A STANDARD SIMULATION TESTBED FOR THE EVALUATION OF CONTROL ALGORITHMS & STRATEGIES RELATED TO VARIABLE AIR VOLUME HVAC SYSTEMS

by

Mark DeSimone

S.B., Mechanical Engineering (1980)

Massachusetts Institute of Technology

Submitted to the Department of Architecture in Partial Fulfillment of the Requirements for the Degree of Master of Science in Building Technology

at the

Massachusetts Institute of Technology

September 1995

Copyright X 1995 Massachusetts Institute of Technology All rights reserved

Signature of Author	_
	Department of Architecture 18 August, 1995
Certified by	· · · · · · · · · · · · · · · · · · ·
•	Leslie K. Norford
	Associate Professor of Building Technology
	Thesis Supervisor
Accepted by	
	Leon R. Glicksman, Professor
MASEACHESETTS INSTITUTE OF TECHNOLOGY	Director, Building Technology Program
OCT 1 7 1996	A Control

LIBRARIES

Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.2800 Email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

This thesis (DeSimone, Mark; 1995) contains B&W images only. This is the best copy available.

A STANDARD SIMULATION TESTBED FOR THE EVALUATION OF CONTROL ALGORITHMS & STRATEGIES RELATED TO VARIABLE AIR VOLUME HVAC SYSTEMS

by

Mark DeSimone

Submitted to the Department of Architecture on 18 August, 1995 in partial fulfillment of the requirements for the Degree of Master of Science in Building Technology

ABSTRACT

The parameters for a dynamic, computer simulation model were developed. The parameters characterize the physical and geometric properties of a building shell, the internal and external building loads, the building's secondary systems, and the plant or primary energy source. The purpose of the model is to provide a standard testbed for the evaluation of control algorithms and strategies related to variable air volume HVAC systems. This work was conducted in collaboration with, and under subcontract to, Loughborough University of Technology, Leicestershire, United Kingdom (LUT). The prototype building is a four level commercial, multi-use building. Activities in the building include classroom / educational space professorial and student offices, and office / administrative. The building contains three air-handling units; one unit and the volume it serves provides the basis for the testbed. The portion of the building serving as the testbed is divided into thirty-four zones, each with its own single duct, pressure independent VAV terminal box with hot water reheat. A perimeter heating system, composed of hot water convectors, radiators and baseboard heaters, augments the room comfort control system. Local-loop control in the mechanical room and for all but one zone is executed with microprocessor based, pneumatic actuators. One prototype direct-digital-control terminal box system was in use for a classroom zone. DDC control systems and motor driven actuators were substituted in the simulation for the pneumatic equipment. Zoning in the simulation was redistributed into six zones; the supply and return duct system was redesigned to accommodate the simplified zone configuration.

A survey was conducted to determine the availability of sub-one-hour solar and collateral weather data. Historically, data in this frequency have been collected, but not reported. A relatively new program called the Automated Surface Observing System (ASOS) and operated by the National Oceanic and Atmospheric Administration will eventually provide weather data at varying intervals down to one minute, depending on the type of information required. Daily and monthly summaries are available; however, resolution is reduced and averaged to one hour intervals. The SOLMET program, under the auspices of DOE, provides archived solar data at one hour intervals on CD ROM. Data are collected from twenty-six stations distributed around the United States. Collateral weather data are also provided with the solar data and for simulation purposes the SOLMET data provides the best resource.

Thesis Supervisor: Leslie K. Norford

. .

Title:

Associate Professor of Building Technology

4

.

Acknowledgments

This work is dedicated to the memory of my brother Philip Christian DeSimone and to my cousin Timothy Robert Cleeton. Their memory is an inspiration, and I aspire to attain only a small fraction of the wisdom, understanding, and courage they achieved in their short lifetime.

Ostensibly, this thesis represents the consummation of my graduate work; in reality, it represents twenty-five years of patient and thoughtful support from family, friends and colleagues, and I would like to acknowledge all who contributed to this quarter century effort. In particular, I must express my profound appreciation to Dr. Leslie K. Norford who, in the last two and a half years, emerged as a trusted guide and mentor for this work and all of which I endeavor to undertake in the future. My colleagues and friends Angelita Lotivio Altea, David Lorenzetti, Kachi Akoma, Leyla Tanaçan, and Sydney were a continuous, unwavering source of energy, studied advise, and intellectual support, most particularly appreciated at those fragile moments when the path appeared the most difficult and the obstacles insurmountable. To Philip Haves, I extend special appreciation for his dependable, serious, and accurate guidance, input and support during the accomplishment of this project, not uncommonly delivered with an understated and equally dependable sense of wit and humor.

The fellowship and momentum induced by the esprit de corps among my fellow Building Technology researchers was a continuous source of inspiration and relief, often providing just the correct sense of balance necessary to continue forward to the next goal.

Technical and administrative support for this project flowed generously from many sources. I am eternally grateful for the enthusiastic and gracious support provided by the MIT staff including John Bidwell, Facilities Management; Sandra Chauncy, Bursar's Office; Robert Cunkleman, Physical Plant; Eric Epstein, Physical Plant; Phil Green, Physical Plant; Carl Hagge, Physical Plant; Dan Langdale, Financial Aid; Mary Murray, Bursar's Office; Arron Parillo, Schedules Office; Rob Smyser; Computer Research Laboratory; Cindy Suza, Facilities Management; and Dorrit Schuchter, the Building Technology Group.

Invaluable assistance was provided by a great number of sources from within the building mechanical systems industry during the building selection and specification identification process, and it is for this that I express a debt of gratitude for the services and consideration provided in the form of virtually unlimited access to information and resources by: Cosentini Associates, Cambridge MA - Bob Leber; L.F. Luchner Company, Randolf, MA; Powers Control Equipment Service, Antioch, II - Tim McNamara and Paul Fionda; Titus Company, Richardson, TX - Randy Zimmerman; The Trane Company, Wakefield, MA - Bob Axley and Chris Bogart; The Trane Company Lexington, KY - Warren Michelson; The Trane Company, LaCrosse, WI - Jeff Moore and Greg Tatro.

In the course of this project's development, my quest for information introduced me to the esoteric world of solar and collateral weather data acquisition and processing. The assistance provided by those at the National Climatic Data NCDC, Asheville, NC particularly Bill Skinner; the Federal Records Center, Waltham, MA; the National Archives, Washington, DC; the National Oceanographic and Atmospheric Administration, Camp Springs MD; the Blue Hill Meteorological Observatory (including the Harvard University Archives), Canton, MA - particularly Mr. Skilling; and the vast wealth of historical and technical knowledge provided by Bob Lautzenheiser all combined to make this task both extremely interesting and pleasurable, as well as being a true learning experience.

Finally, I must express my deepest gratitude and warmest appreciation to my grandmother Teresa Picazio Leitner for the tireless support offered in forms that only a grandmother can provide, and to my mother Diana Regina Irene, to my brothers Francis Michael and John Stephen, and to my sisters Viviana, Maia, and Irene Louise, and my entire extended family of uncles aunts and cousins for the gift of family and the presents of love.

.

Table of Contents

List	of Tables	11
List	of Appendices	13
List	of Figures	15
File	Name vs Figure Number Key	23
1	Introduction	25
2	Theory	33
	2.1 HVACSIM + Simulation Program Structure	36
	2.2 Theoretical Building Model	39
	2.2.1 Current Model	42
	2.2.2 Proposed Alternative 2C3R LPM	70
	2.2.3 Error Correction to 2C3R Model	74
	2.3 Preparing for and Executing an HVACSIM + Simulation	75
3	Model Development	78
	3.1 Selection of Real Building	78
	3.1.1 Desired Characteristics	79
	3.1.2 Candidate Building Characteristics	83
	3.1.3 Conclusion and Recommendation for Prototype Building Selection	87
	3.2 Occupancy Schedules, Internal Gains, and Zone Selection	89
	3.2.1 Available Survey Information	90
	3.2.1.1 Actual Values	92
	3.2.1.2 Estimated Values	95
	3.2.1.3 Occupancy	97
	3.2.2 Building Loads Due to Occupancy Patterns and Variations	97
	3.2.3 Building Loads Due to Lighting and Installed Equipment	9 8
	3.2.4 Zone Number Reduction and Simplification	99
	3.2.4.1 Zone Selection Criteria	100
	3.2.4.2 Zone Selection	101

3.2.4.	.3 Prelimi	nary Recommendation	08
3.2.4.	.4 Zone S	election Re-evaluation	10
3.2.4.	.5 Final R	ecommendation	12
3.3 Real Build	ling Specif	ication	13
3.3.1 D	Description	of Building Shell and HVAC System	14
3.3.2 D	Design Spec	cifications & General Arrangement for Mechanical Systems 1	16
3.3.3 E	quipment l	Descriptions and Engineering Specifications	16
3.3.3.	.1 Supply	& Return Air Handlers 1	17
3.	.3.3.1.1	Supply and Return Centrifugal Fan Motors	22
3.	.3.3.1.2	Housings and Wheels 1	23
3.	.3.3.1.3	Filtration	23
3.	.3.3.1.4	Cooling Coil	23
3.	.3.3.1.5	Cooling Coil Control Valve 1	24
3.3.3.	.2 Mixing	Box - Dampers and Actuators	25
3.3.3.	.3 Intake &	& Exhaust Grills and Louvers 1	26
3.3.3.	.4 Zone C	omponents	27
3.	.3.3.4.1	VAV Boxes & Zone Diffusers/Louvers 1	27
3.	.3.3.4.2	Reheat Coils	32
3.	.3.3.4.3	Reheat Coil Control Valves	33
3.	.3.3.4.4	Perimeter Heating 1	35
3.	.3.3.4.5	Room Temperature Control System	37
3.3.3.	5 Air Dis	tribution Duct Design	37
3.	.3.3.5.1	Supply Duct System	42
3.	.3.3.5.2	Return Duct System 14	45
3.3.3.	6 Air Han	dler Control System - General Description w/ System Diagram 14	48
3.	.3.3.6.1	Sequence of Operations	49
3.	.3.3.6.2	Point Schedule	49
3.	.3.3.6.3	Mode Table	49
3.	.3.3.6.4	Control Logic Diagram 14	49
3.3.3.	7 Building	g Zone Modeling 2 C - 3 R Components 14	49
3.	.3.3.7.1	Resistances & Capacitances	50

4	Requiremen	tt for Sub-One-Hour Solar and Collateral Weather Data	63
	4.1 Availat	ble Solar Radiation & Collateral Meteorological Observations	63
	4.1.1	SOLMET - Hourly Solar Radiation & Surface Meteorological Observations 10	65
	4.1.2	ASOS - Automated Surface Observing System	71
	4.2 Solar R	adiation & Collateral Weather Data Preparation	75
	4.2.1	Automated Data Reading and Sol-Air Temperature Calculation	75
	4.2.2	Manual Data Reading and Sol-Air Temperature Calculation	77
5	Implementa	tion of the Real Building Specification	79
	5.1 HVAC	SIM + Schematic	81
	5.1.1	Air Flow Component Network	84
	5.1.2	Thermal Component Network 18	85
	5.2 HVAC	SIM + Components	85
	5.2.1	Simulation Real-Time Input Devices	85
	5.2	2.1.1 Type 133 - Psychrometrics	85
	5.2	2.1.2 Type 196 - Read From Unix Socket (16 Reals)	86
	5.2.2	Controllers - Types per LUT	86
	5.2.3	Type 300 - Actuators	86
	5.2.4	Airflow Components	87
	5.2	2.4.1 Type Various - Mixing Box	87
	5.2	2.4.2 Type 134 - Pressure Independent VAV Box	89
	5.2	2.4.3 Type 201 - Centrifugal Fans	90
	5.2	2.4.4 Type 204 - Flow Merge	93
	5.2	2.4.5 Type 207 - Flow Split	93
	5.2	2.4.6 Type 210a - Mass Balance for Multiple Air Streams	94
	5.2	2.4.7 Type 228 - Constant Flow Resistance - Linearized at Low Flow	95
	5.2	2.4.8 Type 229 - Inlet Constant Flow Resistance + Negative O/P 19	95
	5.2.5	Type 026 - Control Signal Inverter 19	97
	5.2.6	Thermal Components	97
	5.2	2.6.1 Type 169 - Moist Air Duct - Heat Loss as Output (Supply & Return) 19	97
	5.2	2.6.2 Type 205 - Fan: Power and Temperature Rise Only	98
	5.2	2.6.3 Type 211 - Mixing of Moist Air Streams	98

5.2.6.4 Type 212 - Mixing of Moist Air Streams
5.2.6.5 Type 272 - Two Node Room/Plenum - Interzone and Leakage
5.2.6.6 Type 299 - Liege Coil L&G Valve
5.2.7 Type 026 - Control Signal Inverter
5.2.8 Sensors
5.2.8.1 Type 007 - Temperature
5.2.8.2 Type 189 - Velocity Sensor
5.2.8.3 Type 203 - Static Pressure Sensor
5.2.9 Simulation Real-Time Input and Output Devices
5.2.9.1 Type 135 - Real Time Graphs of Pressure, Flow and Control Signals 201
5.2.9.1 Type 197 - Write to Unix Socket
5.2.10 Type 026 - Control Signal Inverter
5.3 Internal and External Heat Gains 201
5.3.1 Internal Heat Gains 202
5.3.1.1 Occupants
5.3.1.2 Equipment
5.3.1.3 Lighting
5.3.2 External Heat Gains 206
5.3.2.1 Solar and Collateral Weather Conditions
5.4 Simulation
6 Conclusion and Summary 213
Bibliography
Appendices

List of Tables

Table - 1: Super-Block Categories for Haves Simulation Method 39
Table - 2: Five Global Parameters for 2C3R Lumped Parameter Model 49
Table - 3: Additional Parameters Associated with the 2C3R LPM 50
Table - 4: Selection Criteria for Building Type 82
Table - 5: Sources of Existing Information to Establish Realistic Heat Gain Conditions 91
Table - 6: Basement Level Space Use Summary 102
Table - 7: Basement Level Zoning Option Summary 102
Table - 8: First Level Space Use Summary 104
Table - 9: First Level Zoning Option Summary 104
Table - 10: Second Level Space Use Summary
Table - 11: Second Level Zoning Option Summary 105
Table - 12: Third Level Space Use Summary
Table - 13: Third Level Zoning Option Summary 107
Table - 14: Model Volume Space Use Summary 108
Table - 15: Window Area Summary & Compass Orientations 108
Table - 16: Zoning Option Selection Recommendation Summary 109
Table - 16: Trane CLCH Climate Changer Model Number 117
Table - 17: Trane Central Station Climate Changer CLCH-MN-2A Model Number Coding 118
Table - 18: Trane CLCH Chilled Water Cooling Coil Specifications 124
Table - 19: Powers Pneumatic Actuator Specification, E51 Mechanical Room 125
Table - 20: Powers Pneumatic Actuator Dimension and Time Study, E51 Mechanical Room 126
Table - 21: Megazone VAV Design Volumetric Flow Rate Summary 128
Table - 22: Megazone VAV Single Duct Terminal Box Pressure Difference 129
Table - 23: Average Megazone Flow Velocity Based on 34 Zone Configuration 130
Table - 24: VAV Room Supply Diffuser Specification Summary 131
Table - 25: VAV Room Return Grill Specification Summary 131
Table - 26: VAV Reheat Coil Output Summary 133

Table - 27: VAV Reheat Coil Control Valve Summary	134
Table - 28: Perimeter Heat Tally Summary	135
Table - 29: Effective Surface Area Summary for Megazone Duct Systems	139
Table - 30: Design Velocity Ranges for HVAC Components	141
Table - 31: Megazone Supply Duct Design Details	143
Table - 32: Megazone Return Duct Design Details	146
Table - 33: Wall Types - Building E51	151
Table - 34: Thermal Resistance Calculation, External Shell Wall	155
Table - 35: Thermal Resistance Calculation, Fractional Surface Areas	155
Table - 36: Global Parameter Summary for Megazone I - III	158
Table - 37: Global Parameter Summary for Megazone IV - VI	158
Table - 38: Global Time Constant τ_i	159
Table - 39: Heavy Structure Surface Area Comparison	160
Table - 40: 2C3R Lumped Parameter Model Characteristics	161
Table - 41: SOLMET Data Tape Records	166
Table - 42: SAMSON CDROM Data Records	169
Table - 43: ASOS Data Records	172
Table - 44: HVACSIM + Component Model Type Summary	181
Table - 45: Type XXX Mixing Box Element Parameter Values	188
Table - 46: Type 134 VAV Terminal Box Parameters	189
Table - 47: Type 201 Supply and Return Fan Parameters	1 9 0
Table - 48: Type 210a Mass Balance for Multiple Air Streams	194
Table - 49: Type 229 Inlet Constant Flow resistance	196
Table - 50: MIT Building E51 Johnson Metasys Control System Output	210

List of Appendices

Appendix A - Building Selection Comparison
Appendix B - Site Plan & Elevations for the West End of Building E51
Appendix C - Building Envelope & Shared Internal Wall Surface Areas
Appendix D - Supply & Return Duct Layouts for AH1 in Building E51 w/ Zoning Option F 241
Appendix E - Proposed Zoning Options for the West End of MIT Building E51 251
Appendix F - Critical Data Summary for Zoning Option F in the West End of Building E51 267
Appendix G - Occupancy Schedules for Classrooms in West End of MIT Building E51 273
Appendix H - Building E51 Mechanical System Design Specifications
Appendix I - Building E51 Mechanical Room Layout & Air Conditioning Equipment Sketches 282
Appendix J - AH1: Trane Central Station Climate Changer CLCH-MN-2A
Appendix K - RF1: Trane Centrifugal Fan FAN-IM-4
Appendix L - Mixing Box: Dampers and Actuators
Appendix M - Intake & Exhaust Grills and Louvers
Appendix N - Zone Components
Appendix O - Supply Air Duct System
Appendix P - Return Air Duct System
Appendix Q - Air Handler Control System
Appendix R - Building Zone Modeling: 2C 3R Component Model Structure
Appendix S - Thermal and Airflow Schematics
Appendix T - E51 Simulation: Controllers
Appendix U - E51 Simulation: Actuators
Appendix V - E51 Simulation: Airflow Components
Appendix W - E51 Simulation: Thermal Components
Appendix X - E51 Simulation: Sensors
Appendix Y - Internal and External Heat Gains
Appendix Z - HVACSIM + Type Models
Appendix AA - Sample HVACSIM + Simulation "ACREF2" w/ Explicit Air Flow 506

.

List of Figures

Figure 1: Zone Model Diagram W/Suspended Ceiling - 3R/2C Concept 40
Figure 2: Schematic, Typical Arrangement for 2C3R Model of Zone "i" 41
Figure 3: First Order 1C2R Model 44
Figure 4: Second Order 2C4R Model for Internal Walls with Zero Flux Plane 46
Figure 5: Internal Wall 2C2R Model 47
Figure 6: Alternative Apportionment of Resistive Elements for the Global 2C3R Model 72
Figure 7: VAV Terminal Box Control System - Schematic, Pneumatic Controls
Figure 8: Megazone Supply Air System Total Pressure Grade Line
Figure 9: Megazone Return Air System Total Pressure Grade Line
Figure 10: Detail, Building E51 Internal Partition Walls
Figure 11: Detail, Building E51 External Shell Wall
Figure 12: Flow Chart for Solar and Weather Data Compilation
Figure 13: Total Internal Heat Gain for Each Megazone
Figure 14: Sol-Air Temperatures for Plenum
Figure 15: Sol-Air Temperatures for Room
Figure 16: MIT Building E51 Data Report Rev 02/87 - Facility Management Systems 230
Figure 17: MIT Building E51 Data Report Rev 02/87 - Facility Management Systems (cont'd) 231
Figure 18: MIT Building E51 - Site Plan 232
Figure 19: MIT Building E51 - South Elevation
Figure 20: MIT Building E51 - West Elevation
Figure 21: MIT Building E51 - North Elevation
Figure 22: Building Envelope Wall and Window Areas - Zoning Option F
Figure 23: Building Envelope Wall and Window Areas - Zoning Option F (continued) 238
Figure 24: Building Envelope Wall and Window Areas - Zoning Option F (continued) 239
Figure 25: Internal Shared Wall Areas and Air Flow Resistances - Zoning Option F
Figure 26: Building E51 - Basement Level Supply Ducting w/ Zoning Option F 242
Figure 27: Building E51 - Basement Level Return Ducting w/ Zoning Option F 243
Figure 28: Building E51 - First Floor Level Supply Ducting w/ Zoning Option F 244

Figure 29: Building E51 - First Floor Level Return Ducting w/ Zoning Option F 245
Figure 30: Building E51 - Second Floor Level Supply Ducting w/ Zoning Option F
Figure 31: Building E51 - Second Floor Level Return Ducting w/ Zoning Option F 247
Figure 32: Building E51 - Third Floor Level Supply Ducting w/ Zoning Option F
Figure 33: Building E51 - Third Floor Level Return Ducting w/ Zoning Option F
Figure 34: Building E51 - Basement Level Zoning Option 0A 252
Figure 35: Building E51 - Basement Level Zoning Option 0B
Figure 36: Building E51 - Basement Level Zoning Option 0C
Figure 37: Building E51 - Basement Level Zoning Option 0D
Figure 38: Building E51 - Basement Level Zoning Option 0E
Figure 39: Building E51 - First Floor Level Zoning Option 1A
Figure 40: Building E51 - First Floor Level Zoning Option 1B
Figure 41: Building E51 - First Floor Level Zoning Option 1C
Figure 42: Building E51 - First Floor Level Zoning Option 1D
Figure 43: Building E51 - Second Floor Level Zoning Option 2A 262
Figure 44: Building E51 - Second Floor Level Zoning Option 2B
Figure 45: Building E51 - Second Floor Level Zoning Option 2C
Figure 46: Building E51 - Second Floor Level Zoning Option 2D
Figure 47: Building E51 - Third Floor Level Zoning Option 3A 266
Figure 48: Occupancy, Lighting, and Office Equipment Survey and Area Schedule
Figure 49: Occupancy, Lighting, and Office Equipment Survey and Area Schedule (continued) 269
Figure 50: Occupancy, Lighting, and Office Equipment Survey and Area Schedule (continued) 270
Figure 51: Occupancy, Lighting, and Office Equipment Survey and Area Schedule (continued) 271
Figure 52: Building E51 Classroom Occupancy Schedule - Monday
Figure 53: Building E51 Classroom Occupancy Schedule - Tuesday
Figure 54: Building E51 Classroom Occupancy Schedule - Wednesday
Figure 55: Building E51 Classroom Occupancy Schedule - Thursday
Figure 56: Building E51 Classroom Occupancy Schedule - Friday
Figure 57: Mechanical System Design Specs - MIT Physical Plant Drwg: EA51 M07.0002 280
Figure 58: Mechanical System Design Specs - continued
Figure 59: Building E51 Mechanical Room General Arrangement
Figure 60: Building E51 Supply Air Conditioning Equipment (AH1)
Figure 61: Detail of Mixing Box Return and Fresh Air Dampers

Figure 62: Building E51 Return Air Fan & Duct System (Mechanical Room)	286
Figure 63: Mechanical Room Supply Air Duct System	287
Figure 64: E51 Megazone Air Distribution System	288
Figure 65: Manufacturers Statement of Engineering Specifications for AH1	291
Figure 66: Trane CLCH-MN-2A Climate Changer - Related Literature Guide	292
Figure 67: Trane CLCH-MN-2A Climate Changer Model Number Description	293
Figure 68: Trane CLCH-MN-2A Model Number Code - Unit Type / Digits 1 - 10	294
Figure 69: Trane CLCH-MN-2A Model Number Code - Unit Type / Digits 1 - 10 (cont'd)	295
Figure 70: Trane CLCH-MN-2A Model Number Code - Unit Type / Digits 1 - 10 (cont'd)	296
Figure 71: Trane CLCH-MN-2A Model Number Code - Basic Unit / Digits 11 - 21	297
Figure 72: Trane CLCH-MN-2A Model Number Code - Primary Coils / Digits 22 - 33	298
Figure 73: Trane CLCH-MN-2A Model Number Code - Primary Coils / Digits 22 - 33 (cont'd)	299
Figure 74: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49	300
Figure 75: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49 (cont'd)	301
Figure 76: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49 (cont'd)	302
Figure 77: Trane CLCH-MN-2A Model Number Code - Electric Preheat / Digits 50 - 55	303
Figure 78: Trane CLCH-MN-2A Model Number Code - Electric Preheat / Digits 50 - 55 (cont'd) .	304
Figure 79: Trane CLCH Fan Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 45)	305
Figure 80: Trane CLCH Filter Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 64)	306
Figure 81: Trane CLCH Mixing Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 66)	307
Figure 82: Trane CLCH Coil Connection Dimensions (ref: Trane DS-CLCH-1/June 81, P. 75)	308
Figure 83: Trane CLCH Fan Curves - w/o Inlet Vanes (ref: Trane CS CLCH-2)	310
Figure 84: Trane CLCH Fan Tables - w/o Inlet Vanes (ref: Trane CS CLCH-2)	311
Figure 85: Trane CLCH Fan Curves - w/ Inlet Vanes (ref: Trane CS CLCH-3)	312
Figure 86: Trane CLCH Inlet Vane Performance Curves (ref: Trane CS CLCH-3)	313
Figure 87: AH1 High Capacity Filter Air Pressure Drop (ref: Trane DS CLCH-1/June 81)	314
Figure 88: AH1 Cooling Coil Model Number Key Code (Trane: Coil-IM-3A/Jan 85)	315
Figure 89: AH1 Cooling Coil Tube Specification Material Data (Trane: COIL-IM-3A/Jan 85)	316
Figure 90: AH1 Cooling Coil Pictorial Representation (Trane: COIL-IM-3A/Jan 85)	317
Figure 91: AH1 Cooling Coil Dimensions (Trane: COIL-DS-1/Jun 85)	318
Figure 92: AH1 Cooling Coil Simulation Performance Report (ref: Trane CDS Marketing)	319
Figure 93: AH1 Cooling Coil Control Valve Specifications (Powers Process Controls)	320
Figure 94: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD	321

Figure 95: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD (continued) 322
Figure 96: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD (continued) 323
Figure 97: AH1 Cooling Coil Control Valve - Powers 8" Pneumatic Actuator
Figure 98: AH1 Cooling Coil Control Valve - Powers 8" Pneumatic Actuator (continued) 325
Figure 99: AH1 Cooling Coil Control Valve - Honeywell Direct Coupled Actuator ML6161 326
Figure 100: RF1 Trane Centrifugal Fan Nameplate Data Guide
Figure 101: Trane 44 AFSW Fan Curves - w/o Inlet Vanes (ref: Trane FAN-DS-6)
Figure 102: Trane 44 AFSW Fan RPM Tables - w/o Inlet Vanes (ref: Trane FAN-DS-6) 330
Figure 103: Mixing Box Damper Blade Pictorial (Arrow Steel Dampers - Series 1770) 332
Figure 104: Mixing Box Damper Performance Data (Arrow Steel Damper Series 1770)
Figure 105: Mixing Box Damper Leakage Rates (Arrow Steel Dampers - Series 1770) 334
Figure 106: Louver - Fresh Air Intake and Spent Air Exhaust
Figure 107: Louver - Airolite Type 638-C-100 Pressure Drop & Free Area
Figure 108: Louver - Airolite Type 638-C-100 Water Penetration
Figure 109: VAV Flow Tally - 34 Zone Configuration - ref: Appendix D
Figure 110: VAV Flow Tally - 34 Zone Configuration - ref: Appendix D (cont'd) 341
Figure 111: VAV Flow Tally - 34 Zone Configuration - ref: Appendix D (cont'd) 342
Figure 112: VAV Flow Tally - 34 Zone Configuration - ref: Appendix D (cont'd) 343
Figure 113: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H
Figure 114: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd) 345
Figure 115: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd) 346
Figure 116: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd) 347
Figure 117: VAV Terminal Box Performance Data (Titus Single Duct Pressure Independent) 348
Figure 118: VAV Terminal Box Design Features (Titus Single Duct Pressure Independent) 349
Figure 119: VAV Terminal Box Dimensions (Titus Single Duct Pressure Independent) 350
Figure 120: VAV Terminal Box NC Values (Titus Single Duct Pressure Independent)
Figure 121: VAV Terminal Box Discharge Sound Pwr (Titus Single Duct Pressure Independent) 352
Figure 122: VAV Terminal Box Discharge Sound Pwr - continued (Titus Single Duct PI) 353
Figure 123: VAV Terminal Box Radiated Sound Power (Titus Single Duct Pressure Independent) . 354
Figure 124: VAV Terminal Box Radiated Sound Power (Titus Single Duct Pressure Independent) . 355
Figure 125: VAV Megazone Supply Air Diffuser Performance Data - Titus Catalog T91 356
Figure 126: VAV Megazone Supply Air Diffuser Performance Data - Titus Catalog T91 (cont'd) . 357
Figure 127: VAV Megazone Supply Air Diffuser Performance Data - Titus Catalog T91 (cont'd) . 358

Figure 128: VAV Megazone Supply Air Diffuser Performance Data - Titus Catalog T91 (cont'd) . 359
Figure 129: VAV Megazone Return Air Grill Performance Data - Titus Catalog T91 (cont'd) 360
Figure 130: VAV Terminal Box Reheat Coil Physical Properties
Figure 131: VAV Terminal Box Reheat Coil Performance Data
Figure 132: VAV Terminal Box Reheat Coil Performance Data (continued)
Figure 133: VAV Terminal Box Reheat Coil Dimensions
Figure 134: VAV Terminal Box Reheat Coil - Titus Shop Drawing 1
Figure 135: VAV Terminal Box Reheat Coil - Titus Shop Drawing 2
Figure 136: VAV Terminal Box Reheat Coil - Titus Shop Drawing 3
Figure 137: VAV Terminal Box Reheat Coil - Titus Shop Drawing 4
Figure 138: VAV Terminal Box Minimum Pressures (Titus Single Duct Pressure Independent) 369
Figure 139: VAV Box Reheat Coil Control Valve Description - Landis & Gyr VE-VMP 370
Figure 140: VAV Box Reheat Coil Control Valve Capacity - Landis & Gyr VE-VMP 371
Figure 141: Building E51 Perimeter Heat Requirement Tally (ref: Appendix D)
Figure 142: Building E51 Perimeter Heat Requirement Tally - Continued (ref: Appendix D) 373
Figure 143: Zone Temperature Control System - Titus Pressure Independent Series
Figure 144: Megazone Supply Air Duct System Design Decision Table
Figure 145: Mechanical Room Supply Air Duct Pressure Drop Tally
Figure 146: Megazone Supply & Return Duct Surface Area Tally
Figure 147: Megazone Supply & Return Duct Surface Area Tally (continued)
Figure 148: Supply Air Duct Design / Conditioning Equipment (file: climchgr.dwg)
Figure 149: Megazone Supply Air Duct System - Mechanical Room (file: supduct.dwg)
Figure 150: Megazone Supply Air Duct System (file: kachisup.cdr)
Figure 151: Megazone Supply Air Duct Pressure Drop Tally
Figure 152: Megazone Supply Air Duct Pressure Drop Tally (continued)
Figure 153: Megazone Supply Air System Total Pressure Grade Line Data Table
Figure 154: Fiber Glass Duct Insulation Specifications (Schuller 800 Series Spin-Glas)
Figure 155: Megazone Return Air Duct System Design Decision Table
Figure 156: Megazone Return Air Duct System - Mechanical Room Pressure Drop Tally 389
Figure 157: Megazone Return Air Duct System - Mechanical Room (file: rtnduct.dwg)
Figure 158: Megazone Return Air Duct System (file: kachirtn.cdr)
Figure 159: Megazone Return Air Duct Pressure Drop Tally
Figure 160: Megazone Return Air Duct Pressure Drop Tally (continued)

Figure 161: Megazone Return Air System Total Pressure Grade Line Data Table
Figure 162: Johnson Metasys Control System - System Drawing
Figure 163: Johnson Metasys Control System - Compound Diagram
Figure 164: Johnson Metasys Control System - Function Diagram/Static Pressure Set Point 399
Figure 165: Global Parameters Annex 10 2C3R Zone Model 401
Figure 166: Physical Properties for Resistance - Internal & Adiabatic Vertical Walls 408
Figure 167: Resistances - Internal & Adiabatic Vertical Walls
Figure 168: Physical Properties for Capacitance - Internal & Adiabatic Vertical Walls
Figure 169: Capacitances - Internal & Adiabatic Vertical Walls
Figure 170: Time Constants for Internal & Adiabatic Vertical Walls
Figure 171: Internal Vertical Surface Identification & Area Tally
Figure 172: Physical Properties and Summary Area Tally, Horizontal Surfaces
Figure 173: Resistances - Internal Horizontal Surfaces
Figure 174: Capacitances & Time Constants - Internal Horizontal Surfaces
Figure 175: Resistances & Capacitances - External Horizontal Surfaces
Figure 176: Horizontal Surface Identification, Building E51 418
Figure 177: Horizontal Surface Identification & Area Tally
Figure 178: Thermal Resistivity, External Vertical Walls & Double Glazed Windows
Figure 179: Heat Capacity, Double Glazed Windows 421
Figure 180: Physical Properties - Heat Capacity, External Vertical Walls
Figure 181: Heat Capacity, External Vertical Walls 423
Figure 182: Thermal Resistance & Capacitance, External Walls & Double Glazed Windows 424
Figure 183: Thermal Resistance & Capacitance, External Walls & Windows (cont'd) 425
Figure 184: External Vertical Surface Identification & Area Tally
Figure 185: Capacitive Flow of Infiltration
Figure 186: Sample Arrangement HVACSIM + Implicit Flow Simulation - Mechanical Room 430
Figure 187: Sample Arrangement HVACSIM + Implicit Flow Simulation - Zone Model
Figure 188: Airflow Component Network Diagram
Figure 189: E51 Parameters - Type 300 (Actuators)
Figure 190: E51 Parameters - Type xxx (Mixing Box)
Figure 191: Mixing Box Damper Resistances (Arrow Series 1770 Steel Dampers)
Figure 192: Mixing Box Diagram
Figure 193: Mixing Box Airflow Resistance Network

Figure 194: E51 Parameters - Type 134 (VAV Terminal Box)	. 442
Figure 195: E51 Parameters - Type 134 continued (VAV Terminal Box)	. 443
Figure 196: Minimum Static Pressure Drop Across Titus DESV Boxes	. 444
Figure 197: E51 Parameters - Type 201 (Supply & Return Fans)	. 445
Figure 198: Megazone Supply Duct System Airflow Resistance Schedule	. 446
Figure 199: Supply Airflow Resistance Network	. 447
Figure 200: High Capacity Filter Airflow Resistance Calculation	. 448
Figure 201: Megazone Return Duct System Airflow Resistance Schedule	. 450
Figure 202: Return Airflow Resistance Network	. 451
Figure 203: E51 Parameters - Type 204 (Flow Merge)	. 452
Figure 204: E51 Parameters - Type 207 (Flow Split)	. 453
Figure 205: E51 Parameters - Type 210 (Zone Pressure Balance, w/ Leakage)	. 454
Figure 206: E51 Parameters - Type 210 continued (Zone Pressure Balance, w/ Leakage)	. 455
Figure 207: E51 Parameters - Type 210 continued (Zone Pressure Balance, w/ Leakage)	. 456
Figure 208: E51 Parameters - Type 228 (Constant Flow Resistance)	. 457
Figure 209: E51 Parameters - Type 229 (Inlet Constant Flow Resistance)	. 458
Figure 210: Network for Type 169 (Moist Air Duct - Heat Lose as Output)	. 460
Figure 211: E51 Parameters - Type 169 (Moist Air Duct w/ Heat Loss)	. 461
Figure 212: Supply & Return Moist Air Duct Area Contact Calculation Summary	. 464
Figure 213: E51 Parameters - Type 272 (2 Node Room Plenum)	. 465
Figure 214: E51 Parameters - Type 299 (Liege Coil and L&G Valve)	. 466
Figure 215: E51 Parameters - Type 299 continued (Liege Coil and L&G Valve)	. 467
Figure 216: Internal Heat Gain - Data: Total Occupancy, Equipment & Lighting	. 472
Figure 217: Internal Heat Gain - Occupancy Distribution Profiles, Megazones 1 thru 6	. 473
Figure 218: Internal Heat Gain - Equipment Usage Profiles, Megazones 1 thru 6	. 474
Figure 219: Internal Heat Gain - Lighting Usage Profiles, Megazones 1 thru 6	. 475
Figure 220: External Heat Gain - Solair Temperatures Averaged Over All Surfaces	. 476
Figure 221: Support Calculations - Solair Temperature, Vertical Walls	. 482
Figure 222: Support Calculations - Solair Temperature, Glazing	. 485
Figure 223: Support Calculations - Solair Temperature, Roof	. 488
Figure 224: Support Calculations - Local Sun Angles & Normals to Building Surfaces	. 489
Figure 225: Support Calculations - Solar Radiation and Ambient Air Temperature Data	. 490

22

•

File Name	Figure	File Name	Figure	File Name	Figure
area_169.wq2	212	type_169.wq2	211	air_dist.cdr	64
area_rtn.wq2	refer to disk	type_201.wq2	197	e510thal.cdr	refer to disk
area_sup.wq2	refer to disk	type-204.wq2	203	e510thsr.cdr	26, 27, 34, 35, 36, 37, 38
area_tal.wq2	146	type_207.wq2	204	e511stai.cdr	refer to disk
classocc.wq2	52 - 56	type_210.wq2	205	e511stsr.cdr	28, 29, 39, 40, 41, 42
damper.wq2	191	type_228.wq2	208	e512ndal.cdr	refer to disk
dsgnspec.wq2	57	type_229.wq2	see intwall.wq2	e512ndsr.cdr	30, 31, 43, 44, 45, 46
duct_rtn.wq2	155	type_272.wq2	213	e513rdal.cdr	refer to disk
duct_sup.wq2	144	type_299.wq2	214, 215	e513rdsr.cdr	32, 33, 47
filters.wq2	200	type_300.wq2	189	e51elev.cdr	19, 20, 21
flwtally.wq2	109, 113	type_xxx.wq2	190	horzsurf.cdr	176
heat_per.wq2	141	climchgr.dwg	148, 60	kachirtn.cdr	158
heat_oel.wq2	216	curtwall.dwg	11	kachisup.cdr	150
heatin.wq2	48	damper.dwg	61	louver.cdr	106
intwall.wq2	25, 209	kareturn.dwg	refer to disk	mbdiag.cdr	192
mr_rtn.wq2	156	kasupply.dwg	refer to disk	site_001.cdr	18
pd_rtn.wq2	151	rtnduct.dwg	157, 62	zonedrwg.cdr	1
pd_sup.wq2	159	supduct.dwg	149, 63		
res_rtn.wq2	201	airflow.cfl	188	thermal.cfl	210
res_sup.wq2	198	mbresnet.cfl	193	typ_1a.cfl	186
sa*.*	220 - 225	res_rtn.cfl	202	typ_1b.cfl	187
sup_vav.wq2	196	res_sup.cfl	199	zone3r2c.cfl	2
type_134.wq2	194, 195				
Linked Files for Global Parameters		global01.wq2	165	PROGRAM ORIGIN	FILE EXTENSION
extwall.wq2	22	infltrn.wq2	185	Quattro Pro	*.wq2
rescap01.wq2	166	intvert.wq2	171	Autocad	*.dwg
rescap02.wq2	172	surfhorz.wq2	177	Corelflow	*.cfl
rescap03.wq2	178	vertext.wq2	184	Coreldraw	*.cdr

NOTE: This table cross-references file names appearing in this document to the figure(s) in which they appear. For reference, these files may be obtained on data disks through the offices of the Building Technology Program, Department of Architecture, Massachusetts Institute of Technology.

24

-

1 Introduction

Heating, ventilating and cooling (HVAC) systems for buildings have become increasingly important. People are spending more time within buildings, as much as 90% in Western countries [McNall 1985]. Satisfaction with the thermal environment can affect productivity in ways that dwarf energy costs, which are about two orders of magnitude less than labor costs. But energy consumption itself is far from trivial in its cost. In the U.S. in 1990, buildings consumed 36% of the nation's total energy supply at a cost of \$200 billion [Bevington and Rosenfeld 1990]. Energy consumption can be reduced through a combination of better lights, improved windows, more efficient motors and motor drives, and enhanced thermal insulation and air-tightness of building walls. Another factor is better control of space conditioning equipment. Bevington and Rosenfeld highlighted several examples of savings achieved through better controls with acceptably short (2-3 year) payback periods.

HVAC controls are inherently somewhat complex. The foundation of HVAC control is the single-loop proportional-integral-differential (PID) controller. While this device itself is well understood, its application for temperature and flow control often involves estimation of the thermal parameters of the controlled system, leading to the need for manual tuning of the controllers or on-line adaptive control. Further, assembling a system of single-loop controllers requires attention to the response time of the controlled systems, to ensure that the entire system is stable. For example, the common variable-air-volume ventilation system involves both local control of airflow to each thermal zone and central regulation of the pressure in the supply duct. Adjustments in the duct pressure must allow time for response by the local, thermostatically controlled dampers to prevent undue oscillation in pressure and accompanying wear on actuators. In addition, HVAC control systems increasingly include supervisory controllers to adjust set points to optimize system performance and are beginning to incorporate on-line diagnostics as well.

This growing complexity has prompted a need for improved methods for developing and testing control strategies and diagnostic methods. On-line testing in test rigs or real buildings provides perhaps the most information, but is expensive and not a good starting point. Simulation potentially offers the best efficient first step but only if the simulation tool can model a building and its HVAC system in sufficient detail to yield valuable results. The building energy simulation tools favored by energy analysts, including DOE-2 and BLAST, do not permit the user to describe and simulate HVAC systems and their controllers in the requisite detail. Time steps are too long and there is little flexibility in describing systems, which are described as a whole, with no opportunity to work at the component level. At this time, the simulation tools of choice are those that permit component-level simulation,

including HVACSIM+, TRNSYS, IDA or SPARK [Haves 1995]. Indeed, HVACSIM+ and TRNSYS have been extensively used for tasting of HVAC control and diagnostic strategies [Haves 1995]. Andresen and Brandemuehl (1994) incorporated the TRNSYS building shell model into their study of the control of heat flows in and out of building thermal mass, as did Morris et al. (1994) for a study of optimal control of building thermal storage. Neither of these studies focused on duct systems or control of ventilation systems.

Component-level simulation work to date has been performed by experts for specific applications. Such simulations could potentially aid a much wider audience, including controls engineers working in research, training, and in field applications. Simulations can be used not only in a stand-alone configuration but as emulators to mimic the functions of a building and its HVAC system and communicate requested information to a control system, and respond to the controller's outputs. Inhibiting the use of component simulation programs has been the complexity of the programs, as manifested in the very substantial effort required to configure a simulation and ensure proper convergence of the numerical algorithms.

To make a component simulation program more accessible and more useful to practicing engineers. there is a need to prepare a simulation that is solidly based on a typical HVAC system installed in a building of typical construction and usage patterns. To date, there has been no systematic attempt to prepare such a simulation. Simulations of portions of a few buildings have been developed, with one notable example that of a U.S. government office building [Park et al., 1989]. However, these simulations were designed to demonstrate the viability of the simulation program itself rather than serve as a simulation testbed, and consequently lack the requisite documentation of the building, its systems, and the matching of equipment to simulation needed to develop parameters for the simulation of components of the HVAC system. This thesis, in conjunction with parallel work at Loughborough University of Technology, U.K., has the goal of developing an accurate, thoroughly documented simulation testbed suitable for development and testing of HVAC control algorithms.

"Computer simulation has the potential to play an important role in the development and testing of control algorithms and strategies. The main advantages of computer simulation are that it can produce reproducible conditions, provide accelerated testing, and be carried out more conveniently and inexpensively than the testing on a real plant especially when abnormal conditions or faulty operation is required. A standard testbed for HVAC controls will make these potential benefits more widely available in the industry. It will facilitate the inter-comparison of different algorithms and strategies,

26

and it can also be expected to simulate the development of objective standards for control system performance."¹

My work as a Research Assistant for the ASHRAE Research Grant 825-TRP: <u>A Standard Testbed for</u> the Evaluation of Control Algorithms and Strategies serves as the basis for this thesis. This project was conducted by the interdisciplinary graduate program in Building Technology at the Massachusetts Institute of Technology, and was being undertaken to develop a standard computer simulation testbed for the evaluation of control algorithms and strategies in cooperation with Loughborough University of Technology, Leicestershire, UK (LUT) for the American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., (ASHRAE).

"The principles and objectives of this project are to provide and document a standard set of algorithms that model the performance of HVAC components and to demonstrate their use in simulating an HVAC system for the purpose of comparing control techniques under realistic conditions. The algorithms will model short-term dynamic characteristics and non-linearities of HVAC components and will be capable of being connected together to simulate the behavior of different types of HVAC-systems using the modular simulation programs HVACSIM + or TRNSYS. The fabric and HVAC system of a selected variable air volume (VAV) office building [or model volume] will be documented in sufficient detail to allow it to be modeled using the testbed. The operation of the building will be simulated to illustrate how the testbed can be used to demonstrate the operation of HVAC control systems."²

This project has ten identifiable tasks:

- 1. Identify HVAC Component Models
- 2. Review Zone Models
- 3. Reformat Models
- 4. Selection of Real Building
- 5. Real Building Specification
- 6. Schedules of Occupancy and Internal Gains
- 7. Need For/Availability of Sub-One-Hour Weather Data
- 8. Identify and Implement Methods

ASHRAE Application For Grant Funds: <u>A Standard Testbed for the Evaluation of Control Algorithms and Strategies (825-TRP)</u>, Principle Investigators - Haves, Philip & Norford, Leslie, December 1993.

² ASHRAE 825-TRP

- 9. Implement and Test the Building Specification
- 10. Final Reporting (on the MIT Tasks)

"The work will be carried out jointly by Loughborough University of Technology, UK (LUT) and Massachusetts Institute of Technology (MIT). LUT will be responsible for assembling and documenting the component models and identifying and documenting the methods of interfacing control systems algorithms and control hardware to a simulated building and plant. MIT will be responsible for detailed documentation of an example VAV office building for use in testing and demonstrating the testbed. LUT and MIT independently will use the example building documentation to model and simulate the example building. This will allow LUT to check the completeness and consistency of the building documentation and will allow MIT to test the ability of the component models individually and collectively to model a real HVAC plant and control systems."³ Each of the ten tasks is described in detail in the referenced research grant proposal document.

My contribution to this project coincided with the areas of responsibility outlined for MIT in the research grant proposal, and consists of the following sub-sections:

- 4. Selection of Real Building;
- 5. Real Building Specification;
- 6. Schedules of Occupancy and Internal Gains;
- 7. Need for Availability of Sub-One-Hour Weather Data;
- 9. Implement and Test the Building Specification;
- 10. Final Reporting.

The selection process for the real building involved making some preliminary decisions regarding:

- (1) what primary, essential physical characteristics must the a prototype structure possess;
- (2) what secondary features would be desirable but would not necessarily essential;
- (3) what kinds of buildings would meet certain the necessary qualitative and quantitative physical requirements, as well as having certain operational characteristics;
- (4) where can such buildings be located to satisfy access requirements;
- (5) what kind of access will be required;
- (6) who needs to be involved in gaining the required access;

²⁸

³ ASHRAE 825-TRP

(7) what level of documentation will be required?

After making a preliminary selection, a final selection was made to optimize flexibility. Recognizing that "achieving the ideal is difficult"⁴ trade-offs were made to gain the most benefit from the characteristics of each choice, and the building that scored the highest was selected.

The task identified as "Specifying the Real Building" was divided into two parts; the first part involved the specification of the real building, identifying all systems and sub-systems that make the prototype building which would eventually have to be modeled in order to create the testbed. This included: (1) siting the building geographically (location, compass orientation, and external obstructions; (2) quantifying the building's internal and external walls; (3) and detailing all mechanical systems including the air conditioning and distribution systems, both the primary and secondary control systems, and the perimeter heating system. The second part of this task involved mapping the real building specifications into the component models available with the chosen computer simulation package assigning the appropriate state variables and component parameters.

In order to evaluate the ability of the building's local, closed loop control systems (or localized automatic control systems⁵) to maintain a set point in a particular zone, realistic disturbances due to internal gain fluctuations are necessary. Identifying the internal heat gain components including occupancy, lighting, and equipment required a study of the occupancy schedules for the multi-use building, involved making site surveys and inspections to ascertain equipment and lighting types and densities. In addition, information obtained from the site surveys was augmented with a survey of studies both published and unpublished; these studies characterized internal gains by lighting and equipment with information gathered experimentally and through theoretical modeling.

The need for solar and collateral weather data is in concert with the need to quantify internal disturbances in the form of heat gains. Two objectives were to be met in this sub-task: (1) using the model, determine the highest frequency external excitation to which the HVAC system will respond; (2) ascertain the availability of solar and collateral weather data which is prescribed in the first part of this task. A survey of the historical development of solar and weather collection data was made. In addition, an assessment was made of the various types of data available in numerous formats from a

5

1991 ASHRAE Handbook - HVAC Applications, A41.33.

⁴ ASHRAE 825-TRP

wide variety of sources. In conclusion, on the basis of the surveys and assessments, the sources appropriate for projects such as this were identified.

Implementation and testing of the computer model was specified as a sub-task in this project. The first part, implementation, involves mapping the building's geometric and physical characteristics into the components available with the selected computer simulation package. Testing involves subjecting the model to the variety of internal and external stimulations or disturbances and observing the resulting behavior. Real time interfaces were planned and developed by LUT to allow human interaction during a simulation run.

As outlined in the proposal, a final report was to be prepared and submitted. In addition, system model configuration files were to be prepared in machine readable form, (the exact specifications of which remain to be determined), and all drawings, tables, and data as stated in the work scope were to be provided. This document shall serve as the basis for much of the information and documentation which will be included in a final report to be prepared by others.

This thesis is organized in the following manner. The first part of Chapter 2 outlines the basic theory behind one-dimensional heat transfer analysis related to real-time performance testing and evaluation of control algorithms and strategies. A contrast is drawn between the two classes of analysis: (1) the energy estimating methods, including degree day analysis, variable degree day analysis, bin analysis, and correlation analysis; and (2) time dependent, transient analysis. The second part of Chapter 2 details the development of the global parameters for the multi-zone, lumped parameter, second order dynamic model on which the work accomplished for this thesis is based. In addition, an algorithm is presented for calculating effective sol-air temperatures as a function of insolation, ambient air temperature and the properties of the incident walls (roof).

Chapter 3 provides a detailed record of a buildings physical construction and mechanical system. Beginning with a brief outline of the buildings external shell including the foundation, external walls, internal partitions, ceilings and floor, and the HVAC system, Chapter 3 systematically catalogs the original engineering design specifications, and describes each piece of equipment in the HVAC system. A large part of the work for this project involved simplification of existing systems for computational purposes. The original thirty-four zone layout of the building was redesigned to six zones and a simplified supply and return duct system was designed to match the flow and thermal characteristics of the original thirty-four zone system. Re-zoning was accomplished while preserving the total floor area

30

devoted to the various uses identified in the building. The Last part of Chapter 3 is devoted to mapping the real building structure (external shell, internal partitions, floors, ceilings, and roof) to the lumped parameter, second order model.

Chapter 4 examines the availability of sub-one-hour solar and collateral weather data. A number of sources were identified from which raw and processed (corrected) data can be obtained, however, no direct measurement insolation data was found to be available at the frequencies of interest, (sub-one-hour). One source was found to yield sub-one-hour weather data, and from this it may be possible to derive realistic insolation values at high frequencies, and it is left to further research to clarify and develop this concept.

Chapter 5 details the development of the parameters for the HVACSIM + model type units required to model the subject building. The basis for the parameters described in this chapter is the information reproduced in Chapter 3. Some of the HVACSIM + types required modification in order to accurately reflect the configuration of certain pieces of equipment in the building and in these cases the elements or sub-components from which the "new" types would eventually be constructed were provided. In addition to the parameters, profiles have been provided which detail the internal and external heat gains for a typical day of operation. The external gains consist of effective sol-air temperatures based on the ambient air temperature, solar flux, and external wall properties. Two methods were used to calculate the sol-air temperatures, and one method was finally chosen over the other on the basis of subjective judgement; the method not chosen was not producing values which could be considered reasonable. Internal gains were based on dissipation due operating equipment and electric lighting and that due to occupant densities. Gain profiles were developed on the basis of actual schedules for the various zones usages.

-

2 Theory

The transient response of a physical system model, comprised of ideal capacitors and resistors, to excitation from system inputs and control signals, in addition to model temperatures and the net energy flow required to maintain a set point, control system behavior and fluid flow temperatures are the desired outputs of this project.⁶ Both open and closed loop control are possible, however, it is the response to closed loop control and the resulting behavior of the closed loop control systems that are of particular interest. The modeling process involves estimating the energy required to maintain a certain comfort level within a control volume when the volume is subjected to varying loads. Various methods of analysis are available for estimating energy in buildings. The various methods can be divided into two classes of analysis; (1) steady-state; and (2) transient. In either case, the fundamental, underlying principles governing the solutions are:

First, the principle of conservation of energy:

or

$$\Delta U = \dot{Q} \Delta t + \dot{Q}_{v} \Delta t; \qquad (2)$$

which in differential form appears as

$$\frac{dU}{dt} = \dot{Q} + \dot{Q}_{v} ; \qquad (3)$$

and second, the phenomenological law governing heat flow known as "... Fourier's law of heat conduction which states that in a homogeneous substance, the local heat flux is proportional to the negative of the local temperature gradient."⁷ In Cartesian coordinates, this is stated as:

7 Mills, A.F., Chapters 1 & 2.

⁶

The analysis of a dynamic system always involves the formulation of a conceptual model made up of basic building-blocks that are idealizations of the essential physical phenomena occurring in real systems. An adequate conceptual model of a particular physical device or system will behave approximately like the real system. The best model is the simplest one which yields the information necessary for engineering action or decision. (Shearer, et. al.)

$$q_x = -k \frac{\partial T}{\partial x}; \quad q_y = -k \frac{\partial T}{\partial y}; \quad q_z = -k \frac{\partial T}{\partial z}$$
 (4)

or equivalently:

$$\boldsymbol{q} = -\boldsymbol{k} \nabla T \tag{5}$$

"... where q_x is the component of the heat flux in the x direction, $\partial T/\partial x$ is the partial derivative of T(x, y, z, t) with respect to x, and so on"⁸ and where the thermal conductivity k is the same in all directions, i.e. the material is considered to be isotropic. In addition, from the definition of constant-volume specific heat attributed to an incompressible solid, the change of internal energy for a solid in differential form is given by:⁹

$$dU = \rho V c_{v} dT$$
 (6)

From the principle of energy conservation (Eq. 3), Fourier's Law of Heat Conduction (Eq. 5), and the definition stated in Eq. 6 the **Heat Conduction Equation** is derived (note that the complete derivation is provided in Mills, Pp. 124 - 128):

$$\rho c_{\nu} \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{Q}_{\nu}^{\prime\prime\prime}; \qquad (7)$$

where:

$$\rho c_{v} \frac{\partial T}{\partial t} \equiv \text{transient component} ; \qquad (8)$$

and, the rate of internal or volumetric heat generation is given by:

$$\dot{Q}_{v}^{\prime\prime\prime\prime} \equiv$$
 rate of internal or volumetric heat generation $[W/m^{2}];$ (9)

and : ρ = the density of the material through which the heat is passing; [kg/m³]; c = the physical characteristic of the material, the specific heat [J/(kg·K)].

⁸ Mills, A.F., Chapters 1 & 2.

⁹ Ford, Kenneth W., §13.9

It should be noted that Eq. 7 does not account for radiation or convection. In this simulation model, these two modes of heat transfer equivalent resistances (or conductances) are calculated using various methods, and are then incorporated into the system of conduction equations, (refer to §3.3.3.7 for detailed development of equivalent resistances).

In the first class of analysis, the energy estimating methods include degree day analysis, variable base degree day analysis, bin analysis, and correlation analysis. They vary in degrees of complexity and accuracy, and hour-by-hour analysis or even a quasi-steady-state analysis can be performed using these methods. For steady-state, multi-dimensional analysis the transient component of the heat conduction equation for heat flow in isotropic media (Eq. 7) must be equal to zero, or equivalently:¹⁰

$$\rho c \; \frac{\partial T}{\partial t} = 0 \; . \tag{10}$$

However, when real-time performance testing and evaluation of control algorithms and strategies or closed loop controls are involved, these methods are not sufficient, leading to the second class of analysis. The time dependent solutions found for closed loop control problems require time dependent system models (or dynamic models). The model or mathematical system for this project was designed to demonstrate the transient response of the building's control system to stimulation from internal and external loads, and therefore contains non-zero contributions from the transient component of the heat conduction equation. The model used for this project assumed one dimensional, transient heat flow with internal/external gains. Consequently, the y and z terms in Eq. 7 are equal to 0, which results in the one dimensional form of the heat conduction equation shown by Eq. 11, as follows:

$$\rho c \, \frac{\partial T}{\partial t} = k (\frac{\partial^2 T}{\partial x^2}) + \dot{Q}_{\nu}^{\prime\prime\prime} \,. \tag{11}$$

The real building and its energy systems are represented in the mathematical model by the following three fundamental aspects: (1) the thermal behavior of the building structure (the loads model); (2) the thermodynamic behavior of the air-conditioning delivery system (the secondary systems model); and (3) a mathematical relationship for load versus energy requirements of the primary energy conversion equipment (the plant model).¹¹ It should be noted that these three elements are not unique to dynamic modeling, but also form the basis for each of the steady state methods as well.

10

11

1993 ASHRAE Fundamentals Handbook, Energy Estimating Methods, F28.14.

Anthony F. Mills, Heat Transfer (Boston, MA: Richard D. Irwin Inc., 1992), p.127.

The loads model takes into account the physical and geometric characteristics of the building and the various load sources. It is in this step where the amount of energy, which must be added or extracted from the space in order to maintain a certain set point, is calculated. The secondary systems include heating and coiling coils, mixing box, VAV boxes, ducts, dampers, and all other components of the real HVAC system. This part of the model is comprised of mass and energy balances for each the systems components, and it is here where the requirements specified in the first step is translated into load requirements on the secondary system components.

In the ASHRAE Handbook the plant model "relates the required input energy rate ... to the required energy rates of the secondary systems. Typically, the central plant model includes such relationships for chillers, boilers, cooling towers" For this project, cooling power is supplied by a constant temperature source; a central plant provides cooling for a number of buildings in the vicinity of the subject building, similar to a district style system. It should be noted that heating energy comes from a hot water boiler system located in the building's basement. The system serves the three individually conditioned volumes, and for simplicity in the first stages of the model development, it was decided to model this as a constant temperature source. It is anticipated that future work by others will include the components required to model the water side of the heating system and include them in the dynamic model. Electric powered perimeter heating elements were substituted for the hot water convectors installed around the perimeter.

Local, closed loop control systems maintain control over the individual plants and also provide some links between the three. Each zone has its own temperature control monitoring system which modulates air flow through the VAV terminal box, water flow through the reheat coil, and water flow through the perimeter heating system. Three points within the model volume send temperatures to a comparator in the mechanical room. The supply air temperature for the entire building is reset to meet the highest cooling demand. A local, closed loop control system in the mechanical room maintains set points for supply air pressure and the mixture of return and fresh air that comprises the mixed air, later to become the supply air.

2.1 HVACSIM+ Simulation Program Structure

Presently, there are several simulation packages available which can run on a microcomputer based platform. For this project use the non-proprietary building system simulation program, HVACSIM +

(or HVAC SIMulation PLUS other systems), was selected. The program was originally developed in the mid-1980's at the United States National Bureau of Standards (NBS) (renamed and currently known as the National Institute of Standards and Technology), and has undergone many updates, revisions, and improvements since then. Quoting from a draft document prepared by the NBS team:

"... HVACSIM+ consists of a main simulation program, a library of HVAC system component models, a building shell model [or zone model] and an interactive front end program. The main simulation program employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems "¹²

The program calculates instantaneous space sensible loads based on the heat balance method relying on the first law of thermodynamics and the principles of matrix algebra. Heat balance equations for the walls, floors and ceilings of each control volume (or zone) plus additional equations for the air contained in each of the volumes calculate the energy required to meet given set points. Mass and energy balance equations, characterizing both the transport equipment conveying energy in to or out of the volumes and the local loop control systems work together to satisfy the energy requirements demanded by instantaneous zone conditions. The essence of the simulation package is found in the MODSIM program. This program handles seven major functions:

- (1) Input and Output;
- (2) Block and State Variable Status Control;
- (3) Integration of Stiff Ordinary Differential Equations;
- (4) Solving of a System of Simultaneous Non-Linear Algebraic Equations;
- (5) Models of HVAC Components and Controls;
- (6) Building Loads Model;
- (7) Supporting Utility and Fluid properties.

The model definition (component parameter values), solar and collateral weather information, and boundary data files are called by the MODSIM program. In addition, simulation control input data can be changed on a real time basis, and an output interface has been developed which provides real time

Cheol Park, Daniel R. Clark, George Kelly. <u>An Overview of HVACSIM+, a Dynamic</u> <u>Building/HVAC/Control Systems Simulation Program</u>, Building Equipment Division, Center for Building Technology, National Bureau of Standards, Gaithersburg, Maryland, 1986.

simulation results in a colorful graphical interface.¹³ More detailed summaries of the theory behind the HVACSIM + simulation program structure can be found in the three manuals prepared by the NBS team and shipped with the program.^{14,15,16}

Simulating a building and its comfort control systems using HVACSIM + requires the disaggregation of the structure into discreet component parts. Each component is represented by an HVACSIM + Unit Type comprised of one or more sets of differential and non-linear algebraic equations. The types are linked together by state variables. Parameters, detailing the physical and geometric characteristics of each components, capture the essence of the building and its sub-systems and provide the coefficients for the differential and algebraic equations. The components are grouped into sub-systems called blocks, and the blocks are grouped into larger groups called super-blocks. The basic intent behind grouping the units into blocks and super-blocks is to optimize the time required to execute a simulation while retaining the highest level of accuracy possible. The literature provided with the program (NBSIR 85-3243) states that "... There are no highly specific rules for the division of super-blocks and blocks. The decisions involved must be based on knowledge of how the real system behaves and an understanding of how blocks and super-blocks are handled within the simulation program.

A strong recommendation is made in the literature to "keep tightly coupled sub-systems such as local closed loop control systems or closed loop flow streams within a single block...." However, another method for grouping units into blocks and super-blocks places all units of a certain category into the same super-block.¹⁷ The recognized logical breakdown forms the basis for the categories is found in Table 1. Grouping the components in this manner separates the necessarily stiff sets of differential equations resulting from grouping together equations with widely varying time constants into component groups with similar time dependent behavior. The intent of this philosophy is to decrease the real-time required to conduct a simulation, as well as to increase the accuracy of the results. Anecdotal evidence supports this contention, although no formal testing has been conducted which shows one method to be superior over the other. Within the super-block categories, units can be placed into blocks which group

- 15 Clark, et.al., NBSIR 85-3243, Chapter 2.
- 16 Park, et.al., NBSIR 86-3331, Chapter 5.
- 17 The method was proposed by Phil Haves, Loughborough University of Technology, Leicestershire UK, and is one of the bases for the sample simulation in Appendix AA.

¹³ Phil Haves, LUT, 1995.

¹⁴ Clark, NBSIR 84-2996, Chapter 1.

the units in a more traditional manner, by tightly coupled sub-system, as outlined in the program manuals.

Category	Super-Block Category Description
01	Technical and Administrative - used for some i/o activity during real time simulation and also for altering psychrometric characteristics of airflows w/i the simulation
02	Controllers and Control System Components - all controllers & accessories
03	Actuators - actuators for coil control valves and dampers are included in this section
04	Airflow Components - all components associated with the calculation of air flow rates and pressure through the system
05	Thermal Components - contains all components associated w/ temperature calculation
06	Sensors Devices - all sensors in the system are grouped in this category
07	Simulation Real-Time Input and Output Devices - real time interfaces

Table - 1: Super-Block Categories for Haves Simulation Method

It should be noted that grouping similar components into separate superblocks works if, and only if, the time-step used is much shorter than the dominant time constant of each loop. This is the approach taken in this project. This approach is unavoidable if real controllers are to be combined with a simulated building and plant; a principle requirement of the Testbed which is to be the product of this research effort. This process also decreases the numerical difficulty associated with achieving solutions during the simulation, although there may be a significant associated increase in computational costs.

2.2 Theoretical Building Model

The multizone dynamic model of each zone is a lumped parameter model of 2nd order. Zones are connected by resistances, thus describing the dwelling by a polygonal network. The model has 5 degrees of freedom per zone. They are determined by respecting the zone:

- overall resistance;
 - ratios of loss through light structures to the total losses;

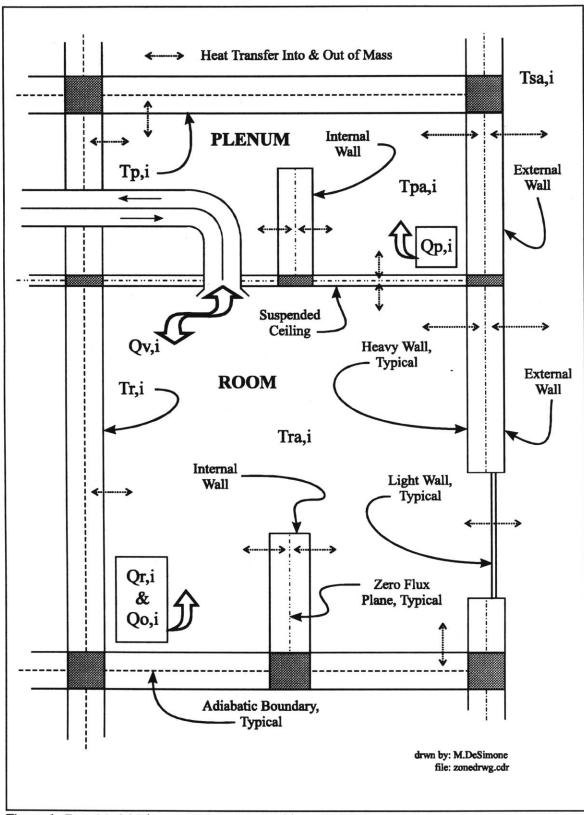


Figure 1: Zone Model Diagram W/Suspended Ceiling - 3R/2C Concept

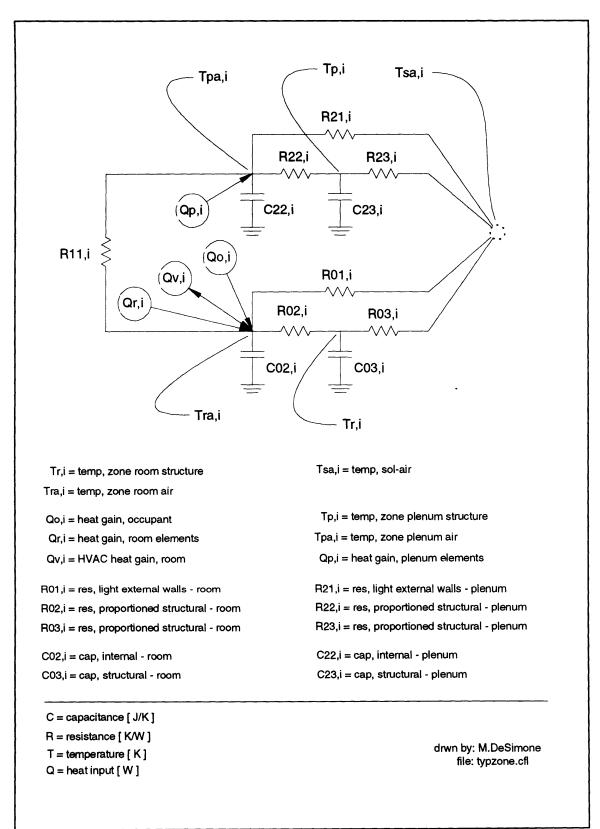


Figure 2: Schematic, Typical Arrangement for 2C3R Model of Zone "i"

characteristic response parameters to step changes. They are namely the sudden change of internal temperature at the moment when a unit step change in heat load is applied inside (a_i^a) and a similar change when a step change of outdoor temperature occurs (a_i^a) ; [see Equations 50 and 51]

time constant.¹⁸

Please note the following:

In the last stages of the development of the work for this thesis, confirmation was received which clarified suspicions raised earlier during the research effort and which gave rise to the Section 2.2.2 "Proposed Alternative 2C3R Lumped Parameter Model." The basic issue was whether or not the expressions defining the global parameters $R_{02,i} R_{03,i} R_{22,i}$ and $R_{23,i}$ were sufficient to describe the building accurately. As it happened, the confirmation received stated that the expression for the structural resistance had been copied incorrectly, and the inaccurate version had made its way into print. Time did not allow for the correction to be incorporated into this body of work, however, the error, its correction and the resultant impact on the calculations recorded in this thesis are presented in the Section 2.2.3 "Error Correction to 2C3R Model." Recalculation of the values effected by this change will be done by others and the simulation test runs will be made with the corrected values. The results of this additional work will be included in the final ASHRAE 825 TRP report.

2.2.1 Current Model

The theoretical model for the building consists of a large network of a second order, lumped parameter models (LPM) each representing a *space or combination of spaces* [zones in this model] *in the building that may be characterized by a uniform temperature and a perfectly mixed volume Conductive heat transfers through walls are one-dimensional. Radiative heat exchanges are linearized and surface exchanges are globalized and assumed to be constant with time. Consequently, temperatures are resultant temperatures.*¹⁹ The IEA Annex 10 report is difficult to obtain, and for the reader's convenience, the majority of the equations and theory presented in the Annex 10 report has been

18

19 IEA Annex 10

International Energy Agency [IEA], Report on Lumped Parameter Building Model Development

reproduced in this document. The global parameters used to model E51 were derived wholly from the equations that follow in this section. Some modifications in definition were made to accommodate the real building configuration. Those modifications include the term for the "capacitive flow of infiltration" and the sol-air temperatures.

Some questions persist upon completion of the work ascribed to this thesis as to the validity of the construct of the 2C3R model applied to the building. Specifically, the fundamental question is that of the conductance between the inside and the outside through the structural node, (eg. $1/R_{02,i}$ and $1/R_{03,i}$ in Figure 2). It has been proposed that in order to respect the (low frequency) resistance between the inside and outside, the defining equations (34, 102, 103 and 35) specified in the Annex 10 need to be modified slightly by removing the θ_m term.²⁰ Development of this concept and verification of the proposed modification was being sought at the time this report was written, and a conclusion will be developed in the ASHRAE 825 TRP Final Report.

In accordance with the model theory presented in the Annex 10 report, each zone model is composed of two second order LPM's: one set representing the occupied volume and contents in a zone and one representing the unoccupied volume (or typically the plenum space above a suspended ceiling and contents of the same zone, refer to Figure 1. The second order LPM used in this study, commonly referred to as a 2 capacitor - 3 resistor (2C3R) model is shown in Figure 2. The model is comprised of two 2C3R LPM's: one representing the room volume and one representing the corresponding plenum volume. The two LPM's are linked together with a connecting resistance which represents the ceiling separating the two volumes. One set, as shown in the figure, is used to model one megazone. Correspondence of the variable names used in Figure 2 with the variable names used in the Annex 10 report is shown in Table 40 on page 161.

Three sets of general variables and parameters are defined in the Annex 10 report which characterize the 2C3R model structure. The first set describes each individual structural element in the building. The second set of parameters describes the real building in terms of the first set transformed and combined to produce the five parameters necessary for each 2C3R model. The third set represent computed values which characterize infiltration and convective flow between zones.²¹ The procedure

²⁰ Phil Haves, LUT, 24 Jan 1996.

²¹ Heat transfer between zones was assumed to be zero to coincide with the HVACSIM + zone model chosen for this study. It is anticipated that future versions of this model will account for heat and mass transfer through and across adjacent zone boundaries. All necessary geometric and physical material properties have been provided in the appendices in order that parameters for future more complete models can be

described by the Annex 10 report entails a three step procedure for developing the five parameters:

- 1. <u>Thermal Zone Definition</u>: select the building volume to be simulated and define the thermal zones in which different temperatures are expected to occur;
- 2. <u>Compute Wall Parameters for Each Zone</u>: for each external, internal, or connecting wall describe them by capacitances and resistances, encompassing all individually identifiable wall, floor and ceiling components;
- 3. <u>Define Global Parameters for Each Zone</u>: by the elementary networks developed in Step 2, define the five parameters for each of the 2C3R networks.

External Walls:

The individual external walls are represented by first order models consisting of one capacitor and two resistors each. These sub-models connect the outdoor temperature node to the indoor nodes. The thermal capacitance for each external wall is located between the two thermal resistors at a location in

the wall specified by a weighting factor θ_m (referred to in the Annex 10 report as, the *Accessibility of Capacitance*). The walls are assumed to be comprised of "N" easily definable layers, each characterized by a resistive element and a capacitive

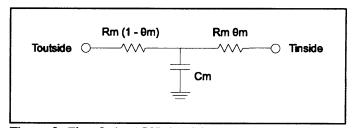


Figure 3: First Order 1C2R Model

element. Air boundary layers on both sides of the walls are accounted for as individual resistive elements (based on surface area and the appropriate film coefficient), adding two additional resistors to the "N" wall layers combines for a total of "N+2" series resistors in each external wall section. The "N+2" resistive elements are summed in series to obtain an overall resistance, Equation 12, and the "n" capacitances are summed to obtain and overall capacitance, Equation 13, and the *Accessibility of Capacitance* is calculated in Equation 14.

$$R_{m} = \sum_{n=0}^{N+1} R_{m,n}$$
(12)

derived. Infiltration can be expressed as a capacitive flow rate which may implemented as a parallel resistance directly between the indoor and outdoor nodes of the 2C3R network according to the Annex 10 model.

$$C_m = \sum_{n=1}^{N} C_{m,n}$$
 (13)

$$\theta_m = 1 - \sum_{n=1}^{N} \frac{(\sum_{p=0}^{n-1} R_{m,p} + \frac{R_{m,n}}{2})C_{m,n}}{R_m C_m}$$
(14)

The two thermal resistances ($R_{m, outer}$ and $R_{m, inner}$) in the first order model are expressed as a function of the overall external wall resistance R_m and the weighting factor θ_m in Equations 15 and 16.

$$R_{m,outer} = R_m (1 - \theta_m)$$
⁽¹⁵⁾

$$R_{m,inner} = R_m \,\theta_m \tag{16}$$

-

The time constant, expressed as a function of R_m , C_m and θ_m in Equation 17 was used to differentiate between light and heavy walls and sub-walls or structures.

$$\tau_m = \theta_m (1 - \theta_m) R_m C_m$$
⁽¹⁷⁾

where: $\tau_{\rm m} \leq \tau_{\rm limit} \Rightarrow$ light structure;

 $\tau_{\rm m} > \tau_{\rm limit} \Rightarrow$ heavy structure; and

the approximate limits for τ are 1 hour $\leq \tau_{\text{limit}} \leq 2$ hour.

Internal Walls

Walls are considered to be internal if both sides are exposed to the same temperature. In this case, the wall is represented by a first order model, and parameters are calculated similarly to those for the external wall using the same equations. In a second step, a second order model is defined which utilizes the concept that there exists a plane somewhere within the wall through which no heat passes,

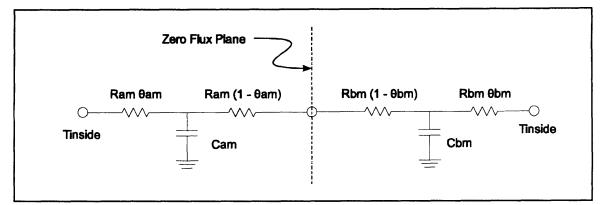


Figure 4: Second Order 2C4R Model for Internal Walls with Zero Flux Plane -

ie. a zero flux plane as in Figure 4. Each of the two thermal resistances calculated in Equations 15 and 16 are subdivided into two sub-sets of two smaller, proportioned thermal resistances. These two resistor sub-sets are then combined with proportional parts of the overall thermal capacitance calculated using Equation 13 forming the second order system. The overall resistance for side "a" of the internal wall and the overall resistance for side "b" are expressed in the following equations:

$$R_{am} = R_m \left(1 - \theta_m\right); and \tag{18}$$

$$R_{bm} = R_m \,\theta_m \,; \tag{19}$$

The location of the zero flux plane is found by satisfying the equation:

$$\sum_{n=0}^{n^{*}-1} R_{mn} < R_{am} < \sum_{n=0}^{n^{*}} R_{mn} ; \qquad (20)$$

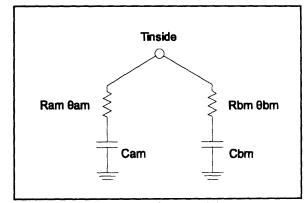
where the index value n^* is deduced. The fractional part y of the layer n^* which included in R_{am} is expressed by the following:

$$y = \frac{1}{R_{mn}} (R_{am} - \sum_{n=0}^{n^{*}-1} R_{mn})$$
(21)

The capacitances C_{am} and C_{bm} are proportioned parts of the overall capacitance C_{mn} as follows:

$$C_{am} = \sum_{n=0}^{n^{*}-1} C_{mn} + y C_{mn}.$$
 (22)

$$C_{bm} = C_m - C_{am} . \tag{23}$$


The weighting factors θ_{am} and θ_{bm} used to proportion the resistances for the two first order sub-systems on either side of the zero flux plane is expressed as a function of the properties of the internal wall as follows:

$$\theta_{am} = \frac{\sum_{n=1}^{n^{*}-1} \left(\sum_{p=0}^{n-1} R_{mp} + \frac{R_{mn}}{2}\right) C_{mn} + \left(R_{am} - \frac{y}{2} R_{mn}\right) y C_{mn}}{R_{am} C_{am}}; and$$
(24)

$$\theta_{bm} = \frac{\sum_{n=N}^{n+1} \left(\sum_{p=N+1}^{n+1} R_{mp} + \frac{R_{mn}}{2}\right) C_{mn} + \left(R_{bm} - \frac{z}{2} R_{mn}\right) z C_{mn}}{R_{bm} C_{bm}};$$
(25)

where: z = 1 - y.

The two internal resistances closest to the zero flux plane, nestled in between the two capacitances C_{am} and C_{bm} can be eliminated since there is no temperature potential across them. The result is a second order 2C2R model for the internal wall as shown in Figure 5. The time constants used to differentiate between heavy

and light wall elements are expressed in the following equations:

$$\tau_{am} = \Re_{am} C_{am}; and \tag{26}$$

$$\tau_{bm} = \Re_{am} C_{bm}; \qquad (27)$$

where the two capacitances C_{am} and C_{bm} are proportional parts of C_m , and the two resistances \Re_{am} and \Re_{bm} are expressed in the following:

$$\Re_{am} = R_m (1 - \theta_m) \theta_{am} ; and$$
(28)

$$\Re_{bm} = R_m \theta_m \theta_{bm} . \tag{29}$$

Connecting Walls

The basic model for a connecting wall is the same as that for internal walls. The proportional constant θ_m fractionalizes an overall resistance R_m , and establishes a virtual plane separating the wall, one part to zone i and one part to zone j. Capacitances are calculated as described for an internal wall, and assigned as heavy or light in their respective zones i and j according to the time constants calculated with Equations 26 and 27. The connecting resistance $R_{i,j}$ is then calculated by summing the sets of two resistances for each in series R_{am} and R_{bm} giving back the value R_m and then summing the m resistances in parallel as shown in the following equation:

$$\frac{1}{R_{i,j}} = \sum_{m} \frac{1}{R_{am} + R_{bm}} .$$
(30)

Referring to Figure 4, values for R_{am} and R_{bm} are calculated as described for an internal wall in Equations 18 and 19. For this project half of each connecting wall was apportioned to the abutting zones or sub-zones. Then for each connecting wall, an internal wall with the same thickness but half the area was placed in the ascribable zone or sub-zone. For example, a suspended ceiling has an overall resistance R_m consisting of a conductive heat transfer coefficient and two film coefficients: one for the horizontal surface facing up into the plenum, and one for the horizontal surface facing down into the room. When calculating \Re_{am} and \Re_{bm} the area of the internal wall becomes half that of the ceilings projected area to obtain:

$$\Re_{am,connecting} = 2R_m (1 - \theta_m) \theta_{am}; and$$
(31)

$$\Re_{bm,connecting} = 2 R_m \theta_m \theta_{bm} .$$
(32)

The film coefficient for the suspended ceiling looking down into the room is used on both sides of the "internal wall" representing the half of the ceiling apportioned to the room. A similar construction is made for the half apportioned to the plenum, using the appropriate film coefficient.

Adiabatic Walls

22

Adiabatic walls are treated in exactly the same fashion as the connecting walls, except that no connecting resistance is calculated. Depending on the time constant, the mass of the adiabatic walls is included in one or the other of the global capacitance values.²²

Global Parameters for Each Zone:

The global parameters representing the five elements shown in Figure 2, as proposed in the Annex 10, are described in Table 2. Two sets of these parameters are required to fully describe the zone, one for the room and one for the plenum; they are typically separated by a suspended ceiling. The two sets are thermally connected through the ceiling material by the resistive element $R_{11,i}$ in Figure 2. For those zones which do not have a suspended ceiling, only one set of parameters is used. The Annex 10 model requires the two heavy wall resistance parameters to be expressed as proportional amounts of some fraction of the resistance for the heavy structures. It is the author's opinion, however, that the resistance value apportionment described by the Annex 10 report, may not accurately model the actual heat flow paths through the heavy structures, refer to §2.2.2. Numerical calculations and parameters presented in the appendices of this report were developed in accordance with the theory and structure provided in the Annex 10 report. Initially the model in this study will assume adiabatic isolation between zones.

In the Annex 10 report, it is interesting to note that if any internal walls are considered to be of the light variety, then, although the associated mass is accounted for in the internal capacitance value C02, there is no corresponding heat transfer coefficient modeling heat flow through the mass implied.

Table - 2: Five Global Parameters for 2C3R Lumped Parameter Model (refer to Figure 2)

Parameter	Description
R _{lite,ext} or 1/K _{lite,ext}	resistance for internal structure directly to outside through light walls
R _{trvy,inner} or 1/K _{hvy,inner}	resistance of inner portion of heavy walls ²³
C ₃	capacitance of heavy structures
C ₂	capacitance of internal structures including indoor air and furniture
$ heta_{ m i}$	weighting factor or global accessibility of structural capacitance

The additional parameters defined in Table 3 characterize resistances (or conductances) which follow directly from the definitions expressed in the Annex 10 report for the five global parameters expressed in Table 2.

