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ABSTRACT

This thesis describes the development of a device designed for culturing liver
tissue in a 3D perfused environment. Cells form tissue inside miniature channels of a
scaffold, and the tissue is perfused with culture medium to create a culture
microenvironment that has previously been described by the Griffith lab. In order to
support this microenvironment, the reactor needs a pumping system, reservoirs and a
controller. Previously, these have all been stand-alone components.

This work focuses on the development of a new, integrated culture system. This
system integrates 12 reactor microenvironments, reservoirs and pumping systems onto
a single plate with a configuration modeled after standard multi-well plates. Each of the
12 bioreactor units utilize pneumatic pumps driven by a single external controller. This
design offers substantial advantages over previous systems as it is far more user-
friendly and can be used in a higher throughput capacity.

The thesis describes the design and fabrication of the reactor and controller,
including several models that were used during the development process. It also offers
mechanical and biological characterizations of the device.

Thesis Supervisor: Linda G. Griffith
Title: Professor of Biological Engineering and Mechanical Engineering
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1. INTRODUCTION

1.1 Background

The liver is the primary site where drugs are metabolized in vivo [1]. As such, an

accurate model for the liver is a requirement for predictive data about a candidate drug.

Immense amounts of money, $800 MM, and time, 10 to 15 years are invested in

bringing a new drug to market [2]. Even still, only an estimated 1 of 5,000 candidates

pass clinical trials [2,3]. Of the lead candidates that are accepted for initial tests on

humans, a significant number fail due to liver toxicity [4,5]. It is clear that there is an

unmet need for in vitro culture systems that more accurately model biological pathways

in the liver.

Drug metabolism is mediated by a set of enzymes that are difficult to maintain in

culture. Metabolism that occurs through these enzymes can alter the toxic and

therapeutic profile of a drug, and therefore, their in vitro maintenance in a model system

is very important. Many methods exist for culturing hepatocytes [6-9], and the benefits

and drawbacks to each of these methods are well documented [6-12]. In general, the

most relevant assays are more complex and are less ethically acceptable.

This thesis describes the development of a high throughput bioreactor for

culturing liver tissue in a three-dimensional, perfused environment. This type of

environment has been shown to improve the maintenance of liver specific functions,

including the activity of important enzymes involved in drug metabolism [13]. The main

focus of this project is to adapt a system previously developed in this lab into a format

that is suitable for usage in a high throughput capacity suitable for industrial

applications, or research where multiple treatment points are needed.
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This chapter provides a background on the liver and its drug metabolizing

functions. Bioreactor systems that were previously developed in this lab are also

presented.

1.2 The Liver

The liver is the largest organ in the abdomen and is one of the most important

organs in the body. One of the primary functions of liver is the metabolism of food after

it is processed by the small intestine. Proteins, fats and carbohydrates are broken down

by the liver, converted to useable sources of energy and either secreted into the blood

or stored as glycogen or fatty acids depending upon the body's demand. The liver is

also responsible for manufacturing and secreting bile, which aids in the with digestion of

fats in the intestine. The liver is the primary source of albumin, which carries hormones,

fatty acids and many drugs in the blood. Another essential function of liver is to filter

and process ingested drugs and toxins, including ammonia, which it secretes as urea.

Liver is fed by the hepatic artery, providing a rich supply of oxygen, and by the

portal vein which carries digested food directly from the small intestines. The micro-

architecture of the liver, shown in Figure 1.1, is composed of parallel, one cell thick,

plates of interconnected hepatocytes perfused on either side by blood. Hepatocytes,

which comprise over 60% of liver mass [14], are highly polarized cells. Tight junctions

between adjacent hepatocytes close off a canalicular space that transports bile in the

opposite direction of blood flow. Hepatocytes are lined on either side by extracellular

matrix (ECM) and by nonparenchymal cells including stellate cells, Kupffer cells and

endothelial cells. The ECM, a basement membrane-like matrix, is composed of types

IV, V and VI collagen, fibronectin, laminin, heparan sulfate proteoglycan and other

matrix proteins [15, 16]. Hepatocytes express many adhesion proteins including the

integrins a1p1 and a5P13, asialoglycoprotein receptors, and cell adhesion molecules.

These proteins mediate cell-cell and cell matrix attachment and are involved in signaling

pathways.

18



bile hepatocytes hepatic
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a. b.

Figure 1.1: (a) A section of the liver micro-environment showing hepatocytes, lined on

either side with basement membrane-like matrix (BMm), and sinusoidal endothelial cells

(SC). Blood flows through the sinusoids (SIN) on either side of the hepatocytes and bile

travels through the bile canaliculi located between adjacent hepatocytes. (b) Alignment

of hepatocytes to form plate like structures. Figures were taken from Stamatoglou [15]

The liver is primarily responsible for the metabolism of xenobiotics in vivo.

Xenobiotics, or chemicals that are foreign to the body, can be either man made or

natural and can include pollutants, drugs, products in food, and many other substances.

Because these substances are lipophilic, they are readily absorbed by the body. In

order for them to be secreted, they must be converted into water-soluble chemicals.

This process, known as biotransformation, is mediated by a set of enzymes that are

generally categorized as either Phase I or Phase 11. Among the most difficult to

maintain in vitro are a subset of the Phases I enzymes know as cytochrome P450's.

These enzymes are also some of the most important, as they are involved in a very

large number of biotransformation reactions [17, 18]. A more detailed description of the

liver and the drug development process is provided by Sivaraman [19].
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1.3 Previous Bioreactors and the Team Involved in this Work

The microenvironment where cells are cultured in the bioreactor consists of a

scaffold containing an array of channels [20-22]. Each of these channels holds one unit

of tissue that is perfused with culture medium at a constant rate. The total number of

channels in the system is scaleable and thus reactors containing differing numbers of

cells were developed. The first reactors were designed for optical interrogation of cells

and thus only 40 channels were used [20, 22]. As some experiments require large

numbers of cells, the initial system was scaled up and a system containing 1,000

channels was developed [23].

The high throughput aspect of the bioreactor was next assessed. A prototype

system, Figure 1.2, was developed in the multi-well format that integrated 5 pneumatic

pumps and scaffold systems onto the same plate [23]. A PC based controller drove the

pumps in series by actuating 3 three-way pneumatic valves in sequence.

Figure 1.2: The initial prototype bioreactor system

The work described in this thesis is the result of a collaborative project between a

large group of people. Dr. Karel Domansky and Jim Serdy were actively involved in all

of the decisions that shaped the design of the bioreactor. Dr. Domansky developed the

20



prototype multi-well system as well as the initial component based bioreactor systems

and thus offered a substantial amount of experience in regards to reactor design. Mr.

Serdy is experienced in manufacturing and was generous with his expertise in

development. Megan Whittemore was tremendously helpful with biological

characterization and is responsible for all of the RT-PCR assays. Laura Vineyard was

also very helpful with experiments and was responsible for all of the liver isolations.

Bryan Owens helped with mechanical characterization and developed a 3D CAD model

for the bioreactor. Mr. Owens also did all of the final dimensioning for the component

drawings. Nadeem Mazen and the MITERs group helped develop the electronic

controller.
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2. DEVICE DESIGN

2.1 General

The multiwell bioreactor is a device that allows culture of cells in a perfused,

three-dimensional environment. The bioreactor system, shown in Figure 2.1, consists

of a bioreactor plate that is connected by three pneumatic lines to a controller. One

bioreactor plate contains 12 reactor units where tissue can be cultured. Each of these

reactor units are capable of holding ~ 850 thousand cells. This chapter describes the

design of the individual reactor unit, the bioreactor plate used to integrate reactor

systems, and the controller.

Controller Bioreactor Plate

reactor unit
pneumatic Y
lines

Figure 2.1: The bioreactor system
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Each of the reactor units, shown in Figure 2.2, include a scaffold assembly where

cells are cultured, and a reservoir that holds culture medium. Medium is perfused

through the scaffold using a pneumatic pump and re-circulates across a surface

channel back to the reservoir. Each of the 12 reactor units are fluidically isolated and all

pumps are driven pneumatically by pressure pulses sent from the controller. The

frequency of the controller sets the rate of perfusion in the device. Fluidic capacitors

are used to damp pulses of fluid created by the pumps.

Reactor Well & Surface Pneumatic Reservoir
Scaffold Assembly Channel Pump Well

Figure 2.2: The reactor unit includes a scaffold, a reservoir and pumping system

The assembled bioreactor consists of a fluidic plate, a pneumatic plate, and a

membrane sandwiched between the two, Figure 2.3. The plates are held together with

14 screws and sandwich the membrane to create a fluidic seal at each reactor unit. The

exterior dimensions of the bioreactor conform with the 96 well plate standard set forth

by the Society for Biomolecular Screening [25]. A lid covers the bioreactor in order to

prevent contamination.
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pumping

Figure 2.3: The fluidic and pneumatic plates are screwed together to make the

bioreactor. Each bioreactor contains 12 reactor units.

2.2 Reactor Unit

2.2.1 Scaffold Assembly

The scaffold assembly is the microenvironment where cells reside in the reactor

unit. Shown in Figure 2.4, the scaffold assembly consists of a scaffold, a filter, a filter

support, a retaining ring, and gasket. Dimensioned drawings are provided in Appendix

Al.
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Figure 2.4: The scaffold assembly consists of a scaffold, a filter, a filter support, a

retaining ring and a gasket

A scaffold is a thin disk containing channels that hold ~ 1,000 cells; these cells

comprise one unit of tissue. Cells form 3D structures by adhering to the channel walls.

Each channel is perfused with culture medium that can be pumped either up or down

through the scaffold. An operational diagram that highlights the geometry of the

scaffold assembly and localization of cells is shown in Figure 2.5.

Upon initial seeding, a 5 pm microporous filter keeps cells from falling through

the scaffold. The number of channels, and thus the number of cells, can vary from

scaffold to scaffold, giving the user freedom to define a scaffold design to meet specific

experimental needs.
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Figure 2.5: Schematic of a channel cross-section. Cells adhere to the channel walls

and are perfused with medium that is pumped either up or down through the scaffold.

A typical scaffold, shown in Figure 2.6, is a 230 pm thick, 14.95 mm diameter

disk with a defined pattern of channels. The scaffold is held in place along a 1 mm rim

around the outer edge. A multitude of different scaffold designs and scaffold materials

are possible. The channel, a 0.09 mm 2 through hole corresponding to a 300 x 300 pm

square, is the defining feature of the scaffold.

Figure 2.6: A 230 pm thick silicon scaffold with 861 0.09 mm 2 channels arranged in a

circular pattern
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The scaffold shown in Figure 2.6 has 861 channels arranged in a circular pattern.

There are 100 pm walls between each of the channels to provide structural support.

This scaffold represents the maximum number of channels that can be placed on a

scaffold of this diameter. Figure 2.7, shows a variety of other scaffold designs and

materials.

Figure 2.7: An assortment of scaffold designs and materials: a) silicon with 861

trapezoid channels; b) silicon with 859 hexagon channels; c) silicon with 837 square

channels; d) silicon with 631 circular channels; e) Teflon with 631 drilled channels; f)

polycarbonate with 631 channels; g) polycarbonate with 127 channels; h) silicon with 97

channels, other channels are blocked with a PEEK insert; i) PEEK with 61 channels.
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Regardless of channel geometry, each channel has a cross sectional area of

-0.09 mm 2 . Some of these scaffolds are etched silicon, which allows for endless

possibilities of channel geometries. These scaffolds are very chemically resistant and

can be sterilized by autoclaving. Unfortunately, they are expensive, brittle, and are not

readily adaptable to manufacturing on a large scale. The other scaffolds are polymer

disks with micro-drilled channels. These scaffolds are less resistant to chemicals and

some cannot be autoclaved. The advantage is that they do not break, are simple to

manufacture, and thus are well suited for prototyping. Biological comparisons between

cells cultured in different scaffolds are discussed in Chapter 6.

A 5 pm SVPP Durapore ® filter (SVLP09050, Millipore Corp., Bedford, MA) sits

below the scaffold and keeps cells held in place upon initial seeding. The filter is the

primary source of fluidic resistance in the scaffold assembly. Hydraulic permeability, the

inverse of fluidic resistance, can be calculated by multiplying the published hp value,

73.5 (mL/s)/(N/mm 2)/cm 2 [20], by the area of the filter through which flow can pass.

This fluidic resistance below the scaffold ensures an approximate even

distribution of flow throughout the scaffold, regardless of amount of tissue in each

channel [20]. The fluidic resistance is also integral to the function of the capacitor,

which is discussed in Section 2.2.2.2 and in Chapter 4.

Below the filter is a rigid, 0.75 mm thick disk used for support. The filter support,

shown in Figure 2.8, keeps the filter and scaffold in close contact, preventing cells from

slipping between the two surfaces. It is comprised of concentric ridges on the upper

portion and radial slots on the lower portion. The lower portion provides structural

support to the ridges. The ridges keep the filter in place, yet do not restrict flow through

any regions of the filter. In order to minimize occlusion of channels in the scaffold, the

surface area of the ridges, 18 mm 2, is minimal in comparison with the area of the filter,

135 mm 2 . Spacing between adjacent ridges is maximized while still providing ample

support to the filter between ridges. Also, the ridges line up directly with the solid rings

between channels on the scaffold in Figure 2.6.

28



Figure 2.8: The filter support keeps the filter in close contact with the scaffold and allows

flow to pass through unobstructed

A modified filter support can be used in combination with scaffolds containing

fewer channels. These modified supports, shown in Figure 2.9, prevent medium from

passing through the outer edges of the filter where there are no channels.

Figure 2.9: Filter supports that prevent flow through the outer edges of scaffolds

containing fewer channels
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A retaining ring is used to hold the scaffold assembly in place. It compresses the

gasket in order to create a fluidic seal, forcing fluid through the filter and scaffold. The

retaining ring is a 1 mm thick ring, 15.1 mm in diameter. It is slightly larger than the 15

mm diameter well in order to achieve a compression fit. The ring is 2 mm tall with six

0.8 mm diameter holes evenly spaced around the perimeter. These holes facilitate

removal of the retaining ring from the reactor well.

The o-ring gasket, which resides at the bottom of the assembly, is made using

very soft silicone rubber. The cylindrical geometry of the o-ring, and the low durometer,

30A, of the material improve gasket compression and create a better seal. A cylindrical

shape decreases the contact area of the gasket on the bottom of the well; thus, higher

compression and a better seal are achieved with a lower holding force. This seal is

crucial to reactor operation because without it, flow would bypass the scaffold and there

would be no tissue perfusion.

2.2.2 Pumping System

2.2.2.1 Pump

A defining feature of this culture system is the perfusion of tissue with culture

medium. Similar to a capillary bed feeding tissue in the body, perfusion allows sufficient

nutrient transport to the tissue contained in the scaffold. Without perfusion, cells in a

three-dimensional environment will deplete nutrients faster than nutrients can diffuse

through medium. To put this into perspective, there are ten times more cells per cm2 in

a scaffold, ~ 500k, than are typically plated on flat surfaces, 50k. Flow is necessary to

support 3D culture; however, too much perfusion can impart large shear stresses that

can be detrimental to cells [25, 26]. For these reasons, flow through the tissue must be

precisely controlled.
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Oxygen is poorly soluble in cell culture medium and is quickly metabolized by

active hepatocytes [20]. As such, oxygen is the limiting factor when supplying nutrients

to the tissue. A flow rate of 1 pL/channel/minute was chosen because it provides

enough oxygen to the cells in a channel while keeping shear stresses below

physiological values [20].

The bioreactor utilizes a pneumatic pumping system. This type of system offers

several key advantages. Since the pump only requires a flexible membrane for

actuation, there is no need for moving parts or electrical components within the

bioreactor. Thus, the bioreactor plate is easy to assemble, inexpensive to fabricate on a

large scale and could potentially be disposed of after use. Another benefit of this

system is the partitioning of sterile and non-sterile surfaces. The more complicated

parts, like the controller and the pneumatic pumping plate, do not come into contact with

the cell culture medium and thus do not need to be sterile.

A detailed schematic of the pumping system is shown in Figure 2.10. This

system consists of two pneumatic valves, a pumping chamber, and a capacitor to damp

fluid pulses. Each reactor unit has its own pumping system that is fluidically isolated

from all of the other pumps on the device.

scaffold
& filter membrane

\I I I

capacitor pumping chamber valves

Figure 2.10: Cross section of the reactor pumping system
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Fluid is moved through the pump by actuating the valves and pumping chamber

in sequence. A valve, shown in Figure 2.11, is opened or closed when positive or

negative air pressure is applied to it. Negative pressure below the valve pulls the

membrane down to the surface of the pneumatic plate, filling the valve with fluid, and

opening it. Fluid is pumped by opening the valve on one side, filling the pumping

chamber, switching the valves and draining the pumping chamber out the other side.

fluidic
channel Fluidic Plate

membrane

Pneumatic
Plate

pneumatic
access

Figure 2.11: Cross-section of a valve

The pumping sequence, shown in Figure 2.12, can be run in the forward or

reverse direction to move fluid up or down through the scaffold. The bi-directional

nature of this pump is essential because it allows downward flow during the initial

stages of culture when cells are being pulled into the scaffold. Once cells have

attached to the scaffold walls, the flow is reversed which prevents cell debris from

clogging the filter.
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1. Fill Pumping Chamber

2. Switch Valves

3. Drain Pumping Chamber

4. Switch Valves

Figure 2.12: The pumping sequence can be run in both directions

The volume pumped per cycle and cycle frequency determine the flow rate.

Figure 2.13 shows the volume output of the pump through one cycle. During the first

step of the cycle, there is no output from the pump. In step two, when the final valve

opens, fluid is pulled into the pump and the instantaneous flow is temporarily negative.

In step three, the volume of fluid in the pumping chamber is ejected from the pump. In

step four, the final valve closes and the volume it drew in during step two is sent out.

The volume of the pumping chamber sets the volume pumped per cycle.
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Figure 2.13: Flow from the pump over one pumping cycle

The pump can be run up to frequencies of ~ 25 Hz before the consistency of flow

begins to suffer (Chapter 5). This sets an upper bound on the flow rate for a given

pumping chamber volume. In order to flow at 1 pL/channel/minute using a scaffold with

the maximum number of channels, 861, the pumping chamber must be at least 0.67 pL.

As will be discussed in Chapter 4, the volume of the pumping chamber should be kept

at a minimum in order to mitigate the effects of fluid pulses. For this reason, a pumping

chamber volume of 0.92 pL was chosen, allowing dependable flows up to 1.6

pL/channel/minute in a system with 861 channels.

Since the volume of the pumping chamber determines the flow rate, it is

important that this volume is very well-defined. The surfaces in the pumping chamber

set a deterministic limit on the deflection of the membrane and the membrane must be

able to completely conform to these surfaces.

34



Figure 2.14: The pumping chamber

The pumping chamber, shown in Figure 2.14, is created by identical, shallow,

radiused dimples on either side of the membrane. This radius, 1.575 mm, was set such

that the membrane only needs to strain 4.2% in order to contact the top or bottom

surface, requiring 12 kPa pressure difference across the membrane. These

calculations are further discussed in Chapter 4 and are shown in Appendix A2. This

pressure is well below the operating pressure of 35 kPa, which is set in Chapter 5. At

35 kPa, membrane stiffness will have a negligible effect on the pumping volume as the

rigid body of the reactor sets membrane deflection limits.
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It is also essential that no fluid is trapped between the membrane and the top of

the pumping chamber when positive pressure is applied. This situation is shown in

Figure 2.15 a. In order to ensure the complete draining of the pumping chamber, the

fluidic channel passes through the entire length of the chamber, Figure 2.15 b.
seal

a. volume

b. completely
b. / drained

Figure 2.15: A flexible membrane can seal off a small exit to a pumping chamber

Along the same lines, when suction is applied, the membrane should not seal off

the vacuum source before all the air below the membrane is removed. This risk is

mitigated by running a thin channel, Figure 2.16, along the length of the bottom side of

the pumping chamber. Along this channel, the final membrane position cannot be

deterministically set. Therefore, width of the channel, 0.4 mm, is minimized such that

volume doesn't noticeably change with different operating pressures.

Figure 2.16: A small pneumatic channel spanning the pumping chamber ensures the

complete filling of the pumping chamber with fluid when vacuum is applied

When the bioreactor is assembled, a fluidic seal is created by squeezing the

membrane between the fluidic and pneumatic plates. If the membrane is too thick, it will
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compress between the plates, but not in the pumping chamber. When this occurs,

Figure 2.17, it is possible the membrane will partially or completely fill the pumping

chamber. For this reason, a very thin, 25 pm, membrane was chosen.

Figure 2.17: Comparison of thick and thin membranes. Thick membranes can fill the

pumping chamber, changing the volume pumped per cycle and thus the flow rate.

The valves have a different set of design characteristics. It is imperative that the

valves open and close reliably, and that they completely seal when closed. The volume

of the valve does not influence the pumping cycle volume; however, minimizing valve

volume is important because it eliminates the negative flow patterns shown in Figure

2.13.

Valves close by creating a seal across a break in the fluidic channels. When

pressure is applied below a valve, the membrane is pushed flat against the bottom of

the fluidic plate. When the valve is open, both segments of the fluidic channels are

connected.

The fluidic channels, shown in Figure 2.18, are rounded troughs in the bottom of

the reactor plate. This trough is sealed at the bottom by the membrane. Channels

break at each of the valves for 0.5 mm by sloping down into the valve area. This slope

is used to eliminate dead volumes where bubbles can be trapped.
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Figure 2.18: The fluidic channel

2.2.2.2 Fluidic Capacitor

When the pumping system operates, Figure 2.13, it creates fluid pulses. Due to

the nature of the pump, these pulses, although kept at a minimum, are unavoidable and

may be very detrimental to the cells cultured in the bioreactor. When cells are placed in

the reactor these pulses cause the cells to visibly shake in the scaffold preventing cell

adhesion. A fluidic capacitor is used in order to damp out the flow pulses created by the

pump.

A capacitor effectively converts a volume-driven flow to a pressure-driven flow.

The requirements for an effective capacitor are shown in Figure 2.19, and include a

fluidic resistance and a closed fluid volume that can increase and decrease depending

on fluid pressure. The fluidic resistance is set such that when a pulse of fluid enters the

capacitor region it is more likely to fill the capacitor than pass immediately through the

resistor. As the capacitor fills, the pressure increases. Over time, fluid bleeds through

the resistor and drains the capacitor, lowering the pressure and making it again ready to

absorb flow pulses.

In the reactor unit, the filter in the scaffold assembly supplies fluidic resistance.

