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Abstract

This thesis explores the use of velocity information obtained by a Global Positioning Sys-
tem (GPS) receiver to close the aircraft’s flight control loop. A novel framework to synthe-
size attitude information from GPS velocity vector measurements is discussed. The
framework combines the benefits of high-quality GPS velocity measurements with a novel
velocity vector based flight control paradigm to provide a means for the human operator or
autopilot to close the aircraft flight control loop. Issues arising from limitations in GPS as
well as the presence of a human in the aircraft control loop are addressed.

Results from several flight tests demonstrate the viability of this novel concept and show
that GPS velocity based attitude allows for equivalent aircraft control as traditional atti-
tude. Two possible applications of GPS velocity based attitude, an autopilot and a tunnel-
in-the-sky trajectory guidance system, are demonstrated in flight. Unlike traditional auto-
pilot and trajectory guidance systems, these applications rely solely on the information
obtained from a single-antenna GPS receiver which makes them affordable to the larger
General Aviation aircraft community. Finally, the impact of GPS velocity based flight con-
trol on the instrumentation architecture of flight vehicles is investigated.

This document is based on the thesis of Richard P. Kornfeld submitted to the Department
of Aeronautics and Astronautics at the Massachusetts Institute of Technology in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Aeronautics and
Astronautics.
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Chapter 1

Introduction and Overview

The emergence of the Global Positioning System (GPS) as a source of high-quality
velocity information to a world-wide user community and the development of other novel
sensor technologies offer the potential to increase the integrity of flight instrumentation
while at the same time reducing cost. This thesis presents the development and
demonstration of a concept which enables GPS-based velocity information to be used to
close the aircraft flight control loop. The impact of this novel concept on flight

instrumentation architecture is investigated.

In this chapter, the motivation and the objectives of the research documented in this

thesis are described. This is followed by an overview of the thesis.

1.1  Motivation

In the past decade, the Global Positioning System (GPS) emerged as a source of high-
guality navigation and time information to a world-wide user community. The accuracy of
the GPS position and velocity information has thus far only been achieved by inertial
navigation systems (INS). With the proliferation of GPS and the expansion of the GPS
user community, GPS receiver production has reached a growth where economy of scale
principles apply. Consequently, at the time of publication, a standard GPS chip set is
available for less than US$200 which is two orders of magnitude less than an INS with

comparable performance.

This research documented in this thesis was motivated by the availability of low-cost,
high-quality GPS velocity information and addressed the question of the potential impact
of this information on the instrumentation architecture of flight vehicles. It was
investigated how the availability of GPS velocity information can change existing flight
instrumentation architectures in terms of integrity and cost. In addition, the potential for

new flight instrumentation concepts based on GPS velocity information was examined.
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This thesis focuses on the use of GPS velocity information for aircraft flight control.
This is in contrast to the traditional use of GPS velocity information for aircraft guidance.
A methodology to synthesize attitude information from GPS velocity measurements has
been developed. It combines the benefits of high-quality velocity measurements with a
novel flight control paradigm that controls the aircraft velocity vector directly, rather than
through attitude as in traditional control schemes. The availability of GPS velocity based
attitude information, termedoseudo-attitude creates unique opportunities for new

applications.

GPS-based attitude information can greatigrease the integritpf cockpit systems.
For instance, its use as a backup attitude indicator for General Aviation (GA) aircraft
provides the pilot with an additional level of attitude redundancy. Furthermore, GPS-based
pseudo-attitude constitutes a source of attitude information that is functionally
independentfrom attitude measured by traditional inertial sensor based systems and
provides thereforelissimilar redundancy. This attitude information can be used in fault
detection and isolation schemes as tie-breaker or cross-reference thereby greatly

increasing cockpit integrity.

With the availability of GPS-based attitude information, a single-antenna GPS receiver
can provide all the information necessary to control and guide aircraft. Classes of aircraft,
such as expendable small unmanned aerial vehicles (UAV) which recently began to
emerge, can bastrumented with a single-antenna GPS receiver as the primary sensor
This has significant weight, size, power and cost advantages compared to traditional

instrumentation architectures.

Furthermore, the availability of single-antenna GPS-based position, velocity and flight
control information enables the implementation aftopilot and trajectory guidance
systemsolely based on GPS information. Guidance systems suitinasl-in the-skyand
flight director displayswvhich thus far have relied on expensive sensor hardware can now
be implemented using a single-antenna GPS receiver. This has significant system
integration and cost advantages and consequently allows the larger General Aviation

community to benefit from these systems.
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A number of these applications are discussed in this thesis.

1.2 Objectives of the Thesis

The objectives of this thesis are the development and the demonstration of a novel
framework within which GPS velocity vector information is used to the close the aircraft
flight control and attitude loop. The framework combines the benefits of high-quality GPS
velocity measurements with a novel velocity vector based flight control paradigm to
provide a means for the human operator or autopilot to close the aircraft flight control
loop. The development of the framework takes a human-centered approach to ensure
adequate pilot usability. Implementation issues and limitations are addressed, and
opportunities identified. A number of applications are implemented and demonstrated in
flight.

1.3 Organization of the Thesis

This thesis is divided in three parts. Chapter 2 to 5 deal with the theoretical
background of the GPS velocity based flight control concept. This creates the groundwork
for the experimental setup and the flight demonstrations discussed in Chapter 6 to 9.
Finally, Chapter 10 explores the implications and applications of this novel concept and

provides a summary and conclusions. In detail, this thesis is organized as follows:

Chapter 2 discusses the current aircraft control loop structure and presents different
flight instrumentation architectures. It then introduces the notion of GPS velocity based

flight control and investigates its impact on the flight instrumentation architecture.

Chapter 3 explains the concept of velocity based flight control in more detail. The
notion of velocity based pseudo-attitude is introduced and its synthesis from aircraft
velocity and acceleration information is discussed. A novel pseudo-attitude display is
presented and display update rate and latency are discussed. The results of a preliminary
simulator study on the effectiveness of velocity based attitude and the required display

update rate are presented.
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Chapter 4 discusses the different aspects of the Global Positioning System (GPS)
which are pertinent to the generation of GPS-based velocity and acceleration information.
The principle of operation and the observable of GPS are briefly explained. The GPS
receiver architecture and operation, and the algorithms to generate velocity and
acceleration information from the GPS observables are discussed. The bandwidth and
related trade-offs as well as error sources of GPS velocity and acceleration are examined.
Finally, GPS integrity, availability and continuity issues relevant to the generation of

velocity and acceleration information are highlighted.

In Chapter 5 the loop closure around GPS velocity based pseudo-attitude information
is discussed. This chapter relies on the concepts and insights presented in Chapter 3 and 4.
A linearized analysis is used to investigate the open- and closed-loop behavior of pseudo-

attitude based flight control. An autopilot design is discussed as a case example.

Chapter 6 introduces the objectives of the flight tests and discusses the flight test setup.
The implementation of a flight test system is described. The hardware as well as the
software aspects of the instrumentation are addressed. Initial testing efforts are outlined

and an overview of the flight tests is given.

Chapter 7 discusses the experimental evaluation of the pseudo-attitude system. The
flight test objectives and the flight test protocol are outlined. Objective and subjective

results are presented and discussed.

Chapter 8 presents the flight demonstration of a pseudo-attitude based flight director /
autopilot system. The flight test objectives, the setup and the flight test protocol are

outlined, and objective results are presented and discussed.

Chapter 9 presents the flight demonstration and the evaluation of pseudo-attitude
based tunnel-in-the-sky trajectory guidance systems. Two perspective flight path displays
are flight tested and compared to traditional ILS guidance scheme. Flight test objectives,
setup and flight test protocol are outlined. Objective and subjective results are then

presented and discussed.
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Chapter 10 summarizes the research work documented in this thesis and examines the

implications and applications of GPS-based flight controls.
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Chapter 2

The Impact of GPS Velocity Based Flight Control on
Flight Instrumentation Architecture

This chapter introduces the concept of GPS velocity based flight control and proposes
a novel flight instrumentation architecture that is based on this concept. The new
architecture is compared to a number of current flight instrumentation architectures. It is
shown that the new architecture has the potential to drastically reduce the cost of flight

instrumentation.

The chapter starts with a description of the classical aircraft control loops in Section
2.1 and gives an overview over current flight instrumentation architectures in Section 2.2.
Section 2.3 introduces the notion of GPS velocity vector based flight control and discusses
the novel flight instrumentation architecture. It also presents an instantiation of the new

architecture which was used throughout most of the research presented in this thesis.
2.1 Classical Aircraft Control Loops

Classical aircraft control schemes rely on a multi-loop feedback design in which the
different loops are nested within each other. In a typical flight control configuration the
loops are the guidance loop, the flight control or attitude command loop, and the stability
or control augmentation loop, as shown in Figure 2.1. The different loops and the task they

perform are described in the following:

* Guidance Loop Navigation, in the context of this thesis, refers to the process of
establishing the position and velocity state of the aircraft. Guidance refers to the
process of using this information to command the vehicle to follow a pre-defined
trajectory. The guidance loop, thus, generates guidance commands by differencing
the desired and measured aircraft position and velocity states and feeding them to
the next inner loop, the flight control or attitude command loop so as to reduce the

state deviation and ensuring that the aircraft flies along the desired track.
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Figure 2.1: Classical Flight Control Loops

* Flight Control Loop or Attitude Command Loofhe flight control or attitude
command loop is used to change the aircraft state in order to follow the guidance
commands. This loop, thus, generates flight control commands and feeds them to
the aerodynamic control surfaces and the engine controls causing the aircraft to
achieve the commanded aircraft state. Autopilots needed to provide ‘pilot relief’

typically operate in this loop.

» Stability Augmentation System (SAS) or Control Augmentation System (CAS)
Loop The stability augmentation system is the inner most loop and is used to
suppress the effects of unwanted inherent aircraft modes such as the dutch roll in
the lateral or the short period in the longitudinal direction. It thereby facilitates the
design of the outer loops and insures that the outer loops function properly. The
modes are typically excited by aerodynamic control deflections and gust
disturbances. By feeding back appropriate control variables in the SAS loop their
effects can be damped out and their response decay time decreased. The control
augmentation system (CAS) loop improves the transient response properties of the
aircraft and provides the pilot with a particular type of response to the control

inputs. This loop often enhances the inherent deficient aircraft modes as well.

The next two sections briefly present typical lateral and longitudinal aircraft control

schemes and the feedback variables used to close the individual loops.
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2.1.1 Lateral Feedback Loop Closure

Figure 2.2(a) shows a typical lateral feedback structure. The lateral guidance loop is
commonly closed using horizontal position and velocity information, denoted diand ~ (or,
equivalently, heading information). The measured position and velocity state is
differenced from the desired state given by the reference trajectory. This deviation, using
appropriate guidance laws, generates bank angle comngangsch are fed to the flight
control loop. This loop commands aileron deflectidgso achieve the desired roll angle.

The banked aircraft experiences a sideward acceleration that changes the velocity vector in
the direction commanded by the guidance laws. The blocks containing K denote the

respective gains and compensators.

The lateral flight control loop is, thus, closed using the roll anglas feedback
variable to follow the commanded bank angle and regulate against disturbances. This
configuration controls the velocity and acceleration vector indirectly by commanding and
controlling the aircraft roll angle which in turn generates the aircraft acceleration

necessary to change the direction of the velocity vector.

A yaw damper is often employed as a SAS to improve the dutch roll behavior. A yaw
rate feedback with washout circuitry, Kvhich generates commands to the rudder is
normally sufficient to dampen this mode. A roll CAS feeding back roll rate p is sometimes

used as an additional inner loop to improve the roll response.

2.1.2 Longitudinal Feedback Loop Closure

Figure 2.2(b) shows a typical longitudinal feedback closure. The guidance variables
controlled are altitude h, air speed u, and vertical speed  or flight path gnglee
deviation from the desired aircraft states, using the appropriate guidance laws, results in
pitch attitude and airspeed comman@sand u, fed into the flight control loop. This loop
generated elevatdy, and throttledy, inputs to achieve the commanded pitch attitude and
airspeed using knowledge of the aircraft dynamics. This feedback structure controls the

flight path state indirectly through the control of pitch attitude.
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Figure 2.2: (a) Lateral Flight Control Loops (b) Longitudinal Flight Control Loops

A pitch damper, using pitch rate g feedback is typically added if the aircraft short
period mode is not well damped. Its elevator commands are added as a high frequency

component to the elevator command of the pitch attitude loop.

2.2 Current Instrumentation Architectures

This section gives an overview over traditional instrumentation architectures used to
close the loops outlined in the previous section. With regard to this thesis, the scope is
limited mainly to inertial sensors and radio navigation instrumentation. Air data sensors
are not considered because the thesis primarily focuses on the attitude command or flight

control loop closure where air data is of minor relevance.

First, traditional Attitude and Heading Reference System (AHRS) and Inertial
Navigation System (INS) based instrumentation architectures are discussed. Next, an INS/

GPS based architecture is considered which uses the synergy of inertial and single-
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antenna GPS information. Finally, a more recent multi-antenna GPS-based
instrumentation architecture is presented that relies on carrier phase measurements to

close the flight control loop.

2.2.1 AHRS and INS Based Instrumentation Architecture

Figure 2.3 shows an AHRS based instrumentation architecture. It relies on
measurements of inertial quantities such as turn rate and acceleration to calculate all the
necessary feedback variables. At the heart of the Attitude and Heading Reference System
is an Inertial Measurement Unit (IMU). It consists of at least three gyros and
accelerometers, mounted typically on three orthogonal axes, and thus senses accelerations
and turn rates in three dimensions. The accelerations and turn rates are available as outputs
for feedbacks in SAS and CAS loops.
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Figure 2.3: AHRS Based Instrumentation Architecture

T Only the more recent strap-down systems are considered here.
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The turn rates are integrated once to yield traditional aircraft attitude which is typically
expressed in Euler angles (heading anglgitch angled and roll angleg). Due to bias
and drift inherent in the gyro sensor measurements, the attitude as a result of the
integration process will drift over time. Acceleration measurements can be used to bound
the attitude drift. In the absence of considerable aircraft dynamics or averaged over a
longer time interval, the accelerometers measure the gravity vector and, thus, act like a
mechanical pendulum to indicate the vertical direction. The acceleration measurements,
averaged over time, are then used in an electronic erection loop to prevent the roll and
pitch attitude to drift over time. The averaging time constant is subject to a trade-off: too
short of a time constant will cause aircraft accelerations to be sensed as gravitational
acceleration thereby nulling any indicated aircraft pitch and roll indications. On the other
hand, too long of a time constant will not bound the attitude drift effectively enough. For
typical AHRS implementation the time constant is in the order of few minutes. A
drawback of this mechanization is apparent if the aircraft maneuvering time exceeds the
average time constant (such as in an extended steady turn). In that case, the actual aircraft
acceleration will be interpreted as gravitational acceleration and any indicated aircraft

attitude will be reset over time.

While the roll and pitch angle drift can be bounded using accelerometer
measurements, the azimuth or heading angle drift can not, and thus necessitates the
availability of additional sensor information such as magnetic compass or magnetic flux
sensor measurements. These measurements will then be incorporated in the attitude

filtering to bound the heading drift. This is indicated with the dashed line in Figure 2.3.

The attitude drift is an inherent limitation of AHRS instrumentation and drives the
performance requirements of the rate gyros used. For AHRS in aircraft applications, high-
end tactical grade gyros (~0.1 deg/hr), such as fiber optic gyros, are typically necessary in
order to achieve the required attitude accuracy (Tazartes 1995, Schmidt 1997). As a
consequence of the high gyro quality required, the cost of AHRS traditionally range from
$30k to $50k at the time of publishing. Its use is, therefore, normally limited to

commercial and business aircraft.

28



AHRS based flight control instrumentations have the advantages of being entirely self-
contained and of having high availability, high sensor bandwidth and low sensor noise

characteristics.

In an AHRS based instrumentation architecture the guidance loop is typically closed
using radio-navigation aids or Doppler radar information. Radio-navigation systems
include systems such as DME, VOR, ILS and GPS.
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Figure 2.4: INS Based Instrumentation Architecture

T For low-end aircraft, such as for the large fleet of General Aviation (GA) aircraft, the AHRS
functions are performed by a gimballed vertical gyro for pitch and roll and a directional gyro for
heading information. Traditionally, these instruments are mechanical, and driven by a vacuum pump
or electrically. They are thought to be prone to failures, but their cost is a fraction of the cost of
traditional AHRS. Moreover, due to their entirely mechanical nature, these instruments provide no
electronic output of the attitude information.
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In an Inertial Navigation System (INS) based instrumentation architecture, the
guidance loop is closed using position and velocity information calculated from the
accelerometer measurements. Figure 2.4 shows an INS based instrumentation
architecture. The measurements are transformed from the aircraft body axes into a suitable
reference frame using the calculated attitude and are integrated once for velocity and a
second time for position estimates. This information may be blended with position and

velocity measurements obtained from additional radio-navigation aids.

The limitation of inertial systems due to gyro and accelerometer drift rates become
apparent by considering the number of integrations necessary to obtain position and
velocity from accelerations and turn rates. Each integration increases the rate at which the
resulting quantity drifts over time. Acceptable position and velocity drift rates require,
therefore, gyro and accelerometer of high performance. Typically, for an INS system of
1.0 nmi/hr accuracy, navigational grade accelerometer and gyros with biases in the order
of 10° g and 10° deg/hr, respectively, are necessary (Phillips 1996). Ring laser gyros are
commonly used for this application. This results in high cost for INS based
instrumentation architectures. The cost of inertial navigation systems currently exceeds
$50K and architectures based on INS are limited to the higher end of the aircraft spectrum.
Advantages of INS based architectures include the availability of independent and self-
contained position and velocity information, high sensor bandwidth and low sensor noise

characteristics.

2.2.2 INS/GPS Based Instrumentation Architecture

With the advent of the Global Positioning System (GPS), instrumentation concepts
have been developed which synergistically combine the properties of inertial sensors and
GPS measurements. Inertial sensors have high bandwidth and low noise and, thus, good
high frequency behavior, but their inherent biases give raise to drift in attitude, position
and velocity. GPS, on the other hand, typically provides noisy position and velocity

measurements at limited bandwidth, but the measurements are absolute and therefore not
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affected by any drift problem. The good low frequency behavior of GPS, thus,
complements the good high frequency behavior of inertial sensors in an optimal way.

Figure 2.5 shows a possible INS/GPS based instrumentation architecture.
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Figure 2.5: INS/GPS Based Instrumentation Architecture

As part of the synergism, GPS information calibrates inertial sensor errors and reduces
the drift in inertial based attitude, position and velocity information. This is done with the
use of an error model that relates position and velocity errors to gyro and acceleration
errors. At the same time, the inertial based (attitude, position and velocity) information is
available at significant higher rate than GPS information. Inertial information may also be

used to help the GPS receiver during satellite acquisition.
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In the architecture discussed in the previous section, the GPS sensor is used purely as a
navigation aid and its information is used to close the guidance loop. Here, GPS position
and velocity information is used to correct the aircraft attitude and is blended with
inertially derived position and velocity information, that is, the GPS position and velocity
measurements are used for the flight control loop and guidance loop. The integration of
GPS and inertial information as shown in Figure 2.5 is commonly referred to as 'loosely
coupled' GPS/INS architecture (Phillips 1996). Alternate integration concepts range from
separate INS and GPS systems, with GPS information resetting the INS solution
periodically, to tightly coupled INS/GPS systems where raw GPS (pseudo-range and

delta-range) and inertial measurements are combined in a single filter.

The use of GPS measurements to calibrate the inertial sensor errors allows for a
reduction in the sensor quality required to achieve comparable performance as with an
AHRS. Typically, low-end tactical grade gyros and accelerometers, such as fiber optic or
micromachined tuning fork quartz gyros and micromachined vibrating quartz
accelerometers, with biases of the order of 10 deg/hr aitylére used resulting in lower
costs (Boeing 1997). INS/GPS tactical grade units range from $8k to $20k and are

commonly employed in the mid and high-end aircraft segment.

As an additional advantage, an integrated INS/GPS system provides the user with
attitude information during GPS outages or jamming. The calibration of the inertial sensor

errors hereby reduces the rate at which the attitude information drifts.

2.2.3 Multi-Antenna GPS-Based Instrumentation Architecture

In recent years multi-antenna GPS-based attitude sensors have been developed (Cohen
1996). They rely on interferometric principles to determine the vehicle attitude. By
measuring the difference in GPS carrier phase between a pair of antennae, the receiver
determines the range difference between the pair of antennae and the satellite. Range
differences obtained using carrier phase measurements from multiple satellites with three
or more antennae with known baselines allow the receiver to compute three-axis attitude

of a vehicle.
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The GPS receiver initially only measures the fractional part of the differential phase.
The integer part of the range difference, corresponding to multiple of the GPS carrier
wavelength, must be determined by independent means before the differential phase
measurement can be interpreted as a differential range measurement. This problem is
commonly referred to as integer ambiguity resolution and numerous algorithm to solve for

this ambiguity have been implemented.

Multi-antenna GPS-based attitude determination is a direct measurement of the
vehicle attitude and hence is not affected by drift problems. Since the principal
observables are carrier phase difference measurements, it is not susceptible to Selective
Availability. However, its accuracy is proportional to the inverse of the antenna baseline
lengths. Thus, larger baselines reduce the attitude error and hence the vehicle dimensions

constrain the achievable accuracy.
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Figure 2.6: Multi-Antenna GPS-Based Instrumentation Architecture
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Figure 2.6 shows a typical multi-antenna GPS-based flight instrumentation
architecture. The GPS attitude sensor provides roll, pitch and yaw information for the
flight control loop closure. At the same time, the GPS receiver can be configured to
provide position and velocity information that is used to close the navigation and guidance
loop. This information, unlike the GPS derived attitude, is obtained from ranging
measurements to four or more satellites using a single antenna. If necessary, additional
gyros and accelerometers can be used to dampen unwanted aircraft motions or to improve
the aircraft response in the SAS/CAS loop. This is indicated through the dashed lines in
Figure 2.6.

It is interesting to note that in the multi-antenna GPS-based architecture, inertial
sensors are used &mgmeniGPS attitude information, whereas in the integrated INS/GPS
based architecture the converse is true. That is, GPS augments the INS based attitude

information.

The inertial sensor performance necessary for SAS/CAS loop closures is significantly
lower than the inertial sensor performance necessary to close the flight control loop. The
fact that primarily high-frequency components of accelerometer and gyro outputs are fed
back in this loop, makes their biases and drift rates less significant and allows the use of
low-cost automotive grade inertial sensors for this task. Gyros and accelerometers with a
typical performance of 180 deg/hr and 1 mg, respectively, may be utilized (Gebre 1998,
Schmidt 1997). The cost of such sensors are less than $100 (for large volumes) at the time

of publication and are projected to decrease significantly in the future.

A synergy exists between GPS attitude and inertial sensor based attitude, similar to the
one found in the combined integration of INS/GPS systems discussed in Section 2.2.2. By
combining the drift free, low bandwidth, GPS attitude information with high bandwidth,
drift-affected, inertial sensor based attitude information in a complementary filter, the
advantages of both sensors are exploited. This is shown in Figure 2.6. GPS attitude is used
to calibrate the rate gyro biases on-line and, at the same time, a higher attitude update rate
is available using the calibrated inertial attitude output. The availability of actual GPS

attitude measurements (as opposed to GPS position and velocity measurements) allows for
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an improved gyro bias calibration and significantly reduces the performance requirements
of the gyros. Also, properly calibrated inertial sensors allow for continued operation

during temporary GPS outages.

Hayward (1997) and Gebre (1998) implemented an GPS/Inertial AHRS for General
Aviation (GA) applications utilizing three antennae and automotive grade gyros. The
antennae were configured in a isosceles triangle with baselines of 50 cm and 36 cm. They

demonstrated a attitude accuracy of better than 0.2 deg.

Though the availability of multi-antenna receivers on the market is still limited, this
concept has the potential to serve a larger GA community in the future. Some of the
disadvantages associated with multi-antenna GPS-based systems are the extensive antenna
installations and baseline calibrations, the aircraft specific certification, the currently
limited GPS integrity and the need for ambiguity resolution after loosing lock and

subsequent reacquisition.

2.3 GPS Velocity Vector Based Flight Contrb- A New Flight Control

Paradigm

This thesis presents a new paradigm for closing the flight control loop. It has the
distinct advantage that the control variables necessary to close the loop are completely
observable from single-antenna GPS measurements. This creates the opportunity for a
flight instrumentation architecture that can be primarily based on a single-antenna GPS
receiver and has, thus, the potential to greatly reduce instrumentation complexity. The new
paradigm is based on sensing and controlling the inertial velocity vector directly, rather

than controlling it through aircraft attitude, as in conventional control schemes.

Traditionally, the pitch and roll attitude are controlled to achieve a desired velocity
vector and, hence, flight path change. In the lateral direction, an aircraft roll angle is
established in order to generate an acceleration force that, in turn, changes the velocity
vector. Similarly, in traditional pitch attitude based longitudinal flight control schemes,

pitch and/or thrust control is used to achieve a desired flight path angle and speed.
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In the proposed flight control paradigm, the flight path vector and its rate of change are
sensed and controlled directly. In order for this approach to be successful, however, the
aircraft has to be well behaved ‘around the velocity vector’. That is, unwanted aircraft
modes have to be satisfactorily damped and the aircraft response to control inputs has to

be adequate.

The velocity vector, flight path angle and the acceleration vector are completely
observable from single-antenna GPS measurements. The GPS receiver measures high-
quality carrier Doppler frequency shifts that are used to compute velocity information.
Acceleration can be inferred by backdifferencing or by Kalman filtering the velocity

information.

A useful representatiorof velocity vector based flight control variablesfight path
anglein the longitudinal direction angseudo-rollangle in the lateral direction. Flight
path angle is the angle between the inertial velocity vector and the local level plane, and is
used as a surrogate of pitch angle. Pseudo-roll angle represents the roll angle around the
velocity vector axis and is a substitute for traditional roll angle. Pseudo-roll corresponds to
the observed lateral rate of change of the velocity vector and is determined from the
acceleration vector perpendicular to the velocity vector. The combined use of these
attitude or flight control variables is novel and is referred topagudo-attitudeto
distinguish them from traditional attitude. Chapter 3 explains the derivation of pseudo-
attitude in much greater detail. It will be shown that for coordinated flight the pseudo-roll
angle closely corresponds to the traditional roll angle and that, therefore, similar control

strategies can be employed as for traditional roll angle.

The new flight control paradigm enables an instrumentation architecture that is
primarily based on a single-antenna GPS receiver. This architecture is discussed in Section
2.3.1. Section 2.3.2 briefly presents a demonstration example of this new architecture,
namely a pseudo-attitude system for General Aviation aircraft. The rest of this thesis is
devoted to the derivation, synthesis and flight test of pseudo-attitude and the

demonstration of some of its applications.
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2.3.1 Single-Antenna GPS-Based Instrumentation Architecture

Figure 2.7 shows a possible single-antenna GPS-based instrumentation architecture. A
single-antenna GPS receiver is used as a primary means to obtain position and velocity
information which serves to close the guidance loop. Using the pseudo-attitude concept,
velocity information is also used to close the flight control or attitude command loop. This
is accomplished by inferring acceleration and subsequently synthesizing pseudo-attitude

to close the loop.
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Figure 2.7: Single-Antenna GPS-Based Instrumentation Architecture

If necessary, additional inertial sensors can be employed to dampen unwanted aircraft
modes. In Figure 2.7, a SAS/CAS loop, if required, is schematically shown by the dashed
arrows. Since primarily high-frequency components of accelerometer and gyro outputs are
fed back in this loop, their biases and drift rates are less significant. Consequently, low-
cost gyros and accelerometers of automotive grade can be used for these tasks. Their cost

are typically less than $100 at the time of publication.
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Similar to the multi-antenna GPS-based architecture, this architecture uses low-cost
inertial sensors only taugmentthe GPS-based pseudo-attitude, as part of a SAS/CAS
loop or to increase the bandwidth. This is in contrast to traditional INS/GPS based

architectures where GPS is used to correct the primary INS derived attitude solution.

The single-antenna GPS-based instrumentation architecture relies on a sensor that, in
recent years, has found broad acceptance as a navigation aid and is, thus, readily available
at affordable cost. At the time of publication, GPS receivers with update rates as high as
10 Hz are available for $2-3kHence, this architecture may be implemented at significant

lower cost than traditional instrumentation architectures.

A distinct advantage of pseudo-attitude is the fact that it constitutes an absolute
measurement of the aircraft state and, hence, provides drift free attitude information. An
additional advantage is the minimal required installation. Unlike multi-antenna GPS
attitude, where a number of antennae have to be installed and their baselines have to be
known or estimated, this architecture relies on the installation of single antenna, ideally
close to the center of gravity. In addition, no ambiguity resolution is necessary to operate

the system. Finally, no initial alignment as for inertial sensors is required.

However, the use of an outer-loop variable for inner loop control, that is, the
differentiation of velocity to obtain acceleration information is tied to a trade-off involving
noise and bandwidth of acceleration information, and thus sets an inherent limit on the
achievable performance. Furthermore, GPS availability and integrity issues have to be
addressed. This is of particular importance since this architecture utilizes GPS information
not only in the guidance but also in the flight control or attitude command loop. For
example, GPS outages or jamming can lead to the loss of attitude control. These issues

will be addressed in later Chapters.

T Cost of the receiver hardware. Certification, if necessary, is not included.
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2.3.2 Demonstration Example: Pseudo-Attitude System for General Aviation Air-
craft

This section presents a simple example of the single-antenna GPS-based
instrumentation architecture, namely a pseudo-attitude system for small General Aviation
(GA) aircraft. This system was used as prototype to demonstrate the concept of GPS-

based pseudo-attitude because of its relative simplicity in implementing and testing it.

Figure 2.8 shows the pseudo-attitude system as part of the attitude command loop
which, in this case, is closed by the pilot. The need for inner-loop stabilization of small
GA aircraft is typically greatly diminished by the inherent design of these aircraft. In
addition, the pilot is assumed to fly the aircraft in a coordinated manner by compensating
any experienced sideforce by appropriate rudder inputs. The navigation and guidance
loop, not shown in Figure 2.8, is assumed to be closed by the pilot using available GPS

position and velocity information.
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Figure 2.8: Pseudo-Attitude Based Flight Control Loop

The pseudo-attitude system consists of a GPS receiver providing three-dimensional
velocity information, a computer executing the pseudo-attitude synthesis algorithm, and a
display showing the pseudo-attitude information. In the implementation described in this

thesis, a Novatel 3151R GPS receiver, operated in single-point mode, was used as the
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primary velocity source. Aircraft velocity and acceleration, however, are necessary to
synthesize pseudo-attitude. The velocity output is therefore fed into a Kalman filter which
estimates acceleration. The velocity and acceleration information are the input to the
pseudo-attitude synthesizing algorithm which, together with the Kalman filter, is
implemented in an onboard computer. The calculated pseudo-attitude is then displayed on

an electronic pseudo-attitude display.
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Chapter 3
Velocity Vector Based Flight Control

This chapter describes the synthesis and display of velocity vector based attitude
information. In particular, it introduces the notion p$eudo-attitudevhich is a useful
representation of attitude information and is completely observable from velocity and
acceleration information. Pseudo-attitude, thus, enables a GPS receiver providing high
quality Doppler shift based velocity and acceleration measurements to be used for flight

control loop closures.

Pseudo-attitude consists of flight path angle and pseudo-roll angle, defined as a
rotation about the velocity vector axis. Its synthesis is based on a simple point mass
aircraft model that does not require particular knowledge about the aircraft. It will be
shown that under coordinated flight conditions pseudo-roll corresponds closely to
traditional roll angle. Furthermore, pseudo-attitude allows for functionally similar flight
control loop closures in the longitudinal and lateral directions as traditional attitude. This

is discussed further in Chapter 5.

Section 3.1 discusses the synthesis of velocity based pseudo-attitude information. In
addition, the synthesis of traditional attitude information is considered in order to explore
the differences between pseudo-attitude and traditional attitude. The treatment in this
section assumes perfect velocity and acceleration measurements. The realistic sensor
characteristics of GPS are treated in Chapter 4 and their implications on loop closures are
discussed in Chapter 5. Section 3.2 introduces a possible pseudo-attitude display that
allows the human to close the attitude or flight control loop around velocity based attitude

information. Section 3.3 summarizes this chapter.
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3.1 Derivation of Velocity Vector Based Attitude information

The aircraftflight control problemhas the objective of determining the appropriate
control surface deflections to achieve a desired attitude and, ultimately, to execute a
desired flight path change. Determining the aircraft attitude when the aircraft trajectory is
given may, thus, be called theverse problenof aircraft general motion and has been
subject of some research (Kato 1986, Hauser 1997). Kato (1986) shows that the inverse
problem of the airplane general motion has no unique solution and indicates that if
additional constraints, such as coordinated flight are included, the aircraft attitude is
unique to the given flight path and may, at least in principle, be determined by solving
three simultaneous implicit nonlinear equations. No solution for the case of coordinated

flight is offered, however.

This section develops an approach to synthesize attitude information from the aircraft
trajectory, that is, from the velocity along the aircraft flight path. The synthesis relies on
the assumption of coordinated (or nearly coordinated) flight. This implies that the aircraft
flies in a manner so as to eliminate any sideforce experienced by pilots and passengers.
Flight coordination is typically achieved by banking the airplane to obtain a desired turn
rate and by the use of rudder input to cancel any residual sideforce. The assumption of
coordinated flight is valid for most flight conditions encountered by conventional aircraft
and, thus, does not constitute a significant limitation to this concept. Furthermore, it will
be shown in later chapters that the synthesized attitude information is also useful in steady

uncoordinated flight, such as in the presence of a non-zero steady sideslip.

The attitude information synthesized from the aircraft trajectory has been termed
pseudo-attitudéo distinguish it from traditional attitude consisting of pitch and roll angles
(Kornfeld 1998a, b). In contrast to traditional attitude, which is referenced to the aircraft
body axes, pseudo-attitude is referenced to the aircraft velocity vector and consists of
flight path angley with respect to the (local horizontal) ground plane, substituting for
traditional aircraft pitch angle, and a pseudo-roll arﬁ;le about the aircraft velocity vector

axis, substituting for traditional roll angle. The pseudo-roll angle is defined as the effective
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bank angle which corresponds to the observed lateral rate of change of the velocity vector.
Pseudo-attitude, unlike traditional attitude, provides a direct indication of the flight path.

