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Abstract

Micromechanical circuits such as MEMS switches, tunable capacitors (varactors) or reso-
nators in general have lower loss and consume less power than their CMOS counterparts
and have seen an increase of applications in high-value communication systems as well as
low-cost commercial communication networks. Significant advances have been made in
the areas of MEMS switches. However, MEMS resonators that operate in GHz range,
have high quality factor and are highly tunable are still under active pursue. In this thesis,
we study the design of a tunable capacitor that can be integrated with a resonant cavity to
form a tunable electromagnetic cavity resonator. The design, fabrication, modeling and
testing of a proof-of-concept MEMS tunable capacitor are presented.

The tunable capacitor consists of a circular fulcrum that acts as a pivot for a thin silicon
plate. The outer plate is an electrostatic, circular zipping actuator that bends the center
plate through the fulcrum. By doing so, it opens the gap of the capacitor, which is formed
by two smooth surfaces, one being the center plate, that are initially separated by a dielec-
tric layer. The design is enabled mainly by the deep reactive ion etching and anodic bond-
ing microfabrication techniques.

The structure of the device is modeled using both numerical methods with Matlab bound-
ary value problem (BVP) and finite element analysis with ANSYS. The Matlab results
match well with the ANSYS results for the before pull-in and the zip-in actuation stages.
The Matlab model is used to perform parametric design studies.

Two types of assembly methods are used to construct the final devices: wafer-level and
die-level. Depending on how they are assembled, the devices operate in different actuation
stages. A laser interferometer system is used to measure the center displacement of the
plate and an impedance analyzer is used to measure the capacitance change. Testing
results are comparable with the ANSYS simulations.

Based on the lessons learned from the proof-of-concept tunable capacitor, a design of the
electromagnetic cavity resonator with an integrated tunable capacitor is proposed.
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Chapter

1
Introduction

In this thesis, design, fabrication, modeling and testing of a proof-of-concept MEMS tun-

able capacitor are presented. The capacitor, together with a separate project on an exter-

nally actuated, tunable cavity resonator, is originally a joint effort in the development of a

MEMS tunable electromagnetic cavity resonator. The idea of such a cavity resonator is

inspired by the Nanogate and the electrostatic ziping-actuated micro relay, two devices

that have been developed in our group. In this chapter, we will first elaborate on our inspi-

rations for a cavity resonator and motivations for developing the tunable capacitor. And

then literature research on tunable capacitor as well as resonators will be presented.

1.1 The Nanogate

The concept of implementing a tunable capacitor with circular zipping actuation traces

back to a micro fluidic valve developed by J. White in our group [1]. The structure of the

valve is dubbed "the Nanogate." It is a silicon-based MEMS device capable of nanometer-

scale control over separation of two mm-scale polished surfaces. The separation between

the surfaces can range from contact to several microns, controllable with nanometer reso-

lution.
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The function of the Nanogate can be illustrated by the two cross-sectional schematics

as shown in Figure 1.1. In the figures, the axis of revolution is through the center of the

device. The device comprises a circular silicon diaphragm that is supported by a circular

fulcrum as shown in Figure 1.1 a). The fulcrum acts as the torsional spring and allows the

diaghragm to bend when a deflection is applied on the periphery by an external piezoelec-

tric servo actuator, as shown in Figure 1.1 b). The center boss is hence lifted away from

the glass base, creating a fluidic path. The device is fabricated by anodically bonding an

etched silicon wafer to a Pyrex glass substrate. The lever-fulcrum action of the structure

allows precise control of the gap opening. The opening and closing motion of the Nan-

ogate has been measured in increments as small as 2.4 nm, the resolution of the laser mea-

surement unit [2]. A capacitor sensor that measures the gap separation by detecting the

capacitance change has also been developed in the group [3].

a) b)

No Appied DeNcion 
ScnApplied DeDnon

rOe hasparke dtheh u -aon Periphery
Silicon Diaphs n zPpezpsleglrac Semo Silicon Diaphgrat
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Pyrx 7740 Base Par wit e

Oplical Probe ~ 5mm
Innteewwroriet4-

Figure 1. 1. Operation principle of the Nanogate showing a) undeflected mode and b)
deflected mode. (Courtesy of J. White)

The observation that the high-aspect-ratio gap of the Nanogate can be precisely con-

trolled has sparked the idea of a high tuning-ratio capacitor. A laterally-moving electro-

static zipping actuator using two opposing actuation surfaces etched with deep reactive

ion etching techniques designed to actuate a micro relay was also developed in our group

[4]. Combining these two ideas, a tunable capacitor with embedded actuator becomes a
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Section 1.2: Electrostatic zipping actuator for a tunable capacitor

solid concept. In the next section, we will explain how the device could be transformed

from a micro fluidic valve to a tunable electronic device.

1.2 Electrostatic zipping actuator for a tunable capacitor

The Nanogate valve uses an external piezoelectric actuator to apply a deflection to the

periphery of the circular lever. While this is acceptable for a valve which will be installed

in a much larger system, an external actuator will not be practical for a tunable capacitor

that will be used inside a wireless transceiver, for example. If the actuator can be embed-

ded into the device, lots of space can be saved. This can be best done by using the silicon

diaphragm as an electrostatic zipping actuator.

It follows that we can design a capacitor that is formed by two smooth surfaces ini-

tially separated by a dielectric layer. It can be tuned by applying voltage to a zipping actu-

ator that is electrically isolated from the capacitor. The actuation causes one capacitor

surface to pry apart from the other and controls the gap between the surfaces in the

nanometer range. Furthermore, it is possible to integrate an inductor within the device to

form an integrated LC tank. A preliminary concept is shown in Figure 2, where a variable

capacitor is located at the center of the device. A single-turn inductor is embedded in the

lever-fulcrum structure. The inductor operates as a resonant cavity, with a Q on the order

of a hundred.

Electrostatic Zipper 8C

Variable Nn -

Capacitor inuOtr

Figure 1.2. Schematic of the conceptual design of the tunable LC tank. (Courtesy of J. White).
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The concept of an integrated, electrostatically actuated tunable capacitor and that of an

electromagnetic resonator tuned by external piezoelectric transducer are being studied

independently. In this thesis, only the tunable capacitor will be presented. We will intro-

duce briefly the work of the resonator using a single-turn, toroidal inductor by another col-

league. In the following sections, we will explore the applications for a tunable capacitor

and a tunable LC tank or resonator.

1.3 Magnetically Coupled Electromagnetic Cavity Resonator

The quasistatic electromagnetic cavity resonator consists a parallel-plate capacitor sur-

rounded by a single-turn, toroidal inductor. It is fabricated using processes such as KOH

etch, shallow reactive ion etch, sputtered gold metallization and thermal compression

wafer bonding [5].

Figure 1.3 shows a cross-sectional view of the concept of the cavity resonator. The tor-

oidal cavity is formed by joining two KOH-etched wafers using thermal compression

bonding of gold surfaces. Gold covers the entire the cavity for high-Q operation. The cen-

ter capacitor plates are pushed to close the gap by an external piezoelectric transducer.

Experiments showed that the resonator exhibited Q ranged from 110 to 240 with a fre-

quency tuning range from 2.5 GHz to 4.0 GHz. However, because the current design uses

a wire loop to magnetically couple the EM field in the cavity, it requires a delicate pick-

and-drop process, which limits the practicality of the design. What can be done to improve

the function of the device include 1) use electrical coupling to the capacitor instead of

magnetic coupling through wire loop and 2) incorporate an integrated tunable capacitor to

replace the external transducer.
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SI

Figure 1.3. Cross-sectional schematic of the cavity resonator with magnetic coupling [5].

1.4 Tunable capacitor

A tunable capacitor (or varactor) is a widely used component in transceiver circuits for RF

communication devices. Its applications include low noise amplifiers, band pass filters,

voltage-controlled oscillators (VCO), etc. Traditional solid-state varactors are made with

p-n or Schottky-barrier junction types of semiconductor structures. A voltage bias applied

to the p-n or Schottky diodes modifies the charge in the junction and hence changes the

junction capacitance. These kinds of solid-state varactors, however, have large losses and

a low tuning range (typically 30% or less), which are often the limiting factors in RF cir-

cuit design [6]. As the RF electronics consumer market continues to grow, there is a clear

demand for new generations of consumer electronics to operate over a wide variety of

Internet Protocol networks and standards, and as a result, they must possess multimode,

multiband capabilities [7]. One solution that could make a frequency-hopping transceiver

design a reality is to develop a new generation of tunable capacitors that have a large tun-

ing ratio, high quality factor, linear response to RF power, low power consumption, and

occupy a small space. Tunable capacitors fabricated with MEMS technology have shown
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many merits in this respect.

MEMS tunable capacitors are mechanical devices that use various actuation methods,

such as electrostatic or thermal actuation, to physically move the position of the plates or

the dielectric constituents of a capacitor. For a parallel plate type of capacitor, if we define

the plate area as A, the gap between the plates as g, and the permittivity of the media

between the plates as c, then the capacitance is expressed as,

C6A c~s- (1.1)
g

If we define the unbiased capacitance as c,, and the capacitance after tuning as c, ,

then the tuning range is defined as [6],

C-C C (1.2)
C, C,

and MTR is the maximum tuning range that can be achieved with the tuning capacitor.

Another commonly used measure of capacitance change is the capacitance ratio, which is

defined as the ratio of Cf: C;.

For a resonator with an inductor L and a capacitor C in series or in parallel, the reso-

nant frequency is coo -- L. If we would use this resonator for the application of Ultra

Wide Band (UWB) communication, which requires tuning from 3.1-10.6 GHz with a 500

MHz band, we would need a tuning range of the capacitance that exceeds 11. Such a tun-

ing range is impossible with solid-state varactors, but within reach using MEMS technolo-

gies. However, the figures of merits of a tunable capacitor include more than simply the

tuning range. The Quality factor Q, which determines the loss of power in the device, is
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critical to the performance of any band pass filter or VCO. Q is directly related to the par-

asitic resistance R in the circuit for series and parallel LC resonators respectively,

Qseries = (1.3)
o),, R C

QPar,le, = w, R C (1.4)

Furthermore, it is also desirable for the capacitor to attain linear response or remain

constant to RF power. In summary, it is important to evaluate the overall system perfor-

mance when designing a tunable capacitor component.

Reports on MEMS tunable capacitors with tuning range greater than the traditional

solid-state varactors have proliferated in recent years. A few of the papers also demon-

strated the system performance of tunable filters or VCO's using MEMS tunable capaci-

tors. Tunable capacitors can be roughly grouped into two types, analog-tuned and digital-

tuned. Three different technologies are identified so far for building these capacitors:

based on parallel-plate approach (by changing the vertical gap), interdigital design (by

changing the horizontal gap), and fixed capacitor with switch (digital) type [8].

1.4.1 Analog-Tuned Capacitors

We will show examples of analog-tuned capacitors and summarize the findings of part of

the vast amount of literature available on this topic using a chart.

Young & Boser reported an electrostatic-actuated analog-tuned capacitor with two

parallel plates as shown in Figure 1.4 [9]. The actuation voltage was 5 V but a tuning

range of only 16% was achieved. They later integrated the capacitor and an off-chip

inductor and demonstrated a functional VCO with frequency tunable from 707 to 721

MHz [10]. Dec & Suyama reported a three-plate analog-tuned capacitor with 2-4 V actua-

tion voltage and a tuning range of 1.87 [11]. The schematic of the capacitor is shown in
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Figure 1.5. The VCO circuit built using this capacitor and a spiral inductor achieved a

quality factor of about 20 at 1-2 GHz [12].

Figre S..parrpte abe aacti g Fi. T r plate tspaitg
AIR - 0 _ _ _ PhClweskst k/ x'Ikt2

byAL YId, &+ Bose. D c &+uaa

HungaLda si uaio(nFsa edpplat fe

Sw~Fixed

Fxdplate

Figure 1.4. Parallel plate tunable capacitor Figure 1.5. Three-plate tunable capacitor by
by Young & Boser. Dec & Suyamna.

Hung and Senturia conducted simulation and shape-optimization for an electrostatic

zipping-actuated tunable capacitor [13]. A cantilever type zipper actuator is used and

capacitance tuning is achieved in the zipping regime, as shown in Figure 1.6. By chang-

ing the shape of the bottom electrode, it is shown that optimized performance of the capac-

itance, such as linear C-V characteristics, or linear f-V characteristics, can be achieved.

Hung reported an automated procedure for simulation, optimization and layout for the

design of the bottom electrodes. The simulation was done using a finite-difference approx-

imation. Using his method, the layouts for the bottom electrodes for three different optimi-

zation criteria are shown in Figure 1.7. The simulated performance is plotted in Figure 1.8.

A chart is used to summarize the published tuning capacitors as shown in Figure 1.9.

The maximum and minimum capacitances for analog-tuning capacitors are plotted against

maximum actuation voltage, comparing the different actuation method.
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Cantilever Botttom conductor

Insulator

(a) Cantilever bending (before pull-in)

(b) Cantilever tip pull-in

Zipping motion

(c) Zipping regime

Figure 1.6. Zipper actuator operation with increasing voltage.

17[A1iTA1FEFI

(a) (b)

[iLi7~HI
(c)

Figure 1.7. The shapes of the optimized bottom electrode for (a) linear C-V characteristics,
(b) linear f-V, and (c) maximum tuning range.
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Figure 1.8. Simulation results of the tunable capacitor using the shapes in Figure 1.7, showing
(a) C-V and (b) f-V characteristics.
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1.4.2 Digital-Tuned Capacitors

We will also show examples of digital-tuned capacitors and compare them with the ana-

log-tuned capacitors.

Goldsmith et al from Raytheon Systems Corporation reported an RF MEMS variable

capacitor with a 22:1 tuning range with digital capacitance selection, using bistable

MEMS membrane capacitors with individual tuning ranges of 70:1 to 100:1 [26]. A cross-

section of the individual capacitor in both actuated and unactuated states is shown in Fig-

ure 1.10. The substrate is high resistivity silicon substrates (>10 kQ cm) to reduce para-

sitic loss. The buffer layer is a 1 pm thick silicon oxide layer. The bottom electrode is a

layer of refractory metal less than 0.5 tm thick to provide good conductivity as well as

smooth contact surface. The interconnects are 4 tm thick aluminum and the membrane is

a thin aluminum layer less than 0.5 pm thick for good conductivity and mechanical prop-

erties. A top view of the capacitor is shown in Figure 1.11. The capacitor has a ratio of on-

state to off-state capacitance range from 70:1 to 100:1, a pull-in voltage range from 30 to

55 V, and a switch time range from 3 to 6 ps.

MetallIc M ran Top View
Thick Metal

Diewo Lw Electrode Membrane

Undercut
Access

SIgnu Holes

Electrode

Dielectric
IN

Figure 1.10. The Goldsmith bistable capaci- Figure 1.11. Top view of the fabricated
tor. capacitor.

A varactor is constructed using these switchable MEMS capacitors as the control ele-

ment. The configuration for a 6-bit varactor is shown in Figure 1.12. Each bit contains one
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or more MEMS capacitors in series with a fixed capacitor, which is used to yield the

desired capacitance for each bit. In this example, the bits contain 16, 8, 4, 2, 1 and 0.5 pF

of capacitances. Each capacitor is actuated by a control voltage, which is decoupled from

the RF signal through a 5 kW thin-film resistor. The capacitance of the varactor ranges

from 1.5 pF with none of the bits actuated to 33.2 pF with all of the bits actuated. And a

linear capacitance response in between these two values is obtained. The quality factor of

the varactor is less than 20 at 1 GHz. The same group later demonstrated a 4-bit capacitor

for 6 pole tunable filter using the same technology [27]. Goldsmith's example showed one

of the early efforts in achieving desired capacitance characteristics by optimizing the cir-

cuit design. However, a high actuation voltage and low quality factor were the limiting

factors for wider applications of the bistable membrane capacitor.

keauphig

Figure 1. 12. Configuration of

GA Pr

4A PF

I-

74 p

:F~p

DC

the variable capacitor using individual MEMS capacitors.

Rizk and Rebeiz reported a digital type RF MEMS switched capacitor built in a CPW

configuration [28]. A 2-bit capacitor array is constructed using the switched capacitors. In
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this design, a MEMS shunt bridge is fabricated over an MIM capacitor that allows for high

capacitance ratio and also ensures a fixed down-state capacitance. A cross section of the

switched capacitor is shown in Figure 5. Here the substrate is a 400-pm thick high-resis-

tivity silicon wafer (2-3 kn cm). The pull-down electrodes are 0.6 pm thick layer of Ti/

Au/Ti layers. The dielectric is 0.2 pm thick silicon nitride. The MEMS bridge is fabricated

using a 0.8 pm thick sputtered layer of gold using PMMA as sacrificial layer. The center

conductor, the ground planes and the anchors are electroplated with 2 pm of gold. A 2-

bit digital capacitor array is constructed using 300 fF and 600 fF switched capacitors. An

equivalent circuit model is shown in Figure 6. The array is suitable for a digital tunable

matching network at 0.5-3 GHz.

Z. ,
Bump MIM capacitor

MEMS bridge ,,Cl ,C

Figure 1.13. Cross section of the CPW shunt MEMS Figure 1.14. 2-bit circuit model.
switched capacitor.

Hoivik et al. reported a digitally controllable variable capacitor [29]. In this case,

electrostatic actuation is used for analog tuning of the capacitor. Individual capacitor

plates are connected to the bond pads using beam flexures of different widths as shown in

Figure 1.15. As applied voltage is increasing, the top capacitor plates move towards the

substrate in a cascading manner depending on the stiffness of the individual support beam.

The device is fabricated using MUMPs technology. It includes three layers of polysilicon,

two layers of oxide and one layer of gold. A plot of the capacitance ratio vs. voltage is

shown in Figure 1.16.
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Figure 1.15. Top and cross-sectional view of
the capacitor.

Figure 1.16. Capacitance ratio vs. Voltage.

In general, analog-tuned capacitors use lower actuation voltage and allow continuous

frequency tuning; however, they possess lower tuning ranges than digital-tuned capaci-

tors. On the other hand, digital-tuned capacitors have lower quality factors, and a lot of

research effort will still be needed in achieving the desired frequency characteristics.

1.5 Integrated LC Resonator

Although a lot of work has been done to improve the performance of tunable capacitor

with either analog- or digital-tuned functions, few paper reports on integrated LC resona-

tor on a chip. This is because on-chip spiral type of inductors are often very lossy due to

large resistance resulted from long spiral wires. Ketterl et al. reported a micromachined

tunable CPW resonator which consists of a CPW spiral inductor with an electrostatic zip-

36
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ping cantilever type tunable capacitor [30]. Frequency tuning between 3 and 7 GHz was

achieved with 40 V actuation voltage. However, the quality factor was between 17 and 20.

There is a demand for a high-Q, highly tunably LC tank, conceivably in the wireless com-

munication applications.

Portable wireless communication transceivers today continue to rely on off-chip reso-

nator components (e.g., Surface Acoustic Wave, or SAW, filters) for high frequency selec-

tivity and low noise performance. However, these off-chip passive components often

occupy substantial space and consume substantial power. In a RF front end receiver, for

example, a voltage controlled oscillator (VCO) generates a design frequency that upon

mixing with the pre-filtered and amplified incoming radio signal, down converts the high

frequency carrier signal to intermediate frequency (IF) before further signal processing.

Currently, this is commonly done using off-chip LC tanks, and a charge-pump PLL (phase

lock loop) implemented with an off-chip crystal frequency reference is needed in order to

control the frequency and reduce phase noise. There could be substantial advantage in

replacing the off-chip LC tank with IC-integrated on-chip LC tank in terms of space and

power consumption. It is foreseeable that the RF transceiver architecture we use today will

have to be re-designed to maximize the use of micromechanical circuits, e.g., MEMS var-

actors, switches and resonators, etc. [31]. A lot of research is also being done on microme-

chanical resonators, which possess exceptionally high Q and thermal stability, but often

with very low tunability.

1.6 Summary

In this chapter, we have explained the enabling technologies for the concept of a tunable

LC tank, which are the Nanogate structure and the zipping actuator developed in our

group. The idea of the LC tank prompted separate studies on the single-turn inductor and
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the tunable capacitor with integrated actuator. This thesis presents the study on the tunable

capacitor. The chapter also provides an overview for the application of tunable capacitors

and compares the many reported tunable capacitors in the literature, which can be grouped

into several actuation methods in general. Our design of the tunable capacitor takes a

rather different approach compared to the literature, because it is designed to be an inte-

grated part of a cavity resonator. Lastly, we show that there is potential application for an

integrated LC tank in the future wireless transceiver design.

1.7 Thesis Organization

We will start the thesis work by a chapter on design and fabrication. This is not

because they proceed modeling, rather, the design, fabrication and modeling processes for

a MEMS device are often entangled and there is no exception here. However, in particular

to this thesis work, the reader should keep in mind that it is initially enabled by known

technologies or designs, although it is driven by applications as well. Therefore, an intro-

duction to the design and fabrication of the device will give a good overview on why the

specific design is chosen and why we think we can make it. Having such knowledge

would be essential to the understanding of the modeling and simulation, which is intro-

duced the next. We will then present the testing of the device and compare the test results

with the simulation results. The goal is to understand the function of the designed tunable

capacitor, and from there, propose improved design schemes for an integrated cavity reso-

nator, which will be described in the last chapter.
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Chapter

2
Design and Fabrication

We have mentioned about the design concept of the tunable capacitor in the previous

chapter. In this chapter, we will put the concept into a solid design and describe the micro-

fabrication process that supports the design. The actual fabrication process, like with any

other MEMS device, is an iteration process where both design and fabrication have to

compromise until they find an agreement. We will present the fabrication results and

describe some important fabrication issues and how they are resolved. The assembly and

packaging methods will be presented last.

2.1 Design

Based on the ideas of the Nanogate and the zipping actuator described in the previous

chapter, a design of the electrostatically actuated tunable capacitor is devised. A cross-sec-

tional schematic of the original design is illustrated in Figure 2.1. A 3-D bisected sche-

matic of the device is shown in Figure 2.2. We will first briefly describe the structure of

the device as well as its functions by referring to these two schematics.
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Actuator Electrode Zipping Actuator Oxide Insulator Fulcrum Capacitor Electrode

Glass
Wafer

Sol
Wafer

Glass

Two Grounded Electrodes for Bottom Gold Electrode Capacitor Top Metal Electrode Tethers
Actuator and Capacitor With Oxide Insulator

Figure 2.1. Cross-sectional schematic of the design of the tunable capacitor (dimensions
not to scale).

Pyrex Capacitor Fulcrum
Wafers SI Plate SO Wafer

Figure 2.2. 3-D bisected view of the tunable capacitor (dimensions not to scale).

As shown in Figure 2.1, the device consists of three wafers: a SOI (Silicon-On-Insula-

tor) wafer sandwiched by two glass wafers that are anodically bonded together. In the cen-

ter of the device is a circular plate that is supported by tethers that are connected to the

outer walls. A cylindrical fulcrum, to be fabricated by the deep reactive ion etching tech-

nique, acts as the pivot for the plate and divides the plate into the outer actuator region and

the center capacitor region. The top of the fulcrum is bonded to the top glass wafer for

structural rigidity. The SOI layer is used as the zipping actuator because of its uniform



thickness and the low stress of single-crystal silicon. Metal (aluminum) is deposited on the

SOI layer facing the bottom glass wafer as electrodes for both actuator and capacitor. Sili-

con dioxide is used as dielectric material and it can be deposited on top of the metal by

chemical vapor deposition. The bottom wafer contains the bottom electrodes for the actu-

ator and the capacitor. The actuator electrode is etched into the glass to form the gap of the

actuator. Gold is deposited on top of the etched pit as actuator and capacitor electrodes.

Voltage is applied between the top and the bottom actuator electrodes. At a certain voltage

threshold, the outer plate snaps down. With increasing actuation voltages, the plate zips

along the radial direction and results in the separation of the two capacitor surfaces. It is

known that gold adheres to oxide poorly, making it necessary to use an adhesion layer

such as chromium when depositing gold onto silicon or oxide surface [32]. With such

property, the plate does not bond to the gold surface although the two surfaces are in close

contact during operation. Thus the design makes it possible to have two initially closely-

contacted surfaces that can be pried apart. By changing the gap between the two plates of

the capacitor, the capacitance can be tuned.

The actual fabricated device, however, is a simpler version that is without the top

metal electrode due to facilities and cost constraints, which will be explained in the next

section.

2.2 Fabrication Process

The device uses 2 glass wafers and 1 silicon wafer that are anodically bonded together.

The top and bottom wafers are 500-pm thick Pyrex® Borosilicate 7740 wafers from Com-

ing Inc. The middle wafer is a SOI wafer that has 340 pm thick handle, 1.5 jpm thick bur-

ied oxide and 10 or 20 ptm thick SOI layer. Both the handle and SOI are Boron doped with

a resistivity of 5-18 mn cm.
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A total of 7 chrome masks were used for the fabrication of the device although 9 were

designed. The wafer layout and all the masks used are shown in Appendix A, which also

includes a list of the dimensions and different designs used in the layout. A detailed fabri-

cation log can be found in Appendix B. Fabrication steps for the three wafers are listed

below, and fabrication results will be presented in the next section.

2.2.1 Top Wafer

The top glass wafer contains access holes for the electrodes that are 3.25 mm in diameter.

The holes are drilled by Bullen Ultrasonics Inc., which creates cutting tools for the holes

and uses ultrasonically-induced vibrations delivered to the tool to achieve microscopic

grinding [33]. The process schematic is shown in Figure 2.3.

Start: 0.5 mm thick
glass wafer

D . Drill holes for
electrode access by
Bullen Ultrasonics

Figure 2.3. Process schematic for the top wafer.

2.2.2 Device Wafer

The middle wafer contains the structural plate that acts as the zipping actuator and the ful-

crum that acts as the torsional spring. We will show the fabrication plan for the original

design with metal. The schematic of the original fabrication process is shown in Figure

2.4, with fabrication steps followed.
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Schematic of the fabrication

Start: S0l, 10/20 pm
Sol; 1.5 pm oxide, -
340 pm handle

1. Thermal oxidation
for 500 nm.

2. DRIE front side for
the actuator for 10/20
um.
3. Target mount the
front side to 4* wafer
and DRIE back side
for the fulcrum for
-340 um in STS1.
Dismount.

4. Strip surface oxide
in BE.

5. Regrow thermal
oxide.

6. E-beam aluminum using
lift-off, or use a wafer shadow
mask.

7. PECVD oxide for 300 nm.
Then plasma etch oxide.

steps for middle wafer.

1. Oxide was thermally grown under wet conditions at 1100 C for 0.5 p.m. This oxide

layer was used as a hard mask to protect the silicon surface for later anodic bonding after a

deep reactive ion etch. After oxide growth, alignment marks were etched on the bottom

side with mask 1: ALIGN, and the top side was etched with mask 2: STREETS, which

partitioned the devices for die sawing. Both sides had alignment marks for aligning the

wafers when bonding to the top and bottom glass wafers.

2. Deep reactive ion etch was used to etch the SOI layer to define the plate and tethers.

The mask used was mask 3: ACTUATORTOP.

El

Figure 2.4.
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3. The wafer was mounted to 4" quartz wafer and deep reactive ion etch was used to

etch the fulcrum. The wafers were dismounted in oxygen plasma and then cleaned in pira-

nha solution. Mask 4: FULCRUM.

4. All oxide on the surface was stripped in BOE, including the oxide grown in step 1 as

well as the exposed buried oxide.

5. Then thermal oxide was grown again, covering the whole wafer for about 0.3 pim.

This oxide layer insulates the metal from the rest of the silicon in the device.

6. To deposit aluminum on the top surface, lift-off using photoresist can be one option,

which involves spraying photoresist on top of the wafer surface since spin deposition is

not possible. Another option is to use a wafer shadow mask placed on top of the wafer

using drops of photoresist as adhesive. Then e-beam evaporation is used to deposit alumi-

num. Mask 5: METALTOP.

7. PECVD oxide for 300 nm then etch oxide in plasma. Mask 6: OXIDE.

The actual fabrication process omitted steps 6 and 7 because of practical reasons that

will be explained in the section followed.

2.2.3 Bottom Wafer

Fabrication of the bottom wafer is shown in Figure 2.5. Two batches of the bottom wafer

were fabricated; one with the center capacitor etched for 1 ptm, and the other without the

initial etch. The rest of the process was the same for the two batches and the general fabri-

cation steps are as follow.

1. For one batch, a 1-pim deep circular pit was first etched in BOE to define the height

of the capacitor plate as in step I a) in the figure. Mask 7: CAPACITORSEAT was used.