The capacitor, shown in Figure 2.20, is made by allowing the membrane to bulge up

and down in response to positive and negative fluid pressures. The capacitor is located

between the pump and the scaffold assembly and damps flow pulses both when the
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pump sends fluid up through the scaffold and when fluid is pulled down through the

scaffold to the pump. There is no capacitor on the far side of the pump.

Fluidic

Inrut RsI neOutrput

Deformable Chamber
(Caracitor)

Figure 2.19: Capacitor components include a flow source, a capacitor and a resistor

Patm Patm Patm

Patmat - 1 at

Figure 2.20: The fluidic capacitor in a) no flow, b) flow up through scaffold, and c) flow

down through scaffold

When a pulse of fluid is sent from the pump into the capacitor the increased

capacitor volume deflects the capacitor membrane and causes pressure to rise under

the scaffold. Flow volume has been converted to a fluidic pressure. As a result of

increased pressure, fluid flows through the scaffold and the capacitor deflates. When

fluid flows in the reverse direction, from the scaffold into the pump, pressure below the

scaffold is less than atmospheric and the capacitor membrane deflects upwards.

Figure 2.21 compares flow through the scaffold when a capacitor is used, to flow

without a capacitor. Without a capacitor, all of the flow through the scaffold occurs

during only one of the four cycles of the pump, Figure 2.14. With a properly balanced
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capacitor, flow continuously occurs throughout the duration of the pumping cycle. This

removes sharp pulses in the flow and brings the maximum flow rate and shear stress

closer to the average flow. Chapter 4 goes into more detail on capacitor operation.

flow pulse sent from the pump flow through scaffold

:4,

2
No

o 50 100 150 200 250 300
time (rns)

Figure 2.21: Flow into the capacitor from the pump (red line) compared with flow

through the scaffold (blue line). This figure was generated for a 5 mm capacitor using

the dynamic capacitor model described in Chapter 4.

Air pressure under the capacitor membrane is kept at atmospheric using vent

ports. There is a vent port directly underneath the capacitor, and there is one in line

with the channel. The second vent port helps bleed of any pressure leak that arises

from the pumping system pneumatics. Since the bottom of the pneumatic plate is

covered in order to seal the pneumatic lines, the openings to atmosphere are routed to

the interface between plates.

2.2.3 Reactor Well

One reactor unit, shown in Figure 2.22, consists of two wells connected at the top

by a surface channel and at the bottom by the pump. Medium circulates between these

two wells and is perfused through tissue in the scaffold. Both wells are 12 mm deep

and the total volume of medium held in the reactor unit can range between 1.75 and 3.5

mL with an optimal operating volume of 3 mL. Since some of that medium resides
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below the scaffold, 1 mL, typically only 2 mL are accessible. The fluid surface of the

reactor is open to atmosphere allowing oxygen exchange.

Reservoir Well surface Reactor Well
channel

ridges

meniscus

extraction eliminating

pockets edge

Figure 2.22: The reactor unit

The scaffold assembly sits in the 15 mm diameter reactor well and is accessible

from above. A filter is used in the reservoir well. Unlike the filter under the scaffold, this

filter can be replaced during the culture without disrupting the cells. This filter collects

cell debris before it can get trapped on the filter under the scaffold. The reservoir well

also contains a filter support, retaining ring and gasket.

Extraction pockets on either side of both wells are used to access the

components in the reactor. These components can be inserted or removed from one

reactor without disturbing the other reactor units on a plate.

The surface channel, shown in Figure 2.22, curves smoothly from the reservoir

into the reactor well. This curve facilitates priming of the channel. The narrow entrance
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on the reactor side helps prevent the scaffold assembly from hanging up on the ledge

created at the bottom of the channel.

There are 2 mm tall ridges that line each reactor and the outside of the device.

These ridges, shown in Figure 2.23, prevent spillage of fluid from one reactor to an

adjacent reactor and help maintain fluidic isolation of reactors across the device.

Ridges

Figure 2.23: Ridges on the reactor surface help maintain fluidic isolation of reactor units

3.5 mm below the top of the ridges there is a ledge that can be used as target

mark for the fluid level. It can also be used to level the fluid above the scaffold

assembly, eliminating the meniscus. Without a meniscus there is no optical distortion

and the cells are much easier to view. When fluid is filled to the proper height, the

contact angle, a, will travel around the corner of the ledge until it becomes horizontal.

This phenomenon is shown in Figure 2.24.

SR

Figure ll 2 oSharp Corner

Figure 2.24: Contact angle of a fluid turns flat around a corner
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Each reactor well is tapered at the top in order to facilitate loading of the scaffold

assembly into the reactor. There is also a taper on the ledge created by the surface

channel that serves the same purpose. Both of these tapers are shown in Figure 2.25.

ridges

meniscus
eliminating
edge

taper
\e

//

scaffold
assembl

Figure 2.25: Cross section of a reactor well

An insert, seen in Figure 2.26, can be used to reduce the amount of inaccessible

medium in the system. This insert is a solid piece of material with slots around the edge

that facilitate removal of the piece from the reactor well. Medium flows through a hole in

the middle of the part.

extraction
slots

Figure 2.26: An insert used to remove inaccessible medium from the system
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2.3 Bioreactor Plate

2.3.1 Plate Design

The bioreactor, seen in Figure 2.27, consists of a bottom 'pneumatic plate,' a top

'fluidic plate' and a membrane sandwiched between the two. Fully dimensioned

drawings are shown in Appendix Al. The device is covered with a lid that minimizes the

possibility of contamination. Three pneumatic lines connect the controller to the

bioreactor and are used to drive the pumps.

Lid

Fluidic
Plate

Membrane

Pneumatic
Plate

Pneumatic
Connectors

Figure 2.27: The bioreactor assembly consists of a reactor plate, a pumping plate, a

flexible membrane and a lid

The footprint of the bioreactor plate, 127.8 x 85.5 mm, is identical to that of a

standard tissue culture plate and as such, is compatible with existing fluid handling

systems. Each bioreactor plate contains 12 individual reactor units. All of the reactor

units have their own fluidic system, including a pump, capacitor and reservoir, and all 12

pumps are driven in parallel by one set of pneumatic inputs. Adjacent reactor wells are

separated by 18 mm, double the spacing between wells in a 96 well plate. This spacing
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was chosen so that a multi-channel pipette can be used with the reactor, and again, so

the system is compatible with existing automation technology.

Each of the reactor units are fluidically isolated and in order to maintain that

isolation, a complete fluidic seal must be made at the pumping interface of each reactor

unit. The reactor and pumping plate are screwed together using 14 screws and must

compress the membrane in order to create the seal.

Several important features improve this fluidic seal. First, the top of the pumping

plate is recessed so that the membrane is compressed only at islands surrounding each

reactor unit. Shown in Figure 2.28, each pumping system is isolated on an island where

the fluidic seal is made. The use of islands reduces the area where the membrane is

compressed from ~ 10,000 mm 2 to ~ 700 mm 2 , and thus reduces the holding force

between plates by more than ten fold. Since the membrane is thin, surface roughness

and the flatness of the plate are also important. Achievement of these qualities is

discussed in Chapter 3. Placement of the screws that hold the reactor together is also

an important consideration. The screws are located along the center of the load created

by compression of the membrane under a row of reactor units. Finally, the bioreactor

plates are relatively thick, 18 mm and 9.5 mm, which minimizes bowing at the edges.

Raised Island

Load
Center

Figure 2.28: Islands are used to isolate pumping systems of adjacent reactor units. This

figure shows the pumping system for one reactor unit on the pneumatic plate.
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The pumps on each of the 12 reactors are driven in parallel by pressure pulses

sent from the controller. Pressure is supplied through one of three pneumatic lines that
connect to either all of the pumping chambers, or all of one of the two fluidic valves.
These lines, shown in Figure 2.29, run along the bottom of the pumping plate. They are
connected to valves on the top side of the pumping plate using through holes. Tape is
used to create a seal along these lines.

Figure 2.29: Pneumatic lines route pressure and suction to valves and pumping

chamber

In typical reactor operation, the flow in all reactor units is the same. For this
reason, there are only three connectors for pneumatic lines corresponding to the
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pumping chamber and the two valves. Some experiments, however, call for different

flows across the reactors. For these cases, a pumping plate has been made with two

sets of pneumatic inputs, Figure 2.30.

Figure 2.30: Two sets of pneumatic inputs allow different flows across the bioreactor

There is a secondary channel that runs along the fluidic lines. This channel,

shown in Figure 2.31, causes a slight leak of pressure in the pneumatic system.

pumping fluidic
membrane channel

secondary
cm nprimary pneumatic line channel

Figure 2.31: A secondary channel runs along the fluidic lines underneath the pumping

membrane.

Since the resistance along this secondary channel is very high in comparison

with the resistance through primary pneumatic lines the pressure set at the controller is
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almost identical to the pressure at the valves. This is visually depicted in Figure 2.32

and is confirmed in Chapter 5. Also, because operating pressures are well above those

required to move the membrane, this slight leak will not hinder the performance of the

bioreactor.

secondary channels

primary
p1  pneumatic P2  P3

lines

Figure 2.32: Circuits comparison of pneumatic leak. The larger resistance between

valves prevents a significant drop in pressure at the valve

Pneumatic lines are run along the bottom of the pneumatic plate to ensure fluidic

isolation of reactors. The use of a separate plane eliminates the need to create a seal

at the pumping interface. If the pneumatic lines were run along this interface, a

secondary channel would connect the fluidic systems of adjacent reactors.

Due to the small sizes and tolerances in the pumping system, alignment of the

pumping plate with the reactor plate is important. Dowell pins are used in order to

ensure proper alignment of the pumping features. A pin in the center of the pumping

plate fits into a cylindrical hole in the reactor plate and is used as a position constraint.

A pin on the edge of the pumping plate fits into a slot in the reactor plate and is used to

constrain rotation.

2.3.2 Materials

Proper material selection is essential for maintaining viable cultures. All reactor

components and the materials used to manufacture them are presented in Figure 2.33.
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Figure 2.33: Exploded view of the bioreactor showing all bioreactor materials,

manufacturing methods and quantities: a) machined polysulfone fluidic plate; b)

punched polyurethane membrane; c) machined acrylic pneumatic plate; d) injection

molded polystyrene lid; e) machined PEEK (polyetheretherketone) retaining ring (24); f)

scaffolds are either etched silicon or micro-drilled PEEK or polycarbonate (12); g)

punched PVDF filter (24); h) machined polysulfone filter support (24); i) silicone o-ring

gasket (24); j) machined polysulfone filler (12); k) tape; I) stainless steel screws (14)

Polysuflone is used for a large number of reactor parts. Polysulfone is a

translucent material with an amber tint. This material has good dimensional stability

and chemical resistance. It is machineable and can be injection molded. Since most

reactor parts come into contact with medium, they must be sterilized before each

experiment. The maximum operating temperature for polysulfone is 140 0C making it

suitable for autoclave sterilization. When viewing the cells under a microscope, light is
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shined through the reactor from below. In order to see the cells, all reactor parts

underneath the scaffold must be translucent.

The membrane is made using polyurethane sheet, Stevens Urethane ST-625.

This polyurethane is very thin, 25 pm, soft, 85A durometer, and flexible. Polyurethane

is a very tear resistant material and has a long flex-life. It is made with a minimum

number of additives, only 7% by weight. There is an FDA approved food grade

antioxidant and an FDA approved clay. There is also some wax.

The pumping plate is made from acrylic because it machines very well, it is

optically clear and it is inexpensive. This plate does not come into contact with culture

medium and therefore does not need to be sterile.

2.4 Auxiliary Systems

2.4.1 Controller

The controller, shown in Figure 2.34, is used to set the rate and direction of flow

in the reactor units. The controller sends pneumatic pulses to the bioreactor plate and

runs the valves and pumping chamber in sequence.
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Figure 2.34: The controller with lid removed to show all components

2.4.1.1 Electronic System

A circuit diagram of the controller is presented in Figure 2.35. The controller is

run using an Atmel ATtiny26L. This microcontroller is powered with 5 V, has 16 1/O

ports and has a built in clock set to run at 1 MHz. Eight of the ports take input from

switches. Three ports output to the pneumatic valves and four are used for in circuit

programming. One port is unused.
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Figure 2.35: Circuit diagram of the controller

The controller is supplied with 12 V, which is regulated down to 5 V using a 1.5 A

voltage regulator. The output from the voltage regulator is oscillatory so 22 pF

capacitors are used to keep the signal steady. Smaller capacitors, 0.1 pF, are used at

the microcontroller to further improve the input signal. A large metal pad is used to help

dissipate heat from the voltage regulator. A CAD layout of the printed circuit board is

shown in Figure 2.36.

LIT-

10-

Figure 2.36: A CAD drawing of the controller printed circuit board. Red lines run along

the top of the board and blue lines run underneath the board.
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The switches, APEM 8432 AB, are momentary pushbutton switches. They are

connected to pull-up resistors built into the microcontroller.

A 6-pin header is included on the circuit board and allows for in circuit

programming. This means the microcontroller can be reprogrammed without removing

it from the board. Since this controller was designed for development of the bioreactor,

this feature is of huge importance.

The pneumatic valves are actuated by 5 V and draw a 110 mA current.

Transistors, STMicroelectronics 350 mA, provide the necessary power to the valves.

LEDs are also connected to the transistors and are used to indicate the state of the

valve.

When the controller was designed, typical pumping frequencies were around 1

Hz. At a low frequency it is easy to determine the direction of flow by watching the

status lights on the valves. At higher frequencies, the flow direction isn't readily seen in

these lights. Two more LEDs, indicating flow direction, were connected to the 6-pin

header used for programming.

2.4.1.2 Pneumatic System

A diagram of the pneumatic manifold is shown in Figure 2.37. The manifold

receives positive and negative pressure inputs. Three, three-way solenoid valves, The

Lee Company LHDA0521 111 H, are used to switch between pressures. The solenoid

valves receive a signal from the microcontroller that sets them to output pressure or

suction to the bioreactor pumping chamber and valves.
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Three Output Lines

three-way
solenoid valves

Vacuum
Pressure

Figure 2.37: The pneumatic manifold takes input from pressure and vacuum lines and

outputs to three separate lines

These valves have a rated life of 250 million cycles and can be used with inlet

pressures up to - 350 kPa and differential pressures up to - 100 kPa. They have a

response time of 3 ms.

2.4.1.3 Programming

The current bioreactor program, shown in Appendix A3, has five operating

modes: flow can be sent up or down through the scaffold at a desired rate; the pump

can operate in either direction for a set volume before stopping; and the pump can be

controlled manually.

The rate of flow can be manipulated by changing the pumping frequency.

Frequency is set by programming a delay between steps in the pumping cycle. This

delay burns off clock cycles in the microcontroller and checks for input from the

switches.

Input from the switches sets a variable that is used to determine which

subroutine to run. When the pump is set to run indefinitely, it checks for a new input
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after each pumping cycle. If the pump is set to run for a predetermined number of

cycles, the pump will complete the cycles before re-checking for a new input.

The pump can also be run manually. Pressing the button corresponding to one

of the valves or the pumping chamber will switch the pump over to the manual mode. In

this mode, the valves and pumping chamber can be opened or closed by pressing the

correct button on the controller. Manual pump operation was helpful during the

development of the device. A schematic of the bioreactor control buttons is shown in

Figure 2.38.

reservoir LED

reverse 98 uL/min

reservoir valve

Dumoina chamber

reactor valve

oumt chamber LED

0 0 0

0 forward LED

0 reverse LED

reactor LED

forward 861 uL/min

reverse 861 uL/min

forward for 1.5 mL

reverse for 0.5 mL

Figure 2.38: Bioreactor controls diagrammed for the current controller configuration

2.4.2 Pneumatic Regulation

Positive pressure and vacuum are available in most labs through hookups at the

benches. These hookups can be used to run the bioreactor. Pressure that comes

directly from theses lines can be ± 70 kPa. Since the reactor is typically run using ± 35
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kPa, these inputs are regulated down to the desired pressures. The pneumatic

manifold that regulates pressure is shown in Figure 2.39.

As suggested by The Lee Company, a 5 pm filter is used in order to keep

unwanted particles from entering the pneumatic valves. Since the vacuum lines are

sometimes used for medium aspiration, it is possible to contaminate these lines. Filters

prevent this contamination from entering the system.

pressure output vacuum
/ input lines filter input

A

Figure 2.39: Pneumatic regulators and filters
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3. FABRICATION

Most of the components in this system were made using a Bridgeport EZ-Track

CNC milling machine. The milling machine offers a high level of precision and is a very

good tool for prototyping. Because the bioreactor, scaffold, and pumping system utilize

features with very tight tolerances, this precision is essential for reliable performance.

For example, adjacent holes on a scaffold are separated by only 100 pm. The pumping

system relies on the alignment of features located on separated plates and utilizes cuts

that are as shallow as 190 pm. This chapter describes techniques utilized in bioreactor

fabrication, including the steps taken while machining that allow for such precise

features. The manufacture method for each component is presented in Figure 2.23,

and a complete set of machining code is provided in Appendix A4.

3.1 Bioreactor

Achieving a good fluidic seal between the fluidic plate and the pneumatic plate is

critical to the performance of the device. Since the membrane is only 25 pm thick, it

does not conform around curved surfaces, thus the sealing surfaces must be perfectly

flat and smooth. These surfaces also need to be level. If the surface is not level when

cutting the pumping chambers, which are 190 pm deep, some chambers will be deeper

than others. The volumes in deeper chambers will be greater and the flow rate for a

given frequency will vary across the device.

The reactor plate comes from a rough stock and both surfaces must be fly cut.

Fly cutting flattens a part, but leaves a rough surface. In addition to fly cutting, a small,

5.5 mm, tool is run around the sealing surface of the plate. This tool has slightly

rounded edges, which leave a smoother finish. Using a smaller tool decreases the

roughness of the cut and it keeps the cutting surface perfectly level. During this cut, the

tool is programmed not to lift off of the surface of the part. This is to prevent any ridges
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that would result if the tool were to lift then come back down to a slightly different height.

Once this cut is made, the reactor surface is smooth, flat, and level. The pumping

chamber and fluidic channels are machined before the part is removed from the vise.

The pumping plate is made using stock with polished surfaces. Although

surfaces are smooth, they are generally wavy and are not level in the vise. Similar to

the reactor plate, the top side of this plate is fly cut and a small tool is run around the

pumping surface. The bottom side contains no features that are sensitive to tool depth

and therefore it does not need to flattened.

The depth of the pumping chamber is one of the most critical machine operations

when manufacturing the bioreactor. A ball end mill, shown in Figure 3.1, is used to

machine the pumping chamber. Seen in this figure, the depth of this cut also sets the

pumping chamber width and length and thus will have a dramatic influence on the

pumping chamber volume.

The desired cutting depth, h, is found using the equation,

h = r r2 - (w/2)2 , (3.1)

where r is the radius of the tool used and w is the desired width of the chamber. Using

a Bridgeport CNC machine, this depth can be controlled up to 5 pm. Since the depth is

a critical feature, this machine tolerance influenced the design of the pumping chamber,

detailed in Chapter 2 & 4.

Cross-Section
of the Pumping

Chamber

Figure 3.1: A schematic showing the tool used to create pumping chambers and valves

and the to-scale depth of a pumping chamber. This figure gives perspective to the

sensitivity of depth when cutting the pumping chamber.
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A second feature that is sensitive to tool depth is the fluidic channel. This

channel, shown in Figure 3.2, slopes at an angle down into the 1.5 mm diameter valves.

If the cuts are made too deep, the channel will connect all the way through the valve,

permanently opening the valve. When the cuts are too shallow, the channels will not

extend far enough into the valves and flow will be restricted.

Figure 3.2: Cross-section of a valve and the fluidic channels above it

Alignment of the reactor plate with the pumping plate is important for the proper

function of the pumping system. This alignment is achieved using dowel pins. Cuts for

the alignment pins are made at the same time as the pumping chambers, valves and

fluidic channels are made. Because of this, alignment of all features in the x-y plane is

relative to the dowel pin and the placement of the part in the vise is less important.

Several of the features in the bioreactor require tapered cuts. Special tool paths

and tool modifications necessary for creating these features are presented in Appendix

A5.

3.2 Scaffolds

Polymer scaffolds were manufactured with the milling machine. A jig was used

to hold the scaffold in place while a #80 drill bit (0.34 mm) cuts a circular arrangement of
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holes. There is a minimum of 100 pm between adjacent holes, whose placements are

shown in Appendix A6.

Since scaffolds are made using a thin, relatively flexible sheet of plastic that is

held in place only by the 1 mm outer rim, it is important to have the scaffold well

supported. A second plastic blank is placed under the scaffold in order provide this

support and to keep the drill from cutting into the jig. Only the top scaffold can be used

because the holes do not clear through the bottom blank. One scaffold is machined per

run to prevent chips from accumulating between scaffold surfaces and bowing the outer

most scaffolds. High spindle speeds, 4,000 RPM, and traverse rates, 200 mm/min

are used to achieve cleaner cuts.

Silicon scaffolds were fabricated from 6", 230 pm thick wafers using deep

reactive ion etching [20]. A glass mask, Appendix A7, was used to manufacture 62

scaffolds per run.

3.3 Controller

The controller consists of a mechanical (pneumatic) system and an electronic

system. Electronic components were soldered onto a printed circuit board and the

pneumatic manifold is bolted to the board. The entire controller is enclosed inside a

box. LEDs indicating pneumatic valve position are soldered to the board with 25 mm

leads so they are level with the controller lid. LEDs used to indicate direction of flow

plug into the 6-pin header used for programming. An STK-500 interfaces between the

chip and a PC and is used to send programs to the microcontroller. The makefile used

to send programs is shown in Appendix A3.
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4. MODELS

Mechanical models were used during the development of this bioreactor to

optimize design parameters and to assess validity of design options. The first model is

used for the pneumatic pump. The second two models were created to better

understand the effectiveness of various capacitor designs. Designs for the pneumatic

pump and capacitor are detailed in Chapter 2.

4.1 Pump Model

A central feature of the bioreactor is the pumping system. It is essential that the

pump can consistently achieve the flow rates necessary to sustain cell culture. Since

these flow rates can vary from scaffold to scaffold or between experiments, there should

be some flexibility in the flow rate. It is also desirable to minimize pulses of fluid sent

through the scaffold.

The volume of the pumping chamber is a pivotal parameter in the design of the

bioreactor fluidic system. A target volume was determined based on the desired flow

rate through one channel in the scaffold. Since each channel comprises one functional

unit of the bioreactor, overall flow rate should scale with the number of channels. There

are a maximum of 861 channels in a scaffold and the bioreactor is run at 1

pL/channel/minute. This gives an overall flow rate near 1 mL/minute. The pump can be

operated up to frequencies - 25 Hz, at which point flow consistency is affected. These

parameters impose a lower limit to the pumping chamber volume. Frequency relates to

pumping chamber volume, Vp, using the equation,

f Q x # of channels (4.1)

V, -60

where Q is the desired flow rate in pL/channel/minute.
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It will be seen in the capacitor section that the volume of the pumping chamber

affects the size of flow pulses sent through the scaffold. Since it is desirable to keep

this volume as small as possible, a value near the lower limit was used. The pumping

chamber volume of 0.92 pL requires an operating frequency of 15 Hz to run 1

pL/channel/minute through a scaffold with 861 channels.