Figure 3.1 illustrates the definition of pseudo-attitude.
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Figure 3.1: lllustration of Pseudo-Attitude

The synthesis of pseudo-attitude is treated in Section 3.1.4. In order to provide a basis
for the pseudo-attitude algorithm, the synthesis of attitude in wind axes and of traditional
attitude in body axes, under the assumption of coordinated flight, is discussed first in
Section 3.1.2 and Section 3.1.3, respectively. The insights gained from the synthesis of
these attitude variables help explain the approach taken to synthesize pseudo-attitude and

help identify the commonalities and differences between them.
To simplify the discussion in this chapter, the following assumptions are made:
* The aircraft is assumed to be in coordinated flight.

* The atmosphere is assumed to be in (nearly) uniform motion relative to the Earth.
Thus ifw is the wind velocity, then

d

aW =0 (3.1)

This assumption will in fact not be valid all the time, since the atmosphere is
usually in non-uniform motion in time or space. However, by choosing the wind
vector w as the space and time average of the atmospheric motion over an

appropriate space-time domain, an average uniform motion can be assumed
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(Etkin 1972). The local or temporal deviations from the mean atmospheric motions
are turbulence or gusts, and will be treated as disturbance inputs to the attitude

determination system.

» The earth is assumed to be flat and fixed in space, thereby neglecting the effects of
earth curvature and rotation. This assumption is valid for flight velocities
encountered by most conventional aircraft (typically subsonic or low supersonic
speeds < Mach 3) (Etkin 1972).

* The aircraft is assumed to be a rigid body having a plane of symmetry.

The assumption of coordinated flight and uniform wind motion are relaxed in later
sections and their effect on pseudo-attitude is discussed in Section 3.1.5 and in Chapter 5.
The next section, presents the coordinate frames used throughout this chapter. Finally,

Section 3.1.6 briefly describes other velocity based control variables.

3.1.1 Coordinate Frames

The following coordinate frames are used:

« The NED frameF\gp is an earth-fixed, local level coordinate system which has its
origin instantaneously located at the current position of the aircraft center of
gravity (c.g.), and its axes aligned with the directions of North, East and the local
vertical (Down). Due to the flat-earth assumption, the NED frame is, in effect,
treated as an inertial reference frame in which accelerations and angular rates are
measured. The velocity of the aircraft c.g. relativé-fg:p, i.e. with respect to the

ground, is denotedy and expressed in NED coordinates@s (Vgn,Vge Vgp)-

» The body framé-g is a body-fixed, orthogonal axes set which has its origin at the
aircraft c.g., and its axes aligned along the roj))(pitch (y,) and yaw (g) axes of
the aircraft. That is, thexaxis extends forward out the vehicle’s nose, theyes
extends out the right wing, and thg-axis extends out the bottom of the vehicle.

The %z, plane is usually a plane of geometric symmetry. Since the aircraft
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rotational inertia matrix is constant in body axes, the rotational dynamics equations
are typically expressed in this frame. The frafgehas angular velocity = (p,q,r)

relative tOFN ED'T

» The atmosphere-fixed reference framig is moving with respect to the NED
frame Fngp at wind velocityw. Its origin is at the aircraft c.g. and its axes are
parallel to the NED axes. Because of the assumption of uniform wind motion, this
frame is an inertial frame. The velocity of the aircraft c.g. relativEzois referred
to as therelative wind and is the relevant velocity for aerodynamic forces in

atmospheric flight. It is denoted, and expressed in NED coordinates as

Va= (VanVagVaD)-

« The wind axes framé&y is an orthogonal axes set which has its origin fixed to
aircraft c.g., and theaxis pointing into the relative wind, i.g s directed along
the velocity vector,. The z,-axis lies in the plane of symmetry of the aircraft (i.e.
in the %,-z, plane), and y; is orthogonal to ¥ and z, to form a right hand sided

coordinate frame. The frantg,, has angular velocitgy,, = (P4 1) relative to

FNED-

The orientation of the body franfé; with respect to the NED framiéygp is given by
three angles, namely yaw, pitch 6 and roll ¢ angle. These are the Euler angles of the

body axes. The rotation matriR(y,0,¢) which transforms any vector froffygp to Fg is

t The stability axes systeffyis a special body axes reference frame used primarily in the study of
small disturbances from a steady reference flight condition. Tieis is chosen to lie on the pro-
jection ofv, onto the aircraft plane of symmetry, thgaxis is in the body ¥z, plane and the y

axis is orthogonal to xand z to form a right hand sided coordinate frame. For a symmetric flight
condition (no sidesliff) Fg coincides with the wind axdsy, in the reference condition, but departs
from it, moving with the body, during the disturbance. The stability axis frame will be used in con-
text of the linearized analysis of pseudo-attitude in Chapter 5.
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then composed of three consecutive rotations about the respective yaw, pitch and roll axes,

in that order, as shown in Figure 3.2(a), and given by

R(W, 6,9) = R(Y) [(R(B) [R(9)

1 0 0 cosb 0-sinB| | cosy siny (3.2)
= |0 cosp sing 0 1 0 |H-siny cosp
0 —sing cosp| |[sin® 0 cosd 0 0

(a) y /North (b)

Yo

Yw

Zy

Figure 3.2: Definition of (a) Euler Angles in Body Axes, (b) Aerodynamic Angles (c)
Euler Angles in Wind Axes

Similarly, the rotatiorR(y,,.6,,,9,,) that defines the orientation of the wind axes frame
Fyy relative toF\gp is given by the Euler anglegy,,0,,,@,,) of the wind axes system. The

definition of the Euler angles of the wind axes is shown in Figure 3.2(c).

The body framé-g and the wind axes frantg,, are related through the angle of attack
a and sideslip angIB.Jr The angle of attack is the angle between the bagdsoxs and the

projection of the relative wingl, onto the aircraft plane of symmetry. The sideslip angle is

t To simplify the discussion, it is assumed here that the bgebxis is parallel to the basic aerody-
namic reference direction, i.e the mean aerodynamic chord or the zero lift line. In thisicase,

used here, will be the same as that commonly used in aerodynamic theory and in wind tunnel testing.
Otherwise, it differs by a constant offset
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the angle betweewy and the aircraft plane of symmetry. These are the aerodynamic angles
and, together with the relative wing, are of fundamental importance in determining the
aerodynamic forces that act on the aircraft. The rotations that Egymnto Fg are shown

in Figure 3.2(b). The rotations are about theaxis by the sideslip anglg and about the
Yp-axis by a, in that order. In terms of Euler angles this sequence of rotation can be
expressed aR(—3,a,0) (Etkin 1972). Thus, the relations between Euler angles of the body

and the wind frames are (Kato 1986):

R(¥,8,¢9) = R(-B, a,0) (R(¥, 8,,, @,) (3.3)

From this equation, the Euler angles of the body axes can be obtained in terms of Euler
angles of the wind axes and the aerodynamic angleB, and vice versa. Figure 3.3,
adapted from (Stengel 1977), summarizes the relations between the different reference

frames and shows the rotations necessary to carry one frame into another.

NED Frame
FneD

Wind Axes
FrameFy,

Arrows Indicate
Right-Hand @ @
Rotation

Figure 3.3: Reference Frame Transformations

Body Framg
Fg

For coordinated flight the sideslois zero and Eg. (3.3) is modified to

R(LIJ’ e’ (p) = R(O! G, O) ER(LIJW’ eW’ "pw) (3-4)
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In this case, theyaxis coincides with they axis, and the wind axes frame relates to the

body axes frame through a single rotation about the y-axes by the angle ofiattack

In the following treatment it is assumed that the trajectory, or equivalently, the velocity
vg and acceleratioray with respect to the ground are given (e.g. obtained from
measurements of a GPS receiver). For the synthesis of attitude in wind and body axes, itis

further assumed that the wind vectoand the angle of attackare known, respectively.

3.1.2 Wind Axes Attitude Synthesis

In this section, the synthesis of attitude in wind axésy,0,,,@,). iS discussed. Given
Vg = (VgniVgE VgD), the velocity of the aircraft center of gravity with respect to the ground,
and the wind vectaw, the velocity of the aircraft center of gravity with respect to the wind

frame,v, = (Van,VagVap), IS determined by

= Vg—W (3.5)

The direction ofv, is aligned with the wind g-axis. The heading angle in wind axes

or, equivalently, the track angle with respect to the surrounding@irs given by

g, = atargjiEE (3.6)

aN

where the +/frambiguity has to be resolved using the signs of the velocity components.
The pitch angle in wind axes or, equivalently, flight path angle with respect to the

surrounding airg,,, is given by

[l
0, = atarB— (3.7)

«/VaN"' Vaé]

where a positiv®,, indicates a climb.
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For the determination of the roll angle in wind axgg, the following considerations
are necessary. The acceleratiapof the aircraft center of gravity with respect to the
atmosphere-fixed framE, is obtained by differentiating, with respect to time irFx.

Differentiating Eq. (3.5) and invoking the assumption in Eq. (3.1) yields

a :dva

— = 3.8
a dt a ( )

A
that is, a4 is equivalent to the given aircraft acceleration with respect to the graynd,

Separating the accelerati@g into components which are tangential and normal to the

flight path vectow, yields

a, = aa+aa (3.9)

where the superscripts “t” and “n” denote the tangential and normal components,

respectively. They are given by

a, L

t _ “a—"a

aa=——5V, (3.10)
[Va

al = a,—as (3.11)

Similarly, the gravitational acceleratiog is divided into tangential and normal

components by

t _ g Ij‘/a

g = > Va (3.12)
2

g" = g_gt (3.13)

andg is expressed in the coordinates of the NED frame as
0
g=10 (3.14)
%
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where g = 9.81 m/$ and is assumed to be constant. Then, because coordinated flight is
assumed, the normal component of the aircraft acceleration is equal to the sum of the lift

acceleration vectdrand the normal component of gravity, i.e.
ag = |+g" (3.15)
Figure 3.4 shows the relevant accelerations with the velocity vegtpointing into
the page. The lift acceleration vectbrs, by definition, perpendicular to the flight path

vectorv, and can in turn be expressed as the difference of the normal component of the

aircraft acceleration and the normal component of gravity, i.e.

I I
T'gn \
5
X al Xw @’ P
n

9 g\

Yw = Yo
Figure 3.4: Relevant Forces for the Synthesis of Attitude in Wind Axes

In aircraft flight, the direction of the lift vectdris controlled by the aircraft roll angle
and, consequently, carries information about the aircraft bank angle. In order to extract the

roll information, a horizontal reference vecfois defined as

p=gxy, = gnxva (3.17)

The angled betweer andp is determined by

_ 1P O
0= acosg|| fp|0 (3.18)



The complementary angle &y i.e. the angle betweem and the wind y-axis, which is

perpendicular td andv,, is theroll angle in wind axesp,, and is given by

— el P O
Oy = asmEIII Tpi0 (3.19)

Appendix A offers a proof of the roll synthesis that serves as a complementary
illustration to the geometric argument given above. The proof uses the force equation of
the aircraft equations of motion to show that Eq. (3.8) - Eqg. (3.19) yield the roll angle in

wind axes.

3.1.3 Traditional Attitude Synthesis

If the angle of attack is non-zero, the aircraft attitude in body axes is determined from
the attitude in wind axes by performing an additional rotation about the common y-axis by
the angle of attack, as discussed in Section 3.1.1. This rotation does not introduce any
sideforce and, thus, the resulting attitude in body axes still corresponds to a coordinated

flight condition.

The evaluation of the attitude rotation equation given in Eq. (3.4), i.e.

R(W, 8, 9) = R(O, a, 0) (R(Y,, 6, @) (3.20)

yields the following useful expressions

sin@ = cosa [$in6,, + sina [tosH,, [Cosy,, (3.21)
sing = (cos9,, [king,,)/ (cosH) (3.22)
sin(,,—¥) = (=sina [Bing)/ cosB, (3.23)

from which the attitude in body axesp@,9), can easily be calculateddf is known. For

the case ofi = 0, the above expressions simplify to

sin@ = sinB,, sing = sing,, sin(y,-Y) =0 (3.24)
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as expected. For the special case of level fliglt € 0), Eq. (3.21) yields the familiar

relation

sin@ = cosu [$inB,, + sina [tosHB,, = sin(B,, + a) (3.25)

i.e. for level flight pitch angle is the sum of flight path angle with respect to the

surrounding air and the angle of attack.

In many cockpit architectures, the angle of attack is not available as a measurement
and may have to be estimated instead, using the aircratft lift curves, the flight altitude and
the aircraft weight. A simple approach is outlined in (Case 1996). Similarly, in the case
where the wind vector is unknown it may be inferred from in-flight measurements of the
velocity vectorvg during a constant airspeed turn. This approach is outlined in (Hollister
1990) in the context of Loran measurements. Often, however, accurate lift curves or the
aircraft weight are not available, and sufficiently accurate estimates @f the wind
vector cannot be obtained. These shortcomings may limit the applicability of the body

axes attitude synthesis in practice.

Difference Between Attitude in Wind Axes and Body Axes

In order to compare body axis attitude with pseudo-attitude described in the next
subsection, it is useful to first quantify the difference between body axis attitude and wind
axes attitude. Using a first order Taylor approximation, it can be shown from Eqg. (3.21) -

Eq. (3.22) that the difference betwegandq,, is given by

¢-q, = tand,, Csing,, [ (3.26)

and does not exceed 1.9 deg in magnitude for the flight conditions limited by

-15°<0,,<15°, -45°<q,<45°, -10°<a<10° (3.27)

Thus, the roll angle in body axes is approximately equal to the roll in wind axes, i.e.

o=@, (3.28)

52



in the typical operating range of most civil aircraft. The difference between the aircraft

pitch angle in body and wind axes is to first order

6-6,, = cosp, [ (3.29)

and is largest for level flight. In this case, the difference equals to the angle of attack, as

expected from Eq. (3.25). Finally the difference betwgemdy,, is given in Eq. (3.23).

3.1.4 Pseudo-Attitude Synthesis

Pseudo-attitude is a surrogate for traditional aircraft attitude and is synthesized from
the inertial velocity and acceleration vectorg and ay, respectively. Pseudo-attitude is
therefore entirely observable from GPS velocity and acceleration measurements and its
synthesis does not rely on the additional knowledge of angle of attack or wind
information. High quality GPS velocity information is available from Doppler frequency
shift measurements of the GPS carrier tracking loop as discussed in more detail in the next

chapter.

Pseudo-attitude is referenced to the aircraft velocity vector and consists of flight path
angle in the longitudinal direction and pseudo-roll angle around the aircraft velocity vector
axis in the lateral direction. Flight path angles the angle between the velocity vector and
the local level plane, and is used as a surrogate for pitch angle. Pseudo-roligangle is
defined as the effective bank angle which corresponds to the observed lateral rate of
change of the velocity vector and is a substitute for traditional roll angle. Pseudo-attitude,
unlike traditional attitude, provides a direct indication of the flight path. It will be shown,
however, that for coordinated flight the pseudo-roll angle closely corresponds to
traditional roll angle. Figure 3.1 shows the velocity vector axisused for the definition
of pseudo-attitude, and the body axes, (%, z,), used for the definition of the traditional

attitude.
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Flight path angle is defined as the angle betwegand the local level ground plane
and is given by

y = atani———[ (3.30)

[ 2 2

where a positivg indicates a climb.

The pseudo-rollp is determined from the known aircraft acceleragjpand the
gravitational acceleratiolg as shown in Figure 3.5. The force diagram in this figure
closely resembles the force diagram in Figure 3.4 which shows an aircraft flying a
coordinated turn. The only difference is that in the diagram of Figure 3.5 the inertial
velocity vector axis, i.e. the axis aligned wid, is used to resolve the forces instead of
the aircraft wind ¥,-axis, which is the axis aligned with the velocity vectgrelative to

the air.

Figure 3.5: Determination of Pseudo-Roll

Consequently, the pseudo-roll angle is determined in a manner similar to the roll in
wind axes, described above, but withreplaced by First, a pseudo-lift acceleration
vector| is defined as the vector difference&gf aid |, the componerdg afdg

perpendicular to the aircraft velocity vectgy respectively. That is

1 = ag_g” (3.31)
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where similar to Eq. (3.10) - Eq. (3.13)

~t _ ag D/g
ag = —— Oy (3.32)
[Val
~n _ ~t
ay = ay—ay (3.33)
~t 90y
g = —5 0y (3.34)
[V
~ ~t
" =g-9 (3.35)

The tilde (~) is used to distinguish these quantities from the ones used in the synthesis
of attitude in wind axis. The pseudo-rafi  is then determined as the complement of the

angle between the pseudo-lift vector and a local horizontal refepence

- 0
@ = asinge—= (3.36)
Il O™
where the local horizontal reference is defined by
p = gxy, = énxvg (3.37)

Ground track heading complements the flight path angle and pseudo-roll angle to

form a complete set of velocity referenced attitude varial{esg, c~p) X . isdefinedas
X = atarf} 23 (3:38)
gN

where the +/mambiguity has to be resolved using the signs of the velocity components.

The properties of attitude variablgs, y, (Np) are examined in the next subsection.
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3.1.5 Properties of Pseudo-Attitude

Pseudo-attitude, unlike traditional attitude, provides a direct indication of the aircraft
trajectory. Flight path angle and ground track heading give a direct indication of the
velocity vector direction and aircraft trajectory. By way of contrast, pitch and heading
angle give the direction the aircraft is pointing and provide only an indirect indication of
flight path. Lambregts (1979), investigating a velocity vector control steering mode, states
that “the inertial flight path angle best characterizes the airplane maneuver in the vertical
plane... . In the horizontal plane, ground track is the most representative variable for

control of the aircraft along an earth referenced path... ”

In the lateral direction, pseudo-roll angle is a direct indication of the lateral rate of
change of the velocity vector or, equivalently, of the lateral aircraft acceleration. For most
flight conditions, however, pseudo-roll corresponds closely to traditional roll. This is

discussed in the following section.

Difference Between Pseudo-Roll and Roll Angle in Wind Axes

It was previously shown that roll angle in wind axes is approximately equivalent to roll
in body axes with a difference of less than two degrees for the flight envelope specified in
Eq. (3.27). The difference between roll in wind axes and pseudo-roll, in turn, is due to the
different axes chosen to resolve the gravity and aircraft accelerations. For the former, it is
the axis aligned withv,, whereas for the latter the axis aligned witf is used. The

difference of the two axes is due to the wind veatanly, as shown in Eq. (3.5).

To simplify the discussion, the representative case of an aircraft flying a coordinated
level turn under the presence of a horizontal wind vewtas considered. Then, using a
second order Taylor approximation, the difference between pseud(Np-roII and roll in wind

axes@,, Is given by

~ 1 tang,
e Cp?

1+ (tang,)? (3-39)
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wherep designates the angle between the vestpedvy, that is

v, L
p = a(:oég’vj1 E]vgg|g (3.40)

For a relatively severe case of an aircraft flying at an airspeed of 100 knots and turning
with a roll in wind axes of 45 deg, a 40 knot crosswind induces an instantaneous
difference of no more than 2 degrees. Furthermore, taking the difference of roll in wind
axes and traditional roll given in Eq. (3.26) into account, it can be concluded that pseudo-

roll closely corresponds to traditional roll angle in this flight condition.

So far, the treatment of pseudo-roll assumed a constant wind vector and coordinated
flight. These assumptions are not always valid. The effects of atmospheric non-

uniformities and of uncoordinated flight on pseudo-roll are therefore discussed next.

Effects of Uncoordinated Flight on Pseudo-Roll

Even though the assumption of coordinated flight is valid most of the time, there are
flight conditions, such as during a severe slip or yaw maneuver, or during stall, where this
assumption does not hold true. In these instances pseudo-roll angle may differ
considerably from the aircraft bank angle. The effects of the uncoordinated flight

conditions on pseudo-roll are discussed here:

» Sidesliping and Yawing: Sidesliping may be caused, among other factors, by
severe yawing, excessive rudder input or by an undamped dutch roll motion. It
induces a sideward acceleration with respect to the velocity vector that, when
measured directly by GPS or inferred from GPS trajectory data, is
indistinguishable from an acceleration originating from a banked aircraft (i.e a
deflected lift vector) during a coordinated tJrrConsequentIy, the pseudo-roll
synthesis interprets the sensed sideforce as a pseudo-roll angle when, in fact, the

aircraft is level.

t An accelerometer mounted along the aircrgfayis, however, measures specific side force and
allows to distinguish between coordinated and uncoordinated flight.
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Unintentional sideslips are typically of transient nature. The decay times are a
function of particular aircraft characteristics. For instance, in case of the dutch roll
mode, the decay time is determined from dutch roll damping. Transient sideslip
effects will be illustrated in greater detail in Chapter 5 in the context of a linearized
aircraft control loop analysis. Fortunately, as will be shown, the effects due to
sideslip are typically benign and can be mitigated, if necessary, using stability

augmentation feedback systems (SAS).

In the case of a steady sideslip maneuver, a constant offset between pseudo-roll
and traditional roll can be observed. For instance, for an aircraft flying with wings
level and a steady sideslip, a constant pseudo-roll offset exists due to a steady side
acceleration. Conversely, when a roll angle is applied to compensate for the
sideforce induced by the sideslip and maintain a straight flight path, no pseudo-roll
angle is indicated while a real roll angle exists. The latter may occur when flying a
twin-engine aircraft with a failed engine. Generally in these conditions, due to the
constant nature of the offset, pseudo-roll angle still conveys the information to
control the aircraft flight path. That is, a constant offset in pseudo-roll may be
mentally removed by the pilot. For the example case of a twin-engine aircraft with

a failed engine, pseudo-roll indication could be used to maintain a straight ground
track since a non-zero pseudo-roll is indicative of a change in the velocity vector
direction. Aircraft control under the presence of steady sideslip conditions, and the
effectiveness of the pseudo-attitude display to track a straight and level ground
track under sideslip conditions, will be demonstrated in Chapter 7 as part of the

experimental evaluation.

Non-linear Flight Regime, Stall, Spin: The use of pseudo-attitude is most
appropriate in linear or quasi-linear flight regimes where the angle between the
aircraft body x-axis and the velocity vector is small. In stall or post-stall flight
conditions, this angle increases dramatically. Typically, while stalling, the aircraft
has a large positive pitch angle and is loosing speed rapidly and, subsequently,

altitude at an increasing rate. This causes the aircraft velocity vector to point
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towards the ground with an increasingly negative flight path angle. In this
situation, the lift acceleration decreases rapidly and the main aircraft acceleration
is along the velocity vector. In these conditions, the relation between measured
sideforce and roll information is lost and pseudo-roll information “degenerates”.

The latter is true for spin conditions as well.

In addition, the recovery from a stall or spin is achieved by establishing the
appropriate aircraft attitude. The use of velocity vector based pseudo-attitude
information does, thus, not provide sufficient information to adequately regain
aircraft control in these situations. A complete non-linear simulation of the

behavior of pseudo-attitude during stall and spin is beyond the scope of this thesis.

Effects of Atmospheric Non-Uniformities on Pseudo-Roll

In reality, the atmosphere is in non-uniform motion in time or space. Gusts or

turbulence, which are local or temporal deviations from the mean atmospheric motion, as

well as windshears may affect the aircraft trajectory and subsequently have an effect on

pseudo-attitude:

Turbulence: The disturbance of primary concern is side gust velocity. This
disturbance input appears as a sideslip gust input whose effects are twofold. First,
the nearly ‘instantaneous’ nature of the gust input induces a momentary side
acceleration which, by the same argument as for sideslip, translates into a
corresponding instantaneous change in pseudo-roll. Second, the sideslip gust input
may excite aircraft dutch roll motion. The associated sideslip oscillations may, in
severe cases, induce a corresponding pseudo-roll oscillation. In Chapter 5 the
effects of side gusts are illustrated in the context of a linearized aircraft control
loop analysis. Fortunately, as will be shown, for moderate turbulence the effects

are minor.

wind Shear: Horizontal wind shear, such as experienced by climbing or
descending through boundary layer motion next to the ground, subjects the aircraft

to sustained side acceleration. Similar to sideslip, the side acceleration, when
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measured directly by GPS or inferred from GPS trajectory data, cannot be
discriminated from an acceleration originating from a banked aircraft during a
coordinated turn. Accordingly, a non-zero pseudo-roll angle will result where, in
reality, the aircraft is not necessarily banked. However, in these instances pseudo-
roll indication could be used to maintain a straight ground track. Because the
pseudo-roll angle correlates with the rate of change of the velocity vector, the
pseudo-roll indication induces a self-correcting pilot control input. The pilot will
tend to bank the airplane to correct for any indicated pseudo-roll angle and thereby

maintain a straight ground track.

3.1.6 Other Velocity Based Control Variables

With a pseudo-attitude reference frame fixed, additional velocity vector based control
variables, such as pseudo-pitch rate  and pseudo-yaw rate , can be defined. They are

calculated from GPS velocity and acceleration information as follows:

. &0, ]
q= v where i = m (3.41)
g
. &g I
r = aTv|C where g = |Vng| (3.42)
g Vg X

and | is defined in Eq. (3.31). For the case of no wind, Eqg. (3.41) and Eg. (3.42) yield
pitch and yaw rate in wind axes,,cand ,. The use of these variables for inner-loop
aircraft control is limited due to the bandwidth constraints of GPS acceleration, as shown

in the next chapter. This topic is therefore not pursued further.

3.2 The Display of Velocity Vector Based Attitude Information

This section discusses the display of velocity vector based attitude information to close
the pilot’s control loop. Section 3.2.1 gives a brief overview of current display formats
containing velocity vector information and of research conducted previously in this field.

Section 3.2.2 presents a novel pseudo-attitude display that is fed by velocity vector based
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pseudo-attitude, described in the previous section. This display was used throughout the
research described in this thesis. Section 3.2.3 discusses display related issues such as
display update rate and latency. Finally, Section 3.2.4 reviews the results of a preliminary

simulator study of the pseudo-attitude display.

3.2.1 Introduction

The display of velocity vector information on a primary flight display has found broad
acceptance in the military aircraft fleet. Typically, velocity vector information is displayed
in the form of a flight path or velocity vector symbol. Together with additional essential
information, the velocity vector symbol is projected on the aircraft windscreen using a
head-up display (HUD), thus allowing the pilot to see important aircraft data overlaid with
the actual visual scene. Figure 3.6 shows a typical head-up display projection. Shown are
the flight path vector symbol, traditional attitude, heading, velocity and altitude
information. The flight path vector symbol moves freely over the head-up display area
indicating the instantaneous direction of travel relative to the aircraft attitude symbol, that
is, relative to the aircraft's current azimuth and elevation. The aircraft’s inertial
acceleration is inferred indirectly by the rate of change of the flight path vector symbol’s

position on the screen
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Figure 3.6: Head-up Display (HUD)
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Currently, only few commercial aircraft are equipped with HUDs. Most of today’s
commercial aircraft, however, provide horizontal velocity vector information on
navigation displays that can operate in the ground track mode. The information displayed
includes ground track heading and ground speed along with land marks and way points,
and allows the aircraft to be controlled along an earth referenced path. A typical
navigation display is the Electronic Horizontal Situation Indicator (EHSI) shown in

Figure 3.7.
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Figure 3.7: Electronic Horizontal Situation Indicator (EHSI)

Steinmetz (1986) suggested a velocity vector aligned attitude indicator. On the display,
the velocity vector symbol is fixed in the center, indicating the direction of travel, while
the aircraft attitude symbol is moving freely, indicating the direction in which the aircraft
is pointing relative to the velocity vector. Figure 3.8 shows the velocity vector aligned
attitude indicator for the case of an aircraft having a left crab angle due to a crosswind.
The vertical motion of the horizon is coupled to the flight path angle and the pitch angle is

given by the position of the aircraft attitude symbol with respect to the horizon. This is in
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contrast to conventional attitude indicators which are centered around the direction the
aircraft is pointing and in which the vertical motion of the horizon is coupled to the pitch
angle. The pilot has then to extract information about a flight path angle change from the

relative motion between the horizon and the flight path vector symbol.
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Figure 3.8: Velocity Vector Aligned Attitude Indicator (Steinmetz 1986)

a. In the presence of left-to-right crosswind.

Steinmetz (1980) describes a simulator study and actual flight tests comparing pilot
performance and pilot opinion for a velocity vector aligned attitude indicator and a
conventional attitude indicator. The velocity vector aligned attitude indicator was tested in
conjunction with a velocity vector control wheel steering mode developed by Lambregts
(1979). The velocity vector information to drive the display was obtained from an onboard
inertial navigation system (INS). He reports that although the statistical results of the
objective performance measures for the two displays are inconclusive, the pilots indicated

a clear preference for the velocity vector aligned display format.

More recently, Theunissen (1997) compared velocity vector aligned perspective flight
path displays with attitude aligned perspective flight path displays in a simulator study.
The perspective flight path display showed the desired flight trajectory in the form of a
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tunnel-in-the-sky that was overlaid on an attitude indicator referenced to either the
velocity vector symbol or aircraft attitude symbol, with the other one moving freely. He

reports that the pilots were able to stay well within tunnel for both displays and that the
statistical analysis did not reveal a significant difference between them. Similar to the
results reported by Steinmetz, the pilot subjects in their subjective rating unanimously

preferred the velocity vector aligned frame of reference.

3.2.2 Pseudo-Attitude Display

The displays presented previously show velocity vector information in conjunction
with traditional aircraft attitude information as conveyed by an artificial horizon. In this
section a novel pseudo-attitude display is presented. This display shows pseudo-attitude
which isentirelybased on velocity vector information. The pseudo-attitude display acts as

a substitute for the traditional attitude indicator.

Pseudo-attitude is displayed in a manner quite similar to traditional attitude. The
distinguishing feature of the pseudo-attitude display is that its aircraft symbol is
referenced to the inertial velocity vector. Figure 3.9 shows the comparison between
traditional and pseudo-attitude displays. The left display shows the traditional artificial
horizon which has its aircraft symbol referenced to the direction the aircraft is pointing,
that is, referenced to the aircraft fuselage centerline. In the case shown in Figure 3.9, the

aircraft is in level flight and has a pitch angle of 5 deg and a roll angle of 20 deg.

Traditional Roll Pseudo-Roll
Angle Angle
o o
1y \
[ " Pitch I
Angle _
/
Flight
Path
Angle

Figure 3.9: Attitude and Pseudo-Attitude Display
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The right display shows the pseudo-attitude of the aircraft in the same flight condition.
The roll representation indicates the pseudo-roll angle which in the case shown is very
close to the traditional roll angle. The pitch information is replaced with the flight path
angle and the horizon is, thus, coupled to the flight path angle. As shown in Figure 3.9,
because the aircraft is in a level turn the aircraft symbol lies on the horizon. For straight
and level flight, the difference between pitch angle and flight path angle indication is due

to the angle of attack.

A potential issue of the pseudo-attitude display may be its similarity to the traditional
attitude display. This may cause pilots, who are used to the traditional attitude indicator,

some confusion as to whether pitch or flight path angle is being displayed.

3.2.3 Display Update Rate and Latency

Two important display parameters for control loop closure are display update rate and
display latency. The display update rate is related to the sampling frequency of the control
loop. The sampling frequency must be sufficient to ensure stability and controllability of
the system. The display update rate may have to meet additional perceptual requirements
of the pilot. Display latency is the time delay between the aircraft response and the
corresponding response of the cockpit display. It has an impact on the achievable
bandwidth as well as the handling qualities of the system. Display update rate and latency

are discussed next in more detail.

Control Loop Sampling Frequency and Display Update Rate

The choice of a sampling frequency in a digital control system, in general, involves an
important trade-off. A higher sampling frequency allows for fast reaction times and good
control performance at the expense of higher demands on the digital control electronics. A
lower sampling frequency, on the other hand, implies more relaxed control systems
demands but may incur lower control performance. Therefore, the sampling frequency and
display update rate are typically chosen to be the lowest frequency which satisfies

stability, controllability and perceptual requirements.
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It is generally difficult to determine stability boundaries of a controlled system as a
function of the sampling interval because of the transcendental nature in which the
eigenvalues are dependent on the sampling interval (Mansour 1990). With the exception of
simple dynamic systems where stability boundaries can be determined in closed form, the

stability of a sampled system must be evaluated for a particular sampling frequency.

A theoretical lower bound on the sampling frequency is given by Shannon’s sampling
theorem which requires the sampling frequency to be twice the closed-loop bandwidth.
This criterion, however does not ensure that adequate controllability is attained. Rather,
empirical rules have been developed for the choice of the sampling frequency that gives
acceptable controllability. Ackermann (1983) and Mansour (1990) suggest a as a ‘rule of
thumb’ a sampling frequency of 10 times the largest eigenfrequency of the continuous
system. Similarly, Powell and Katz (1975) suggest a sampling frequency of 10 to 20 times
the closed-loop bandwidth. For the example of a Cessna 182 which has its largest
eigenfrequency in the 3 -4 rad/sec (0.5 -0.65 Hz) range, Ackermann’s rule suggests a

display update rate of approximately 6 Hz.

An additional requirement on the display update rate is given by the human perception
of the display. To convey the illusion of continuous motion, the display update rate must
exceed approximately 10 Hz (Theunissen 1997). Higher update rates yield a more
smoothly animated picture. However, while the minimum update rates follow from
stability and control considerations, the perceptual requirements may be met using
interpolation or extrapolation at the required frequency, but do not necessarily require

higher observation rates.

Display Latency

Display latency is the time delay between aircraft response and the corresponding
response of the cockpit display. It may be composed of time delays introduced by different

components and functions of the aircraft control loop.
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Sampling delayis introduced by the very nature of a sampled sy§teNext, the
measurement and processing of data may cause additional delay. For example, the velocity
measurements of the Novatel 3151R GPS receiver is based on the average of two
successive phase measurements obtained from the carrier phase-locked loop. Thus, for a

receiver update rate of the 10 Hz, the latency introduced is 50 ms.

Also, the filtering of data introduces latency. For instance, perceptual requirements can
dictate a certain amount of filtering to obtain a smoothly animated picture. This is the case
for the display of GPS-based pseudo-attitude. Filtering has to be applied to reduce the
noise in the acceleration information that is inferred from velocity measurements by

differentiation.