For another batch, step 1 a) was omitted. For both batches, a 10 pim pit was etched to

define the gap of the actuator using mask 8: ACTUATORBOTTOM.
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I I Start: 0.5 mm thick
glass wafer

1a). Etch 1 micron to
define the capacitor

- 1 b). Etch 10 micron pit for
actuator.

2. Deposit and lift-off
Gold for signal and
actuator connections.

3. Access holes drilled byEl _ ____ ____ ___ Bullen Ultrasonics

Figure 2.5. Schematic of the fabrication steps for the bottom wafer.

2. Gold was deposited using physical evaporation and then lift-off was used to define

the actuator and capacitor electrodes. Mask 9: METALBOTTOM.

3. The wafers were then sent out to Bullen Ultrasonics Inc. for drilling the holes for

electrical connection.

2.3 Fabrication Results

In this section, we will elaborate on the main challenges in our fabrication process and the

approaches employed in our attempts in resolving them.

2.3.1 Aluminum Deposition

Our original plan was to deposit metal such as aluminum on top of the silicon plate as the

electrodes. However, because of our initial decision to use 4" wafers, the transition to 6"

wafers in the MTL facility left some of the CVD and plasma etch tools unavailable to 4"

wafers at the time of fabrication. Blanket deposition of a dielectric layer such as oxide or

nitride on the metal with good uniformity and coverage was not achievable after a series

of experiments with an old PECVD machine. Because of time and cost constraints, the
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fabrication was modified such that there would be no metal deposition for the silicon

plate. Instead, the single-crystal silicon layer would be used as the actuator and sensing

capacitor, meaning that the two electrodes will be electrically connected to ground. The

high resistivity of the silicon vs. that of the metal will lower the cut-off frequency of the

capacitor device and affect the electrical tests. However, the simplification of the fabrica-

tion compared to that of metal is a plus. Furthermore, it will still allow us to verify the zip-

ping actuator concept.

2.3.2 Fulcrum Etch

The fulcrum is designed to be a cylindrical column that is 35 or 50-pm wide and about

340-pm deep. Etching of the fulcrum was done using an STS machine available in our

microfab facility, which utilizes the time-multiplexed deep etching technique developed

by Robert Bosch GmbH. One commonly encountered problem using the deep reactive ion

etching technique arises when a nonconducting material is used as an etch stop. This is

due to the depleted charging of electrons at the bottom of the trench, causing distortion of

ion trajectories such that etching proceeds along the interface, resulting in what is known

as "footing effect" [34]. Footing is more prominent when etching a wide trench with high

aspect ratio. In our case, we used a buried oxide layer as the etch stop, and since we

intended to etch a column instead of a trench, footing could be more severe due to the

openly exposed area to a larger pool of depleted ions. When designing the masks for the

device, the width of the fulcrum is chosen to be more generous then desired from the

design, because of the consideration of surviving the etch. We conducted an experiment to

find out the effect of overetch on footing. In the experiment, we compared the profiles of

the fulcrum without overetch and with some overetch.



To prepare for the experiment, a 4" wafer with thermal oxide grown on both sides was

patterned with fulcrums and then mounted to a 6" quartz wafer for etching in a STS

machine. The recipe used to etch the fulcrum has the following parameters. The APC

angle is fixed at 75%. During the etching cycle, the SF 6 flow rate is 140 sccm for 14 sec,

with 12 W electrode power and 600 W coil power. During the passivation cycle, the C4F8

flow rate is 95 sccm for 11 sec, with 0 W electrode power and 600 W coil power. This rec-

ipe was chosen because it etched more uniformly across the wafer and also it did not pro-

duce black silicon etching surfaces like other recipes that were tried. Then care was taken

to observe the etching as it approached the end. And one could see, through the quartz

window in the machine, the grey-colored silicon front that was receding, exposing the blu-

ish oxide surface, much the same way as ocean waves gently wash up on sand beach. As

soon as the oxide around the fulcrum appeared across the pit, etch was stopped. Photore-

sist would be applied to cover the fulcrum to prevent it from overetch. Then the wafer

would be baked to cure the resist and placed again into the chamber, and this time, we

observed another device on the wafer. We timed the minutes of overetch by starting to

count the time as soon as the oxide became all visible around the fulcrum. After etching

was finished, the wafer was dismounted in acetone and cleaned in piranha solution. It was

then further cleaned and anodically bonded to a pristine top glass wafer and then epoxy

glued to a bottom silicon wafer for diesawing. The fulcrum was diced across and the SEM

micrographs were obtained as shown in Figure 2.6. Because of the coarse blade used in

diesaw for the glass wafer, the edges of the cut appear to be chipped. The figures show the

cross section of one fulcrum that was without overetch and one that was overetched by 8.5

minutes. It is seen that even though we took out the wafer as soon as all the oxide appeared

in the pit, some undercut was still present. And after 8.5 minutes of overetch, the bottom

of the fulcrum was severely overetched. And if the fulcrum was left to etch for few more
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minutes, the fulcrum would be etched away and landed somewhere else on the wafer.

Because of etch non-uniformity in the STS machine, intolerance to overetch was a serious

challenge for the device fabrication process.

a) b)

Figure 2.6. Cross-sections of the fulcrum showing the etch profiles for a), without
overetch, and b), with 8.5 minutes of overetch.

To attempt to solve the footing problem due to overetch, 15-ptm thick guard rings were

used to serve as sacrificial etching materials surrounding the fulcrum from both the inner

and outer circles. A top view of the fulcrum and the surrounding guards rings are shown in

the schematic of Figure 2.7. The results are presented in Figure 2.8. When there is no

overetch, the guard rings are present as shown in a). For 4 to 8.5 minutes of overetch, the

guards rings are etched away, leaving straight sidewalls for the fulcrum as shown in b) and

c). And for 28.5 minutes of overetch, footing effect causes the bottom of the fulcrum to

thin down as shown in d). Results with the guard rings suggested that such method was

more tolerant to overetch and hence was more advantageous to the fabrication process.

Guard rings were used in the mask layout of the middle wafer for part of the devices.

However, despite the use of guard rings, careful observation of the etch as well as timing

were still necessary in order to produce good results. And when a fulcrum was finished

etching, photoresist patching was necessary to prevent further overetch. One thing that the
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author found out about etching using a STS machine was that the wafer bow could play a

role in the etching result. Because the wafers used had larger wafer bows (on the order of

80 ptm higher at apex than edge) than expected, it failed to match with the bowed chuck of

the STS machine after being clamped down and resulted in poor cooling for the wafer and

hence overetch was a more severe problem. After switching to another STS machine that

did not have a bowed chuck, it was found that overetch was much more tolerated. The

moral is that there are many factors affecting the etching results. While the guard rings

might be used to solve the problem with one machine, their use was less critical for

another machine. However, they are recommended to make the deep etching of a high-

aspect-ratio column a more robust process.

Fulcrum

Guard Rings

Figure 2.7. Top view of fulcrum and surrounding guard rings in the mask layout (not to
scale).

2.3.3 Plate and Tethers

The thin silicon plate was supported by 8 slim tethers and must survive the cleaning

and drying processes. Mechanical resonant frequencies of the fulcrum, membrane and

tether structure were obtained using the model analysis from ProMechanica. In the analy-

sis, a fulcrum diameter of 500 pm and membrane diameter of 2 mm are used. It was

shown that the fundamental mode of vibration is 1.82 KHz, and the second mode is 2.93

KHz. The resonant modes are shown in Figure 2.9.
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a) b)

c) d)

Figure 2.8. Cross-sections of the fulcrum with guard rings showing the etch profiles for
(a), without overetch, (b), with 4 min. overetch, (c), with 8.5 min. overetch,
and (d) with 28.5 min. overetch.

This is not a very stiff device and care was taken during fabrication to ensure its sur-

vival. For example, after the plate was fabricated, it was cleaned in diluted Piranha instead

of the regular Piranha or RCA cleaning procedures. During drying in the spin dryer, pris-

tine wafers were placed beside each devices in order to prevent the nitrogen from blowing

on the devices directly. With these precaution, the plate and tether structure survived the

cleaning and drying fabrication process.
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a) b)

Figure 2.9. Mechanical simulations in ProMechanica showing a), first resonant mode and
b), second resonant mode of the fulcrum, membrane and tether structure.

2.3.4 Plate Bow

After the device wafer was fabricated, the bow of the silicon plate was examined. Single

crystal silicon has very low residual stress, so it was expected that the plate should be rel-

atively flat. However, because of thermal oxidation in the last step of the process,

unevenly grown oxide on both sides might cause uneven stress distribution. Furthermore,

because the glass wafer has a total thickness variation of 20 pm [35], after the device was

bonded to the top glass wafer, the anchoring of the fulcrum might also change the shape of

the plate. We measure the surface profiles of the silicon plate with a Wyko white light opti-

cal surface profilometer. For our measurement, the vertical-scanning interferometry mode

was used, which could measure surfaces with large change in height because the objective,

controlled by a piezoelectric transducer, actually moves during measurement to focus on

the different heights. Figure 2.10 shows the surface profile of the plate for a device that

had the fulcrum detached after being overetched, showing that the bow of the plate was

about 0.5 pm high. Figure 2.11 shows a device with the fulcrum bonded to the top glass

wafer. Clearly, the bonded fulcrum imposed constraints to the fulcrum area in the plate,

causing the plate to deform in a bifurcation shape.

51



52 Chapter 2: Design and Fabrication

a)

b)
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Figure 2.10. a) 3-D images and b) a cross section of the silicon plate without ful-
crum.

The device shown in Figure 2.11 has a fulcrum radius of 750 pm. Other devices on the

same wafer have a fulcrum radius of 500 pm. For these devices, the center plate is com-

pletely enclosed by the fulcrum. During anodic bonding, temperature rose and bonding

was accomplished in high temperature, and hence hot air was trapped inside the enclosed

cavity bounded by the center plate, the fulcrum and the top glass wafer. As the air was

cooled down, the pressure difference bent the center plate toward the top glass wafer, as

shown in Figure 2.12. This shows that a fully enclosed space should not be used when

anodic bonding is used. A pressure relief cut should be made.
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a)

b)
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2.3.5 Bottom Metal

For fabrication of the bottom wafer, physical evaporation with an electron beam was

used to deposit gold on the surface and lift-off was used to pattern both the actuator and

sensing capacitor electrodes. Because the center capacitor protruded above the etched pit

by about 10 um, one challenge was to ensure that the gold layer covers the step height.

After fabrication, a photo taken from a microscope is compared with a micrograph taken

by SEM as shown in Figure 2.13. The photos show that although from the microscope, the
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interconnect did not appear to be continuous along the step, it was actually continuous as

shown from the SEM graph as well as from electrical tests.

a)

b)

X: 0.495 mm
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Figure 2.12. a) 3-D images and b) a cross section of the silicon plate with enclosed
fulcrum after bonded fulcrum to top glass wafer.

2.3.6 Summary of Fabrication Results

We have explained various fabrication related issues pertinent to our original design.

Some of the problems were foreseen before fabrication and were better controlled, some

of the problems were discovered during fabrication and others were only learned after fab-

rication was accomplished. Through trial and error, a first generation of the tunable capac-

itor was fabricated. It was not an exact version of the original design in terms that 1) there
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Section 2.4: Anodic Bond and Wafer Assembly

would be no metal on the silicon plate and hence the plate itself will be used as an elec-

trode and 2) because of the enclosed cavity, some of the plates were initially deflected

after anodic bonding. Next we will present the assembly methods and explain further

issues during assembly.

a) b)

Figure 2.13. a) A top view of the center capacitor area taken from a microscope and b) a
micrograph of the same device taken from SEM.

2.4 Anodic Bond and Wafer Assembly

After the three wafers were fabricated, anodic bonding was used to bond the wafers

together. Two methods of assembling the wafers were used: wafer level and die level. We

will explain the process for both methods, as well as the effect of anodic bond in both

cases.

2.4.1 Anodic Bond With Oxide

In this section, we will examine the effect of intermediate layers between the glass wafer

and the silicon wafer on the anodic bonding. A general description of how anodic bonding

works can be found in [36]. In essence, the time needed to complete the anodic bond

strongly depends on temperature and voltage applied. At elevated temperature, the sodium

ions in the glass wafer become mobile. With a high potential applied to the silicon and a

low potential applied uniformly to the glass side, the positively charged sodium ions will
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move toward the low potential (or away from the silicon), resulting in a surge of current,

which gradually drops down with time due to depletion of sodium ions. As the sodium

ions migrate, a space charge layer of less mobile, negatively charged oxygen ions at the

silicon/glass interface is formed. A large electric field hence exists between the positively

charged silicon surface and the negatively charged space charge layer. The electrostatic

pressure pulls the silicon and glass into intimate contact. The oxygen ions oxidizes the sil-

icon surface and a chemical bond is formed. Bonding is accomplished when the current is

dropped significantly and stays relatively unchanged. The bond strength is reported to be

0.9-3.8 MPa at temperatures ranging from 300 to 450 'C, and voltage applied ranging

from 175-1050 V under atmospheric conditions [37]. At higher temperature, ion mobility

increases, which in turn increases bonding current and bond strength. Higher voltage

increases the electrostatic pressure and results in similar effects. Alternatively, external

pressure could also be applied to bring the surfaces in close contact. With contact force of

200 N applied to 4 inch wafers, it is found that the bond strength could be greater than 10

MPa at temperatures higher than 200 'C at 600 V [38]. Hence, strength greater than the

bulk glass (15 MPa) can be achieved. It is also found that increase of bonding time after an

effective amount (about 10 minutes) does not further affect the bonding results. In fact,

increase of bonding time could potentially cause dielectric breakdown of the bonding

interface [36].

The presence of any dielectric layer, such as silicon dioxide or silicon nitride, between

the silicon and glass wafers reduces the electrostatic pressure and slows down the bonding

process. Lee et al. compared the effect of different intermediate layers as well as applied

voltages and cleaning methods [39]. It was found that higher voltage reduces bonding time

needed, and cleaning with piranha and HF results in better bonding performance than sim-

ply using acetone. With a 100 nm thick thermal oxide grown at 900 'C, the bonding time
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needed at 300 *C and 500 V after piranha cleaning was 15 minutes. There was no mention

of dielectric breakdown of oxide for the reported experiments.

The dielectric strength of thermally grown wet oxide is reported to be 3 MV/cm [36],

and in general, about 3-5 MV/cm. For an oxide layer that is 0.27 prm thick, the breakdown

voltage is around 80-135 V. As temperature increases, it is reported that the dielectric

strength of the oxide decreases [40]. In his study to bond two silicon wafers with oxide as

intermediate layers using anodic bonding, Anthony used voltage between 30-50 V at 850-

950 'C to avoid oxide breakdown [40]. While in the case of having oxide between two sil-

icon wafers, voltage drop is applied directly across the oxide layers, in the case of bonding

silicon to glass, the situation is somewhat different. To predict the actual voltage drop

across the dielectric layer during anodic bonding, we can model the bonding process with

an equivalent circuit, modified from [41] to include the dielectric layer, as shown in Figure

2.14. In the figure, Co is the capacitance across the oxide, R, is the leakage current resis-

tance. Cscr is the capacitance across the space charge layer and Rsc.r represents its leakage

current. Rglass is the resistance across the glass wafer. According to the data from Coming

Inc., the resistivity across a Pyrex® 7740 glass wafer at 250 *C is 6.1 fOcm. We can esti-

mate that Rglass is on the order of 0.8 Q for the die-level bonded devices. As voltage is

turned on, sodium ions migrate toward the cathode, and the sodium depletion layer thick-

ness gradually increases. The growth of the depletion layer saturates due to decreasing

electrical-field strength across the layer and the saturation-thickness increases at higher

temperature, in the range of a few microns across [42]. Applying these observations to the

circuit shown, we can deduce that the voltage across the capacitors increases as the current

decreases exponentially and approaches the applied voltage level while the current drops

significantly. At the beginning, most of the voltage drop is across the oxide layer as well

as the air gap. At this stage, breakdown of the oxide layer could occur if the samples are
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brought very close to each other to begin with, but since the current is usually limited by

the power supply, damage to the oxide might not be apparent, especially because this

might only last a very short amount of time. If the voltage applied is not high enough or

the samples are not brought close enough, breakdown of the oxide might not occur. For

example, if we neglect the depletion layer and assume that the air gap is on the order of 1

pim thick, then the ratio of voltage drop across the air gap over voltage drop across the

oxide is 14.4:1, and hence the voltage drop across the oxide is relatively small compared

to its breakdown voltage. As the thickness of the depletion layer increases, voltage across

it also increases. The electric field pulls the glass and silicon surfaces close to each other

and reduces the air gap. As a result, more voltage is distributed to the space charge layer

and the voltage drop across the oxide might also increase. A thicker depletion layer will

decrease the voltage drop across the oxide layer. Therefore, it is advantageous to perform

anodic bonding at higher temperatures. In our case, if we assume a saturation-layer thick-

ness of 2 [Lm thick, with the relative permittivity of glass being 4.6, for a voltage of 800 V,

the steady-state voltage drop across the oxide layer is I10 V. This is the case when there is

no current in the circuit. If the bonding pair is not left with the voltage on for a long time,

the actual voltage across the oxide could be less and it is possible that oxide breakdown

may not occur.

Cox ROX

DC -

Cscr Rscr

Rgiass

Figure 2.14. Circuit model of anodic bonding silicon to glass with oxide as intermediate
layer.
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2.4.2 Oxide As A Dielectric Layer For Touch Mode Operation

Since we have explained anodic bonding using oxide as an intermediate layer, we will also

include here why we use oxide in the first place and what problems it might cause during

operation.

When oxide is used as the dielectric for touch mode operation, ions or charges trapped

inside the oxide could cause unpredictable function of the device. Cabuz compared the use

of different dielectrics for touch mode operation of electrostatically actuator [43]. She

experimented with thermal oxide, PECVD oxide, LPCVD nitride, sputtered SiN and

PECVD SiN and measured the C-V curves of the dielectric layers. Among these dielec-

trics, it was found that only thermal oxide is free of signs of charge injection and retention.

The study, however, didn't take into consideration environmental factors. We will examine

the possible causes of trapped charges for the oxide. We will discuss three possible sources

here: 1) sodium diffusion from anodic bond process, 2) charge injection if electric field is

high enough and 3) parasitic charging at breakdown or static electrification. We will then

discuss the effect of humidity.

Sodium Diffusion
It's known that amorphous silicon dioxide is prone to diffusion of impurities, especially

alkali ions such as sodium [36]. On the other hand, silicon nitride is an excellent ionic bar-

rier material and is often deposited on top of oxide to prevent ion diffusion. In our device,

however, only thermally grown oxide is used as the dielectric. Although in most of the

device areas, gold is deposited on top of the glass wafer, and hence sodium diffusion from

glass to oxide could be eliminated, there are exposed areas where the oxide could touch

down on the glass during anodic bond, and sodium contamination in these areas are possi-

ble.

59



60Chpe2:DsganFarcto

A study on the contamination of silicon dioxide as a measure of feasibility of using

anodic bond as the packaging method in monolithically integrated MEMS devices shows

that sodium concentration on the gate oxide could increase by 3 fold after anodic bond,

depending on where the MOS device is situated with respect to a glass cavity [44][45].

Charge concentration of the oxide as well as surface traps increase by a similar ratio. The

minimum oxide charge was obtained by using a nitride-overcoat, or by placing the device

far below from inside the glass cavity. However, there is no study on what happens to the

oxide when it is used as the intermediate layer for an anodic bond. It can be expected that

since oxide is in direct contact with the glass, sodium diffusion would be more efficient.

Although the area of contamination in our case is very small compared to the area of the

silicon plate, it can be expected that some contamination of the oxide with sodium took

place during the bonding process.

Charge Injection
Charges can be injected into the dielectric when the electric field is sufficiently high, such

as greater than 1 MV/cm [46]. If breakdown through the oxide does occur during the

anodic bonding process, it is likely that boron ions from the silicon would inject into the

oxide, causing more positively charged ions being trapped in the oxide.

Parasitic Charging
Parasitic charges can be trapped in the oxide layer during gas discharging at breakdown or

simply static electrification [48], which could cause a certain amount of offset in the actu-

ation voltage, depending on the density of the trapped charges. With breakdown, the offset

can be a few hundred volts. It is shown that after breakdown occurs, positive charges

trapped in silicon dioxide monolayers decay rapidly in the first 5 hours, up to 1% left after

3 days. Negative charges takes 10 days for the same drop. On the other hand, multilayer
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dielectrics (with oxide and nitride) have a dramatically longer charge storage time.

Other sources of parasitic charging include contact electrification, which occur due to

contact and separation of the electrodes during an operation cycle when the materials of

the electrodes have different work function, such as in our case here.

Wu and Shannon model the static charges in the form of space charge layers of an

electrostatic actuator with the configuration of metal/gap/dielectric/doped silicon [46]. It

is found that the static charges within the dielectrics can be captured by a characteristic

voltage, which is determined by the surface potential of the dielectrics and the doping con-

centration of the silicon. They further show that if the applied voltage is within an order of

magnitude from this characteristic voltage, the actual electric field within the gap can dif-

fer dramatically with theory without considering the static charges. And depending on the

parasitic charge density, the characteristic voltage can vary from very little to tens of volts.

Effect of Humidity
Humidity plays an important role in touch-mode electrostatic actuators and is often the

culprit for stiction and failure. Cabuz showed that with DC driving method, humidity lev-

els above 35% is detrimental [47]. With AC driving method, more humidity (55%) can be

tolerated but electrostatic pressure is greatly reduced and hence it can not overcome the

humidity effect.

2.4.3 Wafer-Level Assembly

For this assembly, a device wafer with 20 pm SOI was bonded to a bottom glass wafer

with center capacitor area etched down for 1 pm. The device wafer was first aligned and

anodically bonded to a top glass wafer, at 350 "C with 800 V in 6 minutes. This was done

using an Electronic Visions EV620-501 Wafer Aligner and Bonder. Then the two-wafer

stack was aligned to a bottom glass wafer. Metal tabs were inserted between the top stack
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and the bottom wafer in order to separate them during alignment. During anodic bond, the

to-be-bonded glass wafer was placed on top. The metal tabs were kept in place (instead of

being removed in the normal process) and were conveniently used to provide ground

potential for the silicon wafer. A graphite plate was placed on top of the glass wafer with a

negative potential applied to it. The wafers were heated to 350 'C, 800 V was applied and

bonding was accomplished in 8 minutes. The metal tabs were removed (either easily or

forcefully by breaking a little chip off the glass wafer, depending on the strength of the

bond surrounding them) after the bonding process. After the wafers were bonded and die-

sawed, gold was evaporated onto the back side of the dies to provide electrical contact to

the SOI plate.

After bonding, it was observed using a microscope that some parts of the silicon plate

was stuck down on the glass surface. Apparently the silicon plate snapped down toward

the bottom gold surface when voltage was applied during anodic bonding. Where the sili-

con plate and tethers touched the glass area, such as the outer edge or the tether areas,

bonding occurred. As a result, for the wafer-level assembled devices, the plate would

operate only in the zip-in region and would not experience pull in. A cross-section of the

wafer-level bonded device when the outer edge is bonded is shown in Figure 2.15.

I.7
~z1T _

Figure 2.15. Cross-sectional schematic of the device after wafer-level bond.



The surface profiles of a wafer-level bonded devices is shown in Figure 2.16. Note that

unlike the images in Figure 2.11, where the white light shined from the side of the plate

without fulcrum, the images below were obtained where the light shined through the top

glass glass. Because of the glass wafer, poor light reflectivity obscured the interference

fringes. A red light filter (PSI Low Mag filter at 633 nm) was used to produce stronger

fringes and hence legible surface scans. However, the trade-off by using the red light is

that it is less accurate than the white light, which has shorter coherent length and is more

suitable for the VSI mode. Note that in the surface profile images, there are two rings

present on the plate. The bigger one corresponds to the fulcrum area, and the inner one is

an artifact because the top glass wafer that the white light goes through has an etched pit in

it. The artifact does not prevent us from measuring the center deflection of the plate. We

can estimate the bow of the center plate by translating the center ring.

After the three wafers were anodically bonded together, the wafers were die sawed

into 20.2 x 20.2 mm2 dies, each of which contains 3 devices. In order to obtain a cross-

section of the fulcrum-plate structure, one die was die-sawed across the middle of the

plate, and the SEM micrographs were taken as shown in Figure 2.17. We can clearly see

that in the actuator area, the membrane was elevated above the gold surface, proving that

the silicon plate did not stick to the bottom surface that was covered with gold as expected.

It also suggested that bonding of the tethers and outer edge of the plate should not affect

the functionality of the device.
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Figure 2.16. Surface profiles and cross-sections for a wafer-level bonded device.

b)

Figure 2.17. Cross-sections of the tunable capacitor as fabricated showing a), the device
area and b) the fulcrum area.
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2.4.4 Die-Level Bonded Device

In order to prevent the plate from sticking down on the gold electrode during anodic bond-

ing, die-level anodic bonding with extra wiring to the actuator electrode was used. For this

assembly, a device wafer with 10 pm SOI and a bottom wafer without the center capacitor

being etched were used. As before, the silicon wafer was first anodically bonded to a top

glass wafer, and then both the bonded stack and a bottom glass wafer were die-sawed sep-

arately. The two dies were then cleaned firstly in alcohols and in Nanostrip for an hour,

and finally rinsed in DI water and dried in an oven at 120 'C. The die-level bonding setup

is shown in the photo in Figure 2.18. The bonded stack was first placed on top of a graph-

ite plate, which as connected to the chuck electrically as ground. The top die was then

aligned to the bottom stack using two ceramic blocks. Because alignment relies on two

die-saw edges, we could expect a large alignment error (on the other of 100 pm) for this

device. Electrical connection to the SOI plate was achieved from the side of the die, where

silver paste was applied to ensure electrical connection. Wires were used to apply same

positive voltage to the side of the die as well as the gold electrodes from the top. They

remained in contact with the die during bonding by spring force. For the device shown in

the photo, we only used one die out of the three, but potentially we can apply same voltage

to other dies as well. The chuck would then be placed in an oven and heated to 300 'C and

600 V was applied. Bonding was accomplished between 4-5 minutes and the bonding

yield was usually very good.
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Figure 2.18. Die-level anodic bond setup.

It was found that even though the two electrodes were applied with the same potential,

the problem was not entirely solved. If the tethers were hanging on top of the glass area,

they would still be pulled down during anodic bonding, causing the outer part of the plate

to be stuck to the bottom electrode. The solution to this would be to cover gold on the bot-

tom glass everywhere below the plate and the tethers. However, given the design we had,

this was not fully achievable. The surface profile of a die-level bonded device is shown in

Figure 2.19. Note that the plate is rather flat in most area except at a corner, where it seems

that the tethers are stuck down because the bottom area has glass exposed due to poor

alignment.

Chapter 2: Design and Fabrication66



Section 2.4: Anodic Bond and Wafer Assembly

X: 1.135 mm
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Figure 2.19. Surface profiles of the plate after die-level bond.

In future devices where it is desired that the two electrodes remain intact during anodic

bonding on the wafer-level, we can use metal interconnects to connect both electrodes to a

common node. And during anodic bonding, this common node will be applied the same

potential as the either the silicon or the glass depending on the design. And after die saw,

the two electrodes will be separated. Clever layouts such as connecting adjacent devices

onto a single interconnect could potentially make the task simple without clogging the

wafer with metal interconnects.

- __X: 3.452 mm
- Y: -0.4 UM

X: 2.317 mm
Y: 5.6 um
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2.4.5 Clamped Device

For this assembly, a device wafer was first aligned and anodically bonded to a top

wafer, then the two wafer stack was mechanically clamped to the bottom glass wafer

inside the package, as shown in Figure 2.20. For this assembly, a device wafer with 10 pm

SOI and a bottom wafer without the center capacitor being etched were used. With this

assembly, no anodic bond effect on the initial shape of the plate or charge of oxide would

occur.

Figure 2.20. Cross section schematic of the clamped device.

2.5 Packaging

For the first proof-of-concept device, we intended to test the function of the circular zipper

actuator and demonstrate capacitance change only in low frequency. Three packaging con-

cepts have been investigated.

The first package used a plastic housing to enclose the chip and provide access for

electrical contacts. Because the chip was designed such that electrical contacts needed to

be made from both the top side and the bottom side, plastic housing was needed for both

sides. Pogo pins were used to provide electrical signals. The schematic of the package was

shown in Figure 2.22. The package was also designed to be able to assemble the devices
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by clamping the die pieces. During testing, however, it was found that the long pogo pins

with wires attached at the end caused the capacitance readings to be unstable. Hence, an

improved package was needed to correct this problem.

Figure 2.21. Schematic of the first package.