Table - 3: Additional Parameters Associated with the 2C3R LPM

Parameter	Description
1/K _{ext}	overall resistance for external structure; includes both heavy and lite walls
1/K _{int}	overall resistance for internal structure; includes both heavy and lite walls
1/K _{hvy,ext}	resistance for the heavy external walls
1/K _{hvy,ext,outer}	resistance for the outer portion of the heavy external walls (see §2.2.2)
1/K _{hvy,ext,inner}	resistance for the inner portion of the heavy external walls (see §2.2.2)

Each of the global resistive elements within the individual LPM's is a composite of many subcomponents, and are defined in terms of loss coefficients or conductances as follows:

$$R_{01,i} = \frac{1}{K_{lite,ext}} ;$$
 (33)

$$R_{02,i} = \frac{1}{(K_{hy,inner})} \theta_i;$$
 (34)

Refer to Section 2.2.2 for alternative proposal to allocate resistive and capacitive elements for the global parameters in the 2C3R model.

$$R_{03,i} = \frac{1}{(K_{hy}, inner)} (1 - \theta_i); and$$
(35)

where the factor θ_i (global accessibility of structural capacitance) is defined in terms of the heat flux ratio ξ_i (see Equation 49) and the characteristic response parameter to step changes of internal heat flux $a_{i,q}$ as follows:

$$\theta_{i} = \frac{a_{i,q} (1 - \xi_{i})}{(1 - \xi_{i} a_{i,q})};$$
(36)

which, in the Annex 10 report, proportions the structural resistance to express the heavy structures inner and outer resistive components.²⁴ A similar set of global parameters can be defined for the plenum sub-zone. By substituting the Equations 49 & 50 into Equation 36 the coefficient θ_i can simplified into the ratio of conductances:

$$\boldsymbol{\theta}_{i} = \frac{K_{hy,ext}}{K_{hy,inner}} .$$
(37)

Equation 37 expresses θ_i in terms of the conductance for all the heavy, external wall sections (refer to Equation 41) divided by the conductance of all the heavy inner wall sections (refer to Equation 39) which includes contributions from all of the internal walls and only the inner portions of the external walls as defined in Equation 16.

ai,q = Ki Req,i; and $ai,t = \xi i ai,q.$

²⁴ The characteristic response parameters to step changes of internal heat flux (ai,q) and outdoor temperature (ai,t) are defined as follows:

The expression of the global parameters as functions of conductances is a simplification of the presentation made in the Annex 10 report. In so doing, relationships between variables in the Annex 10 presentation became more apparent, and the decision was made to work as much as possible with conductances and revert to expressions in terms of resistances when detail or clarification was required. The conductances expressed in terms of composite resistance values are as follows:

$$K_{lite,ext} = \sum_{m} \frac{(1 - H_m) E_m}{R_m};$$
 (38)

$$K_{hwy,inner} = \sum_{m} \frac{H_{m}}{R_{m} \theta_{m}}$$
; and (39)

$$K_{hy,ex} = K_{ex} - K_{lite,ex} ; or$$
 (40)

$$K_{hwy,ex} = \sum_{m} \frac{E_{m}}{R_{m}} - \sum_{m} \frac{(1 - H_{m})E_{m}}{R_{m}}.$$
 (41)

where: $E_m = 0$ for each internal wall or connection sub-wall

 $E_m = 1$ for each external wall

- $H_m = 0$ for all wall or sub-walls with $\tau_m \leq \tau_{limit}$ (light walls)
- $H_m = 1$ for all wall or sub-walls with $\tau_m > \tau_{limit}$ (heavy walls)

The time constant τ_i which characterizes the response to excitation for the global system ascribed to each zone is expressed in the following equation:

$$\tau_i = \frac{1}{K_i} \sum_m (1 - \theta_m E_m) H_m C_m.$$
(42)

The conductance K_i is defined as the overall loss coefficient and is expressed in terms of $\dot{C}_{i,out}$ (the Capacitive Flow of Infiltration in zone i based on the volumetric flow rate $\dot{\forall}_{i,out}$ for infiltration) and K_{ext} (the overall loss coefficient for the heavy walls) in the following equations:

$$K_i = \dot{C}_{i,out} + K_{ext} ; where$$
(43)

$$\dot{C}_{i,out} = \rho_a C_{pa} \dot{\forall}_{i,out} ; and$$
(44)

$$K_{ext} = \sum_{m} \frac{E_m}{R_m} .$$
 (45)

It should be noted that the introduction of the term $\dot{C}_{i,out}$ in the expression for the overall loss coefficient is an attempt to account for the influence infiltration has on the what is referred to in the Annex 10 report as the "structural capacitance," refer to Equation 47. The Annex 10 report recommends that if infiltration is to accounted for in the recommended model, then the conductance represented in the term $\dot{C}_{i,out}$ is to be added to the conductance for the light, external wall structures:

$$K_{\mathfrak{S}, lite, ext} = \dot{C}_{i, out} + K_{lite, ext} ; \qquad (46)$$

which would be used in place of $K_{ute,ext}$ in Equation 33. Documented studies suggest that infiltration occurs across the entire building shell surface, including both windows and external walls and roof, refer to sub-section Capacitive Flow of Infiltrations, page 55. In these cases, the conductances for the plenum and room walls would have to be modified in a similar fashion, using the appropriately calculated infiltration terms.

54

The structural capacitance parameter $C_{03,i}$ (refer to Figure 2) represents the heavy structures in the global model. It is expressed in terms of the overall heavy structure capacitance and a factor which characterizes the response of the 2C3R global network to step changes in internal heat flux and outdoor temperature:²⁵

$$C_{03,i} = K_i \tau_i \frac{(1 - \frac{\xi_i K_i}{K_{eq,i}})^2}{(1 - \frac{K_i}{K_{eq,i}})} .$$
(47)

The conductance $K_{eq,i}$ is described in the Annex 10 report as the equivalent resistance for zone i and is expressed in the following equation:

$$K_{eq,i} = \dot{C}_{i,out} + K_{lite,exa} + K_{hvy,inner}; \qquad (48)$$

and the term ξ_i is described in the Annex 10 report as the ratio of heat loss through the light walls (with no phase change) to the total heat loss to the outside (and it is value should be less than 1):

$$\boldsymbol{\xi}_{i} = \frac{C_{i,out} + K_{lite,ext}}{C_{i,out} + K_{ext}} .$$
(49)

Note that the characteristic response parameter to step changes in internal heat flux can be expressed in ratios of conductances by combining Equations 43 and 48 as follows:

$$a_i^{q} = \frac{C_{i,out} + K_{ext}}{C_{i,out} + K_{lite,ext} + K_{hvy,inner}}; and$$
(50)

the characteristic response parameter to step changes in outdoor temperatures can be expressed in ratios of conductances by combining Equations 49 and 50:

$$a_i^{\ i} = \xi_i a_i^{\ q} . \tag{51}$$

The internal capacitance parameter C_{02,i} represents the light structures and the air contained within the

Characteristic response parameters are described in the Annex 10 report, and can be calculated from the data presented in the appendices of this report.

zone. It is simply the sum of the represented thermal capacitance values:

$$C_{02} = C_{a,i} + \sum_{m} C_{m} (1 - \theta_{m} E_{m}) (1 - H_{m}) .$$
 (52)

The term $C_{a,i}$ represents the capacitance for the air within zone i, $(\rho_{room air} \times C_{p,room air} \times V_{room air,i})$. The sum adds the entire contribution from the light, internal walls to a fractional contribution from the light, external walls.

With infiltration, the direct link between the inside and outside nodes is augmented by a parallel resistance, or conversely a parallel conductance representative of the infiltration flow rate. In this case, $R_{01,i}$ can be expressed in the modified form:

$$R_{01,i} = \frac{1}{\dot{C}_{i,out} + K_{line,ext}} .$$
 (53)

The Annex 10 report proposes that the structural capacitance $C_{03,i}$ be expressed, in part, as a function of outside air infiltration. In doing so, it is recommended that a mean estimate of the infiltration flow rate be used in defining the structural capacitance. Further, when figuring the value of the direct coupled resistance $R_{01,i}$ the actual time varying value of the infiltration term be used. For this project the building is considered to be pressurized, and the effect of infiltration is assumed to be negligible.

Capacitive Flow of Infiltrations (this section for reference only - see §3.3.3.7.1)

The driving mechanism for the capacitive flow of infiltration $\dot{C}_{i,out}$ is assumed to emanate strictly from wind pressure; the effects of indoor and outdoor temperature differ (stack effects) and those induced by mechanical equipment are ignored. $\dot{C}_{i,out}$ is found as a function of an estimated, average air flow rate $\dot{v}_{i,out}$ and its physical properties as expressed in Equation 44. Determining $\dot{v}_{i,out}$ is an exercise in blending the laws of physics with some empirical relations derived by experiment and observation to determine flow characteristics for various physical building configurations. The average air flow rate may be expressed as function of mass flow rate $\dot{m}_{i,out}$ and local air density ρ_{air} :

$$\dot{\forall}_{i,out} = \frac{\dot{m}_{i,out}}{\rho_{air}} ; where$$
(54)

the mass flow rate $\dot{m}_{i,out}$ is expressed as a function of the pressure difference across the wall ΔP_w and the air flow resistance R_1 presented by the leakage paths in the wall:

$$\dot{m}_{i,out}^2 = \frac{\Delta P_w}{R_1} .$$
(55)

The pressure difference ΔP_w as a result of wind impingement on a buildings side may is expressed by:

$$\Delta P_w = p_o + p_w - p_i; \qquad (56)$$

where: $p_o = outside static pressure at a reference height in undisturbed flow {<math>\rho g(h_r-h_l)$ };

 $p_w = wind pressure at location L {C_p \rho v_a^2 /2};$

 p_i = interior pressure at location L { $\rho g(h_r - h_L)$ }.²⁶

Hence, Equation 56 can be re-expressed as:

$$\Delta P_w = C_p \rho \frac{v_a^2}{2}$$
(57)

where: C_p = surface pressure coefficient; v_a = wind speed.

The surface coefficient C_p is a function of the building envelope's orientation to the prevailing wind direction, in addition to a wide variety of environmental influences, including but not limited to, a building's width to height ratio, surrounding topography, and shape. Averaged, empirically derived values for C_p related to low-rise buildings were used in this study. A low-rise building with a width W and height H is defined as one for which the ratio H/W $\leq 1.2^7$

26 1993 ASHRAE Handbook - Fundamentals, F23.3.

27 1993 ASHRAE Handbook - Fundamentals, Figures 6 & 7, F14.5.

The flow resistance R_1 is an expression of the leakage characteristics of a specific building in a unique set of circumstances. It is dependent on a *building's design, construction, seasonal effects, and deterioration over time*; a wide array of empirical data is available, generalizing the behavior for a variety of building configurations.²⁸ Equation 55 can be rewritten to express R_1 as a function of leakage rate Q_1 and the surface area through which the air is passing:

$$R_{l} = \frac{\Delta P_{w}}{\rho_{a}^{2} Q_{l}^{2} A_{w}^{2}}$$
(58)

For this project empirical results from two mutually supportive independent studies, tempered by historically accepted standards, were used to determine representative values for R_1 , (refer to Figure 206). The studies suggest that Q_1 for a typical commercial building envelope (excluding operable windows) are on the order of 1080 to 5220 cm³/(s-m²) at a 75 Pa pressure differential. Values for tight, average, and leaky walls are proposed to be 500, 1500, and 3000 cm³/(s-m²) at 75 Pa by one study.²⁹ These values are significantly higher than the value of 300 cm³/(s-m²) at 75 Pa as proposed by the National Association of Architectural Metal Manufacturers. As a compromise, 1200 cm³/(s-m²) at 75 Pa was selected to represent Q_1 for the entire building shell, including the exterior walls and operable windows (in fully closed position).

Additional Comments

(1) The two variables $T_{pa,i}$ and $T_{ra,i}$ in Figure 2 represent the temperatures of the internal air and all light structures in the plenum and room models. The HVACSIM + zone model used for this study (Type 272), calculates these temperatures as a weighted average, taking into consideration the influences of surrounding walls, the outside ambient air, leakage and infiltration from adjacent zones, and the supply air.³⁰

(2) Initially, the model in this study will assume adiabatic isolation between zones. The zones are separated by solid walls and the HVACSIM + zone model Type 272 used in the initial model development was designed to accommodate an open plan office zoning strategy, (refer to the sample

^{28 1993} ASHRAE Handbook - Fundamentals, F23.12.

^{29 1993} ASHRAE Handbook - Fundamentals, F23.16.

³⁰ HVACSIM+ Type 272, Source Code, §Heat Balances of the Nodes, February, 1994.

HVACSIM + simulation ACREF2 in Appendix AA). Heat transfer between zones was limited to conduction through the walls of the duct work for a certain zone to the plenum air of other zones when that duct work was determined to pass through the plenums of other zones. In later stages of development, it is anticipated that a zone model which accounts for conduction heat transfer between zones will be implemented. The resistances $R_{11,i}$ (refer to 2C3R schematic) calculated to represent conductive connections between a zones plenum and a zones occupied volume were incorporated into the model.

(3) Heat sources to each zone include: $Q_{r,i}$ for lighting and equipment; $Q_{o,i}$ for occupant densities and schedules; $Q_{v,i}$ for ventilation, perimeter heating and infiltration, ; $T_{sa,i}$ for solar radiation and the external ambient air temperature.

Solar Gains and Sky Radiation

Solar gains and sky radiations are expressed through the definition of an equivalent "sol-air" temperature $t_{sa,i}$. The overall, equivalent temperature represents an estimate of the energy flux across the external zone barriers.³¹ It is a weighted average taking into account the effect of all incident radiation on all surfaces for each individual zone. Normally, weighting is derived from ratios of the conductance for the surface(s) of similar optical characteristics and physical orientation within a given zone to the conductance for the entire external zone surface, refer to §2.2.3. In the Annex 10 report there is a slight variation. The weighting factors are "light" by the difference between K_i and K_{ext,m} which is the capacitive flow infiltration flow rate $\dot{C}_{i,out}$. It should be noted that K_i includes a term for the capacitive flow for infiltration which has an unbalancing effect on the weighting; the factors do not sum to one, refer to Equation 43. The overall, equivalent sol-air temperature incorporating the effect of opaque surfaces, single pane windows, and general barriers of any configuration is expressed in the following equation, according to the Annex 10 report:

$$T_{sa,i} = \frac{\sum_{m} K_{ext,m} t_{sa,m,i,opaq}}{K_i} + \frac{\sum_{m} K_{ext,m} t_{sa,m,i,sing}}{K_i} + \frac{\sum_{m} K_{ext,m} t_{sa,m,i,sing}}{K_i}$$
(59)

³¹

The Annex 10 report states that the procedure outlined for estimating solar and sky radiation gains is an approximation, and further that the approximation overestimates solar gains when the building has "large" glazed surfaces and high infiltration rates. The building used in this study has a window surface to wall surface ratio of approximately 0.25:1. The Annex 10 report does not define "large," however, it is assumed that the subject building is fitted with an average distribution of glazed external surfaces, not in "large" amounts.

The conductances K_i and $K_{ext,m}$ are previously defined, and the sol-air temperatures for the various barrier types are expressed as follows:

$$t_{sa,m,i,opaq} = t_{out} + \frac{1}{h_{out,m,i}} \left(\alpha_{m,i} I_{g,m,i} - \varepsilon_{m,i} I_{r,m,i} \right) ; \qquad (60)$$

$$t_{sa,m,i,sing} = t_{out} + \frac{1}{h_{out,m,i}} \left(\alpha_{m,i} Ir_{g,m,i} - \varepsilon_{m,i} Ir_{r,m,i} \right) + \frac{\tau_{m,i} Ir_{g,m,i}}{U_{m,i}} ; and$$
(61)

$$t_{sa,m,i,any} = t_{out} - \frac{\varepsilon_{m,i} Ir_{r,m,i}}{h_{out,m,i}} + \frac{S_{m,i} Ir_{g,m,i}}{U_{m,i}};$$
(62)

where: $t_{sa,m,opaq}$ = the sol-air temperature for an opaque wall $t_{sa,m,sing}$ = the sol-air temperature for a single pane window $t_{sa,m,any}$ = the sol-air temperature for any wall type.

Note that the solar heat gain coefficient $S_{m,i}$ is a function of the heat transfer characteristics of the barrier for which the sol-air temperature is to be calculated, (refer to sub-section "Calculating the Solar Heat Gain Coefficient" this section for $S_{m,i}$ related to single and double pane windows.

The coefficients included in Equations 60, 61, and 62 are defined as follows:

32 Also the difference between long-wave radiation incident on a surface from the sky and surroundings and radiation emitted by a black body at the outdoor temperature [w/m2] (1993 ASHRAE F26.5).

$\mathcal{E}_{\mathrm{m,i}}$	= as the emissivity of the outer surface of wall m in zone i
$ au_{ m m,i}$	= as the transmittance of the outer surface of wall m in zone i
h _{out,m,i}	= film coefficient for exterior surface of wall m in zone i $[W/^{\circ}K m^2]$
t _{out}	= outdoor air dry bulb temperature [°C]

Calculating the Long-wave Heat Transfer

The heat flux $I_{r,m,i}$ across surface m can be expressed as a function of the longwave (infrared) sky radiative transfer of a horizontal surface to the celestial sphere and the angle s of surface m (measured from horizontal):

$$I_{r,m,i} = \frac{1 + \cos s_m}{2} I_{r,h} \qquad s_m < 90^\circ ;$$
 (63)

where $I_{r,h}$ is defined as the long wave sky radiative transfer of a horizontal surface. Typical values for $I_{r,h}$ range between 100 W/m² for clear sky conditions to 45 W/m² for overcast conditions. When figuring what value to use, cloud cover data can provide a basis for fractionalizing the difference between the two extremes. For $s_m = 90^\circ$ the value 0.5 $I_{r,h}$ was used. Refer to Annex 10 report for additional information.³⁴

Calculating the Short-wave Heat Transfer

The total solar gain $I_{g,m,i}$ on the external surface of wall m is a the sum of the direct solar radiation E_D , the diffuse sky radiation E_{ds} and the solar radiation reflected from the surroundings E_r as follows:

$$I_{g,m,i} = E_D + E_d + E_r ; (64)$$

where:

$$E_D = E_{DN} \cos \theta_v \; ; \; and \tag{65}$$

34

It should be noted that for vertical surfaces net flux of long wave radiation between the outer surface of the wall and the sky is considered to be zero (1993 ASHRAE F26.5).

$$E_d = E_{ds} + E_{dg} . \tag{66}$$

with E_{DN} = the direct normal irradiance; and θ_v = the incident angle of the sun to the surface of wall m; E_d = total diffuse radiation from the sky and ground; E_{ds} = diffuse radiation from the sky; E_{de} = diffuse radiation from the ground.³⁵

Calculating the Reflected Solar Radiation E,

 E_r is considered to be negligible for Building E51 for two reasons. First, the building is open, with an unobstructed view to the south. Second, the west face is mostly shaded by trees, reducing the sun's reflection off of the adjacent building (refer to Figures 16) to minimal values. Diffuse radiation on the west end was assumed to be for open, unobstructed conditions in an effort to compensate for the complete elimination of reflected radiation E_r . It should be noted that the tree's shading on the west end does not obscure direct, early afternoon solar radiation, and that this fact is represented in the solair temperature calculations.

Calculating the Direct Normal Irradiance E_{DN}

For this project, solar data is drawn from a source which provides values for E_{DN} , (refer to §4) and θ_{v} can be calculated following the procedure outlined in this section.

In the case, when no solar data are available and a realistic, varying solar flux profile is required, it is proposed that a profile $E_{DN,varying}$ can be developed using the expression for E_{DN} calculated at the earths surface on a clear day multiplied by the percent of cloud cover at each applicable moment for which a value is required as follows:

¹⁹⁹³ ASHRAE Handbook - Fundamentals, F27.10.

$$E_{DN,varying} = A X(\beta)_{cc} e^{-\left(\frac{B}{\sin\beta}\right)}$$
(67)

where: A = the apparent solar irradiation; = atmosphere extinction coefficient; B = percent cloud cover at time for each β .³⁶ $X(\beta)_{cc}$

Use of Equation 67 to derive realistic, time varying values for the direct normal radiation is predicated on the availability of local cloud cover data or other similar surface or satellite based meteorological observations.

The factor is intended to derate the clear sky value. In addition to the cloud factor, real-time extinction coefficients can be used accounting for local atmospheric contaminants.³⁷

Calculating the Total Diffuse Radiation from Sky and Ground E_d

Two methods were explored for determining total diffuse radiation. One method makes use of data sets which purport to capture local, time varying values, and which are made available through the National Climatic Data Center, (refer to the SOLMET data set in §4). The other method makes use of the equation set presented in the ASHRAE Handbook, F27 for calculating diffuse sky and ground radiation.

In the method based on SOLMET data directly, horizontal diffuse radiation is measured and recorded at various local SOLMET sites. These data are taken as they are to describe 100% of the incident sky diffuse radiation on a horizontal surface, and half of these values are taken for incident sky diffuse

Clear sky average values of apparent solar irradiance A and the coefficient B are provided in Table 7, F27.9, 1993 ASHRAE Handbook - Fundamentals. Real-time extinction coefficients are available from the ASOS program data records, (refer to §4.1.2). Values for $C(\beta)$ would typically be taken from a source for surface meteorological observations.

³⁷ Actual values of the atmosphere extinction coefficient for non-clear sky conditions and the impact of cloud cover are both heavily dependent on the suspended particulate matter (smoke, dust, and other pollutants as well as water vapor content in the air). Time constraints did not allow for complete exploration of this concept, and perhaps in a follow-up project some comparison can be made between actual measured values and those calculated using cloud cover.

radiation on a vertical surface. It was assumed that no ground diffuse radiation was incident on the upward facing horizontal surfaces, and the ground diffuse radiation incident on the vertical surfaces was calculated as a fraction of the horizontal sky diffuse. The fraction chosen for this project was based on the ratio of sky diffuse to ground diffuse radiation calculated using the ASHRAE algorithms, (refer to §5.3.2.1).

In the method based on the ASHRAE algorithms, the diffuse sky radiation E_{ds} for vertical and horizontal surfaces can be expressed in terms of E_{DN} , some trigonometric relations related to the orientation of the surface receiving the radiation, and a factor representing the degree of scatter induced by the atmosphere as a function of the earth's relative position to the sun:

$$E_{ds,ven} = C Y E_{DN}; and$$
(68)

$$E_{ds, \Sigma \neq 90} = C E_{DN} \frac{(1 + \cos \Sigma)}{2}$$
; where (69)

$$Y = 0.55 + 0.437 \cos \theta + 0.313 \cos^2 \theta \quad \forall \quad \cos \theta > -0.2 ;$$
 (70)

$$otherwise \quad Y = 0.45 \quad ; \tag{71}$$

and: C = sky diffuse factor.³⁸

The sky diffuse factor is a dimensionless ratio indicating the effect of the earth's relative position to the sun throughout the year, proportioning the effect of the direct normal irradiance as the seasons change. Values for C over the course of a year are provided in 1993 ASHRAE Fundamentals (SI), Table 7, F27.9. It should be noted that, as with the factors A and B in Equation 67, this coefficient is affected by local levels of smog, water vapor, and dust suspended in the atmosphere.

The diffuse radiation reflected from the ground is expressed as a fraction of the direct normal radiation:

¹⁹⁹³ ASHRAE Handbook - Fundamentals (SI), F27.28.

$$E_{dg} = \frac{E_{DN} \left(C + \sin \beta \right) \rho_g \left(1 - \cos \Sigma \right)}{2} ; \qquad (72)$$

where: C = sky diffuse factor; β = solar altitude; ρ_{g} = ground reflectance; and Σ = receiving surface tilt angle from horizontal.³⁹

The coefficient C in this expression intensifies, to varying degrees, the effect of the direct normal irradiance as the seasons change. Again this effect is, in practice, subject to local variations in atmospheric conditions. The solar altitude β is calculated in Equation 77. The ground reflectance was assumed to be equal 0.20. This value represents an average for a variety of surfaces. If necessary, more precise values can be drawn from Table 19 in 1993 ASHRAE Fundamentals, F27.27. For this project, Σ is equal to either 90° for vertical surfaces or 0° for horizontal surfaces.

Incident Angles θ and Solar Altitude β^{40}

The incident angle θ_{v} can be expressed, in general for any surface orientation, as a function of the solar altitude β , the surface solar azimuth γ , and surface tilt angle Σ as follows:

$$\cos \theta = \cos \beta \cos \gamma \sin \Sigma + \sin \beta \cos \Sigma .$$
 (73)

.___.

For vertical surfaces ($\Sigma = 90^{\circ}$) and with γ expressed in terms of the solar azimuth ϕ and the surface azimuth ψ Equation 73 becomes:

$$\cos \theta_{\nu} = \cos \beta \cos (\phi - \psi). \tag{74}$$

For horizontal surfaces ($\Sigma = 0^{\circ}$) and with γ expressed in terms of ϕ and ψ Equation 73 becomes:

^{39 1993} ASHRAE Handbook - Fundamentals (SI), F27.11 & F27.27/8.

⁴⁰ Refer to F27.11 1993 ASHRAE Fundamentals (SI) for drawing.

$$\cos \theta_h = \sin \beta \ . \tag{75}$$

The surface azimuth ψ is interpolated from Table 8 on F27.11 of the 1993 ASHRAE Fundamentals, and the solar azimuth ϕ (a function of the solar altitude β , local latitude L, and solar declination δ) must be calculated:

$$\cos \phi = \frac{\sin \beta \, \sin L - \sin \delta}{\cos \beta \, \cos L} \tag{76}$$

The solar altitude β is a function of local latitude L, solar declination δ , and apparent solar time expressed as an hour angle H:

$$\sin\beta = \cos L \cos \delta \cos H + \sin L \sin \delta ; with$$
(77)

$$H = 0.25 \times M_{number of minutes from local solar noon}$$
; and (78)

$$\mathbf{M}_{number}$$
 of minutes from local solar noon = 720 - $AST_{in minutes}$ after midnight (79)

$$AST = LST + ET + 4 (LSM - LON);$$
 (80)

where:	LST	= local standard time [minutes];
	ET	= the equation of time [minutes of time] 1993 ASHRAE F27.9, Table 7;
	LSM	= local standard time meridian, [degrees of arc];
	LON	= local longitude, [degrees of arc];
	4	= minutes of time required for 1.0 degree rotation of earth.

Calculating the Overall Conductive Heat Transfer

The factor $(U_{m,i})$ defined in the following equation describes the overall conductive heat transfer coefficient for the external boundary m in zone i. Components of the factor include the internal and external surface film coefficients $(h_{out,m,i} \text{ and } h_{in,m,i})$, as well as physical construction characteristics of

the external boundary (e_k the thickness of the layer of material with a thermal conductivity k_m).

$$\frac{1}{U_{m,i}} = \frac{1}{h_{out,m,i}} + \sum_{k} \frac{e_{k}}{k_{m}} + \frac{1}{h_{in,m,i}}$$
(81)

The components $h_{out,m,i}$ and $h_{in,m,i}$ represent the film coefficients for the outside and inside exposed surfaces, and the terms summed over k represent the conductive heat transfer coefficients for the layers from which wall m is constructed. In the case of the double glazed windows installed in Building E51, three elements comprise this sum: two for the glass panes and one for the air space. The effective heat transfer coefficient E for the air space can be calculated using the expression for the effective emittance between two gray surfaces:

$$\mathbf{E} = \frac{1}{\frac{1}{\epsilon_2} + \frac{1}{\epsilon_3} - 1};$$
(82)

where ϵ_2 = hemispherical emittance of the air space side surface of the outside glass pane; and ϵ_2 = hemispherical emittance of the air space side surface of the inside glass pane.⁴¹

With the value of E in hand, Table 4 in 1993 ASHRAE F27.5 can be used to select effective heat transfer coefficients for a range of temperature differences, air space temperatures, and air space thicknesses. Note that the heat transfer coefficient for the air-space in Equation 81 is equivalent to $h_{airspace,m,i}$ in Equation 84.

Calculating the Solar Heat Gain Coefficient

The coefficient $(S_{m,i})$ represents the windows solar heat gain coefficient (SHGC) as described in ASHRAE 1993 Fundamentals, F27.18, and solving Equations 61 and 62 for $S_{sing,m,i}$ the SHGC for a single pane glass can be expressed in terms of the previously defined parameters as follows:

41 Rohsenow, et.al., p.346.

$$S_{sing,m,i} = \frac{U_{m,i} \alpha_{m,i}}{h_{out,m,i}} + \tau_{m,i} .$$
(83)

The SHGC for double glazed windows can be expressed in terms of the previously defined parameters and the as follows:

$$S_{dbl,m,i} = \frac{U_{m,i} \alpha_{external}}{h_{out,m,i}} + \tau_{m,i} + \left(\frac{U_{m,i}}{h_{out,m,i}} + \frac{U_{m,i}}{h_{airspace},m,i}\right) \alpha_{internal}$$
(84)

The solar heat gain coefficient is a dimensionless characteristic specific to each type of fenestration, and since the transmittance and absorptance of glazing materials depend on the incident angle, values vary. Representing the fraction of incident irradiance passing through fenestration as heat gain, the factor accounts for both radiation transmitted directly and radiation absorbed and reemitted. The calculation of the SHGC becomes increasingly more complicated for additional layers. Three methods for calculating the SHGC are offered in this section.

The first method begins with an estimate for the total, instantaneous heat gain through fenestration due to solar insolation and conduction.⁴² In this procedure, the total instantaneous heat gain (or admission) through any glazing material or fenestration *other than double strength sheet glass, but with similar angular dependence* is expressed as the sum of the solar heat gain pus the conductive heat gain:

$$q_A = (SC)(SHGF) + U(t_o - t_i)$$
. (85)

In this equation the solar heat gain is expressed as the product of the shading coefficient (SC) and the solar heat gain factor (SHGF). The shading coefficient is defined as the ratio of solar gain q_i of the window to that of a standard reference window of single pane, double-strength clear glass, irradiated in the same way and under the same environmental conditions.⁴³ Shading coefficients (SC) for single and insulated glass are provided in Table 11 of the 1993 ASHRAE Handbook (SI), F27.19. These

42 1993 ASHRAE Handbook - Fundamentals (SI), F27.18.

43 1993 ASHRAE Handbook - Fundamentals (SI), F27.15.

coefficients are based on still air inside and a 7.5 mph wind on the outside. A wide selection of alternate values for a variety of fenestration options with and without air movement and with and without some form of interior and/or exterior shading device(s).

Solar heat gain factors (SHGF) for various latitudes, compass directions, and times throughout the year are provided in 1993 ASHRAE Handbook (SI), F27.20 - F27.26 all of which makes calculating the solar heat gain relatively simple. To make the necessary connection with the solar heat gain coefficient consider the solar heat gain expressed as the product of the solar heat gain coefficient ($S_{m,i}$) and the incident irradiance ($I_{s,m,i}$):⁴⁴

$$(SC)(SHGF) = S_{m,i} I_{g,m,i}$$
 (86)

By rearranging the preceding equation, direct calculation of approximate values for the solar heat gain coefficient $S_{m,i}$ is possible:

$$S_{m,i} = \frac{(SC)(SHGF)}{I_{g,m,i}}$$
 (87)

When solar heat gain factors for the local conditions are known to the degree of accuracy necessary to meet the requirements of the simulation being contemplated and the shading coefficients for the window types are known, sol-air temperatures can be calculated directly using Equation 62. For this project, the behavior of the system when driven by varying real-time solar insolation and outside air temperatures is a prime objective. For this project, the average, hourly SHGF's found in for example 1993 ASHRAE F27.20 are not acceptable. As an alternative, solar heat gain factors can be generated by following the procedure outlined in the section titled "Computer Calculation of Solar Heat Gain Factors" beginning on page F27.27 of 1993 ASHRAE Fundamentals. However, another option using the expression for the SHGC, expressed in Equation 84, for double pane glass is more desirable. In this equation, it is the transmittance τ , absorptance α , and overall conductive heat transfer coefficient $U_{m,i}$ which are critical and specific to the fenestration construction and material content.

In this second method, calculating the SHGC makes use of the knowledge that all windows in the model building are double glazed. An expression for the transmittance $\tau_{m,i}$ through both glass panes for

1993 ASHRAE Handbook - Fundamentals. F27.18 - F27.19.

double glazed windows can be expressed in the following equation:

$$\bar{\tau} = \frac{\tau_o \tau_i}{(1 - \rho_2 \rho_3)};$$
(88)

where τ_{0} = transmittance through the outer glass pane; τ_{i} = transmittance through the inner glass pane; ρ_{2} = reflectance of the inner surface of the outer glass pane;

 ρ_3 = reflectance of the outer surface of the inner glass pane.⁴⁵

The absorptance α for double pane windows is expressed as a function of the absorptances and reflectances of the two glass panes and the transmittance of the outside pane as follows:

$$\boldsymbol{\alpha}_{outside} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_1 \ \boldsymbol{\tau}_o \ \frac{\boldsymbol{\rho}_3}{1 - \boldsymbol{\rho}_2 \ \boldsymbol{\rho}_3} \ ; \ and$$
(89)

$$\alpha_{inside} = \alpha_3 \tau_o \frac{1}{1 - \rho_2 \rho_3};$$
 (90)

where: τ_{0} = transmittance of the outer glass pane; α_{1} = absorptance of the outer surface of the outer glass pane; α_{3} = absorptance of the air space side surface of the inner glass pane; ρ_{2} = reflectance of the air space side surface of the outer glass pane; ρ_{3} = reflectance of the air space side surface of the inner glass pane.⁴⁶

The parameters in Equations 88, 89, and 90 and the remaining parameters for Equation 84 including the inner and outer surface film coefficients, the overall heat transfer coefficient for the airspace, and the overall conductive heat transfer coefficient for the window can estimated, drawn from manufactures catalogs, or calculated. Tables in the ASHRAE Handbook - Fundamentals Chapter 27 can provide very reasonable estimates for the most common construction components and materials.

¹⁹⁹³ ASHRAE Handbook - Fundamentals, F27.18.

The third, and possibly the simplest, method for calculating the SHGC depends on a standard reference glazing system and shading coefficients for the particular window in question as follows:

$$SC = \frac{SHGC_{subject window}}{SHGC_{reference window}} .$$
(91)

Values for SHGC are typically provided with the energy performance data for most commercially available windows. In the case where the SHGC is not known, Equation 83 can be used with values selected from Chapter 27 in 1993 ASHRAE Fundamentals to calculate a reference $SHGC_{ref}$, along with an appropriate value for the SC. Then using the preceding equation values $SHGC_{subject}$ can be figured directly.⁴⁷

2.2.2 Proposed Alternative 2C3R LPM (Based on IEA Annex 10 Second Order LPM)

Overall Resistance or Conductance for Global Parameterization

The external wall, outer resistance is taken into consideration in the calculation of global parameters by Equation 43, the expression for the overall loss coefficient K_i . The outer portion of the external walls is defined in the first order approximation of the external wall sub-system as $R_{m,outer}$ in Equation 16. The coefficient K_i is used in defining the structural capacitance and in the denominator of the weighting factors for the overall, equivalent sol-air temperature. In contrast to this, the resistances $R_{02,i}$ and $R_{03,i}$ specified for the global model in the Annex 10 report depend entirely on proportional parts of the conductance referred to as $K_{invy,immer}$ in Equation 39. This conductance is comprised of contributions from all the internal heavy walls and only the inner portion of the external walls. The inner portion of the external walls is defined in the first order approximation of the external wall sub-system as $R_{m,immer}$ in Equation 16. It should be noted that this specifically excludes all contributions to the resistance (or conversely conductance) effecting heat transfer through the outer portion of the external walls $R_{m,outer}$.

⁴⁷

The Lawrence Berkeley Laboratory has developed a calculation procedure and a computer program which automates the required calculations for determining Solar Heat Gain Coefficients for complex glazing systems. Multi-pane systems with angle dependent, spectrally selective layers are becoming increasingly popular. As a result, the equations in ASHRAE F27 are inadequate for calculating SHGC for these systems, 1993 ASHRAE Fundamentals (SI), F27.15.

Though not directly related, the contrast is drawn to illustrate an inconsistency in the application and apportionment of various resistances to define a system of heat flow that should be representative of the real system. The global model is an attempt to bring together a large number of individual systems for the purpose of rendering a complex system into a simple network with realistic behavior, and as developed in the Annex 10 report, the author believes, the model fails to meet this objective. An alternative derivation of the global parameters would take into account the effect of $R_{m,outer}$ on the dynamics of the global system and place all of the contribution from the internal walls in a position acknowledging that heat transfer in the internal walls never occurs in direct contact with the outside as is implied by the Annex 10 report proposal.

A further complexity in the Annex 10 model is found in the proportioning constant θ_i . The Annex 10 report represents this factor as the ratio of conductances expressed in Equation 37. Defining θ_i in this way does not ensure that the ratio remain less than 1 since there is no reason why $K_{hvy,inner}$ should be greater than $K_{hvy,ext}$. The need for $0 \le \theta_i \le 1$ is a seemingly desirable requirement, based on the use of θ_i in defining $R_{02,i}$ and $R_{03,i}$. By this alone, it would seem that an alternative definition of θ_i may be required.

Alternative Parameterization of Global System

It is the authors opinion that the apportionment of conductances for the global system can be made on rational terms, and a separate, global proportioning factor is not indicated or required. An alternative apportionment of resistive elements for the global 2C3R model, replaces the resistances $R_{02,i}$ and $R_{03,i}$ with $Ralt_{02,i}$ and $Ralt_{03,i}$, and the resistance $R_{01,i}$ remains the same along with the structural and internal capacitances. The alternative arrangement is shown in Figure 6. In the case of $R_{02,i}$, the alternative expression is a function of the resistance for all the heavy internal walls in parallel with a resistance representing the inner portion of the heavy, external walls for zone i as follows:

$$Kalt_{02,i} = K_{hvy,int} + K_{hvy,ext,inner}; or$$
(92)

$$\frac{1}{Ralt_{02,i}} = \sum_{m} \frac{(1 - E_m) H_m}{R_m} + \sum_{m} \frac{E_m H_m}{R_m \theta_m}.$$
 (93)

In the case of $R_{03,i}$, the alternative expression is a function of the resistance representing only the outer portion of the heavy, external walls for zone i as shown in the following equation:

$$Kalt_{03,i} = K_{hwy,ext,outer} ; or$$
(94)

$$\frac{1}{Ralt_{03,i}} = \sum_{m} \frac{E_m H_m}{R_m (1 - \theta_m)} .$$
(95)

The proportional factor θ_m is found using Equation 14, the term for the *accessibility of capacitance* found for the first order system 1C2R model for the external walls.

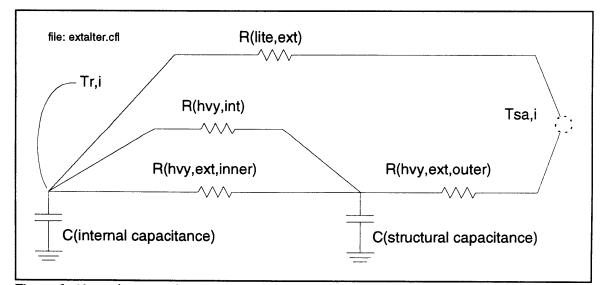


Figure 6: Alternative Apportionment of Resistive Elements for the Global 2C3R Model

Additional Consequences to Modifying Global Resistance Parameters

If the strategy for combining the LPM sub-systems is modified certain changes in some of the other defined variables must also be made. The primary change modification is made in the definition of the

equivalent resistance $R_{eq,i}$ or conductance shown in Equation 48. The term representing the structural conductance $K_{hvy,inner}$ (defined in the Annex 10 report and shown in Equation 39) would be replaced with the term derived by combining the two Equations 92 and 94 (Kalt_{hvy}). The newly defined structural conductance would then be used in the definition for the equivalent resistance (conductance) shown in Equation 48 to obtain the following:

$$Kalt_{eq,i} = C_{i,put} + K_{lite,ex} + Kalt_{hy}; where$$
(96)

$$\frac{1}{Kalt_{hy}} = \frac{1}{K_{hy,int} + K_{hy,ed,inner}} + \frac{1}{K_{hy,ed,outer}};$$
(97)

or alternatively, in terms of the first order sub-components, the modified equivalent resistance can be expressed as:

$$\frac{1}{Ralt_{eq,i}} = C_{i,out} + \sum_{m} \frac{(1 - H_m)E_m}{R_m} + \frac{1}{\frac{1}{\sum_{m} \frac{(1 - E_m)H_m}{R_m} + \sum_{m} \frac{E_m H_m}{R_m \theta_m} + \frac{1}{\sum_{m} \frac{E_m H_m}{R_m (1 - \theta_m)}}}$$
(98)

Adopting the modification to the definition of $R_{eq,i}$ would not alter the overall loss coefficient K_i defined in Equation 43. However, the expressions for the global LPM characteristic response parameters, the accessibility (as defined in Equation 37), the time constant, and the structural capacitance would all be effected, and must be modified appropriately.

Modification to the Overall, Equivalent Sol-Air Temperature Calculation

The weighting coefficients in the sol-air temperature calculated in Equation 59 do not quite add up to 1. The offsetting component in this problem is the addition of the term for the capacitive flow of infiltration $\dot{C}_{i,out}$ which was added into the report by hand, apparently as an afterthought. Either this term should be eliminated from the coefficient denominator or the numerators need to be modified to correct the inconsistency. Reference is made at the end of the Annex 10 report sub-section 2.5 to the use of t_{out} in place of $t_{out,m,i}^*$ in the equivalent sol-air temperature ($t_{out,i}^*$) calculation when figuring a resistance for infiltrations. The solution to the inconsistency may lie with incorporation of an infiltration resistance term into $t_{out,i}^*$. However, since, infiltration is considered negligible in the real building, this feature was not implemented in the model. Consequently, the weighting coefficients used

2.2.3 Error Correction to 2C3R Model

The structural resistance R_i is defined in a copy of the IEA Annex 10 report used by the MIT team as:

$$\frac{1}{R_i} = \sum_m \frac{H_m}{R_m \theta_m} .$$
(99)

This definition is also stated in Equation 39 expressing the sum as a conductance named appropriately for the portion of the physical structure it actually represents. It come to be known that this expression is inaccurate. The questions raised in the course of this researchers effort and summarized in Section 2.2.2 are a direct consequence of the inaccurate definition expressed in Equation 99. Further, the Equations 34, 102, 103 and 35 are defined in the Annex 10 report as:

$$R_{02,i} = R_i \,\theta_i \; ; \; and \tag{100}$$

$$R_{03,i} = R_i (1 - \theta_i);$$
 (101)

and as a result of the incorrect definition expressed in Equation 99, the expression for $K_{ext, inner}$ found its way into the definitions for the structural resistance. It appears that R_i is used in the two expressions for the resistances $R_{02,i}$ and $R_{03,i}$ which are attached to the structural capacitance, and no where else. As a result, corrections to the calculations should be limited to recalculating these resistances.

The correct expression for the structural resistance R_i as a function of the overall loss coefficient K_i (Equation 43) and ratio of the heat flux through the light walls to the total heat losses to the outside ξ_i (Equation 49) is:

$$\frac{1}{R_i} = K_i (1 - \xi_i) .$$
 (102)

The correct expression for $K_{ext, inner}$ as a function of R_i is:

$$K_{ext, inner} = \frac{1}{R_i \theta_i}; \qquad (103)$$

accurately describing the physical arrangement which K_{ext,inner} is intended to represent.

2.3 Preparing for and Executing an HVACSIM+ Simulation

The three major programs comprising the HVACSIM + package all require advance preparation: (1) the "front end" program HVACGEN, used to configure a simulation; (2) the small utility program SLIMCON, used to convert input data developed by HVACSIM into a format compatible with MODSIM; and (3) the third, the main simulation program MODSIM used to compute a simulation. Additional programs are provided with the package which assist in pre-processing information used in conjunction with the building model, and are described in detail in the HAVCSIM + document NBSIR 86-3331 [Park, et.al., 1986]. One utility, written to transform HVACSIM + output data into a form compatible with MATLAB is particularly useful when the real-time user interface is not implemented [Lorenzetti, 1994].

The inter-linked system of components, each representing a piece of a building which has been identified for inclusion in the model, is developed through HVACGEN. Type input and output indices are assigned, and all non-time-dependent parameters are entered.⁴⁸ The units are grouped into logical categories called blocks, and the blocks are grouped into still more logically organized categories called super-blocks. The logic behind the development of the categories for each level of grouping is dependent on the type of simulation being considered. Recommendations for grouping units into blocks and super-blocks are discussed in §2.1 of this thesis and in HVACSIM + document NBSIR 85-3243 [Clark, et.al., 1985].

HVACGEN

The HVACGEN module is used structure a simulation. The basic simulation components are organized into logical groupings, modeling each individual piece of the building. The HVACSIM + type library contains many common and specialty models. In the event that alternate models are required, the

Reference to a building in this context refers to the building's shell and all internal components including, but not limited to, mechanical systems, walls, floors, ceilings, furniture, internal air, ducts, and control systems.

library is expandable; the code (written in Fortran 77) is accessible when modifications to existing types are necessary or require completely new, as yet undeveloped types; for example, the real-time interface was developed by LUT as a sub-task of the overall project.

The HVACGEN module must contain the information about all types which are to be simulated. If a type required to model a certain feature of a system does not exist in the current version of HVACGEN, then a new version of HVACGEN needs to be created. This entails including the new type information (stored in the form of *.for files) in the build statement for creating the HVACGEN executable and recompiling to include the new type(s) information.⁴⁹

Preparation for running HVACGEN consists of identifying the component building parts and the corresponding HVACSIM + types. Parameters for each unit must then be calculated or otherwise drawn from appropriate sources. These sources may include manufacturer's catalog cut sheets, local on-site measurements, and general references, manuals, and other industry accepted sources. Running HVACGEN produces a work file containing all model structure information.

SLIMCON

This small utility program converts output from HVACGEN into a format which can be used directly by the main simulation module MODSIM. Preparation for running SLIMCON consists of completing the input of all simulation units to create the model structure file. SLIMCON will automatically convert the work file. Output from SLIMCON consists of the model definition file, and a table is generated listing the number of critical elements and percentages of the maximum number of the critical components permitted in a simulation, [Clark, et. al., NBSIR 85-3243, p.36]

Time Dependent Input

Time dependent input to a simulation is implemented typically in a set of boundary files defined according to the requirements of the type to which they are to be fed. Solar and collateral weather data are typical examples of data input to a simulation in this manner. The type added to the library of HVACSIM + capabilities which allows the operator to visualize a system of variables in "real" time as the simulation develops can be used to adjust control system parameters in "real" time, thus allowing

49

The windows based Microsoft Fortran Power Station compiler program was used for modifying the HVACSIM+ executable programs. MIT Research Assistant Dave Lorenzetti pioneered the use of this compiler program for this project.

the operator access to tuning and what-if scenarios. In general, the output for a simulation is collected in a file. The file contains a record of the values of variables as they evolve over the course of a simulation. The variables recorded can be selected from any used in the simulation. The reporting frequency can be adjusted for each super-block.

General 14 Step Procedure

The HVACSIM + Users Guide, NBSIR 85-3243, suggests a 14 step procedure for developing, assembling, commissioning, and executing a simulation:

- (1) Determine Systems and Components Primary decisions are made at this point
- (2) Determine Types Available and Select Types;
- (3) Diagram Types and Connections;
- (4) Select [derive and calculate] Parameters;
- (5) Group Units into Blocks;
- (6) Group Blocks into Super-Blocks;
- (7) Select Boundary Variables;
- (8) Select Reported Variables;
- (9) Determine Initial Values;
- (10) Run HVACGEN to Create a Simulation Work File;
- (11) Run SLIMCON to Create a Model Definition File;
- (12) Set-up Boundary Value File;
- (13) Run HVACSIM; and
- (14) Interpret Results.

For a simulation as large as the one contemplated for this project, it is advisable to prepare subassemblies which can be created and commissioned independently of each other and then incorporated into a final assembly of the entire system. The sub-assemblies would be logical groupings of, for example, mechanical room components, individual zone models, the return and supply air duct systems, or even individual components with these groups. A testbed can be set up which would simulate open or closed loop conditions which would enable one to bench test each major component or component group.

3 Model Development

The model development process was broken into three major task groups: (1) selecting the real building; (2) developing occupancy schedules, characterizing the system of internal gains including lighting and equipment, and selecting an appropriate zone simplification scheme; (3) collecting and identifying specifications, descriptions, and visualizations of every system component to be included in the model.

A number of building configurations were identified with the potential for providing the prototype required for this project, and based on a set of priorities an optimum selection was made. Following building selection, internal heat gains were divided into to major categories: occupancy related and lighting/equipment related. Studies and surveys were used to tabulate schedules and quantities. In the process of quantifying the internal gains, a formulation was developed to re-zone the building into a smaller number of zones than actually existed in the building. This simplification process was necessary in order to reduce the models complexity to a tractable level, recalling that "...*The best model is the simplest one which yields the information necessary for engineering action or decision...."*⁵⁰ Specification of the real building involved a detailed, comprehensive investigation of every component or system to be captured by the mathematical model. Information was drawn from architectural, structural, and mechanical drawings, catalog cut sheets, conversations with manufacturer representatives, visual inspections, occupancy records, and historical data. When systems or equipment were substituted, as in the case of the supply and return air ducting, every effort was made to maintain a basis for the substituted systems founded in the actual physical details of the item(s) being replaced.

3.1 Selection of Real Building

"The ideal building [or model volume] would include examples of all components to be modeled in this project. It would include a small number of thermal zones, enough to permit supervisory control strategies to be properly exercised, but not so many as to make preparation and execution of simulations unduly time consuming. For the purposes of the proposed work, the ideal building would not only

50

Shearer, Murphy, & Richardson, Introduction to System Dynamics, (Reading, Massachusetts: Addison Wesley, 2nd Printing, 1971), p. 151.

satisfy specific technical criteria, but [it] would also come with extensive documentation, primarily mechanical and structural specifications and control sequences, and a cooperative facilities manager."⁵¹

Selection and documentation of the building involved three phases. In the first, a limited number of buildings was selected for consideration on the basis of location, type or usage, size or geometric characteristics and orientation, approximate age, and known facts related to installed mechanical systems. In the second phase, surveys, interviews, and inspections were conducted to determine the availability and accessibility of the necessary specifications to sufficiently model the building envelope and HVAC system. In the third phase, field surveys were made to verify the information obtained in the second phase.

3.1.1 Desired Characteristics

<u>Phase 1</u>: Theoretically, the building could have been located anywhere, providing the building's documentation is sufficient to provide all technical details accurately, as installed: Practically, however, this was not a reasonable expectation, since equipment and construction details can often vary significantly between what was originally specified and what was actually installed. As-built drawings and specifications are designed to clarify these type of discrepancies, and usually do provide an accurate and thorough representation of the real building. It is this authors opinion, however, that in many instances an on-site, visual inspection can save many hours of tedious research looking for answers which may never have been well documented in the first place. Good examples of this can be found whenever specifications are augmented with the phrase "or equal to, or better." This implies that the builder, material and/or supplier, and/or field personnel have the option, at some point in the building delivery process, to provide something other than that which was specifically named. This is accepted practice in the industry, providing opportunities to meet cost and schedule objectives without sacrificing function. The implication for this project is that parameters for certain pieces of equipment and materials must be verified in the field.

One of the project's principle objectives is to "model the short- term dynamic characteristics and nonlinearities of HVAC components."⁵² Consequently, the values selected from the documentation of the

52 ASHRAE 825-TRP

⁵¹ ASHRAE 825-TRP

subject building are critical; some examples of these critical data elements include parameters such as response times for actuators, motor and fan blade specifications, and valve body configurations. The accuracy of the model's behavior depends on faithful attention to detail, and this is possible only when verification of installed equipment and materials can be accomplished. As a direct consequence, the focus for selecting an appropriate building was confined to a fifteen or twenty mile radius of the MIT campus.

Beyond the essential and prime condition that the building ventilation system to be variable air volume (VAV), diversity was a factor in the selection process. Inside design conditions, air movement, circulation changes per hour, minimum outdoor air, noise, filtering efficiencies, energy budgets, and load profiles all contribute to the general design requirements for a buildings comfort air conditioning and heating system.⁵³ Examples of facilities that offer a wide range of various design criteria applicable to this project can be found in retail facilities, commercial and public buildings, places of assembly, and educational facilities. Each one of these building types make unique demands on a building's environmental control system, and combining two or more types into one building would provide the most interesting and ultimately useful testbed. A thorough compilation of design criteria for these building types can be found in the ASHRAE 1991 Handbook - HVAC Applications, Chapter 1. In selecting a building for this project an effort was made to find one that accommodated a range of activities. Facilities with unique or exotic environmental conditions such as health-care facilities or industrial applications were not included in consideration for this project although the concepts and technology developed in this project may be applied to such applications in the future.

Attention to the building's geometric characteristics automatically constrained the design criteria. Choosing a building within the 15,000 to 20,000 sqft range ensured that the building contained the requisite number of zones and a reasonable level of complexity. This size building allowed the possibility for the presence of a central plant supplying conditioned air through a single duct, variable air volume system. An alternative to central systems is provided by package systems - self contained air conditioning units, factory assembled in integral packages which include fan, filters, heating/cooling coils, refrigerant, compressor(s), controls and condenser. Although commonly applied to almost all classes of buildings, including the types considered appropriate for this project, the limitations inherent to package systems preclude them from consideration. The factors which result in the limitations are the limited performance options available due to fixed airflow, cooling coil, and condenser sizing, the general unavailability of air-side economizers, and reduced air distribution control. In addition,

⁵³

ASHRAE 1991 Applications Handbook(SI), Commercial and Public Buildings, A3.2/3.

modeling is complicated by the unitary equipment design; individual components can not be isolated and accurately modeled.⁵⁴

Orientation, shape and size contribute significantly to HVAC design considerations. "... the exterior load may vary from 30 to 60% of the total air-conditioning load when fenestration area ranges from 25 to 75% of the floor area ... For example, a rectangular building with a four to one aspect ratio requires substantially more refrigeration than a square building with the same floor area."⁵⁵ Hence, the impedance, and consequently, the dynamic range of the model can be manipulated significantly by shape factors. Intimately related to this design consideration is orientation. Solar load is dependent on fenestration area as well as compass orientation, and large south facing surfaces (for buildings located in the northern hemisphere) make good targets. These factors are not appropriate as a primary consideration in the building selection process. However as a secondary tool, understanding them can help to get the most out of a selection.

Age and known characteristics related to the installed mechanical system were considered together. A required feature in the chosen building was the use of computerized supervisory control of electromechanical systems or direct digital control (DDC). First appearing in the late sixties and early seventies, computer actuated supervisory control were often installed in parallel with pneumatic systems. As technology evolved, *"DDC eventually emerged as a stand-alone, and later, a distributed form of computerized control."*⁵⁶ Presently, the microcomputer technology used in DDC systems is often based on the Intel 80XXX or Motorola 68XXX families, both of which began to circulate into common use only after 1980.⁵⁷ Consequently, choosing a building that had been either constructed or renovated no earlier than 1980 helped to increase the chances of identifying proto-typical structures containing "modern" control systems.

<u>Phase 2</u>: Prior to approaching a building owner or operator for possible access to a candidate building, a menu of selection criteria was prepared together with a letter explaining the intentions of the project and the requirements for evaluation. Selection and documentation of the building involved compiling from the available specifications sufficient information to model the building envelope and

^{54 1992} ASHRAE Handbook - HVAC Systems and Equipment (SI), Chapter 5.

^{55 1991} ASHRAE Handbook - HVAC Applications (SI), Chapter 3, A3.1.

⁵⁶ ASHRAE Professional Development Seminar - DDC For HVAC Monitoring and Control. February, 1994.

⁵⁷ ASHRAE PDS - DDC ..., 1994.

HVAC system. Once assembled, the building model envelope and its mechanical systems was to serve as the test-bed. The criteria for the building selection process is shown in Table 4.

For purposes of this study, the ideal building would not only satisfy the above technical criteria, but would also come with the full cooperation of building owner/management. Responses to the letter were collected and based on these, decisions were made to proceed to the third phase of the selection process.

Criteria	Description							
01	Office type - four to five stories, providing a simple, stand-alone envelope type							
02	Well defined documentation - the building should be fully described by a complete set of building, equipment, and controls specifications, primarily mechanical and structural specifications and control sequences							
03	VAV HVAC system							
04	A small number of thermal zones; enough to permit supervisory control strategies to be properly exercised, but not so many as to make preparation and execution of simulations unreasonably time consuming; minimum number of zones - typically 25 terminal boxes to be grouped into 5 units for simplification							
05	One control air handler							
06	Dedicated mixing plenum							
07	Draw through, as opposed to blow through, heating and cooling coils							
08	One set of heating and cooling coils							
09	One boiler							
10	One chiller set digitally controlled terminal boxes with direct drive-control							
11	Direct Digital Controls (DDC)							
12	Direct drive-control, motor-driven electronic actuators							
13	Adjustable or variable speed motor drives (VSD)							
14	Accessibility - the building should be located within a 15 - 20 mile arc of Cambridge, Massachusetts							

Table - 4: Selection Criteria for Building Type

<u>Phase 3</u>: With the preliminary cut completed, field surveys and assessments were conducted in this final phase of the building selection process. More comprehensive inspections of plans and

specifications were made, and interviews were conducted. Verification of quantitative information regarding design details was sought in the process, in addition to qualitative information regarding accessibility to machine spaces, occupied areas, and occupancy rates. Then, with all available information compiled and analyzed, a final selection was made.

The building envelope and HVAC system configuration ultimately chosen was closely related to what may be considered the industry standard for a typical, medium-sized office building with a VAV HVAC system. This was be done in order to minimize accommodations necessary for non-standard installations and engineering practices, the result of which would weaken the integrity and compromise the utility of the model as a standard testbed. The ideal building was envisioned to have four to five floors, a VAV HVAC system with direct digital control system and motor driven electronic actuators. An acceptable alternative was an entire floor sub-section in a multi-story office building, provided that the volume serviced by the mechanical sub-systems for the subject area is limited to that area. Final selection was made in collaboration with LUT.

3.1.2 Candidate Building Characteristics

As stated in the research funding proposal ... "Achieving the ideal is difficult. A building with a relatively small number of thermal zones will typically not have a rich set of equipment...."⁵⁸ An additional consideration was to look for a building with an envelope and HVAC system configuration as close as possible to what may be considered the industry standard. This would help to minimize accommodations necessary for non-standard installations and engineering practices; the implication being that non-standard installations would weaken the integrity and compromise the utility of the computer model as a standard testbed. The ideal building was to be a free standing, four to five story office building with a VAV HVAC system.

An acceptable alternative is an entire floor sub-section in a multi-story office building each with its own isolated VAV HVAC system. In this case, the sub-section floor and ceiling would be treated as adiabatic boundaries and cooling energy would be provided by the core cooling system represented in the model as a temperature source. As an augmentation of those characteristics noted in Table 4, other major considerations for building selection included: adjustable (or variable) speed motor drives (VSD); direct digital control (DDC) controllers including digitally controlled terminal boxes with direct drive-

58 ASHRAE 825-TRP

control, motor-driven electronic actuators and microprocessor control; completeness of documentation; a reasonably limited number of thermal zones; a dedicated mixing plenum; draw through as opposed to blow through heating and cooling coils; one boiler; and one chiller.

Several buildings were considered: two originally included in the grant proposal (MIT Buildings E-18 and E-51, Cambridge, MA) and two identified afterward (75 State Street, Boston, MA and 222 Berkeley Street, Boston, MA). The two MIT buildings represent choices close to the ideal free standing model, and the more recently identified buildings represent choices as acceptable alternatives, sub-sections of multi-story office buildings.

The four buildings under consideration in the final phase of the selection process

- A. MIT Building E-51 This building is a free standing structure. The HVAC system in this building is VAV with constant speed motor drives and inlet vanes. The terminal boxes are not DDC, and pneumatic actuators are used to operate the terminal box dampers and reheat coils as well as the AHU dampers and cooing cooling control valve. Cooling for the building is provided via the campus cooling system. The length/width aspect ratio is approximately 2.4:1, and the fenestration area is close to 20 percent of the total floor area. The building is fully described in complete sets of building, equipment, and controls specifications. Full cooperation was available from the building owner and operator.
- B. MIT Building E-18 This building is not a free standing structure. It is connected to two adjacent buildings. The intention with this building would be to model it as a free standing structure, making adjustments as required to accommodate anomalies. The HVAC system in this building is VAV with VSD motor drives. The terminal boxes are DDC, and electronic actuators are used to operate the terminal box dampers. Pneumatic actuators with transducers to the DDC system are used on the AHU and cooling control valve. Cooling for this building is provided by a system shared with the two connecting buildings. Several zones in the building are shared with the adjoining buildings. The mixing plenum is also shared with the adjoining buildings. The supply fan cooling coils are blow through rather then draw through.

The physical building boundaries are not clean; passage ways leading to the adjoining buildings are open which results in mingling circulation. The length/width aspect ratio is approximately 2:1, and the fenestration area is nearly 20 percent of the total floor area. The building is fully described in complete sets of building, equipment, and controls specifications. Full cooperation was available from the building owner and operator.

- C. 75 State Street This is a high rise commercial office building. Each floor has its own self contained VSD VAV HVAC system. The entire system from the base building control system to the terminal boxes are DDC, and both the AHU and terminal box dampers are pneumatically actuated. The supply fan cooling coils are draw through. Cooling for each floor is provided by a central supply fed through the building's core. Perimeter reheat is provided by staged electric resistance elements. The length/width aspect ratio is approximately 1:1. Although the plan section is square, the total fenestration area is between 25 and 50 percent of the floor area. The building is fully described in complete sets of building, equipment, and controls specifications. Full cooperation was available from the building owner and operator.
- D. 222 Berkeley Street This is a high rise commercial office building. Each floor has its own self contained VSD VAV HVAC system. The entire system from the base building control system to the terminal boxes are DDC, and the terminal box dampers have motor driven actuators. The supply fan cooling coils are draw through. Cooling for each floor is provided by a central supply fed through the building's core. Perimeter reheat is provided by staged electric resistance elements. The length/width aspect ratio is approximately 1.2:1, and the plan section is nearly square with the total fenestration area between 10 and 20 percent of the floor area. The building is fully described in complete sets of building, equipment, and controls specifications. Full cooperation was available from the building owner and operator.

IV. Selection of Real Building - Detailed Comparison and Review

A. MIT Building E-51 - A review of the characteristics and features of this building and comparison with other possible choices may lead one to conclude that this building may not be an acceptable candidate. To date only one DDC terminal box with a

motor driven damper actuator has been installed, and although a microprocessor is being used to process the control signals, pneumatic sensors and actuators are used throughout the building. However, this building has many strong physical or structural characteristics which tend to offset the negative features of the HVAC control system.

This building has two central plants servicing two adjoining volumes within the structure. Clearly defined, physical boundaries appear between the volumes, providing for separating structural and mechanical systems for each of the two volumes. Among the four selections, this building's aspect ratio is the highest, and except for the hallways, there are no interior spaces. The percentage of floor area to fenestration area is average for the typical commercial office building with a brick faced, CMU (concrete masonry units) block curtain wall.⁵⁹ Central plant cooling is augmented by an air-side economizer cycle. A point by point comparison with the characteristics of the other possible choices is presented in Appendix A.

- B. MIT Building E-18 A review of the characteristics and features of this building and comparison with other possible choices removed it from serious consideration. Detractions include the blow through as opposed to draw through supply fan cooling coils, split zones, complicated physical boundary, shared mixing plenum, and shared cooling system. Additionally, the terminal box dampers are pneumatically actuated. The aspect ratio is high, and the percentage of floor area to fenestration area is average for the typical commercial office building with a brick faced, CMU.
- C. 75 State Street With the exception of the pneumatically operated terminal box damper actuators and non-free-standing nature of this building, it is well suited for this research project. Although the aspect ratio is low, the percentage of fenestration area to floor area is unusually high. The building is faced with glass, resulting in a lower impedance and a potentially higher dynamic range with respect to solar flux and weather variations. A point by point comparison with the characteristics of the other high rise commercial office building is presented in Appendix A.

⁵⁹ This characterization is based on the author's experience in the construction industry.

D. 222 Berkeley Street - With the exception of the non-free-standing nature of this building, it is generally well suited for this research project. The aspect ratio is low, and the percentage of floor area to fenestration area is also low. Usage in this building is highly diverse. This building contains retail, commercial office, and residential apartment spaces. Variable air volume and constant volume systems are in service for various parts of the structure, and the central cooling plant can benefit from the water-side economizer system tied to roof top mounted cooling towers. A point by point comparison with the characteristics of the other high rise commercial office building is presented in Appendix A.

3.1.3 Conclusion and Recommendation for Prototype Building Selection

The two high rise commercial office buildings (Selections C - 75 State Street & D - 222 Berkeley) provide very acceptable prototypes for use in this research project. Both provide easily identifiable building envelope boundaries, a rich set of DDC equipment, excellent documentation, and the full cooperation of owner and manager. For Selection C, the curtain wall impedance is relatively low which translates into potentially dramatic effects on the dynamic response from solar and weather excitation. For selection D, the curtain wall impedance is relatively high which translates into the potential for a somewhat more conservative dynamic response. Diversity for both buildings is low; the volumes available for consideration in each building are single use commercial office space. There is the usual mix of open plan interior and partitioned perimeter office areas.

The single outstanding feature separating the two high rise buildings is the terminal box damper actuator; motor driven damper actuators are installed in Selection D, and pneumatic driven damper actuators are installed in Selection C. Component models in the HVACSIM + computer program currently exist to support the motor driven type actuators, and it is believed that motor driven actuators will eventually supplant pneumatic controls as an industry standard. Both buildings have a reasonably small number of zones, oriented in an orderly fashion which lend themselves very well to HVACSIM + modeling requirements. Consequently, of the two high rise selections the building at 222 Berkeley Street has the preferred characteristics, and could easily serve as a prototype model for this research project.

The buildings (Selections A - MIT E51 & B MIT E18) have multiple uses with strong potential to bring occupancy diversity into the model. They represent nearly free standing structures, bringing these models very close to the desired ideal. In the case of E18, one central plant services this and an adjacent building. The building's physical boundaries are not separate and distinct, and in addition, the boundaries for the air circulation system in E18 are not clear. In the case of E51, two central plants provide cooling and fresh air. The physical boundaries between the two areas served by the two plants are separate and distinct, and the boundaries for the air circulation system for both volumes. VSD drives are fitted in E18, where in E51 they are not. Pneumatic actuators are a negative feature for both buildings, however, central plant control are attended to by microprocessor, DDC based, supervisory energy management systems. One motor-driven actuated box has been installed in an E51 VAV terminal box for a beta-test case, and can be used as a proto-typical model for all VAV terminal box actuators in the testbed. No motor driven actuators have been installed in E18. The two MIT buildings also offer satisfactory mechanical and control systems, excellent documentation, and the full cooperation of owner/manager.

In conclusion, the two high-rise office buildings offer outstanding characteristics in regard to mechanical system characteristics. However, diversity, potential dynamic response, the absence of airside economy cycles, and the open plan office structure do not lend themselves to the desired result. The MIT Building E18 can not be considered a serious contender due to the ill defined physical boundaries, split cooling system, and co-mingled air-flow patterns. The MIT Building E51 has the greatest potential of the four candidate structures. The strength of the clearly defined physical boundaries, the isolated cooling plant and air-flow patterns, the high occupancy and usage type diversity patterns, as well as the potential for dramatic dynamic responses to environmental influences combine to sufficiently over-shadow any deficiencies found in the HVAC control system.

These systems could easily and justifiably be replaced with the requisite class of equipment through a series of objective, analytical assessments, where modifications to the building structure, to suit the needs of this project, would be very subjective, not very analytical, and open to wide ranging criticism. One significant draw back to selection of this building is the large number of zones with many varied uses. Further complicating the issue is the fact that the zones with common usage and occupancy profiles are not all adjacent to each other. Simplification, in this case, for HVACSIM + adaptation will be complicated, but not impossible. In support, clear objective, analytical assessments can be made for combing zones and re-orienting to suit HVACSIM + adaptation.

In conclusion, of the four candidate selections, MIT Building E51 provides the best possible prototypical structure for the purposes of the proposed testbed.

3.2 Occupancy Schedules, Internal Gains, and Zone Selection

"Variations in the heat gains from the occupants, equipment, and lights make a major contribution to the variation in heating and cooling loads, particularly on the shorter time-scales (i.e. less than one hour). A major function of the loop controllers is to maintain the controlled variable at its set-point in the face of disturbances due to load variations. This becomes progressively more difficult as the timescale of these variations gets smaller, approaching the dominant time-constant of the plant being controlled. The evaluation of local loop control, including interactions between loops, requires the use of realistic disturbances in order to assess the controlled performance under conditions representative of those occurring in a real system."⁶⁰

Two methods were used to establish "conditions representative of those occurring in a real system." First a survey of information already available from other studies, published, and unpublished was made. "Sources of existing information include: the National Research Council of Canada, which has studied usage patterns of office equipment; Pacific Northwest Lab, which monitored a large number of commercial buildings as part of Bonneville Power Administration's ELCAP (End-Use Load Consumer Assessment Program); Lawrence Berkeley Laboratory, which has recently analyzed building energy data from the Energy Edge program; and Pacific Gas & Electric. "⁶¹ Second, a limited assessment of the equipment and activity in the proposed building was made.

The limited assessment captured the distribution and specifications of equipment and lighting throughout the selected building. In addition, thorough analysis of occupant usage in each area of the building produced a series of schedules for this source of heat input. Heat input to each of the individual zones in the HVACSIM + Type 272 (reference Appendix Z, Type Models) is accomplished through three parameters: (1) number of occupants; (2) lighting heat gain; (3) equipment heat gain. This method limits heat input due to equipment, lighting, and occupants to a single value for the duration of a simulation.

⁶⁰ ASHRAE 825-TRP

⁶¹ ASHRAE 825-TRP

Modifications are under consideration by the LUT team to change the input method for these variables into a time varying input through an input variable similar to that for insolation. In preparation for the anticipated modifications, tables which reproduce the profiles of each of the three heat input categories were created. These tables represent a synthesis of the raw data, and are designed to provide realistic profiles for each heat input category for all megazones. The tables can be used directly as input for a modified HVACSIM + Type 272 designed to accept time varying excitation.

The basis for lighting and equipment heat gains used in this project is them nameplate data. The studies cited in §3.2.1 clearly indicate that power usage per nameplate data differs substantially from actual power usage, and that estimated usage by nameplate data leads to overestimates. In this regard, a comprehensive monitoring program may be useful to gain insight into how power is consumed within Building E51. Such a program is beyond the scope of this project, and may constitute a separate project which could follow as an addendum to this report. Until such information is obtained, the profiles developed from the nameplate data can be tempered by scaling the data to percentage of the maximum.

3.2.1 Available Survey Information

The documents referenced in Table 5 were reviewed to identify sources of existing information which may capture the essence of the variations in the heat gains due to occupants, equipment and lights, and which make a major contribution to the variation in heating and cooling loads. When the document were reviewed, none demonstrated internal heat gain profiles with high frequency (near one minute) variations. Most quote power dissipation densities averaged over large quantities of data. One recently completed, unpublished paper came to this author's attention afterward which does report office equipment usage at one minute intervals. This report will be reviewed in the final report to ASHRAE regarding the model testbed project.⁶²

Issues and concepts discussed in the various papers include actual values measured in the field and estimated or predicted values based on statistical analysis of accumulated data. Typical, measured, and actual energy consumption for several load categories are identified, including that for HVAC, lighting and various miscellaneous pieces of equipment (e.g. water coolers, office equipment, coffee makers,

62

Norford, L.K., and K.L. Bosko, <u>Performance of Energy Star Compliant Personal Computers and Monitors</u>. Cambridge, Massachusetts Institute of Technology, 21 September, 1995.

Abbreviation Doc Date Type	Document
1 LBL <1992> Paper	Diamond, R., M.A. Piette, B. Nordman, O. deBuen, J. Harris, B. Cody. "The Study of the Energy Edge Buildings: Energy Use and Savings." Lawrence Berkeley Laboratory and Bonneville Power Administration, 1992.
	Published in the: ACEE 1992 Summer Study on Energy Efficiency in Buildings Proceedings "Commercial Performance: Analysis and Measurement 3" American Council for an Energy-Efficient Economy.
2 PNL <1994> Paper	Szydlowski, R.F., W.D.Chvála. "Energy Consumption of Personal Computer Work Stations." Pacific Northwest Laboratory February 1994. Document ID: PNL-9061/UC-350.
3 MAP <lbl 1991=""> Paper</lbl>	Piette, M.A., J. Eto, and J. Harris. "Office Equipment Energy Use and Trends - Brief of Final Results to PG&E & CEC." Berkeley, California. Energy and Environment Division Lawrence Berkeley Laboratory. 1991. LBL-31308.
4 NOR <1990> Paper	Norford, L.K., A. Hatcher, J. Harris, J. Roturier, and Q. Yu. "Electricity Use in Information Technologies." Annual Review of Energy. Volume 15. 1990.
5 HAR < 1988> Paper	Harris, J., J. Roturier, L.K. Norford, and A. Rabl. "Technology Assessment: Electronic Office Equipment." LBL Report Number 25558. November 1988.
6 ROA <1988> Paper	Roach, C. "Office Productivity Tools for the Information Economy: Possible Effects on Electricity Consumption." P/EM-6008. EPRI Research Project 2345-30. October 1988.
7 BPA1 <1991> Paper	Pratt, R. "ELCAP Connected Load Survey Data Summaries." Prepared for the Bonneville Power Administration by Pacific Northwest Laboratories. March 1991.
8 RMI < 1990> Paper	Lovins, A., and H. Heede. "Electricity-Saving Office Equipment." Competitek. Rocky Mountain Institute. September 1990.
9 CBEMA <1991> Paper	Computer and Business Equipment Manufacturer's Association (CEBMA). "Information Technology Industry Data Book 1960 - 2001. Industry Marketing Statistics. CBEMA. Washington, DC. 1991.
10 MAR <1991> paper	Martin, E. personal communication concerning measurements of office equipment energy use at the PG&E Sunset Building. 30 August 1991.

Table - 5: Sources of Existing Information to Establish Realistic Heat Gain Conditions

and other common "plug loads"). Modern conservation standards are mentioned in the literature surveyed, as well as, the variations in loads which could be expected due to occupancy fluctuations. For comparison purposes, electric power consumption is expressed as an annual energy use rate, normalized over the area of the conditioned floor space in the building, and is known as the Energy Use Intensity (EUI).

3.2.1.1 Actual Values

Actual values for power consumption tend to differ significantly from those indicated on the nameplates attached to a given piece of equipment. Many studies with a focus on conservation, delineation, and market trend analysis for predicting future electric demand load have been done, and in conducting these studies it was necessary to determine actual values for electric power consumption related to a variety of office equipment.

In a study conducted by Szydlowski and Chvála from the Battelle Memorial Institute - Pacific Northwest Laboratory in February, 1994 (reference entry 2 PNL in Table 5 on Page 91), to characterize the "Energy Consumption of Personal Computer Work Stations" it is stated that the measured power density for workstation equipment in the commercial office buildings studied was an average 0.62W/ft² (w/ a standard deviation of 0.16W/ft²); measured energy use intensity for all uses was found to be on average, 2.49kWh/ft² (w/ a std deviation of 0.53kWh/ft²). Szydlowski and Chvála go on to assert that a hat shaped standard demand profile (SDP) for a standard building can be used to characterize the actual power demand over a 24 hour period, and that profile when normalized to the maximum possible energy consumption would show a baseload value of 18% and a peak load value of 76%. Additional analysis of the data collected showed that manufacturers' nameplate ratings typically over estimated actual power consumption by a factor of 4.3.

The PNL "field monitoring study metered 222 personal computer workstations, network printers, facsimile machines, and photocopiers in six buildings at the Hanford Site in Richmond, Washington. A [non-metered] survey of another 1,231 workstations provided additional information about the number and type of installed equipment in each building." Equipment monitored at the workstations included personal computers, printers scanners, external drives and modems, facsimile machines, photocopiers, coffee pots, clocks, and various other miscellaneous office automation equipment.

Energy Conservation Measures (ECM's) can be used in developing load distributions. Consumption patterns can be altered by variations due to conservation methods. The effects on power consumption (and conversely dissipation) by equipment changes and upgrades over extended time periods or on

isolated areas within a building can be used in the decision making process for HVAC system design. In the PNL study, Szydlowski and Chvála conclude that three ECM's: (1) energy awareness program; (2) retrofit existing PC's w/ power controllers; and (3) purchase new energy efficient PC's will produce savings as follows:

First, savings can be achieved only if permanent changes in habits are achieved. In the study, such a goal was deemed achievable at a cost of approximately \$15/pc/yr. Actual savings for a given location will depend on the unit cost of electric power in the subject area.

Second, savings can be achieved but at a high initial cost and with a comparatively high degree of complication. The initial cost of equipment that contains energy efficient components and features, in addition to the cost to replace energy inefficient equipment with improved models is high and can lead to many complications which may have a quelling effect on the desire to implement such a program.

Third, cost savings can be achieved as old PC stock becomes obsolete and is replaced. An incremental cost will be incurred for those generic PC's replaced with name brands having Energy Star Ratings.

In a study conducted by Diamond, et al. for the Lawrence Berkeley Laboratory and the Bonneville Power Administration (reference entry 1 LBL in Table 5 on Page 91) power consumption for 28 buildings located in the Pacific Northwest corner of the united States was studied. The subject buildings were part of the Energy Edge Project (EEP); a program "initiated in 1986 to demonstrate cost effective energy savings in new commercial buildings...⁶³ The EEP buildings were constructed to meet certain energy conservation standards, and the study was conducted to quantify the effectiveness of the measures. The statistics reported by LBL are based on billing records from twenty-seven of the buildings, hourly sub-metered end use data from of the ten buildings, and simulation models from five of the buildings. Although two of office buildings had back up gas-fired boilers, total electric power use was considered to represent the total building power consumption in all cases; the back boilers were rarely used, if at all.

Diamond, R., et al., "The Study of the Energy Edge Buildings: Energy Use and Savings," <u>Commercial</u> <u>Performance: Analysis and Measurement 3</u>, ACEE 1992 Summer Study on Energy Efficiency in Buildings Proceedings American Council for an Energy-Efficient Economy.

The study analyzed energy performance in these buildings "based on three types of comparisons: (1) comparisons of actual energy use to predicted use; (2) comparisons of actual energy use with energy use of similar new buildings in the region, based on end use metering and prototype simulation, and (3) comparisons of actual energy use with hypothetical baseline buildings that meet Model Conservation Standards (MCS) codes requirements," (note that energy simulation methods are fully described in ASHRAE 1993 Fundamentals Handbook, Chapter 28, "Energy Estimating Methods"). Energy consumption profiles for building types typical of the new commercial construction in the region including offices, schools, restaurants, clinics, and supermarkets were captured in the study. Floor areas for the subject buildings ranged between 2,000 and 1,000,000 sqft.

Diamond et al. states that for the limited number of Energy Edge office buildings, for which end use data was available, the average electrical power consumption rate was found to be 11 kWh/ft²-yr; this average apparently takes into account all use categories. It was noted that this value was 50% less (both actual and predicted) than values for other new construction in the region. The actual consumption rate for heating, cooling, fans, and pumps alone is stated to be 7.6 kWh/ft²-yr, and the predicted rate is stated to be approximately 6.8 kWh/ft²-yr. The actual electric power consumption rate for lighting is stated to be 4.2 kWh/ft²-yr, and the predicted rate is stated to be 4.2 kWh/ft²-yr, and the predicted rate is stated to be approximately 3.8 kWh/ft²-yr. Electric power consumption by equipment falling into the other category which includes hot water, exterior lighting, plug loads and various miscellaneous end uses was stated to represent on average 22% of the actual total measured consumption.

Energy savings measures were determined to have a profound effect on overall electrical power consumption. Five buildings out of the twenty-eight were selected for a detailed study of the performance of certain energy conservation measures. The measures used in each building were selected according to the building's use. Measures implemented in four of the five subject buildings for the HVAC systems included high efficiency heat pumps, economizers, and exhaust ventilation heat recovery. Actual measured savings were stated to be 1.4 kWh/ft²-yr, where predicted savings were set at approximately 2.7 kWh/ft²-yr. Specifically, savings for economizers ranged from 0.02 kWh/ft²-yr to 1.3 kWh/ft²-yr.

Measures implemented for lighting in four buildings include various combinations of high efficiency lamps, ballasts, fixtures, occupancy sensors, and day-lighting control. The actual savings for these measures in the tuned buildings was stated to be 2.6 kWh/ft²-yr, the predicted savings was stated to be approximately 2.4 kWh/ft²-yr. Lighting Power Densities (LPD's) in Energy Edge office buildings

ranged between $1.1 - 3.0 \text{ W/ft}^2$ with a mean of approximately 1.8 W/ft^2 . The Model Conservation Standards Code (MCS) sets the LPD for this class of buildings at 1.5 W/ft^2 .

Measures implemented in five of the building's shells included low-emissivity windows, wall and roof insulation, infiltration barriers, and vestibules. Actual savings realized for these measures in the tuned buildings was stated to be approximately 0.6 kWh/ft²-yr; predicted savings was stated to be approximately 0.9 kWh/ft²-yr. "Among the five selected buildings, the predicted savings for the shell measures was about one third the savings for either the lighting or the HVAC measures. For comparison, among all twenty-eight Energy Edge buildings the average predicted savings for all three classes of measures were: 1.8 kWh/ft²-yr (average of 26 HVAC measures), 1.8 kWh/ft²-yr (23 lighting measures), and 1.3 kWh/ft²-yr (33 shell measures)."⁶⁴

Some effort was made to quantify the effectiveness of various forms of lighting control. The normalized, peak average weekday hourly lighting load for occupant controlled lighting was found to be approximately 90%. The same value for Energy Management Control System (EMCS) controlled lighting was found to be approximately 85%, and not surprisingly, the same value for occupant sensor controlled lighting was found to be approximately 65%. Generally, it was found that lighting loads were very hard to predict when occupant dissatisfaction with lighting levels resulted in alteration of design lighting schemes.

Piette et al. (reference entry 3 MAP in Table 5 on Page 91) noted that in studies conducted by Harris, et al. and Norford et al. it was concluded that office equipment nameplate power consumption ratings were typically much higher then actual values. The study conducted by Szydlowski and Chvála supports this conclusion and indicates that this discrepancy could be as high as a factor of 4.3.

3.2.1.2 Estimated Values

Szydlowski and Chvála in the PNL study (reference entry 2 PNL in Table 5 on Page 91) state "that the [estimated power dissipation provided by the manufacturers Name Plate Dissipation (NPD) rating for the] standard [personal computer] PC consumes approximately 144 W (CPU = 85W and monitor = 60W) and the [electric] power consumption of the standard workstation (PC plus peripherals) was 173W...," and further that ninety-three percent of all PC workstations fall into a 75W to 175W load

64 Diamond, R., et al., Page 3.56.

class. As mentioned in §3.2.1.1, the manufacturers' nameplate ratings typically over estimates actual power consumption by a factor of 4.3.

Diamond et al. concluded that although the Energy Edge buildings included in their study used, on average, typically 10% more energy than predicted, they were found to consume 30% less energy than the typical new construction in the region. See §3.2.1.1 for comparisons between actual values for electric power consumption and predicted values as determined in the study by Diamond et al.

In a Briefing of Final Results to PG&E & CEC - Office Equipment: Energy Use and Trends by Piette et al. (reference entry 3 MAP in Table 5 on Page 91) seven categories of office equipment are defined which relate to categories of office equipment found in utility surveys and industry reports. In the context of this report, the term "Office Equipment" is defined as meaning information processing equipment. The seven categories are: (1) mainframe and mini-computers; (2) personal computers; (3) printers; (4) copiers; (5) facsimile machines; (6) video display terminals; and (7) typewriters. data for the survey was drawn from a number of sources. Two sources of information - a Pacific Gas and Electric Company's 1985 on-site survey for 855 commercial buildings and a study conducted by Norford et al. (1990) - provided the majority of data and statistics used in this report. Nameplate power ratings and average energy use as a percent of nameplate ratings were combined to derive the electric power consumption rate estimates presented in this paper. Engineering estimates and, to a limited degree, component measurements provided the foundation for diversity factors.

Piette et al. estimates that in 1983 the total electric power consumption rate for information technology equipment, in what they refer to as the small office prototype, was 1.0 kWh/ft²-yr. This estimate increases to 2.3 kWh/ft²-yr in 1990, and in the year 2011, it is predicted that the rate will increase to 4.2 kWh/ft²-yr. These predictions were based on an evolving equipment mix composition. In 1990, the total electric power consumption rate for information technology equipment in all buildings was 0.8 kWh/ft²-yr, and in the year 2011, it is predicted that this rate will increase to 1.6 kWh/ft²-yr. Piette et al. go on to state that, in 1990, "Office equipment currently represents about 6% of the total commercial sector electricity use ... [and] Office equipment energy use [is] predicted to grow to about 10% of total commercial sector electricity use" by the year 2011.

