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Abstract 

Star trackers provide numerous advantages over other attitude sensors because of their 

ability to provide full, three-axis orientation information with high accuracy and flexibility to 

operate independently from other navigation tools. However, current star trackers are optimized 

to maximize accuracy, at the exclusion of all else. Although this produces extremely capable 

systems, the excessive mass, power consumption, and cost that result are often contradictory to 

the requirements of smaller space vehicles. Thus, it is of interest to design smaller, lower cost, 

albeit reduced capability star trackers that can provide adequate attitude and rate determination to 

small, highly maneuverable, low-cost spacecraft. This thesis discusses the analysis used to select 

hardware and predict system performance, as well as the algorithms that have been employed to 

determine attitude information and rotation rates of the spacecraft. Finally, the performance of 

these algorithms using computer simulated images, nighttime photographs, and images captured 

directly by star tracker prototypes is presented. 

Thesis Supervisor: Dr. Raymond J. Sedwick 
Title: Principle Research Scientist 
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Chapter 1 

BACKGROUND AND MOTIVATION 

1.1 Attitude Sensors for Satellites and Spacecraft 

All satellites and spacecraft require onboard attitude sensors to ensure maintenance of the 

projected trajectory. Errors in attitude sensing andfor tracking can result in significant damage, 

or in the worst case, complete loss of the spacecraft. Ideal attitude sensors can function 

independently from other onboard systems and can report current position and rate information 

instantaneously. An attitude sensor is generally designed to work in conjunction with an attitude 

controller. Once the attitude sensor detects an undesired deviation in course heading or speed, it 

signals the amount of deviation and the type of correction needed to the controller; the controller 

is then responsible for firing thrusters or other actuators to perform the corrective maneuver to 

return the spacecraft to its appropriate route. 

A wide variety of attitude sensors exist, but their particular characteristics depend largely 

on the intended application. Nonetheless, the general design objectives of all attitude sensors are 

the same, as displayed in Table 1.1. 

Table 1.1 Attitude Sensor Goals 

Unfortunately, most attitude sensors have to prioritize between their desired success rates, 

computational speed and storage allotments, and hardware parameters. As a result, attitude 

Maximize 
accuracy 

reliability 

wide-angle capture ability 
number of axes that can 

provide information 
insensitivity to celestial bodies 
other than the one(s) it seeks 

lifetime 

Minimize 
mass 

size 

power consumption 

time delay in information relay 

operating limits 

cost 
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sensors that are most appropriate for one particular mission type, may be very different from 

attitude sensors applicable for a different mission type. However, because of the wide spread of 

satellite and spacecraft mission profiles in comparison to the number of attitude sensor types, 

individual missions are forced to rank which attitude sensor properties are most desirable and 

select one from those currently available. 

1.2 Types of Attitude Sensors 

There are numerous types of attitude sensors, but among the most popular are Earth 

sensors, Sun sensors, magnetometers, Global Positioning System receivers, and star trackers. 

Detailed below are brief introductions to these types of attitude sensors, including their 

respective purposes, hardware properties, and limitations. 

1.2.1 Earth Sensor 

Earth sensors, also known as horizon scanners, determine spacecraft attitude relative to 

the Earth's horizon. They are generally used for space navigation, communication, and weather 

reports. Earth sensors have flown on the United States Mercury and Gemini manned spacecrafts 

and are currently implemented onboard various aircraft. 

Earth sensors are appropriate for spacecraft and satellites within a reasonable proximity 

to the Earth. However, the crafts especially near the Earth can have 40% of their field of view 

(FOV) filled by the Earth itself, which makes it difficult to obtain accurate attitude information 

based on the Earth as a whole. Instead, these sensors locate the Earth's horizon and use it as a 

means of attitude determinati~n.''~ 

It has been shown that the position of Earth's horizon is the least ambiguous in the 

spectral region near 15pm in the infrared. The spectral region of choice for most Earth sensors is 

the C02 band because it has the most uniform intensity across the ~arth. '~ '  One advantage of 

working in this realm is that the sensors can work just as effectively during the night as during 

the day and that they are naturally less susceptible to reflected light off of the craft than those 

sensors that work in the visible spectrum. 
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Earth sensors have four basic components: a scanning mechanism, an optical system, a 

radiance detector, and signal processing electronics."] An Earth sensor designed by Goodrich 

Corporation is displayed in Figure 1.1 .I3] 

Eatth Sensor 
Tel.rcope 

Figure 1.1 Goodrich Corporation Multi-Mission Earth Sensor Model 13-410[~' 

Earth sensors do have several significant limitations. They have been known to perform 

poorly when high-altitude cold clouds are present or during solar interference, especially when 

close to the horizon.[41 Therefore, sufficient Sun rejection capability is a primary requirement for 

most Earth sensors. Additionally, uncertainties in temperature and altitude of the sensor are two 

other common sources of error. 

1.2.2 Sun Sensor 

Sun sensors are similar to Earth sensors, except they provide attitude information relative 

to the Sun, as opposed to the Earth. Apart from attitude determination, they are also used to 

protect delicate onboard equipment and position solar power arrays.['] Solar sensors hold the 

advantage over Earth sensors in that the angular radius of the Sun is nearly Earth-orbit 

independent and small enough that for most missions a point-source approximation can be 

applied.[51 
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1 There are three primary categories of Sun sensors: analog sensors, Sun presence sensors, 

and digital sensors. Due to the fact that Sun sensors are used in a wide range of applications, 

their fields of view (FOVs) range from several arc-minutes to a full 360". An important 

advantage of Sun sensors is that they generally require no onboard power systems because their 

satellites or spacecraft use the Sun as their power source. Figure 1.2 shows an example of four 

medium Sun sensors surrounding a coarse Sun sensor designed by AeroAstro, In~orporated.~~] 

Figure 1.2 AeroAstro, Incorporation Medium and Coarse Sun sensors" 

The primary disadvantage of solar sensors is that satellites and spacecraft implementing 

them must continuously be concerned with the orientation and time evolution of the Sun vector 

in the body coordinate frame. In other words, the Sun must always remain in the FOV for the 

attitude sensor to be useful. This can pose strong limitations on mission flexibility. Another 

disadvantage is due to the natural occurrence of solar aging, which is caused by the persistent 

exposure to solar ultraviolet radiation. This can only be reduced through radiation shields and 

light baffles, which increase the mass requirements of the sensor. 

1.2.3 Magnetometers 

Magnetometers are vector sensors that measure the orientation of satellites and spacecraft 

relative to a particular magnetic field, usually that of the Earth. These sensors run alternating 

currents through three mutually perpendicular coil-wound rods to magnetize the rods. The 

current is applied in one direction, and then in the opposite direction, and the orientation of the 

rods relative to the Earth's magnetic field is indicated by an imbalance in the alternating current 

output from the coils with respect to zero voltage.'" 
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Magnetometers have two components: a magnetic sensor and an electronics unit that 

transforms the sensor measurements into a useable format.[71 Figure 1.3'~' depicts a 

magnetometer in use aboard the Voyager spacecraft, which studied the outer planets of Jupiter, 

Saturn, Uranus, and Neptune in the 1970s and 1980s. 

Figure 1 3  Voyager Spacecraft with Magnetometer Boom ~xtended'~' 

There are several significant limitations to magnetometers. First, due to the nature of 

how the rods are used to determine orientation, magnetometers can only determine attitude 

infomation about two axes; an additional sensor is necessary to obtain information about the 

third axis. Second, the use of the Earth's magnetic field becomes problematic because it is not 

completely known, and the models used to predict its magnitude and direction at the satellite or 

spacecraft's location are subject to substantial errors.'71 Additionally, because the Earth's 

magnetic field strength decreases with distance from the Earth as 112, magnetometers are 

generally limited to operate below an altitude of 1000krn.; above this altitude, residual craft 

magnetic biases tend to dominate the total magnetic field measurement."' 

1.2.4 Global Positioning System Receivers 

The Global Positioning System (GPS) is a constellation of 27 Earth-orbiting satellites, 24 

active and 3 spares, that was first designed and implemented by the United States Air Force in 

the 1970s as a means for navigation. The satellites are arranged in 6 orbital planes inclined at 
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55" with right ascension of the ascending nodes separated by 60°, as shown in Figure 1.4[99101 

These orbits are aligned so that at least 4 satellites are always within the line of sight from nearly 

any location on the Earth. 

Figure 1.4 GPS Satellite ~ o n f i ~ u r a t i o n ~ ~ ~ '  

GPS receivers are attitude sensors that calculate their current position, which includes 

latitude, longitude, and elevation, as well as the precise time aboard the satellites. The objective 

of a GPS receiver is to locate 4 of the GPS satellites, determine the distances to each, and then 

deduce its own location; this is accomplished using the mathematical principle known as 

trilateration, which is the process of determining relative positions of objects using the geometry 

of triangles.'' l1 GPS receivers contain the following components/functions: antenna, 

preamplifier, reference oscillator, frequency synthesizer, downconverter, intermediate frequency 

(IF) section, signal processing, and navigation processing, as displayed in Figure 1.5.'~~ These 

elements work together to acquire signals from the satellites, filter noise and interference, and 

finally output the receiver's position. 
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PROCESSING 

VELOCITY. 
nME. ETC 

REFERENCE FREQUENCY 
OSCILUTOR 

Figure 1.5 GPS Receiver Block ~ia~rarn"' 

Although GPS receivers have the potential for producing highly accurate positioning 

estimates, there are several disadvantages to using them. One of the largest contributors to 

receiver inaccuracies results from changing atmospheric conditions. Varying conditions 

unpredictably alter the speed of the GPS signals as they pass through the Earth's ionosphere, 

which is the atmospheric layer ionized by solar radiation.[12] The only means of alleviating this 

is to wait until satellites are more directly overhead, where the signal travels through less 

distance of the ionosphere. Signals can also be degraded because of multi-path reflections of the 

radio signals off of the ground or surrounding structures such as buildings or mountains.[121 With 

regards to spacecraft attitude sensing, current GPS receivers are limited in that they are currently 

restricted for use below altitudes of approximately 10,000krn. 

1.2.5 Star Trackers 

Star trackers are composed of three elements: an optics system that incorporates a 

pinhole, single, or double lens that enables the capture of stellar photons, a detector system 

generally composed of a charge-coupled device (CCD), charge-injection device (CID), or 

complementary metal oxide semiconductor (CMOS) onto which the star light is defocused, and 

an electronics processing unit that both digitizes and analyzes the stellar data. Star trackers 

measure stellar coordinates and compare them to known coordinates from either an onboard star 

catalog or from previous images. This comparison results in attitude information within the star 

tracker body frame, which can then be translated into the spacecraft body frame or to an inertial 

reference frame. In general, star trackers are the most accurate attitude sensors because they 

have the potential of achieving accuracies within several arc-seconds. Also, since they do not 
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rely on the positions of the Earth, Sun, magnetic fields, or external satellites, they are highly 

flexible attitude sensors. 

The earliest star trackers required initial, coarse attitude estimates from other onboard 

attitude sensors. In the 1940s and early 1950s, star trackers were used in aircraft and missile 

guidance to provide celestial reference for position and bearing determination that was available 

during the day and night.[13' In the 1950s and 1960s, star trackers were used in conjunction with 

gyro-stabilizing platforms to more accurately align rockets prior to launch. Star trackers 

continue to be used in the stabilization of Earth-orbiting, Lunar, and planetary satellites and 

spacecraft. Fortunately, with increasing duration and more complicated mission requirements, 

solid state imaging devices, such as the CCD, CID, and CMOS imagers, have been incorporated, 

which have drastically improved reliability and attitude information accuracy. 

There are three types of star trackers: star scanners, which use the craft's rotation to 

dictate the searching and scanning function, gimbaled star trackers, which search for and acquire 

stars via mechanical movement, and fixed head star trackers, which electronically search for and 

track stars over limited ~ 0 ~ s . ~ ' ~  A star scanner was used onboard the Galileo spacecraft, in 

addition to Sun sensors and gyroscopes, to provide the most accurate and final attitude.[15] This 

is highlighted in Figure 1.6 by the red arrow. 
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Figure 1.6 Star Scanner Example - GPlileo  acecr craft'^^^ 

The United States Air Force SR-71 Blackbird, RC-135 Rivet Joint surveillance aircraft, 

and the B-2 Spirit, displayed in Figure 1.7'~~. '*I, all implement gimbaled star trackers.[19' In the 

B-2, the star tracker observations are made through a 7in window located in the left wing. 
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Figure 1.7 Gimbaled Star Tracker Example; Top Left - SR-71, Top Right - RC-135, Bottom - B-2"" ''' 

The Astro-1 observatory aboard STS-35, depicted in Figure 1.8, relied on a fixed head star 

tracker (FHST).'~~] The FHST was supposed to acquire, track, and identify stars of known visual 

magnitude, but the star tracker erroneously calculated the visual magnitudes to be lower than 

what they were in reality, severely hampering the outcome of the 

Figure 1.8 Astro-1 Observatory aboard ~ ~ s - 3 5 ' ~ ~  
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As evident in these examples, star trackers have been implemented onboard some of the 

most sophisticated aircraft, spacecraft, and satellites that have accomplished impressive feats. 

Star trackers were selected as the primary attitude sensors in these missions because of their 

potential for high sensing and tracking accuracy. The unfortunate tradeoff for high precision is 

significant increases in mass, computational expense, and power consumption. Regardless, all of 

these missions were multi-million dollar ventures where the most advanced attitude sensors were 

not only appropriate, but were crucial, and so these tradeoffs were relatively inconsequential. 

However, there are numerous current missions, many of which have a high potential for 

significant scientific advancement, that cannot afford the large increases in mass, computational 

expense or power consumption. Whether these missions emanate from small start-up companies 

or large government proposals, their objectives remain high. The pervasive requirement to drive 

down overall weight and volume of satellites and spacecraft in order to minimize propulsive 

expenses for launch will require attitude sensors that are small enough to accompany their 

reduced hardware sizes, while simultaneously maintaining their effectiveness in attitude 

determination. The second through fifth rows of Table 1.2 describe the five attitude sensors 

discussed above. It is clear from this table that current star trackers can perform under the most 

variable operating conditions and can provide the most accurate attitude information, but these 

advantages come at the expense of requiring the greatest size, mass, power consumption, and 

cost. 

Table 1.2 Comparison of Current Attitude Sensors 

Sensor 

Earth Sensor 

Sun Sensor 

Magnetometer 

Available GPS 

Num. 
Axes 

2 

Operating Angular 
Range 
Narrow: 

Nadir A -1 0" 
Narmw: Sun i -30" 

None in eclipse 
Full sphere, but need 
magnetic clean sat. 

Obits 
Circ., small 
alt. range 

Any 

LEO only 

SlzelMass/ 
PowerlCost 

Medium 

Low 

Low 

Accuracy1 
Angular Rate 

Medium/ 
High 
Low1 
High 
Low/ 
High 
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The majority of missions are not at the same level as those of Galileo or Astro-1, and so a 

new method of attitude sensing that can provide low cost, high performance micro-satellites with 

appropriate means of attitude determination is currently desirable. This goal is best described by 

Junkins (2003): 

"In order to accelerate the evolution of faster, better, cheaper spacecraft, it is 

evident that greatly enhanced general-purpose attitude determination methods are 

needed. There is a clear need for lightweight, accurate, reliable, and inexpensive 

systems for spacecraft attitude estimation. Moreover, the use of smaller satellites 

have more onboard processing as well as reduced ground computer support has 

encouraged the development of lightweight, autonomous star trackers. Such star 

trackers should be able to identify and track star patterns in arbitrary directions 

without prior information, additional sensor support, or ground processing. ,,[13] 

To meet these requirements, new opportunity "micro" star trackers are currently being designed 

with properties specified in the final row of Table 1.2. These star trackers hope to provide 

medium to high attitude sensing and tracking accuracies in all three axes, while simultaneously 

minimizing their own size, mass, power consumption, and cost. Several existing micro star 

trackers include the Jet Propulsion Laboratory's ASTROS star tracker, Ball Aerospace's CT-600 

series star trackers, Lockheed Martin's Coming OCA improvement to the Lawrence Livermore 

National Laboratory Clementine star tracker, and Junkin's DIGISTAR star tracker. Two specific 

star trackers, which are the focus of this paper, are described briefly below. 

1.3 The Next Generation of Star Trackers 

Two next-generation star trackers, the Lightweight Inexpensive Star Tracker (LIST) and 

the Fast Angular Rate Miniature Star Tracker (FAR-MST), are currently under joint 

development by AeroAstro, Inc. and the Massachusetts Institute of Technology Space Systems 

Laboratory. The purpose of LIST and FAR-MST is to provide star tracker position and rate 

determination to small, highly maneuverable, low-cost spacecraft. Thus, LIST and FAR-MST 

propose a better balance between attitude determination accuracy and cost metrics, providing 

more affordable attitude sensors to smaller vehicles. 



