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Abstract

We propose a real-time method for rendering rigid objects with complex view-dependent

effects under distant all-frequency lighting. Existing precomputed light transport ap-

proaches can render rich global illumination effects, but high-frequency view-dependent

effects such as sharp highlights remain a challenge. We introduce a new representation

of the light transport operator based on sums of Gaussians. The non-linear parame-

ters of the representation allow for 1) arbitrary bandwidth because scale is encoded as

a direct parameter; and 2) high-quality interpolation across view and mesh triangles

because we interpolate the average direction of the incoming light, thereby prevent-

ing linear cross-fading artifacts. However, fitting the precomputed light transport

data to this new representation requires solving a non-linear regression problem that

is more involved than traditional linear and non-linear (truncation) approximation

techniques. We present a new data fitting method based on optimization that in-

cludes energy terms aimed at enforcing good interpolation. We demonstrate that our

method achieves high visual quality for a small storage cost and fast rendering time.
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Chapter 1

Introduction

The quality of real-time rendering can be dramatically improved by precomputing

the interaction of an object with light. This however raises a formidable challenge,

the storage and re-use of data over a six-dimensional domain: two dimensions for

each of lighting (assumed to be at infinity), view direction, and surface position (See

Fig. 1-1). Current methods address this issue with compromises between bandwidth

(or sharpness) of the illumination effects, storage costs, and rendering time. In this

thesis we focus on view-dependent effects, such as glossy reflections or refractions,

since view-independent effects like shadows can be handled with known techniques

[22, 28]. View-dependent effects are harder to address because they involve variation

over the full 6D domain, and highlights can vary quickly over space and view direction,

which may result in cross-fading artifacts when linear interpolation is used between

views or mesh vertices. We introduce a method that affords arbitrary bandwidth for

view-dependent effects with a compact storage and real-time performances, at the

cost of a more involved preprocess.

Precomputed light transport techniques compute a pixel color at render-time

based on a precomputed approximation of the light transport operator, which evalu-

ates the contribution of all lighting directions for a given spatial location on a mesh

and a given view direction. Typically, the transport operator is represented by linear-

basis functions such as spherical harmonics or wavelets, and the number of coefficients

11



Geometry Reflectance Lighting Rendered Frame

Figure 1-1: The six dimensional domain of light transport. Two dimensions for each
of geometry, reflectance and incident lighting. Our technique precomputes a compact
representation of this 6D domain that allows rendered frames to be produced at real-
time frame rates. (Lightmaps @Paul Debevec)

directly constrains the sharpness of the effects that can be handled. Compression tech-

niques such as the non-linear truncation of linear basis [22] or the use of separable

approximations [19, 33] improve on both storage and computation, but the number of

coefficients required to handle high-frequency effects remains large and the rendering

cost is directly proportional.

In our work, we address these issues and present a technique that can achieve

high-quality view-dependent lighting effects at a small storage cost. We represent the

transport operator using sums of Gaussian functions defined on the sphere of direc-

tions corresponding to the environment lighting (see cubemap shown in Fig. 1-1).

The spherical Gaussians are parameterized by their color, mean direction, and vari-

ance. The non-linear effect of the variance parameter allows for arbitrary scaling of

the Gaussian functions, thereby affording all-frequency effects. The non-linear effect

of the mean direction parameter permits smooth interpolation across space (mesh tri-

angles) and view direction; and prevents cross-fading artifacts, in the spirit of Phong

interpolation. We typically use a small number of Gaussians, between one and three.

Finally, the representation can be easily evaluated at run-time using a mip-mapped

pre-filtered environment map where each level correspond to a Gaussian variance.

However, the price to pay is a more involved preprocess, since non-linear function fit-

ting is not as straightforward as linear projection or basis truncation. To address this

challenge, we introduce an optimization technique that ensures good approximation

12



Figure 1-2: Rendering of the Armadillo model with ~ 50K vertices and the Dane
model with 15K vertices. Full rendering frame rate for Armadillo is ~ 10Hz. Dane
renders at ~ 40Hz

as well as high-quality interpolation over view directions and mesh triangles. In the

end, the per-pixel interpolation of the Gaussian direction and variance is critical to

achieve high visual quality.

The three major contributions of this work are:

* We introduce a non-linear representation for light transport based on a sum of

Gaussians that is compact and leads to a fast integration with the lighting at

render time.

* Our representation affords high-quality interpolation across mesh location and

view direction, which facilitates rendering from arbitrary viewpoints and re-

quires only sparse sampling.

" We present an optimization approach to fitting Gaussian mixture models to

pre-computed light transport data. In particular, we include energy terms to

ensure good interpolation.

13



1.1 Related Work

Our work draws from a number of areas in computer graphics: scene relighting,

environment mapping, radiance transfer methods, and acquisition techniques.

Our work is also related to the non-linear Lafortune BRDF model [17], and it

requires a similar non-linear regression.

