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Abstract

This dissertation investigates some information theoretic aspects of communication
over wideband fading channels and their applicability to design of signaling schemes
approaching the wideband capacity limit. This work thus leads to enhanced under-
standing of wideband fading channel communication, and to the proposal of novel
efficient signaling schemes, which perform very close to the optimal limit. The po-
tential and limitations of such signaling schemes are studied.

First, the structure of the optimal input signals is investigated for two commonly
used channel models: the discrete-time memoryless Rician fading channel and the
Rayleigh block fading channel. When the input is subject to an average power con-
straint, it is shown that the capacity-achieving input amplitude distribution for a
Rician channel is discrete with a finite number of mass points in the low SNR regime.
A similar discrete structure for the optimal amplitude is proven to hold over the entire
SNR range for the average power limited Rayleigh block fading channel. Channels
with a peak power constraint are also analyzed. When the input is constrained to
have limited peak power, we show that if its Kuhn-Tucker condition satisfies a suffi-
cient condition, the optimal input amplitude is discrete with a finite number of values.
In the low SNR regime, the discrete structure becomes binary.

Next, we consider signaling over general fading models. Multi-tone FSK, a sig-
naling scheme which uses low duty cycle frequency-shift keying signals (essentially
orthogonal binary signals), is proposed and shown to be capacity achieving in the
wideband limit. Transmission of information over wideband fading channels using
Multi-tone FSK is considered by using both theoretic analysis and numerical simu-
lation. With a finite bandwidth and noncoherent detection, the achievable data rate
of the Multi-tone FSK scheme is close to the wideband capacity limit. Furthermore,
a feedback scheme is proposed for Multi-tone FSK to improve the codeword error
performance. It is shown that if the receiver can feedback received signal quality
to the transmitter. a significant improvement in codeword error probability can be
achieved. Experimental results are also obtained to demonstrate features and practi-
cality of Multi-tone FSK.
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Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed intensive study of information theoretic aspects of wire-

less channels, including not only capacity but also efficient signaling schemes which

can approach the capacity. This rising interest in the information theoretic analysis

of wireless channels is motivated by the successful commercial deployment of wireless

communications, the rapid technology advances in wireless technology and the need

to use scarce resources, such as bandwidth and power, as efficiently as possible under

wireless communication conditions.

Information theoretic measures such as capacity and error exponents provide the

ultimate performance limit for communication systems. We use them as benchmarks

to which the performance of practical communication systems can be compared. Fur-

thermore, with the recent discovery and development of codes that operate very close

to the Shannon limit, such as LDPC codes and Turbo codes, information theoretic

limits have gained practical relevance.

Although the capacity and other information theoretic aspects of fading channels

were investigated as early as the 1960's ( [11), it is only recently that information the-

oretic considerations of wideband fading channels under various practically related

input and channel constraints have received much attention. One reason behind

this interest is that wideband conununication techniques are fundamentally differ-
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ent from the narrowband communication techniques because they employ extremely

large bandwidth to communicate between transmitters and receivers. Another factor

fuelling this intensive research interest is the imminent market demand on wideband

communication techniques. In February 2002, Federal Communications Commission

(FCC) approved the use of Ultra-Wideband modulation (UWB) for communications.

It allows the signal to extend over a large bandwidth (several gigahertzs). Figure 1-1

shows the bandwidth allocation for the UWB and 802.11a (Orthogonal frequency-

division multiplexing, OFDM).

802.Ila (100 MHz BW)

Part 15 limit

UWB (7.5 GHz BW) (-41.3 dBm/MHz)
76.

3.1 GHz 5.725-5.825 GHz 10.6 GHz Frequency

Figure 1-1: The bandwidth allocation of ultra-wideband applications

This introduction provides a brief overview of wideband communications, start-

ing with Shannon wideband capacity limit. Next the discussion turns to the possible

signal structures achieving the wideband capacity limit, including the literature back-

ground. The discussion in this chapter eliminates the common misconception about

wideband communications. It examines the strengths and weaknesses of wideband

communication techniques. Furthermore, the main thread of this thesis is explained.

The chapter ends with a concise overview of the chapters in this thesis.

1.2 Wideband Capacity Limit

As shown by Shannon ( [2], [3]), the capacity of an additive white Gaussian noise

(AWGN) channel is a function of the average power P and the bandwidth W given

by

16



CAwVGN =_ W log 1 +(ivNOW)

where No is the spectral noise density. When the bandwidth grows to infinity, the

capacity mathematically approaches a limit decided by the average power:

lim W In I+ - .
W -- O Now No'

We call this limit as the Shannon wideband capacity limit or the AWGN wideband

capacity limit.

It is well known that the channel capacity of multi-path fading channels is upper

bounded by the AWGN capacity. Kennedy [1]. Gallager [4], and Telatar and Tse [5]

further proved that the capacity of a multi-path fading channel approaches the AWGN

wideband capacity limit when the bandwidth grows indefinitely. That is

P
lim Cfading = -- (-.i)

W--oC No

The limit on the right hand side (RHS) of (1.1) is called as the wideband capacity

limit throughout this thesis without specifying the channel type. This result is true

even if the receiver does not have any channel state information (CSI).

Given a fading channel's bandwidth is large enough, the capacity of the fading

channel approaches the wideband capacity limit. We should be able to find a signal-

ing scheme whose achievable data rate is very close to the wideband capacity limit.

Indeed. in this thesis, we propose a family of signaling schemes whose performance

approaches the limit.

If the bandwidth of a channel is W and the transmission duration is T, the degree

of freedom of transmission is 2WT. i.e., we can transmit 2WT symbols during the time

period T in the specified bandwidth according to the Nyquest Sampling Theorem. If

we index all symbols as indicated in Figure 1-2, we can obtain a symbol sequence as

that in Figure 1-3.

The average power constraint P restricts the expected energy consumption during

17



Time slot

Figure 1-2: Index symbols in both frequency and time

1 2 3 4 ... WT

T

Degree of freedom

Figure 1-3: The indexed symbol sequence

time T to be PT. While bandwidth W increases as required by the wideband as-

sumption, the energy per symbol PT/ (2WT) = P/ (2W) decreases inversely. When

the bandwidth is very large, the signal to noise ratio (SNR) N is very small such

that the achievable data rate of the scheme is mainly limited by the power. Results in

this thesis are generally concerned with the power-limited case, i.e., communications

in the power-limited region are considered.

We also assume that channel state information is not initially known at either

the transmitter or the receiver. In this case, as the average signal energy in each

coherence bandwidth decreases. the cost of estimating the channel fading coefficients

becomes more and more significant. While the capacity of non-coherent channels is

the same as that of coherent channels in the wideband limit, the lack of CSI severely

affects the performance of many commonly used signaling schemes in the wideband

regime.

18



1.3 Signaling Schemes

To answer which kind of signaling schemes can achieve the wideband capacity limit

in fading channels, we summarize the main signaling schemes considered in the liter-

ature by categorizing them into four classes: no peakiness in either time or frequency,

peakiness in frequency but not time, peakiness in time but not frequency, and peaki-

ness in both time and frequency. Although any set of orthogonal signals achieves the

capacity limit for the unfaded Gaussian channel, orthogonal signals that are peaky

in time or frequency are needed in the presence of fading [4, Sec. 8.6].

For wideband fading channels, the frequency selective effect caused by the channel

delay spread should be considered because the frequency coherence of the channel,

denoted here as hT, is usually small compared to the system bandwidth. Also, we

assume the time length of the transmission is larger than the time coherence of the

channel such that the channel fading coefficient is changing over time. The time

coherence is denoted as Tc. The frequency-selective time-varying block fading channel

model is used.

In Figure 1-4, 1-5, 1-6, and 1-7, we plot the fading channel in a frequency-time

plane. The width and length of the squares are the frequency coherence and the time

coherence of the channel. The different colors of the squares indicate different fading

coefficients. The transparent shadow is the distribution of the signal's energy density

over the frequency-time plane.

Without Peakiness in either Time or Frequency

The first category of signaling schemes spreads energy over time and frequency as

shown in Figure 1-4. This kind of schemes employs symbols occupying the whole

system bandwidth, and transmits symbols continuously without duty cycle.

One example is the bandwidth-scaled spread spectrum signaling defined by Medard

and Gallager in [6]. When the bandwidth W increases, the energy and fourth moment

of the signal in each fixed frequency band scale with 1/W and 1 /W 2 respectively.

To put it simply, the signaling spreads the signal energy evenly over the available

19



0

Trime
Time coherence

Figure 1-4: Signaling schemes without peakiness in either time and frequency

bandwidth and time without peakiness in either. Such signals encompass Gaussian

signals, which are optimal in the coherent case (perfect receiver CSI). However, al-

though bandwidth-scaled signaling has a good performance in the coherent case, it

performs poorly in non-coherent scenarios. It has been shown by Medard and Gal-

lager [6], Subramanian and Hajek [7] that, as the bandwidth increases, the achievable

data rate using bandwidth-scaled signaling in fact decreases to zero. Therefore such

signals, including most common DS-CDMA schemes, are not suitable for wideband

transmission in frequency-selective fading channels. Intuitively, this is due to the fact

that when we transmit over a large bandwidth, we are essentially transmitting over

a large number of independent channels. If signal energy is spread evenly over the

available bandwidth, then the capacity of each channel decreases very fast as the

bandwidth increases. Decreasing in the average power per channel causes the lack

of channel state information which severely affects the performance of the signaling

schemes. And. despite the diversity gain. there is a severe performance degradation

in the limit.

20



Peakiness in Frequency but not Time

In the second kind of signaling schemes (Figure 1-5), the signal energy is peaky in

frequency but not time. The signal's energy is distributed over a small portion of the

whole bandwidth.

Time coherence

Figure 1-5: Signaling schemes with peakiness in frequency but not time

Many narrowband schemes have the pattern shown in Figure 1-5. They cannot

achieve the wideband capacity limit, because these schemes are designed for the

bandwidth limited region. Some signaling schemes using several parallel narrowband

channels were proposed for improving data rates in wideband channels. For example,

the OFDM signaling scheme uses a bundle of subchannels. However, if we assume

the bandwidth for each subchannel is W, and the number of total subchannels is n,

the capacity of the scheme is bounded by the Shannon capacity with bandwidth nWs,

not achieving the wideband capacity limit.

C <nWlog 1+ NonW)

If the number of subchannels n increases, we go back to the previous case without

peakiness in frequency. the perfornance of these schemes deteriorates significantly.

21



Peakiness in Time but not Frequency

The third class of signaling schemes spreads energy over frequency, but is peaky in

time (Figure 1-6), for example, some low-duty cycle pulse-position modulation (PPM)

signals.

G)

Time coherence

Figure 1-6: Signaling schemes with peakiness in time but not frequency

According to Porrat et. al. [8], this type of signaling schemes can achieve the

wideband capacity limit. However, the achievable data rates are limited by the chan-

nel uncertainty. They considered direct sequence spread spectrum and pulse position

modulation systems with duty cycle, and proved that these two schemes achieve the

channel capacity if the increase of the number of channel paths with the bandwidth

is not too rapid. They showed that PPM systems have zero throughput if -> 00,

where L is the number of independently fading channel paths and W is the bandwidth.

The property that the achievable data rates are limited by the channel uncertainty

imposes a big constraint on these schemes' application in wideband fading channels.

In [9], Rusch et. al. presented residential channel characterizations from 2 to 8 GHz

and showed that the increase of the number of channel paths appears to be sub-linear

in bandwidth.
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Peakiness in both Time and Frequency

Another set of interesting signaling schemes is peaky both in time and frequency

(Figure 1-7). The frequency shift keying (FSK) scheme used in the literature [4, Sec.

8.6] [5] to achieve the infinite bandwidth capacity of multipath fading channels belongs

to this category. Since the scheme transmits with a low duty cycle and its signals

burst like flash light, we call it flash FSK. In [5], Telatar and Tse used the flash

FSK scheme with a threshold decoding rule to achieve the wideband capacity limit

in general multipath fading channels.

0

0

C.

Time coherence
Time

Figure 1-7: Signaling schemes with peakiness in both time and frequency

The Multi-tone FSK scheme which is introduced later in this thesis extends the

family of peaky signaling schemes. It will be referred to as "capacity achieving," since

it achieves capacity in the wideband limit.

1.4 Dissertation Outline

In this thesis, we first consider the capacity-achieving input distribution of fading

channels. We prove that in the low SNR region (as we pointed out that wideband

channels will be in)., the binary amplitude distribution is desirable for a set of channels

23



and this generalizes what is known for other channels. We also consider a Multi-tone

FSK scheme in which each tone has binary amplitude distribution and all tones are

coded over frequency and time. We prove that the Multi-tone FSK scheme is capacity

achieving in the wideband limit. Furthermore, we study how feedback can help to

improve Multi-tone FSK's error performance and define a feedback scheme which

reduces the error probability significantly. Finally, we implement the Multi-tone FSK

scheme on an ultra-wideband test bed and show the practicality of the scheme.

The organization of the dissertation is as follows:

In Chapter 2, we study the structures of capacity-achieving input distributions of

noncoherent memoryless Rician fading channels and Rayleigh block fading channels.

We show the discreteness and finiteness of the optimal input amplitude distributions

when the input is imposed an average power constraint or a peak power constraint.

The discrete structure of capacity-achieving inputs is proven to hold in the presence

of only peak power constraints for general channels satisfying a sufficient condition.

In addition, we provide numerical results for optimal input distributions in Rician

fading channels.

Chapter 3 concentrates on the Multi-tone FSK scheme. We propose the Multi-

tone FSK scheme, which employs low duty cycle multi-frequency FSK symbols and a

noncoherent receiver. We investigate the performance of Multi-tone FSK and derive

its capacity limit and error exponent. We prove that the Multi-tone FSK scheme

achieves the wideband capacity limit. A similar analysis is also conducted for the

Multi-tone FSK scheme with receiver diversity, and its capacity limit and error ex-

ponent are derived. Moreover, we present numerical results to show the performance

of Multi-tone FSK at finite bandwidths.

Chapter 4 is devoted to the investigation of the Multi-tone FSK schemes with

feedback. We introduce a Feedback Multi-tone FSK scheme in which a feedback link

is setup to monitor the transmission quality. We prove that, using a small amount

of feedback, the scheme has much better error performance than the Multi-tone FSK

scheme.

Chapter 5 includes conclusions and directions for future research.
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Finally, in Appendix D, we present some of the experimental results we obtained

by testing the Multi-tone FSK scheme on an ultra-wideband platform. By imple-

menting the Multi-tone FSK scheme, we verify the idea of Multi-tone FSK and the

validity of model assumptions.
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Chapter 2

Structure of Optimal Input

Distributions

2.1 Introduction

The effort to seek information theoretic guidelines for designing efficient signaling

schemes dates back to the birth of information theory. Proved by Shannon [2], the

capacity-achieving input distribution for an average power limited AWGN channel is

a Gaussian distribution.

Smith [10], Shamai and Bar-David [11] considered the peak power limited AWGN

channel and proved that the capacity-achieving input amplitude distribution is dis-

crete with a finite number of mass points. The change in the power constraint

markedly effects the structure of the optimal input.

Recently, Katz and Shamai [12] considered the noncoherent AIGN channels

where the input is distorted by phase noise and have shown that the optimal in-

put amplitude distribution is again discrete but with an infinite number of mass

points. This result has been extended to the block-independent case by Nuriyev and

Anastasopoulos [13].

Among channel models, it is of particular interest to consider the case when the

channel experiences fading, which is a realistic assumption especially in mobile com-

nunications. Recent work on noncoherent fading channels, where neither the receiver
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nor the transmitter knows the fading, has led to many interesting results that are sig-

nificantly different from those of unfaded Gaussian channels.

In [14], Richters conjectured that the capacity-achieving distribution for discrete-

time Rayleigh memoryless channels is discrete under an average power constraint. The

conjecture has not been rigorously proved until 1997. Abou-Faygal et al. have proven

in [15] that, for this basic channel. the capacity-achieving amplitude distribution is

discrete with a finite number of mass points.

Gursoy et al. investigated communications over a noncoherent discrete-time mem-

oryless Rician fading channel in [16], and showed that, under an average power con-

straint, the optimal input amplitude distribution is bounded. They also studied

Rician channels with peak power constraints and fourth moment constraints for am-

plitude, and proved that the amplitude distribution is discrete with a finite number

of mass points.

Moreover, Marzetta and Hochwald [17] characterized the optimal input distribu-

tion for the multi-antenna Rayleigh block fading channel as a product of two statis-

tically independent matrices: a random matrix which is diagonal, real and nonneg-

ative times an isotropically distributed unitary matrix. For the single antenna case,

Palanki [18] proved that the optimal input amplitude distribution for Rayleigh block

fading channels is discrete.

In this chapter, we consider the noncoherent discrete-time Rician fading channel

and the Rayleigh block fading channel, and study the optimal input structure.

As mentioned before, the optimal input amplitude distribution for the average

power limited Rician fading channel was considered in [16], and proven to be bounded.

Our result in this chapter is much stronger. We characterize the optimal input am-

plitude distribution as discrete with a finite number of mass points under a low SNR

condition. We show that, there exists a threshold, for a Rician channel subject to

an average power constraint less than the threshold, the support of an optimal am-

plitude distribution is not only bounded, but also discrete with a finite number of

mass points. For peak power limited channels, we find a general principle for the

optimal input amplitude distribution. The principle provides a sufficient condition
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for the support to be discrete with a finite number of mass points. According to this

rule, for most common channels subject to a peak power constraint, including Rician

channels, capacity-achieving input amplitude distributions have discrete amplitudes

with a finite number of mass points.

In [18], the optimal input amplitude distribution for the average power limited

Rayleigh block fading channel was considered, and proven to be discrete. We prove,

in this chapter, that the optimal input amplitude distribution is not only discrete but

also with a finite number of mass points.

The organization of the chapter is as follows. In Section 2.2, we introduce the

Kuhn-Tucker conditions with different power constraints, which are used to elimi-

nate impossible distributions for the optimal inputs. In Section 2.3, we introduce

the memnoryless Rician fading channel model, and characterize the structure of the

capacity achieving input distribution when the channel input is subject to average

power and peak power constraints. A similar analysis is conducted for the Rayleigh

block fading channel case in Section 2.4. Section 2.5 contains our conclusions.

2.2 Kuhn-Tucker Condition

To describe a channel statistically, we often use the conditional probability density

PyX(y yx), where x is the input of the channel and y the output of the channel. From an

information theoretic point of view, the goal of efficient signaling scheme design is to

maximize the achievable data rate for reliable communications, subject to some input

signal constraints, such as the average power constraint, E(I 2) < Pay, or the peak

power constraint, JXJ < Pea. The signal constellation and its associated probability

density, i.e., px(x), is the function which needs to be optimized upon. For example,

with an average power constraint, the optimization problem can be formulated as

C sup JPp(Y yX) In PYIx(Y) dypx (x)dx,
Px W Py pY(yp x)

E( xI 2 )<Pal
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where py(y; p,) is the probability density of the output y which is determined by

the channel input density p,(x) and py (ylx). The double integral in the objective

function is to calculate the mutual information between x and y, which equals to the

maximum achievable data rate for reliable communications.

To find analytically the optimal input constellation and probability density, p*(x),

for most cases, is an impossible task, owing to the intractability of the optimization

problem which has an infinite number of degrees of freedom to work with. In this

chapter, we manage to rule out continuous distributions and narrow the scope to a

searchable size.

For example, we show that, in the low SNR regime, the optimal input amplitude

distribution for the average power limited discrete-time memoryless Rician fading

channel is discrete with a finite number of mass points. In [19], Gallager showed that

binary inputs are optimal when the energy per degree of freedom goes to zero if only

discrete inputs are considered. Thus, the optimal input amplitude distribution in the

low SNR limit is binary, which can be found numerically. Many practical algorithms

for this purpose exist in the literature.

To prove the optimal input amplitude distribution is discrete with a finite number

of mass points, we show that all other cases are not possible, because otherwise the

Kuhn-Tucker condition, which should be satisfied by the optimal distribution, will be

violated. In the rest of this section, we will establish the Kuhn-Tucker conditions for

our particular problem.

For average power limited channels, the Kuhn-Tucker condition has already been

derived by Abou-Faygal et al. in [15]. We cite the result here after rewording:

Proposition 2.1 (Abou-Faygal et al. [151) For a channel with an average power con-

straint, E(j 2) < Pay (Rav > 0),. an input random variable X* with density function

p* achieves the capacity C if and only if there exists a > ; 0 such that

ka(x) (x Pav) + C p(y I x) In ,I} dy > 0 (2.1)

for all x, with equality if x is in the support of X*. p(y; p*) is the probability density
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of y with the density function of X* is p*.

The proof of this proposition is in [15]. Note that -/ is the slope of the capacity

versus average power curve at the given average power Pa,.

For peak power limited channels, we prove the following proposition:

Proposition 2.2 For a channel with a peak power constraint, Ix12  Ppeak (Peak >

0), an input random variable X* with density function p* achieves the capacity C if

and only if

kp(x) = C - p(y I x) In I) dy > 0 (2.2)

for all x located in |x12 < Peak, with equality if x is in the support of X*. Note that

p* is only non-zero on the range Ix| 2 < Ppeak.

This Kuhn-Tucker condition is customized for peak power limited channels. Please

see Appendix B for the complete proof of this proposition.

Proposition 2.3 For a channel with an average power constraint, E(Ix|2) K Pav

(Pay > 0) and a peak power constraint, |X| 2 < Ppeak (Peak > 0), an input random

variable X* with density function p* achieves the capacity C if and only if there exists

a y > 0 such that

kap(X) = -(IxI 2 - Pav) + C Jp(y x) In X)dy > 0 (2.3)
J p(y; p*)

for all jxj 2  Ppeak, with equality if x is in the support of X*. p* is only non-zero in

the regime |x12  Ppeak.

The proof directly follows that of Proposition 2.2 by limiting the support of p* to

X12 < Ppeak.

Remark:

1) x can be a scalar input, a complex input, or a vector input. For complex inputs

or vector inputs. 1x2 stands for the squared norm. An example of the vector case is

a multiple-input multiple-output (MIMO) channel:
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2) X12 < Ppeak is interpreted as a peak power (amplitude) constraint in the scalar

and complex cases, while in the vector case, it imposes a constraint on the total power

of the input vector. For the MIMO example, it is the total power constraint for all

transmitting antennas;

3) The equalities in (2.1), (2.2), and (2.3) are only necessary conditions for x being

in the support of X*, not sufficient.

In (2.1)., (2.2). and (2.3), for referential convenience, we use ka(x), k,(x), and

kap(x) to denote the functions on the left hand side of the inequalities. The sub-

scripts stand for the average power constraint, the peak power constraint, and both,

respectively. In cases applicable to all three power constraints, we omit the subscript.