On a lower level, Piette et al. states that the total estimated Nameplate Power Dissipation in 1983 was 0.65 W/ft^2 , and that of the total, 0.27 W/ft^2 was the result of mainframe and mini-computers. In the

year 2011, it is estimated that personal computers will account for 2.24 W/ft² and printers will account for 2.31 W/ft²; main-frame and mini-computer NPD is expected to rise to 0.54 W/ft².

Piette et al. refers to several studies and reports that contain relevant and definitive information pertinent to this topic: (1) Studies by Norford et al. (1990) and Lovins et al. contain discussions of the effect of swapping the heat load resulting from mainframe computers, located in special rooms with the dedicated space conditioning systems, with the heat load from personal computers in the general office spaces; (2) A paper by Lovins and Heede for the Rocky Mountain Institute in 1990 was referred to as containing the most notable and complete studies emphasizing the energy saving opportunities within office equipment technologies. In addition, summaries of other studies and forecasts are included in this paper; and (3) The Computer and Business Manufacturing Association (CBEMA, 1991) is one of the most complete sources of information for industry projections of several classes of hardware.

3.2.1.3 Occupancy

Diamond, et al states that occupancy variations are suspected as being responsible for high rates of change for energy consumption in certain buildings; insufficient information was available at the time of LBL's study to be certain what produced the high rates of change.

3.2.2 Building Loads Due to Occupancy Patterns and Variations

Occupancy patterns and variations for the maga-zone will have to be developed from the data presented in Appendix F and in the schedules shown in Appendix G. The tables in Appendix F show the maximum number of people for each office (administrative, professorial, and student) and refers to Appendix G for classroom occupancy statistics. It was assumed that professorial and student schedules were similar, following a pattern consistent with and complementing actual classroom usage schedules, since neither group could use both places at full capacity simultaneously. Administrative personnel schedules were assumed to cycle according to the typical MIT day work schedule; with the exception of lunch time, it was to be assumed that these personnel were within the confines of their respective office area for the work day established.

The data for Appendix G were obtained from records in the classroom schedules office for the academic years 1992/1993 & 1993/1994. The records were derived from preregistration enrollment

numbers and do not necessarily represent the total number of students in a classroom for an entire semester. Occupancy for conference rooms was based on the number of faculty and staff typically in the room at the time indicated. Conference rooms are used for a variety of reasons, and it was necessary to speak with the individual responsible for scheduling each particular room to obtain occupancy, use and duration data.

3.2.3 Building Loads Due to Lighting and Installed Equipment

A schedule of lighting and installed equipment for the selected building - MIT E51 - is shown in Appendix F. The tables in the appendix are organized according to the final zoning configuration selected to group the thirty-four physically distinct zones into six megazones. The rationale for the procedure used for grouping the thirty-four individual zones into six megazones is discussed in §3.2.4.

Values for the quantity, type, duty, and nameplate power rating are tabulated for the lighting in each area. A majority of the lighting is provided by fluorescent tubes (32W T28 type) set in recessed, suspended ceiling enclosures. Tabulated quantities refer to the number of four foot tubes in the associated area. Other classes of lighting include incandescent spots lights and illumination for exit signs. The duty rating for the lighting is divided into four categories: (a) continuous; (b) standard office hours; (c) per class or conference room schedule; and (d) student or professorial office schedule, and it is proposed that a lighting schedule be tailored to match the appropriate occupancy schedule.

Values for the quantity, type, duty, and nameplate power rating are tabulated for the equipment installed in each area. Equipment types include personal computers, desk top printers (both large and small), micro-wave ovens, facsimile machines, copiers, refrigerators, and water coolers. In developing the equipment heat dissipation profiles the nameplate data ratings were used as a baseline value. These values may be adjusted for usage factors suggested in other studies, (reference §3.2.1 Available Information). These studies suggest that the nameplate power consumption rating for most pieces of equipment is typically significantly greater than the actual output. Maximum power dissipation levels quoted in the input schedules in Appendix Y are based on nameplate rating, and can be adjusted as necessary to reflect the findings of the studies reviewed.

3.2.4 Zone Number Reduction and Simplification

The building selected is a free standing structure. It is located on the East Side of the MIT campus at 70 Memorial Drive, Cambridge, Massachusetts, (referred to as MIT Building E51, see Appendix 16). Function serves to divide this building into two separate parts: (1) an auditorium; and (2) an office/educational facility. The auditorium area is physically isolated from the rest of the building, and is serviced by its own air conditioning and ventilation system. The balance of the building provides for office and educational uses in the form of classroom, data processing, conference rooms as well as administrative, professorial, and student offices. For the purposes of this study, E51 was considered to be oriented east to west by its long axis. Although the long axis is skewed from true east-west orientation by less than 10°, this approximation is considered to be adequate for solar flux calculations and heat loss/gain due to wind factors and shading.

The HVAC system is VAV with constant speed motors. With only one exception, an experimental prototype DDC, motor driven installation, the terminal boxes are not DDC or fan powered, and pneumatic actuators are used to operate the terminal box dampers. Cooling power for the office/classroom portion of the building is provided by campus cooling system, though two Trane Climate Changer supply air conditioning systems; heating is provided by an on-site, oil fired, forced hot water system through terminal box reheating elements and a perimeter heating system. The building is fully described in complete sets of building, equipment, and controls specifications.

The total floor area of this building is 58,200 square foot. For this project, one-half of the office / educational portion of the building is used. It consists of three floors plus a basement or ground floor (for a total of four floors) to constitute a total of 16,140 square feet, (reference Appendix 16). This volume is located at the west end of the building, and contains vertically oriented sections of each of the four floors. The model volume has north, south, and west facing walls, and for this project it is considered to be separated from the east end volume by an adiabatic boundary, (refer to Appendix D). The VAV ventilation and cooling systems for the office/educational portion of the building consist of two air handling units, each supplying two theoretically distinct and separate volumes within the building; partitions and fire doors effectively isolate the two volumes. The subject volume is serviced by air-handler unit number one, (AHU1).

The zone configuration for the model volume consists of thirty-four zones supplied by AHU1: eight individually controlled VAV boxes on the basement level; nine on the first level; eleven on the second

level; and six on the third level, (refer to Appendix D for supply and return duct drawings detailing VAV box and thermostat locations). A computer simulation using HVACSIM + designed to reflect the thirty-four zone configuration represented in the model volume would be too large and unnecessarily complicated. The number of individual components required and the resultant variables, parameters and equations would choke the system. Model development would be severely hampered by the extremely fine breakdown of model volumes, and simulation times would be so slow as to severely diminish the value of the model for the stated purpose. Experience has proven that simplification by combing zones produces very acceptable results and also significantly enhances simulation performance, [P.Haves, LUT, 1994]; grounds for engineering simplifications are well established in the area of building system simulation.⁶⁵

As a result, individual zones were combined into megazones by grouping them logically according to usage, compass orientation, occupancy schedules, and window area obstruction and shading by trees and shrubbery and adjacent buildings. When it became apparent that, even by this method, the number of zones would be too high, subjective judgement was used to further reduce the number to a more tractable level. Stairwells and utility closets and pipe/wire chases within the model volume boundary were not considered to be conditioned spaces, and were therefore not included in the model.

3.2.4.1 Zone Selection Criteria

Usage patterns provided the principle criteria for megazone selection. The model volume has five primary uses:: office, conference, classroom, data processing, and hallway. The three classes of office spaces (administrative, professorial, and student) were combined into one class to reduce complexity. Whenever possible adjacent rooms with similar patterns were combined, provided that the outside walls of the adjacent rooms had the similar compass orientations. The impact of solar and weather related loading on occupant comfort control for walls not containing fenestration is minimal. As a consequence, compass orientation was not considered critical for rooms with exterior walls and no fenestration. Window area obstruction and shading by trees, shrubbery, and adjacent buildings provided additional substantiation for placing a room with one group or another.

100

Park, C., <u>Simulation of a Large Office Building System Using the HVACSIM+ Program</u>. National Institute for Standards, CH-89-6-4, 1989.

3.2.4.2 Zone Selection

For each level, several selection configurations were considered. The merits of each configuration were compiled, taking into consideration usage, occupancy schedules, fenestration, compass bearing, shading and other obstructions, and geometric location. The air distribution system for the subject volume is comprised of two main ducts (a supply and a return) oriented vertically through an insulated chase-way passing through each floor, from the roof-top mechanical room to the ground floor. Ducts branch off at each floor, and distribution and collection is accomplished through a series of multiple branches reaching across the individual floors; each floor is physically isolated as a separate volume by the structure of the building, fire doors, and partitions. The naturally occurring space segregation resulting from these design features provided the impetus for looking at zone simplification on a floor by floor basis. At the end of the process, a system of eleven well defined, contiguous areas representing each activity type conducted within the volume was identified.

BASEMENT LEVEL

Beginning with the Basement Level, which contains one hallway, a data processing center (or Athena Cluster) and number of areas used variously as student offices, conference rooms, and classrooms (reference Table 6), five configurations were considered.⁶⁶ The number of zones proposed in these choices range from 3 to 5.

Zoning Option 0A (Figure 34)

Zoning Option 0A combines office and conference space into a single zone. To do this, an assumption is made that heat gain through fenestration and from lighting, equipment, and occupancy is uniform in each room. A case can be made for Offices 003, 006, and 008. The windows for these spaces are located below ground level in planter wells The wells are densely with shrubbery and trees, and as a result shading on the windows is very heavy, almost completely blocking direct sunlight, (refer to Site Plan & Elevations, Appendix 16). The Conference Room 004, however, extends from the basement level to the top of the first level, and the south facing windows in this room extend from floor to ceiling. Consequently, heat gain through fenestration in 004 is uniquely different from that through the other spaces to be combined in this option, and therefore 004 must be treated separately from the other areas on this level, eliminating this option from consideration.

An Athena Cluster is a group of computers and work stations which area accessible to students and other Institute personnel for computer and data processing on a 24 hour/day basis. Room air conditioning is served by the same system conditioning the other parts of the subject volume.

Zoning Option 0B (Figure 35)

Zoning Option 0B has merit. It identifies Conference Room 004 as an individual zone, and takes advantage of uniform heat gains from various sources cited in the description for Option 0A.

 Table - 6: Basement Level Space Use Summary (refer to Appendix F)

	Admin. Offices	Prof. Offices	Student Offices	Data Process	Conf. Room	Class Room	Hallway
Number	0	0	4	1	1	1	1

Option	Number of Zones	Refer to Figure	Comments (supporting use of the option)
0A	3	34	 heat gain through fenestration in 004 is not significant heat gain through fenestration in 003, 006, & 008 is not significant class room as individual zone data processing as individual zone
OB	4	35	 heat gain through fenestration in 004 is significant heat gain thru fenestration in 003, 006, & 008 is not significant class room as individual zone data processing as individual zone
0C	5	36	 heat gain through fenestration in 004 is significant heat gain through fenestration in 003, 006, & 008 is not significant class room as individual zone data processing as individual zone
0D	3	37	 conference room 004 zoned on 1st level heat gain through fenestration in 003, 006, & 008 is not significant class room as individual zone data processing as individual zone
0E	3	38	 heat gain through fenestration in 004 is significant heat gain through fenestration in 003, 006, & 008 is not significant classroom 012 combined with office space data processing as individual zone

Zoning Option 0C (Figure 36)

Zoning Option 0C is a variation of Option 0B. Fenestration in 003 has northerly and westerly exposure; while fenestration in 006 and 008 have southerly exposure. If heat gain through fenestration in 003, 006, and 008 was significantly different, there may be some merit in making the distinction represented in this option. This is, however, not the case; due to the heavy shading and comparatively small window sizes for all three office spaces, the argument for this arrangement is weak. As a result this option was to be eliminated from consideration.

Zoning Option 0D (Figure 37)

Zoning Option 0D requires moving the zone for Conference Room 004 to the first level. Moving a zone to another floor will not reduce the overall total unless it can be incorporated into a megazone on that floor. Since this can not be done Option 0D was to be eliminated from consideration.

Zoning Option 0E (Figure 38)

Zoning Option 0E takes advantage of the merits found in Option 0B, and in addition, combines Classroom 012 with the office areas. A reduction from the four zones of Option 0B to three is a positive step in reducing complexity. In support of turning a classroom into office space, it can be noted that classroom space in the model volume is well represented on the third level. Retaining an individual zone on the basement level as a classroom is redundant, not providing any additional variety, and, therefore, doing so represents an unnecessary complication.

FIRST LEVEL

The first level contains one hallway with administrative office, professorial office, conference room, and classroom areas. The distribution and numbers of space types are outlined in Table 8. Four zoning options were considered, and each one was chosen to optimize and accentuate the various features found on this level. Southerly, westerly, and northerly exposure are all possible, and keeping the two prime objectives in mind, simplification and diversity, the following options identified in Table 9 were considered.

Zoning Option 1A (Figure 39)

Zoning Option 1A depends on two factors: first, there must be uniform heat gain through fenestration along the west and north faces and along the south face; second, Conference Rooms 111 and 106 must be combined with general office space. For the "north" zone (1-1), the west facing windows in 101b are well shaded by trees extending above roof level and by the building located at 100 Memorial Drive. As a result, heat gain through fenestration in 101b is practically the same as that for the spaces with all

north facing windows. For the "south" zone (1-2) all fenestration exists on the south building face. As for the conference rooms, this kind of space is well represented on the Basement Level in room 004 and isolating the conference rooms into individual zones on this level does not add to the utility of this model and doing so would impose unnecessary complications.

Table - 8: First Level Space Use Summary (refer to Appendix F)

	Admin. Offices	Prof. Offices	Student Offices	Data Process	Conf. Room	Class Room	Hallway
Number	7	5	0	0	2	0	1

Table - 9:	: First	Level	Zoning	Option	Summary	(figures	referenced	are in	Appendix	E)

Option	Number of Zones	Refer to Figure	Comments (supporting use of the option)
1A	2	39	 divides space into north and south divisions heat gain thru fenestration in 101b is uniform w/n.face combines professorial and administrative office spaces combines conference rooms with office spaces
1B	3	40	 divides space into north and south divisions heat gain thru fenestration in 101b is not uniform w/n.face combines professorial and administrative office spaces combines conference rooms with office spaces
1C	3	41	 groups the office area 101, 101a, 101b, & 101c together heat gain thru fenestration in 101b is uniform w/n.face combines professorial and administrative office spaces isolates one conference room into a separate zone
1D	4	42	 groups the office area 101, 101a, & 101c together heat gain thru fenestration in 101b is not uniform w/n.face combines professorial and administrative office spaces isolates one conference room into a separate zone

Zoning Option 1B (Figure 40)

This option is similar to Option 1A plus one additional feature - the isolation of Office 101b into a separate zone. This option would have merit if heat gain through the west facing windows in 101b is significant. However, since this is not the case, this option can be eliminated from consideration.

Zoning Option 1C (Figure 41)

This option is similar to Option 1A plus one additional feature - the isolation of Conference Room 111 into a separate zone. This option can be eliminated from consideration, (see option 1A).

Zoning Option 1D (Figure 42)

This option has the same shortcomings as Zoning Options 1B and 1C, plus the additional complication incumbent with attempting to isolate one conference room into a separate zone. This option can be eliminated from consideration.

SECOND LEVEL

The second level contains one hallway and administrative office, professorial office, and conference room areas, (reference Table 10). Fenestration in the north and south facing exterior walls are exposed to nearly unobstructed solar gain. The south west corner is also unobstructed. Only the north west corner is shaded by the adjacent building, (100 Memorial Drive).

Table - 10: S	econd Level S	Space Use	Summary (ref	fer to Ap	opendix F)
---------------	---------------	-----------	--------------	-----------	------------

	Admin. Offices	Prof. Offices	Student Offices	Data Process	Conf. Room	Class Room	Hallway
Number	6	11	0	0	0	1	1

Table -	- 11: Second	Level Zoning	Option S	Summary +	(figures re	eferenced	are in	Appendix 1	E)
---------	--------------	--------------	-----------------	-----------	-------------	-----------	--------	------------	----

Option	Number of Zones	Refer to Figure	Comments (supporting use of the option)
2A	3	43	 divides space into north and south divisions heat gain thru fenestration in 201c is uniform w/s. face heat gain thru fenestration in 201d is uniform w/n. face combines professorial and administrative office spaces isolates classroom from office spaces
2B	5	44	 divides space into north and south divisions heat gain thru fenestration in 201c is not uniform w/s.face heat gain thru fenestration in 201d is not uniform w/n.face combines professorial and administrative office spaces isolates classroom from office spaces
2C	4	45	 divides space into north and south divisions heat gain thru fenestration in 201c is not uniform w/s. face heat gain through fenestration in 201d is uniform combines professorial and administrative office spaces isolates classroom from office spaces

Option	Number of Zones	Refer to Figure	Comments (supporting use of the option)
2D	3	46	 divides space into north and south divisions heat gain thru fenestration in 201c is not uniform w/s.face heat gain thru fenestration in 201d is uniform w/n. face combines professorial and administrative office spaces combines classroom with office spaces

Zoning Option 2A (Figure 43)

The proposal represented by Zoning Option 2A was designed to accommodate two factors: first, heat gain through fenestration must be uniform along the west and north faces and along the south face; second, the single classroom on this floor must be isolated into a separate zone. It can be noted that although the west facing windows in 201d are heavily shaded by trees and by the building located at 100 Memorial Drive, (refer to Appendix 16). As a result, heat gain through fenestration in 201d is practically the same as that for the spaces with all north facing windows. The west facing windows in 201c receive direct sunlight with almost no shading throughout the entire afternoon, and as a result heat gain through fenestration for this space will be significantly different then for any other space on this floor. Coincidentally, this condition is unique within the entire model volume, and therefore office 201c should be retained as a separate zone for the sake of diversity. This option can be eliminated from consideration.

Zoning Option 2B (Figure 44)

The proposal represented by Zoning Option 2B was designed to accommodate significant heat gain through fenestration in both rooms at the West End of the model volume, (201c & 201d). In addition, as in Option 2A, the single classroom on this floor, room 215, has been isolated into a separate zone. Closer examination of the probability of heat gain through fenestration into room 201d revealed that this portion of the building is heavily shaded by the building at 100 Memorial Drive (reference Site Plan, Appendix 16). As a result, separation of room 201d into a separate zone is not required. Hence, this option can be eliminated form further consideration. Refer to Zoning Option 2A for addition justification for rejecting this zoning option.

Zoning Option 2C (Figure 45)

The proposal represented in Zoning Option 2C was designed to accommodate significant heat gain through fenestration to room 201c. In addition, isolation of the single classroom on this floor, room 215, into a separate zone was considered a possibility. Classroom space is well represented on the

third level, and retaining this area as a separate zone results in unnecessary complication and detail. By transforming this room into office space another zone is eliminated, moving closer to the goal to simplify the model. Hence, this option can be eliminated due to the inappropriate separation of the Classroom 215 into an individual zone.

Zoning Option 2D (Figure 46)

The proposal represented in Zoning Option 2D was designed to accommodate significant heat gain through fenestration to room 201c, and the transformation of the single classroom on this floor, Room 215, into office space. Refer to Zoning Option 2A & 2C for more detailed explanation of other features in this zoning option.

THIRD LEVEL

The third level contains six classrooms and has no other occupied spaces, (reference Table 12). One zoning option is offered for this level and is presented in Table 13. There is no fenestration on the west end exterior wall. Solar gain through fenestration on the north and south exterior walls is unobstructed.

	Admin. Offices	Prof. Offices	Student Offices	Data Process	Conf. Room	Class Room	Hallway
Number	0	0	0	0	0	6	1

Table - 13: Third Level Zoning Option Summary (figures referenced are in Appendix E)

Option	Number of Zones	Refer to Figure	Comments (supporting use of the option)	
3A	3	47	- groups classrooms by compass orientation	

Zoning Option 3A (Figure 47)

The proposal represented in Zoning Option 3A groups classrooms together according to the compass heading of the exterior walls. Room 302 does have south, west, and north facing walls, however, in the interest of diversity, it was assumed that north facing windows did not contribute significantly to the heating or cooling load in this area. This level can be divided into as many as six individual zones. In doing so, there would be no significant gain in occupancy schedules diversity, and there would be a significant increase in complexity. Adequate occupancy schedule representation for this type of usage

can be achieved with a minimum number of zones on this floor. Classrooms sharing common exterior walls are joined in this option to reduce the total to three.

3.2.4.3 Preliminary Recommendation

Zone selection and discrimination resulted in a group of well defined, contiguous areas representing each type of activity conducted with the model volume. The result is a cross section of occupancy schedules, equipment and lighting densities, and usages that take advantage of each attribute offered by

	General Offices	Data Process	Conf. Room	Class Room	Hallway	Other
0th Level	5	1	1	0	1	1
1st Level	14	0	0	0	1	0
2nd Level	17	0	0	0	1	0
3rd Level	0	0	0	6	1	0
Total Area (ft ²)	6,661	607	1,192	5,519	2,018	142
Grand Total	Floor Area	in Model Volu	ime Served b	y AH1 (ft ²)	16,	139

Table - 14: Model Volume Space Use Summary (based on zoning selection simplifications)

Table - 15: Window Area	Summary & (Compass Orientations	(based on Table 16)
-------------------------	-------------	-----------------------------	---------------------

Compass Orientation	General Offices	Data Process	Conf. Room	Class Room	Hallway	Other	
North569West292		40	40	472	0	0	
		0	0	0	0	0	
South	630	0	436	292	0	0	
Total Area (ft ²)	1,491	40	476	764	0	0	

Grand Total Window Area in Model Volume Served by AH1 (ft²)

2,771

the model volume. Shaded and unshaded north, south and west facing fenestration are also represented. The basement level is to be divided into three zones. Level one is to be divided into two zones. Level two is to be divided into three zones, as is level three for a grand total of eleven zones to be modeled in the simulation. Tables 14 provides a qualitative usage summary for various areas within the subject volume. A detailed accounting of floor areas and usage can be found in Appendix F. Note that the column labeled "Other" is not represented in the preceding analysis. An infrequently used kitchen is attached to Conference Room 004, and its volume was considered as being part of the conference room volume; it is recognized in Table 14 for the record, and also to maintain a correct floor area inventory. Table 15 summarizes the amount of window area facing each compass orientation for each area use type.

Table 16 summarizes the selection details by floor and includes the comments supporting the selection of each zoning option. Appendix F details the specific room assignments to each megazone according to the particular zoning option scheme chosen for each floor. See Appendix E for the physical locations of each room within each megazone for the selected zoning option. As a result of the process presented in §3.2.4, it was possible to reduce the number of zones from the original thirty-four to eleven megazones. The resulting configuration faithfully preserves the self imposed boundaries formed by the qualities of diversity and geometry.

The diversity represented in the building through occupancy schedules, compass orientations of exterior walls, usage patterns, and volume variations was maximized at every opportunity. In addition, the geometry or physical distribution of the floor plan layout has been preserved. The transformation of classroom space on the basement and first levels does not compromise the diversity factor and

Level	Option	Refer to Figure	Num of Zones	Comments (supporting use of the option)
0	0E	38	3	 heat gain through fenestration in 004 is significant heat gain through fenestration in 003 is not significant classroom 012 combined with office space data processing as individual zone
1	1A	39	2	 divides space into north and south divisions heat gain through fenestration in 101b is uniform w/ north face combines professorial and administrative office spaces combines conference rooms with office spaces

Table - 16: Zoning Option Selection Recommendation Summary (refer to Appendix E)

Level	Option	Refer to Figure	Num of Zones	Comments (supporting use of the option)
2	2D	46	3	 divides space into north and south divisions heat gain through fenestration in 201c is not uniform w/ south face heat gain through fenestration in 201d is uniform w/ north face combines professorial and administrative office spaces combines classroom with office spaces
3	3A	47	3	- groups classrooms by compass orientation
Total	Total Number of Zones		11	

significantly enhances the simplification factor. The eleven zone configuration does represent the absolute minimum number of megazones which can be obtained without crossing the boundaries described. This number, however, was felt to be still too high. A maximum number of six zones with a preference for four was prescribed by one of the authorities for a simulation of a building or structure this size using HAVCSIM + .67

3.2.4.4 Zone Selection Re-evaluation

Re-evaluation of the selection and reduction criteria was necessary to reduce the eleven megazone configuration proposed in the §3.2.4.3 to at or below the six megazone configuration required by system and administrative constraints. Diversity preservation in occupancy schedules, zone volume, and compass orientation was essential. Preservation of the diversity represented by the occupancy schedules was accomplished through subjective analysis after the megazone geometry problem was solved, (see §3.2.3). Preservation of the diversity represented by the zone volume and compass orientation established the framework which was used to eventually create the desired megazone configuration.

The floor area use summary tabulated in Table 14 shows the relative areas devoted to each use category, and Table 15 shows the window areas and associated compass orientations for each use category. The first step in the final simplification process was the definition of three types of spaces: (1) office space, which included all types of offices; (2) classroom space; and (3) data processing. The

67 P. Haves, Loughborough University of Technology, Loughborough, England, October, 1994.

next step involved distributing the available volumes to the three space types. Referencing Table 14 the decision was made to allocate 5,519 ft² to classroom use, 607 ft² for data processing, and the balance of the 16,139 ft² or equivalently 10,013 ft² to use as office space.

An attempt to preserve the classroom space was felt to be important to the final results; occupancy schedules for these areas have a much greater impact on cooling and heating demand than does any other occupancy variation in the building. The data processing center was also deemed to be sacred ground. Cooling loads in this area are expected to be significant and vary substantially, providing a good source for excitation input in the model. It can be noted that each room for both classroom and data processing areas are all provided with individual, dedicated thermostat control. Designating the balance of the space for office use combines the hallways, conference rooms and other categories under one heading. All these spaces are conditioned in a similar manner; one thermostat usually controls several rooms and includes the hallways as well.

The third step in the process entailed grouping already well-defined areas into ones that were equal in size to those represented by the three use types defined above. Taking into consideration potential solar loading, shading, geometry, partitions, and design flow rates for the ventilation system the building was divided into six megazones representing a total classroom area of 4,666 ft², a total data processing area of 607 ft², and a total office area of 10,866 ft². This is very close to the original distribution of space. Appendix D shows the physical distribution of the megazones, and Appendix F provides a detailed breakdown of how the distribution relates to the original make-up of the building. It should be noted that any attempt to reduce the number of zones below six would result in a loss of realism. It is recognized that only three space types are required to characterize the entire building volume; however, environmental influences vary significantly on the three external walls and diluting the zone structure below six would sacrifice the diversity represented by these variances.

Zone 1

Zone 1 is designated office space and consists of basement level areas with minimal solar impact expected; in addition to being small, the windows are shaded by shrubbery and trees for the entire cooling season. The areas included do have north, west, and south facing windows, however, due to the shading and size factors, it was assumed that compass direction would have very little impact on the comfort control requirements for these spaces.

112

Zone 2

Zone 2 is dedicated to the data processing room. No qualifications were required to justify this choice. it is isolated as a separate zone in the real building, and the doors are kept closed at all times.

Zone 3

Zone 3 is designated as office space, and is distinguished from other zones designated as office space by the very large exposure on the building's south face.

Zone 4

Also designated as office space, Zone 4 is distinguished from the pack by its shaded west facing and fully exposed north facing exterior walls.

Zone 5

Zone 5 was designated as classroom space. The entire exterior surface of this zone faces north. Although some classrooms in the real building do have south facing windows, window shades are almost always drawn closed; solar loading in these rooms is minimal and can be considered approximately equivalent to the load expected as if they were facing north.

Zone 6

This zone is unique among all other office zones in two ways: (1) it is very small - 188 ft²; and (2) it has west and south facing windows. Heat gain through fenestration for this zone was anticipated to be very high by the original designer, as evidenced by the very high design supply air flow rate specified, (see Figure 30, Room 201c). This is the only room in the building with such a high anticipated demand.

3.2.4.5 Final Recommendation

In conclusion, the original thirty-four zones can be grouped into six megazones preserving the rich diversity represented by the varied occupancy schedules, external wall and fenestration compass orientations, and use categories actually existing in the real building. Figures 26 - 33 (Appendix D) capture the layout for the final recommended zoning configuration Zoning Option F superimposed on the supply and return ducting actually installed in the real building.

Physical boundaries are preserved, and the design specifications for each the megazone VAV subsystems can be met with existing HVAC components selected directly out of vendor catalogs, (reference §3.3 Real Building Specification). This feature helps to standardize and validate the design of the systems for the megazone system. The original intent of this project was to produce a model which faithfully reproduces the physical characteristics of an actual building. In the simplification process, some of the one-to-one correspondence of the model to the real thing is expected to be lost, and in the case of the zone number reduction requirement, a very large fraction of realism has the potential for being buried in unfounded assumptions and subjective judgements. Being able to quantify VAV system components from industry available standards is very helpful in mitigating potentially weakening elements in this process.

3.3 Real Building Specification

In conformance with the objects specified in the ASHRAE Contract, documentation was prepared in three phases. Following the development of the megazone simplification scheme (refer to §3.2.4), the first phase documented the building together with all installed equipment. This documentation procedure consisted of obtaining the floor plans, elevations, sections, plant room layout, and layout of the duct and pipe systems. Manufacturers catalog cut sheets were used, whenever obtainable, to provide performance and physical characteristics data for equipment, actuators, and sensors. Site inspections and surveys were conducted to verify data whenever possible or practical. Additional information was obtained as necessary by inquiries to manufacturers, designers, and contractors. The control system specifications have been documented in narrative form and a block diagram has been prepared.

In the second phase of the documentation process, a model structure was developed which mapped the individual component models representing the various parts of the physical building shell and HVAC system to components in the testbed forming a system simulation model. Individual components used to form the system simulation model were chosen from a library of components available in the HVACSIM + program. At times, the structure of the program dictated how the physical structure was to be modeled, and at times it was the other way around. Development of this program is a continuing project, and some modifications were made to HVACSIM + components to enhance their adaptability to real systems.

In the third phase of this project, values of the parameters associated with each component modeled by HVACSIM + type models were specified. Every physical and geometric characteristic of every element or component in the real building and mapped into the simulation model was named, calculated, or estimated.

"... The documentation of the building and system model will include a block diagram of the components and their connections, and a list of parameter values for each component and a description of how they were derived from the delivered description of the actual building. The documentation will also include a full description of how the control system can be modeled and included in the simulation."⁶⁸ The components required to mapping the control system into the structure of the HVACSIM + simulation program were not available at the time this report was prepared. The control system has been documented; schematics and full descriptions have been prepared relating the function of the system in the building. Some modifications were made to transform the pneumatic components found in the actual building into DDC, electrically powered devices.

The components for mapping the control system into the structure of the HVACSIM + simulation program were developed by the HVACSIM + team at LUT. The real building control system components were mapped into the HVACSIM + simulation, and accompanying documentation has been prepared.

3.3.1 Description of Building Shell and HVAC System

The building which serves as the prototype for the testbed is a four story, (including basement level) multi-use structure. The building's physical characteristics are described in §3.2.4 Zone Number Reduction and Simplification. The 16,140 square foot model volume is approximately 50 ft high, 85 ft long (east to west), and 53 ft wide (north to south). The interior spaces are, in general, fitted with suspended ceilings. Hallway areas have no suspended ceiling, and are open to the underside of the concrete slab above. For rooms with suspended ceilings the ceiling height is 9.5 ft, and the plenum height is 2.5 ft.

The floors are six inch reinforced concrete, and the roof deck is concrete decking as well, covered with a built-up asphalt water proofing system. The external shell wall is concrete block with a brick veneer,

68 ASHRAE 825-TRP

(see Figure 11). The inside face is lined with gypsum wallboard mounted over a system of steel studs, pine furring strips and fiberglass insulation. Windows are steel frame double glazed with swing out panels for occupant adjustment. Internal partitions are comprised of steel studs, gypsum wallboard and fiberglass insulation for sound deadening. Office doors are standard, commercial grade, solid core wood with no vision panels. Fire doors are standard commercial grade metal doors with automatic closers required by the building code.

The HVAC system is VAV with constant speed motors. With only one exception, an experimental prototype DDC, motor driven installation, the terminal boxes are not DDC or fan powered, and pneumatic actuators are used to operate the terminal box dampers. Cooling power for the office/classroom portion of the building is provided by campus cooling system, though two Trane Climate Changer supply air conditioning systems; heating is provided by an on-site, oil fired, forced hot water system through terminal box reheating elements and a perimeter heating system. Central plant cooling is augmented by an air-side economizer cycle. The fresh air dampers is divided into two parts: (1) A minimum air damper which is open at all times during operation, except during cold start conditions;⁶⁹ and (2) an economizer damper which is normally closed, opening when the outside air enthalpy is less then the return air enthalpy. The return air and exhaust air dampers are identical in size and specification.

The VAV ventilation and cooling systems for the office/educational portion of the building consist of two air handling units, each supplying two theoretically distinct and separate volumes within the building; partitions and fire doors effectively isolate the two volumes, and help to enhance the argument for assuming an adiabatic boundary between the two volumes. The volume of interest is serviced by air-handler unit number one, (AHU1). The supply and return air distribution system is fully ducted.

The zone configuration for the model volume consists of thirty-four zones supplied by AHU1: eight individually controlled VAV boxes on the basement level; nine on the first level; eleven on the second level; and six on the third level, (refer to Appendix D for supply and return duct drawings detailing VAV box and thermostat locations). Individual zones were combined into megazones by grouping them logically according to usage, compass orientation, occupancy schedules, and window area obstruction and shading by trees and shrubbery and adjacent buildings. Some subjective judgement was used make the final megazone configuration selection. Stairwells, utility closets, and pipe/wire/air-duct

Normally, the supply fan can not start until the minimum air damper is open. For safety purposes (prevent cooling coil freezing) there is a freeze stat by-pass feature in the control system. This feature keeps the minimum air damper closed until the mixed air temperature is above a preset level.

chases, within the model volume boundary, were not considered to be conditioned spaces, and were therefore not included in the model. Refer to §3.2.4.4 Zone Selection Re-evaluation for a detailed description of how this configuration was derived.

3.3.2 Design Specifications & General Arrangement for Mechanical Systems

Engineering design specifications for the building volume served by AH1 are detailed in Appendix H, and the general arrangement of the mechanical room, including sketches of the air conditioning equipment and mechanical room duct work is provided in Appendix I. Floors plans, detailing the individual zone boundaries of megazone scheme Option F and the existing supply/return duct system layout, are provided in Appendix D. A schematic of the air distribution system for the volume served by AH1, configured to megazone Option F, is presented in Figure 64. The building mechanical systems were divided into two major parts; (1) the air handler and air conditioning equipment, located in the mechanical room; and (2) the VAV terminal boxes and perimeter heating systems, located in the individual zones. Each of these systems have their own control strategy. Température and pressure sensors provide the signals which link the two systems effecting the control systems output. The third system, comprised of the physical building structure, is a passive element providing thermal resistance and capacitance to the dynamic model.

3.3.3 Equipment Descriptions and Engineering Specifications

This section outlines the specific equipment descriptions, the associated engineering specification, and provide a commentary on how the equipment functions in regard to the entire system. The two major mechanical systems represented by the Air Handling Unit and Air Distribution System were sub-divided into six categories: (1) supply and return air handlers; (2) mixing box, including dampers and actuators; (3) intake and exhaust air grills and louvers; (4) zone components (VAV boxes, reheat coils, perimeter heating, and room temperature control system; (5) supply and return air distribution system; (6) air handler control system.

Information provided in this section was obtained from four sources: first, from the detailed mechanical design drawings;⁷⁰ second, from manufacturers catalog cut sheets; third, from physical, on-site inspections; and fourth, from simplification and/or substitution of certain key existing systems and components. Simplification was done to mitigate the complexity of the air distribution system, and substitutions were made to both accommodate the simplifications and to standardize the control system and damper/valve actuators to specifications consistent with direct digital control and electronic components. Design specifications for the supply and return duct systems are based on re-engineering the original duct system to conform with the six megazone configuration.

3.3.3.1 Supply & Return Air Handlers

Supply Air Handler - AH1

70

The supply air is handled by a Trane Central Station Climate Changer CLCH-MN-2A, Size 41 fitted with inlet vanes. The model number for the unit contains the unit type, basic unit design, primary coil, assorted accessories, and electric preheat information, see Figure 67. The Climate Changer Nameplate model number is M/N: CCDB41KG0A-HSSSLISL0BP-10CA2E000000-210100J0000000-000000. The position of each number in the model number is shown in Table 16.

Table - 16:	Trane	CLCH	Climate	Changer	Model	Number
-------------	-------	------	---------	---------	-------	--------

	Trane Climate Changer Model Number Key														
Position	1	2	3	4	5	6	7	8	9	10					
Number	С	С	D	В	4	1	K	G	0	A					
Position	11	12	13	14	15	16	17	18	19	20	21				
Number	Н	S	S	S	L	1	S	L	0	В	Р				
		•													
Position	22	23	24	25	26	27	28	29	30	31	32	33			
Number	1	0	C	Α	2	Е	0	0	0	0	0	0			

Courtesy of Phil Green, Senior Office Assistant, MIT Physical Plant Office of Drawings and Records, E18-207

	Trane Climate Changer Model Number Key														
Position 34 45 36 37 38 39 40 41 42 43 45 46 47 48 49													49		
Number	2	1	0	1	0	0	J	0	0	0	0	0	0	0	0
Position	50	51	52	53	54	55	Γ				r		1		<u> </u>
Number	0	0	0	0	0	0									
	ſ	L	1	1	1	I	I	1	I	I	<u>I</u>	1	<u>I</u>	1	<u>I</u>

Table - 17: Trane Central Station Climate Changer CLCH-MN-2A Model Number Coding

Figure/ Page	Portion of Model Number	Description
68 / 294	Digits 1 - 10 CCDB41KG0A	a development sequence 'B' climate draw-thru changer unit, size 41, with a 27" diameter, air foil (AF) type fan wheel; it has a type 'D' coil of design sequence 'A' in the first position and no coil in the second position;
71 / 297	Digits 11 - 21 HSSSLISL0BP	the unit is horizontally oriented with a custom motor voltage specified; the casing is special as well as the fan discharge; the motor location is left hand and the unit is fitted with inlet vanes; the drain pan is special, the first coil supply is left hand, and there is no second coil supply, 1.5 lb insulation is used, and the motor is 20 hp;
72 / 298	Digits 22 - 33 10CA2E000000	the coil height is full, there are no coil circuits, the coil fin series is 18,58 aluminum, the coil tube material is standard copper, there are Sigma Flow turbulators, and there are 4 rows, there is no coil height or any other features for the non-existent second coil;
74 / 300	Digits 34 - 49 210100J0000000	there is a standard drive with a 1.5 overload factor, a standard non-UL belt guard was provided, there is no damper section, there is a right hand fan access door, and no access door for the coil section, the mixing box and filter section are separate, a high capacity filter was provided, and nothing else beyond this point was specified;
77 / 303	Digits 50 -55 000000	including no electric preheat.

The decoded number indicates that Unit AH1 in Building E51 is as described in Table 17. Copies of the manufacturers catalog pages containing the information necessary to decode the model number are presented in Appendix J.

Fan curves and RPM tables developed by the Trane Company for installed the equipment are provided in Figures 83 and 84. The fan curves plot static pressure (in.wg) as a function of volumetric flow rate (1000's of cfm). The curves are for the Size 41 Climate Changer without inlet vanes since supply air flow control in the simulation will be accomplished with a variable speed drive rather then with inlet vanes. For verification of the megazone duct system design, the fan performance data for the Size 41 Climate Changer fitted with inlet vanes is presented in Figures 85. Inlet vane performance curves are presented in Figure 86. These curves are to be used to determine the modulated performance for both the supply and return fan units. The modulated performance information may be used to compare actual computer model performance with expected inlet vane position.

The pressure represented in the curves is referred to as the *fan static pressure* (P_{st}) as defined in ASHRAE *Standard* 51 and AMCA *Standard* 210 in terms of the fan total pressure P_{tf} and fan velocity pressure P_{vf} :⁷¹

$$P_{sf} = P_{tf} - P_{vf}; (104)$$

where the net rise in total pressure across the fan, from point 1 to point 2 is given by:

$$P_{tf} = P_{t2} - P_{t1} ; with$$
 (105)

$$P_{t2} = P_{s2} + P_{v2} ; (106)$$

$$P_{t1} = P_{s1} + P_{v1} ; (107)$$

and the net rise in fan velocity pressure:

ASHRAE 1992 HVAC Systems and Equipment, S18.5, §Fan and System Pressure Relationships.

$$P_{vf} = P_{v2} - P_{v1} . (108)$$

The Trane fan performance curves are developed in accordance with ASHRAE *Standard* 51 and AMCA *Standard* 210, and various test configurations are described in the standard. As implemented by Trane, the test setup for a particular fan includes the cabinet in which the fan is to be installed and delivered to the customer. The test set up also includes a section of duct installed at the fan cabinet's exit point. The duct's area is similar those of the cabinet's exit port. A pitot tube arrangement, installed three diameters from the exit point, measures both static and velocity pressure relative to dry air conditions at 101.325 kPa and 20°C (1.20 kg/m³). It is believed that sufficient velocity profile smoothing occurs over the three diameter distance to allow accurate measurements.

Pressures are measured, recorded, and plotted for various restrictions to produce one fan performance curve. The family of curves presented by Trane is developed using the Fan Laws referred to in ASHRAE 1992 Fundamentals, F18.4.⁷² In the case of draw through fan units, only the fan, cabinet, and internal fan support structural component along with the exit duct are included in the test setup. It can be noted that for blow through systems, the test configurations include the fan, cabinet, coils and filters used in the specific equipment arrangements offered by Trane. The draw through system described in this model was selected for the superior flow characteristics through the cooling coil over the blow through configuration, refer to §3.1 Selection of Real Building.

For the unique fan-duct configuration specified in the defining standards, the velocity pressure and the static pressure at the fan entrance are both equal to zero, $P_{s1} = P_{v1} = 0$. Therefore, referring to the preceding equations, the fan velocity pressure P_{vf} for the test fan-duct configuration is simply the velocity pressure at the fan outlet P_{v2} (or in ASHRAE terminology $P_{v,o}$)⁷³ and the total fan pressure rise is equivalent to the total pressure across the fan $P_{tf} = P_{t2}$. Furthermore, the fan static pressure can be expressed as:

$$P_{sf} = P_{s2} - P_{s1}$$
(109)

⁷² Engineering Division, Trane Company, La Crosse, WI

⁷³ ASHRAE 1993 Fundamentals, F32.4, Equation (18).

Hence, the data presented in the fan curves are equal to the static pressure rise across the fan. It must be noted that this is true only when the fan is operating in the same conditions under which the fan curve data was taken.

This is not necessarily true for a fan installed in a duct system with alternative inlet and outlet duct configurations. However, what makes the fan performance curves useful, in these situations, is that for any arrangement the total pressure rise across the fan ($P_{tt} = P_{t2} - P_{t1}$) will be the same as that for the defining test conditions. Furthermore, if the exit conditions (straight duct, three diameters in length) of the alternative duct arrangement are similar to those in the defining test conditions, then the velocity pressure at the exit point of the alternative arrangement (as defined in the test) will be the same as it was for the defining conditions, ie:

$$P_{tf} = P_{sf} + P_{v,o} . (110)$$

Therefore, in practice, the net total pressure loss calculated for a system can be equated to the total pressure rise across the fan. Then knowing the velocity pressure at the "outlet" of the fan $P_{v,o}$ one can calculate the fan static pressure P_{sf} . The fan static pressure is then used to select the appropriate fan from the fan curves generated by the fan manufacturers.

In the case where an alternative duct arrangement exit conditions are not the same, the resulting "losses" must be "deducted" from the total pressure rise P_{tf} ; the net effect can either be positive or negative depending on whether or not the alternative arrangement leading away from the fan cabinet exit point represents more or less air flow resistance then the length of duct used in the defining test configuration *"which smooths the flow of the fan and provides stable, uniform flow conditions at the plane of measurement."*⁷⁴ Consequently, the total pressure rise for a fan installed in any system can be determined by summing the fan static pressure with the velocity pressure (calculated at a location selected to ensure a smooth velocity profile) less any losses due to duct conditions from the exit point to the selected location which deviate from the test set-up:

$$P_{tf} = P_{sf} + P_{v,o} - P_{losses} ; (111)$$

where: P_{losses} = total pressure losses for duct conditions deviating from the fan curve test conditions.

ASHRAE 1992 HVAC Systems and Equipment, S18.4, §Fan Testing and Rating.

Return Fan - RF1

The return air is handled by a Trane FAN-IM-4 Centrifugal fan unit, size 24. The model number for the unit contains coded specifications for detailing fabrication and operational information, see Figure 100. The model number for RF1 is:

S/N: C-F-44-A-1-SW-3-CCW-TAU.

Referencing Appendix K, the decoded number reveals that the unit is a centrifugal style 24" fan with a counter clockwise rotation. Additional decoding information is found in Figure 100; the arrangement, width, and height can be obtained from this figure. No other coding information was available at the time this report was written, and field inspections were required to obtain motor size, discharge area size, and all other pertinent information required to for this project. Field inspection revealed a 5hp motor installed on the return air fan. In addition it was determined that the unit is fitted with inlet vanes operated with pneumatic actuators.

As with the supply fan, in this simulation, the return fan will be controlled by a variable speed drive. The manufactures fan curves, performance tables and additional information for the return fan without inlet vanes are provided in Figures 101 and 102. The 44.5 inch wheel is fitted with air foil blades. The outlet area is 13.48 sqft and the blast area is 11,15 sqft. These data are required in the design of the megazone return duct system.

3.3.3.1.1 Supply and Return Centrifugal Fan Motors

Specifications for the centrifugal fan motors are provided in Appendix H. The supply fan is operated by a 20 hp, 208 volt ac, 3 phase motor. The return fan is operated by a 5 hp, 208 volt ac, 3 phase motor. Performance curves and RPM Tables for the supply fan without inlet vanes are shown in Figures 83 & 84, and performance curves and RPM Tables for the return fan without inlet vanes in Figures 101 & 102. Performance data is also provided for the supply and return fans fitted inlet vanes, refer to §3.3.3.1 for discussion of these data.

3.3.3.1.2 Housings and Wheels

Dimensions for the Trane Central Station Climate Changer can be found in the Specification and Product Information Catalog CLCH-MN-2A. Excerpts from this Trane Publication reference are provided in Appendix J and a complete explanation of the model coding is provided in §3.3.3.1 Supply and Return Air Handlers. Dimensional data for the fan box, filter box, mixing box, and coil connections are provided in Figures 79 through 82.

3.3.3.1.3 Filtration

The Trane High Capacity filter box consists of replaceable fiber-glass elements mounted at a angles to the flow. The effective surface of the filter set is approximately 88 ft², more then twice the surface area, normal to the flow, exhibited by the cooling coil (\sim 41 ft²). Refer to Figure 87 for air pressure drop performance data. The values given in this figure are low - between 0.01 and 0.11 in-wg for the expected typical range of air flow rates. These values correspond to the pressure loss across clean elements. The Trane Data Table 79-2 in Figure 87 indicated that dust and dirt particle accumulation results in an estimated increased pressure loss across the filter of 0.2 to 0.5 in-wg, depending on the application. In practice, pressure losses as high as 0.75 - 1.00 in-wg across a typical filter system are not uncommon. Effects due to fouling and aging will vary depending on local conditions including air quality, maintenance schedules, and duty cycle. Values suggested in the Trane catalog cut sheets for air filter pressure drop will be used in the commissioning phase of the testbed development. Later, the value can be changed to reflect fouling and aging.

3.3.3.1.4 Cooling Coil

The coil is a Trane Type D double coil unit - a 24" coil stacked above a 30" coil. It is has four rows transverse to air-flow direction. The tubes are cooper, and the fins are aluminum. Engineering design specifications for the cooling coil are provided in Appendix H, page 279. Although not recorded in this report, a separate model number, in addition to that for the Climate Changer (see §3.3.3.1), is generally used to characterize the cooling coil; Figure 88 provides a key to the cooling coil model number coding. The manufacturers statement of engineering specifications identifies the coiling coil system as being comprised of the following elements:

Coil	Coil	Si	Size Tu Width Length Rows		ibes]	Face Area	
	Туре	Width			Mat'l	fins/ft	Mat'l	[sqft]
1	D	24"	108"	4	Copper	144	Aluminum	28.9
2	D	30"	108"	4	Copper	144	Aluminum	36.1

Table - 18: Trane CLCH Chilled Water Cooling Coil Specifications (Refer to Figure 65)

The Climate Changer Model Number referred to in §3.3.3.1 corroborates these data. Figure 89 describes the various configurations for a Type D coil and gives the dimensions for the standard copper tubing indicated in §3.3.3.1 per model number digit 25: 5/8 inch outside diameter - with a 0.020 inch wall thickness.⁷⁵ The coil fin series specified by digit number 24 in the model number is *18*, *58 aluminum*. In conversation with Trane representatives, this translates into a fin spacing equal to 144 fins per foot and a fin thickness of 0.085 inches.⁷⁶ Referring to Figure 90 a 4 row, Type D coil with outlets on the same side is shown in pictorial. Figure 91 shows the dimensions for the 30 inch and 24 inch Type D coils.

Figure 92 shows the results of the Trane CDS simulation for air-side and water-side flows.⁷⁷ The simulation results are based the original engineering design specifications for Building E51 as listed in Appendix H, although the heat exchanger tube thickness was changed from 0.020 to 0.024 inches, as discussed in the preceding paragraph. This simulation provides air and water side pressure drops at design flow rates. These results were used in the development and verification of the HVACSIM + cooling coil model component parameters.

3.3.3.1.5 Cooling Coil Control Valve

The cooling coil water flow is controlled by a Powers VF 591-SD 2" IPS Single Seat, Tight Closing, Bronze Body Valve. It is operated by a Powers 8" Diameter Flowrite Pneumatic Actuator. The

77 Trane, CDS Chilled Water Coil Selection Program, ver: 12.12.

⁷⁵ The 0.020 inch wall thickness specified is what was provided for the unit installed in Building E51. The Trane simulation software CDS Chilled Water Coil Selection Program Ver.12.12, however, does not recognize this value as a valid selection, offering instead 0.024 inches for copper tubing and others for brass tubing. The program was required for independent corroboration of air pressure water pressure drops across the coil. As a result the wall thickness selected for use in the HVACSIM simulation was 0.024 inches.

⁷⁶ Bob Alexy & Chris Bogart, Trane Company, Wakefield, Massachusetts.

actuator description and model number is included in Table 19. Manufacturer specifications and catalog cut sheets are provided in Figures 93 through 98. The flow coefficient, Cv, for the Powers valve is 38, (refer to Equation 114, Page 134 for definition of Cv).

A Honeywell Direct Coupled Actuator Model ML6161 is used in place of the pneumatic actuator for the HVACSIM + simulation model. Manufacturers specifications for this piece of equipment are provided in Figure 99.

Designated Use	Model Number	Description
Exhaust	332-2785	Powers IU2 Vortex Damper Motor with 4" Diameter Diaphragm
Return	332-2785	Powers IU2 Vortex Damper Motor with 4" Diameter Diaphragm
Minimum Air	332-2785	Powers IU2 Vortex Damper Motor with 4" Diameter Diaphragm
Economizer	332-2785	Powers IU2 Vortex Damper Motor with 4" Diameter Diaphragm
Supply Inlet Vane	332-2799	Powers IU2 Vortex Damper Motor with 6" Diameter Diaphragm
Return Inlet Vane	332-2799	Powers IU2 Vortex Damper Motor with 6" Diameter Diaphragm
Cooling Coil	579-7879	Powers 1TI0 2" Two Way Valve w/ 8" Diameter Diaphragm

Table - 19: Powers Pneumatic Actuator Specification, E51 Mechanical Room

3.3.3.2 Mixing Box - Dampers and Actuators

The mixing box is fitted with "opposed" blade Arrow, Series 1770 steel dampers. Manufacturer specifications and catalog cut sheets providing graphic illustration of the damper blades and housing along with performance curves and leakage rates are presented in Figures 103 through 104. Sizes of the minimum air, economizer and return dampers are given in Figure 61. Note that the exhaust air damper is identical to the return air damper.

Powers pneumatic actuators are used to operate the exhaust, return, minimum air, and economizer dampers, as well as for the supply and return inlet vanes and cooling water supply valve, and are cataloged in Table 19. The pneumatic actuators are to be replaced with the DDC motor driven actuators for the HVACSIM+ simulation, and three possible selection methods are proposed in this section for this purpose. First, for development purposes, a set of fictitious DDC actuators can be designed on the basis of the results of the time and dimensional study presented in Table 20. The

dynamic response of the model, under these conditions, would not be realistic. However, the intent would be to mimic the behavior of the pneumatic actuators, providing a set of "reasonable" parameters until suitable DDC replacements have been identified.

Designated Use	Model Number	Actuator Lever	Actuator Stroke	Actuate	to Open	Actuate	Actuate to Close		
		Length [in]	Length [in]	Time [sec]	Delay [sec]	Time [sec]	Delay [sec]		
Exhaust	332-2785	2 1/8	3	4	1	5	2		
Return	332-2785	2 1/8	3	4	1	5	2		
Minimum Air	332-2785	2 1/8	3 1/16	4	1	4	1		
Economizer	332-2785	2 1/8	3 7/8	5	1	5	2		
Supply Inlet Vane	332-2799	3 5/8	4 1/8	9	1	12	2		
Return Inlet Vane	332-2799	2 3/4	3 3/4	9	1.	10	4		
Cooling Coil VV	579-7879	0	1	2	1	6	3		

Table - 20: Powers Pneumatic Actuator Dimension and Time Study, E51 Mechanical Room

More realistic behavior can be derived by using the parameters for the DDC actuators installed in the sample HVACSIM + simulation (ACREF2) cited in Appendix AA can be used. ACREF2 is a functioning explicit air flow simulation for a system having similar characteristics to the prototype building used for this simulation. At the time this report was written, the manufacturer and model for the actuators specified in the sample simulation was not available. Introduction of the DDC actuators from ACREF2 into this simulation can be done in the development phase in place of the fictitious actuators, or following the development phase in anticipation of specifying alternative DDC units. A third option would be to identify the specifications for a commercially available set of DDC actuators which would actually be used to replace the pneumatic units installed in E51. This is the ideal condition, and at the time this report was written, efforts were in progress to implement this option.

3.3.3.3 Intake & Exhaust Grills and Louvers

The intake and exhaust openings into and out of the building are protected by the bird screen and louvre arrangement shown in Appendix M. Figure 106 in the appendix shows the assembly in detail.

Precise information for the grill installed was not available at the time this report was written, however, an approximate facsimile was found in a catalog for Airolite products. Figures 107 and 108 provide pressure drop and water penetration data for the Airolite 638-C-100 Stationary Blade Louver; blade geometry and spacing details for the Airolite Louvre are very close to those of the installed grills.

3.3.3.4 Zone Components

The six zone air distribution system, outlined in Figure 64, provides the structure for the redesign of the zone components including: (1) VAV Terminal Boxes; (2) VAV Terminal Box Reheat Coils; (3) Reheat Coil Control Valves. In addition to those components directly related to the design air flow rates, VAV damper actuators and reheat water flow control valve actuators were changed from pneumatic function to all DDC, electric motor driven types. While many manufactures provide equipment which is appropriate for this project, specifications for prototypical electronic actuators were chosen from the actuators in use in another MIT building. Building E18 has been used by members of this research project in other projects related to the control of HVAC system, and the familiarity and convenience of the readily available experience and data prevailed.

The perimeter heating system in the original design was used as guide for establishing the parameters for the HVACSIM + type which will be used for this function. It is intended to eventually design and implement a water side model for perimeter heating system, however, until this is done an explicit system with maximums, minimums, and some lag will be used to input the heat required from the perimeter heating system.

3.3.3.4.1 VAV Boxes & Zone Diffusers/Louvers

VAV Boxes

VAV terminal box design was based on the results of the re-design of the supply and return duct system to accommodate the six megazone simplification scheme. For each individual megazone, the data in Table 21 represents a baseline for the design flow of the conditioned air supply and exhaust air return, together with appropriately sized VAV terminal box sizes. These data represent the sum total of the design flows shown on the supply and return duct drawings presented in Figures 26 - 33 and recorded in Figures 109 - 112.

The engineering design supply and return flow rates shown at the bottom of Table 21 reflect a 15% reduction for the supply air and a 9% reduction for the return air. Design flow rate calculations are based on maximum anticipated loads in each individual area of the building. In practice, there will never be a time in the building's operation when all of the anticipated loads will act in concert, and it would be extravagant to size a system on this basis. Hence, the introduction of diversity factors or peak loading calculations to reflect realistic peak loading. Peak load calculations take into consideration the buildings characteristics, configuration, outdoor design conditions, indoor design conditions, and operating schedules all in relation dates and times selected to reflect maximum anticipated conditions.⁷⁸ It is not known what dates and times were selected in calculating the peak load for E51.

Megazone Designation	Conditioned Area [ft ²]	Maximum Demand Supply Flow [cfm]	Titus Single Duct Terminal Box Size [in x in]	Maximum Demand Return Flow [cfm]
I	2,369	2,060	16 dia	1,951
II	607	340	7 dia	310
III	6,799	10,772	48 x 16	8,880
IV	1,510	1,990	16 dia	1,710
V	4,666	5,890	24 x 16	5,590
VI	188	760	10 dia	720
Totals	16,139	21,812		19,161
Flows per Engi Specifications (re		18,590		17,480

Table - 21: Megazone VAV Design Volumetric Flow Rate Summary

Titus single duct VAV terminal boxes were selected for the megazone model. Performance data, design features, dimensions for the Titus boxes are included in Figures 117 - 119. Selection of the box for each zone was based on flow rates, duct size and noise. Duct sizes were chosen to reflect decisions based engineering and design considerations encountered in the megazone design sequence, see

1993 ASHRAE Handbook -Fundamentals, F26.4.

\$3.3.3.5 for details on the design process. It can be noted that Titus VAV box sizes 16 inch and under have round entry and exit openings, and the large 24 x 16 inch VAV box has rectangular openings. Hence, square duct work and round duct work were used as a matter of convenience, where-ever indicated.

Flow requirements for all megazones with the exception of Megazone III were met by stock Titus equipment. In the case of Megazone III, flow requirements exceeded the specifications of the largest stock box by 100%. As a consequence, two possible solutions were proposed: (1) to use two 24" x 16" boxes in parallel; or (2) to use the pressure drop and flow characteristics for the two 24" x 16" boxes in parallel to characterize the behavior of an ideal 48" x 16" box. The second solution was chosen. Two factors contributed heavily to this decision. First, due to complications in modeling the parallel system with currently available HVACSIM + components use of a single large box was almost mandatory. Second, the pressure drop for a 24 x 16 box when subjected to half the design flow of Megazone III will be the same as that for a box that has twice the cross section carrying twice the flow. The ability to scale the box sizes simplified the substitution, eliminating the need to identify additional equipment manufactures.

Megazone Designation	Peak Demand Supply Flow	Titus Single Duct Terminal	-	ct Terminal Box Difference
	[cfm]	Box Size [in x in]	Static [in-wg]	Total [in-wg]
Ι	1,773	16 dia	0.154	0.234
II	280	7 dia	0.082	0.141
III	9,180	48 x 16	0.304	0.435
IV	1,697	16 dia	0.141	0.214
V	5,020	24 x 16	0.364	0.521
VI	640	10 dia	0.144	0.214
Totals	18,590			

Table - 22: Megazone VAV Single Duct Terminal Box Pressure Difference (ref: Figure 196)

Values for the minimum static pressure difference and the corresponding total pressure difference for the Titus boxes selected for the megazone design are presented in Table 22. The values recorded in the table correspond to a wide open damper or attenuator with a single row reheat coil installed in the terminal box. Since the exact flow rates in the design fell somewhere in between the values presented in the Titus catalog, a linear interpolation was used to estimate the value within the smallest possible interval. These calculations are documented in Figure 196.

Diffuser and Louvers

Table 23 shows the average design flow velocities for the original thirty-four zone system. The individual for the each of the diffusers and collectors in the corresponding megazones were averaged together to obtain the values presented in the table. These values were then used in support of the selection of return and supply grill and louvre dimensions in the megazone design.

Megazone	Supply Flow V	elocities [ft/min]	Return Flow Vo	elocities [ft/min]
Designation	on Diffuser Duct		Collector	Duct
Ι	412	541	390 .	505
II	320	429	413	349
III	422	616	376	476
IV	393	547	428	517
V	396	540	399	594
VI	507	684	461	741
Average	408	560	411	530

Table - 23: Average Megazone Flow Velocity Based on 34 Zone Configuration (*)

(*) Refer to Figures 109 - 112: VAV Flow Tally - 34 Zone Configuration for origin of velocities shown in this table. The velocities cited are averages over the individual zone elements in the 34 zone configuration common to each of the megazones. The duct velocities are for the duct sections nearest the diffusers and collectors.

The catalog cut sheets for these components are shown in Figures 125 - 129. A standard square/rectangular style diffuser type was selected. Table 24 summarizes the megazone supply diffuser specifications. The noise criteria rating (NC) used as the basis for selection of diffuser face velocity. The rating was chosen to be below the maximum level specified in the range of typical values recommended by ASHRAE,⁷⁹ and also to be consistent with the velocities specified in the original thirty-four zone configuration, see Table 23. A deeper understanding, leading to a refinement of this

79 ASHRAE 1991 Applications Handbook, A6.3.

criteria, can be obtained in Chapter 42 of the 1991 ASHRAE Applications Handbook, (refer to Figures 120 - 124 for detailed sound application data for Titus VAV boxes).

Megazone Designation	Nominal Duct Size Diffuser [in x in]	Design Flow Rate [cfm]	Titus Catalog Page Number	Neck Velocity [ft/min]	Total Pressure Drop [in.wg]	NC Value
Ι	21 x 24	1,773	B108	500	0.117	27
П	9 x 9	280	B98	500	0.117	19
III	30 x 96	9,181	B110	500	0.117	31
IV	21 x 24	1,696	B108	500	0.117	27
v	30 x 48	5,020	B110	500	0.117	31
VI	12 x 15	640	B103	500	0.168	29

Table - 24: VAV Room Supply Diffuser Specification Summary (ref: Figures 125 - 129)

The return grill specifications are shown in Table 25. Selection for the grill sizes and specifications was based on design flow rates and ASHRAE sound criteria. By adjusting the grill size to keep face velocities at or below approximately 500 ft/min, it was possible to make selections for grills in Zones I, II, IV, and VI with appropriate NC levels. In the case of Zone II, the NC rating was below 10. No

Table - 25: VAV Room Return Grill Specification Summary

Megazone Designation	Nominal Duct Size Diffuser [in x in]	Nominal Duct Size Area [ft ²]	Design Flow Rate [cfm]	Titus Catalog Page Number	Neck Velocity [ft/min]	Total Pressure Drop [in.wg]	NC Value
Ι	22 x 22	3.36	1,663	E13	500	0.046	18
п	9 x 9	0.56	266	E13	500	0.046	nr
III	48 x 48	16.00	7,568	E13	500	0.046	
IV	20 x 20	2.78	1,457	E13	500	0.046	20
v	40 x 40	11.10	4,764	E13	500	0.046	
VI	14 x 14	1.36	613	E13	500	0.046	11

stock grills were found in the catalog with a core area larger then 6.25 ft^2 . However, since the total pressure depends only on the velocity at this point in the system, it is reasonable to assume that the total pressure lose through grills of similar design for similar flow velocities would be similar to the loses reported in the tables for smaller grills.

Recall the total pressure is given by:

$$P_t = P_s + P_v \tag{112}$$

where

P_s = the static pressure, defined as the pressure equally exerted in all directions at the point of interest, [in.wg];

and the P_v is called the velocity pressure, and is calculated at the point of interest by:⁸⁰

$$P_{v} = \rho \left(\frac{V}{1097}\right)^{2} \qquad . \tag{113}$$

where: $\rho = \text{density}, [\text{lbm/ft}^3]$

V =flow velocity, [ft/min].

3.3.3.4.2 Reheat Coils

A summary of the Titus hot water coil reheat elements chosen is presented in Table 26. The physical and engineering characteristics for the Titus single duct terminal box reheat coils are provided in Figures 130 through 137. The coils chosen for zones I, II, and IV are described as being single row / single circuit, and the coils chosen for Zones III, V, and VI are described as being single row / multi-circuit. The single-circuit coils have one continuous loop from inlet to outlet, making a serpentine trajectory across the face of the heat exchanger. The multi-circuit coils have, in the case of the coils chosen for this project, two loops essentially running parallel to each other across the heat exchanger's face, (refer to the Titus shop drawing presented in Figure 135, <u>Water Coil: 1 Row - 2 Circuit Size 10</u>). The rated capacity of the coil exceeds the design requirement in all zones. The basis for choosing the VAV box size is found in the megazone supply duct design philosophy, (see §3.3.3.5 Air Distribution

Patrick J. Brooks, "Duct Design Fundamentals," ASHRAE Journal, (April 1995), p.73.

Duct Design). Control valves with relatively small flow coefficients were chosen to compensate for the high capacity coils. The high authority of the valves will allow finer water flow modulation below the 1 gpm level, (refer to §3.3.3.4.3).

Megazone Designation	VAV Box Size [in x in]	Air-Side Design Flow Rate [cfm]	Design Reheat Coil Heat Output [Btuh]	Water-Side Flow Rate [gpm]	Approx. Rated Capacity [Btuh]
Ι	16	1,773	19,100	1.0	33,000
II	7	280	1,700	1.0	11,000
III	48 x 16	9,181	64,100	1.0	94,000
IV	16	1,696	15,700	1.0	33,000
V	24 x 16	5,020	32,900	1.0	47,000
VI	10	640	6,600	1.0	16,000
Tot	als	18,590	140,100		

Table - 26: VAV Reheat Coil Output Summary

3.3.3.4.3 Reheat Coil Control Valves

Powers VE VMP electronic valves were selected for use in the megazone VAV reheat control system. Catalog cut sheets provided by Landis & Gyr are shown in Appendix N, Figures 139 and 140. Valves ranging in sizes from 1/2" to 3/4" are offered with varying capacities. Table 27 summarizes the VAV reheat coil control valves specifications. Valve selection was based on the original design water side flow rates taken from Figures 113 and 114. Using Equation 114 and an assumed pressure drop of 5 psi across the wide open valve, values for the desired valve flow coefficient were calculated. These values were used to select valves with flow characteristics as close as possible to the ones indicated in the calculations.

The basic formulas for the flow coefficients Cv and Kv, defining the relationship between the pressure drop across the valve and the flow through the valve, are given in Equations 114 and $115.^{81}$ The

Eur. Ing. R. C. Whitehouse, <u>The Valve and Actuator User's Manual</u>, (London: Mechanical Engineering Publications Limited, 1993). p. 121-123.

coefficient Cv is used primarily in the United States and United Kingdom. The coefficient Kv is also used in the UK and other parts of Europe. They differ by a factor of approximately 0.86.

Mega- zone Number	Design Reheat Coil Heat	Water Side Design Flow Rate,	Design Value for	Powers Control Valve	Cor	vers atrol lve	Powers Control Valve Part Number
	Output [Btuh]	Reheat Coil [gpm]	Cv	Size [in]	Cv	Kv	
I	19,200	2.1	0.94	1/2"	0.74	0.63	VMP42.11(2)
П	1,700	0.2	0.09	1/2"	0.29	0.25	VMP42.09(2)
III	64,100	6.8	3.04	3/4"	2.92	2.50	VMP42.14(2)
IV	15,700	1.8	0.80	1/2"	0.74	0.63	VMP42.11(2)
v	32,900	3.6	1.61	3/4"	1.87	1.60	VMP42.13(2)
VI	6,600	0.7	0.31	1/2"	0.47	0.40	VMP42.10(2)
Total	140,100				۰ <u>۰۰۰</u>	L	

Table - 27: VAV Reheat Coil Control Valve Summary

The basic formula for Cv is:

$$C_{v} = Q \frac{\sqrt{G}}{\sqrt{(\Delta P)}}$$
(114)

where: Q = flow rate in US gal/min;

G = specific gravity of liquid (SG water = 1)

 ΔP = pressure drop across value in lbf/in²;

and the basic formula for Kv is:

$$K_{\nu} = Q \frac{\sqrt{G}}{\sqrt{(\Delta P)}}$$
(115)

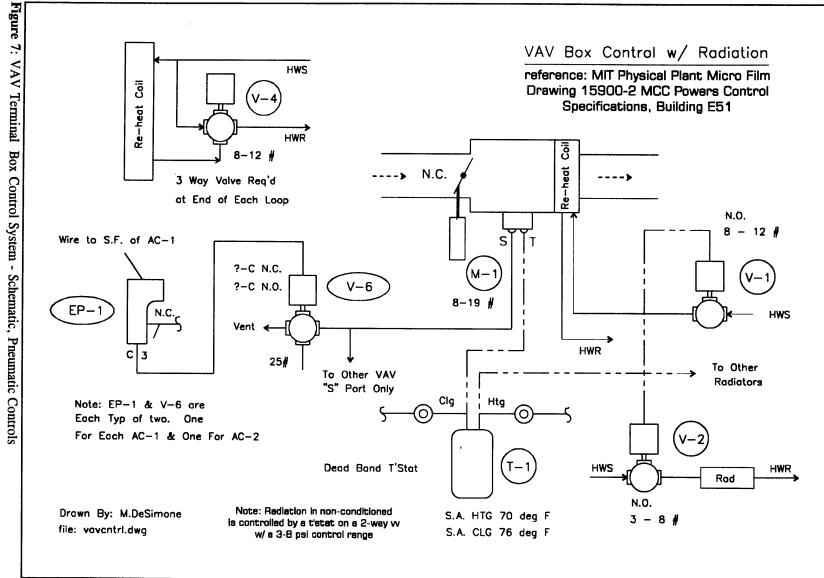
where: $Q = flow rate in m^3/h$;

G = specific gravity of liquid (SG water = 1)

 ΔP = pressure drop across value in bars.

Both of the equations 114 and 115 assume that the flow is neither viscous, cavitating, nor flashing.

3.3.3.4.4 Perimeter Heating


Perimeter heating is by forced hot water through a mixture of natural and forced convection units comprised of fin tube radiation or wall mounted. The design heat output for the perimeter heating system is shown in Figures 141, 142. The tables in these figures specify the type, size and output rating for each unit in every room. The list is sorted to show how the outputs add up in each of the six megazones. In addition, this list shows how the heat is distributed over each floor level. A total of

Megazone Designation	Conditioned Area [ft ²]	Design Perimeter Heat Output [Btuh]
Ι	2,369	19,200
II	607	4,800
III	6,799	97,900
IV	1,510	23,600
v	4,666	56,900
VI	188	10,000
Totals	16,139	212,400

Table - 28: Perimeter Heat Tally Summary (ref: Figure 7)

212,400 Btuh is specified for the 16,139 sqft area occupied by the selected portion of Building E51. Individual output capacities for the fin tube radiation vary from 700 to 1,200 Btuh/ft. Hot water convector capacities range from 1,600 to 9,600 Btuh. A summary of the perimeter heat requirements is shown in Table 7. Referring to Appendix H Building E51 Mechanical System Design Specifications, the column denoted 'Unit ID' names the unit specified in the locations indicated in the Supply and Return Duct System Drawings, Appendix D.

It has been proposed that an optional configuration for the perimeter heating system may be comprised of electric resistive elements rated at the same output as the forced hot water system. Identification and Parameterization of the HVACSIM + types to model both the electric and forced hot water perimeter heating systems is by LUT.

3.3.3.4.5 Room Temperature Control System

The room temperature control system installed in the real building is pneumatically operated. A schematic of the system is provided in Figure 7. Quoted from the mechanical specifications for Building E51, provided by MCC Powers, the control sequence is described as follows:

VAV Box Control

On a rise in space temperature, the space temperature thermostat will modulate the reheat coil valve closed. On a continued rise in temperature, the space thermostat will modulate the damper open.

VAV Box Control with Radiation

On a rise in space temperature, the space thermostat will modulate the radiation valves closed. On a continued rise in temperature, the space thermostat will modulate the reheat coil valve closed. On a still further rise in temperature, the space thermostat will modulate the volume damper open.

Radiation Control

On a rise in space temperature, the space thermostat will modulate the radiation valves closed.

3.3.3.5 Air Distribution Duct Design

The design of the supply and return air distribution system for the megazone configuration was based on the known flow requirements for each zone, the total static pressure drop across the two systems identified in the engineering design specifications, the supply air design static pressure set point, and some key industry accepted design standards. The need to match the thermal behavior of the megazone system with that of the real building imposed additional constraints. This was addressed by matching the surface area of the duct work with the effective surface area of the included zones.

Several design methods were considered: (1) equal friction; (2) static regain; (3) constant velocity; and (4) velocity reduction.^{82,83,84} There are no economic or geometric constraints to optimize the design for

⁸² Sauer et al., <u>Principles of Heating Ventilating and Air Conditioning</u>, §9.1.9 Design Methods.

^{83 1993} ASHRAE Handbook - Fundamentals (SI), Chapter 32, F32.16 Duct Design Methods.

⁸⁴ Patrick J. Brooks, "Duct Design Fundamentals," <u>ASHRAE Journal</u>, (April 1995), p.73.

smallest possible sizes. There are no constraints to maintain constant velocity (as in for example a suspended particle exhaust system). There is a reason to design a balanced system, and under normal conditions the static regain method would be the most logical choice. However, since there are few geometric constraints the task to design a balanced system is simply to make sure that the pressure drop through all the paths are themselves equivalent to the pressure drop along the critical path without violating the boundary conditions.

The velocity reduction method allowed direct and immediate application of the known engineering specifications (or boundary conditions) with only the provision being that the flow rates and pressures had to meet certain minimums at specific points, typically at the reheat coil, diffusers and grills. Hence, the velocity reduction method provided the most direct means to meet design criteria and at the same time develop a system with realistic, tangible characteristics.

[For the supply air system] This method consists of selecting the velocity at the fan discharge, and designing for progressively lower velocities in the main duct at each junction or branch duct The return air ductwork is sized similarly, starting with the highest velocity at the fan suction and decreasing progressively in the direction of the return air intakes. With the duct sized and the fittings known, the total pressure losses can be calculated, the pressure gradients plotted, and the maximum pressure loss or critical path of the system established.⁸⁵

The dimensions of the supply and return duct systems in the mechanical room portion of the real building were preserved in the megazone design. This feature, in conjunction with the real building engineering design specifications for supply and return air flow rates, established the velocity in both ducts at the mechanical room/main building interface. Similarly, overall pressure losses for both the supply and return systems were fixed by the need to match the operating points of the megazone design with those of the supply and return fans installed in the real building.

With the exception of duct surface area, there were no restrictions on the physical dimensions, cross sectional size or shape, or physical configuration of the megazone system. The surface area of each branch was designed to represent an effective surface calculated using the dimensions of the ductwork in the real building and the design flows for each of the individual supply and return grills and louvers.

⁸⁵ Sauer et al., Page 9.9.

	Megazone Designation		Total Effective	Required Megazone Duct Length		
			Surface Area [ft2]	[ft2/ft]	[ft]	
I	Supply	16" dia	215	4.19	51	
	Return	16" dia	168	4.19	40	
II	Supply	7" dia	75	1.83	41	
	Return	8" dia	18	2.09	8	
ш	Supply	48" x 16"	1,369	10.67	128	
	Return	26" x 30"	993	9.33	106	
IV	Supply	16" dia	519	4.19	124	
	Return	16" dia	515	4.19	123	
v	Supply	24" x 16"	931	6.67	140	
	Return	26" x 20"	450	7.67	59	
VI	Supply	10" dia	266	2.62	102	
	Return	11" dia	199	2.88	69	

Table - 29: Effective Surface Area Summary for Megazone Duct Systems (ref: Figure 146)

The lengths of duct required in each megazone to produce the necessary surface area were determined on the basis of the total effective surface area and branch duct diameters selected for the individual megazones. The effective surface areas and resulting duct lengths are summarized in Table 29. The total effective area for each duct leg was calculated as the sum of all fractional contributions from each of the ducts that carry any quantity of air destined for the associated zone. In many instances the subject ductwork passes through multiple megazones in route. In addition, the subject ductwork carries air destined for more than one megazone, and since the megazones were distributed over multiple floors it was necessary to access contributions on a zone by zone - floor by floor basis.

Effective Surface Areas for Supply and Return Duct Systems

The design flow designated for each return grill or supply louver in the real building passes through ductwork distributed across any number of zones. The ductwork distribution may or may not be shared with other flows, intermingling a specific flow with flow designated for various other destinations

serviced by the common ductwork.⁸⁶ Taking the sum of the actual surface areas attributed to each design flow as the surface area of the ductwork for the aggregated flows in the megazone system would have produced inaccurate, oversized representations, since only fractions of the flows in the aggregated flows actually come in contact with any particular portion of the actual duct surface areas in the real building. As a consequence, a weighted area was calculated based on the proportion of the individual design flows for each grill and louvre to the total, aggregated flow for the associated megazone. The resulting general expression for the total effective area A_i for either the supply or return duct systems in zone i is expressed in the following equation:

$$A_{i} = \sum_{l=0}^{\Lambda} \sum_{z=1}^{\Omega} \sum_{q=1}^{\Phi} \frac{\sum_{k=1}^{K} Q_{i,l,z,q,k}}{\sum_{\beta=1}^{B} Q_{i,l,\beta}} \frac{\sum_{k=1}^{K} Q_{i,l,z,q,k}}{\sum_{k=1}^{K} Q_{i,l,z,q,k} + \sum_{\alpha=1}^{\Lambda} Q_{i,l,z,q,\alpha}} \Pi_{q} \nu_{q} ; \qquad (116)$$

where:	Λ	= the number of levels l over which zone i may be distributed;
	Ω	= the number of zones z on level l through which the duct system for zone i may pass;
	Φ	= the total number of individually identifiably and distinct duct sections in zone z on level 1 through which fractional portions of air ascribed to zone i may pass;
	$Q_{i,l,z,q,k}$	= the individual design flows contributing to the total flow associated with zone i and which is ascribed to the duct section q in zone z and on level 1;
	K	= the total number of design flows associated with zone i contributing to the total flow which can be ascribed to the particular section q through which the flow
	$Q_{i,l,\beta}$	 is passing in zone z and on level l; = the individual design flows contributing to the total flow passing through all ductwork on level l associated with either the supply or return duct system of zone i;
	В	= the total number of grills or louvers on level 1 associated with either the supply or return duct in zone i;
	Q _{i,1,z,q,α}	= design flow at the grill or louver for each contribution to the total flow passing through duct section q in zone z and on level 1 but which is not associated with zone i;
	Α	= the total number of contributions to the flow in duct section q in zone z and on level 1 not associated with zone i;
	Π_{q}	= the perimeter measurement of duct section q ;
	ν _q	= the length of duct section q .

⁸⁶ The design supply and return air flow rates are specified in Figures 26 - 33.

The effective surface area was calculated by first finding the actual duct surface area attributed to each individual design flow. The actual surface area attributed to a particular design flow for a given duct section in the real building was considered to be proportional to the ratio of the design flow to the total flow passing through the particular duct section. The effective surface area for each individual design flow was then considered to be proportional to the ratio of the individual design flow to the total flow on the relevant level attributed to the associated megazone. The sum of the individual contributions from each design flow was used as the total effective area attributed to the entire flow for each megazone. The effective surface areas attributed to each zone are tabulated in Figure 146. The table shows a breakdown of the contribution from each portion of the supply and return systems, level by level and zone by zone. A summary of the calculations for the actual surface, detailing the weights and proportions assigned to obtain the effective areas is provided in the spreadsheet files area_sup.wq2 and area_rtn.wq2 in Appendix ?.

Design Velocities

87

Benchmarks for typical design velocities were obtained from several sources: (1) Table 8 and Figure 11 in Chapter 32, 1993 ASHRAE Fundamentals; (2) discussions with industry professionals;⁸⁷ (3) the flow rate and flow velocity analysis performed on the E51 HVAC system, (see Tables 22 & 23). Fittings were chosen from those listed in the Fitting Loss Coefficient Selection Guide, 1993 ASHRAE Fundamentals, Chapter 32, pages F32.27 - F32.52. Typical ranges for flow velocity are presented in Table 30. These values served only as a guide to begin the design procedure. As the design process developed, the actual velocities selected were dictated by the design specifications of manufactures equipment, noise criteria limitations, available duct and fitting sizes, and the requirement that velocity was to decrease or increase.

Table - 30: Design Velocity Ranges for HVAC Components (ref: ASHRAE Fundamentals §32)

Duct Element	Suggested Design Range [fpm]
Intake Louvers	300 - 600
Exhaust Louvers	400 - 700
Straight Duct	500 - 1800
Heating Coils	200 - 1500

Bob Leber, Cosentini Associates, Cambridge, Massachusetts, April 1995.

3.3.3.5.1 Supply Duct System

The velocity reduction method served as the basis for the design of the megazone supply duct system depicted in Figure 150, refer to §3.3.3.5 for discussion of design philosophy strategy. Elements of the supply system located in the mechanical room are shown in Figures 148 and 149. The order of appearance for the individual megazones along the path of the main duct was designed to place the zones requiring the highest flow rates nearest the supply fan outlet. The sizes of the ducts comprising each branch were selected to impose flow velocities which fell within the suggested flow velocity ranges cited in Table 30. Additional considerations for duct size were imposed by available Titus VAV terminal box sizes, and the output of the accompanying hot water reheat coil selections.

Each megazone branch consists of six basic elements: (1) a wye fitting to divert flow from the main trunk into the megazone branch; (2) a length of straight ductwork leading away from the wye fitting interspersed with; (3) a selection of fittings and bends; (4) a VAV box leading into a; (5) divergence providing a transition into; (6) a louver located somewhere inside the megazone.

The design process was devised to produce a nearly balanced system. The static pressure set point for the real building provided the necessary design point, and the total pressure loss for each branch from the static pressure sensor out to the exit point inside the individual zones was adjusted to equal the total pressure at the sensor. Selection of the wye's, VAV terminal boxes, diverging adapters, and louvers and straight duct lengths imposed a fixed series of losses in the system. Balance was accomplished by adjusting the number of fittings proposed to be installed in the branches according to the value of the fitting loss coefficient of the fitting selected and the amount of loss that was necessary to create. Some effort was made to select fittings for which pressure loss coefficients had been determined as in the ASHRAE Fitting Loss Coefficient tables.⁸⁸ However, this was not considered to be an essential feature of the design and individual coefficients were adjusted to produce whole values for numbers fittings required.

