f lying in either the first or second quadrant of the x-y 
plane. The boundary of the domain is defined by the wire shadow curve y  = E ( x )  
and thread shadow curve y = .y(x). The domain tapers to a cusp at the origin: - 
0 < I '(x) < y(x )  5 nx2 + o(x2). - 

with additional slope control 

(zv) Where the wire supports the crescent p, nr is within ~ ( r )  Rill2 of the free thread 

curvature K .  

(v) The Frenet frame of the thread is within C(I')R'I '~ of the Frenet coordinates x ,  y, i. 

Definition 4.2. If I' is an embedded wire loop, we say its tubular neighborhood does 

not self-intersect if it decomposes into slices: disjoint discs D(s) ,  each passing through 

I' perpendicularly at I'(s). I f  I' is an embedded wire which is not an embedded wire loop, 

then we say its tubular neighborhood does not self-intersect if it decomposes into normal 

discs D(s)  and a half-ball at each endpoint of I'. 

Definition 4.3. Consider an Alt minimizer ( B ,  M) which lies strictly within a tubular 

R-neighborhood of an embedded wire I'. Let R be sufficiently small that the tubular 

neighborhood does not self-intersect. We may extend the arclength coordinate s  on I' 
perpendicularly along the slices to  obtain a function S : US,,, , D(s)  + W with 



REMARK. If we pick an orthonomal frame El(s), E2(s) of vectors along I' which span 

the orthogonal complement to P(s) at I'(s), then we may write the exponential map 

exp : R2 x dom I' -t W3 as 

We are working with cases where exp is an embedding on BRz(O, R) x dom r and where 

the Alt minimizer lies in the image of this embedding. Actually it would be natural 

to work in the case where R is just small enough that exp is an immersion and the 

Alt minimizer map X : B + W3 can be factored through the exponential map. This 

is advantageous because it allows us to prove results about self-intersecting curves. It 

is even useful for embedded curves, because the relevant geometric quantity to our 

estimates is the more forgiving "immersive7' injectivity radius, not the "embedding" 

injectivity radius. In a previous version of this thesis, all results were proved in the 

immersive case. However, the author decided to present the embedded point of view 

because the proofs are much easier to read. 

A priori, a near-wire Alt crescent could be a very complicated beast, intersecting 

itself in a swirling surface which could range far up and down the tubular enclosure, 

far from its supporting wire; It could also have branch points. See Figure 4 2 .  The 

' next lemma tames such potential behavior. It shows that the domain of X can be 

split into continuous curves which correspond bijectively with the slices of the tubular 

neighborhood corresponding to the supporting wire. See Figure 43. 

Lemma 4.4. Let I' be an embedded wire curve. Let R be small enough so that the 

R-tubular neighborhood of I' does not self-intersect. Let (X, 4 4  be an Alt crescent lying 

in this tubular neighborhood, supported on the interval of wire parametrized by Im 4- = 

[so,s11. . 

Proof. When the wire curve is planar, the Alt crescent is planar by TWS Convex 

Hull Theorem (Thm. 3.4). This case is easy; in the remainder of the proof we assume 

that I' is nonplanar. 

As we saw in Definition 4.2, when the wire I' is an embedded loop, its tubular 

neighborhood decomposes into normal discs. If I' is an embedded wire which is not 
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Figure 4-2: Near-wire Alt minimizers could be quite wild, a priori. A near- 
wiire Alt minimizer could intersect itself, range far up and down the wire's tubular 
enclosure, and have branch points. 

an embedded loop, then its tubularneighborhood decomposes into normal discs and 

two half-balls. In this case, however, the Alt crescent still lies in the union of normal 

discs, dom i (Definition 4.3), for if it protruded into either half-ball, we could project 

it back to the bounding disc of the half-ball and reduce both areaand thread-length. 

This would yield a contradiction (Lemma 2.13). So whether the embedded wire is a 

loop or not, we have 

Im X c dom i. 

Pulling back the extended arclength parameter function i by X decomposes the domain 

A of X into connected level sets. Only values i E [so, sl] occur. The level sets for 

i E (so, sl) are continuous curves of positive length. The level sets i = so ,  sl are 

points ( 1 , O )  or (- 1,O). We prove this lemma by applying Intersection Graph Lemma 

(Lem. 3.6). For each s E dom I?, we consider the normal disc D(s). This is a compact 

subset of a plane, and it intersects the plane in exactly one point, r(s). The Alt 

crescent (X, 4-) is disjoint from the circle bounding D (s) because it lies strictly within 

the tubular neighborhood TubRr. By Intersection Graph Lemma (Lem. 3.6), the set 

X-l(D(s)) is either 

(2) a single point q E &A, or 

(ii) a connected set whose only component is a finite tree graph. This graph can only 
touch 8-A at one point: $~ ' ( s ) .  The properties (a)-(c) listed under item (ii) in 

Intersection Graph Lemma (Lem. 3.6) force the graph to be a segment connecting 

+:'(s) in &A tb a point in &A. 



Figure 4-3: Slicewise Parametrization Lemma (Lem. 4.4) tames the poten- 
tial behavior of an Alt minimizer.. Here we see that the Alt minimizer only lies 
in slices of the tubular neighborhood which pass through its supporting wire. We may 
pull back the arclength function s of I?, extended along these slices as s', back to the 
domain of X and we get continuous curves. 

(iii) a set which contains a+A; moreover in this case we also have that the free thread 

curvature vanishes. But that means that the entire free thread for this crescent 

lies in the normal disc D(so) . This normal disc only intersects the wire at  I?(so). 

So we have I?($- ((- 1,O))) = I?($- ((1,O))) which violates the embeddedness of 

I?. We conclude that case (iii) cannot occur. 

Thus we see that each level set contains a point of d-A. The map 4- gives a bijection 

between d-A and [so, sl]; thus we see that A decomposes into level sets of X-'(i) 

for s E [so, sl]. We claim that item (i) cannot occur for q E dEA; indeed in that 

case we could decompose A \ {q) into two non-empty open sets (X o i)-'([so, s)) and 

(X o ) ( ( s  s ] ) .  But a disc minus a boundary point is connected! So case (2) can 

only occur for q = (1, O),  (- 1,O). Moreover, it must occur for each of these points; if 

the level set (X o i)-'(so) were a curve from (-1,O) to a$A then we would violate 

Lemma 3.10. H 
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We have thus decomposed the domain of X into two points and a family of curves 

that map. to slices D(s) corresponding to the supporting wire. This controls the behav- 

ior of the Alt crescent better (indeed, compare Figure 4-2 with Figure 4-3) but we 

will go much farther. Subsequent lemmas in this section will show that these slice-wise 
I 
I 

1 
curves join together to form a Lipschitz graph with nice properties. 

1 Our main tool for controlling first-order properties of the Alt crescent is the fol- 

lowing. 

Lemma 4.5. [Normal Avoidance] Let l? be a nonplanar embedded wire curve. Let R 

be small enough so that the tubular neighborhood of I' does not self-intersect. Consider 

a single point r(so) on the curve. Let R be an open subset of the unit sphere with the 

following property: 

For every plane V passing through D(so) with normal vector in R, the component 

of V n TubRr containing I'(so) intersects I' at most twice. 

Then if (B, M) is an Alt minimizer on lying in TubR@') with positive free thread curva- 

ture, then any points of ( B ,  M) lying in D(so) must have normal vectors not in R. 

Proof. Say a plane V with normal in Q were the tangent plane to an Alt minimizer 

(B, M) at a point X ( p )  for p E Bo. Then by definition of 0, the plane V intersects 

the wire at most twice. We may then apply the Intersection Graph Lemma (Lem. 3.6) 
to conclude that it is not a tangent plane of (B, M). This shows that Gauss map g~ 

maps the interior of B to the complement of R. But then because g~ is continuous 

and R is open, we know that the image of gx on its full domain1 lies outside R. 

Before embarking on our quest to control the Gauss image of the nem-wire cres- 

cents, we must handle a technicality. In Lemma 3.1 we showed that Alt minimizers 

have free thread curvature K 2 0. For near-wire Alt minimizers we may improve this: 

Lemma 4.6. Let I? be a nonplanar embedded C1 wire curve. There is an R(r)  >% 0 so 

if ( B ,  M )  is an Alt minimizer in TubR(r), then the free thread curvature n of (B ,M)  is 

positive. 

Proof. See Lemma A . l l  (p. 164) and Lemma 2.13. 

IRemember: the domain of the Gauss map excludes crescent corners. 
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4.1 Slope bound in I" direction 

Lemma 4.7. [Bound o n  I"-Slope] Let I? be an embedded C2 Frenet wire curve. There 

is a constant R(r)  depending only on the geometry of so for R < R(r )  if an Alt crescent 

(X, 4-)  lying in the R tubular neighborhood of r, it has a slope bound. Specifically, for 

any point X(p) on the thread-wire surface, the unit normal vector gx(p) lies in a strip in 

the Gauss sphere: 

I ( ~X(P) ,~ ' (~ . (X(P) ) ) )  I < (4.1) 

The slicewise extended arclength function i is explained in Definition 4.2. 

Proof. The case where I' is planar is easy. (See TWS Convex Hull Theorem 

(Thm. 3.4).) For the remainder of the proof we assume that r is nonplanar. Choose 

C( r )  = 3 + Inr lco(dom r).  Pick R( r )  small enough so the R(r)-tubular neighborhood 

of does not intersect itself and so the free thread curvature K. is positive. (See 

Lemma 4.6.) Also pick R small enough so that at any point r(s) on the curve, the 

conditions of Figure 4-4 hold: 

The curve r is a graph over the z axis for 1x1 < R' /~ ,  (Or, if it fails to be a graph, 

it does so because the curve has ended within this domain.) 

The curve I' lies in a quadratic trumpet Q defined by 

< I ~ r l ~ o ( c i o m  r ) ~  
2 

out to 1x1 = ~ ' 1 ~ .  (This is generous; the asymptotic relation holds with a multi- 

plier of 112.) 

Then TubRr lies in TubRQ. A plane V with normal lying in the spherical strip 

(4.1) has entirely left TubRQ at x = f R1I2 and is guaranteed to be strictly more than 

(3 + l C ~ ( d o m  q) R distance from the x-axis, whereas TubRQ lies strictly within this 
distance on 1x1 = R1I2. (Or it might not reach all the way to x = R1I2 or x = -R1I2; 

this makes our life even ea~ i e r .~ )  Also, for small enough R(F) we may ensure that V 

intersects the piece of wire in 1x1 < R'I2 in at most one place. We have thus satisfied 

the conditions of the Normal Avoidance Lemma (Lem.4.5). See Figure 4-5. This 

completes our proof the Bound on I"-Slope Lemma (Lem. 4.7). rn 

2 ~ h e  reason this case is easier is that then we do not have to worry about how the Alt crescent 
intersects the cut off tubular neighborhood in that direction. 
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Figure 4-4: Slope bound in I" direction. Illustration for the Bound on I"-Slope 
Lemma (Lem. 4.7). Note that the wire curve might not always reach all the way to the 
two planes. If so, that just makes the estimate easier. 
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Figure 4-5: Slope bound in l?' direction, part 11.. Here the x axis is the same 
as in Figure 4-4 and w measures in the direction of the normal to V. We show the 
worst case, where the plane V is based least advantageously in the normal disc of the 
tubular neighborhood. Even in this case we show that the plane V avoids the end of 
TubRQ, for R sufficiently small relative to the geometry of I?. 
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4.2 Slope bound in vr direction 

Lemma 4.8. [Bound on vr-Slope] Let r be an embedded C3 Frenet wire curve or loop. 

There is a constant R(r )  depending only on the geometry of I? so for R < R(r) ,  if an Alt 

crescent (X, 4-) with postive free thread curvature lies in the R tubular neighborhood of 

r, it has a slope bound. Specifically the Gauss image of points of the Alt crescent lying in 

normal disc D(s) lies outside the open diamond region O$,,$, shown in Figure 4-6, and 

lies outside its antipodes -04,,&. Here 

Proof. The case where I? is planar is easy. (See TWS Convex Hull Theorem 

(Thm. 3.4) .) For the remainder of the proof we assume that is nonplanar. Take any 

so E Im 4-. Then F(so) is on part of the wire which supports the crescent X .  The 

idea of this proof is to construct planes passing through the normal disc D(so) of the 

tubular neighborhood which, restricted to TubR(r), intersect the wire at most twice 

and satisfy the conditions of the Normal Avoidance Lemma (Lem. 4.5). 

As usual, we require that R be small enough so that the R-tubular neighborhood 

of I' does not self-intersect and so the free thread curvature of (X, 4 4  is positive. 

(See Lemma 4.6.) We begin with the central geometric picture of the proof, shown 

in Figure 4-7. Here we have adopted Frenet coordinates at r (s) .  Pick R( r )  small 

enough so that r is a graph over the x-axis for 1x1 < ~ ' 1 ~ .  (AS before, it may be that 

the curve does not reach all the way to 1x1 = R ' / ~  because s is close to the boundary 

of dom I?. This will only make our job easier. In this proof we treat the case that the 

wire reaches all the way to 1x1 = R'/~.)  

Define the parabola 
1 

P(x )  = (x, 5nr(s0)~2,  0). 

Define cubes C* centered at ~ ( f  ~ ' 1 ~ )  which are oriented rectilinearly with respect to 

coordinate basis and have side length equal to twice 

Let Q be the solid square {(x, y, z) I x = 0, lyl 5 R, Izl I R). 

Subclaim 4.9. If V is a plane passing through Q with normal in 0+,,+2, then: 



4.2 Slope bound in y. direction 

Figure 4-6: Diamond region for yr slope limitation. Normal vectors of 
of X associated to  each normal disc D(so) are prohibited from lying inside this 
diamond region O+, ,h . 

the part 
geodesic 

(2) The plane V does not intersect the interior of the cubes C*. 

(22) The plane V intersects the local piece of wire (paramterized on 1x1 < R1I3) at most 

twice. 

I (222) The normal discs D(sk) corresponding to x = f R ' / ~  lie within the respective cubes 

Before proving the claim, we need to do some further visualization to understand 

the relationship between Figure 4-7 and Figure 4-6. 

Consider the points 
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See Figure 4-8.. Let Vl be the plane defined by the points a, b, c and V2 be the 

plane defined by points a, c, d. Figure 4-9 and Figure 4-10 show the t o p  and side- 

views of Figure 4-8. Direct calculation verifies that the angles $2 defined in (??) 

measure the slopes of Vl and V2 as shown. This means that the normal vectors of Vl 
and V2 appear as points of the diamond O+, ,+2. Reflecting the planes gives the other 

two corner points. 

Figure 4-7: The setup for the Bound on vr-Slope Lemma (Lem. 4.8). 



4.2 Slope bound in ur direction 

Figure 4-8: Consider the plane Vl containing the triangle abc and the plane Vz 
containing the triangle acd. 

Figure 4-9: Top view. 
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Figure 4-10: Side view. 



I 
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Now let's prove Subclaim 4.9.(i). As we mentioned, the planes Vl and V2 have 

normal vectors corresponding to two corners of the diamond. Continuously transform- 

ing & to % by rotating it around the line %? traces out a family of planes which also 

avoid the interior of the two cubes. Their normal vectors trace out the geodesic on 

the Gauss sphere from the normal of Vl to the normal of V2. Translating this family 

of planes in the negative y direction only makes it farther from the cubes. So we see 

that if any point in Q has a plane passing through it with normal in this geodesic 

boundary of the diamond, the plane misses the interior of the cubes. By similar argu- 

ments we can show that if any plane passes through a point of Q and has normal in 

the boundary of the diamond, then it misses the interior of the cubes. The final step 

is to take any point q E Q and consider two planes Wl, Wz with normals nl, n2 in the 

boundary of the diamond, which pass through q. They intersect in a common line t3, 
which contains q. By continously rotating Wl into W2 around line t3, we trace out a 

path of normal vectors which is a geodesic on the Gauss sphere. If we do this along 

the shortest geodesic, then the associated planes also miss the interiors of the cubes. 

In this way we can fill in the geodesic diamond. In other words we show that given 

any plane passing through q with normal in the solid diamond, that plane misses the 

interiors of the cubes. See Figure 411. We have shown Subclaim 4.9(i). 

As for subclaim 4.9. (ii), for small R relative to the geometry of I?, the quadratic 

y component of the wire dominates and these planes cannot intersect the wire at  more 

than two places. , 

Finally, Subclaim 4.9.(iii) follows from the Taylor expansion of the wire, where 

R is sufficiently small relative to the geometry of r. We may now apply the Normal 

Avoidance Lemma (Lem. 4.5). 

The estimates of (4.2) follow from evaluating the slope of reference plane Vl in 

the x - t direction and the plane V2 in the x - y direction. See Figure 4-9 and 

Figure 4-10. This completes our proof of the Bound on *-Slope Lemma (Lem. 4.8). 

m 

This lemma prohibits the Gauss image from being in a diamond which gets ar- 

bitrarily close to the poles of the F'renet unit sphere, but at the same time narrows 

in the I" direction. The reader may not think that this is very useful! In the next 

section we see the spherical band of the r' slope narrows faster than the diamond does. 

Combining the two lemmas yields a meaningful control on the Gauss image. 
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Figure 4-11: Filling in the diamond. We show an example where q lies on the 
positive y edge of the square Q. The two planes Wl,  W2 have normals nl, n2 and 
touch the cubes in the lines el ,  12. Rotating these planes on e l ,  t2 defines the geodesic 
boundaries of the diamond 0 1 , ~ .  We may rotate Wl into W2 along their common line 
13; this causes the normal to move along the geodesic 03 on the Gauss sphere. In this 
way we may "fill in" the diamond of prohibited normal vectors of tangent planes. 
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4.3 Lipschitz graph in varying F'renet frame 

We use the preceeding results to control the slopes of the surface and the Frenet frame 

of the thread relative to the Frenet frame of a nearby wire point. 

Definition 4.10. Let (o,(s), v,(s), q,(s)) and (rt(t), v,(t), qr(t)) be the Frenet frames 

of two Frenet curves at s and t. We define the distance between these two frames by 

comparing corresponding vectors: 

distance = 10s (s) - 7t ( t )  1 + lvo (s) - vr (t) 1 + 1170 (s) - % (s) 1- 

Lemma 4.11. [Varying Frenet Frame Graph] Let I' be an embedded C3 Frenet wire 

curve or loop. For R sufficiently small relative to the geometry of I?, if %bRr encloses an 

Alt crescent p = (X, 4-), the following holds. 

The set Im 4- parameterizes the arc of I? supporting p. There are functions p : 

(Im 4-) j R>o - and u : (Im +-) x [O, 11 + R so that the crescent may be reparametrized 

for s E Im 4-. Furthermore, the slopes us and ut/p(s) are bounded by c(~?)R'/~. And 

the Frenet frame of the thread at E(s, 1) is within distance c(I')R'/~ of the Frenet frame 

of the wire at I'(s). Furthermore, the Gauss map may be defined cpntinuously for. all points 

on (X, 4-) except the corners. Finally, if the thread returns to the wire a t  an interior point 

of the wire (p(s) = 0 for s in the interior of Irn 4-), then it does so tangentially. 