Time delays reduce closed-loop system stability by reducing available phase margin.
Consequently, achievable gain and bandwidth are reduced as well. Latency in the control
system affects the flying qualities by requiring the pilot to compensate for it, thereby
increasing task demand load and degrading task performance. Extensive research on the
relation of latency and flying qualities has been conducted. Some of the research is
documented in (McRuer 1974), (King 1993) and (Stengel 1980).

There exists a trade-off between stability and perceptual requirements for the display
of GPS-based pseudo-attitude. The former require a minimum of filtering to reduce the
latency, whereas the latter call for enough filtering to obtain a smooth display indication.
To gain more insight into this trade-off, control-loop analysis, simulations and flight tests

were conducted. These are discussed in later chapters.
3.2.4 Preliminary Simulator Study of the Pseudo-Attitude Display and the

Required Display Update Rate

A preliminary simulator study of the pseudo-attitude display was conducted on the
MIT Advanced Cockpit Simulator to evaluate its efficacy and to determine the minimum

display update rate necessary for pilots to maintain adequate aircraft &ontrol.

t A zero-order-hold (ZOH), using a second-order approximation, can be expressed as a pure time
delay with a dead time of half the sampling interval (Stengel 1980).
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The simulator was based on the dynamic model of a Cessna 182 (C182). The latter
resembles in dimension and weight a Piper Arrow airéraftich was the aircraft type
used for flight tests described in subsequent chapters. The investigation included the
objective measurement of pilot performance and the subjective assessment of pilot

preference and was based on 8 pilot subjects.

The results of the study suggested a similar objective performance and subjective pilot
preference for both the traditional attitude and the pseudo-attitude display. In regard to the
update rate, the objective results suggested a minimum display update rate of 2 Hz.
Subijective results, however, showed a clear pilot preferenae6dzdisplay update rate.

The latter is also in good correspondence with Ackermann’s rule of thumb for the choice
of the sampling rate for adequate controllability, as stated in Section 3.2.3. The rule calls
for a sampling rate of 10 times the highest frequency of the aircraft, which in the case of

the C182 is approximately in the 3 - 4 rad/sec range (0.5 - 0.65 Hz).
3.3 Chapter Summary

This chapter presented the synthesis and display of velocity based attitude
information. In particular, it discussed the synthesis of pseudo-attitude from velocity and
acceleration information. The synthesis of traditional attitude and attitude in wind axes

was outlined and the differences and commonalities to pseudo-attitude explored.

In addition, this chapter introduced a novel pseudo-attitude display that allows the
human to close the attitude loop around velocity based attitude information. Issues such as

display update rate and display latency were investigated.

¥ The simulator study was performed by Henderson (1996, 1997) in close collaboration with the
author of this thesis. This research work was part of an undergraduate summer project jointly
supervised by the author of this thesis and Dr. R. John Hansman.The study is included in abbreviated
form in Appendix B.

t The aerodynamic model of the Piper Arrow is unavailable in the public domain.
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Chapter 4

GPS-Based Velocity and Acceleration

This chapter discusses the generation of velocity and acceleration information using
the Global Positioning System (GPS). This information is used to synthesize pseudo-
attitude, as described in the previous chapter. In particular, the emphasis is put on the
generation of velocity and acceleration information using a single-antenna GPS receiver in
stand-alone (i.e. non-differential) mode. Differential GPS operation is considered only

when relevant to the current discussion.

GPS was conceived and implemented in the late seventies and eighties and achieved
its operational status in the first half of the nineties. Originally designed as a military
navigation system, GPS is used today in a vast variety of applications, one of which is the
subject of this thesis. In the past decade a vast amount of research has been conducted on a
broad variety of GPS related aspects and current research efforts in GPS continue
unabated. Much of the material discussed in this chapter is therefore based on research
work performed by others over the years. An attempt is made to give credit where

appropriate.

It is beyond the scope of this chapter to give a detailed overview of the Global
Positioning System. For a detailed discussion the reader is referred to Parkinson (1996a)
or Kaplan (1996). The treatment in this chapter assumes that the reader has a background

on the basic principles of GPS.

The objectives of this chapter are twofold. The first objective is to give the reader a
basic understanding of the mechanisms of GPS-based velocity and acceleration
information generation. This includes a description of the GPS observables and the
method of measuring and processing them to yield velocity and acceleration information.

The second objective is to highlight the issues, trade-offs and limitations in the signal
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processing architecture, in the receiver design, and in the GPS system as a whole, which
pertainto the synthesis of GPS velocity based flight controls. These two objectives are not

treated separately, but are interwoven throughout the chapter.

Section 4.1 briefly discusses the relevant principles of operation and the GPS
observables. Section 4.2 concentrates on the GPS receiver architecture and identifies the
receiver functions which are relevant to the measurement of GPS carrier Doppler shift
information. In Section 4.3, the generation of velocity and acceleration information from
carrier Doppler shift measurements is discussed. Section 4.4 investigates the bandwidth of
GPS velocity and acceleration and discusses the fundamental trade-off between bandwidth
and noise reduction. Section 4.5 presents a number of GPS error sources and investigates
their impact on GPS velocity and acceleration measurements and, subsequently, on the
synthesis of pseudo-attitude. Section 4.6 identifies the limitations of GPS due to integrity,
availability and continuity issues. Their implications on the use of pseudo-attitude will be

examined more fully in Chapter 10. Finally, Section 4.7 provides a chapter summary.

It should be noted that details of a particular GPS receiver architecture are generally of
proprietary nature and are thus not available in the open literature. Hence, the material
presented in Section 4.2 uses a generic receiver model and discusses its operation on a
conceptual level. References to the architecture of the Novatel 3151R GPS receiver -the
receiver used throughout the flight tests documented in this thesis- are made whenever the

appropriate information is available.

4.1 Principle of Operation and GPS Observables

GPS is a satellite based navigation system designed to provide a properly equipped
user with position and velocity information anywhere on the globe. The GPS space
segment consists of 24 satellites (21 primary and 3 spare satellites) arranged in six orbital
planes. Each orbital plane contains 4 satellites in 12-hour orbits. This constellation

provides a user located anywhere on the world with the visibility of four or more satellites
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at any time. This is necessary for continuous positioning capability, as will be shown
below. Since the satellites are not in geosynchronous orbits the satellite geometry, as seen

by an observer at a fixed location on earth, is continuously changing.

GPS satellites transmit signals using two carrier frequencies, L1 (1575.42 MHz) and
L2 (1227.6 MHz). The carrier frequencies are modulated by various spread spectrum
signals which contain information necessary to determine position and velocity. The basic
principles of position and velocity determination using these signals are explained next.
The treatment of position determination is included because the determination of velocity

requires the knowledge of the user position beforehand.

4.1.1 Principle of Position Determination

The basic function of GPS positioning is the determination of the user posjtioom
GPS signals. The GPS receiver accomplishes this by using the propagation delay of GPS
signals from an array of satellites to the receiver's GPS antenna, i.e. the time interval for
the signals to travel from the satellites to the receiver. The time references of the different
GPS satellites are precisely synchronized and known (GPS systems time). If differences
between satellite clocks occur they can be quantified exactly and modulated onto the
carrier as navigation messages. The GPS receiver time, on the other hand, relies on an
autonomous clock within the receiver which, due to inherent clock uncertainties, will be
offset from the GPS system time by an unknown bigsTihe observed propagation delay
toa Of the GPS signal from each satellite is, thus, offset from the actual signal travel time

by the same biag,b

The observed propagation delay from each satellite scaled by the speed of light in
vacuum c, corresponds to a range measurement and is commonly referreplseuds-

rangep, i.e.

p = cEtpd 4.2)
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The term pseudo-rangeis utilized because the range measurement contains the
geometric range from the satellite to the receiver as well as a range component due to the
receiver clock offset. The pseudo-range observgtjdretween a user and satellitean be

related to the user position and clock offset by

pi = |ri—ry +clhy, +¢ (4.2)

wherer; is the three dimensional satellite position at signal transmit tiqis, the receiver
position at the receive time, argl is the composite of various error sources including

atmospheric delays, Selective Availability (SA) and receiver noise.

Eq. (4.2) shows that the GPS positioning problem is four dimensional consisting of the
simultaneous determination of the three dimensional user positi@md, as the fourth
dimension, the receiver clock offse} br, equivalently, GPS system time. This problem
can be solved, in principle, from pseudo-range measurement observations from at least
four satellites. The actual solution will be presented in Section 4.3. The underlying
coordinate system currently used by GPS is the 1984 World Geodetic System (WGS-84),

but the user position can be expressed in any desired coordinate system.

4.1.2 Principle of Velocity Determination

Three dimensional user velocity, can be determined from the observed frequency
shift of the received GPS carrier signal. The observed carrier frequency differs from the
nominal L1 or L2 carrier frequency due to Doppler shifts caused by the relative motion of

the satellite with respect to the user, as well as a receiver clock frequengy'bias f

The Doppler shift caused by the relative motion of satelliéad user is given by the
projection of the relative velocity onto the line of sight, scaled by the ratio of the
transmitted carrier frequency to the speed of light c, i.e.

V. —V
Afp = - - Ym0, (4.3)

T Satellite clock frequency errors are known and transmitted as navigation messages modulated onto
the carrier.
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wherev; is the velocity of satellite, and1; is the line of sight vector from the user to
satellitei. The satellite velocity vector; can be computed in the receiver using ephemeris
information modulated as a navigation message onto the carrier signal. The observed
carrier frequency shiff\f; can be related to the user velocity and unknown receiver clock

frequency bias fas

Afy = Afp +1,+n; (4.4)
wheren; is the composite of various errors in the frequency shift observation including the
effects of Selective Availability and receiver noise. Eq. (4.4) can be convertepiseualo-
range rate observation by scaling it by the ratio g/land substituting Eq. (4.3) into
Eq. (4.4), i.e.

C C

O = (vi—v,) L + 3, +(;

(4.5)

whered,; is referred to gsseudo-range rater delta rangefrom the user to satellitg

is the receiver clock frequency bias, and is the error in the observation, all in m/s.

Similar to the GPS positioning problem presented in Section 4.1.1, the user velocity
determination is a four dimensional problem. It must be solved for the three user velocity
components and the receiver clock frequency bias simultaneously. Observations from four
or more satellites are therefore necessary to solve the problem, at least in principle.
Because the line of sight vector has to be known, the velocity is generally computed in
conjunction with or just after the position of the user is determined. The actual velocity

information generation is presented in Section 4.3.
4.2 GPS Receiver Architecture and Measurement Generation

This section discusses the architecture and operation of a generic GPS receiver and
highlights the issues which are relevant to the generation of velocity and acceleration

information and to the synthesis of pseudo-attitude. Section 4.2.1 discusses the GPS
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receiver architecture and operation in general, and the carrier phase-locked loop (PLL) in
particular. Section 4.2.2 then describes how delta range measurements are generated from
PLL outputs. An overview of the GPS signal structure, which is inherently connected to

the GPS receiver architecture, is given in Appendix C.1.

4.2.1 GPS Receiver Architecture and Operation

For the following treatment the receiver is assumed to be tracking the satellites in view

with the tracking loops operating in a coherently correlating manner.

Top Level Receiver Architecture

A high-level block diagram of a generic GPS receiver is shown in Figure 4.1 (Zhuang
1996, Ward 1996). The blocks relevant to the generation of velocity and acceleration

information are emphasized in this figure.

GPS RF signals of all satellites in view are received by an antenna with nearly
hemispherical gain coverage. The received signals are amplified by a low-noise pre-
amplifier which sets the noise figure of the receiver. The signals are then passband filtered
to minimize out-of-band noise, and subsequently down-converted in two stages to
intermediate frequency (IF) and baseband. The signal conditioning preserves the signal
modulations and Doppler shifts, but lowers the carrier frequency to a baseband frequency

where an analog-to-digital conversion takes place.

[
[
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c Delay-Locked Ranges Processing Mon
> Loop (DLL)
)]
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Filtering & € , 7 = Kalman Filter
> (
RF-to-Baseband | 3 . Least Squarey) \selocity
Conversion )
< Carrier Ph l Del
arrier Phase- elta —
Locked Loop (PLL] - Ranges Accele-
ration
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Channels

Figure 4.1: Generic Receiver Architecture
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The digitized baseband signals are processed by each of the N digital receiver
channels. The number of receiver channels corresponds to the number of satellites which
the receiver can track. The functions of the receiver channels are commonly performed by
a digital baseband processor (DBP). Each channel contains a delay lock loop (DLL) that
tracks the incoming C/A code of a particular satellite and generates pseudo-range
measurements, and a phase-locked loop (PLL) which tracks the incoming carrier phase
and measures Doppler shifts of that satellite. In addition, the receiver channels demodulate

the navigation data from the baseband signals.

The DLL measures pseudo-ranges to a particular satellite by tracking the incoming
Coarse/Acquisition (C/A) code and aligning it with a receiver generated replica of that
satellite’s code in a correlator. If the replica code tracks the incoming code exactly,
maximum correlation is achieved. Any misalignment of the replica code phase with
respect to the incoming C/A code phase decreases the correlator output and produces a
difference signal so that the amount and the direction of the phase change can be corrected
for by the DLL. These difference signals are converted to pseudo-ranges as explained in
(Ward 1996). Since pseudo-range measurements only play a secondaTrynrdnlte
determination of velocity and acceleration measurements, the DLL will not be considered

in more detail here.

The carrier phase-locked loop generates delta range measurements by tracking the
incoming carrier phase and associated Doppler shift. The PLL design is inherently
connected to the achievable performance of the delta range measurements. The following
sections explain the function of the PLL and the generation of delta range measurements

in greater detail.

The set of pseudo-range and delta range measurements generated by the receiver
channels is fed into the navigation processor where a navigation solution is computed,
typically at an output rate between 1 and 10 Hz. The navigation processor calculates

estimates of three dimensional position, velocity and sometimes acceleration as well as the

T Pseudo-range measurements determine the user position and thus the line-of-sight vector from the
user to the satellite. This vector is used in Eq. (4.5).
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receiver clock biases, as outlined in Section 4.3 in more detail. In stand alone GPS
receivers, the navigation process is commonly performed in a single high-speed processor

that also performs the other baseband functions.

The Novatel 3151R GPS receiver, used for the flight tests described in this thesis, has
12 digital channels and can provide a navigation solution for position and velocity at an

update rate of 10 Hz.

Carrier Phase-Locked Loop

The carrier phase-locked loop (PLL) tracks the incoming carrier phase signal and
extract velocity information in form of measured carrier Doppler shifts. Figure 4.2 shows
a generic linearized phase-locked loop typically used in GPS receivers. The carrier PLL
tracks the incoming signa®; by eliminating any phase differenc®,, between the
incoming carrier signal and the carrier replica generated by a local voltage controlled
oscillator (VCO), in a closed loop manner. Any Doppler shift due to satellite or user
motion will cause the phase of the incoming signal to be advanced or delayed with respect
to the phase of the local carrier. The difference is measured by a carrier phase
discriminator and is fed into the VCO to bring the local carrier replica in phase alignment
with the incoming carrier phase. To reduce the effects of thermal noise, the phase
difference is low-pass filtered and the filter output is fed into the VCO. The phase and
Doppler frequency shift of the incoming signal can then be obtained from those of the
local VCO output. A more detailed description of the PLL operation is given in Appendix
C.2 and in (Zhuang 1996).

The PLL design determines the noise characteristics (thermal noise error) of the
measurements and the ability of the receiver to track GPS signals under dynamic
conditions (dynamic performance) (Ward 1996). Both are fundamental for the generation

of pseudo-attitude from GPS velocity and acceleration measurements.

The amount of thermal noise error in the phase measurements is directly related to the
amount of filtering necessary to obtain smooth velocity and acceleration information and

to the latency introduced there’B;[he dynamic performance, on the other hand, has to be

76



sufficient to allow the receiver to track GPS signals even under dynamic conditions such
as in steep aircraft turns or in fast maneuvers. Dynamic stress errors, i.e. errors in tracking
the incoming carrier signal, as well as the occurrence of complete loss of phase-lock have

thereby to be minimized.

Phase
Incoming Discriminator  Loop Filter
Phase Carrier + O¢
Signal 6, s Kg F(s)
A _
17 KJ/s
(O Voltage
Controlled
gﬁ#tpler Oscillator
Information

Figure 4.2: Generic Linearized Third-Order PLL

Noise error and dynamic performance are concurrent characteristics and result in a
design trade-off. This trade-off is briefly outlined here with a more detailed description
given in (Ward 1996). The carrier phase-locked loop is completely characterized by the
choice of the carrier loop filter (order and bandwidth), the carrier loop discriminator, and

the predetection integration time (correlation tiFne)

For the carrier Doppler phase measurements to have low noise, the carrier loop filter
bandwidth should be narrow, the discriminator should be a phase discriminator, and the
predetection integration time should be long. On the other hand, to minimize the dynamic

stress error and to increase the dynamic range where the signal is in lock, the carrier loop

T In Section 3.2.3, the trade-off between between stability of the control loop and perceptual require-
ments for the display of GPS-based pseudo-attitude was outlined. The former require a minimum of
filtering to reduce the latency, whereas the latter call for enough filtering to obtain a smooth display

indication.

T i.e. the phase signal is integrated (averaged) before it is fed into the carrier phase discriminator.
See Appendix C.2.
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filter bandwidth should be wide, the discriminator should be a differential phase
discriminator (i.e. frequency-locked loop), and the predetection integration time should be
short (Ward 1996).

In order to not loose phase-lock in dynamic flight conditions, the PLL must be at least
of third-order. This is explained using the linearized PLL in Figure 4.2. For clarity, the
treatment is performed in the continuous time (or s-) domain. However, the results are
easily transferable to the discrete-time domain. In the linearized model, the voltage
controlled oscillator (VCO) is modeled as an integrator. Using a second-order low-pass
filter of the form

2 2 3
20,8" + 2W5S + Wy

SS

F(s) = (4.6)

as a loop filter F(s) results, in conjunction with the integrator of the VCO, in a third-order
PLL (Ward 1996). For the simplified case of unity gains, i.g.&KK, =1, the transfer

function H(s) and the error transfer functiog($) are given by

2 2 3
H(s) = o _ 200,S" + 2wW5S + wy @
O +20,8% +2wis + W]

3

C S
H (S) = = - 4.8
¢ O £+2w,5%+2wis+ WS (“8)
Using the final value theorem, the steady-state phase eyt - o) can be

determined for different phase inputs. Table 4.1 shows the phase error of the third-order
PLL for phase input®; corresponding to line-of-sight velocity, acceleration and jerk
steps. R denotes the line-of-sight range to the sateitas the phase inputy; is the
corresponding frequency inpuly, is the loop filter natural frequency, and k 3/t is a

scaling constant.

As can be seen, the third-order loop tracks constant line-of-sight velocity and
acceleration with no error, but is sensitive to jerk stress. Thus, in order to track GPS

signals during vehicle acceleration a third-order or higher-order PLL must be used. A line-
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Line-of-Sight Frequency Input wy Phase Input®; Phase Error
Dynamics Oyt - ®)
Range Velocity Step K Dp_iR/ dt K Dp_iR/ dt 0
(dR/dt) S s2
2 2 2 2
Range Acceleration , (A_R/dt , (A_R/dt 0
Step (@R/dB) 2 3
3 3 3 3 3 3
Range Jerk Step R/ dt R/ dt Eg R/ dt
3 K 3 k 4 k 3
(PR/dE) s s ws

Table 4.1: Phase Error due to Line-of-Sight Dynafhics

a. R denotes the line-of-sight range to the satelBigs the phase inputy, is the corresponding frequency input,
W, is the loop filter natural frequency, and krL.3/c is a scaling constant.

of-sight jerk input, that is, a varying line-of-sight acceleration, inducegreamic stress
error. The steady-state error due to a jerk step input is inversely proportiorn,ai tand
therefore a function of the tracking loop bandwidth, and directly proportional to the line-
of-sight jerk inputd®r/de. The peak dynamic stress error may be slightly larger than the

steady-state error if the loop filter response to a step function has overshoot.

The Novatel GPS 3151R receiver has third-order PLL, a carrier tracking bandwidth of
15 Hz and a predetection integration time of 100 ms. The jerk is limited to 4.5 g/s in order
to not loose lock (Novatel 1995, 1996).

There is a trade-off between PLL loop order and loop stability (Zhuang 1996). Higher
order loops have better dynamic tracking performance, i.e. smaller tracking error and
faster convergence, but are less stable than lower order loops. Thus, care has to be taken

that the loop parameters selected ensure loop stability.

In practice, a well-designed GPS receiver will incorporate a flexible carrier phase-
locked loop design which adapts its PLL characteristics according to the anticipated
dynamics. This is possible since most of the functions determining the loop characteristics
are programmed in the receiver signal processing software. The Novatel 3151R, for
example, allows the carrier tracking loop bandwidth to be adjusted from 2.5 Hz for

stationary use up to 15 Hz for high dynamics.
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4.2.2 Delta Range Measurement Generation

Delta range measurements are obtained from the change in carrier phase during a
specified time interval. In principle, delta range measurements could be derived from
differential measurement of theode tracking loop. The measurements, however, are
nearlythree orders of magnitudess noisy if taken from thearrier phase-locked loop
(Ward 1996).

The carrier Doppler phase measurements are extracted by the receiver baseband
process from the carrier tracking loop using a carrier accumulator. The carrier accumulator
consists of integer cycle countdy and the fractional cycle countbs, of the carrier
Doppler phase measurements. The delta raxge simply the change in phase in the
carrier accumulator during a specified time intervglaveraged over this interval and

scaled with the wavelengiy of the L1 carrier frequency. That is

ALy
u
Since delta range is an average velocity based on the time differgnbetWeen
successive carrier phase measurements and not an instantaneous Doppler velocity
measurement, it has a latency Qf 2 seconds. For the case of the Novatel 3151R receiver

providing 10 Hz data the latency is 50 ms.
4.3 Velocity and Acceleration Generation

The previous sections described the fundamental principles of GPS position and
velocity determination, the GPS observables, namely pseudo-range and delta range, and
how GPS receivers extract them from the incoming GPS signals. This section explains

how velocity and acceleration information is generated from GPS observables.

The physical measurements of pseudo-range and delta range from at least four
satellites and the measurement equations Eq. (4.2) and Eg. (4.5) described in the previous
sections are in principle sufficient to generate a single-point solution of the position,

velocity and receiver clock bias states (Axelrad 1996). In this approach, the measurement
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equations are linearized about some nominal value, e.g. about the current best estimate. A
least squares solution to the linearized measurement equations and a set of four or more
pseudo-range and delta range measurements, taken at the same time, gives the corrections
to the current best estimate, thus, yielding an improved state estimation. This approach is

used for the Novatel 3151R GPS receiver and is discussed in Appendix C.3.

A disadvantage of the single-point solution approach is that it does not include any of
the known user dynamics in the estimation of the states and it does not carry any

information from one measurement cycle to the next.

A Kalman filter overcomes this shortcoming by optimally incorporating the a priori
knowledge of the user dynamics in the estimation of the desired states (Axelrad 1996).
The Kalman filter consists of two models. As in the single-point solution, it uses a
linearized measurement model to describe the connection of the measurements to the
states to be estimated. In addition, it uses a linear (or linearized) process model to describe

the dynamics of the states and, thus, incorporates a priori knowledge of the system.

Section 4.3.1 discusses the measurement and process model for a discrete extended
Kalman filter (EKF) that provides position, velocity and acceleration information from
pseudo-range and delta range measurements. The velocity and acceleration information

are then available as the input to the pseudo-attitude synthesis.

Many commercially available GPS receivers, including the Novatel 3151R receiver, do
not contain acceleration states in their navigation solution. In these instances, acceleration
can be obtained by two approaches. In the first approach, the filter discussed in
Section 4.3.1 may be implemented on an external CPU and fed by raw pseudo-range and
delta range output of the GPS receiver to produce a navigation solution which includes the
desired GPS acceleration states. Although simple in principle, the actual implementation
may be quite elaborate due to the large amount of additional computation necessary for
tasks such as the calculation of satellite orbits and error corrections transmitted in the

navigation message.
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In Section 4.3.2, a second, simpler approach to obtain acceleration is discussed. It
infers acceleration information directly from the GPS receiver velocity output and, thus
bypasses the large amount of computation arising in the first approach. Because of the
noise present in the receiver measurements, simple back-differencing of the velocity
output is not feasible. Instead, it relies on an external Kalman filter to estimate
acceleration. This approach was implemented for the experimental work documented in

this thesis in Chapters 6 - 9.

4.3.1 Receiver Internal Kalman Filter

In stand-alone GPS applications, generally, a discrete, extended Kalman Filter (EKF)
is used. Its characteristics are given by a process model and measurement model. These

models are described next.

Process Model

The process model describes the dynamics of the states to be estimated by the filter
and summarizes what & priori known about the process. In the current context, the
process model contains the dynamic model of the GPS receiver platform motion and a

model of the receiver clock errors.

Generally, for vehicles with high dynamics, the model describing the receiver platform
motion includes states for position, velocity and acceleration in three dimensions (Axelrad
1996). This model causes the EKF to assume that jerk -the time derivative of acceleration-
is a white noise process. While this assumption holds for most applications where
acceleration information has to be estimated, it does not in the context of the synthesis of
velocity vector based attitude information. As discussed in Section 3.1.4, the estimated
accelerations relate directly to the aircraft roll angle. Consequently, the derivative of

acceleration, jerk, corresponds to roll rate which is typically correlated over time. It is
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therefore appropriate to include jerk as a separate state in the estimation and not to treat it

as white noise (Kornfeld 1998a, b). Figure 4.3 shows the resulting process model. The

Pseudo] Kalman Filter Process Model: _Paogition
Ranges . :
\Kthlte Jerk Ac%cele- Velocit Position| !
oise ration eloci i
J’dt > J’dt > Idt y» Idt > .Velgcny
) $ i
pelta Roll R Roll >
Ranges oll Rate o | Accele-
I ration
(Measurement Model not shown) |
|
|
|
|

GPS Receiver

Figure 4.3: Kalman Filter Process Model

discrete-time dynamic model for the receiver platform motion can be expressed as

Xo(K) = P (AL)x(k—1) +wy(k—1) (4.10)

The state vectox, and the state transition matmﬁD are defined as

_—
Xp = [ry vy &y 4l (4.11)
| 1At 1AZ72 1 ALY6
OB =| O I 1At | AtY2 (4.12)
o 0 | | At
0 0 0 |

wherer ,, v, a, andj, are the three dimensional user position, velocity, acceleration and
jerk vectors, in that ordel.is a 3x3 identity matrix andt is the filter update time interval.

wp(K) is a vector that models the process noise, i.e. the effect of random dynamics between

83



measurement updates; its elements are white noise sequences. The corresponding process

noise covariance matr,, is determined from (Gelb 1974) as

SAtY252 satY 72 satY 30 saty 24
Q. = SAtY72 SAt720 SAtY8 SAtY6
p

SAtY30 SAtYs saty3 satY?2

| SAt724 sSAtY6 saty2  SAU | (4.13)
S 0 O
S=|0s0
00S

where §, Sg, S are the white noise spectral amplitudes for the North, East and Down
directions, respectively. The process noise covari&ceepresents the uncertainty in the
dynamic model. The determination 8fis typically based on an estimate of the expected
vehicle dynamics.

The model of the receiver clock errors consists of two states, the user clocklaiad the

drift f,, introduced in Section 4.1. They represent the phase and frequency errors in the
crystal oscillator in the receiver. In the model commonly employed both the frequency and
phase are expected to random walk over a short period of time. Its discrete-time process is

given by (Brown 1997) and is included here for completeness:

x (K) = @ (At)x (k—1) +w (k1) (4.14)

where the state vectgg and the state transition matdx,  are defined as

x. = [cb, &,]" (4.15)
o (At) = {1 At} (4.16)
01
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The vectomw (k) models the process noise and its elements are white noise sequences.
The corresponding process noise covariance ma@x is determined from the
conventional Allen variance parameters that are often used to describe clock drift. Its

derivation can be found in (Brown 1997).

The complete process model is obtained by combining the dynamic model for the

receiver platform motion and the receiver clock model
x(k) = Xp(K) _ P (At) 0 Xp(k—1) N

X(K) 0 D (At)|[x(k—1)
and the error covarian€g of the complete model is given by

Q = [Qp O] (4.18)
0 Q.

[Wp(k B 1)] 4.17)
w(k —1)

Measurement Model

The EKEF relies on linear process and measurement models. While the process model
discussed above is itself linear, the measurement equations of the pseudo-range and delta
range observables are not, as seen in Section 4.1. To obtain a linear measurement model,
EqQ. (4.2) and Eqg. (4.5) must be linearized and in relation to the states to be estimated. The

linearization is performed about the current best estimate of the state

%= [f, U, &, juchy 8" (4.19)
Hence, given an a priori best estimate of the states, predicted pseudo-panges  and delta
ranges& can be calculated as

f)i = |ri—fu| +C|:|E)u+§i
R R R (4.20)
O = (vi—V,) O + &y +

wherer; is the satellite positionii is the estimated line of sight vector from the user to the

satellitei, andg;, Zi are the estimates of the range error and range error rate, respectively.
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The difference between the actual measurements for satellites 1..n, and the predicted

values can then be modeled as linearly related to the error in the states (Axelrad 1996).

That is,
- .
S -, 0 0 0 1 O|r, 7 r -
- Avu .
- T

Pn| Pl -1, 0 0 0 1 O Az.au N Ag,, @.21)

O |8 |0 -y 0 0 0 1||Blu| |Al

' : . . . . . N CAbu "

_5n_ _Sn_ : .T R 25, _AZn_

0-1, 0 0 O 1, ~
or in more compact form
Az = z—72 = z-h(X) = GAXx + A¢ (4.22)

wherez is the actual measurement vector containing pseudo-ranges and delta ranges and
Z = h(X) is the predicted measurement vector computed from Eq. (4.20) for all satellites
in view. The first matrix on the right hand side is the is measurement connection @atrix

and is frequently referred to as the geometry matrix because it contains the line of sight
vectors from the user to the satellites. The veffomodels the noise in the measurements

and its elements are assumed to be white noise sequences. The corresponding
measurement noise covariance maRix a measure of the receiver noise and is receiver

dependent.

Extended Kalman Filter

With the four matrixespb, Q, G andR known, the EKF is in principle specified. Initial
estimates of the staf)  and the state error covariance nigtrix ~ have to be established for
its initialization. An EKF formulation can be found in (Axelrad 1996) and is given in
Appendix C.4.
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4.3.2 External Kalman Filter

The primary purpose of the external Kalman filter is to provide an estimate of the
accelerationag, based on the receiver velocity outpy. This approach is useful in
instances where the receiver does not provide acceleration information as part of its
navigation solution, because it estimates acceleration information in a simple and rapid
manner. The approach discussed here was also pursued for the experimental work
documented in this thesis, since acceleration information was not available from the
Novatel 3151R GPS receiver.

GPS velocity information is commonly provided in a North, East and Down
coordinate framé. Separate, but identical Kalman filters are therefore necessary to
estimate accelerations in the North, East and Down directions. Figure 4.4 shows the
external Kalman filter configuration schematically with the GPS receiver block
representing the Novatel 3151Rn the following, the filter is presented in the context of

the East direction.

GPS Receiver | 4Position
|
= : Kalman Filter Process Model: i
Rangeq] o2t
T IE3) Squares White Accele- . | velocit
(Single Veldlgcit Noise Jerk ration Velocity y
Point Y Jdt —— [dt ——— [dt — || >
Solution) [~ ; $
Detia | Roll Rate Roll —
Ranges | Accele-
| ration
| (Measurement Model not shown) North
______________ K | East
| Down

Figure 4.4: External Kalman Filter Process Model

T The velocity information may be expressed in North, East and Down components or, equivalently,
in horizontal speed, ground track heading and vertical speed.

¥ In Figure 4.4, the velocity information is shown to be filtered by the Kalman filter as well. This
reflects the actual implementation used in the flight tests described in later chapters. However, the
velocity filtering is not required for the purpose of generating flight path angle information, because
the noise level affecting the GPS receiver velocity output is more than two orders of magnitude
lower than typical aircraft speeds.
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Process Model

As for the internal filter discussed above, it is appropriate to include jerk as a separate
state in the estimation and not to treat it as white noise. Consequently, a triple integrator
plant is used as the process model including velocity, acceleration and jerk states. The

discrete-time model of the triple integrator for the East direction is given by

xg(K) = ®g(At)xg(k—1) +wg(k—1) (4.23)

where the state vectoie(k) for the east direction and the state transition ma®gxare

defined as
Ve(k) East Velocity
Xg(k) = |ag(k)| = |East Acceleratio (4.24)
je(k) East Jerk
1 At At72
@ =101 At (4.25)
00 1

At is the filter update time intervalvg is a vector which models the process noise and its
elements are white noise sequences. The corresponding process noise covariance matrix
Qg is determined (Gelb 1974) as

AtY20 AtY 8 AtY 6
Qe = | At78 AtY3 AtZ2| (Be (4.26)
AtY6 AtZ2 At

where & is the white noise spectral amplitude. The process noise covari@gce
represents the uncertainty in the dynamic model. The determinatiog o, 3ypically,

based on an estimate of the expected vehicle dynamics.
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Measurement Model

The measurement input for the filter is the East velocity output of the GPS receiver.

The measurement model for the East direction is given by

Ye(k) = Hexg(k) +ug(k) (4.27)

where, for the east direction,gfk) = vg(k). The measurement connection matrix
He =[100] represents the fact that only velocity measurements are availaild. u
models the measurement noise and the corresponding measurement noise vari@gnce R

scalar in this case) depends on the particular GPS receiver used.

Kalman Filter Implementation

With ®g, Qg, Hg and Rz known, the Kalman Filter is specified. The filter equations
are similar to the ones for the EKF and are given in Appendix G=4arsl R: have to be
carefully selected or tuned since they have a significant impact on the convergence,

bandwidth and accuracy of the filter solutions, as shown in Section 4.4.

In some instances the navigation solution of the GPS receiver itself is based on a
Kalman filter. The use of an external Kalman filter to estimate acceleration will then result
in a cascaded Kalman filter configuration which may yield slightly suboptimal solutions as

compared to a single Kalman filter solution (Levy 1996).