The volume of a round, dish shaped pumping chamber can be found using the

equation,

V = [16r3 - (8r2 + w2)4r2 w2, (4.2)
24L

where r is the radius of curvature of the chamber and w is the chamber width. If the

pumping chamber is oblong, an additional term,

Voblong =V + (1- w) r2 sin- - 4r2 -w, (4.3)

must be added to the volume of a round chamber. Here, / is the overall length of the

chamber.

In order to achieve a consistent flow rate, the membrane must deflect fully to the

top and to the bottom of the pumping chamber. The pressure required for complete

actuation can be calculated from the radius of curvature of the surface of the valve.

This relationship between pressure and radius will also be important for modeling the

capacitor, which requires a relationship between pressure and capacitor volume. For a

circular valve, the pressure relates to strain like,

P- ((w/2) =Or (.w), (4.4)

where w is the width of the valve and On is the stress in the membrane acting normal to

the membrane. This equation is a balance of forces between pressure and stress and

is visually depicted in Figure 4.1.
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radius of
deflection (r)

Membrane

Po = 0

Figure 4.1: Pressure across a membrane is used to determine radius of deflection

The stress acting normal to membrane can be found from the radius of curvature

of the membrane, r.

an =a- sin6= ,
2 -r

(4.5)

This leads to,

P = r (4.6)

the formula for pressure across a thin membrane. Now, strain in the membrane must

be found.

Strain is calculated by comparing the length across the valve to the arc that

defines the valve surface. Equation 4.7 shows this calculation,

2rw ~rE= = -sin 2r-1, (4.7)

where r is half the diameter of the tool used to create the chamber. From this equation,

one can find the AP required to fully deflect a membrane. Equation 4.8,

P = sin-' - , (4.8)

shows the difference between the pneumatic pressure and the pressure in the pumping

fluid. In this equation E is the elastic constant of the membrane normalized to the
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membrane thickness. This parameter is found in Chapter 5. As curvature of the valve

increases, the depth increases, and the AP required for actuation also increases. For

an oblong chamber, this equation becomes slightly more complicated.

In this situation, the pressure acts on a different area, and the strain is not

uniform throughout the valve. The strain acting normal to the edge of the valve must be

found. In the central region of the valve, shown in Figure 4.2, the strain is identical to

that seen in a circular valve, Equation 4.7. The strain acting across the lateral axis of

the valve can also be found directly,

if - i 2r w
S = -sin- ) - (4.9)

where I is the length of the valve. This strain will be less than strain across a circular

valve and is equivalent to E- w/l. The calculation for pressure requires the integral of

strain multiplied by the edge length, shown in Figure 4.2. An estimation,

f E - ' ds~ -~-fds = arw (~ 2WI (4.10)

uses the average between the horizontal and vertical values because strain will always

be between these values.

central region end
yy

regions
Gyy ds

Figure 4.2: An oblong chamber is divided into regions when calculating average strain
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From here we can equate a pressure difference to membrane strain using the

equation,

Plw - w2 + = 2(l - w) + -+ (4.11)
4 2r 2 1

which reduces to,

P = 1+ 2 it; ) sin-( ( - , (4.12)
W 42 - 4wl + nwl 2r 2

the same as Equation 4.8 when w = L. When / -> o, this equation matches the equation

for pressure across a membrane with two different radii of curvature.

The pressure required to actuate the pumping chamber is ± 12 kPa, well below

the driving pressure of ±35 kPa.

Keeping the valve relatively flat will reduce the pressure required for actuation,

but it can cause other problems. When using a flexible membrane it is possible for the

membrane itself to seal off the fluid exit to the pumping chamber. This scenario is

similar to the case shown in Figure 2.15. Also, a shallow cut requires a large tool. With

a large tool, the volume of the pumping chamber will fluctuate more as a result of

differences in manufacturing.

4.2 Static Capacitor Model

A capacitor can be used to convert discrete pulses of flow to a smooth

continuous flow stream. The basic operation of a capacitor is detailed in Chapter 2. In

order to achieve smooth flow, several features of the capacitor must be in balance. The

capacitor must be large enough that it can accommodate the pulse of fluid sent from the

pump. When the capacitor expands, the pressure in the fluid increases. This pressure

drives flow through the scaffold. Fluidic resistance at the scaffold must be high enough

that this increase in pressure does not result in excessive flows.
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The system can also be thought of in terms of electronic components. The pump

supplies an amount of charge in a discrete amount of time, or a current. Charge is

allowed to build up in the capacitor and thus the voltage, or pressure, rises. This high

capacitor voltage is discharged through the resistor, which models the filter. Essentially

a capacitor converts a current source to a voltage source. A map of this system is

shown in Figure 4.3.

I>
Figure 4.3: A model of the pumping system using electronic components

The capacitor is used to damp flow pulses sent from the pump before they pass

through the filter. In order for the capacitor to function properly, several features must

be in balance. Some of these features can be tuned for capacitor operation and others

are predetermined. The volume of fluid from the pump, the elastic properties of the

membrane, and the hydraulic permeability of the filter are all set for proper operation of

other systems. This leaves the geometric shape of the capacitor.

When modeling the capacitor, there are some key terms that must be

understood. Physically, the capacitance is the willingness of the capacitor to accept

volume at the cost of increased pressure. In terms of electricity, the capacitance is the

willingness of a capacitor to accept charge, at the cost of increasing the capacitor

voltage. The volume contained in the capacitor is considered the volume of fluid inside

a deflected membrane and is shown in Figure 4.4. The pressure is the pressure across

the membrane. The equation for describing a fluidic capacitor is,

66



dV AV
C - - , (4.13)

dP AP

where V and P for a circular capacitor can be found in Equations 4.2 and 4.8

respectively. When this equation is rearranged to the form,

AV
AP = , (4.14)

C

the influence of pumping chamber volume on capacitor operation becomes more

apparent. When a larger pulse of fluid is sent to the capacitor, the pressure inside the

capacitor increases more than it would in response to a smaller pulse. This increased

pressure will drive fluid movement through the scaffold at a higher rate and will impart

more shear stress on the cells.

Figure 4.4: Volume of fluid 'in' the capacitor

The equations for both pressure and volume are nonlinear and thus the

capacitance is not a constant value; it depends both on the geometry of the capacitor

and the current state of the capacitor. Both equations

V =L16r3 -(8r2 + w)4r 2 -w2], (4.2)
24

P -4E sin-' , (4.8)
W 2 2r)

depend on the radius by which the capacitor is deflected. To find capacitance, an

arbitrary radius was used to find both pressure and corresponding volume. A second

radius, r + dr, was used to again find pressure and volume. Capacitance is the

difference in volumes divided by the difference in pressures. A sample calculation is
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shown in Appendix A8. Capacitance values across a range of pressures are calculated

for various capacitor diameters. Seen in Figure 4.5, when the capacitor is loaded with a

high pressure, it is less willing to accept increased volume.
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Figure 4.5: Capacitance vs. pressure for capacitors with a variety of different diameters.

The pressure required for flow at 1 pL/channel/minute is 0.25 kPa.

Figure 4.6 shows two states of the capacitor and two identical AVs. In the first

state, the capacitor is preloaded with 0.25 kPa and it requires an additional 0.21 kPa to

deflect the membrane enough to accommodate 5 pL. In the second state, the capacitor

is initially unloaded and the pressure required to change the volume by 5 pL is only

0.0033 kPa. The first condition requires a pressure increase that is 64 times greater in

order to accommodate the same amount of volume. It is apparent in Figure 4.5 and

Figure 4.6 that as the capacitor is loaded, the capacitance decreases.
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a.
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Figure 4.6: A 10 mm diameter capacitor a) is loaded with an initial

therefore less able to accept additional volume than capacitor b)

unloaded. This figure is to scale.

pressure changes
from 0.25 kPa to
0.46 kPa

pressure changes
from 0 kPa to
0.0033 kPa

pressure and is

that is initially

In Figure 4.5 it can also be seen that capacitance decreases as the physical

width of the capacitor decreases. This situation is shown in Figure 4.7 with a 5 mm

diameter capacitor. Similar to Figure 4.6a, the pressure across this capacitor is initially

0.25 kPa. A 5 pL pulse of fluid deflects the capacitor membrane to a second position,

increasing the pressure to 8.2 kPa. This pressure is substantially higher than the 0.46

kPa required to deflect a 10 mm capacitor the same volume; thus, capacitance

increases with the diameter of the capacitor.

pressure changes
from 0.25 kPa to
8.2 kPa

Figure 4.7: Capacitance increases with capacitor diameter because a larger diameter

capacitor can accept more volume with a smaller change in pressure. This figure is to

scale.

Now that the capacitance of various capacitors can be found, this information

must be related back to the pumping system. Since capacitance depends on pressure,

the optimal driving pressure for flow through the scaffold must be found. Typically the

pump operates at a flow, q, of 1 pL/channel/minute. The total flow, Q, will scale with the

number of channels and can be found using the equation,

(4.15)Qt = q- # of channels =-,
R
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where the fluidic resistance is supplied by the filter. This resistance is found from the

hydraulic permeability of the filter, hp. In order to convert to a resistance,

R = 1 - (4.16)
Afiterhp Achannel #ofchannelsh (

the area of the filter exposed to flow, or the total area of the channels, is multiplied by

the hydraulic permeability then inverted. Since total flow is normalized to the number of

channels, and the resistance is dependant on the number of channels, the pressure

required to drive flow,

p - qchannel ,(4.17)

Achannel h

at a desired rate does not change as the number of channels is scaled. This drastically

simplifies analysis when considering new scaffolds, but it does assume that fluid does

not flow through the portion filter that is occluded by the solid scaffold.

The reported hydraulic permeability of the filter is 73.5 (mL/s)/(N/mm 2)/cm 2 and

the cross section of a channel is 0.09 mm 2 . Therefore, the pressure required to drive

flow at 1 pL/channel/minute is close to 0.25 kPa. Capacitances for various capacitor

geometries evaluated at 0.25 kPa are shown in Table 4.1. As with any model, the

predictions are made as a guide and are not meant to represent exact values. If

operating conditions change, the actual capacitance values and flow patterns will

change slightly, but the average flows will remain constant.

Table 4.1: Capacitances for several capacitor geometries evaluated at 0.25 kPa

Diameter Capacitance RC (is) RC/Cycle
mL/(N/mm 2) Time

3 mm 0.5 9 0.14
5 mm 2.8 50 0.76
7 mm 8.8 153 2.35

10 mm 29.0 504 7.78
13 mm 69.8 1214 18.74
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Now the time constant, RC, for each capacitor can be found. The time constant

is a measure of how fast a system will react to some input; specifically, the time it takes

a system to reach 63.2% of steady state. In the case of the bioreactor, input is flow

from the pump. With a very small capacitance the time constant will be very short. The

system will react to the quick pulse of fluid sent from the pump, or the slightly longer

period of zero flow between pulses. As the capacitance increases so does the time

constant. With a very large time constant the system will not react to the periodic input

from the pump and pulses coming from the pump will not be seen at the scaffold.

Instead, a steady, average flow will pass through the scaffold. With a long time

constant, steady state is not achieved as quickly (on the order of seconds), but this is

irrelevant as the pump is run continuously for days.

A capacitor should have a time constant that is longer than the period of the

lowest frequency in the signal it is meant to damp. In this case that period is the

pumping cycle time. Consider a scenario where the pump sends small pulses at a very

high frequency. In this case the pump cycle time is short and the time constant can be

very small. With a pump that sends infrequent, large pulses, the time constant, and

thus the capacitor, will need to be very large. Because of this relationship between the

time constant and the nature of the input signal to the capacitor, it is helpful to normalize

the time constant to the cycle time of the pump.

Seen in Equation 4.15 and Equation 4.16, both resistance and total flow scale

with the number of channels in the scaffold. When a scaffold with fewer channels is

used, the total flow, Q, will need to decrease and the pump is run at lower frequencies.

In order to maintain steady flow the time constant must increase with the increased

cycle time. Since the resistance scales with the number of channels, this is exactly

what occurs. The normalized time constant,

r Q-RC q-C
r tp= UP V V A *h (4.18)

pup pump pump channel -h

does not change when different scaffolds are used. Since the capacitance does not

depend on the number of channels (Equation 4.14), neither does the normalized time
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constant. Again, this result is based upon the assumption that flow through the filter

does not occur in areas that are occluded by the scaffold.

4.3 Dynamic Capacitor Model

Capacitor operation is very dynamic and there are many parameters that can't be

seen in the static model. A simulation of capacitor operation was used to model time-

dependant flow. In this model, the capacitor takes an input signal from the pump and

outputs a flow through the scaffold. The full set of MATLAB code is shown in Appendix

A9. The model first finds optimal starting conditions, then sets up a time vector and a

representative input from the pump. Finally, capacitor output through the scaffold is

calculated and some final values are found. This section provides an overview of how

the capacitor model works.

When fluid begins to flow into an unloaded capacitor, most of that fluid goes into

the capacitor and little goes through the scaffold. Flow through the scaffold during this

initial startup phase is not representative of flow through the scaffold once the capacitor

is fully loaded. For this reason, and because each data point requires ~ 20 ms to

calculate, it is undesirable to begin modeling the system when the capacitor is

unloaded. Instead, an average capacitor load is found and the system begins modeling

a loaded capacitor.

To find this initial loading condition, the pressure required for flow at the desired

rate is calculated using Equation 4.17. This pressure and the size of the capacitor can

be used in Equation 4.8 to find the radius at which the capacitor is deflected. Using this

radius, the average capacitor volume, or load, is found using equation 4.2.

Since the actual load on the capacitor varies throughout time, it is very difficult to

find an initial loading condition exactly. An approximate value is found and flow
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throughout five pumping cycles is measured. By the end of these five cycles, any error

in the initial loading estimate has dissipated.

A time vector is created for running five pump cycles. In order to keep

computation times low, the total number of points is limited to 500. The At between time

points is kept much smaller than any of the steps in the pumping cycle.

Next, a flow pattern from the pump is created. This pattern is based on the

operation of the pump, shown in Figure 2.13. The user sets the size of the pumping

chamber and the desired average flow and the code sets a frequency and develops a

pattern accordingly. The time required for a pulse of fluid to leave the pump, the

pumping time, is ~ 10 ms and was found experimentally, Chapter 5. The flow rate of the

pulse of fluid sent to the capacitor is found by dividing the pumping chamber volume by

this time. When flow occurs from the pump it occurs at this flow rate for each of the

time points contained within the pumping time. The short At keeps the total volume of

fluid ejected from the pump consistent with the desired average flow.

Finally, flow through the scaffold is found. The radius of curvature of the

membrane is found from the volume of fluid contained inside the capacitor, Equation

4.2. From this radius, the pressure of fluid in the capacitor is determined using Equation

4.8. This pressure will drive flow through the scaffold. Once flow out through the

scaffold and flow into the capacitor are known, a new volume of fluid inside the

capacitor can be found. From this volume, a new radius can be found and the process

repeats.

Flows are converted to the proper units and are plotted. The total volume of fluid

that enters the capacitor and the volume that flows through the scaffold can be found by

integrating flow over time. These plots give another perspective on the same data.

Figure 4.8 shows the result of this model for the 10 mm diameter capacitor used in the

bioreactor. In this model, a volume pumped per cycle of 0.92 pL was used to pump fluid

through a scaffold with 861 channels at 1 pL/channel/minute.
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Figure 4.8: Flow through the scaffold as modeled by the dynamic capacitor model. The

red line shows the flow pulses from the pump and the blue is flow through the scaffold.

The dynamic model offers far more insight into the actual performance of the

capacitor. From this model, the maximum flow rate through the scaffold and the

variation of flow in time can both be found. The deflection of the membrane from its

unstrained position can be found from the radius of curvature and is useful when

designing the capacitor chamber. This chamber should be deeper than the maximum

deflection of the membrane.

A model for an oblong capacitor was made using Equations 4.3 and 4.12. These
equations model deflection of a membrane to a rigid surface and are not exact

representations for the deflection of a free membrane. A free membrane would deflect
with a curve across the middle section and would not strain quite as much as these
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equations suggest. Like any model, this model is only an estimation of actual

performance, but since it overestimates strain, the actual capacitor should function

better than predicted by the model. The code for this model is shown in Appendix Al 0.
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5. MECHANICAL CHARACTERIZATION

In order to validate the performance of the reactor, the pumping system was

tested experimentally. Models for the pumping volume were validated and operating

ranges for frequencies and pressures were found. Consistency of the device across

reactor units and throughout time was assessed. This chapter describes the

characterization of the pumping system and the controller.

5.1 Characterizing the Controller

The controller sets the pumping frequency by running a delay subroutine,

Appendix A3, between pumping cycles. When the subroutine is called, it delays for a

set amount of time. The subroutine can be called anywhere from 1 to 255 times for

each delay. This number is limited to 8 bits, so for delays over 255, the routine must be

called twice, for example:

delay(250);

delay(250);

will run the delay subroutine 500 times. The actual time taken to run a delay subroutine

was determined experimentally. The reactor was set to run for 250 pumping cycles and

the delay between each of the 4 pumping operations was set to one of the four values

shown in Table 5.1. A delay of 50 will be run four times during each of the 250 cycles,

which adds to a total of 50,000 delays. The time required for each of these runs was

recorded. The time required to run each delay subroutine averages to 0.202 ms;

therefore, delay(82) will pause for 16.7 ms between each of the pumping operations and

will result in a total pumping cycle time of 67 ms or 15 Hz.
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Table 5.1: Measuring the time per delay cycle

Delay Measured Time per
Value Time (s) Delay (ms)

50 10 0.2
100 20 0.2
250 51 0.204
500 102 0.204

Average 0.202

5.2 Experimental Setup for Flow Tests

In order to measure flow in the reactor, several reactor plates were made without

surface channels. The pumping system on these plates is identical to the pumping

system on finished reactor plates; however, no flow can cross back across the reactor

once it has been sent through the pump. This allows an accurate measurement of flow

through the pump.

Reactors were assembled according to the protocol described in Appendix Al 1.

Small holes were cut in a reactor lid above each of the wells in the reactor plate. The

modified lid and system are shown in Figure 5.1. The tip of a 1 mL syringe fits through

a hole in the lid and is used to level the fluid in a reactor well. Flow is now sent through

the pump and an empty syringe is again used to level the fluid in the well. The volume

of fluid now in the syringe is the amount of fluid that has passed through the pump. This

process is detailed in Figure 5.2.
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Figure 5.1: The bioreactor system developed for flow tests

The controller is set to run for a certain number of cycles before stopping. For

most flow conditions, 500 cycles are sufficient to get an accurate flow measurement.

More cycles are needed when flow through the pump drops below the volume of the

pumping chamber.

23
/

a b c d
Figure 5.2: Method for measuring flow through the pump: a) a syringe is used to level

fluid in the reactor well; b) the pump is run for a set number of cycles; c) the syringe is

again used to level fluid in the well; d) fluid in the syringe is recorded.
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5.3 Pumping Chamber Volume

The volume of the pumping chamber can be found experimentally. The

experimental setup detailed above is used and the controller is set to run for 500 cycles.

The frequencies and pressures are set to 15 Hz and ± 35 kPa, that, as will be shown

later in this section, produce consistent flows. The total flow through 500 cycles is

measured ten times in each of the reactors on the device. The average volume

measured is divided by the number of cycles to find the volume pumped per cycle. This

volume, shown in Table 5.2, should correspond directly with the volume of the pumping

chamber, 0.92 pL.

Table 5.2: Volume of the pumping chamber measured at each reactor unit

Reactor Unit Al A2 A3 A4 A5 A6
Volume 0.92 0.89 0.96 0.95 0.94 0.91

Reactor Unit B1 B2 B3 B4 B5 B6
Volume 0.96 0.96 0.89 0.95 0.93 0.91

Average Volume 0.93 pL Variation 2.7%

The average volume pumped, 0.93 pL, is only slightly larger than the volume set

in the design. This difference can be accounted for in the manufacturing process if the

tool used to cut the pumping chambers is set too deep. If the volume pumped per cycle

were lower than expected, this could suggest that the membrane is not fully deflecting

to the chamber surface, or it could suggest a leak in the valves. The variation between

reactor units, 2.7%, is calculated by dividing the standard deviation by the average.

5.4 Flow Consistency

Flow through the reactor is set by the frequency of the pumping cycle. However,

when operating parameters are out of tune they can also influence the flow rate. It is

crucial for the consistency of reactor operation that these parameters are kept within
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operational limits and thus these limits should be known. When pressures are too low,

they may not be sufficient to fully actuate the membrane. When frequencies are too

high, or pressures are too high, there may not be sufficient time to change from positive

to negative pressure under the valves. This section characterizes the dependency of

flow on frequency and pneumatic pressure and suction.

5.4.1 Flow Cycle Timing

There are four steps involved in each cycle of the pump, Figure 2.12. Each of

these steps takes a certain amount of time and that time can be measured. The

controller is set to allow ample time for three of the four steps, and the time for the final

step is varied.

For example, the pump is allowed to completely fill with fluid and the valves have

ample time to switch. Only a short amount of time is allowed for the pumping chamber

to eject fluid before the valves switch and flow from the pump is stopped.

The modified pumping cycle for these tests allows ample time for the pumping

chamber to fill with fluid from the reservoir. The valves switch so that the pump is open

to eject fluid into the capacitor. A pressure pulse is sent to the pump and fluid begins to

eject into the capacitor. After a set amount of time, the valves switch and fluid leaving

the pump can no longer enter the capacitor. The remaining fluid in the pumping

chamber is ejected back into the reservoir. The next step in the cycle again fills the

pumping chamber from the reservoir and the process repeats. The only fluid that has

passed through the pump during this cycle is the small amount that left the pump before

the valves were programmed to switch.

This cycle repeats until a measurable amount of volume has been pumped. The

volume of fluid ejected from the pump during a short time interval can be found by
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dividing the total volume measured by the number of cycles. If enough time intervals

are measured, the actual instantaneous flow from the pump can be found.

For these measurements, a test unit was assembled with scaffolds and filters

and the pneumatics were set to ±35 kPa.