Chapter 1 - Background and Motivation for Work 37 

LIST and FAR-MST star trackers differ with respect to their attitude performance 

abilities, as described in Figure 1.9.'~~' LIST is a simpler, minimum requirement star tracker 

capable of determining relative rate information. FAR-MST can achieve rate information during 

faster tumbles and also will provide lost-in-space (LIS) capability, by determining spacecraft 

orientation without prior attitude information 

[stars patterns are (stars streak are 
compared against examined to 

eterrnine rate 

- - - . I - -  I I I  

Tkacking Hods 

(relative motion sf 

Figure 1.9 Comparison of LIST and FAR-MST Attitude ~etermination'~~' 

To meet physical requirements, appropriate constraints on optics, memory, and 

computational speed have been defined and included in the hardware selection and software 

design. The targeted hardware characteristics of FAR-MST include a mass below lkg, 

dimensions smaller than 15cm x 8cm x 8cm, power consumption not exceeding 3W, and cost 

less than $look, as shown in Table 1.3. [239 241 Since LIST has more lenient rate sensing 

requirements, the targeted characteristics for LIST are somewhat smaller than those for FAR- 

MST. 
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Table 1.3 LIST and FAR-MST Operational G o a p u '  

Despite their restrictive specifications, LIST and FAR-MST star trackers will still be capable of 

performing attitude determination at 1Hz update rate with an accuracy of 100arcsec. LIST and 

FAR-MST will manage tumble rates up to 1'1s and 10°/s, respectively. 

dimensions (cm3) 

mass (kg) 
power consumtion (W) 

cost ($k) 
limiting MV 
stars tracked per fiame 
pitch/yaw accuracy (arcsec) 
roll accuracy (arcsec) 
max acquire rate (Ols) 
max sensing rate ("Is) 
max tracking rate (Vs) 
update rate (Hz) 
FOV (O) 

onboard star catalog (# stars) 

supporting satellite weight (kg) 
mode of operation 

The primary software algorithms include functions to extract and centroid stars from 

image noise and to match star patterns between subsequent images or to a small on-board 

catalog. The current algorithms incorporate various ideas from open literature, but appropriate 

modifications and improvements have been made where applicable. Thresholding at low signal- 

to-noise is accomplished using a statistical pre-filter to address high noise content. Centroiding 

examines the stellar shape to optimally set shutter time at different rotation rates. Pattern 

matching between frames implements a 'smart' star selection technique to avoid wasted time on 

stars that might not appear in both images. Several algorithms, including the pair match, triangle 

match, and rate match, are used for frame-to-frame matching. Additionally, an n-vertex pattern 

match can be performed against a star catalog that has been reduced either based on the 

probability that the stars would be used or by existing attitude information. This variety in 

pattern matching algorithms enables the codes to be implemented in a dynamic manner based on 

LIST 

5.1 x 7.6 x 7.6 
0.3 
< 1 

4 
< 4 
70 

1080 

1 
30 

none 
tens to hundreds 
relative tracking 

FAR-MST 
1 5 x 8 ~ 8  

0.9 
3 

100 
4.5 

I 

> 2 
100 

4 
15 . 
10 

25 to 45 
< 500 

LIS 
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the number of stars present in the image and whether or not current rate information is available. 

This provides several modes of operation and graceful degradation of performance at higher 

angular rates. Finally, a recursive estimation technique is used to generate attitude quaternion 

solutions from the pattern matching results. 





STAT TRACKER HARDWARE 

The principle goal of next-generation star trackers, such as LIST and FAR-MST, is to 

provide micro-satellites and spacecraft with accurate attitude information without the lofty mass, 

size, power consumption, and cost requirements that constrain most current star trackers. These 

goals are accomplished by selecting particular hardware components that are capable of meeting 

star tracker needs. Table 2.1 compares the FAR-MST star tracker with current star trackers 

designed by Goodrich, Ball Aerospace, SODERN, and Galileo. [25,26,27,28,29] 

Table 2.1 Comparison of Existing Star Trackers and FAR-MST Star Tracker W"n3a291 

Star trackers are composed of three main hardware elements: optics, imager, and 

processor. The optics subsystem is used to collect and focus light onto the image plane. The 

imager digitizes the photons into electrons and passes them to the processor, which converts 

digitized electron signals into quantities that can be used in the pattern matching and attitude 

defining algorithms. These subsystems are assembled together in a manner similar to that shown 

below for the ASTROS star tracker in Figure 2.1.[301 The sensor assembly receives incoming 

light rays through a single lens, projects the photons onto the CCD, and generates the 

corresponding digital star-image pixel data. The electronics assembly receives the digitized data 

Star Tracker 
Sire (an) 
Mass (kg) 
Power (W) 
Cost (Sk) 
Accuracy 

(srcaac 3a) 
Max Acquire 
Rate ("lsec) 

Max Tracking 
Rate ("lsec) . 

Max Sensing 
Rate ["fsec) 

Ball 
CT-633 

3 4 x 1 9 ~ 1 9  
2.85 
10 

> 600 
40 

0.2 

10 

None 

Goodrich 
HD-1003 

4 1 x 1 6 ~ 1 1  
3.54 
10 

550 
25 

0.8 

1.4 

None 

SODERN 
SED-16 

2 9 x 1 7 ~ 1 6  
3.0 
12.8 

> 500 
70 

7.0 

20 

None 

Gsiiw 
AA-STR 

18x12~12  
1.1 
3.8 

-300 
98 

1 .O 

Ae&tro 
FAR-MST 
1 5 x 8 ~ 8  

0.9 
3 

100 
100 

4.0 

NIA 10 

4 10 
I 
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and uses the processor and memory to run the image processing algorithms necessary for attitude 

determination. 

SENSOR ASSEMBLY 
I 
I ELECTRONICS ASS€ MBLY 

(SAl IEAI  
I 

VACUUM I 

INTERFACE - 

IMAGE MOTION 
COMPENSATION IIMCI 
SYSTEM 

Figure 2.1 ASTROS Tracker Block ~ia~rarn'"] 

Figure 2.2 shows a simple schematic of how the hardware functions en bloc to produce 

attitude information for the satellite.r291 Stellar light rays enter the optics system and are focused 

on the imager. The processor then uses the image, pattern recognition software, and onboard star 

catalog to output the roll, pitch, and yaw position as attitude information. 
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Roll, Pitch, and 
Yaw Position 

( ~ 9  Y. z) 

Figure 2.2 LIST and FAR-MST Star Tracker Block Diagram ["I 

2.1 Processor Selection 

A star tracker processor is used to convert the image stored by the sensor into information 

useful to the software that eventually outputs attitude information. The parameters of importance 

for LIST and FAR-MST star trackers are clock speed and power consumption. Several 

processors have been considered, including the Hitachi SH7065 processor and Analog Devices, 

Inc.'s Blackfin ADSP-BF533. The Blackfin BF533 has been selected for FAR-MST and its 

parameters of importance are displayed in Table 2.2.1311 

Table 2.2 Blackfin ADSP-BF533 ~ro~ert iep' '  

max clock speed (MHz) 
max MMACS 

,RAM (kBYtes) 
external memory bus (# bit) 

core voltage (V) 

750 

1500 
148 

16 

0.8 to 1.26 
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2.2 Imager Selection 

Star tracker imagers are responsible for the digital conversion of the photons collected by 

the lens into electrons that can be read by the processing unit. Current star trackers generally 

implement either charge-injection devices (CIDs), charge coupled devices (CCDs), or 

complementary metal oxide semiconductors (CMOS) detectors. The primary difference between 

these three types of imagers is the variation in signal readout methods, as is explained below. 

2.2.1 CID Imagers 

General Electric Company initiated the concept of charge-injection devices (CIDs). In 

1972, General Electric's scientists used the photosensitive properties of silicon to develop a 

simple array of photosensitive capacitor elements, which eventually evolved into the first CID 

camera. Since the 1970s, CIDs have evolved to provide high resolution with blooming 

resistance, broad spectral response capabilities, and asynchronous operation modes for detection 

and measurement. 

CIDs are composed of a two-dimensional array of charge-coupled MOS storage 

capacitors. They measure signal charge in  sit^'^^], meaning electron charges are not removed 

from the original pixels during readout. Although this type of reading is difficult, the charge 

remains intact following readout, thus preventing the data from being erased. Signal reading is 

generally accomplished by "sequential-injection" or "parallel-injection."[331 When a clear pixel 

map is desired for a new image, electrodes in each pixel are temporarily switched to ground, 

"injecting" the charge into the silicon.[341 

Because of this unique data-readout process, CID imagers hold several important 

technical advantages over other imaging devices. CCDs and CMOS detectors suffer from low 

fill factors. However, since CIDs have a contiguous pixel structure, their fill factors are always 

loo%, which translates to higher image resolution. Because the readout process is 

nondestructive, CIDs have large degrees of exposure control. This means that low-light static 

images can be captured, and images can be exposed for long time periods, until an optimal 

exposure develops.[341 Solid state imaging, such as that provided by CCDs, is often challenged 
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by pixels "blooming" and "smearing," caused by individual pixels reaching their maximum 

fullwell saturation levels and spilling their electrons into adjacent pixels during longer exposures 

at the brighter intensity levels. However, CIDs better tolerate bright intensity levels because 

electrons are confined to the pixels in which they were originally placed, since charge does not 

move from pixel to pixel in these imagers. 

CIDs can implement several different types of progressive scanning modes. When the 

fastest capture rate is desired over full resolution, the image frame can be downsized. Also, 

particular regions of the FOV can be isolated to more quickly update specific windows of 

interest to the user. CIDs also have the ability to act in a "freeze-frame" mode to enable images 

to be viewed for shorter or longer periods of time?] 

2.2.2 CCD Imagers 

The charge-coupled device (CCD) was first developed by Willard Boyle and George 

Smith at AT&T Bell Labs in 1969. Further advances in CCD technology were made by 

Fairchild Semiconductor, RCA, and Texas Instruments, and the first commercial device was 

manufactured in 1974 by Fairchild Semiconductor. CCDs are known for their fast speed, high 

dynamic range, low noise, and excellent resolution capabilities. However, the primary 

disadvantage of CCD imagers is their high power consumption. 

A charge-coupled device is composed of an array of photosensitive coupled capacitors 

embedded in an integrated circuit, where each capacitor, or pixel, accumulates and stores electric 

charge. Prior to digitization, charge must be moved from the original pixel locations to the end 

columns in their row where they are sent through an analog-to-digital converter (ADC) to be 

read. Readout times are small in comparison to integration times to prevent image smearing. 

The CCD is commonly implemented in one of three different architectures: full-frame, 

frame-transfer, and interline.I3'] The full-frame architecture uses a mechanical shutter instead of 

an electronic one, and all of its image area is active. The frame-transfer architecture is more 

expensive than the full-frame architecture because half of the silicon area on the imager is 

covered by an opaque mask. This opaque area provides an additional storage area for readout 
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while a new image can be simultaneously integrated in the active area. The primary 

disadvantage of a full-frame CCD is the increased power requirements of the mechanical shutter. 

The interline architecture covers every-other column of the imager with the opaque mask. This 

architecture is advantageous because it only requires charge to move one pixel over to reach a 

storage and readout region. The unfortunate tradeoff is that the overall fill factor and quantum 

efficiency are decreased to 50%. Modifications have been made to the interline architecture to 

improve the imager's fill factor by incorporating micro-lenses to direct light away from the 

opaque areas and focus it onto the active ones. In general, applications requiring maximum light 

capture, regardless of cost, power or processing time, should implement full-frame CCDs. 

However, applications requiring lower costs and lower power consumption should utilize 

interline CCDS.'~~] 

2.2.3 CMOS Imagers 

Complementary metal-oxide-semiconductor (CMOS) circuits were developed by Frank 

Wanlass at Fairchild Semiconductor in 1963. CMOS imagers read image data through the use of 

transistors, located at each pixel, that amplify and transfer the charge. In terms of the reading 

process, CMOS imagers are more flexible than CCD imagers because each pixel in a CMOS 

imager can be individually read.1361 This enables a window-of-interest, or "windowing," 

capability that is useful in image compression, motion detection, and target tracking.[371 

There are two types of CMOS imagers: ones with passive pixel sensors and ones with 

active pixel sensors. Passive pixel sensors are the oldest CMOS imagers and were first used in 

the 1960s. Photosites convert photons into electrical charges. The main drawback of passive 

pixel sensors is that high background noise is generated in the image. Active pixel sensors were 

designed to reduce the noise associated with passive pixel sensors. This is accomplished by 

implementing "active circuitry" to determine and cancel out the noise level at each pixel. Active 

pixel sensors allow for larger image arrays and enable higher resolution due to this noise 

cancellation ability while still consuming considerably less power than CCDs. 

In general, the first CMOS imagers were prone to lower resolution and lower sensitivity 

in comparison to other solid state imagers. However, significant improvement has been made to 
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bring them almost up to par with CCD imagers. Although CMOS imagers still do not provide 

quite as much accuracy and flexibility as CCD imagers, CMOS imagers are significantly less 

expensive and are beginning to show capabilities comparable to CCD imagers. 

One of the largest problems with CCDs is the fact that their hardware characteristics 

require them to be manufactured using specialized and expensive processes, which are used 

exclusively for CCD production.[381 However, CMOS imagers use the same processes and 

equipment as computer processing and memory chips, which are mass-produced all over the 

world. This standard fabrication ability is the foremost reason CMOS imagers are much less 

expensive than CCD imagers. 

There are two disadvantages of CMOS detectors. First, CMOS chips have fill factors 

lower than CCDs, making them less sensitive to light and therefore requiring longer exposure 

times to capture the same number of photons. Second, they have higher noise levels than CCDs, 

requiring longer processing times to reduce the noise. 

Despite these few shortcomings of CMOS imagers, their low cost, low power 

consumption, imbedded analog-to-digital (AD) conversion and amplification, and windowing 

capabilities make them the imager of choice for micro star trackers like LIST and FAR-MST. 

Table 2.3 compares six different CMOS detectors manufactured by three different companies. 
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Table 2.3 Comparison of Various CMOS ~ m a ~ e r s ' ~ ~ '  "' 41' 4 2  433 "I 

The imager selected for LIST and FAR-MST is Fillfactory ' s IBIS5-A- 1300, which is displayed 

in Figure 2.3. This imager was chosen because of its low power consumption, high sensitivity, 

fast frame rate and large QE, as shown in Table 2.3. 

active image area 

(mm2) 
active array format 
(# pixels) 
pixel size (pm2) 

frame rate (fps) 

shutter mode 

ADC 
conversion gain 
( pvle') 

FF (%) 

FFSR (AIW) 

QE (%I 
peak QE * FF (%) 

sensitivity (VILx-s) 

fullwell (# e? 
dynamic range (dB) 
dark current 
. (p~/cm2) 
dark current rate 
(# of e'/s) 

power dissipation 
(mW) 

operating 
,temperature ("C) 

KAC-9638 

6.27 x 7.81 

1288 x 1032 

6 x 6  

18 

rolling reset 

8 and 10 bit 

49 

57 

150 

-10 to +50 

Kodak 

KAC-01301 

3.47 x 2.78 

1284x 1028 

2.7 x 2.7 

16 

continuous, 
single frame 

rolling 
10 bit 

TBD 

TBD 

49 

< 100 

-30 to +70 

MT9M001 

6.66 x 5.32 

1280x 1024 

5.2 x 5.2 

30 

electronic 
rolling 

10 bit 

< 15 

c 55 

2.1 

68.2 

363 

0 to 70 

Micron 

MT9M413 

15'36 
12.29 

1280x 1024 

12 x 12 

< 500 

trueSNAP 
freeze-frame 

10 bit 

13 

40 

< 25 

1600 bits/ 
Lx-s 

63000 

59 

50 mV/s 

< 500 at 500 
fps, < 150 at 

60 fps 

-5 to +60 

Fillfactory 

IBIS4-1300 

1280x 1024 

7 x 7  
7 (on chip 

ADC),<23 
(analog 
output) 

electronic 
rolling 

10 bit 

< 16 

60 

0.165 

> 50 

> 30 

7 

70000 

< 100 

344 

1055 

535 

IBIS5-A-1300 

1280x 1024 

6.7 x 6.7 

<27.5 

rolling, 
snapshot 

10 bit 

17.6 

50 

0.16 

> 60 

30% 

c 8.46 

< 100 

410 

175 

0 to 60 
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Figure 2.3 Fillfactory IBISS-A-1300 CMOS 

2.3 Optics Design 

The primary function of a lens is to collect and focus light rays. The important 

parameters for consideration in imaging lenses are aperture, focal length, f-number, format, and 

resolution. 

A lens' aperture is its diameter. Larger apertures correspond to larger lenses, and 

therefore have higher light collecting capabilities. The downside of large apertures is increased 

mass. In general for star trackers, the largest lens that does not exceed hardware constraints is 

desired to maximize light collection, allowing for drnmer stars to be processed at faster rates. A 

lens' focal length is the distance between the lens and the location of the focused image. Long 

focal lengths correspond to high magnifications and narrow FOVs, whereas short focal lengths 

correspond to low magnifications and wide ~ 0 ~ s . ' ~ ~ '  The focal length and FOV of the lens and 

imager plane are related by 

where w is the width of the imager and f is the focal length. A lens' f-number, or focal ratio, is 

the ratio of the lens' focal length to its aperture. Smaller f-numbers correspond to greater light 

collection ability while larger f-numbers correspond to greater latitude for focus.'"' 

When selecting the proper star tracker optical and imaging hardware, a lens' format and 

resolution are important factors to consider when matching these subsystems together. The size 
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of the imager plane helps dictate the necessary size of the lens' format and vice-versa. For 

example, an imager having a ?4 inch optical format, which corresponds to a diagonal of 

approximately 4 mm, should be paired with a lens also having a ?4 inch format.[451 This ensures 

that the star tracker will make use of the entire imaging array, including the comers. The 

resolution of the lens should match the resolution of the imager, which can be measured by the 

number of microns contained in a single pixel. For example, an imager containing pixels that are 

5 microns wide should be matched with a lens that can resolve 5 micron wide features.[451 

Improperly matched optical and imaging subsystems can result in blurry images and, 

consequently, inaccurate attitude information. 

Star trackers have the flexibility to implement several different lens types. Three lenses 

have been considered for LIST and FAR-MST, which include a pinhole, single lens, and double 

lens. Their respective properties are displayed in Table 2.4. 

Table 2.4 Lens Comparison 

Type 
I 

Pinhole 

Single Lens 

L 

Double Lens 

Advantages 

simple 

no additional mass 

no radiation yellowing 

larger light gathering area 

-* higher light capturing ability 

-+ shorter exposure times required 

-+ lower SNR allowed 

-+ higher capacity in roll direction 

sensor protected 

larger light gathering area 

-* higher light capturing ability 

-* shorter exposure times required 

-* lower SNR allowed 

-* higher capacity in roll direction 

sensor protected 

removal of curvature of fields effect 

Disadvantages 

small light gathering area 

-* low light capturing ability 

-* longer exposure times required - higher SNR required 

-* less capacity in roll direction 

open to radiation 

open to contaminants 

additional mass required 

lens radiation yellowing 

curvature of fields effect 

additional mass required 

lens radiation yellowing 
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The pinhole was initially considered for LIST because of its simplicity and low cost. 