The velocity output of the Novatel 3151R GPS receiver is based on a single-point
solution, and the approach outlined in this chapter does, therefore, not lead to a cascaded
filter configuration. Moreover, as will be seen in subsequent chapters, this choice achieved

sufficient performance to realize the desired objectives.
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4.4  GPS Velocity and Acceleration Bandwidth

The generation of velocity and acceleration information is a two-step process, as
discussed in Section 4.2 and Section 4.3. First, carrier Doppler phase information is
extracted from the incoming GPS signal using a phase-locked loop. The PLL acts as a low

pass filter, as can be seen from Eq. (4.7), tracking only signal dynamics in its bandwidth.

Next, all the delta range measurements are processed to generate velocity and
acceleration information. This may be accomplished in two different ways, as shown in
the previous section. In a first approach, the delta range measurements are combined in a
Kalman filter to generate velocity and acceleration information (internal Kalman filter).
Alternatively, the delta range measurements are first processed in a least squares solution
to obtain instantaneous velocity which is subsequently fed into an external Kalman filter
to estimate acceleration information. In both approaches, the Kalman filter assumes a
dynamic model of the GPS receiver platform motion which determines the bandwidth of
the filter. This section focuses on the external Kalman filter approach since it was

implemented for the experimental work documented in this thesis.

The bandwidth of a filter is inherently connected to amount of lag the filter applies to
its output signal and, thus, has a profound impact on the performance of a control system
closed around it. In addition, the bandwidth of a filter determines the amount of noise at its
output when subjected to a noisy input signal. In this context, one definesisa

equivalent bandwidtkhat characterizes the amount of noise a filter paTsses.

There exists an obvious trade-off between good dynamic response and good noise
performance of a filter. A higher bandwidth allows for better dynamic tracking at the

expense of more noise in the output signal, and vice veteahe following, the noise

T Itis defined as the bandwidth of a filter with unity gain which is fed by white noise and produces
the same noise power at the output as the actual filter.

¥ Itis important to distinguish between thandwidthand theoutput rateof the receiver. The former
determines the frequency range in which the receiver measures platform dynamics. The latter is the
frequency at which the receiver makes the measurements available. While for control purposes
(discussed in Chapter 5) both quantities are imporant, in the current context only the bandwidth is
considered.
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versus lag or bandwidth trade-off for both the PLL and the Kalman filter are briefly

presented. The section concludes with some design considerations.

Phase-Locked Loop Noise vs. Bandwidth Trade-Off

Eq. (4.7) gives the transfer function of a third-order PLL with natural frequeggy
The corresponding PLL bandwidth, which scales veith) defines the range in which the
PLL tracks vehicle motion. In case of the Novatel 3151R, the receiver has a tracking
bandwidth of 15 Hz. Also, Table 4.1 indicates that the dynamic tracking error due to jerk
input is inversely proportional tooo3 . A higher natural frequency and tracking bandwidth
reduces the dynamic stress errors and allows the measurements of vehicle dynamics at

higher frequencies.

On the other hand, larger bandwidth leads to more noise in the delta range
measurements and hence in the velocity estimate. It can be shown that the phase jitter

standard deviatioog, of the PLL output due to thermal noise is given by

_ | Bn 1 10
“e-JmEE“mm [rad (.29

where B, is the carrier loop noise equivalent bandwidth, $i¥\the signal to noise ratio of

the PLL input, and T is the predetection integration time (van Dierendonck 1996, Ward
1996). For the third-order loop of Eq. (4.7), B shown to bew,/1.2 (van Dierendonck
1996). Eqg. (4.28) indicates that the output phase noise variance scale linearly,\aitid B
hence with the PLL bandwidth. Consequently, a larger PLL bandwidth increases the noise
in the velocity estimates. Figure 4.5 shows the output phase noise as a function of the
signal to noise ratio for a number of different PLL noise bandwidths. The predetection

integration time is 100 ms for all the plots.

As can be seen, acceptable dynamic response and noise performance of the PLL have

to be found in a design trade-off.
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Figure 4.5: Phase Jitter for Different PLL Noise Bandwidths
Kalman Filter Noise vs. Bandwidth Trade-Off

In the following, the bandwidth of the external Kalman filter of Section 4.3.2 is
examined. The filter has a triple integrator process model and is used to estimate
acceleration from velocity inputs. The filter was used throughout the research work
documented in this thesis and was implemented in the flight test system discussed in

Chapter 6.

The Kalman filter bandwidth is a function of the assumed receiver platform dynamics,
expressed in the process noise covariance m&pixor in the white noise spectral
amplitude S), and the measurement noise, expressed in the measurement variance R (a
scalar in this case). The relation between the Kalman filter estimator bandwidth and

guantitiesQ and R is best understood by examining the estimator transfer function as

T Only the bandwidth of the acceleration estimation is considered here. The filtering of the velocity
information is not required for the purpose of generating flight path angle information, because the
noise level affecting the GPS receiver velocity output is more than two orders of magnitude lower
than typical aircraft speeds.
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determined by the steady-state (positive definite) solution to the algebraic Riccati equation
(ARE) (Friedland 1986). For reasons of simplicity the transfer function is determined in
the continuous-time domain. Using the derivation in Appendix D and the continuous-time
equivalent of the discrete-time triple integrator model given in Eq. (4.23) - Eq. (4.25), the

velocity to acceleration transfer function is determined as

A(s) _ 20252 + Q3s
V(s) £+20s2+20%s+Q3

(4.29)

where A(s) and V(s) denote the acceleration and velocity in the s-domain. The natural

frequencyQ is given by

_ 0/°
Q = 0 (4.30)

[0S
[(RA
where At denotes the filter update time interval of the discrete time filter. For the
implementation discussed in this thesis, the update rate is 10 Hz and, thus,
At = 0.1 seconds.

Eq. (4.30) indicates that the filter bandwidth is a function of the ratio of the white noise
spectral amplitude and measurement noise variance. The equation also illustrates the noise
versus bandwidth trade-off. A larger dynamic uncertainty incre@seasd subsequently

the filter bandwidth. This effect causes the filter to track vehicle dynamics more readily,
but comes at the expense of larger errors in the state estimate. This can be seen from the
error covariance propagation equation in the Kalman filter, where the state error
covarianceP is increasedby Q (Eqg. (C.13) in Appendix C.4). On the other hand, with a
smaller amount of dynamic uncertainty, or equivalently, with a ‘relative’ large amount of
measurement nois€, and the filter bandwidth can decrease. In this case, estimation errors
are more attributable to the measurement noise, rather than to the vehicle dynamics, and
the state estimate is updated with more weight on the previously projected state estimate
than on the new measurement (see state update equation Eq. (C.10) in Appendix C.4)

which effectively causes the filter to narrow its bandwidth.
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The measurement noise variance R is a function of the PLL phase noise variance given
in Eq. (4.28). Static tests were performed to identify the noise performance of the Novatel
3151R receiver. Velocity data for the GPS receiver at rest was acquired. The velocity data

in the Down direction is shown in Figure 4.6. Any correlated error due to Selective

Down Velocity [m/s]

_0.6 = - . -

Il Il Il Il Il Il
0 50 100 150 200 250
Time [sec]

Figure 4.6: GPS Down Velocity Data Obtained Under Static Conditions

Availability was removed using polynomial splines, and an autocorrelation analysis
showed that the remaining data was nearly uncorrelated. The resulting approximate noise
variances were R=Rg=(0.01f m%s® for the North and East directions, and
Rp = (0.1 m%s? in the Down direction for a 10 Hz update rate. The poorer noise
performance of the Down direction is due to the poorer measurement geometry in the

vertical direction.

The process noise covariance mat@xdepends strongly on the receiver platform
dynamics. In most cases, the white noise spectral amplitude S initially has to be estimated
and later, during tests, ‘tuned’ to achieve the desired performance. This was also the

procedure in this thesis work. The resulting white noise spectral amplitudes for the North
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and East directions arey& Sg = 0.001 nf/s’ for the North and East directions and
Sp = 0.0005 né/s’ for the Down direction. This reflects the notion that the aircraft

dynamic uncertainty in the vertical direction is smaller than in the lateral directions.

With the values for S and R determined, the following natural frequéndygr the
North, East and Down directions resully, = Qg = 2.15 rad/secQ)p = 0.89 rad/sec. This
roughly corresponds to a time constant of 0.5 seconds for the North and East direction,
and 1.1 seconds for the Down direction. The Bode magnitude and phase plots of the

transfer function Eq. (4.29) for the North and East directions are shown in Figure 4.7.

Velocity to Acceleration Transfer Function for the North and East Directions
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Figure 4.7: Bode Plot of Velocity to Acceleration Transfer Function for the North and East
Directions
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As can be seen from the magnitude plot, the filter acts as a differentiating element up
to the break frequencQ. Inputs at higher frequencies are essentially attenuated. The
phase plot indicates that for low frequencies the filter has 90 deg phase lead, as expected
from a differentiator. For higher frequencies, however, the filter introduces lag. For the
case shown in Figure 4.7, phase lags and corresponding time delays are apparent above
0.3 rad/sec. The time delay at higher frequencies sets the limit for the usable bandwidth of
the filter and thus has a profound impact on the control performance of a system closing

the control loop around it.
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Figure 4.8: Simulated Pseudo-Roll Time Response

In order to demonstrate the time domain behavior of the filter, a pseudo-roll response
during an aircraft roll maneuver is simulated using the following procedure. A simulated
step in roll rate of 10 deg/sec, shown in Figure 4.8(a), is applied to a simple point mass
aircraft model for a time interval of 4 seconds. This leads to an aircraft roll ramp leveling
of at 40 deg shown in Figure 4.8(b). The corresponding aircraft velocity profile is fed into
the Kalman filters for the North and East direction with the natural frequéngy
Qg = 2.15 rad/sec. The filtered acceleration and the velocities are then fed into the pseudo-
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attitude synthesis algorithm given in Eq. (3.31) - Eq. (3.37) and the resulting pseudo-roll
response is shown in Figure 4.8(b). A time lag of 0.5 seconds is observable in the initial

pseudo-roll response. Also, some overshoot behavior is noticeable.

In the next chapter, the Kalman filter is investigated in context of an aircraft control

scheme which closes the loop around pseudo-attitude.

Receiver Design Considerations

From the treatment so far, it becomes apparent that the GPS velocity and acceleration
bandwidth is a function of the PLL and Kalman filter designs. As seen from Eq. (4.28), the
PLL bandwidth determines the noise of the PLL output and consequently the Kalman
filter measurement noise. The latter, in conjunction with a receiver platform dynamic
model, sets the Kalman filter bandwidth. In order to obtain optimal bandwidth and noise
performance of GPS acceleration and velocity information, the design of the PLL and
Kalman filter have to be addressed in an integrated manner taking the anticipated vehicle

dynamics into account.

For the flight test implementation used in this research, the software of the GPS
receiver was not accessible and only the external Kalman filter was adjustable to meet the

desired performance.

4.5 GPS Velocity and Acceleration Errors

GPS has a number of error sources affecting its position accuracy. They are discussed
in (Parkinson 1996b). The most pertinent error sources to velocity and acceleration

generation are Selective Availability (SA) and receiver noise. These are discussed next.

Selective Availability

SAis the intentional degradation of the GPS system, with the objective to deny the full
position and velocity and, hence, acceleration accuracy to the unauthorized user. SA
induces two error components. It subjects the satellite clock frequency to a dither

frequency which creates a slowly varying modulation effect on both the pseudo-range and
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delta range measurements. This clock dither induced error has a correlation time of
approximatgl 2 - 5 minutes’ In addition, SA manipulates the ephemeris data in the

navigation message which results in a quasi random bias error in the pseudo-range
measurement. This component of SA is, thus, of no consequence to the generation of GPS

velocity and acceleration information.

SA is encrypted and can be removed by the US military or other authorized users who
possess the necessary crypto key. The majority of the civilian sector, however, are
unauthorized users and are therefore subjected to SA. An effective way for the civilian
sector to correct for SA is through the use of Differential GPS (DGPS) where GPS
reference stations with known positions calculate the error in the GPS measurements and
transmit it to the nearby user. The Federal Aviation Administration (FAA) is planing to
implement DGPS stations on a national level with the Wide Area Augmentation System
(WAAS) in 2001 and on a local level with the Local Area Augmentation System (LAAS)
in 2005 (FRP 1996). Furthermore, Federal Policy calls for the phaseout of SA in the first
decade of the next century (PDD 1996). While in the long run SA does not pose a
problem, it is currently corrupting GPS velocity and acceleration measurements. Its

impact on the synthesis of pseudo-attitude is therefore briefly examined.

The GPS Standard Positioning Service calls for a range rate erga? af/sec (not-to-
exceed, NTE) and for a range acceleratiox dPmm/seé (NTE) for each satellite (GPS
1995). These values seem overly pessimistic, however, since they characterize the worst
case conditions and not SA induced errors observed most of the time. A simulation using

the Rather analytic SA mod%l(van Graas 1996) should serve as a more realistic

T Due to its highly correlated nature, SA can not be filtered by the Kalman filter which assumes white
noise input, and effectively is not distinguishable from vehicle motion. Also, since the error dynam-
ics are not properly known, they can not be modeled and estimated as part of the filter estimate (Ax-
elrad 1996, van Graas 1996). A method for dealing with unknown signal dynamics is to use a
Schmidt filter outlined in (Brown 1997). The method does not eliminate the error but does take it
properly into account in the error covariance calculation leading to better overall performance.

¥ A model more frequently used is the second-order Gauss-Markov model which generates SA range
and range rate errors. It has been adopted by the RTCA for GPS receiver-testing purposes. The main
disadvantage of the model and the reason it is not used here is that both the range and range rate SA
are noisier than that observed from actual satellite measurements. A noisier than actual SA range
rate error introduces an unrealistic noise error in the simulated SA range acceleration.
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illustration of the impact which SA has on GPS velocity and acceleration, and on the
synthesis of pseudo-attitude. The Rather model reflects the impact of the clock dither
frequency SA component and generatgsresentativeSA pseudo-range and delta range
errors by integrating a random jerk step sequence three times to yield SA acceleration,
range rate and range, respectively. This model was developed by observing raw SA range
measurement errors and its derivatives and noticing the ramp structure in the range

acceleration data.

A set of simulated SA range, range rate and range acceleration histories over the
course of one hour is shown in Figure 4.9(a), (b) and (c). The standard deviations of the
simulated range rate and acceleration are 0.16 m/s and 1.§nandscorrespond closely
to the values 0.12 m/s and 2 mrdf actual SA data cited in (van Graas 1996). Additional
simulated SA range rate and acceleration errors, representing the SA errors of other
satellites, are necessary to compute the velocity and acceleration error in North, East and

Down coordinates. They are not shown here.

The velocity and acceleration errors due to SA depend on the instantaneous satellite
geometry and are computed using the following fundamental error equation (Parkinson
1996b)

Ax = (GTG) G Apgp (431)

where Ax are the velocity and acceleration errors due to SA in North, East and Down
coordinates( is the geometry matrix containing the line of sight vectors from the user to
the satellites, and\pgp are the SA range rates and accelerations, respectively, of more

than four satellites.

The matrix G'G)™! in Eq. (4.31) is the geometric dilution of precision (GDOP)
matrix and the square root of its diagonal elements are a quantitative measure of the
satellite geometry. They are the North DOP, East DOP, Down DOP and a time DOP, in that
order, for a vectoAx whose elements are ordered in the same way. The lower the DOP

values, the smaller are the errors in the NED directions. Figure 4.9(f), (g) and (h) show
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Figure 4.9: Simulated Impact of SA on Pseudo-Attitude

typical DOP values for a time interval of one hour. They were obtained from a simple GPS
satellite model given in (Brown 1997). The calculated East velocity and acceleration are

shown in Figure 4.9(d) and (e).
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The standard deviations of the simulated velocity errorsogre 0.47 m/s,oy = 0.21
m/s andop = 0.36 m/s. The simulation closely matches the Novatel 3151R receivers

nominal performance of 0.25 m/s RMS in stand-alone mode (Novatel 1996).

Figure 4.9(i) and (j) show the corresponding SA induced pseudo-attitude errors for an
aircraft flying straight and level at 100 knots groundspeed in northern direction. The flight
path angle error is a function of the aircraft groundspeed with the error decreasing at
higher speeds. The plot in Figure 4.9(i) shows that the error does not exceed 1.2 deg for
this flight condition. The standard deviation of the flight path angle error is 0.34 deg and
does not constitute a significant error for most applications. However, for certain
applications, such as for its unaided use in automatic landings, the SA induced flight path

angle error is currently too large.

Figure 4.9(j) shows the pseudo-roll angle error due to SA. It does not exceed 0.05 deg
and is, thus, negligible. This is not entirely surprising since the SA range acceleration is
three orders of magnitude smaller than the gravity vector against which it is compared to
compute the pseudo-roll angle. Thus, it can be concluded that SA currently does not
severely limit the applicability of the pseudo-attitude concept for most applications.

Moreover, long term plans call for a termination of SA (PDD 1996).

Receiver Noise

The receiver noise is mainly due to thermal noise and is uncorrelated in nature. As
explained in Section 4.4, the receiver noise is determined by a bandwidth versus noise
performance trade-off. For the Novatel 3151R GPS receiver, the noise performance during
static tests was shown to be 0.01 m/sec RMS (North and East) and 0.1 m/sec RMS
(Down).
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4.6 GPS Integrity, Availability and Continuity

This section briefly highlights GPS integrity and availability issues because of their
relevance to the use of GPS-based pseudo-attitude. These areas are subject to extensive
on-going research and development efforts, and a full treatment of this topic is beyond the

scope of this thesis.

In addition, this section outlines the effects of short satellite outages or changes in the
in-view satellite constellation on the velocity and acceleration information. In this thesis,

these issues are referred ta3RS continuityssues'.

GPS Availability and Integrity

Current GPS availability and integrity levels do not allow for the use of GPS as a sole
means navigation sensor (FAA 19§6)\ugmentation systems, such as the Wide Area
Augmentation System (WAAS) and Local Area Augmentation System (LAAS), are
currently under development. Once fully operational, they are expected to provide
sufficient availability and integrity for GPS to be the sole means navigation system for all

phases of flight from en route to precision approaches (FRP 1996).

It is evident that the novel use of single-antenna GPS #igla control or attitude
sensor is tied to different, more stringent availability and integrity requirements. This is
because the flight control loop closure, by its “inner loop” nature, is more time critical
than the outer guidance loop. An aircraft losing its navigation and guidance capability or

being mislead by an undetected satellite anomaly can still be controlled while guidance

T It should be noted that the teroontinuitymay be used differently throughout the GPS related
literature.

¥ A distinction is made between a navigation system certifietipplementabr sole meansA sup-
plemental navigation system must provide navigation information at the required accuracy level, if

it can, and recognize instances when it cannot. In the latter case, the system must warn the user in a
timely manner, who then switches to the primary navigation system. A sole-means navigation sys-
tem must not only be able to detect anomalies, but it must also recover by removing the faulty satel-
lite from the solution.
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and separation may be obtained from radar vectors supplied by the ground. The erroneous
indication or the loss of attitude information, on the other hand, may cause the aircraft to

loose control within seconds of their occurrence.

It is apparent from these considerations that GPS-based attitude may be suited best as
a supplementahttitude sensor in conjunction with additional attitude sensors. Also, the
current and future GPS availability and integrity standards may difoited use of GPS
as a sole-meansttitude sensor. Applications with lower availability and integrity
standards, such as expendable unmanned aerial vehicles (UAV), may be envisioned to use
GPS as a cost effective sole-means attitude sensor. Finally, the use GPS prediction
software and mission planing tools enables the search for time intervals and coverage
areas with sufficient high availability for sole-means GPS-based flight control. The
implications of limited GPS availability and integrity on the use of GPS as an attitude

sensor and possible applications are further discussed in Chapter 10.

GPS Continuity

Changes in the satellite configuration tracked by the GPS receiver may sometimes lead
to jumps in the GPS navigation solution. A large discontinuity in measured GPS velocity
could potentially induce a large jump in acceleration and thus pseudo-roll. Fortunately, as
will be shown below, the effects of satellite configuration changes are minor most of the

time.

Configuration changes may occur due to rising and setting satellites, or because a
satellite is temporarily obscured from the antenna field of view by the aircraft structure
(e.g. while the aircraft is banked). The jumps are the result of GPS pseudo-range and
delta-range measurement errors, including primarily the effects of Selective Availability
(SA). Since the measurement errors are different for each satellite, a position and velocity
solution based on a changed satellite configuration may differ from a solution based on a

previous configuration. The magnitude of the discontinuity is dependent on the number of
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visible satellites and their distribution before and after the configuration change. A larger
number of satellites tracked by the receiver and a more evenly distributed satellite

configuration reduce the sensitivity of the navigation solution to configuration changes.

Based on a simplistic analysis, the effects of satellite configuration changes on GPS-
based velocity and, ultimately, on pseudo-attitude appear to be benign. This is attributable
to a combination of two factors. First, SA range rate errors are small compared to the
velocity of conventional aircraft. Since the SA induced jumps in GPS velocity are smaller
than the SA range rate errors, they are not apparent in flight path angle at typical aircraft
speeds. Furthermore, the corresponding jumps in GPS acceleration are commonly much
smaller than gravity against which they are compared when computing pseudo-attitude.
Second, the Kalman filter estimating acceleration acts as a low-pass filter which reduces
the effects of a jump in observed acceleration and prevents instantaneous changes in

pseudo-roll.

While the effects of configuration changes on velocity and pseudo-attitude are benign,
they may cause noticeable discontinuities in GPS position. This is due to the presence of

slowly varying SA range errors which are large in amplitude.

The availability of differential corrections eliminates the effects of SA and reduces
most of the impact of a changing satellite configuration. Also, mounting the GPS antenna
at a location with an unobstructed field of view in all directions greatly reduces the

number of satellite configuration changes.
4.7 Chapter Summary

This chapter investigated the mechanisms of GPS velocity and acceleration
information generation. In addition, it highlighted the issues, trade-offs and limitations in
the signal processing architecture and in the GPS system as a whole which pertain to the

synthesis of pseudo-attitude. In the following, the most important points are summarized:
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* Three dimensional user velocity and acceleration can be determined from the
observed Doppler frequency shifts of the received GPS carrier signal. GPS receiver
phase-locked loops (PLL) measure the frequency shifts in form of delta ranges. A
third or higher-order PLL is necessary to track the GPS carrier signal under
dynamic conditions (i.e. under line-of-sight accelerations). A PLL design trade-off
exists between good tracking performance (large bandwidth) and low noise (low
bandwidth).

» GPS acceleration and velocity information can be estimated from delta range
measurements using a Kalman filter. Alternatively, if velocity information is
provided by the GPS receiver, an external Kalman filter may be employed which
estimates GPS acceleration from velocity information. In both cases, it is
appropriate to include a jerk state in order to model aircraft roll rate appropriately.

A trade-off involving Kalman filter bandwidth and noise in the estimates exists.

» Selective Availability (SA), which at the time of publication is the main error
source affecting stand-alone GPS, does not severely limit the applicability of the
pseudo-attitude concept. The SA induced error in flight path angle does not
constitute a significant error for most applications. Its effect on pseudo-roll is
negligible. Furthermore, Federal Policy calls for the termination of SA within the

next decade.

* The novel use of single-antenna GPS as a flight control or attitude sensor requires
more stringent GPS availability and integrity standards than those needed for
navigation. Considering current and projected integrity and availability levels,
single-antenna GPS-based pseudo-attitude may be suited best as a supplemental
attitude sensor in conjunction with additional attitude sensors, or as a sole-means

attitude sensor in applications with lower availability and integrity standards.
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Chapter 5

Closing the Loop Around GPS Velocity Based Attitude
Information

This chapter discusses the new paradigm for flight control loop closure around the
inertial velocity and acceleration vector as sensed by the GPS receiver. The concept is
based on controlling and sensing the velocity vedwectly, rather than through the
control of aircraft attitude, as in the traditional control approach. The treatment relies

heavily on the material presented in Chapter 3 and 4.

The discussion shows how GPS velocity based attitude information can be modeled as
part of the aircraft control loop and examines some of the issues of closing the flight
control loop around the GPS-based velocity vector. It relies on a linearized analysis of the
closed loop system consisting of aircraft dynamics, GPS instrumentation, and flight

control system, and makes extensive use of the MATLAB simulation tool.

Section 5.1 gives a short introduction on the concept of velocity vector based flight
control loop closure and presents related work. In Section 5.2, a linear model of the
aircraft flight control loop is presented. The pseudo-attitude equations developed in
Chapter 3 are linearized and the linearized models of the aircraft and GPS receiver are
presented. The linearization yields decoupled models for longitudinal and lateral motion.
Section 5.3 investigates the open-loop behavior of pseudo-attitude. In particular, the
discussion illustrates the influence of adequate aircraft behavior around the velocity vector
and the effects of uncoordinated flight and atmospheric disturbances on pseudo-roll.
Section 5.4 investigates the closed-loop behavior of pseudo-attitude, and highlights some
of the issues associated with a pseudo-attitude based flight control loop closure.
Section 5.5 presents a case example of a pseudo-attitude based autopilot design. The
example served as a basis for the autopilot design used in the flight tests described in

Chapters 8 and 9. Finally, Section 5.6 summarizes the chapter.
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Use of classical control methods is made throughout the chapter. In particular, the
approach of closing single-input-single-output (SISO) loops in an sequential manner from
the ‘inner most’ to the ‘outer most’ loop is pursued. In this thesis, the classical control
approach is preferred over the modern control approach involving full state feedback
because the former is more intuitive. In addition, it takes into account that pseudo-attitude,
consisting of flight path angle and pseudo-roll angle, allows for a similar control loop

structure as traditional attitude consisting of pitch and roll angle.

It is important to note that it iswot the chapter’s intention to conduct a control
performance comparison between traditional attitude based and pseudo-attitude based
flight control loop closures. Rather, it is intended to show thé possible to close the
flight control loop around GPS-based velocity vector information and achieve adequate

control performance to safely control the aircraft.

It should be appreciated that the characteristics of an aircraft control loop are
inherently connected to the dynamics of a particular aircraft and that aircraft dynamic
characteristics vary greatly between aircraft. It is thus difficult, if not impossible, to make
generic gquantitative statements about control loop properties which pertain to different
aircraft. The considerations throughout this chapter are therefore tied to the dynamics of a
particular aircraft. A Cessna 182 (C182) aircraft model is used for the analysis because the
aerodynamic model is available in the open literature. In addition, the C182 resembles in
dimension and weight a Piper Arrow aircrafvhich was the aircraft type used for flight
tests described in subsequent chapters. However, the issues treated here could easily be

investigated in context of a different aircraft model.

5.1 Introduction

Recall that the velocity vector provides a more direct indication of the aircraft
trajectory than traditional attitude. In this context Lambregts states that “Attitudes are not
uniquely related to the flight path... . Manual control of the flight path using attitude for an

inner loop control is therefore always iterative in nature” (Lambregts 1979).

t The aerodynamic model of the Piper Arrow is unavailable in the public domain.
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In traditional control schemes, the pitch and roll attitude are controlled to effect a
desired velocity vector and, hence, flight path change. In the traditional lateral control
method, an aircraft roll angle is established in order to generate an acceleration force that,
in turn, changes the velocity vector. Similarly, in traditional pitch attitude based
longitudinal flight control schemes, pitch and thrust control are used to achieve a desired

flight path angle and speed.

In the velocity based flight control paradigm, the flight path vector is sensed and
controlled directly. In order for this approach to be successful, however, the aircraft has to
be well behaved ‘around the velocity vector’. That is, unwanted aircraft modes have to be
adequately suppressed and the aircraft response to control inputs has to be sufficient. This
function, if necessary, is typically achieved using inner loop stability augmentation and
control augmentation systems. As detailed in Chapter 2, the paradigm has the distinct
advantage that is relies on low cost sensors to provide the measurements necessary to
close the loops, namely GPS for the flight control loop and low grade (automotive) inertial

sensors for the inner loops.

In the past, Lambregts developed a Velocity Vector Control Wheel Steering Mode in
conjunction with a velocity vector aligned attitude display shown in Figure 3.8
(Lambregts 1979). The objective of the control mode and display systems is to largely
reduce the need for pilot inner loop control by relying on automatic stability augmentation
and, at the same time, to provide direct pilot control over the flight path. The
aforementioned display is used to depict flight path angle and ground track together with
other control variables, such as traditional aircraft attitude, and to close the pilot’s control
loop. The velocity vector control steering mode and the necessary stability augmentation
rely on traditional instrumentation consisting of an inertial navigation system (INS) and an
air data system. The study indicated the substantial pilot workload reduction during
manual airplane control can be achieved with the Velocity Vector Control Wheel Steering
Mode.
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While the concept of aircraft velocity vector control advocated in this thesis is related
to the concept explored in Lambregts’ work, the implementations are fundamentally
different. Lambregts’ velocity vector control law and stability augmentation relies on the
feedback otraditional roll angle and requiresaditional instrumentationncluding INS
and air data, thus lacking the simplicity and low cost of the GPS-based pseudo-attitude

approach presented in this thesis.

In the following sections, issues associated with the loop closure around velocity
based pseudo-attitude are investigated. The effects of GPS as the sensing element are

hereby included.
5.2 Linearization of the Aircraft Flight Control Loop

In this section, the linear representation of the aircratft flight control loop is developed.
The aircraft flight control loop is shown in Figure 5.1. Aircraft velocity is measured by a
single-antenna Novatel 3151R GPS receiver, and acceleration is estimated using a Kalman
filter, as described in the previous chapter. Both GPS-based velocity and acceleration are
available at a 10 Hz update rate and fed into the pseudo-attitude synthesis algorithm.
Pseudo-attitude is used by the controller (human or autopilot) to compute aircraft actuator
commands and close the loop. In the following, the elements of the loop are considered

separately, and, where necessary, linearized.

Aircraft

v

Controller

) Velocit
Pseudo-Attituds y

Synthesis

X

GPS Receiver &
Kalman Filtering

A

A

Acceleration

Figure 5.1: Aircraft Flight Control Loop
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Linearized Aircraft Model

To obtain a linearized aircraft model, the 6 DOF non-linear aircraft equations of
motion are linearized about a reference flight condition. For the treatment in this chapter,
the reference flight condition corresponds to an aircraft on an approach flight path and is

characterized by:

* Rectilinear, symmetric flight with wings level

» \Vertical flight path angle of, = -3 deg

» Constant aircraft speed of,& 85 knots in North direction
* No steady-state windv = 0

» Initial altitude of 1500 ft.

By choosing the aircraft body,x axis to point into the relative wind for the nominal
flight condition, one obtains the linearized aircraft model in stability axgg/{xzy)." The
selected flight condition decouples the linearized longitudinal and lateral aircraft models

completely. The linearized, longitudinal aircraft model is then given by
XLon = ALonXLon + BL0n6e + GLon YLon (5.1)

XLon = [u! W, q! e; h; ZE]' gLon = [ug, Wg, qg] (52)
whered, is the elevator input. The vectgy o, represents the longitudinal disturbance state
of the aircraft consisting of inertial velocity u ingxdirection, inertial velocity w in g
direction, pitch rate q, pitch angl@, longitudinal flight path deviation h, and Down

position z in the NED frame.gi ong is the gust disturbance input vector consisting of

forward gust input § downward gust input yand pitch rate gust inpug.q
Similarly, the lateral aircraft model is given by
XLat = ALatXLat+ BLatuLat+ GLatgLat (5.3)

Xt = VP QA WL Uiy = [8,8],  Giat = [V Py Fg) 59

T This frame is a special body axes reference frame typically used in the study of small disturbances
from nominal reference flight conditions.
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The vectorx 4 represents the lateral disturbance state of the aircraft consisting of inertial
velocity v in yg direction, inertial roll rate p and yaw rate r, traditional roll angldateral

flight path deviation d, and heading angleu, 4 is the control input vector consisting of
the aileron inpu®, and the rudder inpuy,, andg, 4 is the gust disturbance input vector

consisting of sideward gust inpy, voll rate gust input pand yaw rate gust inpuj.r

The matricesA | o, BLon GlLons ALat BLaw @andG, 4 contain the stability derivatives.
They are evaluated in Appendix E for a Cessna 182 at 1500 ft. altitude and 85 knots
approach speed on -3 deg glidepath (Roskam 1995). The resulting longitudinal and lateral

aircraft eigenmodes are shown in Table 5.1.

Aircraft Modes Poles Natural Damping { | Time Constant T
Frequencyw
Phugoid -2.88+ 2.23i 0.34 0.21 -
Short Period -0.072 £ 0.336i 3.64 0.79 -
Dutch Raoll -0.683 + 2.6i 2.69 0.25
Roll Subsidence -9.40 - - 0.106 sec
Spiral Mode 0.004 - - 250 sec

Table 5.1: Longitudinal and Lateral Aircraft Modes

The short period is well damped so stability augmentation (SAS) is not required. The
phugoid and dutch roll mode, however, are only lightly damped and typically require pilot
control to damp oscillations. The spiral mode is slightly unstable, but with a large time
constant. All the eigenmodes meet Level 1 handling qualities which allows for adequate

aircraft control (Stevens 1992).

Linearized GPS Model

Aircraft velocity is measured up to a bandwidth of 15 Hz (> 90 rad) which is the
receiver’s carrier tracking phase-locked loop bandwidth. The bandwidth is approximately
25 times larger than the fastest relevant aircraft modes. Thus, in the context of aircraft

velocity measurements, the GPS receiver can be modeled as an aIIpaTss filter.
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The acceleration is inferred from velocity through a Kalman filter estimator
performing essentially a differentiation. The bandwidth of the inferred acceleration is
Qn = Qg = 2.15 rad/sec for the North and East direction, as discussed in Section 4.4. The
filter roll-off is close to the aircraft Dutch Roll mode and the filter induces a phase lag of

approximately 90 deg at that frequency.

Although the actual GPS receiver provides discrete-time measurements at 10 Hz in a
sample-and-hold fashion, it will be modeled as a continuous-time system. This is
reasonable because the sampling period of 0.1 seconds is nearly 20 times faster than the
time constants of the fastest relevant aircraft mode. This simplification allows for a control
loop analysis in the Laplace domain. However, in order to cross-check this simplification,
aircraft time responses, based on simulations including a sample-and-hold block in the

GPS model, will be compared with the corresponding continuous-time responses.