Proof. The case where I? is planar is easy. (See TWS Convex Hull Theorem 

(Thm. 3.4).) For the remainder of the proof we assume that I' is nonplanar. Let R 

be sufficiently small relative to the geometry of r so the Bound on I"-Slope Lemma 

(Lem. 4.7), the Bound on y.-Slope Lemma (Lem. 4.8), and Lemma 4.6 apply. 

We adopt the coordinates for R3 given by the Frenet frame of at  s. Consider 

Figure 4-12. The points 

A=(O,sinq!Jl,cosq!J1) B=(cosq!J2,sinq!J2,0) 

are vertices of the diamond ,+2. The point C = (cl , c2, c3) is where the spherical 

geodesic from A to B intersects the right boundary of the strip from the Bound on 
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We also have from Figure 4-12 that cl = sinv. And of course 1021 = 1. This gives 

I"-Slope Lemma (Lem. 4.7). We need to solve for c3. The three vectors 02,0%, 02 
are coplanar so 

sin 9 cos $1 sin $2 + cos $1 cos $ 2 ~ 2  - cos $2 sin dcos2 (o - 4 = 0 

c1 c2 c3 
0 sin& C O S $ ~  

COS$.J~ sinQ2 0 

which gives 
1 

(cos2 $ 2 ) ~ ;  - (sin v cos2 $1 sin 2$2)c2 + sin2 cp cos2 q2 - Cos2 Sin2 cos2 ,+2 = 0. 

= 0. 

Figure 4-12: Diamond and annulus on sphere. We solve for the location of C, on 
the spherical geodesic between diamond vertices A and B and on the right boundary 
of the annular strip. 
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So the quadratic formula yields 

I 2 c0s2 '$2~3 = sin (P cos2 sin 2& + sin2 cp cos4 sin2 2q2 

Applying the Bound on I"-Slope Lemma (Lem. 4.7) and Bound on ur-Slope Lemma 

(Lem. 4.8) gives 

c2 = 0 (R"~). 

We see that we have a slope bound 

tana(R) = min (tanv, :) = 0(Rli6). 

This means that the slope of any tangent plane to a point on the Alt crescent in 

the normal disc D(s) has t y  and z-2 slopes bounded by C ( ~ ) R ' / ~  where x, y, z are 

the F'renet coordinates of the wire at I? (s). 

The Gauss map is defined on A except at (1 ,O)  , ( - 1,O) and count ably many points 

of &A. (See p. 27.) At any interior point s of the supporting wire domain Im 4-, let 

cS(t) parametrize the curve (X o S)-' (s) described in Slicewise Parametrization Lemma 

(Lem. 4.4). Let os (0) be the end lying on &A. Then the analysis of above shows that 

for t > 0, the curve crs(t) may be parametrized over the ~ ( s )  axis of D(s) as a C' 
graph with slope bounded by c(r)R1l6. 

\ 

We claim that the curve as can only lie to the ur (s) side of r ( s )  in the disc D(s) . 
Proving this is easy: in Figure 4-7 we can clearly bring planes in to touch the wire 

from the - u ~ ( s )  direction without touching the ends of the enclosures caged in the 

cubes C*. So by the standard argument (TWS Convex Hull Theorem (Thm. 3.4)) we 

know that the surface cannot extend in this direction. 

We have thus shown that the curve as(0) may be reparametrized as a graph over 

the y. (s) axis of D(s) for an interval from 0 to some value p(s) > 0. This justifies the 

parametrization (4.3). We would now like to show that the function u(s, t )  is C1 up 

to the t = 0 boundary, for s E (so, sl) . For r(s)  where (VX) (41' (s) ) + 0, this is easy; 

the Taylor expansion of X shows that the surface has a tangent plane at r ( s )  and is 

a C3 graph over' it. On the other hand, when (VX)(~~='(S)) = 0, things are less clear. 

Fortunately, if we look at X near such a point, the'above work shows that the surface is 
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a Lipschitz graph in the Frenet coordinates of I? at r(s) .  We may find a neighborhood 

N of q in A so XIN parametrizes a minimal surface bounding a C4 countour which is 

a graph over the x-y plane. Then we may solve this non-parametric minimal surface 

problem (see [15, p. 283, Theorem 11.51) to obtain a reparametrization of XIN as a 

graph over the x-y plane which is C2yu. In any case it is C1 which is all we need to 

show that u is C1 up to this point. 

Now we show the p' bound. We may parameterize the thread a s  

Y (7) = r(7) + P(T)w(~)  + 4 7 - 7  l)l)r(~) 

with derivative 

747) = r"(7) + p1(7)ur(7) + p(7)4(7) + 4 7 ,  1)w(7) + 47, MO). 

Consider a plane V passing through thread at a point y(s) lying in leaf s of the 

tubular enclosure of I?. Let p E do, A be the corresponding point in dom X.  Orient 

V to be perpendicular to the surface's side normal uth(s) at q. We know that uth 

may not lie in the double disk region of the Bound on I?'-Slope Lemma (Lem. 4.7)' 

for then pulling V back by X would produce a connected component C, containing p 

and only intersecting &A once. But by construction, the set X-'(V) near p is s line 

segment which oscullates p and otherwise stays in A'. By Intersection Graph Lemma 

(Lem. 3.6)) we may trace C, in either direction from p and hit a distinct point of 0-A 
in each direction. This contradicts the fact that X-'(V) only contains one point of 

&A when uth lies in the double disk region of Bound on I"-Slope Lemma  em.. 4.7). 

See Figure 4-13. This establishes that (uth (s) , I" (3)) is bounded by C R ' / ~ .  More- 

over, the slope control shown earlier in the proof establishes that the surface normal 

l)th(s) at p is within CR'/~ of ur (s). 

We may parametrize the thread according to the arclength parameter of I? in the 

following way: 

Then lu(s, 1) 1 < R because the Alt crescent is enclosed. Now we limited uth(s) to a 
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strip in the above argument. Furthermore, because of the Lagrange multiplier condition 

(2.4) on the free thread, the thread binormal I ) ~ ~ ( s )  equals the surface normal on the 

thread. So we can control the thread binormal using our CR' /~  slope control. Putting 

this together (see Figure 4-14), gives I ( y. (s) , y, (s)) ( < c ~ ' 1 ~ .  We conclude from 

(4.4) that 

Ips(s)l < CR'? 

Finally, we must show that if p(s,) = 0 for s, in the interior of the' supporting 

wire domain S, then the thread meets the wire tangentially. If this does not hold, then 

the p > 0 property which we have shown would cause some kink of angle a > 0 in 

the thread. Now we may use our parametrization Z to demonstrate an Alt competitor 

which has the same area as (B, M) and has bounded derivatives. But this is prohibited 

by Lemma A.10 (p. 162) and Lemma 2.13. We conclude that the thread meets the 

*re tangentially whenever p(s*) = 0 in the interior of the supporting wire. rn 

REMARK. Note that Varying Frenet Frame Graph Lemma (Lem. 4.11) shows that the 

thread meets the wire tangentially at corner points of near-wire crescents. This was 

Figure 4-13: Control on p'. Let V be the plane passing through y(s) normal to 
the side normal vth(s). If V has nonnal in the double discs of the Bound on I?'-Slope 
Lemma (Lem. 4.7), then V can only intersect the wire at one place, which yields a 
contradiction. 
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Figure 4-14: Closeness of Frenet frames of thread and wire. We combine the 
estimates of this section to show that the Frenet frames of the thread on a normal disc 
D (s) is close to the Frenet frame of the wire at (s) . 

previously shown by Alt only for corners of crescents which adjoin a positive length 

piece of wire-adhering thread. 

4.4 Near-wire crescents appear near maxima of wire 

curvature 

The work of the preceeding section shows that surface normal vectors and the thread 

Frenet frame of a near-wire crescent are closely aligned with Frenet information at 

corresponding wire points. We now use this information to  demonstrate a closeness 

between the (globally constant) curvature of the free thread and the nearby wire curva- 

ture. This will enable us to localize near-wire crescents near maxima of wire curvature. 

Lemma 4.12. [Crescents Near Maxima] Let I' be an embedded generic wire curve. 

There are constants R(r) ,  C(r) so for R < R(I'), if an Alt minimizer (B, M) lies in the 

R-tubular neighborhood of I? then every crescent of (B, M) satisfies 

(2) The crescent's supporting wire is shorter than c(I')R'~'~. 

(22) The suporting wire's curvature stays within C(r)  ~ ' 1 ' ~  of n. 
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(zzz) The crescent lies within arclength C(~?)R'/ '~ of a maximum of wire curvature. 

Proof. Let x, y ,  z to be Frenet coordinates at F(0). Let n ( x ,  y ,  z) = (x, y ,  0). We 

always use s to denote arclength along the wire r. We parametrize all other curves 

using this parameter. For sufficiently small R we will examine the tubular neighborhood 

of r from s = 0 to s = R1/12. In our proof we will assume that the wire extends this 

far. If it does not, the whole proof will succeed, and in fact all of the estimates will be 

easier. 

Define the projected wire curve as A(s) = II(r(s). Let B(s) be the unit normal 

to A at A(s ) ,  pointing in the direction of curvature. We may then parametrize the x-y 
plane: 

- Z(s, t )  = A(s) + tB(s). 

The thread curve 

projects to 

Lemma 4.13. There is a constant C so for 0 5 s 5 R1/12, 

I f,(s)l < C R ' / ~ .  

Proof. Differentiating (4.5) gives 

Here Fr(s) converts Frenet coordinates at r ( s )  to our x, y, z coordinates, and D F ~ ( ~ )  
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performs differentiation by arclength in Frenet coordinates at I'(s). Evaluating gives 

Now Fr(s) is the matrix defined columnwise as 

Because r has at least three derivatives (genericness guarantees C4), we may write the 

Taylor expansion at zero: 

Now using that 0 5 s < ~ ' 1 ' ~  and using the slope estimates of Varying Frenet Frame 

Gra,ph Lemnia (Lem. 4.1 I) ,  we get 

So then we see from (4.6) that 

(E(s, f (s))), = ( I  + 0(R1I6), K ~ ( O ) S  + 0(R1I6)) (4.9) 

and 

(A&) + fs(s)B(s) + f (s)B,(s), 6) = o(R'/~). (4.10) 
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Now using the Taylor expansion of I?, 

1 
r ( s )  = (s, 5 n r ( ~ ) ~ 2 ,  o + o($), ) 

we see that 

we may then use f (s) = O(R) from the tubular enclosure to reduce (4.10) to 

We cancel and the desired result follows. 

Lemma 4.14. For 0 5 s 5 131/12 we get 

fss(s) = I€$ ( s )  - ~r (0) + o(R"~). 

Proof. Let @(s) = II(y (s)). Then 

As + f,B + fBs = +,. 

Differentiating again gives 

Direct calculation shows 

Using (4.9) we obtain 

[$,I = 1 + o(R'/~); 
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using the other estimates above we get 

K$(s) = nr(0) + fss(l + O(s)) + O(s) + O(R) .  

We may now string our results together. On the interval 0 5 s 5 R'/12, the thread 

tangent vector satisfies 

and we have 

At this point we employ a general lemma about space curves: that if the binormal is 

constrained, then a planar projection has curvature close to the original curve. See 

Lemma A. 1 (p. 145). Applying this lemma with E = ~ ( r )  R'I12 gives 

Then, 

In this way we show 1 n-nr (0) 1 < C R ' ~ ' ~ .  Our estimates were made using geometric 

properties of at s = 0. But using the fact that I? is generic and compact, we may 

obtain a glob1 cconstant so 

This proves (ii) in Crescents Near Maxima Lemma (Lem. 4.12). We may then, use the 
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fact that KT is a Lipschitz (in fact it is C2) on a compact domain to show (2).  Finally, 

imagine that n were far from the global maximum of nr. Then there are regions of wire 

where the thread lies on the wire and ~ ~ ( s )  > K. This is prohibited from happening 

in Alt minimizers by our first variation analysis (Lemma ??). See Figure 4-15. So in 

fact we must have 

In- maxr~dom r K ~ ( s ) I  < c(~)R' / '~ .  
1 I 

I 

But then by the Lipschitz property of the curvature of l? (in fact it is C2), we have ' 

shown claim (iii) in Crescents Near Maxima Lemma (Lem. 4.12). 

4.5 Corner I"-slope improvement 

- Let p = (X, 4-) be an Alt crescent satisfying the conditions for Varying Frenet F'rame 

Graph Lemma (Lem. 4.11). 

Let ~ ( t ) ,  0 5 t 5 a parameterize part of the free thread by arclength as usual. 

Lemma 4.15. [Quadratic l3xuxipet for Thread] Let r > 0 be any value less than 

K-'. Let B = B,(P) be a sphere tangent to I' at r(sl). Then; independent of P, there is 

an to > 0 so ~ ( s )  lies outside B for 0 < s < lo. This shows that the thread ylp,~,) lies in 

a quadratic trumpet < Cz2. 

Proof. For s > 0, consider the function 

f ( 4  = I r (4  - PI. 

Then 

The quantity 
1 

0 ,  = - (1 - (5 + e l2)  
r+cr r-cr 
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approaches 1 from below as one chooses smaller and smaller positive values for CT, E. 

Let's choose a and E so 

8(0, E) > T K .  (4.11) 

Then choose $ so for s < lo, 

Figure 4-15: Free thread curvature must be near maximum wire curvature. 
We have shown that the free thread curvature K must be near the curvature of the 
supporting wire. In this diagram we show what happens if K is not close to the 
maximum of the wire curvature K r .  Then there is a region A on the wire where the 
wire curvature exceeds the free thread curvature. As we saw in the proof of the Thread- 
Bearing-Wire Curvature Bound Lemma ??, we may introduce a new crescent here and 
reduce overall Dirichlet energy, violating the minimizing property of our supposed 
minimizer. 
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and 

Ir(s)l < a- 

Returning to (4. l l )  we see for 0 < s < lo, 

We see by (4.1 1) that on (0, lo) ) 

So the thread stays outside of the sphere B(P, r) for length lo as claimed. 

Lemma 4.16. [Quadratic Trumpet] Let ( X , # - )  be an Alt crescent satisfying the 

conditions of Vatying Frenet Frame Gmph Lemma (Lm.  4.11). Then near either corner of 

the crescent, the surface is contained in a quadratic trumpet. 

Proof. The wire, being a C3 curve) Stays in quadratic trumpet. So does the thread 

by the previous lemma. The slope bound of Varying Frenet Frame Graph Lemma 

(Lem. 4.11) ensures that the whole surf- also initially stays in some quadratic trum- 

Lemma 4.17. [Corner Slope Improvement] If the corner is contained inside a 

quadratic trumpet 4- 5 Cx2, x  E [0, I,] for X ,  suffkiently small relative to the 

geometry of I?, then a double disc v 2 5 does not intersect the Gauss image of the 

corner for s < xm/2 .  This implies a slope bound f, 5 qC for x  < x m / 2 .  

Proof. This is a straightforward computation (See Figure 4-16). Let X I  be in the 

range 0 to x,/2. One shows that planes passing through the cross-section x  = xl 

of the trumpet with normals in the double spherical d k  above (Figure 417) do 

not intersect the x = 2x1 cross-section of the trumpet (Figure 4-18). As such, they 

intersect the boundary of the corner only on the thread and on the wire. They can 

intersect the wire at most once because if x, is chosen sufficiently small relative to 

the geometry of I?, one can ensure that /€r 5 C inside x  5 x,. As such these planes 

cannot be tangent planes to the Alt minimizer at x  = x l ,  by the Normal Avoidance 

Lemma (Lem. 4.5). 
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Figure 4-16: Figure for Corner Slope Improvement Lemma (Lem. 4.17). 

Figure 4-17: Figure for Corner Slope Improvement Lemma (Lem. 4.17). 

4.6 Proof of Near-wire Crescent Theorem (Thm. 1.4) 

We may now prove the first of the two main theorems of this thesis. 

Proof-Theorem 1.4. We prove each claim of Near-wire Crescent Theorem in turn. 

Let r(so)  be a corner of a crescent of an Alt minimizer in a R-tubular neighborhood of 

I? for R < R(r).  We show the claimed properties below. We obtain the constant R(r) 
by taking a minimum of the R(r)  values arrived at in each lemma we quote below. 
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Figure 4-18: Figure for Corner Slope Improvement Lemma (Lem. 4.17). 

First, we note that for sufficiently small R, the thread must be C1 and only touch I? 
tangentially (Varying Frenet Frame Graph Lemma (Lem. 4.11)). Then: 

(2)  The supporting wire 2s short. We proved this in part (2) of Lemma ??. 

(ii) Both corners are close to  a maximum of wire curvature. This follows from part 
(iii) of Lemma ??. 

(iii) The crescent is  a graph in the Frenet coordinates of I'(so). We showed this in 
Varying Frenet Frame Graph Lemma (Lem. 4.11). The slope improvement in the 

x direction was shown in Corner Slope Improvement Lemma (Lem. 4.17). 

(zv) The free thread curvature n is near the wire curvature nr. We showed this in 

part (ii) of Lemma ??. 

(v) The Frenet frame of the thread is near that of the supporting wire. We showed 
this in Varying Frenet Frame Graph Lemma (Lem. 4.11) 
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Chapter 5 

C' Corner Theorem 

By the end of this section, we prove the C1 Corner Regularity Theorem (Thm. 1.5) and 

thus establish Conjecture 1.2. We reprint a copy of C1 Corner Regularity ~ h e o i e m  

(Thm. 1.5) below: 

Theorem 5.1. [C1 Corner Regularity] Let I' be a generic embedded wire. There is 

a small R so any Alt minimizer p lying in the R-tubular neighborhood has the following 

property. Let C be any crescent supported in the interior of I?. Let N be a unit normal 

vector field to  C. 

(2) The normal vector field is continuous u p t o  each corner of C. The limit of N as one 

approaches a corner r(s) is the Frenet binormal ~ ( s ) .  

(22) The Gauss map for C is injective and is an embedding on its interior. 

(~22) The Gauss image of the thread and wire curves bounding C have the properties 

described in Figure 5-1. 

(zv) Consider the first eigenvalue XI of the Laplacian on the Gauss image of C with 

Dirichlet boundary condition on the Gauss image of the wire and Neumann condition 

on the Gauss image. This eigenvalue is large: 

Here i s  an outline of our proof. The first step is to study the normal field of a 

near-wire crescent along the thread. In Section 5.1, we show that the torsion of the 
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thread cannot be zero. This, combined with the slope improvement of Corner Slope 

Improvement Lemma (Lem. 4.17) gives the normal field on the thread an approximately 

monotonic behavior as it approaches the corner. We are thus able to show that it 

approaches a limit. We then make the observation (Section 5.2) that if the y slope 

of the surface is (up to an error term) the steepest a t  the thread boundary, then 

we are able to show that the entire surface is C1 a,t the corner, and that its normal 

vector converges to the Frenet binormal of the wire at  the corner. The rest of our 

work focuses on establishing this approximate slope inequality. In Section 5.6 we 

prove this crucial inequality by showing (Section 5.5) that the Gauss map of the near- 

wire crescent is injective, and is an embedding on the crescent interior. Showing this 

injectivity property requires a careful study of the Gauss map. Several other interesting 

observations result, which we detail in Section 5.7 and Section 5.8. Finally we prove 

the second main theorem of this thesis, C1 Corner Regularity Theorem (Thm. 1.5), in 

Section 5.9. 