Figure 5.3 shows this curve for draining the pumping chamber. As more time is

allowed for the chamber to drain, more fluid is ejected. After around 10 ms, the total

volume of the pumping chamber has been ejected. Since the reactor is bidirectional,

this test was performed with flow moving down through the scaffold, through the pump

and into the reservoir, and from the reservoir, through the pump and up through the

scaffold. Since this curve is an amount of volume that is sent from the pump over a

certain time interval, the slope represents the actual flow rate from the pump.

1.0-

0.8 - No=L

0O 0.6-
E

a) 0.4 -
E

> 0.2-

0.0
0 5 10 15 20 25

Time (ms)

m Down Through Scaffold * Up Through Scaffold

Figure 5.3: Volume of fluid ejected from the pumping chamber during a pumping cycle.

The slope of this curve represents the actual rate of flow from the pump. Flow

measurements were taken for both directions of the pump.
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A similar curve is found for the time required to fill the pumping chamber, Figure

5.4. In this case ample time is allowed for the pumping chamber to drain and flow is cut

short when filling the chamber. The amount of fluid that passes through the pump

during each cycle represents the volume of fluid that travels into the pumping chamber

before the valves switch.

1.0

0.8 -

* U
0.6-
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Time (ms)

m Down Through Scaffold * Up Through Scaffold

Figure 5.4: Volume of fluid that is pulled into the pumping chamber during a cycle of the

pump. Flow is measured in both directions.

This curve is shifted because no fluid is pulled into the pumping chamber during

the first 5 ms. The reason for this is because it only takes a small amount of pressure to

move the membrane to the top of the pumping chamber. The actual pressures used

are well above this pressure so, when vacuum is applied at the controller, the pressure

below the membrane begins to fall. After a certain amount of time has elapsed, that

pressure is no longer enough to keep the membrane fully deflected against the top of

the pumping chamber. At this point, ~ 5 ms, fluid begins moving into the pumping
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chamber. The pressure under the membrane continues to drop and the membrane is

pulled to the bottom surface of the pumping chamber, 20 ms.

When lower positive pressures are used in combination with 35 kPa vacuum,

fluid begins to enter the pumping chamber immediately after vacuum is applied. This

happens because the time required for the pressure under the membrane to fall below

what it takes to keep the membrane deflected to the top of the chamber is shortened.

This phenomenon is shown in Figure 5.5a and 5.5b.

There are some interesting things to note about these figures. These three

curves have basically the same slope, only they are shifted by ~ 5 ms for each 10 kPa

the positive pressure drops. This means that it takes around 10 ms for pressure under

the valve to drop from 35 to 15 kPa. Once the pressure has dropped to 15 kPa, the

movement of the membrane in the pumping chamber is consistent across pressures.
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Figure 5.5: Volume of fluid that is pulled into the pumping chamber during a cycle of the

pump. As positive driving pressure decreases, the pumping chamber fills sooner after

vacuum is applied. a) Direction of the pump moves fluid down through the capacitor,

through the pump and into the reservoir. b) Fluid is moved from the reservoir, through

the pump and into the capacitor.

Although this does not conclusively show, it is good evidence that after the

positive pressure drops below 15 kPa the membrane in the pumping chamber begins to

move. This suggests that 15 kPa is very close to the pressure required to deflect the

membrane to the top of the pumping chamber, supporting the calculation made in

Chapter 4 that 12 kPa is the required AP for complete membrane actuation.

Another thing to notice is that the maximum volume pumped per cycle decreases

slightly when the positive pressure drops below 15 kPa. This also supports the

calculation that 15 kPa is a borderline value for complete membrane actuation.

84



Using the same pressure combinations (15 kPa & -35 kPa, 25 kPa & -35 kPa,
and 35 kPa & -35 kPa), the flow curve for fluid leaving the pumping chamber was found,
Figure 5.6. Similar to the curves in Figure 5.5, the maximum volume pumped per cycle
decreases when only 15 kPa is used.
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Figure 5.6: Volume of fluid ejected from the pumping chamber during a pumping cycle.

Three positive pneumatic pressures are tested with vacuum set to 35 kPa.
Measurements were taken with flow moving from the reservoir through the pump and

into the capacitor.

These three curves begin, for the first - 3 ms, with roughly the same slope, then
diverge with the highest positive pressure driving fluid at the fastest rate. The beginning
of this curve represents the time period when pneumatic pressure is rising from -35 kPa
to some intermediate value. Since the pneumatic pressures in all scenarios are roughly
the same during this interval, it makes sense that all curves have the same slope. As
time passes, the pneumatic pressure rises to different values for each of the three
cases. During this time, the three curves are relatively liner, but all have different
slopes, Figure 5.7. The linear slope suggests that a constant pressure is driving the
fluid flow. This means that the driving pressure under the valve quickly reaches the
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maximum value (15, 25, or 35 kPa), and that pressure drives flow across a resistance in

the fluidic channels.
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Figure 5.7: Slopes of curves for fluid exiting the pumping chamber in response to three

different positive pneumatic pressures.

From the slopes of these curves, the flow rate for each scenario can be

calculated. If the driving pressure is constant, the flow rate should scale with pressure

by the fluidic resistance. Table 5.3 shows that the calculated fluidic resistance is

constant across pressures, suggesting that indeed, flow is driven by a constant

pressure. In order for flow to be driven by a constant pressure, pressure under the

valve must change very rapidly. After the pressure has reached a maximum value (15,

25, or 35 kPa), the bulk of fluid drains from the pumping chamber.

Table 5.3: Flow driven by different pressures through a fluidic resistance

35 kPa 25 kPa 15 kPa
Slope 0.0765 0.0542 0.0339 pL/ms
Flow 4.6 3.3 2.0 mL/min
Resistance 0.46 0.46 0.44 (N/mm 2)/(mL/s)
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The consistency of these resistance values also says something about the actual

pressure at the valves. If the pressures driving flow were all 5 kPa lower, ie. if there

was a loss of 5 kPa between the controller and the valves, the resistance values would

change to 0.39, 0.37 and 0.29 (N/mm 2)/(mL/s), and the flow would no longer be

proportional to pressure. Since flow is proportional to the pneumatic driving pressures

set at the controller, this suggests that pressure applied at the valves is very close to the

pressure that can be read on the gages. This supports the model presented in Figure

2.32 that the secondary channels have minimal effects on the actual pressure under the

valves.

As these curves do not change when filters are removed, the fluidic resistance

calculated here resides in the pump itself (data not shown). This makes sense, as the

resistance calculated for flow passing through a filter, hp of 73.5 (mL/s)/(N/mm 2)/cm 2,

where 861 channels are exposed is only 0.02 (N/mm 2)/(mL/s). Since the resistance in

the fluidic lines occurs before flow enters the capacitor, this resistance does not affect

capacitor operation.

The time required to actuate the valves was also found experimentally. Similar

tests were run where the valve timing was varied and flow through a large number of

cycles was measured. Positive and negative 35 kPa were used as the pneumatic

inputs. Figure 5.8 shows the results from this test for step four in the pumping cycle,

Figure 2.12, where the valves are switched before filling the pumping chamber.

Seen in this figure, little time is required before the controller can begin to apply

vacuum to the pumping chamber. Since the pumping chamber requires around 5 ms

before it begins to fill with fluid, Figure 5.4, it makes sense that vacuum can be applied

immediately after a signal is sent from the controller to switch the valves.

Figure 5.9 shows the volume pumped per cycle when the time allowed for step

two, Figure 2.12, is varied. In this step, the valves switch positions before the pumping

chamber is drained.
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Figure 5.9: Time required to switch the valves in order to drain the pumping chamber.

Flow was measured in both directions.
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Looking back to Figure 5.3, the pumping chamber begins to drain immediately

following actuation. This requires that ~ 5 ms is allowed for the valves to switch prior to

sending a pressure pulse to the pumping chamber.

5.4.2 Frequency

Now that the required times for each of the steps in the pumping cycle have been

found, Figures 5.3, 5.4, 5.8 & 5.9, operating frequencies can be set. The times required

for each step in the pumping cycle, shown in Table 5.4, result in a minimum pumping

cycle time of 40 ms, (25 Hz).

Table 5.4: Times required to complete each step of the pumping cycle, and delay values

used to program the controller

Time (ms) Delay
Step 1: Fill Pump Chamber 20 99
Step 2: Switch Valve 5 25
Step 3: Drain Pump Chamber 12 59
Step 4: Switch Valve 3 15

Total time 40 ms
Frequency 25 Hz

For frequencies close to 25 Hz, it makes sense to use optimized cycle times. For

much lower frequencies each of the steps in the cycle have ample time for actuation,

and for higher frequencies the pump begins to break down. Other optimized

frequencies, as well as the delay values used to program the controller, are shown in

Table 5.5.

Using these optimized cycle times, flow as a function of frequency can be tested.

Figure 5.10 shows this test for pneumatic pressures of ±35 kPa. Flow for cycles where

each of the steps are allowed equal times for actuation, and flow when cycle times have

been optimized have been tested.
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Table 5.5: Cycle timing for

I Time
Fill P. Chamber
Switch Valve
Drain P. Chamber
Switch Valve

Total time (ms)
Frequency
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Figure 5.10: Flow rate as a function of frequency when pneumatic controls are set to

±35 kPa. Optimized cycle times are plotted in black and cycles allowing equal times for

each step are plotted in red.

The initial linear slope of this figure signifies that an equal amount of volume is

pumped during each cycle. As expected, after 25 Hz, the frequency becomes too fast

and the entire volume of the pumping chamber is not pumped during each cycle.

Clearly, the optimized cycle times have outperformed pump cycles utilizing equal delay

times.
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5.4.3 Pneumatic Pressures

Pressure can have a significant impact on pump cycle volume. If pressure

values are set too low, the pressure will not sufficiently deflect the membrane to the

surfaces of the pumping chamber. If pressure values are too high, there may not be

ample time to switch from positive to negative pressure under the valves and pumping

chamber.

First, the minimum operating pressures are determined. These are the

pressures required to actuate the membrane from one position in the pumping chamber

to another. Low frequencies, 2 to 4 Hz, were used for these tests to allow ample time

for the pressure under the valves to equilibrate and for the membrane to actuate.

Equal positive and negative pressures were set on the regulator.

measurements, normalized to the number of cycles measured, are plotted in

10 20 30

Pressure (kPa)

40

Total flow

Figure 5.3.

50

Figure 5.11: Pumping chamber volume in relation to actuation pressures, pumps were

driven at low frequencies
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Seen in this figure, the volume pumped per cycle begins to decline as pressures

drop below 15 kPa. This value helps confirm the calculations made in Chapter 4 that

±12 kPa is required to fully deflect the membrane from one side of the pumping

chamber to another.

Next, pressure dependencies across a range of frequencies were found, Figure

5.12. The entire scaffold assembly is used in order to most accurately represent culture

conditions. Equal positive and negative pressures were set on the regulator.
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Figure 5.12: Flow rates in relation to actuation pressures, pumps were driven at 15 Hz

Seen in this figure, flow increases linearly with frequencies up to 25 Hz. When

higher frequencies are used, both the consistency of flow, and the total flow rate suffer.

At ± 35 kPa, flow increases linearly at a maximum slope up to 25 Hz. Above 25 Hz, 35

kPa maintains flow better than any other pressure setting. Also, 35 kPa is well below
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the rated maximum differential pressure across the three-way pneumatic valves in the

controller, 100 kPa (Chapter 2).

As higher frequencies are used (15 & 25 Hz), flow for pressure settings of 15 &

25 kPa begins to fall below the flow for 35 kPa. This is because these frequencies do

not allow ample time for the pumping chamber to fully actuate. Seen in Figure 5.7,

lower pressures drive flow from the pumping chamber at slower rates. These rates

become limiting factors at higher frequencies.

A potential limit on the maximum operating frequency is the time required to send

pressure and suction to the valves. If this time were reduced, the pumping chamber

would fill sooner (curves in Figure 5.4 would shift to the left), and higher frequencies

would be attainable. This could be achieved by using shorter connective tubing

between the bioreactor and the controller. Also, the inner diameter of the tubing could

be optimized. If the diameter is made smaller, less air will need to be evacuated in

order for the pressure to change.

5.4.4 Head Pressures

The filter in the scaffold assembly presents a resistance to flow. This resistance

will create a head pressure in the capacitor proportional to the flow rate through the

scaffold. Resistance can be calculated from the hydraulic permeability of the filter, 73.5

(mL/s)/(N/mm 2 )/cm 2 , and the effective area of the filter. For a flow rate of 1

pL/channel/minute, and a filter where flow only passes through the open channels, the

head pressure in the capacitor will be 0.25 kPa.

The relationship between flow and head pressure was measured experimentally.

The test setup described in Section 5.2 was modified by connecting a long, 1.6 mm

inner diameter tubing with one side of the pump, Figure 5.13. The pump is programmed

to run for 250 cycles and the resulting height of fluid is measured. As more fluid is
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pumped into the tube, the height of the fluid rises and so does the

pump. The volume of fluid pumped per cycle can be found from

over 250 cycles.

ii

head pressure at the

the change in height
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Figure 5.13: Test setup for measuring flow vs. head pressure.
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Figure 5.14: Head pressure curves for the pump when operated at 15 Hz with

pneumatics set to ±25, 35 & ±45 kPa.

Figure 5.14 shows the relation between head pressure and the volume pumped

per cycle. A constant volume of 0.93 pL per cycle means that the pump is functioning
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properly and the expected flow rate for a given frequency will be realized. When this

volume drops, so will the flow rate for a given frequency. As the pneumatic pressure

increases, the pump is able to drive flow against higher head pressures. The maximum

head pressure where the pump outputs the total volume of the pumping chamber is

shown in Table 5.6.

Table 5.6: Maximum head pressures against which the pump can drive consistent flows

Pneumatic Head
Pressure Pressure
45 kPa 8.5 kPa
35 kPa 7.1 kPa
25 kPa 5.8 kPa

For all of the pneumatic input values tested, the pump works consistently for

head pressure values well above the 0.25 kPa required to drive flow through a clean

filter. Through the course of an experiment it is possible that the filter will begin to clog

with cell debris. This will reduce the effective area of the filter and will cause an

increase in resistance and pressure. Resistance would need to increase by nearly 30

fold before any effects could be seen in the pumping system. In order for the

performance of the pump to begin to decline, an extremely high percentage, 98%, of the

filter would need to be totally clogged with debris. To validate that this is not occurring,

a flow test was performed at the end of an experiment, Section 5.4.5.

There are several reasons why the maximum attainable head pressures are

below the pneumatic input pressures. If the pumping frequency is too high, there will

not be sufficient time for the pressures under the valves and pumping chambers to

reach maximum values. When frequencies are decreased, to 8 Hz, these head

pressure curves reach higher values, Figure 5.15.
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Figure 5.15: Head pressure curves for the pump when operated at 8 Hz with

pneumatics set to ±25, 35 & ± 45 kPa.

The maximum attainable head pressure for 25 kPa rises from around 11 to 13

kPa, and the maximum head pressures for 35 and 45 kPa are both higher than 15 kPa.

In all three curves, pumping values for head pressures ranging from 5 to 10 kPa are

below expected. This is most likely due to inconsistencies in the measurement system,

such as the surface of the fluid not being exposed to atmospheric pressure.

Another reason for not obtaining head pressures equal to the pneumatic driving

pressures is because of leakage of fluid back through the pump when valves are

switched. During steps 2 and 4 of the pumping cycle, Figure 2.12, it is possible that

while one valve is closing, the other is opening. During this time, fluid can fall

backwards down through the pump. When these steps are divided into additional steps,

so that at least one valve is closed at all times, the maximum head pressure increases.

Seen in Figure 5.16, pneumatic pressures of 35 & 45 kPa will drive fluid against head

pressures over 15 kPa without being affected. Clearly, an altered pumping cycle is

ideal for pumping against high head pressures.
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Figure 5.16: Head pressure curves for the pump when operated with an altered

pumping cycle

5.4.5 Flow Test After Cell Culture

Flow was tested at the end of a 7 day experiment where cells were cultured in

the reactor for 4 days. Since a surface channel connects adjacent wells in a functioning

reactor, it is not possible to measure flow in the conventional manner. Instead, the test

reactor was primed with warm medium and the scaffold assembly containing cells and

filters from a reactor unit with 861 channels was transferred to the test system. Flow

through 500 cycles at 15 Hz was measured 5 times in both pumping directions. The

scaffolds were removed and flow was again measured 5 times for a control. In order to

measure the medium consistently, a small amount of medium had to be used to prime

the syringe. Because of this, the volume measured is not the volume pumped per

cycle. Table 5.7 shows the average fluid volume measured for each condition.
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Table 5.7: Average volume of medium measured at a pumping frequency of 15 Hz for a

reactor unit with no scaffolds and a reactor unit with scaffolds, filters and cells

Down Up
Through Through
Scaffold Scaffold

With Cells 0.41 0.49
No Filters 0.40 0.49

The volume measured both with and without cells is very consistent; however, it

appears that more flow occurred in one direction than the other. Due to the difficulties

in measuring medium in a syringe, and the lack of repeated tests, no firm conclusions

can be made from this difference. However, it is encouraging that a scaffold assembly

filled with cells has no effect on the pumping system.

5.5 Membrane Characterization

Operation of the pumping system is heavily influenced by the physical properties

of the membrane that separates the fluidic plate from the pneumatic plate. The Young's

Modulus of the membrane was measured using the experimental setup shown in Figure

5.16. A 40 mm wide section of membrane was clamped between two parallel clamps

separated by 42 mm. The lower clamp is attached to a stationary scale and the upper

portion is connected to the moveable Z-axis of the CNC milling machine. Strain was

measured on the milling machine and the corresponding force was measured on the

scale. Force was normalized to width and the results are plotted in Figure 5.17.
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Figure 5.17: Experimental setup for measuring stress vs. strain in the membrane
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Figure 5.18: Stress-strain curve for the membrane. This curve is normalized to unit

width and the actual thickness of the membrane.

The slope of this curve, 0.3749 N/mm, represents the Young's modulus for this

particular membrane and is not normalized to the membrane thickness, 25 pm. This

value can be used in models using a thin, flexible membrane of constant thickness.

Membrane tension is the dominant force in these models and internal shear stresses

are neglected.
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6. BIOLOGICAL APPLICATIONS AND CHARACTERIZATION

This chapter describes cell culture experiments that were performed in the

bioreactor and gives insight into the versatility of the system. A multitude of

comparative studies are possible using a single bioreactor plate. These studies include

varying the culture micro-environment, the total number of cells, and cell to medium

ratios, and testing different compounds. Along the same lines, a broad spectrum of

assays can be used to evaluate cultures. These include assays that require end point

analysis, medium sampling, and visual inspection. This chapter begins by describing a

typical experiment, then discusses other ways the bioreactor can be used.

6.1 Protocol for a Typical Experiment

6.1.1 Preparing the Cells

Liver cells are isolated from male Fischer rats using the protocol described by

Sivaraman, [19]. 100 mL of hepatocyte suspension in HGM (Hepatocyte Growth

Medum, [19]) is placed into a spinner flask (Bellco Glass, Vineland, NJ) at a

concentration of 3 x 105 cells per mL. Spinner flasks rotate at 85 rpm for 3 days while

cells aggregate into spheroids. After 3 days, cells are taken from the spinner flask and

filtered to select for 50 to 300 pm spheroids (50 & 300 pm filters, Sefar America, Kansas

City, MO). This size range is used to remove debris, marginally viable cells, and

aggregates that are larger than the channels. Selected cells are centrifuged at 50 g for

3 min, then resuspended in ~ 15 mL cold HGM.
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6.1.2 Preparing the Reactor

All of the reactor components that will contact the cell culture medium are

cleaned and autoclaved in preparation for assembly. Scaffolds are coated by soaking in

a 30 pg/mL Type I rat tail collagen (BD Biosciences, Bedford, MA). Silicon scaffolds are

coated for 30 minutes at room temperature and polymer scaffolds are coated for 2

hours and are allowed to dry for 2 hours. The differences in times are the result of a

functional difference in protein adsorption for the two materials. Filters are soaked for

30 minutes in a 1% w/w BSA (Fraction V, Sigma-Aldrich) in PBS solution (pH7.4,

Invitrogen). Immediately prior to assembly, each reactor part is rinsed with PBS.

The reactor is assembled according to the protocol described in Appendix A11,
and is primed with warm HGM (37 'C). The reactor is run for 5 minutes, then washed

with fresh, warm, medium. Warm medium is used to prime the reactor in order to

ensure that bubbles do not form below the scaffold when the reactor is placed in the

incubator.

6.1.3 Seeding Cells

Downward flows of 1 to 2 pL/channel/minute are run through the reactors with

medium levels just above the height of the surface channel. This reduced volume

allows - 1.5 mL cell suspension to be added to each reactor unit without overfilling. A

0.5 mL volume of cell suspension is added to the first reactor unit using a pipette. The

first 3 mm of the pipette tip is removed in order to increase the diameter of the pipette

opening. Enlarging this opening minimizes exit velocities and shear stresses in the cell

suspension during seeding.

After spheroids are seeded into the first reactor, the scaffold is examined under

the microscope. If there are too many empty channels, an additional volume of cell

suspension is added and the reactor is checked again. The remaining reactors are
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seeded once the optimal volume of cell suspension is determined. After all reactor units

are seeded, a final visual inspection is performed to assess uniformity of seeding across

reactor units.

6.1.4 Cell Attachment

During the first 24 hours of culture, flow remains in the downward direction

allowing time for cells to adhere to the walls of the scaffold. Time-lapse photos, shown

in Figure 6.1, were taken during these initial stages of culture and show the

rearrangement of cells to form tissue structures. Adherence of cells to the scaffold is

critical for successful cultures and is a positive indicator for the performance of the

bioreactor. The cells used in this experiment were previously cultured for 3 days in

spinner flasks and have been filtered to select for spheroids between 100 and 300 pm in

diameter.

Flow is reversed once cells have attached to the scaffold (usually - 24 hrs). This

reversal prevents cell debris from clogging the filter underneath the scaffold.

6.1.5 Extended Culture

Each day, 1.5 mL of HGM is aspirated from the reservoir and is replaced with

fresh HGM, refreshing ~ 50% of the total medium in the system. Medium samples can

be analyzed for secretion of albumin, urea or bile and other medium components.

At the end of the experiment, scaffolds are removed from the reactor wells and

can be placed into Trizol to lyse the cells (Trizol, Invitrogen). RT-PCR is performed on

all of the samples using the protocol described by Sivaraman [19]. A typical set of gene

expression data from day 7 (post isolation) cultures is shown in Figure 6.2. The genes

measured transcribe Phase I and Phase I enzymes, transcription factors and surface
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proteins. The bioreactor data is an average across 8 technical replicates and 2

biological replicates and the collagen gel sandwich data is from 2 biological replicates

where samples were pooled from 6 wells on a tissue culture plate.