However, testing showed that the sensing and tracking capabilities did not meet the performance 

requirements in roll for dim visual magnitudes. The single lens does meet performance 

requirements, but is problematic due to the bending of the light as it passes through the lens, 

which results in a field curvature. 

When light enters a lens, it is refracted, and all light entering perpendicular to the lens is 

focused to a single point, known as the lens focal point, at a distance equal to the focal length. 

Light entering at angles offset from the perpendicular is focused to a point also at a distance 

equal to the focal length, but due to the angle offset, this point is not in line with the image plane, 

as displayed in Figure 2.4. Therefore, light rays entering the lens at any angles other than 

perpendicular to the lens are projected onto a curved image plane. This results in defocused 

images on the actual flat imager. For star trackers, this means that stars appear larger or smaller, 

depending on where they fall on the imager, which can have serious effects on pattern matching 

and image processing algorithms. The two-dimensional curvature-of-fields effect is illustrated in 

Figure 2.4. 
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incoming 
light rzys 

lens focal 
point 

Figure 2.4 Illustration of Defocusing Effects Due to Field Curvature 

A double lens system can be used to eliminate the field curvature. For example, a double Gauss 

lens refracts non-perpendicular light rays back by the appropriate angles so that all light is 

focused onto a flat image plane, which, therefore, prevents stellar distortion. This is illustrated in 

Figure 2.5. 1461 
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Figure 2.5 Implementing a Double Gauss Lens to Remove Field ~urvature '~~~  

The primary constraint limiting the use of a double lens for LIST and FAR-MST star trackers is 

the resulting increased mass and size of the hardware system. Testing has shown that LIST star 

trackers can achieve their required accuracy using a single lens, and so a commercial off-the- 

shelf (COTS) single lens will be utilized in LIST. However, due to more rigid FAR-MST goals, 

a double lens will most likely be considered for FAR-MST star trackers. 

2.4 Hardware Mounting 

The processor, imager, and optics must be mounted together as a single unit to be 

attached to the satellite or spacecraft. The optics and imager are generally assembled using a C, 

S, CS, or X mount; the difference between these mounts is the number of threads and the back 

flange-to-image distance. An example of the imager and electronic assembly of the ASTROS 

star tracker is shown in Figure 2.6.[301 The ASTROS star tracker implements Texas Instrument's 

SBP 9989 microprocessor, RCA's 501 CCD imager, and a single lens optics system. 
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Figure 2.6 ASTROS Tracker Hardware ~ s s e r n b l ~ ' ~ '  

Once the star tracker is assembled, it must be mounted onto the star tracker. The mount for the 

LIST star tracker is outlined in Figure 2.7.[471 The overall dimensions of the mount are 10.2cm x 

8.9cm x 5.3cm. 

Figure 2.7 LIST ~ o u n t [ ~ I  



Chapter 3 

STELLAR SIGNAL AND NOISE 

In the subsequent algorithms described in Chapters 4,5, and 6, several assumptions have 

been made regarding stellar signal and noise variations. The signal itself is assumed to be 

modeled by a two dimensional Gaussian. The stellar shot, dark current, and readout noise 

variations are significant electron contributions that must be considered in the image processing. 

Properties of the stellar signal and noise electrons are defined and discussed in this section. 

3.1 Stellar Signal 

As light is gathered by the star tracker, the optics system defocuses the photons on the 

detector. Each star that falls on the detector maps out a two-dimensional Airy function, as 

displayed in Figure 3 . 1 ' ~ ~ '  and Figure 3.2.["] The central portion of the Airy pattern, which is 

known as the Airy Disk, comprises approximately 86% of the total number of electrons that 

make up the star. 

I Radius at Image Plane I 

Figure 3.1 Intensity Profde of the Airy  unction[^^' 
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Figure 3.2 Airy Disk with Outer Rings Digitally Enhanced to Make More Easily 

The Airy function, Ai(z), is defined asf501 

For real values, the Airy function is written asf5'] 

The two-dimensional Airy function is fairly accurately approximated out to the first zero by the 

two-dimensional Gaussian function. The Gaussian shape is assumed to approximate the number 

of photons that fall on the imager. The two-dimensional Gaussian is defined asfs2] 

where x and y are pixel coordinates, pi is the mean centroid location, and ci is the standard 

deviation from the mean. A plot of the two-dimensional Gaussian function, having bivariate 

normal distribution with a mean of 0 and a variance of 1, is shown below in Figure 3.3. 
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Figure 3.3 Gaussian Function with Bivariate Normal Distribution 

On star trackers, the stellar signal is the entity that is to be measured. In the case of 

CMOS and CCD imagers, this signal is generally measured in terms of the number of electrons 

that are generated on the imager. The number of electrons, eNum, for a given star is given as 

where a is the lens area, FFSR is the product of the fill factor and the spectral response of the 

imager, t s b ,  is the length of time in which the shutter is open to collect stellar light, g is the 

gain of the imager measured by the number of electrons represented by each analog-to-digital 

unit (ADU), and MV is the visual magnitude. The fill factor is the percentage of an individual 

pixel that is photo-responsive, and the spectral response is the average value of the 

responsiveness of the imaging element to the characteristic spectrum in units of AAV. 
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3.2 Noise Variations 

Ideally, the only photons passed through the imager are those from the stellar signal. 

However, all imagers contain uncertainties caused by the injection of various types of noise that 

are digitized along with the actual image. The most common of these are signal shot, dark 

current, and background noises. Additionally, there are pseudo-noise sources introduced during 

the process of digitizing the stellar signal, which include readout and quantization noises. 

To fully comprehend digital signal and noise processing, several fundamental aspects of 

probability theory and statistics are required. Recall the generic formulas for one dimensional 

(ID) Gaussian and Poisson distributions. A 1D Gaussian distribution is modeled by 

where x is a random variable, p is the mean, 0 is the standard deviation, and c? is the variance. A 

1D Poisson Distribution is modeled by 

where x is a random variable and A is both the mean and variance. 

If XI has Poisson distribution with parameter Li, then Xl + X2 + ... + X, has Poisson 

distribution with parameter Al + Az + .. . + Lr. This means that the means and variances are 

additive under a summation of Poisson variables. This same property holds for a summation of 

Gaussian variables, but in general does not hold for the summation of a mixture of the two. 

However, as the Poisson parameter increases, the Poisson distribution can be approximated more 

and more accurately by a Gaussian, and in the limit that the parameter is large, the general rule of 

mean and variance sums does hold between the two distributions. This concept is important in 

that it allows different types of noises to be added together. 
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3.2.1 Signal Shot Noise 

There is an inherent signal noise, known as stellar shot noise, which results solely from 

the stellar signal falling on the imager; the noise itself is due to the uncertainty in signal 

measurement. Since the electron arrival is a Poisson process, the variance is equal to the mean 

value, and therefore the standard deviation of the signal noise is 

orha = 4% 

3.2.2 Dark Current Noise 

Dark current noise is a result of thermally generated electrons, which are present even in 

the absence of light. The majority of these electrons are created in the "forbidden" energy gap 

between the valence and conduction band, where photons excite electrons between interface 

energy levels.r531 The amount of dark current noise can be reduced by operating the imager in 

inversion, where holes from the channel prevent electron flow into the interface states. In space, 

dark current noise can be further reduced by directly connecting the imager to a passive radiator 

or active cooling device. Dark current noise is a Poisson process with 

where D is the number of dark current electrons, d is the dark current rate, and tcoiiect is the time 

over which the dark current electrons are collected. 

3.2.3 Background Noise 

Background noise accounts for all other noise additives that contribute to an uncertainty 

in signal strength, which often includes noise from the satellite or the surrounding environment. 

There are numerous types of background noise, but each is generally very specific to application 

and, therefore, often difficult to model. Background noise originating from the surrounding 

environment is usually quite small when compared to the lower magnitude stars generally used 

for navigation; it would certainly be dominated by other potential sources, such as glint from the 

sun as it reflects off of other surfaces of the spacecraft. The background noise will be assumed 
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to follow the same Poisson statistics as the signal shot noise, given that its source is external to 

the imager and defined by the same process of photon arrival rate. It is considered to accumulate 

as specified by a rate, in the same way that the dark current is specified, but rather than being 

modeled, it will instead have its value bounded by the performance requirements of the imager. 

3.2.4 Quantization Noise 

To understand quantization noise, an understanding of imager gain is first necessary. The 

imager itself generates 'counts' from the individual image pixels, where the counts are 

proportional to the total number of electrons acquired. To model the uncertainty in actual 

numbers of electrons per pixel, consider the imager's gain, A, which quantifies the 

proportionality relating the actual electron count to the output counts measured in ADUs. 

Although the gain can often be variable, the maximum gain is generally defined as 

A = 
f i l l  Well 

A*~, ,  

where fullWell is the maximum number of electrons that a single pixel can hold, and MU,, is 

two raised to the number of bits available to the analog-to-digital converter (ADC). Increasing 

the gain beyond the value given in (3.9) simply results in a loss of resolution, since the maximum 

ADU extends beyond the capacity of the fullwell. As an example, the IBIS5-A-1300 has a 

fullwell of approximately 120,000 electrons and a maximum ADU value of 21° = 1024 

counts.'401 Therefore, the maximum useful gain setting for this imager is 

This means the stellar intensity can be resolved to approximately 117 electrons per ADU. 

Consequently, for example, anywhere from 0 to 58 electrons will be read in as 0 electrons, and 

anywhere from 59 to 176 electrons will be read in as 117 electrons. To increase the intensity 

resolution, the user can set the imager to a lower gain or select an imager with a higher 

maximum ADU value (which contains more ADC bits). 
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Quantization noise is a result of uncertainty in the true value of the electron count, as 

described above, caused in the ADC. Quantization noise can be modeled as a flat distribution, 

meaning that the data is distributed so that all values between two limits are equally likely to 

occur. With no intrinsic bias, the distribution also has zero mean. Thus, the variance of 

quantized noise is found by determining the expected value of the mean-squared error, 

or more explicitly[541 

Therefore, the standard deviation of the quantization noise is 

3.2.5 Readout Noise 

Readout noise is associated with the inexact conversion of electrons from the signal 

falling on the imager to the readout of the imager. It is mainly caused by the on-chip output 

amplifier, where electrons are converted into analog voltage. The standard deviation of readout 

noise is given by 

where R is the number of electrons caused by the readout noise and A is the gain in 

electrons/ADU, as used above for quantization noise. In contrast to the quantization error, which 

increases with higher gain, the readout error, being a fixed number of electrons per readout, will 
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decrease in comparison with the signal as the gain is increased. Both readout and quantization 

noise are limited by the construction of the imager itself and therefore cannot be improved upon 

by the user or image processing techniques. 

3.2.6 Combining Different Noise Types 

The total amount of noise falling on the imager has been shown to consist of several 

sources, each with a distinct statistical dependence. By statistical definition, the variance is the 

mean square of the difference in actual value and average value. When a random variable can be 

expressed as the sum of M random variables, the following relationship applies: 

As the sample size becomes large, the sample variance of each variable approaches the 

statistical variance, and the cross-correlations approach zero, since each variable is distributed 

evenly about its mean value, and each is assumed to be totally uncorrelated with any other. For 

the specific cases of Poisson and Gaussian distributions, the assumption of large sample sizes is 

not required for this to hold, as was discussed earlier. Thus, for large sample sizes, the variance 

for the noise electrons is 

where S, D, R, Q, and B represent the signal, dark current, readout, quantization, and background 

noises, respectively. 
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3.3 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is the measure of signal quality at a given pixel, which is 

expressed as the ratio of measured signal to incorporated noise. It is defined as the ratio of the 

signal electron count to one standard deviation of the total noise electron count, which, given in 

terms of the derived variances discussed above, results in 

0 
SNR = 

J s + D + R ~ + ~ + B  

Equation (3.17) can be used to determine the percentage of times that the signal will exceed the 

noise by this ratio, as displayed in Figure 3.4. By the central limit theorem, the distribution of the 

SNR is normal with mean S  and standard deviation as given by the square-root of (3.16).'~~' The 

solid arrows below the curve represent the percentage of noise within the +lo, ~ 2 0 ,  and ~ 3 0  

bands. The dashed arrows represent the amount of time in which the signal will exceed the noise 

by the ratio given in (3.17) for lo, 20, and 30 amounts of noise. 

Figure 3.4 Standard Normal Distribution Depicting the Percentage that SNR Will Exceed la, 2a, and 3a 

Amounts of Noise 

In terms of stellar simulations, the SNR can be calculated by 
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eNum 
SNR = 2 

2 n g s t n r  onoise 

where eNum is the number of electrons in a given star, os,, is the width of the point spread 

function of the star which approximates a Gaussian, and Onoiz is the standard deviation of noise 

on the imager. 

SNR is an important parameter in image processing. It will be shown in Chapter 4 that 

the values of SNR directly affect the centroider's ability to locate precise centers of the stars, 

which automatically dictates the accuracy of the attitude quaternion discussed in Chapter 5. It 

will be verified that higher values of SNR produce more accurate centroid locations. 

Due to the nature of the stars trackers, it will at times be necessary to process stars of 

relatively dim visual magnitude in order to meet the micro-satellite attitude acquisition 

requirements. Therefore, it is important to understand the need to minimize the amount of noise 

in the system to maintain the largest SNR possible. The image processing techniques in this 

thesis account for signal shot, dark current, and readout noises, as quantization and background 

noises have been shown to be negligible in comparison. Additionally, proper imager selection 

has enabled a low amount of readout noise to be present in the system, and operation of the 

imager in inversion, where the substrate potential is greater than interface potential, to prevent 

electron flow into the interface states will also allow for smaller amounts of dark current noise to 

accumulate. 
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THRESHOLDING AND CENTROIDING 

4.1 Image Thresholding 

Given the total number of photons that fall onto the imager surface in a particular image, 

the thresholding function allows stellar photons to be accurately distinguished from the noise 

electrons. In general, readout noise is constant across the imager plane, and thus shot noise and 

dark current are the main elements that need to be distinguished from the stellar signal for 

accurate centroiding. This is accomplished by setting a noise threshold, which allows only those 

pixels that contain electron counts higher than this minimum value to be considered as potential 

star pixels. There are advantages and disadvantages of setting particular threshold values. 

Setting a high noise threshold drastically reduces the chances of "false stars," noise spikes 

caused by abnormally high dark current counts, but prevents the imager from finding dim stars 

and portions of stars whose signal strengths fall below this threshold. On the other hand, setting 

a low threshold enables the processing of dimmer stars but prevents discernment between noisy 

pixels and actual stars. 

Star trackers discussed in the literature often calculate a background intensity level to 

determine a minimum threshold level.[3o9 561 For example, the micro star tracker DIGISTAR uses 

a look-up table, that was created based on empirical results from nighttime sky images, to set a 

minimum threshold level. The average background intensity level of an incoming image is 

examined to estimate an overall background level by selecting and examining five spatially 

distributed lopixel x lopixel windows devoid of stars. Once this level is determined, the look- 

up table automatically sets the minimum threshold level to ensure that the threshold is not at or 

below the background level, which could result in every pixel becoming a potential star. 

It is possible for the SNR to be close to unity, especially during fast rotation rates that 

only allow short integration times. Thus, each pixel on the imager is filtered twice: first based 
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upon the pixel's relation to the threshold value and second based upon its location relative to 

other pixels of similar intensity. Figure 4.l(left) depicts a stellar image, with dark image 

subtracted, whose threshold was set at an SNR of unity. The dark image was defined as the 

median of the content of each pixel in the pixel matrix across several images in a sequence. In 

Figure 4.l(left) approximately 124,000 pixels (10% of the pixels in the image) exceed this 

threshold. Based on the SNR description in Chapter 3, one would expect this percentage to be 

closer to 16%, but it is speculated that the 6% difference is due to the fact that the dark image, 

with which only the median value in each pixel was considered, was subtracted out. In the 

vicinity of a star, roughly half of the pixels contained in the star should exceed this threshold. 

This knowledge leads to a method by which stellar and noise pixels can be statistically 

distinguished. Two pre-filters have been implemented. The first examines a 5-pixel by 5-pixel 

region centered on each pixel that exceeds the stated threshold, and determines if at least 9 of the 

25 pixels in this region also exceed the threshold. If at least 9 pixels are found, the area is 

regarded as being a possible star, as the likelihood of this occumng due to noise is small. 

Figure 4.1 Filtered Image with Threshold Set at SNR = 1 

However, at an SNR of unity, there are still many pixels that will statistically form 

groups of 5 or more, as seen in the center image of Figure 4.1. The second filter examines the 

proximity of each pixel to those in its local neighborhood and eliminates the proposed stars from 

the first filtering that do not contain pixels with sufficient electrons in closely packed groups. A 
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final filtering discards any groups that do not include at least 3 pixels as statistically rare noise 

events. 

4.2 Image Centroiding 

Image centroiding is a vital process to increase the accuracy of the attitude data set.[571 

Without accurate centroiders, precise attitude information through image processing cannot be 

achieved. Precise centroiding is difficult in the presence of noise because pixels contain 

inaccurate numbers of electrons, which can cause the calculated centroid positions to be different 

from actual locations. However, even in the presence of no noise, there is a limit to the 

centroiding precision that can be achieved due to issues of discretization. 

Centroiding methods favor a defocusing of the stars as they fall on the imager to improve 

the precision of centroid predictions. The amount of defocusing, along with the manner that best 

weighs the pixels to locate the center of the star, is the primary focus of centroiding algorithms. 

The performance ability of any centroider is directly related to the strength of the stellar signal, 

the presence of noise variations, and the image spot size as it falls on the imager. Originally two 

centroiding methods were created to be used consecutively; a weighted sum (WS) technique 

would approximate the centroid positions to single pixel resolution and a maximum likelihood 

estimator (MLE) technique further refined centroids to subpixel resolution. However, based on 

the analysis and performance of the MLE as described below, the WS centroider is the only 

centroider used for image processing in LIST and FAR-MST star trackers. Two versions of the 

WS centroider have been created; the centroider of choice is based upon the current noise level. 