Scene Relighting allows the user to relight a fixed scene. Conceptually, scene

relighting algorithms precompute a separate global illumination solution per light

source. Linear combination of these results provides limited dynamic effects. Early

work [9] adjusts intensities of a fixed set of sources and is not intended to fit general

lighting environments. Nimeroff et al. [25] and Teo et al. [32] generalize to more

flexible emitters but are still limited to a fixed view. Dobashi et al. [8] use the

spherical harmonics basis and transfer vector fields over surfaces to allow viewpoint

change but restrict lighting changes to the directional intensity distribution of an

existing set of non-area light sources in diffuse scenes. Debevec et al. [6] relight faces

using a directional light basis.

The concept of relighting has also been used for texture maps. Malzbender et al.

[20] precompute a higher-dimensional texture, called a polynomial texture map, which

allows real-time inter-reflection effects as well as shadowing. A similar approach using

a steerable basis for directional lighting is used in [2].

None of these methods can deal with high-frequency reflections and offer only

restricted view-dependent effects.

Environment Mapping. Blinn and Newell[3] proposed environment maps to

approximate specular reflections. Later on, Greene [11, 10] observed that a precon-

volved environment map could be used to simulate diffuse and glossy reflections. Since

then, much research has been done in this area [12, 15, 27]. All these algorithms have

in common that no self-shadowing or indirect lighting is taken into account.

Precomputed Radiance Transport Methods permit the relighting of an ob-

ject with full spherical incident lighting. Sloan et al. [29] use the spherical harmonics

basis to represent how an object casts shadows and interreflections onto itself, called

14



precomputed radiance transfer. This work was limited to diffuse reflectors or to sur-

faces with Phong-like glossy reflections. Improvements have been presented to incor-

porate more complex BRDFs [16, 18], but the use of the spherical harmonics basis

limits these approaches to low-frequency incident lighting (memory consumption is

too high for high-frequency lighting). Even with compression [28] the lighting cannot

be very high-frequency.

Ng et al. [22] proposed to use non-linear approximation (truncated) of wavelets as

basis functions instead of spherical harmonics. With only about 100 coefficients, they

were able to incorporate high-frequency lighting effects (for diffuse surfaces or static

views only). The significant coefficients are selected based on the incident lighting,

which prevents the use of highly glossy surfaces; in this case, coefficients would need

to be selected based on the surface reflectance properties (transfer coefficients) and

not based on the lighting, otherwise reflections will show only an approximated light-

ing environment. Arbitrary BRDFs can be incorporated using a method to evaluate

triple product integrals [23] but with the limitation of direct lighting only. Arbitrary

BRDFs and wavelets can be combined using separable BRDF approximations [19, 33].

Here the basic technique is limited to single fixed BRDFs only (precomputation is

done on a per-BRDF basis; multiple BRDFs could be supported through running the

precomputation for all BRDFs but at the cost of high memory consumption). Fur-

thermore, high-frequency BRDFs can only be represented using prohibitively many

terms in the separable approximation [19].

The closest technique to our work is the recent method that Sloan et al. devel-

oped to deal with local deformations [30]. They represent the local effect of light

transport using a weighted sum of rotated zonal harmonics. This non-linear approxi-

mation to the transport is fitted using a greedy method combined with a local BFGS

optimization step [26]. Interestingly, the main goal of their work was the ability to

efficiently rotate the representation in order to handle geometric deformation, albeit

in the domain of low frequency lighting and transport. In contrast, we focus on

the representation of arbitrary-bandwidth view-dependent effects, which explains our

choice of Gaussians functions. The arbitrary rotation of zonal harmonics is similar

15



to the encoding of the mean direction of Gaussians in our work. Although this ar-

bitrary rotation provides the possibility for similar interpolation gains, they do not

take advantage of this in their work. Our approach also encodes scale as a non-linear

parameter, while zonal harmonics represent different frequencies using a linear sum

of basis functions. To further emphasize their restriction to low frequencies, we point

out that their lighting-transport integration is computed in the spherical harmonic

basis, which has been shown[22] to require large numbers of coefficents to represent

all-frequency lighting content. Thus, fundamentally they are limited to the same class

of low frequency transport functions as spherical harmonics. In fact, they require a

mulit-lobe fit to accurately represent an equivalent low frequency spherical harmonic

solution, and thus do not even gain compression efficiency over spherical harmonics.

The visual quality of all of the above techniques depends on the tessellation of

the model; high frequency effects require a fine tessellation or cross-fading artifacts

are visible. Our method lessens this requirement through non-linear interpolation of

transport functions, in contrast to linear blending used by all previous PRT tech-

niques.

Acquisition Methods deal with similar data, but instead of pre-computing

transport information, they infer it from real scenes. These approaches are quite

related to our work because a number of them use non-linear function approxima-

tion. We focus on such methods and omit techniques that mostly deal with the inverse

problem. The initial environment matting technique [34] describes the observation

in each pixel using only one 2D box function. This leads to a compact non-linear

representation based on the box coordinates and weight. This algorithm works well

for specular and refractive objects. Higher quality is achieved by replacing the box

functions with oriented 2D Gaussian functions [4].