Linearized Pseudo-Attitude

The next step is the linearization of the pseudo-attitude synthesis described by
Eq. (3.30) - Eqg. (3.37) in Section 3.1.4 about the given nominal flight condition. The
linearization is performed in Appendix F and only the results are presented here. The

linearized flight path anghgis

W
=0—-— =0-qa 5.5
Y U, (5.5)

T The latency of 50 ms in the velocity measurement (see Section 4.2.2) has a marginal effect on the
closed loop performance in the frequency range considered and is thus not modelled here. Also, the
impact of Selective Availability on GPS velocity and pseudo-attitude was considered previously in
Section 4.5 and is not inlcuded in the discussion.
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where both® and w are elements in the longitudinal state vector. Linearized pseudo-roll

(Np, expressed in stability axes, is

-
@ =0t s
1
90COSY,
1
00COSY,

(p+ [Uo[3 + Uor_go(pcosyo] (5-6)

o+ [Yy(V=Vg) + Yo (P—Pg) + Yi(r—rg) + Y5,0, + Y5,0]

where {, is the specific force in the direction ofyas measured, for example, by an
accelerometer with its sensitive axis mounted along this axis. The gravitational
acceleration gis 9.81 m/¢ and the sideslip angle = v/Uo. The Y, are the stability

derivatives of the sideforce Y with respect to the different states and inputs.

The first line in Eq. (5.6) states that pseudo-roll, to first-order, equals the sum of
traditional roll and the ratio of sensed sideforce and the gravity component perpendicular
to the flight path. Any experienced sideforce is thus interpreted as a pseudo-roll
component. For coordinated flight, the sideforce term is zero and pseudo-roll, to first-
order, is equal to traditional roll angle. The second and third equality of Eq. (5.6) show the
influence of sideslip, sideslip rate, and the different aircraft states, control surface and gust

inputs on pseudo-roll.

The linearization in Eq. (5.5) - Eq. (5.6) assumes that the GPS antenna is at or near the
aircraft center of gravity. If the antenna is mounted at a considerable distance from the
center of gravity, it senses additional lever arm motion which has to be accounted for by

including the appropriate terms in the equations. This case is not considered here.

114



Simplified Linearized Aircraft Flight Control Loop

In order to complete the linearized aircraft flight control loop description, a useful
simplification is performed. For practical implementation purposes, it is easier to switch
the position of the linearized pseudo-attitude synthesis function block and the GPS
receiver function block in the aircraft flight control loop. Figure 5.2 shows the simplified

linearized aircraft flight control Ioob.

- [ '
U Aircraft & % x | | Linearized Y )
Actuators | Pseudo-Attitude Qy :
X =Ax + Bu + Gg : Synthesis = > i '
| (p \
|
|

T

g

GPS-based Pseudo-Attitude

Controller

A

Figure 5.2: Simplified Linearized Aircraft Flight Control Loop

In the simplified control loop, pseudo-attitude is synthesized from the longitudinal and
lateral aircraft states and their derivatives using Eqg. (5.5) and Eq. (5.6). Flight pathyangle
is computed from longitudinal velocity states. Since the GPS receiver is modeled as an
allpass filter in the context of velocity measurements, no GPS induced filtering block is

shown in they path in Figure 5.2.

Linearized pseudo-roll angle is computed from the aircraft acceleration states and
actual roll angle, as indicated in Eq. (5.6). In order to properly introduce the band limiting
effects of the Kalman filter acceleration estimator, linearized pseudo-roll is subsequently
low-pass filtered. The low-pass filter is simply the Kalman filter estimator in Eq. (4.29)
multiplied by an integration (1/s) operator to account for the fact that the input is no longer
velocity but acceleration based pseudo-roll. The roll-off frequency of the resulting low

pass filter is the same as for the original differentiator, nafgly Qg = 2.15 rad/sec.

T In principle, the lateral and longitudinal control loops are decoupled. For simplicity, they are
shown together.
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Pseudo-attitude is used by the controller, which may be a pilot or autopilot, to compute
the necessary control inputs to the aircraft for proper inner-loop control. The aircraft
elevator, aileron and rudder actuators are modeled as low pass filters with unity gains and

time constants of 0.1 seconds.
5.3 Open-Loop Behavior

This section investigates the open-loop behavior of pseudo-attitude. The primary focus
is on the lateral open-loop behavior examined in Section 5.3.1. Section 5.3.2 briefly

discusses the longitudinal open-loop behavior.

5.3.1 Lateral Open-Loop Behavior

In previous chapters, coordinated flight and uniform wind have been assumed. In this
section, open-loop simulations are performed to illustrate the effects of uncoordinated
flight and atmospheric disturbances on pseudo-roll. The influence of adequate aircraft

response around the velocity vector on pseudo-roll is demonstrated.

Figure 5.3(a) shows the un-augmented open-loop response of the C182 at the nominal
flight condition to an aileron input of 5 deg over one second with the rudder fixed at the
zero position. Figure 5.3(b) shows the open-loop response of the C182 augmented with a
stability augmentation system (SAS). From top to the bottom, the plots show aircraft
sideslip angle, traditional roll angle, unfiltered and filtered pseudo-roll angles, and the

actuator input.

In order to separate the issues related to the pseudo-roll synthesis as shown in Eq. (5.6)
from the influence of the limited bandwidth of GPS acceleration, both filtered and
unfiltered pseudo-roll are shown. The unfiltered pseudo-roll angle is the pseudo-roll angle
as computed in Eg. (5.6) but not bandlimited by the subsequent low-pass filter (modeling
the Kalman filter). The filtered pseudo-roll angle, on the other hand, is the output of the
low-pass filter and is thus trectual control variableavailable to close the loop as shown

in Figure 5.2.
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Figure 5.3: Simulated Open-Loop Pseudo-Roll Response to Aileron Input (a) Deficient
Aircraft Behavior (b) Adequate Aircraft Behavior (with Augmentation)

The plot in Figure 5.3(a) shows a large initial sideslip excursiar2 (a4 seconds) up
to approximately 10 deg due to aircraft adverse yaw, followed by moderately damped
dutch roll oscillations. The large initial uncoordination causes, as expected, a considerable
difference between the traditional aircraft roll and pseudo-roll angle. With the decay in
sideslip angle, conventional roll and pseudo-roll response gain in similarity. The dutch roll
oscillation in the traditional roll angle can also be observed in pseudo-roll. Comparing the
unfiltered and filtered pseudo-roll time response reveals that the low-pass filter introduces
delay of about 0.5 seconds and noticeable overshoot. This is in close correspondence to

the observed Kalman filter response in Figure 4.8 (Section 4.4).
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With the filtered pseudo-roll response, the corresponding discrete-time pseudo-roll
response in dashed lines is shown. This response is generated using a simulation which
includes a sample-and-hold block in the GPS model. As can be seen, the discrete-time
pseudo-roll response is not distinguishable from the continuous-time response which

verifies the initially assumed continuous model of the GPS receiver.

In Figure 5.3(b), the effects of adverse yaw and dutch roll on the aircraft response are
mitigated using stability and control augmentation systems. In the current example, an
Aileron-to-Rudder Interconnect (ARI) with a gain of -2 is used to reduce the effects of
adverse yaw (Stevens 1992). In addition, a yaw rate r feedback with a high-pass washout
filter of the form H,,(s) = -0.35s/(s+1.25) is used to increased dutch roll damping. This
moves the dutch roll poles tg,s= —-1.23 + 1.6i with a damping and natural frequency of
(gr = 0.61 andwy, = 2.02, respectively. The improvement in the aircraft response is
immediately apparent. Adverse yaw is almost completely eliminated, and dutch roll

motion is heavily damped.

With these improvements in place, traditional roll angle increases to approximately 15
deg in a steady manner with a small overshoot and no oscillations. The unfiltered pseudo-
roll largely follows traditional roll angle with a slight delay of about 0.2 seconds. The
initial reversal in the direction of the pseudo-roll build up is due to slight
overcompensation. The filtered pseudo-roll exhibits noticeable overshoot and lags by
approximately 0.5 seconds with respect to conventional roll angle. These characteristics
correspond to the ones observed for the Kalman filter response in Figure 4.8. Finally, no

difference between the continuous-time and discrete-time responses can be observed.

Figure 5.4(a) shows the aircraft response to a gust induced step in sideslip angle. The
rudder and aileron are fixed at the zero position. The sideslip step of 1.1 deg at the nominal
speed of 85 knots corresponds to a sidegust velocity of 2.8 ft/sec which slightly exceeds
the standard deviation of gust velocity used in the literature (Bryson 1994). As can be
seen, only a minor dutch roll motion is excited and observable in the pseudo-roll plots.
Figure 5.4(b) shows the sidegust velocity response of the augmented aircraft. The increase

in dutch roll damping is immediately apparent.
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Figure 5.4: Simulated Open-Loop Pseudo-Roll Response to Atmospheric Disturbances
(a) Deficient Aircraft Behavior (b) Adequate Aircraft Behavior (with Augmentation)

5.3.2 Longitudinal Open-Loop Behavior

In some instances, the damping of the longitudinal short period mode is insufficient. A
flight path angley feedback may cause the short period to deteriorate rapidly and drive it
unstable when the controller gain is increa%@bnsequently, the loop has to be closed

with low gains resulting in a low bandwidth system.

T The total system damping remains constant (McRuer 1973). Flight path angle feedback increases
phugoid damping at the expense of reduced short period damping.

119



To mitigate the short period damping deficiency, a pitch rate signal can be fed back in
a pitch damper SAS. This hardly alters the phugoid motion (McRuer 1973). With an
improved short period damping in place, thieedback loop can be closed with increased

gains resulting in a higher bandwidth system.

In case of the C182, the short period is sufficiently damped and no pitch damper is

necessary.

5.4 Closed-Loop Behavior

In this section, the use of pseudo-attitude to close the flight control loop is examined
for the C182. Section 5.4.1 examines issues of lateral loop closure using pseudo-roll, and

Section 5.4.2 discusses longitudinal loop closure using flight path angle.

5.4.1 Lateral Loop Closure

A pseudo-roll command loop is obtained by feeding back the pseudo-roll angle of the
aircraft and differencing it with the commanded pseudo-roll to obtain an error signal. The
error signal is multiplied by a gain and, if necessary, appropriately filtered to produce

aircraft aileron commands which control the aircraft in order to minimize the error signal.

Figure 5.5 shows the root locus and the bode plots of the pseudo-roll command loop
using the augmented aircraft. In the current example, only a simple gain of 0.15 and no
additional filtering is used. The ‘0’, ‘X', and *' represent the position of the open-loop
zeros, open-loop poles and closed-loop poles using the current gain, respectively.
Figure 5.5(d) is a zoomed-out version of the root locus shown in (c). The dutch roll poles
are roughly canceled by nearby zeros and this mode is therefore not present in the roll
motion, as seen in the previous section. The most distinct feature in the root locus is the
presence of aon-minimum phase zeroausing the complex pole pair introduced by the
Kalman filter to move to the right half plane. The non-minimum phase behavior sets an
inherent limit to the achievable closed-loop bandwidthhe systemFigure 5.5(a) and (b)
show the corresponding bode magnitude and phase plots. With the gain used, a crossover

frequency of 0.5 rad/sec and a phase margin of 75 deg is achieved.
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For comparison, Figure 5.6 shows the root locus and bode plots of a traditional roll
angle command loop for the same gain. As can be seen, the control loop is minimum
phase and a higher bandwidth is achievable than in the pseudo-roll case. For the current
example, a crossover frequency of 1 rad/sec and a phase margin of 85 deg is obtainable.
Traditional roll feedback allows for a higher bandwidth system since traditionadffeltts
a velocity vector change, while pseudo-roll isreeasureof this change, and constitutes

thus an outer-loop variable.
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Figure 5.7(a) shows closed-loop time responses to a pseudo-roll command input of 20
deg. Figure 5.7(b) shows closed-loop time responses to a 5 deg/sec roll rate gust input (as

they arise when a gradient exists in the vertical gust velocity distribution over the wing
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spanwidth). Shown are the sideslip angle, roll rate, traditional roll angle, filtered pseudo-
roll, and pseudo-roll command or roll rate gust input, respectively. Due to the control
augmentation, the flight uncoordination is limited to less than 2 deg of sideslip. Pseudo-
roll largely follows traditional roll angle with the overshoot less pronounced than in the
open-loop case. Similar to the open-loop case, it lags by approximately 0.5 seconds.
Finally, in all the plots, the continuous-time and discrete-time (in dashed lines) responses

are indistinguishable.

5.4.2 Longitudinal Loop Closure

Figure 5.8 shows the bode and root locus plots of a flight path angle command loop.
The loop is obtained by feeding back flight path angle and differencing it with the
commanded flight path angle. The difference may be filtered, if necessary, and multiplied
by a gain to produce the elevator command necessary to minimize the deviation. For
comparison, Figure 5.9 shows the bode and root locus plots of a traditional pitch
command loop. In both figures, a gain of -0.4422 was used to obtain the closed loop poles
represented by “*' in the root locus plots. No stability or control augmentation was
applied. The ‘0’ and ‘X’ represent the position of the open-loop zeros and poles,

respectively.

The root locus plots indicate that both flight path angle and pitch angle feedback
provide path damping(i.e. phugoid damping) and allow for the control of the aircraft
trajectory. At the same time, both feedbacks destabilize the short period mode. Similar to
the lateral case discussed above, the velocity based flight path angle feedback leads, for
the aircraft and flight condition considered here, toman-minimum phase zemhich
typically reduces the achievable bandwidth. Since for this case the zero is far from the
imaginary axis, its effects on the achievable bandwidth are relatively benign. Pitch

feedback, on the other hand, leads to a minimum phase transfer function.

Examination of the bode plots reveal a similar behavior. A comparison of the bode
plots show that the pitch rate feedback allows for a slightly higher bandwidth if no

additional compensation is used. For flight path angle feedback, a crossover frequency of
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approximately 1 rad/sec and a phase margin of 65 deg can be obtained, while for pitch
angle feedback a crossover frequency of 2 rad/sec and a phase margin of 80 deg is
achievable. Pitch feedback allows for a higher bandwidth system since the pitch angle
effectsa velocity vector change, while flight path angle isnaasureof this change, and

constitutes thus an outer-loop variable.

The attainable bandwidth of flight path angle feedback seems sufficient in the case
illustrated here. In some instances, the achievable bandwidth may not suffice and lead to
pilot induced oscillation (P1O). Typically, additional compensation in form of a pitch

damper increases the bandwidth in these cases, as discussed in Section 5.3.2.

A time domain response of the flight path angle command loop is presented in the next

section in the context of an autopilot case example

5.5 Case Example: Pseudo-Attitude Based Autopilot

This section illustrates the use of pseudo-attitude in an autopilot logic for approach
conditions. This autopilot development served also as the basis for the autopilot design

used in the flight tests described in Chapter 8 and 9.

The autopilot logic uses the lateral and longitudinal deviations from the desired flight
path and its rate of change to form a pseudo-attitude command which is fed to the
respective pseudo-attitude command loops discussed earlier. Figure 5.10 shows the lateral
and longitudinal autopilot laws. They were designed using classical design methods and

simulations.
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Figure 5.10: Lateral and Longitudinal Autopilot Logic

Lateral Autopilot Logic

The pseudo-roll command loop presented in Section 5.4.1 is used to build the lateral
autopilot guidance logic. It includes a yaw-damper and an Aileron-to-Rudder Interconnect
(ARI) to eliminate the effects of uncoordinated flight. The lateral deviation rate from the
desired flight path, denotedl , is calculated from the lateral aircraft stqtgsgiven in
Eq. (5.4) as

d = v+ U,cosy,y (5.7)

The lateral autopilot logic is then given by:

AP, = K [Ky(-Kqd— d) - @] (5.8)
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The particular gains used for the lateral guidance IaV\Ka(cge: 0.15 4s6l18andk,; =
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Figure 5.11: Autopilot Response to (a) Lateral and (b) Longitudinal Displacements

Figure 5.11(a) shows the lateral aircraft responses to an initial 20 ft step deviation.
Shown are the pseudo-roll and traditional roll response, the actual lateral deviation, the
actuator command generated by the autopilot, and the initial step input, in that order. Also
plotted in the figure are the time responses of the discrete-time simulation. Due to close
correspondence with the continuous-time responses they are not discernible in the figure.
Figure 5.11(a) indicates that an adequate response time is achievable using the pseudo-
attitude command loop. Finally, pseudo-roll largely follows traditional roll with a slight

delay, as expected.
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Longitudinal Autopilot Logic

Figure 5.10(b) shows the longitudinal autopilot logic. It is based on the flight path
angle command loop discussed in Section 5.4.2. An additional lag-lead compensator,
denoted K, has been included in the flight path angle command path to improve the low-
frequency gain deficiency which is visible in the bode plot of Figure 5.8. The resulting

actuator command is then given by:

APon = Ky Ky(_Khh_y) (5.9)

The particular gains used for the longitudinal guidance law ape=K0.002 and

Ky = —0.44, and the lag-lead compensator was chosen, as(§+0.1)/(s+0.001).

Figure 5.11(b) shows the time response of the longitudinal guidance law to an initial
vertical displacement of 20 ft from the desired trajectory. It shows the flight path angle and
pitch angle response, the vertical distance to desired trajectory, the autopilot command to
the elevator actuator, and the initial deviation, in that order. The discrete-time simulation
results in the same time responses and they are therefore not visible in thEMnan

be seen, an adequate time response is obtainable using this guidance law.

5.6 Chapter Summary

This chapter illustrated that it is possible to close the flight control loop around GPS-
based velocity information and achieve adequate control performance to safely control the

aircraft.

If necessary, adequate aircraft response and increased bandwidth are achievable using
stability and control augmentation systems, such as pitch and yaw damper. These can be
implemented by feeding back high-frequency inertial quantities obtained from low grade

inertial sensors.

1 A discrete-time lag-lead of H(z) = (1-0.99#1-0.99997') was used for this simulation.
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Chapter 6
Flight Test Setup

A flight test system was implemented to demonstrate the single-antenna GPS-based
pseudo-attitude concept and some of its applications. The tests were primarily conducted

in the single-engine four-seat Piper Arrow aircraft shown in Figure 6.1.

Figure 6.1: Flight Test Aircraft

The objectives of the flight tests documented in this thesis were as follows:

» Demonstration of the single-antenna GPS-based pseudo-attitude synthesis and the
comparison with traditional attitude: This was intended to serve as a proof-of-

concept of the GPS-based pseudo-attitude synthesis.

» Experimental evaluation of the pilot usability of the pseudo-attitude system for
aircraft control: This evaluation aimed at demonstrating the ability of the pilot to
fly the pseudo-attitude display and close the loop around GPS-based pseudo-
attitude.
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Contingent on the successful achievement of these objectives the following additional

objectives were considered:

* Flight demonstration of a pseudo-attitude based autopilot logic: This was intended
to demonstrate the feasibility of an autopilot system that relied on pseudo-attitude

and therefore only on information obtained from a single-antenna GPS receiver.

* Flight demonstration of a pseudo-attitude based tunnel-in-the-sky trajectory
guidance system: This aimed at demonstrating the feasibility and evaluating the
performance of a perspective trajectory guidance system which relied entirely on

information obtained from a single-antenna GPS receliver.

The implementation of the flight test system hardware and software are discussed in
Section 6.1. This is followed by a description of initial ground and flight tests of the flight
test system in Section 6.2. Finally, Section 6.3 gives an overview on the flight tests

performed.

6.1 Flight Test System

The primary purpose of the flight test system was the generation and display of GPS
velocity vector based pseudo-attitude in real-time. In addition, the flight test system had to
accommodate the real-time execution and display of pseudo-attitude based autopilot and
guidance functions. Additional sensors were included to obtain a measurement of the
complete aircraft state as a reference. This was useful for in-flight and post-flight
evaluation. A sampling frequency and display update rate of 10 Hz were chosen to satisfy

the controllability and perceptual requirements outlined in Section 3.2.3.

To accommodate changing flight test objectives, the flight test system was designed in
a modular manner. This allowed for easy addition or removal of sensors to meet the needs
of a particular flight test. In addition, the flight test system was designed to be entirely self-
contained and independent from aircraft systems in order to minimize the potential for
interference with the latter. The next two sections present the flight test system hardware

and software in more detail.
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6.1.1 Flight Test System Hardware

The flight test system was implemented using a modular design in order to adapted to
the different flight test objectives. fll configurationof the flight test system, including a
GPS receiver and additional sensors serving as a reference, was necessary to meet the first
flight test objective which aimed at the evaluation of the pseudo-attitude synthesis and its
comparison to traditional attitude. A disadvantage of this configuration, however, was the
cumbersome installation it required. A scaled-dowpgrtable configuration was
implemented to meet the other flight test objectives. This configuration centered around a
GPS receiver only and allowed for an easy and fast installation. Both configurations are

presented next.

Full Configuration Flight Test System

A block diagram of the full configuration flight test system is shown in Figure 6.2. The
elements of the system were the instrumentation, a laptop computer and a display, and the

necessary power supply.

Laptop
Displa:
Y _| Novatel RS-232 Pay
GPS Laptop |§|
r—— - - - - = — | 1
I~ | GPs/ I
| INS I
! | 110Vac / dc/ac P
I | 60 Hz ¢ | Converter®
| Air I 12vd
) | P Cc
| Data | 12vdc < Battery
I I
Reference
L — — T : 28vde +— L6Vde 4_1

Battery

Figure 6.2: Block Diagram of Full Configuration Flight Test System

The instrumentation consisted of a Novatel 3151R GPS receiver as the primary GPS
velocity source, a Rockwell C-MIGITS GPS/INS unit as a reference for traditional

attitude, and a Cambridge Aero Instruments S-NAV air data unit providing air data for
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post-flight analysis. Information from the GPS/INS and the air data systems were not used
in the computation of pseudo-attitude but provided reference data for post-flight

evaluation of the GPS-based pseudo-attitude system.

The Novatel GPS receiver was selected because its velocity update rate of 10 Hz met
the display update rate requirements. The receiver had 12 parallel channels and was
therefore able to track virtually all visible GPS satellites at any point in time. The receiver
channels used a third-order phase-locked loop (PLL) with a carrier tracking bandwidth of
15 Hz (Novatel 1995, 1996). This was essential to track the GPS signals during high
dynamic aircraft maneuvers. In addition, it enabled the measurement of velocity
information up to that frequency and thus sensed all the anticipated rigid body dynamics
of the aircraft. The receiver could also operate in real-time differential mode and accept
differential corrections in standard RTCM format. The Novatel 3151R had an Eurocard

form factor and was contained in a Novatel PowerPak chassis providing the power supply.

The GPS/INS unit used as a “truth” attitude reference was a 5-channel C/A code
Miniature Integrated GPS/INS Tactical System (C-MIGITS) developed by Rockwell (now
Boeing). The C-MIGITS integrated a 5-channel NavCore V C/A code GPS receiver with a
GIC-100 inertial measurement unit (IMU) in a tightly coupled mechanization. The IMU
used tactical grade piezoelectric multisensor technology which relied on the Coriolis
effect to sense acceleration and rates. Attitude accuracy was specified by the manufacturer
to be 4 mrad (dr)Jr and the measured attitude was thus more than adequate to serve as a
reference (Martin 1994).

Air data was measured by a compact sailplane racing S-NAV air data computer. The
instrument housed pressure, temperature and flow rate transducers. A thermistor and pitot-
static probe allowed measurements of outside air temperature, altitude, and indicated and
true airspeed. Measurement uncertainties were estimated by the manufacturer to be 100 ft.

in pressure altitude and 3-5 knots in airspeed.

T Heading errors were specified to be greater than 4 mrad, depending on the time since the last
horizontal maneuver.
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Besides the velocity data, the Novatel 3151R GPS receiver transmitted position, time,
the number of satellites, the dilution of precision (DOP), and receiver status information.
The GPS/INS unit transmitted traditional attitude, velocity and position data as well as
receiver status information. For later flight tests, aircraft accelerations and turn rate
outputs were added. The air data unit provided, barometric altitude and airspeed.

Appendix G gives a detailed list of the data acquired.

The Novatel GPS velocity data and the GPS/INS attitude, position and velocity data
were transmitted at an update rate of 10 Hz to a Pentium 100 MHz based laptop over
standard RS-232 serial links. The air data unit transmitted at a fixed 0.5 Hz update rate.
The laptop contained a Pentium 100 MHz 32 MB RAM, a 2.1 GB hard drive, five RS-232
serial ports (one internal and four based on a PC card). The laptop executed the flight test
system software responsible for the synthesis and display of pseudo-attitude and pseudo-

attitude based guidance information at a sample rate of 10 Hz.

A 12Vdc rechargeable sealed lead-acid battery with 80 Ampere-Hour (Ah) capacity
powered the flight test system. The Novatel GPS receiver and S-NAV air data unit had an
input voltage range of 10-36Vdc and 11-16Vdc, respectively, and were powered directly
by the battery. The GPS/INS unit required an input voltage of 28Vvdc. This was provided
by connecting 8 small 2vVdc / 2.5Ah rechargeable sealed batteries in series with the main
battery. To power the laptop, the 12Vdc battery voltage was transformed to 110V / 60 Hz
using a dc/ac converter and fed into the laptop's adapter input. In addition, the laptop could

be powered by its build-in battery.

To protect against inadvertent short circuits, the current draw from the main battery
was limited using a 10A fuse. With the exception of the GPS/INS unit, the flight test
system using the main battery could be operated for several hours. The operation of the
GPS/INS unit was limited to approximately 1 hour of operation after which the unit

automatically shut down due to overheating.
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Figure 6.3: Flight Test Pallet

The flight test instrumentation and batteries were fixed to a test pallet which in turn
was mounted to the aircraft structure at the location of the left back seat. Figure 6.3 shows

the pallet mounted in the flight test aircraft.

The Novatel GPS and the MIGITS GPS antenna were fixed to the wind shield inside
the crew cabin approximately 30 cm forward of the center of gravity. This resulted in a
satellite visibility of typically 7 to 8 satellites during flight tests. The laptop screen with
the pseudo-attitude display was held in front of the pilot flying the airplane close to the
center of the instrument panel. Figure 6.4 shows the location of the different flight test

system components in the aircratft.

A video camera was included in the flight test system to obtain a visual record of the
pseudo-attitude performance.

Portable Configuration Flight Test System

For many of the flight tests, a portable version of the flight test system was employed.
It consisted of the Novatel GPS receiver and the laptop only. The receiver was powered by
6 2Vdc/2.5Ah batteries in series connection, while the laptop used its internal battery. This

configuration had the advantage of not requiring the cumbersome installation of the test

134



Figure 6.4: Flight Test Configuration

pallet. However, the laptop -without additional battery- was limited to approximately
1 hour of operation. Figure 6.5 shows the block diagram of the portable configuration

flight test system.

Laptop
Display
Y _| Novatel RS-232 Lapto
GPS ptop (&
T Repeater
12Vdc Display
Battery ‘
A
28Vvdc 110Vac/
Aircraft dc/ac 60 Hz
Battery Convertet

Figure 6.5: Block Diagram of Portable Configuration Flight Test System

For some of the later flight tests, a repeater display was installed in front of the pilot
flying the aircraft. The display was a 10.4” Active Matrix Color Liquid Crystal Display
(AMLCD) from Saphire Industrial and was operated in VGA mode (640 x 480 pixels).
The display was two to three times brighter compared to traditional laptop displays and
allowed, thus, for better display readability in sun light conditions. When mounted, the
display obscured all the panel instruments with the exception of the airspeed indicator.
The display required 110V/60Hz power input. This was supplied by transforming the
aircraft's 28Vvdc cigarette lighter voltage using a dc/ac converter. Figure 6.6 shows the

portable configuration flight test system and the repeater display.
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Figure 6.6: Portable Configuration Flight Test System with Repeater Display

Differential GPS

The initial flight test setup called for the use of differential GPS (DGPS) for the
demonstration of pseudo-attitude bas@gectory guidanceDGPS increases the accuracy
of GPS to the sub-10 meters level by eliminating Selective Availability (SA) and
secondary error inducing effects such as iono- and tropospheric delays. The use of DGPS
was considered in order to obtain accurptsition data which enabled the comparison
between GPS-based trajectory guidance systems and standard guidance systems such as
ILS. Without differential corrections, the accuracy of GPS is better than 100 meters
horizontally and 150 m vertically 95% of the time (FAA 1996).

A Northstar GPS differential beacon receiver and B-field antenna were used to obtain
differential corrections from ground stations operated by the US Coast Guard. Interference
caused by the aircraft's alternator, however, prevented the continuous reception of the
corrections. Differential GPS was thereforat used for the flight demonstrations. This led
to an offset between the approach flight path determined by GPS and the approach flight
path indicated by the ILS. In addition, changing satellite configurations caused sometimes
jumps in the GPS position solution. Implications of these effects are discussed in

subsequent chapters.

136



It is important to note that, for the purpose of the flight demonstrations, the lack of
differential corrections to the GPS data was not considered fundamental. The flight tests
were intended to demonstrated the flyability and to evaluate the performance of a single-
antenna GPS-based perspective guidance system, not to characterize well understood and
correctable errors in the GPS data. It was assumed that future implementations of single-
antenna GPS-based guidance systems would include some means of acquiring and

incorporating the differential correction signal.

6.1.2 Flight Test System Software

The flight test system software was responsible for the synthesis and the display of
pseudo-attitude and pseudo-attitude based guidance information at an update rate of 10
Hz. In particular, the flight test system software performed 1) the initialization of the flight
test system, 2) the acquisition and the storage of the sensor data, 3) the Kalman filtering to
estimate GPS-based acceleration, 4) the synthesis and display of pseudo-attitude, and 5)
the calculation and display of pseudo-attitude based autopilot and trajectory guidance
information’. The software provided a user interface to monitor the status of the sensors
and to display custom system settings, such as the Kalman filter constants and the selected

display options.

The flight test software ran in a standard Windows 95 environment. The environment
is an event-based but not real-time operating system and was not designed for flight
critical functions. In particular, it did not give user applications full low-level access to
timing and interrupt control. However, for the purpose of flight testing the pseudo-attitude
system, the capabilities of the operating system were sufficient. In addition, due to its
ubiquitous nature, development tools were readily available. The actual flight test system
software was programmed in C using the library routines available in Microsoft Visual

C++.

t The displays used to represent pseudo-attitude based autopilot and aircraft trajectory guidance
information will be discussed in the description of the flight tests in Chapter 8 and 9.
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Figure 6.7: Software Architecture of Flight Test System

Figure 6.7 shows a diagram of the software architecture. The architecture was based
on a multi-threaded approach and consisted of the Windows Procedure as the main thread,
and of three sensor threads. The four threads were running concurrently with each other in
an event-based and, thus, asynchronous manner. If the flight test system was operating in
the portable configuration, the unused sensor threads (MIGITS and Air Data) were
disabled.
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Upon start up of the software, a series of initialization steps had to be performed. First,
the RS-232 communication links were established. Next, the Windows Procedure, sensor
threads and files for the sensor data were created. Finally, the MIGITS, if installed, was
initialized by supplying the best estimates of position, velocity, date and time, and

heading.

The main thread was responsible for the overall control of the flight instrumentation
software and particularly for the processing and the display of pseudo-attitude and
pseudo-attitude based guidance information. It controlled the start and the termination of
the data acquisition and the selection of different user settings. User settings included the
selection of the display options, the Kalman filter time constants and the display

orientation.

The three sensor threads controlled the RS-232 ports interfacing with Novatel GPS
receiver, MIGITS and the S-NAV air data unit, respectively. They were responsible for the
acquisition and storage of the data from the respective sensors. The three sensor threads
were similar in structure and only differed in the formatting applied to the incoming data.
The threads were monitoring the input port for data received over the RS-232 links. The
incoming data was read and time tagged to allow for the synchronization of different
sensor data. The data was then reformatted to obtain common units across the different
sensor data, and stored in files on the hard drive for post-processing purposes. Next, the
data was put on a memory heap and a message from the respective sensor thread was sent

to the main thread.

Upon receiving the respective message, the main thread retrieved the data from the
heap and initiated a series of functions. Figure 6.8 summarizes the different functions and

displays options available and depicts the information flow necessary to drive them.

In the default case of data retrieved from the Novatel GPS sensor thread, the Kalman
filter and the pseudo-attitude synthesizing functions (described in Eq. (3.30) - Eq. (3.37),
Eq. (4.23) - Eq. (4.27) and in Appendix C.4) were called, and the pseudo-attitude display

was updated. Figure 6.9 shows the pseudo-attitude display as it appeared on the screen.
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Figure 6.8: Summary of Flight Test System Functions and Displays

For flight tests investigating pseudo-attitude based autopilot and trajectory guidance
logic, additional functions calculating and displaying the control and guidance

information were executed.

In cases where the MIGITS was installed and selected as the display source, the main
thread retrieved and displayed traditional attitude data from the heap upon receiving the
respective message. Finally, if the air data unit was installed, the main thread retrieved air

data from the heap and, if enabled, computed an in-flight wind estimate.
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6.2 Initial Ground and Flight Tests

Initial static tests were performed to check for the proper operation of the sensors and
software. In addition, Novatel GPS velocity data was acquired under static conditions to
characterize noise performance of the receiver. Next, automobile tests were conducted to
test the system in a dynamic environment. For that purpose, the fully equipped test pallet
was put in a car and the GPS antennas and pitot-static tube were fixed to the roof. Driving
curved highway sections served as a simulation of wide aircraft turns and the proper
dynamic behavior of the sensor data was observed. As expected, pseudo-roll angle
indications were observed during these maneuvers. In a final ground test, the test pallet

was mounted into the flight test aircraft to check the installation and the satellite visibility.