4.2.1 Formation of Star Clusters 

Before images can be successfully centroided, pixels must be appropriately grouped into 

stellar clusters. Once the noise threshold level is set, pixels that exceed this threshold can be 

considered potential star pixels. Both the ASTROS and DIGISTAR star trackers form pixel 

clusters by selecting the brightest pixels on the image as "core pixels" of stars. All pixels 

exceeding the threshold that have at least one adjacent pixel with the core pixel are then assigned 
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The triangle match and rate match produce accumulating uncertainty errors over 

consecutive images, and the uncertainties were the largest in the roll direction. Figure 8.1 

compares the uncertainties of each image's attitude quaternion for the triangle match and rate 

match. Comparisons of the pitch and yaw uncertainties produce similar results. 

Figure 8.1 Comparison of Triangle Match and Rate Match Quaternion Uncertainties in Roll Direction 

The predictive ability of the rate match to find all of the matchable stars proved to be 

advantageous because the uncertainty errors of the rate match accumulated at a slower rate than 

those of the triangle match, as seen by the rate match's smaller slope. 

Apart from accuracy, computational requirements for the pattern matching algorithms 

were considered. Table 8.2 compares the time requirements of each algorithm to threshold, 

centroid, and pattern or rate match the stars and output an attitude quaternion. These times were 

collected using Matlab versions of the algorithms; the actual algorithms will be run in C, which 

will produce much faster times than those listed below. The Matlab times have been included to 

show the relative time requirements of the different matching algorithms. 

Table 8.2 Time Comparisons for Matching Algorithms 

algorithm: 
time (s): 

triangle match 
9.06 

rate match 
15.12 

3-vertex match 
8.30 

4-vertex match 
8.27 

5-vertex match 
8.33 
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Figure 4.3 Dim Star 

4.2.2 LIST and FAR-MST Centroiding Techniques 

Weighted Sum Technique 

Many star trackers implement a mass moment or center of gravity technique to centroid 

stars. This is similar to a weighted sum technique, in which the brightest pixel in the immediate 

neighborhood is localized and centroiding is performed via computation of the "center of 

gravity" in the specific region of pixels surrounding the brightest pixel.B81 

Two weighted sum centroiding algorithms have been implemented to determine the stars' 

centers in a given image. For each star on a particular image, each of these algorithms 

determines the centroid x-y position on the imager, overall brightness in number of electrons, 

and aspect ratio for each star in the image. The aspect ratio is the ratio of second moments and is 

used to determine whether or not the star is creating a streak on the image, which is an indication 

as to whether or not the appropriate integration time is being used. The difference between these 

three algorithms is the type of filtering used to eliminate likely noise spikes and whether or not 

current rate information is available to predict centroid locations. The value of the SNR and the 

availability of current attitude information determine which centroider should be implemented. 
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The first centroider, starCentroid2, uses a pre-filter that scans the image for statistically 

relevant, elevated count levels to aid in the reduction of the number of random noise spikes. 

These statistics are evaluated over 5pixel x 5pixel squares that are centered over each pixel found 

to exceed the noise threshold. If more than half of the 25 pixels in the square exceed this 

threshold, the pixel under examination is considered to be part of a star; otherwise, the pixel is 

dismissed as noise. A second filter eliminates stars that contain less than three pixels, which is 

most likely a noise spike. The second centroider, starCentroid3, uses a pre-filter that is applied 

to regularly spaced 5pixel x Spixel regions on the pixel matrix to accelerate the execution time. 

This filter enables faster execution times than starCentroid2 if more than 1125 of the total pixels 

exceed the threshold. Therefore, this centroider is used for images with low SNR values, when a 

low noise threshold must be selected to extract as many stars as possible from noisy images. 

Performance trade studies, completed in Chapter 7, have explained the conditions under which 

each centroider performs best. 

Each centroiding algorithm first defines all of the pixels that belong to each individual 

star that exceeds the desired noise threshold. It then uses the number of stellar photons in pixels 

as the weighting function, which allows for quick centroiding: 

n C ( SI, * position, ) 
position = '=' 

where i is the current pixel, n is the total number of pixels in the current star, SZ is the number of 

stellar photons in the current pixel, and position represents the coordinates of the current pixel on 

the imager. The weighted sum centroiding algorithm is disadvantageous in that it is unable to 

take noise variations into account; the noise is assumed constant across each pixel on the imager. 

Post filtering is applied to the centroider to deal with noise spikes and hot pixels. Any stars that 

are spread over fewer than four pixels are discarded as false stars. 
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Measuring Centroid Uncertainty 

One measure of performance for the centroiding algorithm is the accuracy of the 

centroiding for each individual star. The primary driver in centroiding accuracy is aperture size 

and integration time; larger lens diameters and longer integration times allow more photons to 

fall on the imager, thus increasing the SNR in each pixel. However, longer integration times 

require much slower rotations to avoid stellar streaking, which decreases the ability of the star 

tracker to perform at higher tumble rates. The uncertainty in each centroid position was 

estimated using an empirical curve fit derived from a Monte Carlo simulation and is given by 

Accurate centroiding is vital to successful image processing; the tighter the centroider, the 

higher the performance of the pattern matching algorithms discussed in section 4.0. When noise 

variations are ignored, the centroiding accuracy improves with decreasing PSF width, as depicted 

in Figure 4.4. 

Figure 4.4 Centroid Accuracy with No Noise 
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Upon examination of Figure 4.4, it can be inferred that the centroid accuracy has an 
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pixel is located in the center of the pixel. This notion can cause considerable biases in the 

vicinity of steep gradients, and consequently decreases in the accuracy of the calculated centroid. 

If the star is perfectly centered on a pixel, then these biases cancel one another. However, if the 

star is not perfectly centered, each pixel contained in the star adds a portion of bias to the 

centroid position. In general, stars spread across more pixels have greater uncertainties in 

centroided positions, although this increase in uncertainty becomes less significant for PSF 

widths greater than approximately 15 pixels. 

The second effect is that when considering a star spread over N pixels, the uncertainty in 

centroid position decreases by 1 1 f i .  For all star sizes, each pixel introduces a particular 

amount of uncertainty in centroid position. A large fraction of the pixels contained in small stars 

are located on the periphery of the star, where the SNR is lowest, which logically produces the 

largest amounts of centroiding uncertainty. However, as the PSF width of the star increases, the 

fraction of pixels located along the edge of the star decreases. Therefore, the off-center bias that 

causes a decline in centroid accuracy by f i  for larger PSF widths is balanced by the fact that 

there is a l / f i  improvement in centroid accuracy for larger PSF widths due to smaller ratios of 

edge pixels to central pixels. 

However, when noise is present in the system each pixel has an additional uncertainty 

associated with it. Therefore, as depicted in Figure 4.5, SNR has a sizable impact on positioning 

accuracy. The boxed numbers in the figure represent the various SNR values. 
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Figure 4.5 Centroid Accuracy for Various SNR 

On any star, the edge pixels contain the lowest SNR values; therefore, the fewer the pixels in a 

given star, the worse the knowledge of the true centroid becomes, except in the limit where the 

SNR of the star is very high. Given the data presented in Figure 4.5, the ideal PSF width of a star 

having a given SNR is the PSF width located at the knee of the curve. For example, at an SNR 

of 1, the ideal PSF width is approximately 9pixels, and at an SNR of 3, the ideal PSF width is 

approximately Spixels. 

Maximum Likelihood Estimator Technique 

The idea behind the maximum likelihood estimator (MLE) comes from the derivation of 

a two-dimensional Cramir-Rao lower bound, which helps to develop a lower limit for the mean- 

squared error of an unbiased position estimator.[591 Throughout the analysis performed by 

Winick, identical square pixels, an image spot intensity profile represented by an Airy function 

and approximated by a Gaussian curve, and stellar shot and dark current noise contributions 

defined by Poisson processes were assumed. 

Image spot size can be adjusted by varying the focal length of the optical subsystem, 

which is equivalent to varying the PSF width in simulated images. Winick argued that a 

particular pixel-to-image spot-size ratio exists that minimizes the position-estimation error. 

Image spot sizes that are too large mean that the image is spread over numerous pixels, which 
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forces a lower electron count in the each pixel, malung it difficult to distinguish pixels containing 

pure noise. On the other hand, image spot sizes that are too small may contain the majority of 

their electrons within a single pixel making accurate sub-pixel resolution impossible. The goal 

of Winick's work was to determine the best pixel-to-image spot-size ratio. 

According to Winick, the maximum likelihood estimator, or the most likely two- 

dimensional centroid, can be derived based upon the derivation of the two-dimensional standard 

Cram&-Rao bound 

knowing 

where E, and E, are the x and y centroid position estimators, respectively, c is an observed vector 

quantity statistically related to E,, 2, (c) is the unbiased estimator of E,, and P( ) is the 

probability of the enclosed argument. 

Using this information, Winick found that the MLE is the location where Qx and Qy 

simultaneously equal zero. Qx and Qy are defined as 
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where 

with 

being the average number of electrons produced by a stellar image spot. In (4.5) and (4.6) co is 

the number of electrons per pixel, As is the total number of electrons over the entire star, 

respectively, AN is the standard deviation of the dark current and readout noise, xi and yj are the 

center of the x-y pixel, Ax is the width of a pixel, and E, and e, are the x and y centroid position 

estimators, respectively. Additionally, S(x, y, ex, e,) is the Gaussian shaped intensity profile 

defined by 

which can be decomposed into 

where oS is the 1-sigma width of the Gaussian shaped intensity curve. The best case scenario is 

approximated by 
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as = 
psfwidth 

4 '  
(4.13) 

which is derived here. As first discussed in Chapter 3, let a symmetric two-dimensional 

Gaussian normalized to one with mean zero and variance t? be defined as 

where r is the radius of the PSF that extends from the center of the star. The relationship in 

(4.13) is found by double integration of (4.14) 

Recall that the actual pattern of starlight maps out an Airy function on the image plane, where 

the Airy disk contains 86% of the total number of electrons of the star. By superimposing a 

Gaussian on the Airy disk, it is desirable that the Gaussian also comprises 86% of the total 

number of electrons 

Solving (4.20) gives 
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Since the PSF width is equal to twice the radius r, 

which is the same as (4.13). 

Performance Comparison Between WS and ML E Centroiders 

A comparison between the weighted sum and maximum likelihood estimator centroiders 

was performed to determine the best centroider. In this trade study, thirty stars of the same 

visual magnitude were randomly placed on an image, noise was added, and then these simulated 

images were run through the WS centroider, using starCentroid3, and the MLE centroiders. For 

a given PSF width and noise threshold, a series of visual magnitudes were examined. Several 

additional trade studies were completed for other values of PSF width and noise thresholds. 

Table 4.1 shows a list of the parameters used in creating the simulated images for the first trade 

study. 

Table 4.1 Centroider Comparison Image Parameters 

Shown below are the results for the centroid comparison; they are best understood when 

examined as a group rather than individually. Figure 4.6, Figure 4.8, Figure 4.10, Figure 4.12, 

and Figure 4.14 show the noisy pixel matrix of the simulated image. As the values of Mv 
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increase, the stars become appropriately dimmer. Figure 4.7, Figure 4.9, Figure 4.1 1, Figure 4.13, and 

Figure 4.15 show the differences in actual centroid locations and that which was calculated by each 

of the centroiders. 

Figure 4.6 Simulated Noisy Image for Mv = 1 
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Figure 4.7 Comparison of WS and MLE Centroiding Errors for MV = 1 
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Figure 4.8 Simulated Noisy Image for MV = 2 
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Figure 4.11 Comparison of WS and MLE Centroiding Errors for Mv = 3 
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Figure 4.12 Simulated Noisy Image for MV = 4 
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Figure 4.13 Comparison of WS and MLE Centroiding Errors for Mv = 4 
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Figure 4.14 Simulated Noisy Image for Mv = 5 
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Figure 4.15 Comparison of WS and MLE Centroiding Errors for MV = 5 
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As seen from Table 4.2, the computational time required for the MLE centroider is 

significantly more that that required for the WS centroider for all five visual magnitudes. In both 

centroiders, the time decreases for increasing Mv values because the number of pixels that each 

centroider must examine decreases for increasing Mv, since dimmer stars contain fewer pixels 

that exceed the noise threshold. Because of the enormous increase in computational 

requirements, it has been decided that the small increase in centroiding accuracy is not worth the 

time and memory required of the MLE centroider because it would impose requirements 

unavailable for micro star trackers. Thus the weighted sum centroiders have been selected for 

use onboard the LIST and FAR-MST star trackers. 

4.2.3 Predictive Centroiding 

Another centroiding technique besides a WS or MLE is a predictive centroider. Sarnaan, 

Mortari, Pollock, and Junkin's Predictive Centroiding Technique uses both rate information and 

image processing to precisely locate stars that fall on an image.[571 The centroid locations are 

first approximated using the current rate information and updated based on local image 

processing. Current rate information is obtained either via rate gyros or successive attitude 

estimations from lost-in-space (LIS) algorithms. 

When the star tracker is first enabled, no attitude information is available. Therefore, the 

first image is centroided using a mass moment centroiding method, similar to that used in the 

various weighted sum centroiders. The mass-moment technique uses a centroid window that 

encompasses a predefined number of pixels centered on the brightest pixel of the star, and then 

uses 
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to determine the x and y centroid locations on the imager where Id is the intensity of the ( i j )  

pixel.[561 An attitude matrix that defines the initial attitude in the inertial frame is calculated via a 

LIS algorithm. 

For each consecutive image, predictive centroiding is used to estimate where the stars' 

centers are located on the imager. The initial angular velocity data is projected forward in time 

to predict the attitude matrix for subsequent images using the previous attitude matrix and a 

linear approximation. Along with the stars, vectors associated with the four comers of the FOV 

are also projected onto the inertial reference frame using this predictive attitude matrix; these 

four comers are used as the bounds in searching the star catalog, which leads to immediate 

selection of the stars located in the current image. Stellar locations are predicted and these 

centers are used as the center of the masks in centroiding the real image. A recursive star 

identification algorithm uses the star nearest neighbor approach to identify the observed stars in 

the frame. Finally, the best estimate of angular velocity is used to determine the predicted star 

location in the next image. 

A similar predictive centroiding algorithm is currently under development for the LIST 

and FAR-MST micro star trackers. The primary advantage of a predictive centroider is the fact 

that computational time is significantly decreased because the centroider knows ahead of time 

where on the imager centroids are likely to be located. This centroider uses the current rate 

information to estimate where the stars will most likely be located in subsequent images. Also, if 

images are compared to an onboard star catalog, known interstellar distances can be used to 

better centroid the stars. Finally, since the stars in the catalog are matched a priori with the stars 

in the image, no additional matching algorithm needs to be employed. 





Chapter 5 

IMAGE PROCESSING: PATTERN 
MATCHING ALGORITHMS 

The primary goal of image processing is to efficiently and accurately determine the 

attitude orientation and angular rotation rates of the satellite or spacecraft at any time during its 

mission. Once stars are extracted from noisy images and centroided, numerous pattern matching 

techniques can be employed to compare images in a frame-to-frame manner or from one frame 

to an onboard star catalog. Once pattern matching is acheived, attitude quaternions defining the 

relative or absolute motion of the star tracker can be attained, which is discussed in Chapter 6. 

5.1 NASA Sky2000 Star Catalog 

NASA's Sky2000 Master Star Catalog is a compilation of basic stellar information, 

including right ascension, declination, position uncertainty, and visual magnitude, for 

approximately 300,000 stars up to a visual magnitude of 9!01 Based on this star catalog, studies 

were completed that determined the average and minimum number of stars guaranteed to be 

within a given FOV up to a specified Mv. This was accomplished by looping over all fields of 

view that were appropriate choices for star tracker cameras and all visual magnitudes that the star 

trackers could resolve, and by counting the number of stars in each FOV while stepping across 

the entire sky in lo increments. The number of stars from each FOV increment were averaged 

and lower-bounded, and these results are displayed in Figure 5.1 and Figure 5.2. 



Chapter 5 - Image Processing: Pattern Matching Algorithms 88 

4 - 

2 3.5 - 

3 - 

2.5 - 

2 - ! 

1.5 I I 1 I I I I 

17 21 25 29 33 37 41 45 
FOV (deg) 

Figure 5.1 Average Number of Stars for Given MV and FOV 
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Figure 5.2 Minimum Number of Stars for Given MV and FOV 
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Most micro star trackers will require a visual magnitude of at least 5 and FOV between 25' and 

45'. Thus, based on the figure above, any given image taken by the star tracker can expect to 

have an average and minimum number of stars in the FOV described in Table 5.1. 

Table 5.1 Required MV for a Given Minimum Number of Stars and FOV 

This trade study provides insight concerning the number of stars a given snap-shot can be 

expected to have available for image processing. It is generally understood that a larger number 

of stars in a particular image corresponds to a greater likelihood that attitude information can be 

determined, and a higher probability of accuracy regarding that attitude information, which will 

be addressed in Chapter 6. 

5.2 Stellar Matching Techniques 

There are numerous ways to process stellar data, and results can provide both relative and 

absolute attitude information. Relative attitude information can be attained through any of the 

techniques described below, and is generally easier to acquire than absolute attitude information. 

In relative image processing, attitude orientations are calculated relative to a previous or future 

orientation; no information is available to match an image to a definite and specific region of the 

sky. Absolute attitude information is generally more difficult to attain. It is found by matching 

stars to an onboard star catalog, which provides an exact match to a known, fixed position in the 

sky. 
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The most common image processing algorithms for finding attitude orientation 

information require matching individual stars or configurations of multiple stars, employing past 

and current rate information to predict future orientation, and examining stellar streak patterns 

across highly exposed images. Once stars can be matched between images, relative or absolute 

attitude quaternions defining the motion of the spacecraft in the sky can be directly computed. 

5.3 Single Star Matching 

The parameter used to match single stars between consecutive images or to an onboard 

star catalog is visual magnitude. However, the difficulty with matching single stars is that near- 

perfect noise rejection is required; stars of similar Mv are likely to be present within the same 

image and it is likely that noise variations can lead to incorrect measures of stellar intensity. In 

most cases, unless the stars are extremely bright, brighter than magnitude 0 or 1, the noise 

characteristics of the star tracker will impede upon the accuracy of the image processing. The 

chances of very bright stars occumng in the FOV are small, as relatively few stars of this 

brightness exist in the sky, and integration times will be shoa to allow for larger tumble rates. 