When the optimal input phase distribution is uniform on [0, 2-F) and independent of

the amplitude distribution, the value of k(x) will be determined by the amplitude of

x. Denote the amplitude as r. We explicitly write the function as k(r) instead of

k(x).

In the following sections, we will derive k(r) for Rician channels and Rayleigh

block fading channels with different power constraints. By studying the Kuhn-Tucker

condition, we rule out impossible distributions for the optimal input.

2.3 Rician Fading Channels

Wireless channels often exhibit fading and dispersion. The fading effect is usu-

ally modelled as Rician distribution when line-of-sight (LOS) input propagation is

present alongside a Rayleigh component. Additive White Gaussian Noise channels

and Rayleigh fading channels are two extreme types of Rician fading channels. In the

first, only the LOS component is present. In the second, it is altogether absent.

In this section, we consider transmission over a discrete-time memoryless Rician

fading channel for capacity-achieving distributions. We prove that, for an optimal

input, the phase distribution is uniform and independent of the amplitude. Based

on this result, we obtain the Kuhn-Tucker condition for Rician channels subject to

different power constraints. And by using the Kuhn-Tucker conditions, we show that,
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for an average power limited Rician channel, there exists a threshold such that, when

the average power is less than the threshold, the support of the optimal amplitude

distribution is discrete with a finite number of mass points. Moreover, for peak power

constrained channels, we provide a sufficient condition for the supports to be discrete

and finite.

2.3.1 Channel Model

The output of the discrete-time memoryless Rician channel we consider is

y = (m + r)x + w

where x is the input, m + r is the channel fading coefficient, and w is the additive

noise with zero-mean complex Gaussian distribution CN(O. 2 ). m represents the

effect of the line-of-sight propagation, and is invariant. r stands for the effect of

the large number of independent scatterers. and is a zero-mean complex Gaussian

random variable, CN(O, o2), which changes independently from symbol to symbol

due to the nature of rapid fading. We assume that m is observed by the receiver and

the transmitter, whereas r can be observed by neither the receiver nor the transmitter.

The probability of y conditional on x is

______ ( y -mx 2

p1(y ) = 2) exp - 2  ,) (2.4)
r o rx +W)) Il+o

where x and y are complex.

2.3.2 Phase Distribution

Using the conditional probability (2.4), we show the following proposition for the

phase distribution.

Proposition 2.4 In a Rician fading channel, the phase distribution of the capacity-

achieving input is uniformly distributed and independent of the amplitude.
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Proof: Assume that (D is a unitary complex number. Then y' = Dy and x' = 4Dx are

variables obtained by rotating y and x on the complex plane by b.

We obtain

pyixtyjx) = pyjx(4 y 4x),

by substituting <bx and 4Dy into (2.4). That is, the conditional probability is invariant

when x and y have an identical phase shift.

By the definition of mutual information, we have

I(y; 41x) = JJPyix(yx) In p 1 ( dyp* ( )d.
J py (y; p* (4 x)) x

The notation py(y; p*) denotes the probability density of the output y when the input

density is p* (x). Similarly, py(y;p*(<Dx)) stands for the output density when the

input is 4bx.

Change variables by letting x = T-Y', and notice that the Jacobian j<D-'j is 1.

I(y; 4bX) = iI

Noticing that pyl (yIx) = pyx (<by I<x), we have similarly pylx(YD- 1X') = pyl (<bylx').

In addition, we have

Py (Y; p* (4)x)) JPYX (y )p* (41x)dx

J p (yix -'x)p* (x)d

= Y px(4)y I ) p* (x) dx

= py (qy; p*).

Thus.

PyIX(CPy x') In p yx( , ) dyp* ( ')dx'
py (4 y; p*)
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Substituting y' for <Dy, and using the fact that the Jacobian 14b-'l is 1, we obtain

I (y; 4DX) = I(y; IX).-

Hence, the mutual information I(y; x) is invariant to a rotation of x. For any

probability density of x, p, (x), there exists

Iy; x) J I(y; ejWx)dw.

The concavity of mutual information and Jensen's inequality implies

1J I(y; e"wx)dw I(y; x*) (2.5)
27r

where x* has a probability density

* (X) = Px (eiwx) dw.

The equality in (2.5) holds if and only if px (eiwx) - p* (x) for any w. It is clear

that I(y; x*) is the capacity of the channel, because it is an upper bound for all

possible mutual information, and can be achieved by letting px (Wc) p* (Wc). p* ()

has a uniformly distributed phase independent of the amplitude, and the proposition

follows. *

The independence between the phase and the amplitude greatly simplifies our

discussion of the capacity-achieving input distribution. Notice that we did not assume

any specific power constraint in the proof.

Corollary 2.1 In a Rician fading channel, the capacity-achieving input generates an

output with a uniformly distributed phase independent of the amplitude.

Proof: The output probability density is

p (y; p*) = pilx(y lc)p* (c) dc.
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Notice that pyl(ylx) = pyjx(Iyjx) and the phase of p* is uniformly distributed,

p* (W = p* (4)x),

Py (Y; P*) =Jpyix(Gy@x)p* (ix) dx.

Performing the change of variable (Dx = x' yields

py (y; p*) JPyIx(fyx')p* (x') dx'

- y( Y;P p*1)

Hence, py(y; p*) is invariant to rotations of y and

py(y;p*) =JPy(ey;1 p*)dw,

which implies that the output has a uniformly distributed phase independent of the

amplitude. m

2.3.3 Amplitude Distribution

By definition, if the input x has a probability density p*(x), the mutual information

between output and input is given by

M JJpy (yx) In pY1x(y'x) dyp* (x)dx.
py (y; p*)

By substituting (2.4) into the above integral, we obtain

M =- 2n [r (ox2+ u')] p*(x)dx - 1

- J pyx(yx) lnpy(y; p*)dyp* (x)dx.

Denote the modulus of the input, IxI, as v and the absolute square of the output, |yf 2 ,

as p. By using Change of Variables Theorem, we change coordinates from rectangular

to polar. (v, Ox) and (p, Oy), where 0, and 0, are the phases of the input and the output.

The corresponding Jacobians are v,/ and j, respectively.
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Notice two equations:

1) Since the input has a uniformly distributed phase which is independent of the

amplitude, we have equation

(p.(x(V, 0.)) = (V)
2wr

where p*(v) is the input's amplitude pdf;

2) Since the output has a uniformly distributed phase which is independent of the

amplitude, we have
1 1
-py(y (p, O 0); p*) =2w(;p*)

where py(y; p*) and p,(p; p*) are the probability densities of y and p given p*.

The mutual information is then

M = - ~i (C o22
0 0

2P dvdO - 1+O 2-i

JO
0

JO
g(p1v ) In ( px d'

7F 2 -F

where

g(p v) =
exp Io 2+y2

0 2 2 I (2.7)

is the Rician distribution. Io(-) is the modified Bessel function of the first kind, i.e.,

Io(x)= - Iexp (x cos 0) dO.10W =1 1

The expectation of a Rician random variable is

j pg(plv)dpE (plu) =

M2V2 +72 V2 + r2
- m ±rb WV~j
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By integrating (2.6) with respect to Ox, we obtain

M = [-in (o 2 +2 o) - 1

g(pIv) lnpp(p;p*)dP] p*(v)dv. (2.8)

Average Power Constraint

The KTC for an average power constrained channel is given by Proposition 2.1. For

a Rician channel with an average power constraint, the KTC is

ka(v) ^- g(pV)logpp(p;p*)dp + I+C

(a)

+ In (9%'2 + UW) + y*2 - Pav) > 0, (2.9)

where C is the channel capacity, -y the Lagrange multiplier., Pay the average power

constraint, and

Pp(p; p*) j g(plv)p*(v)dv.

The condition ka (V) > 0 is satisfied for v > 0 and the equality holds for all V in the

support 9i of an optimal input distribution.

Our derivation will use the following lemma, which was proven in [16].

Lemma 2.1 With an average power constraint, E (u' 2) < Pay, a capacity-achieving

amplitude distribution for a discrete-time memoryless Rician fading channel has a

bounded support.

Based on this lemma, we assume that the support 9 of an optimal input is in

[0, u], where u is the supremum of SR such that fo' p*(v)dv = 1, f7p*(v)dv 0, and

fo p* (v)du < 1 for any c> 0.

In the KTC, -y is a Lagrange multiplier. As such, it represents the slope of the

optinium of the object function as a function of the constraint value. In this case, -y

is the slope of the capacity versus average power curve C (P). The range of 7 is given

by the following lemnma.
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For a discrele-tirIe memoryless Rician fading channel with an aver-
2) < M 2 

2  2
age power constraint E (v 2 ) V Pav . is located in +- + n +" ," where u is the

supremut of 91.

Proof: We first prove < m
2 "

0,71

The capacity of an AWGN channel with a channel gain m 2+o is In I +

which is evidently an upper bound to the capacity of the Rician channel.

(m2+c?)P

From the convexity and nonotonicity of channel capacity in terms of P, the largest

(m2+o,2)P
slope of the capacity curve happens at P = 0. The slope of In I + 2 at P = 0

is " 2 +" .Because the capacity is a continuous function of power P, if ' > m+0 at
0-2 012

P = 0, we could find a small enough P such that the capacity of the fading channel

would exceed the capacity of the AWGN channel. As this is not possible, we conclude

that -/ < +0
r at P = 0. Hence., -y < mU +a for all P > 0.

,2,
Second, let's prove -y > 2

We can obtain an upper bound for (a) in (2.9). Given

= o In

we have

[
e oS +Io K-v±~

v2
2, V 2 '1 2 - m

l(v)dv g(plv)dp,

M2V2 + 2 V2 + 2

(a) < D 1 -
- oTr 2 + (.2

Since Io(x) > 1 for x > 0,

D1 > In [j

e n 2,2

2 2 V 2J

The right hand side in (2.10) is a constant.
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On the other hand, because Io(x) < exp(x) for x > 0,

D1 < j(pv) 2 pmudp
J0 w

x In e

o(v 2)

p*(v)dvI
From (2.10) and (2.11), we conclude Di = o(v 2). Therefore,

ka(v) < In( 7v 2 +0)- +

y2
+C + U2U2

ao2U2 + 07

If -y K< ±~ the limit of0a2u
2 +6r2

m 2 + 61.22 2 2m 2 +r 2

r wi

+ o(v 2 ) - 'yPaV. (2.12)

(2.12) as v -> oc is -oo, which conflicts the KTC. By

contradiction, y> +

From the lower bound of the range,

2 2
m + Ur

~72U2 + U2

we obtain
2 1

S_2
m 2 + r

From the upper bound,

we have

m 2 + a 2
2 2

m2 2+ 02

m 2 > 0.

which lets the RHS of (2.13) be always positive. Thus, we conclude that small U2
r

requires large u 2 , i.e., the peak power of a capacity-achieving scheme need to be

extremely large when the Rayleigh component is very small. This is consistent with

the case of an AWGN channel. An AWGN channel has a zero Rayleigh component,

and its u 2 is infinite.
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Having determined the possible range of 7, we study the capacity-achieving dis-

tribution for different y.

First, we show a lemma.

Lemma 2.3 When k(v) is analytic in the 'region 1 > 0, a sufficient condition for the

support 91 of the capacity-achieving distribution, p* (v). to be discrete with a finite

number of mass points is that, there exists an vo such that for any v > ro, k(v) is not

equal to zero.

Proof: We prove the lemma by ruling out all other cases outside the lemma:

1) Assume the support 91 of p* (v) has an infinite number of points and these points

increase on a bounded interval. Continuous distributions satisfy this assumption.

Since k(v) is analytic in the region v > 0. by the Identity Theorem [20, k(v) = 0

in the region. Hence, the Kuhn-Tucker condition is satisfied with equality for all

v > 0. This conflicts with the given assumption that k(v) is not equal to zero as

V - 00.

2) Assume the optimal distribution has an infinite number of mass points but only

finitely many of them on any bounded interval.

Then k(v) should be equal to zero infinitely often as v - 0o which also conflicts

with the assumption that k(v) is not equal to zero as v > vo. m

Next, we show the following proposition.

Proposition 2.5 There exists a Po > 0, such that,. for all Pa G (0, Po], the support of

an optimal amplitude distribution of a discrete-time memoryless Rician fading channel

with an average power constraint £ (2) < Pav is discrete with a finite number of mass

points.

Proof: According to Lemma 2.2, ' is located in the range 22+ r]

First, we assume
m2 + 2 M2 + G2

< < r (2.14)
072We+ pta i2

We prove that the capacity-achieving dlist ributilon is discrete and finite in this case.
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Given (2.14), since r is a continuous function of x, we can find a uO such
M 2+o,2

that a = U " .

Noticing that Io (x) > 1 and the logarithm is monotonically increasing on (0, oc),

we bound (a) in (2.9) by

(a) ;> g(poV)ln g(pjv)p*(v)dv dp
fo .fUO

M2V2 _ .212 - a.2

> D2 - "', (2.15)
(o- 2s + O2

where

u exp (-2 * 1
in -pp (v) dvD2 =In 02 2 '( dv2

D 2 is a finite real number. By substituting (2.15) into ka (v), we obtain a lower bound

of ka (v) given by

ka (i) > 1l, (0.v 2 + 07) + 0
ro U2 + o,

+D 2 + C - YPav.

The lower bound diverges to infinity as v - oc. Because ka (v) is an analytic function

over [0, oo), according to Lemma 2.3, the support is discrete and finite when -y satisfies

(2.14).

Therefore, a sufficient condition for N to be discrete and finite is 'y 2 .

As we know, the asymptotic capacity of a Rician channel as the average power P

goes to zero is P + o (P). To achieve the asymptotic capacity as P goes to zero,

we need the kurtosis of the norm of the input to increase unboundedly [211.

Suppose that y +

Recall that ' is the slope of the capacity versus average power curve. Then

approaching the asymptotic capacity. i.e.. m 2  requires u 2 -+ 0. However,

S2 - 0 prevents the kurtosis from growing unboundedly. Thus, there must exist a
, 2 j 2

Po > 0, such that. for all Pa, < Po, the assumption -y = fl+0U1'can not be true, and

thus 91 is discrete and finite. The proposition follows. m
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Peak Power Constraint

In [16]. Gursoy et al. have shown that, for a Rician channel with a peak power

constraint, the support of an optimal amplitude distribution is discrete with a finite

number of mass points.

In this subsection, we show an even more general result for channels with a peak

power constraint.

Using Proposition 2.2, we obtain the KTC of a Rician channel with the peak

power constraint xJ < Pk:

kz(v) = g(KV)logpp(p;p*)dp+1+C

+ ln2( V2 + o1) > 0 VV E 0 Prk

Notice that kp (v) is an analytic function.

Proposition 2.6 For a channel with an active peak power constraint, v < VP, a

sufficient condition for 91 to be discrete with a finite number of mass points is that,

k, (v) in the KTC is an analytic function over [0, oc). When the sufficient condition

holds, 9q has one mass point at pk.

Proof: The peak power constraint is active means that increasing or decreasing Ppk

will strictly increase or decrease the capacity.

Suppose 91 contains an infinite number of mass points (including continuous cases).

Because there are an infinite number of points in the bounded interval, [0, Ppk

we can find an infinite sequence with a limit. According to the KTC, k, (i.) equals

to zero on the sequence. Since kp (v) is an analytic function over [0, oo) and equals

to zero on an infinite sequence with a limit, it equals to 0 on [0, oo) according to the

Identity Theory [20].

However, we can prove that there exists some v > Ppk such that kp (v) < 0.

Suppose that all vl greater than Ppk have kp (v) > 0. Then, we can find a P'p

larger than Ppk such that in the interval we have kp (u) > 0 for all v.

Let a new peak power constraint be ~Pk. Then, under the new peak power constraint,
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the original input still satisfies the KTC, i.e., k (v) > 0 for all v E [0, FPk]. This

means that, even with a larger peak power constraint, we still have the same optimal

input, and thus the same capacity, which conflicts the fact that the peak power

constraint is active. Thus, there must exist some v > VPk such that kp (u) < 0.

Since k (v) does not equal to 0 on [0, oo), 9 cannot contain an infinite number

of mass points in [0, 1P-11. The only possibility for 9 is to be discrete and finite.

Now, we will prove that 91 has one mass point at Ipk.

Because 9 is discrete with a finite number of mass points, we can index all the

points,

0 < ro < ri < ..-. < TN < -

If rN < ,Pk. i.e., 91 has no mass point at P-k, then we can pick a new peak

power constraint P' such that rN < < Pp. With the smaller peak power

constraint, we still have the same optimal input and thus the same capacity. As

this contradicts the fact that the peak power constraint is active, the assumption

rN < Ppk cannot be true.

Hence, 9 has one mass point at VPk. E

Based on Proposition 2.6, we conclude that 9 for a peak power limited Rician

channel is discrete and finite, with a mass point at .Ppk

In fact, a channel with a peak power constraint is a special case of channels with an

average and peak power constraint, E (2) < P, and v < Ppk, by letting P = 00.

The KTC of a Rician channel with an average and peak power constraint is given

by

kap (v) j g(p) log pp(p;p*d pd + In W v2

+ C+1+7(V2-Pav) > 0 VE 0 Ppk]

kap (v) is an analytic function, and according to Proposition 2.6, 9 is discrete and

finite, with a point at .pk-

Proposition 2.6 can be applied to any channel with an analytic Kuhn-Tucker
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condition k, (v). As long as the peak power constraint is active, the capacity-achieving

distribution is discrete with a finite number of mass points and one mass point is at

2.3.4 Numerical Results

In [19], Gallager studied the optimal distribution problem by considering the reliabil-

ity function. By restricting power-limited channels to discrete inputs, he showed that

binary inputs are optimal in the wideband limit (the low SNR limit). We have shown

that the support of the optimal input amplitude distribution is discrete with a finite

number of mass points. Hence, in the low SNR limit, the binary input distribution is

optimal regardless the discrete input restriction. When we use numerical algorithms

to search for the optimal input distribution in the low SNR regime, we can first start

with binary inputs.

Without loss of generality, o- + m 2 and o2 have been normalized to 1 for all

numerical results.

In an average power constrained Rician channel, suppose o2 = 10-2 and P,=

10-6. A numerical optimization indicates that the optimal binary amplitude pair

is (0, 2.371) with probability (0.9999822, 0.0000178). Regular vector optimization

methods, such as those introduced in [22], can be used to search the optimal support

and probability.

In Figure 2-1, we plot ka (v) for the binary signaling. As we can see, ka (V) > 0

for v > 0 and ka (v) = 0 for v = 0 and 2.371, which means that the binary signaling

is really the optimal input. The support 91 = {0. 2.371} is discrete and finite.

During the numerical process, we first search for the optimal binary schemes with

a zero symbol (one of the two points is at zero). By substituting the obtained optimal

points into the Kuhn-Tucker condition, we can check if ka (V) > 0 for v > 0. If

satisfied, the binary scheme is optimal; otherwise, we increase input levels. This is

because that the entropy of a binary symbol is limited by 1 bit, binary inputs are

no longer optimal as the SNR increases. To achieve capacity, we need to consider

schemes with more input levels.
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Figure 2-1: The Kuhn-Tucker condition k (v) for a2 = 10-2, Pa = 10-6 A 0.99015,
and p(v) = 0.99998226(0) + 0.00001786(v - 2.371).

In Figure 2-2 and Figure 2-3, we plot the obtained location and probability of the

nonzero mass point in the binary signaling for a range of average power. Different

values of -, correspond to different Rician channels.

Schemes with no point at zero are also included in our search algorithm by simply

setting the probability of the zero symbol to zero. Optimal schemes in Rician channels

subject to a peak power constraint can be searched by using a similar method.

However, when we need to search the optimal distributions with a large number

of mass points, the computational task involved is formidable. We have to resort to

suboptimal methods. In [231, Huang and Meyn introduced a class of algorithms based

on the cutting-plane method, which generate discrete distributions that are optimal

within a prescribed class.

2.4 Rayleigh Block Fading Channels

Discrete-time memoryless fading channel models are often used to model wireless

channels that exhibit fast fading. For a channel experiencing slow fading, the fading

coefficient changes slowly and remains almost the same for a period of time. Hence,
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Figure 2-3: Probability of the nonzero mass point
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to model the channel's behavior, the channel coherence should be taken into the

consideration.

Block fading channel models take the channel coherence into account. In these

channel models, the fading coefficient remains constant for a coherence time and

changes to another value in the next coherence time. In the following section, we

consider the Rayleigh block fading channel, which is a commonly used model for slow

fading channels.

In this section, we obtain the Kuhn-Tucker condition for the Rayleigh block fading

channel and show that, for the average power limited Rayleigh block fading channel,

the support of the optimal amplitude distribution is discrete with a finite number of

mass points. Moreover, for the peak power constrained channel, we also show that

the support is discrete and finite.

2.4.1 Channel Model

We write the Rayleigh block fading channel between the complex input xt and the

complex output yt as

yt - hxt + wt

where the channel fading coefficient, h, is a complex Gaussian random variable,

CN(O, 1). The additive white Gaussian noise samples, {wt}, are independent, iden-

tically distributed (i.i.d.) complex Gaussian random variables, CN(O, 1). The sub-

script, t, indexes different time samples. The channel fading coefficient is invariant for

a coherence time, T, and changes to another value in the next coherence time. Each

value is independent, identically distributed. We assume that neither the receiver nor

the transmitter knows the value of h, i.e., neither has channel state information.

We can consider symbols in the same coherence time altogether since they multiply

the same fading coefficient, and write the channel model in a vector form for derivation

convenience:

Y = hX +W

where Y, X, and WU are T x 1 complex vectors. Each entry of X is a symbol in the
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coherence time.

With an average power constraint, E(JX12 ) < P, the vector form of the channel

capacity over T symbols is

C= sup PyIx(Y|X) InPY'<K) dYpx(X) dX.

Px(x) JfPY (- ;P*x)
E(IX 2) pa

To obtain the capacity with other constraints, we only need to change the subject

function accordingly.

Since the channel exhibits strong correlation between symbols within a coherence

time, the transmitter can detect information carried not only by symbols' amplitude,

but also by the relative difference between symbols. To express this rigorously, we

consider the vector of symbols in the same coherence time. The vector can be decom-

posed to be a unitary vector times a non-negative real number. The unitary vector

indicates the direction of the original vector, and the non-negative real number is the

vector's Euclidean norm. We call the unitary vector the vector's "phase" and the

Euclidean norm its "amplitude". Clearly, information can be carried not only in the

amplitude, but also in the phase.

In the following sections, we study the phase distribution and the amplitude dis-

tribution of the optimal input in the Rayleigh block fading channel.

2.4.2 Phase Distribution

According to [17], we can decouple the phase distribution and the amplitude distri-

bution when we consider the optimal input in the Rayleigh block fading channel. The

following proposition gives the optimal phase distribution.