Figure 6.1: Time-lapse pictures of cells forming tissue in the silicon scaffold. Spheroids
were allowed to aggregate for three days prior to seeding in the reactor.
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Figure 6.2: Gene expression data from a typical experiment, day 7 post isolation. This

chart compares collagen gel sandwich and bioreactor cultures. Expression levels are

normalized to freshly isolated hepatocytes.

6.1.6 Controls

Collagen gel sandwich cultures of freshly isolated hepatocytes are run as

controls for each experiment. Typically, two 6-well tissue culture treated plates (BD

Bioscience) are run, utilizing the protocol described by Sivaraman [19]. The first is

taken down at the end of spheroid cultures and the second is cultured until the end of

the reactor culture. Medium is changed daily throughout the duration of the culture with

1 mL fresh HGM.

At the beginning of each experiment, a sample of freshly isolated hepatocytes is

lysed in Trizol for RT-PCR analysis. This sample is used to normalize gene expression

data. Spheroid samples are also taken immediately prior to seeding cells into the

reactor.
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6.2 Other Experiments

6.2.1 Metabolism and Induction

The liver is primarily responsible for the in vivo metabolism of many drugs. This

metabolism is mediated by a specific set of enzymes (including CYP450's), and the

activity of these enzymes can be measured using a number of methods. A compound

can be added to the culture medium and circulated through the system. After a set

period of time has elapsed, a sample of medium is taken from the reactor unit and is

analyzed for the formation of metabolites.

These experiments are typically done on cells once tissue has formed and

stabilized in the bioreactor (4 to 7 days). In order to prepare the system for this type of

experiment, the medium must be free of albumin. Since hepatocytes secrete albumin,

culture medium must be exchanged with albumin free medium immediately prior to each

experiment.

In each reactor unit there is a total of 3 mL of medium, 2 mL of which is

accessible. In order to exchange all medium, two wash steps must be performed. For

each step, the medium in the reservoir is aspirated, 2 mL of new medium is added, and

the reactor is run for 5 minutes in order to completely mix the new medium.

After the wash, medium is again aspirated and 2 mL of new, drug containing

medium is added. At the end of this step, 96 % of the medium is fresh and does not

contain albumin. For a testosterone experiment, the desired testosterone concentration

is 250 pM. As such, the dose concentration should be 375 pM, as it will be diluted by

the additional medium in the reactor unit.

Testosterone is run through the reactor for 1 hour before the medium is sampled.

A sample of medium can be analyzed with HPLC using the protocol discussed by

Sivaraman [19]. If the culture will be maintained after this test, the testosterone should
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be washed 3 times from the system. This will remove 96% of the testosterone

containing medium.

This experiment has been performed, and metabolites have been seen, however,

the data was not analyzed quantitatively.

For metabolism experiments it is important to check for adsorption of a

compound to the surfaces of the reactor. Adsorption of testosterone was tested for

partially and fully assembled reactors without cells. The reactor was run with medium

containing 250 pM testosterone for 1 hour and the final concentration was measured

using HPLC. The amount of adsorbed testosterone to each reactor setup is shown in

Table 6.1. A control sample was analyzed using HPLC and each of the other samples

are normalized to the control. Seen in this table, the maximum amount of absorbed

testosterone was 29%.

Table 6.1: Amounts of testosterone absorbed to the reactor surfaces after 1 hour of

exposure

Control Empty Reactor No BSA Full
Reactor no Filters on Filters Reactor

Concentration 250 pM 209 pM 194 pM 182 pM 178 pM
% Absorbed 0% 16% 22% 27% 29%

Induction of a specific p450 gene can be measured by similar dosing

experiments. In these experiments, a drug is added to one set of reactor units and is

not added to others. At the end of the experiment, gene expression levels can be

compared across different dosing conditions in the bioreactor. Since each reactor unit

is an isolated system, the cells from one set of reactors can be removed without altering

the operation of other reactor units on the plate. This allows the user to take gene

expression data at multiple time points after cells have been dosed with a drug.

In one study, midazolam was added to one reactor unit and was not added to

others. Hoen has shown that midazolam induces the CYP2B1 gene, and that result is
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reproduced in the bioreactor [27]. Figure 6.3 shows differences in 2B1 expression

levels between treated and untreated cells. A 10 pM concentration of midazolam was

added to cells on day 4 of culture and gene expression levels were assayed on day 7.

8.0 -

6.0 -

4.0 -

2.0 -

0.0 1

* Midazolam

" Control

2B1

Figure 6.3: Expression of 2B1 mRNA for cultures dosed with midazolam

6.2.2 Variations in Culture Microenvironment

There are many ways in which the microenvironment of the cells can be

modified. Flows through the scaffold can be changed, channel geometries can change,

and so can the scaffold material. These changes are incredibly simple to make and a

matrix of differing conditions can be tested on one bioreactor plate. A variety of culture

conditions have been tested in search for an optimal culture microenvironment.
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6.2.2.1 Flows

Flow through the scaffold can be modified in a number of ways. The rate of flow,
as well as the timing of flow reversal can be changed. Similar to the pneumatic plate
with two inputs, FIgure 2.30, a plate with four sets of inputs, Figure 6.4, allows for 4
different flow patterns.

Figure 6.4: A pneumatic plate with 4 sets of inputs. The pumping system on this plate is

from an earlier prototype.

An experiment has been done to test the differences between seeding single cell
suspensions and cells that have been pre-aggregated into spheroids. Because single
cells are seeded immediately after isolation and spheroids are seeded on day 3, this
experiment requires differing flows on the reactor throughout the culture period.
Achieving these flow patterns, shown in Table 6.2, requires the use of this special
pneumatic plate.
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Table 6.2: Required flow patterns through the scaffold when culturing cells seeded at

different times

Ia Flow Direction
Day Single Cells Spheroids

1
2
3
4

5-7

Down
Up
Up
Up
Up

Down
Up

Figure 6.5 shows pictures taken of freshly isolated cells directly after seeding.

Each of the channels is well filled with cells, and there is an even dispersion of cells

throughout the scaffold.

Figure 6.5: Cell isolates day 1 after being seeded into the reactor

Gene expression was measured on day 7 in spheroid reactors and in reactors

seeded with single cells. This data, Figure 6.6, shows comparable gene expression

levels across the majority of genes measured.
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Figure 6.6: Gene expression levels for reactors seeded with cell isolates and reactors

seeded with cells that have aggregated into spheroids

In addition to changing flow directions, the rate of flow can be varied across

reactor units. Slight variations in flow have occurred when scaffolds with differing

numbers of channels are used. These flows have varied by ~ 30% and no noticeable

effects have been observed. An experiment could easily be performed where flow is

varied drastically across reactor units. A pneumatic plate with four inputs, similar to the

one shown in Figure 6.4 would be ideal for this type of experiment.

6.2.2.2 Scaffolds

Scaffolds are readily interchangeable in the bioreactor, thus many different types

of scaffolds have been manufactured and tested. The properties of the material that

cells adhere to can have dramatic effects on the culture [28, 29]. A variety of different

materials, silicon and many polymers, have been tested and advantages to each

material are described in this section.

110

-kql



Silicon scaffolds have been used in previous bioreactor systems developed in

this lab. These scaffolds can be made with incredibly precise dimensional control and

limitless channel geometries are possible. Cell adhesion to these scaffolds is very

good, suggesting that collagen deposition to the scaffolds surfaces is very efficient.

Silicon is also a very inert material. These scaffolds can be autoclaved numerous

times, they can also be submerged in Trizol without adverse effects.

Along with these advantages, there are some limitations. Silicon is a very brittle

material, especially when it is made into a thin scaffold. Even when these scaffold are

handled very carefully, they are still prone to breaking. These scaffolds are also

relatively difficult and expensive to manufacture.

Polycarbonate scaffolds have also been used previously in the lab. In contrast to

silicon scaffolds, these scaffolds can be manufactured very easily and they are not

brittle. Unfortunately, they cannot be autoclaved, or exposed to Trizol. More

importantly, cells don't adhere as well to polycarbonate scaffolds. These scaffolds

typically soak in collagen for two hours, then dry for two more hours before insertion into

the bioreactor.

Because plastics are not brittle and can be easily machined, they offer

advantages over silicon. For this reason, more plastic scaffolds were tested. PEEK

(polyether ether ketone) and PVDF (polyvinylidene fluoride) were selected because

both of these materials can be autoclaved and are more chemically resistant than

polycarbonate.

PVDF is fairly hydrophobic, thus priming the channels with fluid is difficult. In

general, these scaffolds are not user friendly. PEEK scaffolds, on the other hand, are

relatively easy to use. Similar to silicon, they can be autoclaved and can be submerged

in Trizol without noticeably altering the material. Experiments with these scaffolds have

been run to assess collagen deposition and cell adhesion. PEEK scaffolds have been
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coated with collagen using both the 30-minute silicon and the 2/2-hour polycarbonate

method, and cells have been cultured.

Figure 6.7 shows some representative pictures from experiments comparing

silicon, polycarbonate and PEEK scaffolds. Gene expression data from these cultures

was measured by RT-PCR and is shown in Figure 6.8. From these figures, there

doesn't appear to be much of a difference between scaffold materials.

Polycarbonate PEEK

Figure 6.7: Pictures from cells cultured on
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Figure 6.8: Gene expression for cells cultured on a variety of scaffold materials. PEEK

scaffolds were coated with collagen for 30 minutes (Si Coat) and for 2 hours (PC Coat).
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There are many other materials that can be used as scaffolds. Several of these

materials have been previously tested in other bioreactor systems developed in this lab;

however, there are still other materials that can be investigated for use in this bioreactor

setup.

6.2.3 Variations in Numbers of Cells and Cell to Medium Ratios

Depending on the number of cells required for a given experiment, the number of

channels in a scaffold can be modified. Scaffolds containing anywhere between 61 and

861 channels can be used, thus the number of cells in a culture can be varied by more

than ten fold. Flow in the reactor can be tailored to suit the number of channels utilized.

The use of inserts, similar to the one shown in Figure 2.26, allows some flexibility in

volume; however, there are obvious limits to the maximum and minimum amounts of

medium in a reactor unit (-1.75 mL to ~ 3.5 mL).

Experiments have been performed with silicon scaffolds where only 97 channels

contain tissue. Gene expression data for these experiments is compared with data from

previous experiments in Figure 6.9. The minimal differences in expression levels shows

that the system performs similarly across a wide range of cell numbers.
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Figure 6.9: Gene expression levels for scaffolds with only 97 and 861 channels

Since the same volumes of medium were used for all of these experiments, cell

to medium ratios were vastly different. One can compare cultures with different ratios,

however, this has yet to be done with cells from a single isolation.

These cell to medium ratios are potentially very important. With many cells in a

relatively small amount of medium, the metabolism of these cells can change the

concentration of medium components. As the cell to medium ratios change, so do the

rates of depletion of medium components.

Since the rates of formation of testosterone metabolites have been measured for

previous bioreactor systems, Table 6.3 [19], testosterone is a good example. From

these rates of formation, the total depletion of testosterone can be estimated for a one-

hour exposure time. Assuming similar rates for the current bioreactor system, a

calculation is made for the drop in testosterone concentration in a system containing

61k cells and a system containing 861k cells. In the 861k cell system, the final

concentration drops by 31%, 15 times more than in the system with fewer channels.
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Table 6.3: Rates of metabolism of testosterone for previously reported systems [19] and

estimated depletion of testosterone in the bioreactor plate.

Rates of formation of testosterone products
16 alpha 609 p mol / 106 cells / min
16 beta 811 p mol / 106 cells / min
2 alpha 367 p mol / 106 cells / min
6 beta 2662 p mol / 106 cells / min

Total Depletion of testosterone

4449 p mol / 106 cells / min
2.7E-07 p mol / cell / hour

Initial Concentration 250 pM
Medium Volume 3.2 mL
Initial Ammount of Testosterone 0.8 p mol

Cells to Final Amt. Final Concen
# of cells Medium Testos. Concen. Co

(1k / mL) (p mol) (pM) Drop

Cha61nels 61000 19 0.78 245 2%

Chaels 861000 269 0.57 178 29%

It is important to keep this type of phenomenon in mind when determining dose

concentrations for metabolism experiments. In addition, if components in the medium

are being metabolized at significant rates, this could help to explain differences across

systems with different cell to medium ratios.
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7. RECCOMENDATIONS FOR FUTURE WORK

7.1 Capacitor

7.1.1 Capacitor Validation

The current capacitor should be mechanically characterized. In order to validate

the performance of the capacitor, the reactor was seeded with cells and the movement

of the cells was monitored under a microscope. Without a capacitor the cells shake at

the frequency of the pump and with a capacitor they do not. More quantitative

characterization should be done to validate the capacitor model. If it were possible to

measure instantaneous flow through the scaffold, this would be ideal. Since there are

obvious difficulties measuring flow in nL/ms, other methods may be more practical. The

displacement of the capacitor membrane could be measured across time using an

optical system. This displacement could be converted to a volume and flow could be

calculated from a change in volume.

7.1.2 Capacitor Optimization

The capacitor is used to filter fluid pulses before they pass through the scaffold.

The larger the capacitor is, the better it will perform. Unfortunately, a larger capacitor

also requires more fluid underneath the scaffold. Since this fluid is inaccessible, extra

wash steps are required when exchanging all of the medium in the system. Smaller

capacitors should be investigated and tested with cells. If performance is comparable,

and inaccessible volume can be significantly reduced, smaller capacitors should be

considered.

There are also other types of capacitors that could be employed. An effective

capacitor only requires a fluidic resistance and a fluid volume that can expand with
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increasing pressure. This volume could be created in many different ways. For

example, something as simple as a large air bubble trapped in the system would serve

as a capacitor. Capacitance can be achieved if the scaffold is allowed to move up and

down. It can also be achieved by inserting a soft rubber or foam in the system.

Basically, any deformable material between the scaffold and pump will serve as a

capacitor.

7.2 Pneumatic System

7.2.1 System Model

Flow through the pump can be externally manipulated using the controller. In

order to flow at 1 pL/channel/minute (assuming 861 channels), the pump frequency is

set to 15 Hz. The frequency can be decreased significantly, or can be increased to 25

Hz corresponding to flows near 1.4 mL/minute. One of the limiting factors here is the

time required to change from positive to negative pressure under the valves. The

pneumatic lines must have time to fill and drain with air. It is possible that higher

frequencies could be obtained if the pneumatics are optimized to minimize the volume

in the system while maintaining a low fluidic resistance in the lines.

A model of the pneumatic system would help in determining the optimal

connective tubing between the reactor and controller. The output of this model would

be the estimated pressure under the valve for a given configuration, input pressure

setting and time. Flow to and from the valves and total flow though the pneumatic

regulators would also be found. These values would help with the proper selection of

regulators.
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7.2.2 Quick Connectors

The pneumatic lines are connected to three separate nozzles on the bioreactor.

Each time the bioreactor is moved, for example to change medium, the lines are

disconnected and reconnected upon returning. If these lines are accidentally reversed,

flow through the bioreactor will also reverse. Also, when disconnecting these lines it is

easy to jar the bioreactor causing spillage of medium. A quick disconnect for these

lines could be used to solve both of these issues. The connecting piece would not allow

the lines to be reversed, and disconnecting the lines would be easier.

7.2.3 House Vacuum

In order to run the bioreactor, the controller is connected to house pressure and

vacuum. If a nearby vacuum port is used, the vacuum supplied to the bioreactor can

drop severely. When this occurs, the bioreactor pumping system can temporarily stop

pumping. There are several ways to combat this issue. First, the bioreactor could be

modified so that the dependence on vacuum is minimized or eliminated. Also, the

pneumatic manifold could be digitized and an alarm could sound if the vacuum drops

below a certain value. In addition, a vacuum reservoir could be used that runs the

bioreactor when the vacuum lines are being used. Lastly, a separate vacuum pump can

be used.

7.2.4 Secondary Channels

Due to the nature of the pumping system, the secondary channels, Figure 2.31,

create a leak in pneumatics between adjacent valves. Although this leak is not

expected to be problematic, it should be investigated further. If it can be minimized

without sacrificing bioreactor performance, those steps should be taken.
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7.3 Controller

The current controller was designed for developmental purposes. Although it

works for the current system, it may have too much functionality for the average user.

For example, there are eight different buttons that can run eight different subroutines.

The average user will need to flow fluid in forward and reverse, and could potentially

need one more routine for seeding cells.

A more user-friendly controller should be designed. Ideally, the user will be able

to set flow directly on the controller, and view that flow on an LCD. This would eliminate

the need to reprogram the device when different scaffolds are used.

7.4 Retaining Rings

The retaining rings in the scaffold assembly are used to create a seal so that no

fluid can bypass the scaffold. This seal is crucial to the performance of the bioreactor.

The rings work by applying pressure to the sides of the reactor well, creating a holding

force from friction between the two surfaces. Since the holding force is only secondarily

applied, it is not deterministic. A new method should be employed for creating a

deterministic seal in the reactor well. The amount of force needed to create a seal

should be calculated or measured. Then a retaining system with a holding force that

matches this force should be developed.
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7.5 Seeding Cells

7.5.1 Cell Isolates

The seeding of freshly isolated hepatocytes can offer several advantages over

seeding spheroids into the reactor. For one, the efficiency of cell usage is severely

compromised when making spheroids. Also, it is very difficult to determine the number

of cells in a spheroid population and thus there is uncertainty as to how many cells are

being added to a reactor when seeding.

Unfortunately, there are some obstacles to making this feasible. When cell

isolates are seeded into the reactor they seem to settle to the bottom of the channel

rather than adhering to the channel walls. Scaffolds could be produced with an open-

cell-foam-like filler in the channels. This filler could potentially provide micro scaffolding

that the cells could attach to. The inclusion of various amounts of collagen in the cell

suspension used for seeding could also improve this situation.

Different flow patterns in the reactor may help as well. Flow could be reversed

sooner so that flow pushes the cells upward in the channels. Similarly, the reactor

could be programmed to flow upwards at low rates soon after seeding. These rates

would be small enough that cells would not be blown out of their channels.

7.5.2 Counting Spheroids

Seeding cells into the bioreactor requires that the user pipette a certain volume of

cell suspension into the reactor well. Since it is impossible to know ahead of time how

many cells are being dispensed, the user must check under a microscope to get a feel

for how full the scaffold is, then pipette more cells if need be. This guess-and-check

method is both time consuming and unreliable. This problem could be resolved if there

was a method for estimating the number of spheroids in a given volume.
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A quick method that should prove to be helpful in this process is to simply count

the number of spheroids in a small sample of medium. This could be done during the

three minute centrifuge that occurs just before seeding. During this time, the user could

count the number of spheroids, enter that number into a spreadsheet, and read out the

proper amount of medium to re-suspend the cells in. There are several reasons why

this method will not be exact, but it is far more scientific than the current method.

7.6 Scaffold Materials

A basic requirement of the bioreactor is that the scaffold promotes good cell

adhesion. To improve initial cell attachment, the scaffolds are coated with collagen.

Collagen deposition can vary dramatically between different materials. For example,

silicon surfaces only require 30 minutes for coating, whereas polycarbonate surfaces

must coat for 2 hours, and the collagen should be allowed to dry for another 2 hours.

Also, polycarbonate scaffolds cannot be autoclaved, and must soak in ethanol for 30

minutes before collagen coating. This can add 4 hours to an experiment. Silicon

scaffolds also have disadvantages in that they are brittle and difficult to manufacture.

During the development of this reactor a new method for manufacturing scaffolds

was developed. This method has made it possible to manufacture a scaffold using

nearly any polymer. New scaffold materials should be tested for collagen absorption

and cell adhesion. Some polymer scaffolds, like PEEK, may need to be plasma treated

before usage [30].

7.7 Priming the Reactor

If this bioreactor is to become a product, there are different levels of work that

can be asked of the user. The user could be responsible for the sterilization, assembly,

use, disassembly and storage of the bioreactor, or they could buy a fully assembled,
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sterile bioreactor, use it, and throw it away. The later of these two options will result in

the sale of more bioreactors and it is easier on the user.

Currently, the bioreactor is not a disposable device that can be shipped fully

assembled. There are several steps that have to be taken in order to reach this point.

First, the device must be mass produced. Fortunately, the design of the bioreactor, in

its simplest terms, is nothing but two plastic plates that sandwich a membrane. These

plates could certainly be produced in bulk and a membrane could be bonded between

them. Each reactor unit on the plate contains 10 items that must be inserted to

complete the reactor assembly. It is also possible that each of these components could

be produced in bulk.

The troubles lie in the assembly. The assembly of these 120 reactor

components occurs after the device has been primed with fluid. Priming ensures that

no bubbles are trapped in the pumping system, and that flow will pass thorough all

points in the scaffold. A method for priming a fully assembled bioreactor should be

developed.

Secondly, the scaffolds are coated with collagen to promote cell adhesion. This

step requires that scaffolds are not inserted into the bioreactor until just before use.

Ideally, a scaffold can be developed that either does not need to be coated, or can be

coated well in advance. If neither of these options is possible, the scaffold should at

least be easy to pop into an assembled system.

7.8 Oxygen Transport

The calculations regarding oxygen transport to the cells all assume that the

medium is 100% saturated with oxygen prior to being sent through the scaffold. This

may not be a valid assumption. If medium flows across the bottom of the surface
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channel when it circulates through the reactor, there may be a concentration gradient

from the surface of the reactor to where fluid is flowing through the loop.

Cells in the reactor should be tested so see if they are hypoxic. If they are, the

surface channel could be made shallower, requiring that all medium travel close to the

surface of the fluid in the reactor. Making this channel shallower does have a

drawback, in that there is less flexibility in the total volume of fluid that can be used in

the reactor.
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8. SUMMARY AND CONCLUSIONS

This thesis focuses on the development of a high throughput bioreactor for

culturing liver tissue. A system that mimics the format of a 24 well tissue culture plate

was developed. This system integrates 12 separate reactor units, including the

scaffold, pump and reservoir, on a single bioreactor plate. Scaffolds are readily

interchangeable and several different types of scaffolds have been tested. The pumps

are driven pneumatically and are all controlled externally by an electronic/pneumatic

controller. Fluidic capacitors are utilized to minimize pulses of flow sent to the cells.

The capacitors also help maintain consistent flows when pumping frequencies are tuned

for different scaffolds. The operation of the micro-pumps has been modeled and tested.