In general, imager measurements of visual magnitude are somewhat uncertain and non- 

standard because different imagers have different spectral responses. Additionally, imager 

sensitivity often changes over time. Visual magnitude alone should be used only as a 

discriminator in the situations where only two stars are observed and no current rate information 

exists or when stellar centroiding is too erroneous to provide unambiguous interstellar separation 

angles.[611 

Trade studies were completed to describe how noise variations and centroid positioning 

affect the value of Mv calculated by the centroider. The purpose of this trade study was to 

determine the magnitude of difference between an assigned Mv and the Mv calculated by the 

centroider. In this experiment, five Mv values were studied and compared: Mv = 0, Mv = 1, Mv 

= 2, Mv = 3, and Mv = 4. For each value of Mv examined, twenty stars were randomly placed 

across a 1280 x 1024 pixel matrix. Only twenty stars were considered so that there was little 

chance that stars would overlap due to their random placement and predefined PSF width. This 

was important because if stars were randomly placed close enough to one another that the 
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centroider could not distinguish them as separate stars, they would be centroided as a single star 

with an overall combined Mv brighter than the Mv of either individual star. The parameters of 

the imager and noise properties for this experiment are described in Table 5.2. 

Table 5.2 Parameters for MV Trade Study 

a (m2) n*0.0 1 

FFsR (A/W) 0.12 
gain 10 

butter (s) 0.1 
psfwidth 10 
RO (el) 41O*fsh- 
DK (el) 40 

noise threshold 50 

After running the stars through the centroider, each star's Mv was recalculated and compared to 

the originally assigned Mv. Figure 5.3 depicts this difference. In this case, all twenty stars were 

located and centroided correctly. 
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It is clear from this figure that, in general, brighter stars have smaller differences in calculated 

Mv verses assigned Mv. Dimmer stars, such as those dimmer than Mv = 2, have differences of 

over 0.1 magnitude. 

This experiment was also run for 500 stars for each Mv to obtain more statistical 

information. The code was still run with only twenty stars at a time, and only data sets that 

centroided all twenty stars correctly were included. The mean difference in assigned and 

calculated Mv, as well as its standard deviation, was obtained for each value of visual magnitude 

and the results are displayed in Table 5.3. 

Table 5.3 Statistical Mv Data for 500 Stars 

This data shows a nonlinear increase in both the mean value of the difference and standard 

deviation of the difference. As visual magnitudes approach values of 4, it becomes difficult to 

obtain accurate visual magnitude information for randomly placed stars. Data could not be 

obtained for Mv > 4 without the noise floor being dropped below the 50 value. These studies 

were not continued for dimmer magnitude stars due to the increased likelihood of noise spikes 

being centroided as stars. 

MV 
0 

1 

2 

3 

4 

In all, this trade study supports the fact that visual magnitude should not be used as the 

sole parameter in matching stars. However, although visual magnitudes should not be used for 

direct star matching between images, relative visual magnitude information can be used to rank 

stars in order of brightness. As shown in Chapter 4, stars of bright visual magnitudes have 

smaller errors in positioning. Thus it will be advantageous to incorporate stellar intensity into 

matching image processing algorithms to select stars that will provide the best information to 

obtain attitude information. 

Mean Difference 
0.0309 

0.03 1 1 

0.0353 

0.0552 

0.1362 

Standard Deviation of Difference 
0.0427 

0.0324 

0.0419 

0.0414 

0.0685 
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5.4 Pattern Matching 

Theoretically, if no noise was present in the system, relative and absolute attitude 

information could be obtained from single star matching between images. However, this is a 

highly unreasonable and impractical requirement for any star tracker or attitude sensor in 

general. Therefore, it is necessary to determine a different parameter in which stars can be 

matched between images without relying solely on visual magnitude; the general approach is to 

use interstellar angles, which is a much more accurate method of determining attitude 

information, given that the centroiding techniques provide accurate stellar positioning. 

5.4.1 The Angle Method and Pivoting 

Most pattern matching techniques use single or multiple star pairs and match the pairs' 

interstellar angle between images. This technique is generally deemed the "angle method, ~ [ 6 2 ]  

which is widely known to provide more accurate matching results than single star matching. 

Once interstellar angles of star pairs in one image are computed, they are matched to interstellar 

angles of star pairs in a subsequent image or to cataloged star pairs. This technique is the basis 

for many pattern matching algorithms because it is relatively simple, computationally 

inexpensive, and does not rely on other attitude sensors. 

If centroiding information were exact, a single star pair matched between several images 

or from one image to a star catalog should also be exact, and thus an exact attitude quaternion 

defining the motion of the spacecraft should be found. Unfortunately, the inevitable presence of 

noise, or even discretization alone, causes the centroids to be somewhat ambiguous, which leads 

to the possibility that a given image will have multiple star pairs possessing the same interstellar 

distances when accounting for centroid uncertainties through the requirement of positioning 

tolerances. Therefore, it is generally beneficial to match several star pairs and intelligently 

combine the attitude determination results to reduce uncertainty in spacecraft position and 

orientation. 

When considering matching either between images or to an onboard star catalog, an 

efficient method to use when more than one possibility for an angle match exists is known as 
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pivoting, which is implemented as follows. Given one star pair in the first image with a known 

interstellar angle, all possible angular matches in the second image or from the onboard catalog 

are marked. Then, one of the stars in the original star pair from the first image is paired with a 

third star in the first image. This new pair's interstellar angle is calculated in the first image, and 

then all possible matches are located in the second image or from the star catalog. Star pairs that 

constitute both of the angles in the second image or in the catalog are examined, as the two star 

pairs in the second image or catalog must share a common star. If more than one solution still 

exists, another pivot star is added and the process is repeated. This pivoting process can continue 

until a solution is found, or until the number of stars in the FOV is depleted. The unfortunate 

downside of pivoting is that it quickly becomes computationally expensive when more and more 

pivots are required for accurate pattern matching. 

As can be concluded from the understanding presented above, an image containing a 

larger number of stars can provide attitude information at a higher confidence level. For 

example, when considering matching pairs of stars for an image containing n stars, a total of 

unique star pairs exist. Similarly, when considering matching triads of stars, a total of 

unique triads of stars exist, and when matching quadrilaterals of stars, a total of 

unique quadrilaterals of stars exist. Thus, any number of these polygons, or any combination of 

them, can be used to match between frames. 
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5.4.2 Triangle Matching Algorithms 

Numerous triangle matching techniques have been developed for stellar pattern 

matching.[639 649 651 They generally combine some form of the angle method, in which the 

interstellar angles of star pairs are compared either between images or to an onboard catalog. 

Triangles are advantageous over larger-sized polygons mainly because they are simpler in 

nature, require fewer stars to be present in the FOV, and enable less computationally expensive 

algorithms. Examining triangles instead of star pairs adds the additional constraints that three 

angles must be matched and that each star must be attached to two sides of the triangle, which is 

beneficial when multiple star pairs with similar interstellar angles create ambiguity. 

However, several others in the literature have employed techniques in replacement of or 

in addition to the angle method when considering triangles. Instead of using the typical side- 

side-side (SSS) properties of the triangle, which is done when using the angle method alone, 

side-angle-side (SAS) techniques can also be employed to further reduce ambiguities. Or, by 

using other triangle properties, such as area and polar moments of inertia, authors have shown an 

ability to match stars more quickly and more efficiently due to the fact that fewer pivot stars are 

required for accurate matching. Two of these methods are briefly discussed below. 

Spherical Triangle Pattern Matching 

Cole and Crassidis have developed a robust pattem matching technique that employs 

spherical triangles for fast and accurate pattem matching.[661 In their algorithms, spherical 

triangles from sets of three stars within the FOV are matched to spherical triangles stored within 

an onboard star catalog. Spherical triangles are advantageous over the angles because more 

information can be obtained from spherical triangles; the two different properties of spherical 

triangles, the triangle's area and polar moment of inertia, can be used to quickly eliminate 

ambiguities when multiple match possibilities arise. The disadvantage of the spherical triangle 

method is that it requires a large amount of data storage space to balance its speed and accuracy, 

which may make this method impractical for small-scale star trackers. 

Given that there are at least three stars in the FOV, the spherical triangle algorithm can be 

implemented. The area of a spherical triangle, An, is given by[671 
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with 

and 

where bi is the direction of the ith star in the star tracker body frame. Additionally, the standard 

deviation of the area error for a spherical triangle can be found using a linearization approach.[681 

This information is included as both a measurement of precision and a means of bounding the 

ranges of possible areas that correspond to the desired spherical triangle. 

In general, two spherical triangles that have the same area can have very different polar 

moments of inertia and vice-versa. Thus both of these properties can be used simultaneously to 

greatly reduce the number of possible matches. The polar moment of inertia of the spherical 

triangle, ZpMsr, is calculated by dividing the spherical triangle into n smaller spherical triangles. 

n 

I,, = z 9 ' d ~  

where 0 is the arc distance from the centroid of the smaller spherical triangle to the centroid of 

the overall spherical triangle and dA is the area of each smaller spherical triangle. Larger values 

of n produce a greater accuracy in polar moment calculation, but can also greatly increase the 
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computational expense. The standard deviation in error of the polar moment of inertia is difficult 

to analytically compute. However, a Monte Carlo simulation of 1000 random spherical triangles 

from a star catalog with 100 polar moment measurement calculations per triangle demonstrated 

that the probability that the IpmT will be within a 30 bound would occur at least 99.7% of the 

time, as to be expected. 

Planar Triangle Pattern Matching 

Two years following the development of the spherical triangle pattern matching 

technique, Cole and Crassidis designed a planar triangle pattern matching algorithm.'691 Just as 

the spherical triangle algorithm, the planar triangle algorithm uses the area and polar moment of 

triangles to match stars to an onboard catalog. 

The area of a planar triangle, APT, is calculated using Heron's equation 

APT = , / s ( s - a ) ( s - b ) ( s - c )  

with 

and 

where bi is the direction of the im star in the star tracker body frame. The polar moment for a 

planar triangle, IPMPT, is given by 
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In general, the planar triangle pattern matching and spherical triangle pattern matching 

techniques have relatively similar performance characteristics. They are both approximately 

one-and-a-half times more successful than the angle method alone and require approximately 

one-third as many pivots as the angle method. As a result, they are also computationally more 

efficient. Due to the complexity of the formulas for the spherical triangle method, the planar 

triangle method is more computationally efficient. 

5.43 Rate Matching 

Rate matching techniques allow for faster pattern matching due to their ability to 

incorporate current rate information to predict where stars will be located in future images. The 

obvious disadvantage is that this method only works when accurate rate information is readily 

available. The effectiveness of rate matching algorithms is defined by their ability to accurately 

predict future rate information. In general, the reliability of rate matching is dependent upon the 

speed at which the spacecraft is tumbling; faster tumble rates require images to be taken more 

frequently and processed more quickly. 

Several predictive pattern matching techniques have been proposed in the literature. For 

example, Samaan, Mortari, and Junkins have proposed two recursive mode star identification 

algorithms."01 The spherical polygon approach accesses all cataloged stars observed by the 

imager FOV and recursively adds or removes candidate cataloged stars according to the 

predicted image motion, which is based on current rate information. In this algorithm, star 

identification is accomplished by matching interstellar angles. The star neighborhood approach 

uses star neighborhood information and a cataloged neighborhood pointer matrix to access the 

star catalog. Previously identified stars are used to access candidate stars to match with the 

current stars. This technique is also dependent on the stellar locations with respect to the four 

corners of the image frame. 

5.4.4 Selecting Stars to Process 

All stars appearing in one image would ideally be matched to all stars in the following 

image. However, this is rarely the case, as some amount of time is required to process the stellar 
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data for one image before the camera can record a second image, and so consecutive images 

must be separated by a specific amount of time. As a result of this time passage, the satellite will 

most likely rotate in such a manner that causes particular stars fall off of or onto the imager 

plane. 

However, in reality, based on integration time, rotation rates, and noise, stars are 

continually falling on and off of the imager plane. Several issues must be considered when 

selecting the best stars to match between images. Contributing factors are stellar intensity, 

absolute location on the imager, and relative distance from other stars. In general, the matching 

techniques for LIST and FAR-MST begin by using the brightest stars on the image because they 

have the most accurate centroids. However, the stars are still selected in a manner that does not 

assume that a selected star will remain in consecutive images. 

5.5 LIST and FAR-MST Matching Techniques 

Four stellar pattern matching algorithms have been proposed for determining relative 

attitude information between consecutive images. The distance match algorithm and triangle 

match algorithm define pairs and triads of stars, respectively, in one image and matches them to 

the same pairs or triads of stars in a subsequent image. Once stellar matches are found between 

images, the attitude quaternion that defines the star tracker's angular motion can be determined. 

The rate match algorithm uses the current attitude rate information to quickly and precisely 

estimate where stars are likely to be located in the present image based on the stars' locations in 

previous images. Again, once the star matches are found, attitude quaternions are easily 

generated. Each of these algorithms can also lead to absolute attitude information. The stars can 

be directly matched to an onboard star catalog, usually sorted by interstellar separation angles, 

and once a match is determined, a previous or subsequent attitude quaternion can be translated 

into an absolute attitude quaternion based on the desired frame of reference. The n-vertex match 

algorithm matches n-sided polygons from one image to an onboard star catalog and absolute 

attitude information is automatically generated. 
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5.5.1 Pair Match 

The pair match algorithm matches pairs of stars between consecutive frames. The 

algorithm first centroids all stars in both images and creates a distance matrix for each image that 

defines the distances between all pairs of stars on that image. The algorithm then selects stars to 

match between the two images based on their visual magnitude, angular separation, and 

centroided position on the imager; brighter star pairs with large interstellar distances that are 

located in places on the imager that will most likely remain in consecutive images are selected 

first. Based on the stars' locations relative to the center pixel on the image in the first frame, the 

stars can be uniquely matched to those in the second frame based on the motion of the center 

pixel into the second frame. Orientation is further discriminated by visual magnitude and other 

nearby stars. 

This method is robust in that it can account for stars that fall off the edges of the imager 

between the first and second images due to rotation and for new stars that appear in the second 

image. The disadvantage of this pair match is that there are numerous special cases that must be 

taken into account. The most likely situation that cannot be solved by simple pair matching is 

dealing with star pairs that have the same interstellar angles that are located on the same frame. 

Given that actual images are tainted with noise variations, the resulting uncertainties in 

centroiding locations will require positioning tolerances to be placed on each star, making it easy 

to have several star pairs in a given image having the same interstellar distances. Because of this 

uncertainty, the pair match is not used onboard LIST or FAR-MST unless only two stars are 

present in the image. 

5.5.2 Triangle Match 

The triangle match was created to deal with the issue of multiple interstellar distances 

occurring in the same image. Instead of examining two stars simultaneously, this algorithm 

examines three stars concurrently. All stars are first sorted from brightest to dimmest. An angle 

matrix is created for each image that defines all of the interstellar angles for each star pair. Then, 

beginning with the brightest stars, all triads of stars are methodically examined until a match 
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between images is established. One general looping structure to select the three stars, which 

covers all possibilities of star triads for N stars, is 

The disadvantage of this looping is that it does not effectively consider the fact that a star in the 

first image may not appear in the second image; a star in the first image could easily fall out of 

the camera FOV or drop below the noise floor. If, for example, star #1 does not occur in the 

second image, considerable time is wasted in attempts to match a triangle containing that star 

that does not even occur in the second image. Therefore, a smart looping structure has been 

implemented to prevent any given star from being used as one star in the triangle for more than 

three consecutive iterations. This looping structure still considers the brightest stars first, but 

removes them systematically in case they are not present in the second frame: 

This looping seeks to maximize the changing of stellar indices from one triad selection to the 

next; this maximization defines the optimal looping ~tructure."~' However, this particular 

looping structure loops over the stars to exclude, whereas most algorithms loop over stars to 

keep. 

Once a triad of stars is selected in the first image, the interstellar angles of each star pair 

in the triad is searched for in the angle matrix of the second image. The star indices in the 

second image that match the interstellar angles found in the first image are listed in a candidate 

star matrix. It is important to note that multiple star pairs in the second image may have the 

same interstellar angles, but all star pairs that contain one of the angles defined by the legs of the 
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triangle are recorded in the candidate star matrix. Examination of the candidate star matrix 

allows for its reduction to uniquely determine which three stars in the second image are the 

match to those in the first image. 

For example, suppose that the three stars labeled 1,2, and 3 in Figure 5.4 are the three stars 

in the first image that have been selected to be matched to stars in the second image. The 

interstellar distances for this triangle are a,  b, and C, as displayed in the figure. 

Figure 5.4 Stars to Match from Image 1 

The second image is scanned for all star pairs that have interstellar distances of either a ,  b, or C. 

Suppose the results of this scan are as displayed as in Figure 5.5; the candidate star matches in the 

second image are star numbers 3,4,5,  and 9. 

Figure 5.5 Candidate Matching Stars from Image 2 
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The candidate star matrix is formed using the new star indices from the second image, as shown 

in Figure 5.6. Note that since stars have not yet been uniquely determined they must be listed a 

second time in the candidate star matrix, in reverse order. 

star # in image 1 2 3 

9 
candidate star 
# in image 2 

5 5 1 b  9 
3 
9 3 

Figure 5.6 Candidate Star Matrix 

The rows of the candidate star matrix can be eliminated as follows. First, consider each column 

of the candidate star matrix. If any particular star index in that column does not appear at least 

twice, that entry and its entire row can be removed because that star index cannot be a star 

candidate if it does not join at least two sides of the triangle. Thus, from this example, candidate 

stars 4 and 9 each appear only once in the first column, so these rows can be eliminated from the 

candidate star matrix. Similarly, candidate stars 3 and 9 appear only once in the second column, 

and so their respective rows can be removed from the matrix. In this case only two columns 

must be reviewed for elimination, as all remaining stars occur twice in each column. This 

reduction is illustrated in Figure 5.7. 
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star # in imaae I { 1 2 3 

I 3 5 

C 
candidate star 5 9 
# in image 2 I- 

Figure 5.7 Row Reduction of Candidate Star Matrix 

Once all appropriate rows are removed, the resulting matrix will always contain either zero rows 

or three rows. If three rows remain, a triangle has been matched, and the correct star match to 

the star number in the first image is the value left in that column of the candidate star matrix. If 

zero rows remain, the algorithm could not uniquely match the three stars in the first frame to 

three stars in the second frame. In these instances one of the stars selected in the first image did 

not appear anywhere in the second image; it either moved outside of the appropriate FOV or fell 

below the noise threshold. The only way for this algorithm to fail is if duplicate triangles exist in 

the same image and an erroneous match is made. 