5.1 A monotonicity property for the thread binor- 

mal 

Lemma 5.2. [Corner Thread Monotonicity] Let ( B , X )  be a crescent of an Alt 

minimizer sufFiciently small so that: 

(i) The entire crescent is a graph relative to  the standard Frenet coordinates of the wire 

at one corner. 

(ii) The torsion of the supporting wire is always positive. 

(iii) Any plane intersects the supporting wire in a t  most three points. 

Then the torsion of the thread along this crescent is everywhere positive. 

Proof. We show that the torsion of the thread cannot be zero at  any point p in the 

interior of the thread. If it were, Series Solutions t80 ThIP problem Theorem (Thm. B.6) 

shows that the tangent plane at  such a point intersects the Alt minimizer in a graph 

that has valence at least 4 at  p. The graph already touches the thread at  p, so it cannot 

do so anywhere else. It can touch the wire at  no more than three points. So this is a 

contradiction. 
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The torsion of the thread (which is continuous on the interior of the thread) must 

have a fked sign. What sign is it? Consider the intersection graph between the tangent 

plane at an interior point p of the thread and the Alt minimizer. The graph has valence 

3 at p, and this divides the Alt minimizer into 4 regions which are alternately above 

and below the plane. We can assign them signs: positive if they are above the pla ne 

and negative if they are below. Then the region which contains the thread between p 

and the far corner has the same sign as the thread torsion at p. On the other hand, 

any plane which intersects the wire in three places has the far corner above the plane. 

In this way we see that the torsion of the thread is alwayp positive. 

Lemma 5.3. [Corner Thread Normal Limit] Under the assumptions of the previous 

lemma, the thread is uniformly C2 UP to  where it meets the wire at the two corners. 
. .., 

Proof. We already know (from Alt in [I]) that themagnitude of the curvature vector 

alongthe thread is bounded (in fact it is a constant K.) What needs to be proved is 

that its direction has a limit as one approaches either corner. 

Consider the corner at the origin. We will examine the function 

We have 

This gives f (0) = f' (0) = 0. Now 

Pick any c > K. Then f "'(s) + cs > KT(s) ( V ~ S ,  ~ ~ ( 0 ) )  which is positive because of our 

above argument about the sign of T (Corner Thread Monotonicity Lemma (Lern. 5.2)) 
and because of t h e  general Lipschitz control on v7s (Varying Frenet Frame Graph 

Lemma (Lem. 4.11)) and the fact that the Frenet frame of I? varies at most C ( r ) s  from 

r (0 )  to r(s)). This means that f" (s) + $cs2 is increasing. Because of this expression's 

monotonicity, we know it has a limit as s goes to zero. But that means fU(s)  has a 
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limit as s goes to zero. And that means y"(s) has a limit as s goes to zero. We conclude 

that y is uniformly C2 up to the corner at  s = 0.  The limit of the thread binormal 

exists a t  the other corner follows by a similar argument. 

5.2 A crucial slope inequality 

The intuition behind Conjecture 1.2 is that the curvedness of the generic wire should 

encourage the normal field N of the surface to  get close to the Frenet binormal of the 

wire as one approaches the corner. In this section we demonstrate how this is true for 

N on the thread boundary, provided one knows that the z - y slope of the surface is 

approximately less in the interior than at  the thread. 

To demonstrate our crucial inequality, we need to adopt the coordinates given 

to us in the last section. Let (X, 4-)  be an Alt crescent. By Near-wire Crescent 

Theorem (Thrn. l .4),  proved in the last section, the Alt crescent is a gra,ph in the 

Frenet coordinates of the wire at  a corner point. We may project the wire boundary 

of (X, 45-) to  the x-y plane to  get the wire shadow curve y  = I'(x). Similarly we may 

project the threald boundary of the crescent to get the thread shadow curve y  = - y(x).  

We may then write the crescent as the graph z = f (x, y ) )  where 

and x lies in some small interval [O ,  xc+]. See Figure 5-3. 

For (x, y) in dom f and 0 < x < x,, , let N(x ,  y )  

be the upward pointing normal to the crescent above 

1 y" f w  ,, '. 
1 Lemma 5.4. [Corner Slope Inequality] Assume 

that on dom f we have 

Figure 5-2:  Domain of f 

where t(x) approaches 0 as x goes to  0. Then as we 

move along the thread to  the origin, the normal field N 
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approaches the Frenet binormal of the wire at the origin: 

Proof. Our control on y"(x) (quote main thm proved in last section) may be integrated 

to yield 

y(z) = (x, (-+ cos a + c(x) x2, -K sin a + e(x) x . > (: > 2> 

(Here and later in the proof, the function e(x) may take different values in different 

equations.) On the other hand, 

Applying the Mean Value Theorem to'the graph of f sliced by the x - r plane through 

(x, y) , we find that there is a point (x, y') with 

(K sin a + e(x))x2) - 0 (x3) K sin a > - E ~ ( x ) .  (5.3) 
fg(x7 ''1 = (K cos a + e(x)) x2 - nr (0) x2 cos a. - Q (0) + €2 (5) 

If K cos cr = nr (0), or if not and 

K sin a 
> t a n &  

K cos a - nr (0) 

then for sufficiently small x we contradict (5.2). The only way to obey (5.2) is to  have 

a = 0. I 

We see in the proof of this result that the nonzero curvature of the wire is crucial 

- it shortens the y-distance in the slope expression of (5.3) and forces the vectorfield 

N along the thread to stand straight up. 

5.3 Coordinates 

The Near-wire Crescent Theorem (Thm. 1.4) allows us to write a near-wire Alt crescent 

as a graph in the Frenet coordinates of a corner point in the interior of the wire. It 
also guarantees that the thread meets the wire in the interior only tangentially (at 

cusp-corners). In Section 5 we will be using these coordinates intensively. 
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Consider an Alt crescent (X, 4-) lying within distance R of a generic wire I?. Let R 

be small enough so that Near-wire Crescent Theorem (Thm. 1.4) applies. Assume that 

both of its corners lie in the interior of the wire. Then we may apply Near-wire Crescent 

Theorem (Thm. 1.4) at  both corners. We have that (X, 4-)  is an Alt crescent supported 

on a piece of wire r ( s )  for s in some interval Im 4- = [so, s l ] .  We reparametrize I? 

so this supporting wire is parametrized by s E [O, s,,] for sc+ I c(~?)R" '~ .  Let us 

refer to r ( 0 )  as the base corner and r(s,+)'as the positive corner. We introduce Frenet 

coordinates a t  the base corner: 

Most of our calculations will be done in these coordinates. 

Assumption 5.5. W e  assume tha t  Tr (0 )  < 0. T h e  case tha t  Tr (0 )  > 0 is just  a reflection 

of this case. 

We will find it convenient to convert between the s coordinate and the x coordinate 

using 

X ( S )  = rjxI ( s )  = s + 0 ( s 3 )  

and 

S ( X )  = (rI,j)-l(x) = + o(2).  
See Section A.I.  

Then the crescent is a graph 2 = f ( x ,  y )  over a 

doubly-cusped domain 

j C 

/ 
dom f = { ( x , y )  1 0 < x < &+;T(X)  I Y 5 y ( x ) } .  

- 5(r) , I Y- ,,I 

The domain is bounded by the thread shadow curve 

y = ? ( x )  and wzre shadow curve y = r ( x ) .  Here 
- 

we have by Near-wire Crescent Theorem (Thm. 1.4) 
Figure 5-3:  Domain of f .  that xc+ < C ( T )  R '"~.  Also, by Theorem 2.12 we 

know that f E C4(!2). See Figure 5-3 .  

We orient the Alt crescent so it has unit normal vectors pointing in the positive z 
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direction. They lie in the unit sphere (the Gauss sphere) in a neighborhood 

N = { ( x ,  y) I d m  < c ( ~ ? ) R ~ / ~ ~ )  

where x ,  y  are the coordinates x ,  y  from (5.4). See Near-wire Crescent Theorem 

(Thm. 1.4). We define the Gauss map g E C3(f2, W2) which gives the x ,  y components 

of the normal vector at (x, y, f (x, y) )  on the Alt crescent. 

Definition 5.6. Occasionally we wil l use coordinates relative to the positive corner: 

( 2 ' 7  Y ' ,  2') ~ ( s C + )  - xlr"sc+) + yvr(sc+) + tw(sc+) .  

Note the sign difference relative to (5.4). These are the coordinates which we 

would choose if we wanted the point r(s+)  to be our baie corner, and if we reflected 

, ,  things to satisfy Assumption 5.5. The x' and y' coordinate axes are geodesics on the 

Gauss sphere near ( x ,  y , t )  = (0,0,1). Their offset and tilt relative to the (x, y, 2 )  

coordinate system are governed by the amount that the Frenet frame of I? has changed 

from s = 0 to s = sc+ . Fortunately this is small ( O ( R ' ~ ' ~ ) .  As a result, one sees that 

the level sets of x' are graphs over the y axis. 

We define the Gauss wire curve gr E C3((0,  x,), W 2 )  by 

Similarly the Gauss thread curve g,(x) E C3 ( (0 ,  xc+ ) , R2)  is 

97(x) = g((x ,  y ( x ) ) ) -  

5.4 Gauss image constrained by wire-related curves 

Lemma 5.7. The Gauss image of our near-wire crescent lies in the fourth quadrant, 

x > o , y < o .  

Moreover, the Gauss map is an immersion on dom g except possibly on the r curve. 

Proof. Given a prospective unit normal vector colinear with (a,  b, I), with 1 a1 , I bl < 
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C(r) R1/l2, we consider a plane perpendicular to it, defined as the zero set of 

By the Intersection Graph Lemma (Lem. 3.6)) for this plane to be tangent to an interior 

point of a near-wire crescent, the function P o must have at least three zeroes on the 

supporting piece of wire. We may change coordinates using x = r lZl(s))  to obtain the 

expansion 

1  l r r ,  + - 4 ' x 3  + 0(x4),  - -nOTO x + 0(x4)  
6 6 

and the expression 

W(X) = P(r ( s ) )  = ax + 

Applying Taylor's theorem to derivatives of I' give 

We have x E [O,C(~)R'/ '~]  and lal, lbl < c ( ~ ) R ' / ~ .  

Because a and b are 0(R1/12), we see that w" is positive on the supporting wire 

interval x E [0, C(I ')R~/'~]. Now we may apply the Generalized Descartes's Rule 

Lemma (Lein. A.3). We see that the only way to get three zeroes for x > 0 is to have 

This shows that the Gauss image of our near-wire crescent lie over the fourth quadrant 

x > o , y < o .  

Lemma 5.8. The Gauss thread curve g, is a graph over the negative y axis; it can be 

repara metrized as 

Y ( ~ T ( Y ) , Y )  (5.8) 
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where h,(y) is in C2([y:, yl]) for y: < yi  5 0. We have h,(yz) = 0 and h;(y) > 0. 

Proof. We saw in Section 3.2 that the Gauss image of the thread curve moves in 

the v, direction with curvature in the 7' direction. By Near-wire Crescent Theorem 

(Thm. 1.4), the Frenet frame of the thread is within R'/ '~ of the Frenet frame of r 
at s = 0. Moreover, by Corner Thread Monotonicity Lemma (Lem. 5.2), the thread . 

torsion has definite sign. These facts prove the graphproperty and the second derivative 

property. 

As for the last claim: we must show that the Gauss curvature of the surface does 

not vanish in the interior or on the y curve. If it vanishes at some point (x, y) in - 
the interior, then the tangent plane V through (x., y , f (x, y )) would give an intersection 

graph G(V, X) with a node in A' having valence at least 6. But' then the plane V would 

have to intersect the supporting wire at  least 5 times. However, we saw above that no 

tangent plane to the surface may intersect the wire at more than 3 places. Similarly, 

if the Gauss curvature vanishes at  some thread point (x, - y(x)) then the tangent plane 

V through the surface at (x, - y (x), f (x, - y (x)) would give rise to an intersection graph 

G(V,X) with a node on 3% having valence at  least 4 (See Series Solutions to ThIP 

problem Theorem (Thm. B.6, p. 168)). This would then force there to be at  least 4 

intersections of V with the supporting wire: again a contradiction. 

Here we converted between wire arclength s and the coordinate x using s = x + 

Lemma 5.9. The wire Frenet binormal curve is a graph over the y axis. It. may be 

parametrized as the curve 

with derivative 

Proof. Using the calculations of Section A. 1 we obtain 
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which is to say (q-).(s) = Tr (s)q (s). Moreover, 

So in our x-y coordinates for theGauss sphere, we obtain 

As for the Gauss image of the wire, we draw in ~ ( s )  in our x-y coordinates. Each 

normal vector N(r(s ) )  is perpendicular to rl(s), so it lies in the great circle through 

W(S) and vr (s). This motivates defining a "ruling map7' 

Here exp is the exponential map of the sphere as a Riemannian manifold. This gives 

us a kind of ruling of the Gauss sphere near the north pole. We obtain the following 

lemma. 

Lemma 5.10. The ruling map is an immersion except on the critical curve qr(s), where 

the rank of its differential drops to 1. Moreover, in our north pole neighborhood N, the 

map is 1-1 on the qr curve, it is 2 - 1 on the negative x side of Q-, and it does not hit the 

region on the positive z side of q-. For each q-(s) E 15, s E (0, s,,), we get a geodesic 

segment lying in N defined by t I---+ Z(s, t); the geodesic is a graph over the y-axis which 

has positive x coordinate for t 2 0. The Gauss wire curve has the property that it factors 

through the ruling map: 

gr(2) = E(2, ~ ~ ( 2 ) )  

for some function vr E Co((O, x,,), R). 
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If vr(2) # 0 then consider affine coordinates fi, ij at (2, vr(x)) in dom E with the 

6-axis pointing along the graph of vr in the positive Z direction and 6 pointing away from 

the Z-axis. Then d(i,w(x)) identifies these with affine coordinates u, v at gr(Z). Locally the 

ruling geodesic s H Z(xc+, s) can be written as a graph v = h(u). Locally, the gr curve 

crosses this graph from below to above (in the sense of v) as x increases past 2. 

5.5 Gauss map is injective and is an embedding on 

the interior 

Lemma 5.11. The Gauss map is an immersion on its domain except possibly on a set of 

measure zero on the r curve. 

Proof. If on the contrary d(x,r(x))g were not injective for an interval x E (xo, xl) then 

we know that vr(x) = 0 on this interval. But then on this interval, gr (x) = l)r (s(x)). By 

the above lemma on qp, we saw that (V~(S(X))), is nonzero in our polar neighborhood 

N. So in fact dg has at least rank 1 on our interval. But that suffices to show dg has 

full rank, since f is a minimal surface. I 

Lemma 5.12. The Gauss wire curve lies in SE. 

Proof. Apply Lemma 5.7 at both the base corner and the positive corner; then note 

Lemma 5.10. rn 

Our task is to sort through these many conditions on the Gauss map and control 

it well enough to be able to say something about limits of the normal vectors as we 

approach the corner. 

Lemma 5.13. The Gauss thread curve stays on the negative x side of the wire binormal 

curve w. 

Proof. Pick any point g,(?) = (xo, yo) on the Gauss thread curve, 0 < 2 < x,,. 
We know from Lemma 5.8 that xo > 0. Using the Corner Slope Improvement Lemma 

(Lem.4.17), we may find a $0 = C(r)xo so g maps x < io to x < xo on the Gauss 

sphere. 

Now we may apply Lemma 5.8 relative to the x', y', z' coordinates of the positive 

corner. Translating back into x, y coordinates, we may conclude that there is a geodesic 
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Figure 5-1: Gauss image control. The above diagram takes place in a small 
neighborhood of % ( P )  (the Frenet binormal of the wire at the corner point). In this 
neighborhood, we may project the sphere to the tangent plane at Y,I~  to get x and y 
coordinates on the sphere. We may do the same at the other corner of the crescent to 
get x' and y' coordinates. The Gauss image of the thread is a graph over the x axis 
in x-y coordinates and also a graph over the x' axis in x'-y' coordinates. Its geodesic 
curvature has a definite sign. The Gauss image of the thread satisfies something close 
to a graph condition: it may be parametrized as exp,(,)(v(s)vr(s)) for some continuous 
function v (s) . 

Figure 5-4: Gauss image constrained by quadrants. In Lemma 5.7 we show 
that the Gauss image is constrained to the fourth quadrant of our x-y coordinates at 
one corner. Applying this lemma to the other corner as well constrains the image as 
shown. The Gauss wire curve factors through the ruling shown. 
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x' = xb separating (xo, yo) from the positive corner's Frenet binormal vr(sC+). Then 

applying the Corner Slope Improvement Lemma (Lem. 4.17)) we may find an 2,  = 

xc+ - C(r)xb so g maps x > 2, to the far side of the x' = xb geodesic from (xo, yo). 

Let U be dom g restricted to 20 5 x 5 2+. We parametrize the horizontal segment 

through (xo, yo) as a(s) = (xO + S, yo). NOW we may apply the Curve Lift Lemma 

(Lem. A.4, p. 149) to obtain a lifted curve 8 E C0([0, s*], U), s* > 0, with 

g(8(s)) = o(s). 

We know by Lemma A.4 that &(s*) lies in aU. It can't lie in the x = 20, 2+ boundaries 

because both boundaries map to curves which are graphs over the y-axis having values 

less than xo at y = yo. (See Definition 5.6.) So cr([O, c ( ~ ) R ~ / ' ~ ] )  is disjoint from the 

Gauss image of these parts of aU. Moreover, +(s*) can't hit the - y part of ilU because 

g, is a graph over the y axis. We conclude that q = +(s*) lies in the Gauss wire curve. 

By Lemma 5.10, this wire point q must lie on the curve qr or to the negative x side of 

it. Since s* > 0, the result follows. ¤ 

Lemma 5.14. The Gauss wire curve does not self-intersect. In other words, the Gauss 

map g is injective on the r curve. 

Proof. The idea of this proof is to posit such an intersection, and look at  what it 

means for the two ruling lines which the wire points sit on. The remainder of these 

ruling lines do not intersect on the Gauss sphere. However, we will show that we can 

lift these disjoint segments to segments in the domain of the Gauss map which do 

intersect. This. will yield a contradiction. Let us now become specific. 

Assume to the contrary that the Gauss wire curve does intersect at some q = 

(x,, y,) = g(a, r ( a ) )  = g(b,I?(b)), 0 < a < b < x,. By Lemma 5.10, we may write 

Because Z is injective on v = 0, we know that we must have vr(a), vr(b) # 0. In fact 

the only way for there to be an intersection is vr (a) < 0, vr (b) > 0. In any case, q must 

lie in the interior of S=. 

Our first step is to cut off the corners of the domain of g appropriately. We begin 
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at the base corner. Consider the geodesic 

oa (s) = Z (a, S) 

passing through q at s = vr(a) and exiting our polar neighborhood N at s = s f .  