The above methods assume a fixed viewpoint, i.e. their light transport represen-

tations are tied to a 2D plane. A hybrid method [21] combines a forward method [6]

for low-frequency components and high-quality environment matting [4] for high fre-

quency reflections and refractions. Data is sampled from multiple viewpoints and

combined with 3D geometry. Only one Gaussian is used for each type of allowed

16



(a) (b) (c)

Figure 1-3: Exit radiance is computed by the integrating transport function(a) with
incident lighting (b). (c) shows the pointwise multiplication of the transport function
and the lighting.

transport (i.e., reflection and refraction), which is interpolated for in-between views.

Rendering with this representation is done in software and does not achieve interactive

rates.

1.2 Review of Light Transport

Under the assumption that our object is not emissive, it is common to view light

transport as a linear integral operator [29, 22]. The light that arrives at our eye is

a linear transformation of the distant incident lighting. This operator T, which we

call the light transport operator, encodes the effects of the material properties and

light transport interactions between different patches of the objects surface. Thus

we can describe the exit radiance L0 (x, w0 ) at a point x (on the object) along the

outgoing (viewing) direction w, as the result of applying our integral operator T on

the (distant) incident lighting Li:

L,(x, w,) = (TLi)(x, w0 ) = iT,W,(wi)Li(wi)dwi (1.1)

where Tx,,, is the integration kernel of T, also called a transport function. For fixed x

and wO, T,,, is a 2-D function parameterized over the sphere S of incoming directions.

17



It describes, for each direction wi, the contribution of Li(wi) to the total reflected

radiance leaving x along w,. With

TX Wo ) = f,(wi, Lo)Vx(oi)(nx -wi), (1.2)

where wi is the incoming direction, nx is the surface normal at x, V, is a binary visi-

bility function, f, is the bidirectional reflectance function (BRDF), and substituting

for the integration kernel we can derive the familiar reflectance equation for direct

lighting [14]:

L,(x, w,) = f,(Wi, Wo)Vx(wi)(nx -wi) Li(wi)dwi (1.3)

However, the integration kernel Tx, is not limited to direct illumination, and can

describe many other complex transport effects such as interreflections, refraction,

self-occlusion, caustics, subsurface scattering, and other indirect lighting effects.

Unfortunately, direct evaluation of TLj (Equation 1.1) is infeasible (even assuming

distant lighting, light transport is 6-D) and fundamentally all previous PRT work

is concerned with approximating and compressing some slice of the light transport

operator. This thesis describes new methods for computing and approximating the

integration kernels Tx,, as well as efficiently integrating Equation 1.1.

18



Chapter 2

Method

As previously noted the key issue common to all PRT technique is the representation

of the light transport operator. There are several criteria used to judge the qual-

ity of any proposed representation: rendered visual quality, compactness, efficient

integration/evaluation, angular and spatial frequency bandwidth.

Our new representation is based on Gaussian function approximations. We first

introduce the representation for a given sample on a mesh and a given view direc-

tion. We next show how this representation affords high-quality interpolation between

views and spatial locations. We discuss the challenges raised by the estimation of the

model parameters and outline our optimization approach. Finally, we show how eval-

uation at render time reduces to simple look-ups on a pre-filtered environment map.

2.1 Light Transport Representation

We use a non-linear model [7] to represent the light transport integration kernel T.,

(see Sec. 1.2 for notation and review). In contrast to linear approximation, where

all data is approximated by a projection onto a fix set of basis functions (e.g. 5 th

order spherical harmonics), the parameters of our model have a non-linear effect on

the approximation. This is a significant difference with previous work based on non-

linear approximation [22] that start from a linear basis (e.g. Haar wavelets), and

truncate small coefficients. We approximate T, as a a sum of N weighted isotropic

19



1 term 2 terms 5 terms 10 terms

Figure 2-1: Multi-term approximations for three example transport functions. The
number of terms in the approximation increases left to right in each column, from
one to ten terms. The rightmost column shows the original transport data.

Gaussians:
N

Tx'U;0 )= Wk G(wi, pk, Uk), (2.1)
k

where G is a 2-D spherical Gaussian centered around Ik with standard deviation Uk

and weight Wk .

Our choice of a non-linear model such as Gaussians is motivated by three main

properties: Arbitrary bandwidth, good data approximation when using a small num-

ber of coefficients, and high visual quality of the interpolation between Gaussians.

In return, they require non-linear regression for the estimation of the parameters,

as described in Section 2.2. Non-linear models such as Gaussian functions have the

potential to better fit data with a small number of coefficients. when their functional

form is well-adapted to the problem at hand. In our case, we have chosen Gaussians

because they are smooth, have a compact set of parameters, have arbitrary band-

width, and approximate rendering data such as BRDFs well. The non-linear effect

of the variance Uk parameter allows for direct encoding of scale, thereby affording

arbitrary bandwidth. The non-linear effect of the mean direction Ipk permits better

interpolation and prevents cross-fading artifacts (see Fig. 2-2). However, when using

20
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Figure 2-2: This close-up of a sphere shows that the highlights contain detail finer
than the tessellation of the sphere would allow without our per-pixel interpolation of
Gaussian parameters.

multiple Gaussians, good correspondence needs to be ensured for good interpolation.