5.5.3 Rate Match 

The main idea behind rate matching algorithms is to predict stellar locations based on 

previously determined rate information. This is accomplished by knowing centroided star 

positions for both images, quaternion rate information, and time differences between the images 

to compare. Stellar locations are projected from the first image into predicted locations in the 

second image based on the current attitude information; stars that are predicted to fall outside of 

the FOV are ignored. Stars are then matched in the second frame to the stars located nearest to 

the predicted locations. The rate match algorithm outputs a star list that maps the stars in the 

first image to stars in the second image. 
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The primary advantage of this technique is that since stellar locations are predicted, the 

area of the pixel matrix that must be searched is greatly reduced. Additionally, it is robust 

enough to handle faster rotation rates. The clear disadvantage is that the algorithm requires rate 

information from previous images and assumes this rate is' constant and can be directly applied to 

subsequent images. This may only be a valid assumption for very short periods of time, which 

could be problematic if the star tracker is facing a direction in the sky that is devoid of many 

stars. Hence, the primary challenge of rate matching algorithms is in predicting how far into the 

future rate information can be projected. 

5.5.4 N-vertex Match 

A fourth algorithm, the n-vector match algorithm, has been implemented to solve lost-in- 

space problems, where no attitude information is known a priori. This algorithm utilizes the k- 

vector[611 approach to access an onboard star catalog in a searchless manner, thus providing 

immediate matching information to the star tracker. The onboard star catalog is based on a 

specified Mv and camera FOV, which is based on the resolving power of the imager and physical 

size of the optics subsytem. The directory contains all cataloged star pairs whose interstellar 

angles are less than the camera FOV and within the limits of resolvable Mv. The star pairs are 

ordered by increasing interstellar angles, and the value stored in the catalog is the sine-squared of 

the interstellar angle. 

Creating a Reduced Star Catalog 

A reduced version of the NASA SKY2000 Master Star Catalog was created to be stored 

onboard the star tracker. This catalog was created by searching the entire sky in one degree 

increments and selecting only the brightest stars in the current FOV to be included in the catalog. 

The original star catalog of all stars in the NASA SKY2000 Master Star Catalog brighter than 

Mv = 6 is shown in Figure 5.8. There are 5060 stars in this catalog. 
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Original Star Catalog 
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Figure 5.8 All Stars in NASA SKY2000 Master Star Catalog Brighter than MV6 

After the reduction, which included keeping the eight brightest stars in each FOV, the catalog 

was reduced to 540 stars, as shown in Figure 5.9. 
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Figure 5.9 Reduced Version of NASA SKY2000 Master Star Catalog 

Double Star Reduction 

Reduced Star Catalog 

Stars whose interstellar separation angles are indistinguishable due to the low resolving 

power of the lens can be combined into a single star, and are listed in the onboard star catalog as 

a single star. This is accomplished by locating an overall centroid position on the imager and 

80- 

calculating an overall visual magnitude. The combined visual magnitude, Mv, is found by 
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where MvSl and MY2 represent the individual visual magnitudes of the two stars. The combined 

centroid unit vector representing the combined star weighs the two unit vectors by their stellar 

intensity 
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where vi is the unit vector for the current star.13] 

Projection of Stars onto the Celestial Sphere 

Prior to accessing the star catalog in the n-vertex match algorithm, centroided stars are 

projected from locations on the imager in the x-y plane to positions on the celestial sphere. The 

position on the celestial sphere is defined by a unit vector pointing towards the position on the 

celestial sphere. The conversion from a centroid location into a unit vector is 

unit Vect, 

unit Vect, 

unitvect, 

where x and y are the centroid x and y coordinates on the imager plane, respectively, pp, and pp, 

are the pixel pitches of the imager in the x and y directions, respectively, and f is the focal length 

of the lens. If the imager contains square pixels, (6.3) can be reduced to 

unit Vect, 

unit Vect, 

unitvect, 
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The k-vector 

The n-vertex match is efficient due to its use of the k-vector technique. The k-vector 

works in a manner similar to a hashing function, whose purpose is to arrange data in a manner 

conducive to rapid access. The k-vector allows for the avoidance of searching an entire star 

catalog, as it points directly to the indices of the admissible range of stellar pairs. 

Let A be the column vector of n elements representing the cosine of all interstellar angles 

and sorted between 0 and 1. The plot of A is shown below in Figure 5.10. 

ri n2(0) 

I 

0 

Index # 
1 n 

Figure 5.10 Plot of A 

Because there are n elements, an nth order polynomial is required to uniquely define this curve. 

However, this curve can be approximately by a linear curve as shown below in Figure 5.11. 
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Figure 5.11 Linear Approximation of Plot of A 

Let B be the column vector of n elements representing the linear approximation of the sine- 

squared of all interstellar angles and sorted between 0 and 1. Both the cosine of the interstellar 

angle and the sine-squared of the interstellar angle are appropriate candidates since they present 

nearly linear distributions over the list of star pairs. The sine-squared values are chosen because 

sine-squared of theta is two times more sensitive to changes in theta than the cosine of theta is, as 

and 

d - (sin2 (8) )  = 2 sin (8)  cos (8)  = -28 . 
d8 

The goal of the k-vector is to find the index number i by first determining the value of t. This is 

accomplished by plugging the known value kv into the linear approximation kv = at + b and 

solving for t. This value t is the index into B, and the value in B at index t is the index into A, 

which is i.[611 
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The n-vertex Match Algorithm 

The n-vertex match is a modified version of Mortari et. al's Pyramid match.[711 The 

Pyramid match selects a triad of centroided stars in a given image and matches them to the 

onboard star catalog via the k-vector approach. Once a successful match is found, a fourth star is 

added to the triad and checked against the catalog to increase the confidence of stellar 

identification. If a fourth star cannot be successfully matched, then the algorithm searches for a 

new triad of stars and repeats the process until four stars, a "pyramid," are successfully matched 

to the catalog. One advantage of this original algorithm is that it can be extended to search for an 

n-star polygon to increase the confidence level to one that adequately meets the requirements of 

the star tracker. 

Three versions of the n-vertex match algorithm have been created, one each for values of 

n equal to 3, 4, and 5. These modified versions of the pyramid algorithm hold slightly higher 

image requirements, but accelerate the search process because instead of matching three stars 

first and then matching a fourth, a match on all four stars is attempted at once. The same looping 

structure as found in the triangle match is implemented to maximize the changes in the index of 

stars from one pyramid of stars to the next. The algorithm does not terminate until an n-sided 

polygon of stars is successfully matched to the catalog, or all star pair candidates have been 

exhausted. 

As an example of how the n-vertex match algorithm works, consider the n-vertex match 

when n is equal to 4. Let Y be the matrix containing all the star pair indices in the onboard star 

catalog within the camera field of view. Suppose four stars, A, B, C, and D are selected to 

match on a given image. These stars are connected to one another by six baselines numbered 1 

through 6, as shown in Figure 5.12. 
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- 

Figure 5.12 N-Vertex Match Example with 4 Stars 

To determine the four stars in the catalog that match the stars on the image, a candidate star 

matrix C is created that contains six columns, or 

one for each baseline of the 4-vertex pattern. The elements of C are the indices of all of the 

candidate stars pairs determined by the k-vector. Since star A must be connected to stars B, C, 

and D, star A must be listed as an index in columns 1, 2, and 3 of C. This knowledge would 

theoretically be enough to uniquely match the 4-vertex star pattern, but the imprecision in the 

centroider prevents this from occumng in all circumstances. 

To accommodate for the inaccuracy of the centroider, the second matrix, S, is built with 

one row for each star in the catalog that is selected by the k-vector. The entries of the S matrix 

are determined as follows. Suppose, for example, the k-vector selected stars with indices 45 and 

46 as candidate stars corresponding to baseline 1 (these entries are found in column 1 of the C 

matrix). Thus, in column 1 of S, a 46 is entered in row 45 and a 45 is entered in row 46. This 

says for baseline 1, star 46 could be either star A or star B, and if it is determined to be either star 

A or star B, star 45 is the other star. In the same manner, all of the remaining entries in column 1 

of C, are appropriately placed in the S matrix. This is also done for the remaining five baselines. 

It has already been determined that any candidate for star A must appear in columns 1,2, 

and 3 of S. It follows that any candidate for star B must appear in columns 1, 4, and 5, any 
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candidate for star C must appear in columns 4, 5, and 6, and any candidate for star D must 

appear in columns 3, 5, and 6. With this knowledge, a "self-consistency" check is performed to 

assign star numbers to A, B, C, and D. 

Suppose the S matrix is created to be as shown in Table 5.4. 

Table 5.4 Results of S Matrix Construction 

It can easily be determined that the stars are matched as shown in Figure 5.13. 

Figure 5.13 Results of N-Vertex Match Example 

In most cases, a unique solution can be found by this method alone. If, however, a set of non- 

unique solutions are found, a fifth star can be considered. Either that fifth star can replace one of 

the four original stars so that four are matched again, or all five can be matched together. Further 

trade studies need to be investigated to determine whether or not matching multiple patterns of 

four stars or adding a fifth star will provide the highest level of performance at the lowest 

computational cost. 





Chapter 6 

IMAGE PROCESSING: DETERMINING 
THE ATTITUDE QUATERNION 

6.1.1 Wahba's Loss Function 

If measured and reference vectors are error free, the rotation matrix between body frame 

to reference frame is always the same. However, if measurement errors exist (e.g. noise) a least- 

squares method is used to minimize the weighted sum of the squares of the observed residuals.[721 

The most common method for determining the attitude of the spacecraft is through 

implementation of a loss function, which was first posed by Wahba in 1965.[731 In terms of 

attitude determination, the least squares problem to be solved is defined as 

where bi and ri are the unit vectors describing the stars on the image and the corresponding stars 

from the catalog; the goal is to find the attitude matrix A that minimizes the loss function 

Originally, the A matrix was calculated directly, but for practicality in application, 

algorithms were created to solve for a quaternion that represented the attitude matrix.[681 The 

quaternion is advantageous because it provides the same amount of information as the attitude 

matrix, but requires only four elements instead of nine. The quality of the attitude matrix or 

attitude quaternion is expressed statistically by a covariance uncertainty matrix. The methods 

considered for LIST and FAR-MST star trackers include Crassidis and Markley's Predictive 

Attitude Determination algorithm, Davenport's q-method and Shuster's QUEST algorithm, and 

Markley's Singular Value Decomposition algorithm and his updated version, the Fast Optimal 

Matrix algorithm, all of which are discussed below. 
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6.1.2 The Predictive Attitude Determination Algorithm 

The Predictive Attitude Determination (PAD) algorithm is derived from a general 

nonlinear predictive filter approach and holds the primary advantage over other algorithms in 

that it is able to be applied when anisotropic measurements errors exist. The attitude model is 

assumed to be given by the quaternion kinematics model, which does not require a dynamics 

model that generally requires a complicated Kalman filter approach. 

The attitude rate can be modeled by a constant model error d between measurements 

The attitude matrix that minimizes Wahba's loss function is related to the quaternion 

where 

and 

with I being the 3 x 3 identity matrix. 
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A covariance matrix statistically describes the amount of errors in the attitude matrix A. 

Assuming that the errors between the vector measurement sets are uncorrelated, the model error 

is shown to be 

using the shorthand notation for the cross product operator. The cross product c = axb can be 

expressed as c = [a x] b where the matrix [a x] is defined as 

From this, the attitude error covariance is found to be 

If the measurement errors are isotropic, (6.13) and (6.15) can be reduced to 

and 

respectively, where (6.17) is equivalent to the QUEST covariance, discussed next. 

6.13 The q-method and the QUEST Algorithm 

The q-method provides an optimal least-squares estimate of the attitude of a spacecraft, 

given two sets of vector measurements: one in the body frame and the same set in a reference 
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frame.[741 The quaternion estimation, QUEST, algorithm approximates the q-method, making it 

more computationally effi~ient.'~" Because of its ease of implementation, efficiency, and 

relatively high accuracy the QUEST algorithm is the method of choice for determining the 

attitude quaternion of small-scale satellites and spacecraft. It has been implemented for all of the 

pattern matching algorithms discussed in Chapter 5, and has proven to provide sufficiently 

accurate attitude information to meet LIST and FAR-MST goals. 

The key to both the q-method and the QUEST algorithm is to define, recognize, and 

solve an eigenvector problem, which can be derived from Wahba's loss function described in 

(6.8). This loss function can be redefined in terms of quaternions as 

where the goal is to find the quaternion q  that minimizes J. This is identical to finding the 

quaternion that maximizes g ( q )  in 

Keat showed that g ( q )  can also be written as861 

The goal is to find an attitude matrix, K, that transforms each unit vector from one image to the 

next)751 or from one image to that stored by a star catalog. 

Equation (6.20) is solved by first weighing each stellar unit vector by its position 

accuracy, which was determined by the centroider; the smaller the position uncertainty, the 

higher the weighting. This weighting was found by knowing the SNR of each individual star, 

and was computed via (4.2). This matrix has been defined as 
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with 

and 

where ai is the weighting based on centroid uncertainty and mk is the sum of the uncertainties. 

To uniquely determine spacecraft attitude, a minimum of three parameters are required. With a 

quaternion, which contains four parameters, the constraint 

must also be satisfied. This constraint can be accounted for in the minimization problem by 

incorporating it as a Lagrange multiplier. Thus the new maximization function that incorporates 

the constraint is 

Following differentiation, 

results, which is an eigenvalue problem with 

g ( q ) = q T ~ q = q T & = & T q = ~ .  
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The eigenvalue that maximizes the gain function described in (6.19) is the largest eigenvalue of 

K; the eigenvector corresponding to this eigenvalue is the least-squares optimal estimate of the 

attitude. In other words, 

s = Aopt (6.29) 

The q-method requires directly solving the eigenvalue/eigenvector problem, which is 

generally computationally demanding. QUEST was developed to deal with this issue, and uses 

an approximation to evaluate the largest eigenvalue. QUEST then calculates the eigenvector 

corresponding to this approximate eigenvalue. 

Rearranging (6.19) and (6.29), 

can be derived. Since the optimal eigenvalue should correspond to a small loss function, the 

optimal eigenvalue can be approximated by 

Aopt apl= mk 9 (6.3 1) 

which is the heart of the QUEST algorithm. 

Once the optimal eigenvalue is found, the corresponding optimal quaternion can be 

evaluated directly, without computation of the corresponding eigenvector of IS, using Rodriguez 

which gives 

with 
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A covariance matrix can also be calculated for the QUEST algorithm to quantitatively 

define estimation errors. The covariance matrix, Pna, was calculated to determine the maximum 

uncertainty associated with the computed attitude quaternions. The covariance matrix was found 

via 

with 

and 

where 0 ~ 0 ~  is the sum of the individual centroid uncertainties, oi is the centroid uncertainty of the 

i" star, and wi is the unit vector defining the ith ~entroid.''~] 

The traditional QUEST algorithm transforms the unit vectors from a reference frame (e.g. 

that of the star catalog) into a body frame (e.g. that of the current image). However, the same 

method can be applied to transform unit vectors from one body frame to another (e.g. from one 

image to the next). Therefore, QUEST can be used to find attitude quaternions that describe 

relative spacecraft motion or absolute spacecraft motion under LIS conditions. 

The QUEST algorithm has been selected as the method for determining the attitude 

quaternion for the LIST and FAR-MST star trackers because of its computational efficiency and 

relatively high accuracy. Performance characteristics using this method are discussed in Chapter 

7. 
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6.14 The Singular Value Decomposition Algorithm 

Markley's Singular Value Decomposition (SVD) algorithm is one of the most robust 

numerical algorithms for minimizing Wahba's loss function because it requires no approximates, 

remains numerically stable for rank two and three matrices, and has the advantage over the q- 

method and QUEST in that it provides the eigenvalues and eigenvectors of the covariance 

matrix.r781 The covariance of the attitude estimate is useful in understanding attitude uncertainty 

because it is a statistical measure of the estimation errors in the reference and body vectors. 

Unlike the q-method and QUEST, it solves directly for the attitude matrix A, rather than a 

quaternion representing A. 

Equation (6.18) can be transformed via matrix manipulations to be equivalent to 

where tr is the trace of the matrix and 

In the SVD algorithm, the solution to Wahba's problem is determined via singular value 

decomposition of the matrix B, which is given by 

where U and V are orthogonal matrices and 

S = diag(sl,s2,s3) 

with 

s, ls, ls, 20. 

The matrix B is strategically redefined as 
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B = u+s'v+~ (6.42) 

where v + ~  and U+ are transformation matrices that transform the attitude matrix from the 

reference frame to an intermediate frame and from the intermediate S frame to the body frame, 

respectively and are defined as 

V+ = v [diag ( 1 ,  1, det (V ))] , (6.43) 

and 

U+ = u [diag ( I ,  1, det (U ))] , 

and 

S' = diag ( s l  , s2,  ds3 ) 

where 

Additionally, define 

w = u + ~  s'v+~ = cos ( @ I )  + I - cos (a) eeT - sin (@) [ex] (6.47) 

where e is the unit vector Euler axis representation of W and @ is the Euler rotation angle 

representation of W. 