As noted in Lemma 5.10, this geodesic is a graph over the y axis which has positive 

x coordinate for s E [a, s:]. Let xo > 0 be the lowest x coordinate it attains on 

this interval. Then by the Corner Slope Improvement Lemma (Lem. 4.17), there is an 

io = C(r )xo  E (0, a) so that the Gauss map sends x < 20 to x < xo/2 on the Gauss 

sphere. As such, the Gauss image of x = 20 is disjoint from the geodesic segment of 

Working relative to XI, y' co~rdina~tes at ~ ( s , , ) ,  repeat the same process for the 

geodesic 

ab(s) = Z(b, s), 

which passes through q at s = vr(b) and exits N at s = s t .  We obtain a cutoff value 

2+ E (b, x,,) so the Gauss map sends x = ?+ to x' 5 x; so that it does not intersect 
b b  

Ob7 S E [so, s+l- 
Now let U be the compact subdomain of dom g with x E [io,2+]. Noting 

the Lemma 5.10, we can apply the Curve- Lift Lemma (Lem. A.4, p. 149) to lift 

a, : [vr (a), ST] -+ U and a b  : [vr (b), s!] + U to positive length curves ea, eb in U 
which terminate in aU.' Because of how the x = ito cutoff was constructed, ea cannot 

terminate in x = i o .  If it terminates on the y curve then because a, is a graph over - 
the y axis, moving in the negative y direction, and because it has positive length, it 

must meet the thread curve at y < y,. Let O, be the set of z E [20, i+] where g,(x) 

has y value less than y,. (This set could be empty.) We conclude that ea terminates 

on the y curve for x E 8,, or it terminates on the x = i+ boundary of U. - 

Let us compare to the lifted curve eb. Because of how the x = 2, cutoff was 

constructed, bb cannot terminate in x = 2,. If it terminates on the - y curve then 

because ob is a graph over the y axis, moving in the positive y direction, 'and because 

it has positive length, it must meet the thread curve at y > y,. Let Ob be the set of 

x E [io, i+] where g,(x) has y value more than y,. (This set could be empty.) We 

conclude that eb terminates on the y curve for x E Ob, or it terminates on the x = 20 - 

'It should be clear that this lemma applies. We note that the curves a,, ab do not intersect the 
curve qr and so we are ensured that the Gauss map is an immersion on the preimage of these curves. 
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boundary of U. 

Because of the Gauss thread curve is a graph over the y-axis, every element of 8, 

exceeds every element of eb. Now we see in Figure 5-5 that thecurves ea and eb 
must cross: 

ea(s;) = 6b(~i) 

for some s: E (vr (a), s$ and st E (vr (b), s!). But then we may push down by g to 

obtain 

oa (s:) = ob($)- 

But this is a contradiction, because the geodesics ga and ob do not touch after their 

initial intersection at q! 

Lemma 5.15. The Gauss wire curve does not touch the supporting ruling segment of 

any Gauss wire point gr(2). In other words, gr does not intersect Z(2, [0,vr(2)) when 

~ ~ ( 2 )  > 0 or Z(2, (vr(2), 01) when ~ ~ ( 2 )  < 0. 

Proof. We show the case ~ ~ ( 2 )  < 0; the other case follows similarly. Say to the 

~ i ~ u r e  5-5: Lifted curves cross. Based on the arguments of Lemma 5.14, the lifted 
curves 8, and eb must cross. 
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contrary that 

Then we would have to have vr(c) > 0, for the ruling map is injective on pieces of its 

domain where v has a single sign. Well, vr is continuous, so on (a, c) it must hit zero 

for the first time at some intermediate b E (a, c). Let Z be the region bounded by 

gr , the curve q-lls(a),s(b)l, and the ruling geodesic from qr(s(x)) to gr(a). There are 
two cases: 

CASE I. The Gauss wire curve enters region Z after touching the qq- curve at qr(s(b)). 

See Figure 5-6. In this case, take any b' E (b,c) near b. Introduce a smooth curve 

a(s) which for s 2 0 follows the ruling supporting gr(br) for a short distance, then 

turns and moves vertically so it exits the region Z by crossing the curve. By 

making this happen close enough to gr(br) we can ensure that a does not touch the 

Gauss thread curve for s > 0 (see Lemma 5.13). Continue CT for s < 0 by having it 

turn and move vertically in negative y, never touching l)r. Form a subdomain U of 

dom g by cutting off dom g near x = 0 and x = x, so that the Gauss image of the 

cutoff curves do not touch o(s), s 2 0 and so (b', I?(b1)) lies in U. We would like to 

apply the Curve Lift Lemma (Lem. A.4, p. 149) to lift a to a curve 8 : [0, s*] + U 

where s* > 0 and 8(s*) E dU. Let us check that the conditions of Curve Lift Lemma 

(Lem. A.4, p. 149) are met. We note that the Gauss map is an immersion on the 

preimage of Im a lying in U .  (Indeed for this to be false we would need vr to vanish 

corresponding to the point where o crosses qr, but to the contrary it is positive there 

by construction.) Moreover, Lemma 5.10 guarantees that the Possibly Nontransverse 

condition (az) is met. Checking the other conditions of Curve Lift Lemma (Lem. A.4, 

p. 149) is straightforward. But then pushing down by g, this means that a intersects 

g(dU) at some s* > 0. This is in fact impossible by our construction, and will lead to 

a contradiction. Let us check: by construction, it can't touch the Gauss image of the 

cutoff boundaries or the y boundary. 

(i) For it to be touched by gr(x) for vr(x) < 0, it we would have to have x E [a, b], 

but those Gauss wire curve points are in a part of dZ which a never touches for 

positive s. 

(iz) For it to be touched by gr(x) for vr(x) = 0, this would have to happen where o 
crosses the qr curve, but that happens at qr(xf) for x' E (a, b) and b was chosen 

so it was the first place on (a, c)  where vr vanishes. 



5.5 Gauss map is injective and is an embedding on the interior 99 

(222) For it to be touched by gr(x) for vr(x) > 0, we would have to have x E (b, b'). Let 
r be the pieces of wire curve gr(x), x E (b, b'), vr(x) > 0. Then r is a graph over 

a subset of (b, b') with respect to the positive v ruling by E. The curve a, s > 0, 
is also a graph in this sense, and has been constructed to have strictly larger v 

values. So there is no touching in this case either. 

We have achieved a contradiction in this case. 

CASE 11. The Gauss wire curve does not enter the region Z after touching the curve 

at w(s(b)). See Figure 5-7. In this case, it is impossible for the Gauss wire curve to 

move subordinate to the ruling E and reach Z(a, v) without crossing gr(x), x E [a, b]. 

This is prohibited of course by Lemma 5.14. We have achieved a contradiction in this 

case. ' w 



5 C1 Corner Theorem 

Figure 5-6: Gauss wire curve cannot cross supporting ruling segment: I. 
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Figure 5-7: Gauss wire curve cannot cross supporting ruling segment: 11. 
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Lemma 5.16. The Gauss thread curve does not intersect the Gauss wire curve. 

Proof. If such an intersection happened, it would have to happen off the curve, 

by Lemma 5.13. Now see Figure 5-8. Given such an intersection at gr(a), we define 

a smooth curve a(s) which for s 2 0 follows the supporting geodesic and then turns 

and crosses qr and then exits the polar neighborhood N. Continue a for s < 0 so it 

never touches and exists the polar region N. Construct a subdomain U of dom g by 

cutting off near x = 0 and x = x,, so that the Gauss image of the boundaries formed 

miss the curve o(s),  s 2 0, and so that U contains (a, I'(a)). We may then apply the 

Curve Lift Lemma (Lem. A.4, p. 149) to lift a to a curve 6 : [0, s*] -+ U, s* > 0, which 

terminates in 8U. By Lemma 5.15, the a curve does not touch the wire for s > 0. The 

a curve cannot touch the thread for s > 0, because if it did, the thread curve would 

be touching a geodesic at two points. As a curve of positive curvature, it would then 

have to stay on the side of ruling geodesic away from the y axis. It would then have 

to touch q-, violating Lemma 5.13. Finally, by construction the curve o(s), s > 0 does 

not touch the Gauss image of the cutoff boundaries of U. So we have a contradiction. 
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Figure 5-8: Gauss wire curve cannot intersect Gauss thread curve. 
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Lemma 5.17. The Gauss map does not map t o  points on the negative x side of the g, 

curve. 

Proof. Say on the contrary that g(ij) = q, ij E (dom g)" as in Figure 5-9. Then form 

a smoooth curve a which for s 2 0 moves horizontally parallel to x (crossing the Gauss 

thread curve at g,(b)) until it first hits a wire point, then turns and follows the ruling 

geodesic supporting that wire point back to the curve, then turns and crosses l)r 

and eventually exits the polar neighborhood N. For s 5 0, continue the curve so it 

never touches and then exits N. Form a subdomain U of dom g by cutting off dom g 

near x = 0 and x = x, so the Gauss image of the cutoff lines miss ~ ( s ) ,  s 2 0 and so 

U contains (b, - y (b)), (a, c(a)).  We may now apply the Curve Lift Lemma (Lem. A.4, 

p. 149) to lift a to a curve : [0, s;] -t U, s; > 0, which starts at ij and terminates in 

dU. We may also lift G to a curve &2 : [O, s;] --+ U, s; > 0, which starts at (b, - y (b)) and 

ends in aU. But then looking at Figure 5-9, we see that 

By the injectivity of g on the 1 curve (Lemma 5.14)) we conclude that 81 (s;) = &(.a. 

But then by looking at the local picture, we can continue backwards on both curves to 

conclude that they are the same curve. But then q = g,(a), which is a contradictionby 

looking at  the local picture, we can continue backwards on both curves to conclude 

that they are the same curve. But then q = g,(a), which is a contradiction. I 
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Figure 5-9: The Gauss thread curve bounds the Gauss image to one side.. 
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Lemma 5.18. The Gauss map is injective. 

Proof. Say to there are two points $1, & E dom g with g(fil) = = p. We will 

show that they must be the same point. There are two cases. The second case is that 

p lies on Q- and g maps to p non-immersively. Otherwise we have the first case, which 

we prove now. For s 2 0 let o(s) be a segment from p moving approximately parallel 

to the x axis in the positive direction so that does not intersect qr at the image of a 

point where g is not an immersion. (This is possible because there are only countably 

many such points; see Lemma 5.11.) Modify o so if it hits the image of the Gauss 

wire curve, it turns smoothly and follows the supporting ruling segment of S back to 

the curve and then turns to cross that curve smoothly and then move parallel to 

the x axis until it exits the polar neighborhood N. In this way the curve o touches 

the Gauss wire curve at most once for s > 0 (See Lemma 5.15). It cannot touch the 

thread for s > 0 because by Lemma 5.17 the point p is either on the thread or to the 

positve x side of the thread, and o moves in the positive x direction with y changing 

little enough so it does not touch the graph of the Gauss thread curve. 

This curve has been chosen so that the Gauss map is immersive on g-l(Im o \ 
(~(0) ) ) .  Cut off the domain of g near x = 0 and x = x,, to make a subdomain U so 

by the Corner Slope Improvement Lemma (Lem. 4.17), the curve o does not intersect 

the Gauss image of the cutoff boundaries of U. We may apply Curve Lift Lemma 

(Lem. A.4, p. 149) to lift this curve by g to $1 and fi2. This gives two curves and 

c2. By Curve Lift Lemma (Lem. A.4, p. 149), these curves must both touch the set 

g ( W )  at positive arclength values. By construction they may only touch the or - 7 

boi~ndaries of U .  Because o travelled in the direction of increasing x, it cannot touch 

the Gauss thread curve for positive arclength parameter. So both lifted curves must 

terminate at  points lying over a wire point. The curve o was constructed so there is 

at most one such point, some point gr(x*). But then because the Gauss wire curve is 

simple (Lemma 5-14)) we conclude that the curves 81 and 8 2  terminate in the same 

point in dom g. Then by the uniqueness property of Curve Lift Lemma (Lem. A.4), 

we may conclude that the curves el and 8 2  are identical. In particular, their starting 

points $1 and $2 are the same. 

We return to the second case, that p lies on vr (s(a)) and g is not immersive at 

(a, I'(a)) . Then because the Gauss map is an injection on the boundary (Lemma 5.14), 

we know at least one of the points $1, fi is not on the r curve. Without loss of general- 

ity, assume it is jjl. Then draw a curve T in the Gauss sphere starting at p and moving 
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exactly horizontally in the direction of increasing x. Use Corner Slope Improvement 

Lemma (Lem. 4.17) to cut off the domain of g near its cusps so the image of the cutoff 

curves is away from the curve r .  Because $1 is not on the r boundary of dom g, the 

map g is immersive at g l  We may use Curve Lift Lemma (Lem. A.4, p. 149) to lift r 

to a curve .i in dom g. Then r must hit a boundary of the cutoff domain of g after 

positive length. But it does not hit any points of the Gauss image of this set. This is 

a contradiction. This completes the second case. 

Lemma 5.19. Let y: be the limit of the y-component of g,(x) at x = 0. There is a 

postive continuous decreasing function 6 : (0, xq) 4 R so 

P~oof. Given (2,@) in dom g, we know by the Corner Slope Improvement Lemma 

(Lem.4.17) that g(it,fi) lies in x < C(I')Z. By Lemmas 5.17 and 5.13 we see that 

g(2, $) lies in the shaded region shown in Figure 5-10. Here the intersection point 

between g, and the vertical line may be taken to be the highest such intersection. The 

fact that g, cannot lie on the y axis (Lemma 5.7) shows that such an intersection must 

exist for sufficiently small 2. The continuity of g, forces the intersection to be some 

vertical distance b(2) from y;, where 6(2) vanishes as 2 goes to zero. 

5.6 Obtaining the crucial slope inequality 

Lemma 5.20. The Gauss map has a limit a t  the base corner, and that limit is the Frenet 

binormal of the wire at the base corner. In other words, the limit lim,,(o,o) g(p) exists and 

equals (0,O). 

Proof. By the Corner Thread Monotonicity Lemma (Lem. 5.2) and the Corner Slope 

Improvement Lemma (Lem. 4.17) we know that the Frenet frame of the thread ap- 

proaches a limit at t he base corner. Let 7, (0) = ( - sin a )  vr (0) + (cos a) (0) be the 

binormal in this limiting frame. Then sin cu = -yz from the previous lemma. Let (x, y) 

be in dom f .  Then the previous lemma says 
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Figure 5-10: Gauss thread curve bounds y-slopes. 

Using the fact that f,(x, y) lies in ( O , C ( ~ ) R " ' ~ )  and f,(x, y) E (-C(r)x,O) we may 

obtain 

for b2(x) > 0 continuously approaching 0 as x goes to 0. Now we may use the fact that 

the function 
a 

a H  
d G - 2  

= sin tan-' (a)  

is a monotonicly increasing map from R to (-1,l) to show 

sin tan-' f ,  ( x  , y ) < sin a + 6 2  ( x )  

f y ( x , y )  < tana+83(x) 
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Well, again noting the Corner Slope Improvement Lemma (Lem. 4.17), we show that 

fy  (x, ~ ( x ) )  approaches tan a. We have now shown the crucial inequality (5.2) and may 

apply Corner Slope Inequality Lemma (Lem. 5.4) to obtain the result. 

In this section we have proved: 

Lemma 5.21. The Gauss image is a simply-connected domain bounded by the Gauss 

thread curve and Gauss wire curve, meeting at the wire Frenet binormal points ~ ~ ( 0 )  and 

~r (sc+ ) 

5.7 Laplacian on Gauss image with Dirichlet-Neumann 

boundary conditions 

Lemma 5.22. The first eigenvalue of the Laplacian on Im g with Dirichlet condition on 

the Gauss wire curve and Neumann condition on the Gauss thread curve is large: 

Proof. Consider a test function cp E C0(1m g) with cp = 0 on the Gauss wire curve, 

and 

defined and finite. Here G is the metric on the sphere in our x, y coordinates: 

where 
-- - 

~ ( ~ 1 1  u2) = (211, u2, ,/I - u: - -2. 
For 1x1, lyJ < E we have in ax, a y  coordinates that G is the matrix 

We see that 
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and 

G(U,  U) = (1 + 2 ~ 2  + o(E~))(u;  + u;). 

The domain of g lies in the first quadrant with x 5 ~ ( r )  R'I12 and y < ~ ( r )  R'I6. In 

Lemma 5.8, equation (5.8) we showed that the Gauss thread curve is a graph x = h,(y). 

The Gauss wire curve is trapped between this graph and the graph of the wire Frenet 

binormal curve qr. We may extend our test function 9 by zero so it is defined for 

all points t o  the right of dom h, from x = h,(y) to x = H where H = c(I')R'/~ is 

the maximum x-value of the wire Frenet binormal curve.2 Now we may estimate I of 

(5.11) as 

b 
We may treat the inner integral using the eigenvalue estimate So widy 2 $ J',b w2 for 

w(0) = 0. In our case, the longest that the interval [h,(x), H] can be is H = C ( ~ ) R ' / ~ .  

So we may continue, 

111 the last step we used (5.12). 

2 ~ h i s  calculation of H follows from the fact that  the wire Frenet binormal curve is a graph of a 
function which is approximately quadratic over an interval of length c( I ' )R ' ' '~ .  
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5.8 Lower bound on thread torsion near corner 

Lemma 5.23. For 0 < x(s) < x,, define ng,(s) = E/T,(s). Then 

In particular, if T,(s) has a limit To as s goes to  zero, then 

Proof. This follows directly from the fact that the Gauss thread curve and the wire 

binormal curve are both graphs over the negative y axis, they start at the origin, and 

the wire binormal curve stays on the positive x side of the Gauss thread curve. One 

must also note that the curvature of the Gauss thread curve is KIT,. (See section 3.2.) 

. REMARK. We already have a large class of examples of extensible thread-wire surfaces. 

., 
We do not show that these are Alt minimizers, although we expect that they are when 

their thread and wire boundaries are close. We can compute exactly the ratio between 

thread torsion and wire torsion for extensible thread-wire surfaces at wire-oscullating 

corners. It is interesting to compare this calculation with the bound of the above result. 

The regime where we should compare is when the thread curvature is close to the wire 

curvature, as must be the case for the near-wire Alt minimizers treated by Lemma 5.23. 

Plugging K = ~ ~ ( 0 )  + E into our exact computation for extensible surfaces (equation 

(7.1)) gives 

On the other hand, equation (5.14) gives 

So if one showed that the extensible thread-wire surfaces were Alt minimizers, their 

torsion ratios would be consistent with Lemma 5.23. ,One is naturally interested to 
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know if the thread torsion always attains a limit for near-wire Alt minimizers - and if 

so, how the thread torsion/wire torsion ratio behaves. 

5.9 proof of C1 Corner Regularity Theorem (Thm. 1.5) 

Together the results of this section prove C1 Corner Regularity Theorem (Thm. 1.5). 

Claim (2) of the theorem, that the normal field converges to the Frenet binormal of 

the wire, is proved as Lemma 5.20. Claim (ii), that the Gauss map is injective and an 

embedding on its interior, is proved as Lemma 5.11 and Lemma 5.18. Claim (iii), that 

the Gauss map has the properties described in Figure 1-4, is proved as Lemma 5.7, 

Lemma 5.8, and Lemma 5.10. Also see Section 3.2 for the calculation of the curvature 

of the Gauss thread curve. 



Chapter 6 

Sufficient c1J control implies 

crescent finit,eness 

This section is important because it justifies why we are studying near-wire crescents. 

The main outcome of this section is a proof of Lemma 1.3. 

In Section 6.1 we show that if near-wire crescents were guaranteed to straddle 

maxima of wire.curvature, then the Crescent Finiteness Conjecture (Conj. 1.1) would 

follow. The game is then to  show that near-wire crescents straddle maxima of wire 

curvature. The first theorem of this thesis-Near-wire Crescent Theorem (Thm. 1.4)- 

fell short of this goal. It was only able to show that near-wire maxima lay close 

to maxima of wire curvature. It left open the possibility that even infinitely many 

crescents might lie near a single maximum of wire curvature. Our job is to reduce this 

bound to one, by showing that near-wire crescents straddle maxima of wire curvature. 