Proposition 2.7 (Marzetta and Hochwald [17]) The optimal distribution for Rayleigh

block fading channel should be a magnitude times an independent isotropically dis-

tributed phase. i.e. the input is
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where r is a non-negative real number. and ( is an independent isotropically dis-

tributed unitary vector.

Please see [17] for the proof.

result.

Proposition 2.7 is the single antenna case in their

The received signal can be then written as

Y = hr + W = v y

where R is a non-negative real number, and D,, is a Tx 1 complex unitary vector. Since

( is isotropically distributed, it is straightforward to show that (y is also isotropically

distributed.

2.4.3 Amplitude Distribution

The mutual information between X and Y is calculated as

I (X; Y) = h (Y) - h (YIX) ,

where h (YIX) and h (Y) are given in the following discussion.

h (YIX): Conditional on X = [X1 , X2, - - , XT, Y is jointly Gaussian distributed

with the density:

1
p (Y lX) =T de exp (-YtE-Y) (2.16)

where E is the correlation matrix:

Lc1i 2 + 1

XTX 1

The entropy of multivariate complex Gaussian random variable is ln(-e)T det (E)

Hence, the conditional entropy is given by

(2.17)
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h (Y): To obtain h (Y), it is much easier for us to use the polar coordinates.

Define R = |Y|2 and 'r = X|.

Because <D is an isotropically distributed unitary vector independent with r., the

joint distribution of r and 4). p,,r, ), can be written as

1
Pr,I (r, q)) = pr(r) . (2.18)

Moreover, since the input X is a function of r and 4D, by the Change of Variables

Theorem, we have

pr, (r, 4D) = rpx (X(r, QD)). (2.19)

Combining (2.18) and (2.19) gives us

1
PX (X (r, <D)) = pI(r) . (2.20)

r 14DI *

Since (D, are also isotropically distributed, we have

PR, 1, (R, 4)y; p*)

= PR1%,(RkI|y;PX)P (C* y; X)

1
PR (R;p*) .(2.21)

where PRIPy (R|<DY; p*) = PR(R; p*) due to the homogeneity of the output on direction.

By the Change of Variables Theorem, PR,, (R. )y;p *) can be expressed in the form

of py (Y p*):
1

Thus, the equation

py (Y(R, (D,); p*) PR(R; p*X)2 (2.23)

is obtained by combining (2.21) and (2.22).

By the Change of Variables Theorem, pRe~ir,,(RDD) can be derived from
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1
PR R, (Yy)- (pY R qy( )X (r, <)).

Further, according to the Total Probability Theorem and the definition of marginal

probability, we have

pRIr(Rlr) = I JPR 4Rd, 4 D) yd@. (2.25)

Hence, by using (2.20), (2.23), (2.24), and (2.25). the entropy of Y is

h(Y) =- Jpyx(YIX) lnpy(Y;p* )dYp* (X) dX

JJPRjr(RIr)InPR(R;p* )dRPr(r)dr+In .2 (2.26)

After we obtain h (Y) and h (YIX), we calculate I (X, Y). By substituting (2.17)

and (2.26) into (2.27), the mutual information is given by

I (X ;Y)
-

PRJr (RIr) In pR (R; p*)dR

- ln(1 + r 2 ) - ln(-re)T + ln 1j 2Dj p*(r)dr.

In (2.27), PRIr(Rlr) can be derived by using the fact that pRIr(Rlr) does not depend

on P, which is obvious by (2.25). As a result, we can choose an input with an arbitrary

direction during the derivation of PRr(Rlr).

We pick the input Xo = [r, 0, - , 0]T with D = [1, 0,- - - , 0 ]T, which give us

r 2 + 1

\ z

0

and

det (E) = r 2 + 1
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in the conditional density (2.16). The inverse matrix of E is

1
r2 +1

j]- 1 =
0

0

By substitution E into (2.16), the probability of Y conditional on X0 is

1

7F T (r 2 + 1) exp ( .y2 12
r2 +1

. -IYT 12).

The form of this joint distribution implies that {y} are independently distributed

with densities:

p(yIlXo)= 
+(r2  ) e (

1
p (yijXo) = - exp (- Yl 2)

7T

r 2 + )I
(i# 1).

By changing the variables, iT =I Yi 2, the densities become

1
P (71 10) (r2 +1 exp

p (r7 1r) = exp (-r/n)

r2 )

(i#/1)

Since R =- ET is the sum of independent random variables. we can obtain its

characteristic function from the characteristic functions of {rji}, which are

1
1 --L) j , (r2 + 1

and
1

(pi (w) =.
1 - 3

(i#/ 1) .

The characteristic function of pRI,(R r) is the product of the characteristic functions
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of {ri}, given by

OR (W) =
1

[1 - jw(r 2 + 1)] (1 - jw) T
(2.29)

Expanding the rational form of #R (w) gives

OR (w)

where

1T-2

V1

1 -jw(r 2 + 1)

+ P2 +
(1 - jW)

+ i

1 - j

+ AT--

1
[tT-1 -

pT-1 (r 2 +1)

T-2 (r2 +1)+ (r2 +1)2
/T-3 =2 6

A2 (r 2 +1)
r - 72 -

(r 2 + )T-2
r2(T-

1)

and

[I (r2 +) (r2 + 1)

= ±r2r 2(T+1)

After taking the inverse transform of #R (w), PRIr (Rjr) is obtained:

T-1 R'1
PRjr (RKr) =R exp(

+71+ exp
r2 + 1

-R)

R
r2 +

(2.30)
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Average Power Constraint

By substituting the mutual information obtained in (2.27) into (2.1), we get the KTC

for the average power limited Rayleigh block fading channel:

ka(r) -(r2 _ Pay) + C + PRIr(Rlr) 1nPR(R;p*)dR

(b)

+ ln(1 + r2 ) + ln(re)T - in > 0. (2.31)
2

Notice that, the average power constraint, E (r 2) Pa, imposed for the block

fading channel, is an power constraint on the vector X. It is the second moment

constraint for r = IXJ. It is equivalent to an average power constraint on a single

symbol with the upper bound fp. Hence, results obtained for the first constraint

case are applicable for the second constraint case.

By using the KTC. we would be able to prove that the optimal input amplitude

distribution for the average power limited Rayleigh block fading channel is discrete

with a finite number of mass points.

First, we prove that, the optimal input amplitude distribution is bounded.

Lemma 2.4 With the average power constraint, £ (r2 ) < Pay, and the time coher-

ence, T < oc, the optimal input amplitude distribution for Rayleigh block fading

channel has a bounded support.

Proof: Let's assume the support 91 is not bounded, and later we will show that, the

result derived based on this assumption will violate the KTC.

Based on (2.30), PRIr (Rjr) can be rewritten as

PRIr (Rfr) = exp (- fi (Rr).
r2 +1

where
T-1 

2 R,
fi (R, r) = exp - - +r .

r (i) k r2 + t r 2 + I



Substitute pi's and Pi into fi (R r):

-, r exp
F()r 2 (T-Zi)

T-2 272

1 - exp -r2
i=O

[_

r 2 R2 1 (r2 T+ )

r 2 + 1 r2(T-1)

I(c)

(r 2 + 1 T-

r 2(T-1)

Notice that (c) in (2.32) is the cumulative probability of a Poisson random vari-

able. By definition, the cumulative probability of the Poisson distribution, pv (i) =

T exp (-v), is
k-1 g

P (i < k) = exp (-V)
i=0

It can be rewritten as

Pv (i < k)
I1 0

F (k) F
F (k, v)

F (k)

xk-1e-idx

(2.33)

where F (k, v) is the upper incomplete gamma function given by F (k, v)

By substituting (2.33) into (2.32), we obtain

2 + 1)T-2 2R

f1 (R, r) -=2+) x T- 2
6 -xdx,

r 2 (T-1)F (T - 1) Jo

which, after change of the variable in the integral, becomes

(r 2 + 1 )1' ~2
f1 (R.r) = 1) JY

r2(T-1)F (T - 1) 10
RT-xT-2 e-xRdx

By using sone real analysis arguments, it can be proven that. for any real number

' satisfying 0 < < 1, we can find a positive number b, such that for Vr > b,

the inequalities ;±1 > > 11old. Based on the inequalities, f, (R, r) is lower
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bounded by

(r2 + 2
f1(Rr) > (r±

r2(-)F (T - 1) O
2 + 1)T-2 4RT-1(r ~ e+ 1) 2~

r2(T-1)F (T - 1)

RT-IxT-2-exR dx

fo 2 -2 x (2.34)

Since we assume that the support 91 is not bounded, the following inequalities

must be true:
oj

p*(r) dr > 0,
b

and

pRr(Rlr)p*(r)dr > PRjIr(Rjr)p*(r)dr.
f 

-
0

Hence, for any r > b, the part denoted as (b) in (2.31) can be lower bounded as

Palr(Rlr) In Palr(Rlax p*(axjda. dR

Palr(Rlr)lIn 00exp R +1f(R.ax )p*(ax)dax dR

> jPRjr(RIr)ln [exp Y2)
b2 + 1

R T1 dR+D 3

r2 + T y (r2+ T) 2)
=~~~ -b+2+D3 + 0 (r2

The first inequality is based on (2.35), and the second inequality is from (2.34). The

term D3 is given by

D3 = In (a -+ 1)T 2

x 2dx __( p*(ax)daJ
b ax F (T -1

and the term o (r 2) represents a function growing much more slowly than r 2:

0
PRIr(Rlr) In RT- ldR = o (r2 ).

By substituting the lower bound we got for the part (b) in (2.31), we obtain a
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lower bound of ka (r) when r > b:

> #2 r2 + T ( (r2 + T)
ka (r ) '>- r - a

b2 + 1 2

+D 3 + o (r2 ) + ln(1 + r 2 ) + ln(wre)T - 1in (2.36)
2

In (2.36). D 3 is a finite real number determined by p*(r). Hence, the right hand

side of (2.36) is of the order of ( b2+1 ) r2 as r - oo. Recall that b is so picked

that 2 > 1. Thus, the lower bound diverges as r -+ oc. This lower bound becomes

active when the condition r > b holds (which is true as r -+ oc). Hence, ka (r) diverges

to infinity as r -+ oo, and ka (r) 7 0 for large enough r. This implies the support of

the optimal input is bounded, contradicting the assumption that the support is not

bounded. *

Based on Lemma 2.4, we prove the main result of this section:

Proposition 2.8 With the average power constraint, E (r2) < Pay, and the time

coherence, T < oo, the optimal input amplitude distribution of a Rayleigh block fading

channel has a discrete support with a finite number of mass points.

Proof: To show the optimal distribution has a finite number of mass points, we use

a proof by contradiction.

Assume there are an infinite number of mass points in the distribution. Obviously,

continuous supports are included in this case. Then by Lemma 2.4, the support is

bounded. We have an infinite number of mass points in a bounded interval. It is easy

to show that, out of these points, we can construct an infinite sequence with a limit.

Since ka (r) is analytic and equals to zero on the infinite sequence, according to the

Identity Theorem, ka (r) = 0 on the whole domain [0, oo).
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By substituting (2.30) into (2.31) and letting k, (r) = 0. we attain

2 +T1-i

1()r2(Ti)

+ (r 2 + 1) T

+ I r2(T-1) CX

R'- exp (-R) In pR(R; p*)dR

R
r2 + 1)In PR(R; p*)dR

+ _(r 2 - Pay) + C + ln(1 + r 2 ) + ln(re)T - in = 0.
2

We define a new variable s:
1

S r 2 +1

Because r > 0, s is located in the interval (0, 1].

Substitute r2 = - 1 into (2.37):
S

T-1

(z S)i)1-s f
R'-1exp (-R) lnpR(R; p*)dR

+ s exp(-Rs)lnpR(R;p*)dR
T- 1 )

+ 7 ( 1 Pav) + C In s + ln(re)T - In IY= 0.
S 2

(2.38)

Move all terms on the left hand side of (2.38) to the right hand side except the second

term, and multiply ( on both sides:

exp (-Rs) ln pR(R; p*)dR

) (1 - s) (1 - s) 1 i s

s S

(1-s) T-1
+ ( - (1 + Pav) - C - ln(7e)T + InD

R-1 exp (-R) ln pR(R; p*)dR. (2.39)T-1

Notice that. on the right hand side of (2.39),

' (1 + Pav) CI - ln(re)T + 11
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in the second term and

I R2- exp (-R) lInpR(R p*)dR,

in the third term are constants. Thus, we can rearrange and write the RHS of (2.39)

as

RHS = -YS-2 +aos+1 +a+a 2s+---+aT1s T -2

In s
+ -- +b 1lns--b 2 slns

is

where ai and bi are coefficients determined by the input distribution and channel

parameters. We can treat them as constants here because their values will not change

with s. In the follow derivation, we will only list the value of a coefficient whose value

matters in our proof.

The LHS of (2.39) is the Laplace transform of In pR(R; p*). We use inverse Laplace

transform on both sides:

- ao + a' (R) + a'21 ) (R) + - -- + a' _(T-2) (R)

-yR + (-CE - In R) + b' i (In R)
d R

__2 di-l
+b' d R2 (In R) + - + b'1d RT-1 (In R)

where CE is Euler's constant, a' and b' are constant coefficients. Taking exponential

on both sides yields:

PR (R; p*)
1

= exp
R

ao + a'6 (R) + a'V) (R) + ..

+a'_8(T-2 ) (IR) - -yR - CE
b"i b"
R R 2
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where b ' are constants. and the value of b'" is

b'T1 = F (T - 1).

Now, we calculate fo+ pR(R; p*)dR. We don't need to consider 6 (R). ) (R)

in the exponent of pR(R; p*). because they are only nonzero at R = 0. In the rest of

terms, bi will dominate other terms when R -+ 0+. Since b'' > 0 and

] exp RT-1J dR = oo,

fo+ pR (R; p*)dR diverges.

We have

PR (R; p*) dR PR( R; p*)d R o.
Io 0+

This conflicts with the fact that pR(R; p*) is a probability density.

Hence, the assumption that there are an infinite number of mass points in the

bounded support is not true. The only possible structure for the support is discrete

with a finite number of mass points. m

Note that, in the proof of the proposition, we assume the coherence time T <

oc. Otherwise, if T = oc, the fading coefficients can be estimated precisely from

previous transmissions, and both the transmitter and the receiver have the channel

state information. Then the optimal input would be Gaussian distribution, the same

as that in the average power limited AWGN channel.

Peak Power Constraint

Peak power constraints for a Rayleigh block fading channel could be imposed because

of a maximum amplitude limit for each symbol or a maximum norm limit for each

symbol vector. The former limit is commonly used because transmitters and receivers

have physical limits on the maximum amplitude they can handle. The latter limit

makes sense when the transmitter does joint power detection over a coherence time

and the power combiner has a maxinuni limit. In the first peak power limit case, the
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optimal input phase distribution is no longer isotropic, and we do not have a tractable

KTC. Hence, in the following discussion, we will use the second peak power limit.

Although the peak power constraint on a vector of symbols is not as common as the

peak power constraint on a symbol, it is still valuable for study because it provides

us insights into transmissions in a channel imposed a limit on symbols' amplitude.

By substituting the mutual information obtained in (2.27) into (2.2), we get the

KTC for the peak power limited Rayleigh block fading channel:

kp(r) C+ PRIr(Rr)lnPR(R;p*)dR

+ ln(1 + r2 ) + ln(7we)T - ln ;> 0. (2.40)
2

Since there exists a peak power constraint, the amplitude is bounded. We prove the

following proposition:

Proposition 2.9 With a peak power constraint, r 2 < Pk,, the capacity-achieving

input density of a Rayleigh block fading channel has a discrete support with a finite

number of mass points.

Proof: To show the optimal distribution has a finite number of mass points, we use

a proof by contradiction.

Assume there are an infinite number of mass points in the distribution. Clearly,

continuous supports are included in this case. Owing to the peak power constraint,

the support is bounded. We have an infinite number of mass points in a bounded

interval. From these mass points. we can construct an infinite sequence with a limit.

Since kP (r) is analytic and equals to zero on the infinite sequence, according to the

Identity Theorem, kp (r) = 0 on the whole domain [0, oc).

62



By substituting (2.30) into (2.40) and letting kp (r) = 0, we obtain

(
2 + )T-1-i

F (1) r 2 (T-i) I R'- exp (-R) in pR (R; p*)dR

/(r2 + 1 ) T2 ex
+ Jr2(-1)T exp

+ C +n(1+r 2 )+1

/ R "l (~

r2 + 1 nP(R; p*)dR

I(Ire)T - In = 0.
2

We define a new variable s:
1

s r 2 + 1

Because r > 0, s is located in the interval (0, 1].

Substituting r2 -I into (2.41), rearranging the terms, taking an inverse

Laplace transform, and doing an exponentiation, we obtain:

PR(R; p*)
1

exp [co + c15 (R) + c26(1) (R) + + ci 16(T-2) (R)

-CE + d+ d+ + d' +R2 dTl1

where ci and di are constants, and

dT_1 = F(T - 1).

Now, we calculate fo' PR (R; p*)dR. We do not need to consider 5 (R).

6 (T-2) (R) in the exponent of pR(R;p*). because they are only nonzero at R 0.

In the rest of terms, fg will dominate other terms when R -+ 0+. Since dT-1 > 0

and

/ [ 11 
1 ]

R RT-1

fI PR(R; p*)dR diverges.

We have

jPr R; p*)dR > Ii pR(R; p*) dR
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This conflicts with the fact that PR(R, p*) is a probability density. Hence, the

assumption that there are an infinite number of mass points is not true. The only

possible structure for the optimal input amplitude is discrete with a finite number of

mass points. N

For Rayleigh block fading channels with with an average power constraint E (r 2 ) <

P,, and a peak power r < Pk., we can also prove the optimal input amplitude

distribution is discrete with a finite number of mass points. The proof is similar to

that of the average power constraint case.

By substituting the mutual information obtained in (2.27) into (2.3), we get the

KTC for the average power and peak power limited Rayleigh block fading channel:

kap(r) -Pav) + C + PRr(RIr)lnPR(R;p*)dR

+ ( + In(-Fe) - In D > 0.
2

By assuming that the support has an infinite number of mass points, we construct

a contradiction. Thus, the only possible structure for the optimal input amplitude is

discrete with a finite number of mass points.

2.5 Conclusions

We have considered the capacity-achieving distributions of memoryless Rician fading

channels and Rayleigh block fading channels. We have shown that, subject to an

average power constraint, the optimal input amplitude distribution for Rician fading

channels is discrete with a finite number of mass points in the low SNR regime. For

memoryless Rician fading channels subject to a peak power constraint, or Rayleigh

block fading channels subject to average power and peak power constraints, the op-

timal input amplitude distribution is discrete with a finite number of mass points.

Moreover, for peak power limited channels, we provides a sufficient condition for the

optimal input amplitude distribution to be discrete with a finite number of mass

points. According to this rule, most channels subject to a, peak power constraint
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have discrete and finite optimal input amplitude distributions.

Our results, altogether with the results in [10 12,15]. lead to the conclusion that

the continuity of the optimal distribution for AWGN channel is in fact a very special

case. For practical wireless communications, the assumption that the channel has no

fading and the signal have no peak power constraint is unrealistic. Thus, searching

constellations with discrete and finite amplitude levels can actually lead to optimal

solutions. In particular, combined with Gallager's result [191, our results show that

the binary input distribution is optimal in the low SNR regime.

These results provide basis for two research areas: optimal input distribution

searching and optimal signaling scheme designing. The discrete and finite character-

istic of optimal input distributions makes numerical algorithm a possible candidate

for optimal input searching. Also, knowledge on the optimal input distribution helps

us in designing capacity-achieving signaling schemes. For example, for a wideband

channel, degrees of freedom (2WT) is very large and energy per degree of freedom is

very small (the degree of freedom of a channel is determined by how many samples

we can obtain according to the Nyquest Sampling Theorem). By the results provided

in this chapter, we know that the binary input distribution is optimal, which leads

to on-off signaling on each sample (degree of freedom).

In the next chapter, we propose a family of capacity-achieving schemes in which

binary amplitude distribution is used for each sample.
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Chapter 3

Multi-tone Frequency-Shift Keying

3.1 Introduction

The study of communication in wideband fading channels dates back to the 1960's.

In [1], Kennedy has shown that, for a given average received power, the capacity of

a Rayleigh fading channel has the same limit as that of an additive white Gaussian

noise channel as the bandwidth approaches infinity. Telatar and Tse [5] generalized

this result and showed that Shannon's wideband capacity limit [2] is indeed achievable

with any distribution of the channel fading coefficients.

A signaling scheme used in [4, @8.6] and [5] to achieve the capacity of fading chan-

nels at the infinite bandwidth limit, is a special impulsive, or "flash", FSK scheme,

which transmits FSK signals with a low duty cycle and a high peak power. The flash

FSK signaling does not spreads the signal energy evenly over the available bandwidth.

Instead, its signal energy is peaky both in time and frequency. Because each symbol

in the scheme has only one frequency, we call the scheme Single-tone FSK, compared

to the Multi-tone FSK scheme that we will discuss later.

In [21]. Verdni has shown that, in order to achieve the capacity of a wideband

non-coherent fading channel, signaling must be peaky. In particular, let us consider.,

as in [21], the Taylor series expansion of capacity at vanishing signal-to-noise ratio
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per degree of freedom. corresponding to the wideband scenarios,

C(SNR) O(O)SNR + O(O)SNR 2 + o( SNR 2 ).

where SNR is the SNR, per degree of freedom, 0(0) and 0(0) are the first and the

second derivatives of the function SNR -* C(SNR) at SNR = 0. For a general class

of channels, when CSI is not available at the receiver, flash signals are necessary in

order to achieve the first order optimality, O(0)SNR = SNR, which is the Shannon's

wideband limit for coherent channels.

A number of flash signaling schemes are first order optimal. They achieve es-

sentially the same capacity limit as the bandwidth approaches infinity. However, if

one is interested in the performance at a large but finite bandwidth, it is not clear

whether or not the above asymptotic analysis provides a close approximation. In fact,

different signaling schemes may have different constraints at a finite bandwidth.

For Single-tone FSK, the data rate at a finite bandwidth, or equivalently as the

SNR per degree of freedom increases from 0, is quickly limited by ln M (nats/symbol),

where M is the size of alphabet, i.e., the number of total frequency points. Some re-

sults concerning the practicality of Single-tone FSK in finite bandwidths are even

more discouraging. From a peak power perspective, Lun et al. [27] [28] have shown

that codeword error probability of the Single-tone FSK scheme decreases roughly in-

versely with bandwidth, leading to the need for very high peak power tones for a

small codeword error probability or very large bandwidth. From a capacity perspec-

tive, Verddi [21] has shown that, for flash schemes, the second derivative in the Taylor

series expansion of capacity goes to -oc as SNR -- 0, so that the wideband capacity

limit is approached extremely slowly as the bandwidth increases.