We discuss our solution below.

2.1.1 Sparsity & Interpolation

We have described how a Gaussian function approximation can represent the 2D light

transport integration kernel T,, at a given point x for a given view direction w,.

Conveniently, it also enables a sparse representation in the remaining four dimensions

for space and view direction. Key to this is the fact that interpolation of the Gaussian

parameters closely matches the behavior of integration kernels. In particular, the

non-linear parameters puk and Uk preserve the qualitative shape of the kernel across

interpolation which leads to a good visual reproduction of highlights. The quality

gained compared to the linear interpolation of the highlights is similar to the difference

between Gouraud and Phong shading.

In practice, we compute and approximate the transport functions T.n,, only at

21



vertices x, and only for a set of 92 fixed viewing directions V = {vj}, obtained

through subdivision of an icosahedron. Transport functions for other views or posi-

tions are not represented explicitly, instead we interpolate them from nearby samples.

2.1.2 Model Estimation

Our model requires non-linear parameter estimation for the variance, weight and mean

of the Gaussians for each view direction and spatial location. When using multiple

Gaussians, we must in addition ensure proper correspondence between neighboring

views and spatial locations.

We introduce an optimization technique that minimize the L 2 error with the data,

and that also includes energy terms that enforce correspondence between Gaussians

fit for neighboring views and mesh vertices. Ideally, we would run this optimization

globally over the whole mesh, but but for better scalability, we introduce a greedy

approach that flood-fills over the mesh. In addition, we can separate different com-

ponents of light transport such as refraction and reflection to better partition the

problem. Our non-linear parameter estimation is described in Section 2.2.

Method Overview An overview of our method can be found in Figure 2-3. Dur-

ing the preprocessing step, we simulate light transport using any existing technique.

We then fit our Gaussian model using a new optimization approach described in

Section 2.2. We store Gaussian parameters for each vertex and view direction.

At runtime, rendering is straightforward. The approximated and interpolated

transport function T.,v is integrated against the lighting. This turns out to be a fast

computation, since the integration of the individual Gaussians with the lighting can

be precomputed and stored as a mip-mapped environment map and only a lookup is

necessary at run-time. More details will follow in Section 2.3.

22



Preprocess

viewer

trace photons from viewer
(for each point and view)

record hits on
surrounding sphere

approximate with
sum of Gaussians

viewer

find three closest views lookup their Gaussialis interpolate Gaussian
parameters

exit radiance

lookup prefiltered lighting

Figure 2-3: Brief Overview. Path tracing is one method we have used to estimate
the transport function. We approximate a transport function for each view with
a sum of Gaussian functions. At run-time we interpolate the parameters from the
three closest views to the current view and perform a simple lookup in a Gaussian
prefiltered environment map.

2.2 Precomputation

Our precomputation proceeds in two steps: we first compute light-transport data for

all views and mesh vertices, and we next fit our Gaussian parameters using an opti-

mization approach. The first step is not specific to our technique and any rendering

approach could be used. Our contribution lies in the fitting of these data.

23
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2.2.1 Light Transport Data

We compute T, for each view w, and for each vertex x of the model. In practice,

we decompose T,, as a sum of three terms: direct glossy, indirect glossy, and direct

diffuse. We do not discuss indirect diffuse light transport as it is a view-independent

effect and can be handled efficiently in the reduced 4D domain (vs. 6D for view-

dependent effects). For high-quality data, we use an appropriate precomputation

method for each component; a common approach in path tracing implementations

[13]. Computing each component separately allows us to choose an appropriate cube-

map discretization size for each component independently and without consequences

or interaction between components. For example, the indirect components often con-

tain only low frequencies, which allows us to use smaller cubemaps (e.g. 6x8x8) than

the direct components, reducing storage costs and significantly accelerating precom-

putation time. The direct glossy and diffuse components are evaluated for each texel

of cubemap in a fragment shader. An indirect glossy component is computed by

BRDF importance sampled path tracing along each direction v E V onto point x and

recording the path until it is absorbed or reflected off to infinity where it is stored

in corresponding cubemap texel. Each of these processes produces a set of tabulated

transport operators Tx, sampled over the texels of a cubemap. These cubemaps are

the input to the next stage of precomputation, and core of our technique: non-linear

Gaussian parameter estimation through optimization.

2.2.2 Approximating Light Transport

The main goal of our non-linear optimization is to find the Gaussian parameters that

best fit the light transport data. In addition, when using multiple Gaussians to encode

the same component, we must ensure good correspondence across views and mesh

vertices. In particular, note that from a data fitting perspective, any permutation of

N Gaussians yields the same error. This is why we introduce additional energy terms

that favor consistent correspondences.