Subject to a C1jl bound, we do this in Section' 6.2. We analyze the intrinsic 

geometry of the crescent.'By examining a family of curves with constant geodesic 

curvature, we show that near-wire crescents contain maxima of wire curvature. 

'The author also considered another method, which is extrinsic. Using a "twisting slide map" 
which transforms all of space near the wire, one can try to show that a crescent supported on a wire 
with monotonic curvature may be improved as an Alt competitor. This method is limited because it 
requires that the torsion not be too large relative to K; at  a maximum of wire curvature. 
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6.1 Counting crescents using maxima of wire cur- 

vature 

Lemma 6.1. Let I' be an embedded, generic wire. Assume that there is an R ( r )  > 0 

so any Alt crescent on in a R ( r )  tubular neighborhood of contains a maximum of 

wire curvature nr  in the interior of i t s  supporting wire. Then for any length scale W small 

relative to  the geometry of r, the following holds. For any Alt minimizer (B, M )  supported 

and any crescent in (B, M )  with supporting wire shorter than length W contains a maximum 

of K r .  Here n is the number of maxima of nr .  

Proof. Given W > 0, there is an R(W) > 0 so the convex hull of any arc f' of I' of 

shorter than W lies in the union of normal discs of radius R associated to  the arc f'. 
By TWS Convex Hull Theorem (Thm. 3.4), any crescent with supporting wire shorter 

than W will be contained in a tubular neighborhood of radius R. Picking W small, we 

may make R(W)  small. Thus for sufficiently small W,  we may force every Alt crescent 

supported on a wire of length less than W to contain a maximum of wire curvature, by 

assumption. The supporting arcs of wire for crescents of a single Alt minimizer do not 

overlap. Thus for small W ,  there axe at  most n crescents with supporting wire shorter 

than W .  On the other hand, there are at  most l ( r ) / W  crescents with supporting wire 

equal to or longer than W. 

6.2 Proof of Lemma 1.3 

In this section we examine a crescent which has a normal field attaining limits a t  its 

corners which ma>tch the Frenet binormal of the wire there. We look at its intrinsic 

geometry as a Riemannian manifold with boundary, and show that the wire must 

attain a maximum of wire curvature on the interior of the supporting piece of wire. 

This proves Lemma 1.3 from the Introduction. 

The basic inspiration is the planar case. See Figure 6-1. 

Lemma 6.2. Let r be an embedded, generic wire. Let R be sufficiently small so that 

Near-wire Crescent Theorem (Thm. 1.4) applies. There is a constant C(r),  so any Alt 
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Figure 6-1: Planar crescents always contain a maximum of wire curvature. We may 
continue the thread curve as a family of constant cunmture curves; this helps us find 
the maximum of wire curvature. In Section ?? we adapt this idea to the nonplanar 
cape. 

crescent ( X , & )  lying in TubR(r) is supported by a piece of I? on which r;r attains an 

interior maximum, provided the following holds: 

0 Comer property: The Alt crescent may be written as a graph z = f (x, y) in the 

Frenet coordinates of the wire at one of the corner points. Moreover, the function f 
is C1>l with D2 f bounded by C(r). 

If this curvature control held for all Alt minimizers sufficiently near the wire, we 

could then invoke: 

We use Figure 6-2 as our guide. Here (C, g) is the Alt crescent, considered 

as a Riemannian manifold with boundary. We parametrize the supporting wire by 

I' : [O, br] + R3 and the free thread by y : (0, b,] + R3, both by their own arclength. 

We also employ the Frenet coordinate functions x, y , t of J? at s = 0. So for example, 

x(P+) is the x-coordinate of the far corner. 

Definition 6.3. The horizontal corner distance of a point q in C is 

Lemma 6.4. In the context of Lemma 6.2, there exists a continuous bijection c : (0, b) --+ 

(0, b,) and a constant Cl(I') << 1 with the following properties: 
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Figure 6-2: The geometric set-up. 

(2) Consider the point p = r ( s )  and the truncated manifold C(s) = C n {dp,  > 
C1(r)dp,(p)). The closest point on Im y n C' to p, measured intrinsically within 

C($), is 7(c(s)) .  

(zz) There is a unique shortest path from r ( s )  to y(c(s)) within C(s). It  is an embedded 

geodesic (parametrized by arclength as t  H r s ( t ) )  which touches the boundary of 

C(s)  only at its initial and terminal points. The geodesic meets y perp.endicularly. 

(zzz) The function h(s) = l (rs)  satisfies a bound 

See Figure 6-3. 

Proof. The idea of the proof is to set C ( r )  so that, because of the quadratic tapering 

of the surface at  each corner, there is no need to wander that close to the corner. 

Specifically, given s we consider the path shown in Figure 6-5 which moves along 

the x = x ( r ( s ) )  slice of C in the positive y direction. This path has length at most 

Cl (I?)KX~ from the constant slope control for C as a graph over x-y. So if we pick 

C ( r )  = Cl(I')nx(P+)/4 in the lemma, we will guarantee that any path that wanders 

more than halfway from x(I'(s)) to  the cutoff x-value will automatically lose in the 

length-minimization competition. Standard differential geometry shows that a length- 

minimizing curve exists (and that it is embedded). The preceeding argument shows 

that the minimizing curve does not abut the constraint. We may then do standard 
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Figure 6-3: The function c defines a bijection between the wire and thread, based on 
finding a closest thread point to a given wire point. 

* ,  

.I . I- 
~c"a1culus of variations to see that it is a geodesic. It is also clear that it must hit 7 
perpendicularly; otherwise there is a first order variation which decreases its length. 

The path r8 found above is the unique minimizer of length. Indeed, if there are 

two minimizers T, T' we get a picture like that in Figure ??. In part (a) of the figure 

we see the case that r and rt only intersect st r (s) , f b n g  a region U. We may then 

write Gauss-Bonnet's theorem for this region: 

Here r > 0 is the length of the thread connecting the end of r to T' , and 0 E [0, X] is as 

shown. But then -KT - # = - SLI Kcdvd C which contradicts the fact that the Gauss 
curvature of a minimal surface is non-positive. On the other hand, if the minimizers 

T, 7' cross, we just repeat the above analysis on the region they define which abuts the . 

thread (~igure ??b). Thus we conclude that there is a unique minimizer 76. 

We see that the geodesics rs must vary continuously with s. If two limits were 

obtainable in approaching some s = sl , then we would be able to obtain two minimizers 

for that s value, which would contradict the uniqueness property. 

The reference competitor shown in Figure 6-5, whose length we calculated above, 

shows (iii) of Lemma 6.4. 

The function c must be surjective. Indeed, by (iii) we see that for small s the 

geodesic 7, is of size C(r)m2 and so must connect to a point y(c(s)) with c(s) < 
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Figure 6-4: Uniqueness of length minimizer rs 

Figure 6-5: A top view of a simpleminded competitor in the minimization of 
Lemma 6.4.(z). 

C(r)ns2. Making a similar argument for the other corner of C ,  we see that c attains 

arbitrarily high and low values in (0, b,). By the intermediate value theorem, it is 

surjective. 

On the other hand, c is injective. Indeed, if rsl and r,, reach the same point 

y(c(sl)) = y (c(sz)), then they both meet the thread here normally. By the uniqueness 

of geodesics, rsl = rs2 SO r(s1) = r(s2). 

Lemma 6.5. In the context of  Lemma 6.2, the function h(s) attains its maximum at some 

interior point s = so. Here the geodesic rs meets both the wire and thread perpendicularly. 



6.2 Proof of Lemma 1.3 

i Figure 6-6: The geodesic rsO. 
I 

See Figure 6-6. 

Proof. We know that we cannot ha+ h(s) = 0 because then the constant curvature 

thread would coincide with the wire for positive length. This violates the Genericness 

Assumption 2.15. Then from Lemma 6.4. (iii).  we know that it attains a positive 

maximum, and it does so at an interior point so in (0, b). Certainly the geodesic rS0 

must meet the wire perpendicularly. If it does not, we can calculate the first variation 

of the geodesics emanating from 7 normally and show that h attains higher values 

nearby. 

Lemma 6.6. In the context of Lemma 6.2, at the corners we have the curvature inequality 

Proof. Because of the corner assumption, we know that the Frenet frame of the thread 

coincides with that of r at the corner P-. Then the curvature inequality follows from 

the fact that the thread stays on the positive y side of r. See Figure 6-2. 

I We may how tackle the main lemma of this section. 

I Proof-Lemma 6.2. Assume to the contrary that the supporting wire does not 

attain a maximum of its curvature on the interior. Then by Lemma 6.6, 

on the entire supporting wire. 
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Definition 6.7. We define a family of constant-curvature curves on C as follows: For 

each point rsO(y), let py(x)  be the curve of constant curvature defined by lpbl = 1 and 

Here Rot rotates any tangent vector on C by n / 2  in a continuous way compatible with 

Roty' = v, on the thread. 

Equation (6.2) is locally a second order ODE. 

Lemma 6.8. Assume the curvature condition of Lemma 6.2. Let p : [0, b] + C be any 

curve in C with constant geodesic curvature n. Then the projection - p of p t o  x-y plane is 

a curve with curvature at most C ( r )  + n. The lengths of p and - p are comparable as R 

gets small. If l ( p )  - < c(~?)R' / '~  then - p is a graph over the tangent line to  - p at s = 0 and 

it continues along this line for a length comparable to [ ( p )  as R gets 

Proof. Consider the curve p, parametrized by arclength. We have 

where v is tangent to C and N is normal to it. By Near-wire Crescent Theorem 

(Thm. 1.4) we know that the binormal of p is constrained to be within C(r)R' /12 of 

(0 ,0 ,1) .  We may thus apply Lemma A. 1 (p. 145) to obtain 

The curve - pr is a path on the unit sphere of length ~ ~ ~ , ( ~ ) l ~ , l d s ;  - by above this is of 

size C ( r )  R'/l2. We conclude that ( p f ( s ) ,  - - p'(0)) > 1 - C ( r ,  E,,,) R'/l2, SO the curve - p 

is indeed a graph and travels length l ( p ) ( l  - + O ( R ' / ' ~ ) )  in the - pl(0) direction. Finally, 

the slope control of Near-wire Crescent Theorem (Thm. 1.4) shows that this curve - p(s) 

corresponds to a piece of p of length l ( p ) ( l  - + O(R ' / ' ~ ) .  I 

We may piece the constant curvature curves together to get a map Z : (x, y )  = 

pY(x). The domain of this map contains (0) x [0, l (rSO)];  how much it extends in the x 
direction can vary as a function of y. The curve x I-+ Z ( x ,  0 )  parametrizes the thread 

curve up to each corner. 

2By "comparable," we mean their ratio approaches 1 as R goes to zero. 
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Subclaim 6.9. Given 6 > 0, there is a subdomain Ad of dom E, obtained by restricting 

each curve pg(x) t o  an interval of x values, such that 

(2) The map Z is an embedding on As. 

(22) The left boundary of Ad maps t o  within horizontal distance 6 of the base corner. 

(222) The right boundary of Ad maps to within horizontal distance 6 of the positive corner. 

(2v) We have 

h(C1 (r)6) >. Cz(r). 

Proof. Define As as follows. For each y E (0, l (rS0)),  continue pg(x) in each direction 

until any of these holds: 

fz) The curve pg(x) hits ddom f . 

(22) The curve pY(x) hits corner horizontal distance 6. 

Using the graph property of Lemma 6.8 and the control of C as a graph over a 

domain between two graphs over the x axis, we may conclude that each pY is well- 

defined in the set Ad. Moreover, each pY is a curve of length o(R'/'~ and its projection 

to the x-y plane is a graph over the x axis., We may now apply Lemma A.5 (p. 152). 

Finally, we show that every pY only terminates via condition (ii) above. Indeed, if 

one of then hits the lower boundary we can work backwards and violate the immersion 

property. If a py hits the upper boundary, we can work backwards to violate the . 

property (6.1). 

Then we can find a constant C ( r )  so at horiz distnace C(r)6 ,  the shortest path 

must pass through all of our p curves. (This uses the quadratic shape of the projection 

of C to the x-y plane.) We can then calculate this shortest length using the metric 

pulled back via 3. We can then use (A.12) to show you get at least a const amount of 

distance. 

The last item of this subclaim contradicts Lemma 6.4. Thus we have achieved a 

contradiction, and we have proved by contradiction that K r  must achieve a maximum 

on the supporting wire of the crescent. 
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Chapter 7 

Examples 

7.1 Extensible thread-wire surfaces 

Let 7 : [O, b] + R3 be a regular real-analytic curve with constant curvature n # 0. Let 

v7(t) be the Frenet binormal to y at y ( t )  Then we may apply Bjorling's formula to 

define a minimal surface which passes through y: 

X(u,v)  = Real. l"+iv -/(.) x q7(z) d z )  . 

Here we have used the expansion of y to extend it as a map @ + C3. The integral is a 

complex path integral. The x operator is the extension of the usual cross product on 

R3 to  a product on C3. The parametrization X is defined in a neighborhood U of the 

real segment [0, b] in the complex plane. Moreover, the minimal surface defined by X 

has the property that 7 sits in it with rl,(t) agreeing with the normal to the surface at 

7(t)- 

. Now let I' be the curve parametrized by X restricted to any simple curve in U 
which forms a connected region Uragainst the curve [0, b] . Then the surface C(7, I?) 
parametrized by X l r r ,  is what we may call a stationary thread-wire surface. The curve 

r is its supporting wire, and the portion of 7 bounding it is its free thread. We do 

not formalize the concept of stationary thread-wire surface in this thesis. The surface 

C( 7, I?) has the property that it lies inside a real-analytic surface. 

The case where I? meets y tangentially at a corner point P is of particular interest 

to us. In this case, we know that the expansion for X at P converges near P. We may 
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then apply the analysis of Appendix B to this expansion. So long as the ratio K / K ~ ( P )  

does not assume the critical value 312 (see Definition B.5, p. 168)) we find that there 

is a nice formula relating thread torsion to wire torsion: 

Since the analysis of Appendix B is quite complex, we prove (7.1) in a more direct 

and readable way: 

Lemma 7.1. Let M be an isolated crescent of an Alt minimizer supported on wire I' with 

thread y. Assume that there exists a minimal surface M which contains M in its interior. 

Let P be a corner point of M. Let NM be a unit normal field on M near P. Let N u  be 

an extension to M near P. Then 

where qr is the third vector in the Frenet frame of r. Moreover 

 KT + K ~ T ~  - 3 T ~ r  = 0. 

Figure 7-1: Extensible thread-wire surfaces. The solid/dashed curve is meant 
to be a space curve y of constant curvature. By applying B jorling's formula to this 
curve, we may create a minimal surface on one side of y which has normal vector 
field agreeing with the Frenet binormal of y along y. Then one chooses a wire curve 
(with in a radius of convergence) to bound the other side of the surface. The result 
is a stationary thread-wire surface. If one were to extend the su rface in the other 
direction, so it extends along -? one coul d create a thread-wire surface which is not 
a local minimum of area. 
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If n # inr then we have: 

Proof. Let y(t) parameterize (by arclength) the thread boundary along one side of 

the corner, with y(0) = P. Let r ( t )  parameterize (by arclength) the wire boundary 

along the other side of the corner, with r (0)  = P. Consider the Frenet frame of 

y (t). Two of the vectors, j ( t )  and ;j.(t), lie in the tangent space T,(~) M. This means 

the third, %(t) points orthogonally to M. Without loss of generality, we may assume 

7,  (t) = N~ (y ( t))  . NOW it was noted previously in this paper (and it is easy to calculate) 

that along y ,  the second fundamental form is 

with respect to the j, Y basis for T,(,)M. We may then consider how the F'renet frame 

of I' relates to M at P. We have 

So the F'renet frame of I' at  P also has both i' and vr lying in the tangent space of M. 
This shows (7.2). 

Now let us investigate higher order behavior. We adopt the Frenet frame of I' at the 

corner as coordinates for all of R3. Let M be parameterized as a graph (x, y, f (x, y)). 

Near 0 we have a real analytic expansion 

f (z, y) = -Txy + bn,i~iyn-i. 

We may expand arclength parameterizations of the wire (r) and thread (7) in these 
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coordinates. See Section A. 1. 

RTe impose the following conditions: 

f i )  The surface M satisfies the minimal surface equation 

(ii) The wire lies in fi. 

(iii) The thread lies in &?: 

( iv )  The thread has constant curvature. This has already been reflected in the way 

that we wrote the arclength parameterization without any curvature derivative 

coefficients. 

(v) The curvature vector j; of the thread is parallel to  the side normal u of the thread 
in M. Really, since the curvature vector of the thread is already perpendicular 
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to the thread, we just need for ;i. to lie in the tangent plane of M. We can write 

this as a determinant condition 

Let us see how these conditions look when we use expansions for the wire, thread 

and surface out to fourth order in x, y. 

(2) Surface is minimal. 

(22) Wire lies in surface. 

(~22) Thread lies in surface. 

(iv) Thread curvature points tangentially to the surface. 
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Examining these equations, one sees that there is a crucial equation: 

If K # $/cr then we may solve uniquely for T and all other surface and thread quantities. 

If K = $nr then (under our genericness assumptions) we must have Tr = 0 and T can 

be arbitrxy. We may then solve for all other thread and surface quantities. 

7.2 Helicoidal thread-wire surfaces 

Definition 7.2. For ,O a non-zero real constant, we define the P-helicoid 3CB t o  be the 

surface parameterized by 

X ( u , v )  = ( u c o s P v , u s i n ~ v ,  v). 

Lemma 7.3. The helicoid 3-Co is a minimal surface. 

Proof. To see this, let H be a normal vector field on 3-Ep so 

for unit normal fields N and tangent fields X ,  Y on Xp. In other words, I? encodes 

the mean curvature as a normal vector field. Rotating space around the x-axis by 180 

degrees sends the helicoid to itself, which means I? must vanish along the x-axis. 

There is a rigid motion of space 

E t ( z ,  IJ, z) = (x cos pt + y sin pt, -x sin pt + y sin pt, z + t )  

which sends the image of X to itself: 

Z,(X(v, v))  = X ( u ,  21 + t )  

The vector field must he invariant under Z so it vanishes everywhere and XP is a 

minimal surface. 
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We calculate derivatives for future use: 

Xu = (cos pv, sin pv, 0) 

Xvv = (-p2u cos pv, -p2u sin pv, 0) 

Xu, = (-p2 cos pv, -p2 sin pv, 0)  

X,, = (p3u sin pv, -p2u cos pv, 0)  

Note that X is not a conformal parameterization of 3Cp. 

The helicoid is foliated by helices 

yC(t) = X(C, t) 

with 

1 (-PC sin pt,  pc cos Pt,  1)  . 

P2c 7 )  = I +"3p2 (- cos pt  , - sin pt  , 0) . 

'i."(t) = PC 
(1 + c2P2)3/2 

(sin Pt , - cos Pt , 0) . 

We see that each helicoid has constant curvature 

and the curvature vector points tangentially to 31p. 