The Multi-tone FSK scheme discussed in this chapter can achieve the infinite

bandwidth capacity limit, and more importantly, it provides flexibility on spectral

efficiency such that the achievable data rate region for Multi-tone FSK is broader

than that for Single-tone FSK. For the same bandwidth, the number of symbols in

Multi-tone FSK is more than that in the Single-tone FSK scheme. Thus, at a finite
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bandwidth. Multi-tone FSK can do better if the data rate is mainly limited by the

size of alphabet.

Multi-tonc FSK signaling schemes include Single-tone FSK as a special case. and

the results derived for Multi-tone FSK are more generalized than those for Single-tone

FSK. We characterize the performance of Multi-tone FSK at both the wideband limit

and a finite bandwidth.

" We generalize the results of [29] to derive an upper bound and a lower bound of

the codeword error probability for Multi-tone FSK. These two bounds lead to

the error exponent of Multi-tone FSK, which depicts the effect of bandwidth,

data rate, number of tones, and duty cycle of the scheme on the error probability.

* We present analytical performance evaluation and numerical results to show

that simple Single- and Multi-tone FSK schemes with hard decision can yield

rates approaching closely the wideband capacity limit at large but finite band-

widths, although we know that attaining rates arbitrarily close to capacity re-

mains elusive.

The capacity of certain FSK schemes has been studied in other contexts. In [30],

Stark determined the capacity of FSK schemes under non-selective Rician fading with

receiver side information. In [31], non-coherent FSK was considered for Rayleigh

fading channels with erasures. We consider instead an FSK scheme with duty cycle.

The channel model we used is a frequency selective block fading model with no CSI.

This chapter is organized as follows: In Section 3.2, we introduce our channel

model and the Multi-tone FSK scheme, calculate the bounds of error probability,

and derive the capacity limit and the error exponent for Multi-tone FSK. Finally,

we present numerical results to show the performance of single- and Multi-tone FSK

at finite bandwidths. In Section 3.3. we introduce the Multi-tone FSK scheme with

receiver diversity, calculate the bounds of error probability. and derive the capacity

limit and the error exponent. In Section 3.4, we discuss Multi-tone FSK's bandwidth

occupancy and its multiple access ability. Section 3.5 contains our conclusions.
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3.2 Multi-tone Frequency-Shift Keying

3.2.1 Concept

In FSK systems, different symbols are represented by sinusoid waveforms tuned to

different specific frequencies. For the Multi-tone FSK scheme, we use different com-

binations of multiple frequencies as symbols. For example, from a pool of M tones,

i.e., M mutually orthogonal frequencies over a symbol time, we can use different

combinations of Q tones to represent different symbols. We fix the number Q of

concurrent tones that form a symbol. The scheme using Q tones is called the Q-to'ne

FSK scheme. Particularly, when Q equals to 1, the scheme is Single-tone FSK, the

flash FSK scheme used in [5] and [27].

In the Multi-tone FSK scheme, transmissions take place in a low duty cycle fash-

ion. The transmitter concentrates power over a fraction 0 (0 < 0 < 1) of time, and

transmits on predetermined symbol slots. We refer to 0 as the duty cycle. The main

reason for using a low duty cycle is that transmissions with insufficient power over

fading environments are not desirable, and that the channels we consider are power-

limited with respect to the number of degrees of freedom. Therefore, we purposedly

use a low proportion of the degrees of freedom for transmission, leading to a low duty

cycle. A repetition code of length N (N > 1) is employed, i.e., each symbol will be

repeated N times.

At the receiver side, we use a non-coherent receiver to demodulate and decode

Multi-tone FSK signals. The receiver employs a bank of matched filters with their

central frequencies tuned to each of the M tones, respectively. The output of each

matched filter is the correlation of its tuned frequency against the received Multi-

tone FSK signal. Since the NM tones are mutually orthogonal over a symbol time,

the output of a matched filter is proportional to the amplitude of the associated

tone. Thus, we can view the MI tones as Al frequency-division subehannels. For each

subchannel, the time average of received power over the N consecutive symbol slots

is obtained to compare with a threshold. If exactly Q tones exceed the threshold,

then the corresponding synibol is decoded; otherwise. the receiver declares an error.
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Note that, we do not seek an optimal detection/decoding rule here, which may

lead to a better performance but more elusive analysis. Our goal is to provide a

feasible scheme with first order optimality, which achieves capacity in the wideband

regime.

3.2.2 Mathematical Model

Consider a multipath fading channel with input x(t). The output y(t) is given by

L

y(t) al(t)x(t - di(t)) + z(t), (3.1)
1=1

where L is the total number of paths, the random processes al(t) and di(t) are the

gain and the delay of the lth path, and z(t) is complex white Gaussian noise with

power spectral density N0 /2.

Wireless channels change both in time and frequency. The time coherence, T,

shows us how quickly the channel changes in time, and, similarly, the frequency

coherence, F, shows how quickly it changes in frequency. The selective fading in fre-

quency is caused by the different delays of path. The frequency coherence is reciprocal

to the multipath spread, L. The major effect in determining time coherence is the

Doppler shift, D, which causes significant changes in channel gain. The relationship

between the time coherence and the Doppler shift is reciprocal.

Assuming that the multipath spread L is much less than the time coherence T,

(an under-spread channel), and the gain and the delay of a path are constant within

each coherence block and change independently from block to block (block-fading),

we obtain a frequency-selective block fading channel model (see Figure 3-1).

If two symbols are transmitted within the same square, they have the same fading

coefficient; otherwise, they experience independent fading.

For Q-tone FSK, since there are (r) possible Q-tone combinations from M tones,

the number of total symbols is (u). We let S denote the complete set of symbols,

and Sm a symbol in the set, i.e., S,, E S. That the kth tone is non-zero in a symbol

Sm is denoted as k E Sm.
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T,

fi+2- WA

t

Figure 3-1: Block fading channel demonstrated in a frequency-time plane

Assume the symbol time is T, which satisfies C < T, ! T (this is possible

because of the underspread assumption). To send a symbol Sm, x(t) is given by

x(t) = 1 exp(j27rfkt),
kESm

0 < t < TS.

where j - 1 and {fk} are M frequencies orthogonal over [L, T]. Let T' denote

T, - C. For a system bandwidth W. there exist M = WT' frequencies mutually

orthogonal over [12, T,] which are integer multiples of 1/T,.

Let us consider the channel output over the interval [12, T,]. Owing to the block

fading channel assumption, the gains {al,k(t)} and the delays {dlk(t)} are constant

during this interval, denoted as al,k and dik, where the subscripts, I and k, are the

indices of path and tone, respectively. Hencc, by (3.1), the received signal over [L, T}

is

L

y(t) = S aI,k exp(j2- fk(t - dijk)) + z(t)

kES, i=1

P
= - exp(j2wfAt) + z(t).

kESm

'C < t < Ts, (3.3)
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where P denotes the average received signal power., and gk the aggregated channel

gains for each tone,

9k ak cxp(-j27ifkdlk).

l=1

We assume that the number of paths is very large and there is no dominant path.

Based on this assumption, g are zero-mean complex Gaussian random variables

according to the Central Limit Theorem. Their variances have been normalized, i.e.,

E[lgk12]= 1, by putting the average received power term alone in (3.3).

Y1

fi

f Y2

A~t) I

I 
f 

YM

Figure 3-2: Matched filters used to demodulate Multi-tone FSK symbols

At the receiver, the matched filter (Figure 3-2) tuned to the kth tone outputs

yk =s exp(-j27r fkt) y (t) dt. .3-4
VINo T C

After manipulation, we obtain Yk,

( PT'
9k Q L + Wk, k c Sm, (3.5)

Yk V 35

Wk, otherwise;

where thc Wk, given by

Wk = exp(-j27rfkt)Z(t)dt.
,INoT.' c

73



are mutually independent zero-mean complex Gaussian random variables with unity

variance, because they are obtained by correlating white noise against orthogonal fre-

quencies. With no requirement of phase information, the scheme is noncoherent. The

phase error has already been considered in the calculation of the fading coefficients

{9kj}

According to (3.5), an equivalent channel can be obtained for the kth subchannel:

Yk gkXk -+ Wk,

where the inputs Xk are given by

k { T k Sm,

0, otherwise.

As 9A and Wk are independent zero-mean complex Gaussian random variables, the

equivalent channel is a Rayleigh fading channel.

For the Rayleigh channel, the transition probability between input Xk and suffi-

cient statistic rk = IYk|2 is

1 _

PrklXk (rxl) = e X+. (3.6)

We sample the outputs of matched filters and thus obtain samples by subchannel

for each FSK symbol. To distinguish samples at different time slots, we use one

more subscript n (1 < n < N) to index the N iterations. The symbols, Xkn, Yk,,,

rk,n, gken, and Wk,n, stand respectively for the input, output, sufficient statistic, fading

coefficient, and additive noise of the kth subchannel at symbol slot n. Owing to the low

duty cycle, successive symbols are far apart in time (see Figure 3-1). We thus assume

different symbols experience independent fading, i.e.. the gains gkn (1 < n < N) are

independent, identically distributed (i.i.d.).

The decision variables obtained at the receiver are the averages of kr., over the N
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iterations, denoted as Sk,
N

Sk 1
n=1

By substitution. we rewrite Sk as

i:N I PT'

Sn 1 + Wkn

n-1 Jk n 2.

, k c Sm,,
(3.8)

otherwise,

which in either case are X2 random variables with 2N degrees of freedom.

Since the average received power of the non-zero tones and the zero tones are

PT+1 and 1 respectively, we select the threshold A to be
Q0&NO+IanIrepcieyweslcththehlAtob

(3.9)

where 6 is chosen over (0, 1). If there are exact Q of {Sk} exceed the threshold, the

corresponding Sm is decoded; otherwise. the receiver declares an error.

Since the scheme transmits In (') nats of information in NT,/ seconds, the data

rate R is given by

(3.7)

R = In.
NTsQ

(3.10)

The value of Q is chosen from the integers satisfying Q < M/2, because, for any

integer Q greater than M/2, we can find an integer Al - Q which leads to the same

number of total symbols and a higher peak power per tone. In Multi-tone FSK, we

pick the value of Q to be much smaller than M/2.

3.2.3 Error Performance Analysis

As we know, an error occurs if Sk > A for k Sm (called type I error), or Sk < A

for k c Sm (called type II error). Let E be the event that an error occurs at the kth

tone. For notational convenience, we define

pei A Pr (Ek) for k Sm,
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Pe,2 "- Pr (Ek) for k e Sm.

We will use the same techniques used in [27] and [28] to derive upper bounds and

lower bounds of pe,1 and Pe.2, denoted as p(p), P , and P(.

Derivation of pe

To get the upper bound p , we use the Chernoff bound

= Pr (NSk > NA)

< inf E [es(NSk-NA)]
S

- e-NI(A).

(Chernoff bound)

(3.11)

where s C [0, 1] and oD (A) is given by

-(A) =sup sA - 1 ln (B [esNSkl)

Further simplifying 4(A), we obtain

4(A) = sup sA 1 In (E [ "6 =l wk12])]

= sup [sA + In (1 - s)]

- A-1-InA,

(3.13)

(3.14)

(3.15)

where (3.13) is obtained by substituting the value of Sk into (3.12); (3.14) is based

on the fact that lWk.n 2 are independent, exponentially distributed, and the moment

generating function of E - Wk.n 2 is (1 _ 8)-N; (3.15) is derived by picking s -

(A - 1) /A. We have

(u) = exp [-N (A - I - In A). (3.16)

Note that,. A - I - In A > 0 because A > 1. The upper bound p,,, decreases to zero

as N grows.
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Derivation of p(

We use the Chernoff bound again to get p . We have

= Pr (NSk < NA)

< inf E [es(NSk-NA)]
s<O

where

A'=s

The derivation of (3.17) is as follows,

inf E (e s(NSk-NA)I
s<O

- inf exp -sNA + In
s<O I

- inf exp (N
s<0

(Chernoff bound).

A

1 + PT
QONo

(E

LsA + In

[e

(1
= exp[-N(A'-1-InA')],

1 +n='Trks

QNo ) )
where (3.19) is obtained by substituting the value of Sk and rearranging; (3.20) is due

to the fact that Tk.,n are independent, exponentially distributed, and E exp (S Z:N-1 rkn

is the moment generating function of En-l rk,n; (3.21) is the result of optimizing

(3.20) over s. We have

pe = exp [-N (A' - 1 - In A')]. (3.22)

Since A' e (0, 1) and A' - 1 - In A' > 0. the upper bound p~u) decreases to zero as

N-+oo.

Derivation of p3

Since Sk are V 2 random variables with 2N degrees of freedom, we can use the result

in [32, §2.1.4] to evaluate the cunulative distribution functions. The probability pe,
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is

Pe.1

N

= Pr y l Wk,n|12>

(n=1

NA)

N-1 ( NA k*
=exp (--NA) : k! (3.23)

k=O

by directly applying the formula in [32, @2.1.4]. Since (NA)k k! is positive for all k,

we have
N-i (NA)k (NA)N-1

k! - (N - 1)!
(3.24)

which leads to

Pe,i > exp -NA + In
(NA) 1

(N - 1)!

by using (3.24) in (3.23). Applying Stirling's approximation,

2irN NNe&N+1) < N! < \21rNNN -N+

we obtain

pej =exp (- [A - 1 - In A + (N)]),

where o1 (N) is a vanishing term as N increases, given by

(3.25)

(3.26)

o1 (N) =2N In (2wr NA

The lower bound p3l) decreases to zero as N -- oo.

Derivation of pf32

For the probability Pe.2, we have

pe.2
P'S

Q PNQONoIT

exp (-NA') Z N A' )k

k=N
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+ Wk,, < NA
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Since the inequality

>(NA')k > (NA') (3.29)
E k! ~- N!

k=N

holds as (NA')k /k! is positive for all k, we can bound Pe,2 by applying (3.29) to

(3.28),

Pe,2 > exp -NA'+ In [(NA.) (3.30)N!

Using Stirling's approximation, we obtain

(1) = exp [-N (A' - 1 - In A' + 02 (N))1 (3.31)

where
1 1

o2 (N) = -ln(2rN) + 1 (3.32)
2N 12N2

is a diminishing term as N increases. The lower bound p l) decreases to zero as

N -oo.

Observe that, the difference between p, and p( is a vanishing term in the co-

efficient of N. Therefore, these two bounds decrease in the same order as N -* o.

For the same reason- p 2u and p j also decrease in the same order as N -> oo.

We represent p, P (u , and p( as functions of N. In fact, for any given

data rate, N is directly related to M, the number of total tones, according to (3.10).

The value of N is monotonically increasing with M. In the following discussion, we

will frequently substitute N with M by using (3.10) to show the effect of M on the

scheme's performance. In particular, we are interested in writing the probability of

error as a function of A. This way, we can characterize how the infinite bandwidth

limit is approached as Al tends to infinity, and hence obtain the insights on how to

design the optimal signaling at a finite but large bandwidth.
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3.2.4 Upper Bound on Codeword Error Probability

Using the union bound, the codeword error probability is upper bounded by

Pe < (M - Q) pe, + Qpe2 . (3.33)

Since all symbols have the identical union bound, we need not to average the bound

all over the symbol set.

Noticing that the inequality

M-Q Q(M)
Q

is always true for M > Q, we have

(M - Q) Pe, < Q (Q)

< Q MQ

Denote the upper bound of (M - Q) Pe, in (3.34) as p By substituting the

expressions of pu, A, and N into (3.34), we obtain

SQexP 
(-

0
S n
RT,

InM) [(1 - ) PT1(Q) [QNoRTs

(1+ (1 - e) PT5'
QONo 1

On the other hand, an upper bound of QPe,2 is given by Qp , denoted as p .

Substituting A' and N into p(i) we have the expression of p (u)

(U)
P e sm Q exP(

-

0 In (Q)
RTs - EPT'QG No + PT'

EPT 1 P

QO N0 + PT;,')J ,
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(u)
pe,sm
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Thus. we can write an upper bound of the codeword error probability as

Pe _ P + P (sm (3.35)

This upper bound holds for any e E (0, 1). Since our goal is to derive an upper

bound, picking any specific c will serve this purpose. Instead of the optimal value of

6 minimizing the sum, we pick a value simplifying our analysis. Yet, as we can see

later, the corresponding upper bound is tight in the wideband regime.

Notice that pe strictly increases with E, while p( , on the contrary, strictly

decreases. We choose the value of 6 letting these two bounds equal, which is

QONO + PT,' RNoTs
PT,' PT1'

QO In I +P7 . (3.36)
PTn QONo/J

To keep 6* C (0, 1), the data rate R must in the range

PT' QO PT'
0<R< NoT_ In  1+ N ) (3.37)

With (3.37) holds, by substituting c* into p(U) +P(s. we obtain an upper bound

of the error probability

Pe < 2Q cxp ln (")E,(M.QTsRO) , (3.38)

where

Er (M, Q, Ts, R, 0) =0 #- n# (3.39)
RT(

and
RNoTs QON o  PT'

=+ P In 1+ +. (3.40)
PTS' PT, Q No)

By examining (3.40), we conclude that 3 > 0 for any feasible choice of (M, Q, Ts, R. 0).

On the other hand, because the data rate should satisfy R < T for reliable commu-
NaTz

nications according to (3.37). and the duty cycle 0 dlecreases to zero with increasing
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bandwidth as we suggest, we have ,3 < 1 in the wideband regime.

3.2.5 Lower Bound on Codeword Error Probability

The codeword error probability could be lower bounded by

P > ZPr (E) -Z Pr (E n E,)
k=1 k 4j

> (l - Q)p( + Q() - (m - Q) Qp2'2p(
(M - Q (u)2 (Q) (u)2 (3.41)

k2 j e, - k2J Pe

Recall that, p(), p(U, p 1 , and p32 are all decreasing functions of N. (M - Q) p3')

and (M - Q) p decrease with N in the same order, and so do Qp () and Qp(U). if

(M - Q) p3 decrease faster than Qp3 in N, then the lower bound (3.41) is of the

order of Qp3, and all other four terms are dominated. Otherwise, the lower bound

has the order of (M - Q) pl. That is,

p, > max ((M - Q) p , Qp) . (3.42)

As N approaches infinity., the coefficient of N in the exponent of (Al - Q) p3') is

given by

ln [(M - Q) P)
SN

Inp ln ()
- lim + (3.43)

= l +RT (3.44)N-*oo N QO
RT

= -A+1+lnA+ RS (3.45)
QO

To obtain (3.43), we used

.InI (M - Q) In (m =im .
N -- x N N -- x D QN
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where Q is predetermined, and, for a given data rate. M increases with N according

to (3.10).

As N approaches infinity, the coefficient of N in the exponent of Qp( is given by

In (Qp')
lim

N-x N

.In pM
N--+cc N
-A' + 1 + In A'. (3.46)

The values of (3.45) and (3.46) are both negative. The value of (3.45) strictly

increases with 6. Therefore. the larger c is, the slower (M - Q) p3l) decreases with N.

The value of (3.46), on the contrary, strictly decreases with c. The larger e is, the

faster Qp( decreases with N. Thus, the lower bound (3.42) depends on the value of

E picked.

If we pick the value E* given by (3.36), then the values of (3.45) and (3.46) are

equal. which let (Al - Q) p3') and Qp(1) decrease with N in the same order. Other

values of c will let one of these two terms decrease more slowly. Since (3.42) is

determined by the larger term of (M - Q) p3') and Qp), the value of c other than *

will lift the lower bound upwards. Consequently, by picking c*, we get a lower bound

for pe in the wideband regime for all c E (0, 1),

pe > Qexp (In E,(MQTsRO)), (3.47)

where E,(M, Q. Ts, R, 0) was given by (3.39).

3.2.6 Capacity-Achieving Property

In [5]. Telatar and Tse have proven that, in multipath fading channels, Single-tone

FSK can achieve the capacity of an AWGN channel with the same average received

power at the wideband limit. We now prove that Multi-tone FSK has the same

capacity-achieving property in the wideband limit.
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Proposition 3.1 Multi-tone FSK can achieve any data rates that satisfy

R < I - -) (3.48)
Ts No

with an arbitrarily small probability of error over a multipath fading channel with

average power constraint P, by using large enough bandwidth.

Proof:

Since the inequality 3-1 > In , holds for all E [0, 1), we have E,(M, Q, Ts, R, 0) >

0 in (3.39). As a result, the upper bound (3.38) decreases to zero when M increases

to infinity, as long as (3.37) holds. That is, for the data rates in the range defined

by (3.37), we can use Multi-tone FSK to transmit data with arbitrarily small error

probability by using bandwidth large enough.

PT'The data rate R can get arbitrarily close to s , i.e., (I - (- P , by letting 0

decrease to zero as the bandwidth increases to infinity. Hence, as long as the data

rate satisfies (3.48), the Multi-tone FSK scheme can achieve arbitrarily small error

probability by picking bandwidth large enough. m

Recalling that the channel is assumed to be underspread and L < T,, we con-

clude that the capacity of Multi-tone FSK approaches Shannon's infinite bandwidth

capacity limit .

In the proof, we let 0 decrease to zero as the bandwidth increases. However, 0

must decrease more slowly than 1/ln (') as M increases. Otherwise, by substituting

(3.39) into (3.38), we can verify that (3.38) will not decrease with M. Intuitively, it

is because decreasing 0 will reduce the information rate. To counteract this effect, we

need to increase the information bits per symbol, i.e., increase ln (1"). If 0 decreases

too fast with 1M. the achievable data rate will be compromised.

At a particular finite but large bandwidth. the capacity of the Multi-tone FSK

schemes with different Q may vary. In such cases, considering the whole family of

the Multi-tone FSK schemes. including Single-tone FSK. has the benefit of more

flexibility in the tradeoff between the spectrum efficiency and the energy efficiency.
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3.2.7 Error Exponent

In [27] and [28], Lun et al. discussed the error exponent for Single-tone FSK. We will

discuss the error exponent of Multi-tone FSK in this subsection.

The merit of the study of the error exponents for these schemes is, as will become

clear later on, a characterization of how the error performance is affected by the

channel parameters including the SNR. rate, duty cycle, bandwidth, and Q.

Proposition 3.2 As band'width increases to infinity, Multi-tone FSK has the follow-

ing relation between the error probability p, and the total number of symbol ():

lim - = Er(M, Q, Ts, R, 0), (3.49)
M-Oc In ( (.)9

where E,(M,Q,TS, R.0) is defined in (3.39).