Cells have been successfully cultured in the bioreactor and the liver like functions of the

tissue have been examined.
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APPENDIX

Al Dimensioned Drawings for the Bioreactor
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A2 Calculations for Pressure Across a Membrane

E = 0.3749 N/mm

w = 1.5 mm

1=3 mm

r =1.575 mm

Calculating Strain
1 -1

E=f
ii

2r

w
sin -1,

if - 5 2-1.575 -sin-1
1.5 1.5 k

1.5 1 = 4.2%

Calculating Pressure

P = 2 1+ 1sin-'(w,
w 42- 4wl + wl 2r 2

2-0.3749 1
1.5 4 -1.52 - 4 -1.5 -3 +n -1.5 -

1.5
2-1.575

P = 0.012 N/mm 2 =12 kPa
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(4.9)

(4.12)
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A3 Bioreactor Program and make file

'bioreactor.c'

/* this program runs three solenoid valves in
sequence the output depends on an input from a
bank of buttons

0 = Suction
1 = Pressure

[Reservoir P Chamber Reactor]
[0 0 1] = Ox40
[0 1 1] = Ox60
[1 1 0] = Ox30
[1 0 0] = Ox10
[0 0 0] = OxOO
[1 1 1] = Ox70

Switch
Ox7F
OxBF
OxDF
OxEF
*/

Bank
OxFE
OxFD
OxFB
OxF7

#include <inttypes.h>
#include <avr/io.h>

void initialization(void);
void check input(void);
void forward(void);
void reverse(void);
void set-cycles(void);
void set cycles half(void);
void super slow(void);
void manual(void);
void delay(uint8_t);
uint8_t INPUT;

// takes in a delay and pauses
void delay(uint8 t n){

uint8_t a, b, c;
for (a = 1; a<n; a++){

if (PINA!= OxFF){
INPUT = PINA;
I

for (b = 1; b<=50; b++)
for (c = 1; c<50; c++);

}}

void initialization(void){

// set PORTB as output
DDRB = OxFF;
// set PORTA as input
DDRA = OxOO;
/ turns pull up resistors on
PORTA = OxFF;
}

void check input(void){
if (PINA!= OxFF){

INPUT = PINA;
}

if (INPUT == OxFE){
forwardo;
}

else if (INPUT == OxFD){
reverseo;
}

else if (INPUT == OxFB){
set cycleso;
}

else if (INPUT == OxF7){
set cycleshalfo;
}

else if (INPUT == Ox7F){
super slowo;
}

else if (INPUT == OxEF I INPUT == OxDF
INPUT == OxBF){

PORTB = PORTB & OxFO;
manual();
}

}

void forward(void){

PORTB = 0x61;
delay(75);
PORTB = Ox41;
delay(75);
PORTB = Ox1i1;
delay(75);
PORTB = Ox31;
delay(75);
}

void reverse(void){
PORTB = Ox44;
delay(75);

/ valve output [0 1 1]

/valve output [0 0 1]

// valve output [1 0 0]

// valve output [1 1 0]

/ valve output [0 0 1]
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PORTB = Ox64;
delay(75);
PORTB = Ox34;
delay(75);
PORTB = 0x14;
delay(75);
}

/ valve output [0 1 1]

// valve output [1 1 0]

// valve output [1 0 0]

void set cycles(void){
// Runs 1.75 mL forward (1750 cyc)

uint8_t a, b;
for (b = 1; b<8; b++){
for (a = 1; a<251; a++){

PORTB = 0x61;
delay(75);
PORTB = Ox41;
delay(75);
PORTB = Ox11;
delay(75);
PORTB = Ox31;
delay(75);

INPUT = OxFF;
PORTB = Ox70;

void set cycles half(void){
H/ Runs 1/2 mL in reverse (500 cyc)

uint8_t a, b;
for (b = 1; b<3; b++){
for (a = 1; a<251; a++){

PORTB = Ox44;
delay(75);
PORTB = Ox64;
delay(75);
PORTB = Ox34;
delay(75);
PORTB = 0x14;
delay(75);

INPUT = OxFF;
PORTB = Ox70;
}

void super slow(void){
PORTB = Ox44;
delay(250);
delay(250);
delay(250);

delay(250);
PORTB = Ox64;
delay(250);
delay(250);
delay(250);
delay(250);
PORTB = 0x34;
delay(250);
delay(250);
delay(250);
delay(250);
PORTB = Ox14;
delay(250);
delay(250);
delay(250);
delay(250);
}

void manual(void){
uint8_t a;
if (PINA == OxBF){

for (a = 1; a<100; a++)
while(PINA == OxBF){}
for (a = 1; a<100; a++)
PORTB = PORTB A Ox10;
}

else if (PINA == OxDF){
for (a = 1; a<100; a++)
while(PINA == OxDF){}
for (a = 1; a<100; a++)
PORTB = PORTB A Ox20;
}

else if (PINA == OxEF){
for (a = 1; a<100; a++)
while(PINA == 0xEF){}
for (a = 1; a<100; a++)
PORTB = PORTB A Ox40;

}}

int main ({
initializationo;
while(1){

checkinputO;
back_fortho;

return(1);

I
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Makefile

# Example Makefile for bioreactor controls
# Copied from http://www.enteract.com/-rneswold/avr/x421.html
# with "clean" added

CC=avr-gcc
OBJCOPY=avr-objcopy

CFLAGS=-g -mmcu=aftiny26 -DATtiny26

all: rom.hex

rom.hex : bioreactor.out
$(OBJCOPY) -j .text -O ihex clock.out rom.hex

bioreactor.out: bioreactor.o
$(CC) $(CFLAGS) -o clock.out -W,-Map,bioreactor. map bioreactor.o

bioreactor.o : bioreactor.c
$(CC) $(CFLAGS) -Os -c bioreactor.c

clean:
rm -f *.o *.out *.map *.hex

rdfuses:
uisp -dprog=stk500 -dpart=ATtiny26 --rd fuses

program:
avrdude -c stk500 -p ATtiny26 -e
avrdude -c stk500 -p ATtiny26 -U flash:w:rom.hex

# uisp -dprog=stk500 -dpart=ATtiny26 --erase --upload --verify if=rom.hex
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A4 Machining code for the bioreactor

A 0.02 mm thick shim was used to set the tool height above the surface of the part. This thickness is
accounted for in the programming code. The zeros for X and Y coordinates were set at the upper left
corner of the part. This corner is aligned flush with the left side of the vise.

Program Label
Reactor Top - A.6.2

Tool 1 1/2" end mill
Flip over to top, face, make sure

Tool 2 3/8" end mill
Tool 3 1/8" end mill
Tool 4 Tapered End Mill
Tool 5 1.6 mm end mill
Tool 6 1/4" Countersink

Reactor Bottom - A.6.3
Tool 1 1/32" Drill
Tool 2 # 43 Drill
Tool 3 # 53 Drill
Tool 4 1.6 mm End Mill
Tool 5 5.5 mm End Mill
Tool 6 1/8" Ball Mill
Tool 7 1/64" Ball Mill

Diameter Note
RE-ZERO & CHECK TRAM, Fly cut, Center: y=- 4 3.25

12.72 piece must be at least 128.3 x 86, 13 mm from vice
you have 8 mm clearance from vice

9.54
3.15 1900, 125%, 30 min

0
1.6 15 min

6.37
Flip top over bottom, fly cut down to 18 mm thick

0
0
0

1.6
0

1.5
0

1500 rpm
& 0.064 Reemer
1900 rpm
cut the capacitor holes to the right diameter
Set tool height from center pad (63.9, -42.75)

Pumping Top
Tool 1
Tool 2
Tool 3
Tool 4
Tool 5
Tool 6
Tool 7
Tool 8
Tool 9

- A.6.4
1/32" Drill
#53 Drill
#32 Drill
1/64" Drill
1/8" End Mill
1/8" End Mill
1/64" End Mill
1/8" Ball Mill
3/8" End Mill

Pumping Bottom - A.6.5
Tool 1 1/64" Drill
Tool 2 1/64" Ball Mill
Tool 3 1.2 mm Ball Mill
Tool 4 1/8" Mill

Pumping
Tool
Tool
Tool

Fly cut, need 1.5 mm clearance from vice

0 & 0.063" Reemer
0
0

3.15 Set tool 6 too (1900 RPM)
3.15 Cuts the sealing surface flat (2500 rpm 75%)

0.4
1.5

9.54

FLY CUT &
0
0
0

3.15

tool height on 72.9, -33.75

RE-ZERO BEFORE STARTING
slow to 50
slow to 50 / 75 w/ acrylic
slow cutcomp to75
speed up long slots, change repeat on circle

Side - Turn on Side, face cuts towards machine
5 1/8" Mill 3.15
6 #43 Drill 0
7 1/32" Drill 0

Ridges on Reactor - A.6.6
Tool 1 1.6 mm End Mill
Tool 2 1/32" End Mill

Scaffold - A.6.7 & A.6.8
Tool 1 # 80 drill

Filter Support - A.6.9
Tool 1 0.6 mm Mill

Flip Piece Over
Tool 2 0.6 mm Mill

1.6
0.8

0.6 4000 RPM

0.6 4000 RPM
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The Top of the Fluidic Plate

0000 EZTRAK 1 MODEIMM ISAT JAN 29 18:08:09 2005
0010 11 TOOLCHG T1
0020 RECTjEDGE OUT X1 Y-86 Z.08 Z12.1 Z12.1 X127.8 Y85.5 RO P.2 PO D12.72 F222 F222
0030 11 TOOLCHG T2
0040 REPEAT 1 XO. Y-38 ZO.
0050 REPEAT 1 XO. Y-20 ZO.
0060 REPEAT 5 X18 YO ZO.
0070 CIRCLE IN X18.9 Y-13.75 Z.08 Z12.05 Z4.1 R7.45 P1.6 PO D9.54 F300 F300
0080 ENDIREPEAT
0090 ENDIREPEAT
0100 ENDIREPEAT
0110 REPEAT 1 XO. Y-18 ZO.
0120 REPEAT 5 X18 YO ZO.
0130 CIRCLE IN X18.9 Y-33.75 Z.08 Z16.1 Z12 R5.5 P.1 PO D9.54 F200 F200
0140 CIRCLE IN X18.9 Y-33.75 Z.08 Z19 Z16 R5 P.1 PO D9.54 F200 F200
0150 END|REPEAT
0160 ENDREPEAT
0170 COMPION LFT D9.54 X63.9 Y-83.5 Z.08 Z-7.52 P.01 F200
0180 BLENDjLN ABS X2 Y-83.5 Z-7.52 R1.6 CW F200
0190 BLENDILN ABS X2 Y-8 Z-7.52 R1.6 CW F200
0200 BLENDILN ABS X8 Y-2 Z-7.52 R1.6 CW F200
0210 BLENDILN ABS X125.8 Y-2 Z-7.52 R1.6 CW F200
0220 BLENDILN ABS X125.8 Y-83.5 Z-7.52 R1.6 CW F200
0230 LINE ABS X60 Y-83.5 Z-7.52 F200
0240 COMPIOFF Z.08
0250 11 TOOLCHG T3
0260 REPEAT 1 XO Y-38 ZO.
0270 REPEAT 1 XO Y-20 ZO.
0280 REPEAT 5 X18 YO ZO.
0290 CIRCLE IN X24.2033 Y-8.4467 Z.08 Z3.6 Z15 R1.9 P.5 PO D3.15 F150 F150
0300 CIRCLE IN X24.2033 Y-8.4467 Z.08 Z12.1 Z15 R1.6 P.1 PO D3.15 F150 F150
0310 CIRCLE IN X13.5967 Y-19.0533 Z.08 Z3.6 Z15 R1.9 P.5 PO D3.15 F150 F150
0320 CIRCLE IN X13.5967 Y-19.0533 Z.08 Z12.1 Z15 R1.6 P.1 PO D3.15 F150 F150
0330 CIRCLE IN X18.9 Y-13.75 Z.08 Z3.6 Z12 R8 P.5 PO D3.15 F150 F150
0340 CIRCLE PKT X18.9 Y-13.75 Z.08 Z12.1 Z15 R7.5 PO PO P2.5 D3.15 F300 F300
0350 ENDIREPEAT
0360 ENDIREPEAT
0370 ENDIREPEAT
0380 11 TOOLCHG T4
0390 REPEAT 1 XO Y-38 ZO.
0400 REPEAT 1 XO Y-20 ZO.
0410 REPEAT 5 X18 YO ZO.
0420 CIRCLE IN X18.9 Y-13.75 Z.08 Z7.029 Z15 R6.6063 PO PO DO F300 F300
0430 ENDIREPEAT
0440 ENDIREPEAT
0450 ENDREPEAT
0460 1| TOOLCHG T5
0470 REPEAT 5 X18 YO. ZO.
0480 REPEAT 1 XO YO Z-2.5
0490 COMPION LFT D1.6 X14.5789 Y-20.4826 Z.08 Z-1.02 PO F300
0500 BLENDILN ABS X17.8 Y-22.55 Z-1.02 R3.5757 CW F300
0510 LINE ABS X17.8 Y-28 Z-1.02 F300
0520 LINE ABS X20 Y-28 Z-1.02 F300
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0530 BLENDILN ABS X20 Y-22.55 Z-1.02 R3.5757 CW F300
0540 LINE ABS X23.2211 Y-20.4826 Z-1.02 F300
0550 COMPIOFF Z-1.02
0560 COMPION LFT D1.6 X14.7149 Y-19.9738 Z.08 Z-4.52 PO F60
0570 BLENDILN ABS X18.1 Y-22.25 Z-4.52 R4 CW F60
0580 LINE ABS X18.1 Y-29 Z-4.52 F60
0590 LINE ABS X19.7 Y-29 Z-4.52 F60
0600 BLENDILN ABS X19.7 Y-22.25 Z-4.52 R4 CW F60
0610 LINE ABS X23.0851 Y-19.9738 Z-4.52 F60
0620 COMPIOFF Z2.58
0630 RAPID ABS X18.9 Y-42.75 Z2.58
0640 TRANSLATE MIRROR XY
0650 COMPION LFT D1.6 X14.5789 Y-20.4826 ZO Z-1.02 PO F300
0660 BLENDILN ABS X17.8 Y-22.55 Z-1.02 R3.5757 CW F300
0670 LINE ABS X17.8 Y-28 Z-1.02 F300
0680 LINE ABS X20 Y-28 Z-1.02 F300
0690 BLENDILN ABS X20 Y-22.55 Z-1.02 R3.5757 CW F300
0700 LINE ABS X23.2211 Y-20.4826 Z-1.02 F300
0710 COMPIOFF Z-1.02
0720 COMPION LFT D1.6 X14.7149 Y-19.9738 Z.08 Z-4.52 PO F60
0730 BLENDILN ABS X18.1 Y-22.25 Z-4.52 R4 CW F60
0740 LINE ABS X18.1 Y-29 Z-4.52 F60
0750 LINE ABS X19.7 Y-29 Z-4.52 F60
0760 BLENDILN ABS X19.7 Y-22.25 Z-4.52 R4 CW F60
0770 LINE ABS X23.0851 Y-19.9738 Z-4.52 F60
0780 COMPIOFF Z2.58
0790 TRANSLATE MIRROR OFF
0800 ENDIREPEAT
0810 ENDIREPEAT
0820 11 TOOLCHG T6
0830 REPEAT5 X18 YO. ZO.
0840 COMPION LFT D6.37 X14.7149 Y-19.9738 Z0.08 Z-1 0.66 PO F150
0850 BLENDILN ABS X18.9 Y-22.7879 Z-10.66 R4.9 CCW F150
0860 LINE ABS X23.0851 Y-19.9738 Z-10.66 F150
0870 COMPIOFF Z.08
0880 COMPION LFT D6.37 X23.0851 Y-65.5262 Z.08 Z-10.66 PO F150
0890 BLENDILN ABS X18.9 Y-62.7121 Z-1 0.66 R4.9 CCW F150
0900 LINE ABS X14.7149 Y-65.5262 Z-10.66 F150
0910 COMPIOFF Z.08
0920 ENDIREPEAT
0930 |1 ENDIPRGM

The Bottom of the Fluidic Plate

0000 EZTRAK 1 MODEIMM ISAT JAN 29 18:08:09 2005
0010 11 TOOLCHG T1
0020 REPEAT 1 XO Y-58 ZO.
0040 REPEAT5 X18 YO. ZO.
0050 DRIPT ABS X18.9 Y-13.75 Z.08 Z7.1 Z.5 Z.8 F100
0070 ENDIREPEAT
0080 ENDIREPEAT
0090 1| TOOLCHG T2
0100 REPEAT 1 XO Y-35.5 ZO.
0110 REPEAT 6 X18 YO. ZO.
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0120 DRIPT ABS X9.9 Y-25 Z.08 Z10.1 Z1.1 Z2.5 F150
0130 ENDIREPEAT
0140 ENDIREPEAT
0150 11 TOOLCHG T3
0160 DRIPT ABS X63.9 Y-42.75 Z.08 Z6.5 Z.9 Z1.6 F100
0170 11 TOOLCHG T4
0180 REPEAT 1 X108 YO. ZO.
0190 SLOTX9.2 Y-42.75 Z.08 Z6.5 Z2.2 P3 P1.6 PO D1.6 F100
0200 ENDIREPEAT
0210 11 TOOLCHG T5
0220 REPEAT 5 X18 YO. ZO
0230 COMPION LFT DO X18.9 Y-20 Z.08 Z-.07 PO F200
0240 LINE ABS X18.9 Y-13.75 Z-.12 F200
0240 LINE ABS X18.9 Y-28.75 Z-. 12 F200
0250 ARCICNTRPT ABS CCW X18.9 Y-28.75 Z-.12 XC 18.9 YC-33.75 F200
0260 LINE ABS X18.9 Y-20 Z-.12 F200
0270 COMPIOFF Z.08
0280 RAPID ABS X18.9 Y-42.75 Z.08
0290 TRANSLATE MIRROR XY
0300 COMPION LFT DO X18.9 Y-20 Z.08 Z-.07 PO F200
0310 LINE ABS X18.9 Y-13.75 Z-.12 F200
0320 LINE ABS X18.9 Y-28.75 Z-. 12 F200
0330 ARCICNTRPT ABS CCWX18.9 Y-28.75 Z-.12 XC18.9 YC-33.75 F200
0340 LINE ABS X18.9 Y-20 Z-.12 F200
0350 COMPIOFF Z.08
0350 TRANSLATE MIRROR OFF
0360 ENDIREPEAT
0370 CIRCLE IN X63.9 Y-42.75 Z.08 Z.2 Z1.6 R6 PO PO D5.5 F200 F200
0450 11 TOOLCHG T6
0460 REPEAT 1 XO Y-46.1 ZO
0470 REPEAT 5 X18 YO ZO.
0480 SLOT X18.9 Y-18.95 Z.23 Z.44 Z1 P3 P1.5 P270 D1.5 F100
0490 ENDIREPEAT
0500 ENDIREPEAT
0570 11 TOOLCHG T7
0580 REPEAT 5 X18 YO. ZO.
0590 REPEAT 1 XO. YO. Z-.27
0600 COMPION LFT DO X18.9 Y-1 3.75 Z.35 Z-.15 PO F100
0610 LINE ABS X18.9 Y-15 Z-.15 F100
0620 LINE ABS X18.9 Y-15.2 Z-.15 F100
0630 LINE ABS X18.9 Y-1 5.63 Z.25 F100
0640 COMPIOFF Z.35
0650 COMPION LFT DO X18.9 Y-16.27 Z.35 Z.25 PO F100
0660 LINE ABS X18.9 Y-16.7 Z-.15 F100
0670 LINE ABS X18.9 Y-22.7 Z-.15 F100
0680 LINE ABS X18.9 Y-23.13 Z.25 F100
0690 COMPIOFF Z.35
0700 COMPION LFT DO X18.9 Y-23.77 Z.35 Z.25 PO F100
0710 LINE ABS X18.9 Y-24.2 Z-.15 Fl00
0720 LINE ABS X18.9 Y-25 Z-. 15 F100
0730 LINE ABS X18.9 Y-29 Z-.15 F100
0740 COMPIOFF Z.5
0750 COMPION LFT DO X18.9 Y-56.5 Z.35 Z-.15 PO F100
0760 LINE ABS X18.9 Y-58 Z-.15 F100
0770 LINE ABS X18.9 Y-61.3 Z-.15 F100
0780 LINE ABS X18.9 Y-61.73 Z.25 F100
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0790 COMPIOFF Z.35
0800 COMPION LFT DO X18.9 Y-62.37 Z.35 Z.25 PO F100
0810 LINE ABS X18.9 Y-62.8 Z-.15 F100
0820 LINE ABS X18.9 Y-68.8 Z-.15 F100
0830 LINE ABS X18.9 Y-69.23 Z.25 F100
0840 COMPIOFF Z.35
0850 COMPION LFT DO X18.9 Y-69.87 Z.35 Z.25 PO F100
0860 LINE ABS X18.9 Y-70.3 Z-.15 F100
0870 LINE ABS X18.9 Y-71 Z-.15 F100
0880 LINE ABS X18.9 Y-71.75 Z-.15 F100
0890 COMPIOFF Z.5
0900 ENDIREPEAT
0910 ENDIREPEAT
0920 || ENDIPRGM