The second package had a similar plastic housing, but used much shorter pogo pins

that protruded out of the plastic plates for only couple millimeters on each side to provide

sufficient contact force. The schematic of the package is shown in Figure 2.22. Two

printed circuit boards with wirings to BNC connectors were used to sandwich the plastic

housing, as shown in Figure 2.23. This package proved to be much more robust during

electrical tests. However, although this package was designed for the clamped-die assem-

bly, it proved to cumbersome during mechanical and electrical testing. For the wafer or die

level bonded devices, a third package was devised.
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Top Plate - Plexiglass

Pogo Pins

Chip (with 3 devices)

Spacer

Bottom Plate

Pogo Pins

Figure 2.22. Schematic of the second package.

b)

Figure 2.23. a), the assembled chip enclosed in the plastic housing, and b), the plastic
housing is sandwiched between two PCB's with BNC connectors.

a)
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For the third package, only one PCB was needed, and the die was attached to the PCB

using 3M conductive adhesive tape. Electrical connection was achieved by wire bonding

gold wires from the electrode pads to the PCB or by soldering shielded electrical wires.

This package would not be able to clamp the die pieces for testing. Figure 2.24 shows a

picture of the bonded die taped to the PCB and with the middle device connected to the

BNC with soldered wires. The testing leads are used for fixture compensation for capaci-

tance measurement. With this package, electrical parasitics are minimized, and it also

allows for better alignment during laser interferometer testing, which will be explained in

the next chapter.

Soldred
'Wrs

BNC
Connectors

Figure 2.24. Picture of the new package.

2.6 Summary

This chapter introduces the design of the tunable capacitor and the fabrication process.

Because of various constraints, the actual fabrication process was simplified, omitting the

deposition of metal layer on the silicon plate. As a result, the actual device relies on the

silicon plate to act as the ground for both the actuator and the capacitor. We have also

explained other fabrication issues and the different approaches attempted to solve these

problems. Three assembly methods were used: wafer-level bonded, die-level bonded and
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clamped, and we have devised two different packages to test them. The testing results will

be presented in the next chapter.



Chapter

3
Modeling and Simulation

In this chapter, we aim to understand the function of the fulcrum-lever structure with elec-

trostatic zipping actuator by using a mathematical model and a finite element model. The

mathematical model is solved with numerical methods with Matlab and the finite element

model is done using ANSYS. The goal is to compare the results using these two indepen-

dent methods and verify each other, although the numbers used in both simulations do not

necessary represent the actual fabricated devices. By verifying our Matlab model, we

could use Matlab to perform parametric design studies. On the other hand, by verifying

the ANSYS model, we can use it to predict the behavior of the actual fabricated devices as

will be explained in the next chapter. Furthermore, by understanding the function of the

structure, we can realize the potential use of our design. It is found that because of electro-

static hysteresis, the actual useful tuning range of the device will be limited to within each

of the actuation stage, which is about -10% for the before pull-in and zip-in stages. If

capacitance hopping is desired, the tuning range is limited to actuation voltages less than

the release voltage and those larger than the zip-in voltage, and in this case, a large jump

of capacitance (with a tuning ratio of 1:1.66) can be achieved, but at each end, only small

capacitance tuning (less than or close to -10%) can be achieved. However, the actual

change of capacitance will depend on the specific design.
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3.1 Mathematical Modeling

The operation of the device can be described by a lever-pivot structure. The silicon plate

is effectively a lever that is pivoted by the fulcrum and bent by unevenly distributed elec-

trostatic pressure exerted on the outer plate. The fulcrum is clamped at one end to anchor

the structure, and is mated to the plate at the joint. Hence, part of the external moment

exerted at the joint is lost to the fulcrum, and the rest is used to bend the center plate, the

displacement of which determines the tuning effectiveness of the built-in capacitor. We are

interested in the deflected profile of the plate as voltage is applied to its outer part. Such a

profile depends on the mechanical properties and sizes of the plate and the fulcrum, prop-

erties and dimensions of the dielectric materials and the actuation voltage. In this chapter,

we will describe the electro-mechanical model using a set of differential equations and

will solve them simultaneously using the Matlab boundary value problem. The results

from Matlab will then be compared with the finite element model using ANSYS.

A simplified cross-sectional schematic of the device is shown in Figure 3.1. The struc-

ture is divided into three regions, namely (1) the electrostatic actuator, (2) the fulcrum, and

(3) the center plate. In the following analysis, we will use Timoshenko's elastic plate the-

ory [49] with the following assumptions: 1) the structure is axisymmetric; 2) linear isotro-

pic elastic properties apply (a Young's modulus of silicon of 169 GPa is used for

comparison purpose; an average value of 145 GPa is equally appropriate); 3) the deflec-

tion of the plate is smaller than its thickness, and hence small deflection applies; 4) the ful-

crum behaves as a shell and hence rotation of the fulcrum and the plate is the same at the

joint; 5) there is no initial stress in the structure; 6) the fulcrum has square profile

(although this is not necessarily the case after fabrication); and 7) the stiffness of the teth-

ers are neglected (this is valid since we are only interested in comparing the Matlab model

to the ANSYS model.)
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(1) (3)

Si h c g Si

ra r. Pyrex
n b

Figure 3.1. Simplified cross-sectional schematic of the actuator structure showing the
three regions used in Matlab modeling.

Table 3.1. Dimensions used in design and modeling.

Item Symbol Value (ptm)

Radius of capacitor r. 200

Radius of fulcrum ra 500

Thickness of fulcrum t 50

Inner radius of actuator a ra+ t

Outer radius of actuator b 1750/2000

Thickness of the top plate h 17

Air gap g 10

Thickness of oxide insulator c 0.27

A simplified schematic is illustrated in Figure 3.2, which shows the coordinate sys-

tems used for each of the three regions. In the following sections, we will derive the for-

mulation for solving with numerical methods in Matlab with boundary value problems.

3.1.1 Modeling of Actuator

During steady-state actuation by DC voltage, the zipping actuator has four stages: 1)

before pull-in, 2) touch-down, 3) zip-in and 4) release. Using Matlab, we will analyze only

three: 1) before pull-in, 2) zip-in and 3) release.

(1) Actuator
(2) Fulcrum
(3) Center Plate

Section 3. 1: Mathematical Modeling
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L

Figure 3.2. Simplified schematic of the actuator structure.

The governing differential equation for the outer region of the plate under electrostatic

actuation is,

d4 w 2 d3w 1 d 2w I dw eV 2  1
'+ , (3.2)

dr4  r dr' r2 dr2  r3 dr 2D (g+w+c/ 6)2

where w is the vertical displacement and is negative as defined from our coordinate sys-

tem, r is the radius, & is the vacuum permittivity, &,, is the relative permittivity of silicon

dioxide and D is the flexural rigidity of the plate, which is defined by,

D = Eh (3.3)
12(l- _V2)

where E is the average modulus of elasticity of silicon, and v is the Poisson ratio.

Figure 3.3 compares the boundary conditions applied to Eq. (3.2) for the three stages

of actuation. In all three cases, the rotation of the plate at r=a is unknown and can be

found only when the differential equations for all three regions are solved. The vertical

deflection of the fulcrum (at r=a) is first assumed to be zero to facilitate the simulation.

Chapter 3: Modeling and Simulation
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After the system is solved, we can then compensate for the axial deflection of the fulcrum

by calculating the total tension force acting on it.

For pure bending of a circular plate, the internal bending moments per unit length as

function of radius can be expressed as,

M =-D 1 dw dw (34)' dr2 r dr

M, =-D I--+Vd2) (3.5)
r dr dr2

where M, is the bending moment that acts along the circumferential sections of the plate,

and M, acts along the diametrical sections of the plate. The two moments relate to each

other by a factor of Poisson's ratio. In our analysis, we chose to use Mr for moment bal-

ance calculation, and will ignore the use of M,. For convenience, we use the letter M to

represent the internal circumferential bending moment Mr. And M, is such bending

moment for the outer plate at r=a. For case a), because there is no moment acting on the

outer edge r=b, M(b) is zero. For case b), since the pin-down point s is also unknown, five

boundary conditions will be needed in order find this extra parameter using Matlab BVP.

The fifth boundary condition is zero total moment at the outer radius. At the pin-down

position, the slope is zero, and furthermore, since the plate lies flat at that position out-

ward, the radius of curvature is infinity, and therefore, the derivative of the slope is also

zero. We hence conclude that the total moment at the pin-down position must be zero. This

boundary condition, however, will be discussed more in detail in 3.5.1.

The shear force per unit length of circumference at a radius r can be expressed as,

V =D + d2 W- dw (3.6)
(~ dr' r dr2 r 2 dr )

For cases a) and c), the shear force acting at the outer edge is zero.
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a) Before Pull-in w(a) 0

wi(a)=#

r M(b)=0

V(b)=0

r=a r=b

b) Zip-in w(a)= 0

/v(a)= #
r Iw(s)= -g

w(s)= 0
M(s)= 0

- r a r=s

C) Release w(a)=0

I (a)=#

w(b) = -g

V(b)=0

- r~a r=b

Figure 3.3. Boundary conditions of the outer membrane for the three cases a) before
pull-in, b) zip-in and c) release.

Knowing the plate deflection, the total electrostatic force acting on the plate can be

expressed as,

F =/)2 2 Trdr (3.7)
2 D (g + W+ C/ C")2

For the zip-in case, the total force becomes,

F = {I 2frdr+ eV2 1 2rdr.8)
2D (g+w+c / 2D (c / (38
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3.1.2 Modeling of Fulcrum

For simplification, the fulcrum is modeled as a long cylindrical shell, which is governed

by the following differential equation,

Dd + y = -> +4#4y =0 (3.9)

where,

= t 4 (3.10)
4a 2 D

and the flexural rigidity for the fulcrum is,

D Et3  (3.11)
12(1-v)2

The axial and circumferential internal bending moments per unit length can be

expressed as,

M,-D (3.12)

MO = M, (3.13)

respectively. Similar to the plate case, we use M to represent the internal axial moment for

the moment balance calculation. Specifically, M2 is the internal axial bending moment at

r=a for the fulcrum.

Figure 3.4a) shows the boundary conditions for the fulcrum, which apply to all the

three stages of actuation mentioned in 5.1.1. As mentioned before, we have assumed that

the vertical deflection at x=O is negligible. Assuming that after deflection, the fulcrum

remains perpendicular to the membrane at x=O, we can derive that the rotation at the joint

is the same for both the fulcrum and the membrane.
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After the deflection is solved and the net electrostatic force is obtained, we can esti-

mate the axial deflection of the fulcrum by simply accounting for the tension,

FL
,ratE

(3.14)

where F is the electrostatic force as calculated by Eq. (3.7). For the zip-in case, b is substi-

tuted by k and the result is the net electrostatic force.

Because we use a shell structure to represent the fulcrum in the Matlab model, the

location of the shell impacts the solution slightly. For simplification, we have chosen to

place the fulcrum at its outer edge, i.e., at r=a+t instead of the center, i.e., at r=a+t/2,

which is more realistic. In order to take into consideration of the effect of the fulcrum

location, after the deflection is solved, we can define that the displacement of the center of

the fulcrum, instead of the outer edge, is zero, and translate the deflection by that amount.

v(O)=#

a) Fulcrum y(l)=0

r~a

Al 3 (0) =0

r z(a)=0

b) Center Plate ±(a)

r=a

Figure 3.4. Boundary conditions for a) the cylindrical fulcrum and b) the center plate.
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3.1.3 Modeling of Center Plate

The center plate is subjected to a moment applied to its outer edge. We can write the gov-

erning equation as,

S-d rdz =0  (3.15)
dr rdr dr

The boundary conditions for the center plate are shown in Figure 3.4 b). In the figure,

M3 is the internal circumferential bending moment at r=a, and M3=M1 -M2 -

The compensated center deflection is obtained by subtracting the axial deflection of

the fulcrum as calculated from Eq. (3.14) as well as the center translation as explained

above.

3.2 Solution Using Matlab

In order to find the deflection profile of the plate, the governing equations for the three

regions must be solved simultaneously. However, because Eq. (3.2) is nonlinear and an

analytical solution is not possible, numerical simulation with Matlab boundary value prob-

lem (BVP4C) is used to obtain a closed form solution.

BVP4C uses a collocation method (also called the Simpson method) to solve a system

of ODE's of the form y'=/(x,y,p) on the interval [a,b], subject to general two-point bound-

ary conditions of the form bc(y(a),y(b),p) = 0, provided that an initial guess of the mesh

and corresponding values are provided. Note that p is a vector of unknown parameters.

The approximate solution is a continuous function that is a cubic polynomial on each sub-

interval of the mesh. The function satisfies the boundary condition and the differential

equations at both ends and the midpoint of each subinterval. The program uses linear

equation solvers for solving nonlinear algebraic equations. It allows a system of ODE's to

be solved simultaneously, given that the boundary conditions are well defined, a good

Section 3.2: Solution Using Matdab
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guess is provided, and that all ODE's are evaluated in the same interval. It can also be used

to solve for unknown parameters in the ODE's. These demonstrate that the BVP4C can be

a powerful tool in solving elastic engineering structures with relatively complicated pat-

terns and loads.

3.2.1 Formulation with BVP4C

Because all ODE's need to be defined in the same interval in order for them to be solved

simultaneously using BVP4C, it is necessary to normalize the three governing equations

such that the range is defined at [0,1] for each ODE. To do this, we will introduce corre-

sponding normalized variables and obtain the normalized equations.

1. Actuator. The normalized variables are,

wW = -

R- r-a, or R= - for zip -in case
b-a s-a

the normalized plate equation becomes,

d4 W 2 d'W 1 d 2 W 1 dW _

dR4  R + A dR' (R + A) 2 dR2 + RA) 3  c/ ,, 2  (3.16)

where,

a
A = aand

b - a

(b - a ) 4
6V

2

2Dg 3

and again, b is substituted by X for the zip-in case.

2. Fulcrum. The normalized variables are,

x ; Y =
g
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The normalized equation becomes,

d'Y +q 414Y = (3.17)

3. Center Plate. The normalized variables are,

R'= r;Z =
a g

The normalized equation becomes,

d3Z I d2Z 1 dZ + -0 (3.18)
dR'3 R'dR'2 R' dR'

Written in the form of state equations, the ODE function to be solved by Matlab

BVP4C is as shown in Eq. (3.19), where state y(l) corresponds to W, the normalized

deflection of the actuator, state y(5) corresponds to Y, the normalized deflection of the cen-

ter plate, and state y(8) corresponds to Z, the normalized deflection of the fulcrum, and so

forth.

y(l) y(2)

y(2) y(3)

y(3) y( 4 )
y(4) __ _ __ _ __ _ 2 1y(4)- - -v(4) + I y(3) - I y(2)

~x+ A (x+ A)- (x+A)-

d_ (5)y(6) (3.19)
dx Y(6) v(7)

y(7) 
y(6)

x x
y(8) y( 9 )

y'(9) y(0)
y(10) y(1)

y(1) -4p 4/ 4y(8)
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The boundary conditions after normalization are listed in Table 3.2 for each of the dif-

ferent regions and actuation stages. Note that the bending moment at r-a is derived as

well. M1 represents the moment acting at the joint by the outer plate, M2 represents that by

the fulcrum, and M3 represents that by the center plate. The total moment at r=a must be

zero at equilibrium.

Table 3.2. Boundary conditions for the actuator, fulcrum and center plate after
normalization.

1) Actuator a) Before
Pull-in W(O)=O

W(O)= ->= W(O)
g b-a

M(1)=0=>I (1)+ W(1)=0
]+A

V(I) =0 -> W(I) ~) +l Am- )2 W(l)=0

O(b-a)2 (

b) Zip-in W(O)0

__(_)= = g ()
g s-a

W(I)=-1

W(1)=0

M(I)=0->W(I)=0

-M=-D 2 (0)+ A()
(s-a)2

c) Release

W(O) = 0g
W()=-1

A4(1)=0 -> W(1)+ ' (I)=O
I+A

lI-A (1I-A)'
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Table 3.2. Boundary conditions for the actuator, fulcrum and center plate after
normalization.

2) Fulcrum Y(O)=

g
Y(1)=0

k(l)=0

=> M =-D f(O)

3) Center Plate
Z(1) = 0
Z(0)=O

g a
M 3 =M-M

2

a2[

With Matlab BVP4C, the boundary condition function is expressed as bc(y(a),y(b),p)

= 0, where [a,b] is the interval on which the ODE's are defined. Because the three ODE's

are solved simultaneously, continuation at the location r=a is used as the boundary condi-

tion, i.e., rotations are the same for all three regions, and the total circumferential moment

is zero. Note that we have assumed that the fulcrum has rigid rotation at its end because it

is much more stiffer than the plate. However, this might not hold true for large deflections.

Applying these continuation conditions, the boundary functions used for each of the three

actuation stages can be derived as listed in Table 3.3.
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Table 3.3. Boundary functions used in Matlab BVP4C for the three stages a) before pull-in, b)
zip-in and c) release

0

Pa (1)

yb,(3)+ v V(
l+Ab(

.v(4+ y(- I yb(2)
1+A' (lA

Sy (2) y V(6)
b-a a

y,,(5)

y,(6)

y" (8)
y,, (8)

Yb (9)

y (2) - Iv(9)
b-a 1

-D [y - (3)+ y,(2)] - D, Y (10)+D[y(7)+ VY(6)]

Ya (1)

y,,() +1

y, (2)

yb (3)
1 ya(2) y,(6)

s-a a

y,( 5 )
0= yI( 6 )

y, (8)
y(8)

Y'( 9)
1 1
-- y, (2) -- y (9)

s-a /

-D 2 ya(3)+ vy(2)] -Dy (10)+D 1[y7)vy,(6)]
L s -a) A a a

a) Before
Pull-in

b) Zip-in
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Table 3.3. Boundary functions used in Matlab BVP4C for the three stages a) before pull-in, b)
zip-in and c) release

c) Release
y (1)

Yh(3) + v , 2

y + yAG

Y,(4) + y,(3) y,,(2)
1 +A (1 + Air

, (2)y,(6)
b-a a

0= yh( 5 )

y. ( 6 )

y, (8)

Y,( 9 )

b-a U

-D (b -)2 "(3) + y,(2) - D, y,(10) + D [yl (7) + vyh(6)]

In addition to defining the ODE functions and boundary functions, BVP4C requires an

initial guess function that corresponds to a guess mesh, because boundary value problems

can have more than one solution. BVP4C uses residual control, i.e., by evaluating the

residuals of the approximate solution, and controlling their sizes, to control the errors due

to poor guesses. However, a good guess for an initial mesh is important in obtaining

desired solutions, and often this is the hardest part in solving the boundary value problems

with BVP4C. It turns out that for the before pull-in case, a zero initial guess is sufficient,

for the zip-in and release cases, however, a fourth order polynomial is needed for the actu-

ator.

3.2.2 Matlab Results

Simulation results using Matlab BVP4C are demonstrated below.
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a) Before Pull-in. In order to find the pull in voltage, voltage is increased in steps, and

each solution is used as the guess function for the following solution. The Matlab script is

enclosed in Appendix C. 1. Figure 3.5a) shows the displacement of the plate with increas-

ing voltage. Because the plate is axisymmetric, only displacement from the center to the

outer edge is shown. b) shows the rotation of the plate. A continuous rotation at the anchor

manifests acceptable residual control. c) and d) show the displacement and rotation of the

fulcrum over its length. Notice that we have neglected the horizontal displacement at the

anchor point. e) shows the end deflection as function of voltage. Because pull-in is when

the system becomes unstable, we should expect that the solution starts to diverge when it

occurs. In this case, it occurs when the voltage reaches 110.2 V. f) shows the center dis-

placement as function of voltage. At pull-in, the center displacement is about 10.78 nm in

this case. The center deflection after compensating the axial deflection of the fulcrum as

well as translation of the fulcrum center displacement is also shown in the figure, but no

obvious difference is observed since the axial deflection is much smaller.

b) Zip-in. The zip-in case is a little more complicated because it involves an unknown

parameter - the pin down position, and hence, an initial guess for that parameter. The ini-

tial guess turns out to be very critical in finding the right solution. If the guess value is not

chosen carefully, the results might appear to have irrational profiles, or the residuals of the

solution might be out of tolerance. In order to find the appropriate guess, an iterative

approach is used where the guess is compared to the solution until they agree. This derived

parameter will then be used as the first guess and each derived parameter will then be used

as the guess parameter for the next incremental solutions. Furthermore, a fourth order

polynomial for the displacement of the outer plate is necessary in order to obtain good

residual control.
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Figure 3.5. Simulation results for the plate and fulcrum before pull-in.
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A voltage range from 110 to 180 volts with 10-volt increment is applied. See Appen-

dix C.2 for the Matlab script. The results are plotted in Figure 3.6, where a) shows the

deflection profiles, and b) shows the rotation. c) plots the normalized deflection profiles

and shows that they converge to a fourth polynomial shape, which has important implica-

tion for solving the problem with energy methods. d) shows the pin-down position as

function of voltage and e) shows the center deflection. Note that the normalized outer

deflection is not set at 1, but rather a number that is determined by the ANSYS program,

such that the two results can be compared. Refer to the ANSYS section for details. For a

pin-down position r=l 750 pim, which is the outer radius of the plate used in the design, the

zip-in voltage is found to be 1 IV, and the center defection is 49.69 nm. In plot e), we

added a curve that shows the center deflection by compensating the axial deflection of the

fulcrum as well as translation of fulcrum center displacement, and that reduces the center

deflection to 42.67 nm.

c) Release. The release case is similar to the zip-in case in that it also has an unknown

parameter - voltage. For r=1750 ptm, it is found that the release voltage is 65.33 V. The

center deflection is 21.5 nm and after compensated for axial deflection and center transla-

tion, 19.3 nm. The plate and fulcrum displacement and rotation are plotted in Figure 3.7.

The Matlab code can be found in Appendix C.3.
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Figure 3.6. Simulation results for the zip-in case.
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Figure 3.7. Simulation results for the release case.

3.3 MOS Structure Analysis

The silicon plate actuator is effectively a metal/oxide (with air)/p-type semiconductor

structure. For such structure, the charge distribution within the silicon might affect the

electric field strength. To find out whether such an effect could be significant, we will do

an analysis using a MOS structure. Firstly, we need to calculate the threshold voltage for

charge inversion to occur in order to determine the operation regime when an external

voltage is applied.
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The properties of the materials are as follow. The silicon is Boron doped to have resis-

tivity 5-18 m~cm. This in turn corresponds to an acceptor concentration of

NA = 7 x 108cm-3 [50]. The relative permittivity of silicon is 11.9 and that of oxide is

3.9. The oxide is 270 nm thick, and the air is originally 10 pm thick. The work function

of gold is about Wm=4.7 eV and for silicon, W,=5.12 eV.

Voltage applied to a MOS structure changes the equilibrium charge distribution, which

depends on the applied voltage in relation to the threshold voltage. Threshold voltage is

the voltage required to bring the structure to the edge of inversion. By carrying out the cal-

culation, we can find that the built-in potential for the MOS structure, which is the total

potential drop across the structure in thermal equilibrium, is 0.44 eV. The calculated

threshold voltage for the case when the silicon plate is not in contact with gold is

1.7 x 104 V, and for the case when the silicon plate is in contact with gold, it is about 117

V. See Appendix C.4 for the Matlab script. Since voltage less than 100 V is applied to our

device, we can conclude that our device operates in the depletion regime. The depletion

layer may alter the electric field as well as the force applied to the actuator. Figure 3.8a)

shows the depletion layer thickness as a function of voltage assuming that the silicon is in

contact with gold throughout application of the actuation voltage, which is the worst-case

scenario. At IOyV, the depletion layer thickness could reach 12 nm. To see how significant

these numbers are, we can calculate the surface potential of the silicon. The surface poten-

tial relates to the charge distribution inside the silicon and can be regarded as the potential

drop across the silicon. Figure 3.8b) shows the surface potential as function of applied

voltage. It shows that at 100 V, the potential drop across the silicon is only 0.7 V, which is

insignificant compared to the applied voltage. We hence can conclude that the presence of

the MOS structure should not affect the applied electric field in a significant level.
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Figure 3.8. MOS structure analysis showing a) depletion thickness and b) surface potential
of silicon as function of applied voltage.

Applying the same analysis to the capacitor, where a measurement voltage signal on

the order of 0.5 V is used, it is found that the presence of the depletion layer does not

change the total capacitance significantly. In fact, no obvious difference in the total capac-

itance can be found before and after considering the MOS structure in the capacitor. See

Appendix C.5 for the Matlab script.

3.4 ANSYS Simulation

Static deflection of the fulcrum-plate structure is simulated with the finite element analysis

package ANSYS University Advanced version 8.0. In the simulation, similar to the Mat-

lab case, the structure is modeled using 2-D axisymmetric elements. The goal of the simu-

lation is to compare it with numerical results from Matlab and estimate any discrepancies

between the two. We will first explain the sequential coupled electrostatic field and struc-

tural analysis in ANSYS, then the use of surface-to-surface contact analysis. Results and

comparison with Matlab will then be presented.
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3.4.1 Model Setup

ANSYS is equipped with a command macro ESSOLV to solve coupled electrostatic

field and structural problems using sequentially coupled physics analysis. The ANSYS

help manual explains how it works: "The macro will automatically iterate between an

electrostatic field solution and a structural solution until the field and the structure are in

equilibrium. The macro automatically updates the electrostatic field mesh to conform to

the structural displacements using the morphing procedure" (ANSYS coupled-field guide,

Chapter 2). A simple description of our basic analysis procedure entails: 1) build a solid

model with both electrostatic and structural domains and mesh both domains; 2) create the

electrostatic physics environment by assigning element types to the meshed region, defin-

ing material properties, defining boundary conditions and loads, etc.; 3) clear the electro-

statics physics and repeat step 2) for creating the structural physics environment; and 4)

solve with ESSOLV macro. A flow chart of the data flow algorithm of the ESSOLV macro

is illustrated in Figure 3.9. One can refer to the ANSYS manual for more detailed proce-

dures.

The geometry of the FEM model for the device is shown in Figure 3.10. Elements

used for the different regions are labelled on the schematic. The global y axis is the axi-

symmetric axis. Element PLANE 121 is used to model the air region, which is grouped as

a component for mesh morphing during the iteration process. PLANE 121 is a 2-D, 8-node

electrostatic solid element that has only voltage degree of freedom at each node. The only

material input for the element is the relative permittivity. A triangular form of the element

is used for our simulation. Notice that the air region starts short of the y axis, this is to pre-

vent warning message "negative radius element" during mesh morphing. Element

PLANE82, a 2-D, 8-node, structural solid element, is used to model the fulcrum and the

plate, which is treated as one region to ensure proper boundary condition at the joint.
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Oxide deposited on the outside of the fulcrum and plate as well as the buried oxide layer

are neglected structurally because they are much thinner than the silicon plate. As in the

Matlab version, an equivalent air gap height of 10.07 pm is used. This is done by convert-

ing the oxide thickness into equivalent air thickness without modifying the electric field.

By neglecting the oxide in the picture, simulation was much more efficient and the CPU

time was greatly reduced. As can be seen in the next paragraph, the error introduced by

using only air as dielectric is minimal. The bottom electrode is not meshed and is used

only for voltage application purpose.

Save the database

Clear al physics

Readin the Electrostatics physics file

Apply Mamwel suface flag to
a-stmcture interface

Solve electrostatics problem

Compute electrostatic energy

Clear al physics

Read in the structural physics file

Retum ail geomeby to the odgirnal state

Read in electrostatic forces

Solve structural problem

Retrieve maximum displacement

Morph electrostatic mesh
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No Is problem
converged9

pyes

Figure 3.9. Flow chart of the data flow algorithm of the ESSOLV macro (ANSYS manual,
Chapter 2, coupled-field guide).
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Figure 3.10. Schematic of the actuator used in FEM model.

Because of the touch-mode operation nature of the device, a surface-to-surface contact

analysis is needed. ANSYS does the contact analysis by establishing contact and target

surfaces that form the contact pairs. The contact and target elements are associated with

each other via a shared real constant set. Details on contact analysis can be found in Chap-

ter II of the structural guide of the ANSYS manual. In our model, the contact surface is

the lower surface of the axisymmetric silicon plate and the surface is deformable. The tar-

get surface is an "imagined" rigid surface above the ground plate, as shown in Figure 3.10.

During simulation, it is found there needs to be a minimum clearance between the target

surface and the bottom electrode in order to ensure proper mesh morphing. A 0.8-pim

clearance is used, although 0.5 pim is sufficient in most cases. Therefore, instead of 10 jim,

the zipping plate only has a travel range of 9.27 im in the simulation model. A more real-

istic model with the 0.27 jim oxide included as to ensure 10-pim travel was also obtained.