Proof: According to (3.47), we have

- inpe
lim in < E(M, Q, Ts, R, 0). (3.50)

I-o n (I)

The reverse inequality follows from (3.38),

- ln p
limn > Er(M, Q, Ts, R, 0). (3.51)

I-o n (Q)

Combining the inequalities (3.50) and (3.51), we obtain (3.49), thus completing the

proof. M

Therefore, Er(M, Q, T,, R, 0) represents the true exponential dependence of the

error probability on In(") for M sufficiently large. We call E,(M, Q, Ts, R, 0) the

error exponent of Multi-tone FSK which is analogous to the treatment of random

block coding over discrete memoryiess channels by Gallager [4, §5.8].
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3.2.8 Numerical Results

In the previous sections, we have studied achievable rates and error probabilities of

Multi-tone FSK. We now proceed to evaluate the capacity of Multi-tone FSK schemes

with a simple hard-decision receiver for particular parameter choices. We show that,

even with finite bandwidth, our scheme yields achievable rates that are for practical

purposes very close to the wideband capacity limit.

Recall that, there are (g) possible symbols in a Q-tone FSK scheme. We can

use an equivalent discrete memoryless channel (DMC) with (') inputs and (g)
outputs for capacity calculation. Owing to the symmetry of the DMC, the capacity-

achieving input for the DMC is uniformly distributed. If we can obtain the transition

probabilities between the input and the output, we can directly calculate the capacity.

The transition probabilities depend on the detection rule, and are, for most of the

cases, intractable. We restrict ourselves to the Single-tone case and the Two-tone

case using a symbol-by-symbol detection scheme based on the maximum-a-posteriori

(MAP) rule.

The symbol-by-symbol decision is optimal from a symbol detection point of view,

since the channel is memoryless. but may not be optimal from a codeword decoding

point of view. In effect, we are considering a simple hard-decision decoder instead

of a soft-decision decoder. Hard-decision decoders have information loss during the

symbol-by-symbol detection, while soft-decision decoders use these information to

decode symbols jointly. Our results show that, even with a simple hard-decision

receiver. Multi-tone FSK yields achievable rates very close to the wideband capacity

limit.

As we know, the capacity C of a fading channel is bounded by the AWGN capacity,

C < Wln I +

where W is the bandwidth of the system. We call this bound the power-limited

bound, because the capacity of Multi-tone FSK is tightly bounded by this bound in

the power-limited regime.
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Another upper bound is derived from the DMC model. Because the entropy per

input symbol is In (u), the achievable data rate is bounded by

C < -- In .

This bound is tight when the system has a "less than enough" bandwidth. We denote

this bound as the bandwidth-limited bound.

First, we consider a Single-tone FSK scheme and a Two-tone FSK scheme with

the same bandwidth constraint. We compare their performance in terms of capacity

versus signal-to-noise ratio. We assume the symbol time, T, = 10ps, the multipath

spread, L = Is, and the system bandwidth, W = 1MHz. The SNR (New) ranges

from 10-2 to 10'. We plot the capacity curves and the upper bounds in Figure 3-3.

M

6
10 -

5
10-

4
10

-2 --I
10 10

SNR
10 102

Figure 3-3: The capacity of Single-tone FSK and Two-tone FSK for T, 10ps.,
L = lys, and W = 1MHz.

We can make the following observations from Figure 3-3:

* The capacity of the Single-tone FSK scheme and of the Two-tone FSK scheme

are very close to the upper bounds both in the power-limited regime (the SNR
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ranges from 10-2 to 1) and the bandwidth-limited regime (the SNR, ranges from

i to 101).

* In the power-limited regime, the performances for these two schemes are very

close, and the power-limited bound is tight in this regime, which is roughly

2 dB higher than the capacities. Comparing to the capacity of CDMA [7],

OFDM [331, and PPM [34] in the wideband regime, the capacity of Multi-tone

FSK is very close to the AWGN capacity. Notice that, this gap between the

capacity curves and the power-limited bound can be closed up if we use a large

enough bandwidth, althrough we use a hard-decision rule. This is because that,

we use the cumulative received power in decoding the repetition code, which is

essentially a soft-decision strategy although we do hard-decision block by block.

" In the bandwidth-limited regime, the performance of Two-tone FSK is better

than that of Single-tone FSK because of its larger input set (higher spectrum

efficiency).

In Figure 3-4, we assume the average power is fixed, where T, = 0.1s, L - l1ys,

and - = 40Hz. The bandwidth ranges from 100Hz to 10KHz. We observe that,No

in the bandwidth-limited regime (from 100Hz to 1KHz), the performance of Two-

tone FSK is better than that of Single-tone FSK. In the regime that the bandwidth

is smaller than 100Hz, however, Two-tone FSK shows no advantage at all. This is

because that the number of total frequencies, M, is so small that (f) and (') are

comparable.

Our examples illustrate that, even for finite bandwidth, Multi-tone FSK schemes

can yield rates that are appreciably close to the wideband capacity limit. The ability

to vary the number of tones according to the transmission condition (average power,

bandwidth constraint) provides a useful design parameter which can be adapted to

different operating regimes.
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Figure 3-4: Capacity versus bandwidth curves for T, - 0.ls, 1 = lys, and r 40.No

3.3 Multi-tone FSK with Receiver Diversity

In this subsection, we discuss the performance of Multi-tone FSK when the receiver

is equipped with multiple antennas (receiver diversity). The achievable data rate is

improved by a factor of the order of diversity. As we know, the wideband capacity

limit is also increased by a factor of the order of diversity. Hence, Multi-tone FSK

can achieve the wideband capacity limit in the case that the receiver diversity is used.

3.3.1 Mathematical Model

Assume the receiver has L antennas. Let yk be the output of the lth antenna, gk the

fading coefficient, and w' the additive with Gaussian noise. An equivalent channel

for the kth subchannel is described as

I I I
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The fading coefficients gI are assume to be mutually independent with standard

complex normal distributions.

A sufficient statistic is then rk 1 i y 2, whose probability conditional on Xk

is

Pr ( ) ()
F'(L) (X2 + 1)L

(3.52)

As in the case without receiver diversity, the inputs Xk are given by

k 
QONo,

0,

k c Sm,

otherwise.

We still use a subscript n (1 < n < N) to index the N iterations, such as kkn.

We assume different symbols experience independent fading as before, i.e., the gains

Al, (1 < n < N) are independent, identically distributed.

The decision variables obtained at the receiver are the averages of rk.,n over the N

iterations, denoted as Sk,

The value of Sk is

+±WLi 
2

IZYN L 1 2
NLn=1 EZ=dlklk,n

ktErwSm,

otherwise.

which in either case are x2 random variables with 2NL degrees of freedom.

(3.54)

The

average received power of the non-zero tones and the zero tones are T' + 1 and 1

respectively. The threshold A is given by

A =1+ (1 -
PT'

QONo
(3.55)

where e is chosen over (0, 1). The data rate R is given by

R = In
NTs ( M>Q )

(3.56)
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3.3.2 Error Performance Analysis

As we discussed before, detection errors can be classified as type I error and type

IetU P(U Pe. and (1 be the upper bounds and lower bounds for the

probabilities of type I and type II error.

Derivation of p(

We use the Chernoff bound to upper bound pe,1:

Pr (NLSk > NLA)

< inf E [es(NLSk-NLA)]
S

eNLI(A)

(Chernoff bound)

(3.57)

where s E [0, 1] and (D (A) is given by

(D (A) = sup s A
NL

In (E [esNLSk ] )]

Further simplifying 4b(A), we obtain

4(A) sup sA -
1 In

NL (E e -n= _1i= k nI )

sup [sA + In (1 - s)]

= A-1-InA.

(3.59)

(3.60)

(3.61)

where (3.59) is obtained by substituting the value of Sk into (3.58); (3.60) is based on

the fact that lWknI12 are i.i.d. exponential distributions, and the moment generating

function for X$,N= 1  =1 W, is (1 - 8)-LN.

By substituting (3.61) into (3.57), we obtain the upper bound

PU = exp [-NL (A - I - In A)]. (3.62)

Since A - 1 - In A > 0, the upper bound p~< decreases to zero as NL grows.
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Derivation of pe

The upper bound p~u) is derived as

Pe,2 Pr (NLSk < NLA)

< inf E [es(NLSk-NLA)]
s<0

= e-NLb(A')

where
A

A' = A,.
S+ QONo

The derivation of (3.63) is as follows,

inf E [es(NLSk-NLA)
s<0

inf exp -sNLA
S<0 I

= inf exp
s<0

-NL[ s

+ In (E

A + In (

(Chernoff bound),

(3.63)

(3.64)

[e 'J)]
1 - 1+ QNo s

Q"' _ )1

(3.65)

(3.66)

(3.67)= exp[-NL(A'-1-InA')],

where (3.65) is obtained by substituting the value of Sk; (3.66) is based on that

r are independent, exponentially distributed, and E exp (S EN j r) is

the moment generating function of E, E 1=1 rV ; (3.67) is the result of optimizing

(3.66) over s.

The upper bound p,-,2 is thus given by (3.67):

(u) = exp [-NL (A' - - In A')].Pe,2 ep (3.68)

Since A' E (0, 1) and A' - 1 - In A' > 0, the upper bound p decreases to zero as

N -oo.

Derivation of pe'

Since L 2 a 2 random variables, we use the formula in [32, 52.1.4]
to evaluate the cumulative distribiutioni functions of the x 2 distribution and rewrite
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the probability pe,i as

Pe,1

N L

=Pr Wi
n=1 1=1

|2 > NLA)

NL-1 (NLA) k
= exp(-NLA) k!

k=O

(3.69)

Because (NLA)k /k! is positive for all k, we have the inequality

NL-1 (NLA)k (N LA)NL-I

k=: k! (NL - 1)! .
(3.70)

which leads to

Pei > exp -NLA + In (NLA)NL1
((NL - 1)!

(3.71)

Applying Stirling's approximation, we obtain

(3.72)

where o1 (NL) is a vanishing term as NL increases.

The lower bound p' decreases to zero as N -+ oc.

Derivation of pe

Using the formula in [32, §2.1.4] for the cumulative distribution functions of the

x2 distribution, we rewrite the probability Pe.2 as

Pe,2 gk.n

= exp (-NLA')

PTS
QONo0

2

+HWk 'n < NLA)

(NLA')k
(3.73)

k=NL

Since the inequality
(NLA)k (NLA')NL

k! - (NL)!
k= NL
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holds as (NLA')k /k! is positive for all k, we can bound Pe,2 as

Pe,2 ;> exp (-NLA'+ In [(NLA')NL

(NL)! I (3.75)

Using Stirling's approximation, we obtain

(= exp [-NL (A' - I - In A' + - 2 (NL))1. (3.76)

where o2 (NL) is a diminishing term as NL increases. The lower bound p(') decreases

to zero as N --+ o.

3.3.3 Upper Bound on Codeword Error Probability

Similar to the case without receiver diversity, we use the union bound to upper bound

the codeword error probability

Pe < (M - Q) pe,± + Qpe,2 . (3.77)

For the data rate R in the range

0< R<LPT' LQO
NoTs Ts

In (1

we obtain an upper bound for the error probability

pe < 2Q exp (- In (Mi)

Er (M, Q, Ts, R, O, L) =

RNoTs
LPTs'

R, 0, L) )

LO
RT [3 - 1 - ln i3],RTs

In 1 + P .
QG No

QON 0O
PT'

Note that 3 > 0 for any feasible choice of (Al, Q. T,, R, 0. L). Thus., )-1-ln,3 > 0 and
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Er(MQ,T,,

and
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Er (M, Q, Ts, R. 0, L) is always greater than zero. The upper bound (3.79) decreases

to zero as the bandwidth grows.

3.3.4 Lower Bound on Codeword Error Probability

The codeword error probability could be lower bounded by

E/ )
Pe > Z:Pr (E,) -ZPr (E, nE,)

k=1 k5j

Consequently, using the similar technology we used to derive (3.47), we get a lower

bound for p, in the wideband regime,

pe > Q exp - In ( M)
Er (M, Q, Ts, R, 0,

where E,(M, Q, TR, 0, L) was given by (3.80).

3.3.5 Capacity-Achieving Property

The Multi-tone FSK with receiver diversity can also achieve the wideband capacity

limit.

Proposition 3.3 Multi-tone FSK can achieve any data rates that satisfy

R < (1 (3.83)

with an arbitrarily small probability of error over a multipath fading channel with av-

erage power constraint P, by using bandwidth larqe enough, when the order of receiver

diversity is L.

Proof: Since the inequality 0 - 1 > In # holds for all 3 G [0 , 1), we have

Er(M, Q, Ts, R, 0, L) > 0 in (3.80). As a result, the upper bound (3.79) decreases to

zero when M increases to infinity, as long as (3.78) holds. That is, the data rate R
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can get arbitrarily close to T, i.e., (I - ) , by letting 0 decrease to zero as

the bandwidth increases to infinity. m

As in the case without receiver diversity, we can also show that, the upper bound

and the lower bound are tight, in the sense that, they are the same order in lIn (,)
in the wideband limit. Therefore, E.(M, Q, Ts, f,0, L) is the error exponent and

represents the true exponential dependence of the error probability on ln () for M

sufficiently large.

3.4 Resource Usage

In this section, we characterize the ability of Multi-tone FSK to co-exist with pre-

existing systems and its multiple access compatibility.

3.4.1 Flexible Bandwidth Occupation

Different from the PPM scheme, the Multi-tone FSK scheme doesn't have low spec-

tral emission. Instead, on the bandwidth occupied by Multi-tone FSK, we have

high peak power, low duty cycle, narrow bandwidth occupancy symbols. When the

scheme overlaps with other systems in bandwidth, it will cause strong interference

to other systems. However, Multi-tone FSK still have very good compatibility with

pre-existing systems due to its flexible bandwidth occupation. Since the only require-

ment for the frequencies used in Multi-tone FSK is that they are orthogonal over a

symbol time, we can use frequencies apart in bandwidth. The Multi-tone FSK signal-

ing scheme can thus be fitted into discontinuous bandwidth while most other systems

require a trunk of continuous bandwidth.

In Figure 3-5. we show how the Multi-tone FSK scheme coexists with two pre-

existing systems, A and B. The peaky columns distributed alongside the systems A

and B represent the tones in the Multi-tone FSK scheme and the columns with a

different color stand for nonzero tones. They occupy a discontinuous frequency band

without interfering existing systems.
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Figure 3-5: Resource Usage of Multi-tone FSK

3.4.2 Multiple Access

From the multiple access perspective, the resource usage of Multi-tone FSK is also

very good. The Multi-tone FSK symbols are transmitted in predetermined time slots

with a low duty cycle. This feature enables Multi-tone FSK to be extended to the

multiple access case easily. By using time division multiple access, we can incorporate

different users in the same frequency band without interfering with each other. Each

user can achieve the wideband capacity limit. Figure 3-5 demonstrates the multiple

access scheme for three users, 1, 2, and 3.

3.5 Conclusions

In this chapter, we introduced a class of Multi-tone FSK schemes for non-coherent

communications in wideband Rayleigh fading channels. For a Rayleigh fading channel

with infinite bandwidth. the AWGN capacity limit can be achieved by using Multi-

tone FSK schemes.

We derived an upper bound and a lower bound for the codeword error probability.

These two bounds lead to the error exponent of Multi-tone FSK, which describes
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how the error probability depends on the different parameters. According to our

results, Multi-tone FSK has comparable error performance as Single-tone FSK. We

also calculated the achievable rates of Single- and Two-tone FSK schemes with finite

bandwidth. The numerical results show that the achievable rates is very close to the

capacity in fading channels.

Furthermore. we consider Multi-tone FSK's performance when receiver diversity

is incorporated into the system. We showed that Multi-tone FSK is still capacity-

achieving when multiple receiver antennas is used.

Multi-tone FSK is a practical scheme which possesses some good characteristics,

such as flexible bandwidth occupancy. Also, thanks to the low duty cycle in the

transmission, Multi-tone FSK can be easily extend to multiple access cases by using

time division multiple access.

Here, we do not claim that the Multi-tone FSK signaling scheme is optimal. For

example, if we consider soft decoding/partially soft decoding in Multi-tone FSK,

by tracking all/several multiple-symbol codewords over a certain period of time, we

could further close the gap between the achievable data rates and the capacity limit.

Instead, Multi-tone FSK is a robust and practical scheme which performs very closely

to the optimal limit. In the next chapter, we study how feedback can help to improve

Multi-tone FSK's error performance and propose a feedback scheme which reduces

the error probability significantly.
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Chapter 4

Multi-tone Frequency-Shift Keying

with Feedback

4.1 Introduction

In Chapter 3, we used the Multi-tone FSK scheme in a wideband fading channel to

achieve the wideband capacity limit. We noticed that, the codeword error probability

decays slowly with bandwidth. In this chapter, we consider a modified Multi-tone

FSK scheme which employs a feedback link. We show that, the feedback scheme

improves the error performance significantly.

For AWGN channels without bandwidth constraint, Schalkwijk and Kailath have

shown in [40] that feedback can significantly reduce the codeword error probability,

a 'double exponential" decay in code length compared to an exponential decay oth-

erwise. Although the capacity of a memoryless noisy channel cannot be increased by

feedback according to [39, Theorem 6], we greatly improve error performance by using

feedback.

In the following discussion, we present an Multi-tone FSK scheme with feedback

for memoryless wideband Rayleigh fading channels. We call this scheme as the Feed-

back AMuti-tonc FSK scheme. The purpose of feedback is to reduce transmission

error, and not for channel measurement and tracking.

Although both Multi-tone FSK and Feedback Multi-tone FSK have codeword
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error probability decreasing roughly inversely with bandwidth, the latter makes the

codeword error probability vanish much faster as bandwidth increases, leading to a

lower requirement for bandwidth at the same codeword error probability and data

rate.

This chapter is organized as follows: In Section 4.2, we introduce the concept of

the Feedback Multi-tone FSK scheme. In Section 4.3, we study the power consump-

tion of this scheme, and prove the feedback mechanism will not increase the power

consumption in the forward link. In Section 4.4, we provide an upper bound and a

lower bound of the codeword error probability to derive Feedback Multi-tone FSK's

error exponent. In Section 4.5, we prove that Feedback Multi-tone FSK achieves the

wideband capacity limit. In Section 4.6, we compare Feedback Multi-tone FSK with

Multi-tone FSK on their performance. In Section 4.7, we discuss the peakiness re-

quirement of Feedback Multi-tone FSK and Multi-tone FSK. The conclusion follows

in Section 4.8.

4.2 Feedback Multi-tone FSK

We assume a frequency-selective time-varying block fading channel model with time

coherence T, frequency coherence Fe, and multipath spread C as in Chapter 3. Syni-

bols not in the same coherent bandwidth or time interval experience independent

fading.

The forward link of the Feedback Multi-tone FSK scheme still uses Multi-tone FSK

symbols and repeats each symbol N times as the Multi-tone FSK scheme does. That

is, we pick Q tones out of the total 11 tones and use the combination of frequencies to

represent a symbol. At the receiver side, we use a non-coherent receiver to demodulate

and decode Multi-tone FSK symbols. The receiver employs a bank of match filters

with their central frequencies tuned to each of the N1 frequencies. The output of each

match filter is the correlation of its tuned frequency against the received Multi-tone

FSK signal. Since all the M frequencies are mutually orthogonal on a symbol time,

the output of a match filter is proportional to the amplitude of the associated tone.
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We can treat the Al frequencies as 41 frequency-division subchannels.

At the nth symbol time, the input and output of the kth subchannel, Yk,n and

Yk,n, have the following relation:

Yk n hk,nyk,n + Wk,n, for 1 < k < M.

where hkn is the fading coefficient, and Wkn is a zero-mean complex additive white

Gaussian noise with a variance aw, CN (0, os). The variables {hk,n} and {Wk,n}

are mutually independent. Under the Rayleigh fading assumption, hkn is a complex

Gaussian random variable, CN (0, o). The elements in {hks}, can be considered to

be independent if two symbols are far apart in time.

Letting Xkn -- 3k,o-h/w and rk,n = ,n/ow 2, we obtain an equivalent channel

with the transition probability

1
Prk,flxr,fl(rlx) = 2+Ie ~T . (4.1)

Similarly to the Multi-tone FSK scheme, the Feedback Multi-tone FSK scheme

transmits in a low duty cycle fashion. The transmitter concentrates power over a

fraction 0 (0 < 0 < 1) of time, and transmits on predetermined time intervals. The

parameter 0 is the duty cycle. A Feedback Multi-tone FSK symbol is also repeated

N times to obtain diversity. However, the amplitudes of tones are no more constant.

The receiver will adjust the amplitudes of different tones to counteract the fading

effect, which will be introduced in detail later.

The reverse link is, as the forward link, a fading channel subject to additive noise.

Here, we assume that we have enough power (e.g., power consumption is not crucial

for basestations) and enough degrees of freedom such that the capacity of the reverse

link is much larger than the feedback data rate. Thus, we can receive feedback

information with negligible error probability. Throughout this chapter, we assume

that the feedback is error-free.

Note that, in wideband channels, we have sufficient degrees of freedom to establish

feedback links from the receiver to the transmitter. Figure 4-1 shows a possible scheme
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Figure 4-1: The forward link and the feedback link

when the duty cycle 0 is low. That is, the feedback link uses the same M frequencies

in the forward link and transmits in the time slots right after the forward slots.

As we mentioned before, one major difference between the Multi-tone FSK scheme

and the Feedback Multi-tone FSK scheme is that, for an Feedback Multi-tone FSK

symbol, the amplitude of each tone is repeatedly adjusted according to the feedback.

After each forward transmission, the receiver sends 1 bit of information back for each

tone to indicate the reception quality. The transmitter adjusts each tone's amplitude

accordingly in the next iteration to reduce decoding errors.

We use S to denote the complete set of symbols, and Si E S (i = 1, 2, 3, ..., S)

for a symbol. We use k c Si to indicate the kth tone is one of the non-zero tones

in Si. For a Q-tone Feedback Multi-tone FSK scheme with total M tones, there are

(A) combinations of Q tones available, i.e., the size of S, ISI, is (m).

Suppose we send a symbol Sm from the receiver to the transmitter. In the forward

link, if a tone k Sm, i.e., the kth tone is set to be "0" in the symbol Sm, then

Xk, = 0 for all the N iterations regardless of the feedback. Otherwise, k is one of the

Q non-zero tones and Xk, is determined as follows.

For the first iteration, let Xk,1 = Y, where T is determined by average power P:

_ PTS

QO'

where T, is the time length of a symbol and 0 is the duty cycle. The receiver obtains
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rk,1. If rk,1 is greater than 22 2+1, then the receiver feeds back '"- in the kth feedback

subchannel; otherwise. it feeds back "0".

At the lth iteration (1 > 2). the receiver compares the cumulative received power

12ZVk,i = E rk,n, (4.2)
n=1

with the threshold

A, = ( + 1) y2 + 1. (4.3)

If Vk,l is greater, the receiver feeds back "1"; otherwise, "0"'.

To decide Xk.1+1, we use the following power control algorithm: if the feedback is

"1", Xk7+1 =0; otherwise, { 7, if xkl = 0.,
Xk,1+1

VX2 + 2 + 1, otherwise.