Substituting (6.42) into (6.37) and using cyclic invariance of the trace and (6.47), 

L ( A )  = I - t r ( S t w ) = l - t r ( S t ) + ( l - c o s ( @ ) ) [ s ,  +ds3 + ( s l  -s , )e;  + ( s ,  - d ~ , ) e , ~ ] .  (6.48) 

Because of (6.41), L ( A )  is minimized when @ = 0 ,  so the optimal A is given by 

L(A,,)  = 1-tr(S') = 1-s, -s2  -ds3 
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which means that 

Aopt = u+v+' = U [ d i ~ ~ ( l , l , d ) ] ~ ~ .  (6.50) 

Once the optimal A matrix that minimizes the least-squares loss function is found, the 

covariance matrix P can be calculated. Let D be defined as 

Then the covariance matrix can be derived to be 

P = om2 ( I  - s f )  D - ~  

where 

and ar: and ad are the variances of the reference and observation errors, respectively. 

6.1.5 The Fast Optimal Attitude Matrix Algorithm 

Like SVD, the Fast Optimal Attitude Matrix (FOAM) algorithm solves for the optimal 

attitude matrix directly. The purpose of FOAM is to present a more efficient method to estimate 

the attitude matrix than that proposed by the SVD algorithm.[681 This is accomplished by 

rewriting Aopt in terms of properties of the B matrix and three scalar components 

where 
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and 

r q s 2  +s3)(s3 +s,)(s, +s,). (6.57) 

The advantage of (6.54) over (6.50) is that the scalar coefficients K, 1, and C can be computed 

either iteratively or analytically, without the requirement of using SVD. 

Similarly, the covariance matrix can be rewritten in terms of these same coefficients. 

Markley showed that (6.52) could be more easily written as 

where h > 0. Again, through the use of the scalar coefficients, this equation eliminates the need 

to use SVD. 





Chapter 7 

ALGORITHM PERFORMANCE 

There are numerous approaches to test the algorithms discussed in Chapters 4 through 6. 

Simulated images, nighttime sky photographs, and images generated by the FAR-MST 

prototypes have all been used to obtain performance characteristics for the centroiders, pattern 

and rate matching algorithms, and attitude determining functions. Images simulated in Matlab 

have been created by using the parameters of the optics and imager selected for LIST and FAR- 

MST, whose quantities are listed in Table 7.1. These images hold the PSF width constant across 

the entire imager pixel matrix, which implicitly assumes the implementation of a double lens. 

Table 7.1 Parameter Settings for Centroider Performance Tests 

Two different types of simulated images have been created: one that generates its own 

stars and one that pulls stars from various regions in the sky, as defined in the NASA Sky2000 

star catalog. Images that generate their own stars, randomly place the stars of varying Mv on a 
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simulated pixel matrix to sub-pixel resolution and individually render them to project Gaussian 

images on the pixel matrix; the appropriate amounts of dark current, readout, and stellar shot 

noise are then added to the pixel matrix. These images are generally used to test algorithm 

robustness, as they can be easily modified to measure the effects of changing certain parameters, 

such as stellar intensity, noise threshold, lens area, or PSF width. 

Simulated images that use actual stars from the NASA SKY2000 star catalog are used 

when a sequence of images is desired. These images are generated by defining a maneuver 

profile that is based on a desired location in the sky, a particular FOV, and desired direction of 

movement. Stars are then collected from the star catalog and placed onto a layered pixel matrix, 

where each layer represents an image snap-shot of the sky. The appropriate dark current, 

readout, and stellar shot noise are also added to these images. 

A sequence of fourteen images based on the NASA SKY2000 star catalog have been 

generated to examine various performance characteristics of the two weighted sum centroiding 

algorithms, as well as the triangle match, rate match, n-vertex match, and QUEST algorithms. 

The images were created by selecting a known region in the sky and mapping the stars in that 

region onto a pixel matrix. Since a specific maneuver file rotated the images through a series of 

pre-defined motions, each image had an exact set of centroid locations for all of the stars on that 

image and a specified attitude quaternion defining the pointing direction of the image in the sky. 

Stellar shot, readout, and dark current noise were then added to the images. The fourteen images 

were run through two different weighted sum centroiders, as well as the triangle match, rate 

match, n-vertex match, and QUEST algorithms to determine approximated centroid positions of 

all the stars in each image, the attitude quaternion that location of each image in the sky, and the 

relative attitude quaternion that defines the motion between consecutive images. Studies of 

algorithm performance included comparisons of execution times between the centroiding 

algorithms, differences between the actual and computed attitude quaternions defining the 

direction of pointing in the sky, differences between the actual and computed quaternions 

defining the movement of the spacecraft between images, and the amount of error propagation 

over time resulting from these motions. 
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7.1 Centroider Performance 

Two centroiding algorithms, each implementing a weighted sum technique, have been 

created to centroid the images. Both centroiders determine the centroid x-y position on the mage 

plane, stellar brightness, and aspect ratio for each star in the image. The difference between 

starCentroid2 and starCentroid3 is the type of filtering used to eliminate likely noise spikes, as 

discussed in Chapter 4. This trade study has been completed to determine which centroider 

performs best under various noise conditions, where the "best" centroider is the one that 

centroids the stars the most accurately and in the shortest time. 

7.1.1 Centroider Speed 

Figure 7.1 through Figure 7.5 compare the differences in execution times for starCentroid2 

and starCentroid3 at five different noise threshold values. Again, these speeds were calculated in 

the Matlab environment, which is slower than the C environment that will be used onboard LIST 

and FAR-MST; the relative centroiding times are what is important rather than the magnitude of 

the times. 

" 
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Image Number 

F i r e  7.1 Centroiding Execution Times for Noise Threshold of la* 
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Figure 7.4 Centroiding Execution T i e s  for Noise Threshold of 3a- 
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Table 7.2 displays some of the significant statistics for this trade study that help to explain 

the results shown in the figures above. The highlighted entries show the centroider that 

performed the fastest. The "stars centroided" column shows the number of stars accurately 

centroided by the respective centroiders; the range is due to the fact that each entry in this 

column represents all fourteen images, where each of the fourteen images contains different 

numbers of stars. Overall centroider times were split into two components: time to pre-filter and 
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time to centroid. For each noise threshold level, the average (mean) and standard deviation (std) 

of the pre-filter and centroid times calculated over the fourteen images is given. 

Table 7.2 Weighted Sum Centroider Comparison Statistics 

noise threshold stars centroided time to pre-filter (s) time to centroid (s) 

(# 0)  
centroider 

(#I mean std mean std 

1 
starCentroid2 10 to 17 1.1860 0.0363 0.01 88 0.0053 

0.3339 0.0015 0.0393 0.0084 

0.4976 0.0254 0.0135 0.0041 
1.5 

0.3215 0.0016 0.0214 0.0045 

2 
starCentroid2 5 to 10 0.1698 0.0132 0.0109 0.0036 

0.3216 0.0027 0.0227 0.0028 

3 I 0.0132 0.0013 0.0085 0.0032 
sta d3 2 to 5 0.3192 0.0024 0.0204 0.0029 

4 
2 to 6 0.0023 0.0008 0.0071 0.0030 

1 to 3 0.3180 0.0013 0.0198 0.0036 

In both centroiders, the actual centroiding methods are identical; the difference in these 

algorithms is in the pre-filter method. The starCentroid2 and starCentroid3 centroiding times 

vary because of the results from the pre-filtering. It can be seen in this table that, in every case, 

the time to pre-filter significantly dominates the time to centroid. It is also seen that the time to 

pre-filter varies considerably with the noise threshold level for starCentroid2, while the time to 

pre-filter is somewhat less dependent on the noise threshold value for starCentroid3. This, again, 

is due to the nature of the pre-filter used in each centroider. In starCentroid2, the filtering 

looping structure is primarily based on the number of pixels that break the noise threshold, which 

is dependent on the value of the noise threshold. In starCentroid3, the filtering outer-most 

looping structure is based on the total number of pixels in the entire image, which is a constant 

regardless of the level of the noise threshold, and an inner loop is based on the pixels that break 

the noise threshold. As noise threshold levels increase, the number of pixels that exceed the 

threshold is reduced. This explains the major decrease in mean pre-filtering time for 

starCentroid2 for increasing values of the noise threshold. The slight decrease in mean pre- 

filtering time for starcentroid3 is due to the fact that this filter contains an inner loop that is 

based on the number of pixels that exceed the threshold; higher thresholds contain fewer pixels 

to be considered in this loop. 



Chapter 7 - Algorithm Performance 133 

7.1.2 Centroider Accuracy 

Centroid accuracy was tested by comparing the actual centroids defined by the maneuver 

profile to the centroids calculated by starCentroid2 and starCentroid3. For noise threshold levels 

of lonoise, 1 .5~0 i se ,  2onoisc, 3onoiso and 4 onoise, all fourteen images were examined and evaluated. 

The first five images at the lonoise and 3onOise threshold levels, shown in Figure 7.6 through Figure 

7.25, sufficiently represent the general trends seen across all fourteen images at the five different 

noise threshold levels. 

Figure 7.6 Image 1 - starcentroid2 Positioning Accuracy for Noise Threshold of la* 
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Figure 7.7 Image 1 - starCentroid3 Positioning Accuracy for Noise Threshold of la* 
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Figure 7.8 Image 2 - starcentroid2 Positioning Accuracy for Noise Threshold of la* 
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Figure 7.10 Image 3 - starcentroid2 Positioning Accuracy for Noise Threshold of la* 
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Figure 7.11 Image 3 - starCentroid3 Positioning Accuracy for Noise Threshold of la- 
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Figure 7.12 Image 4 - starcentroid2 Positioning Accuracy for Noise Threshold of la- 
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Figure 7.13 Image 4 - starcentroid3 Positioning Accuracy for Noise Threshold of lah 

Figure 7.14 Image 5 - starcentroid2 Positioning Accuracy for Noise Threshold of la* 
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Figure 7.15 Image 5 - starCentroid3 Positioning Accuracy for Noise Threshold of la* 

Figure 7.6 through Figure 7.15 show that at the lonoise threshold level, starCentroid2 centroided 

more of the actual stars in the image, but had a tendency to also centroid noise spikes. On the 

other hand, starcentroid3 centroided fewer actual stars but did not centroid noise spikes. The 

tendency of starCentroid2 to centroid noise spikes is important because in real operating 

conditions, when no "actual" centroid data is available, the figures above suggest that 

starcentroid2 will have difficulty distinguishing stars from noise spikes. However, because 

starCentroid2 can centroid more of the actual stars, starCentroid2 will be helpful in scenarios 

when a minimal number of stars are available and a centroider is required that can extract as 

many of these stars as possible to successfully obtain attitude information. 
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Figure 7.16 Image 1 - starcentroid2 Positioning Accuracy for Noise Threshold of 3ab 

Figure 7.17 Image 1 - starCentroid3 Positioning Accuracy for Noise Threshold of 30- 
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Figure 7.18 Image 2 - starcentroid2 Positioning Accuracy for Noise Threshold of 3ah 
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Figure 7.19 Image 2 - starcentroid3 Positioning Accuracy for Noise Threshold of 30- 
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Figure 7.20 Image 3 - starcentroid2 Positioning Accuracy for Noise Threshold of 3- 

Image 3 

1000- 

000- 

000- 

700 

000- 

500 

400- 

000- 

200 

100 

Figure 7.21 Image 3 - starcentroid3 Positioning Accuracy for Noise Threshold of 30, 
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Figure 7.22 Image 4 - starcentroid2 Positioning Accuracy for Noise Threshold of 3ah 
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Figure 7.23 Image 4 - starcentroid3 Positioning Accuracy for Noise Threshold of 3ah 
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F i  7.24 Image 5 - starcentroid2 Positioning Accuracy for Noise Threshold of 3- 
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Similar to the cases with the noise threshold, starCentroid2 centroids more stars than 

starcentroid3 when the noise threshold is set to 3onOise. The advantage of the higher noise 

threshold is displayed in these figures because no noise spikes were centroided as stars by either 

centroider. 

In all fourteen images at all five noise threshold levels for both centroiders, all of the stars 

that were centroided correctly were correct within four pixels. The majority of the stars 

centroided were correct to within one pixel, but dimmer stars, which were more easily affected 

by noise and especially present in the second and third images, were centroided less accurately. 

7.1.3 Attitude Quaternion Uncertainty 

The uncertainty measurements for the attitude quaternions representing these fourteen 

images can be computed based on the centroiding accuracy alone, as described in equations 

(6.34), (6.35), and (6.36). These uncertainties are displayed in Figure 7.26 through Figure 7.30 for 

five noise threshold levels between lonoix and 3ondSe. 

1 image number 

Figure 7.26 Uncertainty in Image Attitude Quaternion for Noise Threshold of la- 
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Figure 7.28 Uncertainty in Image Attitude Quaternion for Noise Threshold of 2a- 
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Figure 7.30 Uncertainty in Image Attitude Quaternion for Noise Threshold of 3 0 , ~  

The general pattern of attitude uncertainty remains the same throughout these five figures: 

attitude uncertainty begins at a moderate level, increases for images 2 and 3, drops rapidly at 

image 4, and remains fairly constant thereafter. Images 5 through 14 contain two very bright 

stars, both brighter than a Mv of 1. Image 4 contains one of these bright stars. Their presence 

enables high centroid accuracies, which drives down the overall attitude uncertainty for their 

images. The larger errors associated with images 2 and 3 is due to the fact that these images 
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contain the dimmest sets of stars (recall that the max Mv was allowed to reach 6), and therefore 

the stars with the lowest centroid accuracies. The errors in images 2 and 3 increase for higher 

noise threshold levels because at higher thresholds, fewer of these dim stars exceed the threshold, 

and so the number of stars available for attitude information decreases, which also causes a 

decrease in attitude confidence. 

7.2 Triangle Match Performance 

The sequence of fourteen images was also used to test the performance of the triangle 

match algorithm. For this test, starcentroid3 was used and the noise threshold was set to the 

lonoix level. Figure 7.31 shows the sequence of triangles that were selected and correctly matched 

between the consecutive images. It took approximately 9.06s for the triangle match algorithm to 

successfully determine attitude information for all fourteen images. 
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Figure 7.31 Triangles Selected for Matching Using the Triangle Match Algorithm 
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that no single star is chosen for more than three consecutive in case that star does not actually 

appear in both images to be matched. This trend is more readily seen in the n-vertex match trade 

study. 

Besides the ability to accurately track stellar triads, the triangle match algorithm must be 

able to provide reliable information to the QUEST algorithm. This ability is measured by 

calculating the uncertainty associated with the attitude quaternion produced for each image, 

which is displayed in Figure 7.32. 

Figure 7.32 Maximum Attitude Quaternion Uncertainty Using Triangle Match Algorithm 
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where Ej is the error propagation from the 1'' to the jm image, Ei is the error propagation from the 

1" to the im image, and E i j  is the error that results from the motion between the im and jm images. 
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In the case of these fourteen images, the direction of maximum uncertainty was always 

found in the roll direction. The uncertainty in pitch and yaw is determined solely by the centroid 

uncertainties, whereas in roll, the distance between the stars becomes a factor. For pitch and 

yaw, the uncertainty is roughly equal to A@,,, the centroid uncertainty in pixels. For roll, it is 

roughly ABP,/d where d is the distance between two stars and this ratio is in radians. 

Multiplying by ppl f to convert to pixels, and equating to dopix , d = ppl  f is found to be the 

distance at which the roll uncertainty equals that of the pitch and yaw. For the current LIST and 

FAR-MST hardware, this is approximately 2300 pixels, which is twice the width of the imager. 

Therefore the uncertainty in roll tends to be twice as much as that for pitch and yaw. The 

uncertainties in the pitch and yaw direction followed similar trends, but do not accumulate as 

much over time because each image contributes a smaller amount of uncertainty. 

7.3 Rate Match Performance 

The rate match algorithm was tested on the sequence of fourteen images to examine 

whether or not stellar locations could be accurately projected based on current rate information. 

The results of the rate matching are displayed in Figure 7.33 through Figure 7.44. As in the triangle 

match tests, starCentroid3 and a noise threshold level of lanoix were implemented. It took 

approximately 15.12s for the rate match algorithm to successfully determine attitude information 

for all fourteen images. 



Chapter 7 - Algorithm Performance 152 

actual, image 2 
actual, image3 
projected, image 2 

Figure 7.33 Rate Match Between Images 2 and 3 
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Figure 7.34 Rate Match Between Images 3 and 4 
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Figure 735 Rate Match Between Images 4 and 5 
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Figure 7.36 Rate Match Between Images 5 and 6 
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Figure 7.37 Rate Match Between Images 6 and 7 
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Figure 738 Rate Match Between Images 7 and 8 
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Figure 7.39 Rate Match Between Images 8 and 9 

1000- I I I I I I - 

000- - 

800- - 

700 - - 

600- - 

000- - 

400- - 

- 

200- + actual, image9 - 
- actual,image10 

100 - 0 projected, image 9 - 
0 projected, image 10 

1 I I 

200 400 600 800 1000 1200 

Figure 7.40 Rate Match Between Images 9 and 10 
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Figure 7.41 Rate Match Between Images 10 and 11 
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The rate match attempts to match as many stars as possible between images using the current rate 

information. Based on the plots above, the rate match was generally able to match a large 

percentage of the stars in one image to stars in the subsequent image. The cases where this did 

not occur were when an "old" star dropped below the noise floor or fell out of the image FOV or 

when a "new" star came out above the noise floor or entered the image FOV. 

Attitude quaternion errors were examined based on the results of the error covariance 

matrix values in the roll, pitch, and yaw directions and are displayed in Figure 7.45. 

Figure 7.45 Maximum Attitude Quaternion Uncertainty Using Rate Match Algorithm 
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As with the triangle match, the rate match errors accumulate as more images are considered in 

sequence. However, due to the predictive ability of the rate match, all of the stars are found and 

used, and therefore more accurate attitude quaternions are found using the rate match than using 

the triangle match; the lower uncertainties in the roll, pitch, and yaw directions for the rate match 

are visibly apparent when comparing the slopes of Figure 7.32 and Figure 7.45. Again, the roll 

errors are greater than the pitch or yaw errors for the same reasons discussed in the triangle 

match performance section. 
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7.4 Attitude Quaternion Comparison Using n-vertex Match 

The n-vertex match using 3, 4, and 5 vertices was tested to evaluate the LIS abilities of 

the reduced star catalog and pattern matching algorithms. The quaternion that defines the motion 

of the spacecraft between images i and j is 

where qi and q, are the attitude quaternions of the i' and j' images, respectively, and Aqij is the 

quaternion that defines the motion of the spacecraft from the i' image to the j' image. Each 

attitude quaternion has an error associated with it, as first described in the triangle matching 

perfommce section. 