Let M be a domain on 3Cp bounded by yc for c > 0 on one side and by a curve I? 
on the other, so that I? touches yC at exactly two points PI, Pz making null angles at 

each. Then M is a stationary thread-wire surface for wire I? and thread y given by the 

arc of yC joining PI t o  P2. 

In this discussion we restrict to the case that y lies on 3Cp in the region u > c. 
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Here are further useful calculations. We construct a normal field 

x u  x xv - 1 N =  (sin pv , cos pv , pu) . 
IX, x Xvl - Jm 

Orient Xa so the Gauss image of the u > c part is in the upper ("northern") hemisphere. 

Then the Gauss image of u 2 c is a spherical cap missing the north pole. The Gauss 

image of M lies in this set, with boundary given by an arc of the cap's bounding circle. 

This confirms the property that the image of the thread should always turn inward- 

towards the Gauss images of nearby interior points on the thread-wire surface. (See 

Section 3.2 .) 

7.3 Beeson's skewed chevron 

In this thesis, we prove a conjecture (Conj. 1.2) that the local geometry of the wire a t  a 

surface corner dominates the global influence of the wire and causes a simply-described 

C1 regularity at  the surface corner. The reader may be interested to examine another 

example of strong local control in minimal surface theory. See Figure 7-2. 

Figure 7-2: Beeson's skewed chevron. Perturbing the "skewed chevron" in (a) out 
of the plane any positive amount causes the normal field at that point to flip over. (See 
(b).) This demonstrates dominant influence by the corner of the wire over long-range 
effects by the rest of the wire. 
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Physical experiment 

Given a wire loop I' in three-dimensional space, 

what area-minimizing or area-critical surfaces span 

it? One line of inquiry has focused on the total cur- 

vature s lnrl ds of the curve. If the total curvature 

is less than 47r, then exactly one area-minimizing 

disc spans the wire loop [2]. If the total curvature b? 
is less than 67r then finitely many area-critical discs 

span the wire loop [4]. 

It seems highly desirable to give a full descrip 4 
tion of the Morse theory of area-critical surfaces 

spanning a wire loop, and to do so using greater 

geometric detail about the wire, beyond the total 
4 

curvature. 

Thinking along these lines, I imagined a Figure 8-1: Thought exper- 

thread-pull process for creating area-critical surface iment. 

spanning a wire loop, which would respond to the 

geometry of the wire in an intimate fashion. Here is 

my thought experiment: Take an arbitrary wire loop I' (Figure &la). Place a bead 

on the wire at some location. Take a piece of thread and pass it through the bead, 

lay it along the wire, and pass it back out through the bead. Paint the thread with 

soap-water so it adheres to the wire. (See Figure 8-lb.) Grasp the two ends of the 

thread dangling from the bead and slowly pull on them, causing the length of thread 

bounded by the bead to decrease. This should cause soapwater surfaces to form as 
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the thread pulls away from the wire (Figure 8-lc). By pulling on the thread slowly, I 

imagined progressing through a family of surfaces which locally minimize area subject 

to the thread's length constraint. If I succeed in finding such a surface for length con- 

straints which finally arrive at zero, then I succeed in finding a local area-minimizing 

surface spanning the wire loop J? (See Figure 8-ld). 
I thought this process might be particularly interesting for a curve like the tie-clip 

curve (Figure 8-6). This curve is invariant under a rigid motion. It has two area 

minimizers, neither of which has this symmetry. (They are in fact interchanged by this 

symmetry.) When a symmetric system minimizes a natural functional in an asymmetric 

way, it is known as symmetry breaking. How would the thread-pull proceed for the tie- 

clip curve? More generally, how would it proceed for curves which are spannned by 

more than one area-minimizing surface? 

I investigated the thread-pull experimentally and found that it was remarkably 

robust. For many wires, it proceeded continously until the thread pulled tight against 

the bead and it found a stable soap-water surface spanning the wire loop. On the other 

hand, I found at least one example where the thread-wire surface suddenly jumped to 

a new position as I slowly pulled the thread. Actually, this is to be expected. See 

Figure 8-3. 

I have not yet shown that the thread-pull gives useful information about the Morse 

theory of areas of surfaces spanning a contour. It may be that studying the thread-pull 

is actually harder to understand than the original problem. On the other hand, 1 did 

find immediate benefits from studying the thread-pull, because I gained intuition about 

the static problem. 

8.1 Experimental method 

These experiments were done using stainless steel wire; copper wire quickly corrodes 

and stains things blue-green. The thread is cotton; this has the advantage of being a 

generous reservoir of soap water when wet. Consequently, there is plenty of soap water 

Figure 8-2: The symmetric tie-clip curve supports two area minimizers. 
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Figure 8-3: Constrained minimization can jump. Think of these functions as 
representing a cost function for different values of a constraint function. If our system 
is at a local minimum of cost and we continuously change the constraint value, we are 
not guaranteed being able to stay continuously at a local min. In this example, once 
we have reached (c), our local minimum has become unstable and we are dumped into 
a new local minimum as the constraint moves slightly to (d). 

available for the formation of new crescents as the thread pulls away from the wire. 

The disadvantage of cotton thread is that it has a high coefficient of friction with the 

wire. I had hoped to reduce friction using silk thread. This does not hold as much 

soap water; I have not yet had success. 

The soap solution contains Ultra Ivory liquid soap, physical experiment! gylcerin, 

and Cambridge tap water. The glycerin increases the lifetime of the surfaces from 

around 10 seconds to over a minute. I captured video [25] of my experiments using a 

Unibrain Fire-i webcam. The videos may be viewed at  my website, www.bkstephens.net. 

In the sections below we discuss the videos using stills. Unfortunately the stills do not 

come out well in black-and-white; visiting the website may be helpful. 
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8.2 Heart curve 

This planar wire loop is in the shape of a heart. It demonstrates the formation of 

coalitions. See Figure 8-4. 



8.2 Heart curve 

I Figure 8-4: Heart thread pull. Pulling the thread in a heart-shaped wire. Initially 

1 the thread clings to the wire and there is no soap surface (a). As the thread tightens, 

I the thread pulls away at three local maxima of wire curvature (b). This forms three 
crescents of soap surface which join to form a coalition (c). The outer two crescents 
advance a t  the expense of a shrinking middle crescent (d), which disappears (e). The 

1 other cresecents join and a circle of thread shrinks down to the bead, forming the 
~ planar Plateau solution (f). 
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8.3 Bent paperclip curve 

In general, the thread pull causes crescents to appear at local maxima of curvature 

and then grow together. When they join, they generally have different tangent planes 

at the join point. The so-called bent paperclip wire is a fundamental example of this 

behavior. The wire consists of two circular arcs lying in orthogonal planes which join to 

form a bent "S." The thread passes through loops in the wire at each end. As one pulls 

the thread, the crescents grow and successfully join. I am keen to understand from a 

formal point of view why this join succeeds, and prove that it will always succeed given 

certain conditions. See Figure 8-5. 



8.3 Bent paperclip curve 

Figure 8-5: "Bent paperclip" thread pull. Pulling the thread on the "bent 
paperclip." Initially the thread clings to the wire and there is no soap surface. As 
the thread tightens, the thread pulls away a t  the two local maxima of wire curvature 
(a). These crescents grow and, at  a critical moment, they meet (b). At this moment 
if you trace the curvature vector moving along the thread, you will see it undergo a 
discontinuous,. right-angle jump at  the join point. The torsion of the thread at  the join 
point is modelled on a delta function. In the next few moments that delta function 
mollifies and the two crescents join as the thread pulls away from the wire (c). This 
process continues (d) and ends (e) when the thread is stretched taughtly between the 
ends of the wire. 
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8.4 Tie-clip curve: Bifurcation 

In Figure 8-6 we see the wire loop which I call the tie-clip wire. It looks like the edge 

of a tieclip. The tie-clip is interesting because it admits two different disc-type minimal 

surtaces. 

But initially, the idealized thread pull process should 

always do the same thing: four crescents should 

grow at each of the four tonguelike ends of the t i e  

clip loop. If the wire were perfectly symmetric, there 

would be a moment where the four crescents join si- 

multaneously at  four points. At this moment there 

would be a loss of stability and there would be a 

choice: to make one pair of parallel crescents grow 

and the other pair recede. This would be the point Figure 8-6: Tie-clip curve. 
of "symmetry breaking.". 

In Figure 8-7 and Figure 8-8, we show stills 

from a video of the author pulling the thread on the tie-clip curve. Friction between 

the thread and wire cause the physical experiment to deviate significantly from the 

idealization. Friction strongly affects the initial crescent creation and affects which of 

the two stable thread-wire surface is chosen in the end.. 
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Figure 8-7: Tie-clip horizontal solution. Initially the thread clings to the wire 
and there is no soap surface (a). As the thread tightens, crescents form on the tongues 
closest to the bead. But the top left and back right tongues do not form crescents due 
to friction (b). In (c) we see the thread finally pull away from the top left tongue. The 
large thread-wire angle to the right of the bead indicates how much force this requires. 
In (d) the top left tongue has continued to grow and small crescent pulls away from 
the back right tongue. But this is far too late, the top left crescents grows more and 
the back right crescent recedes and disappears (e). In the end (f) ,  the thread pulls 
tight to the bead and creates the mostly horizontal Plateau solution. 
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Figure 8-8: Tie-clip vertical solution. We start (a) with the same tie-clip wire 
as in Figure 8-7, seen from a different angle. The bead is in a similar place. The 
white globs are drips of soap water. As we pull the thread, a crescent forms on each 
tongue adjoining the bead (b). The back right crescent pulls away (c) and finally the 
top left one pulls away a little (d). But this crescent is very short-lived and it returns 
to the wire as the back left crescent barrels through (e) and joins its opposite. In (f) 
the thread has almost pulled down to the bead. Finally, the thread pulls tight to the 
bead and creates the mostly vertical Plateau solution. 
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Figure 8-9: Mobius strip thread pull. We begin (a) with the wire loop threaded 
as described in section 8.5. When I pull the thread (b), it tries to undo the bridge 
where it connects with the wire (as these corners are the most curved parts of the 
thread). The friction is very high at  this thread-thread interface, and so the thread 
pulls away where it otherwise would not, in long crescents at topleft and bottom-right. 
The thread bridge widens into a bridge of soap surface (c). In (d) the bridge grows. 
(continued in Figure 8-10) 

8.5 Mobius strip 

This paper focuses on disc-type minimal surfaces. But the thread pull is capable of 

creating surfaces with other topologies as well. In this example we start with a wire 

loop supporting wet thread in a unique way. Instead of tracing the wire around until 

it returns to the bead, the thread leaves the wire and makes a bridge to another point 

of the wire. Then the thread traverses the wire until it returns to the other end of the 

bridge, whereupon it crosses again, forming a double-stranded bridge. It then returns 

to the bead location. What happens when you pull the thread? See Figure 8-9 and 

Figure 8-10. 
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Figure 8-10: Mijbius strip thread pull, continued. In (e) the two initial crescents 
return to the wire. The right side of the bridge turns away from the camera and peeks 
out below where the wire crosses itself on the right. In (f) and (g) we see the left side 
of the bridge follow the wire on the left without turning over. Finally, the two sides of 
the original bridge meet (h) forming a perfect circle of thread. This circle shrinks down 
to the bead (i), finally forming the Mobius strip solution (j) to this Plateau problem. 
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Appendix 

A. l  . Properties of Frenet curves 

In this section we prove a lemma about Frenet curves. We also demonstrate useful 

expansions for curves relative to their Frenet frame at  a point. 

Lemma A.1. Let @(s) = (x(s) , y(s), z(s)) be a C2 Frenet curve, parametrized by ar- 

clength. Assume that its binormal vc(s) satisfies 

Then its projection +(s) = (x(s) , y (s), 0) satisfies 

Proof. Given any curve b(u), not necessarily parametrized by arclength we have that 

its curvature vector is 

where P(e, w) = w - (e, w ,  e) projects w onto the orthogonal complement of e for unit 

vector e. So we have 

Kly = l*SSl = IP(*S, *,,)I (A-2) 

and 

n+ = IP(+r/l$sl) + s s / 1 $ s 1 2 )  1 .  
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We note that' $(s) is not parametrized by its arclength. Our goal is to show that 

(A.2) and (A.3) are close to each other by showing that the inputs to P in the second 

equation have changed by quantities bounded by CE. 

Subclaim A.2. (2) The corresponding vectors of  the Frenet frames of Xl? and 1C, are 

within distance CE. 

Proof. Equation (A. 1) establishes (2) for the binormals. We then observe that (A.l) 

and (q , (s) , qQ (s)) = 0 imply that 

We have 

1$Sl2 = 1 + 0(e2) 

and 

(@s/l@sl, *s) = 1 + O(€). 

This clinches (i). Then the identity Q,,(s) = K*(s)u* (s) and (i) clinch (ii). But then 

qss = (x,, , gas, 0). Combining our results, we get (iii) . 

Define 6i = $,/I$,I - @, which has size CE by (i), and define 62 to be the value of 

the left side of (iii). Then 

This proves Lemma ??. 

Finally, we demonstrate useful expansions for Frenet curves. Here we use the dot 

symbol to indicate differentiation by arclength. We omit the dependences on arclength 
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to make the formulas more readable. 

So we have 

Now we assume we have a smooth curve o(s) parameterized by arclength. Below 

is its Taylor expansion out to fifth order. This can be calculated by hand using the 

Frenet differentiation matrix above. Or one can program a software package like Maple 

to help, which is what the author did. The coefficients such as K ,  T refer to geometric 

quantities evaluated at 0. Dots indicate differentiation by arclength. For example i 

means the first derivative of the curvature of 0, evaluated at  zero. 

It is often helpful torewrite this expansion in terms of the x coordinate of the curve. 

Inverting the first component of (A.8) gives 

(A. 9) 
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Substituting this into (A. 8) gives 

A Appendix 

O(S(X)) - ( ~ ( 0 )  = x, ( (A. 10) 

A. 2 Generalized Descartes's rule 

The following is a straightforward generalization of Descartes's rule of signs for poly- 

nomials. 

Lemma A.3. [Generalized Descartes's Rule] Let f be a Cn real-valued function on 

an interval [0, b]. Assume that f(n)(x) has a definite sign on the entire interval. Let m be 

the number of  sign changes in the sequence ( f ( k ) ( ~ ) ,  k = 0,. . . n) ,  where elements that 

are zero have been removed. Then f has at most m zeroes on [0, b]. 

Proof. We prove this lemma by induction on n. The base case, n = 0, is trivial. Now 

we treat the inductive step. 

Assume that the lemma holds with n = no. Let f be a function satisfying the 

conditions for n = no + 1, and having m = ml sign changes. Let f (')(o) be the first 

non-zero entry in the sequence {f(k)(~), k = 1 , .  . .n) .  We know 1 5 r 5 n. Let 

(1, f (0) # 0 and has a different sign from f (')(o) 
6 = 

(0, else. 

Applying the inductive assumption, we conclude that f' has at most ml - 6 zeroes on 

[0, b] . Now consider f on [0, b) . For each zero z of f , trace the graph of f to the left 

until you hit either a critical point of f or x = 0. If z itself is a critical point of f, just 

stay at z. This process defines an injection rl : Z + T, where 
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A  property of the process is that for z  E 2, 

Indeed, if f (c) = 0  fo i  an interior point c  E ( ~ ( z )  , t ) ,  then by Rolle's Theorem there 

. would be a critical point of f in (c ,  t )  . This would be a contradiction. 

We can estimate the size of Im T  by 

#Im T < #{a: E [0, b] I f f ( x )  = 0 )  + w  5 ml - 6 + w  

where 

1, 0 E Irn T and f r ( 0 )  # 0 

0 ,  else. 

If w = 1, then we know that when we trace left from the first zero, 2.1, of f , we hit x  = 0. 

. :..*: ' 

. 
.. . . By ( A .  11)) we know f (0 )  # 0. Moreover, as we moved left on [0, zl] , the function f 

. must have changed strictly monotonically. Therefore, the first non-zero derivative of f 
* 
-.. 

at zero, f ('1, must have a sign opposite to that of f (0). We conclude that b  = 1. This 

shows that 6 > w . 

Finally, we estimate the number of zeroes of f by 

# Z < # T < m l - b + w < m l .  

This completes the inductive step. 

A.3 Immersive lifts of a curve 

Lemma A.4. [Curve Lift] Let K c R2 be a closed domain which is the image of a 

planar polygonal region under a Cn diffeomorphism of the plane. Let (T E Cm([O, [((T)], A) 
be a simple curve, parametrized by arclength, which ends in aA. Let fi E K be a preimage 

of the starting point of the curve: 



We demonstrate the existence of the lift of CT by W from o(0) to @, which is a simple 

curve 6 E Cn([O, s*], K )  lying over o,  

To do this we require the following: 

(a)  Beginning: The map W is an immersion at fi. The lift point l j  either lies in the 

interior KO, or it lies on the boundary dK,  not at a corner point. In this case, we 

require that it satisfy an entry condition: 

(al) Transverse entry: The pair of vectors W,(O), cr'(0) is a basis and has the same 

orientation as the basis W,(O), W,(O). 

(a2) Possibly nontransverse entry: Let Wo extend W to  a diffeomorphism in a 

neighborhood of 0. For all s > 0 in a neighborhood of 0, we require that 

wclo(s )  lies in K". 

( b )  Continuation: The map W E Cn(K,  AO) is an immersion on the preimage W-l(o((0, ~ ( c T ) ] ) )  

of the curve minus its starting point. 

The lift we define is maximal in the sense that it parametrizes the entire connected com- 

ponent of W-'(Im o)  containing l j .  It has positive length 

and terminates at a boundary: 

6(s*) E aK. 

The lift satisfies a uniqueness property: if el : [0, s;] -t K and 8 2  : [0, s;] -+ K are both 

lifts of o by W from o(O), then el(s;) = sig^ma2(s;) implies that s; = s; and 6' and 6 2  

are id.entical maps. 

Proof. Now let us consider the set Z = W-' (o((0, !(o)]) U {fi). We claim that the 

connected component C of @ in Z is the same as the connected component C' of lj in 

W-'(Im 0).  Indeed, by condition (a) we know that W may be restricted to provide 

a diffeomorphism between an open neighborhood Nl of fi and an open neighborhood 

N2 of cr(0). Then let C2 be C \ Nl. We know that W sends C2 to outside the N2 

neighborhood of ~ ( 0 ) .  So by continuity of W, there is an open neighborhood N3 of 
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C2 in dorn W disjoint from an open neighborhood & of W-'((o(0))). Then the 

neighborhood Nl U N3 of 2 is disjoint from a neighborhood of W-'((o(0))) \ ($1. 
Together this shows that the connected component C'of $ in Z is the same as the 

connected component C' of ?j in W-' (Im 0). In particular. C is compact. 