In practice, we concurrently fit the Gaussians across all views w, for a given vertex
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x using non-linear optimization [5] minimizing the following objective function:

min.,1 cD + OM + -V + 6S, (2.2)
k 'Uk v

where k = 1..N is one of the Gaussians, v is one of the 92 views, and fk and Uk are

the Gaussian parameters to be optimized. D is a data-fitting term, and the following

terms favor correspondences for the mean and variance across views, and finally across

spatial locations, as we describe below.

Data Term. The data term estimates the Gaussian parameters to approximate the

given transport function. The N term approximation is defined as follows:

SN

D :=ZI [ZwkG(wi, p/'", o*'") -Two (w,)12  (2.3)
WiES .k=1k 

k I-TX

The data term D minimizes the L 2 error between the data T and our Gaussian

function approximation EN Gk.

Alignment of Means. As we want to interpolate Gaussians across views, we make

sure that corresponding Gaussians in neighboring views have consistent means:

M := ||4'-p' 2, (2.4)
k=1 r(v)

where r(v) are the neighboring views of v. This equation says that the average mean

of the Gaussians of neighboring views should be similar to the mean for view v, which

encourages consistent means across views.

Alignment of Standard Deviation. This term is similar to the mean alignment

term M above; it forces the standard deviation of the Gaussians in view v to be

similar to the average standard deviation in neighboring views:

N

V := E |1 11 a o"'") - O' 11*"2 (2.5)
k=1 R r(v)
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Both of the alignment terms M, V are crucial for smoothly interpolating parameters

across views. In situations where visibility has caused views to have zero transport

data (and consequently zero weights Wk), the alignment terms help interpolation by

estimating Pk and Uk parameters that smoothly interpolate the neighboring parame-

ters.

Spatial Term. The spatial term ensures that the Gaussians of the current vertex

(for all views) have good corresponding Gaussians in (already processed) neighboring

vertices. Good correspondences means that the Gaussians for a vertex x are arranged

in a similar manner in neighboring vertices, as this will allow spatial interpolation of

Gaussians. We force this correspondence by making sure the relative arrangement of

Gaussians is consistent:

N-1 N
S : (,W"v W0oV (nov wo~v o26S := E E max ((-(pxk - pAxk 2 7 1

8(X),ki - IS(x),k 2 )3, 0) (2.6)
k1=1 k2 =ki s(x)

where x is the current vertex and s(x) are the neighboring vertices that have already

been processed. A positive dot product between the difference vectors of Gaussian

means it in neighboring vertices says the Gaussians are arranged in a similar manner,

whereas a negative product says that the Gaussians are flipped in some way.

Optimizing for the Gaussian parameters of all views and all vertices at the same

time is impossible due to the very large number of variables. Instead, we only con-

currently fit all parameters and all view at a single vertex. To make sure that spatial

consistency is attained nonetheless, we proceed as follows. We start with a single

vertex and optimize all its Gaussian parameters. After all its parameters have been

optimized, we process a neighboring vertex using the above spatial consistency term.

We continue processing neighboring vertices until all vertices have been processed

(which essentially "flood-fills" the mesh).
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Figure 2-4: A bird model with spatially varying material properties. The material
transforms from a diffuse yellow material at the feet to a highly specular green material
at the head. The tessellation of the model is low (-12K vertices), nevertheless the
reflections contain high frequencies due to our novel interpolation scheme.

2.3 Rendering

Rendering an object involves integrating the lighting Li(wi) with the (interpolated)

transport functions '',v(wi), see Equation 1.1. This integration has to be repeated

for every visible point x.

L,(x,w0 ) = j(wG(wipkco-) Li(wi)dwi (2.7)

We use well-known techniques to evaluate this integral with simple look-ups to

Gaussian pre-filtered environment maps [1].

The interpolation of the transport function is performed using barycentric interpo-

lation of the Gaussian parameters. The non-linear effect of these parameters ensures

high-quality rendering. At each of the three closest spatial samples x 1,2,3 (triangle
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vertices), we lookup the Gaussians for the three closest directions v1,2,3. Correspond-

ing Gaussians (see Section 2.2.2) at each vertex x, are interpolated [31] using the

barycentric weights. The resulting Gaussians at each xl,2,3 are then interpolated to

yield the actual function ', at position x. Section 3.2 gives practical details or our

implementation.

2.3.1 Spatially varying BRDFs

Our method of precomputation and rendering allows us to render objects with spa-

tially varying material properties. Fig. 2-4 shows an example of the tweety model

with a BRDF that blends from a diffuse yellow material to a specular green material.

We are able to accomplish such large range of variation because our representation of

the transport function (Gaussian parameters at vertices and views) does not rely on

any factorization of the space of transport functions (e.g. PCA or clustered PCA).

Instead, our parameters fully, and independently encode the transport for a given

vertex and view, and thus can change arbitrarily over the mesh. In addition, our

functions can have arbitrary bandwidth, consequently we are able to capture a full

range of transport effects, from diffuse to highly specular, on the same model.
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Chapter 3

Implementation and Evaluation

In this sections we describe our implementation and evaluate our results from a nu-

merical, visual, and performance perspective.