The Top of the Pneumatic Plate

0000 EZTRAK 1 MODEIMM ITHU JAN 27 10:34:34 2005
0010 11 TOOLCHG T1
0020 REPEAT 1 XO Y-34.2 ZO.
0030 REPEAT 5 X18 YO. ZO
0040 DRIPT ABS X18.9 Y-25.65 Z.08 Z1 1 Z.4 Z.4 F100
0050 ENDIREPEAT
0060 ENDIREPEAT
0070 11 TOOLCHG T2
0080 REPEAT 1 X54 YO ZO.
0090 DRIPT ABS X63.9 Y-42.75 Z.08 Z6.5 Z.8 Z.8 F100
0100 ENDIREPEAT
0110 11 TOOLCHG T3
0120 REPEAT 1 XO Y-18 ZO.
0130 REPEAT 4 X18 YO ZO.
0140 DRIPT ABS X27.9 Y-33.75 Z.08 Z1 1 Z1.1 Z1.25 F100
0150 ENDIREPEAT
0160 ENDIREPEAT
0170 REPEAT 5 X18 YO ZO.
0180 REPEAT 2 XO. Y-9 ZO.
0190 DRIPT ABS X18.9 Y-33.75 Z.08 Z11 Z1.1 Z1.25 F100
0200 ENDIREPEAT
0210 ENDIREPEAT
0220 REPEAT 1 XO Y-35.5 ZO.
0230 REPEAT 6 X18 YO ZO.
0240 DRIPT ABS X9.9 Y-25 Z.08 Z11 Z1.1 Z1.25 F100
0250 ENDIREPEAT
0260 ENDIREPEAT
0270 11 TOOLCHG T4
0280 REPEAT 5 X18 YO ZO.
0290 DRIPT ABS X18.9 Y-15.95 Z.08 Z6.1 Z.3 Z.4 F100
0300 DRIPT ABS X18.9 Y-19.7 Z.08 Z6.1 Z.3 Z.4 F100
0310 DRIPT ABS X18.9 Y-23.45 Z.08 Z6.1 Z.3 Z.4 F100
0320 DRIPT ABS X18.9 Y-62.05 Z.08 Z6.1 Z.3 Z.4 F100
0330 DRIPT ABS X18.9 Y-65.8 Z.08 Z6.1 Z.3 Z.4 F100
0340 DRIPT ABS X18.9 Y-69.55 Z.08 Z6.1 Z.3 Z.4 F100
0350 ENDIREPEAT
0360 11 TOOLCHG T5
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0370 REPEAT 1 X54 YO ZO.
0380 CIRCLE IN X63.9 Y-42.75 Z.08 Z1.15 Z1.5 R2.3 P.2 PO D3.15 F200 F200
0390 ENDIREPEAT
0400 REPEAT 1 XO Y-35.5 ZO.
0410 REPEAT 4 X18 YO ZO.
0420 CIRCLE IN X27.9 Y-25 Z.08 Z1.15 Z1.5 R3 P.2 PO D3.15 F200 F200
0430 ENDIREPEAT
0440 ENDIREPEAT
0450 SLOT X-.95 Y-42.75 Z.08 Z1.15 Z2 P132.85 P3.15 PO D3.15 F300
0460 REPEAT 1 XO Y-51.85 ZO.
0470 REPEAT 4 X18 YO ZO.
0480 SLOT X27.9 Y.1 Z.08 Z1.15 Z2 P37 P3.15 P270 D3.15 F300
0490 ENDIREPEAT
0500 ENDIREPEAT
0510 REPEAT 5 X18 YO ZO.
0520 COMPION LFT D3.15 X17.15 Y-20 Z.08 Z-.32 PO F150
0530 LINE ABS X17.15 Y-14.6 Z-.32 F150
0540 ARCjCNTRPT ABS CW X20.65 Y-14.6 Z-.32 XC18.9 YC-14.6 F150
0550 LINE ABS X20.65 Y-28.5358 Z-.32 F150
0560 ARCICNTRPT ABS CW X17.15 Y-28.5358 Z-.32 XC18.9 YC-33.75 F150
0570 LINE ABS Xl 7.15 Y-18 Z-.32 F150
0580 COMPIOFF Z.08
0590 RAPID ABS X18.9 Y-42.75 Z.08
0600 TRANSLATE MIRROR XY
0610 COMPION LFT D3.15 X17.15 Y-20 Z.08 Z-.32 PO F150
0620 LINE ABS X17.15 Y-14.6 Z-.32 F150
0630 ARCICNTRPT ABS CW X20.65 Y-14.6 Z-.32 XC18.9 YC-14.6 F150
0640 LINE ABS X20.65 Y-28.5358 Z-.32 F150
0650 ARCICNTRPT ABS CW X17.15 Y-28.5358 Z-.32 XC18.9 YC-33.75 F150
0660 LINE ABS X17.15 Y-18 Z-.32 F150
0670 COMPIOFF Z.08
0680 TRANSLATE MIRROR OFF
0690 ENDIREPEAT
0700 REPEAT 4 X18 YO ZO.
0710 RECTICNTR IN X27.9 Y-42.75 Z.08 Z.4 Z3 X6 Y18 RO P.1 PO D3.15 F200 F200
0720 ENDIREPEAT
0730 11 TOOLCHG T6
0740 REPEAT 5 X18 YO. ZO
0750 COMPION LFT D3.15 X15.95 Y-24.7 Z.08 Z-.07 PO F222
0760 LINE ABS X15.95 Y-27.402 Z-.07 F222
0770 ARCICNTRPT ABS CCW X21.85 Y-27.402 Z-.07 XC18.9 YC-33.75 F222
0780 LINE ABS X21.85 Y-14.6 Z-.07 F222
0790 ARCICNTRPT ABS CCWX15.95 Y-14.6 Z-.07 XC18.9 YC-14.6 F222
0800 LINE ABS X15.95 Y-25.3 Z-.07 F222
0810 COMPIOFF Z.08
0820 RAPID ABS X18.9 Y-42.75 Z.08
0830 TRANSLATE MIRROR XY
0840 COMPION LFT D3.15 X15.95 Y-24.7 Z.08 Z-.07 PO F222
0850 LINE ABS X15.95 Y-27.402 Z-.07 F222
0860 ARCICNTRPT ABS CCW X21.85 Y-27.402 Z-.07 XC18.9 YC-33.75 F222
0870 LINE ABS X21.85 Y-14.6 Z-.07 F222
0880 ARCICNTRPT ABS CCW X15.95 Y-14.6 Z-.07 XC18.9 YC-14.6 F222
0890 LINE ABS X15.95 Y-25.3 Z-.07 F222
0900 COMPIOFF Z.08
0910 TRANSLATE MIRROR OFF
0920 ENDIREPEAT
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0930 CIRCLE IN X54.9 Y-33.75 Z.08 Z.15 Z2 R4.9 PO P2 D3.15 F222 F222
0940 11 TOOLCHG T7
0950 REPEAT 1 XO Y-46.1 ZO.
0960 REPEAT 5 X18 YO ZO.
0970 SLOT X18.9 Y-18.4 Z.08 Z.5 Z1 P3 P.4 P270 D.4 F100
0980 ENDIREPEAT
0990 ENDIREPEAT
1000 11 TOOLCHG T8
1010 REPEAT 1 XO Y-46.1 ZO.
1020 REPEAT 5 X18 YO ZO.
1030 SLOT X18.9 Y-18.95 Z.08 Z.29 Z1 P3 P1.5 P270 D1.5 F100
1040 ENDIREPEAT
1050 ENDIREPEAT
1060 REPEAT 1 XO Y-46.1 ZO.
1070 REPEAT 5 X18 YO ZO.
1080 REPEAT 1 XO Y-7.5 ZO.
1090 DRIPT ABS X1 8.9 Y-1 5.95 Z.08 Z.29 Z1 Z1 F100
1100 ENDIREPEAT
1110 ENDIREPEAT
1120 ENDIREPEAT
1130 11 TOOLCHG T9
1140 REPEAT 1 XO Y-74.9 ZO.
1150 RECTICNTR IN X63.9 Y-5.3 Z.08 Z.35 Z2 X137.34 Y13 RO P.5 PO D9.54 F300 F300
1160 ENDIREPEAT
1170 REPEAT 1 X117.4 YO ZO.
1180 RECTICNTR IN X5.2 Y-42.75 Z.08 Z.35 Z2 X11.4 Y75.65 RO PO PO D9.54 F300 F300
1190 ENDIREPEAT
1200 REPEAT 1 XO Y-45.5 ZO.
1210 REPEAT 6 X18 YO ZO.
1220 RECTICNTR IN X9.9 Y-20 Z.08 Z.35 Z2 X11 Y23 RO P.5 PO D9.54 F300 F300
1230 ENDIREPEAT
1240 ENDIREPEAT
1250 REPEAT 6 X18 YO ZO.
1260 CIRCLE IN X9.9 Y-42.75 Z.08 Z.35 Z2 R7 P.1 PO D9.54 F300 F300
1270 ENDIREPEAT
1280 REPEAT 1 XO Y-18 ZO.
1290 REPEAT 5 X18 YO ZO.
1300 CIRCLE IN X18.9 Y-33.75 Z.08 Z2.1 Z3 R5 P.05 PO D9.54 F75 F75
1310 ENDIREPEAT
1320 ENDIREPEAT
1330 1| ENDIPRGM

The Bottom of the Pneumatic Plate

One Pneumatic Input

0000 EZTRAK 1 MODEIMM ITHU JAN 27 10:34:34 2005
0010 |1 TOOLCHG T1
0020 REPEAT 5 X18 YO ZO.
0030 DRIPT ABS X18.9 Y-1 5.95 Z.08 Z5.5 Z.2 Z.4 F100
0040 DRIPT ABS X18.9 Y-19.7 Z.08 Z5.5 Z.2 Z.4 F100
0050 DRIPT ABS X18.9 Y-23.45 Z.08 Z5.5 Z.2 Z.4 F100
0060 DRIPT ABS X18.9 Y-62.05 Z.08 Z5.5 Z.2 Z.4 F100
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0070 DRIPT ABS X18.9 Y-65.8 Z.08 Z5.5 Z.2 Z.4 F100
0080 DRIPT ABS X18.9 Y-69.55 Z.08 Z5.5 Z.2 Z.4 F100
0090 ENDIREPEAT
0100 DRIPT ABS X13.6 Y-36.75 Z.08 Z5.5 Z.2 Z.4 F150
0110 DRIPT ABS X14.8 Y-42.75 Z.08 Z5.5 Z.2 Z.4 F150
0120 DRIPT ABS X16 Y-48.75 Z.08 Z5.5 Z.2 Z.4 F150
0130 11 TOOLCHG T2
0140 COMPION LFT DO X108.9 Y-15.95 Z.08 Z-.42 PO F125
0150 BLENDILN ABS X13.6 Y-15.95 Z-.42 R4.9 CCW F125
0160 BLENDILN ABS X13.6 Y-69.55 Z-.42 R4.9 CCW F125
0170 LINE ABS X108.9 Y-69.55 Z-.42 F125
0180 COMPIOFF Z.08
0190 COMPION LFT DO X108.9 Y-19.7 Z.08 Z-.42 PO F125
0200 BLENDILN ABS X14.8 Y-19.7 Z-.42 R3.7 CCW F125
0210 BLENDILN ABS X14.8 Y-65.8 Z-.42 R3.7 CCW F125
0220 LINE ABS Xl 08.9 Y-65.8 Z-.42 F125
0230 COMPIOFF Z.08
0240 COMPION LFT DO X108.9 Y-21 Z.08 Z-.42 PO F125
0250 BLENDILN ABS X16 Y-21 Z-.42 R2.5 CCW F125
0260 BLENDILN ABS X16 Y-64.5 Z-.42 R2.5 CCW F125
0270 LINE ABS X108.9 Y-64.5 Z-.42 F125
0280 COMPIOFF Z.08
0290 REPEAT 1 XO Y-41.05 ZO.
0300 REPEAT 5 Xl 8 YO ZO.
0310 SLOT X18.9 Y-21 Z.08 Z.5 Z1 P2.45 PO P270 DO F200
0320 ENDIREPEAT
0330 ENDIREPEAT
0340 1| TOOLCHG T3
0350 COMPION LFT DO X18.9 Y-25.65 Z.08 Z-1.02 PO Fl50
0360 LINE ABS X27.9 Y-29.3 Z-1.02 F150
0370 LINE ABS X36.9 Y-25.65 Z-1.02 Fl50
0380 LINE ABS X45.9 Y-29.3 Z-1.02 F150
0390 LINE ABS X54.9 Y-25.65 Z-1.02 Fl50
0400 LINE ABS X63.9 Y-29.3 Z-1.02 Fl50
0410 LINE ABS X72.9 Y-25.65 Z-1.02 Fl50
0420 LINE ABS X81.9 Y-29.3 Z-1.02 F150
0430 LINE ABS X90.9 Y-25.65 Z-1.02 F150
0440 LINE ABS X99.9 Y-29.3 Z-1.02 F150
0450 LINE ABS X108.9 Y-25.65 Z-1.02 F150
0460 COMPIOFF Z.08
0470 RAPID ABS X63.9 Y-42.75 Z.08
0480 TRANSLATE MIRROR XY
0490 COMPION LFT DO X18.9 Y-25.65 Z.08 Z-1.02 PO Fl50
0500 LINE ABS X27.9 Y-29.3 Z-1.02 Fl 50
0510 LINE ABS X36.9 Y-25.65 Z-1.02 F150
0520 LINE ABS X45.9 Y-29.3 Z-1.02 Fl50
0530 LINE ABS X54.9 Y-25.65 Z-1.02 Fl50
0540 LINE ABS X63.9 Y-29.3 Z-1.02 Fl50
0550 LINE ABS X72.9 Y-25.65 Z-1.02 F150
0560 LINE ABS X81.9 Y-29.3 Z-1.02 Fl 50
0570 LINE ABS X90.9 Y-25.65 Z-1.02 Fl50
0580 LINE ABS X99.9 Y-29.3 Z-1.02 F150
0590 LINE ABS X108.9 Y-25.65 Z-1.02 F150
0600 COMPIOFF Z.08
0610 TRANSLATE MIRROR OFF
0620 11 TOOLCHG T4
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0640 REPEAT 1 XO Y-35.5 ZO.
0650 REPEAT 6 X18 YO ZO.
0650 CIRCLE IN X9.9 Y-25 Z.08 Z3.1 Z4 R2.5 P.4 PO D3.15 F125 F125
0660 ENDIREPEAT
0670 ENDIREPEAT
0680 REPEAT 1 XO Y-21.475 ZO.
0690 REPEAT 4 X18 YO ZO.
0700 SLOT X27.9 Y-30.275 Z.08 Z1.1 Z1.5 P6.625 P3.15 P270 D3.15 F150
0710 ENDIREPEAT
0720 ENDIREPEAT
0730 REPEAT 5 X18 YO ZO.
0740 SLOTX18.9 Y-33.75 Z.08 Z1.1 Z2 P21.15 P3.15 P270 D3.15 F150
0750 ENDIREPEAT
0760 11 TOOLCHG T5
0770 REPEAT 2 X6 Y0 ZO.
0780 CIRCLE IN X36.75 Y-5 Z.08 Z.85 Z2 R2.1 P.25 PO D3.15 F40 F10.
0790 ENDIREPEAT
0800 11 TOOLCHG T6
0810 REPEAT 2 X6 YO ZO.
0820 DRIPT ABS X36.75 Y-5 Z.08 Z9.1 Z.5 Z1 F100
0830 ENDIREPEAT
0840 11 TOOLCHG T7
0850 DRIPT ABS X36.75 Y-5 Z.08 Z14.1 Z8 Z.4 F100
0860 DRIPT ABS X42.75 Y-5 Z.08 Z15.3 Z8 Z.4 F100
0870 DRIPT ABS X48.75 Y-5 Z.08 Z16.5 Z8 Z.4 F100
0880 11 ENDIPRGM

Two Pneumatic Inputs

0000 EZTRAK 1 MODEIMM ITHU JAN 27 10:34:34 2005
0010 || TOOLCHG Ti
0020 REPEAT 5 X18 YO ZO.
0030 DRIPT ABS X18.9 Y-15.95 Z.08 Z5.5 Z.2 Z.4 F100
0040 DRIPT ABS X18.9 Y-19.7 Z.08 Z5.5 Z.2 Z.4 F100
0050 DRIPT ABS X18.9 Y-23.45 Z.08 Z5.5 Z.2 Z.4 F100
0060 DRIPT ABS X18.9 Y-62.05 Z.08 Z5.5 Z.2 Z.4 F100
0070 DRIPT ABS X18.9 Y-65.8 Z.08 Z5.5 Z.2 Z.4 F100
0080 DRIPT ABS X18.9 Y-69.55 Z.08 Z5.5 Z.2 Z.4 F100
0090 ENDIREPEAT
0100 REPEAT 1 XO. Y-60 ZO.
0110 REPEAT 2 XO. Y-6 ZO.
0120 DRIPT ABS X14.8 Y-6.75 Z.08 Z5.5 Z.2 Z.4 F150
0130 ENDIREPEAT
0140 ENDIREPEAT
0150 11 TOOLCHG T2
0160 COMPION LFT DO X108.9 Y-15.95 Z.08 Z-.42 PO F125
0170 LINE ABS X90 Y-15.95 Z-.42 F125
0180 LINE ABS X80 Y-15.95 Z-.42 F125
0190 LINE ABS X18.5 Y-15.95 Z-.42 F125
0200 LINE ABS X14.8 Y-6.75 Z-.42 F125
0210 COMPIOFF Z.08
0220 COMPION LFT DO X108.9 Y-19.7 Z.08 Z-.42 PO F125
0230 LINE ABS X90 Y-19.7 Z-.42 F125
0240 LINE ABS X80 Y-19.7 Z-.42 F125
0250 LINE ABS X18.5 Y-19.7 Z-.42 F125
0260 LINE ABS X14.8 Y-12.75 Z-.42 F125
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0270 COMPIOFF Z.08
0280 COMP|ON LFT DO X108.9 Y-21 Z.08 Z-.42 PO F125
0290 LINE ABS X90 Y-21 Z-.42 F125
0300 LINE ABS X80 Y-21 Z-.42 F125
0310 LINE ABS X18.5 Y-21 Z-.42 F125
0320 LINE ABS X14.8 Y-18.75 Z-.42 F125
0330 COMPIOFF Z.08
0340 RAPID ABS X63.9 Y-42.75 Z.08
0350 TRANSLATE MIRROR Y
0360 COMPION LFT DO X108.9 Y-15.95 Z.08 Z-.42 PO F125
0370 LINE ABS X90 Y-1 5.95 Z-.42 F125
0380 LINE ABS X80 Y-15.95 Z-.42 F125
0390 LINE ABS X18.5 Y-15.95 Z-.42 F125
0400 LINE ABS X14.8 Y-6.75 Z-.42 F125
0410 COMPIOFF Z.08
0420 COMPION LFT DO X108.9 Y-19.7 Z.08 Z-.42 PO F125
0430 LINE ABS X90 Y-19.7 Z-.42 F125
0440 LINE ABS X80 Y-19.7 Z-.42 F125
0450 LINE ABS X18.5 Y-19.7 Z-.42 F125
0460 LINE ABS X14.8 Y-12.75 Z-.42 F125
0470 COMPIOFF Z.08
0480 COMPION LFT DO X108.9 Y-21 Z.08 Z-.42 PO F125
0490 LINE ABS X90 Y-21 Z-.42 F125
0500 LINE ABS X80 Y-21 Z-.42 F125
0510 LINE ABS X18.5 Y-21 Z-.42 F125
0520 LINE ABS X14.8 Y-18.75 Z-.42 F125
0530 COMPIOFF Z.08
0540 TRANSLATE MIRROR OFF
0550 REPEAT 1 XO Y-41.05 ZO.
0560 REPEAT 5 X18 YO ZO.
0570 SLOT X18.9 Y-21 Z.08 Z.5 Z1 P2.45 PO P270 DO F200
0580 ENDIREPEAT
0590 ENDIREPEAT
0600 |1 TOOLCHG T3
0610 COMPION LFT DO X18.9 Y-25.65 Z.08 Z-1.02 PO F150
0620 LINE ABS X27.9 Y-29.3 Z-1.02 F150
0630 LINE ABS X36.9 Y-25.65 Z-1.02 F150
0640 LINE ABS X45.9 Y-29.3 Z-1.02 F150
0650 LINE ABS X54.9 Y-25.65 Z-1.02 F150
0660 LINE ABS X63.9 Y-29.3 Z-1.02 F150
0670 LINE ABS X72.9 Y-25.65 Z-1.02 F150
0680 LINE ABS X81.9 Y-29.3 Z-1.02 F150
0690 LINE ABS X90.9 Y-25.65 Z-1.02 F150
0700 LINE ABS X99.9 Y-29.3 Z-1.02 F150
0710 LINE ABS Xl 08.9 Y-25.65 Z-1.02 F150
0720 COMPIOFF Z.08
0730 RAPID ABS X63.9 Y-42.75 Z.08
0740 TRANSLATE MIRROR XY
0750 COMPION LFT DO X18.9 Y-25.65 Z.08 Z-1.02 PO F150
0760 LINE ABS X27.9 Y-29.3 Z-1.02 Fl 50
0770 LINE ABS X36.9 Y-25.65 Z-1.02 F150
0780 LINE ABS X45.9 Y-29.3 Z-1.02 F150
0790 LINE ABS X54.9 Y-25.65 Z-1.02 F150
0800 LINE ABS X63.9 Y-29.3 Z-1.02 F150
0810 LINE ABS X72.9 Y-25.65 Z-1.02 Fl 50
0820 LINE ABS X81.9 Y-29.3 Z-1.02 F150
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0830 LINE ABS X90.9 Y-25.65 Z-1.02 F150
0840 LINE ABS X99.9 Y-29.3 Z-1.02 F150
0850 LINE ABS X108.9 Y-25.65 Z-1.02 F150
0860 COMPIOFF Z.08
0870 TRANSLATE MIRROR OFF
0880 1| TOOLCHG T4
0900 REPEAT 1 XO Y-35.5 ZO.
0910 REPEAT 6 X18 YO ZO.
0910 CIRCLE IN X9.9 Y-25 Z.08 Z3.1 Z4 R2.5 P.4 PO D3.15 F125 F125
0920 ENDIREPEAT
0930 ENDIREPEAT
0940 REPEAT 1 XO Y-21.475 ZO.
0950 REPEAT 4 X18 YO ZO.
0960 SLOT X27.9 Y-30.275 Z.08 Z1.1 Z1.5 P6.625 P3.15 P270 D3.15 F1 50
0970 ENDIREPEAT
0980 ENDIREPEAT
0990 REPEAT 5 X18 YO ZO.
1000 SLOTX18.9 Y-33.75 Z.08 Z1.1 Z2 P21.15 P3.15 P270 D3.15 F150
1010 ENDIREPEAT
1020 |1 TOOLCHG T5
1030 REPEAT 1 X60 YO ZO.
1030 REPEAT 2 X6 YO ZO.
1040 CIRCLE IN X6.75 Y-5 Z.08 Z.85 Z2 R2.1 P.25 PO D3.15 F40 F10.
1050 ENDIREPEAT
1050 ENDIREPEAT
1060 1| TOOLCHG T6
1070 REPEAT 1 X60 YO ZO.
1070 REPEAT 2 X6 YO ZO.
1080 DRIPT ABS X6.75 Y-5 Z.08 Z9.1 Z.5 Z1 F100
1090 ENDIREPEAT
1100 ENDIREPEAT
1100 |1 TOOLCHG T7
1110 REPEAT 1 X60 YO ZO.
1120 REPEAT 2 X6 YO ZO.
1120 DRIPT ABS X6.75 Y-5 Z.08 Z15.3 Z8 Z.4 F100
1130 ENDIREPEAT
1140 ENDIREPEAT
1140 11 ENDIPRGM

A Scaffold with a Circular Arrangement of Channels

0000 EZTRAK 1 MODEIMM |WED FEB 09 16:48:24 2005
0010 11 TOOLCHG T1
0020 DRIPT ABS X12.5 Y-15 Z.08 Z1 Z.7 Z.3 F555
0030 DRIBC R.443 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P6 F555
0040 DRIBC R.886 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P12 F555
0050 DRIBC R1.329 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P18 F555
0060 DRIBC R1.772 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P24 F555
0070 DRIBC R2.215 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P30 F555
0080 DRIBC R2.658 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P36 F555
0090 DRIBC R3.101 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P42 F555
0100 DRIBC R3.544 XC 12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P48 F555
0110 DRIBC R3.987 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P54 F555
0120 DRIBC R4.43 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P60 F555
0130 DRIBC R4.873 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P66 F555
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0140 DRIBC R5.316 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P72 F555
0150 DRIBC R5.759 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P78 F555
0160 DRIBC R6.202 XC12.5 YC-15 Z.08 Z1 Z.7 Z.3 AO. P84 F555
0170 11 ENDIPRGM