And as mentioned above, the simulation was much more time-costly because of the added

elements for the thin oxide. We found that for an input voltage of 60 V, the outer deflection

of the plate is 0.6824 pim with oxide included, compared to 0.6828 jim using only air.

Cotact Suace CONTA172
Taget Surface - TARGE169

Bottom Eectrode

V
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Therefore, the error caused by neglecting the oxide is negligible. To model the contact sur-

face, we used CONTA 172 element, which is a 2-D, 3-node parabolic, deformable element

that can be located on the surface of a 2-D solid. The target surface is modeled using 2-D

TARGE 169 element.

The contact algorithm selected is the penalty method, which uses a contact stiffness to

establish a relationship between the contact surfaces. Use of the default augmented

Lagrangian method, which iterates the contact traction until penetration is smaller than the

allowable tolerance, in fact, returns same results for the zipped-in case. The other options

for the contact element could use default values. For example, changing the option of the

contact surfaces from "no separation contact" to "unilateral contact" (default) does not

change the results. A long list of real constants associated with the contact pairs are avail-

able. Default values are also used for all real constants except the contact stiffness.

ANSYS suggests that if bending deformation dominates, such as the case for our model, a

smaller contact stiffness is suggested. A value of 0.05 is chosen but a value of 0.1 returns

same results.

3.4.2 Simulation Results

The ESSOLV macro has the capability of solving problems with incremental load steps.

When the RUSEKY is selected to 1, and multiple load steps are defined, each run is a con-

tinuation of a previous run, whereby the morphed geometry is used for the initial electro-

static simulation. pMKSV units were used in the simulation. The ANSYS code for the

simulation of an input voltage can be found in Appendix D. 1, and that for the simulation

of a sweep voltage input can be found in Appendix D.2.

To simulate pull-in, zip-in and release processes, incremental voltages from 20 V to

180 V and back to 20 V were used. The profiles of the silicon plate at different sweeping
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voltages are plotted in Figure 3.11. Note that at pull-in, contact penetration is observed

due to the small contact stiffness used. However, variations in results caused by the pene-

tration are likely to be negligible. One can decrease the tolerance for penetration, but this

will increase the CPU time further.
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Figure 3.11. Deflection profiles of silicon plate for different sweep voltages.

Electromechanical hysteresis can be seen more obviously as the end deflection is plot-

ted as a function of sweeping voltage, as shown in Figure 3.12. The results from the Mat-

lab simulation is also plotted. The dotted lines represent the regions in Matlab that are not

simulated. From ANSYS, pull-in occurs at 108.5 ± 0.5 V with tip touch-down, followed

by zip-in at 130 ± 10 V, and release at 42.5 ± 2.5 V. The pull-in curve from both simula-
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tions match very well. The discrepancy of the pull-in voltage between the two simulations

is 1.7 V. For the release case, a discrepancy of 22.8 V is observed.

10
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The discrepancy can be attributed to the fact that in the Matlab model, the fulcrum is mod-

eled as a shell with rigid rotation at the joint, while in the ANSYS model, it is a 2-D cylin-

der with 50 pm thickness.
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Figure 3.13. Center deflection of plate after zip-in comparing Matlab to ANSYS.

In order to explain the hysteresis seen above, we can plot the electrostatic force and

spring force as function of the outer plate deflection in the same plot as shown in Figure

3.14. Note that the electrostatic force is a log plot because the range that it spans is too

large. In this plot, we use the displacement data obtained from ANSYS as shown in Figure

3.11. We then integrate the function as in Eq. (3.7) to obtain the electrostatic force as func-

tion of voltage. Note that because the deflections between the pull-in and touch-down

stages are not stable solutions, they are not directly obtainable from ANSYS, and instead,

they are estimated using the deflection from the before pull-in stage by assuming that the

normnalized deflection against the outer deflection is the same, which is a very good esti-

mate. The spring force as function of displacement is obtained by Matlab; these are

obtained by using the stable solutions as shown in Figure 3.5 and Figure 3.6. ANSYS



results can also be used but since we have more data points using Matlab, the Matlab solu-

tions are chosen to use here.
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Figure 3.14. Electrostatic hysteresis of the zipping actuator.

The plot reveals the following. 1) The electrostatic curve intersects the spring force

curve at two points, but only one point is stable. At the stable point, if deflection is slightly

increased, the spring force should be larger than the electrostatic force in order for the

restoring force to bring the structure back to equilibrium. If the electrostatic force would

be larger, then the displacement will keep increasing until the structure collapses. 2) Pull-

in occurs when the electrostatic force curve is tangent with the spring force curve. 3) As

voltage keeps increasing beyond the pull-in point, touch-down occurs, followed by the

zip-in stage. 4) As voltage starts to decrease, the outer-deflection stays the same. At the

point where the vertical spring force line intersects the sloped one, release will occur
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because that is not a stable point as explained earlier. In Matlab simulation, we are trying

to find the release voltage by making this point a stable point. But because that's not the

case, the Matlab solution fails to capture the condition of release, in fact. It is therefore not

unreasonable that the release voltage predicted by Matlab is off comparing to ANSYS.

Because the point is not stable, at release, the final outer-deflection will be where it's

labeled on the plot.

3.5 Discussions

The differences between the Matlab model and the ANSYS model are summarized as the

following. 1) The Matlab model considers the fulcrum as a shell and neglects the effect of

its width at the joint, while the ANSYS model considers 2-D structures for both the ful-

crum and the plate; 2) The Matlab model omits the contact mechanism between the plate

and the bottom electrode, while ANSYS takes into consideration the contact stiffness

between the two; 3) The Matlab model assumes parallel electrostatic field lines, while the

ANSYS model solves Maxwell's equations and uses energy methods to derive the capaci-

tances. By comparing the Matlab results with the ANSYS results, we will first verify the

zero-moment boundary condition for the zip-in case, and then we will compare the elec-

trostatic forces for both cases.

3.5.1 Boundary Condition

In the Matlab model for the zip-in case, because we have an extra unknown - the pin-down

position, a fifth boundary condition is required. This boundary condition is a zero moment

at the pin-down position. To verify this argument, we will look at the radial strain distribu-

tion at different cross-sections of the plate from ANSYS results. If a moment is present,

uneven distribution of radial strain will be present.
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In this example, an actuation voltage of 160V is used. The deflection profiles of the

plate for both ANSYS and Matlab simulations are plotted in Figure 3.15. Note that in this

simulation, a target clearance of 0.5 pm is used. To pin point the pin-down position, a

zoomed-in plot of the deflection from 1350 to 1500 pm is shown in Figure 3.17. For

ANSYS, the plot shows that the plate touches down onto the target plane at a radius of

1420 pm and penetrated into the target. At 1460 pm, it reaches the final depth. For Matlab,

at 160V, the pin-down position is 1423 pm.
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Figure 3.15. Deflection profile of the plate simulated with an applied voltage of 160 V.
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Figure 3.16. Zoomed-in plot of the deflection from 1350 to 1500 pm.
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Figure 3.17 and Figure 3.18 show the plots of radial strain vs. plate thickness at differ-

6ent radius with a vertical strain division of I x 10- . At the outer edge, strain distribution

is present. And as the radius moves inward, there is very small strain variation across the

thickness, suggesting negligible internal bending moment. Figure 3.18 shows the plots for

different radii from the pin-down position inward. In these plots, the vertical strain divi-

sion is 1 x 10 4. At a radius less than 1450 [tm, the strain distribution starts to grow and

becomes linear, corresponding to an increase of the internal bending moment. Using the

strain plot, we can calculate that the total moment per unit length at radius 1420 pm is

1519.44 jN. If we would use this moment as the boundary condition for calculating the

pin-down position for 160 V in Matlab, the new pin-down position is 1436 pm instead of

1423 ptm. In conclusion, the contact between the plate and the bottom surface near the pin-

down region imposes a finite internal moment at the region. However, this moment is

rather small and does not significantly affect the result. Since the assumption of zero-

moment boundary in Matlab results in good agreement with ANSYS, we conclude that the

boundary condition is valid in our analysis.

In fact, other studies of zipping motion of a cantilever beam also demonstrate zero

moment where the beam touches down on the substrate. In their calculation of the deflec-

tion and adhesion energy of a cantilever beam, Knapp and de Boer derive that the moment

is zero throughout the touched-down length, except when there exists internal stress gradi-

ent in the beam, which would results in a constant internal moment throughout the beam

[51].
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3.5.2 Electrostatic Force

In the formulation of the actuator model, electrostatic force is exerted on infinitesimal par-

allel plates and the electric field lines are assumed to be parallel. However, since the plate

bends during actuation, we know that the electric field lines are not necessary parallel. In

this section, we will examine the effect of the parallel-plate assumption.

Using 160 V as the actuation voltage, we can find that the total electrostatic force act-

ing on the plate after zip-in from the Matlab model is 2.042 N. For ANSYS, the resultant

of vertical force is 2.04114 N and the horizontal force, 0.0016 N. The difference in the

I ANSYS

ANSYS
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total force from both simulations is minimal. These results suggest that the parallel-plate

assumption used in Matlab is valid.

3.6 Capacitance Tuning

In this section, we will examine the capacitance tuning capability of the system using Mat-

lab and ANSYS simulations.

So far we have looked at the displacement of the plate and the fulcrum. Knowing the

shape of the plate from ANSYS allows us to calculate the capacitance change using Mat-

lab. Figure 3.19 shows the capacitance change as a result of the plate deflection as voltage

sweeps up and down. These curves allow us to see the general trend of change of capaci-

tance. Plot a) shows the capacitance change of capacitor and b), that of the actuator. Note

that because of hysteresis as explained in the previous section, the up-sweep and down-

sweep curves do not coincide everywhere. Instead, they only coincide at voltages that are

smaller than the release voltage and larger than the zip-in voltage. The potential use of a

tunable capacitor with such characteristics is where frequency hopping between two fre-

quencies is desired and at each frequency, small tuning is necessary. In this case, the

capacitance can hop between 15.75 pF and 9.5 pF, and with a tuning range of -6.4% and -

10.5% at each end by rough estimate. If electrostatic hysteresis is to be avoided, then the

tuning range is limited to within each actuation stage. For example, within the before pull-

in stage, the tuning range is -11.1% and within the zip-in stage, -10.5% (the number also

depends on the actuation voltage in the zip-in stage). However, since a large voltage is

needed to zip-in the actuator, it is not pragmatic for the device to operate in the zip-in

stage, unless the device is originally zipped down as fabricated, as what we have fabri-

cated. Notice also that the capacitance span of the actuator is much larger than that of the

capacitor due to the larger size of the actuator.
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Figure 3.19. Capacitance change of the a) capacitor and b) actuator as actuation voltage
sweeps up and down.

The sensitivity of capacitance change as the gap changes is a strong function of the

thickness of the dielectric material, and in our case, thermally grown oxide. The thinner

the oxide, the larger change is the capacitance given the same displacement. However, the

thickness of the oxide is limited by dielectric breakdown at desired actuation voltage.

The self and mutual capacitances of the system is also simulated using the CMATRIX

command macro in ANSYS. The ANSYS model used is shown in Figure 3.20. The model

contains 3 conductors: the actuator bottom electrode, the capacitor bottom electrode and

the silicon ground plate. A relative permittivity of 4.6 is used for the Pyrex glass region. In

the non-actuated state, the capacitances are: C11=7.72 pF, C22=16.08 pF, and

C12=3.36 x 10-5 pF. The self capacitances of the capacitor and the actuator correspond

well with the Matlab model. See Appendix D.3 for the ANSYS code.

0

CL

W_

0

(D

CL

Voltage Sweeps Up
- - Voltage Sweeps Down

------------ ------------ ---- -- - ----------

'IH
---------/ -------- ---------

-- ------ --- -- /-F -- ----- -----



Chapter 3: Modeling and Simulation

Air: PLANE121

x Cond3 Ground Plate

pacftor Bottom Bectrode

Figure 3.20. ANSYS model used in capacitance simulation.

3.7 Matlab Design Study

Now that we understand the mathematical model of the structure and have double checked

the model with ANSYS, Matlab can be used to conduct parametric studies for the effect of

the design parameters such as the fulcrum thickness, plate thickness or air gap thickness,

to determine which are the most critical parameters. In the first study, we will set the plate

outer radius at 1750 pm and we will find the pull-in voltage as a measure of the effect.

As explained before, because the fulcrum is effectively attached to the plate, part of

the moment exerted on the joint is lost to the fulcrum. We can predict that the fulcrum

thickness plays an important role because it affects its stiffness. With smaller fulcrum

thickness, more moment will be transmitted to bend the center plate instead. Another

direct result is the reduction of the pull-in voltage. In this study, a fulcrum thickness from

5-50 ptm is used with 5 pam increment. The rest of the parameters are the same. The pull-in

voltage vs. the fulcrum thickness is plotted in Figure 3.21 a), showing that the pull-in volt-

age dropped to 80 V for a 5-ptm thick fulcrum. The moment transmission ration M3/Ml is
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plotted in Figure 3.21 b), showing that the ratio is significantly higher when smaller ful-

crum thickness is used. Accordingly, the center deflection increases from 47.1 nm to 2.07

pm when the fulcrum thickness changes from 50 pm to 5 pm. This is a gain of 44 times in

displacement.
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Figure 3.21. The effect of fulcrum thickness on a) pull-in voltage and b) the moment trans-
mission ratio and c) center deflection.

Reducing the air gap of the actuator reduces the pull-in voltage. However, it also

decreases the electrostatic force and the center displacement. Figure 3.22 shows that the

pull-in voltage reduces from 110 V to 40 V as the air gap reduces from 10 to 3 pm. The

center deflection, however, reduces from 41.6 to 8.2 nm. Unlike the case of the fulcrum

thickness, there is a trade-off when selecting the air gap thickness in order to obtain
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acceptable pull-in voltage as well as center displacement. Also unlike the case of the ful-

crum thickness, which has an exponential effect on the outcome, the air gap thickness

exhibits a more linear effect. Overall, we can say that the fulcrum thickness is a more

heavily weighted factor for the center displacement while the air gap thickness is so for

the pull-in voltage.

a) b)
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Figure 3.22. The effect of air gap on a) the pull-in voltage and b) the center deflection.

Combining the effect of the fulcrum thickness and air gap thickness, we can obtain 3-

D plots of the pull-in voltage and center displacement, as shown in Figure 3.23. Two sili-

con plates with different thickness are used and the results are both displayed. To reduce

the pull-in voltage, thinner plate, thinner fulcrum and thinner gap are desired. To increase

the center displacement at pull-in, however, thicker plate, thinner fulcrum and thicker gap

are desired. See Appendix C.6 for the Matlab script.
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Figure 3.23. The combining effect of fulcrum thickness and air gap thickness for a) pull-in
voltage and b) center displacement for two different plate thickness at a pin-
down position of 1750 pm.

If we limit the actuation voltage to 40 V, and want to find out what are the possible

design dimensions, we can plot the pin-down position and the center displacement as a

function of fulcrum thickness and gap thickness as shown in Figure 3.24. If we would
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limit the outer radius at 1750 pm, in order to maximize the center deflection, we would

choose a 10 pm-thick silicon plate and a fulcrum thickness of 10 pm, an air gap of 9 pm to

achieve a maximum center deflection of 375 nm.
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Figure 3.24. The effect of fulcrum thickness and gap thickness on a) pin-down position
and b) center displacement at two different plate thickness using 40V.

3.8 Design Layout

The actual dimensions used in the mask layout for fabrication are listed in Table 3.4.

Details on the dimensions and designs used for each device can be found in Table A. 1.
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Table 3.4. Dimensions used in the mask layout.

Item Symbol Value (pm)

Radius of capacitor rc 200

Radius of fulcrum ra 500/750

Thickness of fulcrum t 50/35

Inner radius of actuator a 500

Outer radius of silicon plate b 1750/2000

Outer radius of bottom electrode ro 1700/1950

Thickness of the top plate h 20/10

Air gap g 10

Thickness of oxide insulator c 0.27

Width of metal interconnect m 100

3.9 Design with Slits

In order to reduce the stiffness of the plate and lower the actuation voltage, slits are cut

from the outer plate as shown in Figure 3.25. In the mask layout, two designs are used, one

has a cut of 300 pm long and the other, 550 pm, and both have 12 cuts.

Using a simple model by applying uniform pressure to the outer plate, we can simulate

the effect of the slits using ProMechanica. In this case, a fulcrum width of 20 pm wide is

used, and the plate outer diameter is 4 mm. A pressure of I atmosphere is used. It is shown

that with 300 pm-long slits, the center deflection is 4.13 pm instead of 1.92 pm when

there is no slit. Hence, a reduction of 2.15 times in stiffness is resulted. With 550 pm-long

slits, a reduction of 2.43 times is resulted, corresponding to center deflection of 4.67 pm.

These results show that cutting slits is an effective way of reducing the stiffness of the

plate and hence the actuation voltage of the zipping actuator.
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Figure 3.25. Design of the plate with slits cut at the outer plate.

3.10 Summary

In this Chapter, we model the fulcrum-plate structure using elastic plate theory and

solved for the plate profiles as function of actuation voltage using Matlab boundary value

problem solver. A finite element model using ANSYS is also created. Matlab BVP is well

suited to solve multiple nonlinear differential equations with unknown parameters, and

ANSYS is equipped to solve coupled physics problem as well as structures that involve

contact mechanism. The simulations results using Matlab and ANSYS are in good agree-

ment in the before pull-in and zip-in actuation stages of the electrostatic zipping actuator,

confirming both models. Our simulations show that because of electrostatic hysteresis, the

potential use of the design would be limited to within each actuation stages, i.e., within the

before pull-in, touch-down or zip-in stages where jumping from one stage to the other is

not the case, but because the most capacitance change occurs while the actuation is

jumped from one stage to the other, the useful tuning ratio of the device is actually much
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smaller as will be shown in the next chapter. However, if capacitance hopping is desired, a

large capacitance jump could be obtained, but the actuation voltage will be limited to

before release and after zip-in where there is no hysteresis in these regions. In other words,

the hysteresis in the system could limit the use of the device, but it might also provide new

opportunities. Using the Matlab model, we can perform design studies of the different

parameters and obtain the optimal dimensions. On the other hand, with ANSYS, we could

obtain a more realistic model for example, by using the actual fabricated shapes and

dimensions, as will be shown in the next chapter.
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Chapter

4
Testing Results

In this chapter, we will first present the test setup used, mainly the capacitance meter and

the laser interferometry system that is used to measure the center displacement of the

plate. Then the testing results using two different packages for both wafer-level-bonded

and die-level-bonded devices will follow. The results from the first package turned out to

be erratic but its lessons helped the design of the second package which allowed us to per-

form the experiments. As explained in Chapter 2, the wafer-level-bonded device has the

plate initially touched down as a result of the anodic bonding process, and consequently, it

only operates in the after pull-in stage. The die-level-bonded device, on the other hand,

has the plate suspended, and hence it could operate across the before pull-in, touch-down

and zip-in stages. The wafer-level-bonded device was tested more extensively and after

so, its cross-section was obtained so that the actual fulcrum profile could be measured.

Dimensions obtained from both SEM and Wyko measurements were used to construct a

more realistic ANSYS model and the simulation results compared well with the laser

interferometry measurements. On the other hand, the experimental results of the die-level-

bonded device was limited to capacitance measurement because the device was debonded

after those measurements and further testing was not available.
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4.1 Test Setup

To measure the capacitance change of the actuated device, two types of impedance ana-

lyzer were used. One was a HP 4294A 110 MHz precision impedance analyzer which was

used to scan the frequency and obtain impedance plots. Another was a HP 4284A 1 MHz

LCR meter which was used to obtain spot impedance measurements. Both meters could

apply internal DC bias up to ±40 V. A floating DC power supply (made of batteries) was

used to supply DC voltage to the device. A laser interferometer system was used to mea-

sure the center displacement of the plate. The laser system will be described in the next

section. A schematic of the test setup is shown in Figure 4.1.

Laser Interferometer

GND V+ ACT CAP LP

Power Supply Device Package Network Analyzer
(4294A & 4284A)

Figure 4.1. Schematic of the test setup.

As mentioned in Chapter 2, the silicon plate had no metal deposited on it and hence

would act as the ground for both the actuator and the capacitor. During testing, however,

we found that using a grounded voltage supply caused havoc to the impedance measure-

ment. This lead to the creation of a floating power supply with a handful of batteries and a
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potentiometer. The use of a floating voltage supply relieved some of the problems but

added parasitics to the capacitance measurement.

4.1.1 Capacitance Measurement

We will present the capacitance measurement results without the use of a power supply

and provide the capacitance model of the device.

The HP 4294A was used to scan the impedance across the terminals. Figure 4.2 shows

the magnitude and phase plots when the high potential of the meter was connected to the

CAP terminal and the low potential was connected to the silicon plate. The measurement

was fitted with a series RC model with C=7 pF, and R= 150 K), where the impedance and

phase can be calculated by,

S1+R2C2  (4.1)

6=arctan -

The large resistance could be explained by the fact that silicon was used for the

ground. The plot shows that at frequency lower than 10 MHz, the series model fits the

measurement very well. We hence used the series model in subsequent capacitance mea-

surements.

A simple capacitance model of the device is shown in Figure 4.3. There are three ter-

minals for each device: the CAP terminal represents the central capacitor metal electrode

at the bottom pyrex wafer, the ACT terminal represents the metal actuator electrode at the

bottom wafer, and the 2 GND terminals (they are one terminal essentially) represent the

silicon plate ground which has the same potential as the gold surface deposited at the back
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of the chip (see Figure 2.15 for a cross section schematic of the device). Each of the sym-

bol will be explained as follow.
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Figure 4.2. a) Magnitude and b) phase plots of the center capacitor comparing the mea-
surement to a series LCR model.
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C 1 : capacitance between the silicon plate and the central capacitor metal surface;

C22 : capacitance between the silicon plate and the actuator metal surface;

C12 : mutual capacitance between the capacitor and actuator metal surfaces;

Cpl: parasitic capacitance between the capacitor metal surface and all other surfaces

except the actuator metal surface;

Cp2 : parasitic capacitance between the actuator metal surface and all other surfaces

except the capacitor metal surface.

C11 is the designed tunable capacitor and its capacitance varies with the air gap. As

mentioned in Chapter 3, the silicon plate was not flat as fabricated and its warp compli-

cates the calculation of the capacitance; its value ranges from 1-16 pF. And for C22, it

ranges from 5-400 pF. As shown in Section 3.6, the mutual capacitance between the two

metal surfaces is very small (on the order of 10- pF), such that it can be neglected. Our

measurement further confirmed that it is so small that it simply couldn't be derived from

measurement without showing a negative capacitance value. For this reason, we could

omit it in the model. We can lump CPI with C11 to become Ccap, and likewise, Cp2 and C21

can be lumped to become Cact. The simplified capacitance model is shown in Figure 4.4.

For our measurement, we could only measure Ccap and Cact, and the value of C11 and C22

are not known directly.

C12

CAP e ACT CAP ACT

C, C C C Ca, C801

GNDe GND GND S S GND

Figure 4.3. Capacitance model of the device. Figure 4.4. Simplified model.

Because an electrical connection is made through gold-coated silicon, a metal/semi-

conductor interface is inevitably present where the contact is made. This will present an



extra parasitic capacitance in the ground line. And since no potential difference is applied

between the metal and silicon terminals, the diode is in thermal equilibrium, regardless of

the external voltage applied to the actuator during operation. We can find that the deple-

tion capacitance in this case to be about 82 nF. Since this capacitance is in series with the

capacitance of the device capacitor, and the capacitance of the device is on the order of 10

pF, the diode capacitance affects about 0.01% of the measurement and hence could be

neglected in our capacitance model.

4.1.2 Displacement Measurement

The mechanical displacement of the silicon plate was measured using a Zygo Motion

Interferometer (ZMI) system. For details on the system, please refer to the Zygo manual.

A brief description of the system is presented next.

4.1.3 The ZMI System

The ZMI system consists of a laser head, an optical probe and a ZMI 2000 measurement

board. The laser head uses a Helium-Neon source that generates a 3-mm diameter beam

with two orthogonally polarized frequencies. One frequency is 20 MHz higher than the

other. The nominal vacuum wavelength of F is 632.991501 nm and F2 is 632.991528 nm.

The optical probe uses a lens to focus the laser beam onto the moving test object. The

one we used has a focus length of 154.6 mm and a linear displacement range of ±0.25 mm.

It consists of a polarization beamspitter, a quarter waveplate retroreflector assembly and a

lens assembly, as shown in Figure 4.5. The laser beam (with two orthogonally polarized

frequencies) enters the polarization beamsplitter and is divided into two perpendicular

beams. One beam hits the retroreflector and is reflected back to the beamsplitter where its

polarization rotates by 900. Another beam passes through the lens assembly and is
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focused onto the test object and then reflected back to the beamsplitter where the two

beams are recombined. The recombined beams enter a fiber optic receiver, which converts

the counts of interference fringes into an electrical signal and is processed by the ZMI

measurement board. If N is the counts of interference fringes, X is the wavelength of the

measurement beam in air (which could be manually compensated for environmental con-

ditions such as temperature, pressure and humidity at the time of measurement by the data

acquisition software), then for our system, the displacement p can be expressed as,

P=NA (4.2)
1024

The sign of the output signal depends on the measurement beam used, which in turn

depends on the setup of the interferometer. In our case, we used F2 as the measurement

beam, and the sign is positive when the test object is moving away from the laser source.

A ZMI software was used for data acquisition and interface. Because of the limitation of

the measurement board, dynamic data acquisition is not available. Our data acquisition

rate is limited to about 0.2 sec/data.

Optica iset Qaer Waveaest
16 )5mm to PefrAssemblj
bear-, mrtr (uale Waeoe ' n dL&di

-ens Assemby

Figure 4.5. Schematic of the optical probe. (source: ZMI optical probe accessory manual
OMP-0238B)

4.1.4 Laser Setup

The challenge in preparing the laser interferometer experiments is aligning the laser to the

optical piobe and test object. The optical probe must be mounted so that the bottoms or

sides are parallel or perpendicular to the plane defined by the laser head to within ±1
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degree. The user manual also states that when performing alignment, it is necessary to

adjust the position of the probe, and it is important to clear the optical probe of thermal

fluctuation or machine vibrations. The test object must be placed at a distance as close as

possible to 154.6 mm to the assembly.

Originally, a fixture for the optical probe was designed such that it sat on a linear

stage, which allowed the probe to be displaced toward or away from the laser head. The

linear stage fitted into a tilt stage, which provided pitch and roll movement. Furthermore,

the height of the stage could be adjusted from the air table by a thumb screw on the side of

a half inch diameter support post. The design of the stage is shown in the schematic in Fig-

ure 4.6. Although optical alignment was successful with this design, it was found that the

noise level in the measurement was too large to be acceptable. This might be due to the

fact that the added degrees of freedom compromised the stiffness of the fixture and hence

the ability to isolate mechanical vibrations.

Optical Probe

Linear Stage

Tilt Stage

Support post

Figure 4.6. Exploded view of the original design for the probe fixture.
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A second design turned out to be a lot simpler. It had one machined aluminum piece

onto which the optical probe was bolted onto and its position was not adjustable. With this

fixture, the noise was greatly reduced and alignment turned out to be easier and accurate

as well. A schematic of the final experimental setup can be seen in Figure 4.7.

Optical Probe

Package

Angle Plate Cascaded xy stage Probe Fixture

Figure 4.7. Schematic of the laser interferometer experiment set up.

We had three devices in one single die and we wanted to be able to adjust the position

of the package laterally. The ability to adjust the height of the package would also be nec-

essarily during alignment. To achieve movement in both directions, the package was

mounted on top of a xy stage. In our case, we cascaded two one-axis stages to achieve the

two-dimensional motion. Finally, the xy stage was mounted to a 20 lbs cast iron angle

plate for rigidity. During alignment, metal shim might be needed to place underneath the

angle plate to provide tilting, while yawing the angle plate before tightening the bolts on

the air table might be necessary as well. But because the adjustment required was usually

small, it was manageable with the angle plate.

During testing, it was found that thermal drift could be a severe problem in the output

signals. This could be improved by 1) shielding the laser path by a plastic tubing and 2)
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cover the whole setup inside a box made by thermally insulating materials. Thermal drifts

were reduced significantly after these approaches.