Balance was achieved in each branch by Equation 117. The values corresponding to each zone which satisfy this equation are summarized in Table 31.

$$P_{T} = l_{f,i} L_{i} + P_{i} + P_{mr} + \sum_{q} (n_{q} C_{l,i,q}) P_{v,i,q}$$
(117)

1989 ASHRAE Handbook - Fundamentals, F32.27 - F32.52

where:	P _T	= the total pressure required at the static pressure set point 89	[in-wg]
	l _{f,i}	= the friction loss per 100 feet of duct based on flow rate 90	{in-wg/ft}
	L_i	= the length of straight duct in zone i	[ft]
	$\mathbf{P_i}$	= total pressure loss imposed by fixed elements in zone i including	
		wye, VAV box, divergence, and louver	[in-wg]
	P _{mr}	= total pressure loss as a result of duct work from static pressure	
		sensor to exit from mechanical room ⁹¹	[in-wg]
	q	= fitting types required to balance branch for zone i	
	n _q	= the number of type q fittings required to balance branch for zone i	
	$C_{l,i,q}$	= fitting loss coefficient for fitting q selected to balance branch	
	$P_{v,i,q}$	= velocity pressure for flow passing through balancing fittings q 92	[in-wg]

Table - 31: Megazone Supply Duct Design Details (ref: Figures 144 & 151)

Zone	P _T	l _{r,i}	L _i	P _i	P _{mr}	n _q	C _{l,i,q}	P _{v,i,q}
Ι	1.411	0.00140	51	0.465	0.129	6 .	1.23	0.101
П	1.406	0.00255	41	0.382	0.129	3	1.25	0.069
						1	7.70	0.069
ш	1.410	0.00150	128	0.681	0.129	4	0.55	0.185
IV	1.390	0.00130	124	0.465	0.129	6	1.15	0.092
V	1.394	0.00200	140	0.786	0.129	2	0.45	0.221
VI	1.401	0.00205	102	0.534	0.129	5	1.23	0.086

The total pressure at the static pressure set point varies slightly from zone to zone. It is not possible to match the exact pressure loss requirements necessary to perfectly balance a branch using commercially

- 90 SMACNA HVAC Duct Design Calculator
- 91 reference Figure 145
- 92 based on Equation 113

⁸⁹ This value must be very close to the design value based on the Building E51 Engineering Design Specifications - MIT Physical Plant. Variances from the design value are in practice the result of manufacturing constraints and the impracticality of building an precisely balanced system with factory ready components. Precise balance is typically achieved in the field using balancing dampers or depending on the VAV boxes to make the necessary adjustment.

available, standard duct fittings. In a real system, the VAV box dampers will reposition from the theoretical, ideal design position compensating for these irregularities.

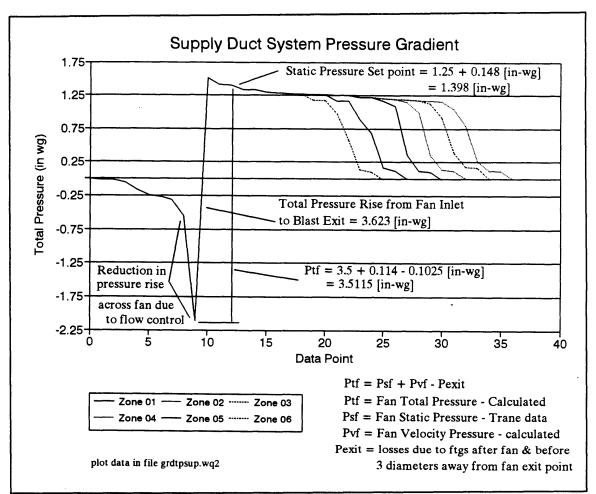


Figure 8: Megazone Supply Air System Total Pressure Grade Line

The supply duct system pressure grade line is shown in Figure 8 (refer to Figure 153 for plot data). Total pressure at the supply fan static pressure set point is 1.398 in-wg, and the design fan total pressure is specified to be 3.614 in-wg. The installed system varies from the conditions for which the fan performance curve is intended.⁹³ Referring to Figure 148, a 90 deg reducing bend plus a small offset combines to produce a pressure loss of approximately 0.1025 in-wg. This amount, subtracted from the fan total pressure, gives the total pressure available at the static pressure sensor location. Subtracting the total pressure rise across the fan, 3.5115 in-wg, from the total pressure at the static pressure sensor location.

93 Fans in Air Conditioning (La Crosse, Wisconsin: The Trane Company, 1982), p. 4.

The pressure losses for the elements in front of the fan, back out to the fresh air intake are shown in Figure 145. The 0.549 in-wg total pressure loss is calculated up to a point just in front of the fan cabinet. Not included in this number is the loss due to the inlet vanes. The operating point for the fan is with the inlet vanes open to approximately 65%. The loss across the partially open vanes is represented in the grade line plot as the difference between the inlet total pressure and the total pressure at the point just in front of the fan cabinet.

3.3.3.5.2 Return Duct System

The velocity reduction method served as the basis for the design of the megazone return duct system depicted in Figure 158, refer to §3.3.3.5 for discussion of design philosophy strategy. Elements of the return system located in the mechanical room are shown in Figure 157. The order of appearance for the individual megazones along the path of the main duct was designed to place the zones requiring the highest flow rates nearest the return fan inlet. The duct sizes comprising each branch were selected to impose flow velocities which fell within the suggested flow velocity ranges cited in Table 30.

Each megazone branch consists of six basic elements: (1) a wye fitting to merge flow from the megazone branch into the main trunk; (2) a length of straight ductwork leading into the wye fitting interspersed with; (3) a selection of fittings and bends; (4) convergence providing a transition from; (5) a grill located somewhere inside the megazone.

The design process was devised to produce a nearly balanced system. The total static pressure loss for the critical path through the return system is specified in the Building E51 Engineering Specifications to be $P_s = 0.75$ in-wg. Adding to that, the velocity pressure at the fan outlet, $P_{v,o} = 0.07$ in-wg, the overall total pressure loss for the return system is fixed at $P_{T,r} = 0.82$ in-wg. The total pressure loss for each branch from the return grill out through the path of highest resistance in the mechanical room was adjusted to equal the total pressure rise across the return fan. Selection of the wye's, converging adapters and grills, and straight duct lengths imposed a fixed series of losses in the system. Balance was accomplished by adjusting the number of fittings proposed to be installed in the branches according to the value of the fitting loss coefficient of the fitting selected and the amount of loss that was necessary to create. Some effort was made to select fittings for which pressure loss coefficients had been determined as in the ASHRAE Fitting Loss Coefficient tables.⁹⁴ However, this was not

considered to be an essential feature of the design and individual coefficients were adjusted to produce whole values for numbers fittings required.

Balance was achieved in each branch by using Equation 118. The values corresponding to each zone which satisfy this equation are summarized in Table 32.

$$P_{T} = l_{f,i} L_{i} + P_{i} + P_{mr} + \sum_{q} (n_{q} C_{l,i,q}) P_{v,i,q}$$
(118)

where:	P _T	= the total pressure rise required across the return fan 95	[in-wg]
	$\mathbf{l}_{f,i}$	= the friction loss per 100 feet of duct based on flow rate 96	[in-wg/ft]
	L	= the length of straight duct in zone i	[ft]
	$\mathbf{P}_{\mathbf{i}}$	= total pressure loss imposed by fixed elements in zone i including	
		wye, convergence, and louver	[in-wg]
	$\mathbf{P}_{\mathbf{mr}}$	= total pressure loss as a result of duct work from the mechanical	[in-wg]
		room entry point to mixing box 97	
	q	= fitting types required to balance branch for zone i	
	$\mathbf{n}_{\mathbf{q}}$	= the number of type q fittings required to balance branch for zone i	
	$\mathbf{C}_{\mathbf{l},\mathbf{i},\mathbf{q}}$	= fitting loss coefficient for fitting q selected to balance branch	
	$P_{v,i,q}$	= velocity pressure for flow passing through balancing fittings q 98	[in-wg]

Table - 32: Megazone Return Duct Design Details (ref: Figures 155 & 159)

Zone	P _T	l _{r,i}	L _i	P _i	P _{mr}	n _q	C _{l,i,q}	P _{v,i,q}
Ι	0.812	0.00120	40	0.098	0.523	3	0.540	0.088
П	0.829	0.00120	8	0.071	0.523	6	0.540	0.036
						1	3.000	0.036
Ш	0.810	0.00075	106	0.049	0.523	5	0.260	0.122

⁹⁵ This value must be very close to the design value based on the Building E51 Engineering Design Specifications - MIT Physical Plant. Variances from the design value are in practice the result of manufacturing constraints and the impracticality of building an precisely balanced system with factory ready components. Precise balance is typically achieved in the field using balancing dampers or depending on the VAV boxes to make the necessary adjustment.

- 96 SMACNA HVAC Duct Design Calculator
- 97 reference Figure 156
- 98 based on Equation 113

Zone	P _T	l _{f,i}	L	Pi	P _{mr}	n _q	C _{l,i,q}	P _{v,i,q}
IV	0.818	0.00095	123	0.097	0.523	10	0.120	0.068
V	0.841	0.00095	59	0.066	0.523	5	0.362	0.108
VI	0.812	0.00120	69	0.071	0.523	6	0.420	0.054

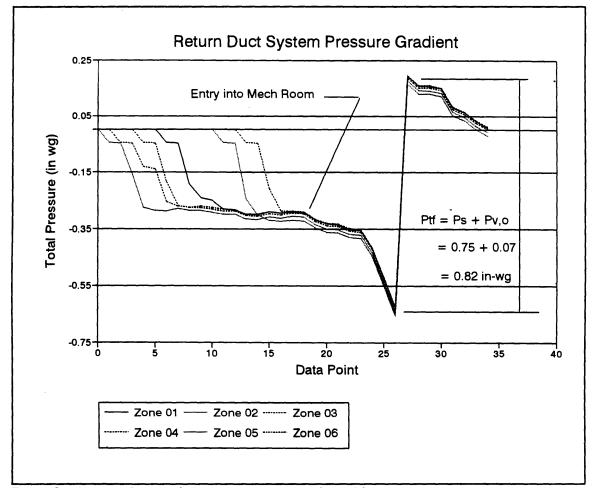


Figure 9: Megazone Return Air System Total Pressure Grade Line

The total pressure losses for each one of the branches slightly from zone to zone. It is not possible to match the exact pressure loss requirements necessary to perfectly balance a branch using commercially available, standard duct fittings. In a real system, the VAV box dampers will reposition from the theoretical, ideal design position compensating for these irregularities. The return duct system pressure grade line is shown in Figure 9 (refer to Figure 161 for plot data). The total pressure rise across the return fan is 0.082 in-wg.

3.3.3.6 Air Handler Control System - General Description w/ System Diagram

Control for the air handler is accomplished through a Johnson Metasys Network Control System. The Johnson system provides a Graphical Programming Language (GPL) for design and assembly of the control strategy used in Building E51.⁹⁹ Users have access to full control over the air handlers function through a remote operator workstation. A system drawing detailing the elements controlled through the Johnson System in Building E51 is shown in Figure 162. The Metasys program controls the signals received at various points in the diagram according to the strategy residing in the graphic program structure and the input received from sensors. A Metasys GPL control strategy consists of three primary levels. The first level is a dedicated file which contains the overall strategy for the control of Air Handler 1 in Building E51. This file is one of many available to the operator at a PC based workstation which maintains central control over a large number of buildings on the MIT campus. The second level captures the essence of the control strategy in a matrix of blocks, each referred to as compounds.

The compounds for Building E51 are shown in Figure 163. The compounds are sub-strategies which represent the control of an individual control signal. Typical control signals include damper adjustments, valve settings, and fan speeds as detailed in the system diagram. Behind each compound resides the third level consisting of the programming functions necessary to calculate the control of the state variables named in each compound. Metasys pre-programmed and user defined functions are linked together diagrammatically generating the code necessary to accomplish the desired calculations. The graphic program diagram for the static set point function in Building E51 is shown in Figure 164. Compounds can be found at the function level to characterize a control variable required for a certain function calculation.

Control System Details

99

Feedback from the building comes from three temperature sensors, one each located in Rooms E51-012, E51-110D, and E51-201, refer to drawings in Appendix D. These sensors signals are used by the Metasys Discharge Air Temperature Setpoint Reset Controller. The highest value is among the three is selected and processed by a proportional/integral reset algorithm which calculates a new setpoint for the chilled water valve. The Metasys system controls the supply fan output based on a supply air static air pressure set point. The feedback signal for this loop emanates from a pitot tube located three diameters down stream from the first bend coming off of the supply air fan in the mechanical room.

Metasys, GPL Programmer's Manual, Johnson Controls, Inc., June 1992.

The return fan is controlled by the results of a differential comparator and tries to maintain a preset minimum differential flow. The return system flow rate calculation is based on the air flow velocity pressure measured in the return duct just up stream of the return fan. The mixed air damper is controlled in part by an economizer function which calculates and compares outside air enthalpy with inside air enthalpy. A freeze stat by-pass keeps the fresh air dampers closed at start-up if conditions are such that the coil is threatened with freezing. The air handler control system was modeled and tested by the group at Loughborough University of Technology.¹⁰⁰ Additional details for this system are available in the documentation accompanying the LUT model.

3.3.3.6.1 Sequence of Operations

Refer to section 3.3.3.6.

3.3.3.6.2 Point Schedule

Refer to section 3.3.3.6.

3.3.3.6.3 Mode Table

Refer to section 3.3.3.6.

3.3.3.6.4 Control Logic Diagram

Refer to section 3.3.3.6.

3.3.3.7 Building Zone Modeling 2 C - 3 R Components

The section provides a description of the procedure used to capture the essence of the subject building in terms of variables compatible with the HVACSIM+ component type used to model the individual

100 Phil Haves, Loughborough University of Technology, Leicestershire UK.

megazones. The building's volume was divided into six megazones each consisting of two sub-zones: one for the occupied volume and one for the volume above the suspended ceiling referred to as the plenum.¹⁰¹ A total of twelve LPM 2C3R models (described in §2.2 Theoretical Building Model) are used to describe the entire building, or similarly, six sets of two linked models. Each set requires eleven parameter sets as shown in Figure 2: two resistive and capacitive parameter groups containing five components and one resistive parameter linking the two groups. Thermal communication between megazones is limited to interzone air leakage which was modeled in a separate HVACSIM + type (see §5.2.3.8 Inlet Constant Flow Resistances).

In conformance with the Annex 10 report modeling strategy, the building's structural elements were separated into three principle categories: external walls; internal walls; and connecting walls, and resistance and capacitance values were calculated per unit area for each structural element. The ceilings connecting each group of two sub-zones were treated as a connecting walls. The floors and ceilings separating the megazones were treated as internal walls. They were divided in half, each of which was individually ascribed to the adjoining megazones. The principle work in preparing the global parameter values was performed by Paul Balun. The work performed by P.Balun is documented in his report <u>A Building Thermal Zone Model of VAV HVAC System</u>, Massachusetts Institute of Technology, Undergraduate Research Opportunity Program, Summer 1995. All calculations shown in the interim and final results are included in Appendix R.

3.3.3.7.1 Resistances & Capacitances

Wall Types for Lumped Parameter Model

Seven wall types were identified for modeling refer to Table 33. The term wall is used in the Annex 10 report to characterize all structural and non-structural components in the real building which contribute to the global parameters for the 2C3R LPM building model. This includes floors, ceilings, windows, partitions, and miscellaneous door and internal window wall styles.¹⁰²

¹⁰¹ Return air in the subject building is ducted. As a result, the volume above the suspended ceiling was not used as a plenum, but only as a chaseway for distributed utilities and services.

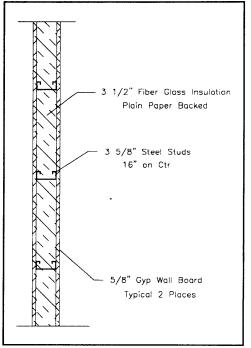
¹⁰² The structural steel frame for Building E51 was not considered in calculating external or internal thermal resistances or capacitances. In addition, all internal partitions were modeled as homogeneous gypsum and steel stud composites, ignoring doors and window walls. Floor slabs were modeled with out any covering including carpet, vinyl tiles or other materials typically found in commercial office buildings.

		Wall Types	
Code	External	Internal	
Hori	zontal Surfaces (refer to Figur	e 176)	
A			Ground Floor/Wall Concrete Foundation Slab
В		Fire Rated Suspended Ceiling	
С			Concrete Floor/Ceiling without Carpeting
D	Roof, Built Up Asphalt		
Vert	ical Surfaces		
1	External Shell Wall, Concrete Block/Brick Face		
2	Double Pane, Steel Frame, Standard Glass Windows		
3			Internal Partition & Adiabatic Walls, Steel Stud and Gypsum

Table - 33: Wall Types - Building E51

EXTERNAL - External walls are categorized with three types: (1) vertical external wall; (2) roof; and (3) double glazed, aluminum framed fenestration with thermal breaks. The structure of the vertical external wall is shown in Figure 11 and discussed at the beginning of this section. The roof construction consists of 2" lightweight insulating cement deck on 14 gage, corrugated galvanized steel sheeting, supported by manufactured steel roof joists.^{103,104} Waterproofing for the roof consists of two thicknesses of industry standard built-up roofing less one sub-layer of gravel weathering surface.¹⁰⁵ Characterization of the aluminum frame, double glazed windows was taken from the type described in Table 5 of 1993 ASHRAE Handbook - Fundamentals F27.6. Standard glass was assumed. Specific references are made to the example provided on page F27.19 when developing sol-air temperature profiles.

¹⁰³ Mark's Standard Handbook for Mechanical Engineers, 7th Edition, US Steel Wire Gage Standard, p. 6-48.


¹⁰⁴ Ching, et.al., P. 8.24.

^{105 1993} ASHRAE Handbook - Fundamentals, F22.7. Two layers to account for a re-roofing that required removing the loose gravel weathering surface from the layer to be covered.

CONNECTION - The only "zone to zone" connections considered for which there would be connecting walls were for the suspended ceilings separating a megazone's two sub-zones: the room and plenum. A suspended ceiling's construction consisted of 5/8" x 24" x 48" fire proof ceiling tiles suspended in an aluminum frame matrix. Material properties for the ceiling tile was estimated from the tables of material properties in 1993 ASHRAE Handbook - Fundamentals, F22.7 and 0.0625" x 3/4" aluminum bar stock.

INTERNAL - Internal partition wall construction consisted of 5/8" gypsum wall board on 1 1/2" x 3 1/2" steel studs with fiberglass batt insulation, see Figure 10. Although 6" concrete block wall partitions exist in Building E51, the steel stud and gypsum wall board type wall construction was used in all locations. In these cases, the thermal resistances are calculated using Equations 28 and 29. Values for the thermal capacitance in these cases were calculated to be consistent with the physical construct of the thermal resistances.

The adiabatic walls separating the model volume from other portions of Building E51 are modeled as internal walls. These walls were divided in half apportioning half of the mass and corresponding thermal resistance to the adjoining zones. The resulting pieces were, in essence, folded over and placed within the zone

Figure 10: Detail, Building E51 Internal Partition Walls

volumes. The resulting wall sections were then treated as internal walls with half of the total surface area (or twice the resistance) and half the mass of the separating wall, (refer to Equations 31 and 32).

The foundation floor and wall slabs were treated as connecting walls. However, a fraction less then half of the actual thickness was taken to represent the mass affected by temperature changes, since only a small fraction of the total thickness responds to these changes over the course of a day.

Overall External Wall Thermal Resistance

A calculation of the overall external wall thermal resistance was prepared. The R-value calculated in this way was used to provide independent corroboration for the values calculated using the Annex 10

modeling strategy. The external shell wall for E51 is a composite, multilayered structure typical for the age and type of building, refer to Figure 11. The thermal resistance calculation for the curtain wall was based on the assumption that heat flow through the wall is one dimensional in a direction transverse to the layer planes. Consequently, the resistance is equal to the sum of the resistances for the n individual layers:

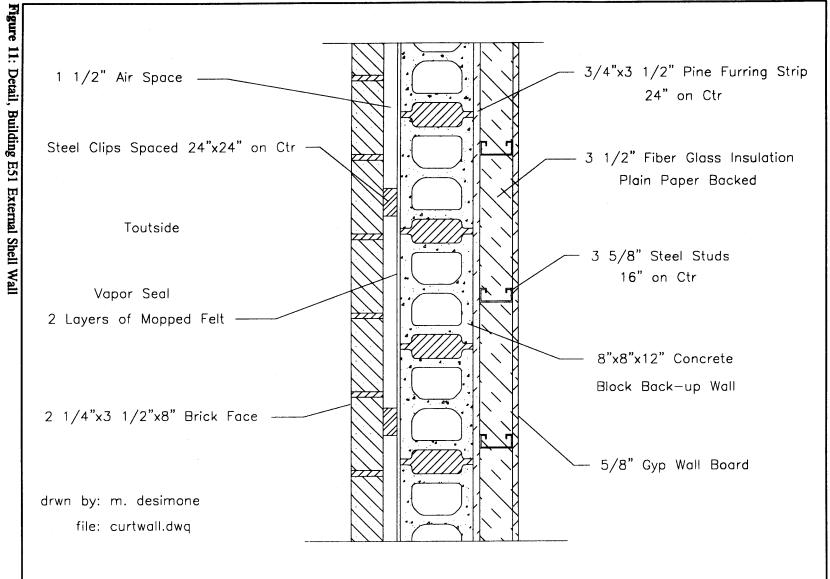
$$R_{total} = \sum_{n} \frac{1}{U_n} .$$
 (119)

Certain layers are composed of multiple components presenting parallel heat paths through materials with different conductances. In these instances, the average conductance through the layer is given by:

$$U_{n,av} = \sum_{m} a_{n,m} U_{n,m};$$
 (120)

where the coefficients $a_{n,m}$ are the respective fractional areas corresponding to the parallel paths composed of material with transmittance (or conductance) $U_{n,m}$.¹⁰⁶

By combing the two preceding equations and applying the result to the wall shown in Figure 11, an expression for the overall resistance through the external shell wall was derived as follows:


$$R_{ext wall} = R_{brick} + \frac{1}{\frac{a_{oas}}{R_{oas}} + \frac{a_{sc}}{R_{sc}}} + \frac{R_{vapor}}{barrier} + \frac{R_{concrete}}{block} + \frac{1}{\frac{a_{ias}}{R_{ias}} + \frac{a_{fs}}{R_{fs}}} + \frac{1}{\frac{a_{ss}}{R_{ss}}} + \frac{a_{fi}}{R_{fi}}} + \frac{R_{gypsum}}{wall board};$$
(121)

where: a_{oas} = fractional area of outside air space a_{sc} = fractional area of steel clip (1 - a_{oas} = a_{sc}) a_{ias} = fractional area of inside air space

 a_{fs} = fractional of furring strip (1 - $a_{ias} = a_{fs}$)

 a_{ss} = fractional of steel stud

 a_{fi} = fractional of fiber glass insulation (1 - $a_{ss} = a_{fi}$)

Material		The	mal Resistance [°F hr ft²/Btu]	Reference
Description	Code	Value	Calculation	
brick face	R _b	0.6000	0.17 [°F hr ft²/Btu in] x 3.5 [in]	$ \rho_{\text{brick}} = 120 \text{ lbf/ft}^3 $ [Sauer, et.al.]
outside air space	R _{oas}	0.3600	0.24 [°F hr ft²/Btu in] x 1.5 [in]	[Stein]
steel clip	R _{sc}	0.0075	0.005 [°F hr ft²/Btu in] x 1.5 [in]	NAVSHIPS 900,190
felt vapor barrier	R _f	0.1200		ASHRAE F22.6 (SI) 2 layers mopped 15 # felt
concrete block	R _{eb}	1.1100		ASHRAE F22.8 (SI) 8" block $\rho_{block} = 130 \text{ lbf/ft}^3$
furring strip	R _{fs}	0.8000	1.06 [°F hr ft²/Btu in] x 0.75 [in]	ASHRAE F22.9 (SI) Douglas Fir $\rho_{doug fur} = 34 \text{ lbf/ft}^3$
inside air space	R _{ias}	0.1800	0.24 [°F hr ft²/Btu in] x 0.75 [in]	[Stein]
steel stud	R _{ss}	0.0175	0.005 [°F hr ft ² /Btu in] x 3.5 [in]	NAVSHIPS 900,190
fiber glass insulation	R _{fi}	11.0000		ASHRAE F22.6 (SI) 3.5" fiber glass batt $\rho_{\text{fiber glass}} = 0.3 \text{ lbf/ft}^3$
gypsum wall board	R _{gyp}	0.5600		ASHRAE F22.6 (SI) 3.5" fiber glass batt $\rho_{\text{fiber glass}} = 0.3 \text{ lbf/ft}^3$

Table - 34: Thermal Resistance Calculation, External Shell Wall (refer to Equation 121)

Table - 35: Thermal Resistance Calculation, Fractional Surface Areas

Coefficient	Value	Coefficient	Value	Coefficient	Value
a _{oas}	0.9987	a _{ias}	0.8542	a _{ss}	0.0100
a _{sc}	0.0013	a _{fs}	0.1458	a _{fi}	0.9900

Values for the individual wall components are detailed in Tables 34 and 35, and a value for overall resistance of the external shell wall $R_{ext wall}$ is calculated based on Equation 121 as follows:

$$R_{ext wall} = 0.60 + \frac{1}{\frac{0.9995}{0.36} + \frac{0.0005}{0.0075}} + 0.12 + 1.11 + \frac{1}{\frac{0.8542}{0.18} + \frac{0.1458}{0.80}} + \frac{1}{\frac{0.01}{0.0175} + \frac{0.99}{11.0}} + 0.56$$
(122)

$$R_{ext wall} = 4.5 [Fhr ft^{2} / Btu]$$
(123)

Area of Each Wall Type and the Associated Unit Area Parameter Values

<u>AREA</u> - The areas for all internal wall types in each megazone, including room and plenum, are summarized in Figures 171 and 177. The tables in these figures contain individual take off quantities and total quantities of each variety. Take offs were derived by scaling linear measurements from the drawings shown in Figures 26 - 33, and using a 9.5 foot room ceiling height and 2.5 foot plenum height. The total external building surface area is shown in Figure 184 and includes all surfaces in direct contact with the outside air. The areas were calculated from measurements scaled directly from the Building E51 elevation drawings shown in Figures 19, 20, 21. External surfaces below grade were considered adiabatic boundaries, and a fraction of the total thickness of these surfaces were included in the parameter calculations.¹⁰⁷

UNIT AREA PARAMETERS - Parameter values ascribed to each sub-megazone for the various wall types were calculated using the unit area values calculated by various means and the equations expressed in §2.2.1. Unit area parameters were calculated using the methods proposed in ASHRAE Fundamentals Chapter 2. The unit area parameters were obtained by combining the conduction components with the appropriate values of surface film coefficients. Film coefficients were taken from Table 1, 1993 ASHRAE Fundamentals, F22.1 and account for surface orientation, slope, and average local air movement, as well as, to some degree, for radiative heat transfer between internal surfaces; although there is no explicit accounting for radiative heat transfer between internal zone surfaces. The actual values may differ slightly from those values proposed in the ASHRAE tables due to variances in the behavior of specific material used in construction. In support of the ASHRAE tabulated values,

The full thickness of the foundation slab cannot respond fully (by attaining a steady state condition) to variations in temperature over the course of a twenty-four hour period. Concrete slabs with thickness closer to 3 - 4 inches are more representative, having time constants in the order of 3 - 5 hours.

they were obtained by accepted ASTM test methods and can be considered representative and consistent with common building practices.¹⁰⁸

Long-wave and short-wave radiation heat transfer is accounted for explicitly in calculations modeling net solar heat flux on the external surfaces, and between the panes of the double glazed windows (refer to section concerning sol-air temperature calculations).

Annex 10 Global Parameters for Room and Plenum Volumes in Each Megazone

On the basis of the equations presented in §2.2.1 Current Model, and using the unit area parameter values, global parameters were calculated for each of the room and plenum volumes in the megazones. These values summarized in Tables 36 and 37, are explicitly detailed in Appendix R. Quality control was maintained continuously throughout the development of these values to ensure the validity of these numbers. In the case of the capacitances, approximate mass values were back-calculated using average specific heat values. The average specific heat values selected were based on relative quantities of each material contained in the composite capacitance values. In the case of the resistances, two methods were used: first, the value or its inverse, the conductance, must fall within known reference values; and second, by calculating a time constant using the corresponding capacitance and then comparing this with known reference values.¹⁰⁹ In both cases, effective surface areas and volumes were back calculated and compared with the values originally used as an additional verification.

Infiltration and the Effect on Lumped Parameter Model Values

Values for the Capacitive Flow of Infiltration $\hat{C}_{i,out}$ are calculated in Figure 185. This value is always positive. The direction of heat flow due to this component of the total heat flow into, or out of, the zone is determined by the temperature difference of the air in the zone and the air flowing through the zone due to all possible air flow paths. A list of air flow paths include that due to stack effects, infiltration and exfiltration through external and internal walls, ceilings, and floors and that due to mechanical ventilation. A fully detailed mathematical description of air flow through the megazones is complicated and the values are dependent on variables which change frequently throughout the course of a typical 24 hour period. For example sol-air temperatures and VAV flow rates. Stack effects are

^{108 1993} ASHRAE Handbook - Fundamentals, F22.1.

¹⁰⁹ Reference values for these comparisons originate primarily from the authors personal experience as an engineer and in consultation with others associated with the industry.

	Megazone - Global Parameters (rounded)							
]	I]	I	I	Ш		
Parameter	Room	Plenum	Room	Pienum	Room	Plenum		
1/R _{wi} [W/°K]	30	0	10	0	220	0		
1/R _i [W/°K]	4,230	1,540	880	790	10,060	2,970		
θ_{i}	0.011	0.011	0.016	0.006	0.038	0.076		
Cdot _{i,out} [W/°K]	0	0	0	0	0	0		
K _i [W /° K]	80	20	20	5	600	220		
ξi	0.39	0	0.34	0	0.36	0		
1/R _{eq} [W/°K]	4,270	1,540	890	790	10,280	2,970		
C _{si} [J/°K]	5.85e+07	4.81e+07	1.07e+07	1.63e+07	2.79e+08	1.25e+08		
τ _i [hr]	210	750	140	910	130	160		
С _і [J/°К]	9.41e+06	2.18e+06	2.03e+06	7.03e+05	2.58e+07	6.87e+06		

Table - 36: Global Parameter Summary for Megazone I - III (refer to Figure 165)

Table - 37: Global Parameter Summary for Megazone IV - VI (refer to Figure 165)

	Megazone - Global Parameters (rounded)							
Parameter	IV			V	l I	Л		
	Room	Plenum	Room	Plenum	Room	Plenum		
1/ R_{wi} [W /°K]	56	0	147	0	20	0		
1/ R _i [W/°K]	1,853	1,356	5,490	3,861	257	179		
θ_{i}	0.058	0.028	0.033	0.022	0.118	0.064		
Ċ _{i,out} [W/°K]	0	0	0	0	0	0		
K _i [W /° K]	164	38	327	86	50	11		
ξi	0.34	0	0.45	0	0.4	0		
1/R _{eq} [W/°K]	1,900	1,360	5,640	3,860	280	180		
C _{si} [J/°K]	7.60e+07	5.18e+07	5.14e+08	1.52e+08	2.08e+07	1.08e+07		
τ _i [hr]	130	370	180	490	120	260		
С _і [J/°К]	7.24e+06	7.24e+06	1.78e+07	5.49e+06	6.77e+05	2.32e+05		

Alert: New thermal parameter tables that correct the errors identified in §2.2.3 are presented in Appendix BB.

158

also another variable which will vary remarkably. The effect of capacitive flow cannot be ignored in developing the global parameters, and the simulation package in its present form cannot accommodate variable global parameters. As a compromise it is proposed that a value of 50% of the supply air flow in each megazone be used as trial numbers for $\dot{C}_{i,out}$, and as the simulation is fine tuned, these values can be adjusted to the most representative and accurate levels.

Zone Number	Global Time Constant τ_i [hrs]				
number	Room	Plenum			
I	13	71			
П	14	137			
Ш	12	31			
IV	17	71			
v	17	73			
VI	12	40			

Table - 38: Global Time Constant τ_i (refer to Equation 42 & Figure 165, global01.wq2 - Page 6)

Additional Comments

The values for τ_i presented in Table 38 are close enough to being acceptably accurate that there may be no need to examine the construct of the time constant detailed in Equation 42. However, as the model is fine tuned, and adjustments are made to the capacitive flow, the time constant may be distorted out of character, and the following observations concerning the time constant construct may be applicable in making modifications which produce more realistic results.

The formula combines values for resistance (or conversely conductance) and capacitance which do not have the same physical origins. The conductance calculation for K_i shown in Equation 43 (referred to in the Annex 10 report as the overall loss coefficient) and used in Equation 42 is based on contributions from only resistances in the external shell and fenestration in combination with the infiltration term. In contrast, the capacitance calculation shown in Equation 42 is based on contributions from both internal and external components heavy structures, none of the external light structures, and no part of the infiltration. More specifically, the capacitance used in this calculation is determined on the basis of a 100% contribution from the internal heavy structures and only a fractional part of the external heavy structures.

It is this author's contention that if the time constant is to be representative of the system's dynamic behavior, then the construct must recognize and characterize heat transfer by all paths to the mass represented by the capacitance value used in the calculation. In reality, heat transfer to the mass modeled by the capacitance in Equation 42 occurs through two routes: first, through the convective and conductive heat transfer paths for surfaces presented by the included internal components; and second, through the convective and conductive heat transfer paths for the transfer paths for the transfer paths for the external components.¹¹⁰

In the case of Building E51, surface areas for heavy internal structures constitute a very high percentage of the total surface area attributed to the mass included in the time constant calculation, and heat transfer through the associated internal paths are ignored in Equation 42, referring specifically to the fact that K_i is a function of the external heat transfer paths only according to Equation 43. From the summary of surface areas related to heavy structures provided in Table 39 it is surmised that omitting internal heat transfer paths ascribed to internal surfaces significantly underrates the total heat transfer characterization intended when calculating a time constant. In fact, by augmenting Equation 43 with additional heat transfer paths the ratio τ_i would decrease.

	Heavy Structure Surface Areas							
Zone Number	Horizonta	al Internal	Vertical External					
	[ft ²]	% of Total	[ft ²]	% of Total				
Ι	5,076	86	834	14				
П	1,245	84	234	16				
Ш	13,746	68	6,501	32				
IV	3,020	63	1,810	37				
V	9,332	73	3,398	27				
VI	376	41	539	59				

Table - 39: Heavy Structure Surface Area Comparison (refer to Figures 177 & 184)

Heat transfer is also affected by infiltration through internal and external walls and by mechanical ventilation. The model for τ_i represented in Equation 42 takes into account heat transfer through

Radiative heat transfer for internal surfaces is ignored. A case could be made to include this as another path since, in practice, the temperature of the inside surface of an external wall may often be significantly different then the temperatures of the internal wall surfaces.

infiltration and conduction through the external walls; heat transfer though the connecting and internal walls by any means is ignored. In addition, no accounting is made for heat transfer by mechanical ventilation. It is the author's opinion that additional investigation, beyond the scope of this project, is necessary to clarify the inconsistencies related to the infiltration term.

It is understood that the Annex 10 model equations were not intended to be all encompassing, generalized equations for every zone configuration and ventilation system. However, the intent to include a capacitive flow term is well taken and one simply needs to insure that this term accurately describes the total flow through a zone.

2C3R Lumped Parameter Model Parameters

The parameters for the 2C3R LPM's are shown in Table 40. They were calculated using the equations in §2.2.1 on the basis of the global parameters in Tables 36 and 37. The values presented in Table 40 are used directly as the parameters values for the HVACSIM + type modeling the megazone thermal characteristics. The entire calculation is summarized in Appendix R in a series of fully linked spreadsheets.¹¹¹ If recalculation or modification is required, this may be done in Quattro or the sheets may be converted into a format compatible with either the Lotus 123 or Microsoft Excel spreadsheet programs; for this process, it is recommended the *.wks format be used.

Parameter	2C3R Lumped Parameter Model Characteristics for Each Zone i *						
	Ι	П	Ш	IV	V	VI	
R _{01,i} [°K/kW]	3.27e+01	1.37e+03	4.64e+00	1.79e+01	6.82e+00	5.00e + 00	
R _{02,i} [°K/kW]	2.64e-03	1.80e-02	3.76e-03	3.15e-02	5.99e-03	4.61e-01	
R _{03,i} [°K/kW]	2.34e-01	1.12e+00	9.56e-02	5.08e-01	1.76e-01	3.43e+00	
C _{02,i} [kJ/°K]	9.41e+03	2.03e+03	2.58e+04	7.24e+03	1.78e+04	6.77e+02	
С _{03,i} [kJ/°К]	5.85e+04	1.07e+04	2.79e+05	7.60e+04	2.14e+05	2.08e+04	
R _{11,i} [°K/kW]	3.26e+00	9.47e+00	1.14e+00	3.81e+00	1.33e+00	3.06e+00	

Table - 40: 2C3R Lumped Parameter Model Characteristics (refer to Figure 2 & 165)

¹¹¹ Novell's spreadsheet program Quattro Pro V5.5 was used to accomplish the calculations. Soft copies of the sheets presented in Appendix R are included in Appendix ?. An index cross referencing the file names to the figures in which the information is presented in hard copy form is presented at the beginning of this thesis.

Parameter	2C3R L	2C3R Lumped Parameter Model Characteristics for Each Zone i *							
	I	и п		IV	V	VI			
R _{21,i} [°K/kW]	infinite	infinite	infinite	infinite	infinite	infinite			
R _{22,i} [°K/kW]	7.45e-03	7.97e-03	2.54e-02	2.09e-02	5.77e-03	3.57e-01			
R _{23,i} [°K/kW]	6.41e-01	1.26e+00	3.12e-01	7.17e-01	2.53e-01	5.23e+00			
C _{22,i} [kJ/°K]	2.18e+03	7.03e+02	6.87e+03	2.36e+03	5.49e+03	2.32e+02			
C _{23,i} [kJ/°K]	4.81e+04	1.63e+04	1.25e+05	5.18e+04	1.52e+05	1.08e+04			

* The parameters in Table 40, expressed in terms of the variable names used in the Annex 10 report, are shown in the following list:

Alert: New thermal parameter tables that correct the errors identified in §2.2.3 are presented in Appendix BB.

4 Requirement for Sub-One-Hour Solar and Collateral Weather Data

"Variations in meteorological conditions also impose variations in heating and cooling loads. Since variations in ambient dry bulb temperature and humidity are generally quite slow (time-scales of hours), variations in solar radiation account for the main load changes on time scales that effect the closed loop behavior. The greatest high frequency variations occur under partly cloudy skies with high wind speed. As with variations in internal gains, the thermal characteristics of the zone have a major effect in determining how much of the high frequency variations in the heat gain to the room are passed on to the HVAC system as load variations. No experimental work in this area appears to have been reported in the literature, so the most suitable of the zone models identified ... [in other phases of this study conducted by LUT] ... will be used to assess the sampling rate for solar data that is required to ensure that the higher frequency components of the load are calculated with reasonable accuracy.

A further effect of meteorological conditions that has no first order effect on heating and cooling loads, but [which] does affect HVAC control loops, is the effect of wind pressure changes on fan control and building pressurization, especially in VAV systems. Proper investigation of this effect would require a study using the completed testbed However, consideration of the dynamics of the fan static pressure control loop and the flow control loop in pressure independent VAV boxes suggests that a sampling interval of one minute for wind velocity data represents an upper limit for the study of such effects.

<u>The availability of one minute solar and wind velocity data</u> from such sources as NOAA, the National Climatic Center (Ashville, NC), and the national labs will be investigated and reported. Sample data for extreme day (in terms of short fluctuations) will be obtained to facilitate further studies of these effects, and will be delivered together with a report on the availability of short term data for different sampling intervals and different climates.¹¹²

4.1 Available Solar Radiation & Collateral Meteorological Observations

The search for solar data in any form followed a course which researched the holdings of the Federal Records Center in Waltham MA, the National Archives in Washington DC, the National Climatic Data Center (NCDC) in Asheville, NC, the NOAA reference library in Camp Springs, MD, the Blue Hill Weather Observatory in Canton MA, the Harvard University and the National Renewable Energy

Laboratory (NREL) in Golden Colorado. Aside from discovering that the history of solar data collection is extremely interesting, filled with amusing and fascinating anecdotes, the net result of the investigation was that four references for solar radiation and collateral surface meteorological observations originating in the United States are available: (1) SOLMET - Hourly Solar Radiation & Surface Meteorological Observations; (2) SOLDAY - Daily Solar Radiation & Surface Meteorological Data; (3) SAMSON - Solar and Meteorological Surface Observational Network CD-ROM; and (4) ASOS - Automated Surface Observing System. These references, prepared by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) for the Department of Energy under interagency agreement No. E(49-26)-1041, provide a broad base of corrected data in a standard format.

The two programs, SOLMET and SOLDAY, produced corrected and reformatted data and information in a common format with all known procedural and instrument errors removed. Correction was necessary because much of the data existing in the historical data bases from which the SOLMET and SOLDAY programs drew information suffered from neglect and contained serious errors resulting from a number of calibration and instrument problems.¹¹³ Further, data was not all referenced to the same scale. The SAMSON CD-ROM is a National Solar Radiation Data Base V1.0 (NSRDB V1.0), which is the result of a development project sponsored by the National Climatic Data Center (NCDC) and implemented by the National Renewable Energy Laboratory's (NREL) Analytical Studies Division under the Solar Radiation Resource Assessment Project (SRRAP). The ASOS program, in contrast, is an ongoing and currently expanding NOAA program to deploy and activate 900 to 1,700 automated surface meteorological observing system at airports around the United States. The ASOS system does not collect or record solar insolation data.

Two additional resources for meteorological and solar insolation data records are found in guides to all United States weather records in the custody of the National Climatic Weather Service. The first guide is available through NOAA Meteorological Records Document No. 4.11, <u>Selective Guide to Climatic Data Sources</u>. This comprehensive guide includes synopses of Data Bases and Digital Files, Satellite Digital Files, Statistical and Special Studies, Manuscript and Autographic Records, Microfilm and Microfiche Files, Historical Publications, Decennial and Periodic Publications, and Subscription Publications. The second guide is also published by NOAA <u>National Climatic Data Center - Products</u> and <u>Services</u>, and includes information regarding on-line systems, CD-ROM products, summaries of

113 SOLMET Volume 1 - User's Manual, p. i.

digital datasets, and another list of related publications. This catalog and all other NOAA publications can be obtained by phone, fax or e-mail.¹¹⁴

4.1.1 SOLMET - Hourly Solar Radiation & Surface Meteorological Observations

The SOLMET program was developed to collect information into a "common tape format that is designed to provide, in a single Fortran compatible tape, quality controlled hourly solar insolation and collateral meteorological data...." The SOLMET program was sponsored by the United States Department of Energy, Division of Solar Technology, Environmental and Resources Assessments Branch in an effort to provide the solar heating and cooling industry with comprehensive, conveniently organized, accessible information. SOLMET tapes are available for 249 stations distributed around the United States.¹¹⁵ Most data sets extend over the period from 1951 to 1976. A small number of the stations did not have complete data for the entire twenty-five year period.

The program was the result of recommendations by Working Group 1 of the National Oceanic and Atmospheric Administration (NOAA) Solar Energy Data Workshop (1973) to "rehabilitate the pyranometer data for the United States network of stations to at least five percent accuracy for all possible stations for a period of ten years, or longer where possible."¹¹⁶ The key features of the program were to:

- 1. merge all available insolation and meteorological data into a single source;
- 2. present all data in SI units;
- 3. provide time information in true solar and/or local standard time;
- 4. provide for augmentation to accommodate additional solar radiation parameters and allow for supplemental fields for additional measurements e.g. spectral, ultraviolet, etc.;
- 5. eliminate undesirable format features that were inherent in the past data sources such as over-punches, blanks, etc.

114	NCDC / Climate Services Division (as of 07 Oct, 1994)	Tel: Fax: e-mail:	(704)271-4800 (704)271-4876 orders@ncdc.noaa.gov
115	SOLMET Volume 2 - Final Report, Table	:11, p.1	84.

116 SOLMET Volume 2 - Final Report TD9724, P. 1

- code missing observations and those observations that were estimated via models (e.g. sunshine and cloud regression models);
- 7. provide the user with global radiation data as they were originally observed corrected for all known scale, instrument, and calibration problems, and, in addition provide a data set corrected via a standard year irradiance (or radiant flux density) model.

Solar radiation data sets for twenty-seven stations were from direct measurement. Twenty-five of these stations were considered control data stations (dividing the contiguous United States into twenty-five climatologically consistent regions). Since rehabilitated hourly direct measurement solar radiation data was not available from the 222 additional stations, solar radiation data sets for these sites were derived through a series of regression equations *"which relate measured hourly global solar radiation to commonly reported weather elements [cloud and sky cover conditions] as described in <u>SOLMET Volume 1 -User's Manual</u>. "¹¹⁷ The equations were initially derived to fill in missing data from the control data stations. Later, the equations were used to extend the SOLMET data set inventory to the 222 additional stations.*

Pyranometer data from the direct measurement stations were rehabilitated to at least five percent accuracy. The rehabilitation process was an attempt to remove the effect of all known procedural and instrumentational errors, and its application was limited to hourly global solar radiation data. All solar radiation data was presented as integral hourly values in true solar time, and the collateral meteorological data was presented as instantaneous hourly values in local standard (or GMT) time.¹¹⁸

SOLMET data tape contain information formatted into the fields shown in Table 41 (refer to SOLMET Volume 2 - Final Report for a more detailed explanation of each field).

Table - 41: S	SOLMET Data	Tape Records
---------------	-------------	---------------------

LN	Record Description
1	Tape Deck Number
2	WBAN Station Number
3	Solar Time Day [solar year/month/day/hour/minute]

117 SOLMET Volume 2 - Final Report TD9724, P. 168

¹¹⁸ SOLMET Volume 2 - Final Report TD9724, P. 2

LN	Record Description
4	Local Standard Time [hr - minute]
5	<u>Extraterrestrial Radiation</u> [kJ/m ²] : Amount of solar energy received at the top of the atmosphere during the solar hour ending at the time indicated in the field based on solar constant 1377 J/(m ² -s) includes night values for a limited number of stations only
6	<u>Direct Radiation</u> [kJ/m^2] : Portion of radiant energy received at the pyrheliometer directly from the sun during the solar hour ending at the time indicated in the field
7	<u>Diffuse Radiation</u> [kJ/m^2] : Amount of radiant energy in received at the instrument indirectly from reflection, scattering, etc. during the solar hour ending at the time indicated in the field
8	<u>Net Radiation</u> [kJ/m^2] : Difference between the incoming and outgoing radiant energy in kJ/m^2 during the solar hour a constant of 5000 has been added to all net radiation data
9	<u>Global Radiation on a Tilted Surface</u> [kJ/m^2] : Total of direct and diffuse radiant energy in kJ/m^2 received on a titled surface (tilt angle indicated in station - period of record list) during the solar hour ending at the time indicated in the field
10	<u>Global Radiation on a Horizontal Surface (GRHS) - Observed Data</u> [kJ/m^2]: Total of direct and diffuse radiant energy in kJ/m^2 received on a horizontal surface by a pyranometer during the solar hour ending at the time indicated in the field
11	<u>GRHS - Engineering Corrected Data</u> [kJ/m^2] : Observed value corrected for known scale changes, station moves, recorder and sensor calibration changes etc.
12	<u>GRHS - Standard Year Corrected Data</u> [kJ/m^2]: Observed value adjusted to the Standard Year Model. This model yields expected clear sky irradiance received on a horizontal surface at he elevation of the station.
13	Minutes of Sunshine : for Local Standard Hour most closely matching solar hour
14	Observation Time [time of collateral surface observation] : Local Standard Hour of TD 1440 Meteorological Observation that comes closest to mid-point of the solar hour for which solar data are recorded
15	<u>Ceiling Height</u> [dekameters] : Ceiling height defined as the height of sky cover of 0.6 or greater
16	<u>Sky Condition</u> : Identifies observations after 01 June 51. Coded by layer in ascending order; 4 layers are described; if less than 4 are present the remaining positions are coded 0 Layer codes are expressed on a scale from 0 to 8. The code breaks down as follows: 0 = clear or less then 10 % cover; 1 = thin scattered 10 - 50 % cover; 2 = opaque scattered 10 - 50 % cover; 3 = thin broken 60 - 90 % cover; 4 = opaque broken 60 - 90 % cover; 5 = thin overcast 100 % cover; 6 = opaque overcast 100 % cover; 7 = obscuration; 8 = partial obscuration.
17	Visibility [hectometers] : prevailing horizontal visibility
18	Weather : none, rain, t-storm etc. with lots of codes for variations of the same theme
19	Pressures (kPa) : local station pressure and pressure reduced to sea level

LN	Record Description
20	Dry Bulb Temperature [°C to tenths]
21	Dew Point Temperature [°C to tenths]
22	Wind Speed and Direction [m/s + deg]
23	<u>Clouds</u> : includes sky cover defined as the amount of celestial dome covered by clouds or obscuring phenomena and is expressed in 10ths other data available in this category includes cloud types, height, and layer
24	Snow Cover : indicates presence of snow cover on ground

Typical Meteorological Years

In addition to the SOLMET tapes, data sets referred to as Typical Meteorological Years (TMY) are available for twenty-six stations. Twenty-five of these stations are direct measurement control stations. TMY data represents hourly data, averaged over many years. Each data set is a one year composition of the most representative or typical months for that station over the course of the twenty-five year period. The TMY tapes contain the same data fields as the SOLMET tapes except that the cloud layer information was omitted. Also, since the typical months were most likely chosen from different calendar years, discontinuities between months were smoothed with a cubic spline function covering six hourly points on either side of the interface.

Two other tape formats are available which may also be used in HVACSIM + simulations: Weather Year for Energy Calculation (WYEC); and NOAA Test Reference Year (TRY).¹¹⁹ All four data tape formats tapes may be ordered from the National Climatic Data Center (NCDC), Ashville, North Carolina. In the event a custom configuration is required, the desired input may be configured to mimic any of the aforementioned formats and used in the simulation accordingly. The most useful format for accessing the

CDROM Formatted SOLMET Data

Recently, SOLMET data has become available on CDROM. The data available is a synthesis of the data formerly distributed as a result of the SOLMET and SOLDAY programs. *The 1961-1990*

¹¹⁹ SOLMET Volume 2 - Final Report TD9724, P.65

National Solar Radiation Data Base Version 1.0 was developed by the National Renewable Energy Laboratory's (NRELS) Analytical Studies Division under the Solar Radiation Resource Assessment Project (SRRAP). NRSDB 1.0 is available on CDROM as the Solar and Meteorological Observational Network (SAMSON) from the [NCDC].¹²⁰ The data set used for this project was taken from the CDROM set entitled "Solar and Meteorological Surface Observation Network (SAMSON) 1961 - 1990" Version 1.0, September 1993.¹²¹ Table 42 lists the data available in a SAMSON record.

Data Field	Description	
Day - Date - Time	Local Standard Time	
Location	Longitude and Latitude for station location	
Extraterrestrial Horizontal Radiation	Amount of solar radiation in Wh/m^2 on a horizontal surface at the top of the atmosphere during the 60 minutes preceding the hour indicated	
Extraterrestrial Direct Normal Radiation	Amount of solar radiation in Wh/m^2 on a surface normal to the sun at the top of the atmosphere during the 60 minutes preceding the hour indicated	
Global Horizontal Radiation	Total amount of direct and diffuse solar radiation in Wh/m ² on a horizontal surface during the 60 minutes preceding the hour indicated	
Direct Normal Radiation	Amount of solar radiation in Wh/m^2 received within a 5.7 degree field of view centered on the sun during the 60 minutes preceding the hour indicated	
Diffuse Horizontal Radiation	Amount of solar radiation in Wh/m ² received from the sky (excluding solar disk) on a horizontal disk during the 60 minutes preceding the hour indicated	
Total Sky Cover	Amount of sky dome covered in 10ths by clouds	
Opaque Sky Cover	Amount of sky dome covered in 10ths by clouds that prevent observing the sky or higher cloud layers	
Dry Bulb Temperature	Dry bulb temperature in °C	
Dew-Point Temperature	Dew point temperature in °C	
Relative Humidity	Relative humidity in percent	
Station Pressure	Station pressure in millibars	

Table - 42: SAMSON CDROM Data Records

¹²⁰ Rymes, Martin, "Beyond Version 1.0 of the National Solar Radiation Data Base," National Renewable Energy Laboratory, Golden, Colorado, 1994.

¹²¹ NOAA, U.S.Department of Commerce, National Climatic Data Center, Ashville, NC. (704)271-4272.

Data Field	Description
Wind Direction	in degrees
Wind Speed	in m/s
Visibility	Horizontal visibility in km's
Ceiling Height	in meters
Present weather	see SOLMET weather codes
Precipitable Water	measured in millimeters
Broadband Aerosol Optical Depth	broadband aerosol optical depth (broadband turbidity) on the day indicated
Snow Depth	depth in cm
Days Since Last Snow Fall	days
Hourly Precipitation	inches and hundredths for each hour that precipitation is reported

This version was completed in 1992 and contains hourly measured and modeled solar radiation and collateral meteorological data for 239 stations across the United States for a 30 year period. The data was processed an screened for all known problems at the time V1.0 was prepared. Subsequently, three problems were identified in the data from 30 of the 239 site. These problems included the incorrect assignation of time zones for 23 sites, quality problems effecting daytime global horizontal solar irradiance for 8 sites, and inaccurate daily temperature statistics effecting temperature based daily statistics in all 30 sites. These errors were corrected, and an updated revision was released Version 1.1, [Rymes, 1994]. Data used for this project originated at the Blue Hill Observatory, and was not included in the list of 30 deviant sites.

Historical Background and Future Data Quality in the NSRDB

Most of the data in the NSRDB was modeled from meteorological data with only 7% derived from measured solar data. Future plans propose increased usage of solar irradiance information surmised from satellite observations. The resulting images and derived data can be used to produce more uniform and wide ranging data sets providing usable data for even the most remote sites. Most meteorological-based solar irradiance models rely heavily on surface cloud observations, and with the implementation of the National Weather Service Modernization Program cloud observers are being

replaced by the Automated Surface Observing System (ASOS), see §4.1.2. These data in combination with satellite based irradiance data promise to yield more accurate results.

4.1.2 ASOS - Automated Surface Observing System

The ASOS is designed to support aviation operations and weather forecast activities and, at the same time, support weather observation needs of the hydrometeorological, climatological and meteorological research communities. The ASOS will provide continuous, minute by minute observations and perform the basic observing functions necessary to generate Surface Aviation Observation (SAO) and other aviation weather information, [ASOS, June 1992]. Basically, this system is designed to gather weather data only, (ie. no readings of solar intensity direct or otherwise).

Although no solar insolation data is recorded in this data set, it is believed that the real-time weather data and observations recorded in this format can be used to produce believable values for the direct normal solar radiation that would have been otherwise recorded during the same time the weather data was recorded. The resulting data would then provide the sought after high frequency solar excitation discussed in the proposal for this project.¹²²

In 1992, NOAA began to implement a program called the Automated Surface Observing System (ASOS). The equipment developed for the program is designed to sample and record one minute temperature data and five second wind data. Forty-five to fifty primary sites located at airports around the United States were chosen for initial development of the ASOS program. Additional sites will be operational by March 1995, and the maximum number of sites will be operational by 1997. The information gathered and recorded are outlined in Table 43. Quality control (QC) is addressed in the ASOS manual. Three levels of control are described: (1) local; (2) regional; and (3) national. QC at the national level is accomplished by the NCDC, and is done on all data prior to archive.

For the purposes of this and similar projects, the primary source for ASOS data should be the archive records at the NCDC. The NCDC downloads ASOS data from all stations directly through computer links. These data are processed in a quality control procedure which looks for anomalies (data that falls outside normal expected ranges). Attempts are made to reconcile inconsistencies as they are

ASHRAE 825-TRP, Sub-Task 7, Need for Availability for Sub-One-Hour Data (MIT/LUT).

Table -	43:	ASOS	Data	Records
---------	-----	------	------	---------

LN	ASOS High Resolution Data	Sample Frequency
1	cloud height reading (ceilometer data)	30 second
2	visibility extinction coefficient	1 minute average
3	photometer reading	1 minute
4	ambient temperature	1 minute average
5	dew point temperature	1 minute average
6	wind speed and direction (reported every minute)	2 minute average
7	wind speed and direction for each minute	max 5 second avg
8	precipitation identification sensor data	1 minute
9	lightning data *	1 minute
10	precipitation amount	1 minute
11	incremental precipitation amount stored every 15 minutes	15 minute
12	sunshine data *	1 minute
13	frozen precipitation water equivalent *	1 minute
14	snow depth *	1 minute
15	freezing rain occurrence	1 minute
16	average pressure for each pressure cell	1 minute

Anticipated data collection when sensors become available, [ASOS, June 1992].

encountered by various means. Included in the bag of tricks for fixing data are collateral human observations and reports submitted according procedural guide lines by local on-site personnel to record equipment failures, calibration problems, or any other disturbing influence which may result in anomalous readings.

Data from the ASOS program has been generally of high quality.¹²³ When problems are discovered it has usually been with precipitation, visibility, and sky coverage. It was proposed in conversation with the NCDC representative that the reason for these phenomena is in the way this kind of information is

123

Conversation with a representative of the Surface Observation Data Operations Branch of the NCDC, Asheville, NC, December, 1995.

gathered by the ASOS equipment. Overall, actual conditions may be obscured by localized, narrow fields of view for the sensing devices capturing this information. No problems have been reported with values for the extinction coefficient, although it may be wise prior to drawing upon this resource that some additional investigation be made to learn more about how this piece of data is measured and what effects its quality.

Presently sunshine is not part of the ASOS equipment gathered data set. However, it is the intention of the program to eventually make this an ASOS function. Collateral sunshine data is reported in archived ASOS reports for those stations which have the capability to record sunshine. The device used to measure is the standard pyrheliometer used in other observation programs. Sunshine recorders are relocated from time to time, and a list of current locations can be obtained from the NCDC. The sunshine data received is checked and matched with the ASOS data on site at the NCDC.

Cloud cover data for observations above 12,000 feet are made by satellite. These data, like the sunshine data, is received at the NCDC where they are "Q" checked and then linked with the appropriate ASOS data set, adding another data feature to the total data package."

ASOS Data Set Availability

The best source for ASOS data is the National Climatic Data Center (NCDC) in Asheville, North Carolina, and they may be ordered by contacting the NCDC. Data sets obtained from the NCDC are quality controlled and corrected for all known errors. In addition, these data sets will contain the collateral data not collected directly by the ASOS equipment, but obtained simultaneously through other local sensors, (for example sunshine and cloud cover above 12,000 feet). Normally, the data sets obtained from NCDC are daily or monthly summaries with data averaged and reported at one hour intervals. The raw data on which the one hour interval reports are based is received by NCDC and it is surmised that data sets with resolutions finer than one hour may be obtained on special request.

There is a chance that raw data sets may be obtained directly from ASOS sites or through the ASOS data network. The frequency of reporting being exactly what is advertised in Table 43. However, due to the absence of collateral data collected by other instrumentation and the high likelihood of random errors (calibration, malfunctions, or other), there is little advantage to obtaining raw, uncorrected data.

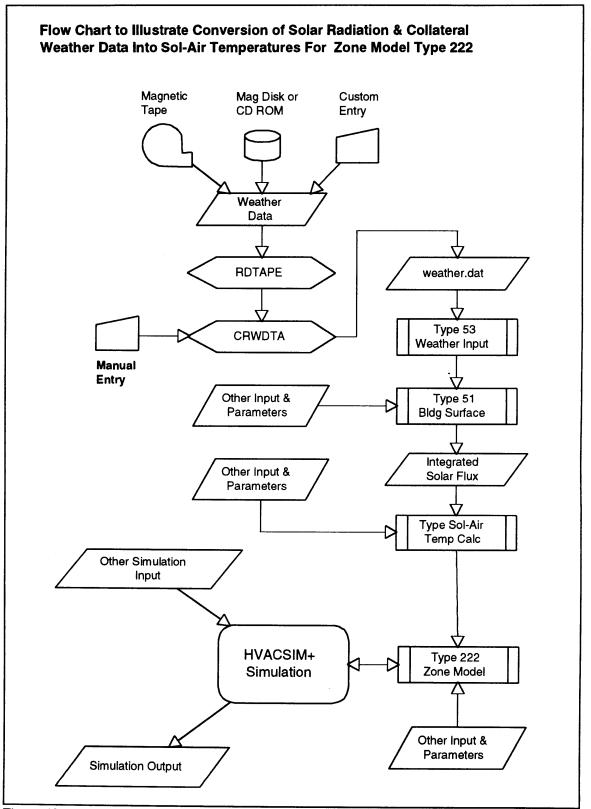


Figure 12: Flow Chart for Solar and Weather Data Compilation

4.2 Solar Radiation & Collateral Weather Data Preparation

There are a number of possible ways, automated and manual, to use data from the standard sources mentioned in §4.1. These sources include SOLMET; TMY; TRY; WYEC; SAMSON; ASOS; or Custom Configuration. An automated method draws data directly from the media on which it is provided from NOAA, and processes the data to yield the necessary sol-air temperatures. Manual entry may be used if the data in any of these forms does not meet a given set of requirements. In this case, one may go directly to generating the HVACSIM+ input file weather.dat.

4.2.1 Automated Data Reading and Sol-Air Temperature Calculation

HVACSIM + Assisted Data Procurement and Processing

A semi-automated system for in-putting solar and collateral weather data into an HVACSIM + simulation can be implemented in a sequence similar to that outlined in Figure 12. The system makes use of data available in a standard format from several sources and converts these data into a format compatible with the automated processing available through specific HVACSIM + simulation types. In this scheme, each zone is modeled as a system of walls with or without windows (including floor, ceiling, vertical walls), and for each wall, the net energy flux due to solar radiation would be calculated. The incident energy for each wall would then be integrated over all walls for each zone to calculate an average, weighted sol-air temperature. A review of current HVACSIM + types revealed that the specific formats required to implement an automated scheme were not available in the context of this project, and a manual scheme for generating of sol-air temperatures was used, see §4.2.2. This does not preclude the development of an automated system for generating the required parameters in the context of similar future projects. If this is to be accomplished, additional development work is necessary to modify existing HVACSIM + types and possibly to add new types. For reference, the steps to be followed for a proto-typical automated input scheme are reviewed in the following sub-sections.

Reading & Writing - Data are read from the selected media by a stand alone utility program available in the HVACSIM+ package called *rdtape.exe*. The source code is provided to allow the program to be compiled for the immediate requirements. This program is designed to read selected information from the taped format and write it in a file called *wtpout.dat*. This intermediate process is required to gather the required input data into a form which is compatible with the computer equipment being used for the simulation, [Clark, et.al., NBSIR 85-3243, p. 40].

Creating the Weather Data File - In this step, the selected data are processed into a format which is required for all further calculations. If standard or custom data are not available, or it is desirable to have solar and collateral weather data generated according to some pre-ordained guidelines then the HVACSIM + stand-alone utility *crwdta.exe* can be used to "generate smooth 'design day' solar radiation and temperature data for clear or cloudy" conditions; as with *rdtape.exe*, source code is also provided with this program to allow customization to local requirements. The latitude, longitude, and time zone must be entered at the start of the conversion process. An output data file, *weather.dat*, is created which contains month, day, hour, dry-bulb temperature (°C), barometric pressure (kPa), wind speed (m/s), humidity ratio (-), direct beam solar radiation (W/m²), sky diffuse radiation (W/m²), and total horizontal radiation (W/m²). Assuming constant relative humidity, the humidity ratio is calculated using expressions found in the ASHRAE 1981 Handbook §6, and the three items relating to solar radiation flux are calculated from geographic location and sun position.

Indexing Input Data - Data in *weather.dat* are further prepared for use by HVACSIM in Type 53 - Weather Input. The Type 53 unit places the input data into a state vector which is used by a utility subroutine.

Calculating Integrated Normal Solar Flux Values - A building surface simulation type calculates integrated solar flux values normal to the surface. In the prototype automated system Type 51 is used for this purpose and the calculation of the corresponding sol-air temperatures. In addition, Type 51 goes one step further an calculates an inner surface temperature. It takes into account compass orientation, wall surface area, tilt angle, the relevant qualities of the immediate surrounding environment including shading, ground reflectivity, and the conductive heat transfer properties of each wall. In the context of this project, only outside equivalent surface temperatures are required. Consequently, the only relevant information provided in this step using for example a Type 51 would be the integrated normal solar flux.

Calculating Equivalent Sol-Air Temperatures - An HVACSIM + type would then be used to calculate equivalent sol-air temperatures for each individual exterior surface based on equations in ASHRAE 1993 Fundamentals §26 and §27. In the context of this project, an additional step is

necessary to calculate an equivalent sol-air temperature characterizing environmental effects distributed over the entire exterior surface of a zone.

4.2.2 Manual Data Reading and Sol-Air Temperature Calculation

Data from NSRDB V1.0 was used to develop sol-air temperatures for this project. The data for a selected day was taken from the SAMSON CDROM database and imported to a spreadsheet. A spreadsheet based calculation scheme, based on the equations presented in §2.2.1, was used to produce weighted, average sol-air temperatures for each sub-zone exterior surface. It is proposed that future simulations include an HVACSIM type which can take the input data used in the spreadsheet calculations and automatically generate the necessary sol-air temperatures.

-

.

5 Implementation of the Real Building Specification

The building and HVAC system specification prepared in §3.3 is mapped into the HVACSIM + computer simulation package in this section. The system model may be organized from two points of view. The first view point may consider the physical system, a building and its mechanical system divided into discreet, logical parts - the mechanical room containing the air conditioning and control systems and the conditioned space containing the duct distribution system and associated equipment, the zone volumes, and input components. Superblocks in this scheme would contain all the components needed to model each logical grouping. Such groupings are demonstrated in the two schematics depicted in Figures 186 and 187, (refer to Table 44 for type names). The second view point may consider the actual HVACSIM + component types which would be used in a simulation, and organize them according to the category of component by which they can be described.¹²⁴

In the sample simulation provided by Haves (and reproduced for reference in Appendix AA) the model was organized into ten categories:

- <u>Simulation Real-Time Input Devices</u> used for input activity in real time during a simulation, in addition psychrometric characteristics for airflows may be altered within the simulation;
- (2) <u>Controllers and Control System Components</u> contains all controllers and associated devices in the simulation;
- (3) <u>Actuators</u> actuators for coil control valves and dampers are included in this section;
- (4) <u>Airflow Components</u> all components associated with the calculation of air flow rates and pressure through the system;
- (5) <u>Place Holder for Future Expansion;</u>
- (6) <u>Thermal Components</u> contains all components associated with the calculation of temperatures;
- (7) <u>Place Holder for Future Expansion;</u>
- (8) <u>Sensors Devices</u> all sensors in the system are grouped in this category;
- (9) <u>Simulation Real-Time Output Devices</u> another grouping of real time interfaces;
- (10) <u>Place Holder for Future Expansion</u>.

¹²⁴

Simulation prepared and executed by Phil Haves, Loughborough University of Technology, Loughborough England, 1995.

Three additional categories are provided for in the sample simulation, and it is intended that future simulations will include components requiring category designations not included in the current seven.¹²⁵ The categories not currently used include Both points of view are helpful in the process of model conceptualization. However, the latter is mathematically more efficient in the context of the HVACSIM+ program package.¹²⁶ Consequently, the modeling philosophy used in this project coincides with the grouping by similar component types mentioned above.

There are two methods available for modeling air flow. The "Implicit Flow" develops volumetric flow rates on an as needed basis. The model adjusts automatically the amount of air flowing in the system according to the demand requirements from the zone(s) being conditioned. Leakage is made up by adding the appropriate amount of air at exterior ambient conditions to the flow at the mixing box. In an explicit simulation, the volumetric flow rates in the system are specified by the demand requirements from the zone(s) being conditioned and the supply fan and return fan are manipulated in an effort to accommodate the demanded flows. Although the explicit method is more desirable for the purpose of this project in producing a testbed, the implicit method can be useful. During development and testing, implicit simulations provide the utility of being able to run unencumbered by airflow component problems.

<u>Test and Verify Sub-Systems in HVACSIM Model</u> - Testing and verification of the systems developed will be accomplished by LUT. Once tested and certified operable by LUT, the simulated plant and controls will be commissioned and comprehensive graphical output will be produced to demonstrate the operation of both the simulation and control strategies.

¹²⁵ The simulation detailed in Appendix AA is an attempt to set a standard format for superblock categories. The current version of HVACSIM+ limits the number of superblocks in a simulation to 10, and in addition, the numbering of superblocks, blocks and units is sequential and consecutive. This forces superblocks, blocks, or units added after a simulation is input to be numbered out of sequence. By naming three superblocks to act as place holders, some semblance of standardization is implemented and may be maintained for future additions.

¹²⁶ The reader is directed to the National Bureau of Standards Document NBSIR 85-3243 <u>HVACSIM+</u> <u>Building Systems and Equipment Simulation Program Users Guide</u>. by Daniel Clark & William May, September 1985, for a detailed discussion regarding model development philosophy and the mathematical solver.

5.1 HVACSIM+ Schematic

The components listed in Table 44 were selected by LUT from the large assortment of component type models available in the HVACSIM + Program Library. The table identifies components used in the simulation of Building E51 and the corresponding quantities. Two sets of type numbers are given in the table: the "old" set refers to the type numbers used in this thesis for developing the HVACSIM + parameters describing Building E51; the "new" set refers to a modified set of HVACSIM + type models which more accurately describe the complexities of the model building. The selected components are arranged in the simulation according the superblock groupings suggested in §5, as proposed by the LUT team. A schematic showing the airflow components is presented in Figure 188, and prototype arrangements outlined in the schematics presented in Figures 186 and 431 show how thermal components in a mechanical room model and a zone model might be arranged.

HVAC Type N		Bldg E51	Simulation	Component Class	Description
Old	New	Used	Quantity		
007	301	yes	as req'd	Sensor	Temperature sensor
026	(026)	yes	as req'd	Place Holder	Control signal inverter
087		yes	1	Actuator	8-way patchboard
102	327	yes	1	Airflow	Mixing box + dampers
109		no		Airflow	Addition of 3 moist air streams
110		no		Airflow	Mixing of 3 moist air streams
133		yes	1	Input	Psychrometrics
134	525	yes	6	Airflow	Pressure-independent vav box (Belimo controller)
135	(511 - 518)	yes	1	Output	Write 16 reals to Unix socket
167		no		Control	VAV ideal flow control
168		no		Control	VAV Rate limit actuator w/deadband and hysteresis
169	(365)	yes	34	Thermal	Moist air duct, heat loss as output, humidity delayed

Table - 44: HVACSIM+ Component Model Type Summary

HVAC Type N		Bldg E51	Simulation	Component Class	Description
Old	New	Used	Quantity		
189	303	yes	as req'd	Sensor	First order velocity sensor model
196	504	yes	1	Input	Read 16 reals from Unix socket
197		yes	1	Output	Graphs of pressure, flow and control
200	333;481; 482	yes	1	Control	Fan controller with tracking (P.Haves - lut - 7.9.93)
201	347	yes	2	Airflow	Fan or pump model
203	305	yes	as req'd	Sensor	First order static pressure sensor model
204	346	yes	5	Airflow	Flow merge model
205	366	yes	2	Thermal	Fan or pump model, power and temperature rise only
207	345	yes	6	Airflow	Flow split model - different resistances, treats near-zero flow (P.Haves - LUT - 4/8/93)
210a		yes	6	Airflow	Mixing of multiple air flows with leakage
211	367	yes	as req'd	Thermal	Mixing of moist air streams
212	368	yes	as req'd	Thermal	Mixing of Moist Air Streams
228	341	yes	20	Airflow	Constant flow resistance model linearised at low flow (P.Haves - University of Oxford - August 1992) modified 20/9/93 to use function dpturlam
229	342	yes	5	Airflow	Inlet constant flow resistance model
272	403	yes	12	Thermal	2 node room/plenum Model - rs and cs as parameters, ducted return
275	485	yes	1	Control	C-1-1 simple reversing control for mixing dampers w/ cooling demand - separate manual control of each damper

HVAC Type N		Bldg E51	Simulation	Component Class	Description
Old	New	Used	Quantity		
276	490	yes	6	Control	VAV terminal box with reheat
281	489	yes	1	Control	Supply temp sp for vav ahu w/ heating
282	486	yes	1	Control	Generation of AHU plant demands with boost over-ride on clg coil
283		yes	1	Control	Component on/off controller - uses up to six demands to switch component on and off - includes delay and hysteresis
299	522	yes	7	Thermal	Heating/cooling coil w/ 1 &g 3 port valve
300	321	yes	as req'd	Actuator	Rate limit actuator model with "deadband" and hysteresis (adapted from type100 by P.Haves - LUT - 16.6.94)

The schematics detail a simulation in which the airflow is implicitly determined, and the components used to model airflow in the implicit model are not the ones used in the Building E51 explicit flow model. However, the thermal components in the B51 simulation are similarly arranged, and the schematics show the juxtaposition of the relevant components. It can be noted that there will be some variation from the schematics in the final E51 model, particularly in the areas showing thermal contact between zones. The complexities of thermal contact between zones in the original thirty-four zone configuration were preserved in the six megazone simplified system significantly increasing the number of thermal components and resulting connections. When the E51 model is finalized, a more comprehensive schematic may be developed showing the relationship between all components, detailing the individual variable connections and information paths.

Table 44 summarizes the list of candidate HVACSIM + component types chosen for inclusion in this project at the time this report was written, and Appendix Z provides a concise listing of all inputs, outputs, and parameters for the candidate types. In the next phases of this projects development additional types will be added to this list; the list of types to be added or updated includes some control system types, airflow components, and thermal components.

5.1.1 Air Flow Component Network

The airflow component network depicted in Figure 188 is modeled on the basis of the flow paths outlined in Figure 64 depicting the supply and return duct systems, the various inter-zone connections identified in the original thirty-four zone configuration, and paths due to infiltration and exfiltration. The pressure difference between a zones room and plenum volumes is considered to be equal to zero, hence, mass flow across the suspended ceiling, if any, is ignored.

Much of the HVACSIM + flow network is comprised of individual components or sub-systems are designed to model specific parts of the real system. An economy in the total number of units required to model a system is achieved by such groupings. An example is found in the supply duct system. Here duct lengths and fittings are divided into pieces which are mapped directly into HVACSIM + types. The pieces are composed of one or more parts, and the parameters for the corresponding HVACSIM + type represented by the individual flow resistance values which describe the flow characteristics of each part. The Type 207 Flow Split discussed in §5.2.3.5 is an example of this construct, and is a composite of one flow resistance splitting into two; a fitting in the supply system and a five foot section of duct leading up to the fitting provided the basis for the model. Referring to resistance values Rs1, Rs2 and Rs4 depicted in Figure 199 and named in Figure 204, Rs1 represents the flow resistance in a 5 foot duct section and Rs2 and Rs4 represent the flow resistances in the branch and main legs of a wye type duct fitting.

Other elements of the flow network are modeled as the individual pieces themselves rather then as the sub-systems previously discussed. This was necessary when a discreet, unique component part of the flow system could not be modeled by an existing HVACSIM + type, and in addition, the part could not be subdivided into parts that could be easily mapped into other existing HVACSIM + types. Designing a new HVACSIM + type was an option which may still be viable. However, at the time this work was completed, the most feasible method for handling these unique circumstances was to construct the discrete component as a composite of basic components.

An example of this is illustrated in the elements representing the mixing box. Referring to Figure 188, 192 and 193, the mixing box is comprised of fixed and variable flow resistances. Providing for the opportunity to assemble a configuration of HVACSIM + elements to exactly resemble the mixing box allows the highest flexibility in adapting the techniques developed in this project to other systems in the future. This technique adds to the complexity and unwieldiness of a simulation and should be limited to the least number of sub-systems as possible.

5.1.2 Thermal Component Network

The thermal component network was assembled from existing HVACSIM + types, and accounts for heat transfer throughout the building. The major components in the network include the individual zone models, the reheat coils and perimeter heating system, heat flow characteristics of the supply and return duct systems related to air flow and conductive transfer through the duct walls, the cooling coil in the mechanical room. Heat input to the air stream as a result of the supply and return fans is also accounted for in this network.

5.2 HVACSIM+ Components

The following sections detail the parameters for the components used to model Building E51, and how the parameters were developed. Parameter value sources included manufacturers specifications, visual inspections, analysis, educated guesses and design. The format used to present the parameters is divided into three parts; typically a summary of what types are being discussed in a particular section is followed by a summary of the associated parameters, which in turn is followed by all relevant substantiation. The substantiation includes all references, analysis, educated guesses, and design work required to generate the parameters, and is found in the Appendices T through X.

Each of the sub-sections under §5.2 correspond to one of the categories into which the simulation components have been organized. Each of these subsections are divided further according to the HVACSIM + types corresponding to each category. The type information is organized in ascending numerical order according to the HVACSIM + type numbers. The appendices are organized in the same order in the same fashion, providing a one to one correspondence with the text.

5.2.1 Simulation Real-Time Input Devices

5.2.1.1 Type 133 - Psychrometrics

The HVACSIM + Type 133 model computes relative humidity, air humidity ratio, air enthalpy, and dew point temperature from input dry and wet bulb air temperatures, refer to p. 493 for type model outline. LUT will provide parameters for the Type 133 unit used in this simulation.

5.2.1.2 Type 196 - Read From Unix Socket (16 Reals)

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 495 for type model outline.

5.2.2 Controllers - Types per LUT

HVACSIM + controller model types were designed and implemented by the LUT team. This includes the control system for the mechanical room equipment and the control system for the individual zones, including the perimeter heating systems, VAV dampers and reheat control valves. The proposed method for modeling the Building E51 control system was to use individual HVACSIM + components designed to mimic the function of the components in the Metasys GPL system and assembled them into compounds matching the strategy in the existing system. Refer to the LUT report for details regarding how the solution was actually implemented.

5.2.3 Type 300 - Actuators

Actuators for controlling the following systems in the model of E51 are named in the following list:

- (1) Damper Mixing Box Minimum Air
- (2) Damper Mixing Box Economizer Air
- (3) Damper Mixing Box Return Air
- (4) Damper Mixing Box Exhaust Air
- (5) Valve Climate Changer Cooling Coil
- (6) Damper Zone I VAV Box
- (7) Valve Zone I VAV Box Reheat Coil
- (8) Damper Zone II VAV Box
- (9) Valve Zone II VAV Box Reheat Coil
- (10) Damper Zone III VAV Box
- (11) Valve Zone III VAV Box Reheat Coil
- (12) Damper Zone IV VAV Box
- (13) Valve Zone IV VAV Box Reheat Coil
- (14) Damper Zone V VAV Box

- (15) Valve Zone V VAV Box Reheat Coil
- (16) Damper Zone VI VAV Box
- (17) Valve Zone VI VAV Box Reheat Coil

Values for the parameters associated with the seventeen actuators named in the preceding list are tabulated in Figure 189, refer to p. 504 for type model outline. Sixteen parameter set are listed in the table, and it is intended that the set identified for the mixing box fresh air be used for both the minimum air damper and the economizer damper. The damper motors chosen for this project are direct digital controlled. The mixing box dampers rotate 90 degrees and specifications for the associated motors were taken from information provided by the LUT in the sample simulation ACREF2 included in Appendix AA. Specifications for the other motors are drawn from the proposed alternatives for the existing pneumatic units mentioned in §3.3.3.1.5 and §3.3.3.4.3.

5.2.4 Airflow Components

5.2.4.1 Type Various - Mixing Box

A single HVACSIM + type was not used to model the mixing box in Building E51. Instead the mixing box was modeled as an assemblage of smaller, discreet elements. The elements characterize the fresh air dampers, exhaust damper, return damper, and high capacity filter and cooling coil combination. In addition, minor elements consisting of air flow resistances for the bends and transitions in and around the immediate vicinity of the box are also included to complete the connections between the major elements. A diagram of the mixing box is shown in Figure 192, and dimensions are shown in Figure 148. The values of these components are summarized in Table 45. For reference, and possible future development, a twenty-two parameter HVACSIM + Type XXX which includes the elements identified in Table 45 is presented in Figure 190. An outline of HVACSIM + Type 102 Mixing Box is provided for reference on page 492.

The resistances for the Arrow dampers are calculated with the blades in a wide open condition based on areas noted in Figure 61. According to the manufacturers specifications the loss coefficient varies as the flow rate through the Arrow units. Referring to Figure 191, a series of resistances were calculated based on the pressure drop vs. flow speed curve in Figure 104. The values selected for this project are underlined in the figure, and correspond to the design flow rates specified in the Building E51 Engineering Design Specifications shown Appendix H.

Resistance	Value	Reference
Designation	[1/kg-m]	
Rr1	1.64e-01	see Figure 201
Rr2	0.00e+00	see Figure 201
Rr3	3.80e-01	see Figure 201
Rr4	2.85e-01	see Figure 201
Rr5	1.18e-01	see Figure 201
RsA	4.12e-01	see Figure 198
Rmb	1.09e-02	see Figure 198
RsF	6.25e-01	see Figure 198
RrE	4.78e-01	k=1.25 Arrow cut sheet @ 1600 fpm face velocity, Figure 104
RrR	4.78e-01	k=1.25 Arrow cut sheet @ 1600 fpm face velocity, Figure 104
RsMin (1)	3.26e+00	k=1.25 Arrow cut sheet @ 1600 fpm face velocity, Figure 104
RsEcon (1)	2.75e-01	k=1.25 Arrow cut sheet @ 1600 fpm face velocity, Figure 104

Table - 45: Type XXX Mixing Box Element Parameter Values

These values are calculated on the basis of the following two formulas relating hydraulic resistance to mass flow rate:

$$R_{hydraulic resistance} = \dot{m}^2 \Delta P ; \qquad (124)$$

and pressure drop and a pressure loss coefficient to the ration of pressure drop to velocity pressure:

$$k_{loss \ coefficient} = \frac{2 \,\Delta P}{\rho \,v^2} ; \qquad (125)$$

or equivalently:

$$R_{hydraulic resistance} = \frac{k_{loss coefficient}}{2 \rho A^2} .$$
 (126)

Loss coefficients and pressure losses for manufactured equipment were obtained from catalog cut sheets. Resistance values for common duct sections and fittings are based on technical information

from the SMANCA Duct Design Calculator and 1898 ASHRAE Handbook Fundamentals, Fitting Loss Coefficient Reference Guide, F32.27 - F32.52.

5.2.4.2 Type 134 - Pressure Independent VAV Box

HVACSIM + Type 134 is used to model the six VAV boxes required for this project, refer to Figure 188. Titus Single Duct Pressure Independent Terminal Boxes were chosen to match the megazone design requirements. Technical specifications for the box including damper and actuator, reheat coil and control valve, and sound attenuation can be found in Figures 117 through 140. All boxes except the one applied to Megazone III (MZIII) is a standard commercially available size. The box for MZIII

Paramete	er Num	1a	1b	2	3	4	5	6	7
Mega- Zone	Size	Flow Rate		Damper Area	Air Press Drop	Actu- ator Time	Frac Motor Speed	Hyst- eresis	Cont- roller Gain
[]	[]	[cfm]	[m³/s]	[m ²]	[Pa]	[sec]	[]	[]	[]
I	16	1,773	0.837	0.128	38	30	1		10
II	7	280	0.132	0.024	20	30	1		10
III	48x16	9,180	4.330	0.490	76	30	1		10
IV	16	1,696	0.801	0.128	35	30	1		10
V	24x16	5,020	2.369	0.245	91	30	1		10
VI	10	640	0.302	0.049	36	30	1		10

 Table - 46: Type 134 VAV Terminal Box Parameters (refer to Figure 194)

is configured to equal two commercially available 24" x 16" boxes side by side, see \$3.3.3.4.1 for related details. The parameters for the six Type 134 models used in this simulation are presented in Table 46, refer to p. 493 for the type model outline.

The stock version of HVACSIM + Type 134 was modified by the LUT team to calculate the pressure drops based on the manufacture specification for pressure drop across box, coil, and damper when damper is wide open. Also include parameter for wide open resistance. Note that the resistance parameter is calculated on the basis of a pressure drop stated in the manufactures specification for ΔP

across the box, coil, and wide open damper, for a specified flow rate, so it may be redundant to have the resistance as a separate parameter. A more expedient method would be to input the manufactures specifications as they appear in the cut sheets and let the HVACSIM + type calculate the required values. An automated procedure would help reduce the likelihood of errors.