3.1 Precomputation

As noted earlier, it is necessary to compute the transport function at each vertex

and for a set of fixed view directions, specified in a global coordinate frame. In

practice we used 92 viewing directions, with on average 46 directions falling in the

upper hemisphere of any given vertex. The view directions are defined in a global

coordinate frame to simplify angular interpolation.

We decompose the transport operator into a diffuse (view-independent) compo-

nent and a glossy (view-dependent) component (see Fig 3-1). We represent the diffuse

component using 5th order linear spherical harmonics, however any other suitable

technique could easily be used (e.g. [22, 28]).

We optimize the objective function described in equation 2.2 and section 2.2.2. In

practice we use the MATLAB optimization toolbox routine fmincon. As non-linear

optimization is a compute intensive procedure, we used a cluster of 20 machines

to distribute the work. Typical precomputation times ranged from one to three

hours. Note that, in our implementation, transport functions are computed and
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(a) (b) (c

Figure 3-1: Decomposition of a (a) rendered frame into the (b) glossy component and
the (c) diffuse component.

approximated at the vertices of a mesh. It is possible to do the same computation on

a per-texel basis for texture mapped objects. This may be useful when one wants to

disassociate the sampling of geometry and light transport.

Data-Fitting Optimization Details We now describe the details of the imple-

mentation of the non-linear optimization used to solve the data-fitting term(Eqn.

2.3). The task is to find the set of parameters Wk, 1-k, and Uk that comprise the best

N-Gaussian least-squares approximation of the transport data T. We repeat Eqn.

2.3, omitting all references to vertex (x) or outgoing view (wo,):

N

D = E ll wkG(wi, pa, k)] -- T(wi) 12 (3.1)
WiES k=1I

Where G is a 2-d Gaussian function defined over the sphere S:

G(w, M, o-) = 1 2( [M(3)M)]T[M(w)-MI()]/2.2)
27ror

As mentioned in section 1.2, for a fixed vertex and outgoing direction, T is a 2-d
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spherical function which we have chosen to parameterize over the faces of a cubemap

(see Fig. 2-1). A direct consequence is that we must define a function M, that maps

the mean parameters Pk from 3-d into the cubemap parameterization. In addition,

M, defines a distance metric between arbitrary directions on the sphere. We defined

M, to unwrap a cubemap onto the cartesian plane with the origin lying at the center

of the face (of the cubemap) that contains point /t. Appendix A contains code for

the map function M,,.

Accelerating Data-Fitting. Eqn. 3.1 can be evaluated in O(IS x N) time, where

ISI is the discretization size of the cubemap (e.g. 6x64x64) and N is the number of

Gaussian functions used in the approximation. Unfortunately, non-linear optimiza-

tion is an iterative procedure, and our particular optimization often required several

hundred iterations to converge. Therefore we designed several input-sensitive algo-

rithms to evaluate Eqn. 3.1. Both algorithms rely on factoring Eqn. 3.1.

Algorithm 1 Let So = {wi E SIT(wi) = 0} be the set of directions that have a zero

transport function value and S3 = {wi E SIT(wi) h 0} be the set of directions with

nonzero transport, s.t. S = So + S3. For brevity, let Gk(wP) = wkG(wi, Ik, O-k) and

F(wi) = E_1 Gk(wi). Using this notation, we can separate the sum in Eqn. 3.1 into

two subsums over So and S3 respectively:

D = Z jF(wi) - T(wi)I|2 + S |IF(wi) - T(wi)II2 (3.3)
WWES DmEn

E IiF('i) 112 + E5 jF (wi) - T (wi)j112  (3-4)

S1 IF(wj)II 2 _ E IIF(wi)I112 -+ > 1IIF (wo) - T (wi)I112  (3.5)

= : JIIFQwi)I112 + 1:1 IF (w~) - T (wij)112 _ IIF(wi) 112  (3.6)
WiES iS

We have factored D into a summation over the entire domain S and a summation
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over the set of directions S3 with nonzero transport function T.

N

S flF(wi)|12 = IIE Gk(Wi)12 (3.7)
wiES wiES k=1

N N

= E E Gk(i)G (Wi) (3.8)
wiES k=1 j=1

N N

= E 1 Gk(i)G(wi) (3.9)
k=1 j=1 wiES

N N

=E 1 Iki (3.10)
k=1 j=1

Where Ikj is a closed-form solution of EliES Gk(wu)Gj(wi), computed by analytic

integration (with appropriate weighting for the giving cubemap discretization size).

Combining everything we arrive at this form of the data fitting term:

N N

D = E E Ik, + E lIF(wi) - T(wi)112 - |IF(wi)112  (3.11)
k=1 j=1 WiES3

which can be implemented in an O(N 2 + NIS31) time procedure.