4.2 Testing Results

As mentioned in Chapter 3, we have tried three different packages for the device. The first

two had the device sandwiched between two printed circuit boards and were designed to

house the Pogo Pins for electrical connection from both top and bottom sides, as well as be

able to assemble die pieces by clamping. The first package did not produce meaningful

results and we will not present it here. Testing results using the second package were not

conclusive and the lessons learned drove us to develop a third package. We will focus on

the testing results with the third package in the next section. We also mentioned that the

test devices were assembled in three different ways: one was by wafer bond in the wafer-

level, one by die-level, and one by clamping. Testing results for the first two assembly

types will be the focus of the next sections.

As shown in Figure 2.23, the double-PCB package has the die sandwiched between

two PCB's in order to house the Pogo pins needed for both sides of the die. With the top

PCB blocking the view of the die, finding the center of the plate for laser interferometry

measurement became a daunting task. Ideally, we could use the xy stage to scan the pack-

age horizontally and vertically to find the local minima for both directions, where such a

minima was undoubtedly the center of the plate. However, looking for the minima was not

a trivial task. Any particle residing on top of the plate would deflect the laser beam and

result in misalignment of the reference and measurement beams, and the same applies if

the change of height was too steep. As a result, continuous profiles were not always

achievable and readjustment of alignment was needed. Furthermore, because the laser

interferometer system was very sensitive to movement, turning of the knobs of the xy
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stage inevitably exerted some stray displacement, which could cause confusion, if not

mistake, in the judgement of the center. In summary, testing with the double-PCB package

is not conclusive, due to 1) the top Plexiglas housing obscured the view of the device and

locating the center by relying on the laser data was not reliable, and 2) the ground metal

deposited on the PCB could interfered with the real actuation signal. For these reasons, a

new package was devised as mentioned in Chapter 3 and we will present the testing results

using the new package in the following sections.

With the single-PCB package, a picture of the test setup is shown in Figure 4.8. The

package and the setup have been discussed before and will not be repeated here. The new

package proved to have resolved the problem aforementioned with the old package and

we are able to compare the testing results with theories. These results will be demonstrated

below.

Figure 4.8. Picture of the test setup with the new package.
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4.2.1 Wafer-Level Bonded Device

For the wafer-level assembled device, the plate touched town on the bottom electrode after

assembly and hence the device only operates in the touch-down and zip-in stages. For this

assembly method, device 9_1 was tested and the results will be presented here.

4.2.1.1 Capacitance Measurement

In this test, we used the HP 4294A to measure the capacitance change of both the CAP and

ACT terminals by using the bias voltage from the meter. Elimination of the power supply

reduces the parasitic capacitance that it introduces. The package is calibrated using the

two bond wires as shown in Figure 4.8. It is worth noting that there was no apparent dif-

ference of the capacitance measurement between the old package and the new package.

We connected the CAP terminal to high potential and GND terminal to low potential

and measured the capacitance change by applying bias. The oscillation frequency was 100

kHz. Bias from - 40 V to 40 V and then from 40 V to -40 V was used and 0.5 sec of delay

between each data point was used, enough for mechanical equilibrium to occur. Note that

in between, the bias was turned off when data was being saved and hence no voltage was

applied. The cycle was then repeated twice. The results are shown in Figure 4.9. The mea-

surement compared with the HP 4284A was also plotted. With the 4294A, the capacitance

changed from 7.9 pF to 15.0 pF at 40 V, and with the 4284A, it changed from 7.6 pF to

14.8 pF.
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Figure 4.9. Capacitance of the capacitor measured by HP 4294A as bias voltage scans
from -40 V to 40 V, then 0, and then 40 V to - 40 V twice, compared with
measurement by HP 4284A.

From the plot, we observe that 1) the pull-in voltage is lower when voltage is negative

or in other words, the curves are shifted toward the positive side. This is consistent with

the fact that the positive charges such as the sodium and boron are trapped in the oxide.

Hence, when the GND terminal is connected to high potential, lower voltage is required to

actuate the CAP plate. 2) The release voltage is higher than the pull-in voltage. This may

seem strange, because for the case of parallel plate actuator, when electrostatic force starts

to decrease, it will decrease up to the point where the electrostatic force is less than the

mechanical restoring force, then the plate releases. A detailed explanation of the hysteresis

for the parallel plate case can be found in [52]. The release voltage in this case is always

less than the pull-in voltage because the force is always linear with displacement. How-

ever, this is not necessarily the case for our capacitor. Figure 4.10 shows the actual geom-
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etry of the center capacitor. The center plate deflects upward as shown in Figure 4.18. And

because the initial capacitance is closed to 8 pF, we can derive that the bottom plate is very

close to the top plate, as shown in Figure 4.10. When this capacitor is used as actuator,

there are two stages of actuation. Stage 1 is the pull-in stage to close the minimum gap.

Stage 2 is more complicated. When voltage keeps increasing, the center will continue to

pull down and cause the plate to saddle, changing the mechanics of the plate. Therefore,

beyond the pull-in point, the force-displacement curve changes shape. Our tests show that

if we stop increasing the voltage as soon as pull-in occurs, and start to reduce the voltage,

then the release voltage is lower than the pull-in voltage. On the other hand, if we keep

increasing the voltage after pull-in beyond a certain value, then when we reduce the volt-

age, the new release voltage is larger than the pull-in voltage. This suggests some kind of

bistable behavior in the plate. However, since we are not interested in using the capacitor

as the actuator, we will not study what exactly happens here further.

Fulcrum Fulcrum

Bottom Pyrex

Figure 4.10. The actual geometry of the capacitor as predicted by the Wyko image and ini-
tial capacitance.

It is also observed that the capacitance changed from about 7.9 pF to 7.6 pF when the

package was put on top of the xy stage that's made of metal. Wrapping the stage with insu-

lating tape did not help the situation very much. We have to accept such parasitic in the

capacitance measurement.
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Next we connected the ACT terminal to high potential and GND terminal to low

potential and measured the capacitance change by applying bias. Figure 4.11 shows the

measurement data. The capacitance changes from 62.2 pF to 65.1 pF, corresponding to the

prediction between the touched-down to zip-in stages in Figure 3.19 b). Note that the

curves are also shifted slightly to the right as in the case of the capacitor. Furthermore,

because there is no pull-in in this case, no hysteresis is observed.

U.,

(U

(U

--------------- 1-

-------- -- ---- ... .5 E 4 -1 --

--- ----- -- --- ---I - 6 35E4 1--

-------- ------- -- ---6 6 E 4 I - -

-40 Vto -40 V
-- 40 V to 40 V

-40 V to -40 V

i i bI I t)t-i I t

-40 -30 -20 -10 0 10 20 30 40

Bias Voltage (V)

Figure 4.11. Capacitance of the actuator measured by HP 4294A as bias voltage scans
from 40 V to -40 V, then 0, and then -40 V to 40 V, and repeat to -40 V again.

4.2.1.2 Laser Interferometer Results

Because the top pcb is eliminated in the new package, aligning laser to the center of

the device was done by eyes using the following procedure. The laser was first shined on

the top side of the fulcrum at the outer edge, then on the bottom of the fulcrum at the outer

edge. This could be done because the laser path through the top Pyrex wafer could be eas-

ily seen when it shined outside of the fulcrum. We then calculated the median of the dis-
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tance and translated that distance vertically. That became the center in y direction.

Repeated for the horizontal x and then again the vertical y axis and the new location

should be very close to the real center. An error on the order of 20 pm was estimated,

which is less than the thickness of the fulcrum (50 pm) itself. Such an error should result

in negligible displacement error for our measurement. Furthermore, we estimated that the

actual distance from the lens to the plate could be off by 0.5 mm due to machining toler-

ance and thickness tolerance of the various packaging and mounting pieces. This would

result in a 10-pm laser diameter at the plate. In other words, we are averaging the displace-

ment of the plate for a 1 0-pm diameter area.

We started by measuring the center deflection when bias voltage was applied to the

CAP and GND terminals as before using HP 4284A. In order to eliminate charging of the

oxide, in these tests, only voltage sequence from -40 V to 40 V was applied. The raw data

of two different tests is plotted in Figure 4.12. Plotted on the left axis is the displacement

measured by the laser interferometer and plotted on the right axis is the bias voltage

applied at each interval. Obviously, test 1 has fewer thermal drift during testing while test

2 was overcasted by downward drift. The displacement fluctuation for both cases was 3

nm.

To obtain the displacement, each step height in the displacement curves was obtained

by subtracting the averaged values on both ends using 10 or more data points depending

on the degree of the drift. And then the steps were added up to obtain actual displacement

data. The displacement is plotted against the bias voltage in Figure 4.13 together with the

capacitance values for the two tests shown in Figure 4.12. Repeatably, the capacitance

changes from 7.65 pF to 14.75 pF at 40 V with ±0.05 V error, measured at 100 kHz. And
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the displacement for both cases is 130.0 nm with ±1.5 nm error. Test 2 shows that the

pull-in voltage is 32 V while the release voltage is -30 V.
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Figure 4.12. Displacement of the plate center measured using the laser interferometer as
bias voltage is applied to the CAP and GND terminals for two tests.

In order to study the pull-in and release voltages of the capacitor more thoroughly,

cyclic tests by applying voltage from -40 V to 40 V and back to -40 V as well as from 40

V to -40 V and back to 40 V were performed. All tests showed consistently that when volt-

age is positive, the pull-in voltage is between 30 and 32 V and the release voltage is 36 V,

and when voltage is negative, the pull-in voltage is -26 V while the release voltage is -30

to -32 V. The pull-in voltage in the negative side is less than that in the positive side as

expected. And in all cases, the release voltage is greater than the pull-in voltage as

explained previously. This is also the case when voltage was applied from 0 to 40 V and

back to 0 or 0 to -40 V and back to 0.
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------- ----------- ----------- ---- ; --- -- ------- --------------------
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Figure 4.13. Capacitance change and center displacement when bias voltage is applied
between the CAP and GND terminals; the thicker lines are for test 1 in Fig-
ure 4.12 and the thinner lines are for test 2.

Next we applied bias to the ACT and GND terminals and measured the center dis-

placement as well as capacitance change of the CAP. For this test, we had to use the exter-

nal power supply to apply voltage to the ACT, and we used the HP 4284 A to measure the

capacitance at 100 kHz. Figure 4.14 shows the raw data from the laser interferometer for

two tests. Test 1 scanned the voltage from 0 to -65 V while test 2 scanned the voltage from

65 V to 0. Note that both testing data have inherent drifts and interpretation of the actual

displacement was done as in the case for the CAP.

The extracted displacement vs. applied voltage is plotted in Figure 4.15. Plotted in the

same figure also is the capacitance change. Note that after the external power supply was

plugged in, the capacitance of the CAP changed from 7.65 pF to 7.35 pF, affecting the

reading by 3.3%. Again we accepted the parasitic caused by the power supply and went

= Capacitance
--------- -t -------------- -- - ----------

-+Displacement

-------------- ---------- ---------------- ------------ -------------

--------------- --------------- --------------- --------------- --------------

-~~ ~ -- ------ - ------------------- --------
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ahead and measured the change of capacitance. The CAP capacitance changed from 7.35

pF to 6.89 pF at 65 or -65 V, with a tuning range of 6.3%. The plate center displaced 25

nm when voltage was increased gradually from 0 to -65 V and 27 nm when it was

switched to 65 V. Note that an error of 3 nm in the laser displacement measurement is

expected so the displacement for both cases overlap. The actuator broke down at 70 V,

corresponding to an electrostatic field strength of 2.6 MV/cm, which is closed to, but

lower than, the reported value of 3 MV/cm.
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Figure 4.14. Displacement of the plate center measured using the laser interferometer as
bias voltage is applied to the ACT and GND terminals for two tests.
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Figure 4.15. Capacitance change and center displacement when external voltage is applied
between the ACT and GND terminals. In the plot, test 1 and test 2 as shown
in Figure 4.14 are plotted the same color.

4.2.1.3 Comparison Between ANSYS and Experiment

After the experiments, die 9_1 was die-sawed across the middle of the fulcrum and SEM

photo of the cross-section was obtained as shown in Figure 4.16. As seen in the figure, the

fulcrum has tapered profile, with the top being 46 p~m wide and the bottom, 12 pm.

Besides the fulcrum profile, other factors that we would want to include in the ANSYS

model are illustrated in Figure 4.17. These include the anisotropic elastic properties of sil-

icon, the residual stress in the silicon plate with thermal oxide, the initial deflection and

the pressure differential applied to the center plate because of the anodic bonding process.

Next we will address these issues and explain how each values are obtained in the ANSYS

model.
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Figure 4.16. SEM photo of the cross-section showing the actual profile of the fulcrum.

b) Anisotropic a) Fulcrum Profile
Elastic Properties
c)d) Initial Deflection

e) Pressure Differential

Figure 4.17. The factors that are considered in the ANSYS model for the wafer-level-
bonded device.

Anisotropic Elastic Properties
Because single-crystal silicon is a cubic material, the stiffness coefficients of silicon can

be described using three independent quantities [53],

Section 4.2: Testing Results 139



140 Charter 4: Testing Results

C C2 C2 0 0 0

C12 C1I C12  0 0 0

C12 C12 C11  0 0 0 (4.3)
0 0 0 C44  0 0

0 0 0 0 C44 0
0 0 0 0 0 C44

where C11 = 166 GPa, C12 = 64 GPa, and C44 = 80 GPa. In order to simulate the properties

of anisotropic material, instead of PLANE82, PLANE183 element is used for the plate

and the fulcrum.

Residual Stress
As explained in Chapter 2.3, after fabrication of the middle wafer, the silicon plate is

bowed. In Figure 2.10, the cross-section of the plate when the fulcrum is detached shows

that the bow of the plate is about 0.5 im. In ANSYS, we can simulate the initial stress

using a uniform pressure that is applied to the plate. It is found that about 1/500 ATM of

pressure difference is enough to result in the 0.5 pm bow. The residual stress is very small

such that it is almost negligible.

Initial Deflection After Fabrication
An image of the plate of device 9_1 using the Wyko profilometer is shown in Figure

4.18a). A cross-section is shown in Figure 4.18b). As explained before, the center dip is an

artifact that is caused by an etched pit in the top Pyrex wafer used. We can translate the

center area upward to obtain a curve that should be more realistic as shown in Figure 4.19,

where the curves are centered and zeroed at the middle of the fulcrum. This only shows

one cross section. Because the plate is not exactly axisymmetric, and also because of the

reduced resolution caused by the red light filter with the Wyko profilometer, we estimate
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that the outer deflection of the plate is 8.3 ± 1.0 tm after taking an average of 20 cross

sections. The initial gap, however, must be greater than the outer deflection because of

roughness of the surface and possibly particles on the surface. We estimate that the air gap

is on the order of 9.3-10.1 pm and we will show that the displacement is very sensitive to

the initial air gap.

a)

b)

~ X: 1.252 MM
Y:Y 4.36 um

KAs-

1 0 10 200 250 100 3 54

Figure 4.18. Deflection of the plate of device 9_1 using the Wyko interferomneter showing
a) 3-D image and b) a cross-section.
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Figure 4.19. Profile of the plate at a cross-section after translation.

Pressure Differential

The wafer-level anodic bonding occurred inside an enclosed chamber that was supposed

to be air tight. The initial pressure inside the chamber was atmospheric. According to the

ideal gas law, the pressure inside the enclosed cavity of the device should return to I atmo-

sphere after cooling down. However, during temperature rise, air must have found its way

out of the chamber such that the pressure inside the chamber was reduced, causing the

pressured inside the enclosed cavity after cooling down to be less than an atmosphere.

However, exactly how much less is not known. We could at best derive this value using

the measured cross-section from the Wyko profilometer. Figure 4.20 shows the cross-sec-

tion of the plate as simulated by ANSYS. Here we have assumed two different initial con-

ditions: the edge is bonded and the edge is touched down. It seems that the measured

cross-section lies in between of these two states. An explanation could be that the bond,



which is only 50 pm wide, is not that strong and hence it is only partially bonded. This is

further verified by the fact that after die-sawing, the plate is usually unbonded at the edge.

In order to match the center deflection of the plate, for the edge-bonded case, a pressure

differential of 0.625 ATM is used, while for the touched-down case, 0.5 ATM is used.

0

0
U

0

-2000 -1500 -1000 -500 0

Radius (mm)

500 1000 1500 2000

Figure 4.20. A cross-section of the plate as fabricated comparing the Wyko measurement
to ANSYS simulation.

Combining all the findings above, we can simulate the center displacement of the plate

with an ANSYS model. The code can be found in Appendix D.5. The center displacement

as a function of actuation voltage is shown in Figure 4.21. In the figure, we plot the mea-

surement data with errors estimated to be -3 nm and +1 nm, due to noise as well as mis-

alignment of laser. We also plot the ANSYS simulation results with both the edge

touched-down and edge bonded cases, and for each case, we show the difference between

using a 10.1 pm of air gap versus 9.3 pm. Note that because the actual fabricated plate has

a slit cut into it, in order to compare with the experimental data, the ANSYS results plotted

--- ------- -- --- --- --

-- Wyko Me

ANSYSV
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---- ------ ANSYSV
Touched

asurement

ith Edge

ith Edge
Down
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here are multiplied by an area factor by assuming that the electrostatic pressure is propor-

tional to the actuation area. It is shown that with an initial air gap of 10.1 pm, the mea-

sured displacement lies in between the touched-down and bonded cases, as expected. With

the air gap 0.8 ptm less, the displacement increases by 15-20 nm at 40 V, which is doubled

the value of the measurement. Because an air gap of 9.3-10.1 Vm is within the error of fab-

rication and measurement, we conclude that the ANSYS simulation comply well with the

experiments.

0

a.)

E

W-25 - - -- Laser Experiment --------- - -- -----

-3 - -Edge Touched Down, 10.1 um air gap

-a-Edge Bonded, 10.1 um air gap
-35 - - - - - - - - - -

+Edge Touched Down, 9.3 um air gap

-+--Edge Bonded, 9.3 um air gap
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Figure 4.21. Center displacement of the plate vs. actuation voltage comparing laser exper-
iments to various ANSYS simulations.

With the ANSYS model verified by experiments, we would like to find out what hap-

pens if the pressure differential would be avoided during fabrication, as well as if there

would be no initial deflection of the outer plate. In this simulation, an air gap of 10.1 Pm is

used. It is shown that the difference in displacement caused by the pressure differential of

the center plate is a couple of nanometers at most. However, by actuating the plate in the

before pull-in stage instead of after pull-in, the center displacement is improved by twice
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at the same voltage. It is therefore more advantageous to operate the device in the before

pull-in stage.
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Figure 4.22. Center displacement of the plate predicted by ANSYS.

4.2.2 Die-Level Bonded Device

As shown in Figure 2.19, the die-level bonded device (device 6_1 in this case) has the

plate initially suspended in most areas except for a corner where the tethers touch down

because of exposed Pyrex at the bottom. We applied bias voltage from the meter and mea-

sure its change of capacitance and the result is shown in Figure 4.23. The curve on the

right had 0.5 sec delay between each data point from 0 V to 40 V, and the curve on the left

had 0.2 sec delay between each data point from -40 V to 0 V.

The up-sweep curve clearly shows the regions of pull-in, touch-down and zip-in.

While for the case of down-sweep, the regions are not as distinct. However, electrostatic

hysteresis is clearly visible. The capacitance changes from 13.3 to 315 pF when voltage

sweeps up to 35 V, but then drops a little, which might due to the fact that the plate is not
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mechanically stable. For down-sweep, the capacitance changes from 372 to 16.6 pF. This

is a much larger change of capacitance compared to that of the center capacitor itself.
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Figure 4.23. Capacitance of the actuator as bias voltage is applied to actuator of the die-
level-bonded device.

The results of device 6_1 shows that with care, it is possible to bond the electrostatic

actuator with anodic bonding while making sure that the two electrodes would not touch

each other during the bonding process. The capacitance measurement result shows that the

device operates in all three actuation stages. Its low pull-in voltage might result from the

fact the the initial gap is much reduced due to the initial partial deflection of the plate, and

that the plate has slits cut, which reduce its stiffness. Unfortunately, further testing of the

device with the laser interferometer is not available because the device was debonded and

replication of the device failed.

A clamped device was also tested. Because of the large initial gap, it was found that

voltage greater than 100 V was needed to actuate the plate and as soon as the plate was

pulled down, breakdown would occur. We did not test any clamped device further.
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4.3 Summary

In this Chapter, we have shown the test setup used for measuring the capacitance and the

displacement of the plate center. The capacitance was measured using two different

meters, the HP 4294A and the HP 4284A. Voltage was applied either from the bias of the

meter or an external power supply. The displacement was measured using a laser interfer-

ometer system equipped with an optical probe. Two different packaging methods were

used to test the devices. The old package using Pogo Pins proved to be problematic

because the Plexiglas housing obscured the laser alignment and the ground plates inter-

fered with the actuation signal. Testing with the new package removed those problems and

we tested a wafer-level bonded device extensively, which was originally touched down

and would not experience pull-in during testing. Testing of the actuator and capacitor indi-

vidually was demonstrated. And a capacitance change from 7.35 pF to 6.89 pF was

observed when 65 V was applied to the actuator, resulting in a tuning ratio of 0.94:1, or a

tuning range of -6%. The device was then die sawed and the actual shape of the fulcrum

was obtained using SEM. With our measurements from both SEM and Wyko profilometer,

we could estimate the initial deflection of the outer plate, the initial air gap and the pres-

sure differential applied to the center plate due to the anodic bonding process. With these

parameters, we could predict the displacement using an ANSYS model and then compare

the results with experiments. It is found that within measurement error, the ANSYS results

comply well with the experiments. Using the ANSYS model, we further predict the func-

tion of the device that operates in the before pull-in stage. We also tested the die-level

bonded device, which operates across all three actuation stages. Our experiments show

that for a device that operates within one actuation stage, the capacitance change is lim-

ited, and for a device that operates across the actuation stages, the capacitance change has

a much larger span. However, the larger tuning ratio is accompanied by electro-mechani-



148 Chapter 4: Testing Results

cal hysteresis. We also show that the device could operate in different regimes depending

on how it is bonded. And it is possible to use anodic bonding to assemble out-of-plane

electrostatic actuators while keeping the electrodes intact.



Chapter

5

Summaries, Conclusions and
Future Work

5.1 Summaries

A proof-of-concept tunable capacitor for a tunable electromagnetic cavity resonator was

designed, modeled, fabricated and tested. The design was based on the concepts of the

Nanogate structure with an integrated electrostatic zipping actuator and was enabled

mainly by the deep reactive ion etching and anodic bonding microfabrication techniques.

Deep reactive ion etching was used to etch the high-aspect-ratio fulcrum that had the

shape of a circular column. Survival of the footing effect during the etch was relieved to

some degree by the use of guard rings surrounding the inner and outer sides of the column.

Anodic bonding was used to assemble the three wafer layers used, because it allowed us to

use a low-loss glass wafer in terms of electrical performance, although it was generally

avoided for electrostatic devices. We found, however, that anodic bonding did not neces-

sarily destroy the electrostatic actuator although it might introduce parasitic charges dur-

ing the bonding process. By connecting both electrodes to the same potential during

bonding to avoid actuation, and covering metal underneath the silicon electrode during

design layout to minimize sodium ion diffusion, anodic bonding should be able to be used
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with many electrostatic devices. The fabricated device was a simpler version of the design

in that only one metal layer was used for the actuator and the capacitor, and the other part

of the electrodes was a silicon plate, which was used both for structural and electrical pur-

poses. This was due to the constraints of the facility at the time of fabrication. The simpli-

fied version, however, still allowed us to test the concept of the device without major

drawback, except that grounding the actuator and capacitor introduced parasitics into the

capacitance measurement, and series resistance was increased because of the use of sili-

con.

We modeled the structure using both Matlab numerical simulation and ANSYS finite

element analysis. The structure could be described by using three ordinary differential

equations using Timoshenko's elastic plate theory. However, since they are not linear, a

closed form solution is not possible. On the other hand, the Matlab command BVP

(boundary value problem) can be used to solve multiple ODE's with unknown parameters

numerically and is well suited to our purpose. Different boundary conditions were used to

model three actuation stages: before pull-in, zip-in and release. To double-check the Mat-

lab results, an ANSYS model was also used. ANSYS is equipped to solve coupled physics

problem as well as structures that involve contact mechanism. Furthermore, voltage sweep

can be used to simulate the hysteresis of an electrostatic actuator. The Matlab results com-

pared very well with the ANSYS results for our simulation. The Matlab model could be

further used to perform parametric design studies to find out the optimal dimensions for a

design.

The device was tested using a power supply, a capacitance meter (the HP 4294A and

the HP4284A were both used for this purpose) and a laser interferometer system to mea-

sure the center displacement. The package used to test the device evolved over time. The

first package used long Pogo Pins and proved to be unstable with parasitic. The second
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package used shortened Pogo Pins and sandwiched the device in between two printed cir-

cuit boards, where BNC connectors were mounted for electrical signals. However, testing

of the second package was not conclusive because it obscured the view of the laser for

alignment purpose, and it introduced other parasitics to the device because of the metal

shield used. A third package was designed to alleviate these problems by adhering the die

on top of a PCB with conductive tape. With this package, we were able to test the perfor-

mance of the devices.

Two different types of devices were tested. One was a wafer-level-bonded device,

where the outer plate was snapped down onto the bottom electrode during anodic bonding

because of the way the mask was laid out and therefore, the device would only operate in

the after-pull-in stage. With this device, we found that the capacitance of the capacitor

changed from 7.6 to 14.8 pF when 40 V was applied to the capacitor, with about 130 nm

of displacement. When voltage was applied to the actuator, the capacitor changed from

7.35 to 6.89 pF, corresponding to a displacement of about 25 nm. No hysteresis was

observed in this device because it only operated in the after pull-in stage. Using an

ANSYS model, the displacement predicted by simulation matched with the experiments

subjected to fabrication and measurement errors. We also tested a die-level-bonded

device, where the two electrodes were applied the same potential during anodic bonding

and hence the outer plate was elevated above the bottom electrode in most places except

where Pyrex was exposed due to misalignment. Results showed that the device operated

across the before pull-in, touch-down and zip-in stages and electromechanical hysteresis

was observed.

5.2 Conclusions

Our simulation and test results have shown that the lever-fulcrum structure with electro-
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static zipping actuator works as expected, and it has some, although very limited, capaci-

tance tuning capability. The device could operate in before pull-in or after pull-in

actuation stages depending on how anodic bonding is done.

While numerical simulation using Matlab BVP is more time-efficient when it comes to

perform design studies, ANSYS model is more encompassing and realistic when it comes

to predict the actual performance of the device.

We have shown that anodic bonding can be used to assemble out-of-plane electrostatic

actuators even on the wafer-level. Careful mask layout can be done to short the electrodes

together during bonding and separate each device after die sawing. Furthermore, in the

actuator areas, no Pyrex should be exposed. With these precautions, there is no reason to

avoid using anodic bonding for this purpose.

It is also clear to us that because of electromechanical hysteresis of the electrostatic

zipping actuator, the capacitance tuning capability of the device is very limited, and its full

range of capacitance change cannot be fully applied. In order to avoid the electrostatic

hysteresis, the device should operate within each actuation stages, namely, the before pull-

in stage, the touch-down stage, and the zip-in stage. If capacitance hopping is desired, the

actuation voltages will be limited to less than the release voltage and larger than the zip-in

voltage. The zipping actuator has been demonstrated to be superior in its performance to

actuate a bistable micro relay, however, its use as a proportion control actuation for a tun-

able capacitor is less advantageous. Furthermore, in order for the electrostatic-zipping-

actuated fulcrum-lever structure to be effective, the fulcrum width is critical and it must be

small compared to other dimensions. However, this imposes fabrication challenges

because small width increases the aspect-ratio as well as the risk of overetching.

In conclusion, the fulcrum-lever structure is well suited to controlling very small flow

of a microfluidic valve because it allows for nanometer resolution displacement. However,



integration of the structure with a zipping actuator limits the use of the structure as a tun-

able capacitor because of electromechanical hysteresis and the fact that the fulcrum itself

is a limiting factor in terms of efficiency of bending the center plate. Furthermore, there is

a trade-off between how thin a fulcrum is desired and its manufacturability using micro-

fabrication. To eliminate these problems, a new design of the tunable capacitor and its

integration with the LC cavity resonator is proposed and will be described next.

5.3 Future Work

During testing of Die 9_3, we found that an actuator placed within the fulcrum area would

be a more effective actuator than placing the actuator outside of the fulcrum and relying on

the fulcrum to act as the pivot and bend the inner plate. This is supported by ANSYS sim-

ulations.