Since 0 is a simple curve, we may extend it to a slightly longer simple curve 

o : [-c,e(o) + E] -+ Tub,tK. Then for each point s E [0, l(o)] we may find an R2 - 

neighborhood U, of o(s) so Us n Im g is parametrizable by o(t) for t in some interval 

I, c dorn r. Moreover, we can ensure that a is a graph over the tangent line to o at 

o(s). Also, since W is an immersion on the compact set C (conditions (a) and (b)), 

and because the domain of W is sufficiently smooth, we may extend W to a Cn map 

W from an open neighborhood of dorn W to R2. - 
Now by standard argument, we can show the small curves oIrs to be level sets of 

locally defined Cn functions. Using the compactness of C and the fact that W is an 

immersion everywhere on C (conditions (a) and (b)), we can lift g (possibly on a slightly 

smaller neighborhood of dorn o)  to a curve in dorn W. The final step is to show that 

this curve actually enters the interior of dorn W for positive s. This is accomplished by 

condition (a2) (which is implied by (al)). Therefore, we may restrict our lifted curve 

to a curve 6 : [0, s*] -t dorn W with s* > 0. By construction our curve parametrizes 

the connected component C which we showed above is the connected component of 

W-'(Im o) containing 6. The curve must terminate at a boundary; otherwise it would 

have been continued under our construction. 

Finally, we prove the uniqueness property. Without loss of generality, assume 

s; 5 s;. Consider the subset of [0, s;] , 

A = {s I dl(s; - s) = - s) ) .  

This is a closed set. On the other hand, by our above construction, if the two curves 

agree at  a given parameter value, they agree on an open neighborhood of that parameter 

value. We conclude that A is all of [0, $1. Then 

Since we were given e2(0) = bl(0), we have by the simpleness of the curve 6 2  that 

s* + 2 = s;. Moreover, we have shown that on their identical domains, the two curves 

el and 8 2  are identical. 
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A.4 A family of constant-curvature curves 

Lemma A.5. Let Z map a rectangle [0, A] x [O,1] to  a Riemannian 2-manifold ( M ,  g) so 

each horizontal segment maps to  a curve of constant curvature n. Coordinatize the domain 

of Z by s E [O, A] and t E [0, I]. Assume that: 

(i) The curve 21~o),lo,ll is a geodesic. 

(zz) The constant curvature curves leave this geodesic normally: 

g(Zs(0, t ) ,  q o ,  t ) )  = 0. 

(ziz) The curves are parametrized by arclength: 

(zv) The metric has bounded non-positive Gauss curvature: 

-KM 5 Kg 5 0  

where KM is a constant. 

(v) The length of the curves satisfies 

Then the map E is an immersion. Moreover, we have 

where 2' is the map in t he  flat case 

Z(s, t )  = (cos ns, t + sin KS) . 

Proof. We have 3 : [0, s,] x [O, 11 -+ C and we may pull back the metric to dom S. In 

this section, we use angled brackets to denote this: 
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This bilinear form is a metric on some open subset R of dom including (0) x [0,1]. We 

use I ( t o  denote the norm associated to 3. Our goal is to show that in 'fact R = dom z 
and Z is an immersion. 

We have commuting vector fields 

d s= -  d T = -  
a t  ' [S, TI = 0. 

ds  ' 

Moving along a level set o f t  corresponds to moving along a curve of constant curvature. 

We have constructed E so these curves are parametrized by arclength; this gives 

IS1 = 1. 

We introduce a vector field v on R so 

vSS = KV. 

Then S, v is an orthonormal frame on R. The volume form is 

dvol 4 = Vdsdt 

where 

w = v2 = (S, S) (T, T)  - (S, T ) ~  = (T, T) - (S, T ) ~ .  

Subclaim A.6. At each point on dom z, 

a2 
-W = -KW + ~ ( ( v ~ T ,  V) + (S, T ) ) ~ .  
as2 

Here I< is the Gauss curvature of Q. 

Proof. Consider a point (so, to) in dom E. To make our calculation easier, introduce 

T = T + cS (here c = - (S, T))  so - 

(T, S) = 0. 

Then S, T has the same associated volume form as S,  T, 
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just as unslanting a parallelogram does not change its volume. We may then calculate 

We then differentiate again and evaluate at (so, t o )  For a term to contribute, it cannot 

have an (S, T )  factor. We find: 

(A. 13) 

-2n2 (Y, T ) ~  - 4 (S, v s z )  (KY, T )  - 2 (S) v ~ T ) ~  

Applying [S,T] = 0 and rearranging gives: 

= 2 (vsvZs, r) - 2n2 (v, T ) ~  - 4 (S ,  vrS)  (nu, T )  + 2 ( (vsT(~ - (S, v s ~ @ .  14) 

We may then introduce the curvature tensor, again exploiting [S,T] = 0. Also, we 

simplify the parenthetical term in (A.14) using the S,  v orthonormal frame. 

(A. 15) 

Here we use that IS1 is constant and (curv. formula) to simplify to: 

= - K w  - 2K2w + 2 (vsT, u ) ~  (A. 16) 

= -(K + 2fi2)W + 2 (VsT + cnv, u ) ~  (A. 17) 

= -(K + 2fi2)W + 2((VsT, v) - (S, T ) ) ~  (A.18) 

The first order term in the previous lemma measures how the level sets of t are 

spreading apart from each other. We formalize this as 
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How does the Sp evolve? We have 

How does (S, T)  evolve? 

a 
- ds (S,T)  = (VsS,T) + ( s ,VsT)  

= nV + (S, VTS) = nV 

Now let's consider f (s) = W (s, t o )  It satisfies the equation 

and f (so) = 1, f1(s0) = 0. This is of the form 

where T is an operator that takes as input a function on variable domain [0, s] and 

returns a real number. It has a monotonicity property: 

Assume that 

0 5 -K < KM.  

This equation admits an exponential supersolution: Try u(s) = eAs for A to be deter- 

mined. Then 

uSs(s) = ~~e~~ 

and 
8 2 AS 

T(~l[o,s]) I p ( K ~ + 4  
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To get a supersolution we need 

So we can pick A = 1 or pick A to be the soln of 

This ensures that 

uss 2 - (K(s ,  t o )  + 2K2)u(s) + T(u1 10,sl) 

On the other hand, the planar solution u(s) = cos2(&s) provides a subsolution for 

s E [O, A], with A = n-'.rr/2. 

Let's look at  Q(s) = IT(s,to)12; We have Q(0) = O , Q ' ( O )  = 0,  

= 2 (VsVrS,  T )  + 2 1 ~ ~ ~ 1 ~  

= 2 (RTsS + V T v s S i  T )  + 21vSTI2 

= 2 (RTsS+VTnv,T) f 21VsTl2 

= 2 (RTsS, T )  + 2~ ( V T ~ ,  T )  + 2 1 ~ ~ ~ 1 ~  

= 2 (RTsS, T )  + 2~ ( V T ~ ,  S )  (S, T )  + ~ ( V S T ~ ~ ,  

= 2 (RTsS, T )  - 2~ (v,  V T S )  (S,  T )  + 2 1 ~ ~ ~ 1 ~  

= 2 (RTsS, T )  - 2 ~ S p  (S,  T )  + 2 (VsT, v)2 

= 2 (RTsS, T )  - 2 ~ S p  (S,  T )  + 2sp2  

Plugging in our supersolution for V we see 

and 
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In this way, under the assumptions of the lemma, we are able to show that 5 is C1 and - 
is an immersion on all of dom z. 

A.5 Deferred proofs 

We omitted several proofs in the body of the thesis. In this section we prove them. 

A.6 Proof of Wire-Plane Intersection Number Lemma 

(Lem. 2.17) 

Here we prove Wire-Plane Intersection Number Lemma (Lem. 2.17). We begin with a 

preparatory definition and lemma. 

Definition A.7. Let I' be an embedded wire curve and let R be small enough that the 

tubular neighborhood of I? does not self-intersect. Let II be the projection of TubR(I') t o  

Im J? sending each point p to  the point in I? closest t o  p. We define the plane-enclosure 

arclength lwireplane t o  be 

. e ~ i r e - ~ ~ a n e ( r ,  R) = m a x v , ~  In(C) I (A. 19) 

where the maximum ranges over all planes V in R3, and C is a component of V n TubRI'. 

Lemma A.8. [Wire-Plane Arclength] Let I' be a wire curve. We have that &ire-Plane(r,-R) 

is non-increasing as R goes to 0. If I? is generic, then it vanishes bounded by O ( R ' / ~ ) .  

Proof-Lemma A.8. For notational convenience in this proof, we define 

c = Ir(4) I C0 (dam r) 124. 

Let C be a component and V be a plane as in (A. 19). We represent V as the zero 

set of 

f (w) = (w, V} - b (A.20) 

for some v in the unit sphere and b E W. We write the interval n(C) as [so - &, so + lo] 

for some lo > 0, so E W. For every s E [so - &, so +lo], there is a point w(s) on V with 
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d(w(s),I'(s)) < R. Then 

d(r(s), V )  < d(r(s), 4 s ) )  < R- 

Let us apply this observation to four values of s: 

Then for i = 0,. . .3, 

(r(si),  V) - b E (-R, R). 

Let v = (vl ,212, v3) in Frenet coordinates. The Taylor expansion 

approximates I? for any s o  E dom I? and s E [so - lo, SO + lo] as 

We may then write (A.22) as 

The first relation gives b E (- R, R). We now have three cases, depending on which com- 

ponent(~) of the unit vector v meet or exceed 1/a. In each case we get a polynomial 

relation 

P(&) = Cl% + c2l; + c3l; + c4lt < R 

with coefficients from the geometry of I?. 

(2) If vl 2 I/&, then by the second relation we get P(to) < R, where Cl = lvl 112. 

We may continuously change 4 to do, for c E [0, 11. We get that P(cl0) < R for 
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all c E [O, 11. By making R is small enough relative to the coefficients Ci, we may 

ensure that [O,%] lie in a neighborhood of a zero of P .  Which zero of P can they 

be nearby? Only 0. So by choosing R small, we can constrain 6 to be small. So 

for R less than a small constant, we may establish 

(22) If 'UZ 2 I/&, then by combining the second and fourth relations we get P(to) < 
R, where Cl = 0 and C2 is nonzero. Similar reasoning as before shows that if R 
is less than a small constant, 

tg < CR. 

(iii) If 213 2 I/&, then by doing elimination using the second through fourth relations, 

we get P(&) < R where Cl = C2 = 0 and C3 is nonzero. Similar reasoning as 

before shows that if R is less than a small constant, 

t: < CR. 

Putting this together, we see that if R is less than a small constant, we may bound 

UTe now prove Wire-Plane Intersection Number Lemma (Lem. 2.17). 

Proof-Lemma 2.17. Given our Generic Wire Assumption 2.15, at any point r(so)  

on the wire where the torsion is non-zero, we may perturb the I"(S~)-V~ (so) plane to 

get a plane which' intersects the wire arbitrarily close to s = so and does so a t  three 

distinct points. This shows claim (i) of the lemma. 

To prove claim (ii) of the lemma we proceed as follows. We have by the Generic 

Wire Assumption that Tr may vanish at finitely many places, and when it does, Tf, is 

non-zero. Because I' is assumed to be C4, we can find bl,  S2 > 0 so if s is within b1 of 

a zero Tr (s) , then 

~K',(s)  + K ~ ( s ) T ~ ( s )  L 62. (A. 24) 

Moreover, the function Tr(s) has a positive minumum b3 on the set of s which is at  
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least b1 away from every zero of Tr (s). 

Definition A.9. Choose lo t o  be the minimum of 

min fir 
('' fi~r('r:ofdom r) 

By Wire-Plane Arclength Lemma (Lem. A.8), there is a unique & so lwimPl,(r, I&) = 

lo. Consider a component C of A F , ~ ( v )  of a plane V for R < I&. We may write 

II(C) = [so - l, so + l] with t < lo.  

Consider the function h(s) = f (I'(s)) for s E [so - l ,  so + l]. (See (A.20).) We 

now show claim (ii) of the lemma. To prove this claim (and this claim only), we are 

further allowed to assume that I' is C5. Assume to the contrary of claim (ii) of the 

lemma that h vanishes at least 5 times on its domain. Then applying Rolle's theorem 

to consecutive zeroes, we see that 

(a') h' must vanish at least 4 times, 

(b') h" at least 3 times, 

(c') h"' at least twice, and 

(8) h(4) at  least once. 

Now the vector v normal to the plane V is a unit vector. So if we write it with respect 

to the basis I"(so), vr (so), qr (so), one of its components must meet or exceed I/&. 

(I) Say it happens that 1 (v, rl(so)) 1 2 1/a. Then by the mean value theorem, 

which is positive on the domain of h by Definition A.9. (a). This contradicts (a'). 
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(11) Or say that 1 (v,  to)) 1 2 I/&. Then by the mean value theorem, 

which is positive on the domain of h by Definition A.g.(b). This contradicts (b'). 

(111) What if 1 (v, vr(to)) 1 2 I/&? We have two choices: 

(A)  Say Tr does not vanish on [so ,- 61, so + bl]. Then 

which is positive on the domain of h by Definition A.9. (c )  . This contradicts 

(c') - 

. (B) On the other hand, what if Tr does vanish on [so - 61, so + Then . . 

which is positive on the domain of h by Definition A.9. (d) . This contradicts 

We took an arbitrary plane V and component C and showed that the component 

intersected the wire at most 4 times. This proves claim (ii) of the lemma. 

This leaves claim (iii) of the lemma. Given a critical point m of nr on dom I?, pick 

a subarc I? = I'lrm-c,m+el which has t < to and on which Tr does not vanish. This is 

possible because of Generic Wire Assumption 2.15. (v). Pick & so lwire-Plane(I?, I&) = l. 

Then for R < &, we claim nwireplane(I', R) 5 3. Assume to the contrary that there is 

a plane V and component C with at least 4 intersections. Then we proceed to define 

the function h as above; this time we have that h', h", h"' each vanish at least once 

on [m - !, m + t]. We then consider cases (I), (IT), (III .A) above and see that they 

cannot occur. We conclude that in fact nwirsPlane(I?, R) 5 3; combined with claim (2) 

of the lemma, this proves claim (iii). 
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A.7 Smoothing a kink in the thread 

In the physical model of the thread problem, we see that the thread does not have 

kinks in it, except maybe at the wire if there is friction. We expect that the thread 

of an Alt minimizer is C1. (In fact we even expect that a suitably-defined stationary 

thread-wire surface should have a C1 thread.) Alt has already shown this at a corner 

of a crescent abutting a positive length piece of wire-adhering thread. (He assumed 

the wire was smooth; see [?, alt]. Below we prove a stronger result. 

Lemma A.lO. Let r be a C1 wire curve. Let (B,  M) E enr(I', L)( r ,  L) be an Alt 

competitor with xo E [-I, 11 lying in the boundary of a disc of the domain B. Assume 

that in a neighborhood of xo, the map M has essentially bounded derivative.'Then either 

lActually, the idea that the thread should be C1 on its interior should apply generally. We show 
it here, in the near-wire case. But it should be provable generally. The author does not know of such 
a proof; there are technical difficulties. Idf two adjacent corners form a kink in the thread, we want 
to modify the conformal map of each crescent to blunt the kink to first order while adding very little 
Dirichlet energy (more like second order). There does not appear to be a simple way to do this, given 
that the conformal parametrization might have large derivative on the boundary. We could modify 

Figure A-1: Joining two crescents to remove a kink in the thread. If there is a 
kink in the thread where it touches the wire, we may demonstrate an energy-decreasing 
variation. In this diagram we show two adjacent crescents. The proof also covers the 
case where a crescent is isolated on one side, but the thread does not meet the wire 
tangentially. 
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. . 

the thread curve, parametrized by arclength, is C1 near s o ,  or we may modify (B, M) to  

find another Alt competitor with less area. 

Proof. This proof uses the tools for Alt competitors introduced in Section ??, espe- 

cially Definition 2.3. Let s, = c(xo) be the corresponding wire domain point. (See 

(2.2).) If we are in the case where xo is in the boundary of one disc of B, but there is 
. . 

no disc nearby on the other side, we modify B by adding a disc on that side. On this 

disc, we define M(x, y ) = M(x, 0). We may then proceed, with two discs on either side 

of xo. Assume to the contrary that the thread forms a kink at $0. We may pull back 

the map M near the crescent meeting as: 

=(S, t ) = M(s , tpB (s) ),. 

We begin our geometric construction. The reader may wish to follow in Figure A-1. 
Pick s+ = s, + E, and s- = s, - E .  Augment the domain of Z by a half-disc above t = 1 

from s = s- to s = s+. Define an extension Z' of Z on this augmented domain so for 

sf E (s-, s+), the map EL sends s = sf, t > 1 linearly to the segment from E(sf, 1) to the 

intersection between the normal disc D(sJ) and the segment from Z(s-, 1) to Z(s+, 1). 

As E goes to zero, we have 

and 

!(ye) = !(y) - (sin ( Y / ~ ) E  + O(e2). 

We have thus decreased the length of the thread much more than we increased area. 

We may now act as we did in section 3.1 to transform this into a change which gives 

us a better Alt competitor and violates the given minimization property of (X, 4-).  
Indeed, pick a point q on the interior of the free thread. Near here the surface is a 

graph over the tangent plane V to the surface at q. Let y(s) parametrize the thread by 

arclength near ~ ( 0 )  = q and let u, v, w be Frenet coordinates for the thread at  q. Let 

h(s) equal 1 for Is1 5 E and h(s) = 0 for Is1 > 26. Locally retract the surface along itself 

so the thread point y(s) moves distance 2clcw(s) in the negative v direction. Then 

the map so its area does not increase very much - but to apply Morrey's lemma and translate this 
into a small increase in Dirichlet energy we need to at  least start with finite Dirichlet energy. More 
needs to be done on this technical point. 
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this decreases area by 2c1e2 + O(e3) and increases length by &2c1e2 + O(e3). The final 

effect is 

A Area = -cl e2 + O(e3) 

and 

A Length = -(sin cu/2)e + O(e2). 

For sufficiently small 6 we thus demonstrate a modification of (X, @-) which decreases 

area and decreases length. I 

Lemma A.11. Let I? be an embedded Frenet wire curve. Let ( B ,  M) be an Alt minimizer 

lying in a tubular neighborhood of I?. For sufficiently small R, we are guaranteed that 

K > 0. 

Proof. Assume to the contrary that we have K = 0. First, assume that R is sufficiently 

small so Slicewise Parametrization Lemma (Lem. 4.4) applies. Our first result is that 

the thread cannot meet the wire in a kink, forming positive angles with the wire on 

each side. Indeed, in such a situation, we may apply2 [6, p. 175, Thm. 11 to conclude 

that the conformal parametrization of M near each corner has bounded derivative. We 

may then apply Lemma A. 10 to obtain a contradiction. Thus we see that the thread 

cannot meet the wire in s kink which makes a positive angle with the wire at the 

two adjoining crescent corners. This leaves two possibilities. One is that one of the 

crescent corners has angle zero. But then we may trace the thread in this direction. 

It must hit the wire again. But for sufficiently small R, given that r is a Frenet curve 

with K r  having a positive lower bound, it will not hit the wire again without leaving 

the tubular neighborhood. So we have disposed of this case. We are left with the 

case that the thread meets the wire transversely and is C1 at each crossing. In other 

words, the thread curve is a straight line. But again, for sufficiently small R, the 

tubular neighborhood of a Frenet curve does not contain any straight lines joining the 

endpoints of the wire: So we have a contradiction. 

2 ~ o t e  the comment above the theorem in 16, p. 1751 as well. This reference presents the work of 
Dziuk, .[91, [lo], [I 11, 1121. 
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Appendix: Series solutions 

In this section we study two local problems situated for the thread in thread-wire 

surface. Essentially, we will be satisfying the conditions for our thread-wire surface to 

be stationary. We summarize the two problems below. Let (B, M) be an embedded 

Alt minimizer and let M(x) parametrize a point on the thread. 