In a separate development, the acceleration estimating Kalman filter gains were
initially tuned using the simulations outlined in Section 4.4 and shown in Figure 4.8. The
filter gains obtained this way were subsequently fine tuned in a preliminary flight test to
best satisfy pilot acceptance. The fine tuning was tied to a trade-off between display
latency and perceptual requirements. The former required a minimum of filtering to
reduce the latency in the display indication, whereas the latter called for enough filtering

to obtain a smooth display indication.
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Similarly, the gains for the autopilot and trajectory guidance system were initially
tuned using a Cessna 182 simulator. The gains were then adjusted during an initial flight

test.
6.3 Summary of Flight Tests

The flight test location was Hanscom Airport located in Bedford, MA. Two flight test
series were conducted to achieve the four flight test objectives stated at the beginning of

this chapter and shown in the first column of Table 6.1.

The first flight test series comprised 6 test flights and addressed the first two
objectives. The flight tests consisted of simple coordinated and uncoordinated maneuvers.
and allowed the comparison of pseudo-attitude and traditional attitude and the evaluation
of pilot usability under dynamic conditions. The majority of tests were flown in a Piper
Arrow using both the full and the portable flight test system configuration. Additional

aircraft used were a Piper Warrior, a Mooney M20E and Cessna 310.

The second flight test series was made up of 3 flights all of which were flown in a
Piper Arrow using the portable configuration of the flight test system and the repeater
display. These tests were conducted under approach conditions and served to meet the last
three objectives, namely the evaluation pilot usability of pseudo-attitude under approach
conditions, and the demonstration of pseudo-attitude based autopilot control and trajectory
guidance. Much of the work associated with the second flight test series was performed by
Amonlirdviman (1998) and Walker (1998) in close collaboration with the author of this

thesis!

Table 6.1 gives an overview of the flight test objectives, the maneuvers performed to
achieve them, the number of subjects pilot which performed the tests, and the type of

aircraft and flight test system configuration used.

T The work was part of an undergraduate project jointly supervised by the author of this thesis and
Dr. R. John Hansman.
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Objectives Flight Maneuvers Number Flight Test Aircraft Type
Test of System
Series Subjects | Configuration
Proof-of-Concept, Coordinated and
Comparison to #1 uncoordinated 2 Full Piper Arrow
traditional attitude flight
Coordinated and oher Arron:
#1 uncoordinated 6 Full / Portable P '
. . : Mooney,
Pilot usability of flight Cessna 310
pseudo-attitude
Portable,
#2 Approach 1 Repeater Piper Arrow
Display
. Portable,
Pseudo-_attltude base #2 Approach 2 Repeater Piper Arrow
autopilot system .
Display
Pseudo-attitude base Portable,
aircraft trajectory #2 Approach 3 Repeater Piper Arrow
guidance system Display

The flight tests, their specific setup and protocol, and their results are presented in
subsequent chapters in greater detail. Chapter 7 covers the flight tests addressing the first
two objectives, namely the evaluation of the pseudo-attitude synthesis and its comparison
with traditional attitude as well as the evaluation of pilot usability of pseudo-attitude. In
Chapter 8, the flight tests demonstrating pseudo-attitude based autopilot control are

discussed. Finally, Chapter 9 focuses on flight tests demonstrating a pseudo-attitude based

Table 6.1: Summary of Test Flights

aircraft trajectory guidance system.

143




144



Chapter 7

Experimental Evaluation of Pseudo-Attitude

This chapter discusses the experimental evaluation of the pseudo-attitude system
under several different flying conditions. The objectives of the experimental evaluation
were twofold. The first objective was an in-flight demonstration of pseudo-attitude and a
comparison between pseudo-attitude and traditional attitude. This was intended to serve as

a proof-of-concept of the pseudo-attitude system.

The second objective was the assessment of pilot usability of the pseudo-attitude
system. This was intended to demonstrate the ability of a range of pilots to close the flight
control loop around pseudo-attitude. This ultimately demonstrated the ability of the
pseudo-attitude system to act in a functionally equivalent manner as the traditional attitude

indicator in the aircraft.

The flight evaluation was composed of several flight test sessions. In an initial flight
test the pseudo-attitude synthesis was evaluated by comparing it to the conventional pitch
and roll attitude measured by the GPS/INS unit. In this as well as in subsequent flight
tests, IFR-rated pilot subjects evaluated the usability of pseudo-attitude. These flight tests
comprised different coordinated and uncoordinated flight maneuvers. Section 7.1 and
Section 7.2 discuss the flight test protocol and the results of the experimental flight

evaluation.

In a separate flight test, pseudo-attitude was demonstrated under ILS approach
conditions to illustrate the usability of pseudo-attitude for approach tasks. Section 7.3
presents the demonstration of the pseudo-attitude based ILS approach. Finally, Section 7.4

gives a discussion of the results and conclusions.

7.1 Flight Test Setup and Flight Test Protocol

The first two flight tests used the full flight test system configuration, while subsequent

tests relied on the portable configuration.
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The pilots which served as experimental subjects were required to have an instrument
rating in order to lessen the influence of learning effects on the outcome of the evaluation.

Their flight experience was recorded at the outset of the flight test.

The flight test protocol included a pre-flight briefing explaining the principle of
pseudo-attitude synthesis and the flight test procedures. The entire flight test was
performed under simulated IFR conditions where the pilot had her/his view obscured with
a hood. Once in the air, the pilot subjects flew the pseudo-attitude display for several

minutes to familiarize themselves with the display.

After familiarization, the pilot subjects performed a sequence of coordinated flight
maneuvers using the traditional panel mounted mechanical attitude indicator. The
sequence of maneuvers consisted of straight and level flight for 30 seconds, two shallow
and two steep turns for a heading change of 90 deg, a 500 ft climb and a 500 ft descent
during a 360 deg turn. Subject ratings of the traditional attitude indicator using the
modified Cooper-Harper scale (see Appendix H) were obtained and served as a baseline
for the comparison. The traditional attitude indicator was then covered and the pilot
subjects repeated the procedure, this time using the synthesized pseudo-attitude display
shown on the laptop screen held in front of them, and Cooper-Harper ratings of the
pseudo-attitude system were obtained. For the purpose of this evaluation, shallow and

steep turns were defined as bank angles of approximately 20 and 45 deg, respectively.

The pilot subjects also performed an uncoordinated slip maneuver with full rudder
deflection while maintaining a straight flight path, using the traditional attitude indicator.
Cooper-Harper ratings were obtained serving as a baseline for the comparison. After
covering the traditional attitude indicator, the pilots repeated the maneuver using the
synthesized pseudo-attitude display and Cooper-Harper ratings were obtained. This

concluded the flight test.
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7.2 Flight Test Results

Results from the flight tests are shown below, including a comparison of single-
antenna GPS-based pseudo-attitude and traditional attitude measured by the MIGITS unit.
In addition, the pilot subject evaluations of the pseudo-attitude display are presented. The

ground track of a typical flight test sequence is shown in Figure 7.1.

Flight Test Ground Track

T T T T

Straight and level flight

— ]

Steep turns

42.22)

42.2

© / X
ko]
=
= >\ /‘
— 42,18~ B
Shallow turns
42.16 /
500 ft climb
42.14
500 ft descent in a 360
4212 | I T
-715 -71.45 -71.4 -71.35
Longitude

Figure 7.1: Ground Track of Flight Test Sequence

7.2.1 Comparison of Pseudo-Attitude and GPS/INS Reference Attitude

Comparisons of pseudo-attitude and traditional roll and pitch angles measured by the
GPS/INS unit are shown in Figure 7.2. The data was taken in conditions of moderate

turbulence with a wind magnitude of 28 knots.

Figure 7.2(a) shows the comparison of pseudo-roll and traditional roll for straight and
level flight in moderate turbulence, where level flight was difficult to achieve.
Figure 7.2(b) shows the comparison for shallow turns and Figure 7.2(c) for steep turns. As

can be seen, the synthesized roll angle corresponds closely to the traditional roll angle.
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A slight overshoot behavior in pseudo-roll can be seen at instances where traditional
roll changes abruptly. In addition, a lag of less than 0.5 seconds is observable. Both the
overshoot and the lag correspond to the Kalman filter characteristics discussed previously
in Chapter 4 and 5. A lower delay time and better overshoot behavior may be achievable

with a different filter tuning at the expense of more noise in the estimate.

Figure 7.2(d) shows the comparison of synthesized flight path angle and reference
pitch angle during straight and level flight in the presence of moderate turbulence.
Figure 7.2(e) shows the comparison for a 500 ft climb and Figure 7.2(f) for a 500 ft
descent during a 360 deg turn. The plotted flight path angle largely follows the pitch angle
with an approximately constant offset. The difference between them is due to aircraft
angle of attack. A high frequency content is observable in the pitch angle which is not
present in the flight path angle. This is because pitch attitude is a control variable of higher

bandwidth and is adjusted to achieve a desired flight path angle.
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Figure 7.3: Comparison of Traditional Attitude and Pseudo-Attitude

Figure 7.3 shows a comparison of the traditional attitude and pseudo-attitude displays
during an approximately 30 deg level turn in one of the flight tests. As can be seen, the
pseudo-roll indication on the laptop screen (on the right) corresponds closely to the

traditional roll indication on the panel mounted artificial horizon (on the left).
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7.2.2 Subjective Evaluation of Pilot Usability of Pseudo-Attitude

The evaluation of pilot usability of the pseudo-attitude system is based on flight tests
performed by six IFR-rated pilots. Their flying experience, the wind conditions during the

flight tests, and the aircraft type used are listed in Table 7.1.

Pilots Instrument Wind Conditions Aircraft Type
Hours During Flight Test
Subject A 250 150 deg, 28 knots Piper Arroyw
Subject B 400 260 deg, 44knots Mooney M20
Subject C 1500 260 deg, 26 knots Piper Arrow
Subject D 150 260 deg, 26 knots Piper Arroyw
Subject E 30 310 deg, 25 knots Piper Warrior
Subject F 110 300 deg, 20 knots Cessna 310

Table 7.1: Summary of Subject Pilot Flight Experience, Weather Conditions and Aircraft
Type Used

Cooper-Harper subjective evaluations of the pseudo-attitude system and the traditional
attitude indicator for the different flight maneuvers are shown in Table 7.2. The Cooper -

Harper scale ranges from 1 to 10, where 1 is the highest rating.

Coordinated Flight Slip
Pilots Attitude Pseudo- Attitude Pseudo-
Indicator Attitude Indicator Attitude
Display Display

Subject A 2 2 - -
Subject B 3 3 5 3
Subject C 3 roll 3, fpa 6 3 3
Subject D 3 4 2 3
Subject E 3 3 4 3
Subject F 2 2 2 1

Table 7.2: Cooper-Harper Subjective Evaluation of Pilot Usability

a. The Cooper-Harper scale ranges from 1 to 10, where 1 is the highest
rating.
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Based on the six pilot evaluations, no statistically significant difference exists between
the two displays. The examination of the individual ratings reveals that in the case of
coordinated flight, the pseudo-attitude system performed equivalently to the traditional
attitude indicator for the majority of pilots. It should be noted that for the evaluation of
pseudo-attitude the pilot subjects had an unusual instrument scan pattern due to the
position of the laptop screen held in front of them. A more detailed explanation of the

modified Cooper-Harper scale is given in Appendix H.

One subject (pilot C) objected to some of the display features in the pitch ladder
(insufficient space between bars on the pitch ladder) and as a consequence voluntarily

separated the Cooper-Harper ratings for flight path angle and pseudo-roll.

For the slip maneuver, the pseudo-attitude display shows a more consistent rating with
four out of five pilots giving it an equal or better rating. This result may be attributable to
the fact that to accomplish the maneuver, the pilot simply has to track zero pseudo-roll

angle in order to fly a straight flight track.

7.2.3 Additional Results

Additional flight maneuvers were performed during flight tests with the full flight test
system in order to investigate the behavior of pseudo-attitude in uncoordinated flight. In
particular, the effects of severe yawing and steady sideslip on pseudo-roll were

demonstrated.

Figure 7.4 shows the pseudo-roll response to a severe yawing maneuver. As a
comparison traditional roll angle is shown. In addition, the estimated sideslipTatfme

velocity vector heading and the aircraft heading angle are indicated.

At about 3845 seconds into the test, the pilot pushed the left rudder to the limit while
flying level, thereby initiating severe yawing to the left. This led to a decrease in heading
and a build up of positive sideslip angle. The latter caused a side acceleration in the
negative body-y axis which translated into a negative pseudo-roll angle and a decreasing

GPS velocity vector heading.
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Figure 7.4: Pseudo-Roll Response to Yawing Maneuver
At 3852 seconds into the flight, the reverse process was initiated when the pilot pushed
the right rudder to the limit. A sudden build-up in heading and negative sideslip angle can
be observed. As a result, an acceleration in the positive bgdyig is apparent which led

to significantly larger pseudo-roll angle indication than the actual roll angle. At the same

T The fligth test system did not include provisions to measure sideslip angle directly during the tests.
Rather, it was estimated from the flight test data as follows: 1) An average wind vector was estimated
by differencing the velocity vector with respect to the air from the GPS velocity vector. The former
was obtained from airspeed and heading data while the aircraft was flying coordinated. The wind
vector was filtered usipa 3 minutes moving average filter to obtain an average wind estimate and
remove high frequency components. 2) While the aircraft was flying uncoordinated, the
instantaneouwelocity vector with respect to the surrounding air was obtained by subtracting the
average wind vector from the GPS velocity vector. 3) The sideslip angle was then obtained by taking
the angle between the instantaneous heading angle and the direction of the velocity vector with
respect to the air.
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time, the pseudo-roll angle indicated the increase in GPS velocity vector heading. The
pilot repeated the yawing maneuver one more time at 3862 seconds into the flight with

similar results

It can be observed that for steady sideslip angles the difference between pseudo-roll
and traditional roll is nearly a constant bias, while a change in sideslip, i.e. the presence of
sideslip rate, induces a corresponding change in pseudo-roll. This is also in

correspondence with the linearized description of pseudo-roll given in Eg. (5.6), that is

0= g+ —1 7.1
=0 gocosy, (7.1)

where {; is the specific side force, as measured, for example, by an acceleropeter,  is
the reference flight path, ang,ghe gravitational acceleration, is 9.81 M/As can be
seen the difference between traditional roll angle and pseudo-roll is dyevtuch is - to

first-order - linearly related to a function of sideslip and sideslip rate.

Figure 7.5 shows the pseudo-roll response during skidding and slipping turns. At 3890
seconds into the flight, the pilot pushed the left rudder to the limit and entered a left turn.
Immediately, a positive sideslip angle of 10 deg was establisiich led to a nearly
constant negative offset between pseudo-roll and traditional roll. At 3900 seconds into the
flight, the pilot leveled off and turned immediately into a right turn while maintaining the

sideslip. This caused the offset between pseudo-roll and traditional roll to change sign.

It is important to note that the presence of steady sideslip did not reduce the pilot’s

ability to control the aircraft using pseudo-attit&de.

T The estimated sideslip angle, as shown in Figure 7.5 is slowly decreasing over the course of this
maneuver. The author believes that this does not reflect the actual sideslip. Rather, it is thought to
be an effect of the sideslip estimation.

¥ In principle, the constant offset in pseudo-roll can mentally be removed by the pilot.
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7.3 Demonstration of Pseudo-Attitude Based ILS Approach

In order to demonstrate the usability of pseudo-attitude for approach tasks, an
Instrument Landing System (ILS) approach was flown using the pseudo-attitude display
instead of the traditional attitude indicator. The pseudo-attitude based ILS approach was

compared to a standard ILS approach flown using the traditional attitude indicator.

7.3.1 Flight Test Setup and Flight Test Protocol

The ILS approaches were flown in a Piper Arrow using the portable flight test
configuration and the 10.4” repeater display. On the repeater display the pseudo-attitude
was shown. When mounted, the repeater display obscured all flight instruments with the
exception of airspeed. In addition, the ILS indicator was visible to the side of the repeater

display.
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The preflight briefing at the outset of the flight test included an explanation of the
objectives of this demonstration. The entire flight test was performed with the pilot

wearing a hood thereby simulating instrument flight rules (IFR) conditions.

Once in the air, the pilot had some training on the pseudo-attitude display prior to
flying the ILS approaches. After receiving clearance from air traffic control, a standard
ILS approach with the traditional attitude indicator was flown which served as a baseline.
After completion of the regular ILS, the pilot performed the pseudo-attitude based ILS
approach. A missed approach was performed once the aircraft reached an altitude of

approximately 500 ft.

The approach was videotaped to obtain a visual record of how well the aircraft was
aligned with the runway. After the approach, a subjective rating of the guidance system

was obtained from the pilot using the modified Cooper-Harper scale (see Appendix H).

7.3.2 Results of Flight Demonstration

One pilot with low experience completed the pseudo-attitude based ILS approach. In
addition, she completed a standard ILS using traditional attitude. A summary of the pilot’s

flying experience and of the weather condition on the testing day is given in Table 7.3.

Pilots Piper Arrow Total Instrument hours Wind conditions
hours hours / Approaches during flight
Subject A 10 200 50/100 | °°0deg; 12 knots,
gust 18

Table 7.3: Summary of Subject Pilot Flight Experience and Weather Conditions

Both approaches were successfully completed. Control was never in question.
Figure 7.6 shows the flight path of the two approaches to Runway 29. No substantial
differences between them can be observed. Both flight paths feature slight oscillations in
the lateral direction. In the vertical direction, the conventional attitude based approach
path is offset from the reference path shown as a dotted line. This is primarily due to the
slowly varying error induced by Selective Availability (SA). Because of its correlation

time of 2-5 minutes, the observed offsets may vary during the time two approaches are
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Figure 7.6: Flight Path of ILS Approaches

out of the GPS antenna field of view.

flown.T In addition, jumps in the vertical data of the pseudo-attitude based ILS approach
are observable. The jumps were due to changes in the satellite configuration tracked by the
GPS receiver which led to a new GPS position solution. The configuration changes were
partly because of rising and setting satellites. Most of the time, however, they were caused

by changes in aircraft attitude which brought satellites with low elevation angles into and

Figure 7.7 shows the lateral and vertical tracking errors in more detail. For

comparison, a 100 ft lateral and 70 ft vertical tunnel window is shown. No substantial

differences between the pilot tracking performance of the two ILS approaches are

T However, it is assumed here that during the time an approach is flown, the error does not change

singnificantly.
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observable. Large lateral deviations which extend up to four times the tunnel width are

apparent. In the vertical direction, the variation for both approaches are comparable to the
tunnel height.
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Figure 7.7: Deviations from the Desired Flight Path

Table 7.4 indicates the standard deviation &nd peak-to-peak (Pp) deviation of the
flight performance of the two approaches. For this evaluation, 50 seconds of data (512
samples) were selected from each approach in a common altitude range which extended
from 800 ft to 1500 ft. The data was filtered using a 4th-order Butterworth filter with 0.4
Hz break frequency to mitigate the effects of the jumps which GPS satellite configuration
changes introduced into the data. As expected, the values for the two approaches do not
differ substantially from one anothkr.

Also given in Table 7.4 are the Cooper-Harper ratings for the traditional attitude and
pseudo-attitude displays under the experienced approach conditions. The subject pilot

gave the traditional attitude and the pseudo-attitude based ILS guidance systems a rating
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Approach Lateral Deviation [ft] | Vertical Deviation [ft] Cooper -
Harper
o Pp () Pp
Conventional AttlFude Based 201 569 39 136 4
ILS (Baseline)
Pseudo-Attitude Based ILS 129 390 40 180 5

Table 7.4: Deviations and Cooper-Harper Ratings for ILS Approaches

of 4 and 5, respectively. The rating of 4 indicated that the traditional attitude based ILS
guidance system had minor but annoying deficiencies, while the rating of 5 implied that

the pseudo-attitude based system had moderately objectionable deficiencies.

The pilot indicated that the higher Cooper-Harper rating for the pseudo-attitude based
ILS guidance system was because of transient pseudo-roll angle excursions which
occurred in response to strong cross winds gusts. At the time of testing gusts of 18 knots

were present.

7.4 Conclusions

Several flight tests, consisting of coordinated and uncoordinated flight maneuvers as
well as of an ILS approach, were successfully flown. These flight tests indicated that
pseudo-attitude is equivalent in performance to conventional attitude with no subjective or
substantial objective differences between them. The results demonstrated the ability of the

pilot to close the flight control loop around pseudo-attitude.

T For the statistical evaluation of the data it was assumed that the SA induced offset was constant
and that its influence was eliminated by considering the variations in the data. In reality, however,
SA is slowly varying with a correlation time of 2-5 minutes and may therefore appear as a flight
technical error in the approaches flown using the ILS. Nonetheless, a typical SA induced one-sigma
error in velocity of 0.2 m/s gives raise to a change of 10 m during the 50 seconds time interval
considered for the data evaluation. This error seems not to reduce the validity of the results,
considering that the ILS approaches had deviations from the desired flight path of more than 100 m.
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Chapter 8

Demonstration of Pseudo-Attitude Based Flight
Director / Autopilot Approach Guidance Logic

In the previous chapter, the ability of pilots to control the aircraft using pseudo-attitude
was successfully demonstrated under several different flight conditions. Both subjective
and objective results indicated that pseudo-attitude allows the pilot to achieve equivalent

performance as traditional attitude.

While this indicated that a pilot can close the flight control loop around pseudo-
attitude, it was not a priori evident that an autopilot may do so as well. The question was
thus raised as to whether GPS-based pseudo-attitude could potentially be used to drive an

aircraft autopilot system.

If realized, this capability would provide the larger General Aviation (GA) community
with autopilot or flight director guidance since it is based solely on a readily-available
single-antenna GPS receiver. Furthermore, recent developments of miniaturized
unmanned aerial vehicles (micro UAV) call for a minimum of flight instrumentation in
terms of mass, size and power consumption. A single-antenna GPS receiver providing
information for navigation, guidanand flight controlmay, thus, be ideally suited to meet

these goals.

Consequently, the objective of the flight tests discussed in this chapter was to
demonstrate théeasibility of an autopilot system which relied on pseudo-attitude and

other information obtained from a single-antenna GPS receiver.

In the following sections, the particular setup for this flight demonstration and the
flight test protocol are outlined. Next, results from the flight test are presented, and a

discussion and conclusions are given.
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8.1 Flight Test Setup

The flight tests were conducted in the Piper Arrow shown in Figure 6.1 using the

portable flight test configuration and a repeater display discussed in Chapter 6.

The flight test aircraft available was not equipped with a dual-axes autopilot nor were
actuators installed. Since the purchase and installment of the necessary equipment was not
feasible under the scope of this flight demonstration, a different approach was pursued.
This approach treated thgilot as anactuator promptly reacting to visual autopilot
commands given on the display in front of him in form of standard flight director
command bars. Figure 8.1 shows the display on which the autopilot commands were
conveyed to the pilot. The display depicted the aircraft symbol in form of a triangle fixed
at the center of the display and flight director command bars in the shape of a shallow
inverted ‘V’. The latter were a visual translation of the autopilot commands. Their vertical
and rotational deviation from the aircraft symbol, supplied to the pilot implicitly the flight
path and pseudo-roll angle necessary to establish the aircraft on the desired trajectory. The
pilot was directed to capture and maintain the desired flight path by “flying into the V-

symbol” such that the command bars were aligned with the edges of the aircraft 5ymbol.

It was asserted that if a pilot, without obtaining any other visual or sensorial inputs,
performed adequately in this pursuing task, then a pseudo-attitude based autopilot logic

driving traditional actuators would be feasible.

The autopilot guidance laws were designed to allow the capture and tracking of a
desired trajectory. Figure 8.2 shows the block diagrams of the autopilot logic. They were
simpler in structure than the ones presented in Chapter 5 to allow for easy in-flight

adjustment of the gains. The longitudinal control law blended longitudinal tracking error

t Due to an error in the programming, the pseudo-roll angle indicator and the localizer and
glideslope indicators were not removed from the screen. These indicators were at the periphery of
the screen, however, and the pilots indicated that they were able to ignore them and focus only on
the flight director during the tests.
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Figure 8.1: Autopilot Command Display

and flight path information to generate a longitudinal flight path command. The lateral
control law combined lateral tracking error and error rate as well as pseudo-roll angle to

yield a pseudo-roll command. The actual control laws were given by:

FDiong = Ky H{-Kph =y)
. . (8.1)
FDjar = (-Kyd—d) [K4—@

where FD is the flight director command, h is the tracking error in longitudinal direction,
andy is the flight path angle. d and  are the tracking error and error rate in lateral
direction, respectively, an(ﬂ) is the pseudo-roll anglg, K,, Ky and Ky are the
respective gains. The gains were set in initial tests using a Cessna 182 simulator and
further adjusted in preliminary flight tests. The values used were as folloys:002,
Ky=-0.4422, K;=0.16, andKy = 0.0162 . The guidance logic was added as a routine to

the main thread, as shown in Figure 6.7.
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Figure 8.2: Block Diagram of Lateral and Longitudinal Autopilot Logic

8.2 Flight Test Protocol

The autopilot guidance system was demonstrated by flying approaches to Runway 29
at Hanscom Airport located in Bedford, MA. The pilots which served as experimental
subjects were recruited from the MIT community and all had recent instrument flying
experience. Their flying experience in the Piper Arrow aircraft, hours of instrument flying,

number of instrument approaches as well as other background information were recorded.

The preflight briefing at the outset of the flight test included an explanation of the
objectives of the demonstration and a presentation of the autopilot command display. The
pilot was instructed to limit his focus on the autopilot command display and to follow the
displayed commands accurately and promptly. The pilot wore a hood during the test flight

in order to constrain his field of view to the attitude command display.
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Once in the air, the pilot had some opportunity to train with the attitude command
display. After completion of the familiarization the approach with the attitude command

display was flown.

For each approach, clearance from air traffic control had to be obtained. All the
approaches were videotaped in order to obtain a visual record of how well the aircraft was
aligned with the runway. Typically, a missed approach was flown once the aircraft reached

an altitude of approximately 500 ft.
8.3 Results and Discussion

Two approaches were flown with the attitude command display. Both were flown
during the same flight test, one by the principal subject pilot and the second by the pilot
acting previously as a safety pilot seated in the right seat. After the principal subject pilot
completed the approach he acted as a safety pilot and the display was mounted in front of
the pilot in the right seat. Table 8.1 shows the flying experience of the subject pilots and

the wind conditions during the flight test.

Pilots Piper Arrow Total Instrument hours | Wind conditions
hours hours | Approaches during flight
Subject A 600 5200 250 / 600 350 deg, 12 knots,
gust 18
Subject B 10 200 50/ 100 350 deg, 12 knots,
gust 18

Table 8.1: Summary of Subject Pilot Flight Experience and Weather Conditions

Both approaches were successfully flown to the missed approach point. Aircraft
control was never in question. Figure 8.3 shows the flight path of the two approaches and
the reference flight path (dotted line). As can be seen, both subject pilots closely followed

the desired flight path once passing the outer marker.

Figure 8.4 shows an out-of-the window view of the runway during the approach (of
subject B) and the corresponding attitude command displye approach flight path is

clearly seen to be aligned with Runway 29.
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Figure 8.3: Approach Flight Path

Figure 8.4: a) Out-of-the-Window View (b) Corresponding Attitude Command Display

t The two pictures are screen shots from the flight test video and are captured within three seconds
of each other.

164



The lateral and vertical tracking performance is plotted in more detail in Figure 8.5.
For comparison, a 100 ft lateral and 70 ft. vertical tunnel window is shown. It is apparent
that the deviations stayed well within this ‘imaginary’ tunnel for the most part of the
approaches.
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Figure 8.5: Deviations From the Desired Flight Path

In addition, the deviations of an ILS approach flown with traditional attitude (see
Section 7.3) are shown in Figure 8.5. The comparison reveals two interesting differences.
First, the oscillation amplitude of the ILS based approach flight path deviations in the
lateral direction were in some instances more than four times larger than the
corresponding tracking error obtained using the ‘human-actuator’ autopilot. The
variations in vertical direction seem comparable, however. Second, it is apparent that the

oscillation frequency of the tracking errors obtained with human-actuator autopilot are
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higher than the oscillation frequency of deviations of the traditional attitude based ILS
approach. This suggests that the human-actuator based command system results in higher

bandwidth control system.

In the vertical direction, the conventional attitude based ILS approach path is offset
from the reference path shown as a dotted line. This is primarily due to the slowly varying
error induced by Selective Availability (SA). In addition, small jumps in the GPS data are
observable in Figure 8.3 and Figure 8.5. These are particularly apparent in the altitude
data and are the result of configuration changes in the satellites tracked by the GPS

receiver, as discussed in the previous chapter.

Table 8.2 gives a summary of the standard deviatiohsu(d peak-to-peak (Pp) values
of the tracking error for the two human-actuator autopilot approaches and the ILS
approacﬁ. For this evaluation 50 seconds of data (512 samples) were selected from each
approach in a common altitude range which extended from 800 ft to 1500 ft. The data was
filtered using a 4th-order Butterworth filter with 0.4 Hz break frequency to mitigate the
effects of the jumps which GPS satellite configuration changes introduced into the data.

Both the standard deviation and the peak-to-peak value were considered.

Approach Lateral Deviation [ft] | Vertical Deviation [ft]
g Pp g Pp
Autopilot: Subject A 20 83 25 108
Autopilot: Subject B 14 52 8 40
Conventional Attitude
Based ILS 201 569 39 136

Table 8.2: Standard Deviation and Peak-to-peak Value of Tracking Error

T For the statistical evaluation of theS datait was assumed that the SA induced offset was constant
and that its influence was eliminated by considering the variations in the data. In reality, however,
SA is slowly varying with a correlation time of 2-5 minutes and may therefore appear as a flight
technical error in the approaches flown using the ILS. This problem did not exist for the GPS-based
approaches, since SA induced errors would immediately be reflected as changes in the location of
the assumed reference flight path used in the autopilot logic. Nonetheless, a typical SA induced one-
sigma error in velocity of 0.2 m/s gives raise to a change of 10 m during the 50 seconds time interval
considered for the data evaluation. This error seems not to reduce the validity of the results,
considering that the ILS approaches had deviations from the desired flight path of more than 100 m.
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8.4 Conclusions

These results as well as observations made during the flight tests indicated the
feasibility of a pseudo-attitude based autopilot system which relied on pseudo-attitude
and, consequently, on information entirely obtained from a single-antenna GPS receiver.
Using the pseudo-attitude based autopilot system, the subject pilots achieved better
tracking performance and higher control bandwidth than with traditional ILS approach

guidance.
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Chapter 9

Demonstration of Pseudo-Attitude Based Tunnel-in-the-
Sky Trajectory Guidance Systems Using Single-Antenna
GPS

A number of recent studies proposed “tunnel-in-the-sky” displays as alternatives to
conventional guidance displays (Barrows 1995, Theunissen 1997). Tunnel-in-the-sky
trajectory guidance systems provides the pilot with a perspective flight path display which
depicts the outside world in form of a horizon and the desired flight path in form of tunnel
gates. The horizon information is typically obtained from an attitude sensing instrument.
Additional guidance cues, such as deviation indicators, flight director cues or trajectory

predictors, may be included in these displays.

Tunnel-in-the-Sky trajectory guidance systems rely on instantaneous aircraft attitude,
velocity and position information to provide trajectory guidance to the pilot. Thus far, only
sensors such as Inertial Navigation Systems (INS), Attitude and Heading Reference
Systems (AHRS) in conjunction with additional navigation sensors, or, more recently
multi-antenna GPS receiver had the capability to provide this information. However, these
sensors and, in some cases, the need to fuse the information from different sensors render

these systems costly and prevent their use in General Aviation (GA) aircraft.

The availability of position, velocity and now pseudo-attitude information from a
single-antenna GPS receivegliminates these shortcomings and reduces the cost of these
systems sufficiently to make them available to the larger GA community. An inexpensive
GPS-based trajectory guidance system could provide guidance for complicated flight
paths and allow precision approaches to be flown at airports that do not provide ILS
capability. It hereby reduces the risks of accidents at these airports such as controlled flight
into terrain (CFIT).
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What fundamentally distinguishes the approach taken in this chapter from the previous
implementations is the use of single-antenna GPS-based pseudo-attitude to drive the
horizon on the perspective flight path display. Consequentlypthectiveof the flight
tests discussed in this chapter was to demonstrate the feasibility and evaluate the
performance of a perspective trajectory guidance system which relied entirely on

information provided by a single-antenna GPS receiver.

In the following section, the particular setup for this flight demonstration is outlined.
In Section 9.2 the flight test protocol is detailed. Section 9.3 presents the objective and

subjective results of the flight tests. In Section 9.4 conclusions are given.

9.1 Flight Test Setup

The flight tests were conducted in a Piper Arrow using the portable flight test system

configuration and the repeater display.

Three systems for providing approach guidance were evaluated and compared in this
flight test demonstration: the standard Instrument Landing System (ILS) as a baseline, a
single-antenna GPS-based system with a tunnel-in-the-sky display, and a single-antenna

GPS-based system with a combined tunnel-in-the-sky and flight director display.

Standard ILS

The standard aircraft instrument panel with an ILS instrument served as the baseline
for the comparison with the single-antenna GPS guidance systems. The standard aircraft
instrument panel provided, among other information, conventional attitude, heading,
altitude, vertical speed and airspeed indications. The standard ILS display indicated the
position of the aircraft with respect to a vertical beam (glideslope) and a horizontal beam

(localizer) transmitted from the runway.
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Single-Antenna GPS System with Tunnel-in-the-Sky Display

The tunnel-in-the-sky display gave the pilot a perspective view of the outside world in
form of a horizon and showed the desired flight trajectory in form of a tunnel. It took
advantage of the three-dimensional positioning capabilities of GPS to locate the aircraft
with respect to the desired flight path. In the implementation used in this flight
demonstration, the horizon was driven by pseudo-attitude synthesized from GPS velocity
measurements. The trajectory guidance system generated a set of tunnel ‘gates’ that were
displayed to the pilot and represented the desired approach trajectory. In order to stay on

course, the pilot had to fly through the gates.

Figure 9.1 shows the tunnel-in-the-sky dispTaWe tunnel was superimposed on the
horizon which also featured a pseudo-roll marker, a flight path angle ladder and a ground
track heading indication. The aircraft symbol was shaped like a triangle and fixed at the
center of the horizon display. It indicated the pseudo-attitude of the aircraft with respect to

the horizon.