Accordingly, a design of a new actuator is shown in Figure 5.1. The circular silicon

plate is supported by tethers shown here similar to that of the zipping actuator, but no ful-

crum is needed in this design. As will be shown later, the bottom part of the plate will act

as the electrostatic actuator, which operates in the before pull-in stage, and the top part of

the plate forms the capacitor plate. An axisymmetric 2-D model of the new actuator design

is simulated with ANSYS, as shown in Figure 5.2. In this 2-D model, the tethers are repre-

sented by a thin bridge that has equivalent spring constant as the tethers. The outer edge of

the tethers is a clamped support. Voltage is applied between the silicon plate and the bot-

tom electrode. The actuator would only operate before pull-in, and hence no dielectric

insulation would be needed.

We used the following dimensions shown in Table 5.1 in our simulations. With 40 V,

the center deflection is found to be 750 nm. A profile of the plate after actuation is shown

in Figure 5.3. The ANSYS code can be found in Appendix D.5.
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Figure 5.1. A design of the new electrostatic actuator.

Y

Figure 5.2. Axisymmetric 2-D equivalent model of the new actuator design.

Table 5.1. Dimensions used in the simulation of the new actuator design.

Item Symbol Value (pm)

Outer plate diameter b 500

Width of bridge wb 50

Thickness of plate h 10

Thickness of bridge hb I

Air gap g 2.5

Air PLANE121

b W

S41con Plate: PLANE82 Lh

x Boom Eectode - f v
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Figure 5.3. The deflection profile of the plate with the new design using ANSYS.

With this design, the size of the actuator is significantly reduced and the center deflec-

tion is improved as well. To apply this actuator to the LC tank, a concept is shown in Fig-

ure 5.4. The tank is comprised of three wafers, with a SOI sandwiched by two Pyrex

wafers as before. The toroidal resonator cavity situates above the silicon plate, the center

of which is the tunable capacitor area. The LC tank is coupled through the capacitor,

where the top capacitor is connected through a copper via in the middle of the device.

Next we will examine the function of this LC resonator and will present the fabrication

process.

5.3.1 Theory of the LC Resonator

A schematic of the LC resonator is shown in Figure 5.5. For simplification, the gap g is

assumed to be uniform in the analysis, but the actual curvature of the silicon plate will be

considered in the capacitor calculation.
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Figure 5.4. A 2-D cross section of the conceptual LC tank.

P

T1 -- _-_

Figure 5.5. Simplified schematic of the LC resonator.

In our analysis, we will make the following assumptions. 1) The current I flows into

the top capacitor plate and out of the bottom. This current distributes evenly across the

capacitor, forming a surface current K in the gold plating inside the capacitor. 2) The mag-

netic flux lines are contained inside the toroid and outside the gold plating, there is no H
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field. We can then derive that the H field inside the toroid is H=K. The surface current K is

a function of the radius,

K=H = (5.2)
2;rr

The flux density is,

B = pH (5.3)
2,cr

To calculate the inductance, the total flux inside the toroid must be calculated. This is

done by integrating the flux density across the cross-sectional area of the toroid. Dividing

the flux-linkage by the current gives the inductance,

I R2 ]dd

L _ f12dr - 11,d i (5.4)
/ 2zc RI

where u is the vacuum permeability.

The capacitance of the capacitor by assuming uniform gap can be expressed as,

C = j A (5.5)

by taking into account the thickness of the insulating oxide (or nitride) c.

The resistance of the toroid is calculated below. The skin depth of gold w is a func-

tion of resonant frequency. Note that the loss calculated here does not include dielectric
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hysteresis, radiation, charge relaxation time constants and leakage through silicon, all of

which could reduce the Q of the LC tank.

I 1 ddR, = +. R
2,rao- w4 ,, R) R2

where the skin depth of gold is expressed as,

_ 2
WA 2

Up 4,

(5.6)

(5.7)

and 0 -A u is the electrical conductivity of gold.

The series resistance associated with the capacitor is dominated by the silicon column

and can be expressed as,

R(, = d
w-t c A

where 0 -CZ is the electrical conductivity of copper.

(5.8)

With the derived parameters of the tank, we can describe the tank with a lumped

parameter model as shown in Figure 5.6.

RI. RC

L C

Figure 5.6. Lumped parameter model of the LC tank.
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Using Matlab, we can simulate the frequency response of the tank. The following

dimensions and parameters are used or derived in the simulation. The Matlab script can be

found in Appendix C.7.

Table 5.2. Dimensions used and parameters derived in the Matlab simulation.

Item Symbol Value

Radius of capacitor R, 200

Radius of toroid R2 550

Height of toroid d 300

Thickness of oxide c 50 nm

Change in gap g 10 to 750 nm

Inductance of toroid L 60.7 pH

Resistivity of gold PAit 2.44 x 10-8 m

Resistance of toroid RL 11.0 mf to 25.4 mn

Capacitance change C 48.8 pF to 1.6 pF

Resistivity of copper Pcu 1.72xl 0-fm

Resistance of capacitance Rc 0.04 mQ

Resonant frequency JO 2.9 GHz to 16.4 GHz

Quality Factor Q 21 to 63

The frequency response is plotted in Figure 5.7. We use a gap of 10 nm to start, to take

into consideration of roughness even two surfaces are mated. When the gap changes from

10 to 750 inn, the resonant frequency changes from 2.9 to 16.4 GHz, which covers the

UWB spectrum. The corresponding quality factor is 21 to 63, which can be improved by

the design. It can be shown that quality factors can exceed 100 when the size of the cavity

increases.
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Figure 5.7. Magnitude response as capacitance is tuned from its initial value (the
curve to the left) to the final value (the curve to the right).

5.3.2 Proposed Fabrication Process

The fabrication process for the LC cavity resonator is proposed here. It could be a

rather complicated process and we will only describe the major steps.

The new resonator design also consists of three wafers, including a middle SOI wafer

and a bottom Pyrex wafer, but instead of top Pyrex wafer, a DSP wafer is used instead.

The entire process is illustrated in Figure 5.8. We will start the fabrication process with the

middle wafer and provide a brief description of each step.

1. We will first deposit PECVD nitride and pattern it with a plasma etcher to define the

top actuator electrode. 2. In order to access the top capacitor electrode, DRIE is used to

8
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open a hole, then electroplating is used to fill the hole with copper. Chemical-mechanical

polishing will then be used to polish the top surface. For a detail explanation of the copper

via process, refer to [54]. 3. Using DRIE, we will pattern the SOI layer to form the silicon

plate. 4. We will then deposit gold and use life-off to pattern it to define the top actuator

electrode as well as access to the bottom capacitor electrode. 5. DRIE is used to etch the

cavity as well as access holes for electrical connection. Then gold is deposited on top of

the center disk using a shadow mask. 6. For the top wafer, DRIE is used to open an access

hole, and then lift-off is used to deposit gold surrounding this hole. 7. Now we will bond

the top and the middle wafer using thermal compression, and only the center disk area will

be bonded because that is where the gold is deposited. 8. We will then release the oxide

layer using BOE, after which, the center disk will be attached to the top wafer and the top

stack will be separated from the middle wafer. 9. Sputter gold to the top stack using a

shadow mask, and then deposit PECVD oxide to the top stack also using a shadow mask.

10. Sputter gold to the bottom stack using a shadow mask to cover the cavity with gold.

11. Now bond the top stack and the middle wafer again using thermal compression. This

way, the gap between the center disk and the silicon plate can be accurately controlled,

provided that metal deposition on both sides does not deform the plate significantly. 12.

Using a Pyrex wafer, etch a bottom pit with dimples on it using BOE. Then deposit gold

using lift-off. 13. Anodic bond the top stack to the bottom Pyrex wafer, finishing the

finally assembly of the device.
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BOX Nitride Cu Via Au Top Si Wafer

1. Deposit and pattern
nitride

2. Electroplate copper
via

3. Pattern SOI with
DRIE

4. Gold lift-off

5. Deposit gold using
shadow mask

6. Lift-off gold on a
DSP wafer with holes
etched by DRIE

7. Bond top and middle
wafers with thermal
compression

8. Release BOX with
BOE and Separate
top and middle wafers

Figure 5.8. Fabrication process of the new LC cavity resonator.

SOI Wafer
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9. Sputter gold using
Oat shadow mask and

PECVD oxide using
shadow mask

10. Sputter gold using
shadow mask

11. Bond top and middle
wafers with thermal
compression

12. Etch bottom Pyrex
and kft-off gold

13. Anodic bond the top
stack to a bottom Pyrex
Wafer by applying same
potential to both gold
surfaces of the actuator

Figure 5.8. Fabrication process of the new LC cavity resonator.

As shown, the new device involves a series of DRIE etch, electroplating, gold deposi-

tion, thermal compression and anodic bonding. The process is complicated, and it is to the

author's best knowledge how the proposed cavity resonator can be fabricated.

5.4 Contributions

The author's contribution in this thesis can be summarized to the following:

1. A design for a novel circular electrostatic zipping actuator and its application to

actuate a MEMS tunable capacitor.
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2. Development of a model for the zipping actuator and the fulcrum-lever mechanism

by modeling the system with numerical methods with Matlab and finite element analysis

with ANSYS and comparison of the simulation results with experiments. Good agreement

is obtained between the two models in most areas. And the ANSYS model is verified by

experiments.

3. Development of the fabrication techniques for a high-aspect ratio circular fulcrum

with deep reactive ion etching techniques on SOI wafers by using sacrificial guard rings to

protect the inner and outer critical features from undercutting. Also helped to develop a

method of anodic bonding an out-of-plane electrostatic actuator.

4. Development of experimental methods for testing the zipping actuator with ful-

crum-lever mechanism for application to a tunable capacitor. Improvement in design of an

LC cavity resonator is proposed based on the knowledge of the structure developed by

modeling and testing.
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Table A. 1. Dimensions and the designs used for each device in the mask layout. All dimensions
are in tm.

Plate Dimensions

Fulcrum Plate Fulcrum Guard Slit Slit Number
Die # Device # Inner Radius Outer Radius Thickness Rings Width Length of Slits

1 1 500 1750 50 yes
2 500 2000 50 yes
3 750 1750 50 yes

2 1 500 1750 35 no 25 550 12
2
3 750 2000 35 no

3 1 500 1750 50 yes
2 500 2000 50 yes
3 750 1750 50 yes

4 1 500 1750 35 yes 25 550 12
2
3 750 2000 35 yes

5 1 500 1750 50 no
2 500 2000 50 no
3 750 1750 50 no

6 1 500 1750 35 yes 25 550 12
2
3 750 2000 35 yes

9 1 500 1750 50 no
2 500 2000 50 no
3 750 1750 50 no

1 4 500 1750 50 yes
5 500 2000 50 yes
6 750 1750 50 yes

2 4 500 1750 35 no 25 550 12

3 4 500 1750 50 yes

46 750 1750 5 yes 25 50 15 4 500 1750 35 ys 25 550 12
5
6 750 2000 35 no

6 4 500 1750 35 yes 25 550 12
5
6 750 2000 35 yes

9 4 500 1750 50 no

6 750 1750 50 no

51 500 2000 50

Appendix : Mask Layout and Drawings

6 750 1750 50 no
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Figure A.I. Mask 1: ALIGN, wafer level 
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Figure A.2. Mask 2: STREETS 
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Figure A.3. Mask 3: ACTUATOR_TOP, wafer level 
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Figure A.4. Mask 3: ACTUATOR_TOP, die level (showing two different dies) 
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Figure A.5. Mask 4: FULCRUM, wafer level 
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Figure A.8: Mask 5: METAL_TOP, die level (showing two different dies) 
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Figure A.IO. Mask 6: OXIDE, die level (with two different dies) 
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Figure A.II. Mask 7: CAPACITOR_SEAT, wafer level 
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Figure A.12. Mask 8: ACTUATOR_BOTTOM, wafer level 
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Figure A.13. Mask 8: ACTUATOR_BOTTOM, die level 
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Figure A.14. Mask 9: METAL_BOTTOM, wafer level 
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Figure A.IS. Mask 9: METAL_BOTTOM, die level (showing two different dies) 
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Figure A.16 .. Mask: SEAL_BACK, die level, with streets 



Appendix

B
Process Flow

B.1 Fabrication Process for Middle Wafer

Initial wafer conditions:
B doped (p type)
<100> orientation
5-18 mQ cm

Wafer# Type

TC3_2
TC3_3
TC3_5

SO'
SO'
SOl

SoI BOX
(mm) (mm)

20
20
10

1.5
1.5
1.5

Thickness
(mm)

344
345
338

Wafer Bow
(mm)

83.46
74.84
77.15

1. Thermal oxidation: 0.5 um

Piranha clean, TRL
RCA clean, TRL

Thermal oxidation, TRL, Tube A2
Step 1: 1 min N2
Step 2: 20 min 02
Step 3: 11 min N2
Step 4: 68 min H2 + 02
Step 5: 20 min 02
Step 6: 20 min N2
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Oxide thickness in Nanospec for dummy wafer:
Wafer flat right top left center
Dummyl 0.5043 0.5001 0.4930 0.5027 0.5008 (source side)
Dummy2 0.4851 0.4813 0.4837 0.4835 0.4865
TC3_2 0.5064 0.5078 0.5055 0.5069 0.5067

2. Masks: Align & Streets
Photolithography

HMDS
Coat one side: Standard thin resist @ 3Krpm
Prebake: 10 min @ 90 degC
Coat the other side: @ 3Krpm
Prebake: 30 min @ 90 degC
Expose alignment marks: EVI for 2 sec
Develop: OCG 934 for 10 sec
Expose Streets: 2 sec
Develop: 1 1/2 minutes
Postbake: 30 min @ 120 degC

BOE TRL: 7 min

STSI etch
Recipe: Almark
Time: 20 sec (put back to about 16 sec to avoid CF4)
Depth: 3.3 um w/ resist & oxide

Piranha clean

3. Mask: Tethers
Photolithography

HMDS for thick resist
Spin coat: thick resist @ 2 krpm
Prebake: 60 min @ 90 'C
Expose: EVI for 20 sec
Develope: 150 sec
Back side resist coating: thin
Post bake: 25 min @ 90 degC
Patch alignment marks w/ thin resist
Post bake: 10 min @ 90 degC
Patch alginment marks again for a 2nd time
Post bake again for 10 min

BOE TRL: 7 min w/ 10 sec degas at level 5
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STS 1 etch tethers
Recipe: MIT 37

Time: 10 min (actual time varies from 6-8 min)

Wafer # Actual Time (min)
TC3_5 < 3min by SF6 withouth RF power
TC3_2 7 min 30 sec
TC3_3 8 min 35 sec

4. Mask: Fulcrum
Wafers: TC3_2, TC3_5
Photo

HMDS
Spin coat: old resist @ 2 Krpm
Expose 20 sec
Develop: 2 1/2 min
Backside coating: thick resist @ 2krpm
Target mount to 4" quartz

STSl etch
Recipe: MIT 59
TC3_2: 1 + 2 + 8 min + 5 min + 5 min + I0min+I0min+5min+IOmin
with a lot of patch and etch
TC3_5: 60 min + 90+18

Asher remove resist
All wafers are detached from quartz mount wafer

Nanostrip clean: 4 hrs

BOE etch:
TC3_2, TC3_5: 20 min (for 1.5 um)

Piranha: 5:1 : H2S04:H2O2

Spin dry: 4 min at I Krpm sandwiched between dummy wafers

5. Thermal Oxidation

Clean wafers for thermal oxidation per Bernard
1. Piranha clean 5:1 for 10 min
2. Rinse in bucket of water
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3.
4:
5.

HF dip: 10:1 for 10 sec
Rinse in bucket of water

Spin dry 5 min @ 1 krpm, one by one sandwiched by quartz wafers

Thermal oxidation
Target: 300 nm

Sequence:
Step Time (min) Gas
1 1 N2
2 20 02
3 11 N2
4 38 H2+02
5 20 02
6 20 N2
7 Halt

Oxide
flat
.2686

thickness: source side (mm)
right top left bottom

.2686 .2678 .2693 .2699

6. Anodic bond
1. TC3_2±TCB_9
(TCB_9: with seat etched; etch pit 10. 6852 mm)

a. Bond TC3_2 to a top pyrex: 6 min
b. Bond stack to TCB_9: 8 min

2. TC3_5+TCB_1
(TCBI1: no capacitor seat etched; etch pit 11.68 mm)

a. Bond TC3_5 to top pyrex wafer
b. Mechanically clamped or die-level bond to TCB_1 pieces

7. Plasmaquest etch oxide
Recipe: xyoxide
Target: .28 um
Total time: 12 min

8. Diesaw TC3_2 stacks
Diesaw TC3_5 stack and TCB_1
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B.2 Fabrication process for bottom wafer

Wafers #: 10 device wafers
1. Piranha clean all pyrex wafers received (50 total)

2. Mask 1: Align
TCB1 - TCB1O
Photolithography

Spin Coat: thin resist @2 Krpm
Prebake: 30 min @ 90 degC
Expose: EVI for 2 sec
Develope: + 1 1/2 min

Mask 2: Capacitor Seat
Only for TCB5 - TCB10

Expose: EVI for 2 sec
Develope: 2 1/2 min

Postbake all wafers: 60 min @ 90 degC

BOE etch
TC1-Pl - TCl-P5
Time: 30 min
Depth:

Wafer 1 Wafer 2
Avg 0.80035 0.7647
Etch rate 0.0267 um/min 0.0255 um/min

TCB5 - TCB10
Target: 1 mm
Time: 40 min
Depth: -1.04 urn

*TCB 10 demolished*

3. Mask 3: Actuator Bottom
Ebeam feature side
Target: Cr: 200 A

Au: 1000 A
Deposition rate: Cr: 5 A/sec

Au: 10 A/sec

Appendix B: Process Flow 191



Ebeam back side
Target: same
Deposition rate: Cr: 5 A/sec

Au: 5 A/sec

Photolithography
Spin Coat: thin resist @3 Krpm
Prebake: 30 min @ 90 degC
Expose: 2 sec
Develope: 3 min (1 1/2 should be enough)
Back side resist: standard 3 Krpm
*Cover alignment marks with thin pr*
Postbake: 30 min @ 120 degC

Pyrex Etch
Solutions: 1. Aqua regina for gold etch

HCL:HNO3=3:1
2. Cr-7 etchant for Cr etch
3. Pyrex etchant

H20:HNO3:HF=660:140:200
Temperature: -33 'C (kept in a water bath)

a. Use the small beaker mixing pyrex etchant
b. Use the ultrasonic heater and heat up a buck of water and the beaker with solu-

tion to 38 degC; monitor the temperature of the solution constantly.

First batch: TCB1, TCB2
Temperature: 33.5 degC
Time: 12.67 min

TCBI TCB2
Etch depth (um) 11.68 11.96
Etch rate (um/min) 0.92 0.94

2nd batch: TCB3,4,5
Temperature: 33 degC
Time: 11.69 min

TCB3 TCB4 TCB5
Etch depth 10.25 9.83 10.23
Etch rate 0.88 0.84 0.88

3rd batch: TCB6,7,8,9
Temperature: 33 degC
Time: 12.45 min

TCB6 TCB7 TCB8
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Etch depth 10.41 10.15 10.30
Etch rate 0.84 0.82 0.83

4. Mask 4: MetalBottom
Photolithography
Spin coat: image reversal resist @ I Krpm
Prebake: 90 C for 30 min
Expose with mask MetalBottom: EVI for 3 sec

Postbake: 20 min @ 105 degC (Note: Kurt changed this to 30 min @ 90/95 'C
recently)

Flood exposure: EV 1 for 1 min
Develop: AZ 422 for 5 min

Ebeam metal
Target:

Ti: 100 A
Au: 5000 A

Acetone lift-off (soak in acetone for a day, then place in an ultrasound bath at low
power setting to shake off the metal for about I min. Then clean in acetone, methanol and
isopropanol)
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Appendix

C
Matlab Scripts

C.1 Before Pull-In

1. pullin.m

function [centerdeflection]=pullin(V)

clear all

close all

clc
% This program finds the pull-in voltage of the electrostatic zipping actuator

% actuator.
% Definitions:

% a-=fulcrum outer radius (also fulcrum location)

% b=plate outer radius

% D=flexural rigidity of the plate D=E*hA3/12*(1-nuA2)

% nu=Poisson ratio

% g=air gap thickness
% h=thickness of plate

% t=thickness of shell

% =height of fulcrum

% c=thickness of oxide

% g-eq=equivalent air gap thickness (air+oxide)

% V=input voltage

global epsilon epsilon-ox g g-eq a b c t h I A D Df E V nu zeta beta yi step

% ----------------------------------
% Enter design parameters:

Actuatorinnerradius=500; %um
Actuatorouterradius= 1750; %um
TopPlatethickness= 17; %um
Fulcrumthickness=50; %um
Gap=10; %um
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Capacitordiameter=400; %um
Oxidethickness=0.27; %um
Fulcrum height=340; %um
Capacitor initial-gap=O; %um
%----------------------------------
% Dimensions of the plate

a=Actuatorinnerradius+Fulcrumthickness; %um
b=Actuatorouter radius; %um
h=TopPlatethickness; %um
t=Fulcrumthickness; %um
g=Gap; %um
cd=Capacitor-diameter; %um
c=Oxidethickness; %um
go=Capacitorjinitial-gap; %um
=Fulcrum-height; %um

% ----------------------------------
% Material properties of the plate, uMKS units

nu==0.25;

E=169* 10A3;
D=E*h^3/(12*( 1-nuA2));
Df=E*tA3/(12*(1 -nuA2));
epsilon=8.85* OA-6;

epsilonox=3.9;
g-eq-g+c/epsilon ox;

%----------------------------------
% Derived values
beta=(E*t/(4*aA2*Df))A.25;

A=a/(b-a);

% ----------------------------------

VO=O;
x=[0:0.01:1];

yi=x*O;
step=O;

%apply incremental voltage to find the pull-in voltage

for i=1:15
U(i)=VO

step=i;

zeta=(b-a)A4*epsilon*U(i).A2/(2*D*gA3);
%call the function

[xint,sxint]=pullinfun(V);
%use the solution for the next guess function

yi=sxint;
if VO<l01
VO=VO+10;
else
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VO=VO+0.2;
end

%plot the results
W=sxint(1,:); %deflection
dW=sxint(2,:); %rotation
ddW=sxint(3,:); %2nd derivative
r=xint*(b-a)+a;
w=W*g;
dw=dW*g/(b-a);
ddw=ddW*g/(b-a)^2;

%resulted (internal) moment
M_outerplate=-D*(ddw+nu./r.*dw)*2*pi.*r;
Ml =-D*(ddw(1)+nu/a*dw(1))*2*pi*a;

%the outer deflectioin
outerdeflection=w( 100 1);
delta _outer(i)=outerdeflection;
rotation_at_a_outerplate=dw(1);

%compute capacitance change of the actuator
Cact(i)=0;
for j=L:1:1000

Cact(i)=epsilon*2*pi*r(j)*(r(j+ )-rj))/(w(j)+g+c/epsilon-ox)+Cact(i);
end
Cact(i);

%total force
F(i)=forceintg(r,w,U(i));

%vertical deflection of fulcrum
axial defl(i)=F(i)*l/2/pi/a/t/E;

%center plate
W3=sxint(5,:);
dW3=sxint(6,:);
ddW3=sxint(7,:);
r3=xint*a;
w3=W3*g;
dw3=dW3*g/a;
ddw3=d[dW3*g/a^2;
centerdefl=w3(1);
delta center(i)=centerdefl;
center_translation(i)=w3(955);
%compensated center deflection
centerdeflcomp(i)=deltacenter(i)-axial defl(i)-centerjtranslation(i);
rotation_ at-a centerplate=dw3(101);
if r3==0

M_centerplate=0;
else

Mcenterplate=-D*(ddw+nu./r3.*dw)*2*pi.*r3;
end
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%compute capacitance change of the capacitor

Ccap(i)=0;
for j=1: 1:364

Ccap(i)=epsilon*2*pi*r3(j)*(r3(j+1)-r3())/(w3(j)+go+c/epsilonox)+Ccap(i);
end

Ccap(i)

%fulcrum

W2=sxint(8,:);

dW2=sxint(9,:);

ddW2=sxint(10,:);

x=xint*1;
y=W2*g;
dy=dW2*g/;
ddy=ddW2*g/lA2;
rotationata_fulcrum=dy(1);
M_fulcrum=-Df*ddy*2*pi*a;

%plot the deflection

figure(1)

subplot(3,2, 1)

plot(r,w,r3,w3)

title('a) Plate Displacement vs. Radius')

xlabel('Radius (micron)')

ylabel('Displacement (micron)')
hold on

%plot the rotation

figure(1)
subplot(3,2,2)

plot(r,dw,r3,dw3)

title('b) Plate Rotation vs. Radius')
xlabel('Radius (micron)')

ylabel('Rotation (micron)')

hold on

%plot the fulcrum deflection

figure(1)

subplot(3,2,3)
plot(x,y)
title('c) Fulcrum Displacement vs. Length')
xlabel('Length (micron)')
ylabel('Displacement (micron)')
hold on

%plot the fulcrum rotation
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figure(1)

subplot(3,2,4)
plot(x,dy)

title('d) Fulcrum Rotation vs. Length')

xlabel('Length (micron)')

ylabel('Rotation (micron)')

hold on

%plot the moment of the plate and the fulcrum

figure(2)
subplot(2,1,1)

plot(r,Mouterplate,r3,Mscenterplate)
title('a) Plate Moment vs. Radius')
xlabel('Radius (micron)')

ylabel('Internal Moment (microNewton*micron)')
hold on

figure(2)

subplot(2,1,2)

plot(x,M-fulcrum)
title('b) Fulcrum Moment vs. Length')

xlabel('Length (micron)')
ylabel('Fulcrum Moment (microNewton*micron)')
hold on

end

%save U, outer deflection and center deflection in a text file
defl=[U;delta-outer;center deflcomp;Cact;Ccap;F];
fid=fopen('pullin data.txt','w');
fprintf(fid,'%6.2f %12.5f %12.5f %12.5f %12.5f %12.5f\r',defl);
fclose(fid);

%plot the outer deflection as function of voltage
figure(l)

subplot(3,2,5)

plot(Udeltaouter)
title('e) End Deflection vs. Voltage')

xlabel('Voltage (V)')

ylabel('End Deflection (micron)')

%plot the rotation of the fulcrum
figure(l)
subplot(3,2,6)
plot(Udeltacenter,U,center deflcomp,':')
title('f) Center Deflection vs. Voltage')
xlabel('Voltage (V)')
ylabel('Center Deflection (micron)')
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legend('Original','Compensated')

%plot the capacitance change

figure
subplot(1,2,1)

plot(U,Cact)
title('Capacitance Change of Capacitor vs. Voltage')
xlabel('Voltage (V)')

ylabel('Capacitance (pF)')

subplot(1,2,2)

plot(U,Ccap)
title('Capacitance Change of Actuator vs. Voltage')
xlabel('Voltage (V)')

ylabel('Capacitance (pF)')

%plot the total electrostatic force

figure

subplot(1,2, 1)
plot(U,F)

title('Total Electrostatic Force vs. Voltage')

xlabel('Votlage (V)')

ylabel(Force (uN)')

%plot electrostatic force as function of center deflection

subplot(1,2,2)

plot(center deflcomp,F)

title('Total Electrostatic Force vs. Center Deflection')

xlabel('Center Deflection (micron)')

ylabel('Force (uN)')

%function to find the total electrostatic foce

% -------------------------------------------------------------------------

function force=force-intg(r,w,v)

global epsilon g epsilon-ox c A b g-ansys

force=0;

for j=l:1:(size(r,2)-1)

force=4/2*epsilon*vA2/(g+w(j)+c/epsilon ox)A2*2*pi*r(j)*(r(j+1)-r(j))+force;

end

2. pullinfun.m

function [xint,Sxint]=pullin-fun(a)

% Solve delA4 W = B / (g-eq - W)^2
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% subject to W(a)=0 assume zero fulcrum end deflection
% W'(a)=-phi rotation at fulcrum end
% M(b)=0; zero shear force at outer edge
% V(b)=0; zero moment at outer edge
% here B=epsilon*V^2/(2*D)--D is bending stiffness

global epsilon epsilonox g g-eq a b c t h I A D V nu zeta yi step

solinit = bvpinit([0:0.0 1:1 ],@allinit);
sol= bvp4c(@allode,@allbc,solinit);

xint = [0:0.01:1];
Sxint = bvpval(sol,xint);

%define the function elements of the radial outerplate

%first, need to supply a guess function

% -------------------------------------------------------------------------------------

function yinit = allinit(x);

global yi step

if step > 1

num=round(x* 100+1);
yinit=yi(:,num);

else
yinit = [0;