5.2.4.3 Type 201 - Centrifugal Fans

*

The supply and return fans are modeled HVACSIM + Type 201. The HVACSIM + fan model chosen computes a pressure rise and efficiency based on the mass flow rate through the system, refer to p. 497 for the type model outline. The fan diameter, the identity of the fluid being moved by the fan, and the dimensionless performance curves (pressure vs. flow and efficiency vs. flow), represented by 4th order polynomials, are required inputs. The dimensionless function coefficients are presented in Table 47.

Num	Description	Supply Fan	Return Fan
1	1st Pressure Coefficient	8.534e-01	9.816e+00
2	2nd Pressure Coefficient	-3.929e+00	-2.396e+01
3	3rd Pressure Coefficient	4.229e+00	1.221e+01
4	4th Pressure Coefficient	-1.387e+00	-1.634e+00
5	5th Pressure Coefficient	4.290e+00	4.194e+00
6	1st Efficiency Coefficient	-1.971e-01	-3.375e+00
7	2nd Efficiency Coefficient	7.664e-01	6.168e+00
8	3rd Efficiency Coefficient	-1.483e+00	-5.755e+00
9	4th Efficiency Coefficient	1.540e+00	3.142e+00
10	5th Efficiency Coefficient	1.162e-01	6.190e-02
11	Diameter [m]	0.686	1.12
12	Mode: air=1 water=2	1	1
13	Lowest Valid Normalized Flow*	1.00e-05	1.00e-05
14	Highest Valid Normalized Flow	1	1

 Table - 47: Type 201 Supply and Return Fan Parameters

This number must be set to a value greater than 0, [Hill, June 1995].

The polynomials representing the fans characteristics in the form a dimensionless pressure head function and efficiency are expressed in the following equations:

$$\Delta \overline{\Pi} (\dot{M}) = a_4 \dot{M}^4 + a_3 \dot{M}^3 + a_2 \dot{M}^2 + a_1 \dot{M} + a_0; and \qquad (127)$$

$$\eta_{t}(\dot{M}) = e_{4}\dot{M}^{4} + e_{3}\dot{M}^{3} + e_{2}\dot{M}^{2} + e_{1}\dot{M} + e_{0}; \qquad (128)$$

and the dimensionless pressure head and dimensionless mass flow variable are given by:

$$\Delta \bar{\Pi}(\dot{\mathbf{M}}) = \frac{1000 \ \Delta P(\dot{\mathbf{M}})}{\rho N^2 D^2} ; and$$
(129)

$$\dot{\mathbf{M}} = \frac{\dot{m}}{\rho N D^3} ; and$$
(130)

.

$$\eta_{i}(\dot{\mathbf{M}}) = \frac{W_{o}(\dot{\mathbf{M}})}{W_{i}(\dot{\mathbf{M}})}; \qquad (131)$$

where:	$\Delta \widetilde{\Pi}(\dot{M})$	= pressure rise ($P_{outlet} - P_{inlet}$) across the fan for flow rate $\dot{\forall}$	[kPa]
	ρ	= fluid density	[kg/m ³]
	Ν	= fan rotational speed	[rev/s]
	D	= fan diameter	(m)
	'n	= mass flow rate for pressure $\Delta P(\dot{M})$ ($\rho \forall$)	[kg/s]
	¥	= volumetric flow rate for pressure $\Delta P(\dot{M})$	[m ³ /s]
	$\eta_t(\dot{M})$	= total fan efficiency for flow rate $\dot{\forall}$ ¹²⁷	
	W₀(M)	= total power output based on flow rate and fan total pressure	[W]
	$W_i(\dot{M})$	= total power input based on measured power at the shaft	[W]

¹²⁷ 1992 ASHRAE Handbook - Systems and Equipment, E18.1.

The coefficients $a_0 - a_4$ and $e_0 - e_4$ for the dimensionless curves $\Delta \Pi(\dot{M})$ and $\eta_1(\dot{M})$ were obtained by applying the MATLAB¹²⁸ polyfit function to digitized and smoothed fan curves constructed from the manufactures equipment performance curves for the supply and return fans presented in Figures 83 and 101. The rotational speeds specified in the Building E51 Engineering Design Specifications are not explicitly mapped in the manufacturer's performance curve plots.¹²⁹ Hence, it was necessary, through the use of the fan laws, to create them. This was accomplished in a three step process: first, curves for speeds close to the speed indicated and which are explicitly mapped were digitized;¹³⁰ second, the MATLAB polyfit function was applied to the digitized data to smooth local irregularities caused during the digitizing process; and third, the fan laws [1992 ASHRAE Handbook, HVAC Systems and Equipment, E18.4] were used to map the smoothed digitized data into the new curve space.¹³¹

The equations representing the smoothed and digitized curves of the supply and return fans were found to be:

$$P_{\frac{supply}{1300}} = -0.1772 \dot{\forall}^{6} + 1.860 \dot{\forall}^{5} - 7.347 \dot{\forall}^{4} + 13.44 \dot{\forall}^{3} - 12.04 \dot{\forall}^{2} + 4.918 \dot{\forall} + 4.070; and$$
(132)

$$P_{\frac{\text{return}}{400}} = 0.134 \dot{\forall}^{4} - 0.719 \dot{\forall}^{3} + 0.803 \dot{\forall}^{2} - 0.236 \dot{\forall} + 1.326 .$$
(133)

Then by using the fan laws, followed by the application of Equations 129 and 130 and the MATLAB polyfit function, the following dimensionless equations were obtained for the supply and return fan expressing pressure rise as a function of flow rate:

$$\Delta \overline{\Pi} (\dot{M})_{\frac{supply}{1340}} = 0.853 \ \dot{M}^4 - 3.93 \ \dot{M}^3 + 4.23 \ \dot{M}^2 - 1.39 \ \dot{M} + 4.29 \ ; and \tag{134}$$

129 1,340 rpm for the supply fan and 430 rpm for the return fan, refer to Appendix H.

¹²⁸ MATLAB, The MathWorks, Inc. Natick, Massachusetts, 1991.

¹³⁰ The performance curve chosen as a basis for the supply fan parameter calculations was for the speed 1300 rpm. The 400 rpm curve was chosen for the return fan

¹³¹ This work was performed by Mit Student Paul Balun and is written up in his report titled <u>Parameter</u> <u>Delineations of the Supply Fan and the Return Fan of a VAV HVAC System</u>, Massachusetts Institute of Technology, Undergraduate Research Opportunity Program, Spring 1995

$$\Delta \overline{\Pi} (\dot{M})_{\frac{return}{430}} = 9.82 \dot{M}^4 - 24.0 \dot{M}^3 + 12.2 \dot{M}^2 - 1.63 \dot{M} + 4.19 .$$
(135)

By combining the fans laws with Equations 130 and 131, values for efficiency as a function of dimensionless flow were calculated. Then by applying the MATLAB polyfit function to the resulting plot, the coefficients for Equation 128 were obtained, resulting in the following expressions for the dimensionless efficiency curves of the supply and return fans at the corresponding design speeds:

$$\eta_{t,\frac{\text{supply}}{1340}} = -0.197 \ \dot{\text{M}}^4 + 0.766 \ \dot{\text{M}}^3 - 1.48 \ \dot{\text{M}}^2 + 1.54 \ \dot{\text{M}} + 0.116 \ ; and$$
 (136)

$$\eta_{l,\frac{\text{return}}{430}} = -3.37 \ \dot{M}^4 + 6.17 \ \dot{M}^3 - 5.76 \ \dot{M}^2 + 3.14 \ \dot{M} + 0.062$$
 (137)

.

5.2.4.4 Type 204 - Flow Merge

The HVACSIM + Type 204 is a fluid flow merge model. A merge model consists of two inlet fluid flow resistances and one outlet resistance, refer to p. 498 for the type model outline. Five units are represented by this type to model the various flow merge points in the megazone return duct system, refer to Figure 188. The resistances assigned to each unit of the Type 204 variety and the corresponding values are shown in Figure 203, the placement of the resistances comprising each unit is shown in Figure 202. Calculations for the resistance values are shown in Figure 201.

5.2.4.5 Type 207 - Flow Split

The HVACSIM + Type 207 is a fluid flow split model. A split model consists of one inlet fluid flow resistance and two outlet resistances, refer to p. 498 for the type model outline. Five units are represented by this type to model the various flow split points in the megazone supply duct system, refer to Figure 188. The resistances assigned to each unit of the Type 207 variety and the corresponding values are shown in Figure 204, and the placement of the resistances comprising each unit is shown in Figure 199. Calculations for the resistance values are shown in Figure 198.

5.2.4.6 Type 210a - Mass Balance for Multiple Air Streams

The intent of the HVACSIM + Type 210a model is to balance the mass flow rates across the various megazone boundaries, and derives its structure from HVACSIM + Type 210. Included in the model are flows related to flows due to mechanical ventilation, leakage through walls from megazone to megazone, leakage across the external shell, and system loss due the presence of extract fans such as lavatory or kitchen exhausts. Type 210 was designed to account for flow from three sources and calculate the resulting air mass flow rate of the mixed stream, refer to p. 499 for the type model outline. However, the Building E51 model requires a prototype which can handle up to five incoming streams. As a result, modification of the Type 210 model was necessary.¹³² The designation Type 210a is used in this report for clarity to distinguish the unit required for this project and its namesake.

	Parameter	Zone							
#	Description	Ι	П	Ш	IV	V	VI		
1	External Shell Leakage [1/(kg-m)]	5.83e+03	7.40e+04	9.59e+01	1.24e+03	3.52e+02	1.40e+04		
2	Local Extract Fan Mass Flow [kg/s]	0	0	0	0	0	0		

Table - 48: Type 210a Mass Balance for Multiple Air Streams (refer to Figure 206)

Six Type 210a units are required for Building E51, one for each megazone, refer to Figure 188. The parameter list for Type 210a requires the resistance values for leakage across the external shell and the local extract fan flow rates. Air flow due to leakage between zones is calculated in a separate unit, and resultant flows are fed to the Type 210a units as an input value, consequently, parameters for air flow resistance modeling inter-zone leakage are not found in this type, see §5.2.4.7 Type 228. No extract fans are present in the areas of the building selected for inclusion in this model, and all corresponding parameter values are set to zero. The values for the parameters of the six Type 210a units are presented in Table 48. These values are based on the total area presented by the entire external shell surface of each individual zone, and are calculated in Figure 206.

¹³² Modification of Type 210 accomplished by LUT team.

5.2.4.7 Type 228 - Constant Flow Resistance - Linearized at Low Flow

The HVACSIM + Type 228 units represent the constant flow resistances used to model various elements in the airflow network; included are the duct bends and straight duct lengths, grills and louvers, and miscellaneous duct transitions changing size or shape, (refer to Figure 188). Parameter values for Type 228 consists of the single hydraulic resistances shown in Figure 208, refer to p. 500 for the type model outline. Calculations for each individual element comprising the units are detailed in Figure 201.

5.2.4.8 Type 229 - Inlet Constant Flow Resistance + Negative O/P

The HVACSIM + Type 229 units represent the hydraulic resistance to airflow between zones as depicted in Figure 188, refer to p. 500 for the type model outline. The airflow resistance is based on the expression for hydraulic resistance in terms of a loss coefficient k and the opening area transverse to the air flow:

$$R_{hydraulic} = \frac{k}{2 \rho A^2} . \tag{138}$$

The loss coefficient in this case is expressed in terms of a dimensionless discharge coefficient C_D which depends entirely on the opening geometry and the flow's Reynolds number.¹³³ The flow through an opening can be expressed as:

$$Q = C_D A \sqrt{\frac{2\,\Delta P}{\rho}} \tag{139}$$

where: Q = airflow mass flow rate [m³/s]

$$C_D$$
 = discharge coefficient for opening

A = opening cross sectional area $[m^2]$

 ρ = air density [kg/m³]

 ΔP = pressure difference across opening [Pa]

133 1993 ASHRAE Handbook - Fundamentals (SI), F23.7.

Combing these equations with the expressions for $R_{hydraulic}$ and k in terms of the pressure difference across the opening:

$$R_{hydraulic} = \frac{\Delta P}{\dot{m}^2} ; and$$
 (140)

$$k = \frac{\Delta P}{P_v} ; \qquad (141)$$

the loss coefficient can be expressed as a function of the discharge coefficient:

$$k = \frac{1}{C_D^2}$$
 (142)

Parameters values for interzone leakage hydraulic leakage resistance are presented in Table 49.

Table - 49: Type 229 Inlet Constant Flow resistance (refer to Figure 25, 209 & 188)

Parameter			1	ype 229 Uni	t	
#	Description	1	2	3	4	5
1	Flow Resistance [1/(kg-m)]	1.92e+02	8.55e+01	3.08e+01	5.35e+00	7.70e+02

The origin for inter-zone leakage in this model was assumed to be in the form of cracks around the doors located in the partitions separating the zones. Hence, the discharge coefficients were all set to 0.6 in accordance with a value proposed for a sharp edged orifice.¹³⁴ An alternative for determining interzone leakage would have been to use the empirical data presented in Table 4 and Figures 10 & 11 of 1993 ASHRAE (SI), F23.16. The data in Table 4 assumes a 75 pa pressure differential and a $C_D = 0.65$, and apply to internal partitions without doors, and the data in the figures apply to elevator shaft and door crack leakage. Discharge coefficients based on these data range between 0.4 and 0.8 depending on the crack width and wall construction chosen. These data indicate that contributions due to leakage through partitions without doors is approximately 5% of the leakage through a partition with

^{134 1993} ASHRAE Handbook - Fundamentals (SI), F23.12.

a few doors. Consequently, leakage through the partition wall material itself was entirely ignored in calculating a hydraulic resistances for interzone leakage presented in Table 49.

5.2.5 Type 026 - Control Signal Inverter

This HVACSIM + Type 026 Control Signal Inverter is used as a place holder for future expansion.

5.2.6 Thermal Components

5.2.6.1 Type 169 - Moist Air Duct - Heat Loss as Output (Supply & Return)

The HVACSIM + Type 169 is used in this simulation to calculates the heat lose of a duct section to the surrounding environment due to convection and conduction; radiative heat lose is neglected, refer to p. 495 for the type model outline. This type can calculate airflow pressure drop as a function of a hydraulic resistance and mass flow rate, however, in this simulation, the airflow network is used for this purpose. Thermal contact by the duct runs for each grill and louver in the thirty-four zone configuration is complex. An equivalent surface area was calculated to ensure that thermal contact in the megazone system was similar in character to the original thirty-four zone system, refer to §3.3.3.5. An equivalent diameter is calculated based on the following expression:

$$D_e = 1.3 \frac{(a \ b)^{0.625}}{(a \ + \ b)^{0.250}} ; \qquad (143)$$

where: a = side a of rectangular duct [in] or [mm]; and b = side b of rectangular duct [in] or [mm].¹³⁵

A network of Type 169 units was assembled to model the multiple heat paths from a ductway to the zones through which it passes in the original system, see Figure 210. In the case of Zone I, heat paths for the supply side are identified to Zone II, Zone III, and Zone I in series; on the return side heat paths are identified to Zone I and Zone II. Heat paths for the other five zones are similarly identified. Values for the first six parameters in each of six megazones are given in Figure 211. The seventh and eighth parameter values pertain to airflow pressure drop calculations are set to zero in this simulation.

5.2.6.2 Type 205 - Fan: Power and Temperature Rise Only

This component was included for its superior algorithm over the one in Type 201 for calculating power consumption and temperature rise across a fan, refer to p. ? for the type model outline. However, this component will not be required following the modification of Type 201 to accommodate both thermal and airflow requirements.¹³⁶

5.2.6.3 Type 211 - Mixing of Moist Air Streams

The HVACSIM + Type 211 simulates the thermal mixing of two moist air streams. Inputs consist of the dry bulb temperature, air humidity ratio, and dry air mass flow rate for each entering stream; the corresponding properties of the mixed stream is output, refer to p. 499 for the type model outline. No parameters are required for this type.

5.2.6.4 Type 212 - Mixing of Moist Air Streams

The HVACSIM + Type 212 simulates the thermal mixing of five moist air streams. Inputs consist of the dry bulb temperature, air humidity ratio, and dry air mass flow rate for each entering stream; the corresponding properties of the mixed stream is output, refer to p. 499 for the type model outline. No parameters are required for this type.

5.2.6.5 Type 272 - Two Node Room/Plenum - Interzone and Leakage

The HVACSIM + Type 272 calculates zone air and structure temperatures based on the 2C3R model presented in §2.2.1. The schematic in Figure 187 shows the Type 272 zone model installed in a typical thermal network. Nineteen parameters are required by the model to characterize a zone including a room volume and a plenum volume, refer to p. 500 for the type model outline. Parameter values for the six Type 272 units are presented in Figure 213, (refer to Figure 165 for origin of values).

¹³⁶ Modification to be accomplished by LUT team.

Modes of heat transfer across the boundaries of the model include radiation through fenestration, conduction through the exterior walls, and mechanical ventilation through the supply and return duct systems. Heat input is set in the parameters as fixed values representing the number of occupants, lighting heat and equipment heat gain, and a fraction of lighting heat gain to plenum (assuming the lighting units are set in a suspended ceiling). The need to modify the internal heat gain entry method was identified in the course of this projects development. The time varying profiles which reflect actual usage patterns established in the occupancy and equipment schedules are more appropriately entered into the simulation as an input in a way similar to the heat gain due to time varying insolation. In the case of occupancy and equipment, it was proposed that profiles be entered as a percent of maximum heat load, with the maximum heat loads being entered as parameters. Thus providing maximum flexibility for future simulation requirements.¹³⁷

5.2.6.6 Type 299 - Liege Coil L&G Valve

The HVACSIM + Type 299 is used to model the supply air cooling coil and the six VAV terminal box reheat coils. Twenty three parameters are required to model this unit, characterizing the geometric and physical properties of the coil and control valve, refer to p. 503 for the type model outline. Most of the parameters were taken directly from the manufacturers equipment catalog cut sheets, and the balance were calculated based on information obtained from the same cut sheets, refer to §3.3.3.1 and §3.3.3.4. The parameter values for the cooling coil and six reheat coils are presented in Figure 214 and 215. The control valve in Type 299 is modeled as a three-way type, and all control valves are modeled as two-way in this simulation.¹³⁸ Hence, parameter 23 is set to a very high value, effectively turning the three-way model into a two-way model.

Parameter 19, Valve Characteristic Component ngl, characterizes the valve flow behavior based on the following expressing flow as a function of valve lift:

$$\frac{\dot{m}}{\dot{m}_{\rm max}} = e^{[ngl(s-1)]} .$$
(144)

137 In collaboration with Les Norford, MIT and Phil Haves, LUT, 1995.

138 When the water side of the VAV reheat coils is modeled in future versions of this simulation testbed, the last control valve in the loop must be changed to a three-way type, as pictured in Figure 7. In accordance with the megazone duct layout (Figure 150), the last coil in the loop should be assigned to megazone II. The value ngl was calculated by identifying the percent flow predicted by the valve manufacturer for 50% valve lift, or when:

$$ng \, l = -2 \, \ln \frac{\dot{m}}{\dot{m}_{\max}} \Big|_{50 \, \%} \, . \tag{145}$$

Two valve styles are used in the model; one for the air handling unit cooling coil, and one for the VAV reheat coils. The cooling coil control valve flow at 50% lift is approximately 17% (see to Figure 96), and the flow for the VAV reheat coil control valve at 50% lift is approximately 20% (see to Figure 139).

5.2.7 Type 026 - Control Signal Inverter

This HVACSIM + Type 026 Control Signal Inverter is used as a place holder for future expansion.

5.2.8 Sensors

5.2.8.1 Type 007 - Temperature

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 492 for type model outline.

5.2.8.2 Type 189 - Velocity Sensor

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 495 for type model outline.

5.2.8.3 Type 203 - Static Pressure Sensor

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 497 for type model outline.

5.2.9 Simulation Real-Time Input and Output Devices

5.2.9.1 Type 135 - Real Time Graphs of Pressure, Flow and Control Signals

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 494 for type model outline.

5.2.9.1 Type 197 - Write to Unix Socket

Parameters for units included in the simulation which come under this category were prepared by the LUT team, refer to p. 496 for type model outline.

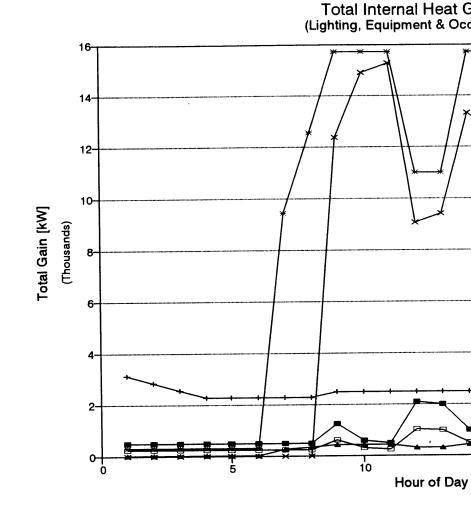
5.2.10 Type 026 - Control Signal Inverter

This HVACSIM + Type 026 Control Signal Inverter is used as a place holder for future expansion.

5.3 Internal and External Heat Gains

Heat gain to the simulation model is from a combination of internal and external sources. All gains are given as step changes in one hour increments over a twenty-four hour period. The internal gains are divided into three categories: (1) heat loss by human occupants; (2) electrical resistance dissipation due to the operation of office equipment and miscellaneous appliances; and (3) electrical resistance dissipation due lighting. These input variable values are presented as percentages of a maximum value set as a fixed parameter. External gains are the result of the combined effect of the external ambient air temperature and insolation. These two variables are combined into one excitation variable: the sol-

air temperature. Heat dissipation by the supply and return fan electric motors is accounted for in the HVACSIM + type used to model the fans.


Representative profiles were developed for each input category, and one day's data was chosen for inclusion in this report. Although one representative cold days data and one representative hot days data together, together with a couple of median days data (one for each transitional season) should be used in proving the model. The single days data sets, originating on 20 July, 1990 and included in this report, are representative of the data sets required to perform a simulation. The changes required to distinguish a data set from one season to another is the adjustment of the sol-air temperatures for each compass face. This is accomplished by selecting the required data from the SAMSON CDROM data set and entering the data into the appropriate spreadsheet. Calculation of corresponding sol-air temperatures is automatically achieved when the new solar and collateral weather data is entered.

Occupant schedules and consequently lighting and equipment usage schedules do vary seasonally. However, for the data sets included with this report the maximum levels of occupant, lighting and equipment loads is considered to be representative for all periods throughout the year. Adjustments to internal gains can be easily made by modifying the percentage profiles or by resetting the maximum value parameters.

For this purpose, tabulated input gain data are presented as spreadsheet printouts in Appendix Y, and soft copies of the spreadsheets are provide in Appendix ?. The six linked files sa*.wq2 are provided in Novell's Quattro Pro V5.5 spreadsheet format *.wq2. These files can be converted to other formats, however, care must be taken, when doing so, to ensure that all links are renamed properly. A popular format which minimizes the manipulation required to preserve links is found in the Lotus *.wk2 type. It has been the authors experience that converting to other formats is problematic, and should be avoided.

5.3.1 Internal Heat Gains

A plot of the total internal heat gains for each zone is presented in Figure 13; data for this plot can be found in Figure 216. The internal gain heat load is estimated to peak at 1100 reaching 34.6 kW. A baseline internal heat gain level is estimated at 4.0 kW, refer to Figure 216. The baseline is established by averaging the total internal load during the hours from 2200 - 0600.

Zone 1				
 Zone 4	\star	Zone 5	-	Zone 6

Figure 13: Total Internal Heat Gain for Each Megazone

Megazone 3, designated as an administrative area, has the highest internal heat gain, peaking for a few hours at 15.7 kw during mid-morning and mid-afternoon. The average total gain density (ATGD) for occupants, equipment and lighting in Megazone 3 is 1.14 W/ft². The peak load for Megazone 5, designated as a classroom-conference room area, is 15.3 kW, which occurs at 1100. The ATGD for occupants, equipment and lighting in Megazone 5 is 1.03 W/ft². The peak load for Megazone 2, designated as a personal computer/data processing center, is 3.4 kW, which occurs between 1900 and 2400. The ATGD for occupants, equipment and lighting in Megazone 2 is 4.5 W/ft². The Peak load for Megazone 1, designated as a professorial and student offices, is 2.9 kW, which occurs at 1800. The ATGD for occupants, equipment and lighting in Megazone 1 is 0.44 W/ft². The peak load for Megazone 4, also designated as a professorial and student offices, is 1.4 kW, which occurs at 1800. The ATGD for occupants, equipment and lighting in Megazone 4 is 0.34 W/ft². The peak load for Megazone 6, designated as a professorial and student offices, is 1.4 kW, which occurs at 1800. The ATGD for occupants, equipment and lighting in Megazone 3 is 0.44 W/ft². The peak load for Megazone 4, also designated as a professorial and student offices, is 1.4 kW, which occurs at 1800. The ATGD for occupants, equipment and lighting in Megazone 4 is 0.34 W/ft². The peak load for Megazone 6, designated as a dministrative offices, is 0.4 kW, which occurs during mid-morning and mid-afternoon similar to the load profile for Megazone 3. The ATGD for occupants, equipment and lighting in Megazone 4 is 0.34 W/ft².

5.3.1.1 Occupants

Profiles were developed capturing the essence of the varied occupancy schedules in this multi-use building. The occupancy densities represented in the actual thirty-four zone configuration were preserved in developing the distributions within the six megazone configuration. Four classifications were defined in the six megazone configuration: (1) student professorial offices; (2) administrative offices; (3) computer center; and (4) classrooms/conference rooms. Figure 217 shows the occupant densities for each zone classification as determined from survey data developed for the original thirty-four zone configuration. These densities were used to calculate the maximum number of people which may likely occupy each megazone. These maximums were then used to calculate a maximum anticipated heat input to each megazone based on a value of 75 watts per person.

The occupant usage percent profile for each megazone was designed to match usage profiles which actually exist in the original thirty-four zone configuration. Professorial and student office schedules were designed to mirror classroom occupancy, except during off hours when students are working in their offices into late hours of the evening. During these times, the professorial community is almost certainly enjoying other activities away from the university, while a small percentage of students are considered to be toiling away at all times during the twenty-four hour period.

Classroom occupancy profiles are based on survey data from actual classroom usage schedules for an academic year.¹³⁹ The schedules are presented in Figures 52 through 56. They show the number of occupants scheduled for each classroom throughout the week on a half-hourly basis and the maximum number of occupants permitted in each room. The daily schedules for the entire week were combined to determine a maximum total number of occupants which may be present in all classrooms during a the five day period Monday through Friday. This number was divided into the total number of occupants scheduled to be in each room over the five day week for each half hour period. Each two consecutive half hour periods were averaged together to produce an entry to the hourly stepped percentage profiles.

The computer center operates twenty-four hours a day, and usage was assumed to follow, to a certain degree, a track reflecting classroom and professorial/student office usage. A steady ramp starting after classroom usage peaks, leads to peak usage in the computer room at 100% beginning in early evening, after the dinner hour, and continuing until near mid-night. Usage falls off steadily after midnight, until the facility is empty of people at around 0400. Usage begins to pick up steadily at breakfast time, reaching a median usage of 20% which is sustained until classes begin to break when the cycle repeats.

Administrative use follows standard office use patterns. Workers begin to arrive at 0600, peaking at 100% at 0800. This level is sustained until 1100 when the lunch cycle begins. At least fifty percent of the occupants are assumed to be in situ at all times during due to staggered schedules and brown baggers. Occupant density returns to 100% by 1400 until 1700 when workers begin to leave. Occupancy falls off at a higher rate and some are assumed to linger until late hours of the evening; but, they do all eventually leave.

5.3.1.2 Equipment

Profiles were developed capturing the essence of the varied equipment usage schedules in this multi-use building. Care was be taken to distribute equipment usage within the megazones, preserving the same densities represented in the actual thirty-four zone configuration. A survey of the actual equipment existing in each room provides the basis for the densities quoted in Figure 218. Survey data is recorded in Figure 48. These data together with the associated floor areas yielded average power

MTT Classroom Scheduling Office, E19-334.

dissipation densities. These average densities were compared with densities reported in the surveys reviewed in §3.2.1 for verification and validation.

Usage profiles parallel occupant presence in the professorial/student and administrative offices. Equipment usage in the computer room is at 100% form 0000 - 2400. No equipment is assumed to be used in the classroom areas. Nameplate data is used to calculate the maximum dissipation values.

5.3.1.3 Lighting

Lighting usage patterns follow occupancy patterns with slight variations. All lights are assumed to be on during the working day in the office and classroom areas, and the lights are never turned off in the computer room. Densities are based on the total lighting load averaged over the entire building floor area. A survey recorded in Figure 48 captures a bulb count including every fixture in the entire building volume. All power consumed by the bulbs was assumed to add heat to the building.

5.3.2 External Heat Gains

The external heat gains to the individual megazones represented by insolation are modeled in the sol-air temperatures presented Figure ?. Two sets of temperatures are shown: one for the room sub-megazone and one for the plenum sub-megazone. These temperatures were calculated using the formulae found in 1993 ASHRAE Handbook - Fundamentals, §27. External ambient temperatures vary from 21.9 °C, recorded during late evening and early morning, to over 42 °C, recorded at 1200. Heat loss to the environment due to radiation is calculated to lower the sol-air temperature by 2 - 3 °C depending on the surface: either glass, brick, or asphalt. No account was made for radiative heat transfer due to reflection from surrounding buildings.

5.3.2.1 Solar and Collateral Weather Conditions

Two options were explored for calculating the total diffuse radiation E_d (refer to Equation 66). One method makes use of the value for diffuse radiation provided in the SAMSON data (see §4), and the other method is based on the direct normal radiation making use of the algorithms expressed in 1993 ASHRAE F27, (refer to Equations 68 - 72). For horizontal surfaces using either method, ground

diffuse radiation is considered zero. For vertical surfaces, in the case of the SAMSON based calculations, half of the data value taken from the data set is used. This assumes that the vertical surface can only see half of the celestial sphere. For vertical surfaces, in the case of the ASHRAE based calculations, values for the incident diffuse radiation are based on the Equation 68. Incident angles are calculated using Equations 73 - 80.

Two equivalent temperatures are provided in Appendix Y: one calculated using ASHRAE formulae and one calculated using SAMSON solar flux data directly. The factors causing the difference between the results of two methods reside in the sky E_{ds} and ground E_{dg} diffuse radiation values, see Equation 66. Calculating the horizontal and vertical diffuse radiation from the SAMSON data leads to significantly higher values than does calculating the same values using the ASHRAE formulae. Time permitting, the discrepancies noted between the two data sets should be investigated, and a final data set should be selected.

Plots of the effective sol-air temperature profiles, one for each sub-volume represented by the plenum and room portions of the megazones, are presented in Figures 14 & 15. These effective sol-air temperatures are calculated as weighted averages based on the net effect of the sol-air temperature for each compass heading and the outside surface types ascribed to each megazone. Three surface types are defined: (1) external shell wall; (2) double pane insulating windows; (3) roof. Compass headings include south, west, and north faces.

In determining the effective temperatures, sol-air temperature profiles unrelated to the specific characteristics of each megazone were calculated for each compass heading according to Equations 60 and 62. This yielded seven temperature sets; one for the roof; three sets for the opaque external shell wall surfaces (one set for each compass heading); and three sets for the fenestration (also, one set for each compass heading). These profiles are presented in Figures 221 through 223.

Insolation and ambient air temperature data is presented in Figure 225, and sun incident angles for each of the three compass faces are presented in Figure 224. These data are calculated for the building assuming that long axis of the building is approximately 15 degrees off of a true east-west axis. Hence, the south face is actually facing 15 degrees to the east of south, the west face is facing 15 degrees to the south of west, and the north face is facing 15 degrees to the west of north.¹⁴⁰

The spreadsheet sa5_suna.wq2 calculates incident angles for any three sided structure at any latitude and longitude in any orientation. The constants at the top of the sheet may be changed as necessary for other applications, and other columns can be easily added to include as many sides as required to accommodate

other building configurations. 71W longitude - 42N latitude, longitude, [Pasachoff, 1977]. ىم Data for this report was developed for 20 July 1990, in Boston, Mass, @ a solar declination of 20.6° and the local standard time meridian @ 67.5W

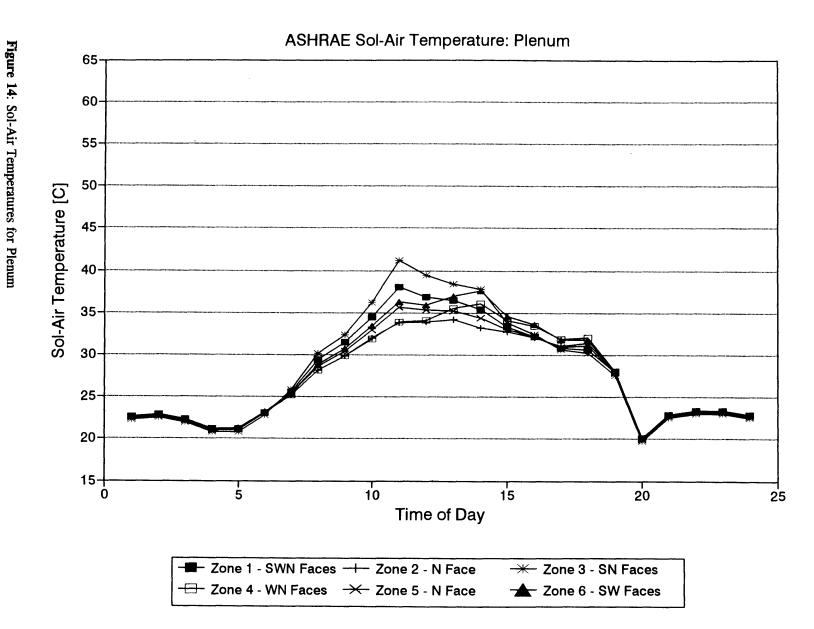
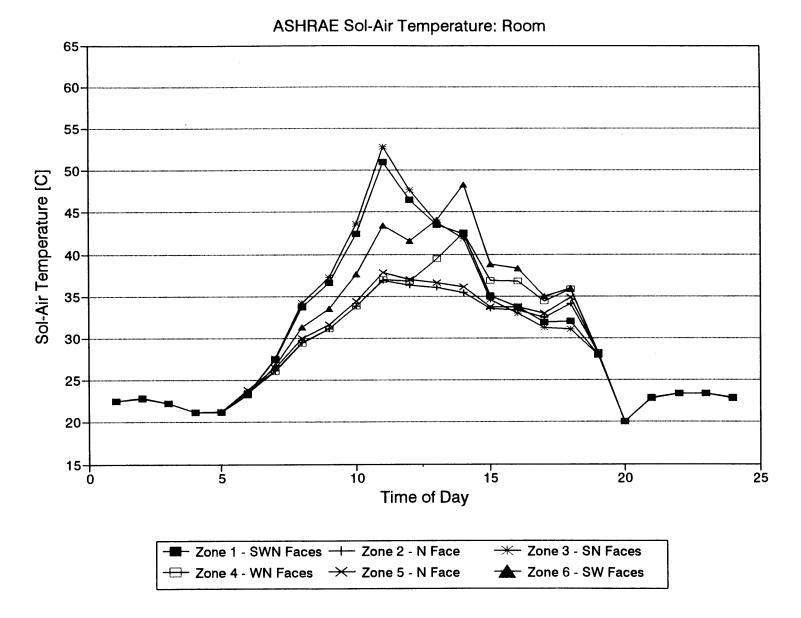



Figure 15: Sol-Air Temperatures for Room

Equivalent sol-air temperatures $T_{sa,i}$ were calculated according to Equation 59. These temperatures are weighted averages based on the ratios of the thermal conductances of each section of a sub-megazone (either room or plenum), identified by surface type, to the total thermal conductance of the entire surface area of the same sub-megazone. The capacitive flow of infiltration was not included in these calculations as indicated in Equation 59; instead of K_i in the denominator, K_{ext} was substituted. If K_i was to be used, then the appropriate contributions to the capacitive flow of infiltration for each component being combined to generate the equivalent temperature.

5.4 Simulation

Inputting the model parameters to the HVACSIM + program and running a simulation is tasked to LUT. For reference Table 50 shows a sample set of output values from the E51 Johnson Metasys Network control system. The data shown in the table represents a sampling taken mid-afternoon on 17 January, 1995. It is not expected that simulation will duplicate the values for the real building control system, however, the report data presented can be used as a baseline for comparison.

Line	Status	Item	Description	Value	Units
Num					
1		SEQUENCE	Sequence of Operation		
2		FRZ-BYPS	Freezstat Bypass Control	OFF	
3		SF-C	Supply Fan Control	ON	
4		SF-S	Supply Fan Status	ON	
5		RF-S	Return Fan Status	ON	
6		MIN-DPR	Minimum Air Damper Control	OPEN	
7		ECON	Economizer Status	MOD-A	
8		MALL-PID	Mixed Air Lower Limit Control Set Pt	48.0	DEG F
9	SWO	MA-DPR	Mixed Air Dampers	0.0	%OPEN
10		MA-T	Mixed Air Temperature	71.2	DEG F

Table - 50: MIT Building E51 Johnson Metasys Control System Output¹⁴¹

¹⁴¹ Data transcribed from a Standard Summary - Requested from: MIT-FMS\OWS-101 for System: MIT-FMS\BLDG-E51\SYSTEMS_\E51-AH1 on 17 January 1995 @ 15:47:10. Reference Eric Epstein, MIT Physical Plant, Project Engineer.

Line	Status	Item	Description	Value	Units
Num					
11		SF-PID	Discharge Static Control Set Point	1.25	INWG
12		SPHL-PID	Discharge Static High Limit Cntrl Set Pt	2.50	INWG
13		SF-VN	Supply Fan Inlet Vanes	48.70	%OPEN
14		SA-F	Supply Air Flow	12,962.5	CFM
15		RF-SET	Return Volume Differential Set Point	1,000.0	CFM
16		RF-PID	Return Volume Differential Cntrl Set Pt	1,000.0	CFM
17		RF-VN	Return Fan Inlet Vanes	100.0	%OPEN
18		RA-F	Return Air Flow	9,755.8	CFM
19		DA-PID	Discharge Air Control Set Point	57.3	DEG F
20		CH-VLV	Cooling Coil Valve	19.5	%OPEN
21		DA-T	Discharge Air Temperature	57.2	DEG F
22		DA-SP	Discharge Air Static Pressure	· 1.24	INWG
23		RM-SET	Room Temperature Set Point	73.0	DEG F
24		RM012-T	Room 012 Temperature	69.2	DEG F
25		RM110D-T	Room 110D Temperature	73.5	DEG F
26		RM201A-T	Room 201A Temperature	71.5	DEG F
27		RA-T	Return Air Temperature	71.3	DEG F
28		RA-H	Return Air Humidity	47.0	% RH
29		RA-E	Return Air Enthalpy	25.75	BTU/LB
30		OA-E	Outdoor Air Enthalpy	18.99	BTU/LB
31		MA-PTP	Mixed Air Control Pass Thru	0.00	

-

6 Conclusion and Summary

The purpose of the model is to provide a standard testbed for the evaluation of control algorithms and strategies related to variable air volume HVAC systems. This work was conducted in collaboration with, and under sub-contract to, Loughborough University of Technology, Leicestershire, United Kingdom (LUT). The prototype building is a four level commercial, multi-use building. Activities in the building include classroom / educational space professorial and student offices, and office / administrative. The building contains three air-handling units; one unit and the volume it serves provides the basis for the testbed. The portion of the building serving as the testbed is divided into thirty-four zones, each with its own single duct, pressure independent VAV terminal box with hot water reheat. A perimeter heating system, composed of hot water convectors, radiators and baseboard heaters, augments the room comfort control system. Local-loop control in the mechanical room and for all but one zone is executed with microprocessor based, pneumatic actuators. One prototype direct-digital-control terminal box system was in use for a classroom zone. DDC control systems and motor driven actuators were substituted in the simulation for the pneumatic equipment.

The principle work associated with this thesis involved the amalgamation of real building specifications with the theoretical model to produce a highly refined composite of approximations and simplifications. The extreme, unprecedented high detail level achieved in this effort produced a model which effectively reduced the thirty-four zone structure to a level which was both physically and numerically manageable, while at the same time preserving the primary thermal and airflow characteristics of the building. The simplification procedure involved three primary steps: (1) a review and critical analysis of the theoretical basis for the simulation and the building model; (2) the model development and component identification; (3) and the implementation of the real building specifications mapping the building's components into the HVACSIM + simulation package.

In the first step, the structure and procedure for parameter identification for the IEA Annex 10 second order, 2C3R lumped parameter zone model was studied. Some inconsistencies were identified with respect to the applying the Annex 10 model to the subject building, and an effort is currently in progress to clarify these inconsistencies and make the necessary modifications. The conclusion of this effort will appear in the ASHRAE 825 TRP Final Report. The inconsistencies identified relate to the development of the global parameters and affect the model's response to low frequency, diurnal frequency, and high frequency excitation.

Model development and component identification was accomplished in three categories: (1) real building selection; (2) occupancy schedule and internal gain identification linked to zone selection and simplification; (3) real building specification. A number of buildings were surveyed and a selection was made on the basis of the physical and operational constraints. The complex structure of the thirty-four zone building was simplified to a six megazone system. The procedure executed in this work made use of the occupancy schedules, the physical orientation of the buildings external walls to diurnal solar flux, and the natural physical boundaries within the building to establish the simplified megazone configuration. Another criteria used in the zone simplification procedure entailed maintaining the total area ascribed to each of the four basic uses identified in the building; (1) administration offices; (2) professorial-student offices; (3) classroom and conference rooms; and (4) computer/data processing. In addition, uniquely defined areas were preserved, or at least the conditions which give rise to the uniqueness of these areas were preserved. Unique characteristics considered in the zone simplification process include the unusually high insolation incident on isolated areas of the external shell, the lack of exposure to the external ambient characteristic of the ground floor wall and floor surfaces, and the specialized individual use represented in the data processing - computer room area.

As a direct consequence of the six megazone simplification, it was necessary to redesign the supply and return air duct systems. The procedure developed to redesign the two air duct systems preserves the air-flow and thermal characteristics intrinsic to the as built system. A procedure was developed for matching the surface areas of the modified air duct systems with the actual surfaces in the as built systems. In addition, a procedure was developed which matches the total pressure drop through each leg in the modified system with the pressure drop in each critical path specified for the original thirty-four zone system in the Engineering Design Specifications.

Internal and external heat gains for the thirty-four zone configuration were analyzed. An inventory of internal gains was made which captures the heat input values to the zones due to equipment, lighting, and occupants. In the case of equipment and lighting, heat dissipation densities (per area) were calculated for the original thirty-four zone configuration, and this information was translated into total heat dissipation densities for each megazone. In the case of the heat load due to classroom occupancy schedules, actual classroom occupancy schedules for an academic year were used to develop profiles and maximum input levels. Heat load due to occupancy schedules in the administrative, professorial, student offices were designed to reflect typical cycles in accordance with ordinary work schedules and classroom occupancy.

External heat gains were accounted for in sol-air temperatures developed for each of the two sub-zones comprising each megazone. Three methods were identified for determining insolation: (1) using direct measured values of direct normal and diffuse radiation; (2) using measured values of direct normal radiation and then using commonly accepted expressions to calculate diffuse values based on direct normal values; and (3) using measured values of the solar extinction coefficient, calculating direct normal radiation. The first and second procedures are codified in the spreadsheets attached to his document, and the results are presented. The highest frequency input which could be developed using either of these two methods was at one hour intervals. The desired frequency per contract requirements was closer to the order of one to five minutes, and the third procedure outlined in this thesis proposes a method which may yield the desired results. Due time constraints it was not possible to fully explore the third method and produce some proto-typical values, and the subject may serve as the basis for future research.

Each of the three methods required solar incident angles to the subject surface. A procedure was developed using standard ASHRAE formulae for calculating these incident angles on vertical and horizontal surfaces located at any latitude and longitude; the procedure is codified in the spreadsheets attached as an appendix to this thesis. The incident angles were used in combination with locally measured data and the buildings thermal properties to produce the hourly averaged sol-air temperatures included in this report. The procedure identified to calculate sol-air temperatures for short intervals using the high frequency measurements of the extinction coefficient was not proven, and it was not known at the time this report was written if the data required for the calculation is available, accurate, or reliable.

The availability and quality of insolation and collateral weather data was researched. Several sources were identified, all of which provide data in various formats. In total, these data are collected at hundreds of government maintained and operated locations scattered across the continental United States. All of the data are screened and corrected for errors, and a large percentage of these data are derived from observed values using commonly known relations. Typically, the insolation and collateral data are presented as one hour averages, and no solar data at frequency intervals less then one hour were found to be available. Although, it was determined that weather data is being measured and recorded at intervals between 30 seconds and 5 minutes, depending on the data type. Unfortunately, these data, ordinarily available in a condensed format, represent one hour averages. However, the data in uncondensed format may be obtained by special request from the NCDC in Asheville, NC.

The SOLMET program, under the auspices of DOE through a program known as SAMSON, provides archived solar data at one hour intervals on CDROM. Data are collected from twenty-six stations distributed around the United States. Collateral weather data are also provided with the solar data, and for simulation purposes, the SOLMET data provides the best resource providing the data is accurate and true. In the course of developing sol-air-temperatures it was observed that the diffuse radiation values for read directly from the SAMSON records did not agree with the diffuse radiation values calculated using the ASHRAE formulae found in F27. Sol-air temperatures were calculated using both methods, a determination was made to use the values calculated with the ASHRAE formulae. Additional research is required beyond the scope of this work to correct the inconsistencies discovered between the two methods of determining the diffuse radiation.

A relatively new program referred to as the Automated Surface Observing System (ASOS) was identified. This program is operated by the National Oceanic and Atmospheric Administration and will eventually provide weather data at varying intervals down to one minute, depending on the type of information required. Historically, ASOS program data at this frequency have been collected, but not reported. Daily and monthly summaries are available; however, resolution is reduced and averaged to one hour intervals. Special arrangements will be necessary if processed data from the ASOS program at higher frequencies is to be obtained. The extinction coefficient is provided with this data, and is the only part directly related to insolation. It is detected and recorded at one minute intervals. However, as previously mentioned, one hour averages are all that are generally reported.

Parameters were developed for the HVACSIM + components corresponding to the elements comprising the model building. The parameters characterize the physical and geometric properties of a building shell, the internal and external building loads, the building's secondary systems, and the plant or primary energy source. An airflow network and thermal network provide the two key structural elements in the HVACSIM + simulation. The third key structural element in the simulation is the control system which was handled entirely by the LUT Team. The airflow network models the complex airflow connections intrinsic to the six megazone approximation of the real building. Interzone leakage is accounted for as well as exfiltration. The model structure for the mixing box uses a open modeling concept which allows the user to adapt basic components into the precise configuration existing in the subject system. This method for mixing box modeling is a modification over the previous method which relied upon an individual, specialized model limited to applications to one configuration. Consisting primarily of the zone models, cooling and reheat coils, space heating elements, and air flow duct conduction surfaces, the thermal network models the complex thermal connections also intrinsic to the six megazone approximation of the real building. The supply and return air in the real building pass through a complex system of ductwork, exchanging heat with multiple zones along the way to the intended destination. This feature of the as built system was successfully captured in a procedure which respected the percentage of the total duct surface area exposed to each zone in the real building. The control system was modeled by the LUT team and will be fully described in their report. Parameter input for the HVACSIM + model types has been completed, and some simulation testing has been done by the Lut team. The results of the testing and the final simulation runs will be in the final report for this project in accordance with the contractual requirements described in ASHRAE 825 TRP.

218

.

Bibliography

- 1991 ASHRAE HVAC Applications. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1991.
- <u>1992 ASHRAE HVAC System and Equipment</u>. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1992.
- <u>1993 ASHRAE Handbook: Fundamentals</u>. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993
- Andresen, I. and Brandemuehl, M. J. "Heat Storage in Building Thermal Mass: Parametric Study." <u>ASHRAE Transactions</u> Vol. 98, Pt. 1, (1992), pp. 910-918.
- ASHRAE APPLICATION FOR GRANT OF FUNDS: <u>A Standard Testbed for the Evaluation of</u> <u>Control Algorithms and Strategies (825-TRP)</u>, Principle Investigators - Haves, Philip, LUT, Loughborough, United Kingdom, and Norford, Leslie, MIT, Cambridge, Massachusetts, December, 1993.
- ASOS Automated Surface Observing System Users's Guide. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data and Information Service, National Climatic Data Center, Asheville, North Carolina, June, 1992.
- Balun, Paul, <u>A Building Thermal Zone Model of VAV HVAC System</u>. Massachusetts Institute of Technology, Undergraduate Research Opportunity Program, Summer 1995.
- Baumeister, Editor, <u>Marks' Standard Handbook for Mechanical Engineers</u>, 7th Edition. New York: McGraw Hill Book Company, 1967.
- Bevington, R. and Rosenfeld, A. H. "Energy for Buildings and Homes." <u>Scientific American</u>, September, 1990, pp. 76-86.
- Ching, Francis D.K., with Cassandra Adams. <u>Building Construction Illustrated</u>. 2nd Edition. New York: Van Nostrand Reinhold, 1991.
- Clark, Daniel R., <u>HVACSIM + Building Systems and Equipment Simulation Program Reference</u> <u>Manual</u>, NBSIR 84-2996. Gaithersburg, Maryland: U.S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Building Technology, Building Equipment Division, January 1985.
- Clark, Daniel R., & William B. May, Jr., <u>HVACSIM + Building Systems and Equipment Simulation</u> <u>Program - Users Guide</u>, NBSIR 85-3243. Gaithersburg, Maryland: U.S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Building Technology, Building Equipment Division, September 1985.

Considine, Douglas M., PE, Editor, Energy Technology Handbook. New York: McGraw Hill, 1977.

- DeSimone, Mark, <u>A Finite Element, Computer Aided Thermal Analysis to Determine Steady-State</u> <u>Temperatures in an Electronic Device</u>, Thesis, SBME. Cambridge, Massachusetts: Massachusetts Institute of Technology, Mechanical Engineering Department, Advisor: Prof. Ain A. Sonin, June 1980.
- Fox and McDonald, Introduction to Fluid Mechanics. New York: John Wiley & Sons, 1973.
- Ford, Kenneth W., <u>Classical and Modern Physics A Textbook for Students of Science and</u> <u>Engineering: Volumes 1 & 2</u>. Lexington, Massachusetts: Xerox College Publishing, 1972.
- Franklin, Powell, & Emami-Naeini, Feedback and Control of Dynamic Systems. Reading, Massachusetts: Addison-Wesley Publishing Company, 1991.
- Friedland, Bernard, <u>Control System Design An Introduction to State Space Methods</u>. New York: McGraw Hill, Inc., 1986.
- Haves, Philip, <u>Component-Based Modelling of VAV Systems</u>. Loughborough, UK: Department of Civil and Building Technology, Loughborough University of Technology, 1995.
- Haves, Philip, <u>Detailed Modeling and Simulation of a VAV Air-Conditioning System</u>. Loughborough, UK: Department of Civil and Building Technology, Loughborough University of Technology, 1995.
- Hill, Roger Owen, <u>Applied Change of Mean Detection Techniques for HVAC Fault Detection and</u> <u>Diagnosis and Power Monitoring</u>, Thesis, SMBT. Cambridge, Massachusetts: Massachusetts Institute of Technology, Building Technology Program, Advisor: Prof. Leslie K. Norford, June 1995.
- Hutchison, J.W., Honeywell, Inc., Editor, <u>ISA Handbook of Control Valves</u>. Pittsburgh: Instrument Society of America, 1971.
- Karnopp, Margolis, & Rosenberg, <u>System Dynamics A unified Approach</u>. New York: John Wiley & Sons, 1990.
- Lapedes, Daniel N., Editor in Chief, <u>McGraw-Hill Dictionary of Scientific and Technical Terms</u>, 2nd Edition. New York: McGraw Hill, Inc., 1978.
- Lorenzetti, David, <u>Energy Minimization Principles and the Use of Adjustable Speed Fans in Variable</u> <u>Air Volume Ventilation Systems</u>. Cambridge, MA: Massachusetts Institute of Technology, 1992.
- Lorenzetti, David, SORTMAT, V1.0. Cambridge, MA: Massachusetts Institute of Technology, 1994.
- McNall, P. "Indoor Air Quality Status Report." <u>CLIMA 2000, VVS Kongres-VVS Messe</u>, <u>Copenhagen</u>, Vol. 1, (1985), pp. 13-26.
- Metasys Graphic Programming Language Programmer's Manual. Milwaukee, WI: Johnson Controls, Inc., June, 1994.

Mills, A.F., Heat Transfer. Boston, Massachusetts: Richard D. Irwin, Inc., 1992.

- Moran & Shapiro, <u>Fundamentals of Engineering Thermodynamics</u>. New York: John Wiley & Sons, 1992.
- Morris, F. B., Braun, J. E., and Treado, S. J. "Experimental and Simulated Performance of Optimal Control of Building Thermal Storage." ." <u>ASHRAE Transactions</u> Vol. 100, Pt. 1, (1994), pp. 402-414.
- NAVSHIPS 900,190 Guide Manual of Cooling Methods for Electronic Equipment. Washington, DC: Bureau of Ships, Navy Department, 1955.
- Park, Cheol, & Daniel R. Clark, & William B. May, Jr., <u>HVACSIM + Building Systems and Equipment Simulation Program Building Loads Calculation</u>, NBSIR 86-3331. Gaithersburg, Maryland: U.S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Building Technology, Building Equipment Division, February 1985.
- Park, Choel, D. Clark, and G. Kelly, <u>An Overview of HVACSIM+, A Dynamic Building-HVAC-Control Systems Simulation Program</u>. Gaithersburg, Maryland: Building Equipment Division, Center for Building Technology, National Bureau of Standards.
- Park, C., Bushby, S. T., and Kelly, G. E. "Simulation of a Large Office Building System Using the HVACSIM + Program." <u>ASHRAE Transactions</u> Vol. 95, Pt. 1, (1989), pp. 642-651.

Pasachoff, Jay M., Contemporary Astronomy. Philadelphia: W.B. Saunders Company, 1977.

- Rohsenow, Warren M., and Harry Choi. <u>Heat Mass and Momentum Transfer</u>. Englewood Cliffs: Prentice-Hall, 1961.
- Rymes, Martin, <u>Beyond Version 1.0 of the National Solar Radiation Database</u>. National Renewable Energy Laboratory, Golden, Colorado, 1994.
- Sauer, Harry J., and Ronald H. Howell. <u>Principles of Heating Ventilation and Air Conditioning</u>, A Textbook Based on the 1993 ASHRAE Handbook - Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1994.
- <u>Selective Guide to Climatic Data Sources</u>. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, National Climatic Data Center, Asheville, North Carolina, December, 1988.
- Shapiro, Ascher H., <u>The Dynamics and Thermodynamics of Compressible Fluid Mechanics</u>. New York: The Ronald Press Company, 1954.
- Shearer, Murphy, & Richardson, Introduction to System Dynamics, 2nd Printing. Reading, Massachusetts: Addison Wesley, 1971.

- <u>SMANCA HVAC Duct & Fitting Loss Calculator</u>. Vienna, Virginia: Sheet Metal and Air Conditioning Contractors' National Association, 1989.
- SOLMET Volume 1 User's Manual TD9724: Hourly Solar Radiation Surface Meteorological Observations, 3rd Printing. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data and Information Service, National Climatic Data Center, Asheville, North Carolina, August, 1988.
- SOLMET Volume 2 Final Report TD9724: Hourly Solar Radiation Surface Meteorological Observations, 3rd Printing. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data and Information Service, National Climatic Data Center, Asheville, North Carolina, August, 1988.
- Stein, Benjamin, <u>Mechanical & Electrical Equipment for Building</u>, New York: John Wiley & Sons, 1986.

Ulanski, Wayne, Valve and Actuator Technology. New York: McGraw Hill, 1991.

Appendices

•

.

-

Appendix A - Building Selection Comparison

•

Selection Comparison

<u>Building A</u>

Location:	Building E51 - Massachusetts Institute of Technology
	Memorial Drive, Cambridge, MA
Floors:	4 levels (includes ground level or basement)
Usage:	Office/Educational - Classroom/Computer Laboratory/Conference Room
Constructed:	Renovated 1980
HVAC Type:	Variable Air Volume to all areas of building
Air Handler:	Trane - Supply & Return fans; supply motor size 20 hp/208VAC/3 ph
	constant speed & return motor 5 hp/ 208VAC/3 ph constant speed; typical
	maximum supply flow rate approximately 18,590 cfm; total cooling capacity
	736 MBH; pressure controlled set point
Outside Air:	Through central plant via ducting direct to outside
Mixing Plenum:	Dedicated - attached to the back end of each central plant is a fabricated sheet
	metal mixing box
Exhaust:	Through Bathroom Venting and Exfiltration
VAV Terminal Units:	Single Duct, pressure independent; flow range 80 - 2200 cfm
TB Damper Actuators:	Pneumatic (one test VAV box fitted with Motor Driven Electronic)
Reheat:	Single row, single circuit hydronic coils fed by hot water boiler within the
	building; perimeter heating is fed by same system
Control System:	microprocessor control connected to pneumatic transducers; one DDC
	controller and VAV box is fitted in a zone for test purposes
Instrumentation:	Flow, Temperature, Humidity, Damper Positions, Outside Air Temperature,
	etc. as required by control system for total automated operation and manual
	override
Cooling:	Central Supply from MIT Campus cooling system
Documentation:	Excellent
Number of Zones:	

Selection Comparison (continued)

Building C

Location:	75 State Street
	Boston, MA
Floors:	31
Usage:	Commercial Office
Constructed:	1989
HVAC Type:	Variable Air Volume
Control System:	Mixed Direct Digital Control and Pneumatic - DDC for base building and
	supply fans and pneumatic for individual terminal box damper control
VAV Terminal Units:	Fan Powered
TB Damper Actuators:	Pneumatic
Reheat:	Electric Coils
Instrumentation:	Flow, Temperature, Humidity, Damper Positions, Outside Air Temperature,
	etc. as required by control system for automated operation and manual
	override
Mixing Plenum:	Dedicated - Mechanical room on each floor is used for this purpose
Cooling:	Central Supply Through Core Piping
Outside Air:	A central supply via core ducting
Exhaust:	Through Bathroom Venting and Infiltration
Documentation:	Excellent
Number of Zones:	Variable (less than 25)
Air Handler:	Draw Through

Selection Comparison (continued)

Building D

Location:	222 Berkeley Street
	Boston, MA
Floors:	23
Usage:	Commercial Office
Constructed:	1989
HVAC Type:	Mixed Constant Volume for the common areas and first floor retail spaces
	and Variable Air Volume for the commercial office spaces
Air Handler:	Carrier - Supply fan only; motor size 20 hp/480 VAC/3 ph; VSD; typical
	maximum flow rate approximately 17,130 cfm; total cooling capacity 682
	MBH; pressure controlled set point
Outside Air:	A central supply via core ducting - Typical volume flow rate approximately
	2500 cfm
Mixing Plenum:	Dedicated - Mechanical room on each floor is used for this purpose
Exhaust:	Through Bathroom Venting and Infiltration
VAV Terminal Units:	Fan powered type by Aire Systems of Houston Texas; centrifugal fan type;
	max flow primary 760 - 1900 cfm; min flow primary 190 - 475 cfm; max
	flow total 900 - 2000 cfm; min flow total 601 - 1751 cfm
TB Damper Actuators:	Motor Driven
Reheat:	Multi-stage electric resistance coils; max 10 kw; min 3.5 kw
Control System:	DDC for all Controllers - Control for this building is entirely automated
	through the use of DDC control. Any aspect of the control system can be
	monitored and controlled from a central location.
Instrumentation:	Flow, Temperature, Humidity, Damper Positions, Outside Air Temperature,
	etc. as required by control system for total automated operation and manual
	override
Cooling:	Central Supply Through Core Piping
Documentation:	Excellent
Number of Zones:	Typical approximately 18 - 20

Appendix B - Site Plan & Elevations for the West End of Building E51¹⁴²

142 Based on MIT Drawings:

gs: EA51 A06.0004 EA51 A07.0004 EA51 A24.0001

Architectural layouts for Building E51, in the form of Autocad compatible *.dxf files, were obtained from the MIT Facility Management Systems Office in Building E28. The *.dxf files were modified using Coreldraw 5.0 to reflect the supply and return duct layouts, the perimeter heating unit sizes and distribution, and the megazone boundaries. The drawings are in proportion to the scale bar depicted in each figure.

MIT BUILDING DATA REPORT

-- BUILDING E51 --

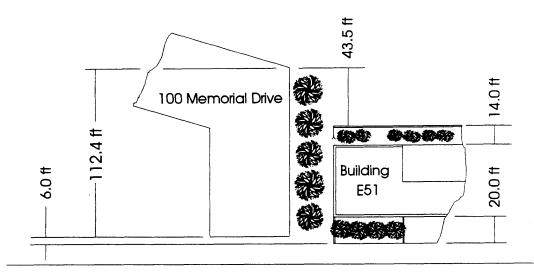
Revised 02/87

	BUILDING	G E51		Revised	02
		*			j
		÷.	. 4		1
DENTIFICATION DATA			-		And a second
BUILDING NUMBER BUILDING NAME PERSON FOR WHOM NAMED STREET ADDRESS MAILING ADDRESS	2	E51 70 MEMORIA 77 MASSACH		. –	
OCCUPANCY CLASS		ASSEMBLY (
ARCHITECTURAL INFORMATION					
ARCHITECT		PERRY, SHA	W, &	HEPBURN	
CONSTRUCTION COMMENCED INITIAL OCCUPANCY MAJOR RENOVATION DATE		1944 1980 1979			
FINANCIAL/REAL ESTATE DATA					
CONSTRUCTION COST PROJECT COST OWNERSHIP PURCHASE DATE EFFECTIVE LEASE DATE LEASE/OPTIONS EXPIRE		MIT 1945 N/A N/A			
LEASED FROM LENGTH OF LEASE OPTIONS RENT BUILDING INVESTMENT SOURCE OF FUNDS (MAJ) SOURCE OF FUNDS (MIN)		N/A Ņ/A N/A N/A			
PHYSICAL DATA					
GROSS AREA (SQ. FT.) NET USEABLE AREA (SQ. FT.) NET ASSIGNABLE AREA (SQ. F' GROSS ROOF AREA (SQ. FT.) BUILDING HEIGHT FROM GRADE NUMBER OF FLOORS NUMBER OF BASEMENTS NUMBER OF PENTHOUSES TYPE OF CONSTRUCTION	T.)	57708 52152 34793 15343 53 FEET 3 1 REINFORCED	CONC	RETE	

Figure 16: MIT Building E51 Data Report Rev 02/87 - Facility Management Systems

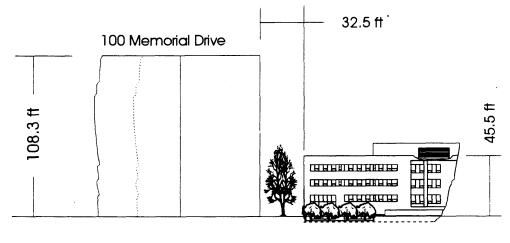
MIT BUILDING DATA REPORT

-- BUILDING E51 --


Revised 02/87

BUILDING SERVICES

SAFETY SYSTEMS MANUAL FIRE ALARM SYSTEM AUTOCALL SYSTEM FIRE HOSES, FIRE PUMP FIREFIGHTER ELEVATOR CONTROL HANDICAPPED ACCESS RAMP (2) NUMBER OF PASSENGER ELEVATORS 1 NUMBER OF FREIGHT ELEVATORS 0 F.E. WT, LGTH, WDTH, DR, OPN N/A SHIPPING/RECEIVING PLATFORM ROOF REPAIR DATES 1981 ELECTRICAL SERVICES MIT SYSTEM - HIGH VOLTAGE MIT SYSTEM - LOW VOLTAGE BUILDING HEAT MIT CENTRAL STEAM SYSTEM HEATING SYSTEM CENTRAL AIR & PERIMETER HOT WATER AIR CONDITIONING CENTRAL CHILLED WATER SERVICE OTHER UTILITY SERVICES NO UNIT CONTROLLER W/CENTRAL ENVIRONMENTAL CONTROL MONITOR EMERGENCY LIGHTING DATA SYSTEMS CONNECT PERMITS BUILDING WAS PREVIOUSLY LEASED TO ELECTRONICS REMARKS CORPORATION-OF AMERICA BEFORE RENOVATION FOR-ACADEMIC USAGE. * RENOV: WALLACE, FLOYD, ELLENZWEIG, & MOORE, INC. NATIONAL RESEARCE CORP. " Automatica


Figure 17: MIT Building E51 Data Report Rev 02/87 - Facility Management Systems (cont'd)

)

Memorial Drive

PLAN VIEW

SOUTH FACE

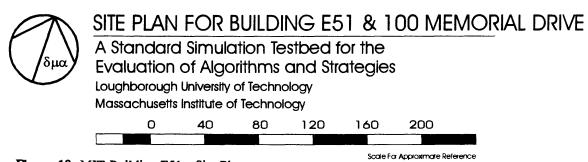


Figure 18: MIT Building E51 - Site Plan

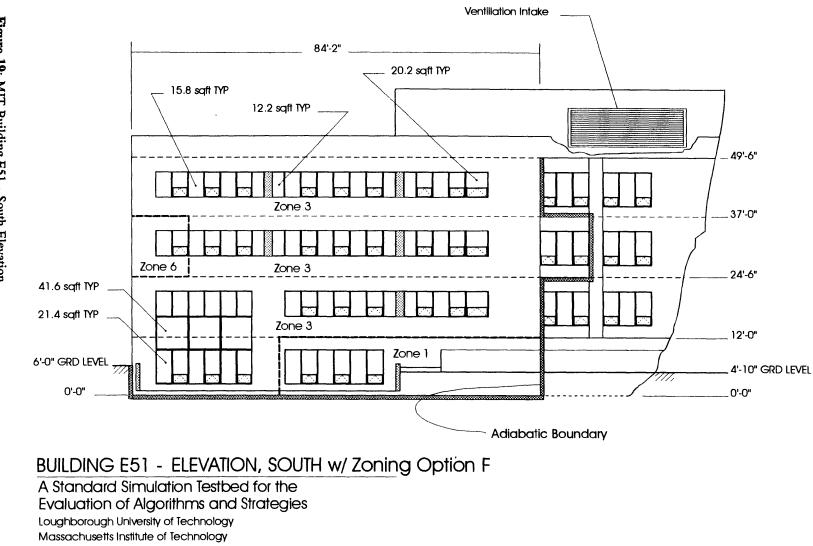
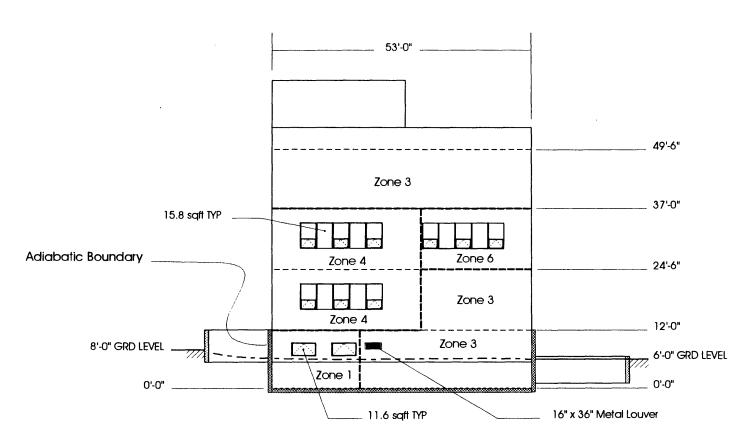



Figure 19: MIT Building E51 - South Elevation

BUILDING E51 - ELEVATION, WEST w/ Zoning Option F

A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology Massachusetts Institute of Technology

	0	10	20	30	40	50	
δμα					Scale to	Approximate Refe	arence

BUILDING E51 - ELEVATION, NORTH w/ Zoning Option F

A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology Massachusetts Institute of Technology

Appendix C - Building Envelope & Shared Internal Wall Surface Areas

-

<u>a</u>	b	c	d	e	<u>f</u>	g	<u>h</u>			k		n
pe 210 Pa	arameter Nu											
Zone	External	External Sur	face Area		Tot Ext	Window Area				1	Hdg Ext	Tot
lumber	Surface	Heading	Heading	Heading	Surface	Unit Area	Number	Unit Total	Hdg Win-	Tot Win-	Wall Area	Wall
	Compass	Room	Plenum	Total	Area	perHdg	of Units	per Hdg	dow Area	dow Area		
	Heading	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	per Hdg	[ft2]	[ft2]	[ft2]	[ft2]	[ft
1	South	386	107	493		21,4	6	128	128		365	
	West	96	27	123		11.6	2	23	23		100	
1	North	171	47	218	834	8.6	2	17	17	169	201	66
	North	183	51	234	234	11.6	2	23				
	North	100	51	204	204	8.6	2	17	40	40	194	19
111	South	3,567	991	4,558		21.4	6	128				
	0000	0,001	001	1,000		41.6	3	125				1
						15.8	43	679				i i
						12.2	10	122				1
						20.2	з	61	1,115		3,443.	l
111	West	1,181	328	1,509		0.0	0	0	0		1,509	
111	North	340	94	434	6,501	15.8	4	. 63				1
						12.2	1	12	75	1,191	359	5,3
١V	West	737	205	942		15.8	10	158	158		784	
IV	North	679	189	868	1,810	15.8	8	126				
	}					12.2	2	24	151	309	717	1,5
	North	2,659	739	3,398	3,398	15.8	42	664				
		-,				12.2	12	146	810	810	2,588	2,5
VI	South	146	40	186		15.8	2	32	32		154	
VI	West	276	77	353	539	15.8	5	79	79	111	274	4
hk Sums	1	10,421	2,895	13,316	13,316	╎		2,629	2,629	2,629	10,687	10,
		-	13,316			4			10,687	1	13,316	13,

External Windows & Wall Surface Areas plus Resistance Values for Air Flow Leakage to Outside

file: extwall.wq2

12/27/95 Page 1

.

237

.

a	b	C	d	е	f	n	0	р	<u>е</u>	r	5	t	u
ype 210 P	arameter Nu												P1
Zone	External	External Sur	face Area (Wal	& Window)	Tot Ext	1	Leekage Ro	sistenco w/rata	-1000 am2/a	-0 @ 75 D-			
Number	Surface	Heading	Heading	Heading	Surface	Compass He	ading Room		=1200 cm3/s-r ading Plenum	Hdg Zone	Tot Zone		6. Tot Zor
	Compass	Room	Plenum	Total	Area	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Hdg Zone Leakage	Leakag
	Heading	[ft2]	[ft2]	[ft2]	[ft2]	[1/(lbm-ft)]	[1/(kg-m)]	[1/(lbm-ft)]	[1/(kg-m)]	[1/(lbm-ft)]	[1/(lbm-ft)]	[1/(kg-m)]	[1/(kg-n
	South	386	107	400				_					
	West		27	493		3.77E+03	2.72E+04	4.89E+04	3.53E+05	2.31E+03		1.67E+04	
	North	90 171	47	123 218		6.06E+04	4.38E+05	7.86E+05	5.67E+06	3.71E+04		2.68E+05	
		177	41	218	834	1.93E+04	1.39E+05	2.50E+05	1.81E+06	1.18E+04	8.08E+02	8.53E+04	5.83E+0
11	North	183	51	234	234	1.67E+04	1.21E+05	2.17E+05	1.57E+06	1.03E+04	1.03E+04	7.40E+04	7.40E+
111	South	3,567	991	4,558	<u></u>	4.41E+01	3.19E+02	5.72E+02	4.13E+03	2.70E+01		1.95E+02	
	West	1,181	328	1,509		4.03E+02	2.91E+03	5.22E+03	3.77E+04	2.47E+02		1.78E+03	
M	North	340	94	434	6,501	4.87E+03	3.51E+04	6.31E+04	4.55E+05	2.98E+03	1.33E+01	2.15E+04	9.59E+
IV	West	737	205	942		1.03E+03	7.46E+03	1.34E+04	9.67E+04	6.33E+02	· · · · · · · · · · · · · · · · · · ·	4.57E+03	
IV	North	679	189	868	1,810	1.22E+03	8.79E+03	1.58E+04	1.14E+05	7.46E+02	1.71E+02	5.38E+03	1.24E+
v	North	2,659	739	3,398	3,398	7.94E+01	5.73E+02	1.03E+03	7.43E+03	4.86E+01	4.86E+01	3.51E+02	3.51E+
vi	South	146	40	186		2.65E+04	1.91E+05	3.44E+05	2.48E+06	1.62E+04		1.17E+05	
VI	West	276	77	353	539	7.36E+03	5.31E+04	9.54E+04	6.88E+05	4.51E+03	1.93E+03	3.25E+04	1.40E+
nk Sums		10,421	2,895	13,316	13.316	<u> </u>					<u> </u>		
	I		13,316	10,010	13,310	Basia Farrie		o^2*(QI*A)^:) cm3/s-m2; de	_

External Windows & Wall Surface Areas plus Resistance Values for Air Flow Leakage to Outside

.

Figure 23: Building Envelope Wall and Window Areas - Zoning Option F (continued)

file: extwall.wq2

12/27/95 Page 2

238

.

External Windows & Wall Surface Areas plus Resistance Values for Air Flow Leakage to Outside

- a = zone number designation
- b = compass heading of wall within a particular zone
- c = room external curtain wall surface area for zone heading
- d = plenum external curtain wall surface area for zone heading
- e = total external curtain wall surface area for zone heading [c+d]
- f = total exterior curtain wall surface area for the zone (includes walls and windows)
- g = unit area of a specified window configuration type (reference E51 Elevation Drawings)
- h = unit quantity for the window type
- i = total area for each window type for each heading [g*h]
- j = total window area, including all types, for each compass heading
- $\mathbf{k} = \mathbf{total}$ window area for the zone
- 1 = exterior wall surace for each heading [e-j]
- m = total exterior wall surface area for the zone (excluding glass area)
- n = air leakage resistance for room per heading and zone (english) derived from SI calculation [0/(3.2808*2.2)]
- o = air leakage resistance for room per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = [75/((1.22*1.22)*(1200/1000000)*(1200/1000000)*(c/10.7636)*(c/10.7636))]$
- p = air leakage resistance for plenum per heading and zone (english) derived from SI calculation [q/(3.2808*2.2)]
- q = air leakage resistance for plenum per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = \left[\frac{75}{((1.22*1.22)*(1200/1000000)*(1200/1000000)*(d/10.7636)*(d/10.7636))} \right]$
- r = air leakage resistance (for room & plenum as one volume) per heading and zone (english) derived from SI calculation [t/(3.2808*2.2)]
- s = air leakage resistance for entire zone (considering room & plenum a single volume) (english) derived from SI calculation $\left[\frac{u}{3.2808*2.2}\right]$
- t = air leakage resistance (for room & plenum as one volume) per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = [75/((1.22*1.22)*(1200/1000000)*(1200/1000000)*(e/10.7636)*(e/10.7636))]$
- $u = air leakage resistance for entire zone (SI) considering room and plenum as one volume (type_210: P1)$
 - R = [75/((1.22*1.22)*(1200/1000000)*(1200/1000000)*(f/10.7636)*(f/10.7636))]

12/27/95 Page 3

a	b	с	d	e	f	g	h	i	j		k	1
ype 229 I	Parameter N	lumber										P1
Level	Zone A	Zone B	Shared Wall	Area		Number	Crack	Loss	Crack Are	1	flow	SI
			Linear Dim	9 ft Room	2.5 ft Ceil'g	of	Length	Coefficient			resis	convert
			[ft]	Height [ft2]	Height [ft2]	Doors	[ft]	1/Cd2	[ft2]	[m2]	[1/lbm*ft]	[1/kg*m]
Oth		н	36	324	90	2	40	2.78	0.83	0.077	2.67E+01	1.92E+0
ouri	i		72	648	180	3	60	2.78	1.25	0.116	1.19E+01	8.55E+01
1st	III	IV	40	594	100	2	40	2.78	0.83	0.077	4.27E+00	3.08E+0
	111	v	66	594	165	5	100	2.78	2.08	0.194	7.41E-01	5.35E+0
2nd		IV	33	297	83	3	60	2.78	1.25	0.116	see first l	evel
	III	v	58	522	145	5	100	2.78	2.08	0.194	see first l	evel
	111	VI	30	270	75	0					no openi	
	١٧	VI	12	108	30	1	20	2.78	0.42	0.039	1.07E+02	7.70E+0
3rd	111	v	72	648	180	2	40	2.78	0.83	0.077	see first l	evel
				1	ł	I				l	I	
		door size:		7'0" x 3'0"		rho:	0.075 lbm/f	43				

crack width: 0.25 inches 0.075 lbm/ft3

1.220 kg/m3

a = level shared wall area & air flow resistance is evaluated

b = zone sharing contact area and air flow

c = zone sharing contact area and air flow

d = linear dimension of shared wall area

e = ceiling height [ft]

f = height of volume above suspended ceiling [ft]

g = number of doors in shared wall

h = resulting crack length based on the number of shared doors

i = loss coefficient (k) based on commonly accepted discharge coefficient for airflow thru cracks in a bldg envelop (93 ASHRAE Fundamentals F23.12) Cd=0.60 & k=1/Cd2 j = effective crack area based on a 0.25 inch crack width

k = air flow resistance [English Units]

I = air flow resistance [SI Units] type_229: P1

R = k / (2 * rho * A * A)R(SI) = R * 3.2808 * 2.2

file: intwall.wq2

12/27/95 Page 1

Appendix D - Supply & Return Duct Layouts for AH1 in Building E51 w/ Zoning Option F ¹⁴³

143

Based on MIT Drawings:

EA51 M07.0002 EA51 M01.0002 EA51 M01.0003 EA51 M02.0004 EA51 M03.0003 EA51 M03.0002 EA51 M04.0002 EA51 M05.0002 EA51 M06.0002

Architectural layouts for Building E51, in the form of Autocad compatible *.dxf files, were obtained from the MIT Facility Management Systems Office in Building E28. The *.dxf files were modified using Coreldraw 5.0 to reflect the supply and return duct layouts, the perimeter heating unit sizes and distribution, and the megazone boundaries. The drawings are in proportion to the scale bar depicted in each figure.