Algorithm 2 We designed and implemented a second algorithm to evaluate the

data-fitting term (Eqn. 3.1). The idea of this algorithm is to again factor D,

D = E |HF(wi) 12 + E |IF(wi) - T(wi)|12  (3.12)
WiESO WiES:

and to directly evaluate the sum over So, however at a coarser discretization level

than the input cubemap. The general idea is to build a quadtree subdivision of each

face of the cubemap. A node of the quadtree is subdivided until the pixels of the

cubemap covered by the node contain entirely zero or entirely nonzero values. The

nonzero nodes comprise the set S3, while the zero nodes make up the set So. Eqn.

3.12 is evaluated over the respective sets, with directions in So being weighted by their

relative area with respect to the original cubemap discretization size. Algorithm 1

was less numerically stable than Algorithm 2, and thus in practice Algorithm 2 was
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preferred, despite any bounds on running time.

3.2 Rendering

// Vertex Program / Fragment Program
void inain( float3 main(

float4 position POSITION, float4 meanvar : TEXCOORDO,
float4 moan -var sTUICOORDO, float3 wt :TUXCOORD1,
float3 wt TEXCOORD1,

uniform samplerCUfll envmap
uniform float cubeaapsixe, niCOLOR
uniform float4x4 modelViewProj, {
uniform float3x3 lightMatriz, // do a lod texture lookup

out flo t4 oPos t POSITION, float4 C - texCUBUlod( envmap, mean var );

out float4 omeanvar : TUXCOORDO, // return weighted result
out float3 owt : TZXCOORDI ) return (C.xyz * wt),
float3 m float v;
oPos - mul(modelViewProj,position);

// rotate mean dir with lighting
m = nul(lightmatrix, meanvar.xy. )j

// find the mip-map level
v - log2 (max (meanvar .w*cubeMapSime, l))

owt - wt?
//pack the mean and var into one texunit
omeanvar - float4(m.x,m.y,m.x,v);

Figure 3-2: Vertex and fragment shader code.

Rendering is simple, with the majority of the computation occurring in vertex and

fragment shaders. In practice, we have implemented the interpolation across view in

a vertex shader, and the interpolation across triangles in a pixel shader (Fig. 3-2 gives

sample shader code). The integral of the interpolated Gaussians with the environment

map is a simple mip-map look up to a pre-filtered environment cube. The per-pixel

interpolation of the Gaussian direction and variance is critical to achieve high visual

quality. The CPU is only used to locate the data for the three nearest views of each

vertex and pack it into vertex buffer objects to be sent to the GPU. In fact, even this

stage could be accomplished on the GPU by adding several texture look-ups to the

vertex shaders. The main bottleneck of our implementation is the data transfer from

the CPU to the GPU. Despite the unoptimized rendering code the glossy rendering

code still achieves frame rates of greater than 60Hz for modest sized models ( 10-

30K vertices ) and the combined spherical harmonics and glossy component can be

rendered at 30-40Hz.
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Figure 3-3: Visual and error analysis of three typical transport functions and their

approximations. Top row of each subfigure shows from left to right: un-approximated
data, Gaussian Approximations using 10 Gaussian lobes, non-linear wavelet approxi-
mation using the 70 largest coefficients, and 10th order Spherical Harmonic approxi-
mation. Graphs shows percentage L2 error as a function of number of Gaussians and

the equivalent number of wavelet and spherical harmonic coefficients.

3.3 Error Analysis and Comparisons

We demonstrate the expressive power of our model by calculating the relative L2

error of approximated transport functions using our Gaussian representations, non-

linear Haar wavelet approximation[22] and spherical harmonics(SH). We choose not

to compare directly with zonal harmonics(ZH) [30], as ZH are a subset of SH. One

might argue that the non-linear fitting of ZH used in [30] may add more expressive

power to ZH, however it should be noted that ZH are band-limited in the same way as

SH. Thus, high frequencies require higher-order ZH, which is prohibitively expensive

at rendering time.
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Figure 3-3 shows relative L2 error for three examples: A small symmetric glossy

lobe, a large lobe with visibility, and a highly anisotropic, highly specular lobe. A fair

comparison of representations as different as non-linear Gaussians and truncated Haar

wavelet is difficult. We have chosen to take into account the number of coefficients

used in the representation. In practice, our Gaussians are represented using seven

floating point values: three for RGB weights, three for a mean, and one for variance

(see equation 2.1). We therefore decided to compare a one-Gaussian approximation

with seven-coefficient truncated Haar and spherical harmonic approximations. Note

that this is far from an optimal encoding of Gaussians, but it was chosen for simplic-

ity. In addition, Haar encoding might require more RGB coefficients. The situation

for zonal harmonics is a bit more complicated as they have the ability for multi-lobe

approximations. However, since zonal harmonics are bandlimited, we feel it is suf-

ficient (in terms of accuracy of the approximation) to compare only with spherical

harmonics. As such, the number of parameters was determined based on a standard

SH representation. Despite this generous allotment of coefficients, it is clear from

Fig. 3-3 that the Gaussian representation is superior both in terms of L 2 error and

smoothness for such a small number of coefficients.