The tunnel size corresponded to an area of 100 ft horizontally and 70 ft vertically. The
tunnel featured a specially colored gate (orange) indicating the middle marker. Glide slope
and localizer deviation indicators were shown to the left and at the bottom of the horizon,
respectively. Additional display information included an altimeter tape and vertical speed
indicator at the right side and a ground speed tape at the left side of the display. A separate
ground track heading compass indicator and the distance to runway were provided at the
bottom of the display. It should be noted that the entire display was driven by information
obtained from a single-antenna GPS receiver. The flight director command bars shown in

the center of Figure 9.1 were not included in the tunnel-in-the-sky display.

T The display partially adopted the symbology used by Barrows (1995). In particular, the tunnel
gates indicated the necessary aircraft roll angle which was calculated based on assumed flight
velocity and turn radius.
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Figure 9.1: Combined Tunnel-in-the-Sky and Flight Director Display

a. For the case when the tunnel-in-the-sky display was used alone, the flight director command bars were not
included. The display was otherwise identical.

Single-Antenna GPS System with Combined Tunnel-in-the-Sky and Flight Director
Display

This system augmented the tunnel-in-the-sky display with an additional flight director.
The flight director command bars had the shape of a shallow inverted ‘V’, as shown in the
center of Figure 9.1. They commanded the flight path and pseudo-roll angle necessary to
establish the aircraft in the tunnel by their vertical and rotational position, respectively.
The pilot captured and maintained the desired flight path by “flying into the V-symbol”

such that the command bars were aligned with the edges of the aircraft symbol.

The flight director command bars were driven by the same guidance logic which was
used for the demonstration of the pseudo-attitude based autopilot system, described in the

previous chapter (see Eq. (8.1)).
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9.2 Flight Test Protocol

The pilots which served as experimental subjects to evaluate the GPS-based trajectory
guidance systems were recruited from the MIT community. They were required to have
recent instrument flying experience in order to lessen the influence of learning effects on
the outcome of the evaluation. Their flying experience in the Piper Arrow aircraft, hours of
instrument flying, number of instrument approaches as well as their experience with

guidance systems were recorded.

At the outset of each flight test, the pilot received a preflight briefing on the GPS-based
trajectory guidance system and the different displays. He was instructed that his task
during the flight test was to minimize his deviations from the desired flight path. Once in
the air, the pilot was given the opportunity to fly and familiarize himself with the GPS
guidance system, the tunnel-in-the-sky display and the flight director. The pilot was then
allowed to fly one practice approach using the GPS guidance system with the combined
tunnel-in-the-sky and flight director display. This display option exposed the pilot to all
the elements of the GPS-based trajectory guidance system. Due to time constraints during
each flight test, practice approaches using each of the displays individually was not
feasible. In addition, the pilot’s recent instrument experience reduced the need for an ILS

practice approach.

The entire flight test was flown under simulated instrument conditions in order to limit
the factors influencing the pilot’s flight performance to the guidance system provided
during the experiment. To accomplish this, the pilot wore a hood and his field of view was
therefore restricted to the instrument panel. He could not see outside of the aircraft nor

could he receive any external references during the experiment.

T For the first two flight tests, slightly different gains were used;=K0.002, K, =-0.4422,
Kg=0.2793, and Kd = 0.0224 . These gains were subsequently modified to the ones given in Eq.
(8.1) to make the flight director more responsive.
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After training and familiarization was completed, the pilot performed the actual flight
test approaches according to the test matrix shown in Table 9.1. Each pilot flew the three
guidance systems in the order indicated to counterbalanced the learning effects associated
with testing human subjecTsWhen the pilot flew the standard ILS approach, the repeater

display was removed.

Pilots Standard ILS Tunnel-in-the-Sky | Tunnel-in-the-Sky
(Baseline) (GPS) with Flight
Director (GPS)
Subject 1 3 1 2
Subject 2 1 3 2
Subject 3 2 1 3

Table 9.1: Flight Test Matrix

For each approach, clearance from air traffic control had to be obtained. All the
approaches were videotaped in order to obtain a visual record of how well the aircraft was
aligned with the runway. Typically, a missed approach was flown once the aircraft reached
an altitude of approximately 500 ft. After each approach, a subject rating for the particular
guidance system flown was obtained from the subject pilot using the modified Cooper-

Harper scale.

After the aircraft had landed, the pilot subject was given a post flight survey and a
debrief. The survey asked to comment on the different displays and included an Analytic
Hierarchy Process (AHP) to assess the overall subjective preference of the displays (Yang
1995).

9.3 Results and Discussion

Three pilots served as experimental subjects to evaluate the GPS-based trajectory
guidance system. Their flight experience and the wind conditions during their flights are
listed in Table 9.2.

T Because of only three test flights, the test matrix was partially counterbalanced
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Pilots Piper Arrow Total hours Instrument Wind conditions
hours hours / during flight
Approaches

Subject 1 25 550 40/ 40 270 deg, 8 knots

Subject 2 600 5200 250 /600 | 100 d€g, 5 knots,
gust 10

Subject 3 10 200 50/100 | >°0deg; 12 knots,
gust 18

Table 9.2: Summary of Subject Pilot Flight Experience and Weather Conditions

Results from the flight tests are shown below. They include qualitative observations
and statistical analysis of the flight performance as well as subjective evaluations of the

different trajectory guidance systems.

During flight tests, the approach clearance from air traffic control was often received
just outside the localizer outer marker. Because clearance was obtained at differing points
along the desired flight trajectory, the data considered in the following discussion were
limited to the portion of the approach flown after the aircraft had stabilized on the localizer
and glideslope. Typically, a missed approach was flown once the aircraft reached an
altitude of approximately 500 ft, although in some cases the missed approach was made at

higher altitude.

9.3.1 Qualitative Observations of Flight Performance

All the approaches were successfully flown to the missed approach point or the point
were Air Traffic Control (ATC) requested a missed approach because of traffic. Aircraft
control was never in question. Figure 9.2 shows an out-of-the window view of the runway
during the approach (of subject 3) and the corresponding tunnel-in-the-sky d*is'rﬂmay.

approach flight path is clearly seen to be aligned with Runway 29.

A representative example of the flight performance observed is shown in Figure 9.3. It
depicts the flight paths of the approaches flown by subject pilot 3 to Runway 29. This

figure offers a qualitative look at the flight performance during the approaches. The data

T The two pictures are screen shots from the flight test video and are captured within three seconds
of each other.
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Figure 9.2: (a) Out-of-the-Window View (b) Corresponding Tunnel-in-the-Sky Display

shown as well as observations made during all of the flight tests suggest that the flight
performance of approaches flown using both GPS guidance systems was at least
comparable to and perhaps better than that the flight performance of approaches flown
using the standard ILS. This becomes more evident when looking at the deviations from
the desired flight path instead. Figure 9.4 shows the lateral and vertical deviations of the

same approaches. In the figure, the tunnel dimensions are indicated in dashed lines.

For the approaches flown using both GPS guidance systems, the aircraft for the most
part stayed within the tunnel. The approach flown using the standard ILS, however, shows
oscillations in lateral tracking performance with much larger amplitude which in certain
cases extend to four times the tunnel dimensions. The variations in vertical deviation

appear comparable to the ones experienced with both GPS guidance systems.

It can be further observed that the approach paths based on the GPS guidance system
contain oscillations at higher frequency as compared to the long period oscillation of the
ILS based approach. This suggests that both GPS trajectory guidance systems allow for a
higher bandwidth control system. The control system includes the aircraft, the
instrumentation and the display interface, and the human pilot. The bandwidth which a
human pilot can achieve is a function of both the degree to which the control skill is
practiced and the nature of information provided to the pilot about the state of the aircraft
and the world outside (Nagel 1988). This suggests that the tunnel-in-the-sky display (with

or without the flight director) provided feedback which allowed for a higher control
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Figure 9.3: Representative Approach Flight Path

bandwidth and, at the same time, resulted in increased physical workload for the pilot
since more frequent adjustments to the flight path were made. The results from one of the
subject surveys implied that the increase in control bandwidth may also result from a
decrease in the pilot's mental workload since the aircraft position relative to the desired

flight path no longer needed to be inferred from the ILS needles.

Two problems, caused by the lack of differential GPS corrections, are observable in
Figure 9.3 and Figure 9.4. Large jumps in the GPS data, in particular apparent in the
altitude data, led to an instantaneous change of the tunnel position on the display. This
caused the aircraft to suddenly fly outside the tunnel and prompted the pilot to reacquire
the tunnel. These jumps were the result of a configuration change of the satellites tracked
by the GPS receiver which led to a new GPS position solution. The configuration change
was partly due to rising and setting satellites. Most of the time, however, it was caused by

changes in attitude which brought satellites with low elevation angles into and out of the
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Figure 9.4: Representative Deviations from the Desired Approach Flight Path

GPS antenna field of view. This was aggravated by mounting the antenna inside the crew
cabin where the it did not have an unobstructed field of view in all directions. The
jumpiness was particularly apparent during one of the flight tests in which the pilot
vigorously chased the tunnel thereby causing an increasing number of altitude jumps. The
second problem was the nearly constant offset between the ILS and the GPS trajectories,
especially apparent in the vertical data. This was assumed to be mainly due to the presence
of SAT

T The availability of differential corrections eliminates the effect of SA and reduces most of the
impact of a changing satellite configuration on the position solution. Also, mounting the GPS
antenna outside the aircraft and limiting its field of view to exclude GPS satellites with low elevation
angles reduces greatly the number of satellite configuration changes.
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9.3.2 Analysis of Flight Performance

In this section, the flight performance is evaluated quantitatively using approximately
50 seconds of data (512 sample) in a common altitude range of all the approaches. The
data was filtered using a 4th-order Butterworth filter with 0.4 Hz break frequency to
mitigate the effects of the jumps which GPS satellite configuration changes introduced
into the data. In addition, non-physical jumps in the data recorded during the ILS approach
were removed. This was not possible for the data recorded during the approaches using the
GPS trajectory guidance systems since the jumps were apparent to the pilot and he

compensated for them.

The metrics considered for the evaluation of the flight performance are based on the
variations in the tracking error rather than on the mean. The performance metrics used are
the standard deviation and the peak-to-peak value of the lateral and vertical tracking error.
The peak-to-peak value gives an indication of the worst case excursions but does not

include information about how long these maximal deviations last.

Table 9.3 shows the standard deviatioosgnd peak-to-peak (Pp) values of the lateral
and vertical tracking errors for the three guidance systems. Also shown, are the altitude

ranges chosen for the data analysis. All the values are expressed in feet.

Table 9.3: Flight Performance Summary

a. Due to incomplete data acquisition, the data analyzed for the ILS approach was taken from 300-700 ft.
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Lateral Deviation [ft] Vertical Deviation [ft]
Pilots Altitude ILS Tunnel | Combined ILS Tunnel | Combined
Range [ft] | (Baseline) | (GPS) (GPS) (Baseline) | (GPS) (GPS)
o Pp| o Pp o Pp o Pp | o Pp o Pp
Subject 1| 800-136b| 132 381| 30 97 8 33 16 72 21 103 13 80
Subject 2| 800-1500 58 196 9 3 6 26 26 245 8 38 15 56
Subject 3| 800-1500 201 569 30 119 26 1p3 39 136 12 |46 47 (211



One way to compare the performance of approaches flown with two trajectory

guidance systems is to consider the difference of their respective performance metrics, i.e.

D|fferencq, = OGuidance System A~ OGuidance System B

_ (9.1)
D|fferencel5p = I:)pGuidance System A I:)pGuidan(:e System B

This assumes that the difference in performance is only due to the different guidance

systems with the error induced by the pilot’s flying skills remaining constant.

Alternatively, the ratio of a performance metric may be used as a comparison for the

approaches flown with two of the guidance systems, i.e.

. OGui
RatIOG — Guidance System A

Oni
Guidance System B
y (9.2)

I:)pGuidance System A

Ratio,, =
P F)pGuidance System B

This approach models the effects of the pilot skill level as a constant gath gives an
indication of the percentage performance improvement obtained when using one system

over the other.

Table 9.4 shows the results of a pairwise comparison among the three guidance
systems. The entries are the difference and the ratio of the performance metrics for two
systems, averaged over all three pilot subjects. The first column is based on the standard
deviation performance metric, the second on the peak-to-peak metric. For instance, the
peak-to-peak lateral deviations for the ILS approaches were on average more than eight
times larger than the corresponding values for the combined tunnel-in-the-sky and flight

director guidance system.

To examine the statistical significance of these comparisons, a 5% one-tailed t-test was
performed. The comparisons for which the differences in flight performance were

significant are highlighted in bold in Table 9.4. The approaches flown using both GPS-

T That is, a more skilled pilot will always perform better than a less skilled pilot regardless of the
guidance system used.
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Lateral Deviation

ILS vs.Tunnel

ILS vs.
Combined

Tunnel vs.
Combined

o Pp o Pp o Pp
Difference [ft] 107 299.7 117 329 9 29
Ratio 5.9 5.0 11.2 8.3 2.1 1.8

Vertical Deviation

ILS vs.
Combined

Tunnel vs.
Combined

ILS vs.Tunnel

(o) Pp (o) Pp (o) Pp
Difference [ft] 13 89 2 35 -11 -53
Ratio 2.4 3.3 1.3 2.0 0.8 0.7

Table 9.4: Pairwise Comparison of Flight Performance

based guidance systems show significantly better lateral tracking performance compared
to the ILS based approaches. On the other hand, no significant difference in lateral
tracking performance can be observed between the two GPS-based systems. Also, no
significant difference in vertical tracking performance for any of the guidance systems is
apparent. These results are in good correspondence with the qualitative observations made

above.

An important point has to be considered before drawing conclusions from these
results, namely the lack of an independent measurement of the aircraft position. The
aircraft position data for all the approaches was obtained from the same GPS receiver that
provided the information for the GPS-based trajectory guidance systems. Since the GPS
measurements were obtained in a stand-alone non-differential mode they were affected

primarily by SA. This had two immediate consequences.

First, the flight path flown using the standard ILS was measured by GPS and exhibited
thus an error in form of an offset. For the statistical evaluation of the data it was assumed
that this offset was constant and that its influence was eliminated by considering the

variations in the data. In reality, however, SA is slowly varying with a correlation time of
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2-5 minutes and may therefore appear as a flight technical error in the approach flown
using the ILS! Nonetheless, a typical SA induced one-sigma error in velocity of 0.2 m/s
gives raise to a change of 10 m during the 50 seconds time interval considered for the data
evaluation. This error seems not to reduce the validity of the results, considering that some

of the ILS approaches had deviations from the desired flight path of more than 100 m.

Second, changing satellite configurations gave raise to jumps in the recorded GPS
data. For the approaches flown using the ILS, these jumps could be filtered during post-
processing. This was not possible for the approaches flown with the GPS guidance
systems since the pilots could observe the jumps and compensate for it. These jumps,
therefore, appear to degrade the obtained flight performance for the GPS-based guidance

systems more than for the ILS approaches.

9.3.3 Subjective Evaluation of Trajectory Guidance Systems

The subjective ratings given by the pilots for each of the guidance systems using the
modified Cooper-Harper scale are summarized in Table 9.5. The Cooper-Harper scale
assigns numerical values between 1 and 10 to each configuration tested, with 1 indicating
highly desirable flying qualities and 10 indicating deficiencies great enough to cause loss

of control. The modified Cooper-Harper Scale is given in Appendix H.

Based on the three pilot evaluations, no significant difference between any of the
guidance systems can be observed. A rating of 4 was given in the majority of cases
indicating that the display characteristics had minor but annoying deficiencies which
required moderate pilot compensation. Two subjects gave the tunnel-in-the-sky guidance
option a rating of 5 because they objected to the GPS induced jumps of the tunnel which
they experienced while flying this approach. This rating corresponds to moderate
objectionable display deficiencies requiring the pilot to apply considerable compensation

in order to achieve adequate performance.

T The same was not true for the approaches flown with GPS, since slowly varying errors appear as
slowly varying changes in the reference flight paths for which the pilot could compensate.
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Pilots Standard ILS Tunnel-in-the-Sky | Tunnel-in-the-Sky
(Baseline) (GPS) with Flight
Director (GPS)
Subject 1 5 4
Subject 2 4 4
Subject 3 5 4

Table 9.5: Cooper-Harper Ratings for the Three Guidance Systems
a. The Cooper-Harper scale ranges from 1 to 10, where 1 is the highest rating.

The Analytical Hierarchy Process (AHP) for the three guidance options was
performed and the results are shown in Table 9.6 (Yang 1995). The AHP allows for the
ranking of multiple systems under evaluation in the order of preference. It hereby
considers the relative size of the intervals between the ranking. The AHP is performed
through a series of paired comparisons that are recombined to produce an overall weighted

ranking (see Appendix H).

Pilots Standard ILS Tunnel-in-the-Sky | Tunnel-in-the-Sky
(Baseline) (GPS) with Flight
Director (GPS)
Subject 1 0.219 0.067 0.715
Subject 2 0.097 0.202 0.701
Subject 3 0.261 0.083 0.657
Average 0.192 0.117 0.691
Ratio 1 0.61 3.60

Table 9.6: Results of the Analytical Hierarchy Process (AHP)

Following the conversion of these values to qualitative descriptions suggested by Yang
(1995), a weak preference for the combined tunnel-in-the-sky and flight director display
exists compared to the standard ILS guidance option. No clear preference between the

GPS-based tunnel-in-the-sky and the ILS is apparent.

It is interesting to add that all the pilots commented on the compelling nature of the
tunnel-in-the-sky display, causing them to focus on the tunnel, and on the lack of distance-

to-runway feedback it conveys. The former may be mitigated by assigning altitude posts to
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the tunnel gates, while the for the latter a moving map may be useful. Furthermore, all
pilots indicated that the flight director helped them to gauge the control input necessary to

reestablish the aircraft in the middle of the tunnel.

9.4 Conclusions

These flight test resultdemonstrated the feasibiliyf a tunnel-in-the-sky trajectory
guidance system which was based on pseudo-attitude for inner-loop control and,

consequently, relied on information entirely provided by a single-antenna GPS receiver.

Qualitative observations as well as the quantitative assessment of the data collected
during the approaches suggested that the GPS-based trajectory guidance systems (with or
without flight director) allowed for a significant reduction in the lateral tracking errors
when compared to the ILS system. No significant differences were found between the two
GPS-based guidance systems, nor among all the three guidance systems for vertical flight

performance.

Although Cooper-Harper ratings from all the pilots indicated a similar level of
deficiency among the three trajectory guidance systems, there existed a preference by the

pilots for the combined tunnel-in-the-sky and flight director display.
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Chapter 10

Summary and Conclusions

This chapter summarizes the work documented in this thesis, draws conclusions and

discusses implications and applications.
10.1 Summary

This thesis developed and demonstrated a novel methodology in which velocity vector
information measured by GPS is used to synthesize attitude information and close the
flight control loop. The methodology combines a novel velocity vector based flight control

paradigm with the benefits of high-quality GPS measurements.

The novel flight control paradigm senses and controls the velocity vector directly
rather than through attitude as in traditional flight control schemes. The notjaseatio-
attitude as a useful representation of velocity vector based control variables has been
introduced and its synthesis presented. It was shown to act as a surrogate to traditional
attitude. Pseudo-attitude consists of flight path angle in longitudinal direction and pseudo-
roll angle in the lateral direction. The latter is defined as the bank angle corresponding to
the observed lateral rate of change of the velocity vector and is calculated from the aircraft
acceleration vector. It was demonstrated that for coordinated flight pseudo-roll angle
closely corresponds to traditional roll angle and that, therefore, similar control strategies
can be employed as for traditional roll angle. In addition, the effects of uncoordinated

flight and atmospheric disturbances on pseudo-roll have been investigated.

In addition, this thesis introduced a noymeudo-attitude displayt depicts pseudo-
attitude in a manner similar to traditional attitude. However, it distinguishes itself from a
traditional attitude display in that its aircraft symbol is referenced to the velocity vector
rather than to the aircraft fuselage centerline. The display shows flight path angle instead
of pitch angle and pseudo-roll instead of traditional roll angle, and conveys thus a direct

feedback of the flight path state.
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The measurement of high-quality GPS velocity and acceleration information
necessary to synthesize pseudo-attitude was discussed. A Kalman filter with a process
model that includes velocity, acceleration and jerk states was proposed to accommodate
the correlated nature of aircraft roll rate. The issues, trade-offs and limitations in the signal
processing architecture, in the receiver design and in the GPS system as a whole which are
pertinent to the synthesis of GPS velocity based flight control were highlighted. In
particular, bandwidth issues, the effects of GPS error sources and the limited integrity and

availability were discussed.

Next, a linearized aircraft flight control loop including the linearized models of a
Cessna 182 aircraft, the GPS receiver and the pseudo-attitude synthesis was developed.
This served as a tool to investigate open- and closed-loop behavior of GPS velocity based
flight control. In addition, a pseudo-attitude based autopilot guidance logic was presented

as a case example.

A flight test system was implemented to demonstrate the pseudo-attitude based flight
control concept in flight. The system generated and displayed pseudo-attitude, and
pseudo-attitude based autopilot and guidance functions in real-time and was controlled by

a Pentium based laptop computer executing the flight test software.

Flight demonstrations of the pseudo-attitude synthesis were successfully conducted
and showed the validity of this concept. Multiple flight evaluations of pilot usability of the
pseudo-attitude system demonstrated the ability of the pilot to fly the pseudo-attitude
display and to close the loop around GPS velocity based information. Furthermore, an ILS
approach using pseudo-attitude was demonstrated. In fact, no subjective or substantial
objective differences in flight performance were found between pseudo-attitude and

traditional attitude in all the tests.

Next, flight tests of a pseudo-attitude based autopilot logic were successfully
performed in approach conditions. They demonstrated the feasibility of an autopilot
system which relied on pseudo-attitude and, consequently, on information entirely

obtained from a single-antenna GPS receiver.
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Finally, flight demonstrations of two pseudo-attitude based tunnel-in-the-sky displays,
were successfully performed in approach conditions. They illustrated the feasibility of an
advanced trajectory guidance system which relied on information entirely obtained from a
single-antenna GPS receiver. The two GPS velocity based guidance displays were found
to allow for a improved lateral tracking capability compared to the standard ILS guidance.
Moreover, subjective data indicated a pilot preference for one of the GPS-based displays

over the standard ILS.

10.2 Conclusions

Pseudo-attitude was demonstrated to act in a functionally equivalent manner as
traditional attitude with no subjective or substantial objective differences to traditional
attitude. GPS velocity based attitude information has a number of beneficial attributes. It
relies entirely on solid-state integrated circuit (IC) technology and allows for
implementations with lower weight, size, and power consumption and at typically lower
cost than traditional attitude sensing instrumentation. At the time of publication, GPS
receiver on a single chip begin to emerge. Furthermore, because no alignment or specific
aircraft information is required, the implementation as a stand-alone hand-held
configuration is particularly appealing. In fact, the instrumentation used throughout a large

part of the flight tests documented in this thesis was portable.

However, in order to successfully apply the GPS velocity based flight control concept,
its limitations and issues have to be taken into account. Currently, the most limiting factors
are the availability and integrity of GPS. Efforts such as the Wide Area Augmentation
System (WAAS) are underway to mitigate these issues. While these efforts are directed to
enable the use of GPS asale means navigation systethe use of GPS assole means
attitude and flight control sensor for piloted aircra#t, based on the projected integrity
and availability levels, likely premature. sipplemental usi these aircraft as well as its
sole means use in unpiloted vehiglé®wever, have a number of important implications

and create unique opportunities for new applications.
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Integrity of Cockpit Systems

The supplemental use of GPS velocity based attitude information in piloted aircraft

has a potentially profound impact on the integrity of cockpit systems and flight

instrumentation. GPS-based pseudo-attitude is then used as an additional level of

redundancy in conjunction with traditional attitude systems.

Example Application: Backup Attitude Indicator for General Aviation (GA)
Aircraft. The typical GA attitude redundancy architecture is thought to be
insufficient since it imposes a prohibitively large mental burden on the pilot in case
the primary attitude system fails. The pilot is then required to infer aircraft attitude
from the remaining instrumentation (an approach commonly referred to as “flying
with needle, ball and airspeed”). On the other hand, a pilot in a GA aircraft
equipped with a GPS receiver may obtain GPS velocity based pseudo-attitude
indication in addition to primary navigation information. This attitude source
constitutes, thus, the second level of redundancy and allows for a human-centered
fault detection and reconfiguration task which greatly reduces the pilot's mental

workload and increases aircraft safety.

GPS-based pseudo-attitude constitutes a source of attitude information that is

functionally independentfrom attitude measured by traditional inertial sensor based

systems. Its use in conjunction with traditional system, thus, not only adds an additional

level of redundancy, but providesssimilarredundancy. It is ideally suited for automatic

fault detection isolation purposes and has the potential to detect common mode failures in

configurations which consist of multiple equivalent primary attitude systems.

Example Application: Pseudo-Attitude based Cross-Reference or Tiebreaker.
Business- or commuter-sized aircraft typically are equipped with single- or dual-
redundant primary attitude determination systems. In these architectures, pseudo-
attitude may serve as a cross-reference or tiebreaker, thereby increasing the

capability for fault detection and isolation and, thus, cockpit integrity.
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GPS Centered Flight Instrumentation Architecture

The use of high-quality GPS velocity measurements in conjunction with the velocity
based flight control paradigm creates the opportunity for a flight instrumentation
architecture that is primarily centered around a single-antenna GPS receiver. The novel
flight control paradigm is based on sensing and controlling the velocity vector and its rate
of change directly, rather than through aircraft attitude as in traditional control schemes.
Velocity and acceleration vector information is, however, completely observable from
single-antenna GPS carrier Doppler frequency shift measurements. As a result, in this
architecture, both the flight control and guidance loops are closed around feedback
obtained from a single-antenna GPS receiver. As such, this architecture is associated with
lower weight, size, and power consumption and with lower cost than traditional

instrumentation architectures.

In order for the velocity vector based control paradigm to be successful, the aircraft
has to be well behaved ‘around the velocity vector’. If necessary, stability and control
augmentation loops with inertial sensor feedback can be used to achieve damping of
unwanted high frequency aircraft modes and improved control responses. The fact that
primarily high-frequency components of accelerometer and gyro outputs are fed back,
makes their biases and drift rates less significant and allows the use of low-cost automotive

grade inertial sensors for this task.

The concept of using inertial sensors to achieve an improved GPS velocity based flight
control loop closure is in contrast to traditional integrated INS/GPS based instrumentation

concepts where GPS is used to augment the inertial measurements.

 Example Application: Instrumentation for small UAV& GPS centered
instrumentation architectures can be used in small, expendable unmanned aerial
vehicles (micro UAV) which currently emerge. The reduction in instrumentation
weight and volume is critical for the success of this development. Also, the
operational lifetime of these aircraft is envisioned to be short and the limited GPS

availability is therefore less critical.
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Availability of Affordable Trajectory Guidance

The availability of pseudo-attitude enables a number of flight control and guidance
display applications to be implemented solely based on single antenna GPS information.
These applications traditionally have relied on the availability of attitude sensing
instrumentation and radio-navigation aids or inertial navigation systems (INS) for the
necessary attitude, position and velocity reference. Consequently, the potential use of

some of the applications have been limited to business-size or larger aircraft only.

The use of pseudo-attitude as the horizon reference enables these applications to be
driven by single-antenna GPS information only. This has significant system integration
and cost advantages and consequently allows for their implementation in General Aviation

(GA) aircraft as well.

Guidance display such as flight director and tunnel-in-the-sky displays can be
implemented using single antenna GPS-based position, velocity and pseudo-attitude
information. Similarly, pseudo-attitude based autopilot modes such as ground track and
altitude capture and hold or approach capture and hold can be realized using GPS-based
position, velocity and pseudo-attitude information. A GPS-based autopilot is particularly
suited for the control of small scale, expendable UAVs where weight and power are

critical.

* Example Applications: Pseudo-Attitude Based Guidance and Autopilot Systems.
This thesis demonstrated examples of single-antenna GPS-based guidance
displays and autopilot modes in flight. A tunnel-in-the-sky and a combined flight
director and tunnel-in-the-sky guidance display, as well as a pseudo-attitude based

approach autopilot scheme have been implemented and demonstrated in flight.
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Appendix A

Proof of Roll Synthesis Using Equations of Motion

The following proof serves as a complementary illustration to the geometric argument
of the roll synthesis given in Section 3.1.2. The proof uses the force equations of the
aircraft equations of motion to show that the Eq. (3.8) - Eqg. (3.19) yield the roll angle in
wind axes.

Unlike in Section 3.1.2, where vectors are expressed in NED components, vectors in
the following treatment are expressed in wind axes components. With the exception of
Eqg. (3.14), this change does not alter the meaning of the Eq. (3.8) - Eq. (3.19). To reduce
the complexity of the notation used, no special notation will be introduced to mark the

coordinate changTeThe vectors/, ag andg expressed in wind axes are then

Va Ax
Va= [0]: 8= 85 = |8y (A1)
0 Az
sin6,,
g = g, 4 cos9,,Sing,, (A.2)
cos9,, [cosp,,

Recalling that the wind x-axis points in the direction of,, the normal components af

andg are simply

0 0
ag = &y, gn =g, 0 cos9,, [Sing,, (A.3)
Ay, cosb,,[¢osy,,

T The vectoray denotes the aircraft acceleratiwith respect tcthe inertial NED frameyep. ag
may, however, bexpressedh components abtherframes, such as in wind axes components.
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The lift vectorl is then

| = ag—d" = |ayy—9,C08,,3Eing, (A.4)

The force equations of the aircraft equations of motion expressed in wind axes are
(Frost 1983)

ma,, = mv,+m(q,w,-r,w,) = T,,—D-mg,sin,
ma,, = m(r,(vy+w,)-p,w,) = —C+mg,cosh,,sing, (A.5)
ma,, = m(pwwy—qw(va+wx)) = T,,—L + mg,cos8,, cosp,

where T,, and T, are trust forces in wind » and z,-axes, respectively, D, C, L are
aerodynamic drag, side and lift forces, respectively; (w,,wy,w,) is the wind vector, m
is the aircraft mass, and,, = (p,»G:fy) iS the angular velocity relative tBygp in wind

axes components.

Because of the assumption of coordinated flight the sideforce is zero, i.e. C =0, and

the second equation in Eq. (A.5) gives
ayy = 9yC0%,,sing, (A.6)
and by substituting Eq. (A.6) in Eq. (A.4)
0

Il =a,-g = 0 (A7)
Az~ gOCOSGWEEOS(pW

Eq. (3.17) yields for the reference vegoand its magnitude

0
— n —
P =0 Xvy = vagocosewco.snpw 8
-V ,0,C0s8,,sinq,,
Ipl = v,0,c08,,
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Eq. (3.19) finally gives

_ ol g {Vadocos, sing,) Ha,, —g,c080,,[Cosp, )
= asind asin
A il OplE ~ 0 |va0,c080,| 0 g, —9,c080,,[Cosp,| U

(A.9)

For-t/2<6,<1/2,Ii.e. for the typical flight regime of conventional aircraft (excluding
inverted flight), the expression in the first magnitude bars of the denominator in Eq. (A.9)
is always positive and the magnitude bars can be omitted. Similarly, for
-T/2< @, < TV 2, excluding again inverted flight, the lift vector is always pointing along
the negative g-axis (i.e. in the ‘up’ direction) and the expression in the second magnitude

bars of the denominator is always negative. Eq. (A.9) finally yields

B [{ 29,c088,,sing, ) {&,, —9,c08,, Elr:oscpw)D
P = BV gocosB,,) T-1) K@y, - 0,088, Ctosp,,))

asin(sing,,)
B

(A.10)

This concludes the proof.
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Appendix B

Preliminary Simulator Study of the Pseudo-Attitude
Display and the Required Display Update Rate

The work presented in this section was performed by Henderson (1996, 1997) in close
collaboration with the author of this thedisThe study is included here in abbreviated

form. For details, the reader is referred to aforementioned references.

This study was performed early on in the research work presented in this thesis. At that
time, the efforts were mainly concentrated on synthesizing velocity vector based attitude
in body axes as described in Section 3.1.2 and Section 3.1.3. For the same reason, no

appropriate GPS model was included in the simulator study.

Section B.1 outlines the motivation and the objectives of the simulator study.

Section B.2 describes the experimental setup and Section B.3 discusses the results.

B.1 Motivation and Objectives

Before a pseudo-attitude system could be implemented which allowed the pilot to
close control loop around it, the following issues had to be addressed: (1) The use and the
display of velocity vector based attitude information to close the pilot’s control loop was
novel and, thus, untested. It was not known whether this non-traditional attitude
information and its depiction would allow for adequate pilot performance and aircraft
controllability. (2) In contrast to conventional gyro based attitude indicators which provide
nearly continuous attitude information, GPS receivers at the time of publication, typically
output at frequencies between 1 and 10 Hz, thereby setting the sampling frequency of the
control loop. A higher sampling frequency and display update rate is associated with
higher equipment cost, as mentioned previously. Therefore, the minimum update rate

sufficient for pilots to safely fly the aircraft had to be determined.

T This research work was part of an undergraduate summer project jointly supervised by the author
of this thesis and Dr. R. John Hansman.
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The objectives of the preliminary simulator study were, thus, twofold.

» First, the effectiveness of velocity vector based attitude and attitude displays to
close the pilot's control loop had to be investigated.
* Second, the minimum update rate necessary for pilots to maintain adequate

controllability had to be determined.

The investigation included the objective measurement of pilot performance and the
subjective assessment of pilot preference. In the following sections, the experimental

design and the results are briefly outlined.
B.2 Experimental Design

Using the MIT Advanced Cockpit Simulator (ACS), active instrument-rated (IFR)
pilots flew a series of tasks using a number of different displays. The tasks, performed
under IFR conditions, were the same for each subject with the display order randomized
among the subjects to minimize learning effects. For each task and display, the root mean
square deviation of selected variables was used to quantify performance. Cooper-Harper
data was also collected to obtain a subjective assessment of pilot preference for each

display.

For this study, the dynamic model of a Cessna 182 (C182), available on the ACS, was
used. The C182 resembles in dimension and weight a Piper Arrow aircraft which was the

aircraft type used for flight tests described in the thesis.
The displays tested included:

» aFull Panel: This display simulated the conventional cockpit arrangement found in
a C182.
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* ‘Needle, Ball and Airspeed’ (NBA): This display froze the traditional attitude
indicator, thus simulated the cockpit arrangement resulting from a failure of the
attitude indicator. Using this display, the pilot had to infer aircraft attitude

information from the remaining sensors.