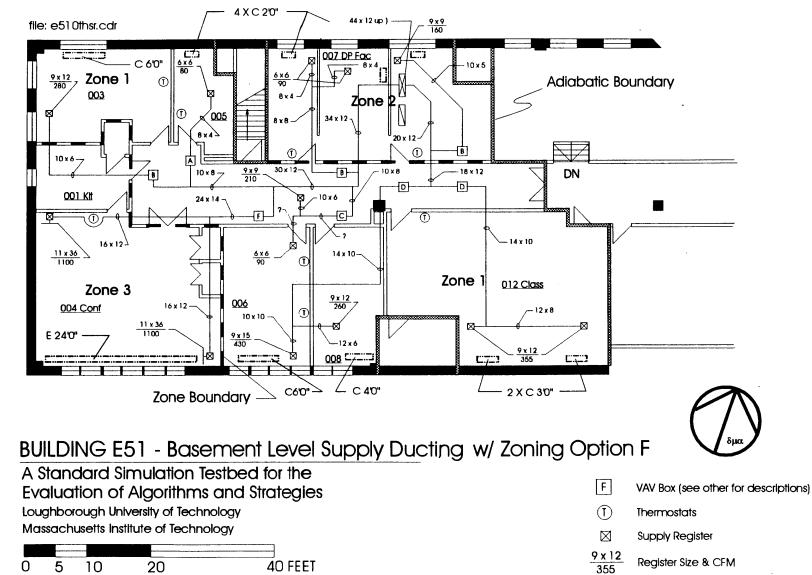
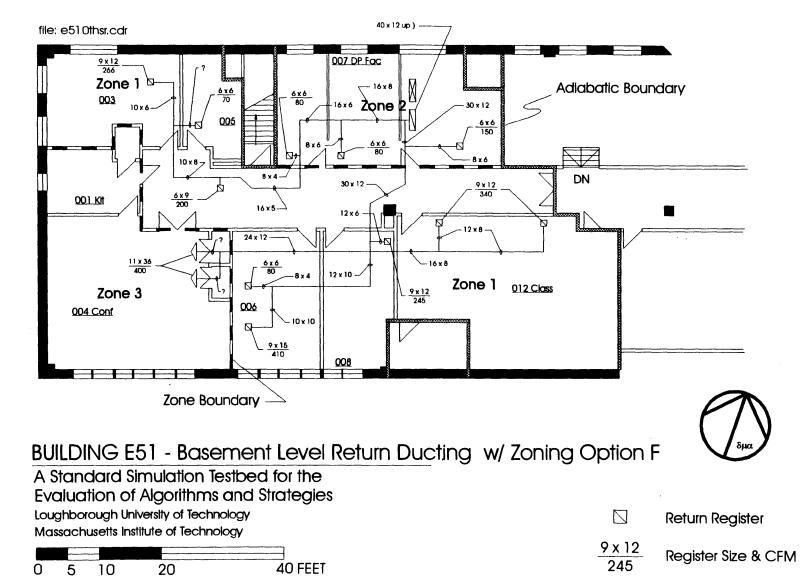
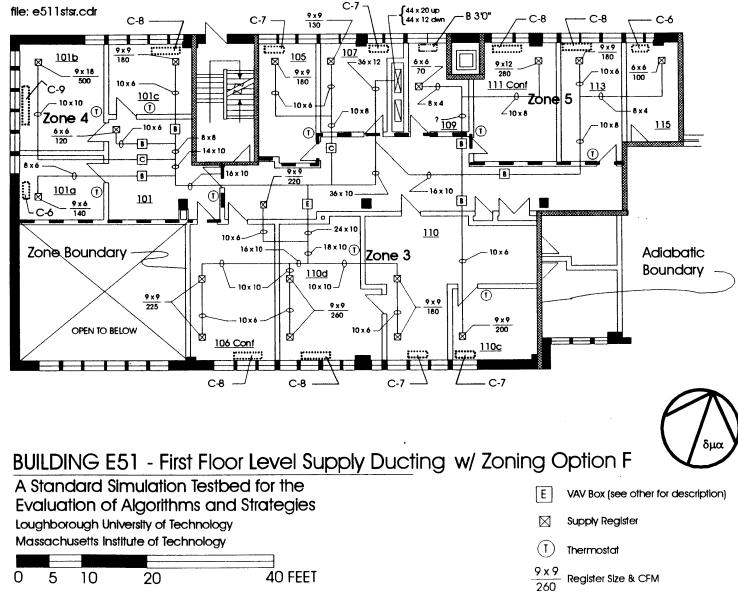




Figure 26: Building E51 - Basement Level Supply Ducting w/ Zoning Option F

¥

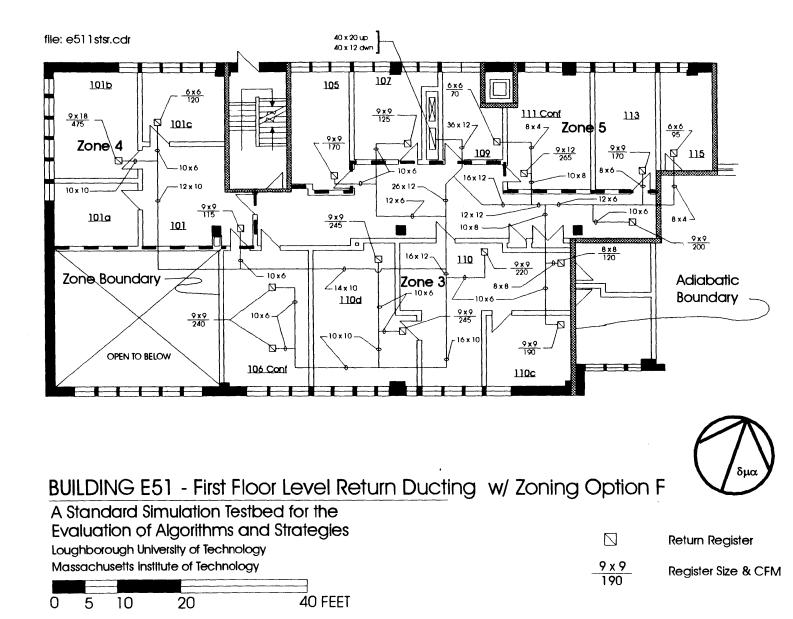
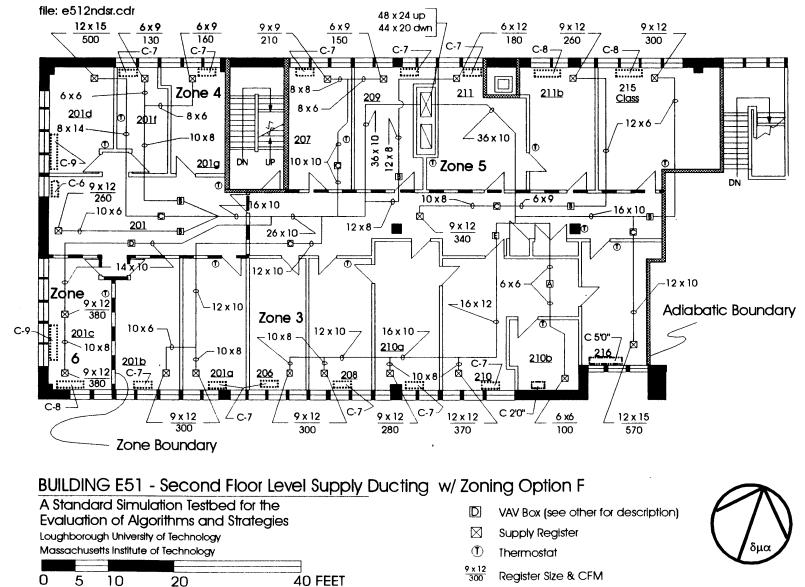
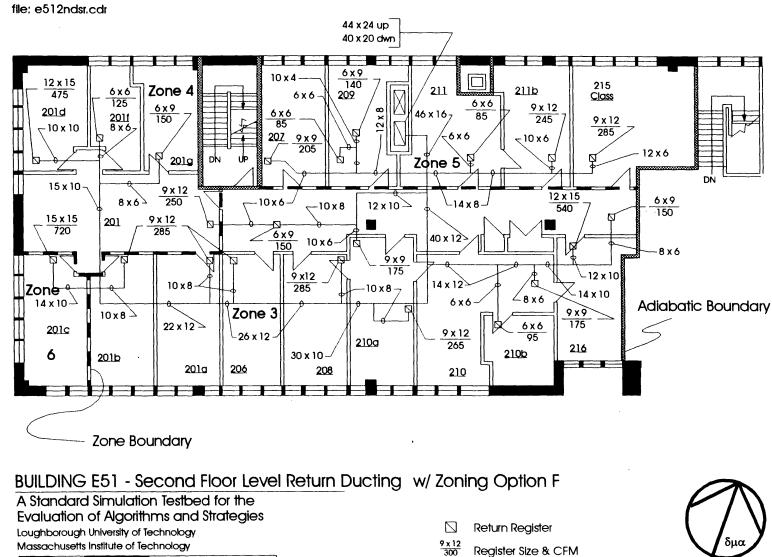
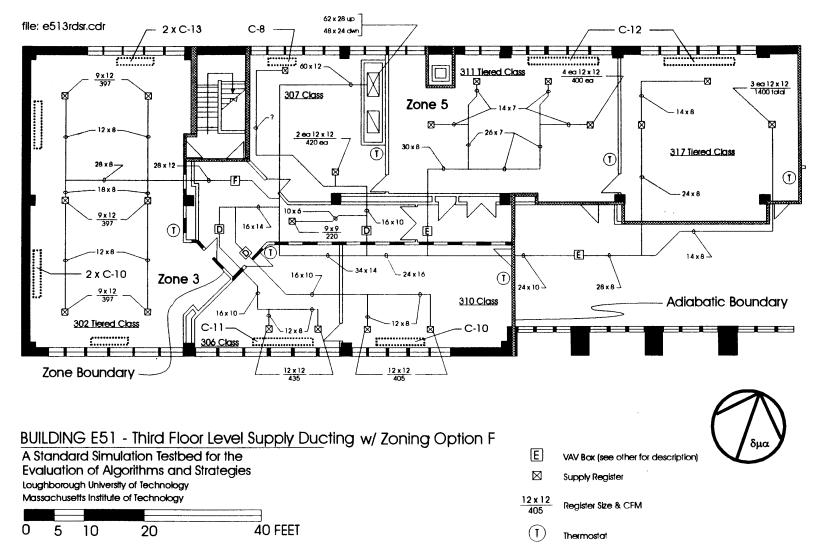
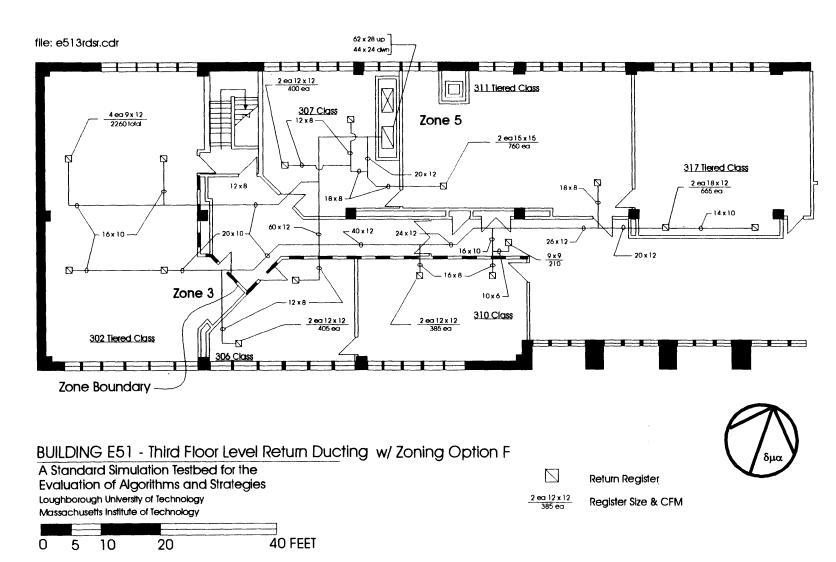




Figure 29: Building E51 - First Floor Level Return Ducting w/ Zoning Option F





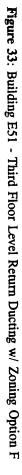
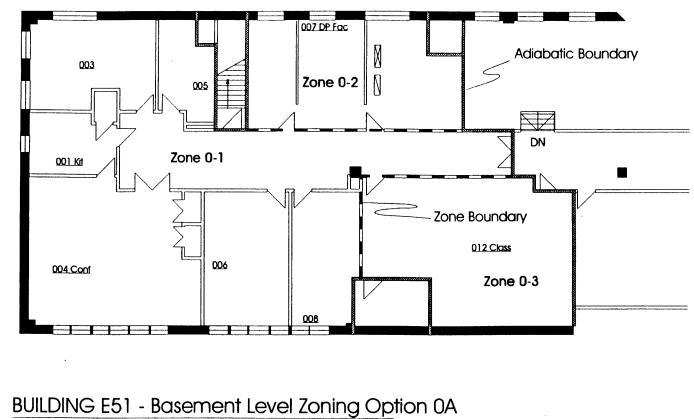
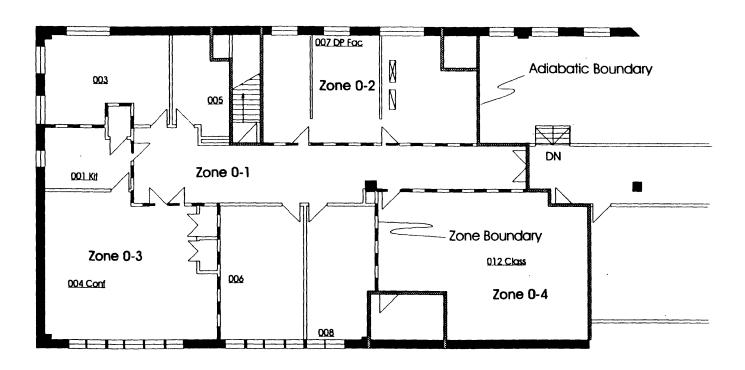
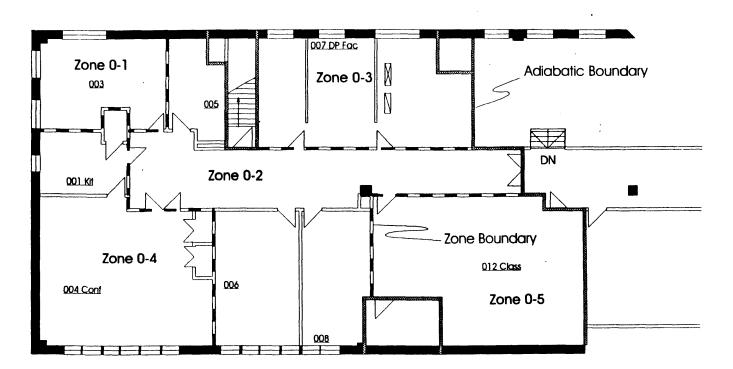

40 FEET

Figure 31: Building E51 - Second Floor Level Return Ducting w/ Zoning Option F

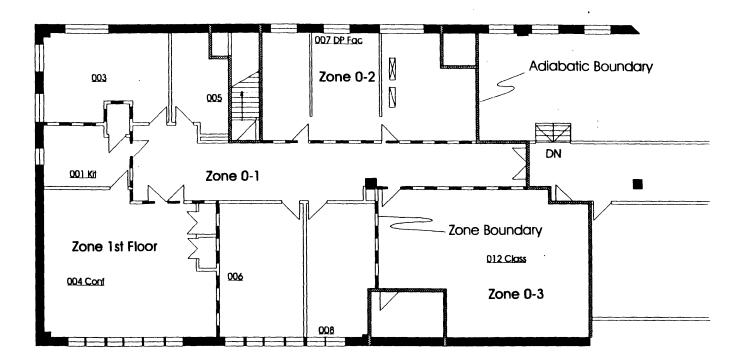

•


Appendix E - Proposed Zoning Options for the West End of MIT Building E51¹⁴⁴

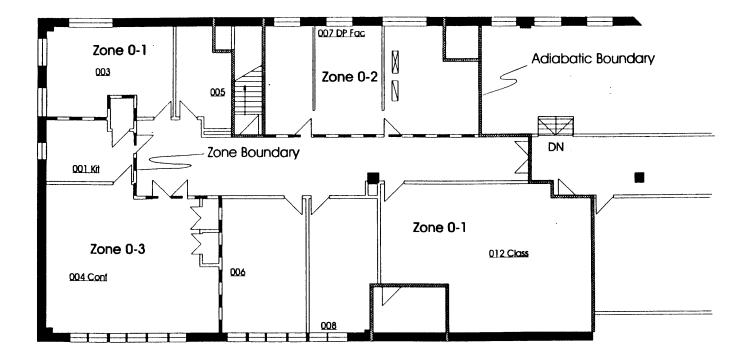
144 Based on MIT Drawings:


EA51 M01.0002 EA51 M02.0004 EA51 M03.0002 EA51 M04.0002

Architectural layouts for Building E51, in the form of Autocad compatible *.dxf files, were obtained from the MIT Facility Management Systems Office in Building E28. The *.dxf files were modified using Coreldraw 5.0 to the megazone boundaries. The drawings are in proportion to the scale bar depicted in each figure.

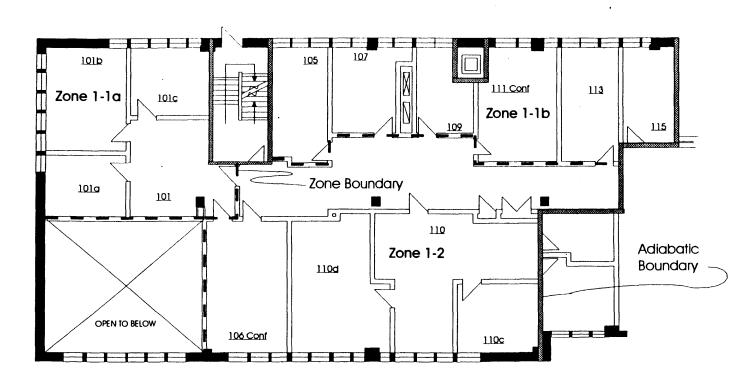


BUILDING E51 - Basement Level Zoning Option OB

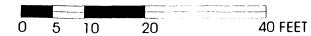

BUILDING E51 - Basement Level Zoning Option 0C

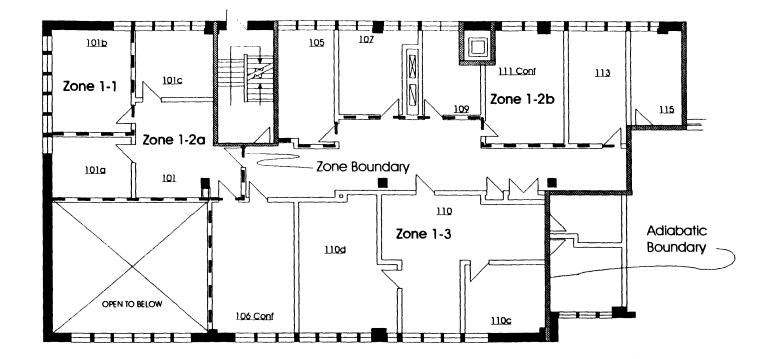
BUILDING E51 - Basement Level Zoning Option 0D

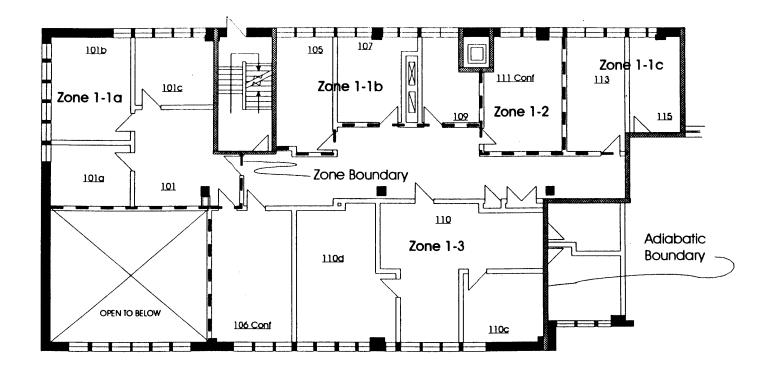
A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology


Massachusetts Institute of Technology

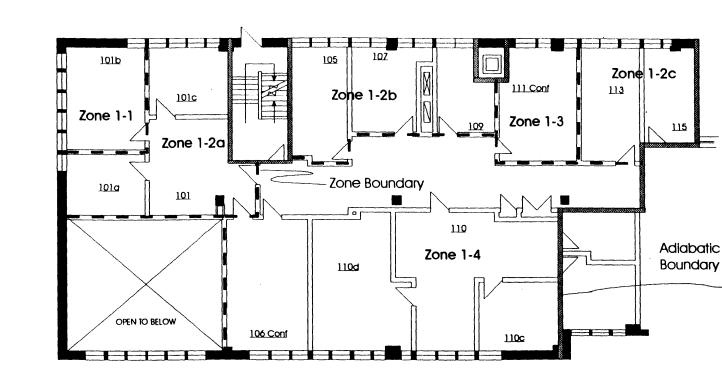
BUILDING E51 - Basement Level Zoning Option OE

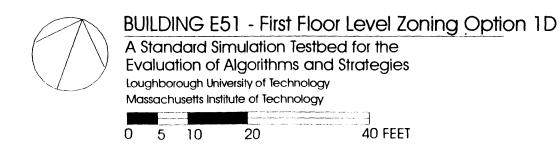

A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology Massachusetts Institute of Technology

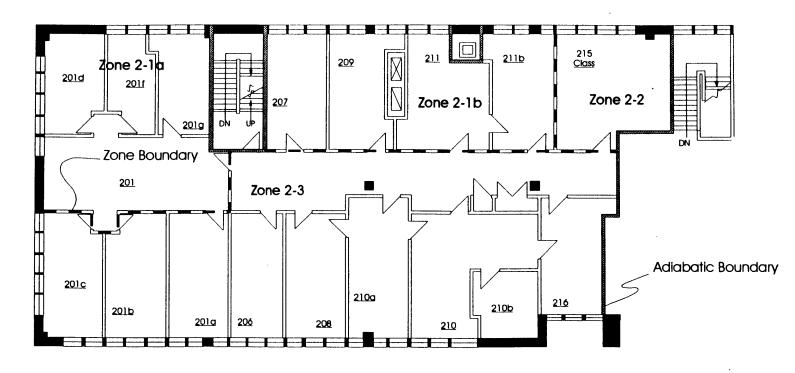

257 -


BUILDING E51 - First Floor Level Zoning Option 1A A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology

Massachusetts Institute of Technology


BUILDING E51 - First Floor Level Zoning Option 1B A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology Massachusetts Institute of Technology




BUILDING E51 - First Floor Level Zoning Option 1C

A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology

Massachusetts Institute of Technology

BUILDING E51 - Second Floor Level Zoning Option 2A

A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology

Massachusetts Institute of Technology

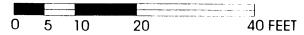
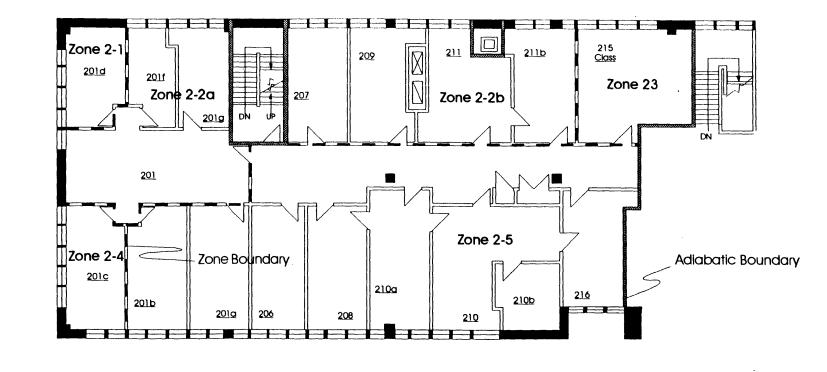
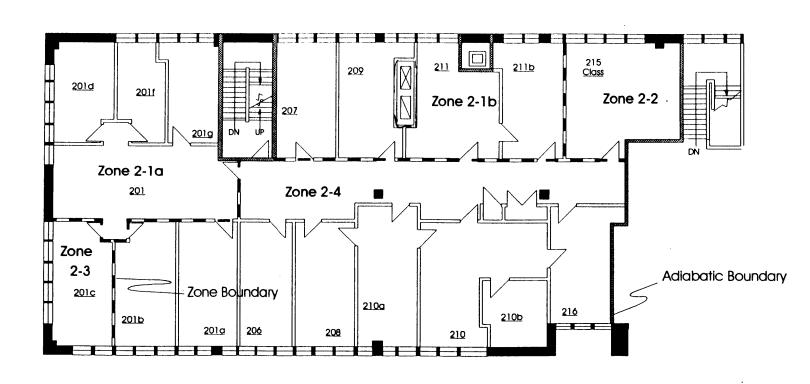
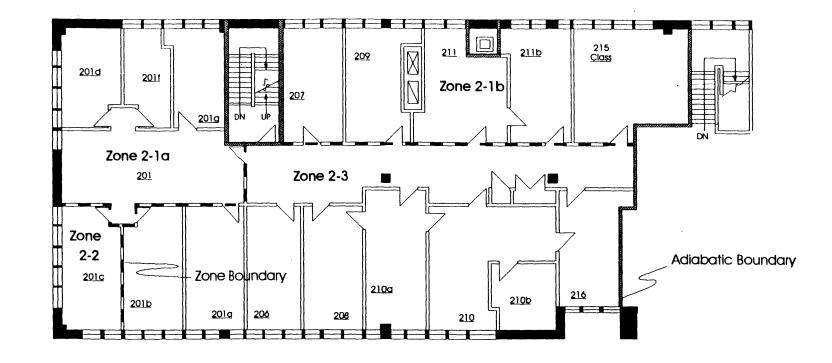




Figure 44: Building E51 - Second Floor Level Zoning Option 2B

BUILDING E51 - Second Floor Level Zoning Option 2B A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology Massachusetts Institute of Technology



BUILDING E51 - Second Floor Level Zoning Option 2C

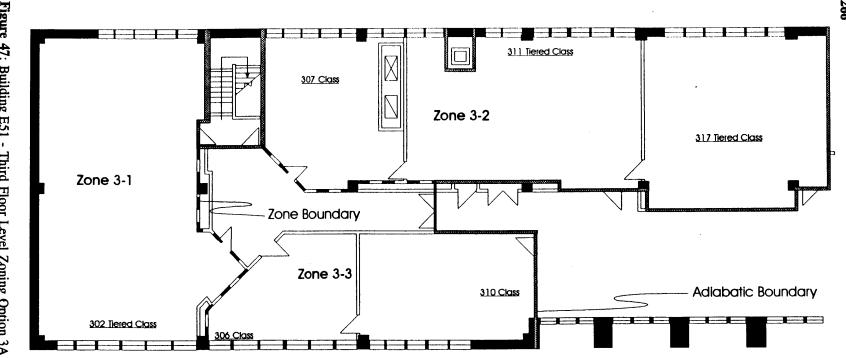


Figure 46: Building E51 - Second Floor Level Zoning Option 2D

BUILDING E51 - Second Floor Level Zoning Option 2D A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies Loughborough University of Technology

Massachusetts Institute of Technology

BUILDING E51 - Third Floor Level Zoning Option 3A A Standard Simulation Testbed for the Evaluation of Algorithms and Strategies

Loughborough University of Technology Massachusetts Institute of Technology

-				
			·····	
~				
U	5	10	20	40 FEE1
	•			

Figure 47: Building E51 - Third Floor Level Zoning Option 3A

Appendix F - Critical Data Summary for Zoning Option F in the West End of Building E51

•

Occupancy, Lighting and Office Equipment Survey & Area Schedule

- (1) 75 Watts per Person
- (2) See Classroom & Conference Room Occupancy Schedule
- (3) a=continuous; b=standard office hours; c= per class/conference
 - schedule; d=student/prof office schedule
- (4) MIT Registra's Office
- (5) Site Survey

- (6) MIT Office of Facilities Mngt Systems Insite Space Inventory 30 Jun 93
- (7) Zoning Selected to Reflect Occupancy and Physical Constraints

where Z-I = 11 Zone Option & Z-II = 6 Zone Option

- (8) Name Plate Data
- (9) MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001
- (10) (a) = administrative (p) = professorial (s) = student

	a	b	c	đ	е	f	g	h	i	<u> i </u>	k		m	n	o	р	q	r	8	t	u	<u>v</u>
Γ								Floor Area	a [sqft] (6	Window												
	Line	Rm	Use	(7,10)		Zonin	g(7)	Room	Zone	Area(9)	Comp	Occu	pancy(1)(4)	Lighti	ng(5)			Equip	oment(5)		
	Num	Num	Z-I	Z-II	Opt	Z-1	Z-11	Area	Total	[sqft]	Head'g	Qty	Duty (3	Pwr [w]	Qty	Туре	Duty (3	Pwr [w]	Qty	Туре	Duty (3)	Pwr [w](8)
	1	000	Hall	Office	0E	0-1	1	606	606	0.0	-	0		0	8	F32T28	a		0	None		
	2	000	Hall	Office	0E	0-1	1				-				2	Exit	a	80				
	4	003	Office (s)	Office	0E	0-1	1	299	1,763	23.2	w	7	d	525	7	F32T28	d		1	Computer		
	5	003	Office (s)	Office	0E	0-1	1			17.2	N								1	Printer, Sm		
	7	005	Office (s)	Office	0E	0-1	1	138		0.0	-	3	d	225	2	F32T28	d		1	Computer		
	8	005	Office (s)	Office	OE	0-1	1				-								1	Printer, Sm		
	9	006	Office (s)	Office	0E	0-1	1	316		85.6	S	4	d	300	4	F32T28	d		1	Computer		
	12	008	Office (s)	Office	0E	0-1	1	243		42.8	S	1	d	75	2	F32T28	d		1	Computer		
	13	012	Class	Office	OE	0-1	1	767	2,369	0.0	•	(2)	c	-	40	F32T28	c		0	None		
Г	10	007	Computer	Computer	0E	0-2	2	607	607	40.4	N	(2)	С	•	11	F32T28	c		12	Computer		
L	11	007	Computer	Computer	0E	0-2	2		607		N								1	Printer, Lg		
Г	3	001	Kitchen	Office	0E	0-3	3	142	142	0.0	-	(2)	C	•	3	F32T28	C		1	M-Wave		
	6	004	Conf	Office	0E	0-3	З	680	680	348.0	S	(2)	с	-	14	spots	c		0	None		
	14	100	Hali	Office	1A	1-2	Э	539	539	0.0	-	0	-	0	11	F32T28	a		0	None		
	15	100	Halt	Office	1A	1-2	3				-				2	Exit	a	80				
	26	106	Conf	Office	· 1A	1-2	3	284	1,121	47.4	S	(2)	c	-	8	F32T28	c		0	None		
	29		Office (a)	Office	1A	1-2	3	378		47.4	S	2	Ь	150	7	F32T28	ь		2	Computer		
	30		Office (a)	Office	1A	1-2	3				S								1	Printer, Sm		
	31	110	Office (a)	Office	1A	1-2	3				S								1	Fax	1	
	32	110	Office (a)	Office	1A	1-2	З				S									Copier		
	33	110	Office (a)	Office	1A	1-2	3	1			S								-2	Туре		
	34	110	Office (a)	Office	1A	1-2	3				S								1	1/2 Fridge		
	35	110	Office (a)	Office	1A	1-2	3				S								1	H2O Cool		
	36		Office (a)	Office	1A	1-2	3	147		22.2	S	1	Ь	75	2	F32T28	Ь			Computer		
	37	110d	Office (a)	Office	1A	1-2	3	312		59.6	S	1	ь	75	3	F32T28	ь		1	Computer		
	41	200	Hail	Office	2D	2-3	3	519	519	0.0	-	0	- '	0	10	F32T28	a		0.	None		
	42	200	Hall	Office	2D	2-3	3				-				2	Exit	a	80			1	
	47		Office (p)	Office	2D	2-3	3	202	1,611	40.2	S	1	d	75	2	F32T28	d			Computer		
	48		Office (p)	Office	2D	2-3	3	192		47.4	S	1	d	75	2	F32T28	d		ļ 1	Computer		
	54	206	Office (p)	Office	2D	2-3	3	181		47.4	s	1	d	75	2	F32T28	d		1	Computer	I	1

File: heatin.wq2 02/02/96 Page 1

- (1) 75 Watts per Person
- (2) See Classroom & Conference Room Occupancy Schedule
- (3) a=continuous; b=standard office hours; c= per class/conference
 - schedule; d=student/prof office schedule
- (4) MIT Registra's Office
- (5) Site Survey

- (6) MIT Office of Facilities Mngt Systems Insite Space Inventory 30 Jun 93
- (7) Zoning Selected to Reflect Occupancy and Physical Constraints
 - where Z-I = 11 Zone Option & Z-II = 6 Zone Option
- (8) Name Plate Data
- (9) MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001
- (10) (a) = administrative (p) = professorial (s) = student

a	b	с	d	е	f	9	<u>h</u>	<u>i</u>	<u> </u>	k	1	m	n	0	р	q	r	s	t	u	v
							Floor Area	1 [sqft] (6	Window												
Line	Rm	Use	(7,10)		Zonin	g(7)	Room	Zone	Area(9)	Comp	Occu	pancy(1)(4)	Lightir	ng(5)			Equip	oment(5)		
Num	Num	Z-1	Z-11	Opt	Z-1	Z-11	Area	Total	{sqft}	Head'g	Qty	Duty (3	Pwr [w]	Qty	Туре	Duty (3	Pwr [w]	Qty	Туре	Duty (3)	Pwr [w](8)
56	208	Office (p)	Office	2D	2-3	з	197		47.4	S	1	d	75	2	F32T28	d		1	Computer	1	
58	210	Office (a)	Office	2D	2-3	Э	303		53.8	s	3	ь	225	3	F32T28	Ь		2	Computer	[[
59	210	Office (a)	Office	2D	2-3	з		1		S				1 1				1	Printer, Sm	1	1
60	210	Office (a)	Office	2D	2-3	3				S								1	Fax		
61	210	Office (a)	Office	2D	2-3	3				S								1	Copier]	1
62	210a	Office (a)	Office	2D	2-3	3	226		40.2	S	1	ь	75	3	F32T28	ь		1	Computer	}	
63	210b	Office (a)	Office	2D	2-3	3	112		0.0	-	1	ь	75	2	F32T28	Ь		1	Computer		[
67	216	Office (a)	Office	2D	2-3	3	198		64.2	S	1	d	75	2	F32T28	d	•	1	Computer	l	
70	302	Class	Office	ЗA	3-1	3	1,339	2,187	91.2	S	(2)	c	-	76	F32T28	c		0	None	1	
71	302	Class	Office	3A	3-1	З			75.4	N]	ļ	J
72	306	Class	Office	ЗA	3-3	З	353		119.2	S	(2)	c	-	19	F32T28	c		0	None		
74	310	Class	Office	ЗA	3-3	3	495	6,799	81.8	S	(2)	c	•	23	F32T28	C		0	None		Ĺ
16	101	Office (a)	Office (a)	1A	1-1a	4	238	720	0.0	•	2	Ь	150	2	F32T28	ь		2	Computer		
17	101	Office (a)	Office (a)	1A	1-1a	4				-								1	Printer, Sm	1	i.
18	101a		Office (a)	1A	1-1a	4	128		15.8	w	1	Ь	75	2	F32T28	Ь		1	Computer		
19		Office (a)	Office (a)	1A	1-1a	4	213		79.0	W	1	Ь	75	2	F32T28	Ь		1	Computer		
20		Office (a)	Office (a)	1A	1-1a	4			15.8	N	1			1 1							
21		Office (a)	Office (a)	1A .	1-1a	4	141		75.4	N	1	Ь	75	2	F32T28	Ь		1	Computer	1	
22		Office (a)	Office (a)	1A	1-1a	4				N		1						1	Printer, Sm	}	
23		Office (a)	Office (a)	1A	1-1a	4				N				1		1		1	Fax		
24	101c	Office (a)	Office (a)	1A	1-1a	4				N	í			1 1		1		1	Copier	1	1
43	201	Office (a)	Office (a)	2D	2-1a	4	384	790	15.8	w	2	ь	150	8	F32T28	ь		2	Computer	1	
44	201	Office (a)	Office (a)	2D	2-1a					w		1 •						1	Printer, Sm	ł	
45	201	Office (a)	Office (a)	2D	2-1a					W]	1		1				1	Fax]	}
46	201	Office (a)	Office (a)	2D	2-1a					W	1	I .		1 1				1	Copier	1	
51	201d		Office (p)	2D	2-1a	1	151		79.0	W	1	d	75	2	F32T28	d		1	Computer	1	
52	201f	1	Office (p)	2D	2-1a		112		31.6	N	1	d	75	2	F32T28	d		1	Computer	· ·	
53		Office (p)	Office (p)	2D	2-1a		143	1,510	43.8	N	1	d	75	2	F32T28	d	L	1	Computer	L	L
25	105		Class	1A	1-1b		164	949	47.4	N	1	d	75	2	F32T28	d		1	Computer		
27	107	Office (p)	Class	[1A	1-1b	5	149		56.0	(N	[1	d	75	2	F32T28	d		[1	Computer	[.	1

File: heatin.wq2 02/02/96 Page 2

Occupancy, Lighting and Office Equipment Survey & Area Schedule

(1) - 75 Watts per Person

- (2) See Classroom & Conference Room Occupancy Schedule
- (3) a=continuous; b=standard office hours; c= per class/conference
- schedule; d=student/prof office schedule
- (4) MIT Registra's Office
- (5) Site Survey

- (6) MIT Office of Facilities Mngt Systems Insite Space Inventory 30 Jun 93
- (7) Zoning Selected to Reflect Occupancy and Physical Constraints
 - where Z-I = 11 Zone Option & Z-II = 6 Zone Option
- (8) Name Plate Data
- (9) MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001
- (10) (a) = administrative (p) = professorial (s) = student

a	b	c	d	e	f	g	h	i	j_	k	1	m	n	0	Р	P	r	S	t	<u> </u>	<u>v</u>
				T			Floor Area	a [sqft] (6	Window												
Line	Rm	Use	(7,10)		Zonin	g(7)	Room	Zone	Area(9)	Comp	Occu	pancy(1)(4)	Lighti	ng(5)			Equip	oment(5)	_	
Num	Num	Z-1	Z-11	Opt	Z-1	Z-II	Area	Total	[sqft]	Head'g	Qty	Duty (3	Pwr [w]	Qty	Туре	Duty (3	Pwr [w]	Qty	Туре	Duty (3)	Pwr [w](8)
	400	0#=== (=)	0			-	109		24.6	N			75	2	F32T28				Computer		
28	109	Office (p)	Class	1A	1-1b				31.6			d			F32T28	d			None	1	
38		Conf	Class	1A	1-1b		228		40.2	N	(2)	C		8		L C			1	1	ļ
39		Office (p)	Class	1A	1-1b		173		47.4	N		d	75	2	F32T28	d		1 !	Computer		1
40		Office (p)	Class	1A	1-1b	-	126		28.0	N	1	d	75	2	F32T28	d		1	Computer		
55	207	Office (p)	Class	2D	2-1b	5	184	1,123	47.4	N	1	d	75	2	F32T28	d		1	Computer	1	1
57	209	Office (p)	Class	2D	2-1b	5	184		56.0	N	1	d	75	2	F32T28	d		1	Computer	1	1
64	211	Office (p)	Class	2D	2-1b	5	233		31.6	N	1	d	75	4	F32T28	d		1	Computer		
65	211b	Office (p)	Class	2D	2-1b	5	197		40.2	N	1	d	75	2	F32T28	d	•	1	Computer	1	
66	215	Class	Class	2D	2-1b	5	325		63.2	N	(2)	c	-	15	F32T28	c		0	None	1	
68	300	Hall	Class	3A	3-3	5	354	354	0.0	-	0	- 1	0	6	F32T28	a		0	None	1	
69	300	Hali	Class	ЗA	3-3	5				-				2	Exit	a	80				
73	307	Class	Class	ЗA	3-2	5	535	2,240	103.4	N	(2)	c	-	22	F32T28	c		0	None		
75	311	Class	Class	3A	3-2	5	894		135.0	N	(2)	с		54	F32T28	l c		0	None		
76	317	Class	Class	3A	3-2	5	811	4,666	94.8	N	(2)	c	-	47	F32T28	c		0	None		
49	201c	Office (p)	Office	2D	2-2	6	188	188	31.6	S	1	d	75	2	F32T28	d		1	Computer		
50	201 c	Office (p)	Office	2D	2-2	6		188	79.0	w										<u> </u>	J
		Total Area	For All Zone	5	[sqft]			16,139			Total	s [w]	3,675				320				0
		Check Surr	1		[sqft]		16,139														

File: heatin.wq2 02/02/96 Page 3

Num Num Z-1 Z-1 Opt Z-1 Z-1 Area Total [sqft] Head'g Qty Duty (3) Pwr [w] Qty Type Duty (3) Pwr [w] a = data entry record line number (coincides with ascending order of room numbers) o = room number designation per MIT Facilities Management Systems Drawings = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F = applicable zoning option designation contributing to the 11 megazone re-zoning plan # zone number designation for 6 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = = total floor area for each zone per 6 megazone Option F =		(1) . 76	5 Watte nor	Doreon											Office	of Equilition	Magt Cur	tomo Inci			00 1.00	
(3) - a=continuous; b=standard office hours; c= per class/conference schedule; d=student/prof office schedule (4) - MIT Registra's Office (5) - Site Survey (a) - MiT Registra's Office (b) - (a) = administrative (p) = professorial (s) = student (a) - MIT Registra's Office (c) - (a) = administrative (p) = professorial (s) = student (a) - MIT Registra's Office (c) - (a) = administrative (p) = professorial (s) = student (a) - MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001 (b) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p) = professorial (s) = student (c) - (a) = administrative (p)			•		once Dr	~~~ (nev Scher	مايا													
schedule; d=student/prof office schedule (8) - Name Plate Data (4) - MIT Registra's Office (9) - MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001 (5) - Site Survey (10) - (a) = administrative (p) = professorial (s) = student a b c d e f g h i k m n o p q r t u v a b c d e f g h i k m n o p q r u v Line Rom Zoning(7) Zoning(7) Room Zone Area(9) Corp Occupancy(1)(4) Lighting(5) Equipment(5) Num Xu Zoni Area Total [sqft] Head'g Qity Duty (3) Pwr (w) Qity Type Duty (3) Pwr (w) a = data entry record line number (coincides with ascending order of room numbers) c corom number designation per MIT Facilities Management Systems Drawings c c c c corom use designation or MIT Facilities Management Systems Drawings c c		• •								e				(7) - 2011	-			• •				
(4) - MIT Registra's Office (9) - MIT Drwgs: EA51-A07.0004; A06.0004; A24.0001; S02.0001 (5) - Site Survey (10) - (a) = administrative (p) = professorial (s) = student a b c d e f g h i k m n o p q r s u v Line Rm Use (7,10) Zoning(7) Room Zone Area(9) Comp Occupancy(1)(4) Lighting(5) Equipment(5) Num Num Z-1 Z-1 Q-1 Area Total [sqft] Heed'g Qity Duty (3) Pwr (w) Qity Type Duty (3) Pwr (w) a = data entry record line number (coincides with ascending order of room numbers) b room number designation per MIT Facilities Management Systems Drawings c c room sea sequired in 6 megazone re-zoning Option F e e a = aphicable zoning option designation for 11 megazone re-zoning plan c cone number designation for 6 megazone re-zoning option g zone number designation for 6 megazone re-zoning option filoar area for each zone per 6 megazone (Option F is total floor area for each zone per 6 megazone (Option F is total floor area for each zone per 6 megazone (Optio		(0) 2		•				•						(8) - Nam			ione opue		0 2011	e option		
(5) - Site Survey (10) - (a) = administrative (p) = professorial (s) = student (10) - (a) = administrative (p) = professorial (s) = student (10) - (a) = administrative (p) = professorial (s) = student (s) = stude		(4) - M			proron									• •			0004: A0	6 0004 · A	24 0001	· S02 0001		
a b c d e f g h i j k i m n o p q r s t u v Line Rm Use (7,10) Zoning(7) Rom Zone Area(9) Comp Occupancy(1)(4) Lighting(5) Equipment(5) Num Num Z-1 Z-11 Opt Z-1 Z-11 Area Total [sqft] Head'g Qty Duty (3) Pwr (w) Qty Type Duty (3) Pwr (w) a = data entry record line number (coincides with ascending order of room numbers) b = room number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e = applicable zoning option designation contributing to the 11 megazone re-zoning plan If = zone number designation for 611 megazone re-zoning option f = zoning option f = zoning option g = zone number designation for 6 megazone re-zoning option f = zone number designation for 6 megazone re-zoning option f = zone number designatin for 6 meg															-							
Line Rm Use (7,10) Zoning(7) Room Zone Area (9) Comp Occupancy(1)(4) Lighting(5) Equipment(5) Num Num Z-I Z-II Opt Z-I Z-II Area Total [sqft] Head'g Qty Duty (3) Pwr (w) Qty Type Duty (3) Pwr (w) a = data entry record line number (coincides with ascending order of room numbers) b Foor Area (sqft) Head'g Qty Duty (3) Pwr (w) Qty Type Duty (3) Pwr (w) b = room number designation per MIT Facilities Management Systems Drawings E Foor Area (sqft) Foor Face		(0) 01	ic ourrey											(10) (4)	- uairm	nouraure (p)=piolo	100/101 (0)	- 5100	0.11C		
Line Rm Use (7,10) Zoning(7) Room Zone Area (9) Comp Occupancy(1)(4) Lighting(5) Equipment(5) Num Num Z-I Z-II Opt Z-I Z-II Area Total [sqft] Head'g Qty Duty (3) Pwr (w) Qty Type Duty (3) Pwr (w) a = data entry record line number (coincides with ascending order of room numbers) b Foor Area (sqft) Head'g Qty Duty (3) Pwr (w) Qty Type Duty (3) Pwr (w) b = room number designation per MIT Facilities Management Systems Drawings E Foor Area (sqft) Foor Face	a	ь	с	d	e	f	a	h	i	i	k	I.	m	n	o	D	a	r	s	t	u	v
Line Rm Use (7,10) Zoning(7) Room Zone Area(9) Comp Occupancy(1)(4) Lighting(5) Equipment(5) Num Xum Z-I Z-II Opt Z-I Z-II Area Total [sqft] Head'g Qty Duty (3) Pwr [w] Qty Type Duty (3) Pwr [w]	-				T			Floor Area	[sqft] (6	Window	·····	T T			<u> </u>				<u> </u>			
Num Z-1 Z-1 Q-t Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Area Total [sqft] Head'g Qty Duty (3) Pwr [w] Qty Type Duty (3) Pwr [w] a = data entry record line number (coincides with ascending order of room numbers) or or or number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings description fea applicable zoning option designation contributing to the 11 megazone re-zoning plan e = applicable zoning option designation for 6 megazone re-zoning option fea gettor fea fea <td>Line</td> <td>Bm</td> <td>Use</td> <td>(7,10)</td> <td>1</td> <td>Zonir</td> <td></td> <td></td> <td></td> <td></td> <td>Comp</td> <td>Occu</td> <td>pancy(1</td> <td>)(4)</td> <td>Lightir</td> <td>ng(5)</td> <td></td> <td></td> <td>Equip</td> <td>ment(5)</td> <td></td> <td></td>	Line	Bm	Use	(7,10)	1	Zonir					Comp	Occu	pancy(1)(4)	Lightir	ng(5)			Equip	ment(5)		
a = data entry record line number (coincides with ascending order of room numbers) b = room number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e applicable zoning option designation contributing to the 11 megazone re-zoning plan = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F = window area attributed to each room number per take offs from E51 architectual drawings	Num	Num	Z-1	Z-11	Opt	Z-1	Z-11	Area	Total	[sqft]	Head'g	Qty	Duty (3	Pwr [w]			Duty (3	Pwr [w]	Qty	Type	Duty (3)	Pwr [w]
b = room number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e = applicable zoning option designation contributing to the 11 megazone re-zoning plan f = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F = window area attributed to each room number per take offs from E51 architectual drawings											<u>_</u>											
b = room number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e = applicable zoning option designation contributing to the 11 megazone re-zoning plan f = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F = window area attributed to each room number per take offs from E51 architectual drawings							•	1		•											1	1
b = room number designation per MIT Facilities Management Systems Drawings c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e = applicable zoning option designation contributing to the 11 megazone re-zoning plan f = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F = window area attributed to each room number per take offs from E51 architectual drawings		•		•																		
c = room use designation per MIT Facilities Management Systems Drawings d = reallocated room use as required in 6 megazone re-zoning Option F e = applicable zoning option designation contributing to the 11 megazone re-zoning plan f = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option h = floor area attributed to each room number per MIT Facilities Management Systems Report i = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings			·	•																		
d = reallocated room use as required in 6 megazone re-zoning Option F = applicable zoning option designation contributing to the 11 megazone re-zoning plan = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option n = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F = window area attributed to each room number per take offs from E51 architectual drawings	a = d	ata ent	ry record lin	ie number (i	coincid	es wit	n asce	nding orde	r of room	numbers)		<u></u>										
 applicable zoning option designation contributing to the 11 megazone re-zoning plan zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option h = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings 			•	,				•									- <u> </u>	<u>.,</u>				
 f = zone number designation for 11 megazone re-zoning option g = zone number designation for 6 megazone re-zoning option h = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings 	o = r	oom nu	imber desig	nation per N	MIT Fac	ilities	Manag	ement Sys	terns Drav	wings		<u></u>					. <u></u>					
g = zone number designation for 6 megazone re-zoning option h = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings	o = r c = r	oom nu oom us	imber desig e designatic	nation per N on per MIT F	VIT Fac Facilities	ilities s Man	Manag ageme	ement Sys nt System:	terns Drav s Drawing	wings												
g = zone number designation for 6 megazone re-zoning option h = floor area attributed to each room number per MIT Facilities Management Systems Report = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings	o = r c = r d = r	oom nu oom us eallocat	imber desig e designatic ted room us	nation per M on per MIT F se as require	VIIT Fac Facilities ed in 6 r	ilities s Mana negaz	Manag ageme cone re	ement Sys nt System: -zoning Op	terns Drav 5 Drawing 5tion F	wings Is							. <u>.</u>					<u></u>
h = floor area attributed to each room number per MIT Facilities Management Systems Report i = total floor area for each zone per 6 megazone Option F j = window area attributed to each room number per take offs from E51 architectual drawings	b = r c = r d = r e = a	oom nu oom us eallocat pplicab	imber desig e designatic ted room us ble zoning o	nation per N on per MIT F se as require ption design	WIT Fac Facilities ad in 6 r mation c	ilities s Man negaz contrib	Manag ageme tone re outing	ement Sys nt Systems -zoning Op o the 11 m	terns Drav 5 Drawing 5tion F	wings Is												
j = window area attributed to each room number per take offs from E51 architectual drawings	b = r c = r d = r e = a f = z(oom nu oom us eallocat pplicab one nun	imber desig e designatic ted room us ple zoning o nber design	nation per M on per MIT F se as require ption design nation for 11	MIT Fac Facilities ed in 6 r nation c megaz	ilities s Mana negaz contrib one re	Manag ageme tone re outing -zonir	ement Sys nt System -zoning Op o the 11 m g option	terns Drav 5 Drawing 5tion F	wings Is												
j = window area attributed to each room number per take offs from E51 architectual drawings	b = r c = r d = r e = a f = z g = z	oom nu com us callocat pplicab one nun one nun	imber desig e designatic ted room us ble zoning o nber design mber design	nation per M on per MIT F se as require ption design lation for 11 nation for 6	MIT Fac Facilities ad in 6 r mation c megaz megazo	ilities s Mana negaz contrib one re one re	Manag ageme tone re uting -zonir -zonir	ement Sys nt System -zoning Op o the 11 m g option g option	tems Drav s Drawing otion F egazone i	wings Is re-zoning p	plan											
	b = r c = r d = r e = a f = z g = z h = f	oom nu com us callocal pplicab one nun one nun one nun	imber desig e designatic ted room us ble zoning o nber design mber design a attributed	nation per M on per MIT F se as require ption design nation for 11 nation for 6 to each roc	MIT Fac Facilities ed in 6 r nation c megaz megaz om num	ilities s Mana negaz contrib one re one re ber pe	Manag ageme tone re uting -zonir -zonir -zonin er MIT	ement Sys nt System: -zoning Op o the 11 m g option g option Facilities M	tems Drav s Drawing otion F egazone i	wings Is re-zoning p	plan											
	b = r c = r d = r e = a f = zc g = z g = z h = f h = f	oom nu com us eallocaí pplicab one nun one nun one nun one nun oor are tal floor	imber desig e designatio ted room us ole zoning o nber design mber design a attributed r area for ea	nation per NIT F se as require ption design nation for 11 nation for 6 to each roo uch zone pe	MIT Fac Facilities ed in 6 r nation c megaz megazon m num r 6 meg	ilities I s Mana contrib one re one re ber pe azone	Manag ageme tone re uting -zonin -zonin er MIT e Optic	ement Sys -zoning Op o the 11 m g option g option Facilities M n F	terns Drawing s Drawing otion F egazone i lanageme	wings is re-zoning p ent System	plan Is Report											
1 = number of occupants per room or indicates varied occupancy per classroom or conferencing requirements	b = r c = r d = r e = a f = z g = z h = f i = to j = w k = c	com nu com us eallocat pplicab one nun one nun one nun oor are tal floor indow a ompas:	mber designatic ted room us ole zoning o nber design mber design a attributed r area for ea area attributed s heading fo	nation per MIT f se as require ption design ation for 11 nation for 6 to each roc ach zone per ed to each rior or each wind	VIT Fac Facilities ad in 6 r mation c megaz megaz om num r 6 meg room nu dow set	ilities s Mana negaz contrib one re ber pre azone umber by ro	Manag agene cone re cone re conin -zonin -zonin er MIT e Optic per ta om nu	ement Systems -zoning Op o the 11 m g option g option Facilities M n F ke offs fror mber	terns Draving s Drawing otion F egazone i lanageme n E51 arc	wings s re-zoning p ent System hitectual d	plan Is Report Irawings		uiremen	19			. <u>.</u>					

m = indicates how the room or area is occupied

n = indicates the toatl heat input for the occupancy schedule

o = number of lighting elements

p = type of lighting element

q = indicates how the lighting element is used

r = maximum heat input due to the lighting indicated

s = number of pieces of equipment

t = type of equipment in the room or area

u = indicates how the equipment is operated

 \mathbf{v} = indicates the maximum heat dissaption per nameplate data

Figure 51: Occupancy, Lighting, and Office Equipment Survey and Area Schedule (continued)

File: heatin.wq2 02/02/96 Page 4

•

Appendix G - Occupancy Schedules for Classrooms in West End of MIT Building E51 ¹⁴⁵

•

¹⁴⁵ Data taken from classroom use schedules provided by the MIT Schedules Office, Room E19-334.

MONDAY		1	1	1	1	1	1	1	1	1	ł	l
	004	007	012	106	111	215	302	306	307	310	311	317
Rm Capacity	60	12	50	14	15	25	80	25	25	18	59	55
					1							
0800 - 0830												
0830 - 0900	_						56				31	47
0900 - 0930				12*			56	16			31	47
0930 - 1000				12*			56	16			31	47
1000 - 1030		3*	26	12*			56	16	27	17	30	47
1030 - 1100		3*	26	12*			56	15	27	17	30	47
1100 - 1130		3*	26				56	15	27	17	30	47
1130 - 1200		3*					56	15				47
1200 - 1230		2*									12	
1230 - 1300		2*									12	
1300 - 1330		2*	38	6*	2	14*	58	7	26			41
1330 - 1400		5*	38	6*	2	14*	58	7	26			41
1400 - 1430		6*	38	6*	2	14*	58	7	26			41
1430 - 1500		7*	22	6*	2	14*	58	7	25	· 11	59 [·]	58
1500 - 1530		8*	22		2	4*	58	7	25	11	59	58
1530 - 1600		8*	22		2	4*	58	7	25	11	59	58
1600 - 1630	50	8*								13	50	
1630 - 1700	50									13	50	
1700 - 1730	50											
1730 - 1800	50					4*						
1800 - 1830		6*				4*			20*			
1830 - 1900		6*				4*			20*			
1900 - 1930		6*				4*			20*			
1930 - 2000		6*							20*			
2000 - 2030		6*							20*			
2030 - 2100		6*							20*			
2100 - 2130		5*							20*			
2130 - 2200		4*							20*			
2200 - 2230		3*							20*			
2230 - 2300		2*										

Building E51 Classroom Occupancy Data 09/93 - 12/93

* - Estimated (actual data unavailable)

file: classocc.wq2 12/27/95

TUESDAY		ł	ł	1	1	1	1	1	
	012	111	215	302	306	307	310	311	317
Rm Capacity	50	15	25	80	25	25	18	59	55
0800 - 0830									
0830 - 0900				57					46
0900 - 0930				57				28	46
0930 - 1000		6		57				28	46
1000 - 1030		6	20*	57		27		28	46
1030 - 1100		6	20*	57		27			46
1100 - 1130		6	20*	57	6	27			46
1130 - 1200		6	20*	57	6		13		46
1200 - 1230		6	20*		6		13		
1230 - 1300		6	20*				13		
1300 - 1330			15*			26		51	27
1330 - 1400		1	15*			26		51	27
1400 - 1430		2	15*		1	26		51	27
1430 - 1500		2	15*		1	25	7		36
1500 - 1530	7	2	15*		1	25	7		36
1530 - 1600	7	2	15*			25	7		36
1600 - 1630	7	2		51			7	?	
1630 - 1700	7	2	{	51				?	
1700 - 1730	7			51			6	?	
1730 - 1800	7			51			6	?	
1800 - 1830				51		20*	6		
1830 - 1900				51		20*	6		
1900 - 1930		1				20*			
1930 - 2000		1				20*			
2000 - 2030	······································	1				20*			
2030 - 2100		1	[20*			
2100 - 2130	·····	1	1			20*			
2130 - 2200						20*			
2200 - 2230		1	1			20*			
2230 - 2300		1	1						

.

Building E51 Classroom Occupancy Data 09/93 - 12/93

* - Estimated (actual data unavailable)

file: classocc.wq2 12/27/95

Figure 53: Building E51 Classroom Occupancy Schedule - Tuesday

WEDNESDAY					1	1			
	012	111	215	302	306	307	310	311	317
Rm Capacity	50	15	25	80	25	25	18	59	55
0800 - 0830									
0830 - 0900				56				31	47
0900 - 0930				56	16			31	47
0930 - 1000				56	16			31	47
1000 - 1030	26			56	16	27	17	30	47
1030 - 1100	26			56	15	27	17	30	47
1100 - 1130	26			56	15	27	17	30	47
1130 - 1200				56	15				47
1200 - 1230								12	
1230 - 1300			20*					12	
1300 - 1330	38		20*	58		26			41
1330 - 1400	38		20*	58	3	26			41
1400 - 1430	38		20*	58	3	26			41
1430 - 1500	22		20*	58	3	25	11	73	58
1500 - 1530	22			58	3	25	11	73	58
1530 - 1600	22			58		25	11	73	58
1600 - 1630	50					2		50	
1630 - 1700	50					2		50	
1700 - 1730	50					2			
1730 - 1800	50					2			
1800 - 1830	50				?	20*			
1830 - 1900					?	20*			
1900 - 1930					?	20*			
1930 - 2000						20*			
2000 - 2030						20*			
2030 - 2100					l .	20*			
2100 - 2130						20*			
2130 - 2200						20*			
2200 - 2230						20*			
2230 - 2300									

Building E51 Classroom Occupancy Data 09/93 - 12/93

* - Estimated (actual data unavailable)

file: classocc.wq2 12/27/95

Building E51 Classroom Occupancy Data 09/93 - 12/93

THURSDAY									
	012	111	215	302	306	307	310	311	317
Rm Capacity	50	15	25	80	25	25	18	59	55
0800 - 0830									
0830 - 0900				57					47
0900 - 0930	43			57				28	47
0930 - 1000	43	6	•	57				28	47
1000 - 1030	43	6		57				28	47
1030 - 1100	43	6		57]	12			47
1100 - 1130	43			57	6	12			47
1130 - 1200	43			57	6	12	13		47
1200 - 1230					6	12	13		[
1230 - 1300							13		
1300 - 1330	43							51	27
1330 - 1400	43				1			51	27
1400 - 1430	43				1			51 ·	27
1430 - 1500	43				1 1				27
1500 - 1530	43		20*		1		5		27
1530 - 1600	43		20*				5		27
1600 - 1630			20*			?	5	42	
1630 - 1700			20*			?	5	42	
1700 - 1730						?		42	
1730 - 1800						?			1
1800 - 1830					T	20*			1
1830 - 1900						20*			
1900 - 1930						20*			
1930 - 2000						20*			
2000 - 2030						20*			
2030 - 2100						20*			
2100 - 2130						20*			1
2130 - 2200					1	20*			
2200 - 2230				[20*			1
2230 - 2300									

* - Estimated (actual data unavailable)

file: classocc.wq2 12/27/95

.

•

FRIDAY		1 1		1	1	I	1		
	012	111	215	302	306	307	310	311	317
Rm Capacity	50	15	25	80	25	25	18	59	55
0800 - 0830]	ľ		
0830 - 0900				46					37
0900 - 0930				46				28	37
0930 - 1000	9			46	9	9		28	37
1000 - 1030	9	1		46	9	9	?	28	37
1030 - 1100	9	1		46	9	9	?	18	37
1100 - 1130	9	1		46	9	9	?	18	37
1130 - 1200		1		46			?	18	37
1200 - 1230		1						28	
1230 - 1300		1						28	
1300 - 1330				93	29	26	15		
1330 - 1400				93	29	26	15		
1400 - 1430				93		26	15		
1430 - 1500							-15		
1500 - 1530			20*				15		
1530 - 1600			20*				15		
1600 - 1630			20*						
1630 - 1700			20*						
1700 - 1730									
1730 - 1800									
1800 - 1830						20*			
1830 - 1900						20*			
1900 - 1930						20*			
1930 - 2000						20*			
2000 - 2030						20*			
2030 - 2100						20*			
2100 - 2130						20*			
2130 - 2200						20*			
2200 - 2230						20*			
2230 - 2300									

* - Estimated (actual data unavailable)

file: classocc.wq2 12/27/95

Appendix H - Building E51 Mechanical System Design Specifications ¹⁴⁶

146 Based on MIT Drawings:

EA51 M07.0002 EA51 M01.0002 EA51 M02.0004 EA51 M03.0002 EA51 M04.0002

Air Handling Unit Schedule

Fan Data					Motor		
Design Flow	Minimum Outside Air Flow	Total Static Pressure	Wheel Diameter	Wheel Speed	Power Rating	Speed Rating	Electric Spec's
[¢fm]	[cfm]	[in wg]	[in]	[rpm]	[hp]	[rpm]	[V-Ph-Hz]
18,590	4,000	3.5	. 27	1,340	20	1,750	208-3-60

Total	Sensible	Entering Air		Leaving Air		Maximum	Cig Coil
Coil	Coil	Dry	Wet	Dry	Wet	Face	Design
Output	Output	Bulb	Bulb	Bulb	Bulb	Velocity	Flow
[MBH]	(MBH)	[deg F]	[deg F]	[deg F]	[deg F]	[fpm]	[gpm]
736.3	518.0	81.8	62.8	56.0	55.0	500	74

Special						
Filters	Mfr					
	or					
	Equal					
30 x 35 x 2	Trane # 41					
Very High						
Capacity						

VAV Box Schedule

General				Reheat Coil				
VAV Box ID	Rated	Minimum	Maximum		Air Side	Water Side		
Designation	Design Flow Range [cfm]	Volume Setting [%]	Allowable Inlet SP [in wg]	Minimum Output [MBH]	Temperature Enter/Leave [deg F]	Flow Rate [gpm]	Temperature Enter/Leave [deg F]	Pressure Drop [ft H2O]
A	0 - 100	30	0.14	0.6	55 / 72	0.06	180 / 160	0.1
В	101 - 300	30	0.34	1.7	55 / 72	0.17	180 / 160	0.1
С	301 - 650	30	0.33	3.6	55 / 72	0.37	180 / 160	0.2
D	651 - 1200	30	0.34	6.6	55 / 72	0.68	180 / 160	0.5
Е	1201 - 1600	30	0.32	8.9	55 / 72	0.91	180 / 160	0.3
F	1601 - 2400	30	0.34	13.3	55 / 72	1.36	180 / 160	2.1

file: dsgnspec.wq2

01/31/96 Page 1

Figure 57: Mechanical System Design Specs - MIT Physical Plant Drwg: EA51 M07.0002

Return Fan Unit Schedule

				Motor			
Design	Total	Wheel	Wheel	Power	Speed	Electric	Mfr
Flow	Static	Diameter	Speed	Rating	Rating	Spec's	' or
	Pressure						Equal
[cfm]	[in wg]	[in]	(rpm)	[hp]	[rpm]	[V-Ph-Hz]	
17,480	0.75	44.5	430	5	1,750	208-3-60	Trane # 44 AFSW
	Flow [cfm]	Flow Static Pressure [cfm] [in wg]	Flow Static Diameter Pressure [cfm] [in wg] [in]	Flow Static Diameter Speed Pressure [cfm] [in wg] [in] [rpm]	Design Total Wheel Wheel Power Flow Static Diameter Speed Rating Pressure [in] [rpm] [hp]	Design Total Wheel Wheel Power Speed Flow Static Diameter Speed Rating Rating Pressure [in] [rpm] [hp] [rpm]	Design Total Wheel Wheel Power Speed Electric Flow Static Diameter Speed Rating Rating Spec's Pressure [in] [rpm] [hp] [rpm] [V-Ph-Hz]

Fin Tube Radiation Schedule

Unit ID Designation	Unit Type	Temperature Enter/Leave	Capacity @ 160F AWT	Copper Pipe Size	Fin D e nsity	Manufacturer	Remarks
		[deg F]	[Btu/ft]	(in)	[fpi]	<u> </u>	
В	floor mounted	170 / 150	700	1	40	Vulcan	pedestal monuted
С	slant	170 / 150	800	1.25	48	Vulcan DS	12" cover, 4" A.F.F.
	top						
D	bare	170 / 150	1,200	1.25	33	Vulcan SX	w/ diamond mesh
	clement						enclosure & slope top
E	siant top	170 / 150	1,200	1.25	40	Vuican DS	18" cover, 4" A.F.F.
	•					1	

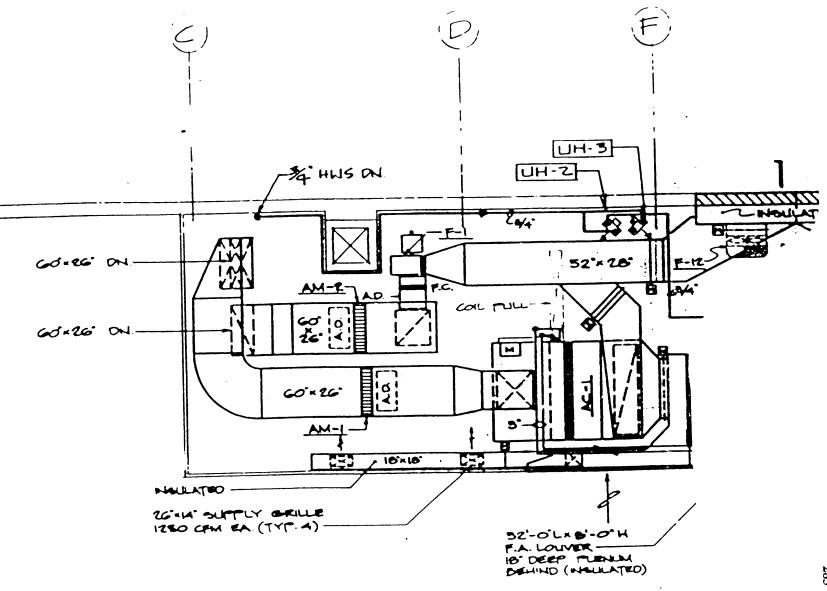
Hot Water Convector Schedule

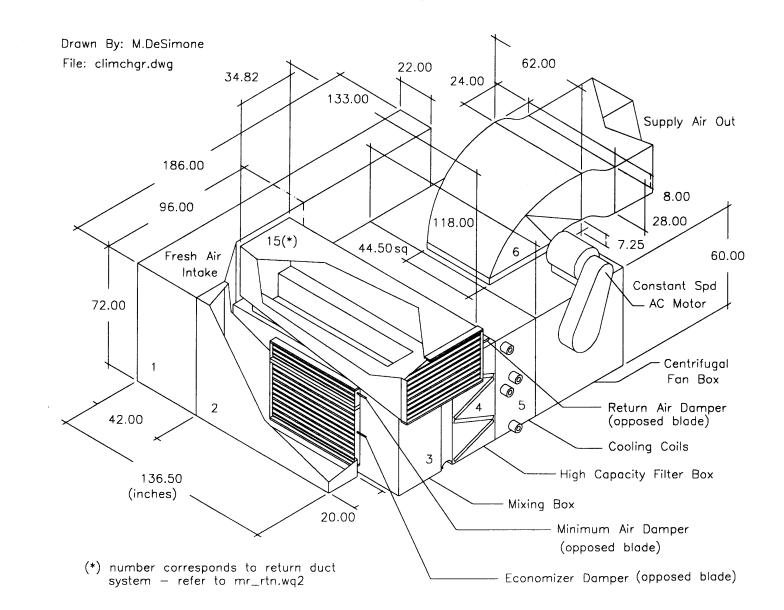
Convector	Rated	Capacity	Temperature	Convector	Manufacturer	Remarks
D	Design	@ 160F AWT	Enter/Leave	Dimensions	&	
Designation	Flow Rate	1 1		lxhxd	Туре	
	[gpm]	[MBH]	[deg F]	[in]		
C-1	0.7	7	170 / 150	80 x 32 x 4	Sterling MH	
C-2	0.6	6	170 / 150	44 x 32 x 6	AAF FRG	Provide Wall Guard & Enclosing Frame
C-3	0.9	9	170 / 150	56 x 32 x 6	AAF FRG	Provide Wall Guard & Enclosing Frame
C-4	0.6	5.6	170 / 150	64 x 32 x 6	AAF FRG	Provide Wall Guard & Enclosing Frame
C-5	0.6	6	170 / 150	44 x 32 x 6	AAF FRG	Provide Wall Guard & Enclosing Frame
C-6	0.2	1.6	170 / 150	28 x 20 x 4	AAF FRG	Provide Wall Guard & Enclosing Frame
C-7	0.3	2.4	170 / 150	32 x 32 x 4	AAF FRG	Provide Wall Guard & Enclosing Frame
C-8	0.4	4	170 / 150	48 x 32 x 4	AAF FRG	Provide Wall Guard & Enclosing Frame
C-9	0.6	5.6	170 / 150	64 x 32 x 4	AAF FRG	Provide Wall Guard & Enclosing Frame
C-10	0.7	6.4	170 / 150	80 x 32 x 4	Sterling MH	
C-11	0.9	8	170 / 150	104 x 32 x 4	Sterling MH	
C-12		9.6	170 / 150	124 x 32 x 4	Sterling MH	
C-13		5.6	170 / 150	62 x 14 x 4	Trane RG	 .

file: dsgnspec.wq2

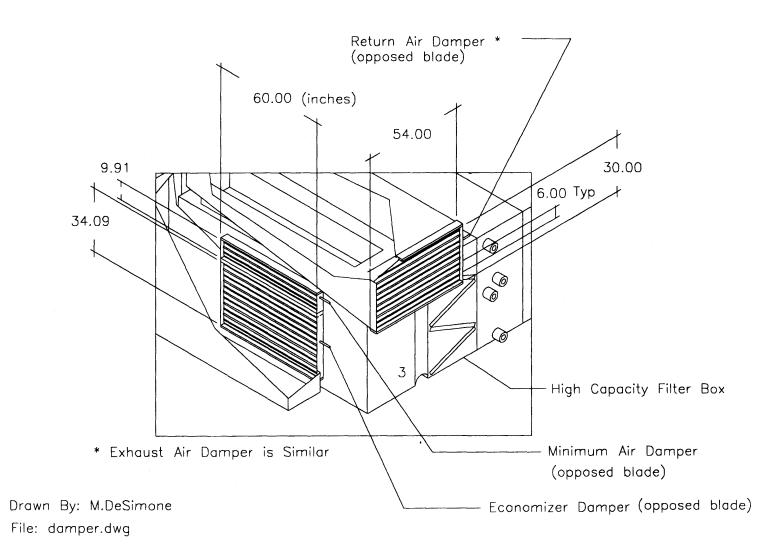
01/31/96 Page 2

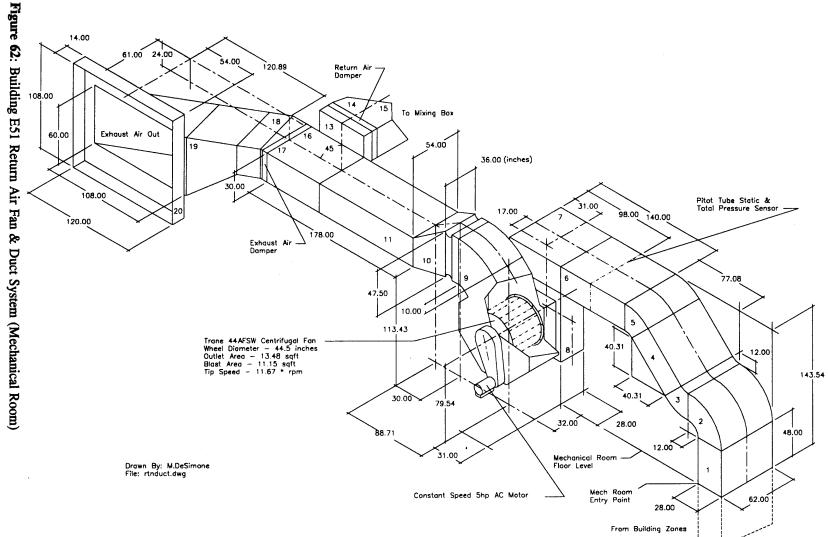
Figure 58: Mechanical System Design Specs - continued

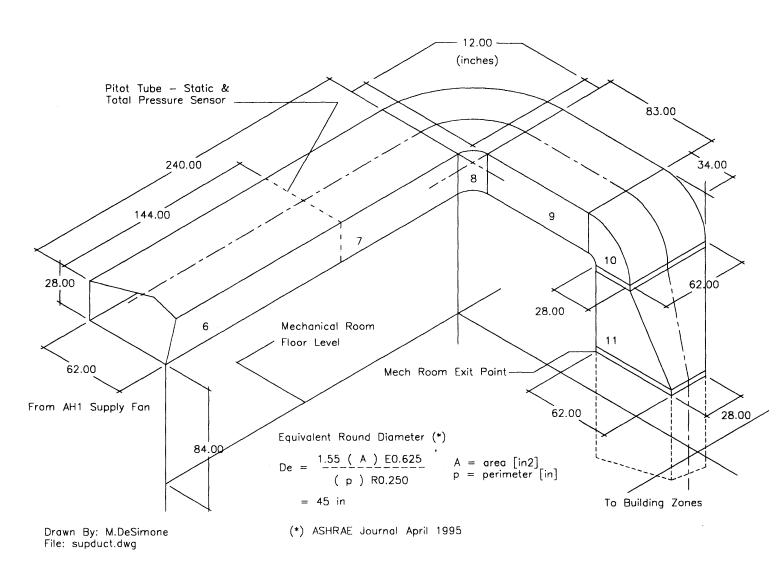

Appendix I - Building E51 Mechanical Room Layout & Air Conditioning Equipment Sketches ¹⁴⁷

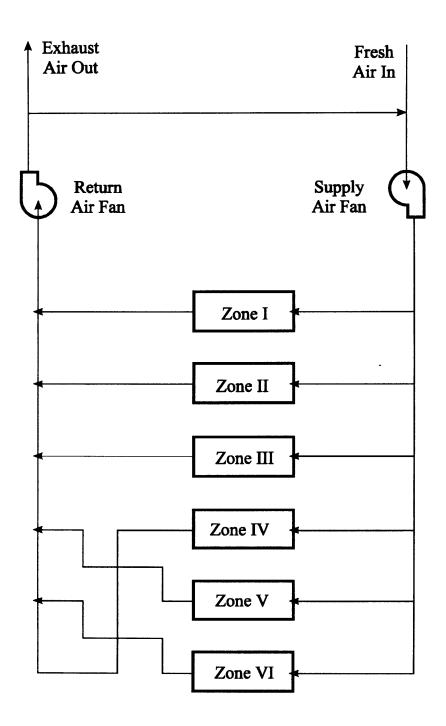

•

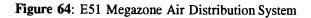
¹⁴⁷ Based on MIT Drawings: EA51 M05.0002


Note: Equipment detail drawings are based on visual inspection and site measurements.









Building E51 Megazone Air Distribution System file: air_dist.cdr drwn by: M.DeSimone

-

Appendix J - AH1: Trane Central Station Climate Changer CLCH-MN-2A

•

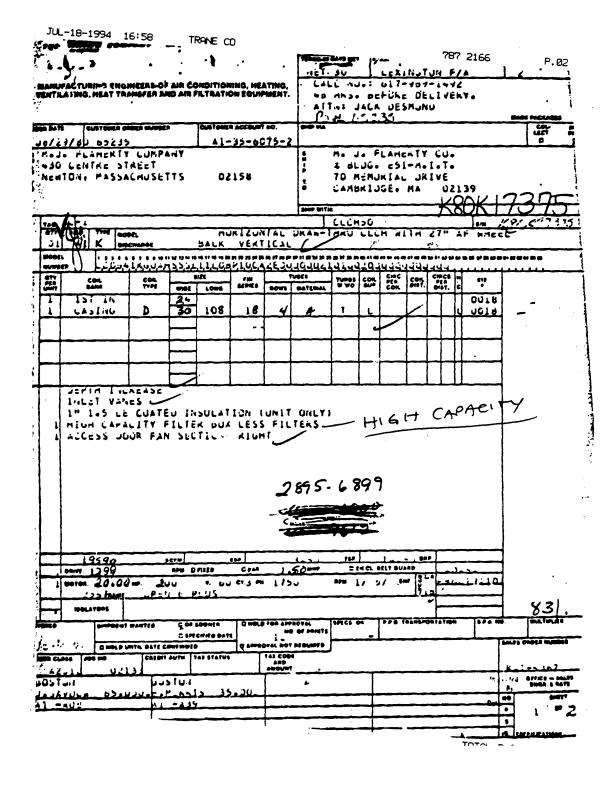
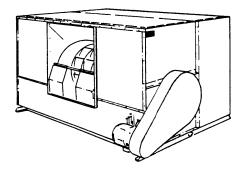


Figure 65: Manufacturers Statement of Engineering Specifications for AH1



FILE INFORMATION DIVISION TAB - TRANE AIR HANDLING PRODUCTS PRODUCT TAB - CENTRAL STATION UNITS Climate Changers MODEL TAB - CLCH LITERATURE ITEM - Model Number LITERATURE FILE NO.

CLCH-MN-2A

MODEL NUMBER

Since The Trane Company has a policy of continuous product improvement, it reserves the right to change specifications and design without notice. The installation and servicing of the equipment referred to in this booklet should be done by qualified experienced technicians. SEPTEMBER, 1980 Supersedes CLCH-MN-2A Dated February, 1980

CENTRAL STATION CLIMATE CHANGERS ®

DRAW-THRU UNITS B DEVELOPMENT SEQUENCE B DESIGN SEQUENCE

RELATED LITERATURE

Model Number Bookiets

Climate Changer Draw-Thru Units	CLCH-MN-2A
Climate Changer Blow-Thru Units	
Torrivent Draw-Thru Units	CLCH-MN-2C
Cabinet Fan Draw-Thru Units	
Coil Module Units	

Installation and Maintenance Booklets

Climate Changer Draw-Thru Units	CLCH-IM-7
Climate Changer Blow-Thru Units	
Climate Changer Sprayed Coil Units	
Climate Changer High Pressure Units	
Torrivent Draw-Thru Units	
Cabinet Fan Draw-Thru Units	
Electric Heat Climate Changer Units	
Roll Filters	

TRANE PRODUCTS ARE IDENTIFIED BY A MULTIPLE CHARACTER MODEL NUMBER THAT PRECISELY IDEN-TIFIES A PARTICULAR TYPE OF UNIT. AN EXPLANATION OF THE DRAW-THRU CLIMATE CHANGER MODEL NUMBER IS LISTED WITHIN TO ENABLE THE OWNER OR SERVICE ENGINEER TO DEFINE THE SPECIFIC OPERATION, COMPONENTS AND ACCESSORIES OF HIS UNIT.

1

THE TRANE COMPANY 1980 COMMERCIAL AIR CONDITIONING DIVISION LA CROSSE, WISCONSIN 54601 PRINTED IN U.S.A

Figure 66: Trane CLCH-MN-2A Climate Changer - Related Literature Guide

			ane [•]		
С	LIM	ATE	СНА	NGE	R
		DRAW	- THRU		
	SERI	AL NO.			
MODEL	UNIT T	PE BASIC	UNIT	COILS	
NO.	ACCESS	ORY	ELECTRIC PREHEAT		
MAX. RAT PRESSUI DESIGN T	RE	PSIG 15	TCOIL	PSIG 2	IND COIL
STATIC P		RE IM	I. H ₂ 0	REFRI	GERANT
FAN MOTOR	HP	VOLTS	PHASE	HZ	AMPS
TH	E TRANE C		CROSSE. WISC	CONSIN 64	601

MODEL NUMBER DESCRIPTION CLIMATE CHANGER DRAW-THRU

ACCESSORIES

UNIT TYPE

1		CLIMATE		34		DRIVE AND OVERLOAD FACTOR
2		CHANGER		35		BELT GUARD
3		DRAW-THRU		36	Н	DAMPER SECTION
4	Ы	DEVELOPMENT SEQUENCE		37		ACCESS DOOR - FAN SECTION
5.6		UNIT SIZE		38	Ы	ACCESS DOOR - COIL SECTION
7	n	FAN AND SHAFT TYPE		39	П	COMBINATION FILTER/MIXING BOX
8		COIL TYPE - FIRST IN CASING		40	Ы	FILTER BOX
9		COIL TYPE - SECOND IN CASING		41	Н	HIGH EFFICIENCY PREFILTER BOX
10	_	DESIGN SEQUENCE		42	Ы	HIGH EFFICIENCY FINAL FILTER BOX
	Ч	Decicit deddenoe		43	Н	HUMIDIFIER
BASIC	UN :	IT		44	Н	MIXING BOX
				45		ACCESS SECTION
11		UNIT STYLE		46	H	PREHEAT SECTION
12		MOTOR VOLTAGE		47	Н	COIL FIN SERIES - PREHEAT COIL
13		CASING LENGTH		48	Н	COIL TUBE MATERIAL - PREHEAT COIL
14		FAN DISCHARGE		49	Н	TURBULATORS - PREHEAT COIL
15		MOTOR LOCATION		-3		TORBOLATONS - THEREAT CORE
16		INLET VANES		ELECT	TRIC	PREHEAT
17		DRAIN PAN				
18		COIL SUPPLY - FIRST IN CASING		50		ELECTRIC COIL VOLTAGE AND STEP
19		COIL SUPPLY - SECOND IN CASING				CONTROLLER
20		INSULATION		51		ELECTRIC CONTROL PANEL
21		MOTOR HORSEPOWER		52		CONTROL SYSTEM SUPPLIER
DOM	. nv	COILS		53		ELECTRIC PREHEAT OPTION
T TIMP	411 1	COILS		54		CONDUIT LENGTH
22		COIL HEIGHT - FIRST IN CASING		55		MISCELLANEOUS
23	<u> </u>	COIL CIRCUITS - FIRST IN CASING				
24		COIL FIN SERIES - FIRST IN CASING				
25	Ы	COIL TUBE MATERIAL - FIRST IN CASING				
26	ŏ	TURBULATORS - FIRST IN CASING				
27	Ē	COIL ROWS - FIRST IN CASING				
28	Ъ	COIL HEIGHT - SECOND IN CASING				
29	õ	COIL CIRCUITS - SECOND IN CASING				
30	ň	COIL FIN SERIES - SECOND IN CASING				
31	ň	COIL TUBE MATERIAL - SECOND IN				
- ·		CASING				
32		TURBULATORS - SECOND IN CASING				
33	Н	COIL ROWS - SECOND IN CASING				
			2			
CLCH-MN-2A						

CLCH-MN-2A

Figure 67: Trane CLCH-MN-2A Climate Changer Model Number Description

293

۰.

UNIT TYPE DIGITS 1 THROUGH 10

1		CLIMATE	8.		COIL TYPE - FIRST IN CASING DIGIT
2		CHANGER			DESCRIPTION 0 - None
	_				A - F (F1)
3		DRAW-THRU			B - F (F2)
4		DEVELOPMENT SEQUENCE B - Second			C - F (F1) Two Sets of Connections D - F (F2) Two Sets of Connections
5,6		UNIT SIZE DIGIT DESCRIPTION 03 - 3 06 - 6 08 - 8 10 - 10 12 - 12 14 - 14 17 - 17 21 - 21 25 - 25 31 - 31 35 - 35 41 - 41 50 - 50 63 - 63			E - W (Cooling) F - K G - D H - DD J - P K - AW L - WC M - TT N - A P - NS R - N T - W (Heating) U - H (HB) V - H (HA) S - Special
7		FAN AND SHAFT TYPE DIGIT DESCRIPTION A B C D E F G G H J K C G H J S S Special Note: Refer to Table 1 for Fan and Shaft Type Digit Description.	9.		COIL TYPE - SECOND IN CASING DIGIT DESCRIPTION 0 - None A - F (F1) B - F (F2) C - F (F1) Two Sets of Connections D - F (F2) Two Sets of Connections E - W (Cooling) F - K G - D H - DD J - P K - AW L - WC M - TT N - A P - NS R - N T - W (Heating) U - H (HB) V - H (HA) S - Special
			Digit ∞il) Digit	"J" is or on "M" i "M" (1	R DIGITS 8 AND 9 not available on unit sizes 12, 14, 25 and 50 (full unit sizes 31, 50 and 63 (modified coil). s not available on unit sizes 21 through 63. I row) is not available on unit sizes 12 and 14 (full
			10		DESIGN SEQUENCE B - Second

Figure 68: Trane CLCH-MN-2A Model Number Code - Unit Type / Digits 1 - 10

.

UNIT SIZE	FAN & SHAFT TYPE	FAN WHEEL SIZE & TYPE	MAX. RPM	MA) HP
03	A	9" FC	1,910	2
	В	7½" FC	3.310	5
	Ā	12%" FC	1,403	5
06	В	1012" FC	1,548	5
••• ·	č	10%" FC	2,237	71/2
08 & 08X	A	15" FC	1,109	5
	В	131/2" FC	1.611	5
08	С	131/2" FC	1.839	71/2
	D	12%" FC	1,350	5
	E	12%" FC	2,027	71/2
	A	161/2" FC	1,042	742
	B	15" FC	1,146	71/2
10	č	15" FC	1.655	10
	Ď	1312" FC	1,273	71/2
	E	1312" FC	1.839	10
12 & 12X	A	18%" FC	942	7%
12 0 120	B	16½" FC	1.042	7%
12	č	1612" FC	1,505	10
12	D	15" FC	1	71/2
	E	15" FC	1,146	
	A	20" FC	1,655	10
	ŝ	18%" FC	859	7 7 ¥2
14	Č	18% FC	942	1
14	Ď	16%" FC	1,360	10
	-		1,042	71/2
	E	16½" FC 20" FC	1,505	10
			859	10
	BC	20" FC	1,200	10
	-	20" FC	1,241	15
17	D	18%" FC	942	10
	E	18%" FC	1,360	10
	F	18¼" FC	1,360	15
1	G	161/2" FC	1,505	10
	н	16½" FC	1,505	15
	<u>A</u>	22" FC	728	10
	В	22" FC	1,150	15
21	c	20" FC	859	10
	D	20" FC	1,241	15
	E	18¼" FC	1,360	15
1	A	25" FC	700	71/2
	B	25" FC	960	20
25	С	25" FC	1,000	30
	D	22" FC	834	71/2
	E	22" FC	1,200	20
	F	22" FC	1.200	30
	A	25" FC	700	71/2
	В	25" FC	960	20
31	C	25" FC	1,000	30
	D	22" FC	834	7 1/2
1	E	22" FC	1,200	20
	F	22" FC	1.200	30

.