QUESTION 1: ThIP problem. How does Im M behave when x corresponds to an 

interior point of the free thread? Here we have the (constant) curvature of the thread 

and the coefficients of the torsion T(s )  of the thread as inputs. As output we have 

the coefficients describing the graph of the surface relative to the tangent plane of the 

surface at X(x). We call this the thread-interior point (ThIP) problem. 

QUESTION 2: WOC problem. How does Im M behave when p marks the corner of 

a crescent of M? When the thread and wire form a positive angle, there is a known 

expansion for this from the Classical case.' We focus on the case where the corner 

angle is zero, so the corner is a wire-osculating corner. We call this the WOC problem. 

REMARK. In this thesis we only use o u r  solution to the ThIP problem, and we 

wouldn't need as detailed a discussion as this one to yield the needed ThIP result. 

However I have included the full discussion because I think it is interesting and even 

surprising in places (e.g. the role played by the "critical curvature ratios"). Further 

work is needed. In particular, we would like to study the convergence of these expan- 

sions. 

'See Beeson's work [3] and also the presentation of this work in [6]. See Section 7.3 for a remarkable 
application of Beeson's corner analysis. 
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Definition B.1. Given a curve a(t)  in R3, we use component notation 

We write formal expansions for the coefficients as 

and similarly for the other components. A multi-index I i s  an n-tuple (21, i2, .  . . , in) for 

n 2 0. We define 

#I = n, 111 = + i2 + *in.  

The zero-tuple ( )  has #() = I ( ) /  = 0. If we have a power series 

, then we define 

and, for example, 

p=l 

REMARK. Here's a formal example: If f (y) = rr, fi yi, and g(x) = EGO g j  xj , then 

Definition B.2. For C2 functions, we define the minimal surface operator 

Definition B.3. A formal degree N series solution to the stationary wire-osculating 

corner thread-wire surface problem (the WOC problem) consists of the following: 

e A degree N 2 2. We allow N to  be +m. 



a A formal expansion 
N n 

with bo,o = bo,l = bljo = 0. 

A formal expansion 

A "thread" cuive y(s) parameterized by arclength with ~ ' ( 0 )  = y'(O), torsion ~ ( s )  

and constant curvature n. The data in the expansion of T(s) determine y up to  order 

N + 1 in the x and y components, and up to  N in the z component. 

These objects must satisfy the following conditions: 

(MS) We require that f satisfy the minimal surface equation to  appropriate order 

(WI) The wire curve I? lies in the surface defined by f 

f (rrX] (4, ^ I I ~ I  (s)) - T [ ~ I  (4 = o(sN ) -  

(TH) The thread curve lies in the surface defined by f: 

f (rrzi ( 4 ,  Y [ ~ I  ( 4 )  - qZ, (4 = o(sN). 

(TG) We require that the curvature vector of the thread curve point tangentially to the 

graph of f. This may be expressed using the scalar triple product: 
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It will be convenient t o  adopt the notation that M S i j  is the coefficient o f  xiyj in the M S  

equation, WI, is the coefficient o f  si in the W I  equation, and so on for TH and TG. 

By WOC series solution we mean a formal degree co solution t o  the WOC problem. 

A convergent WOC series solution is a series solution, along with radii of convergence 

on which ( B . l )  and (B.2) converge. 

Definition B.4. We define the ThlP problem by repeating the previous definition ver- 

batim, but with condition ( W I )  removed, the T ( s )  function changed from an unknown t o  

a given, and all 'W0C"'s changed t o  "ThlP" 's. 

Relevant to both problems is the following remarkable sequence. 

Definition B.5. [Sequence of critical curvature ratios] We define the sequence 

of critical curvature ratios t o  be the decreasing sequence 

which tends t o  1. We say a ratio of two curvatures is critical if it belongs t o  this sequence. 

With this sequence in hand, we may state a theorem for each of the two problems. 

We will prove these at the end of the section, after a general discussion. 

Theorem B.6. [Series Solutions to ThIP problemllet y parameterize a real- 

analytic thread with curvature K and torsion T ( s )  not identically zero. Then there is a 

unique expansion solution to  the ThlP problem for this thread, and it converges in neigh- 

borhood of  zero. The zero set f = 0 has the structure of a graph near 0, and 0 has valence 

2m + 4 where m is the lead order o f  T ( s )  at zero. O f  these edges, m + 1 emanate into 

the lower half-plane at non-zero angle relative t o  y = 0. Another m + 1 emanate into 

the upper half-plane at non-zero angle realtive t o  y = 0. This leaves two borderline edges 

which emmanate from 0 parallel to  the x-axis, deviating at second order like e s 2 .  These 

edges stay on the surface side of the thread, which in this model deviates like %s2. But 

we see that as m gets large, the quadratic separation between border-line edge and thread 

goes t o  zero. 



Theorem B.7. [Series Solut ions t o  WOC prob lem l le t  y ( s )  parameterize a wire I' 
real-analytically for Is1 < Rr. Define 

so nr(s )  = KLSP and Tr ( s )  = ~ ~ , T ~ s P .  Let K. be any constant other than K;. 

(2) If n / n i  is not a critical curvature ratio, then there is a unique series solution to  the 

WOC problem. 

(ii) If n/n;  = em for some m then there is a unique degree m - 1 series solution t o  the 

WOC problem. Further behavior is determined by the top wire torsion coefficient at 

degree m :  T .  There is a sequence of universal functions rp which depend only 

on nF)',i 5 p, and qr, z < p, which decide this. 

(a) If T:-, + T , - ~ ( I ? ) ,  then there are no series solutions to  our WOC problem of 

degree greater than m. 

(b) If TA-, = rmC2(r), then we say r has critical ( m  - 2)-torsion or critical 

torsion a t  degree m. In this case the series solutions to  the WOC problem 

form a 1-parameter family parameterized by Tmm2, which can take all values of 

R. 

We give an algorithmic definition of the universal functions 7,. The first few are: 

Given our wire I?, we define ((I') t o  be the set of m such that r has critical torsion at 

degree m. Define a domain D in the plane consisting of the x-axis minus the points of 

the critical curvature ratio sequence, union vertical lines at x = tp for every p E ( ( I ? ) .  
Then the set of series solutions to our problem is homeomorphic t o  D. We define the 

homeomorphism by mapping the series solutions of ( 2 )  t o  (&In;, 0) and the series solutions 

of (i2.b) t o  (n ln; ,  T P 4 )  Call the inverse of this map W. We can describe how the torsions 

of the series solutions vary along D: 
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For p E < (I') , we have Tp-2 = 0 everywhere on W ( D )  except for solutions W ((Ep, Y ) )  , 
where Tp4 = y. 

For p not in ((r), we have that  TP-2 o f  W((c, 0)) diverges as c approaches Ep. 

REMARK. Does every subset of Z>o - appear as ~ ( r )  for some wire I?? 

B. 1 The Taylor expansion of a minimal surface 

Let f (x, y) be a function which is real-analytic at  0. Then in its disc of convergence, 

it satisfies the minimal surface equation 

Let f have expansion (B. 1). Let us consider the terms of H [ f] : 

We see that the first two coefficients have total degree (i + j) + 2. The latter products 

of coefficients have total degree (i + j) + 4. The minimal surface equation can be seen 

as a per t~rba~tion of Laplace's equation. 

Let us think about how we can build expansions of solutions to the minimal surface 

equation. If we have already chosen the values of lower terms, we have exactly two 

degrees of freedom in choosing terms of degree n. Given any b,o,Jo of degree n, we 

may solve for all other coefficients bi,j of degree n with parity of j the same as jo .  In 

particular our two degrees of freedom may be represented as choices of b,,o and b,-l,l. 

Definition B.8. The homogeneous degree o f  b i j  is i + j; the parabolic degree of bi,j 

is i + 2 j .  I f  j is odd, we say bi,j is a y-odd degree (i + j )  coefficient of f .  In this 

case i ts inductive degree is i + j + 1. If j is even, we say bi j j  is a y-even degree 

(i + j) coefficient of f. In this case we say its inductive degree is i + j .  We say 
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the coefficient Ti has degree i and inductive degree i - 3. Expressions not containing 

b i j  or Tp have inductive degree 0. We denote inductive degree by lndDeg and declare 

IndDeg(A B) = max(lndDeg(A), lndDeg(B)). 

B.2 WOC Relations 

In this section we expand the relations of Definition B.3 as power series. We also think 

about how we could solve for the unknown coefficients bij ,  Tp, given the known values 

n, r;;, T:. It is helpful to note the natural units of each quantity: 

. b i j  has units distl-"j; 

K has units dist-', 

T:, n i  have units d i ~ t - l - ~ .  

For each relation, we need to identify the highest degree coefficient appearing from the 

two families (b, T) of unknown coefficients. To understand the expansions, we need 

the beginning of the expansions for the thread and wire curves. See Section A.1. 

B.2.1 Inductive plan 

Here is our plan: For m 2 3, we solve for the coefficients of inductive degree m in 

terms of coefficients of lesser inductive degree and in terms of the known quantities 

n, r;;, Ti .  The coefficients of inductive degree m are the triple (bmjo, bm-2,1, Tm+3), and 

the related coefficients bm-2r,2rr 0 < r 5 m/2, and bm-2-2r,l+27-, 0 5 r 5 (m + 2)/2. 

If we succeed, then we will have produced a degree m - 1 series solution to the 

WOC problem. We will also have a piece of data needed for the degree m solution: 

bmjo. It turns out that this "uneven" approach is the right way to solve the problem 

inductively. 
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What do we already know? We have boIo = bo,l = bl,o = 0. And 

give b2,0 = b0,2 = 0. SO we know the values of all the predecessors of the unkown 

coefficents (To, b3,0, bl,J to be solved for the m = 2 case. 

We now demonstrate our inductive step. To define the algorithm, we need only 

calculate the top inductive order term appearing in each equation. We present more 

than that: we calculate the top two inductive orders appearing. Perhaps this will be 

helpful in the future. 

B.2.2 Wire lies in surface 

In this section we expand the (WI) relation (B.4), which encodes the property that the 

wire lies in the surface. We have 

Because y[,] has lead order 1 and ~ [ , 1  has lead order 2, we see that every element of I 
must be at least 1 and every element of J must be at least 2 in order to contribute to 

the sum. This implies 

IIl>#I, IJI?2#J. (B. 10) 

We search for coefficients b i j  appearing in the equation with i + j 5 n as required. 

We find bn,o appears with I = (1,1, . . .), #I = n; J = (), contributing a term 

with inductive degree n: 

Terms bn-,,,, r 2 1 cannot appear because then I I1 + I JI 2 n + r > n. 

Next we consider bn-l-r,,. We see that r = 0 fails because then J = () and each 

element of I is 1 or is at least 3. However, r = 1 succeeds with I = (1,1, . . .), # I  = 
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n - 1, J = (2 )  yielding the inductive degree n term 

KO' 
-bn-2,1 2 

Values of r  2 2 fail because then III + I J J  2 n - 1 - r  + 2r > n. 

Next we look among bn-2-qr for terms with inductive order n - 1. We find r = 1 

works with I = (1,1, . . .), # I  = n - 3, J = (3 ) )  yielding the inductive degree n - 1 

term I-- 

Trying r  = 3,5 ,7 . .  . fails because then 1I1+ I JI 2 n - 2 - r  + 2r > n.  All other 

bij coefficients appearing have inductive degree less than n - 1. 

So we have found all terms b i j  with inductive degrees of n - 1 and n. The wire 

terms are all known. Putting this together we have 

(B .  11) 

4 
+6bn-3)1 (IndDeg = n - 1) 

+ . . . = 0 (IndDeg < n - 1) 

B.2.3 Thread lies in surface 

We investigate the t hread-lies-in-surface (TG) equation (B. 6) similarly. The additional 

ingredient we need is to understand how unkown Tp terms appear in y[z,nl. This amounts 

to understanding the most- and second-most- differentiated instances of T in 

We see that T ( s )  gets differentiated the most times if the (3 ,3)  element of the ma- 

trix hits it every time. So we get T ( ~ - ~ ) ( s )  appearing as - K T ( ~ - ~ ) ( s ) .  What about 

T("-~)(s)?  That only occurs in y[p,nl due to the matrix operator acting with element 

(3 ,3)  some number of times, then once with element (2 ,3) ,  and then subsequently 

always with (2 ,2) .  What about T ( ~ - ~ ) ( S ) ?  This occurs when the matrix operator acts 

- K  

n!y[z)nl = '(:& - T ( s )  T " ) n - l [ )  3 s  =(: -T ( s )  jr a s  T Y ! ) ) ~ - ~ ( - ; )  - KT ( s )  
s=O 

. .  

s=o 
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a1 times by (3,3), then once by (2,3), then a2 times by (2,2), then once by (3,2), then 

a3 times by (3,3). There are (n;3) ways to do this. This yields the term 

Evaluating at zero and dividing out by n! gives 

1 - [- n ~ ( n - 3 )  
1 

(0)] = - [- (n - 3) !KT,-~] 
n! n! 

which is the only term of inductive degree n in YIz,n]. Again, there are no inductive 

degree n - 1 terms and the next contribution is at IndDeg = n - 2. 

Putting this together with reasoning similar to that in Section B.2.2 gives 

K KT,-3 
T H n  b n , ~  + -bn-2,1 + 

2 n(n - l ) (n  - 2) (IndDeg = n) 
(B. 12) 

+O (IndDeg = n - 1) 

B.2.4 Thread curvature is tangential to surface 

In this section we expand the (TG) equation (B.6), which encodes the property that 

the thread binormal is tangent to the surface. 

(B. 13) 



B.2 WOC Relations 

As in previous sections, we see that the y term contributes 

1  
-(n + l ) (n  + 2 )  IET,-~ (IndDeg = n + 2 )  

n ( n  + l ) (n  + 2)  
+O (IndDeg = n + 1 )  

+ . . . . (IndDeg < n + 1) 

We see here the appearance of terms of inductive degree n + 2. This is the highest 

inductive degree we will see, and sowe will, only search down to inductive degree n + 1. 

Now let us examine what b coefficients appear. We will use as before the fact that 

in'order to contribute, all entries in I  must be at least 1  and all in J  must be at least 

2. This gives 

111 2 # I ,  . I J I  2 2# J- (B.  14) 

The rules for either sum are 

# I + # J < n - q  

and 

111 + IJI = n-q .  

(B.  15) 

(B.  16) 

We start with the second sum, involving 7[,,q+21. We note that if q = 1 then this 

coefficient vanishes. So we must have q  = 0 or q  3 2. The highest homogeneous degree 

b i j  which we can find is i  = # I ,  j = #J+ 1  with 

We see that i +  j = n+ 1  only if q = 0.. 

Let us start by looking for bijj with homogeneous degree n + 1. In this case q = 0. 

- As j = # J  + 1, we start with brill and J = (). Then we must have I  = 

(1,. 1 , .  . .), # I  = n to satisfy 11) + I JI = n. This gives 

K, 
-1 2  . -bn,l - 1 1  = -K,bn,l. (IndDeg = n + 2 )  

2  
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- What about bn-,,+, for r > O? We get 

1II+IJI 2 n - r + 2 ( q + r )  > n + l  

which violates (B.16). 

Now let's look for bi,. with homogeneous degree n. Because we are only searching 

down to inductive degree n + 1, we need only consider the j-odd terms. In this 

case because of (B. 14) and (B. 16), we must have q = 0. , 

- First we try bn-l This forces J = () . We must satisfy I I  I + I JI = n - q.  

The indices in I can be 1 or 2 3. Well, if any index is 2 3, then ( I (  _> 
#I + 2 = n + 1 which is a problem. But then I = (1,1, .  . . ) ,#I  = n - 1 

which requires q = 1. So we do not get anything in this case. 

- Next we try bn-, ,  for r odd and at least 3. We get, 

which violates (B. 16). 

Now we look at the first sum, involving ~[,,,+zl. We see that we must have q 2 1 

because TI,,,] = 0. Then the highest homogeneous degree b.i,j we can find is 

Now we are only searching for terms with inductive degrees of n + 1 or n + 2. So the 

only contribution we could hope for from this sum is bn-,,  for r odd. However, in these 

cases we get 

II(+IJ[ 2 n - r + 2 r  > n + 1  

which violates (B.16). So the first sum does not contribute inductive degree terms 

higher than degree n. 

Putting this together gives 

KT--1 TG,: -- - ~cb, ,~ ( IndDeg=n+2)  
n 

+O (IndDeg = n + 1) 

+ . . . = 0. (IndDeg < n + 1) 
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B.2.5 Solving the WOC problem: Proof of Theorem B.7 

Let us solve for inductive degree m unknowns (bmjo, bm-2,1, Tm-3) in terms of known 

quantities of lower inductive degree. 

Fortunately we have three equations and three unknowns. Subtracting the THm 

equation (B. 12) from the WIm equation (B. 11) and substituting the solution of bm-2,1 

from the TGrn-2 equation (B. 17) gives: 

nTm-3 (IndDeg = m) 
(m - 2)(m - l ) m  

4 
+Tbm-3,1 (IndDeg = m - 1) 

+ . . . . (IndDeg < m - 1) 

We may rewrite the IndDeg = m part as: 

So the coefficient of Tm-, vanishes if and only if K / K ~  is the critical curvature ratio 

Cm-1- 

If we set the expression on the right side of the equation to zero, substitute n = 

<m-l~i, and solve for TL-, , then we get the expression rm4(I') which appears in the 

statement of the theorem. 

We may then back-solve. From the TGm-2 equation (B.17), we get 

1 m-3 bm_2,1 = -- + lower (). 
m - 2  

From the WIp+l equation (B. 1 I) ,  we get 
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B.3 Solving the ThIP problem: Proof of Theorem 

B.6 

The ThIP problem is the same as the WOC problem except that there is no wire 

condition W I  and the torsion data T(s )  is a given, not an unknown. We solve the 

ThIP problem along the same lines as the WOC problem. Our algorithm is inductive; 

for p 2 2, we solve for the pair ( l ~ , + ~ , ~ ,  bp-l,l). As before, we use MSlI1, TH2 to show 

all coefficients of b preceeding the p = 2 case to be zero. To perform the inductive step, 

we use the TGP-' equation (B. 17) to solve for bp-lyl in terms of the known quantity 

Tp-2 and lower (inductively known) quantities: 

Tp-2 bp-l,l = -- + lower (1. 
P-1  

Substituting this into the THP+' equation (B. 12) allows us to solve for bp+l,o: 

(B. 18) 

This is a complete inductive algorithm. 

Proof-Theorem B.6. We note that all coefficients (bp+l,o, bp-lyl) will be zero if 

Tp-z and a11 earlier T coefficients are zero. Let rn be the lead order of T(s) .  Then 

the algorithm will calculate non-zero values for (bm+3,0, bm+l, l)  The convergence of 

this is known. (It is just Bjorling's formu1a;see Section 7.l.)The zero set of f in the 

full neighborhood will consist of 2(m + 2) edges emanating from zero at evenly-spaced 

angles. What is the quadratic separation of the edges which emanate in the direction 

of the x-axis? We evaluate our surface function f along the curve (t ,  ct2/2): 

bm+3,0tm+3 + bm+l,l tmf 'd2 /2 + lower () = 0. 

We see from (B. 18) that 
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