0;
0;
0;
0;
0;
0;
0;
0;
0;
0];

end

%next, set up odes for the problem

% ---------------------------------------------------------------------------------------

function dydx = allode(x,y)

global epsilon g-eq B zeta A g beta I
dydx = [y(2);

y(3);
y(4);
-zeta/(g-eq/g+y(t))^2-2*y(4)/(x+A)+y(3)/((x+A)^2)-y(2)/((x+A)^13);

y(6);
y(7);
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0;
y(9);
y(10);
y(l 1);
-4*beta^4*1^4*y(8)];

if x==0
dydx(7)=0;

else

dydx(7)=-y(7)/x+y(6)/x^2;
end

%enforce boundary conditions
% ---------------------------------------------------------------------------------------

function res = allbc(ya,yb)

global epsilon g epsilon-ox phi a b nu A D Df I
res = [ya(1); %deflection at r=a is zero

D*(ya(3)+nu/A*ya(2))-(D*(yb(7)+nu*yb(6))/a^2-Df*ya(10)/1^2)*(b-a)A2;

yb(3)+nu/(1+A)*yb(2);

yb(4)+1/(1+A)*yb(3)-1/(1+A)A2*yb(2);
yb(5);
ya(6);
yb(6)-ya(2)/(b-a)*a;
yb(8);
yb(9);
ya(8);

ya(9)-ya(2)/(b-a)*I];

C.2 Zip-in

1. zipin.m

function [center-deflection]=zipin(V)

clear all

close all

clc
% This program finds the pin-down position of the electrostatic zipping actuator

% actuator during zip-in actuation stage.
global epsilon epsilon ox g g-eq a b c t h 1 A D Df E V nu beta g-ansys gamma-guess

% ----------------------------------
% Enter design parameters:
Actuatorinnerradius=500; %um
Actuatorouterradius= 1750; %um
TopPlatethickness= 17; %um
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Fulcrumthickness=50; %um
Gap= 10; %um
Capacitordiameter=400; %um
Oxidethickness=0.27; %um
Fulcrum height=340; %um
Capacitor initialgap=0; %um
% ----------------------------------
% ----------------------------------
% Dimensions of the plate
a=Actuatorinnerradius+Fulcrumthickness; %um
b=Actuatorouterradius; %um
h=TopPlatethickness; %um
t=Fulcrumthickness; %um
g=Gap; %um
cd=Capacitor-diameter; %um
c=Oxidethickness; %um
go=Capacitoriinitial-gap; %um
l=Fulcrunheight; %um
% ----------------------------------
% Material properties of the plate, uMKS units

nu=0.25;

E=169* 10^3;
D=E*hA3/(12*(1 -nuA2));

Df=E*tA3/(12*( -nu^2));
epsilon=8.85* l0A-6;
epsilon_oK=3.9;

g-eq=g+c/epsilonox;

g-ansys=g-eq-0.8;

%----------------------------------
% Derived values
beta=(E*t/(4*aA2*Df))A.25;
A=a/(b-a);
%YO----------------------------------

V0=110;
gamma-guess=(1 750-a)A4*epsilon*V0A2/(2*D*gA3)

for i=1:8

V=VO;
U(i)=VO;

%call the function
[xint,sxint,s]=zipinfun(V);
Pindown-pos(i)=s;
gamma-_guess=(s-a)A4*epsilon*VA2/(2*D*g^3);

%the outer plate
W=sxint(1,:);
dW=sxint(2,:); %rotation
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ddW=sxint(3,:);
dddW=sxint(4,:);
r=xint*(s-a)+a;;
w=W*g;
dw-dW*g/(s-a);

ddw=ddW*g/(s-a)A2;

dddw=dddW*g/(s-a)^3;
d2wdr2_end=ddw(1001);

%net electrostatic force
F(i)=force-intg(r,w,V)

%vertical deflection of fulcrum

axial-defl(i)=F(i)*1/2/pi/a/t/E

VO=VO+10;
%resulted (internal) moment at r-a

Ml=-D*(ddw(1)+nu/a*dw(1))*2*pi*a;
Mend=-D*ddw(1001);

%resulted shear force at r=s

Q-s=D*(dddw(1001)+/s*ddw(1001)-1/sA2*dw(1001));
%the outer deflectioin

outerdeflection=w(1001)

delta outer(i)=outerdeflection;

rotationat_a_outerplate=dw( 1);
%compute capacitance change of the actuator

Cact(i)=0;

for j=l :1:1000
Cact(i)=epsilon*2*pi*r(j)*(r(j+1 )-r(j))/(wj)+g+c/epsilon-ox)+Cact(i);

end

for k=1:1001
R(k)=s+k*(b-s)/1000;

end

for m= 1:1000
Cact(i)=epsilon*2*pi*R(1)*(R(+ I)-R(l))/(c/epsilon ox)+Cact(i);

end

Cact(i)

%center plate

W3=sxint(5,:);

dW3=sxint(6,:);

r3=xint*a;

w3=W3*g;
dw3=dW3*g/a;
centerdefl=w3(1);
%center translation
centertranslation(i)=w3(955);

delta center(i)=centerdefl;
%compensated center deflection
centerdeflcomp(i)=deltascenter(i)-axial-defl(i)-centerjtranslation(i);
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rotation_at_a_centerplate=dw3(100 1);
%compute capacitance change of the capacitor

Ccap(i)=0;
for j=1: 1:365

Ccap(i)=epsilon*2*pi*r3(j)*(r3(j+ 1)-r3(j))/(w3(j)+go+c/epsilon-ox)+Ccap(i);

end

%fulcrum

W2=sxint(8,:);
dW2=sxint(9,:);
x=xint*1;

y=W2*g;
dy=dW2*g/l;
rotationat_a_fulcrum=dy(1)

%plot the deflection
subplot(3,2, 1)
plot(r,w,r3,w3)

title('a) Plate Displacement vs. Radius')
xlabel('Radius (micron)')

ylabel('Displacement (micron)')
hold on

%plot the rotation

subplot(3,2,2)

plot(r,dw,r3,dw3)

title('b) Plate rotation vs. Radius')

xlabel('Radius (micron)')

ylabel('Rotation (micron)')
hold on

%plot the normalized deflection
polyfit(xint(1,:),sxint(1,:),4)

subplot(3,2,3)

plot(xint(1,:),sxint(1,:))

title('c) Normalized plate Displacement')

xlabel('Normalized Radius (micron)')

ylabel('Normalized Displacement (micron)')
hold on

end
%Ysave U, outer deflection and center deflection in a text file

defl=[U;delta-outer;center deflcomp;Pin-downpos;Cact;Ccap;F];
fid=fopen('mat defl zipin.txt','w');
fprintf(fid,'%6.2f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f\r',defl);
fclose(fid);
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%plot s as function of voltage

subplot(3,2,4)
plot(U,Pin down-pos)

title('d) Pin-Down Position vs. Voltage')

xlabel('Voltage (V)')

ylabel('Pin Down Position (micron)')

%plot the center deflection as function of voltage

subplot(3,2,5)

plot(Udeltacenter, U, centerdeflcomp, ':')

title('e) Plate Center Deflection vs. Voltage')
xlabel('Voltage (V)')

ylabel('Center Deflection (micron)')

legend('Original','Compensated')

%plot the center deflection as function of s

subplot(3,2,6)

plot(Pin-down-posdeltacenterPindownpos,center deflcomp, ':')
title(') Plate Center Deflection vs. Pin-Down Position')

xlabel('Pin Down Position (micron)')

ylabel('Center Deflection (micron)')

legend('Original','Compensated')

%plot the capacitance change

figure
subplot(1,2, 1)

plot(U,Cact)

title('Capacitance Change of Actuator vs. Voltage')

xlabel('Voltage (V)')

ylabel('Capacitance (pF)')

subplot(1,2,2)

plot(U,Ccap)
title('Capacitance Change of Capacitor vs. Voltage')

xlabel('Voltage (V)')

ylabel('Capacitance (pF)')

%plot the total electrostatic force
figure

subplot(1,2,1)
plot(U,F)

title('Net Electrostatic Force vs. Voltage')
xlabel('Votlage (V)')
ylabel('Force (microNewton)')
%plot the net electrostatic force vs. center deflection
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subplot( 1,2,2)
plot(center deflcomp,F)

title('Net Electrostatic Force vs. Center Deflection')
xlabel('Center Deflectioin (micron)')
ylabel('Force (microNewton)')

%function to find the net electrostatic foce
% -------------------------------------------------------------------------

function force=forcejintg(r,w,v)

global epsilon g epsilonwox c

force=0;
for j=l: 1:(size(r,2)-1)

force=l /2*epsilon*vA2/(g+w(j)+c/epsilonox)^2*2*pi*r(j)*(r(j+1 )-r(j))+force;
end

2. zipinfun.m

function [xint,Sxint,s]=zipinjfun(V)

global epsilon epsiloniox g geq a b c t h 1 A D Df V nu gamma g-ansys s

solinit = bvpinit([0:0.01:1 ],@allinit,gamma);

sol = bvp4c(@allode,@allbc,solinit);

xint = [0:0.01:1];
Sxint = bvpval(sol,xint);

zeta=sol.parameters;

s=zeta*(2*D*gA3/(epsilon*VA2))A( 1/4)+a;

%define the function elements of the radial outerplate

%first, need to supply a guess function
% ---------------------------------------------------------------------------------------

function yinit = allinit(x);

global g g-ansys geq

rotation=-0.00 1;
p=[ 1 1 1 1; 10 0 0; 1 2 3 4; 0 2 6 12](1)*[-gansys/g; rotation; 0; 0];
yinit =[ p(l)*x+p(2)*xA2+p(3)*XA3+p(4)*xA4;

p(l )+2*p(2)*x+3*p(3 )*xA2+4*p(4)*xA3;

2*p(2)+6*p(3)*x+12*p(4)*xA2;

6*p(3)+24*p(4)*x;
0;
0;
0;



0;
0;
0;
0];

%next, set up odes for the problem
% ---------------------------------------------------------------------------------------

function dydx = allode(x,yzeta)

global epsilon g-eq g beta 1 D V a

s=zeta*(2*D*gA3/(epsilon*VA2))A( 1/4)+a;
A=a/(s-a);

dydx = [y(2);

y(3);
y(4);
-zetaA4/(g-eq/g+y( 1))A2-2*y(4)/(x+A)+y(3)/((x+A)A2)-y(2)/((x+A)A3);

y(6);
y(7);
0;
y(9);

y(ll);

-4*betaA4*1A4*y(8)];
if x==0

dydx(7)=0;

else

dydx(7)=-y(7)/x+y(6)/xA2;

end

%enforce boundary conditions

% ---------------------------------------------------------------------------------------

function res = allbc(ya,yb,zeta)

global epsilon g epsilon-ox phi a nu D Df I c V a g-ansys

H=sqrt(epsilon*epsilon ox/(2*D*c));

s=zeta*(2*D*gA3/(epsilon*VA2))A( 1/4)+a;
A=a/(s-a);
res = [ya(l);

D*(ya(3)+nu/(A)*ya(2))-(D*(yb(7)+nu*yb(6))/aA2-Df*ya( 1 0)/A2)*(s-a)A2;

yb( )+g-ansys/g;
yb(2);
yb(3);
yb(5);
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ya(6);

yb(6)-ya(2)/(s-a)*a;
yb(8);
yb(9);
ya(8);

ya(9)-ya(2)/(s-a)*I];

C.3 Release

1. release.m

function [V]=release(b)

clear all

close all
cIe

% This program finds the release voltage of a given membrane with radius

global epsilon epsilonox g g-eq a c t h I A D Df E nu beta g-ansys

% ----------------------------------
% Enter design parameters:

Actuatorinnerradius=500; %um

Actuatorouterradius= 1750; %um
TopPlatethickness= 17; %um
Fulcrumthickness=50; %um
Gap=10; %um
Capacitor_.diameter-400; %um
Oxidethickness=0.27; %um
Fulcrum height=340; %um
Capacitor initial-gap=0; %um
%Y ------------------------------

% -----------------------------
% Dimensions of the plate

a=Actuatorinnerradius+Fulcrumthickness; %um
b=Actuatorouter radius; %um
h=TopPlatethickness; %um
t=Fulcrumthickness; %um
g=Gap; %um
cd=Capacitorjdiameter; %um
c=Oxidethickness; %um
d=Fulcrum-height; %um
go=Capacitorinitial-gap; %um
=Fulcrum-height; %um

% ----------------------------

% Material properties of the plate, uMKS units
nu=0.25;

E=169*10^3;
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D=E*hA3/(12*(1 -nuA2));
Df=E*tA3/(12*(1-nu^2));
epsilon=8.85* 1OA-6;
epsilonox=3.9;
g-eq-g+c/epsilon ox;

g-ansys=geq-0.8;

% ----------------------------------
% Derived values

beta=(E*t/(4*aA2*Df))A.25;
A=a/(b-a);

% ----------------------------------

%call the function
[xint,sxint,V]=release-fun(b);

W=sxint(1,:);
dW=sxint(2,:); %rotation

ddW=sxint(3,:);
dddW=sxint(4,:);

r-xint*(b-a)+a;;

w=W*g;
dw=dW*g/(b-a);

ddw=ddW*g/(b-a)A2;
%resulted (internal) moment at r-a

M l=-D*(ddw(l)+nu/a*dw(l))*2*pi*a

%the outer deflectioin

rotationat_a_outerplate=dw( 1)

%total force

F=force-intg(r,w,V);

%vertical deflection of fulcrum

axialdefl=F*1/2/pi/a/t/E;

%center plate

W3=sxint(5,:);

dW3=sxint(6,:);

r3=xint*a;

w3=W3*g;
dw3=dW3/a*g;

centerdefl=w3(1)

%center translation

centertranslation=w3(955);
centerdeflcomp=center defl-axialdefl-centertranslation

rotationat_a_centerplate=dw3(l00 1);
%fulcrum

W2=sxint(8,:);
dW2=sxint(9,:);
x=xint*1;
y=W2*g;
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dy=dW2/1*g;
rotationat_a_fulcrum=dy(1);

figure

%plot the deflection
subplot(2,2, 1)
plot(r,w,r3,w3)

title('Plate Displacement vs. Radius')
xlabel('Radius (um)')
ylabel('Plate Displacement (um)')

%plot the rotation
subplot(2,2,2)

plot(r,dw,r3,dw3)
title('Plate rotation vs. Radius')
xlabel('Radius (um)')
ylabel('Rotation')

%plot the deflection of the fulcrum
subplot(2,2,3)

plot(x,y)
title('Fulcrum Deflection vs. Length')
xlabel('Fulcrum Length (um)')
ylabel('Fulcrum Deflection (um)')

%plot the rotation of the fulcrum

subplot(2,2,4)

plot(x,dy)
title('Fulcrum Rotation vs. Length')
xlabel('Fulcrum Length (um)')
ylabel('Fulcrum Rotation')

%function to find the total electrostatic foce
% -------------------------------------------------------------------------

function force=forcejintg(r,wv)

global epsilon g epsilon-ox c A b g-ansys
force=O;

forj= 1:1:(size(r,2)- 1)
force= l/2*epsilon*v^2/(g+w(j)+c/epsilon ox)A2*2*pi*r(j)*(r(j+1 )-r(j))+force;

end

2. releasefun.m
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function [xint,sxint,V]=release-fun(b)

% Solve delA4 W = B / (g-eq - W)A2

% subject to W(a)=0 assume zero fulcrum end deflection
% W'(a)=-phi rotation at fulcrum end
% M(b)=0; zero shear force at outer edge
% V(b)=0; zero moment at outer edge
global epsilon epsilon__ox g g-eq a b c t h I A D Df E nu beta g-ansys

solinit = bvpinit(linspace(0, 1, 1000),@allinit,0.72); %define range of integration
sol = bvp4c(@allode,@allbc,solinit);
xint = [0:0.001:1];
sxint = bvpval(sol,xint);
zeta=sol.parameters;
V=zeta*sqrt(2*D*gA3/(b-a)A4/epsilon);

%define the function elements of the radial outerplate

%first, need to supply a guess function
% ---------------------------------------------------------------------------------------
function v = allinit(x);

global g g-ansys g-eq nu A
rotation=-0.001;
p=[ I I 1 1; 1 0 0 0; nu/(l+A) 2*nu/(1+A)+2 3*nu/(l+A)+6 4*nu/(1+A)+12; -1/(l+A)^2 2/

(1 +A)-2/(l +A)A2 6+6/(l+A)-3/(l+A)A2 24+12/(1+A)-4/(1+A)A2]A(- 1)*[-g-ansys/g; rotation; 0; 0

v =[ p(1)*x+p(2)*xA2+p(3)*xA3+p(4)*xA4;
p(l)+2*p(2)*x+3*p(3)*xA2+4*p(4)*x^3;
2*p(2)+6*p(3)*x+ 12*p(4)*xA2;
6*p(3)+24*p(4)*x;
0;
0;
0;
0;
0;
0;
0];

%x=[0:0.01:1];
%y=p(l)*x+p(2)*x.A2+p(3)*x.A3+p(4)*x.A4;

%figure
%plot(x,y)

%next, set up odes for the problem
% ---------------------------------------------------------------------------------------



function dydx = allode(x,yzeta)

global epsilon geq A g beta 1

dydx = [y(2);

y(3);
y(4);
-zeta^4/(gseq/g+y(l))^2-2*y(4)/(x+A)+y(3)/((x+A)A2)-y(2)/((x+A)A3);

y(6);
y(7);
0;
y(9);
y(10);

y(ll);
-4*beta^4*A4*y(8)];

if x==O
dydx(7)=O;

else

dydx(7)=-y(7)/x+y(6)/xA2;
end

%enforce boundary conditions
%Y ---------------------------------------------------------------------------------------

function res = allbc(ya,yb,zeta)

global epsilon g epsilon ox a b nu A D Df 1 g-ansys
res = [ya(l); %deflection at r=a is zero

yb(l)+g-ansys/g;

yb(3)+nu/(1+A)*yb(2);

D*(ya(3)+nu/A*ya(2))-(D*(yb(7)+nu*yb(6))/a^2-Df*ya( I 0)/h^2)*(b-a)^2;
yb(4)+1/(l+A)*yb(3)- 1/(1+A)A2*yb(2);
yb(5);
ya(6);

yb(6)-ya(2)/(b-a)*a;
yb(8);
yb(9);
ya(8);

ya(9)-ya(2)/(b-a)*I];

C.4 MOS structure analysis for actuator

%This code calculates the threshold voltage of the actuator and returns
%the depletion thickness as function of actuation voltage. The goal is
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%to find out whether the depletion layer is significantly large as to

%affect the calculation of the pull-in voltage characteristics

clear all
close all

k=1.38e-23; %J/K, Boltzman constant

T=300; %K, room temperature

q= 1.6e- 19; %Coulomb, charge of an electron
Nv-3.le19*1e6; %mA(-3),

NA=7e18* 1e6; %mA(-3), Acceptor concentration

ni=lOelO*1e6; %mA(-3),
Wm=4.7 %eV, metal work function for Gold

epsilonox=3.9; %relative permittivity of oxide

epsilonsi=11.9; %relative permittivity of silicon
e=8.85e-12; %F/m, vacumm permittivity

%calculate built-in voltage

Ws=4.04+1.1+k*T*log(NA/Nv); %eV, work function for silicon
PhiBi=Ws-Wm %eV, built-in voltage

Phisth=2*k*T/q*log(NA/ni) %surface potential threshold of silicon

g_ox=.27e-6; %m; thickness of oxide insulation

g_air-Oe-6; %m; air gap
g_oxeq=gox+gair/3.9 %m; equivalent oxide thickness

C_ox=/(g-ox/(epsilon ox*e)+(g_air/e)) %F/mA2; capacitance per unit area

gamma= /C_ox*sqrt(2*e*epsilon_si*q*NA) %body factor coefficient

%calculate threshold voltage

Vth=-PhiBi+Phi-sth+gamma*sqrt(Phi_sth) %V, threshold voltage

Max_xd=sqrt(2*epsilonsi*e*Phi-sth/q/NA) %m, maximum depletion layer thicknness

%in depletion

V=[1:1:100]; %V, applied voltage

xd=epsilon si*e/C-ox*(sqrt(1 +4*(PhiBi+V)/gammaA2)- 1); %m, depletion thickness

plot(V,xjd) %plot depletion thickness as function of voltage
xlabel('Voltage (V)')

ylabel('Depletion layer thickness (m)')
title('Thickness of Depletion Layer vs. Applied Voltage')

Ld=sqrt(epsilon-si*e*k*T/^2/NA) %m, Debye length
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x-inv=sqrt(2)*Ld %m, inversion layer thickness

Phis=ganma^2/4*(sqrt(1+4*(PhiBi+V)/gammaA2)-1).A2; %V, surface potential of sili-

figure
plot(V,Phi-s) % plot surface potential as function of voltage

xlabel('Voltage (V)')

ylabel('Surface Potential (V)')

title('Surface Potential of Silicon vs. Applied Voltage')

C.5 MOS structure analysis for capacitor and Metal-Semiconductor

interface for electrode contact

%This code analyzes the MOS structure of the capacitor

clear all;

close all;

k=1.38e-23; %J/K, Boltzman constant

T=300; %K, room temperature

q= 1.6e- 19; %Coulomb, charge of an electron

NA=7e18* 1e6; %m^(-3), Acceptor concentration

PhiBi=0.44; %V, built-in voltage as calculated from the actuator case

ni=lOelO*1e6;

Phi_sth=2*k*T/q*log(NA/ni) %V, surface potential threshold of silicon

epsilon-ox=3.9;

epsilonisi=1 1.9;
epsilon=8.85e-12;

r-200e-6;
A-pi*r^2;

%relative permittivity of oxide

%relative permittivity of silicon

%F/m, vacuum permittivity

%m, radius of the capacitor

%m^2, area of the capacitor

g-ox=.27e-6; %Yom, thickness of oxide insulation

g_air=500e-9; %m, air gap

C_air-epsilon*A/g-air %m, equivalent oxide thickness

C_ox=epsilon*epsilon _ox*A/g-ox %F, capacitance of oxide
C_total= L/(I /Cair+ 1/Cox) %F, total capacitance

gamma= l/C-total/A*sqrt(2*epsilon*epsilon-si*q*NA) %body factor coefficient

Vth=-PhiBi+Phi-sth+gamma*sqrt(Phi_sth) %V, threshold voltage

%V, voltage signal used in measurement

con
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C_corrected=Ctotal/sqrt(1+4*(V+PhiBi)/gamma^2) %F, capacitance after MOS correc-
tion

%Calculation of metal-semiconductor interface for the electrode contact
depletion thickness=sqrt(2*epsilon*epsilon si*PhiBi/q/NA)

depletion capacitance=epsilon*epsilon si*pi*(I.5e-3)A2/depletionthickness

C.6 Design Studies

1. pullin-study.m

function [V, centerdeflectioncenterdeflection_com]=pullin-study(g,t)
clear all

close all

clc
%This script finds the pull-in voltage as function of fulcrum thickness and gap thickness

global epsilon epsilonox g g-eq a b c t h I A D Df E V nu beta zeta-guess g-ansys s
%-----------------------------

% Enter design parameters:
Fulcruminnerradius=500; %um
Actuatorouterradius= 1750; %um

Capacitordiameter=400; %um
Oxidethickness=0.27; %um
Fulcrum height=340; %um
Capacitor initial-gap=O. 1; %um
s=1750;

%---------------------------

%-----------------------------

% Dimensions of the plate

b=Actuatorouterradius; %Youm
cd=Capacitordiameter; %um
c=Oxidethickness; %um
d=Fulcrum-height; %um
go=Capacitorjinitial-gap; %um
l=Fulcrumheight; %um

% ---------------------------
% Material properties of the plate, uMKS units

nu=0.25;
E= 169*10^3;
epsilon=8.85* 1OA-6;
epsilon-ox=3.9;

h=20; %plate thickness
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VO= 110; %initial guess for the pull-in voltage

for k=l:2
D=E*hA3/(12*(1-nuA2)); %flexural regidity of plate

t=50; %initial fulcrum thickness

for i=1:10

T(i)-t;
a=Fulcruminnerradius+t; %actuator inner radius
Df=E*tA3/(12*(1 -nuA2)); %flexural regidity of fulcrum

beta=(E*t/(4*aA2*Df))A.25; %constant
A=a/(s-a); %normalization factor
g= 10;
for j=l:8

G(j)=g;
g-eq:=g+c/epsilon _ox; %equivalent air gap thickness

g-ansys=g+c/epsilon ox-0.8; %maximum displacement from ANSYS
zetaguess=srt((s-a)4*epsilon*V0A2/(2*D*gA3)); %guess for the unknown zeta

%call the function

[xint,sxint,V]=pullin-study-fun(g,t);
VO=V;
U(i,j)=V
W=sxint(1,:);

dW=sxint(2,:);

ddW=sxint(3,:);

dddW=sxint(4,:);

r=xint*(s-a)+a;
w=W*g;
dw=dW*g/(s-a);

ddw==ddW*g/(s-a)A2;

dddw=dddW*g/(s-a)A3;
%resulted (internal) moment at r=a

M I(ij)=-D*(ddw( I )+nu/a*dw( 1))*2*pi*a;

%total force
F(i,j)=forceintg(r,w,V);

%vertical deflection of fulcrum

axial--defl(i,j)=F(i,j)*1/2/pi/a/t/E;
%center plate

W3=sxint(5,:);

dW3=sxint(6,:);
ddW3=sxint(7,:);

r3=xint*a;

w3=W3*g;
dw3= dW3*g/a;
ddw3=ddW3*g/aA2;
centerdeflection(i,j)=w3( 1);
centerdeflectioncomp(i,j)=w3(1)-axiaLdefl(ij)
M3(i,j)=-D*(ddw3(101)+nu/a*dw3(101))*2*pi*a;
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Mjratio(ij)=M3(ij)/Ml(i);
%fulcrum

W2=sxint(8,:);

dW2=sxint(9,:);
ddW2=sxint(10,:);

x=xint*l;
y=W2*g;
dy=dW2*g/l;
ddy=ddW2*g/^2;
rotationat_a_fulcrum=dy(1);

M2(i,j)=-Df*(ddy(1))*2*pi*a;

g=g-1;

end

t=t-5;
VO=U(i, 1);

end

%plot pull-in voltage and center deflection

figure(l)

subplot(2, 1,1)
mesh(GT,U)

title('a)')
xlabel('Air Gap Thickness (um)')

ylabel('Fulcrum Thickness (um)')

zlabel('Pull-In voltage (V)')

hold on

subplot(2,1,2)
mesh(GT,center deflectionscomp)

title('b)')

xlabel('Air Gap Thickness (um)')

ylabel('Fulcrum Thickness (um)')

zlabel('Center Deflection at Pull-In (um)')

hold on

h=10;
VO=50; %guess pull-in voltage for h=10, t=50 and g=10
end
%save the pull-in voltage and center deflection in a text file

defl=[U;center deflectionscomp];

fid=fopen('defl.txt','w');

fprintf(fid,'8(%12.5f) 8(%12.5f)\r',defl);
fclose(fid);

%function to find the total foce
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% ----------------------------------------------------------------------------
function force=forcejintg(r,w,v)

global epsilon g epsilon-ox c A
force=0;

for j=l: 1:(size(r,2)-l)
force= 1/2*epsilon*v^2/(g+w(j)+c/epsilon-ox)^2*2*pi*r(j)*(r(j+ 1)-r(j))+force;

end

2. pullin-studyjfun.m

function [xint,Sxint,V]=pullin study-fun(t)

% Solve delA4 W = B / (g-eq - W)^2
% subject to W(a)=0 assume zero fulcrum end deflection
% W'(a)=-phi rotation at fulcrum end

% M(b)=0; zero shear force at outer edge

% V(b)=0; zero moment at outer edge

% here B=epsilon*VA2/(2*D)--D is bending stiffness

global epsilon epsilon-ox g g-eq a b c t h 1 A D Df V nu zeta-guess g-ansys s

solinit = bvpinit([0:0.0 1:1 ],@allinit,zetaguess);

sol = bvp4c(@allode,@allbc,solinit);

xint = [0:0.01:1];
Sxint = bvpval(sol,xint);

zeta=sol.parameters

V=zeta*sqrt(2*D*gA3/(s-a)A4/epsilon);

%define the function elements of the radial outerplate

%first, need to supply a guess function

% ----------------------------------------------------------------------

function yinit = allinit(x);

global g g-ansys g-eq

rotation=-0.001;

p=[ 1 1 1 1; 1000; 1 234;026 12]A(-1)*[-gansys/g; rotation; 0; 0];
yinit =[ p(l)*x+p(2)*xA2+p(3)*xA3+p(4)*xA4;

p(l)+2*p(2)*x+3*p(3)*xA2+4*p(4)*xA3;
2*p(2)+6*p(3)*x+ 12*p(4)*xA2;
6*p(3)+24*p(4)*x;