* \Velocity Vector (VV) based Attitude: This display is similar to the full panel
arrangement, with the attitude indicator driven by attitude in body axes synthesized
from velocity information, as outlined in Eq. (3.5) - Eq. (3.19) and Eq. (3.20)-
Eq. (3.23). The known lift curve was used to determime Also, the turn

coordinator was removed to force the subjects to use the attitude indicator.

* \Velocity Vector (VV) based Roll/Flight Path Angle (Pseudo-Attitude disfj)ay
This display was similar to the foregoing. However, the aircraft symbol of the
attitude indicator was referenced to the flight path angle, as computed in Eq. (3.7).

The roll angle in body axes was computed as in the foregoing display.

» Combined Velocity Vector (VV) based Attitude/Flight Path Angle Display: This
display format was similar to the third display. An additional horizontal bar on the

attitude indicator indicated flight path angle.

All displays were updated at 6 Hz. This was the highest update rate obtainable from
the Silicon Graphics computer driving the ACS. In addition, to investigate the minimum
update rate necessary, the Velocity Vector based Attitude display format was shown at
update rates of 3 Hz, 2 Hz, and 1Hz. These displays were selected from the full test matrix
(i.e. all display formats at all update rates) to achieve the objectives of the experiment

while minimizing the total testing time.

t To emulate the effects of a GPS receiver, the same display was also tested with simulated
measurement noise and a Kalman filter applied to it. Since the setup did not properly represent GPS
receiver characteristics, it is left out of the current discussion.

¥ This display was in essence the pseudo-attitude display shown in Figure 3.9. The sole difference
was that roll in body axes, synthesized from velocity information and angle of attack, was displayed
instead of pseudo-roll. However, it was shown in Section 3.1.5 that the two roll angles are
approximately equal.
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The protocol included preflight briefing, training on the different displays as well as
the actual tasks. The tasks included recovery from unusual attitudes, straight and level
flight at 2000 ft. and 030 heading, a full 360 deg level turn to the left with 30 deg bank
angle, intercepting glideslope and localizer and performing an ILS approach. All the tasks
were flown under simulated IFR conditions and simulated turbulence. The performance
metrics observed for the different tasks were: RMS deviations from the required altitude
and heading for the straight and level flight task, RMS deviations from the required
altitude and bank angle for the 360 deg fyrand RMS deviations from the path
referenced by the glideslope and localizer. No performance data for the recovery from
unusual attitudes was taken. Immediately after completing the set of tasks with each

display, subjects assigned a Cooper-Harper rating to the display.

B.3 Results and Discussion

Eight IFR pilot subjects participated the simulator sfhd[/hey averaged 3650 total
flight hours and 1788 total instrument hours. In the following objective and subjective

results are presented and discussed.

Objective Results

Two-sided paired t-tests were used to compare the average of the subjects’
performance metrics of one display to those of another display. For a detailed listing of the
statistically significant differences between displays for each task, the reader is referred to

(Henderson 1997). Based on the comparisons, the following observations are noteworthy:

* In many instances, the velocity vector based displays yielded significantly better
performance (95% or more significance level) than the NBA display, although
there are a few display comparisons which are inconclusive with regard to some

performance metrics.

T The test run with the NBA display omitted this task, since no attitude is available on this display.
¥ A ninth subject pilot was disqualified for failing to complete the assigned tasks.
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* In most instances, no statistically significant difference between the full panel

display and the velocity vector based displays could be observed.

* There were no significant differences in performance between the velocity vector
based attitude display at 6 Hz, 3 Hz, and 2 Hz update rate. However, for some tasks

a significant difference did exist between these update rates and a 1 Hz update rate.

Subjective Results

Table B.1 shows the Cooper-Harper Pilot Opinion Rating for the different displays and
update rates (Henderson 1996). The Cooper-Harper scale assigns numerical values
between 1 and 10 to each configuration tested, with 1 indicating highly desirable flying

gualities and 10 indicating deficiencies great enough to cause loss of control.

Cooper-Harper Scalé
Displays
1 2 3 4 5 6 7 8 9| 10
Full Panel 3 1 1 2 1
NBA 1 1 1 3 2
VV Pseudo-
Attitude 3 4 !
VV Combo
) 2 4 1 1
Display
VV Attitude 2 3 1 1 1
VV Attitude
3 Hz 2 2 1 1 1 1
VV Attitude
2 Hz 3 1 3 1
VV Attitude
1Hz ! 5 2

Table B.1: Cooper-Harper Ratings for the Different Displays

a. The Cooper-Harper scale ranges from 1 to 10, where 1 is the highest rating.

The full panel and all the velocity vector based displays (at 6 Hz) received Cooper-
Harper ratings between 1 and 3 from the majority of pilot subjects indicating satisfactory
performance without improvement. In addition, pilots made several positive comments

about the VV based roll/flight path angle display, both during and after the experiment.
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The NBA display, on the other hand, received ratings between 8 and 10 from the

majority of pilot subjects indicating major deficiencies which require improvements.

The velocity VV based attitude display updated at 1 Hz received ratings from all pilots
between 8 and ten. The same display at 2 Hz and 3 Hz update rate received moderate

ratings distributed between 3 and 10.

Discussion

Because the simulation tested these displays in only a few different situations, a broad
conclusion cannot be made about any of the displays. However, the study shows that the
pilots rated the velocity vector based displays similarly as the full panel, and that they
preferred those displays over the NBA display. Also, some of the objective data - while
not conclusive in all cases - suggest a similar trend. The VV based displays’ superior
performance to the NBA arrangement may, thus, justify the advantage of having an

alternate attitude indicator based on GPS.

In regard to the update rate, some of the objective results - while not conclusive in all
cases - suggest that no significant difference exists between update rates of 2 Hz, 3 Hz and
6 Hz, but that a significant difference to a 1 Hz update rate exists. The Cooper-Harper
ratings, however, show a clear pilot preferenced® Hzupdate rate. The latter is also in
good correspondence with Ackermann’s rule of thumb for the choice of the sampling rate
for adequate controllability, as stated in Section 3.2.3. The rule calls for a sampling rate of
10 times the highest frequency of the aircraft. In the case of the C182, the highest

eigenfrequencies are approximately in the 3 - 4 rad/sec range (0.5 - 0.65 Hz).

It is important to add that the study did not include the characteristics of a typical GPS
receiver (latency and bandwidth) in the simulation. Thus, the insights gained from this
study may not automatically be applicable to the case where these characteristics are
significant. However, the insights were useful to establish preliminary guidelines for the

implementation of an actual GPS velocity vector based attitude system.
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Appendix C
Topics Related to the Global Positioning System (GPS)

C.1 GPS Signal Structure

GPS satellites transmit on two carrier frequencies, L1 and L2. For civilian
applications, the L1 frequency is used primarily and its signal structure is shown in
Figure C.1. The L1 signal consists of a carrier signal which is modulated by the Coarse/
Acquisition (C/A) and Precision (P(Y)) spread spectrum signals. The carrier frequency is

1575.42 MHz and is a multiple (154) of the satellite nominal reference freqL@T‘ncyf

» BPSK » -3dB
1541, T '? . L1
o0 BPSK
A
1/10 CIA ;('T)
N
P AN
‘ XOR
o
f, = 10.23 MHz 50 Hz
-Afg + SA Data

Figure C.1: GPS L1 Signal Structure

The C/A code is aanging codeallowing the receiver to determine the range to the
satellite. The C/A code consists of a pseudo-random noise (PRN) sequence of zeros and
ones which is repeated with a period of about 1 ms. Every satellite has a different C/A
code which is orthogonal to the C/A codes of other satellites. Because of this property, all
the satellites can transmit on the same carrier frequency using Code Division Multiple

Access (CDMA) techniques. A second, more accurate ranging code is the P(Y) code with

t The satellite nominal reference frequengiés to be compensated for relativistic effects. This is
done by subtracting an offsét.o = 0.00457 Hz fromdf
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a frequency ten times higher than the C/A code and a period of one week, allowing for ten
times better ranging accuracy. This code is not available for civilian use and is typically

encrypted due to its military purpose.

A 50 Hz data stream consisting of navigation messages is modulated onto the C/A and
P(Y) code using an exclusive-or (XOR) process. The navigation messages contain
information regarding all the satellite’s orbital parameters (almanac), clock characteristics
and other pertinent information. The composite C/A and P(Y) code are modulated onto
the carrier frequency using Binary Phase Shift Keying (BPSK). The P(Y) code is thereby

modulated in-phase quadrature with the C/A code.

Both the C/A and P(Y) codes, as well as the L1 and L2 carrier frequencies, are
subjected to the dither frequency of Selective Availability (SA). This SA phase
modulation effect creates an error in both the pseudo-range and delta range measurements.
SA is meant as an intentional degradation of the GPS accuracy by the Department of
Defense. SA is encrypted and can only be removed by US military or other authorized
users. In addition, SA includes an offset error into the satellites’s almanac data

broadcasted as part of the navigation data.

The L2 carrier frequency is modulated by the P(Y) code only. Its civilian use is limited
mainly to ionospheric delay measurements. L2 signal characteristics will therefore not be

treated here.

C.2 Carrier Phase-Locked Loop

Figure C.2 shows a generic carrier phase-locked loop (PLL) (Zhuang 1996). The
carrier PLL tracks the incoming baseband signal r by eliminating any phase difference e,
between the incoming carrier signal and the carrier replica generated by a local voltage
controlled oscillator (VCO), in a closed loop manner. The objective of the carrier PLL is to
keep the phase error between the incoming carrier signal and the replica at zero. Any
Doppler shift due to satellite or user motion will cause the phase of the incoming signal to

be advanced or delayed with respect to the phase of the local carrier. The difference is
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Figure C.2: Carrier Phase-Locked Loop

measured by a carrier phase discriminator and is fed into the VCO to bring the local
carrier replicaé in phase alignment with the incoming carrier pttasto reduce the

effects of thermal noise, the phase difference e is low-pass filtered and the filter outputy is
fed into the VCO. The phase and Doppler frequency shift of the incoming signal can then

be obtained from those of the local VCO output.

Before the difference e of the incoming and the local carrier phase is determined in the
carrier phase discriminator, a number of processing steps are performed on the baseband
signal as shown in detail in (Zhuang 1996). First, the VCO generates local in-phase
(cosé) and quadratureésiné) reference signals to remove the carrier signal by mixing
them with the incoming baseband signal. Next, the PRN code of the signals is removed in
the in-phase and quadrature code correlator. The signals are hereby multiplied by the
aligned (i.e. prompt) replica PRN code as supplied by DLL of the same channel, and
filtered by an average (or integrate) and dump detector. The integration time is sometimes

called correlation interval or predetection integration time. The correlations yield an in-
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phase signal | and quadrature signal Q which contain the desired phase difference
information. Finally, the phase difference can be obtained in the carrier phase

discriminator.

Typically, the predetection integration time ranges from 1 to 20ms, but does not
exceed 20 ms in order to not integrate over a data bit transition of the 50 Hz navigation

data stream. Thus, the predetection bandwidth is limited to 50 Hz.
C.3 Single-Point Solution

In the single-point solution, the navigation estimate is the least squares solution to the
linearized measurement equation made at a single time. The navigation states are given by

the state vectox(k) as

x(k) = [r v cb, o] (C.1)
where the elements in the vector are the three dimensional position and velocity vectors,
the receiver clock offset and frequency bias, in that order. To obtain a linear measurement

model, Eg. (4.2) and Eg. (4.5) must be linearized and in relation to the states to be

estimated. The linearization is performed about the current best estimate of the state
o —1r o AR % AT
X =[f ¥V chy &) (C.2)
Hence, given an a priori best estimate of the states, predicted pseudo-panges  and delta
ranges& can be calculated as
ﬁi = |ri—fu| + CD’bd-'-éi

. . (C.3)
Oi = (v;—V,) L + oy +

wherer; is the satellite positionii is the estimated line of sight vector from the user to the

satellitei, andg;, Zi are the estimates of the range error and range error rate, respectively.
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The difference between the actual measurements for satellites 1..n, and the predicted

values can then be modeled as linearly related to the error in the states (Axelrad 1996).

That is,
SRR VG T 0 1 o_ (e
Py Pq -1 ) _ |Agy
: ' : Ar :
A T
Pn| [i)n _ -1, 0 1 O0}| Av N Ag (C.4)
5| |[&1 0 —11 0 1||CAby |AL
: : - - - - _Aau_ :
o 5 A
R O L | A0
or in more compact form
Pl_|Pl = Gax+aAe (C.5)
o |d

where the first matrix on the right hand side is the is measurement connection @atrix
and is frequently referred to as the geometry matrix because it contains the line of sight
vectors from the user to the satellites. The veffomodels the noise in the measurements
and its elements are assumed to be zero mean. Eq. (C.5) is to be solvax, five

correction to the a priori state estimate. The least squares solution is then given by

A% = (GTG)GT|P (C.6)
0
and has to be subtracted from the a priori state estiniékg to improve the state

estimate.
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C.4 Kalman Filter Equations

Extended Kalman Filter (EKF)

With the four matrixesp, Q, G andR known, the EKF is in principle specified. Initial
estimates of the statg, and the state error covariance niggtrix  have to be established for

its initialization.

Using the current best estimate, the predicted measurement \igctorh (X, ) is
computed from Eq. (4.20) for all satellites in view. The measurement connection Batrix
is then constructed by linearization. The EKF forms an updated state esti@ate as a
linear blend of the current measurement information and the previous estimate, projected
forward to the current time using the dynamic model. The relative weighting in the blend,
K, is determined from the a priori error covariance of the st&eshe measurement
covariance matriR and current measurement connection ma@ixAfter updating the
state error covariance, the state estimate and its error covariance are propagated to the next
measurement time using the assumed process dynamics. Estimates of the state and the
covariance after the measurement update are indicated by a superscript “+”; estimates of
the state and the covariance propagated ahead are indicated by a superscript “-”. The

subscript “k” denotes the k-th iteration.

Issues, such as numerical instability and filter divergence, have to be considered when
implementing an EKF and means to mitigate them have been developed. Also, the
selection of the) andR matrices has a significant impact on the convergence, bandwidth
and accuracy of the filter solutions. They should be carefully adjustachedto achieve

best possible performance.

Traditional Kalman Filter

The equations of the traditional discrete Kalman Filter are equivalent to the equations
of the EKF with the first step (Computation of tleMatrix) omitted, G replaced by the

measurement connection matkxand Eq. (C.7) replaced kyy = Hx,
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Figure C.3: Discrete Extended Kalman Filter
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Appendix D

Transfer Function of Acceleration Estimating Kalman
Filter

Given is a system with state vectey input vectoru, dynamic uncertainty, output

vectory, measurement noise and the matrice&, B, C, i.e.

X = AX+Bu +Fv

D.1
y = Cx+w -1

where

E[v(t)v'(T)] = V(1)o(t—T1)
E[w(t)w'(1)] = W(t)o(t—1) (D.2)
E[w(t)v'(t)] = 0

The optimum state estimator is then (Friedland 1986)
X = AR +Bu +K(y —CX) (D.3)

where the gaiK and the error covarianétare given by

pc'w!
AP +PA —PC'W™CP + FVF'

(D.4)

o A
I

The second equation in Eqg. (D.4) is a Riccati equation. A steady state solution may

exist, given by the solution of the algebraic Riccati equation (Friedland 1986)

0= AP+ PA —PCTWICP+FVFT (D.5)
The solution is unique and positive definite if either:

» the system is asymptotically stable, or

» the systemA,C] is observable and the systeAy Fv1’2] Is controllable.
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For the case of a triple integrator plant used to estimate acceleration from velocity
measurements and described in Section 4.3.2 the states to be estimated are velocity,
acceleration and jerk and the measurement is velocity information y. The continuous

model is given as

01 0 0
A=1001 F =10l C:[lod, B=1|0 (D.6)
00 1 0
with the state vector defined as
velocity
X = |acceleratio (D.7)
jerk

For the triple integrator plany/ andW are scalars and are therefore denoted V and W,
respectively, in the following treatment. It can be shown that the system meets the
controllability and observability condition, and that therefore a unique and positive

definite solution exists. WitR given as

Pl P2 P3
P=|P,P, P (D.8)
P3 P5 P6

Eqg. (D.5) yields

P PP, PP,

P,Py R |P2P0 , 000
0= |P;P,Ps| *|PyPs 0= PP, P; P,RI+1000 (D.9)
oov

000 [BRO |pp PR P
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Solving Eg. (D.9) results in

2\/1/6\/\/5/6 2\/1/3\/\/1/3 V1/2W1/2

P = 2\/21/3\/\/2/3 3V1/2W1/2 2\/2/3\/\/1/3

V1/2W1/2 2\/2/3W1/3 2\/5/6\/\/1/6

(D.10)
20v/ W)Yl |20
K = |aovywy¥d = [207 where Q= (v/W)"°
3
(V/W)l/Z 0

To determine the desired transfer function, Eq. (D.3) has to be transformed into the

Laplace domain, hence
x(s) = (sl —(A —KC ) Ky(s) (D.12)
Evaluating Eq. (D.11) for the acceleration state yields the desired transfer function

X5(S) _ 20252 + Q3s
y(s) £ +208%+20%s+Q3

(D.12)

It is well known that the poles of the transfer function correspond to a Butterworth

configuration.

The parameters V and W determine the natural frequéhof the transfer function as

shown in Eq. (D.10). The corresponding parameters for the discrete-time case of the triple
integrator plant are the white noise spectral amplitude S (or the process noise covariance
matrix Q) and the measurement variance R and are characterized in Section 4.4. The
relationship between the continuous-time and discrete-time covariance parameters are

given to first-order by (Brown 1997)

Q=FVF'At
R= W/ At

(D.13)
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From Eq. (D.13) it follows that

S=V

(D.14)

The discrete-time parameter values for the North, East, and Down directions described in

Section 4.4 are

Sy = Sg = 0.001

S, = 0.0005

Ry = Re = (0.0)°

Rp = (0.1)°

and yield the following filter bandwidths

1/6

Qy = Q = (Sy/Ryt)® =

Qg = (Sp/Rpat)Y®
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m2/s7
m2/s7
) 5 (D.15)
m/s
m2/s2
2.15 rad/ sec
(D.16)
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Appendix E

Linearized Aircraft Model

The reference flight condition for the linearization of the aircraft model is given by:

* Redctilinear, symmetric flight with wings level

» \Vertical flight path angle of, = -3 deg

» Constant aircraft speed of,& 85 knots in North direction
* No steady-state windv = 0

» Initial altitude of 1500 ft.

and corresponds to an aircraft on an approach flight path. The selected flight condition
decouples the linearized longitudinal and lateral aircraft models completely. The

linearized, longitudinal and lateral aircraft models are then given by
XLOI’I = ALonXLon + BLonée + GLon gLon (E'l)

X at = ALatXLat T BLatUrat t GLat9Lat (E.2)

The matriceA| on, BLon GLon ALat BLat @ndG ¢ contain the stability derivatives.
They are evaluated for a Cessna 182 at 1500 ft. altitude and 85 knots approach speed on -3
deg glidepath (Roskam 1995)as:

-0.1366 0.1976 0 - 32.14090

~0.7649-1.5511138.7747 1.6677 0|0

A, = |0.0073-0.0483-4.2080 0.0159 O (E3)
0 0 10000 0 ©

0 -10000 0  143.4600 O

| 0.0523 0.9986 0 - 143.263@

T The air flow is assumed to be quasi-steady. Only the derivatives of w and v are considered in order
to account for downwash and sidewash. However, the effects of gusts on the downwash are
neglected.
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BLon -

Blat =

0 0.1366 — 0.1976 0
~21.0659 0.7649 1.5511 3.2630
_ |-15.0515 5 _ |-0.0073 0.0483 2.854p
0 -on 0 0 0
0 0 0 0
o0 0 0 0 |
0.1045-1.3224-142.212132.1409 0 0
—0.1044-95836 39557 O O O
0.0364 —0.8976-1.0762 0 0 O
0 1000 -00524 0 0 O
1.000 0 0 0 143.2634
0 0 10014 0 0 O
0 9.2530 0.1045 1.3224- 1.247
35.4075 2.272¢ 0.1044 9.5836- 3.95%
—5.8571—4.5004 G, = |0.03640.8976 10762
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Appendix F

Linearization of Pseudo-Attitude

In this section pseudo-attitude is linearized around the nominal flight condition
specified in Chapter 5 and in Appendix D. The linearization yields pseudo-attitude in
stability axes and allows pseudo-attitude to be related to the linearized aircraft states. The
stability axes reference frame is a special body axes reference frame obtained by choosing

the body y-axis to point into the relative wind for the nominal flight condition.

Flight Path Angle

Flight path angley is determined from the velocity vectyy = [vgN VgE ng]T in the
NED frame as

y = atand———0 (F.1)

2 2
[l ,VgN + VgED

Performing a Taylor expansion about a reference flight conditjpnand retaining

only the linear term yields

d
y(vg)_y(vgo) = Ay = d—\y |Ivg (F.Z)
g ng

where the vectody, = [AvgN Avge Ang]T represents the velocity disturbance state in
the NED frame from the reference flight condition. For the reference flight condition given

by (see Chapter 5)

U,cosy,
Vgo = 0 (F.3)
-U,siny,
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the derivative in Eq. (F.2) and the linearized flight path angle evaluate to

dy| _ [_ siny, 0 cowo}
dvg| U, U, (F.4)
go
siny cosy
Ay = _U—Oo vy - U—OO DIVAS (F.5)
Using the following kinematic relations (Etkin 1996)
Avyy = cosy,Au+ siny,Aw — U siny A8 o
Avyp = —Siny, AU+ oSy, Aw — U ,cOSy,AB '

whereAu andAw are the velocity disturbance in the stability- xand z-axis directions,
respectively, Eq. (F.5) can be rewritterdl as

w
Ay = NG ——
Y U, (F.7)

= AB-Aa

Pseudo-Roll

Unlike in Section 3.1.4, where vectors are expressed in NED components, vectors in
the following treatment are expressed in body axes components. With the exception of the
definition of the Gravity vectog, this change does not alter the meaning of the Eq. (3.31)

- Eq. (3.37). To reduce the complexity of the notation used, no special notation will be
introduced to mark the coordinate chaﬁg‘e‘he velocity vectong is then expressed in

body axes components as

V,

_ T
o = [Vox Voy Vool (F8)

T For simplicity, theAs have been omitted in Chapter 5.
 The vectovg denotes the aircraft velocityith respect tahe inertial NED framé-ygp. vg may,
however, beexpresseth components obtherframes, such as in body or stability axes components.
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To simplify the linearization, a specific force vectois introduced as the difference

between the aircraft acceleratigpand the gravity vectag, that is

T
f=ay—g=[ff, )] (F.9)
whereg is expressed in body axes as
—g,Sind
g = |g,singcos (F.10)
0,C0spcosd
The pseudo-roll synthesis expressed in body axes is then given by
~ f v ~ ~ ~ T
\Z
~ ro~ o~ T
p=9xVy =[P Py P (F11)
- _ el
¢ = asing=——/= f(v, f, 0, @)
o=

where pseudo-roﬁ) is a function of the velocity, the specific force vectdy pitch angle

0 and traditional roll angle. These variables are combined in a vectas

r=1[vgfoq (F12)

Performing a Taylor expansion of the last equation of Eq. (F.11) about a reference flight

conditionr , and retaining only the linear term yields

~ ~ ~ _d

o)~ 9(ro) = A9 = | [ (F 1)
"o

where the vectorAr = [Avy Af AO A(p]T represents the disturbance state from the

reference flight condition.
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For the reference flight condition, and because of the choice of stability axes, one
obtains

eo = yo' (po =0
g,siny,
1:o =0 = 0
—9,C0SY, (F.14)
UO
Voo = | 0
0
and thus
- 0
o~ 0
—9,C08Y,
N 0 (F.15)
Po = UOQOCOSVO
0
(Npo =0

That s, for the reference flight condition the pseudo-roll angle is zero, as expected. For the

following treatment, it is helpful to introduce an auxiliary variable h defined as

h= 1P
1] 0|

(F.16)

where Iy = O for the reference flight condition.

Taking the derivative ofp with respectit@s shown in Eq. (F.13) yields

oh| _dli
e % (F.17)
h(rgy) ol To o

do

dh

oh| dp
+55‘~ dr
Po

o
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Evaluating the partial derivatives on the left hand side of Eq. (F.17) individually gives:

~

do =2 _=1 (F.18)
dh h(rg) /1—hc2) '
o - [9h on on]
ol i aly aly dl;
0 1yp, + 1D, +1,p, O
g iD~:pX~2 y~p2y1/22p2~ 0 (F.19)
OIS+ 1y +12) " "ol
(0]
= [o L o}
90C0%,
The expressionﬁ/dr |r is defined as
(0]
dly dlx aly dly aly aly dly dly
0Vgy OVgy 0V, Of, Of, Of, 06 09
d| _|d, o, o, dl, oy d, di, i, -
dri, | 9vy vy, Ovy, Of, of, 0f, 06 dg
al, al, al, al, al, al, al, al,
vy, OVy, Ovy, Of, Of, 0f, 06 0

Due to the zeros in the vector of Eq. (F.19), only the second line in the matrix of Eg. (F.20)
is evaluated,i.e.

dly _ E% _fxvgx+fyvgy+fzvgz E
dr dr=Y 2 2 2 y,
o O Vgx + Vgy * Vg2 Ol

o (F.21)

sin
[0—99-&—\/900100q

(0]

225



The fourth term in Eq. (F.17) is given by

oh _ 0 Elxpx+lypy+lzpy
9Plg, 0P O cp+ 2 + 5
© R Po (F.22)
1
=lo o ——}
° ° Tgew,
Due to the zeros in the vector of Eq. (F.22), only the third line in the matpixdr | is
(0]
evaluated to
d—b?’ = Q(—g sinB v, — g,Sin@cost [, )
dr| ~drt ™ v ¥ (F.23)

0]

[0 —g,siny, 0 0 O 0 O0- Wg,cosy,]

Evaluating Eq. (F.17) using the expressions in Eqg. (F.18) - Eq. (F.19) and Eq. (F.21) -
Eq. (F.23) yields

do| _ 1
=2 _[00000000001} (F.24)
"o
and linearized pseudo-roll is thlis
~ d(Np Af,,
Ap = =% [Ar = Ap+ F.25
dri, g,Cosy, (F.25)

(o]

T For simplicity, theAs have been omitted in Chapter 5.
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Appendix G
Organization of Flight Test Data

The full configuration flight test system generated three data acquisition files on the
hard drive of the laptop computer: 1) NovatelGPS.dat containing the data from the
Novatel GPS receiver, 2) Migits.dat containing the data from the MIGITS GPS/INS unit
used as a reference during the tests, and SNAV.dat containing the data from the air data

unit. The portable configuration flight test system generated only the file NovatelGPS.dat.

NovatelGPS.dat

The data stored in this file were from the following three data logs transmitted at 10 Hz
update rate by the Novatel 3151R GPS receiver (Novatel 1995):

* VLHB: Velocity, Latency, and Direction over Ground Log
* POSB: Computed Position Log
» DOPB: Dilution of Precision Log

The data was stored in column format in the order shown in Table G.1. Some of the
data acquired was reformatted before stored in the file. In order to synchronize the Novatel
GPS data with the data from the other sensors, the arrival time of the VLHB message with

respect to the start of the data acquisition was recdrded.

Migits.dat

The data stored in this file were from the following three data messages transmitted by
the GPS/INS MIGITS unit (Rockwell 1993):

* Message 3500: System Status at 1 Hz update rate
* Message 3501: System Foreground Navigation Solution at 10 Hz update rate

* Message 3502: System Delta-Velocity and Delta-Theta at 10 Hz update rate

T The determination of the exact arrival time of the other logs was less critical (within 0.1 seconds
of the VLHB log) since position and DOP data changed typically little within 0.1 seconds.
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Column Data Data Log Units
1 Time since start of data acquisitfon - [milliseconds]
2 GPS Seconds-of-Week count VLHB [seconds]
3 Velocity latency VLHB [seconds]
4 North velocity VLHB [meters/seconds]
5 East velocity VLHB [meters/seconds]
6 Down velocity VLHB [meters/seconds]
7 Solution status VLHB see Table G.2
8 Velocity status VLHB see Table G.3
9 Latitude POSB [degrees.degrees
10 Longitude POSB [degrees.degrees
11 Height POSB [meters MSP]
12 HDOP DOPB -
13 VDOP DOPB -
14 Number of satellites tracked DOPB -

The data was stored in column format in the order shown in Table G.4. In order to
synchronize the MIGITS data with the data from the other sensors, the arrival times of

Messages 3501 and 3502 with respect to the start of the data acquisition were fecorded.

Table G.1: Column Format of NovatelGPS.dat

a. Used to synchronize the data with data from other sensors
b. Referenced to WGS84

Value Description
0 Solution computed
1 Insufficient observations

Table G.2: Solution Status

Value Description
3 Velocity from single point computations
Old velocity from single point
4 . .
computations (higher latency)
5 Invalid velocity

Table G.3: Velocity Status
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Column Data Message ID Unit
1 Time since start of data acquisitfon - [milliseconds]
2 North velocity 3501 [meters/second]
3 East velocity 3501 [meters/second]
4 Up velocity 3501 [meters/second]
5 Pitch angle 3501 [degrees]
6 Roll angle 3501 [degrees]
7 Heading 3501 [degrees]
8 Latitude 3501 [degrees.degrees]
9 Longitude 3501 [degrees.degrees]
10 Height 3501 [meters MSP]
11 Time since start of data acquisition - [milliseconds]
12 x-velocity increment 3502 [meters/secdnd]
13 y-velocity increment 3502 [meters/secdnd]
14 z-velocity increment 3502 [meters/secdnd]
15 Roll angle increment 3502 [degrees]
16 Pitch angle increment 3502 [degrées]
17 Heading angle increment 3502 [degrées]
18 Current mode 3500 See Table G.5
19 System status 3500 See (Rockwell 1993)
20 Velocity variance 3500 [metéfsecond]

Table G.4: Column Format of Migits.dat

a. Used to synchronize the data with data from other sensors

b. Referenced to WGS84

c. To get accelerations and roll, pitch and yaw rates, the data must be multiplied
by 10.

Due to an unexpected behavior of the software or operating system, the data in the
NovatelGPS.dat and Migits.dat files occasionally had spikes. The spikes could easily be
recognized by their values: the sign of a variable suddenly changed or the value of a
variable dropped instantaneously to zero. If necessary, the spikes were removed by

replacing them with the average of the previous and the following value.

T The determination of the exact arrival time of Message 3500 was less critical for this application
(within 1 second of Message 3501).
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Value Description
1 Test

Initialization

Coarse leveling

Fine align
INS only

GPS/INS
GPS only

N oo B~ WDN

Table G.5: Current Mode

SNAV.dat

The data stored in this file was transmitted at 0.5 Hz update rate by the SNAV air data

computer (Cambridge Aero Instruments 1988)

The data was stored in column format in the order shown in Table G.6. In order to
synchronize the SNAV data with the data from the other sensors, the arrival time of the

data with respect to the start of the data acquisition was recorded.

Column Data Unit
1 Time since start of data acquisitfon [milliseconds]
2 True Airspeed [knots]
3 Heading (Not Used) -
4 Altitude [feet]
5 Temperature [deg Celsius]
6 Equivalent Airspeed [knots]

Table G.6: Column Format of SNAV.dat

a. Used to synchronize this data with data from other sensors
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Appendix H

Cooper-Harper and AHP

Modified Cooper-Harper Scale

Figure H.1 shows the modified Cooper-Harper rating scale used in the flight
demonstrations. It allows the pilot to assess the systems characteristics subjectively. The
scale ranges from 1 to 10, where 1 is the highest (i.e. most desirable) rating. A Cooper-
Harper rating is obtained by guiding the pilot through a series of three questions. These

identify one of four rating blocks shown in Figure H.1.Within this block, the pilot chooses

the final rating.

E

Demands on the Pilot in
Selected Task or Required Operation

Aircraft/Display
Characteristics

Pilot
Rating

Negligible deficiencies | performance

Excellent | Pilot compensation not a factor for desired
2 . | 1
Highly desirable | performance
.
Good | Pilot compensation not a factor for desired

2

Fair - Some mildly | Minimal pilot compensation required for desired
unpleasant deficiencies | performance
|

Is it

L ) )

1 Desired performance requires moderate pilot
| compensation

.

Minor but annoying
deficiencies

Moderately objectionablel Adequate performance requires considerable pilot
deficiencies | compensation
|

I : - -
1 Adequate performance requires extensive pilot
| compensation

.

Very objectionable but
tolerable deficiencies

' Adequate performance not attainable with maximum
| tolerable pilot compensation. But controllability not
| in question

Major deficiencies

7

Major deficiencies
| control
.

| Considerable pilot compensation is required to retgin

8

| - — - -
| Intense pilot compensation is required to retain
| control

Major deficiencies

9

satisfactory Deficiencies
without warrant
improvement
e
performace Deficiencies
attainable with a require
tolerable pilot improvement
workload
Is it NO Improvement
controllable mandatory

T
. Control will be lost during some portion of required
| operation

!

Major deficiencies

10

Pilot decisions

Figure H.1:

**  Pilot compensation refers to the additional pilot effort

and attention required to maintain a given level of

performance in the face of less favorable or deficient

characteristics.

Modified Cooper-Harper Scale
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Analytical Hierarchy Process (AHP)

The AHP is a means of ranking multiple options through a series of paired

comparisons that are recombined to produce an overall weighted ranking (Yang 1995).

This method captures information regarding the relative size of the interval between the

option ranked. Figure H.2 shows the AHP dominance scale used for paired comparison

of guidance options. A description of the AHP can be found in aforementioned reference.

A

Guidance system A better

| Guidance system B better

Y

A B
absolutely much better slightly same dlightly better much  absolutely
better better better better better better
(absolute) (very (strong) (weak) (equal) (weak) (strong) (very  (absolute)
strong) strong)

Figure H.2: Analytical Hierarchy Process (AHP) Dominance Scale

t This information is not available if the options under evaluation are only ranked in order of

preference.
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