4

TABLE 1 - Fan and Shaft Type Digit Description

CLCH-MIN-2A

TABLE	1 -	Continued
-------	-----	-----------

UNIT SIZE	FAN & SHAFT TYPE	FAN WHEEL SIZE & TYPE	MAX. RPM	MAX HP
	A	30" BI	1,050	15
	в	30" BI	1,200	20
	c	30" AF	1,100	15
	D	30" AF	1,334	25
35	E	27" AF	1,300	15
	F	27" AF	1,481	25
	G	27" AF	1,650	30
	н	24" AF	1.500	15
	J	24" AF	1,638	20
	ĸ	24" AF	1,900	30
	A	33" BI	900	15
	в	33" BI	1,050	25
	Ċ	33" AF	900	15
	D	33" AF	1,100	25
	E	33" AF	1,218	40
	F	30" AF	1,100	15
41	G	30" AF	1,300	25
	н	30" AF	1,450	40
	J	27" AF	1,300	15
	ĸ	27" AF	1,481	25
	L L	27" AF	1.650	30
	M	24" AF	1,500	15
	N	24" AF	1,638	20
	P	24" AF	1,800	30
	A	36" BI	750	15
	В	36" BI	900	25
	c	36" AF	750	15
	D	36" AF	950	25
	E	36" AF	1,103	40
	F	33" AF	925	15
40	G	33" AF	1,100	25
	н	33" AF	1.350	40
	J	30" AF	1.050	15
	ĸ	30" AF	1,050	25
	î l	30" AF	1,250	40
	M I	27" AF	1.300	15
	N	27" AF	1,450	20
	P	27" AF	1,450	30
	A	40" BI	750	25
	B	40 BI	900	25 40
	c	40" AF	780	25
	D	40" AF	900	40
	E	36" AF	950	25
63	F	36" AF	1,100	40
	G	36" AF	1,250	60
i	н I	33" AF	1,100	25
	J	33" AF	1.300	40
j	ĸ	30" AF	1,300	25
	i l	30" AF	1,500	40

.

CLCH-MN-2A

•

BASIC UNIT DIGITS 11 THROUGH 21

12	MOTOR VOLTAGE DIGIT DESCRIPTION 0 - None 1 - 115V Single Phase 2 - 230V Single Phase 3 - 200V Three Phase 4 - 230V Three Phase 5 - 460V Three Phase S - Special
13	 CASING LENGTH DIGIT DESCRIPTION A - Standard Length (03 through 50) B - 8" Extra Length (03 through 50) C - 8" Extra Length With Space Between Coils (03 through 50) D - Standard Length (63, Bl Wheel) E - Standard Length (63, AF Wheel) G - 8" Extra Length (63, AF Wheel) H - 8" Extra Length With Space Between Coils (63, Bl Wheel) J - 8" Extra Length With Space Between Coils (63, AF Wheel) S - Special
14	 FAN DISCHARGE DIGIT DESCRIPTION 1 - Top Horizontal - Horizontal Unit (03 through 63) 2 - Bottom Horizontal - Horizontal Unit (03 through 63) 3 - Front Vertical - Horizontal Unit (03 through 25) 4 - Back Vertical - Horizontal Unit (03 through 25) 5 - Back Vertical - Vertical Unit (03 through 50) 6 - Front Vertical - Vertical Unit

UNIT STYLE DIGIT DESCRIPTION

H - Horizontal (Unit Sizes 03 through 63)

V - Vertical (Unit Sizes 03 through 50)

- 6 Front Vertical Vertical Un (03 through 50)
- 7 Back Horizontal Vertical Unit (03 through 25)
 8 - Front Horizontal - Vertical Unit
- (03 through 31)
- S Special
- 15 DIMOTOR LOCATION DIGIT DESCRIPTION
 - R Right Hand
 - L Left Hand
 - S Special

- 16 INLET VANES DIGIT DESCRIPTION
 - 0 None 1 - Inlet Vanes (Except 03)
 - S Special
- 17 DRAIN PAN DIGIT DESCRIPTION
 - 1 Standard
 - 2 With Liner
 - S Special
- 18 COIL SUPPLY FIRST IN CASING DIGIT DESCRIPTION
 - 0 None
 - R Right Hand
 - L Left Hand
 - S Special
- 19 COIL SUPPLY SECOND IN CASING DIGIT DESCRIPTION
 - 0 None
 - R Right Hand
 - L Left Hand
 - S Special
- 20 INSULATION DIGIT DESCRIPTION
 - A Standard (Unit Only) 3/4 lb.
 - B Optional (Unit Only) 1-1/2 lb.
 - C Standard (Unit and Accessories) 3/4 lb.
 - D Optional (Unit and Accessories) 1-1/2 lb.
 - S Special
- 21 D MOTOR HORSEPOWER DIGIT
 - DESCRIPTION
 - 0 None
 - A 1/6
 - B 1/4
 - C 1/3
 - D 1/2
 - E 3/4
 - F 1
 - G 1-1/2
 - H 2 J - 3
 - 5-5 K-5
 - L 7-1/2
 - M 10
 - N 15
 - P 20
 - R 25
 - T 30
 - U 40 (35 through 63 only)
 - V 50 (63 only)
 - W 60 (63 only)
 - S Special

CLCH-MN-2A

11

6

Figure 71: Trane CLCH-MN-2A Model Number Code - Basic Unit / Digits 11 - 21

PRIMARY COILS DIGITS 22 THROUGH 33

- COIL HEIGHT FIRST IN CASING DIGIT 22 DESCRIPTION
 - 0 None
 - 1 Full
 - 2 Modified S - Special
- COIL CIRCUITS FIRST IN CASING DIGIT 23 DESCRIPTION

0 -	None						
B	- 2			Dig	its 8	89	
D	- 4	Selection J					
н.	- 8	(Type P Coil)					
	Digits		Co	He	ight		
	8 & 9	12 18 24 30 33					
A	A, B	8	12	16	20	22	
	C, D	8	12	16	20	22	
С	A, B	4	6	8	10	11	
	C, D	4	6	8	10	11	
E	A, B	2	3	4	5	7	Type F
	C, D	2	-	4		7	Coil
F	A, B	1	2	2	4	3	
	C, D		2	2	4		
G	A, B		1	—	2	—	
	C.D			_	2		
S - 1	Special						

24 COIL FIN SERIES - FIRST IN CASING DIGIT DESCRIPTION

- 0 None
- A 15, 55 Aluminum
- B 16, 56 Aluminum
- C 18, 58 Aluminum
- D 25, 65 Copper
- E 26, 66 Copper
- F 28, 68 Copper
- G 33 Aluminum
- H 34 Aluminum
- J 35 Aluminum
- K 36 Aluminum
- L 37 Aluminum
- M 38 Aluminum
- N 43 Copper
- P 44 Copper R 45 Copper
- T 46 Copper
- U 47 Copper
- V 48 Copper
- 1 10, 50 Aluminum
- 2 12, 52 Aluminum
- 3 13, 53 Aluminum
- 4 20, 60 Copper
- 5 23, 63 Copper
- S Special

COIL TUBE MATERIAL - FIRST IN CASING 25 DIGIT DESCRIPTION

- 0 None
- A Standard Copper
- B .035 Red Brass
- C 0.49 Red Brass
- D .024 Copper
- S Special
- TURBULATORS FIRST IN CASING DIGIT DESCRIPTION
 - 0 None

26

- 1 Sigma Flo® Without Turbulator
- 2 Sigma Flo With Turbulator
- 3 Prima Flo Without Turbulator
- 4 Prima Flo With Turbulator
- S Special

27 COIL ROWS - FIRST IN CASING DIGIT DESCRIPTION

- 0 None
- B 1
- C 2
- D 3
- E 4
- F 5
- G 6 H - 8
- S Special
- .

Figure 72: Trane CLCH-MN-2A Model Number Code - Primary Coils / Digits 22 - 33

7

CLCH-MIN-2A

- 28 COIL HEIGHT SECOND IN CASING DIGIT DESCRIPTION
 - 0 None 1 - Full
 - 2 Modified
 - S Special
- 29 COIL CIRCUITS SECOND IN CASING DIGIT DESCRIPTION

0-	None						
	B-2			Digi	ts 8	89	
	D - 4			Sek	ectio	n J	
	H - 8		(Тур	8 P (Coil)	
	Digits	Coil Height					
	889	12	18	24	30	33	
A	A, B	8	12	16	20	22	
	C, D	8	12	16	20	22	
С	A, B	4	6	8	10	11	
	C, D	4	6	8	10	11	
E	A, B	2	3	4	5	7	Type F
	C, D	2		4	—	7	Coil
F	A, B	1	2	2	4	3	
	C, D	-	2	2	4		
G	A, B		1		2		
	C, D				2		
S۰	Special						

- COIL FIN SERIES SECOND IN CASING DIGIT DESCRIPTION
 - 0 None
 - A 15, 55 Aluminum
 - B 16, 56 Aluminum
 - C 18, 58 Aluminum
 - D 25, 65 Copper
 - E 26, 66 Copper
 - F 28, 68 Copper G - 33 Aluminum
 - H 34 Aluminum
 - J 35 Aluminum
 - K 36 Aluminum
 - L 37 Aluminum
 - M 38 Aluminum
 - N 43 Copper
 - P 44 Copper R - 45 Copper
 - T 46 Copper
 - U 47 Copper
 - V 48 Copper
 - 1 10, 50 Aluminum
 - 2 12, 52 Aluminum
 - 3 13, 53 Aluminum
 - 4 20, 60 Copper
 - 5 23, 63 Copper
 - S Special
- 31 COIL TUBE MATERIAL SECOND IN CASING DIGIT DESCRIPTION
 - 0 None
 - A Standard Copper
 - B .035 Red Brass
 - C .049 Red Brass D - .024 Copper
 - S Special
 - 5 Special
- 32 DITURBULATORS SECOND IN CASING DIGIT DESCRIPTION
 - 0 None
 - 1 Sigma Flo® Without Turbulator
 - 2 Sigma Flo With Turbulator
 - 3 Prima Flo Without Turbulator
 - 4 Prima Flo With Turbulator
 - S Special
- 33 COIL ROWS SECOND IN CASING DIGIT DESCRIPTION
 - 0 None
 - B 1
 - C 2 D - 3
 - E 4
 - F 5
 - G 6
 - H 8 S - Special

CLOH-MIN-2A

8

Figure 73: Trane CLCH-MN-2A Model Number Code - Primary Coils / Digits 22 - 33 (cont'd)

.

ACCESSORIES DIGITS 34 THROUGH 49

- 34 DRIVE AND OVERLOAD FACTOR DIGIT DESCRIPTION
 - 0 None
 - 1 1.2, Standard Drive
 - 2 1.5, Standard Drive
 - S Special
- 35 DELT GUARD DIGIT DESCRIPTION
 - 0 None
 - 1 Standard (Non UL)
 - 2 Totally Enclosed (UL)
 - S Special
- 36 DAMPER SECTION DIGIT DESCRIPTION
 - 0 None
 - A Internal Face & Bypass, Right Hand Drive
 - B Internal Face & Bypass, Left Hand Drive C - Internal Face & Bypass, Both Ends Drive
 - (03 to 17) D. External East * Burgers Right Hand Driv
 - D External Face & Bypass, Right Hand Drive Without Duct
 - E External Face & Bypass, Left Hand Drive Without Duct
 - F External Face & Bypass, Both Ends Drive Without Duct (03 to 17)
 - G External Face & Bypass, Right Hand Drive With Duct
 - H External Face & Bypass, Left Hand Drive With Duct
 - J External Face & Bypass, Both Ends Drive With Duct (03 to 17)
 - K Face Damper, Right Hand Drive
 - L Face Damper, Left Hand Drive
 - S Special

- 37 ACCESS DOOR (FAN SECTION) DIGIT DESCRIPTION 0 - None
 - 1 Right Hand
 - 2 Left Hand
 - 3 Both Sides
 - S Special
 - -
- 38 ACCESS DOOR (COIL SECTION) DIGIT DESCRIPTION
 - 0 None
 - 4 Right Hand
 - 5 Left Hand
 - 6 Both Sides
 - S Special

9

CLCH-MN-2A

Figure 74: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49

COMBINATION FILTER/MIXING BOX DIGIT DESCRIPTION

0 - None

- Α - 90 Degree Opening, No Filter
- B 90 Degree Opening, Throwaway Filter
- С - 90 Degree Opening, Low Velocity Filter
- D 90 Degree Opening, High Velocity Filter
- E 180 Degree Opening, No Filter
- F - 180 Degree Opening, Throwaway Filter
- G 180 Degree Opening, Low Velocity Filter
- 180 Degree Opening, High Velocity Filter н
- L - 90 Degree Opening, No Filter
- (See Note 1)
- K 90 Degree Opening, Throwaway Filter (See Note 1)
- 90 Degree Opening, Low Velocity Filter (See Note 1)
- M 90 Degree Opening, High Velocity Filter (See Note 1)
- N 90 Degree Opening, No Filter (See Note 2)
- 90 Degree Opening, Throwaway Filter (See Note 2)
- R 90 Degree Opening, Low Velocity Filter (See Note 2)
- 90 Degree Opening, High Velocity Filter (See Note 2)
- S Special

NOTES:

- 1. Top and Back Right Hand, Bottom and Back Left Hand.
- 2. Top and Back Left Hand, Bottom and Back Right Hand.
- ☐ FILTER BOX DIGIT DESCRIPTION
 - 0 None

40

- A Flat Filter Box, No Filter
- B Flat Filter Box, Throwaway Filter
- C Flat Filter Box, Low Velocity Filter
- D Flat Filter Box, High Velocity Filter
- E Medium Capacity, No Filter
- F Medium Capacity, Throwaway Filter
- G Medium Capacity, Low Velocity Filter
- H Medium Capacity, High Velocity Filter
- J High Capacity, No Filter
- K High Capacity, Throwaway Filter
- L High Capacity, Low Velocity Filter
- M High Capacity, High Velocity Filter
- S Special

HIGH EFFICIENCY PREFILTER BOX **DIGIT DESCRIPTION** A - 55% Efficiency < 500 FPM RH B - 85% Efficiency < 500 FPM RH C - 95% Efficiency < 500 FPM RH D - 55% Efficiency > 500 FPM RH

- E 85% Efficiency > 500 FPM RH
- F 95% Efficiency > 500 FPM RH
- G 55% Efficiency < 500 FPM LH
- H 85% Efficiency < 500 FPM LH
- J 95% Efficiency ≤ 500 FPM LH K - 55% Efficiency > 500 FPM LH
- L 85% Efficiency > 500 FPM LH
- M 95% Efficiency > 500 FPM LH
- N 40% Efficiency ≤ 500 FPM BOTH
- P 40% Efficiency > 500 FPM BOTH
- S Special

0 - None

41

42 HIGH EFFICIENCY FINAL FILTER BOX DIGIT DESCRIPTION

- 0 None A - 55% Efficiency < 500 FPM RH B - 85% Efficiency < 500 FPM RH C - 95% Efficiency ≤ 500 FPM RH D - 55% Efficiency > 500 FPM RH E - 85% Efficiency > 500 FPM RH F - 95% Efficiency > 500 FPM RH G - 55% Efficiency ≤ 500 FPM LH H - 85% Efficiency < 500 FPM LH J - 95% Efficiency < 500 FPM LH K - 55% Efficiency > 500 FPM LH L - 85% Efficiency > 500 FPM LH M - 95% Efficiency > 500 FPM LH
- S Special

43 HUMIDIFIER DIGIT DESCRIPTION

- 0 None
- 1 Steam Grid, Horizontal, Right Hand
- 2 Steam Grid, Horizontal, Left Hand
- 3 Water Spray, Horizontal, Right Hand
- 4 Water Spray, Horizontal, Left Hand
- 5 Steam Grid, Vertical, Right Hand
- 6 Steam Grid, Vertical, Left Hand
- 7 Water Spray, Vertical, Right Hand
- 8 Water Spray, Vertical, Left Hand
- S Special
- MIXING BOX DIGIT DESCRIPTION

44

- 2 Top and Back Left Hand, Bottom and Back

- 45 ACCESS SECTION DIGIT DESCRIPTION
 - 0 None
 - 1 With (35 through 65 only)
 - 2 Special

CLCH-MN-2A

10

Figure 75: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49 (cont'd)

- 0 None 1 - Top and Back Right Hand, Bottom and Back Left Hand
- **Right Hand**
- 3 Top and Bottom
- S Special

46 PREHEAT SECTION DIGIT DESCRIPTION

0 - None

- A NS Right Hand
- B NS Left Hand
- C N Left Hand
- D N Right Hand
- E A Left Hand
- F A Right Hand
- G AW Left Hand
- H AW Right Hand
- J WC Right Hand
- K WC Left Hand L - W Right Hand
- M W Left Hand
- N Electric Right Hand
- P Electric Left Hand
- S Special

PREHEAT COIL FIN SERIES DIGIT 47

- DESCRIPTION
- 0 None
- A 15, 55 Aluminum
- B 16, 56 Aluminum
- C 18, 58 Aluminum
- D 25, 65 Copper
- E 26, 66 Copper
- F 28, 68 Copper
- G 33 Aluminum
- H 34 Aluminum
- J 35 Aluminum K - 36 Aluminum
- L 37 Aluminum
- M 38 Aluminum
- N 43 Copper
- P 44 Copper
- R 45 Copper
- T 46 Copper
- U 47 Copper
- V 48 Copper
- 1 10, 50 Aluminum
- 2 12, 52 Aluminum
- 3 13, 53 Aluminum
- 4 20, 60 Copper
- 5 23, 63 Copper
- S Special

48 PREHEAT COIL TUBE MATERIAL DIGIT DESCRIPTION

- 0 None
- A Standard Copper
- B .035 Red Brass
- C .049 Red Brass
- D .024 Copper
- S Special

PREHEAT COIL TURBULATOR DIGIT 49 DESCRIPTION

- 0 None
- 1 Sigma Fio Without Turbulator
- 2 Sigma Flo With Turbulator
- 3 Prima Flo Without Turbulator
- 4 Prima Flo With Turbulator
- S Special

CLCH-MN-2A

Figure 76: Trane CLCH-MN-2A Model Number Code - Accessories / Digits 34 - 49 (cont'd)

.

	TRANE
	ELECTRIC HEAT CONTROL PANEL
MODEL NO. ELECTRIC ELECTRIC UNIT TYPE NOT DECK PRE HEAT	SERIAL NO. MODEL NO. UNIT TYPE HOT DECK PREMEAT
SUPPLY POWER VOLTS 60 HZ HEATER KW	SUPPLY POWER
LOAD AMPS TERMINALS:	VOLTS 3 PHASE 60 HZ PANEL CAPACITY KW MIN. CIRCUIT AMPACITY AMPS
VOLTS AMPS VOLTS AMPS T\$1(364) & T\$2(162) 120 VOLTS 3 AMPS	MIN. CHECUTI AMPACITY AMPS MAX. OVERCURRENT PROTECTOR AMPS THE TRANE COMPANY, LA CROSSE, WISCONSIN 54601

ELECTRIC PREHEAT DIGITS 50 THROUGH 55

50 ELECTRIC COIL VOLTAGE AND STEP CONTROLLER DIGIT DESCRIPTION

.

0 - None

- A 208V 3PH 60HZ 3 Step
- B 240V 3PH 60HZ 3 Step
- C 480V 3PH 60HZ 3 Step
- D 208V 3PH 60HZ 6 Step
- E 240V 3PH 60HZ 6 Step
- F 480V 3PH 60HZ 6 Step
- G 208V 3PH 60HZ 10 Step
- H 240V 3PH 60HZ 10 Step
- J 480V 3PH 60HZ 10 Step
- K 208V 3PH 60HZ 18 Step
- L 240V 3PH 60HZ 18 Step
- M 480V 3PH 60HZ 18 Step
- S Special

ELECTRIC CONTROL PANEL DIGIT 51 DESCRIPTION 0 - None A - Remote Panel Wall Mounted W/Top Conn-Coil Conn. Top B - Remote Panel Floor Mounted W/Top SUPPLIED CONDUIT Conn-Coil Conn. Top C - Remote Panel Wall Mounted W/Top Conn-Coil Conn. Bottom D - Remote Panel Floor Mounted W/Top Conn-Coil Conn. Bottom E - Remote Panel Wall Mounted W/Bottom Conn-Coil Conn. Top F - Remote Panel Floor Mounted W/Bottom TRANE Conn-Coil Conn. Top G - Remote Panel Wall Mounted W/Bottom Conn-Coil Conn. Bottom H - Remote Panel Floor Mounted W/Bottom Conn-Coil Conn. Bottom J - Remote Panel Wall - No Conduit K - Remote Panel Floor - No Conduit L - Integral S - Special CONTROL SYSTEM SUPPLIER DIGIT 52 DESCRIPTION 0 - None

- A Honeywell With Thermostat
- B Honeywell Without Thermostat
- C Barber Colman With Thermostat
- D Barber Colman Without Thermostat
- S Special

CLCH-MN-2A

12

Figure 77: Trane CLCH-MN-2A Model Number Code - Electric Preheat / Digits 50 - 55

- 53 ELECTRIC PREHEAT OPTION DIGIT DESCRIPTION
 - 0 None
 - 1 Manual Reset Without Flow Switch
 - 2 Manual Reset With Flow Switch
 - 3 Nonreset With Flow Switch
 - S Special
- 54 CONDUIT LENGTH DIGIT DESCRIPTION
 - 0 None
 - A 36" B - 42"
 - C 48"

.

- D 54"
- E 60"
- F 66"
- G 72"
- H 78"
- J 84" K - 90"
- L 96"
- M 108"
- N 120"
- P 132"
- Q 144"
- R 156" T - 168"
- U 180"
- V 192"
- W 204"
- X 216"
- Y 228" Z - 240"
- S Special

- 55 I MISCELLANEOUS DIGIT DESCRIPTION
 - A One Extra Set of Throwaway Filters
 - B One Extra Set of Low Velocity Filters
 - C One Extra Set of High Velocity Filters
 - D Two Extra Sets of Throwaway Filters
 - E Two Extra Sets of Low Velocity Filters
 - F Two Extra Sets of High Velocity Filters
 - G Damper (Shutoff) Right Hand
 - H Damper (Shutoff) Left Hand
 - P ZRC Paint on Coll
 - R Curb Unit
 - U UL Listed
 - Low Leak 1 Damper Back (90°) Bottom LH or Top RH (180°)
 - 2 Ultra Low Leak Damper 1 Damper Back (90°), Bottom LH or Top RH (180°)
 - 3 Low Leak Damper 2 Dampers Top and Bottom or Back
 - 4 Ultra Low Leak Damper 2 Dampers Top and Bottom or Back
 - 5 Low Leak Damper 1 Damper Top (90°) Bottom RH or Top LH (180°)
 - 6 Ultra Low Leak Damper 1 Damper Top (90°) Bottom RH or Top LH (180°)
 - 7 Low Leak Damper External and Internal
 - Face and Bypass Dampers 8 - Ultra Low Leak Damper External and Internal Face and Bypass Dampers

.

PRINTED BY PRODUCTION SERVICES - LA CROSSE

Figure 78: Trane CLCH-MN-2A Model Number Code - Electric Preheat / Digits 50 - 55 (cont'd)

13

	COOLING HEATING	HUHIZUNIAL UHAW IHHU.
	REF: CENT	DS CLCH- I/JUNE 8/ DAL STATION AIR DLEPS 600-65,000 CFM
Horizontal Draw-Thru (Sizes 35-63)		,
- 2 Y	_ C E .	24.4

FIGURE 45-1 - H

TABLE 45-1 - Casing Dimensions

ADLL			1	-	1				с				E		
SIZE	w	ARR. 1, 2	ARR 3	ARR 4	н		в	ARR. 1. 2	ARR. 3	ARR 4	D	ARR. 1, 2	ARR. 3	ARR 4	м
35 41 50	9' 7" 9' 10" 9' 10"	6' 8%" 7' 1%" 7' 7%"	7' 4½" 7' 10" 8' 5"	9'1"		4' 9½" 5' 8½"	9' 3%" 9' 6%" 9' 6%"		4' 4" 4' 10½" 5' 5½" 5' 6½"	4'9' 5'1' 5'9' 6'3'2'	3 4% 3 6% 3 9% 4 1%	2' 5"	2 6 2 6 2 5 3 0	2.8 2.9 2.10 3.0	Refer to Table 77-1

TABLE 45-2 - Duct Connection Size	/Location
-----------------------------------	-----------

					v	R		
SIZE	т	Y	z	ARRG 1	ARRG 3	ARRG 2	ARRG 4	
35 41 50 63	40'/e" 44 ½" 49'/e" 54 ³ /e"	40%" 44%" 48'/6" 53'/6"	37 ³ /6" 36'/6" 34 ³ 4" 36'/6"	25 25 25 25 25	217 217 217 317	14% 14% 21% 24%	15% 14'/e 17% 18%	

FIGURE 45-2 — Horizontal Draw-Thru Discharge Arrangements (Sizes 35-63)

FIGURE 45-3 - Horizontal Draw-Thru (Sizes 73-86)

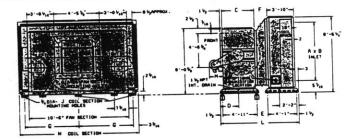


TABLE 45-3 — Casing Dimensions

	T	44		1				1	Ç			U	
	F	L CON SEC	ARRG. 1. 2	ABBG 3	ARRG 4		в	ARRG 1. 2.	ARRG 3	ARRG 4	ARRG 1, 2	ARRG 3	ARRG 4
SIZE	FAN SEC						7 11"	4. 0.	5.7.	6.4"	2.7	2 7	4' 1%"
73	10.6	10.6	9. 9.	11' 4%"		10'2%"		4.8"	5.7	6.4"	2.7	2. 7-	4' 1%"
86	10. 6.	12 4	11'0"	11' 4%"	12' 2%"	12'0%"	7 11						

	E					
ARRG. 1, 2	ARRG. 3	ARRG 4	F	G	J	м
4' 11" 4' 11"	5'9%"	6'7' 6'7'	6" 1'9"	9' 11%" 11' 9%"	7%" 1' 6%"	Reter to Table 77-1

45

Figure 79: Trane CLCH Fan Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 45)

AUDESSORES

COOLING HEATING

DIMENSIONAL DATA FILTER BOXES

TABLE 64-1 - Flat Filter Box Dimensions

UNIT	w	L	н		в
3	2 10"	6"	1'9"	1'5"	2 6
6	4.7	6"	1' 11"	1.2.	4'3"
7	5' 1"	6"	1'9"	1'5"	4.9
8	3' 10"	6"	2. 9.	2.5%-	3. 6.
9	7 1"	6"	1' 11"	1'5"	6.9
10	47	6"	2.8.	2'5%"	4'3"
12	5' 1"	. 6	3' 1"	2.8%.	4.9
14	5' 10"	6"	3 1-	2 9%"	5'6"
17	77	6"	2.8.	2.5%	7 3
21	9' 1"	6"	2.8.	2 5%	8.9
25	9.7	6"	3' 1"	2.9%."	9'3%
31	9.7	6"	3'11"	3. 6%."	9' 3%
35	9.7	6"	4'8"	3' 11%"	9.35
41	9' 10"	6"	5'1"	4. 845.	9.6"
50	9' 10"	6	.6.0.	5'7%	9.6.
63	9' 10"	6"	7 8%	7 4%	9.6
73	10' 6"	6"	8.5%	7.8%	10.2
86	12 4"	6"	8 212"	7.8%-	12'0"

TABLE 64-2 - Medium Capacity Filter Box Dimensions

UNIT	w	L	н		в
3	2'9"	1' 7%*	1.8.	1.2.	2.6
6	4. 6.	1' 73/0"	1' 1"		4'3'
7	5.0.	1' 7%-	1'9"	1'5"	4'9'
8	3. 8.	2'3"	2.9.	2'5"	3. 6.
9	70"	1' 73/6"	1' 11"	1. 2.	6.9.
10	4.6.	2.3.	2. 9.	2'5"	4'3"
12	5' 0"	2' 1%"	3' 1-	29	4.9.
14	5'9"	2 1%-	3.1-	2.9"	5. 6.
17	7 6"	2'3"	2. 9-	2. 5"	7'3"
21	ð. 0	2.3.	2'9"	2 5"	8.9.
25	9.6.	2' 1%"	3' 1"	2 9"	9.3.
31	9. 6.	1' 6%"	3' 11"	3.7	9.3.
35	9.7-	1' 10%"	4'8"	4.4.	9.3.
41	9' 10"	2 3-	5' 1"	4'9"	9. 6.
50	9' 10"	22	6.0.	5'8"	9.6.
63	9' 10"	2'3"	7 8%	7 4%	9. 6.
73	10' 6"	2.5%.	8.54.	7 10%"	10. 2.
86	12'4"	2. 5%.	8' 2%"	7 10%"	12. 0.

NOTE: For 2" deep filters.

TABLE 64-3 — High Capacity Filter Box Dimensions

UNIT . SIZE	w	L	н		в
3	2. 9	1' 11%"	1.8.	1'5"	2.6
6	4. 6.	1' 11%"	1' 11-	1.7.	4'3
7	5'0"	1' 11%"	1'9"	1.2.	4.9
8	3. 9.	1'11%	29	2 5"	3.6
9	7.0-	1'11%	1' 11-	1'7'	6.9
10	4' 6"	1'11%"	2'9"	2 5"	4'3
12	5' 0"	1.11"	3' 1"	2.9"	4.9
14	5' 9"	1' 11"	3' 1"	2.9"	5'6
17	7 6"	1'11%"	2 9"	2'5"	73
21	ð. O.,	1' 11%"	29	2.5"	8.9
25	9' 5"	1' 11"	3' 1"	2.9"	9'3
31	9.7.	1' 11%"	3' 11-	3.7-	9'3"
35	9.7.	2'3%"	4'8"	4'4"	9'3%
41	9' 10"	2'3%"	5'1"	4.9.	9.6
50	9' 10"	2'3%"	6.0.	5'8"	9.6
63	9' 10"	24	7 8%-	7 4%	9.6-
73	10' 6"	2'3%"	8.5%	7 10%"	10'2'
86	12 4"	2'3%"	8.5%	7 10%"	12'0'

FIGURE 64-1 - Flat Filter Box

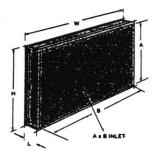
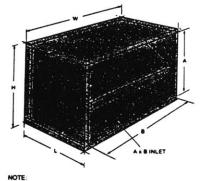



FIGURE 64-2 - Medium Capacity Filter Box

Size 3-31 large hinged filter access doors Size 35-86 individual filter access doors

FIGURE 64-3 — High Capacity Filter Box

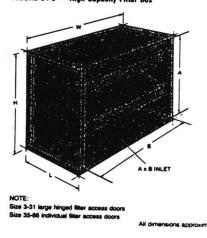


Figure 80: Trane CLCH Filter Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 64)

ACCESSORIES

COOLING HEATING

DIMENSIONAL DATA MIXING BOXES

TABLE 66-1 - Mixing Box Dimensions

UNIT		90 ° Of	PENING	180°O	PENING		
SIZE	w	L	н	L	н		в
3	29	1.8%.	2.0%.	1'5"	2 4%	1.0%	2 5%
6	4.6	1'9%"	2 2%*	1'5"	2 6%	1.0%.	4' 2%
-7	5'0"	1'9%"	2.0%.	1'5"	2 412"	1.0%.	4. 6%
8	3. 9.	2 6%"	3' 14"	2 1"	3 612"	1'8%	3' 3%/0
9	70"	1. 8%.	2 2%*	1'5"	2. 612.	1.0%.	6' 7%
10	4.6.	2 6%"	3' 1%"	2 1-	3. 612.	1.8%	4' 2%
12	5.0.	2 7%	3 4%"	2'3"	3.8%	1' 10%	4 6%
14	5'9"	2 7%	3 4%*	2 3	3 812	1' 1012"	5' 4%
17	76	2 6%"	3' 1%"	2 1"	3 612"	1'812"	7 0%
21	9.0.	2 6%	3' 1%"	2'1"	3 612"	1'812"	8 6%
25 .	9. 6.	2 7%	3' 4%"	2.3.	3. 812.	1' 10%	9.0%
31	9.7"	3' 2%"	4' 3%"	2' 8%	4' 8%"	2.5%	9.0%
35	9.7"	3' 4%"	5' 1%"	2 11"	6 752"	2. 6%	9.0%
41	9' 10"	4' 1%"	5' 7%	3. 6.	5 2%	2 10%	9.3%
50	9' 10"	4' 7%	6 6%	4.0.	7 112	3.3%-	9.3%
63	9' 10"	5' 3%"	8' 3%"	4' 8"	8' 10"	4' 2%	9.3%
73	10' 6"	5 7**	8. 9%."	6.0.	9. 4.	4' 10%	9 11%
86	12 4"	6 7%	8. 9%."	6.0.	9.4"	4' 10%"	11 9%

FIGURE 66-1 - Mixing Boxes

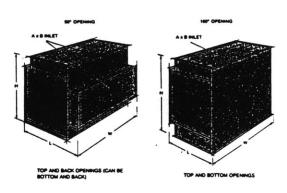


FIGURE 66-2 - Deluxe Mixing Boxes

H A B 1'9" 10%" 2'6" 1'11" 10%" 4'3" 1'9" 10%" 4'9"

17	31	1 1 5		1 1072	• 9
T8	3' 10"	2.0.	2. 8.	1. 612.	3. 6.
T9	7 1-	1'4"	1' 1"	10%*	6. 8.
T10	4.7.	2.0.	2. 8.	1. 612.	4' 3'
T12	5' 1"	2.5.	3' 1"	1'852"	4. 9.
T14	5' 10"	2.5.	3' 1"	1.82.	5 6
T17	TT	2.0.	2. 8.	1'612"	7.3
T21	9' 1"	2.0.	2. 8.	1'6%"	8. 9.
T25	9' 7"	. 5.5.	3" 1"	1'812"	7 3
T31	9. 7.	2 6	3' 11"	2.0%	9.3
T35	9.7"	2 10"	4' 8"	2 4%	9.3

NOTE 1: Boxes able to support vertical floor torrivents.

TABLE 66-2 - Deluxe Mixing Box Dimensions

1. 2.

1' 4"

w

2. 10.

4 7

UNIT

T3

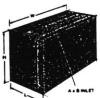
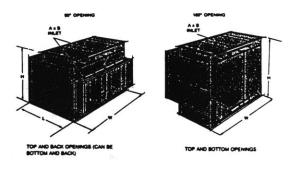

T6

TABLE 66-3 - High Efficiency Mixing Box Dimensions

UNIT		90° OF	ENING	180° O	PENING			
SIZE	w	L	н	L	н		8	с
3	2 612"	2' 0%"	2. 5.	1. 1.	27	11"	2 4%	544
6	4 112"	2' 1%"	2.3.	1'8"	2.7	1112	3 11%	54
7	5.0.	2. 1.	2 2"	1' 7%".	27	11%"	4.6.	54
8	3'4"	3.3%.	3 1%	2.8-	3'5%"	1.8%	3.2	54
9	70	2' 0*/*	2'3"	1. 1. 1.	27	10"/e"	6'5'	5%
10	4' 11"	3.3%.	3' 1%"	2'8"	3'5%"	1.8%	3' 11"	5%
12	4 6"	3' 7%"	3 5%	2 11%	3' 10%"	1' 10%"	4.4	5%
14	5'3"	3' 7%"	3 5%	2 11%	3 10%	1 10%"	5'1"	54
17	7 6	3.0%.	3 1%"	2 5%	3 5%	1. 6%-	7.3"	544
21	9.0.	3.0%.	3 1%"	2 5%	3.2%	1. 6%	8. 9.	54
25	9'11"	3 6%"	3 5%	2 10%"	3 10%	1 9%	8 11"	5%
31	9.7	4 6%"	4 8%	3.6	5 612	2.0%.	9.3%	54
35	9'7'	4' 10%"	5'2%"	3' 10"	5 8%	2 412"	9.3%	7%
41	9' 10"	5' 1%"	5 11%"	4 8%	6 10%"	2 11%	9.6.	7%
50	9' 10"	7 3%"	6' 10%"	5' 10"	8. 6%.	3 10%	9.6	7%
63	9' 10"	8. 9%."	8 11%"	6 10%	10' 3"	4'3"	9.6.	7%
73	10. 6-	7 3	9. 5%	9.5%	11' 1"	4 7%	10. 2.	7 %
86	12 4"	7 3"	9. 5%	9.5%-	11' 1"	4 7%	12.0.	7%


TOP AND BACK OPENINGS (CAN BE BOTTOM AND BACK)

.

TOP AND BOTTOM OPENING

FIGURE 66-3 — High Efficiency Mixing Boxes

All dimensions approxima

Figure 81: Trane CLCH Mixing Box Dimensions (ref: Trane DS-CLCH-1/June 81, P. 66)

COIL CONNECTION

TABLE 75-1 - Retrigerant Coil (Type F) Piping Sizes (Inches)

HEADER	NO. OF	CONNECTION	SIZE (INCHES)
HEIGHT	CIRCUITS	LIQUID	SUCTION
	2	1/0	13/0
18	3	"/a	1%
10	6	11/0	2'/e
	12	13/0	2'/.
	2	1/0	14/8
	4	1/0	15/8
24	8	11/8	21/0
	. 16	(2)1'/e	(2)2'/e
	2	7/0	13/8
	4	1/6	1%
30	5	7/0	21/0
	10	13/8	2'/0
	20	(2)13/8	(2)21/0
	3	'/e	1%
	7	11/0	21/8
33	11	13/8	2'/.
	22	(2)13/8	(2)2'/e

TABLE 75-2 - Water and Steam Coil Connection Size (Inches)

COIL	HEADER	co	NNECTION SIZE	(IN.)
TYPE	HEIGHT	SUPPLY	RETURN	DRAIN & VENT
w	18. 24. 30. 33	212	212	5
D	18, 24, 30, 33	212	212	5
DO	18. 24. 30. 33	25	21/2	5
P2	18. 24. 30	*	*	5
P4	18. 24. 30	1	1	5
P8	18. 24. 30	1%	114	5
ĸ	18. 24. 30. 33	212	21/2	5
WC	18	1	1	5
WC	24	1%	1%	5
WC	30. 33	212	112	5
WA	18. 24. 30. 33	212	212	
	18	2	1	NA
N. NS	24	212	1%	NA
	30. 33	3	1%	NA
	18	212	1	NA
A. AA	24. 30. 33	212 -	1%	NA
TT	18. 24. 30. 33	*	*	NA

D

4 ROW 6 ROW

10%

7 1/2

с

13/0

1%

1%

1%

8 ROV

13%

D

21/2

212

212

23

NOTE Connections are N.P.T internal

2 ROW

44

CLIMATE CHANGEL AND COIL MODULE CONNECTION LOCATION

~	dalla?	ARC	1.1	- F	
				朝	
1	-ing	ALL ST	17 1	19	
	1.1	1		1) —	AR FLOW
12				<u> </u>	r
1.10		1	Nel		
		- serence			

TABLE 75-6

UNIT	
SIZE	E
3-31	3"
35-63	4%
73-86	5%

Example: Determine piping connection location on No. 10 Horizontal Draw-Thru Climate Changer with a 4-row, type W coil.

Size 3-25: To determine coil connection location, add 2 inches

to C and D dimensions above and 3 inches to dimensions A and

Size 31 and Larger: Units with multiple coils can use above

method to determine location of bottom coil. Then the additional coils can be added on top of bottom coil which is H plus E.

B above

TABLE 75-3 - W-D-K Cooling Coll Connection Location (Inches)

в С

TABLE 75-4 - NS Heating Coll Connection Location (Inches)

	HEIGHT	н		в
I	18"	19%	17/6	8%
[24"	251/2	112	11%
1	30	3112	112	14%
1	33"	3412	112	17%
ì	B = Right hand	conn		

HEADER

HEIGHT

18

24

30

33

н

.

1912 1114 8% 12/0

2512 1414 1114 1'.

3112 1714 1414 12/0

341/2 18% 15% 11/0

TABLE 75-5	WC Heating	CoilConnection	Location	(inches)	

6 — Coil Base	Line	HEADER	н		в	c
UNIT	F	18	1912	15/8	17'/0	2
3-31	2	24	25%	12	24'/8	2
35-63	4%	30	311/2	8%	2314	2
73-86	5%	33	3412	814	24%	2

Supply Piping:

Centerline Height above floor = Table 75-6 "E" Dimension + Table 75-3 "A" Dimension

 $= 3'' + 11\frac{1}{4}'' = 14\frac{1}{4}''$ Centerline from end of unit = 2" + Table 75-3 "D" Dimension = 2" + 7½" = 9½"

Return Piping:

Centerline Height above floor = Table 75-6 "E" Dimension + Table 75-3 "B" Dimension

= 3" + 8¼" = 11¼" Centerline from end of unit = 2" + Table 75-3 "C" Dimension = 2" + $1^7/e"$ = $3^7/e"$

Figure 82: Trane CLCH Coil Connection Dimensions (ref: Trane DS-CLCH-1/June 81, P. 75)

.

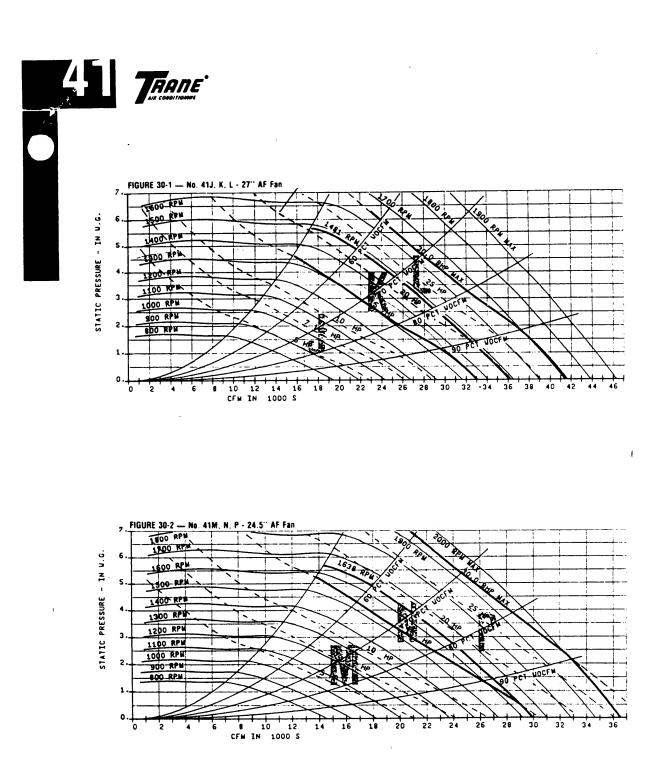
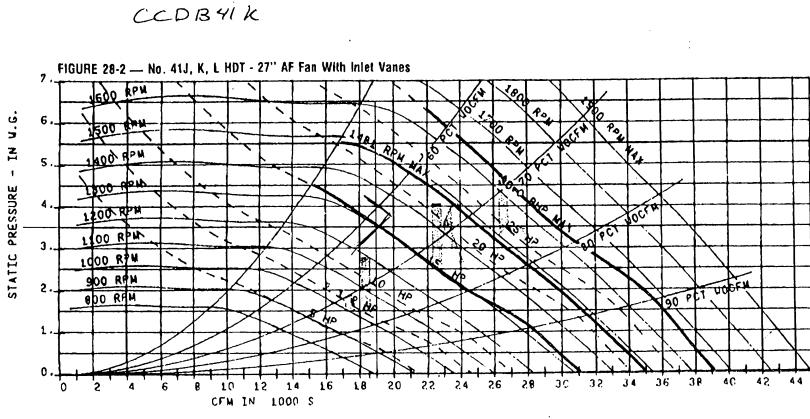


Figure 83: Trane CLCH Fan Curves - w/o Inlet Vanes (ref: Trane CS CLCH-2)

AND CABINET FANS COL COL <th< th=""><th></th><th></th><th></th><th></th><th colspan="12">HORIZONTAL DRAY</th><th>-THF</th><th>IU C</th><th>LIM</th><th>ATE</th><th>CH/</th><th>ŅG</th><th>ER <</th><th>C</th><th>9) </th><th></th><th></th><th></th><th></th></th<>					HORIZONTAL DRAY												-THF	IU C	LIM	ATE	CH/	ŅG	ER <	C	9)				
COLL CFM OUT TOTAL STATIC PRESSURE FACE STD LET Nr Nr Nr Nr Nr Nr Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 3Nr VEL AR VEL RPM BHP RPM BHP <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>A</th><th>ND</th><th>CAB</th><th>INET</th><th>FA</th><th>NS</th><th>-</th><th>9</th><th><u> </u></th><th></th><th></th><th></th></th<>																		A	ND	CAB	INET	FA	NS	-	9	<u> </u>			
COLL CFM OUT TOTAL STATIC PRESSURE FACE STD LET Nr Nr Nr Nr Nr Nr Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 2Nr 3Nr VEL AR VEL RPM BHP RPM BHP <th< th=""><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	•																												
COL CFM OUT TOTAL STATIC PRESSURE FACE STD LET N N N 1' 1'u'' 1'y'' 1'u'' 1'u'' 1'u'' 2'u'													6.																
COLL CFM OUT. TOTAL STATIC PRESSURE FACE STD LET Nr Nr 1 1/kr 1/kr 1/kr 2/kr 2/kr 2/kr 2/kr 3/r 3/r VEL AR VEL AR MP BHP RPM	TABLE	31-1	No). 41J	. K. L	- 27'	' AF F	an				1	Ý																
FACE STD LET Nr Nr 1/kr 1/kr 1/kr 2/kr 2/kr 2/kr 2/kr 2/kr 3/kr 3/kr VEL AR VEL RPM BHP RPM B													Ľ	TC	TAL S	TATIC	PRESS	URE											
PACE SID DLT TH BHP RPM BHP <td></td> <td></td> <td></td> <td></td> <td></td> <td>v</td> <td></td> <td>*</td> <td></td> <td>1</td> <td></td> <td>11</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>25</td> <td>4</td> <td>21</td> <td>4"</td> <td>23</td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td>						v		*		1		11	4							25	4	21	4"	23		-		_	
336 14000 1024 556 150 662 220 145 281 790 339 335 4.00 875 450 955 5.20 953 5.88 990 6.56 1024 7.22 1080 7.82 1085 855 854 800 954 560 972 6.31 1000 8.64 1131 9.33 88 980 6.56 1024 7.20 1074 8.44 1107 2.71 139 983 188 107 7.20 1074 8.44 1139 13.3 133 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td>RPM</td><td>BHP</td><td></td><td></td><td></td><td></td><td><u> </u></td><td>_</td></th<>								RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP					<u> </u>	_
395 16000 1170 711 220 762 244 1800 355 455 425 894 490 924 830 972 8.31 1005 8.80 1007 8.94 100 175 1126 924 810 175 1005 8.80 1007 124 974 1135 1137 1143 1217 1238 1234 1137		_			1.60	692	2.20							875	4.60														
444 18000 1316 787 297 834 343 8000 1316 787 297 834 343 8000 1316 787 297 834 343 1024 730 1000 <td>395</td> <td></td> <td></td> <td></td> <td>2.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>934</td> <td>3.60</td> <td></td>	395				2.20									934	3.60														
343 22000 1609 942 507 882 507 882 507 1025 1127 1	414	18000	1316											1060	8.08	1091	8.66	1124	9.74	1156	10.61	1187	11.49	1217	12.38	1244		1271	14.07
593 24000 1755 1021 6.45 1057 7.20 1083 8.07 1127 9.03 1159 1021 1121 1021 122 1243 12.22 1243 12.22 1243 12.24 1241 1257 1321 1322 1224 1241 1321 1321 1321 1322 1231 1231 1231 1231 1231 1321 1321 1323 1322 1231 1321	543	22000	1609		5 07		5.80	1020	6 63	1055	7 60	1090	8.58	1126	9.53	1158	10.50												16.18
642 28000 1901 1101 806 1134 886 1107 976 1197 123 1124 133 1301	593	24000	1755													1223													
Begin Begin <th< td=""><td>642</td><td>26000</td><td>1901</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.79</td><td></td><td></td><td></td><td></td><td></td><td>44</td><td></td><td></td></th<>	642	26000	1901																		8.79						44		
TOTAL STATIC PRESSURE COL CFM OUT. 3'' 3'' 3'' 4' 4'' 4'' TOTAL STATIC PRESSURE COL CFM OUT. 3'' 3'' 3'' 4' 4'' 4'' 4'' TOTAL STATIC PRESSURE 4CE STO LET 3'' 3'' 4' 4'' 4'' 4'' 4'' 4'' 5'' 5'' 5'' 6''' 6'' 6'''	691 741	28000	2048					1318	13 94				16.12	1402	17.32	1428		1453	20.00	147	1.34	1505	22.67	1530	23.95	1555	28	1579	26 59
Chi Chi <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TATIC</td> <td>DOCC</td> <td>1005</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td>										<u>.</u>						TATIC	DOCC	1005				_					L		
FACE STD LET 3% 34 4 4 4 4 4 57 57 147 147 147 147 147 147 147 147 147 14		-								r									6."	5	w	-	4	—	5	6		61	<u>,</u>
VEL AR VEL RFW FPF FPF FPF FPF FPF FPF FPF FPF FPF F									0.10	_			_			-										_			_
395 16000 1170 1200 152 1211 1232 1326 131 125 142 136 136 136 1220 136 1221 1233 1322 132 1325 1327 143 18.51 1440 19.38 1468 20.33 149721 133 1525 22.34 157 137 1620 18.77 1413 18.51 1440 19.38 1468 20.33 149721 133 1525 22.35 1554 23.46 75 1453 20.53 1478 21.61 1503 22.65 1532 24.67 157 167 1600 20.50 1478 21.61 1503 22.65 1554 23.46 75 1602 26.67 23.46 757 1600 20.50 1600 27.24 1613 23.25 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26			_		-			HPM	BHP	PIPM	DHP	HPM	one		one	PAPER.				1		<u> </u>		1		1	-		
395 10000 1130 1200 1130 15.75 1357 136.57 14.65 1340 1420 1430 1420 133 1525 22.35 1554 23.40 444 110000 1136 1249 113 1252 22.35 1554 23.40 454 10000 1465 1299 198 1326 15.91 1352 16.83 1379 17.80 1405 18.77 142 1972 13.162 22.82 15.52 23.53 1457 15.05 25.05 15.51 1352 16.02 26.4 543 20000 1465 1270 14.05 18.77 142 9.03 15.02 20.60 1502 26.05 1502 26.05 1502 26.05 1502 26.05 1502 26.05 1502 25.06 1502 25.06 1502 25.06 1502 25.06 1502 25.71 1578 26.82 1600 27.91 162.62								1262	13.17	1293	13.95	1325	14.82	135	6.73									1		1			
49 20000 1463 1229 1329 1320 16.81 1379 17.80 1405 18.77 1453 975 1453 20.63 1478 21.61 1503 22.62 1528 24.67 1578 25.7 1502 26.67 157.62 24.77 1502 20.63 1478 21.61 1503 22.62 1528 24.67 157.82 24.77 1502 20.63 1551 252 24.16 1551 252 24.67 157.82 24.77 1502 20.63 1551 252 24.67 157.82 24.77 1502 20.63 1551 252 157.26 251.72 25.97 157.82 24.77 156.22 26.97 157.82 24.77 156.22 24.15 157.26 251.72 25.97 157.82 24.77 156.22 25.75 157.82 24.77 156.22 25.75 157.75 25.77 157.82 26.77 156.22 25.75 157.75 25.77 156.72												1357	16.65	136	7.57														
543 22000 1605 1357 17 14 1380 18.01 1405 19.00 1455 21.03 1472 1503 23.06 1527 24.14 1531 25.22 1574 26.24 1574 26.25 1557 25.71 1576 26.82 1600 27.91 162.25 29.04 166.25 25.25 1557 25.71 1578 26.82 1600 27								1352	16.83	1379	17.80	1405	18.77					1478	21.61	1503	22.62	1528	23.63						
593 24000 1755 1414 1943 1440 2050 1464 2156 1466 2249 1509 2354 1532 24 25 1555 257 1 1578 2082 1600 2751 1624 20 642 26000 1901 1473 2194 1496 2305 1522 24 21 1566 25 36 1569 25 21 1591 27 67 1611 28 64 1632 29 79 691 28000 2048 1534 24 66 1558 25 89 1581 27 11 1664 28 33 1627 29 54						1380	18.01											1527	24.14	1551	25 22	1574	20.29	1394	21.24	0101	20 32	1039	23 41
642 28000 1901 14/3 21.94 1496 23.05 152 24 21 150 2 25 1 150 2 25	593	24000	1755																		\$1.91	1.054	22.04	[1	į
														1281	2101	1.011	20.04	1002		1		1		1					
	691 741	28000	2048			1558	25 89	1581	2/ 11	1004	\$0.33	1021	23.34			1				1		1		1		1			


TABLE 31-2 - No. 41M, N, P - 24.5" AF Fan

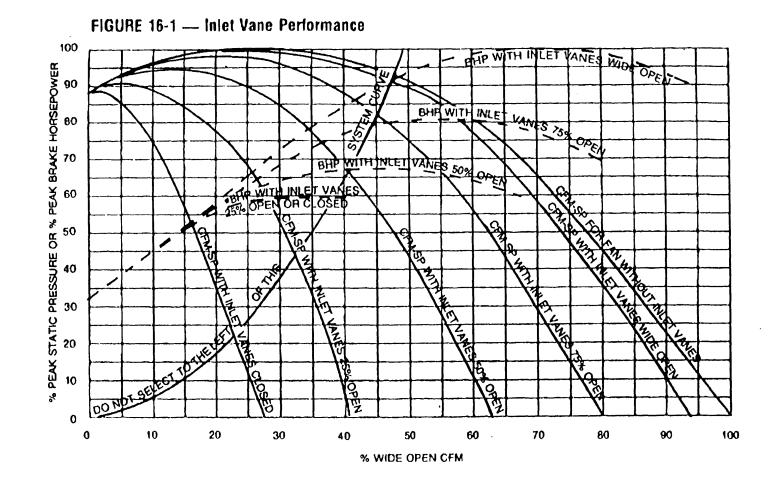

MULL				.,, .													-OF											
COL	CFM	DUT													_	PRESS	_						21				31	
FACE	STD	LET		•	v	2	*	•	1	l'	1		11	-	12		2		24	-	24				RPM	040	RPM	
VEL		VEL	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM					BHP			RPM		_	-		
		0 1024	-	2.00	876	2 56	925	3 15				4.35			1099				1176	6.81	1212	7.46	1248	8.12 9.66	1281	10 73	1310	3 43
		0 117		2 79			1019		1060		1100	5.42		2	1177	6.79	1214	0.03	1251	9.20	1362	10 57	1394	11.38	1426	12 17	1458	12.99
		0 131		3 78			1114		1154		1190	6.71		5 06	1349	9.90	1381	10 75	1413	11.62	1444	12.49	1473	13.32	1503	14.20	1534	3 D9
		0 146		5 01			1210		1249					4 6 2	1441	11 82	1470	12 74	1500	13 67	1529	14.61	1557	15.57	1585	16.53	1612	1. 13
		0 160			1275	9 17	1411	10 12	1442			12 02			1635	14 03	1561	15.03	1590	16 01	1617	17.02	1644	18 04	1670	19.07	1697	2 2
		0 175													1631	16.51	1658	17.61	1684	18 69	1709	19.75	173	2 83	1758	21.93	1783	25 03
		0 204														19.31	1753	20.48	1778	21.66	1803	22.84	182	27 48	1043	25 13	1965	20 95
		0 219	1670	15 47	1695	13 77 16.60	1721	17.76	1746	18.94	1772	20.14	1797	21 36	1824	22.47	1849	23 /1	18/4	24.90	1090	10.11	192	27.40	1.2-5	20.14		
				_											TATIC	PRESS	URF											
COIL	CEN	A OU							T		1		-	*				4	5	₩.	5	% "	1	5	6	Ve.''	6	5
FACE	STC	LE	3	14	3	4		4		Va		5	·			,							DPM	BHP	8PM	BHP	8PM	BHP
VEL	AIR	I VEI		BHP				8HP			_	BHP		BHP				_		DHP		Di li						
346	1400	0 102	4 1350	10.13	11	. 81	1418	11.53	1451	12.26	1484	13.01	1514	13 69	1546	14.45 16.46	1579	15.25	1667	18 13	1682	18 98	1711	19.84	1735	20 59	1764	21 46
395	1600		0 1415	11.83	14	59	1474	1321	1504		1	17.00	1627	17 04	1652	18 74	1 1678	1961	11705		11732	21.40	11756	22.30	11/84	23 15	11011	2. 01
444						16.86							1606	20 43	1722	21 35	1747	22.28	1 1772	2 22	1797	24.17	1818	25.04	1842	26 00	186/	26 97
	2000			15.96	1590	16.86	1607	1.0	11710	21 20	1745	22 29	1771	23.29	1796	24.30	1821	25 31	1845	26.32	1866	27.20	1889	28.21	1912	29 23	1	
	2400	00 160 00 175		21 17		22.13	1771	2. 7	1796	24.23	1821	25.30	1846	26.37	118/0	27.45	1894	28 48	1918	29.57								
642		00 190		24.16		25.29				27.55	1901	28.58	1924	29 72	1													
691			8 1895			28.67		29.88			1		1		1						1		1					

Figure 84: Trane CLCH Fan Tables - w/o Inlet Vanes (ref: Trane CS CLCH-2)

н

ABLE 79-1 -		1		r tilling		<u>, i</u>							·	· · · · ·			 	63.0	
4	UNIT SIZE	3	6	1	8	9	10	12	14	17	21	25	31	35	41	50	63	73	86
1	Area Sq. Ft.	3 46	6 94	7.70	8.91	11.10	11 10	13 40	15.90	18.80	23.30	26.60	34.90	38.90	46 70	54.30	69 30	79.30	92 4
FLAT	16×20	-	-	1	4	-	- 1	1	4	6	8	12	7	-	6	7	- 1	_	_
FILTER	16×25	-	-	- 1	- 1	-	4	2	_	-	2	-	7	14	-	14	10	-	-
BOX	20×20	-	-	2	-	4	- 1	2	-	-	-	-	-	-	12	_	_	6	1 ,
	20×25	1	2	-		-	-	-	2	-	-	-	-	-	- 1	-	12	18	21
	Area Sq. Fi	5 56	11 12	11 12	13 88	17 76	16 88	19 44	22 24	27 76	34 70	37 50	48 80	55 80	69 60	77 84	104 10	124 60	145
MED CAP	16×20	- 1	-	-	- 1	8	-		- 1	- 1	-	_	12	- 1	_	_	-	-	<u> </u>
FILT-BOX	16×25 .	2	4	4	-	-	6	2	8	-	-	6	8	-	_	28	-	-	- 1
COMB & DEL	20×20	-	-	-	-	-	- 1	_	-	-	_	~	_	-	-	_	_	_	
ILT-MIX BOXES	20×25		-	-	4	-	-	4	-	8	10	6	-	16	20	_	30	36	42
	Area So Fi	694	13 92	1540	16 70	22 20	20 80	24 80	27 10	35 40	43 70	45 90	61.00	77 84	88 16	97 50	136 22	145 10	170
IIGH CAPACITY	16×20	- 1	-	2	-	-	-	6	-	_	_	-	-	-	-		-	_	_
· FILTER	16×25	-	-	-	-	-	-	-		-	-		-	28	32	35	49	_	_
BOX	20 × 20	-	-	4	6	8		_	6	9	12	9	12	_	-	-	_	_	
	20×25	2				1	e	1 2	1 n	1 .			-				1	42	49

49

92 97

42

1111

S

1 G

М

A

Ρ R

М A

TABLE 79-2 - Filter Air Pressure Drop (Inches wg)

3 17

ROLL FILTER Area Sq. FI

HIGH

EFFICIENCY FILTER BOX

Area Sq F1 24 × 12 24 × 24 20 × 20 24 × 20

FULL COIL FACE	VELOCITY (FPM)	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
FLAT FILTER BOX	TA Lo Vel Perm Hi Vel Perm	02 01 01	04 02 02	07 03 03	10 04 04	13 05 06	17 06 08	20 08 09		- - 13	-	-	_		-	-		-
MED CAP FILT-BOX COMB & DEL FILT- MIX BOXES	TA Lo Vel Perm Hi Vel Perm	02 01 01	03 01 02	05 01 03	07 02 04	09 03 05	11 04 06	14 05 07	17 06 09	20 07 10	23 09 12	27 10 13			-		-	-
HIGH CAPACITY FILTER BOX ROLL FILTER	TA Lo Vel Perm Hi Vel Perm	01 01 01	02 01 01	03 01 02 02	05 02 03 03	07 02 04 06	09 03 05	11 04 06	14 05 07 21	17 06 09 28	20 07 10	24 09 12	28 10 13	32 11 15	37 - 13 17	 15 19	- - 21	- - 24
FILTER FACE VEL		200	250		300	350		100	450		00	550	- 60	0	650	700	1 5	750
BAG FILTER EF 55 85 95		06 11 14	09 15 18		11 18 24	14 12 29		18 27 34	21 30 39	3	25 15 15	29 39 50	3	3	38 47 63	43 52 69		50 60 75
DISPOSABLE PANE	EL PREFILTER	08	09		12	14		18	22	2	25	28	3	3	39	45		50

 4
 0

Note: * Filter pressure drop based on clean filters. Add 0.2 to 0.5 in wg (depending on application) for loaded filter. For high efficiency bag filters inal resistance is 1.0 in wg For diffuser section for final filters use 0.3 in wg

TABLE 79-3 - Accessory Air Pressure Drop (Inches wg)

FULL COIL FACE	E VELOCITY (FPM)	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	100
	Mixing Box	01	01	02	03	04	05	06	07	09	10	11	13	15	17	19	21	23
DAMPERS	Face & Bypass	01	02	03	04	05	06	07	08	10	12	14	16	18	20	22	24	2
	Multizone	04	06	06	10	13	16	19	23	27	31	37	43	-	_	-	-	<u>-</u>
	#22	05	10	20	25	37	47	57	69	83	97	11	13	1.5	16	1.8	21	2
PRESSURE	#40	02	04	06	06	10	13	17	21	25	29	34	40	45	51	47	64	7
EQUALIZING	#6C	01	02	03	04	06	08	10	12	15	18	21	24	26	29	33	1 27	
BAFFLES	#70	01	01	02	03	04	05	07	08	09	10	14	14	16	18	20	22	2
SINE WAVE	ELIMINATORS	02	03	04	06	07	09	11	11	16	19	22	25	28	32	37	42	4
DISCHARC	SE PLENUM	01	01	01	02	03	05	06	07	09	10			17				
. F					UL.	05	05		0/	0.9	10	12	14	17	.19	22	25	2

NOTE: For mixing box dampers pressure drop low and ultra low leak is same as standard

TABLE 79-4 --- Nozzie Air Pressure Drop (Inches wg)

								FAN OUT	LET VELO	CITY FPM							
NOZZLES	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2200	2400	2600	2800
# 1	09	12	15	18	21	25	29	33	38	43	49	54	60	72	85	10	12
#3	06	08	10	12	15	17	20	22	25	28	32	36	40	48	58	68	79
#5	07	09	11	13	16	19	22	25	28	32	36	40	44	54	64	75	87
#6	01	01	02	02	03	03	04	04	05	05	06	07	08	10	12	14	16
•7	01	01	01	01	02	02	02	02	03	03	04	04	05	07	08	09	10
30 * SWIVEL	04	05	06	07	09	11	13	14	16	18	20	22	25	30	37	.43	53
90 SWIVEL	06	08	10	12	14	16	19	21	24	27	31	34	38	46	55	65	75

.

Figure 87: AH1 High Capacity Filter Air Pressure Drop (ref: Trane DS CLCH-1/June 81)

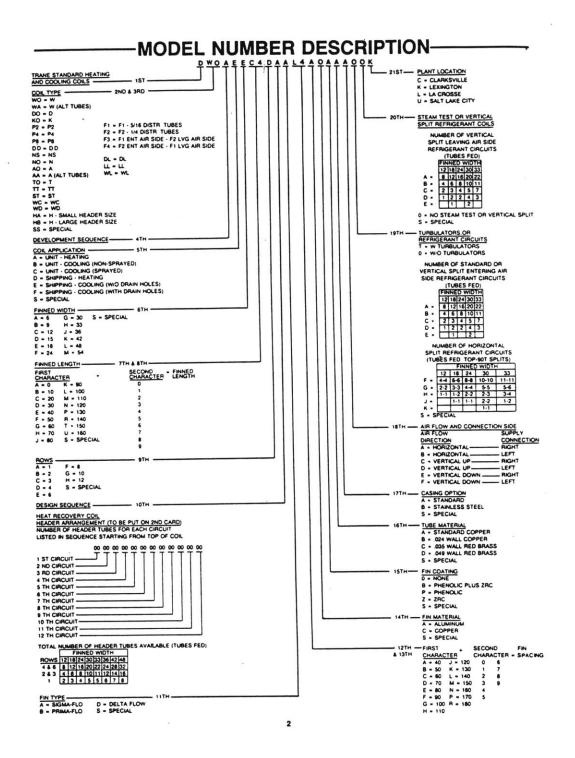


Figure 88: AH1 Cooling Coil Model Number Key Code (Trane: Coil-IM-3A/Jan 85)

Trane chilled water cooling coils are identified according to specific types (W, WD, D, DD, K, LL, WL, DL, P2, P4 and P8), fins per foot, widths and lengths.

spect each coil for any in-transit damage. Claims for any shipping damage must be filed with the delivery carrier.

Chilled water coils are shipped assembled and packaged. In-

General data is given in Table 1 and Figures 1 to 7.

TABLE 1 - General Data

		END	FINNED	FINNED	FINS	TUBE	A PRESSUR	IDARD OPERATING
OIL TYPE	ROWS	CONNECTION *	WIDTH	LENGTH	PER FOOT	MATERIAL	PSI TANK	TEMP (F)
w	2,3,4,6, 8,10,12	Same	12,18,24 30,33"	12 Thru 144"	Aluminum 80-168	5/e" OD Copper (Std) RED BRASS (0.035)	200	220
	100		36,42,48"	12 Thru 168"	Copper 80-144	Red Brass (0.049)		
LL	4-6-8		12,18,24	12	Aluminum	1/2" OD		
WL	2-4-6-8	Same	30,33,36,	Thru	80-168	Copper	200	220
DL	2-4-6		42,48,54	168"	A1	**** 00		
к	2,4,6, 8,10,12	Same	12, 18, 24, 30,	12 Thru 144''	Aluminum- 80-168 Copper-	%" OD Copper(Std) Red Brass (0.035)	200	220
	3	Opposite	33"		80-144	Red Brass (0.049)		
P2	4,6	Same	12, 18, 24, 30"	12 Thru 120"	Aluminum- 80-168 Copper- 80-144	⁵ 4" OD Copper(Std) Red Brass (0.035) Red Brass (0.049)	200	220
P4	2,4, 6,8	Same	12, 18, 24, 30"	12 Thru 120''	Aluminum- 80-168 Copper- 80-144	%" OD Copper(Std) Red Brass (0.035) Red Brass (0.049)	200	220
P8	4.8	Same	18, 24, 30"	12 Thru 120"	Aluminum- 80-168 Copper- 80-144	%" OD Copper(Std) Red Brass (0.035) Red Brass (0.049)	200	220
D	4,6,8, 10,12	Same	12, 18, 24,	12 Thru	Aluminum- 80-168	%" OD Copper (Std) Red Brass	200	220
	3 .	Opposite	30, 33"	144"	Copper- 80-144	(0.035) Red Brass (0.049)		
DD	4,8,12	Same	18, 24,	12 Thru	Aluminum- 80-168	%" OD Copper(Std) Red Brass		
	6,10	Opposite	30, 33"	144"	Copper- 80-144	(0.035) Red Brass (0.049)	200	220
WD	6,8, 10,12	Same	18, 24, 30, 33"	12 Thru 144"	Aluminum 80-168 Copper 80-144	5/a" OD Copper (Std) Red Brass (0.035) Red Brass (0.049)	200	220

Figure 89: AH1 Cooling Coil Tube Specification Material Data (Trane: COIL-IM-3A/Jan 85)

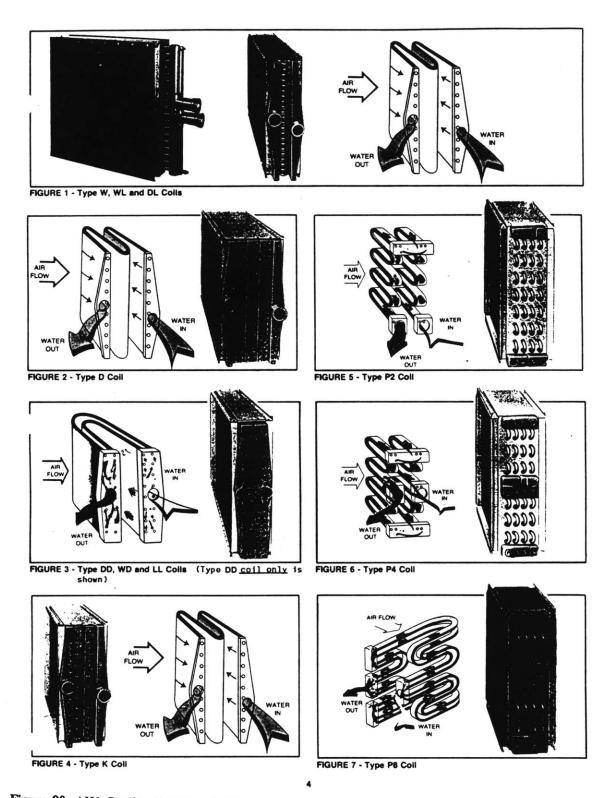


Figure 90: AH1 Cooling Coil Pictorial Representation (Trane: COIL-IM-3A/Jan 85)

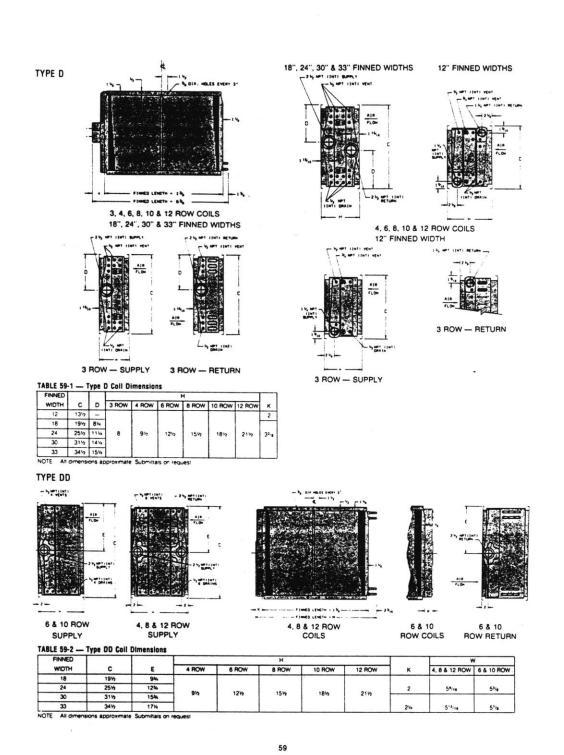
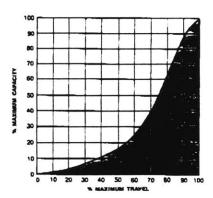


Figure 91: AH1 Cooling Coil Dimensions (Trane: COIL-DS-1/Jun 85)

	THE C	.D.S. (HILLE	WATER	R COIL	SELECT	TION PR	OGRAM			
For ex	clusive	use by	7: C.I	о.s. ми	ARKETIN	IG	a.				
COMMENTS : A	SI MECH NIT NARK DES NI COIL	IANICAL IMONE PARAME	ROOM	ARIFIC	ATION			VERSI RUN DA	TE : 7,	/24/199	
INPUT DATA:	ELEVA						LING FA				* * *
TAG	SCFM	AHU MAX FV	/ EDB	EWB	EWI	ુ ક	ID MAX APD	WPI) FPI	TURI	BS
	18590.										Ŷ
STACK QTY WIDT 1 - 30.0 2 - 24.0	NOMINAL FINNED TH LENG	UNIT TH TYPE	COII TYPE	E ROV	N FPI	FI TY	N PE MBH	GI	PM WI	rr tv	чт
1 - 30.0 2 - 24.0	0 X 120 0 X 120	.0 P741	_ D		144	SF	· · ·	74.	0	. 024	40
OUTPUT DATA:		STA					/MIN): .FT.):		286 65	. 0	
SELECTIC	N RUN:		2			-	6		8		
DIAGN COII FIN	IOSTIC: TYPE: ROWS: TYPE: FPF: TURBS:										
SENSIBI	LDB :	58.2 53.9 481.1	55.9 52.9 528.2	55.3 52.7 540.6	53.3 51.8 582.3	51.8 51.2 612.4	50.5 50.4 639.0	50.3 50.2 641.9	49.6 49.5 655.4	49.7 49.6 654.3	49.2 49.1 665.6
VELOCITY (F)	GPM: WTR: C/SEC):	74.0 13.0 1.6	74.0 14.3 1.6	74.0 14.6 1.6	74.0 15.7 1.6	74.0 16.6 1.6	74.0 17.6 1.6	74.0 17.8 1.6	74.0 18.6 1.6	74.0 18.6 1.6	74.0 19.2 1.6
APD(IN WPD(F)	H2O): H2O):	.17 1.2	.17 3.3	.23 1.5	.23 4.2	.35 2.2	.36 6.0	.48 2.9	.49 7.8	.61 3.5	.62 9.6
WET WEIGH VOLUN	1E-GAL:	24.4	24.4	32.3	32.3	48.1	48.1	63.9	63.9	79.7	79.7
	TO DIA										

Figure 92: AH1 Cooling Coil Simulation Performance Report (ref: Trane CDS Marketing)

Bronze Body	
Two Way Single Seat	
Bronze Trim	
3/42 Sizes	


□ ideally suited to modulating and on-off service of liquids and gases below 50 psig

- meets ANSI Class IV shut-off standards (maximum leakage at closure is .01% of full flow)
- equal percentage flow characteristic provides excellent throttling over wide flow ranges

Specifications

Maximum Service	Steam Differential 50 PSI Liquid Differential 50 PSI Inlet Temperature 300°F
Body Material	Bronze
Connections	Screwed
Sizes	3/42
Rating	3/4"-1" ANSI Class 125
:	1-1/4-2- ANSI Class 250
Trim Material	Bronze
Flow Characteristic	Equal %
Rangeability	35:1
Shut Off Rating	ANSI Class IV

Flow Characteristic

Equal percentage is the characteristic most commonly used in process control. The change in flow per unit of valve stroke is directly proportional to the flow occurring just before the change is made. While the flow characteristic of the valve itself may be equal percentage, most control loops will produce an installed characteristic approaching linear when the overall system pressure drop is large relative to that across the valve.

Figure 93: AH1 Cooling Coil Control Valve Specifications (Powers Process Controls)

INC POWERS

FEATURES

MCC Powers Flowrite VF 591-SD Single Seat Valves are designed to provide modulating or 2-position control of steam, hot or chilled water, and other fluids. The design features a high lift stem and a characterized poppet for both high capacity and good modulating control. Tefloncoated asbestos packing facilitates quick response and reduced maintenance.

The unique valve trim design provides an alignment feature which allows close matching of the throttling plug and port for excellent rangeability. A replaceable disc is furnished to provide tight shutoff. The seating design provides controlled compression of the shutoff disc with the additional back-up of metal to metal seating.

Available in normally open (N.O.) or normally closed (N.C.) acting models the valve is furnished with an adjustable actuator, to facilitate sequencing of valve operation, and to obtain maximum close-off ratings. Available options include valve lubricator, and valve positioner.

APPLICATION

Flowrite VF 591-SD single seated valves are generally recommended for steam, hot water and chilled water applications. They are particularly recommended for installations requiring tight shutoff, quick response, and good rangeability. Steam and water convertors, duct heating coils, instantaneous heaters, chilled water control and humidifiers are typical examples of applications for these valves.

SPECIFICATIONS

Physical

Valve sizes
Body material Bronze
Body rating
300 psi @ 350°F (1-1/4", 1-1/2", 2" sizes)
Style Single seat
TrimBronze
Close-off disc EPT (Standard
Action Direct (N.O.) or Reverse (N.C.
Stroke
1" (For 1-1/4", 1-1/2", 2" valves
Temp. range 0 - 300°F (-18 to 167°C)(EPT disc
Spring adj 2-7 to 9-14 psi, (13.8-48.2; 62-96.5 kPa
Act diaphragm area
Operation Air or water operated
Operation
Max. press. at dia 35 psi, (241 kPa) (air or water

FLOWRITE VF 591-SD SINGLE SEAT TIGHT CLOSING VALVES 3/4"-2" SCREWED BRONZE VALVE BODIES

Technical Instruction VF 591-9 January, 1981

Operating

Max. inlet pressure. 30	Water O psi @	er 150 psi @ 350°F (3/4", 1" size: @ 350°F (1-1/4", 1-1/2", 2" size:	S)
Flow characteristic		Steam 50 ps	
Rangeability			1
Hysteresis		0.6 psi, (4.1 kP;	-/

Rec. max. press. diff.					Water 35 psi, (241 kPa)
Rue. man. prost		 1			Steam 50 psig

ACCESSORIES

Valve stem lubricator	No. 590-184A (Water or steam) 0. 590-184E (Natural or mfg. gas)
Lub. for stem lubricator	. No. 590-166 (water or steam) No. 590-150 (Naturation mfg. gas)
Valve positioner kit	
Positioning Relay	No. 147-2000
Jum pos moleaul	

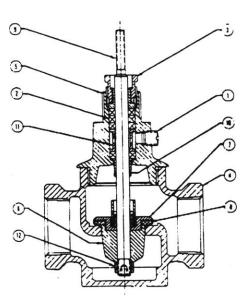
OPERATION

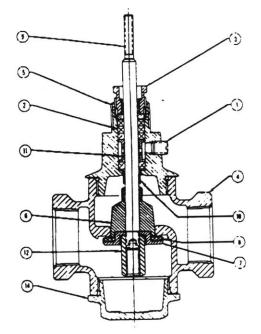
The actuator spring provides the necessary force to hold the stem in the raised or normal positions in the stem will start its downward stroke whenever, massed at it wassure applied against the actuator displayer and air wassure applied against the actuator displayer and an exceeds the holding force of the spring. A further, the same is control air pressure will initiate a continued de masset travel of the valve stem until the valve has control of the start the store. The air pressure change to initiate full stem the store of the source of the store of the source of

1.5. 1.000 รีสาวารี
 1.5. 1.000 รีสาวารี

MCC POWERB & UNIT OF MARK CONTROLS CORPORATION . 3400 Oakton Street, Skokie

Figure 94: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD


Technical Instruction 591-9 Page 5


FLOWRITE SINGLE SEAT TIGHT CLOSING VALVES

NO.	DESCATTION	TTPE	3.4*		1-1/4-	1.03	1.	NO BEO'D.	PATERIAL	ITEM NO.	PERMITTON	TTPE	-	r•	+ve	1-1/7	r		-
•	Pige Ping, 1/8*	0.A.						1:	Brank Brank	•	Yalar Base	0.A.		791-776 791-776			30L770	:	EPT EPT
1	Posting Bang	D.4.	10.10		780-191 780-191	100-191		1:	Terlas-	•	Value Seen according		791-786 791-786		101-700 191-700	191-788 191-788		;	
,	Potting Grand Assertably	0.A. 8.A.	198-16) 198-761			10L781 191-71			Bannan Banan	10	See Brang	0.A. 1.4	301-765 101-765					:	
•	raite Batt	0.A. L.A.	301-730 391-133			171-71) 191-158		1:	=		Failing Spece	8.A.	10 1-700 10 1-700			501-700 501-700		1	
'	-	B.a.	191-360 191-360		191-762 191-762	391-761 391-761		1:	=(17	2	D.A.	9			011-143 391-001		:	b. Jaret
•	Toronay Pro	0.A. 3 a.		101-146 101-186		101-708 701-708	101.100 101-100	;		-15	Imp Berry	100	-	-	•	-	191-099	•	-
•	Telm Diar Hunter	D.A.	101-770		101.772 WL 773		101-TTe		=	14	C -	-	474-130	79 a-data	791-782	-	-		-

Ta

Coment # ER NOI

DIRECT ACTING VALVE

REVERSE ACTING VALVE

FIGURE 20 3/4" - 2" BRONZE VALVE BODIES

	PART NU	MBERS (By	Valve Size)	
3/4"	1-	1-1/4"	1-1/2*	2*
591-731	591-732	591-733	591-734	591-735
591-741	591-742	591-743	591-744	591-74
	591-731	3/4" 1" 591-731 591-732	3/4" 1" 1-1/4" 591-731 591-732 591-733	591-731 591-732 591-733 591-734

Figure 95: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD (continued)

MAXIMUM WATER OAPACITIES - U.S. GALLONS PER MINUTE

SIZING and SELECTION

Application Engineering form AE-1 explains the procedure for proper valve sizing. Steam and water capacity tables and maximum differentials (for closeoff) are shown below in Tables 1, 2, and 3.

						PRE	ISSURE I	IFFFF	NTIAL - I	MSU			
VALVE SIZE (loches)	••1	3	,	•	,	6	•	10	11	10	11	94	60
1/6			30	11	13	13	U	19	29	n	м	33	M
۰.	10	10	17	20	11	15	28	11	39	43	30	34	63
1-1/4"	16	21	20	н	н	40	43	53	42	73	80	-	101
1.1/1	20	19	33	40	41	49	57	63	n	89	100	110	136
r	14	14	-	16	•,	91	107	120	147	170	190	100	260

591-9 Page 0

Ś

Table 3

STEAM CAPACITIES - POUNDS PER HOUR

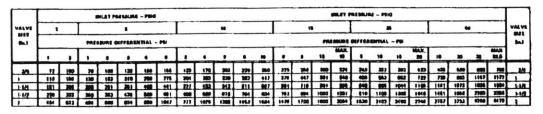
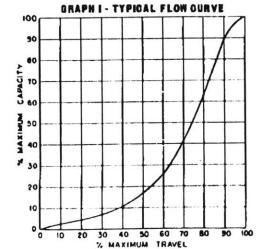



Table 4

MAXIMUM PRESSURE DIFFERENTIAL* - PSI FOR GLOSE-OFF

VALVE SIZE (Inches)	NORMALLY OPEN				NORMALLY CLOSED	
	PRESSURE ON DIA PHRAGM					
	71 PSIG		18 PSIG		0 PSIG	
	J-8 Spring	10-11 Spring	1-0 Spring	10-13 Spring	J-8 Spring	10-15 Spring
\$/4*	171	125	125	03	8)	125
1.	125	125	125	31	31	125
1-1/4"	250	197	157	33	33	157
1-1/2"	207	189	113	25	25	
	120	67	67	13	15	67

. Table values allow I psi for packing friction. Table 5

Figure 96: AH1 Cooling Coil Control Valve - Powers Flowrite VF 591-SD (continued)

323

MCC POWERS

VF 591-9 Page 8

S' DIAMETER FLOWRITE ACTUATORS

	ACTUA	TOR ASSEM	BLY PART	NOS. (By V	alve Size)
ACTUATOR ASSEMBLIES	3/4"	1"	1-1/4*	1-1/2"	2*
Adjustable Actuator	672-285	672-285	672-286	672-286	672-286
	Table 7				

NO.	DESCRIPTION	PART NO.	NO. REQ'D.	MATERIA
ı	Drive Screw. No. 2 Type "U" (not alwwn)	030-939	•	Sceel
,	Cap Screw, 3/16"-18x7/8" Lg.	035-129K	6	Steel
	Hen Nut, 3/36"-18x9/16"	041-131K	6	Steel
	Sering	1 672-264	1	Sceel
	Piston Plate & Stam Assembly	672-295* 872-420	1	Seeci
		- 17 (TRA)	1	Alum.S. St
•	Std. Diastrogen Heavy Duty Diastrogen	672-351	1	Syn. Rubb
10	Thrust Bearing Retainer	672-437		Sys.Rubb
104	Thrust Weather	672-438	2	Sevel
11	Upper Honning	672-140	1	Aluminum
12	Lover Housing	672-141	1	Aluminum
13	Lower Housing Extension	672-142	1	Cast Ires
14	Adjustment Strev Assembly	672-145	1	Steci
16	Spring Sone	672-148	1	Sceel
17	"Feny" Cap Screw, 5/16"-1823/4"	672-376	6	Serel
18965	See Serer, 3/16"-18:1"	035-316	1	Seeei
1985	Set Screw Plug	672-136	1	Copper
20	Nut. 1/4"-2015/16"	041-125	2	Breas

"For S" Powerswake value mp, 1" struke.