0;
0;
0;

219



0;
0;
0;
0];

%next, set up odes for the problem

% ---------------------------------------------------------------------------------------

function dydx = allode(x,yzeta)

global epsilon g-eq g beta 1 D A s a t

dydx = [y(2);

y(3);
y(4);
-zetaA2/(g-eq/g+y( 1))A2-2*y(4)/(x+A)+y(3)/((x+A)A2)-y(2)/((x+A)A3);

y(6);
y(7);
0;
y(9);
y( 10);
y(ll);

-4*betaA4*1A4*y(8)];
if x==O

dydx(7)=O;

else
dydx(7)=-y(7)/x+y(6)/xA2;

end

%enforce boundary conditions

% ---------------------------------------------------------------------------------------

function res = allbc(ya,yb,zeta)

global epsilon g epsilon ox phi a nu D Df I c a b g-ansys s A
%H=sqrt(epsilon*epsilonox/(2*D*c));

%V=zeta*sqrt(2*D*gA3/((b-a)A4*epsilon));

res = [ya(1);

D*(ya(3)+nu/A*ya(2))-(D*(yb(7)+nu*yb(6))/aA2-Df*ya( 10)/lA2)*(s-a)A2;

yb(1)+gansys/g;
yb(2);
yb(3);
yb(5);
ya(6);
yb(6)-ya(2)/(s-a)*a;

yb(8);
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yb(9);
ya(8);

ya(9)-ya(2)/(s-a)*I];

C.7 Simulation of LC resonator

close all;
clear all;
clc

% Geometry of LC tank
R2=550e-6;
R1=200e-6;
d=300e-6;

c=50e-9; %oxide dielectric thickness
% Properties
sigmaAu= 1/2.44e-8;
sigmaSi=10;

% Skin depth of Au at 5 GHz
dAu=sqrt(2/2/pi/5e9/(4*pi* le-7)/sigmaAu);
fprintf('Skin depth in gold: %.3f um\n',dAu* 1e6);
0

h=IOe-9;

fo=3e9;
for i=1:2

% Calculate inductance
L=(4*pi* le-7)*d/2/pi*log(R2/Rl);

fprintf('Inductance = %.3f pH\n',L* le12);
% Calculate capacitance

C=3.9*8.854e-12*pi*R1^2./(c+3.9*h);
fprintf('Capacitance = %.3f pF\n',C*1e12);

% Resonant frequency
f= 1/2/pi./sqrt(L*C);

fprintf('Frequency = %.3f GHz\n',f/ I e9);
% Losses in Au

dAu=sqrt(2/2/pi/fo/(4*pi* 1 e-7)/sigmaAu);
Rrl=d/sigmaAu/2/pi/Rl/dAu;

Rr2=d/sigmaAu/2/pi/R2/dAu;
Rtop=log(R2/R1)/sigmaAu/dAu/2/pi;

RL=Rrl[+Rr2+2*Rtop;
RC=c/sigmaSi/pi/R A2;

fprintf('Resistance of L = %.3f mOhm\n',RL* 1 e3);
fprintf('Resistance of C = %.3 f mOhm\n',RC* I e3);
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figure(1)
Num=[RC*L (RL*RC+L/C) RL/C];
Den=[L (RL+RC) 1/C];
sys=tf(Num,Den)
f=[5e8: Ie8: IOe 10];
w=2*pi*f;
[mag,phase] = BODE(sys,w);
semilogx(f,squeeze(mag(1, 1,:)));
xlabel('Frequency (Hz)')
ylabel('Magnitude (Ohm)')
grid on;

hold on;

figure(2)

Q=abs((L.*(RC^2+ 1/CA2./(2*pi*f).A2)- I/C./(2*pi*f).*(RLA2+LA2.*(2*pi*f).A2))./
(RL.*(RCA2+ 1/CA2./(2*pi*f).A2)+RC.*(RLA2+LA2.*(2*pi*f).A2)));

semilogx(f,Q)

xlabel('Frequency (Hz)')

ylabel('Quality Factor')
grid on;

hold on;

h=700e-9;
fo=l 6e9;
end



Appendix

D
ANSYS Codes

D.1 Single Voltage Input

/batch,list
/prep7, Silicon plate deflection from an applied voltage

! Define element types
et,1,2 1,,, 1I
et,2,82,,, 1 ! PLANE82 element for membrane (axisymmetric)
et,3,172,, ,,,,,,,,,,4! Conta172 element for contact surface, with no seperation (always)
et,4,169! Targe 169 element for target surface

! Specify material properties
emunit,epzro,8.854e-6 ! Free-space permittivity, pMKSV units
mpperx, 1,1 ! Relative permittivity for air

! Define the constants
lambda= 1750 ! plate radius (ptm)
a=500 ! fulcrum radius (jim)

t=50 ! thickness of fulcrum (pm)
h=17 ! thickness of plate (pm)
1=340! height of the fulcrum (pm)
bpt= 10 ! Grounded bottom plate thickness (pm)

epsilon=3.9! Enter relative permitivity of insulator used
c=0.27! thickness of insulator

g=10 !Air gap (pm)
vltg=60 ! Applied voltage (V)
taroff=0.8! offset of target surface from the grounded bottom plate
g-eq=g+c/epsilon
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! Draw the geometry! The equivalent height of the air gap

rectng,0,lambda,g-eq,h+g-eq ! Create the membrane area

rectng,a,a+t,h+geq,h+g-eq+l! Create the fulcrum area

rectng, a+t, lambda,0, -bpt! Create the ground plate
rectng,20,2000,-100,400! Create the air area

k,0,lambda,taroff! Create keypoint for the target

k,0,a+t,taroff! Create another keypoint for the target

1,17,18! Create line for the target surface

aovlap,all

aadd,5,6,2! Add areas 2 and 5 to form the plate and fulcrum area: becomes area I

! Associate attributes
asel,s,area,,7 ! Area for air elements

cm,air,area ! Group air area into component

aatt,1,,1

asel,s,area,, 1 ! Area for plate

aatt,2,,2! Material number is 2, type number is 2

asel,s,area,,3! Area for ground plate

aatt,2,,2

lsel,s,line,,2 ! Line for contact surface

lsel,a,line,, 18
cm,contact,line

lsel,s,line,,17! Line for target surface

latt,3,1,4! Material number is 3, real constant number is 1, type number is 4

! Create mesh

allsel,all
smrtsiz,2

amesh,I ! Mesh membrane and fulcrum area

amesh,3! Mesh ground plate

Imesh, 17! Mesh target surface

cmsel,s,contact! Select all the nodes attached to the contact surface

nsll,s
!nsel,r,loc,x,a+t,lambda
esln,s! Select elements attached to those nodes

type,3! Assign element type to be 3
mat,3! Assign material type to be 3
real, 1! Assign real constant number to be 1

esurf! Automatically generate contact elements
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mshape, 1

amesh,7 ! Mesh air with triangles

! Apply voltage to top electrode and bottom electrode
asel,s,area,, I
1sla,s

dl,all,,volt,O ! Apply voltage to beam

asel,s,area,,3
lsla,s
dl,all,,volt,vltg ! Ground conductor (not meshed)

! Create electrostatic physics file

allsel,all

et,1,121,,,1
et,2,0 ! Set structure to null element type

et,3,0

et,4,0

! Write electrostatic physics file

allsel,all
physics,write,ELECT ! Write electrostatic physics file

physics,clear ! Clear Physics

et,1,0

et,2,82,,,1 ! PLANE82 element for membrane (axisymmetric)
et,3,172,,1,,,,,,,,,,4! Contal72 element for contact surface

et,4,169! Targe 169 element for target surface

! Define material properties

mp,ex,2,169e3 ! Set Modulus pN/(pm)**2
mp,prxy,2,0.25
mp,mu,3,0

r, I ,,,0.05

! Apply boundary conditions
dl,7,1,ux,O
dl,7, 1,uyO
dl,7, 1,symm

da,3,ux,O
da,3,uy,O
da,3,symm

! Set solution options
nlgeom,on! Set analysis option to "Large Displacement Static"
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outres,all,all! Choose "All solution items" for "write items to results file"
eqslv,sparse! Set equation solver to sparse direct
/gst,off! set "tracking" to off

! Write and clear structural physics file
allsel,all
physics,write,STRUCT ! Write structural physics file

! Issue Essolv macro
ESSOLV,'ELECT','STRUCT',2,0,'air',,,,50 ! Solve coupled-field problem

finish

! Show the displaced shape of the beam
/prep7
physics,read,struct
upcoord,-1
/dscale,, 1
/postl
set,last
pldisp

! Plot the fulcrum depflection
path,fulcrum,2
ppath, 1,,a+t,g-eq+h,0
ppath,2,,a+t,geq+h+1,0
PDEF,fulcrum,u,x
plpath,fulcrum

! Plot the membrane depflection
path,defl,2,, 100
ppath, 1,,0,geq,0
ppath,2,,lambda,g-eq,0
PDEF,defl,u,y
plpath,defl

! Plot the equivalent stress
path,strs,2
ppath, I ,,0,geq,0
ppath,2,,lambda,g-eq,0
pdef,strs,s,x
plpath,strs
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D.2 Voltage Sweep

/batch,list
/prep7, Silicon plate deflection from a voltage sweep

! Define input array
njloops=33
*dim,vinp,array,n-loops

*dim,defl,table, 151 ,nloops
*dim,xloctable, 151,1

! Define input voltages
vmax= 180
vinp(1)=20
vinp(2)=40
vinp(3)=60
vinp(4)=80
vinp(5)= 100
vinp(6)= 101
vinp(7)=102
vinp(8)=103
vinp(9)=104
vinp( I0)= 105
vinp(1 1)=106
vinp(12)=107
vinp( 13)= 108
vinp(14)= 109
vinp(15)=110
vinp(16)= 120
vinp(17)=.140
vinp(18)=.160
vinp(l19)= 180
vinp(20)= 160
vinp(21)= 140
vinp(22)= 120
vinp(23)=100
vinp(24)=90
vinp(25)=80
vinp(26)=70
vinp(27)=60
vinp(28)=55
vinp(29)=50
vinp(30)=45
vinp(3 1)=40
vinp(32)=30
vinp(33)=20
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! Define arrays for reults representation

! Input voltage = vinp

! Deflection at the membrane end = enddefl

! Deflection at the center = cendefi

*dim,end defl,array,nloops! Resulting displacement

*dim,cen defl,array,n loops

*dim,restablen_loops, 3 ! Table of results

! Input geometry and mesh and create structural and electric physics files

! Define element types

et,1,121,,, 1 ! PLANE 121 element for air (axisymmetric)

et,2,82,,, I ! PLANE82 element for membrane (axisymmetric)

et,3, 172,,l,,,,,,,,,,4! Conta172 element for contact surface, with no seperation (always)

et,4,169! Targe 169 element for target surface

! Specify material properties

emunit,epzro,8.854e-6 ! Free-space permittivity, pMKSV units

mp,perx, 1,1 ! Relative permittivity for air

! Define the constants

lambda= 1750 ! plate radius (pm)

a=500 ! fulcrum radius (gm)

t=50 ! thickness of fulcrum (gm)

h=17 ! thickness of plate (jim)

1=340! height of the fulcrum (pm)

bpt=10 ! Grounded bottom plate thickness (pm)

epsilon=3.9! Enter relative permitivity of insulator used

c=0.27! thickness of insulator

g=10 ! Air gap (pm)

taroff=0.8! offset of target surface from the grounded bottom plate

g-eq=g+c/epsilon

! Draw the geometry! The equivalent height of the air gap

rectng,0,lambda,g-eq,h+geq ! Create the membrane area

rectng,a,a+t,h+g-eq,h+g-eq+I! Create the fulcrum area

rectng, a+t, lambda,0, -bpt! Create the ground plate

rectng,20,2000,-100,400! Create the air area

k,0,Iambda,taroffi Create keypoint for the target

k,Oa,taroff! Create another keypoint for the target

1,17,18! Create line for the target surface

aovlap,all



aadd,5,6,2! Add areas 2 and 5 and 6 to form the plate and fulcrum area: becomes area 1

! Associate attributes
asel,s,area,,7 ! Area for air elements
cm,air,area ! Group air area into component
aatt,1,,1

asel,s,area,,1 ! Area for plate
aatt,2,,2! Material number is 2, type number is 2

asel,s,area,,3! Area for ground plate
aatt,2,,2

lsel,s,line,,2 1! Line for contact surface
cm,contact,line

lsel,s,line,,17! Line for target surface
latt,3,1,4! Material number is 3, real constant number is 1, type number is 4

! Create mesh
allsel,all
smrtsiz, I
amesh,I ! Mesh membrane and fulcrum area
amesh,3! Mesh ground plate
lmesh, 17! Mesh target surface

cmsel,s,contact! Select all the nodes attached to the contact surface
nsll,s
nsel,r,loc,x,a+t,lambda
eslns! Select elements attached to those nodes
type,3! Assign element type to be 3
mat,3! Assign material type to be 3
real, 1! Assign real constant number to be 1
esurf! Automatically generate contact elements

mshape, 1
amesh,7 ! Mesh air with triangles

! Apply voltage to top electrode and bottom electrode
asel,s,area,, I
lsla,s
dl,all,,volt,O ! Apply voltage to beam

asel,s,area,,3
lsla,s
dl,all,,volt,vinp(1) ! Ground conductor (not meshed)
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! Create electrostatic physics file

allsel,all

et, 1, 121,,1
et,2,0 ! Set structure to null element type

et,3,0
et,4,0

! Write electrostatic physics file

allsel,all
physics,write,ELECT ! Write electrostatic physics file

physics,clear ! Clear Physics

et,1,0
et,2,82,,, ! PLANE82 element for membrane (axisymmetric)

et,3,172,,1 ,,,,,,,,,,4! Conta 172 element for contact surface

et,4,169! Targe169 element for target surface

! Define material properties

mp,ex,2,169e3 ! Set Modulus pN/(pm)**2

mp,prxy,2,0.25
mp,mu,3,0

r, I ,,,0.05

! Apply boundary conditions

dl,7,l,ux,0
dl,7,1,uy,0
dl,7, 1,symm

! Set solution options

nlgeom,on! Set analysis option to "Large Displacement Static"

outres,all,all! Choose "All solution items" for "write items to results file"
eqslv,sparse! Set equation solver to sparse direct
/gst,off! set "tracking" to off

! Write and clear structural physics file
allsel,all
physics,write,STRUCT ! Write structural physics file

Enter do loop
*do,i, 1 ,n_loops

Issue Essolv macro
ESSOLV,'ELECT','STRUCT',2,0,'air',,,,50,,i, 1 ! Solve coupled-field problem

! Store displacement results for each voltage in arrays
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physics,read,struct

/postI

set,last

! Read the deflection at end of plate
cmsel,s,contact

nsll,s, 1
nsort,u,sum, 1,1
*get,end defl(i),sort,O,max

! Read the deflection at center of plate
cmsel,s,contact
nsll,s, I
nsort,u,y, 1,1
*get,cen-defl(i),sort,O,max

! Assign the values to table

res(i, 1)=vinp(i)
res(i,2)=end defl(i)
res(i,3)=cen-defl(i)

! Store nodal results of node # 1,4,9,57-204

*VGET,defl(,i),NODE,1,UY ,2
*VGET,defl(2,i),NODE,4UY , ,2
*VGET,defl(3,i),NODE,9,UY , ,2
*do,ICOJNT,57,204,1

*VGE,defl((ICOUNT-53),i),NODEICOUNT,U,Y, ,2
*enddo

! Store xloc of node # 1,4,9,57-204
*VGET,xloc( 1,1),NODE,1,LOC,X, , ,2
*VGETxloc(2,1),NODE,4,LOC,X, , ,2
*VGET,xloc(3, 1),NODE,9,LOC,X, , ,2
*do,ICOUjNT,57,204,1

*VGETxloc((ICOUNT-53), 1),NODE,ICOUNTLOC,X, , ,2
*enddo

*if,i,eq,nloops,exit

! Update electric physics file
physics,read,elect
/prep7

asel,s,area,,3
lsla,s
dl,all,,volt,vinp(i+ 1)
alls

physics,write,elect

! End the do loop



*enddo

! Write parameters in a file
! First column is the x-location
! Other columns are the deflection
*CFOPEN,'deflection','txt',''
*VWRITExloc(1),defl(1,1),defl(1,2),defl(1,3),defl(1,4),defl(1,5),defl(1,6),defl(I,7),defl(1,8),

defl(1,9),defl(1,1 0),defl(1,11 ),defl(1,1 2),defl( 1,13),defl(1,14),defl(1,1 5),defl(1,1 6),defl(1,17),defl
(1,1 8),defl(1,1 9),defl(1,20),defl(1,21),defl(1,22),defl(1,23),defl(1,24),defl(1,25),defl(1,26),defl(1,
27),defl(1,28),defl(1,29),defl(1,30),defl(1,31),defl(1,32),defl(1,33)

(fl 7.12,',',34(fl 8.15,','))
*CFCLOS

! Write the results paramter in a file
!*CFOPEN,'results','txt',''
!*VWRITE,res(1,1 ),res(1,2),res(1,3)
!(3(fl 8.5,','))
!*CFCLOS

! Plot maximum displacement vs. voltage
/axlab,x,Applied Voltage (Volts)
/axlab,y,Maximum Displacement (micron)
/xrange,O,vmax
/yrange,,geq
*vplot,res(1,1 ),res(1,2)

save

D.3 Self and Mutual Capacitances

/batch, list
/prep7, self and mutual capacitances of the device

! Define element types
et,1,121 ,,,1 ! Air element

! Specify material properties
emunit,epzro,8.854e-6 ! Free-space permittivity, pMKSV units
mp,perx, 1,1 ! Relative permittivity of air
mp,perx,2,4.6! Relative permittivity of Pyrex

! Define the constants
lambda=1 750 ! plate radius (pm)
a=550 ! fulcrum radius (pm)
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t=50 ! thickness of fulcrum (pm)
h=17 ! thickness of plate (jim)

1=340! height of the fulcrum (pim)

bpt=0.5 ! Grounded bottom plate thickness (pm)
r-200! radius of the capacitor

h_c=0.5! thickness of the capacitor

epsilon=3.9! Enter equivalent relative permitivity of insulator used

c=0.27! thickness of insulator

g= 10+c/epsilon ! Equivalent air gap (pm)

g-cap=c/epsilon! air gap for the capacitor

! Draw the geometry

rectng,0,lambda,0,h ! Create the plate area
rectng,a,a+t,h,h+l! Create the fulcrum area

rectng,a,lambda,-g,-g-bpt! Create the ground plate

rectng,,r,-g_cap,-g-cap-hsc! Create the capacitor

rectng,0,2000,-500,500! Create the air area

aovlap,all

aadd,2,6! Add areas to form the plate and fulcrum area: becomes area 1

rectng,,r,-gcap-hc,-g-bpt

rectng,0,2000,-500,-g-bpt
aadd,2,5
aovlap,all

! Associate attributes
asels,area,,5 ! Area for air elements
cm,air,area ! Group air area into component

aatt,1,,I

asel,s,area,,2 ! Area for air elements

cm,pyrex,area ! Group air area into component

aatt,2,, 1

asel,s,area,, 1 ! Area for plate
aatt,2,,2! Material number is 2, type number is 2

! Create mesh

allsel,all
smrtsiz, I
mshape, 1
amesh,5 ! Mesh air with triangles
amesh,2
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nsel,s,loc,y,-g

nsel,r,loc,x,a,lambda

cm,condl,node

nsel,s,loc,y,-g-cap
nsel,r,loc,x,O,r

cm,cond2,node

nsel,s,loc,y,O

cm,cond3,node

alls
finish
/solu
eqslv,jcg

cmatrix,,'cond',3,0

finish

D.4 ANSYS Model for Device 9_1

/batch,list
/prep7, compare ANSYS with experiments for device 9_1

! Define element types

et, 1,121 ,,1 ! PLANE 121 element for air (axisymmetric)
et,2,183,,, 1 ! PLANE 183 element for membrane (axisymmetric)

et,3,172,,1,,,,,,,,,,4! Conta172 element for contact surface, with no seperation (always)
et,4,169! Targe169 element for target surface

! Specify material properties
emunit,epzro,8.854e-6 ! Free-space permittivity, pMKSV units

mp,perx,2,1 ! Relative permittivity for air

! Define the constants
lambda= 1750 ! plate radius (pm)
a=500 ! fulcrum radius (pm)

ttop=46 ! thickness of fulcrum on top (pm)
tbot=12! thickness of fulcrum at bottom (gm)
h=20 ! thickness of plate (pm)
1=340! height of the fulcrum (pm)

bpt= 10 ! Grounded bottom plate thickness (pm)
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epsilon=3.9! Enter relative permitivity of insulator used
c=0.27! thickness of insulator

g=9.3 ! air gap (tm)
!g= 10.1
vltg=0 ! Applied voltage (V)
taroff=g-8.3+c/epsilon! offset of target surface from the grounded bottom plate
g-eq=g+c/epsilon! The equivalent height of the air gap
bond=50! The bonded length (pim)

! Draw the geometry
rectng,0,lambda-bond,g-eq,h+g-eq ! Create the membrane area
rectng,lambda-bond,lambda,g-eq,h+g-eq! Create the bonded area
k,0,a+(ttop-tbot)/2,h+geq,0! Create keypoints for the fulcrum area
k,0,a+ttop-(ttop-tbot)/2,h+g-eq,0

k,0,a+ttop,h+g-eq+1,0
k,0,a,h+g-eq+1,0

a,9, 10,11, 12! Create fulcrum area
rectng, a+t, lambda-50,0, -bpt! Create the ground plate
rectng,20,2000,-100,400! Create the air area
k,0,lambda,taroff! Create keypoint for the target
k,0,a+t,taroff! Create another keypoint for the target
1,21,22! Create line for the target surface

aovlap,all
aadd,3,7,8! Add areas 3, 7 and 8 to form the plate and fulcrum area

! Associate attributes
asel,s,area,,9 ! Area for air elements
cm,air,area ! Group air area into component
aatt,2,, 1

asel,s,area,,I ! Area for plate
aatt, 1,,2! Material number is 2, type number is 2

asel,s,area,,6! Area for bonded plate
aatt,1,,2

lsel,s,line,,27! Line for contact surface
lsel,a,line,.,22
cm,contact,line

lsel,s,line,.,2 1! Line for target surface
latt,3,1,4! Material number is 3, real constant number is 1, type number is 4
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! Create mesh
allsel,all
smrtsiz,1
amesh,1 ! Mesh membrane and fulcrum area
amesh,6
lmesh,2 1! Mesh target surface
nummrg,all

cmsel,s,contact! Select all the nodes attached to the
nsll,s
nsel,r,loc,x,a+t,lambda
esln,s! Select elements attached to those nodes
type,3! Assign element type to be 3
mat,3! Assign material type to be 3
real, 1! Assign real constant number to be 1
esurf! Automatically generate contact elements

mshape, 1
amesh,9 ! Mesh air with triangles

! Apply voltage to

asel,s,area,, 1

lsla,s
dl,all,,volt,O

asel,s,area,,4

lsla,s

dl,all,,volt,vltg

contact surface

top electrode and bottom electrode

Apply voltage to beam

! Ground conductor (not meshed)

! Create electrostatic physics file

allsel,all

et, 1, 121,,, 1
et,2,0 ! Set structure to null element type

et,3,0

et,4,0

! Write electrostatic physics file

allsel,all

physics,write,ELECT ! Write electrostatic physics file

physics,clear ! Clear Physics

et,1,0
et,2,183,,, ! PLANE82 element for membrane (axisymmetric)

et,3,172,, 1,,,,,,,,,,4! Contal72 element for contact surface

et,4,169! Targe 169 element for target surface
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! Define material properties

mp,prxy, 1,0.25
tb,anel,,,,0 ! Set Modulus pN/(pm)**2

tbdata, 1,166e3,64e3,64e3,0,0,O
tbdata,7,166e3,64e3,0,0,0,166e3
tbdata, 13,0,0,0,80e3,0,0
tbdata, 19,80e3,0,80e3
mp,mu,3,0

r, 1 ,,,0.05

! Apply boundary conditions

alls
dl,III,ux,0
dl,Il,1,uy,0

da,6,uy,-g-eq+taroff! Edge bonded down

!dk,7,uy,-g-eq+taroffP Edge touched down

! Apply uniform pressure load to center plate

sfl,29,pres,-O. 10 1325/2! Pressure from bonding process for edge touched-down case

!sfl,29,pres,-0. 10 1325/1.6! Pressure from bonding process for edge zipped-in case

sfl,28,pres,0. 10 1325/500! Equivalent pressure for residual stress

sfl,23,pres,0. 101325/500

! Set solution options
nlgeom,on! Set analysis option to "Large Displacement Static"
outres,all,all! Choose "All solution items" for "write items to results file"

eqslv,sparse! Set equation solver to sparse direct
/gst,off! set "tracking" to off

! Write and clear structural physics file
allsel,all

physics,write,STRUCT ! Write structural physics file

! Issue Essolv macro

ESSOLV,'ELECT','STRUCT',2,0, 'air',,,,50 ! Solve coupled-field problem

finish

! Show the displaced shape of the beam
/prep7
physics,read,struct

upcoord,-1
/dscale,, 1
/postl
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set,last

path,defl,2,,200
ppath,I,,0,g-eq+10,0
ppath,2,,lambda,g-eq,0
PDEF,defl,u,y
plpath,defl

D.5 New Actuator Design

/batch,list
/prep7

! Define element types
et, 1,121,,, 1

et,2,82,,,1 ! PLANE82 element for membrane (axisymmetric)

! Specify material properties

emunit,epzro,8.854e-6 ! Free-space permittivity, pMKSV units
mp,perx, 1,1 ! Relative permittivity for air

! Define the constants

a=550 ! plate radius (pm)

actin=0! actuator inner radius (um)

actout=500! actuator outer radius (um)

h=10 ! thickness of plate (pm)

h_b=l! bridge thickness

bpt= 10 ! Grounded bottom plate thickness (gm)

epsilon=3.9! Enter relative permitivity of insulator used

c=0.27! thickness of insulator

g=2.5 ! Air gap (pm)
vltg=40 ! Applied voltage (V)

g-eq=g+c/epsilon

! Draw the geometry! The equivalent height of the air gap

rectng,,act out,g_eq,h+g-eq! Create the plate area

rectng,actout,a,g_eq,h~b+geq! Create the bridge area

rectng, act in, act out,0, -bpt! Create the ground plate

rectng,0,800,-100,200! Create the air area

aovlap,all

aadd, 6,5
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! Associate attributes

asel,s,area,,7 ! Area for air elements

cm,air,area ! Group air area into component

aatt,1,,1

asel,s,area,, I ! Area for plate

aatt,2,,2! Material number is 2, type number is 2

asel,s,area,,3! Area for ground plate

aatt,2,,2

! Create mesh
allsel,all
smrtsiz,2
amesh, 1 ! Mesh membrane area

mshape, 1

amesh,7 ! Mesh air with triangles

! Apply voltage to top electrode and bottom electrode

asel,s,area,, I
lsla,s

dlall,,volt,O ! Apply voltage to beam

asel,s,area,,3

lsla,s

dlall,,volt,vltg ! Ground conductor (not meshed)

! Create electrostatic physics file

allsel,all

et, 1, 121,,,.
et,2,0 ! Set structure to null element type

et,3,0
et,4,0

! Write electrostatic physics file
allsel,all

physics,write,ELECT ! Write electrostatic physics file
physics,clear ! Clear Physics

et,1,0
et,2,82,,, ! PLANE82 element for membrane (axisymmetric)

! Define material properties
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mp,ex,2,169e3 ! Set Modulus pN/(pm)**2

mp,prxy,2,0.25

mp,mu,3,0
r, 1 ,,,0.05

! Apply boundary conditions

dl,6,1 ,ux,0
dl,6, l,uyO
dl,6,,symm

! Set solution options

nlgeom,on! Set analysis option to "Large Displacement Static"

outres,all,all! Choose "All solution items" for "write items to results file"

eqslv,sparse! Set equation solver to sparse direct

/gst,off! set "tracking" to off

! Write and clear structural physics file

allselall
physics,write,STRUCT ! Write structural physics file

! Issue Essolv macro

ESSOLV,'ELECT','STRUCT',2,0,'air',,,,50 ! Solve coupled-field problem

finish

! Show the displaced shape of the beam

/prep7

physics,read,struct

upcoord,- 1

/dscale,, I

/postl

set, last
pldisp

path,defl,2,, 100
ppath, 1,,0,g_eq,0
ppath,2,,a,geq,0

PDEF,defl,u,y
plpath,defl
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