3.4 Visual quality

Next we demonstrate the visual accuracy and quality of our model. Fig.3-4 shows

renderings of the alum-bronze and acrylic-white acquired materials[24] rendered using

our technique and ray-traced. The BRDF model used in the precomputation stage

was the same as that used to render the ray-traced images. Results are shown using

a single Gaussian lobe, rendered at frame rates above 60Hz.
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(a) (b)

Figure 3-4: Comparison of our method(left) and ray-traced image(right) for two dif-
ferent BRDFs. Images were rendered using a single Gaussian for the glossy compo-
nent and 5th order spherical harmonics for the diffuse component. Reference Images
courtesy A. Ngan [24].

Our Method Prefiltered Environment Mapping

Figure 3-5: Comparison of our method and prefiltered environment mapping [12, 15,
27] for two different views of the tweety model. Environment mapping can produce

strong highlights in shadowed regions because it ignores visibility, while our method
correctly clamps shadowed highlights.
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The most important aspect of any rendering technique is the quality of the final

images. The non-linear effect of the Gaussian mean direction and variance allow for

high-quality interpolation across view and triangle. The gain is similar to that of

Phong interpolation, but we additionally encode visibility and indirect effects. Fig-

ure 2-2 demonstrates that fine highlight details are captured using a sparse sampling

in both the view directions and mesh location.

In order to test the visual effect of including visibility in the precomputation

stage of our method, we choose to compare images rendered with our method to

images rendered by a prefilitered enviroment mapping [12, 15, 27] style technique

that ignores visibility (shading is dependent on surface normal orientation only). Fig.

3-5 shows two sample frames. As is to be expected, removing visibility causes cases

where highlights appear in shadowed regions of the object. In contrast, our method

correctly removes the shadowed highlights.

In our experience, one Gaussian per transport component is usually enough to

obtain high subjective quality. While the numerical gain is significant for the follow-

ing Gaussians, the visual gain is not as high, probably partially because the visual

complexity makes it harder to assess the complex reflection patterns. For practical

purposes, we advocate the partition of light transport into multiple components when

possible. The coherence terms in the optimization perform well, but we have some-

times observed Gaussian flipping, especially at the end of the mesh flood fill when

neighboring vertices favor incompatible constraints. We believe that an additional

relaxation step can improve results.
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Chapter 4

Conclusions

This thesis has presented a real-time method for rendering static objects under dis-

tant all-frequency lighting, which captures view-dependent effects at a small storage

cost. Our method is based on a non-linear representation of light transport based on

Gaussian function approximations. This representation presents several advantages.

It is compact and thus requires only modest storage and memory requirements. Our

method can capture arbitrary bandwidth transport effects which allows us to render

models with spatially varying material properties, from very diffuse to very specular.

Unique to our representation is the ability for high-quality interpolation of spatial and

angular content, drastically reducing the tessellation requirements of the input geom-

etry. We have presented an optimization approach to fit the Gaussian parameters

to light transport data. We have taken care to accurately model transport functions

while simultaneously achieving good correspondences across view direction and mesh

location. The rendering phase of our technique involves simple shaders and it achieves

high quality and high performance.

In the future, we would like to extend our system to dynamic scenes based on

a similar representation. Furthermore, we are interested in removing the restric-

tion to distant lighting, which raises critical challenges to address the resulting high-

dimensional space.
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Chapter 5

Appendix A

Code for map function M, defined in Section 3.1.

typedef enum CUBEMAPFACE {X.POS=O, XNEG, YPOS, YNEG, Z_POS, ZNEG} CUBEMAPFACE;
static float FACESIGN[] = {i.f,-l.f,i.f,-i.f,i.f,-l.f};
static unsigned int FACECOORD[] = {0,0,1,1,2,2};

// Map function - maps a 3d point 'in' onto face 'face'
void Map( const Vec3f &in,

Vec2f &out,
const CUBEMAPFACE face

{
CUBEMAPFACE a = FindCubeFace(in);
Vec3f temp = in/fabs(in[FACECOORD[a]]);

float v = FACESIGN[a]*FACE-SIGN[face];
float t = v*temp[FACE-COORD[a]];
temp[FACE-COORD[a]] = (-v*temp [FACECOORD [face]]) + (2*FACESIGN[a]);
temp[FACECOORD[face]] = t;

switch (face)

{
case XPOS:
case XNEG:

out[0] = temp[2]; //z
out[1] = temp[l]; //y
break;

case YPOS:
case YNEG:

out[Ol = temp[O]; //x
out[1] = temp[2]; //z
break;

case Z-POS:
case ZNEG:

out[O] = temp[O]; //x
out[1] = temp[l]; //y
break;

}
}
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// find the face of the cubemap that
// the 3d point 'v' project onto
CUBEMAPFACE FindCubeFace(const Vec3f & v)

{
Vec3f t = v;
t.normalizeo;
Vec3f a = t.abso);
float m = a.maxo);
int i=0;
for(;i<3;++i)

if(a[i] == m)
break;

return (CUBEMAPFACE) ( 2*i + (t[i]<0?1:0) );
}
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