After the N iterations, the receiver forms the average received power SkN

Sk,N I Vk,N'N'

which are compared with the threshold

A =1+ (1- ) 2 (44)

where the parameter 6 is chosen over (0, 1).

For each of the M tones, the same procedure is executed. The time averages of rkn

over the N iterations, Sk,N., are obtained to compare with a threshold. If exactly Q

tones exceed the threshold., then the corresponding message Sm is decoded; otherwise,

the receiver declares an error.

In Figure 4-2, we illustrate the underlying mechanism of the feedback scheme.

Note that, since we use power detection for each tone. and for zero tones, we cannot

cancel out the noise's power after we receive it, we do not use adaptive transmission on

zero tones. The purpose of the feedback scheme is to improve the transmission quality
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Cumulative received power
with feedback

Average power

Threshold

Cumulative received power
without feedback

Iterations

Figure 4-2: The cumulative received power with and without feedback

on nonzero tones by using adaptive transmission based on feedback. For a nonzero

tone, we plot cumulative received power (VkN) curves in terms of repetition length

N, alongside the threshold curve (NA) and the expected received power (N (1 + T2)).

The dashed line is a sample path of the cumulative received power without feedback.

In this case, the cumulative received power has an increasing variance because it

is a sum of i.i.d. random variables. The solid zigzaging line is a sample path of

the cumulative received power with feedback. Since transmission power is adjusted

according to the received signal quality, the curve is bounded around the expected

received power. The boundedness is proved in Appendix C. Clearly, the feedback

scheme can significantly reduce the detection error.

4.3 Power Consumption

Since the amplitudes of tones, Xk,,, are determined in run time, power consumption

in the Feedback Multi-tone FSK scheme is a random variable. In this section, we

prove that the average power consumption in the forward link converges to P as N

grows. For a large N, the average power approximates P.
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Notice

E [SkN] E E [rkn]
n=i

and

E [rkn] = -2n+ 1.

By substituting (4.6) into (4.5), we obtain

E[Sk,N 2k + 1.
n=1

It can be proven that, for a non-zero tone.

lin E [VkN - AN < 0

for arbitrary N > 1. The proof is available in Appendix C.

Based on (4.8), we have the limit

1
lim IE [|Vk,N - AN= 0.

N~oo N

On the other hand,

lim E |Vk.N - AN1
N-oc N

I= lim -E (| NSk,N
N-oc N

- (1 + N) 2 - NJ]

im E[\SkN - (y2+ 1)
N-oc

which, combined with (4.9). leads to

limE [ SkN - (72 + 1) 0.

Equation (4.10) implies

lim E [Sk,N
N-oc

2
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Substituting (4.7) into (4.11), we have, for a nlon-zero tone k,

N

lim n =T2 (4.12)
n=1

Considering 2 occurs with a duty cycle 0 in a symbol time Ts, the average power

in the forward link converges to QT 2 /T = P. as N grows.

4.4 Error Probability

During transmission, an error occurs if Si.N > A for some i Sm (type I error), or

Sk,N < A for some k E Sm (type II error).

Using the union bound, we upper bound the codeword error probability by

p, < Pr (Uis 8 SiN > A) + Pr (UkESm Sk,N < A)

< (M - Q) Pr (SiN A) + QPr (Sk,N < A). (4.13)

The first term in (4.13) has been bounded in Chapter 3. We cite the result here:

(M - Q) Pr (Si,N> A)

< Qexp -In(/) [( 6TS-I
Q QNoRTs Q

0 ((1 -E)PT'\i0 In I + K Q N )" (4.14)RTs QG No

where R is the data rate,

R ( 111 (4.15)
NTs \Q)

No is the noise power density, and T' is the effective symbol time which equals to the

symbol time T, minus the channel delay spread C. The reason that we call T' the

effective symbol time is because we setup a guard time which equals to ' at the head

of each symbol to avoid intersymbol interference and only detect signal power over the

time interval [&, T]. Note that, in the derivation of the upper bound (4.14), we have

106



considered the channel delay spread L which is not incorporated into the model that

we used for Feedback Multi-tone FSK in this chapter. However, it is straightforward

to extend our model to the case considering the channel delay spread. All conclusions

will remain the same. Hence, in the following discussion, we will use (4.14) directly,

and thus consider the channel delay spread in our results.

As for the second term in (4.13), we derive an upper bound as follows:

Define m as

m = .1(4.16)
_1 + 2

Since ( is chosen in (0, 1) and y2 is positive, we can pick N large enough such that m

is a positive integer. Based on (4.16), we have

ENT2 > mY 2 + M + 1. (4.17)

Multiplying the two sides of (4.4) by N, we obtain NA = N + Ny 2 - eNy2, which,

combined with (4.17), generates the inequality

N A < (N - M) 2 +(N- m-- 1) = AN-m--1- (4.18)

where A, is defined in (4.3).

The inequality Vk,N < NA, derived from Sk,N < A, yields Vk,N < AN-m-1 by

applying (4.18). Noticing that Vk,i is monotonically increasing with i, we have

Vki < AN-r-i for i = N -r n- 1, ... , N. (4.19)

Since SkN < A is a sufficient condition for (4.19), its probability is smaller than that

of (4.19), i.e.,

Pr (SkN< A) < Pr (Vk,N-m-1 <AN-m-n,.., V-k,N < AN-m-n1)

jRm Pr (Vk < AN-m-1Vki-1 < AN-m-1, Vk,N-n-1) PV.N-- ) dV
(.N-m

(4.20)
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where (4.20) is obtained by applying the Total Probability Theorem, the chain rule

of conditional probability and Markov property of {V,i}. It can be proven that, for

0 = , 1, ... , m .

Pr (VkN-m+i < AN-m-1IVk,N-m+i-1 < AN-m-1, Vk,N-m-1)

<1 - exp AN-m-1 - Vk,N-m-1
( AN-m+i- - Vk,N-m-1)

Substituting the bound into (4.20), we have

Pr (Sk,N A) < I AN-m-10

N-1

PVkN-,,=l (V) 1 [
i=N-mr- 1

- exp (AN-m-1- ) dv.
Ai - v )-

(4.21)

Since 1 - exp (- -g) is a concave function of x when 0 < x < a < b, the function

N-1

f (V) = H I - exp
i=N--m-I1

SAN-1 - V

KAi - vJ)J

is also concave. By applying Jensen's Inequality to (4.21)., we obtain

N-1

Pr (SkN < A) < j
i=N-m- 1

[ 1 -exp
(N-m-1 -l 2

ij 2_
(4.22)

where j = Pr (VkN-m-1 < AN-m-1) and 2 =E [Vk,N-m-1Vk,N-m-1 < AN-m-1.

Define a function

Ef (x) =ZIn
x. 1

- exp (4.23)

where the constant

AN-n-- - 2

x2 + 1

We rewrite (4.22) as

Pr (SkN A) < 1 exp [-mEf (7n)] . (4.24)
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For i >> 1, we have the following approximation:

-In ( I

Hence, Ef (x) is of the order of In (x) as x increases.

Based on (4.16), we have

M> .
- R + 2

Rearranging (4.15) yields the equation

N = In
RTs Q J

By substituting (4.26) into (4.25), we obtain

m > In ( -Q)
1

1 + 22

Applying (4.27) to (4.24), we upper bound the second term in (4.13) by

Q Pr (SkN <A) Qi exp [-m (Al, R, 0. c) Ef (m (M. R, 0, c))].

(4.27)

(4.28)

where Ef (x), defined in (4.23), is of the order of In (x) as x increases; 1 is a constant

satisfying 0 < i < 1; and

m (M, R, 0, c) = In "Q RT (1+ y2) - 1+2

As discussed in Chapter 3, 0 and c need to approach 0 to achieve the AWGN

capacity in the wideband limit. Since Ef (x) is of the order of in (x) as x increases,

we may make in (A'f, R, 0. c) Ef (m (Al. R, 0. c)) grow faster than In as M increases

while keeping 0 and 6 decreasing. Therefore. the second term in (4.13) is dominated

by the first term and the codeword error probability is upper bounded by

Pe < Q exp - In ( 1)
1(1 - E) PT'

QNORT
1 0
Q R In I
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(4.26)

(1 - C) PT'

QONo )
(4.29)

-- e '+E3~ In (z +(3 In (63)-

0E-2

RTs (1 + -T2)



in the wideband regime.

On the other hand, a lower bound of pe is derived by using

Pe > S Pr(one error occurs) - E Pr(two errors occur)

= (M - Q) Pr(SiN > A) + QPr (Skr <A)

-(M - Q)QPr (S,,Nv > A) Pr (Sk,N <A)

-(M - Q)(M - Q - 1)Pr (SiN >A) 2  2

-Q(Q - 1)Pr (SkN <A) 2  2. (4.30)

Notice that, among all the terms in (4.30), the term (M - Q) Pr (SiN > A) decreases

slowest as M increases. Thus, the lower bound (4.30) is dominated by the term

(M - Q) Pr (Si,N > A) for a large M. We omit other terms in the lower bound

calculation.

According to Chapter 3, Pr (Si.N > A) is lower bounded by

Pr (Si,N > A) > exp (- n (Q)
(1 - e) PT s

QNORT
0 n I

RTs
+ (1 - c) PT'

+ ~ )

where o(N) is a term that vanishes as N increases,

1
o(N) = ln(27rNA 2) +

2N

1

12N 2 '

and R stands for the data rate of the forward link. Noticing

(M-Q) (^) I
M-QQ>

-ebP - Q+

we derive a lower bound of p, based oil (4.31),

nA) [(I - E) PT
(Q QNoRTS

(4.32)

1

Q
0 In I

RTs (
+( - E) PTs'

QONo) + 01 (N)]).
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+ 0 (N)] (4.31)

pe > i-Q X
Q +-QI1

exp -



Comparing the upper bound (4.29) with the lower bound (4.32). we conclude that,

in the wideband regime,

Pe ~ exp - In (')Er,FMFSK(R))
Q (4.33)

where

Er,FAFSK (R) =
(1 - C) PT' 1
QNORT Q

li (1(1-E) PT'"
In 1 + QN .

RTs QONo

The function Er, FAIFSK (R) describes the true asymptotic dependence of the error

probability on M. We call it the error exponent of Feedback Multi-tone FSK which is

analogous to the treatment of random block coding over discrete memoryless channels

by Gallager [4, §5.81.

4.5 Capacity-Achieving Property

In Chapter 3, we have proven that, in multipath fading channels, Multi-tone FSK

can achieve the capacity of an AWGN channel with the same average received power

at the wideband limit. We now prove that Feedback Multi-tone FSK has the same

capacity-achieving property in the wideband limit.

Proposition 4.1 Feedback Multi-tone FSK can achieve any data rates that satisfy

R< (1--
Ts No

(4.35)

with an arbitrarily small probability of error over a multipath fading channel with

average power constraint P. by 'uing large enoagh bandwidth.
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Proof: For the Feedback Multi-tone FSK scheme., the capacity is the maximal data

rate that keeps Er(R) > 0 in (4.33), which is

(I -E) PT' QO (I - ) PT'C NT In + ONo . (4.36)

For any data rate less than (4.36), the upper bound (4.29) decreases to zero when M

increases to infinity. That is, we can use Feedback Multi-tone FSK to transmit data

with arbitrarily small error probability by using bandwidth large enough when the

data rate is less than the capacity defined by (4.36).

The capacity C can get arbitrarily close to PT', i.e., (I -- -, by letting 0

and c decrease to zero as the bandwidth increases to infinity. Hence, as long as the

data rate satisfies (4.35), the Feedback Multi-tone FSK scheme can achieve arbitrarily

small error probability by picking bandwidth large enough. m

Recalling that the channel is assumed to be underspread and L < T., we con-

clude that the capacity of Multi-tone FSK approaches Shannon's infinite bandwidth

capacity limit P.
No'

4.6 Gain from Feedback

In Chapter 3, we derived the error exponent of Multi-tone FSK. In the following, we

compare the performance of the two schemes using their error exponents.

First, we define two parameters to rewrite the expressions of error exponents such

that they can be compared under a unified framework. We define a parameter /- as

1 - Capacity
Wideband Capacity Limit'

which is the normalized difference between the capacity and the wideband capacity

limit. The wideband capacity limit refers to the capacity achieved by using an in-

finite bandwidth. As we derived in Chapter 3, the wideband capacity limit for the
PT'Multi-tone FSK scheme is 2 . The Feedback Multi-tone FSK scheme has the same

wideband capacity limit as Multi-tone FSK.
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Define another parameter T as

Data Rate
1 Wideband Capacity Limit'

which is the normalized difference between the data rate and the wideband capacity

limit. Note that T > r,. since data rates should be lower than capacity in order to

achieve reliable communication.

In Chapter 3, we have obtained the capacity of the Q-tone FSK scheme,

PT'1 QO
CNoTs 

Ts
In (I +

PT'o

QON0 }

and its error exponent,

EAIFSK (R)
0

RT8

where RNoT+ QONO
P= + in

PT' PT'

(~3 -1- in s3),

( 1+
PT'

QON0 )

The asymptotic dependence of the codeword error probability on M is described by

Pe ~ exp (- In ErMFSK (R))

Thus, for Q-tone FSK,

QNo n
PTS (1 +

andTr = 1 - RN Ts. By defining d (x) as

0 (x) = x In +

and 19 (x) its inverse function, we obtain

K .- (.) (T - )

2Q (1 - )

- ln (o + x - n) .

(Taylor expansion).
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Since 0-' (n) and the first-order derivative of ?-' (s) are both 0 at K = 0. 01 (K) -

0 (K2) by a Taylor expansion.

For the Feedback Multi-tone FSK scheme, the capacity is the maximal data rate

that keeps E,(R) > 0. which is

C (1 -C) PT' QO (I - C) PT'
NoTs TS QONO

Thus.

K =E + -In + (4.41)
PTS' QONOj

and T 1 - RNoTs. The error exponent of Feedback Multi-tone FSK is
PT"

E ,M K, T) 7 K442)FAIFSK ) Q (I- T)

After we write EAIFSK and ErFMFSK as functions of r and K, we compare the two

schemes' performance.

4.6.1 Improved Error Performance

In both Multi-tone FSK and Feedback Multi-tone FSK cases, the capacity converges

to P-5- as bandwidth increases. and thus K approaches 0 as M grows, while T is kept

constant as long as the data rate is unchanged.

When r is very small, the order of (4.39) in terms of , is determined by d-' (,),

because, according to (4.40), the remainder of the error exponent is approximated

by _ which is a value determined by T when K goes to zero. Hence, when2Q(1-T)

r is fixed, the error exponent of Multi-tone FSK ErA,!FSK (K- T) is a function of K

in the order of 0 (K 2 ), and decreases to zero as bandwidth increases. To let the

codeword error probability decrease with an increasing bandwidth, the decreasing

rate of the error exponent should be slower than the increasing rate of In (') such

that In () E FsK (R) o.

For Feedback Multi-tone FSK. the error exponent (4.42) converges to a limit

as K goes to zero. The limit is always greater than zero if T is greater than
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K. Hence, for Feedback Multi-tone FSK, as long as the data rate is less than the

capacity, the exponent in (4.33) satisfies In (Q) ErFMFSK ( ) - oc, and the codeword

error probability decreases with bandwidth.

The ratio of ErF,, SK (K, r) to ErMFSK (K, T) is O-' (K) (r K) /2. Clearly, the error

exponent of Multi-tone FSK is much smaller than that of Feedback Multi-tone FSK,

ErMFSK (K) -) < ErFMFSK (N) r), (4.43)

for a small r and some T greater than K, because O-Y (ii) < 1 and T - < 1. Since the

dependence of error probability on bandwidth is characterized by the error exponent,

which is a function of data rate (recall that T is a parameter determined by the data

rate), we can find the tradeoff between error probability and data rate by substituting

the error exponent into the error probability. Here, by (4.43), the Feedback Multi-

tone FSK scheme has a better error probability-data rate tradeoff than the Multi-tone

FSK scheme when any other conditions are equivalent. Or, equally, Feedback Multi-

tone FSK provides a better error performance when both schemes have the same data

rate.

By substituting (4.42) into (4.33) and noticing (") ~ M when Q < Al, we

conclude that the error probability of the Feedback Multi-tone FSK scheme decreases

roughly inversely with bandwidth:

PC ~ M exp (-QErFMFSK (R))

The error probability of the Multi-tone FSK scheme decreases in bandwidth much

more slowly than the inverse of AMf, owing to the scheme's vanishing error exponent.

In Figure 4-3, we plot the error probability curves of Multi-tone FSK and Feedback

Multi-tone FSK in terms of the number of total tones A1. Note that Al increases

linearly with bandwidth.
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Figure 4-3: The error probability curves of Multi-tone FSK and Feedback Multi-tone
FSK for K = 0.001 and - =0.4

4.6.2 Smaller Bandwidth

As we pointed out, the vanishing error exponent of Multi-tone FSK causes a very

slow decaying rate of the codeword error probability as bandwidth increases, while

the error exponent of Feedback Multi-tone FSK tends to a constant value greater than

zero, causing a much faster decay rate. From the bandwidth perspective, Feedback

Multi-tone FSK needs a smaller bandwidth to achieve the same error performance as

Multi-tone FSK when all other conditions are equal.

Let Multi-tone FSK and Feedback Multi-tone FSK have the same error perfor-

mance when their data rates are the same, i.e.., (4.33) and (4.37) have the same

exponent when -FMFSK F =T. Then, the following equation can be obtained

by substituting (4.40) and (4.42) into (4.33) and (4.37) respectively, and equalling

them:

ln FSK L9 M ({-IFSK)(T - KMFSK) _ (AJFAMFSK

FQ )) 2K( -- FFSK

In the wideband regime, the capacities of Multi-tone FSK and Feedback Multi-tone

FSK approach the same wideband capacity limit, i.e., K K 0. Thus,

considering TFFsK FF we roughly have T - K - K
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which lead to

lMFSK 19 NAlF S (A)FSK - (IFS FMFSK

Q )2 Q )

where V (<FSK) 1 and T-K < 1 as discussed previously. Hence, MMFSK and

MFA FSK satisfy the inequality

in (MMSK ) in MF FSK

and as a result, MAIFSK > AF MFSK because logarithm is a monotonically increasing

function. That is, Multi-tone FSK need much more bandwidth to achieve the same

error performance for the same data rate.

4.6.3 Lower Average Power

From the average power perspective, Feedback Multi-tone FSK needs a lower average

power than Multi-tone FSK to achieve the same error performance because its better

performance.

Let the Feedback Multi-tone FSK scheme and the Multi-tone FSK scheme have

the same bandwidth, duty cycle, and data rate. Substituting (4.40) and (4.42) into

(4.33) and (4.37), equalling them, and cancelling out the equivalent terms, we obtain

9-1 (6NIFSK) (T - KMFSK) - - KFMFSK (4.44)
2

Noticing that 1 (IMFSK) MFSK) andMFSK < T, we derive an inequality from

(4.44) for K FMFSK small enough:

T ( MFSK > T - FMFSK. (4.45)

By rearranging the terms in (4.45), we obtain

T - <FFSK 7.
7 FSK
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Considering T < 1, the above inequality leads to

T - 'FFSK

which is equivalent to

MFSK FMFSK*

We use PAIFSK and PFMFSK to denote the average power for Multi-tone FSK and

Feedback Multi-tone FSK.

From (4.38), we obtain I.FK as

_QN 0  n
K MFSK P MFSTI

P[VMFS KTS

Similarly, by using (4.41), K FMFSK is obtained:

QN 0
1

FMFSK -6- In
PFMFSK S (1 +±(I

Note that c is a parameter chosen to be c < max

approximated as

QN 0 n
K FMFSK - PFFSK / I (1

PFMFSKTS

QNoO )

, QNo
PFMFSKO /

(4.47)

(4.47) can be

PFMFSKTS
QNoO J (4.48)

Comparing (4.46) with (4.48), and noticing that - In (1 + x) is a monotonically

decreasing function of x, we have

PMFSK FMFSK I (4.49)

viz., when bandwidth, duty cycle, and data rates of Multi-tone FSK and Feedback

Multi-tone FSK are equal. Feedback I\/[ulti-tone FSK needs a lower average power to

achieve the same error probability.
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4.7 Requirement on Peakiness

In this section. we consider the Multi-tone FSK scheme and the Feedback Multi-tone

FSK scheme's requirements on peakiness.

We use a parameter a to denote the ratio of Q to M, i.e., a = , which charac-

terizes the peakiness of Multi-tone FSK and Feedback Multi-tone FSK in frequency.

The smaller a, the peakier the schemes in frequency. In the following, we prove that,

both the Multi-tone FSK scheme and the Feedback Multi-tone FSK scheme need

peakiness for vanishing error probability. Moreover, the requirement on peakiness is

less strict for Feedback Multi-tone FSK, owing to its better error exponent.

For the Multi-tone FSK signaling scheme and the Feedback Multi-tone FSK

scheme, the codeword error probabilities are

pe ~ exp -In [ Ir - T-In (1+K-T)]), (4.50)
Q Q (1 - )

and

Pe ~ exp (In (M) T % (4.51)
Q Q (1 - )

respectively.

Applying Stirling's approximation,

2WNNN -N+12N+1) < N! < v2NN-FN - N

we obtain an upper bound for (Q) given Q = aM:

( exP 12a2 - (12aA'i+1)aA [12(M-aI)1]aI) 1 "

\Q a (1 - a)a 2wtMa (1 - a)

and a lower bound for (Q

(j) P (12aI+1) (12aAi)aAi [12(.A-a )IaI) (l1
Q/ a( a) 1a 2111(I- a)-
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Note that limy_,o (-) = 1. We obtain the limit

1 M1-a
lim In - Ina (1 - a) a_-ooQ Q

1
- -Hb (a), (4.52)

a

where

Hb (a) = -a Ina - (1 - a) In (1 - a)

is the entropy of a Bernoulli distribution with the parameter a. By substituting (4.52)

into (4.50) and (4.51), we get

1 79-1 (r')
P. ~l- exp -- Hb (a) [ I - T - In (I + K - -T)] (4.53)

(a Q (1 - T)

and

Pe ~ exp -- Hb (a) . (4.54)
(a (I - T)

In both (4.53) and (4.54), to let pe -+ 0 in the wideband domain, we must let a -> 0.

Hence, in order to have a decreasing error probability as the bandwidth increases,

both the Multi-tone FSK scheme and the Feedback Multi-tone FSK scheme need

peakiness (a vanishing ratio of Q to M). Another observation based on (4.53) and

(4.54) is that, to achieve the same error performance, the Multi-tone FSK scheme

need a smaller a than the Feedback Multi-tone FSK scheme. In the exponents of

(4.53) and (4.54), we have the inequality between the two error exponents:

1- (K) [ - T - In (1 + r, - T)] < .Q (1 - T) (I T )

Thus. the value of 'Hb (a) in (4.53) should be much larger than that in (4.54) to have

the same error probability in the two schemes.