Three sets of data were collected for the n-vertex method, each using a value of n equal to 

3, 4, or 5. As with the triangle match and rate match performance trade studies, starCentroid3 

with a noise threshold level of lonois was implemented. It took approximately 8.30s for the n- 

vertex match algorithm to successfully determine attitude information for all fourteen images; 

the time was relatively independent of the n value. The stars selected to match to the catalog 

when n equaled 5 for each of the fourteen images is displayed in Figure 7.46. 
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Figure 7.46 Pentagon Selected for Matching Using the n-vertex Match Algorithm with n = 5 

The three versions of the n-vertex match algorithm (n = 3, n = 4, and n = 5) successfully 

matched the appropriate number of stars to the star catalog for all fourteen images. Again, as 

seen in the triangle match, several of the same star polygons are used in consecutive images, 

which is result of the "smart" looping structure in the algorithms. The same two bright stars are 

present in images 5 through 14, and are always selected as two of the five stars shown in Figure 

7.46. 

While it is advantageous to have images with bright stars, from a trade study perspective 

this may lead to overly confident results because most regions of the sky do not contain stars of 

this magnitude, much less multiple stars of this magnitude. Nonetheless, as shown below, bright 

stars enable very accurate attitude quaternions to be generated. 

Using the error covariance equations, errors in roll, pitch, and yaw were found for each of 

the fourteen images for the three n-vertex match tests. These results are displayed in Figure 7.47, 

Figure 7.48, and Figure 7.49. 
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Figure 7.47 Uncertainty in Image Attitude Quaternion for n-vertex Match when n = 3 
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Figure 7.48 Uncertainty in Image Attitude Quaternion for n-vertex Match when n = 4 
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Figure 7.49 Uncertainty in Image Attitude Quaternion for n-vertex Match when n = 5 
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As shown above, the errors in the pitch and yaw directions are similar to one another and smaller 

than the errors in the roll direction, which is to be expected. Also shown above is the 

improvement in quaternion accuracy when brighter stars are present. It was not until frame # 4 

that one of the two bright stars appeared in the FOV and not until frame # 5 that both bright stars 

were present. Once these two stars were present, the error measurements in all three directions 

decreased and remained fairly constant. The key trend from these results is the fact that the 

errors decrease when using more vertices. The primary difference between these images and the 

images before is that the uncertainty errors do not accumulate over consecutive images. This is 

due to the fact that the images are always matched to a star catalog with known interstellar 

angles. 
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Chapter 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The primary objective of LIST and FAR-MST star trackers is to provide sufficient 

attitude information to micro-satellites and spacecraft without the higher mass, size, power 

consumption, and cost requisites. The work presented in this thesis has demonstrated that it is 

possible to achieve adequate relative and absolute attitude information by means of appropriate 

hardware selection and algorithm establishment. Algorithm performance has been quantified by 

applying hardware parameters defined by a double lens optics system and a CMOS imager to an 

image sequence representing a specific region of the celestial sphere. 

8.1.1 The Optimal Centroider 

Accurate centroiding is essential for star trackers because pattern matching success rates 

and attitude quaternion accuracy are highly dependent on centroiding precision. Three different 

centroiders were created to quickly and accurately locate the stars' centers on an imager. The 

two weighted sum algorithms, starCentroid2 and starCentroid3, were compared against a 

maximum likelihood estimator. Although the MLE produced slightly more precise centroids, the 

significant increase in time requirements for the MLE made this centroider impractical for LIST 

and FAR-MST star trackers. 

The two weighted sum centroiders were compared against one another to determine 

which performed the most accurately and in the shortest amount of time. The performance of 

each was highly correlated with image SNR, as well as the selected noise threshold level. For 

the series of fourteen images used in the trade study, speed and accuracy results help dictate 

which centroider will perform best under various conditions that include the number of stars in 

the image and the selected noise threshold level. The overall optimal centroider under four sets 
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of conditions is based on the results of the speed and accuracy benchmarking and is displayed in 

Table 8.1 

Table 8.1 Optimal Centroider Based on Speed and Accuracy Performance Results 

The optimal centroider based solely on speed was taken directly from the results in Figure 

7.1 through Figure 7.5. The speed results were found to be independent of the number of stars in 

the images, but were dependent on the level of the noise threshold, and so the number of stars in 

the images was not considered from a speed standard of optimization. The accuracy tests did not 

specifically examine differences between few or many numbers of stars in the images; however 

this number was considered when determining the optimal centroider from an accuracy 

perspective. At high noise threshold levels, when few stars are present in the image, 

starCentroid2 is the optimal choice because starCentroid2 was able to locate more stars on the 

image, and was not found to centroid noise spikes at the higher threshold levels. On the other 

hand, when many stars are available and the noise threshold is low, starCentroid3 is the optimal 

choice because although starCentroid3 finds fewer stars than starCentroid2, at the lower noise 

threshold levels, it was not found to centroid noise spikes. 

Determining the optimal centroider from an accuracy perspective for the remaining two 

conditions is more difficult because conflicting results are possible. In the case where few stars 

are present and the noise threshold level is low, starCentroid2 is advantageous because it shows a 

higher likelihood of actually finding the stars, but also has a higher potential for centroiding 

noise spikes. Alternatively starCentroid3 will not centroid noise spikes, but has a higher 

probability of not finding enough stars to perform attitude determination. The case when many 

stars are available and the noise threshold level is set high is the ideal case for star trackers 

because it has the best probability of centroiding many stars and not noise spikes; both 

# of stars 
in image 

few ( < 4) 

few ( < 4) 

many ( > 4) 

many(>4) 

noise threshold level 
(# %~ise) 

hi& ( > 3onoise) 

low ( < 1 . 5 ~ ~ ~ ~ ~ )  

high ( > 3onoir) 

1 0 ~ ( < 1 . 5 % ~ ~ )  

optimal centroider 

speed 

starCentroid2 

starCentroid3 

starCentroid2 

starCentroid3 

accuracy 

starCentroid2 

either 

either 

starcentroid3 

overall 

starcentroid2 

starCentroid3 

starCentroid2 

starCentroid3 
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starCentroid2 and starCentroid3 would perform well under these conditions. The overall optimal 

centroider was determined by combining the results from the speed and accuracy standpoints; the 

results of the optimal speed centroiders were selected for the overall optimal centroider in the 

cases where the optimal accuracy centroiders could choose from either starCentroid2 or 

starCentroid3. 

Regardless of the centroider, centroiding was found to be more accurate for brighter stars, 

where noise electrons fail to contribute as much to the overall stellar intensity. This was 

expressed by the covariance values in Figure 7.26 through Figure 7.30, as images that contained 

brighter stars (images 5 through 14) produced better centroids, and therefore smaller 

uncertainties in attitude quatemions. 

8.1.2 Pattern Matching 

The primary pattern matching algorithms selected for LIST and FAR-MST include the 

triangle match, rate match, and n-vertex match algorithms with n equal to 3, 4, and 5. The 

triangle and rate match algorithms were implemented in frame-to-frame matching, while the 

three versions of the n-vertex match were implemented in LIS scenarios. Thus, following 

implementation of QUEST, the triangle and rate matching techniques led to relative attitude 

information, while the n-vertex match algorithm led to absolute attitude information. 

Each matching algorithm has advantages and disadvantages, which are exemplified 

through the algorithms' ability to accurately determine attitude information and overall speed of 

execution. All five algorithms were able to determine attitude information for each of the 

fourteen images. The difference between the algorithms was the level of uncertainty associated 

with each set of attitude quaternions. The n-vertex match held the lowest attitude uncertainties, 

and therefore provided the best attitude information. This was due to the fact that stars were 

matched to a star catalog, as opposed to a previous image. Because the cataloged stars have 

known interstellar angles that are not corrupted by noise variations, the star catalog data sent to 

QUEST is much more accurate than that sent from an image. 
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The triangle match and rate match produce accumulating uncertainty errors over 

consecutive images, and the uncertainties were the largest in the roll direction. Figure 8.1 

compares the uncertainties of each image's attitude quaternion for the triangle match and rate 

match. Comparisons of the pitch and yaw uncertainties produce similar results. 

Figure 8.1 Comparison of Triangle Match and Rate Match Quaternion Uncertainties in Roll Direction 
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The predictive ability of the rate match to find all of the matchable stars proved to be 

advantageous because the uncertainty errors of the rate match accumulated at a slower rate than 

those of the triangle match, as seen by the rate match's smaller slope. 

Apart from accuracy, computational requirements for the pattern matching algorithms 

were considered. Table 8.2 compares the time requirements of each algorithm to threshold, 

centroid, and pattern or rate match the stars and output an attitude quaternion. These times were 

collected using Matlab versions of the algorithms; the actual algorithms will be run in C, which 

will produce much faster times than those listed below. The Matlab times have been included to 

show the relative time requirements of the different matching algorithms. 
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The fastest times correspond to the n-vertex matching algorithms, although the triangle match 

algorithm is also relatively fast. Although the n-vertex match algorithms require matching the 

stars in the current image to an onboard star catalog, the use of the k-vector prevents the long 

time constraints that one would think would be required to match the image stars to those in the 

catalog. The rate match is the most inefficient method from a computational standpoint. The 

rate match is costly because star locations in the earlier image must be projected forward in time 

and star locations in the later image must be projected back in time in order for the current 

attitude quaternion to assist in correctly matching stars. 

These conclusions show that the ideal pattern matching algorithm is the n-vertex match. 

This technique provides the least amount of uncertainty in the attitude quaternion determination 

while simultaneously requiring the least amount of computational time. The tradeoff is the 

requirement of the onboard star catalog, which is only problematic if memory space is limited. 

However, creating a reduced star catalog, with properties similar to those defined for the FAR- 

MST catalog, requires a minimal amount of additional space. If, on the other hand, an onboard 

star catalog is not present, the user must decide whether accuracy or speed is most important in 

selecting between the triangle match and rate match. 

The primary reason for multiple pattern matching algorithms is so that the star tracker can 

function in a dynamic manner; LIST and FAR-MST are not restricted to one algorithm onboard. 

The pattern matching algorithm of choice for frame-to-frame matching will be selected based on 

the number of stars in the FOV and whether or not current rate information is available. If the 

matching algorithm originally selected fails, then star tracker will attempt to implement a 

different matching algorithm. An example of dynamic implementation is displayed in Figure 8.2 
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Figure 8.2 Dynamic Implementation of Frame-to-Frame Pattern Matching Algorithms 

8.1.3 Attitude Determination 

The QUEST algorithm was selected over other attitude determining methods primarily 

because of its speed of execution. The low computational requirements are a direct result of the 

fact that QUEST finds an approximation to the actual attitude quaternion that is based on the 

centroiding and pattern matching results. QUEST is highly efficient in that it provides sufficient 

accuracy in terms of attitude infomation for LIST and FAR-MST star trackers. 

8.2 Future Work 

The current hardware and software properties defined for LIST and FAR-MST star 

trackers have the potential for improvements through the accomplishment of future work. The 

focus of this thesis revolves around the software algorithms for centroiding, pattern matching, 

and attitude determination, and so the future work concentrates on these areas. 

8.2.1 Quantifying Multiple Star Pairs 

It is widely acknowledged in the literature that, in a given image, multiple star pairs can 

have the same interstellar angle because of centroid inaccuracies and noise variations. It is also 

possible, though much more unlikely, for identical star triads to exist within the same image. 

However, it would be interesting to quantify these amounts. This could be accomplished by 

selecting a FOV, setting an interstellar distance tolerance to account for centroid errors and 

noise, and looping over known regions of the sky using a star catalog such as the NASA 
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SKY2000. FOV and tolerances can be varied to quantify the minimum or average number of 

star pairs, triads, etc that occur over the entire sky, and perhaps help predict which regions in the 

sky pose the most threat. This analysis would be useful to the star tracker when selecting the 

current pattern matching algorithm to implement. For example, if particular regions of the sky 

are found to contain multiple star pairs within the same FOV, the user would know to implement 

the triangle match or rate match. However, if other regions of the sky do not contain multiple 

star perhaps the pair match could be implemented to reduce computational time. 

8.2.2 Additional Benchmarking 

The performance of the centroiding, pattern and rate matching, and attitude quaternion 

determination algorithms is based on the results from a single set of fourteen images. These 

images were generated by a maneuver profile that was designed to rotate at a slow, constant rate. 

Additional trade studies can be undertaken that would improve the confidence level of these 

performance results. These trade studies can include implementing the algorithms on different 

regions of the sky, on an increased number of images, and on a maneuver profile that "tumbles" 

in various directions at different rates. 

One of the problems with the selected region of the sky was that two very bright stars 

were present in images 5 through 14. Had these regions not contained such bright stars, 

performance results would most likely be reduced. Therefore it would be beneficial to select a 

variety of different regions in the sky that contain dim stars, bright stars, few stars, and many 

stars. This knowledge will assist in determining the most appropriate centroiding algorithms and 

pattedrate match algorithms. The alternative to selecting several different regions in the sky is 

to create a maneuver profile that spans several hundred, or perhaps a thousand, images. Testing 

an extensive sequence of images will enable more statistically valid results to be quantified, and 

enable a higher confidence level for performance characteristics overall. Finally, realistic 

operating conditions may require the star tracker to handle more erratic motions, and so it would 

be beneficial to test performance for random movements at higher tumble rates. 

Although many of the hardware elements have been defined, such as the IBIS5 CMOS 

imager, variations on hardware parameters will be useful in understanding the hardware selection 
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effects on performance. For example, a double lens was assumed to simplify considerations 

otherwise caused by the curvature-of-fields effect. However, if a single lens is assumed, stars 

would be spread across different PSF width depending on their location on the imager. 

Centroiding and pattern matching algorithms would have to be aware of the field curvature and 

adjust the properties of the stars according to their locations on the imager. Additionally, lens 

aperture plays a large roll in attitude determination. Larger lenses collect more light, which 

enables them to capture dimmer stars, and require shorter integration times. It would be 

interesting to see the effects of varying the lens diameter between 0.5cm and 2cm. Finally, 

different FOV choices will lead to varying performance characteristics, as stars will be spread 

over varying number of pixels depending on the FOV selected. 

8.2.3 Dynamic Thresholding 

All of the analyses performed thus far have selected a single noise threshold level for the 

entire sequence of images. It may be beneficial to implement a dynamic thresholding mode that 

would automatically set the noise threshold level based on the properties of the recent images. 

For example, if previous images were found to have sparse numbers of stars, a lower noise 

threshold could be selected to assist in digging out as many stars as possible, and if future 

tumbles point the star tracker towards regions of the sky with greater numbers of stars, a higher 

noise threshold could be set to eliminate potential noise spikes. 

8.2.4 Predictive Centroiding 

Several works in the literature have suggested the use of a predictive centroider that uses 

current rate information to predict stellar locations for subsequent images. A predictive 

centroider would enable increased computational speeds, as only small windows of the pixel 

matrix would require searching during the centroiding process since approximate stellar 

locations would be known. Additionally, in situations where several stellar centroids are know 

and an onboard star catalog is available, additional stars in the image that are close to the noise 

floor can be more easily located, thus increasing the number of stars that can be passed through 

the QUEST algorithm to improve attitude accuracy. 
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8.2.5 Reducing Error Propagation in Frame-to-Frame Pattern Matching 

One of the largest setbacks of frame-to-frame pattern matching is the natural propagation 

of uncertainty errors. Although it would be beneficial to create additional algorithms to assist in 

mitigating error propagation, this is generally not a possibility. Therefore, the best approach is to 

attempt improvements in centroiding accuracy, which will automatically tighten the error bounds 

on the attitude quaternion. If this is not possible, it may be necessary to introduce an onboard 

star catalog to enable the stars to be uniquely identified with the stars in the catalog. 

8.2.6 Attitude determination 

Numerous techniques were considered prior to the selection of the QUEST algorithm. 

Although QUEST provides adequate attitude quaternions, it would be interesting to compare the 

performance of QUEST to the performance of the q-method to quantify any increases in time 

requirements or performance quality. 





APPENDIX A 

PROPERTIES OF THE QUATERNION 

Definition 

Quaternions in this paper are described with the first component being the scalar portion 

of the quaternion and the second through fourth components being the vector portion. A 

particular quaternion q is defined as 

where 0 is the angle of rotation and ri is the normalized axis of rotation defined as 

Qua ternion Multiplication 

Let two quaternions be given as 

q1 =a1  +l$+clj+d,k^ = al 

and 

where 1, 3 ,  and k  ̂ are the unit normal vectors along the axes of the 3D Cartesian coordinate 

frame. The product of the two quaternions is then found by'791 
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Qua ternion Inverse 

The quaternion conjugate of (8.3) is 

Using this information, the inverse of a quaternion is given by[791 

Frame Rotation vs. Vector Rotation 

The standard rotation matrix rotates a reference frame about a desired axis. For example, 

in the 3D Cartesian coordinate frame, a rotation about the z-axis by 0 degrees the rotation matrix 

is defined as 

which corresponds to a rotation quaternion of 

The correct rotation of a vector by a quaternion depends on whether a frame rotation or a 

vector rotation is desired.[801 A frame rotation corresponds to a fixed vector with a reference 

frame that rotates around the vector, whereas a vector rotation corresponds to a vector that 

rotates inside a fixed reference frame. 
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Rotating a vector by a quaternion using a frame rotation requires 

Tzq-1 'v 'q .  - 

Rotating a vector by a series of n quaternions using frame rotations requires 

-1 -1 -1 - c' = qn ...q2 q, v .q1q2...qn . 

On the other hand, rotating a vector by a quaternion using a vector rotation requires 

Rotating a vector by a series of n quaternions using vector rotations requires 

-1 - I  -1 7 = qn ...q2q1 . c . q, q2 ...qn . 

In this thesis, all of the rotations of vectors by quaternions implement vector rotations. 
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