A Scaffold with an offset Linear Arrangement of Channels

0000 EZTRAK 1 MODEIMM ITHU DEC 22 13:23:21 2005
0010 1| TOOLCHG T1
0020 DRIROW ABS X1 1.8355 Y-13.082 Z.08 Z1 Z.7 Z.3 X1.329 YO P4 F222
0030 DRIROW ABS X11.171 Y-13.4656 Z.08 Z1 Z.7 Z.3 X2.658 YO P7 F222
0040 DRIROWABS X10.9459 Y-13.8492 Z.08 Z1 Z.7 Z.3 X3.1046 YO P8 F222
0050 DRIROW ABS X10.728 Y-14.2328 Z.08 Z1 Z.7 Z.3 X3.544 YO P9 F222
0060 DRIROW ABS X10.5065 Y-14.6164 Z.08 Z1 Z.7 Z.3 X3.987 YO P10 F222
0070 DRIROW ABS X10.728 Y-15 Z.08 Z1 Z.7 Z.3 X3.544 YO P9 F222
0080 DRIROW ABS X10.5065 Y-15.3836 Z.08 Z1 Z.7 Z.3 X3.987 YO P10 F222
0090 DRIROW ABS X10.728 Y-15.7672 Z.08 Z1 Z.7 Z.3 X3.544 YO P9 F222
0100 DRjROWABS X10.9459 Y-16.1508 Z.08 Z1 Z.7 Z.3 X3.1046 YO P8 F222
0110 DRIROW ABS X11.171 Y-16.5344 Z.08 Z1 Z.7 Z.3 X2.658 YO P7 F222
0120 DRROW ABS X11.8355 Y-16.918 Z.08 Z1 Z.7 Z.3 X1.329 YO P4 F222
0130 11 ENDIPRGM

The Filter Support

0000 EZTRAK 1 MODEIMM ITHU JAN 27 10:34:34 2005
0010 11 TOOLCHG T1
0020 SLOT X6.275 YO Z.08 Z.7 Z2 P6 P.6 P180 D.6 F100
0030 SLOTX6.0612 Y1.6241 Z.08 Z.7 Z2 P3.5 P.6 P195 D.6 F100
0040 SLOT X5.4343 Y3.1375 Z.08 Z.7 Z2 P5 P.6 P210 D.6 F100
0050 SLOT X4.4371 Y4.4371 Z.08 Z.7 Z2 P3.5 P.6 P225 D.6 F100
0060 SLOT X3.1375 Y5.4343 Z.08 Z.7 Z2 P6 P.6 P240 D.6 F100
0070 SLOT X1.6241 Y6.0612 Z.08 Z.7 Z2 P3.5 P.6 P255 D.6 F100
0080 SLOT XO Y6.2750 Z.08 Z.7 Z2 P5 P.6 P270 D.6 F1 00
0090 SLOT X-1.6241 Y6.0612 Z.08 Z.7 Z2 P3.5 P.6 P285 D.6 F100
0100 SLOT X-3.1375 Y5.4343 Z.08 Z.7 Z2 P6 P.6 P300 D.6 F100
0110 SLOT X-4.4371 Y4.4371 Z.08 Z.7 Z2 P3.5 P.6 P315 D.6 F100
0120 SLOT X-5.4343 Y3.1375 Z.08 Z.7 Z2 P5 P.6 P330 D.6 F100
0130 SLOT X-6.0612 Y1.6241 Z.08 Z.7 Z2 P3.5 P.6 P345 D.6 F100

SLOT X-6.275 YO Z.08 Z.7 Z2 P6 P.6
SLOT X-6.0612 Y-1.6241 Z.08 Z.7 Z2
SLOT X-5.4343 Y-3.1375 Z.08 Z.7 Z2
SLOT X-4.4371 Y-4.4371 Z.08 Z.7 Z2
SLOT X-3.1375 Y-5.4343 Z.08 Z.7 Z2
SLOT X-1.6241 Y-6.0612 Z.08 Z.7 Z2
SLOT XO Y-6.275 Z.08 Z.7 Z2 P5 P.6
SLOT X1.6241 Y-6.0612 Z.08 Z.7 Z2
SLOT X3.1375 Y-5.4343 Z.08 Z.7 Z2
SLOT X4.4371 Y-4.4371 Z.08 Z.7 Z2
SLOT X5.4343 Y-3.1375 Z.08 Z.772 Z
SLOT X6.0612 Y-1.6241 Z.08 Z.77 Z2
11 TOOLCHG T2

PO D.6 F100
P3.5 P.6 P15 D.6 F100
P5 P.6 P30 D.6 F100
P3.5 P.6 P45 D.6 F100
P6 P.6 P60 D.6 F100
P3.5 P.6 P75 D.6 F100
P90 D.6 F100
P3.5 P.6 P105 D.6 F100
P6 P.6 P120 D.6 F100
P3.5 P.6 P135 D.6 F100
P5 P.6 P150 D.6 F100
P3.5 P.6 P165 D.6 F100
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0270 CIRCLE IN XO YO Z.08 Z.4 Z1 R6.55 P.05 PO D.6 F70 F70
0280 CIRCLE OUT XO YO Z.08 Z.4 Z1 R5.875 P.05 PO D.6 Fl 10 Fl 10
0290 CIRCLE IN XO YO Z.08 Z.4 Zi R5.725 P.2 PO D.6 F70 F70
0300 CIRCLE OUT XO YO Z.08 Z.4 Z1 R4.675 P.2 PO D.6 Fl 10 Fl 10
0310 CIRCLE IN XO YO Z.08 Z.4 Z1 R4.525 P.2 PO D.6 F70 F70
0320 CIRCLE OUT XC YO Z.08 Z.4 Z1 R3.475 P.2 PO D.6 Fl10 Fl 10
0330 CIRCLE IN XO YO Z.08 Z.4 Z1 R3.325 P.2 PO D.6 F70 F70
0340 CIRCLE OUT XO YO Z.08 Z.4 Z1 R2.275 P.2 PO D.6 Fl 10 Fl 10
0350 CIRCLE IN XO YO Z.08 Z.4 Z1 R2.125 P.2 PO D.6 F70 F70
0360 CIRCLE OUT XO YO Z.08 Z.4 Z1 R1.075 P.2 PO D.6 Fl 10 Fl 10
0370 CIRCLE IN XO YO Z.08 Z.4 Z R.4 P.1 PO D.6 F70 F70
0380 CIRCLE IN XO YO Z.08 Z.4 Z1 R.925 P.2 PO D.6 Fl 10 Fl 10
0390 1| ENDIPRGM
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A5 Tool Paths for Tapered Cuts

Since the bioreactor fluidic channels are made using a ball shaped end mill,

determining the path of the tool is not trivial. The desired path is shown in Figure Al

and depends on both the slope of the channel and the size of the tool. This path must

be defined with respect to the tip of the center of the tool.

The tops of the reactor wells are cut at a 50 taper. This feature was created

using a modified tapered end mill, Figure A2. The end mill must only cut the desired

edge without modifying the ridge above it. Again, the tool position is defined relative to

the tip.

Fluidic Plate

Ch

Tool Position

Tool Path

annel

Figure Al: The programmed path of the tool used to cut the fluidic channels

Figure A2: The path of the tool used taper the top of reactor and reservoir wells
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There is also a taper at the ledge created by the surface channel. This taper is

machined at 600 using a different tool. In this case, the tip of the tool has been

removed. This cut initially follows the same tangent to the reservoir well used by the

surface channel, then cuts ~ 0.5 mm into the ledge. Here, cutter compensation was

used so the position of the tool was defined from a different point, Figure A3.

Figure A3: The path of the tool used to taper the ledge created by the surface channel
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A6 Scaffold Hole Placement

Spacing between circles 0.1 mm
Hole Diameter 0.343 mm

Ring ring Holes in Holes in Bore Circle Angle Distance

num diameter ring scaffold Radius (mm) Between Between
(out to out) holes Holes

1 0.343 1 1 0 360 0
2 1.229 6 7 0.443 60 0.1
3 2.115 12 19 0.886 30 0.116
4 3.001 18 37 1.329 20 0.119
5 3.887 24 61 1.772 15 0.120
6 4.773 30 91 2.215 12 0.120
7 5.659 36 127 2.658 10 0.120
8 6.545 42 169 3.101 8.57 0.120
9 7.431 48 217 3.544 7.5 0.121
10 8.317 54 271 3.987 6.67 0.121
11 9.203 60 331 4.43 6 0.121
12 10.089 66 397 4.873 5.45 0.121
13 10.975 72 469 5.316 5 0.121
14 11.861 78 547 5.759 4.62 0.121
15 12.747 84 631 6.202 4.29 0.121

00000 00 000000c0 % 00
0000 )00

0000 ( 0000000000000000000

00 000000000000 00 0000
000000000000 00 00000000

00000000000 0 0 0 0 00000000000
000000 09Q0 0 00000000

Oooooo
00 0 0000AFigure A4:0 Hoelceen 0ora0rlld0cffl
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A7 Mask for Etching Silicon Scaffolds

Figure A5: Mask for etching silicon scaffolds
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A8 Sample Capacitance Calculation

1. A radius of curvature in the membrane is used to find a pressure and volume

w= 10mm

r = 23.4 mm

V = 16r3 - (8r2 + w2)V4r2-w]

V = 21.33 pL
P = 0.250 kPa

2. A second radius (r + dr) is used to find another pressure and volume

r = 23.6 mm,

now

V = 21.11 pL
P = 0.242 kPa

3. Capacitance is found by dividing AV / AP

21.11-21.33 =29,239 L/ 2
0.242 -0.250 /N/mm

=29.24 mL
N/mm2
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A9 Dynamic Capacitor Model for a Round Capacitor

function [t,V in,Qin,Q-out]=cap_flow(d,chan,Q,Vpump,n)
%this program models flow through the scaffold
%inputs: capacitor diameter - 13, number of channels - 861, flow rate - 1 uL/chan/min,
%inputs: pumping chamber volume - 0.93 uL
%inputs: effective area of filter (1 for channels, 2 for entire filter, 0.1 for filled channels)

%outputs: flow through scaffold, flow from pump, time vector
%outputs: volume through the scaffold, volume from the pump
%pump breaks down at frequencies above 35 Hz

E=.3749; %membrane E/thickness (N/mm)

%determining hydraulic resistance
if n==1

m='Assumes fluidic resistance from empty channels'
elseif n==2

m='Assumes fluidic resistance from the entire filter'
elseif n==.1

m='Assumes fluidic resistance from full channels'
else

m='Unknown Fluidic Resistance'
end
hpfilt=73.5;
areachan=pi*(.34/2)A2*1 0A-2;
area t=area chan*chan*n;
resist=1 0A3/(area-t*hp_filt);

%pumping parameters
del t=.01;
t cycle=V_pump*60/(Q*chan);
Qp=Vpump/del-t;
V valve=.16;
Q_v=Vvalve/del t;

%filter hydraulic permeability (mL/s)/(N/sq mm)/cmA2
%channel area (cmA2)
%effective filter area (cmA2) (ASSUMES EMPTY CHANNELS)
%fluidic resistance (N/sq mm)/(pL/s)

%time to pump one stroke (s)
%pump cycle time (s), governed by desired flow, typ=.0612
%flow into capacitor (when flow occurs) (pL/s)
%volume of the valves (pL)
%flow into and from valves

%finds starting point for quasi steady state
p_0=Q*chan/60*resist*10A6; %finds the initial pressure required to flow at average rate

%multiplying by 10A6 improves the accuracy of the calculation

r 0=d/10*(2*E/D 0)A(1/2.5); %estimates r from p
opt=optimset('Display','off);
r O=real(fsolve(@(r) findrp(r,pO,E,d), r_, opt));
\IO=pi/24*(1 6*r 0A3-(8*r 0A2+dA2)*(4*r 0A2-dA2)A(1 /2))-V_pump*.5;

%sets up the time vector for the mod
dt=delt/10;
totaltime=300*dt;
a=0;
for i=1:(total-time/dt)

t(i)=a;
a=a+dt;

end

% finds r from p & estimated r
%finds initial capacitor volume

%time increments in output(sec)
%total time (sec)

%creates flow pattern to the capacitor from the pump, Qin (pL/sec)
if (V_pump>4*V valve)

%neglects the volume of valves
for i=1:length(t)

if (t(i) <= tcycle)
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if (t(i) <= del-t)
QCin(i)=Qp;

else
Q_in(i)=0;

end
a=i-1;

else
Q_in(i)=Qin(i-a);

end
end

else
%includes the valve volume
for i=1:length(t)

if (t(i) <= tcycle)
if (t(i) <= del-t)

Qin(i)=Q_p;
elseif (t(i) <= t-cycle/4)

Q_in(i)=0;
elseif (t(i) <= tcycle/4+del-t)

QOin(i)=Qv;
elseif (t(i) <= 3*tcycle/4)

Q_in(i)=0;
elseif (t(i) <= 3*tcycle/4+del-t)

Q_in(i)=-1*Q-v;
else

Q~in(i)=0;
end
a=i-1;

else
Q_in(i)=Qin(i-a);

end
end

end

%finds the flow pattern from the capacitor through the cells, Q-out (pL/sec)

V(1)=V_0;
r(1)=r_0;
for i=1:length(t)

r(i+1)=fsolve(@(r) findrv(r,V(i),d), r(i), opt);

p(i)=4*E/d*(asin(d/(2*r(i)))-d/(2*r(i)));
Qout(i)=p(i)/resist;
V~i+1)=Q_in(i)*dt-Q -out(i)*dt+V(i);
h(i)=r(i+1)-((r(i+1))A2-(d/2)A2)A(1/2); % finds the deflection of the capacitor

end

Q in=Qin*60/chan; %converts to pLlchan/min
Qbout=Qout*60/chan; %converts to pL/chan/min
t=t*1000; %converts the time to ms
%t=t/60; %converts to time in minutes

Vin(1)=0;
V_out(1)=0;
for i=2:length(t)

V in(i)=Q_in(i)*dt/60+Vin(i-1);
V~out(i)=Q-out(i)*dt/60+V-out(i-1);

end

freqency=round((1/tcycle)*1 0)/10 %prints the pump frequency
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timeper delay=.202; %time (ms) per controller delay
controller_delay=round(t_cycle*1 0A3/(4*timeperjdelay)) %calculates the delay for the controller
maximumdeflection=max(h) %finds the maximum deflection of the capacitor
maximumflowrate=max(Q-out) %prints the maximum flow rate (pL/channel/min)

subplot(2,1,1), plot(t,Q-out,t,Q_in), xlabel('time (ms)'), ylabel('flow rate (uL/channel/min)'), axis tight
subplot(2,1,2), plot(t,Vout,t,V_in), xlabel('time (ms)'), ylabel('volume pumped (uL/channel)'), axis tight

function F = findrp(r,P,E,d)
%takes in a radius, a pressure, membrane thickness, valve diameter
%should return zero
%multiplying by 10A6 improves the accuracy of the calculation

F=4*1 OA6*E/d*(asin(d/(2*r))-d/(2*r))-P;

function F = find rv(r,V,d)
%takes in values for radius, volume, valve diameter
%should return zero

F=pi/24*(1 6*rA3-(8*rA2+dA2)*(4*rA2-dA2)A(1 /2))-V;
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Al 0 Dynamic Capacitor Model for an Oblong Capacitor

function [height,Q out,Qin,tV_outV_in]=obl cap flow(w,,chan,Q,Vpump,n)
%this program models flow through the scaffold for an oblong capacitor
%inputs: capacitor width, capacitor length (larger of 2), number of channels
%inputs: flow rate (uL/chan/min), pumping chamber volume (uL)
%inputs: effective area of filter (1 for channels, 2 for entire filter, 0.1 for filled channels)
%outputs: flow through scaffold, flow from pump, time vector
%outputs: volume through the scaffold, volume from the pump
%pump breaks down at frequencies above 35 Hz

E=.3749; %membrane E/thickness (N/mm)

%determining hydraulic resistance
if n==1

m='Assumes fluidic resistance from empty channels'
elseif n==2

m='Assumes fluidic resistance from the entire filter'
elseif n==.1

m='Assumes fluidic resistance from full channels'
else

m='Unknown Fluidic Resistance'
end
hpfilt=73.5;
areachan=pi*(.34/2)A2*1 0A-2;
areat=areachan*chan*n;
resist=1 0A3/(area-t*hpjfilt);

%pumping parameters
delt=.01;
tcycle=Vpump*60/(Q*chan);
Q_p=Vpump/del t;
V_valve=.16;
Q_v=Vvalve/delt;

%finds starting point for steady state

%filter hydraulic permeability (mL/s)/(N/sq mm)/cmA2
%channel area (cmA2)
%effective filter area (cmA2) (ASSUMES EMPTY CHANNELS)
%fluidic resistance (N/sq mm)/(pL/s)

%time to pump one stroke (s)
%pump cycle time (s), governed by desired flow, typ=.0612
%flow into capacitor (when flow occurs) (pL/s)
%volume of the valves (pL)
%flow into and from valves

p_0=Q*chan/60*resist*10A6; %finds the initial pressure required to flow at average rate
%multiplying by 10A6 improves the accuracy of the calculation

r_0=w/1 0*(w*E/w*(1 +(pi*wA2)/(4*A2-4*w*l+pi*w*l))/p_0)A(1 /2.5); %estimates r from p
opt=optimset('Display','iter');
r_0=real(fsolve(@(r) find_r_p(r,pO,E,w,l), r_, opt)); %finds r from p
%finds V_0
V_0=pi/3*(2*r0A3-(2*r_A2+(w/2)2)*(rA2-(w/2)2)(1 /2))+(l-w)*(r_0A2*asin(w/(2*r_0))-(w/2)*(r_0A2-
(w/2)A2)A(1 /2))-V-pump;

%sets up the time vector for the mod
dt=delt/1 0;
total_time=300*dt;
a=0;
for i=1:(totaltime/dt+1)

t(i)=a;
a=a+dt;

end

%time increments in output(sec)
%total time (sec)

%creates flow pattern to the capacitor from the pump, Qin (pL/sec)
if (Vpump>4*V valve)

%neglects the volume of valves
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for i=1:length(t)
if (t(i) <= t_cycle)

if (t(i) <= del t)
Q_in(i)=QJp;

else
Q_in(i)=O;

end
a=i-1;

else
Q_in(i)=Qin(i-a);

end
end

else
%includes the valve volume
for i=1:length(t)

if (t(i) <= tcycle)
if (t(i) <= del t)

Q_in(i)=Q-p;
elseif (t(i) <= tcycle/4)

Q_in(i)=O;
elseif (t(i) <= tcycle/4+del-t)

Q~in(i)=Q-v;
elseif (t(i) <= 3*tcycle/4)

Q_in(i)=O;
elseif (t(i) <= 3*tcycle/4+del-t)

Q_in(i)=-1*Q_v;
else

Q_in(i)=O;
end
a=i-1;

else
Q in(i)=Qin(i-a);

end
end

end

%finds the flow pattern from the capacitor through the cells, Qout (pL/sec)
opt=optimset('Display','off);
V_0=V_O-Vpump;
V(1 )=VO;
r(1)=fsolve(@(r) find_r-v(r,VO,w,l), r_, opt);
for i=1:length(t)

r(i+1)=fsolve(@(r) find_r-v(r,V(i),w,l), r(i), opt);
p(i)=2*E/w*(1 +(pi*wA2)/(4*lA2-4*w*l+pi*w*))*(asin(w/(2*r(i)))-w/(2*r(i)));
Q out(i)=p(i)/resist;
V~i+1)=Q_in(i)*dt-Q out(i)*dt+V(i);
height(i)=r(i+1)-((r(i+1 ))^ 2-(w/2)^ 2)^(1 /2);

end

Q_in=Qin*60/chan; %converts to pLlchan/min
Q_out=Qout*60/chan; %converts to pL/chan/min
%t=t*1000; %converts the time to ms
t=t/60; %converts to time in minutes

V_in(1)=0;
VNout(1)=O;
for i=2:length(t)

V~in(i)=Q_in(i)*dt/60+V-in(i-1);
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V_out(i)=Q out(i)*dt/60+Vout(i-1);
end

maximumflowrate=max(Q out) %prints the maximum flow rate (pLlchannel/min)
freqency=round(1/ tcycle) %prints the pump frequency
time per delay=.204; %time (ms) per controller delay
controller delay=round(tcycle*1 0A3/(4*timeper delay)) %calculates the delay for the controller
new_VO=mean(V)

subplot(2,1,1), plot(t,Q out,t,Qin), xlabel('time (min)'), ylabel('flow rate (uL/channel/min)'), axis tight

subplot(2,1,2), plot(t,V out,t,V in), xlabel(time (min)'), ylabel('volume pumped (uL/channel)'), axis tight

function F = find_rp(r,P,E,w,l)
%takes in a radius, a pressure, membrane thickness, valve width and length
%should return zero
%multiplying by 10A6 improves the accuracy of the calculation

F=2*1 0A6*E/w*(1 +(pi*wA2)/(4*A2-4*w*l+pi*w*))*(asin(w/(2*r))-w/(2*r))-P;

function F = find_r-v(r,V,w,l)
%takes in values for radius, volume, valve width and length
%should return zero

F=pi/3*(2*r^3-(2*r^2+(w/2)^ 2)*(r2-(w/2)^2)^(1/2))+(I-w)*(r^2*asin(w/(2*r))-(w/2)*(r^2-(w/2)^2)^(1/2))-V;
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Al 1 Assembling the Reactor

1. Place membrane on pneumatic plate such that all of the screw holes line up with
holes in the membrane

2. Place the fluidic plate onto the pneumatic plate using the alignment pins as guides

3. Flip over the reactor and insert all 14 screws

4. Tighten screws in the order shown in Figure A6

5. Connect pneumatic lines to controller without crossing any lines, Figure A7

6. Place fluid in reservoirs and start pumps in forward direction

7. Set pneumatic pressures to ±35 kPa on the pneumatic manifold

8. Check to make sure each of the pumps are flowing

9. Fill reactor units with fluid taking care that fluid primes across the surface channel

10. Insert all scaffold assembly components individually, taking care that no bubbles
are trapped underneath scaffold

Figure A6: Order for tightening screws

pneumatic lines
are not crossed

controller reactor

Figure A7: Connecting pneumatic lines
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