120



4.8 Conclusions

In this chapter, we proposed a Feedback Multi-tone FSK scheme which achieves the

wideband capacity limit. We derived an upper bound and a lower bound for the

codeword error probability. These two bounds lead to the error exponent of Feedback

Multi-tone FSK, which describes how the error probability depends on the different

parameters. According to our results, in the wideband regime, Feedback Multi-tone

FSK enjoys a better error performance than Multi-tone FSK, although the capacity

is not improved by using feedback. From the resource usage perspective, Feedback

Multi-tone FSK requires a smaller bandwidth or a lower average power to achieve the

same performance as Multi-tone FSK.

Our results show that, in power limited scenarios, even if channel measurement

and tracking are not feasible, feedback could still significantly improve the error per-

formance.

Note that, our results introduced in this chapter are based on the error-free feed-

back assumption which is unrealistic. In the future research, we can investigate the

feedback scheme by incorporating a noisy feedback link and study the impact of

feedback link quality on the scheme's performance.
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Chapter 5

Conclusions

This dissertation has investigated the information theoretic aspects of the communica-

tion over wideband fading channels where neither the transmitter nor the receiver has

channel state information. First, the structure of the optimal input signals has been

explored for the discrete-time memoryless Rician fading channel and the Rayleigh

block fading channel. We have proven that the optimal input amplitude of the fading

channels has certain discrete structure when the input is subject to an average power

constraint or a peak power constraint. In particular, it has been shown that binary

inputs are optimal in the low SNR, regime.

We proposed a Multi-tone FSK scheme, which is capacity achieving in the wide-

band limit and has a vanishing codeword error probability when the bandwidth in-

creases. Furthermore, considering the slow decay of the codeword error probability of

Multi-tone FSK in bandwidth. we proposed the Feedback Multi-tone FSK scheme to

improve the error performance. We have been shown that, with a small amount of

feedback, Feedback Multi-tone FSK has a much better error probability than Multi-

tone FSK.

Although using peaky signaling for transmission of information over wideband fad-

ing channels is justified from the theoretic point of view, there exist doubts regarding

these schemes' practicality (peakiness. bandwidth. etc.). Compared with other peaky

signaling schemes, such as the PPM and the flash FSK, Multi-tone FSK has many

desirable features.
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First, Multi-tone FSK can achieve the wideband capacity limit in general multi-

path fading channels regardless the increase of the number of channel paths with the

bandwidth, while many other schemes, such as the PPM, perform greatly depending

on the channel uncertainty. As we have proven, the achievable data rate of Multi-tone

FSK is I - O , which is related to the multi-path effect by the channel delay(i T,~ No,

spread £. Since £ is determined by the time difference between the first arrival path

and the last arrival path which is almost invariant with respect to the bandwidth,

the increase of the number of resolvable paths has no impact on its performance.

Also, in the case that the number of channel paths increases very fast, signaling

schemes requiring multi-path tracking and combining become infeasible due to the

increasing receiver complexity. Multi-tone FSK, on the contrary, is still practical

because it requires no channel tracking.

From the symbol generating point of view, Multi-tone FSK symbols are easy to

generate. When the bandwidth is very large, schemes like the PPM requires extremely

short pulses, which is difficult to generate and catch. In Multi-tone FSK, the symbol

time is much larger than the inverse of the bandwidth, and the increasing bandwidth

only leads to an increasing number of tones, which poses little difficulty for symbol

generation.

Conceptually, Single-tone FSK shares many characteristics with Multi-tone FSK.

In practice, however, Multi-tone FSK presents advantage of providing the choice of

using more than one tone per symbol. For example, when the duty cycle is fixed,

Multi-tone FSK can provide a higher achievable data rate than Single-tone FSK, or

alleviate the need of large bandwidth, owing to its larger alphabet set. Also, in this

case. with the same average power constraint, Multi-tone FSK has lower peak power

per tone than Single-tone FSK, which reduces the schemes' requirement on peakiness.

As we have shown in Chapter 3, owing to its flexibility on spectral efficiency, Multi-

tone FSK enjoys a better performance in many occasions.

Feedback lulti-tone FSK scheme provides an even better performance if feedback

links are available between the receiver and the transmitter. By using a small fraction

of the available degrees of freedom for the feedback channel (e.g. Figure 4-1) and
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power from the receiver, we can improve the error performance of the forward link

greatly. This kind of transmission is desirable if the transmitter is highly power-

constrained and the receiver has an abundant power supply.

The concepts of Multi-tone FSK and Feedback Multi-tone FSK combine theoret-

ical principles with practical considerations in providing promising signaling schemes

for wideband fading channels. By choosing more sophisticated coding schemes, detec-

tion rules, or other designs, the performance of the schemes can be further improved

beyond the performance we provided in this thesis. These are topics for future study,

which are out of the scope of this thesis. Rather than seek optimality, we provide

robust and practical schemes which perform very close to the optimal limit. Also, in

future research, we can study the feedback scheme with a noisy feedback link.

Besides theoretically studying efficient signaling schemes, experimental research

is also necessary because a theoretically sound idea may not be implementable. In

Appendix D, we include some experimental results to endorse the Multi-tone FSK

scheme. To fully study the performance of Multi-tone FSK in practice, further ex-

perimental investigation is needed.
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Appendix A

Existence and Uniqueness of the

Optimal Input Distribution

In this Appendix, we establish the existence of the optimal amplitude distributions for

the discrete-time memoryless Rician fading channels and the Rayleigh block fading

channels. We also prove the uniqueness of the optimal amplitude distribution for the

Rayleigh block fading channels. The method that we use in the following is similar

to the approach used in [10] and [15].

If X is a normed linear space, then the set of continuous linear functionals on X

is called the dual (or conjugate) space of X and is denoted X*. In our optimization

problem, we consider distributions as elements of the dual of the space of the bounded

continuous functions. A distribution D (x) C X* acts on a bounded continuous func-

tion i (x) as (i (x). D (x)) = f i (x) dD (x). For discrete random variables, the density

includes mass points, which can be represented as Zj pj (x - xj). The distribution

Zj pju (x - xj) is a linear functional which acts on i (x) as E pji (xj). This approach

includes not only the continuous random variables but also the discrete ones into the

consideration. Optimization results are then obtained using the weak-star topology

on X* [22, Sec. 5.10].

Existence and uniqueness can be showed by using the following theorem. which was

proven in [15]. The remainder of this Appendix establishes that the sets of distribution

functions and the inutual informations meet the conditions of the theorem.
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Theorem A.1 (Abou-Faygal et al. [15, Theorem I]) If I is a real-valued, weak-star

continuous functional on a weak-star compact set Q, then I achieves its maximum on

Q C X*. If furthermore Q is convex, and I is strictly concave, then the maximurn

C = max I (D)
DEQ

is achieved by a unique D* in Q.

A.1 Convexity and Weak-Star Compact of the Sup-

port

Let D denote the set of all distribution functions, and let Qa, Q, QaP C D be

the distribution functions of nonnegative random variables with an average power

constraint, an peak power constraint, and both, respectively. That is,

Qa{= D E DID (0-) = 0 and x 2 dD (x) < Pav,

= {D G D|D (0-) = 0 and D (P,,)

and

Q2ap {D E DID (0-) = 0,

j x2 dD (x) < P, and D (Ppeak) =}-

Qa was shown to be convex and weak-star compact in [15, Appendix 1.A]. We

prove QP, and Qap are convex and weak-star compact as follows.

Q,: For any DI, D 2 E Q, and A E [0. 1]. the linear combination D = AD 1 +

(1 - A) D 2 is nondecreasing, right continuous, with D (0-) = 0 and D (P+eA) _

Hence, D is still a distribution function in Q and Q, is convex.

To prove that Q0 is weak-star compact, we first show it is tight. Then. because

the weak-star topology on distribution functions can be metrized by a metric (such as
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the Levy metric), Prokhorov's Theorem [25, Sec. 111.2, Theorem 1] can be applied to

show that Q, is relatively compact, i.e., every sequence of probability measures from

Q, contains a subsequence which converges weakly to a probability measure. By

proving that the limit probability measure belong to the original class, we establish

that QP is sequenttially compact, which leads to that QP is weak-star compact.

For K > 0, the interval [0. K] is a compact set on the real line, the probability of

the complimentary set is 1 - D (K) + D (0-). For every E > 0, if there is a K > 0

such that

sup (1 - D (K) + D (0-)) < E.
DEQP

the set QP is tight. By setting K = Peak, it is straightforward to show that i, is

tight.

Because D (0-) = 0 and D (P,+aek) 1 which follows from [25, Sec. 111.1, Theorem

1], the limit distribution function D* is in Q,. Hence, Qp is weak-star compact.

QaP: For any D1 , D2 E Qap, the linear combination D = AD 1 + (1 - A) D 2 satisfies

00j x2dD (x)

j x 2 dADi + j x2d (1 - A) D2 (x)

< APav + (1 - A) Pav

=Pa.

With D (0~) = 0 and D (PP+ak) = 1, D is still a distribution function in Qap. Hence,

Qap is convex.

We use the same argument as that of proving that Q, is weak-star compact to

show that Qap is weak-star compact.

The set Q is tight if, for every F > 0., there is a K > 0 such that

sup (1 - D (K) + D (0-)) < 6.
DEQp

By setting K = Ppeak, we show that Qap is tight.
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It remains to prove that the limit distribution function D* is in Q a.

D (0) = 0 and D (Pak) =1 follow from [25, Sec. III.1. Theorem 1]. Moreover,

it is clear that D* satisfies the peak power constraint. To show that D* satisfies the

average power constraint, we use the same argument used in [15

x 2 dD* (x) < lim inf x 2dD (x) < Pa.
0 n--oc O

Hence, the limit distribution function D* is in Qp and Qap is weak-star compact.

A.2 Weak-star Continuity of Mutual Information

Weak-star continuity of a function f is defined as

Dn "* D =# f (Dn) - f (D) .

We prove that the mutual informations for Rician fading channel and Rayleigh

block fading channel are weak-star continuous. In the following discussion, the mutual

information resulting from an input distribution function Dn is denoted by In.

A.2.1 Rician Fading Channels

As we derived before, with an input distribution Ds, the mutual information in a

Rician fading channel can be written as

In(x; y)

where

PR(R; Dn)

= -- [l1 (c r4 + C72 ) + 1] dDn (rx)

-- PR(R; D,) In pR(R; Dn)dR

0

and g(Rlr m) is defined in (2.7).
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Let D, -"*+ D. If we can show that the first term in (A.1) satisfies

j [n (o r + i ) + 1] dD, (r,) -+
0

and the second term satisfies

[n (0,2r2 + 072) + 1] dD (r,)
0

pR(R; D) ln pR(R; D) dR,. (A.4)

then, as the difference of these two terms, the mutual information can be proven to

be weak-star continuous.

The proof of (A.3) is as follows:

We must show that

/OC 2
In -h r2

fO ( 2

+ I) dD (r) -+

2
In h 2

92 xw
+ 1) dD (rx).

This follows if the integrand is uniformly integrable in Dn. That is, if the function

q, (rx) { 0

in (r + )

is continuous, f0 jqi| dD, < oc, and

lim n (r
b-+OC b7 2

+ 1) dD, (rx) = 0

uniformly in n.

The function qi is continuous. Moreover, (2since InI(~
2 

2< 1- for rx >0

.2' P
WU2 eak

in the average power limited case

in the peak power limited case

for every n. To verify (A.5), note that. for r large enough, we have In r2

ro. Therefore, for b large enough,

+ I) <
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for r, < 0,

for rx > 0,

(A.5)

o D Iq I dDn <_

PRC R; Dn) InPR( R; Dn)dR -+

+ 1)



OCn 
2 +1) dDn (rx) rxdDn (rx)

<K f?3 2 dD (re)

< av o - peak

- b b

The bound is independent of n and converges to 0 as b -+ oc in either the aver-

age power limited case or the peak power limited case. Hence, qi (rx) is uniformly

integrable in Dn, and the first term in (A.1) is weak-star continuous.

To show (A.4), we need to establish

lim PR(R; Dn) In pR(R; Dn)dR
n+/ Jo

00

Ilim pR(R; D,) InpR(R; D,)dR
0 n- o

and

flim P(R; D,) In-P(R; D,) - PR(R; D) InP(R; D).

To prove (A.7), note that the integrand in (A.2) is a bounded continuous function

of r,. Hence., pR(R; D) is a continuous function of D for all R > 0. Since x In x is

continuous, pR(R; D) InpR(R; D) is continuous in D. Thus, (A.7) holds.

To show (A.6) is more complicated. We need to find an integrable function q2 (R)

such that

IpR(R; D) In pR(R; Dn) I q2 (R) . (A.8)

First, we consider the average power limited Rician fading channel:

Since 1o (x) < exp(x), for Vrx > 0

1
g(RIrx) 2 2 2 exp

hf rX +

R - 2 Rmr + m 2r 2

72r2 + 1*,

We first establish an upper bound of g(Rlrx) in the form of (07r2 + ( o) f 2 (R)
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1 ex -f2 (R) > (a2 + 2 exp
R - 2VRmrx + m 2 r2

.

f2 (R) can be obtained in different forms. A straightforward way to get a form

of f2 (R) is to use the first order condition (FOC) and obtain the maximum of the

RHS in (A.10). The value of rx maximizing the RHS in (A.10) is determined by the

equation

2r2a4+ vRmvrx -H -i-2a 2U~g2 - R(72
x hw h

(A.11)

The closed form solution r* (R) for (A.11) is very complicated. However, if we can

find a lower bound f3 (R) to r* (R), then the inequality

1

(o f3 (R)2 + 2)2

1
> ~ ±ujexp> (072r2 + 0,2)2 ex [R - 2 vmr* +

o 2r*2 + Or2

clearly holds. Hence, instead, we can define f2 (R) as

f2 (R)
1

(c f3 (R)2 + c,2)

To find a lower bound f3 (R) to r*, we assume =U in (A.11). Then r*

must satisfy the following equation

2r 2 + mrxo2 + M2 + 2( -- R7 2 = U. (A.12)

Since r* is a non-negative real number, (A.12) can be rewritten as

r* = (;8u + Rm 2 + 8RoT - 8m 2o - 16gu2 - v Rm) (A.13)

by solving (A.12) and keeping the non-negative solution. Note that u is non-negative.

A lower bound for r* is

* ;> RM,2+ 8RO -- 8m 2 U2 - 16ao2J, - VRm)
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Define the RHS as f3 (R):

Sjq 2 2', - 8,.2 , ' '2f3 (R) = 4g 2 - 16 M
h

Since f3 (R) > 0 over

this range.

R E C? +o 2ui, 0 ,)we only use f3 (R) to get f2 (R) on

For R ( 2 +2 goo), we can obtain an upper bound for g(Rlr,) as

g(RIr,) < (,r2 + o,) f2 (R)

( 22+ 0)2
Jh x + w

0( 2f, (R)2+ ,2)2

For R E Lo, 2 + 2. we get an upper bound for g(Rlrx) directly by omitting

the exponential function in (A.9) and letting rx = 0: g(Rfrx) < -. Hence, we get

1

5- 2 2

( 2 f,3(R) 2+ C,)2

- q3 (R)

if R E *, " 2 ' + 2or 2

if R e (2"'-2 + 2 (2
Ws

by simply integrating the two upper bounds with respect to the probability measure.

Since x log x satisfies the inequalities

Ix log xj < 4x 3/ 4.

Ix log X < x2

if x E [0, 1,

if x E (1, oc),

we define q2 (R) = max (4 (q3 (R)) 3/4 , q3 (R)2) which is an integrable function. Thus,

(A.6) holds for average power limited Rician fading channels.

Now, we prove (A.6) for peak power limited Rician fading channels:

Note that, for R E [0, oo),

1 F
g(RIrx) - exp-

of

Ri

ohPpeak + WLJ
o (

2 mPpe k
" .

w
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It is straightforward to show that

PR (R; D,)
1

< -exp

q4 (R).

H R
C7 2Ppeak +0-2

Using (A.15), we have

|PR(R; D-) In pR(R; D,)I < max (4q 4 (R)4

Define q2 (R) = max (4q4 (R)i , q4 (R)2) which is an integrable function. Hence, (A.6)

holds for peak power limited Rician fading channels.

As a conclusion, the mutual information of a Rician fading channel under an

average power constraint or a peak power constraint is weak-star continuous.

A.2.2 Rayleigh Block Fading Channels

As derived before, with an input distribution D,, the mutual information in a Rayleigh

block fading channel is

-- ln(1 + r 2 ) - ln(wre)T + In dD, (r)

PR (R; D,) lnpR(R; D,)dR

100 PRjI (Rjr) dDn (r)PR(R; Dn) =

(A.17)

(A.18)

and PRIr (Rjr) is defined in (2.30).

Lot Dn -w*+ D. We must show that the first term in (A.17) satisfies

10ln(1

ln(1

+ r 2 ) - ln(wre)T +

+ r 2 ) - ln(ire)- +-

In dD, (r)

In 1 dD (r)
2]

(A.19)

135

I 2 RmPeak
0

U2

, q4 (R)2 ).

In (X, Y)

where



and the second term satisfies

joo PR; D,) lnpR(R; D,)dR -+ j PR(R; D) In pR(R; D)dR. (A.20)

For average power limited Rician channels and peak power limited Rician channels,

the proof of (A.19) is similar to that of (A.3)., which will be omitted here.

To show (A.20). we need to establish

lim PR(R; D,) InpR(R; D,)dR -+
o o

00

lim pR(R; Dn) lnpR(R; D,)dR
0 n--

and

lim PR(R; D,) InpR(R; Dn) = PR(R; D) InpR(R; D).
fl-- 00

(A.22)

In order to prove (A.22), we first show that the integrand PRi, (Rjr) in (A.18) is

a bounded continuous function of r.

Rewrite PRI, (Rjr) by substituting all coefficients into (2.30).

T-1 (r2 +1) TiR-

= -- F(' 2T iPRjr (RfIr) exp (-R)

(r 2 + 1 ) 2 (R R (A.23)
r+exp Tr 2)+ 1 .

It is straightforward to show that prI, (Rjr) is continuous over r c (0, oc) for all

R > 0. Now, we show that PRIr (Rjr) is also continuous at r = 0. That is.

liMpRIr (Rjr) = PR|r (Rjr 0)
r-TsO

The characteristic function Of PRjr (Rjr) is

1

- jw (r2 + 1)] (1 - jL)T-

which is a continuous function of r at 0. For any R > 0, we establish the following
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PRjr (R IE - PRr (R10)1

2I jo [1 - J,2- -0C Lo

< jU;

j*E2 \

(E2 + 1)] (1- j) T J

3WL

2 + 1)] (1 - j)
- dw7

where the integral in (A.24) is integrable. For arbitrary ( > 0, there exists an E > 0

such that 1PRIr (RIE) - PRIr (RIO) < ( for all R > 0. Hence, pRIr (R~r) is continuous

on [0, oo).

To prove that PRI, (RIr) is bounded, we notice that, at r = 0,

RT-l exp (-R)
PRI r = 0) F(T 1) (A.25)

is bounded for all R > 0. From (A.23), we know that, for every R > 0, as r -+ oo,

the limit of PRI, (RIr) is zero.

bounded.

It is then straightforward to prove that PRIr (R~r) is

Now, since PRjr (RIr) is a bounded continuous function of r, pR(R; D) is a bounded

continuous function of D for all R > 0. Furthermore, because x In £ is continuous,

PR(R; D) InpR(R; D) is continuous in D. That is, (A.22) holds.

In order to prove (A.21), it suffices to find an integrable function q5 (R) such that

pR(R; D,) In pR(R; D,)I < q5 (R) . (A.26)

First, we consider the average power limited Rayleigh block fading channels:

Note that. if T2iPRir (Rjr) is viewed as a function of r with a parameter R, then

there exists a Ro > 0 which satisfies the following statement: for all R > Ro. we can

find a ro > 0, the value of r to reach the maximum of the function is in (ro, oc). We
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denote the value of r to reach the maximum as r*. Thus, for R > Ro.

PR(R; Dn) - (r2 + 1) r2 + 1PRIr (Rlr) dD, (r)

< (r*2 + 1 )T-i-2 R'-l
.~) *2(T-i) p(- )

(e)

x j (r 2 + 1) dD, (r)

(r + 1 exp (-- Re
-r + 1)2 r*2+1 (Pay + 1)

rT-1 (r* +1)2

(r2 + 1 )T1 4e-2
< 02(T-1) R 2 (Pav + 1) .

+(r*2 + 1)
+ r g 1

exp

(A.27)

R 
)r*2+1

(A.28)

(A.29)

(A.30)

(A.27) holds by definition. (A.28) is from point-wise maximization of the integrand.

(A.29) is obtained in two steps: First, we note that (e) in (A.28) is negative and we

can omit (e) to get an upper bound; second. (X+I)T1 is a monotonically decreas-

ing function of x, we substitute r2 for r*2 where r2 < r* 2 .

1 / R\maximizing 1exp (- ) over [0, oc).

Define a function q6 (R) as

(r + 1 )T1 4e- 2

q (R) -2(T1) R2 (Pay + 1).
0

(A.30) is obtained by

Based on (A.15), we define the upper bound of PR(R; D,) In pR(R; D,)I as

max (pR(R; D,) In pR(R; D,))

max (4q 6 (R) , q6 (R))

if RE [0, Ro] ,

if Re (Roj o).

Since pR(R; D) is abounded continuous function for all R > 0, max (pR(R; D,) lnpR(R; D"))

is finite. q5 (R) is an integrable function. As a result, (A.21) holds for average power

limited Rayleigh block fading channels.

The proof of (A.21) for peak power limited Rayleigh block fading channels is

similar. The only difference is that Pa, in (A.29) is changed to Peak. Define a
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function q7 (R) as

'(r2 + 1 )T4 -2
q7 (R) = 2(-1) R2To

Then the upper bound q5 (R) is given by

(Ppeak + 1) .

max (pR(R; D,) ln pR(R; D,))

max (4q 7 (R)4 , q7 (R))

if R C [0, Ro].

if R E (Ro, oo).

Since q5 (R) is an integrable function, (A.21) holds for peak power limited Rayleigh

block fading channels.

As a conclusion, the mutual information of a Rayleigh block fading channel under

an average power constraint or a peak power constraint is weak-star continuous.

A.3 Strict Concavity of Mutual Information

In this section, we prove that the mutual information of the Rayleigh block fading

channel is a strictly concave function over Q. Recall that the mutual information

I (X ;Y ) = h(Y ) - h(Y|X )

where h(Y) is a strictly concave function of p(Y; D) and the second term h(YIX) is

linear in D. If p(Y; D) is an injective linear function of D , then h(Y) is a strictly

concave function of D which implies I (X; Y) is a strictly concave function of D. In

the following discussion, we will prove the operator D -+ p(Y; D) is injective. That

is, given pR(R; D) = PR(R; D'). we prove D = D'.

Let PR(R; D) = PR(R; D'). Then the characteristic functions of these two PDFs

are equivalent:

exp (-Rs) pR(R; D)dR J exp (-Rs) PR(R; D')dR.

Change the order of integrals, and note the characteristic function of PRI,(Rlr) is
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given by (2.29). We obtain

1T11 dD() (A.31)
-j (r 2 + 1)] (1-L)

11
-_dD' (r).

[-j (r2 + 1) 1-jW)T

Cancel out . on both sides of (A.31):

11 { dD (r) = { I dD' (r). (A.32)
j (r2 + 1) 1 - IjW (r2 + 1)

Because PDFs and characteristic functions are invertible, we inverse transform both

sides of (A.32) and have

dD (r) = dD' (A.33)I r 2 + 1 r 2 + )

The equation (A.33) means that, for a channel whose transition probability is pRIr(Rlr)

r2 +1e .2 + the output R's distribution under the input distribution D (r) and D'(r)

is the same.

Let w = r 2 + 1 be a function of r. Then R can be described as an output of a

multiplicative channel R = wz, where w is the channel input determined by D (r)

and z is independent of r and has a probability density function p (z) = e-Z.

Lct w and w' be the inputs corresponding to D (r) and D'(r), respectively. The

outputs R = wz and R' = w'z are equal in distribution according to (A.33). There-

fore, the functions ln (R) = In (w) + In (z) and In (R') = In (w') + In (z) are equal in

distribution. Equivalently, In (R) and In (R') have equal characteristic functions

#ln(w)#hln(z) = #n(w')P'1n(z)-

This implies that #1n(w) = O1n(w') everywhere except at isolated zero points of pln(z).

Given that characteristic functions are continuous. In(w) = Pln(w') everywhere. There-

fore., w and w' are equal in distribution and hence so are r and r'. which proves

D (r) = D' (r).
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We have proven that, pR(R; D) = pR(R; D') : D = D'. Hence, I (X; Y) is a

strictly concave function of D in Rayleigh block fading channels.

A.4 Existence and Uniqueness of the Optimal In-

put Distribution

Qa, Q,, and Qap are convex and weak-star compact. We have proven that, under

an average power constraint or a peak power constraint, the mutual informations of

Rician fading channels and Rayleigh block fading channels are weak-star continuous.

Furthermore, we have proven that, the mutual informations of Rayleigh block fading

channels are strictly concave functions with respect to D.

According to Theorem A.1, the optimal distributions exist in Rician fading chan-

nels and Rayleigh block fading channels under the three power constraints. In

Rayleigh block fading channels, the optimal distribution is unique.
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Appendix B

Kuhn-Tucker Condition for Peak

Power Limited Channels

First, we give the definition of weakly differentiable, which is used in the proof of the

theorem.

Definition: Let p* be a fixed element in a convex set P, and A a real number in

[0, 1]. A functional f on P is said to be weakly differentiable at p* if the limit exists

f ((1 - A)p* + Ap) - f (p*)
A-0 A

Vp E P.

If is f weakly differentiable in P at p for all p E P, f is said to be weakly

differentiable in P.

For a weakly differentiable funtional which achieves its maximum in a convex set

P, we have following theorem.

Theorem B.1 (Smith. [10]) Assume f is a weakly differentiable funtional and achieves

its maximum in a convex set P.

1) If f is concave and f. (p) < 0 for all p E P, then f achieves its maximum at

p*.

2) If f achieves its mraxim'unm at p*, then fp. (p) < 0 for all p e P.

We have proven that the set, Q,, of possible distribution functions with the
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bounded support ixj < Ppeak is a convex set. Then the mutual information I is

a functional defined on QP. In [15], I is proved to be weakly differentiable on the set

of possible distribution functions with no peak power constraint. Using the same ar-

gument, we can establish that I is weakly differentiable in Q, and the weak derivative

is

I/I ( \=
P* (~P) (x;p*)p(x)dx -I (p*)

where

i (x; p*) = p(y I x) In )dy.
J[p(y; p*)J

Hence, according to Theorem A. 1, a necessary and sufficient condition for p* to achieve

the maximum of I is

Vp E Qp

that is

i (x;Ip*) p(x)dx < C. (B.1)

Now let us prove that (B.1) is true if and only if

i(x p*) < C. V Ix| 2 Ppea

i (x; p*) = C, Vx G So (B.3)

where So is the support of p*.

The proof from (B.2) to (B.1) is straightforward. For the converse, assume (B.2)

is false. Then there must exist an xo such that

i (xo; p*) > C.

If p(x) is a delta function at xo. then

Ji (x; p*) 6(x - xo)dx = i (xo; p*) > C
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(B.2)

P-1 - (P) 50,



which contradicts (B.1).

Assume (B.2) is true and (B.3) is false, then there exists xO E So such that

i (xo; p*) < C.

The inequality is strictly satisfied over a non-zero measure neighborhood S' of xo,

since i (x; p*) is continuous in x.

C =j f it(x;p*)p*(x)dx

i (x; p*) p*(x)dx +

p*(x)dx + C

IS

Sp* (x) dxJSI

which is a contradiction.

Hence, (B.2) and (B.3) are the necessary and sufficient conditions for an optimal

distribution.
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Appendix C

Boundedness of the difference

between Vk,l and A,

In this Appendix, we prove the inequality lim 1 ,, E [Vk,l - Ajj] < oo.

{A,} are the thresholds

A, = (I + 1) y2 + 1.

The inequality means the difference between the random variable Vk.l

Recall that

and the thresh-

old A, is bounded.

We first prove a lemma.

Lemma C.1 Let the kth tone be a non-zero tone. For any integer I > 1, there exists a

function 3 (y2) < 1 such that the conditional probability Pr (V,l < AI Vk,1_1 < A,- 1 )

is bounded by the function:

Pr (Vk,l < A, I Vk,1 1 < A, 1 ) < 3 (X2

Proof: For notational convenience, we use {li} to denote the intervals

I1 [A, 1 , A,) .

Assume Vk,1-1 EE 1-1_n Since {Vk.1} is nonotonically increasing with 1, we have the
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inequalities

V,l-n--1 .. Vk,1-2 -< Vk,I-1 < A -I-_ n.

According to the scheme, the inputs must satisfy X2__ > T 2 41in1 > 22

x 1 > ny 2 , and x2. > (n + 1) y2. Since the output of the channel is exponentially

distributed conditional on the input, the probability Pr (Vk,l < A, I Vk,I-1 E I11) is

bounded as

Pr (Vk,l < A, | Vk,1_1 E I1i1-n)

< exp

< exp

A, - Vk,_1

(n + 1) y2 + 1

(n + 2) y2 + n + 2

(n + 1)-X2 + 1
(C.1)

The derivative of the bound (C.1) with respect to n is given by

d [1 - exp ( (n+2)y2+n+2- exp ( (n+l)y2+1)I

dn

-4 exp (n+2)2+n+2
2+n-2+1 /

(72 + ny 2 + 1)2
(C.2)

When 72 > 1, the derivative (C.2) is negative for any n, the maximum value of the

bound (C.1) occurs at n = 0, and the probability Pr (Vk,l < A, I Vk,1-1 E I-1_n) is

bounded as

Pr (Vkl < A I Vk71_. E II-I-n) 1 - exp (-2);

When 72 < 1. the derivative (C.2) is positive for any n, the maximum value of the

bound (C.1) occurs at n = oc, and the probability Pr (Vk,l < A, Vk,I-1 E I1-1-n)

satisfies

Pr (Vk,l < A, I Vk,i c IG 1_-) < 1 - exp -2 +1)
x2
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Define 3 (2) as

1- exp(-2)

1-exp .2+

21

0 <2<1.

Then Pr (Vk,l < A, I Vk,i1i C I_-1-n) X / (2) for 72 > 0 and the bound does not

depend on the value of n. Hence,

Pr (VkI < A, I Vkll_1 < A,_ 1 )

=Pr (Vl < A, I V,
n=0

< 0 (y2)

1 C I_1-n) Pr (Vk,11 G I1-n)

Proposition C.1 Let the kth tone be a non-zero tone. Then the difference between

the random variable V,1 and the threshold A, is bounded

lim E [Vk,l - All] < oo.
1-+00

Proof: Using the Total Expectation Theorem., we rewrite E [lVk,l - AI] as

E [lVkl, - All] =

E [IVk,l - A, I1 Vk.l < A, 1 ] Pr (Vk,l < A,_ 1 )

+E [IVk,1 - All I VkIj C II] Pr (Vk, C I1)

+E [HVkl, - A| |1 Vkj > Al] Pr (Vk,l > A1) .

The inequality (C.3) is true if the following inequalities hold:

lim E [lVk, - A, I Vk,1 < At- 1 ] Pr (V .,

limn E [|Vk -Al| I Vk.1 C Il] Pr (Vk.C IG ) < oo,
i-mo
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(C.3)

(C.4)

(C.5)

0 (y2) ::I-

<A- < oc



and

in E [|Vk,l - AI | Vk., > A] Pr (Vl ;> A1) < oo.

We first prove (C.4).

By definition,

(Vk.l - A,) p (Vkal I Vk,l < A, 1 ) dVk.I
JVk. <I:F+-1

< Z(n+2) (y2 + 1) Pr (Vj E I-i1-n
n=O

I Vk,l < A, 1 ) , (C.7)

where (C.7) is obtained by upper bounding lVk,l - AI on subsets Vk. E G 1_..1

(C.7), the conditional probability Pr (Vk, E Ii-,-, I Vk,l < A,-) is equivalent to

Pr (Vkl G Ii-1n I V < Ai)
Pr (Vk,1 G Ii-1_n, Vk,l < A,_ 1 )

Pr (Vk,l < A,_ 1 )
Pr (VkI C I1_--n)
Pr (Vkl < A,_1)

In

(C.8)

where (C.8) is obtained because the event VkI < A,_1 is implied by Vk,j E 1 i_1-.

Further, the probability Pr (Vk,E 11_-) in (C.8) is bounded as

Pr (Vkl C I-1-n)

< Pr (Vkl < A,_1 _n)

< Pr (Vkl1n_1 < A-in.. Vk 1 < A>_1 _n) (C.9)

< Pr (VkIn_1 < AIn. .... Vkel < A_1-) (C.10)
n

< Pr (Vk,,i < Al-i I Vk.li_ < As_i) (C. 11)

< T n (C.12)

where (C.9) and (C.10) are derived by using A C B -> Pr (A) < Pr (B); (C.11) is

based on the Markov property of Vk,; (C.12) is attained by using Lemma C.I.
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Hence, by substituting (C.8) and (C.12) into (C.7). we have

lirn E [iVk.l - All| Vkl, < A- 1 ,] Pr (Vk,l < A,_ 1 )

l-1

<

< 00,

(n + 2) (T2+ 1) 0 (T2)n

which proves (C.4).

The inequality (C.5) is obviously true based on Vk,l E Ii.

Finally, we prove (C.6).

Again, we use the Total Expectation Theorem:

E [\Vkl -All | Vk,l > All

= E V.i-Al| \ X
n=- 1

xPr (4 =(n + 1) y2 Vl > A1),

where we consider all possibilities of the input xb. In (C.13), the conditional expec-

tation E (lVkl - All = (n+ 1)+ 2 , Vk > A,) is equivalent to

£ (|Vk,l - Al k x = (n + 1) >2 Vk, A,)

- E(Vkk ( ) x -__ 2 ,VkI> A, ) -AI

=(n + 1) X 2 +1,

and the conditional probability Pr (x 1  (n + 1)+ 2 Vk1 A1) is given by

Pr ( 2, = (n + 1) 2 ei;

Pr (x = (n + 1) >2 Vk,1 ; A,)
Pr (Vkl > A,)
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The probability Pr (x4 (n + 1) 2, Vk > A,) in (C.15) is bounded as

Pr (41 (n 1) 2 , Vk. > A,)

< Pr (Vk,u-a_1 < A,_I1n, .... Vki1- < Al_ 1) (C.16)
n

< Pr (Vk,l-i < A1 _, I Vk,-ui_1 < Aj_1_i) (C.17)

< 3 (x2)n, (C.18)

where (C.16) is derived by using A C B -> Pr (A) < Pr (B); (C.17) is based on the

Markov property of Vk.l; (C.18) is obtained by using Lemma C.1.

By substituting (C.18) and (C.15) into (C.13), we obtain

lim E [\Vk.l - A, I| Vk,l > Al] Pr (Vk,l > A,)
l->oo

< lim [(,n + 1) X2 + 1] 0 (2)n
n=O

< 00,

which proves (C.6).

Hence, (C.4), (C.5), and (C.6) are true and hence (C.3) holds. m
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Appendix D

Experimental Results

In this thesis, we have discussed theoretic principles underlying the wideband capacity-

achieving signaling schemes and proposed a family of Multi-tone FSK schemes de-

signed to achieve the wideband capacity limit. By using theoretical analysis and

numerical results, we have shown that the achievable data rate of Multi-tone FSK

can be very close to the capacity limit.

However, in general, a theoretically sound idea may not be implementable owing

to problems of over-simplified analysis, rough approximations, inappropriate assump-

tions, or unrealistic requirements on the system implementation.

In this appendix, we show some experimental results to endorse the Multi-tone

FSK scheme. By using the ultra-wideband platform provided by the Ultra-wideband

project in Microsystems Technology Laboratories at MIT [45], we have realized the

Multi-tone FSK transmissions in an indoor environment. Since this thesis is not an

experimental thesis, exploring performance of Multi-tone FSK to a full extend is out

of the scope of this thesis. The experimental results shown should be deemed as

demonstrations supporting our theoretical proposal.

D.1 Ultra-Wideband Platform

The ultra-wideband platform is divided into three distinct sections: the transmitter,

the receiver. and the baseband processing. The transmitter and receiver communicate
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through air using a wideband horn antenna.

The transmitted ultra-wideband signal is synthesized by using a programmable

4 GS/s arbitrary waveform generator (AWG) and a vector signal generator (VSG).

The arbitrary waveform generator generates a baseband modulated signal, and the

vector signal generator up-converts the signal to a center frequency of 5.355 GHz.

The analog bandwidth is 500 MHz, therefore the synthesized Multi-tone FSK signals

can at most occupy a bandwidth of 500 MHz. Figure D-1 is a simplified diagram of

the transmitter.

Baseband FSK signals

5. 3 GHz
2

Figure D-1: The transmitter used to test the Multi-tone FSK scheme

At the receiver, the received signal from the RF front-end is amplified by two

cascaded LNAs. Then the signal is split and applied to two identical passive mixers

which perform I/Q direct conversion. The baseband signal is filtered by low-pass

filters and amplified with an adjustable gain.

The baseband I and Q signals from the front-end are sampled by a dual-channel,

8-bit, 1 GS/s Analog to Digital Conversion (ADC) board that interfaces to a com-

puter directly through the PCI bus. The received baseband samples are buffered and

captured to a waveform file, later to be processed by baseband processing programs.

Figure D-2 is a diagram of the receiver. The gray block in the figure is the baseband

processing section implemented by software in a computer.

We use Matlab for the baseband processing. Once the sampled waveform files are

read into Matlab, virtually any baseband algorithm not requiring real-time control of

the system may be tested.
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500 MTIz ')< ......

-> ADC (a)(e

500 MHz (d)

- ADC (b

5. 3 Gfz -5

Figure D-2: The receiver used to test the Multi-tone FSK scheme

The baseband processing part for the Multi-tone FSK scheme is a bank of matched

filters as shown in the gray box in Figure D-2. The received baseband waveform is

correlated with the central frequency of each tone, and integrated over a symbol

time. Since all tones are orthogonal over a symbol time, the outputs of all matched

filters will be close to zero except the Q nonzero tones. The outputs are sampled and

decoded using a threshold detection rule.

Since the Multi-tone FSK signals are short sinusoid waveform pulses with a low

duty cycle, we don't do phase synchronization at the matched filters. The scheme is

noncoherent.

D.2 Coding and Decoding Scheme

The input of the arbitrary waveform generator at the transmitter is from the channel

coder: the channel coder generates a bit string which selects one of the (') symbols

and the arbitrary waveform generator produces the baseband waveform accordingly.

One important aspect in designing the channel coder for the Multi-tone FSK

scheme is the code scheme's ability to combat burst errors. Since (") is usually a

large number (Al is very large for wideband applications), one symbol error is likely

to cause a large number of bit errors clustered together.

We give an example of the coding and decoding scheme for Multi-tone FSK in
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Figure D-3 and D-4. The Serial to Parallel converter (S/P) in the diagram generates

a signal to choose the Multi-tone FSK symbol by mapping the bit sequence to one of

the ("') symbols. At the receiver side, if a symbol error occurs, the Parallel to Serial

converter (P/S) will produce a wrong bit string which may cause burst errors. Our

strategy is to use interleaving. The interleaver scrambles coded bits such that. after

de-interleaving at the receiver, burst errors will be scattered. Then trellis codes and

CRC codes can be used to deal with the non-burst errors.

Trellis0 110 1+-p CRC ----- Interleaving -o S/P +-a
EncoderNo

Figure D-3: An encoder for the Multi-tone FSK scheme

-o P/S -0- Deinterleaving - - De drN+ 01101

Figure D-4: The corresponding decoder for the Multi-tone FSK scheme

D.3 Experimental Results

In the following section, we show some of the experiment results attained in our

tests. These results illustrate some typical settings of the Multi-tone FSK scheme.

From the observations, we find that different tones experience different fading and the

fading coefficients dramatically change in time. It justifies our frequency selective time

varying fading channel assumption. Moreover, we caught some of the Multi-tone FSK

signals corrupted by unknown strong interference. The demodulation result shows

that the Multi-tone FSK waveform survived the severe scenario and was decoded

properly.

D.3.1 Multi-tone FSK Waveform

In Figure D-5, we plot baseband waveforms which were captured at the output of the

ADC (Point (a) and (b) in Figure D-2) when the receiver is demodulating Two-tone
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FSK symbols. The top waveform is from the I-Channel and the bottom waveform is

from the Q-channel.

In the Two-tone FSK scheme, the symbol time T is 1000 ns and the duty cycle

0 is 1/6. The baseband bandwidth is 500 MHz, and we use frequencies 5 MHz apart

(i.e., 5 MHz, 10 MHz, ..., 500 MHz). The value of M is 500 MHz/5 MHz = 100 in

the scheme and because it is a Two-tone FSK scheme, the value of Q is 2. The total

number of symbols is (Q) = 4950. The Two-tone FSK scheme uses a repetition code

with length N = 10.

E
a)

E

E

E

97.

-97.

19

97.

0

-97.

-19

I Channel

5 -

0P

5-

01 2 3 4 5 6
Time (ns) x 104

Q Channel
5

5

5 -

5

0 2 3
Time (ns)

4 5 6

x 104

Figure D-5: Baseband waveform of Two-tone FSK symbols

The Two-tone FSK waveform is showed in Figure D-5. A Two-tone FSK symbol

is a short pulse. Each pulse includes sinusoid waveforms with different frequencies.

The pulses in Figure D-5 have two frequencies: 5 MHz and 100 MHz. One symbol is

repeated over time to get time diversity. We magnify one pulse in Figure D-6 so that

we can see the 5 MHz component (the large wave) and the 100 MHz component (the
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short zigzags on the wave).

I Channel
117 - -- I

78 -

39-
E
4)

0 0

E -39

-78

-117 II

0 200 400 600 800 1000 1200
time (ns)

Q Channel
117

78-

39-
E

E -3

-78

-117,
0 200 400 600 800 1000 1200

time (ns)

Figure D-6: A Two-tone FSK symbol

Multi-tone FSK symbols are easy to generate: pick sinusoid waveforms corre-

sponding to the central frequencies and add them together. There are many off-

the-shelf components available on the market which make the implementation of the

Multi-tone FSK scheme very easy.

D.3.2 Frequency-Selective Time-Varying Fading

To demodulate symbols, the I and Q signals are correlated with central frequencies

and filtered. After that, the I and Q outputs are squared and power-combined. The

combined outputs (as shown in Figure D-7) are sampled with a period of symbol

time T,. Then the sampled values are cumulated over N repetitive symbols and the

averaged value is compared with a threshold to decode the symbol.
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The sampled outputs of the combiners are the received power of faded tones.

Their magnitudes are determined by the channel fading coefficients. In Figure D-7,

the sampled outputs (corresponding to the peaks) indicate that the 5 MHz tone and

the 100 MHz tone experienced time varying fading, because the output magnitudes

change very fast with time. Also, when we compare the values of these two tones at

the same time, we find the fading coefficients are different for these two tones, which

is an indication of frequency selective fading.

x10 5  5MHz

5-

4 --

3 -~

<2

1 -

00 1 2 3 4 5 6
Time (ns) X 104

x 10 5  100 MHz

2.5-

2-

1.5-
E
<1

0.5 - -

00 1 2 3 4 5 6
Time (ns) X 104

Figure D-7: Frequency selective time varying fading

Hence, it appears that our frequency selective time varying fading channel as-

sumption in the previous chapters is reasonable.

D.3.3 Strong Interference

Besides Two-tone FSK, we also tested Single-tone FSK, Three-tone FSK. and Four-

tone FSK on the platform. During the tests, we occasionally observed very strong
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unknown interference alongside the Multi-tone FSK waveforms (as shown in Figure D-

8). Not surprisingly, the interfered waveforms can still be demodulated properly. This

is because the Multi-tone FSK signals are peaky in time and frequency and not easily

to be submerged by interference. Even very strong interference is encountered and the

receiver is saturated so that the Multi-tone FSK waveforms are partially cut off, we

can still demodulate the tones correctly. The reason inhabits in the characteristic of

sinusoid waveforms: when a sinusoid waveform is cut off by saturation, the remainder

will still exhibit a very strong frequency component with the original frequency.

I Channel

' 195
E

0 0P

< -195

0 1 2 3 4 5 6
Time (ns) X 10,
Q Channel

> 195-

a)
S0

E
< -195

o 1 2 3 4 5 6
Time (ns) X 104

Figure D-8: Multi-tone FSK waveform corrupted by strong interference

Figure D-8 shows an interfered Four-tone FSK signal, the symbol time T, is 1000

ns and the duty cycle 0 is 1/6. The central frequencies remain the same (5 MHz, 10

MHz, ..., 500 MHz). The four nonzero tones are 10 MHz. 40 MHz, 60 MHz and 100

MHz.
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The waveform deteriorates badly due to the interference. The signals are almost

jammed. However, the demodulated waveforms (Figure D-9) are still good over the

period in which the interference prevails.
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0 1 2 3 4 5 6
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D-9: The demodulation
by strong interference
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results after the Multi-tone FSK waveform was cor-
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