IS: Not Shows.

Table 8

PRODUCT NUMBERS (Valve Assembly)

				PROD	UCT NUMBE	IRS (By Pipe	Size)			
VALVE	3/4	•	1	•	1-1/	4.	1-1	/2*	2	
ASSEMBLY	DA	RA	DA	RA	DA	RA	DA	RA	DA	RA
Adjustable	591-7870	591-7875	591-78 71	591-7876	591-7872	391-7877	591-7873	591-7878	591-7874	591-7875

Table 9

Control devices are combined to make a system. Each control device is mechanical in nature and all mechanical components must be regularly serviced to optimize their operation. All MCC Powers brench offices offer service contracts that will insure your continuous, trouble-free system performance.

For Further Information Contact Your Nearest MCC Powers Representative

Figure 97: AH1 Cooling Coil Control Valve - Powers 8" Pneumatic Actuator

FLOWRITE SINGLE SEAT TIGHT CLOSING VALVES

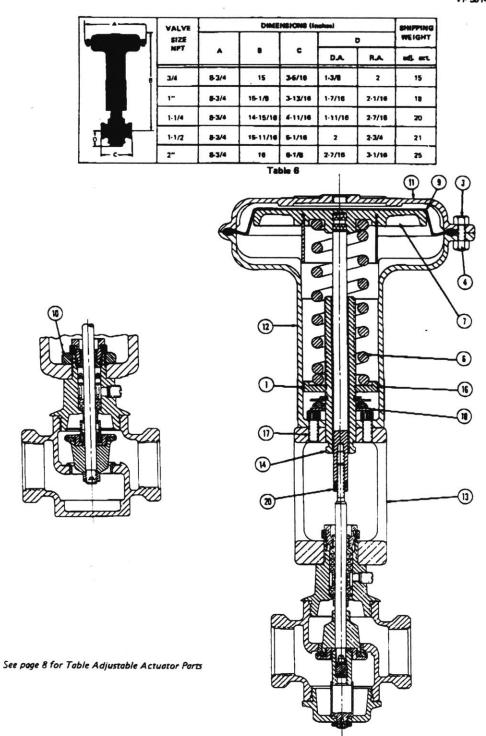


Figure 98: AH1 Cooling Coil Control Valve - Powers 8" Pneumatic Actuator (continued)

12

Standard features include:

- MODELS: 35 lb.-in. torque, SPDT Floating Series 60, Se-lectable 45°, 60°, and 90° stroke in both CW and CCW directions
 - ML6161A-90 second, 7 minute timing models in-cludes auxiliary potentiometer drive for use with field-addable feedback potentiometer. Includes minimum position adjustment set screws for CW or CCW operation. Includes 4074ENH bag assembly.
 - -90 second, 7 minute timing models. Mod-ML6161B els available with minimum position adjustment set SCIEWS

ELECTRICAL RATINGS:

INPUT VOLTAGE: 24 Vac + 20% - 30% 50/60 Hz. POWER CURRENT CONSUMPTIONS (MAXIMUM):

ML6161A,B	WATTS	AMP	VA
90 sec / 7 minute	2.0	0.085	22

AUXILIARY SWITCH RATINGS: Selective N.O. or N.C. not simultaneous

TEMPERATURE RATINGS: Ambient 32° F to 125° F 10° C to 52° CL

Shipping and Storage -20" F to 120" F [-29" C to 49" C]. HUMIDITY RATINGS: 5% to 95% RH Noncondensing. TORQUE RATINGS:

	TORQUE
Running	35 bin. (4.0 N-m)
Breakaway	35 lbin. (4.0 N-m)
Stall	45 bin. (5.0 N-m) minimum
	60 kbin. (6.8 N-m) maximum

MOTOR TIMINGS AT 60 Hz (nominal):

- 90 Second Gear Train 90° - 90 sec.
 - 60° 60 sec.

. (O) 1 %

- 45º 45 SPC.
- 7 Minute Gear Train
 - 90° 7 min, 60° 276 sec
- 45° 210 sec

DAMPER SHAFT MOUNTING:

- · Suitable for mounting onto 3/8" to 1/2" square or round damper shafts secured by two 1/8" allen screws. • Minimum damper shaft (ength 1 1/2" [35mm - 38mm].
- · Motor may be mounted with motor shaft in any position

APPROVALS: U.L., C. S. A. listing pending.

- ACCESSORIES:

- CCESSORIES: 201052A One Auxiliary Switch. 201052B Two Auxiliary Switch. 201052C Three Auxiliary Switch. 200976A 0 to 500 OHM Auxiliary Potentiometer. 4074ENG Bag Assembly Includes stop pin. shaft adaptiv and min costion scraw
- adaptor and min. position screw. 4074ENH Bag Assembly - Includes stop pin
- and shaft adaptor.
- 4074ENF Bag Assembly Includes shaft adaptor. 4074ENK Bag Assembly Includes 1/4" minimum position screw.

(continued on page 3)

O BDEFINICE NEORMA 6

WHEN PURCHASING REPLACEMENT AND MODERNIZATION PRODUCTS FROM YOUR AUTHORIZED DIS-TRIBUTOR, REFER TO THE TRADELINE CATALOG OR PRICE SHEETS FOR COMPLETE ORDERING NUMBER

IF YOU HAVE ADDITIONAL QUESTIONS, NEED FURTHER INFORMATION, OR WOULD LIKE TO COMMENT ON OUR PRODUCTS OR SERVICES, PLEASE WRITE OR PHONE:

- 1. YOUR LOCAL HONEYWELL BUILDING CONTROLS DIVISION SALES OFFICE (CHECK WHITE PAGES OF YOUR PHONE DIRECTORY).
- 2. BUILDING CONTROLS DIVISION CUSTOMER SERVICE HONEYWELL INC., 1985 DOUGLAS DRIVE NORTH MINNEAPOLIS, MINNESOTA 55422-4386 (812)542-7500

(IN CANADA-HONEYWELL LIMITED/HONEYWELL LIMITEE, 740 ELLESMERE ROAD, SCARBOROUGH, ONTARIO MIP 2V9) INTERNATIONAL SALES AND SERVICE OFFICES IN ALL PRINCIPAL CITIES OF THE WORLD.

Figure 99: AH1 Cooling Coil Control Valve - Honeywell Direct Coupled Actuator ML6161

Appendix K - RF1: Trane Centrifugal Fan FAN-IM-4

•

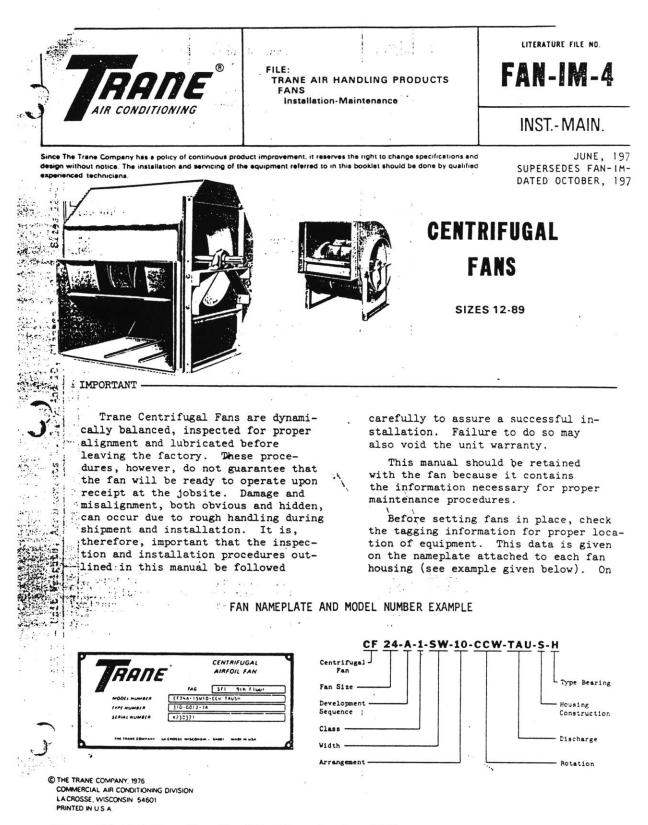
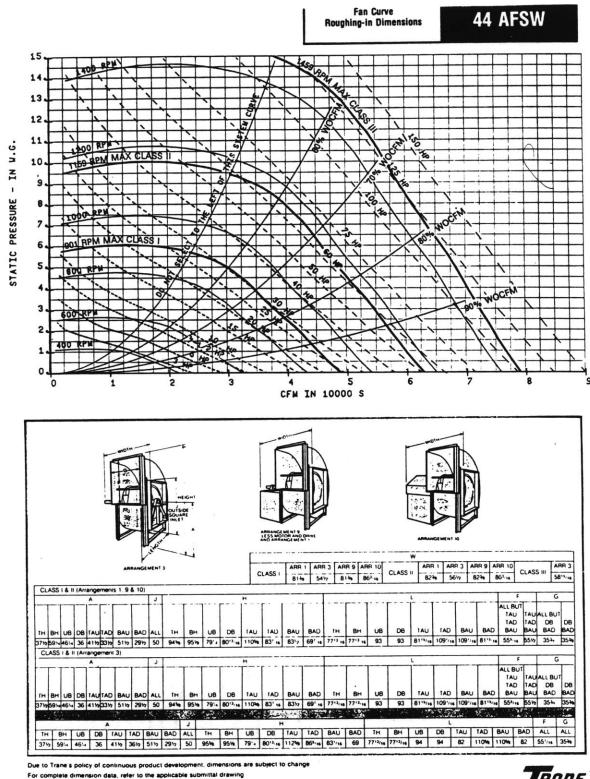



Figure 100: RF1 Trane Centrifugal Fan Nameplate Data Guide

RATE

Figure 101: Trane 44 AFSW Fan Curves - w/o Inlet Vanes (ref: Trane FAN-DS-6)

Wheel diameter, $44\frac{1}{2}$ inches Outlet area, 13.48 square feet Blast area, 11.15 square feet Tip speed, FPM = $11.67 \times RPM$

Pressure class limits:

Class	Maximum RPM
1	901
11	1159
TI	7.59)

Check motor starting torque for motors less than 3 HP. (see Page 14)

CFM	OUT											TOTA	STAT	C PRE	SSURE										
STD.	LET	W		W			4"		-	11			h ⁻	14	-	2		21	_	21	_	-	4"		1-
AIR	VEL	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
12000	890					357 374	1.9	391 406	2.4	428	3.0	465 471	3.7	505	4.9										
15000	1112			360	2.0	392	2.5	424	3.2	451	3.8	481	4.5	513	5.3	542	6.1	571	7.0	12.72	1				
16500	1224	368	1.9	383 404	23	414 435	2.9	442	3.6	470	4.3	495	5.0	523 537	5.8 6.4	550 562	6.6	576	7.4	602	8.3	628	9.3	659	
19500	1446	393	2.3	427	3.1	458	3.9	484	4.1	509	4.8	532	5.7	556	7.1	576	7.2	585 599	8.0	611 621	9.0	634	9.9	667	10.9
21000	1557	420	2.8	451	3.6	479	4.4	505	5.3	530	6.1	552	7.0	573	7.8	595	8.7	614	9.6	635	10.5	656	11.5	677	12.5
22500 24000	1669	447	3.3 3.9	475 503	4.1	502 526	5.0 5.7	529 551	6.0	551 573	6.9	574	7.7	593 616	8.6	613	9.5	634	10.5	651	11.5	671	12.5	691	13.5
25500	1891	500	4.5	529	5.5	551	6.5	574	6.7 7.5	500	7.7	596 619	8.6 9.5	636	9.5 10.5	633 656	10.5	672	11.5	671 690	12.5	690 708	13.6	706	14.6 15.8
27000	2002	527	5.1	554	6.2	575	73	597	8.3	621	9.4	641	10.5	661	11.8	679	12.7	695	13.7	711	14.8	727	15.9	744	17.0
28500	2114	553	5.8	579	7.0	600	8.1	621	9.2	643	10.4	665	11.6	682	12.7	701	13.9	718	15.0	734	16.1	748	17.2	763	18.4
31500	2336	580 607	6.7 7.7	604 630	8.0	627	9.2	845 670	10.3	665 688	11.5	686 708	12.7	707	14.0	722	15.1	740 762	16.4	757	17.6	771	18.6 20.3	785	19.8
33000	2448	634	8.7	655	10.0	677	11.4	694	12.6	713	13.9	730	15.2	750	16.5	789	17.9	784	19.2	800	20.6	816	21.9	831	23.2
34500	2559	660	9.8	681	11.2	702	12.6	722	14.1	737	15.2	754	16.6	772	18.0	791	19.4	809	20.9	822	22.2	838	23.6	853	25.0
36000 37500	2670	687 714	11.0	707	12.5	727	14.0	746	15.5	761 789	16.7	778	18.1 19.7	794	19.5	812	21.0	830 852	22.5	847 868	24.0	859 885	25.3	874 896	26.8
39000	2893	741	13.8	760	15.3	778	16.9	796	18.5	814	20.2	827	21.4	843	23.0	856	24.4	874	26.0	890	27.7	906	29.3	922	31.0
40500	3004	768	15.3	787	16.9	804	18.5	822	20.2	839	21.9	852	23.3	867	24.8	881	26.4	896	28.0	912	29.6	928	31.3	943	33.1
42000	3115	795	16.9 18.7	813	18.6	830 856	20.3	847 873	22.0	864	23.8	880 904	25.5	891 916	26.8	906 930	28.5	919	30.1 32.3	935 956	31.8	949 972	33.5 35.8	964 986	35.2
45000	3338	849	20.5	867	22.3	882	24.1	898	26.0	914	27.8	929	29.7	944	31.6	954	32.9	968	34.7	981	36.4	993	38.1	1009	40.0
46500	3449	877	22.5	893	24.4	909	26.2	924	28.1	939	30.1	954	32.0	969	33.9	979	35.4	992	37.2	1005	39.0	1017	40.7	1030	42.6
																								0	2.1
CFM	our											_	LSTAT	C PRE	SSURE										
STD.	LET	3		31			-	41		5		5	-	6		6	_		7.	_	<i>b</i> "		3"		5 "
AIR	VEL	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
20000	1483	670 681	12.0	714	14.0	758	16.3	805	19.6																
23000	1706	695	13.9	734	16.0	773	18.4	811	20.6	849	23.2	887	25.9												
24500	1817	712	15.0	748	17.2	784	19.5	821	22.0	856	24.4	892	27.1	928	29.9										
26000 27500	1928	732 750	16.2	763	18.5	798	20.8	832	23.3	866	25.9	902	28.7	934	31.2	968	34.2	1001	37.2	1038	41.9				
29000	2151	770	18.8	801	21.3	833	23.9	860	26.4	891	29.0	822	31.8	952	34.6	984	37.7	1013	40.4	1043	43.5	1074	46.8	1105	50.2
30500	2262 2373	793	20.3	820 842	22.9	851	25.5	880	28.2	906 926	30.8	935 950	33.6	964 978	36.5	993	39.4	1024	42.6	1054	45.9	1080	48.7	1109	52.0
33500	2485	837	23.8	865	26.3	889	28.0	916	31.8	944	34.8	971	37.8	994	40.6	1020	43.6		46.8	1073	47.8	1091	51.2	1116	54.1
35000	2596	860	25.6	887	28.4	912	31.0	936	33.9	962	36.8	989	39.9	1014	43.1	1035	46.0		49.1	1086	52.4	1112	55.8	1137	59.2
36500	2707 2818	881 903	27.5	909 932	30.4	935	33.2	958 961	36.1 38.4	961	39.1	1006	42.2	1032	45.4	1056	48.7	1076	51.7	1101	55.0 57.8	1125	58.4	1150	61.8
39500	2930	929	31.7	953	34.7	980	38.0	1004	40.9	1025	44.0	1046	47.1	1068	50.4	1092	53.8		57.4	1138	60.9	1156	64.1	-	
41000	3041	950	33.8	975	37.0	1001	40.4	1025	43.6	1048	46.7	1068	49.9	1089	53.2	1111	56.6		60.2	1156	63.8	2-1	-	1007	
44000	3152	972 994	36.0 38.4	1001 1022	42.1	1022	42.8	1048	46.4	1071	49.8	1091	52.9	11111	56.2	1131	59.7 62.9	1152	63.2	136					11.
45500	3375	1016	40.9	1044	44.7	1071	48.6	1090	51.9	1115	55.7	1136	59.3	1157	62.8	110	ines.	10.0	1.14	12.1					
47000	3486	1038	43.5	1066	47.4	1092	51.3	1119	55.5	1136	58.8	1159	62.7	110		NUM:	120	Eir/		1934		10.4			
48500	3597 3709	1062	46.3	1088	50.2	1114	54.3	1140	58.5	1157	62.0		1 ver		Long	1	1.2		1	1 6 6	1.40	1.2.4			: 21
51500	3820	1111	52.5	1132	56.2	1157	60.5	1th	13.5	1207	1.51	125	244	1:05	.ic:	1	131.	1.7	1.3.	EX.		1.04	1	1.35	1.
																									-
CFM STD.	OUT-	8				-		-				-	L STAT			-									
		-	BHP	RPM	BHP	BPM	BHP	RPM	O"	RPM	BHP	RPM	1" BHP	11 RPM	BHP	RPM	2" BHP	RPM	BHP	RPM	3" BHP	RPM	BHP	RPM	4"
AIR	VEL	RPM			1	1.4.44	1		1000	nrw.	100	I TOP M	0.0	I THE M	- unit	Inew	Unit	I I I	Unit	I III	Drip	TO M	DHP	- TIPM	BHP
AIR 30000	VEL 2225	RPM 1107	51.4	1137	54.9			-														1	1	1	
30000 31500	2225 2336	1107 1114	53.4	1137 1142	54.9 56.9		-		11.1														1		
30000 31500 33000	2225 2336 2448	1107 1114 1125	53.4 56.1			15				12.1	194.1	1200	1 /4:0												
30000 31500 33000 34500	2225 2336 2448 2559	1107 1114 1125 1133	53.4 56.1 58.3	1142	56.9 59.1	14.4				24			7.9	1.11	T.	3312									
30000 31500 33000 34500 36000 37500	2225 2336 2448	1107 1114 1125	53.4 56.1	1142 1149	56.9 59.1	145 4 M				100	1 404 1 404 1 704		10.00	1000 1000 1000	1.47	12.0				117			10.5		
30000 31500 33000 34500 36000 37500 39000	2225 2336 2448 2559 2670 2781 2893	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	「「「				14 2 2 2			3		1.1.1	10 - S		34.5		1111		- 4 14 - 38 - 1444			1
30000 31500 33000 34500 36000 37500 39000 40500	2225 2336 2448 2559 2670 2781 2893 3004	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	「「「「「「」」」				100 200 20		12.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.	2944		2.4.4.40	是如此		1.1.1	199					1.14.1	and a
30000 31500 33000 34500 36000 37500 39000 40500 42000	2225 2336 2448 2559 2670 2781 2893 3004 3115 3227	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	1424 MAR 181							2944		1. 0.2 To 1. 2	Here and the second sec		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						1.14	
30000 31500 33000 34500 36000 37500 39000 40500 42000 43500 45000	2225 2336 2448 2559 2670 2781 2893 3004 3115 3227 3338	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	The second provide the second				ないないないです			30.039		1.5	SEARCH ST		and the second second						1.14.1	1
30000 31500 34500 36000 37500 39000 40500 42000 43500 45000 45000	2225 2336 2448 2559 2670 2781 2893 3004 3115 3227 3336 3449	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						の時には高齢になるの	5-35 - 34 A		1.5	建築建立で		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						1.14	
AIR 30000 31500 33000 34500 37500 39000 40500 40500 40500 40500 40500 40500 40500	2225 2336 2448 2559 2670 2781 2893 3004 3115 3227 3338	1107 1114 1125 1133 1145	53.4 56.1 58.3 60.9	1142 1149	56.9 59.1	「「「「「「「「」」」」		「「「「「「「」」」を見る。				Contraction of the second	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Harris and Harris		建設を生きる						1.14	

Performance based on 0.075 lbs. per cubic foot density (Air at 70F and 29.92" Hg Bar.)

The test result on which these ratings are based were obtained from test of Arrangement 1 AFSW fans. Performance shown is for AFSW fans with outlet duct. BHP does not include drive losses.

48

Figure 102: Trane 44 AFSW Fan RPM Tables - w/o Inlet Vanes (ref: Trane FAN-DS-6)

Appendix L - Mixing Box: Dampers and Actuators

-

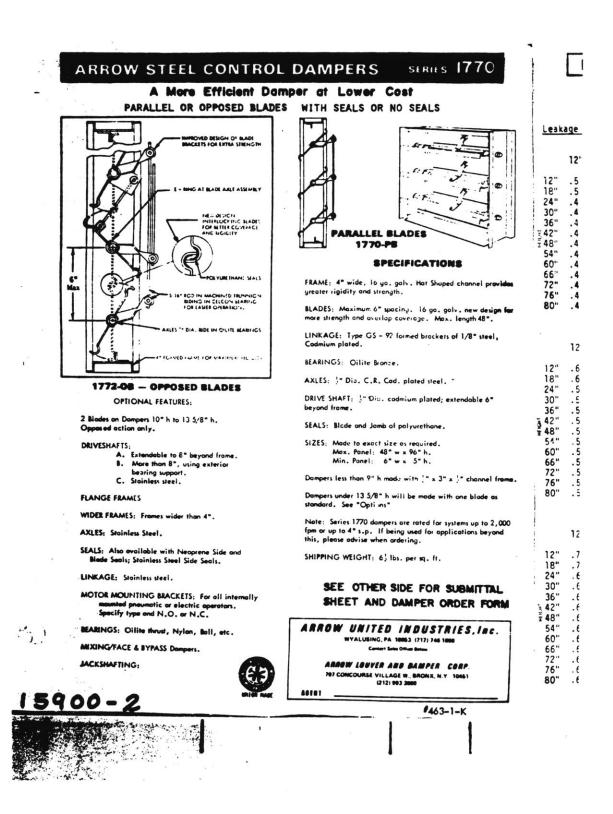


Figure 103: Mixing Box Damper Blade Pictorial (Arrow Steel Dampers - Series 1770)

				1770	SER	IES	STEEL D	AMPERS W	TH SIDE	S E	LADE	: SEA	LS	RS	_	
			•					AND CFM						PM		
eak	age	by P										ļ	eaka	ge b	y CF	M
					-		1" w.g	. static	pressur	e						
	1.2"	18"	24"	30"	76"	42"	49"			12	19	24"	30	36"	42"	48'
	12	10	24	30	30	42	+0				. 5					
2"	. 5	. 5	. 5	.4	.4	.4	.4		12"	10	15	20	20	24	28	32
8"	. 5	.4	.4	.4	.4	.4	.4		18" 24"	15 16	18 24	24 32	30 40	36 48	42 56	48 64
4"	.4	. 4	.4	.4	.4	.4	.4		30"	20	30	40	50	60	70	80
0" 6"	. 4 . 4	. 4 . 4	.4 .4	.4	.4 .4	.4	.4 .4		36"	24	36	45	60	72	84	96
2"	. 4	.4	.4	4	.4	.4	.4		42"	28	42	56	70	84	98	112
8.	4	.4	.4	.4	.4	.4	.4		± 48"	32	48	64	80		112	
4"	. 4	.4	.4	. 4	.4	.4	.4		54"	36	54	72		108		
0"	.4	. 4	.4	. 4	. 4	. 4	.4		60"	40	60			120		
6"	.4	. 4	.4	.4	.4	. 4	.4		66"	44	66			132 144		
2"	.4	.4	.4	. 4	. 4	.4	.4		72" 76"	48 52	72 78			144		
6" 0"	.4	.4	.4 .4	.4 .5	.4	.4	.4		80"	52 56				168		
	. •	. •	. 4		. •	• •	. 4				•					
							2" w.g	. static	pressur	-e						
	12"	18"	24"	30"	36"	42"	48"			12"	18'	24	. 30	36,	' 42'	48
2"	.6	.6	.6	. 5	. 5	. 5	.5		12"	12	18	24	25	30	35	40
8"	. 6	. 5	.5	. 5	. 5	. 5	. 5		18"	18	23	30	38	45	53	60
4"	. 5	. 5	. 5	. 5	. 5	. 5	.5		24"	20	30	45	50	60	70	80
0"	.5	. 5	. 5	. 5	. 5	.5	.5		30"	25	38	50	63	75		100
6"	.5	.5	.5	.5	.5	.5	.5		36" 3,42"	30 35	45 53	60 70	75	105		
2"	. 5	.5	.5	.5 .5	.5	.5	.5 .5		142 148"	40	- 53 - 60		100	120		
8"	.5 .5	.5 .5	.5 .5	.5	.5 .5	.5 .5	.5		54"	45	68			135		
0"	.5	.5	.5	.5	.5	.5	.5		60"	50				150		
6"	.5	.5	.5	.5	. 5	.5	.5		66"	55	83	110	138	165	193	220
2"	. 5	. 5	.5	.5	. 5	. 5	. 5		72"	60				180		
6"	. 5	. 5	. 5	. 5	. 5	. 5	. 5		76"	64				190		
0"	.5	. 5	. 5	.6	. 5	. 5	. 5		80"	66	100	134	200	200	233	20/
							4" w.j	. static	pressu	re				_		
	12"	18"	24"	30"	36"	42"	4 8"			12"	18	24	30	' 36'	42	" 4 8
2"	.7	.7	.7	.6	.6	. 6	.6		12"	14	21	28	30	36	42	48
8"	.7	. 6	.6	. 6	.6	.6	.6		18"	21	27	36	45	54	63	72
4"	.6	.6	.6	.6	.6	.6	.6		24" 30"	24 30	36 45	48 60	60 75	72	84 105	96
10" 16"	.6	.6 .6	.6 .6	.6 .6	.6 .6	.6 .6	.6 .6		30	30	40 54	72		108		
12"	.6 .6	.6	.0 .6	.6	.6	.6	.6		÷ 42"	42	· 63			126		
12 18"	.6	.6	.6	.6	.6	.6	.6		42" 48"	48	72			144		
54"	.6	.6	.6	.6	.6	.6	.6		54"	54				162		
50"	.6	.6	.6	.6	.6	.6	.6		60"	60				180		
56"	.6	. 6	.6	.6	. 6	.6	.6		66"	66				198		
2"	.6	.6	.6	.6	.6	. 6	.6		72"					216		
76"	. 6	. 6	.6	.6	.6	.6	.6		76"	78	117	156	195	Z34	273	312

Figure 104: Mixing Box Damper Performance Data (Arrow Steel Damper Series 1770)

_

333

FACE VELOCITY (F.P. M.)

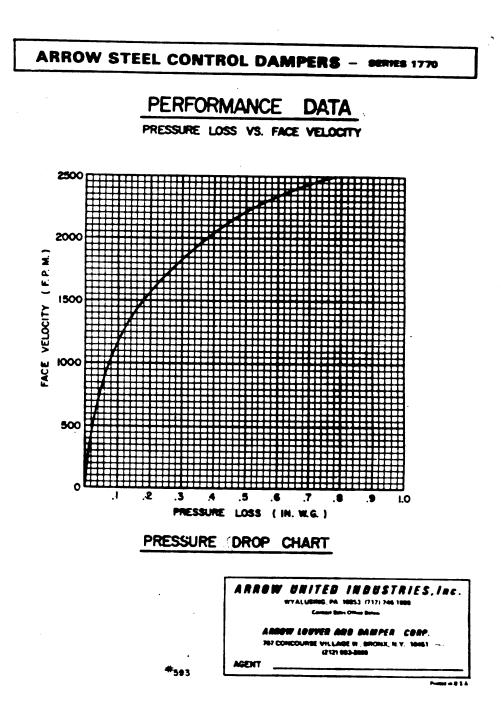


Figure 105: Mixing Box Damper Leakage Rates (Arrow Steel Dampers - Series 1770)

Appendix M - Intake & Exhaust Grills and Louvers

-

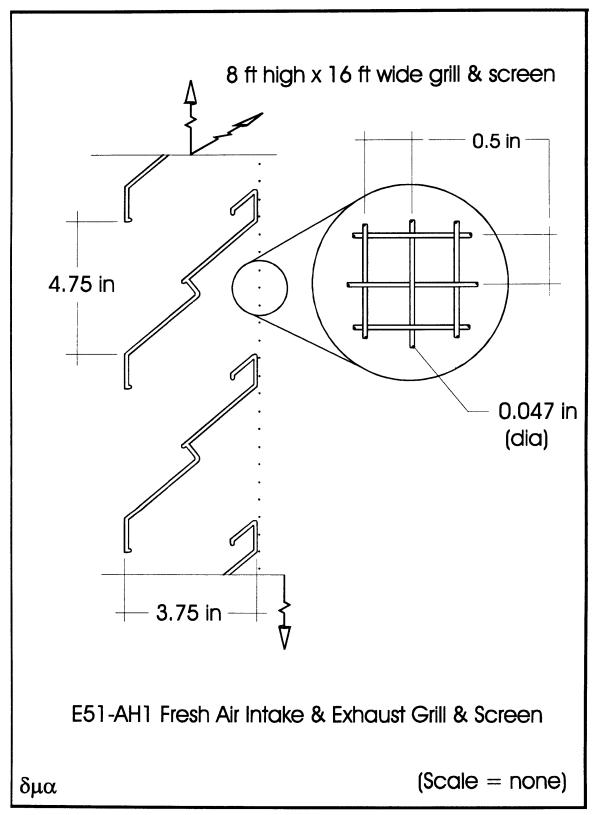


Figure 106: Louver - Fresh Air Intake and Spent Air Exhaust

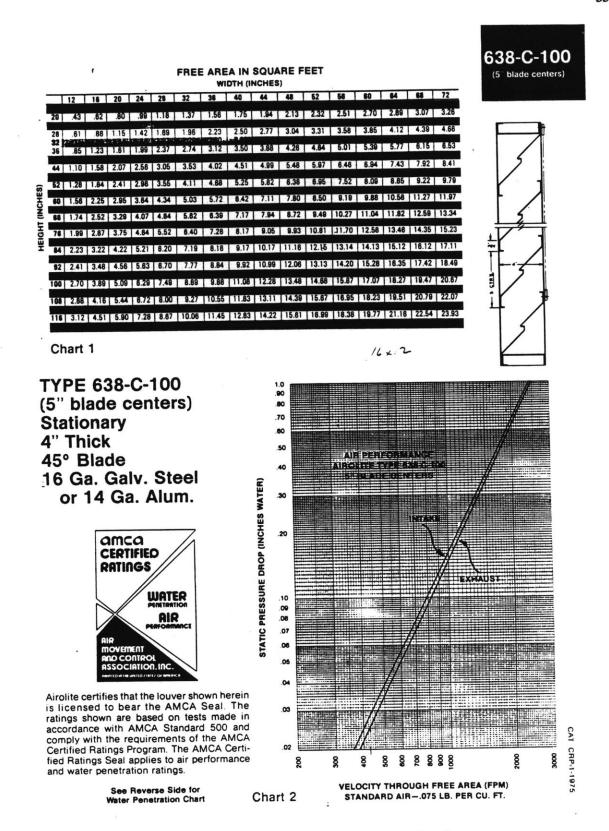
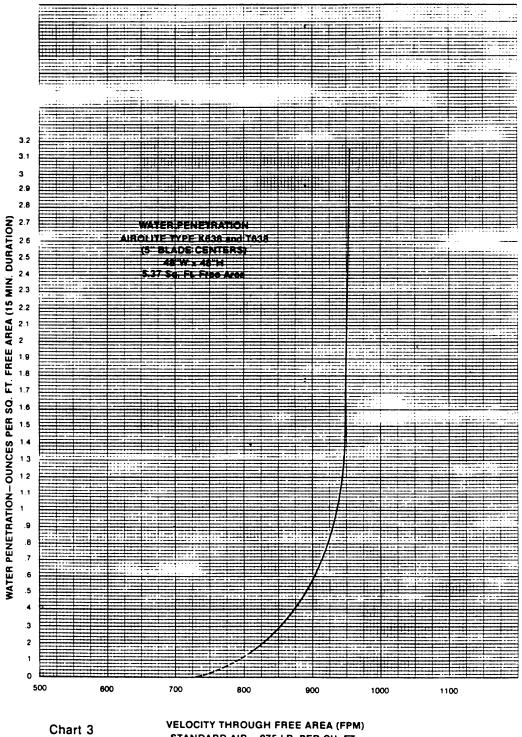



Figure 107: Louver - Airolite Type 638-C-100 Pressure Drop & Free Area

STANDARD AIR-.075 LB. PER CU. FT.

Figure 108: Louver - Airolite Type 638-C-100 Water Penetration

Appendix N - Zone Components

.

-

- a = zone designation
- b = room designation
- c = VAV terminal box designation (refer to spreadsheet file: dsgnspec.wq2 for VAV Box Schedule)
- d = design supply air flow rate for each of 34 zones in the as built design [cfm]
 - Refer to Building E51 Supply & Return Duct Layout Drawing Files e510thsr.cdr, e511stsr.cdr, e512ndsr.cdr, & e513rdsr.cdr.
- e = supply diffuser dimensions [in x in]
- f = area of supply diffuser [in2]
- g = diffuser face velocity [ft/min]
- h = dimension of duct leading to diffuser [in x in]
- i = supply duct cross sectional area [in2]
- j = average velocity normal to supply duct cross section [ft/min]
- k = design retrun air flow rate for each of 34 zones in the as built design [cfm]
- 1 = return grill dimensions [in x in]
- m = area of return grill [in2]
- n = return grill face velocity [ft/min]
- o = dimension of duct leading away from grill [in x in]
- p = return duct cross sectional area [in2]
- q = average velocity normal to return duct cross section [ft/min]
- r = difference between design supply and return air flow rates [cfm]

Note: Refer to E51 Mechanical Drawings and Specifications for the data found in this table (Phil Green, MIT Physical Plant)

file: flwtally.wq2

12/27/95 Page 1

8	<u>b</u>	<u> </u>	d	c1	e2	f	<u> </u>	<u>h1</u>	<u>h2</u>	i	j	k	11	12		<u>n</u>	<u>01</u>	<u>o2</u>	P	<u>q</u>	r H = 1
7	Room	VAV	Supply	Diffuser				Duct				Return	Collector				Duct			·····	Del Flo
Zone	Room	Box	[cfm]	Dimension		[sqin]	[ft/min]	Dimensio	ans.	[sqin]	[ft/min]	[cfm]	Dimensions		[sqin]	[ft/min]	Dimensio	05	[sqin]	[ft/min]	Sup
	1			Dinoibion		[oqui]	[101111]								Loging _	[10 mm]	Dimensio		ladmi	[101111]	
I	003	в	280	9	12	108	373	10	6	60	672	266	9	12	108	355	10	6	60	638	
I	005	A	80	6	6	36	320	8	4	32	360	70	6	6	36	280	8	4	32	315	1
I	000	Ca	210	9	9	81	373	10	6	60	504	200	9	9	81	356	10	6	60	480	
I	006	Съ	90	6	6	36	360	8	4	32	405	80	6	6	36	320	8	10	80	144	
I	006	Da	430	9	15	135	459	10	10	100	619	410	9	15	135	437	10	6	60	984	1
I	008	Db	260	9	12	108	347	12	6	72	520	245	9	12	108	327	12	6	72	490	ľ
I I	012	Da Db	355 355	9	12 12	108 108	473 473	12 12	8 8	96 96	533 533	340 340	9	12 12	108 108	453 453	12 12	8	96 96	510	1
1	012	00	333	y y	12	108	4/5	12	0	90	555	340	9	12	108	433	12	8	90	510	
			2,060	Sub-Tots		720	412	Sub-Tots		548	541	1.951	Sub-Tots		720	390	Sub-Tots		556	505	1
				Exit Avg Sp	eed [ft/r	nin]	397				518		y Avg Spee	d [ft/mi	n]	373				509	1
п	007	Ba	90	6	6	36	360	8	4	32	405	80	6	6	36	320	8	4	32	360	
п	007	Bb	90	6	6	36	360	8	4	32	405	80	6	6	36	320	8	6	48	240	
п	007	Bc	160	9	9	81	284	10	5	50	461	150	6	6	36	600	8	6	48	450	
			340	Sub-Tots		153	320	Sub-Tots		114	429	310	Sub-Tots		108	413	Sub-Tots	[128	349	-
			L	Exit Avg Sp	eed [ft/r		335	out rea			424		ry Avg Spee	d [ft/mi		413				350	1
	1		- 113										Í		·				l		1-
ш	004	Fa	1,100	11	36	396	400	16	12	192	825	400	11	36	396	145	16	12	192	300	
m	004	Fb	1,100	11	36	396	400	16	12	192	825	400	11	36	396	145	16	12	192	300	1
ш	100	Ea	220	9	9	81	391	10	6	60	528	200	9	9	81	356	10	6	60	480	1
ш	106	ЕЬ	225	9	9	81	400	10	6	60	540	240	9	9	81	427	10	6	60	576	
ш	106	Ec	225	9	9	81	400	10	6	60	540	240	9	9	81	427	10	6	60	576	
III	110d	Ed	220	9	9 9	81	391 391	10 10	6 6	60 60	528 528	245 245	9	9 9	81 81	436 436	10 10	6 6	60 60	588 588	
III III	110d 110	Ec Ef	220 180	9	9	81 81	320	10	6	60	432	245	9	9	81 81	450 391	10	6	60	528	
ш	110	Eg	180	9	9	81	320	10	6	60	432	120	8	8	64	270	10	6	60	288	1
III	110c	B	200	9	9	81	356	10	6	60	480	120	9	9	81	338	10	6	60	456	1
ш	2015	Ca	300	9	12	108	400	10	6	60	720	285	9	12	108	380	10	8	80	513	
III	201a	Съ	300	9	12	108	400	10	8	80	540	285	9	12	108	380	10	8	80	513	
ш	206	Ea	300	9	12	108	400	10	8	80	540	285	9	12	108	380	10	8	80	513	1

file: flwtally.wq2

12/27/95 Page 2

.

Figure	Flow Ta	liy and V	AV Box	(Coil Rel	eat Requi	rements																
Ire	ш	208	Eb	280	9	12	108	373	10	8	80	504	285	9	12	108	380	10	8	80	513	ł
111:	ш	210a	Ec	280	9	12	108	373	10	8	80	504	265	9	12	108	353	10	8	80	477	
	ш												175	9	9	81	311	10	6	60	420	
VAV Elow Tally	III	210	Ed	370	12	12	144	370	10	8	80	666	175	9	9	81	311	8	6	48	525	
	III	210Ь	A	100	6	6	36	400	6	6	36	400	95	6	6	36	380	8	6	48	285	
	III	216	С	570	12	15	180	456	12	10	120	684	540	12	15	180	432	12	10	120	648	
	III	200	С	340	9	12	108	453	10	8	80	612	150	6	9	54	400	10	6	60	360	
	ш	302	Fa	397	9	12	108	529	12	8	96	596	565	9	12	108	753	16	10	160	509	
	ш	302	Fb	397	9	12	108	529	12	8	9 6	596	565	9	12	108	753	16	10	160	509	1
	ш	302	Fc	397	9	12	108	529	12	8	96	596	565	9	12	108	753	16	10	160	509	1
	ш	302	Fd	397	9	12	108	529	12	8	96	596	565	9	12	108	753	16	10	160	509	
	ш	302	Fe	397	9	12	108	529	12	8	96	596										
	ш	302	Ff	397	9	12	108	529	12	8	96	596				•••••						1
	ш	306	Da	435	12	12	144	435	12	8	96	653	405	12	12	144	405	12	8	96	608	
	III	306	Db	435	12	12	144	435	12	8	96	653	405	12	12	144	405	12	8	96	608	
	III	310	Da	405	12	12	144	405	12	8	96	608	385	12	12	144	385	16	8	128	433	
	ш	310	Db	405	12	12	144	405	12	8	96	608	385	12	12	144	385	16	8	128	433	
				10.772	Sub-Tots	L	3,672	422	Sub-Tots		2,520	616	8,880	Sub-Tots		3,403	376	Sub-Tots	L	2,688	476	1,892
				·····	Exit Avg	Speed [ft/r		422	040 100		2,520	583		y Avg Sp	eed [ft/mi		417	000 100		2,000	484	.,
	rv	101	В	120	6	6	36	480	10	6	60	288	115	6	6	36	460	10	6	60	276	
	īv	101a	В	140	9	6	54	373	8	6	48	420										
	īV	1016	с	500	9	18	162	444	10	10	100	720	475	9	18	162	422	10	10	100	684	l
	IV	101c	в	180	9	9	81	320	10	6	60	432	120	6	6	36	480	10	6	60	288	:
	īV	201	В	260	9	12	108	347	10	6	60	624	250	9	12	108	333	10	6	60	600	1
	īV	201d	с	500	12	15	180	400	8	14	112	643	475	12	12	144	475	10	10	100	684	
	īv	201f	Ba	130	6	9	54	347	6	6	36	520	125	6	6	36	500	8	6	48	375	
	īV	201g	Bb	160	6	9	54	427	8	6	48	480	150	6	9	54	400	8	6	48	450	ĺ
				1,990	Sub-Tots		729	393	Sub-Tots		524	547		Sub-Tots		576	428	Sub-Tots		476	517	280
				Supply 1	Exit Avg S	Speed [ft/r	nin]	392				516	Rtn Enti	y Avg Sp	eed [ft/mi	n]	439		r	·	480	
	v	105	Ca	180	9	9	81	320	10	6	60	432	170	9	9	81	302	10	6	60	408	
	v	105	Cb	130	9	9	81	231	10	6	60	312	125	9	9	81	222	10	6	60	300	
	v	107	Ba	130 70	6	6	36	231	8	4	32	312	70	6	6	36	280	8	4	32	315	
	v	103	Bb	280	9	12	108	373	10	-4	80	504	265	9	12	108	353	10	6		636	
	• 1	1	00	200	, ,	12	100	515	10	0	00	504	205	9	12	100	555	1 10	1 0	1 00	0.00	11

file: flwtally.wq2

12/27/95 Page 3

			Supply I	Exit Avg S	peed [ft/n	nin]	403				546	Rtn Entr	y Avg Sp	eed [ft/mi	n]	401				497	2,651
Totals	<u></u>		21,812			7,632	412			5,438	578	19,161			7,048	391			5,344	516	2,651
					-																
			Supply I	Exit Avg S	peed [ft/n	nin]	507				684	Rtn Entr	y Avg Sp	eed [ft/mi	n]	461				741	
			760	Sub-Tots		216	507	Sub-Tots		160	684	720	Sub-Tots		225	461	Sub-Tots		140	741	40
VI.	2010	00	560	9	12	108	507	10	0	00	004										
VI VI	201c 201c	Da Db	380 380	9 9	12 12	108 108	507 507	10 10	8 8	80 80	684 684	720	15	15	225	461	14	10	140	741	
						105															
			Supply 1	Exit Avg S	peed [ft/n	nin]	383				518	Rtn Enti	y Avg Sp	eed [ft/mi	n]	368				529	
			5,890	Sub-Tots		2,142	396	Sub-Tots		1,572	540	5,590	Sub-Tots		2,016	399	Sub-Tots		1,356	594	300
•	J1/	1	4/0	12	12	144	4/0	14	0	112	004					;					
v v	317 317	Eb Ec	470 470	12 12	12 12	144 144	470 470	14 14	8 8	112 112	604 604	665 	18	12	216	443	14	10	140	684	
v	317	Ea	470	12	12	144	470	14	8	112	604	665	18	12	216	443	14	10	140	684	d in the second s
v	311	Ed	400	12	12	144	400	14	7	98	588										
v	311	Ec	400	12	12	144	400	14	7	98	588							· ·			
v	311	Eb	400	12	12	144	400	14	7	98	588	760	15	15	225	486	18	8	144	760	1
v	311	Ea	420	12	12	144	400	14	7	- 04 98	588	760	12	12	225	400 486	12	8 8	90 144	760	
v	307 307	Da Db	420 420	12 12	12 12	144 144	420 420	14 14	6 6	84 84	720 720	400 400	12 12	12 12	144 144	400 400	12 12	8 8	96 96	600 600	j
v v	215	В	300	9	12	108	400	12	6	72	600	285	9	12	108	380	12	6	72	570	i i
v	2116	В	260	9	12	108	347	12	6	72	520	245	9	12	108	327	10	6	60	588	
v	211	В	180	6	12	72	360	12	8	96	270	85	6	6	36	340	6	6	36	340	
v				ţ,	-			÷				85	6	6	36	340	6	6	36	340	
v	207	СЪ	150	6	9	54	400	8	6	48	473	140	6	9	81 54	304 373	10 10	4	60 40	492 504	
v v	115 207	B Ca	100 210	6 9	6 9	36 81	400 373	8 8	4	32 64	450 473	95 205	6 9	6 9	36	380 364	8	4	32	428	
V	113	B	180	9	9	81	320	10	6	60	432	170	9	9	81	302	8	6	48	510	
	H 3		I 1	1 1	(1 1								a

ومن

a = zone designation

b = room designation

c = VAV terminal box designation (refer to spreadsheet file: dsgnspec.wq2 for VAV Box Schedule)

d = design output for VAV reheat coil [1000's of Btuh]

e = waterside design flow for VAV reheat coil [gpm]

f = design supply air flow rate for zones on the ground level in the as built design [cfm]

g = design return air flow rate for zones on the ground level in the as built design [cfm]

h = design supply air flow rate for zones on the first level in the as built design [cfm]

i = design return air flow rate for zones on the first level in the as built design [cfm]

j = design supply air flow rate for zones on the second level in the as built design [cfm]

 $\mathbf{k} = \text{design return air flow rate for zones on the second level in the as built design [cfm]$

1 =design supply air flow rate for zones on the third level in the as built design [cfm]

m = design return air flow rate for zones on the third level in the as built design [cfm]

n = design VAV reheat coil output for zones on the ground level in the as built design [cfm]

o = design waterside flow rate for reheat coil for zones on the ground level in the as built design [cfm]

p = design VAV reheat coil output for zones on the first level in the as built design [cfm]

q = design waterside flow rate for reheat coil for zones on the first level in the as built design [cfm]

r = design VAV reheat coil output for zones on the second level in the as built design [cfm]

s = design waterside flow rate for reheat coil for zones on the second level in the as built design [cfm]

t = design VAV reheat coil output for zones on the third level in the as built design [cfm]

u = design waterside flow rate for reheat coil for zones on the third level in the as built design [cfm]

Note: Refer to E51 Mechanical Drawings and Specifications for the data found in this table (Phil Green, MIT Physical Plant)

file: flwtally.wq2

12/27/95 Page 5

8	b	c	đ	c	f	g	h	i	j	<u>k</u>	1	m	n	0	Р	9	r	s	t	u
			Reheat	Output	Flow pe	r Floor							Reheat	per Floor						
Zone	Room	VAV	MBH	GPM	Oth [cfm]		1st [cfm]		2nd [cfm]	3rd [cfm]	Oth		1st		2nd		3rd	
		Box			Supply	Return	Supply	Return	Supply	Return	Supply	Return	мвн	GPM	MBH	GPM	MBH	GPM	MBH	GPM
						244		}												
I	003	В	1.7	0.2	280	266		1					1.7	0.2				1		1
1	005	A	0.6	0.1	80	70	ł]					0.6	0.1)		1		
1	000	Ca	3.6	0.4	210	200	j]		3.6	0.4		1]	
1	006	Сь		0.7	90 420	80 410			ļ					0.7		1			-	1
1	006	Da Db	6.6	0.7	430 260	245		[1	6.6	0.7	[[[[[
1	008 012	Do	6.6	0.7	355	340	(1	1	6.6	0.7	1	1	Ì	1	Į	
I	012	Db	0.0	0.7	355	340	1				1	1	0.0	0.7		1	1		1	1
1	012			ł	355	340		ł						1		1		1		1
			19.1	2.1						1										
	0.07			0.2		80							1.7							
11	007 007	Ba Bb	1.7	0.2	90 90	80 80		1				i	1./	0.2	1					
II II	007	Bo			160	150		ł			1	1	1			1		1	1	1
п	007	DÇ			100	150	1	{								1		1		
			1.7	0.2	1						ł	1]					
	 				1		ł								1					}
ш	004	Fa	13.3	1.4	1,100	400			í		[13.3	1.4	1			.	1	ſ
III	004	Fb			1,100	400	[1				1	(1		1	1	{	{
ш	100	Ea	8.9	0.9			220	200	İ			1	1	1	8.9	0.9		1	ł	
ш	106	ЕЪ					225	240					4	1			1	1	1	
III	106	Ec					225	240	1	1		1	11	1	1	1		1		
ш	110d	Ed					220	245		1					l			1	1	
ш	110d	Ee			1		220	245			1		1	1					1	
ш	110	Ef					180	220			1		ļļ.]	ļ		•		1	
ш	110	Eg					180	120			ŀ		1							
III	110c	В	1.7	0.2			200	190		ļ		1		1	1.7	0.2			1	
ш	201b	Ca	3.6	0.4	1	1		[300	285		1	([1	3.6	0.4	1	1
ш	201a	Сь	l		1	1			300	285	1	1	11		l ·	1				1
ш	206	Ea	8.9	0.9	1	ł	1		300	285	1			1	1	1	8.9	0.9		1

file: flwtally.wq2

Figure 114: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd)

12/27/95 Page 6

ш	208	Eb				1	1	I	280	285				1		1		1	. I	1
III	210a	Ec							280	265									. 1	
III	210a	12							200	175										
		.							270											
III	210	Ed							370	175					1					
III	210b	A	0.6	0.1			1		100	95							0.6	0.1		
ш	216	С	3.6	0.4					570	540							3.6	0.4		
ш	200	С	3.6	0.4					340	150							3.6	0.4		
III	302	Fa	13.3	1.4							397	565		1					13.3	1.4
ш	302	Fb									397	565								
111	302	Fc									397	565								
111	302	Fd				l l					397	565								
111	302	Fe									397									1
Ш	302	Ff									397									1
III	306	Da	6.6	0.7							435	405							6.6	0.7
III	306	Db	0.0	0.7							435	405							0.0	0.7
ш	310	Da					1				405	385								
											405									
111	310	Db					- 1				405	385								
																				1
			64.1	6.8																
																			i	
IV	101	В	1.7	0.2		1	20	115							1.7	0.2				
IV	101a	В	1.7	0.2		1	40								1.7	0.2				
IV	1016	С	3.6	0.4		5	00	475							3.6	0.4				1
IV	101c	В	1.7	0.2		1	80	120		:					1.7	0.2				
IV	201	В	1.7	0.2					260	250				1			1.7	0.2		
IV	201d	с	3.6	0.4			1		500	475							3.6	0.4		
IV	201f	Ba	1.7	0.2					130	125							1.7	0.2		
IV	201g	Bb	•••	0.2					160	150							1.7	0.2		
14	2018	БО							100	150										
			15.7	1.0																
			15.7	1.8																
													li							
											·		1							
v	105	Ca	3.6	0.4			80	170							3.6	0.4				
v	107	Сь			1	1	30	125												
v	109	Ba	1.7	0.2			70	70					l		1.7	· 0.2				
v	111	ВЬ				2	80	265			1			1						
		•	•			•					•	•		•			-	•	•	

file: flwtally.wq2

Figure 115: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd)

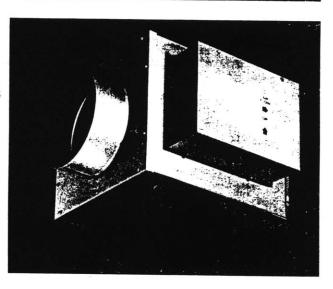
12/27/95 Page 7

Flow Ta	lly and \	VAV Box	Coil Reheat	Requirements
---------	------------------	---------	-------------	--------------

v	113	в	1.7	0.2		1	180	170	ĺ					1	1.7	0.2		I	I	l
v	115	в	1.7	0.2			100	95		i i]	1.7	0.2				
v	207	Ca	3.6	0.4					210	205						0.2	3.6	0.4		
v	209	Сь							150	140										
v						1			0	85										
v	211	в	1.7	0.2					180	85				1			1.7	0.2		
v	2116	в	1.7	0.2					260	245				j	j		1.7	0.2		
v	215	В	1.7	0.2		1			300	285							1.7	0.2		
v	307	Da	6.6	0.7							420	400						1	6.6	0.7
v	307	Db									420	400	1							
v	311	Ea	8.9	0.9		ł					400	760			1				8.9	0.9
v	311	Eb									400	760		ļ]	
v	311	Ec				[400									
v	311	Ed									400							1		
v	317	Ea				1					470	665								
v	317	Eb					1				470	665	1	ł			1 1		Ì	1
v	317	Ec									470									1
			32.9	3.6																
VI	201c	Da	6.6	0.7					380	720							6.6	0.7	i	1
VI	201c	Db	0.0	0.7		1			380								0.0	0.7		
						1														1
			6.6	0.7																
Totals																				
	Flows p	er Floor	140.1	15.2	4,600	3,061	3,550	3,305	5,750	5,305	7,912	7,490	34.1	3.7	28.0	3.1	42.6	4.7	35.4	3.7
	Delta Fl	ow [cf	34	34		1,539		245		445		422							140.1	15.2
	Flows th	ru Main	Ducts [cf	m]	4,600	3,061	8,150	6,366	13,900	11,671	21,812	19,161								
					Chk Sum	Delta Flo	w	2,651	Chk Sum	L	21,812	19,161					Chk Sum		140.1	15.2

Figure 116: VAV Reheat Coil Output - 34 Zone Configuration - ref: Appendix H (cont'd)

file: flwtally.wq2


12/27/95 Page 8

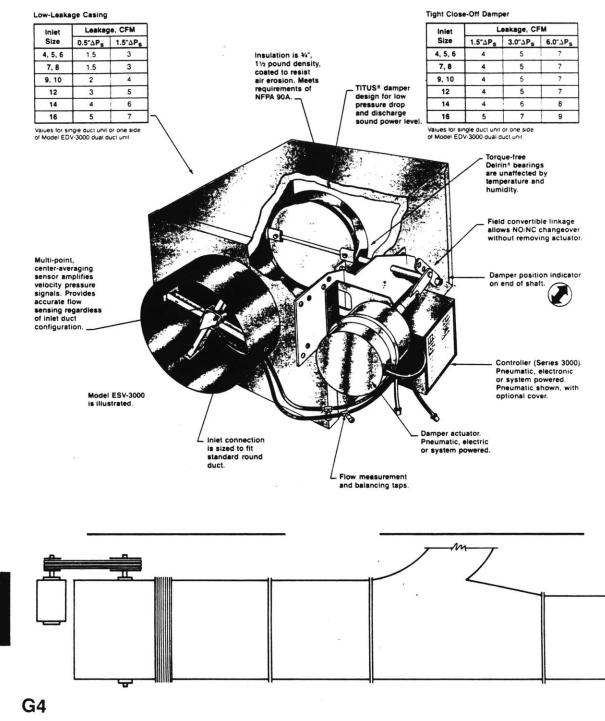
TITUS[®] Single/Dual Duct Terminals ► Performance Data

Recommended CFM Ranges

Single Duct VAV Terminal Units

Models: PESV = Pneumatic AESV = Electronic DESV = Digital EESV = Electric

			2	CFM Rang	es of Minimur	n and Maximur	n Settings			
Inlet Size	Total CFM	PESV PI	neumatic Controller	PESV P	Controller	AESV	Analog Controller	DESV Digital TD1 Controller		
	Range	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
4	0-225	45*-170	80-225	55*-170	80-225	30*-225	30-225	45225	45-225	
5	0-350	65*-270	120-350	85*-270	120-350	50*-350	50-350	65*-350	65-350	
6	0-500	80*-330	150-500	105*-330	150-500	60*-500	60-500	80*-500	80-500	
7	0-650	105*-425	190-650	135*-425	190-650	75*-650	75-650	105*-650	105-650	
8	0-900	145*-590	265-900	190*-590	265-900	105*-900	105-900	145*-900	145-900	
9	0-1050	175*-700	315-1050	225*-700	315-1050	125*-1050	125-1050	175*-1050	175-1050	
10	0-1400	230*-925	415-1400	300*-925	415-1400	165-1400	165-1400	230*-1400	230-1400	
12 '	0-2000	325*-1330	600-2000	425*-1330	600-2000	235*-2000	235-2000	325*-2000	325-2000	
14	0-3000	450*-1800	810-3000	575-1800	810-3000	320*-3000	320-3000	450*-3000	450-3000	
16	0-4000	580*-2350	1100-4000	750*-2350	1100-4000	420*-4000	420-4000	580*-4000	580-4000	
24x16	0-8000	1400*-5200	2600-8000*	1800*-5200	2600-8000	1000*-7500	1000-7500*	1400*-7500	1400-7500	


► G25 Single/Dual Duct Terminals

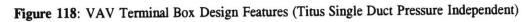
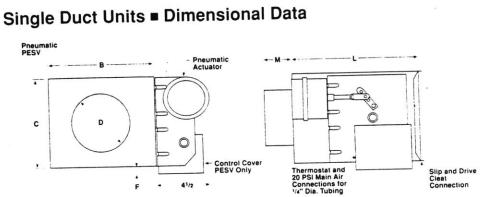
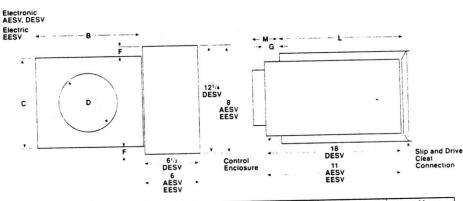

 Factory cfm settings (except zero) will not be made below this range because control accuracy is reduced. On pressure dependent units, minimum cfm is always zero, and there is no maximum.

Figure 117: VAV Terminal Box Performance Data (Titus Single Duct Pressure Independent)


TITUS Not Variable Volume Terminal Units • Design Features


The Basic Terminal Unit

TITUS[®] Single/Dual Duct Terminals ► Dimensions

			- 1			(3		F	N	٨
Inlet Size	CFM Range	D	L	в	с	DESV	AESV EESV	PESV	DESV	PESV DESV EESV	AESV
4	0 - 225	3%	15%	12	8	7%	3/6	35/16	2%	5¾	8
5	0 - 350	4%	15%	12	8	7%	3/1	3%	2%	5%	8
6	0 - 500	5%	15%	12	8	7%	3/6	3%	2%	3%	6
7	0 - 650	6%	15%	12	10	5%	-	2%	1%	3%	6
8	0 - 900	7%	15%	12	10	5%	-	2%	1%	33/8	6
	0 - 1050	8%	15%	14	12%	5%	-	\$/.6	-	3%	6
9	0 - 1050	9%	15%	14	12%	5%	-	7/16	-	3%	6
10	-		15%	16	15	5%	-	-	-	3%	6
12	0 - 2000	11%						-	_	3%	6
14	0 - 3000	9%	15%	20	17%	3%					6
16	0 - 4000	11 <i>7</i> e	15%	24	18	3%	-	-		3%	0
24 x 16	0 - 8000	23 % x 15%	16%	28	18	5 %	·	2%	1%	3.74	-

For optimum control, the inlet duct must be the same size as the unit inlet

Right hand control location, as shown above, is standard. Left hand is optional.
 All dimensions are in inches.

Figure 119: VAV Terminal Box Dimensions (Titus Single Duct Pressure Independent)

► G22 Single/Dual Duct Terminals

Models: PESV, AESV, DESV # Sound Application Data # NC Values

	Sound Noise Criteria (NC)											
	· · · · ·			harge		1	Ded	ated				
iniet	CFN											
	GH		_	Ρ,		L		Ρ				
Size	L	0.5"	1.0*	2.0"	3.0*	0.5	1.0"	2.0"	3.0*			
	75		<u> </u>	-	·	-	•	-	21			
4 -	125		<u> </u>	20	23	•	•	25	28			
	175		20	25	28	•	23	29	33			
	250	21	26	30	33	22	28	34	38			
	125	•	•			· ·	•	. ·	·			
	175	-	-	Ŀ	23	•	-		· ·			
5	250	•	· .	25	28	•	· ·	23	26			
	300		21	27	31	•	22	27	30			
	350	٠	24	.30	33	21	26	31	34			
	_											
	175		•		•	•	-	20	22			
l.	225	•			22	·	-	23	26			
	300	•	•	23	26	-	23	27	30			
6	350		20	26	28	20	25	29	32			
	400		23	28	31	22	27	31	X			
	450	· ·	24	29	32	24	29	33	36			
	500	21	26	31	34	_26	30	35	37			
	250					· ·	-	20	23			
	300		-	·	21		-	22	26			
-	350	-	•	20	24	· ·	-	24	27			
7	400	•	•	23	26	·	21	26	8			
	500	•	20	27	30	·	23	28	31			
	600											
		•	23	30	34	20	25	30	34			
	650	<u>.</u>	23 25	30 31	34 36	20 21	25 26	30 31	3			
	650								34			
	650 350							31	34 21			
	650 350 400		25	31	35	21	26	31 20	34			
	650 350 400 450	•	-	31	36 - - 20	21	26 	31 - 20 22	34 21 23 24			
	650 350 400 450 500	•	-	31 - - -	35 - - 20 22	21	26 - - - 20	31 20 22 24	34 21 23 24 26			
•	650 350 400 450 500 600	· · · · ·	-	31 - -	36 - - 20	21 - -	26 	31 - 20 22	34 21 23 24			
•	650 350 400 450 500 600 700		25 - - - - - - -	31 - - - - - - - - - - - - - - - - - - -	35 - 20 22 24 27	21 · · · · · · · ·	26 - - 20 23 25	31 20 22 24	34 21 23 24 26 20 31			
•	650 350 400 450 500 600		25 - - -	31 • • • 21	35 - - 20 22 24	21	26 - - 20 23	31 20 22 24 26	34 21 23 24 26 29			
•	650 350 400 450 500 600 700 800		25 - - - - - - -	31 - - - - - - - - - - - - - - - - - - -	36 - - 20 22 24 27 29	21 · · · · · · · ·	26 - - 20 23 25	31 20 22 24 26 29 31	34 21 23 24 26 20 31			
•	650 350 400 450 500 600 700 800 450		25 - - - - - - -	31 - - - - - - - - - - - - - - - - - - -	36 - - 20 22 24 27 29 22	21 · · · · · · · ·	26 - - 20 23 25	31 20 22 24 26 29	34 21 23 24 26 20 31			
•	650 350 400 450 500 600 700 800 450 500		25	31 - - - - - - - - - - - - - - - - - - -	36 - - 20 22 24 27 29	21 · · · · · · · ·	26 - - 20 23 - 25 27	31 20 22 24 26 29 31	34 21 23 24 26 20 31 33			
•	650 350 400 450 500 600 700 800 450		25 - - - - - - - - - - - - - - - - - - -	31 - - - - - - - - - - - - - - - - - - -	36 - - 20 22 24 27 29 22	21 - - - - - - - - - - - - - - - - - - -	26 · 20 23 25 27 ·	31 20 22 24 26 29 31 22	34 21 23 24 26 20 31 33 26			
•	650 350 400 450 500 600 700 800 450 500		25 - - - - - - - - - - - - - - - - - - -	31	36 - - 20 22 24 27 29 29 22 23	21 - - - - - - - - - - - - - - - - - - -	26 · 20 23 25 27 · ·	31 20 22 24 26 29 31 22 23	34 21 23 24 26 20 31 33 26 27			
•	650 350 400 450 500 600 700 800 450 500 600 600		25 - - - - - - - - - - - - - - - - - - -	31 · · · · · · · · · · · · ·	36 - - 20 22 24 27 29 22 23 25	21 - - - - - - - - - - - - - - - - - - -	26 20 23 25 27	31 20 22 24 26 29 31 22 23 25	34 21 23 24 26 29 31 33 26 27 28			
•	650 350 400 450 500 600 700 800 450 500 600 700 800 450 500 600 700		25 - - - - - - - - - - - - - - - - - - -	31 · · · · · · · · · · · · ·	36 - 20 22 24 27 29 22 23 25 26	21 · · · 21 · · · · · · · · · · · · · · · ·	26 · 20 23 25 27 · · 22 25 25	31 20 22 24 26 29 31 22 23 25 28	34 21 23 24 26 29 31 33 26 27 28 29			

				4 81-1-1	0.4.1	- 010				
•			_	_	Criter	a (NC)				
			UNIC	harge			_	beted		
iniet	CFM			Ρ				P		
Size		0.5*	1.0*	2.0"	3.0"	0.5"	1.0"	2.0*	\$0.	
	550		•	-			20	24	28	
	600						21	24	20	
	700					22	24	26	20	1.1
10	800	•	-		20	25	27	29	30	
	1000		· ·	21	25	29	31	33	34	
	1200	•	•	25	29	32	34	36	37	
	1400	-	22	28	32	35	37	- 39	40	
								h		I
	800	•	•	-	20	-	•	25	29	
	900	-	-	•	21	•	20	26	30	
	1000	-	•	•	22	-	22	27	30	
12	1200	•	-	•	23	21	25	29	32	
	1500	•	•	21	25	25	29	33	36	
	1800	•	•	22	26	28	\$2	37	39	
_	2100	-	÷	23	28	31	35	39	42	
			_				_			
	1000	· ·	· ·	<u> </u>	<u> </u>		L ·	24	29	
	1200	-	· ·	-	L-i-	22	24	27	30	
	1500	· · ·	· ·	· -	20	27	30	32	34	
- 14	1800	· ·	· ·	•	22	32	35	37	39	
	2100				23	36	39	41	42	
	3000	÷	H÷ I	21	25.	40	42	44	46 52	
		<u> </u>	<u> </u>	23		40	40	- 30	~	ł
	1400				15			23	27	
	1600				16	<u> </u>	20	25	28	
	2000				10		23	28	31	
16	2400				21	20	26	31	34	
-	2800	-			22	23	28	34	37	
	3200			21	24	25	30	36	30	
	4000			25	28	28	- 34	30	42	
								_		1
	3000	21	25	29	32	24	29	33	36	
	3500	23	27	31	34	21	3	36	39	
24	4000	25	29	No.	36	30	35	39	42	1
X	5000	28	2		X	X	39.	44	47	-
-16	6000	31	N.	30	42	36	*	48	51	-
	7000	33		K		Z 42	48	51	54	I
	8000	35		43	46	44	49	54	57	i i

• ΔP_q is the difference in static pressure from inlet to discharge. • Dash (-) in space denotes NC value less than 20. • All Sound Dala are bead upon tests conducted in accordance with ARI 880-94 in the Laboratory at TITUS, Richardson Texas.

Octave Band Sound Attenuation Factors:

Radiated Sound			Octav	e Band		1	
	2	3	4	5	6	7	1
Environmental Effect	3	2	1	1	1	1	Per ARI 885-90
Ceiling Effect	. 9	10	12	14	15	15	Mineral Fiber Tile, 5/8"-35#/ Cu. Fl.
Room Effect	9	10	11	12	13	14	3000 Cu. R. Space, 10 R. from Source
Total dB Reduction	21	22	24	27	29	30	1

Discharge Sound	Octave Band									
	2	3	4	5	6	7				
Environmental Effect	3	2	1	1	1	1				
Duct Lining	1	3	8	21	20	12				
End Reflection	11	6	2	0	0	0				
5 Ft., 8" Flex Duct	6	10	17	19	19	12				
Room Effect	9	10	11	12	13	14				
Total dB Reduction	30	31	30	53	53	39				

Adjustments for Optional Attenuators

1	Octave Band										
Inlet Size	2	3	4	5	6	7					
4,5,6	2	2	5	13	12	8					
7,8	2	2	5	12	11	8					
9,10	1	2	4	10	9	7					
12	1	2	4	9	7	6					
14	1	2	3	8	6	5					
16	1	1	3	8	6	5					
24 X 16	1	1	3	8	6	5					

1	
3	
]	Per ARi 885-90
	5 PL, 1* Fiberglass Duct Lining

8" Termination to Diffuser Vinyl Core Flex 3000 Cu. Fl. Space, 10 Fl. from Source

Additional dB reduction in sound resulting from 300 cfm flow division:

Inlet Size	(dB)						
7,8	3						
9	5						
10	7						
10	8 ·						
14	10						
16	11						
24 X 16	14						

Select the appropriate unit size, and subtract the value shown under each octave band heading from the Discharge Sound Power Data shown on the following pages. Use the resultant values to calculate discharge NC.

Data are based upon calculation procedures provided by the ASHRAE 1991 HVAC Applications Handbook, Chapter 42.

Figure 120: VAV Terminal Box NC Values (Titus Single Duct Pressure Independent)

											8	Soun	d Po	wer	Octa	ve B	and	\$	<u>.</u>	÷						
Inlet	CFM	Min.			0.5"	ΔP.				-	1.0"	ΔP.		·		•	2.0"	ΔP.	··				3.0"	ΔP.		
Size		ΔΡ.	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6.	7
								<u> </u>		<u> </u>	<u> </u>	ليشيا	·	_								· · · ·				
	550	0.038	58	52	48	43	39	33	63	56	52	46	44	39	68	61	55	50	49	44	71	64	58	52	51	47
	600	0.045	59	53	50	44	40	35	65	58	53	48	45	40	70	62	57	52	50	45	72	65	59	54	53	49
	700	0.061	62	55	52	47	43	37	67	60	56	51	47	42	72	65	59	54	52	48	75	67	62	56	55	51
10	800	0.080	64	57	54	49	45	39	69	62	58	53	49	45	74	67	62	57	54	50	77	69	64	59	57	53
	1000	0.124	68	61	58	53	48	43	73	65	62	57	53	48	78	70	65	61	58	53	81	73	67	63	61	57
	1200	0.179	71	64	61	56	51	45	76	68	65	60	56	51	81	73	68	64	61	56	84	76	70	66	1.37	59
	1400	0.244	74	66	63	59	53	48	79	71	67	63	58	53	84	75	71	67	63	59	87	78	73	69	66	62
											·	· · · ·														
	800	0.042	61	57	53	47	45	40.	64	63	58	54	52	47.	68	69	63	61	58	55	70	73	66	66	62	59
	900	0.053	62	58	54	47	46	40	66	64.	59	55	52	48	69	70	64	62	59	55	71	73	67	66	63	60
	1000	0.065	64	58	55	48	46	41	67	64	60	55	53	48	71	71	65	62	59	56	73	74	68	67	63	60
12	1200	0.094	66	59	57	49	47	42	70	66	62	56	54	49	73	72	67	63	60	56	75	75	70	68	64	61
	1500	0.146	69	61	59	50	48	43	73	67	5	57	55	50	76	73	69	65	61	57	78	77	72	69	65	62
	1800	0.211	71	62	61	51	49	44	75	68	66	58	56	51	79	74	71	65	62	58	81	78	73	70	66	63
	2100	0.287	73	63	62	52	50	44	7	69	67	59	56	52	81	75	72	66	63	59	83	79	75	71	67	63)
			_																							\leq
	1000	0.036	61	54	54	50	46	41	65	60	60	57	53	49	68	66	65	64	60	57	70	70	68	68	64	62
	1200	0.051	63	56	56	51	46	42	67	62	61	58	53	51	71	68	66	65	61	59	73	71	69	69	65	63
	1500	0.080	66	58	57	52	47	44	70	64	82	59	54	52	74	70	68	66	61	60	76	74	71	70	65	65
14	1800	0.116	69	60	58	53	47	45	72	66	64	60	55	53	76	72	69	66	62	61	78	75	72	70'	66	66
	2100	0.158	71	61	59	53	48	46	74	67	65	60	55	54	78	73	70	67	62	62	80	77	73	71	66	67
	2400	0.206	72	62	60	54	48	47	76	68	66	61	55	55	80	74	71	68	63	63	82	78	74	72	67	67
	3000	0.321	75	64	62	55	49	48	79	71	67	62	56	56	83	Π	72	69	63	64	85	80	.75	73	67	69
	4400	0.000		-		60															-	1		-	-	
	1400 1600	0.039	62 64	57 59	55 56	50 51	46	40	66 68	-		57	53	48	71	68	65	64	61	55 56	73 75	71	68	68	65	60
	2000	0.050	67	59 61	50 59	51	47 49	41 43	08 71	64 66	61 64	58 59	54 56	49 50	72 76	69 71	66 69	65 66	61 63	58	78	72	69 72	69 71	66 67	61 62
16	2400	0.113	69	62	59 60	52 54	5 0	4	74	67	8	61		51	78	73	70	68	63 64	59	81	76	-		68	-
10	2800	0.113	71	64	8	55	50	44	76	67	67	62	57 58	51	78 80	74	70	69	65	59	83	77	75	73	69	P) C)
	3200	0.194	73	65	63	55 56	52	45	/6 78	70	67	63	59	52 53	82	74	73	70	65 66	61	85	78	76	74	70	26
	4000	0.202	76	67	65	58	52 53	40	78 81	70	70	65.	59 60	55	82 85	77	75	70	67	62	88	180	78		72	67
	1000	3.2.5	/3	07		30	33		01	12		0.0		33	00	"	10	~~	07	02	00			10	12	0,
	3000	0.020	74	71	69	66	63	59	77	74	74	71	68	63	81	78	78	76	73	68	83	80	80	79	76	71
	3500	0.027	76	72	71	67	64	60	79	76	75	72	69	64	83	79	79	$\overline{\pi}$	74	69	84	81	81	80	77	72
24	4000	0.036	77	73	71	67	65	61	81	77	76	72	70	65	84	80	80	77	75	70	86	82	82	80	78	73
X	5000	0.056	80	75	73	69	66	63	83	78	77	74	71	67	86	82	81	79	76	72	88	84	84	82	79	75
16	6000	0.080	82	76	74	70	68	64	85	80	78	75	73	69	88	84	82	80	78	73	90	86	85	83	81	76
	7000	0.109	84	78	75	71	69	65	87	81	79	76	74	70	90	85	84	81	79	74	92	87	86	84	82	77
	8000	0.143	85	79	76	71	70	66	88	82	80	76	75	71	92	86	84	81	80	76	94	88	87	84	83	78
16	7000	0.109	84	78	75	71	69	65	87	81	79	76	74	70	90	85	84	81	79	74	92	87	86	8	4	4 82

.

.

Models: PESV, AESV, DESV
Discharge Sound Power

 \bullet \vartriangle Ps is the difference in static pressure from inlet to discharge.

• Sound power levels are in decibels, re 10¹⁹ watts.

End discharge sound power is the noise emitted from the unit discharge into the downstream duct.
 All Sound Data are based upon tests conducted in accordance with ARI 880-94 in the Laboratory at TITUS, Richardson Texas.

Figure 121: VAV Terminal Box Discharge Sound Pwr (Titus Single Duct Pressure Independent)

	<u> </u>		<u> </u>								-	ioun	d Po	wor	Oct	ve A	and		•			_				
iniet	CFM	Min.			0.5"	A P.					1.0"					_	2.0"	-					3.0"	AP		_
Size		ΔP.	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7
		414		Ľ	لت								, i	<u> </u>	-		-									<u> </u>
	75	0.004	57	49	43	38	36	28	61	53	48	44	42	35	65	57	53	49	48	42	67	60	56	Fo	10	40
	125	0.004	62	56	48	44	30 41	20	66	53 60	54	49	47	41	70	5	59	55	53	47	72	66	88	52 58	52 57	46
4	175	0.019	65	60	52	47	44	5 38	69	64	57	53	50	45	73	68	ß	58	57	51	75	71	65	61	57 60	55
-	250	0.039	69	64	56	51	47	42	73	8	61	56	54	49	77	73	66	62	60	55	79	75	69	65	64	59
		0.000	100		00		17/		10	00		00							~	~	/8	/3	00	0.5		38
<u> </u>	125	0.015	56	49	43	38	35	30	60	54	48	43	41	37	64	59	54	48	47	45	67	62	57	51	51	49
	175	0.030	60	53	47	42	39	34	64	58	52	47	45	41	68	63	58	52	51	48	70	66	61	55	55	52
5	250	0.061	63	58	52	47	43	37	67	63	57	52	49	45	71	68	62	57	55	52	74	71	65	59	59	56
-	300	0.088	65	60	54	49	45	39	69	65	59	54	51	47	73	70	64	59	57	54	76	73	67	62	61	58
	350	0.119	67	62	56	51	47	41	71	67	61	56	53	48	75	72	66	61	59	55	77	75	69	64	62	60
			<u> </u>							·								-	<u> </u>					<u>ش آ</u>		
	175	0.034	58	51	41	37	35	29	61	55	47	42	40	36	64	59	52	47	46	43	66	62	55	50	50	47
	225	0.056	61	54	45	40	37	31	64	59	50	45	43	38	67	63	56	50	49	45	69	65	59	53	52	49
	300	0.099	64	58	49	44	39	33	67	62	54	49	45	40	71	67	60	54	51	47	73	69	63	57	55	51
6	350	0.135	66	60	51	46	41	35	69	6	56	51	47	42	73	69	62	56	53	49	75	71	65	59	56	53
	400	0.177	67	62	53	47	42	36	71	66	58	52	48	43	74	70	64	57	54	50	76	73	5	60	57	54
	450	0.223	69	63	54	49	43	37	72	68	60	54	49	44	75	72	65	59	55	51	77	74)	69	62	58	55
	500	0.276	70	65	56	50	44	38	73	69	61	55	50	45	77	73	67	60	56	52	79	76	70	63	59	56
																		_								
	250	0.035	59	51	46	41	38	33	64	57	51	44	44	40	68	62	56	47	49	47	71	65	58	49	53	51
	300	0.050	60	54	49	44	40	35	65	59	53	47	46	42	69	65	58	51	51	48	72	68	61	52	3	53
_	350	0.068	61	56	51	47	42	36	66	62	56	50	47	43	70	67	61	53	53	50	73	70	63	55	56	54
7	400	0.089	62	58	53	49	43	38	66	64	58	53	49	45	71	69	63	56	54	51	73	72	65	58	58	56
	500	0.139	63	62	56	53	46	40	68	67	61	57	51	47	72	73	66	60	57	54	75	76	69	8	8	58
	600 650	0.201	64 65	65 66	59	57	48	42	69	70	64 65	60	53 54	49	73 74	75	69 70	63	59 60	56	76 76	78	<u>7</u>	65	88	60
	050	0.230	05	00	60	58	49	43	69	71	65	61	34	50	/4	Π	70	64	60	57	/6	80	73'	66	ങ	61
	350	0.039	59	51	48	46	38	32	64	56	53	51	44	39	68	61	57	56	50	45	71	63	60	59	.52	49
	400	0.039	60	53	50	40	40	34	64	58	53 54	53	45	39 40	69	82	59	58	50	43	72	65	82	60	55	51
	450	0.064	60	53	51	40	41	35	65	59	56	53	43	41	69	64	61	59	52	48	72	67	63	e2	33	52
8	500	0.079	61	56	53	50	42	36	83 65	61	57	55	48	43	70	65	62	60	54	49	73	68	65	63	57	53
~	600	0.114	62	58	55	52	44	38	66	63	60	57.	50	45	71	68	64	8	55	51	74	71	67	65	59	55
	700	0.155 -	62	60	57	54	46	40	67	65	62	58	51	46	72	70	66	63	57	53	74	73	69	66	60	57
	800	0.203	63	62	59	55	47	41	68	67	63	60	53	48	72	72	68	65	59	55	75	75	71	68	62	59
							<u> </u>						<u> </u>										<u></u>	<u> </u>	<u> </u>	
	450	0.045	61	55	51	48	45	40	64	61	57	54	51	47	68	67	63	60	58	54	70	71	67	64	61	58
	500	0.056	62	56	52	48	45	41	66	62	58	55	52	48	69	68	64	61	58	54	71	71	68	65	62	58
	600	0.080	65	57	53	49	46	42	68	63	59	56	53	48	72	69	65	62	59	55	74	73	69	66	63	59
9	700	0.109	67	58	54	50	47	42	70	64	60	57	53	49	74	70	66	63	60	56	76	74	70	67	64	60
	800	0.142	69	59	55	51	48	43	72	65	61	58	54	50	76	71	67	64	61	57	Z 8	五	71	68	64	61
	900	0.180	70	60	56	52	48	44	74	66	62	58	55	51	77	72	68	65	61	57	79	76	72	68	65	61
i	1000	0.222	72	61	57	53	49	44	75	67	63	59	55	51	79	73	69	65	62	58	81	76	73	69	65	62
	í																						_			

Models: PESV, AESV, DESV M Discharge Sound Power

ARI Certification Rating Points

Inlet	Rated	Min.	Sou	nd P	owe	r 0	1.5"	ΔP,
Size	CFM	ΔP,	2	3	4	5	6	7
4	150	0.040	70	65	59	54	52	47
5	250	0.120	70	66	60	55	53	49
6	400	0.220	73	69	61	55	51	47
7	550	0.200	71	72	65	60	56	52
8	700	0.200	70	68	64	61	55	50
9	900	0.220	76	69	66	62	59	55
10	1100	0.180	78	70	65	61	57	53
12	1600	0.210	76	71	67	62	59	55
14	2100	0.210	77	71	68	64	59	59
16	2800	0.200	78	72	70	66	62	57
24 X 16	5300	0.063	86	81	80	77	75	70

Figure 122: VAV Terminal Box Discharge Sound Pwr - continued (Titus Single Duct PI)

<u> </u>							_					oun	d Po	war	Oct	ve B	and				_					
Inlet	CFM	Min.			0.5*	ΔP.			-		1.0*	_					2.0"	_			· · · · ·		3.0"	ΔP.		
Size		ΔP,	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	51	6	7
L											_										i					
1	75	0.004	50	39	30	25	22	18	55	43	33	28	26	25	60	47	36	30	30	31	62	49	38	31	32	35
	125	0.010	56	45	36	33	31	26	60	49	39	35	35	33	65	53	43	38	39	39	68	55	45	39	42	43
4	175	0.019	59	50	40	38	37	31	64	64	44	41	41	38	69	68	47	43	45	44	71	60	49	44	48	48
	250	0.039	63	54	45	44	44	36	68	58	48	46	48	43	72	62	51	48	52	50	75	64	53	50	54	54
	125	0.015	42	27	18	16	16	15	46	30	22	20	22	22	50	33	27	24	28	30	52	35	29	27	31	34
	175	0.030	49	36	27	23	23	20	53	39	31	27	28	28	56	42	35	31	34	35	59	44	38	34	37	39
5	250 300	0.061	56	46	36	30	29	26	60	49	40	34	35	33	63	52	44	39	41	41	66	54	47	41	44	45
1	300	0.088	59 62	51 55	4 0 4 4	34 37	33 36	29 31	63 66	54 58	45 49	38. 41	38 41	36 39	67 70	57 61	49 53	42	44 47	44 46	69 72	59 63	52 55	45 48	47	48 51
L	350	0.119	02	35	44	37	30	31	80	20	43	41	41	39	10	01	55	40	4/	40	12	03	55	40	30	51
	175	0.034	54	46	32	23	20	14	57	50	37	29	25	19	61	54	42	34	29	24	63	56	46	37	32	26
1	225	0.056	56	50	35	27	24	18	59	53	41	32	29	23	63	57	46	37	33	28	65	60	49	40	36	31
	300	0.099	58	53	39	30	28	23	61	57	45	35	33	28	65	61	50	41	37	33	67	63	53	44	40	36
6	350	0.135	59	55	41	32	30	26	62	59	47	37	35	31	66	63	52	42	40	36	68	65	55	45	42	39
	400	0.177	60	57	43	33	32	28	63	61	49	39	37	33	67	65	54	44	42	38	69	67	57	47	44	41
	450	0.223	61	58	45	35	34	30	64	62	50	40	39	35	68	66	55	45	43	40	70	68	59	48	46	43
	500	0.276	61	60	46	36	36	32	65	64	52	41	40	37	69	67	57	47	45	42	71	70	60	50	48	45
				_							_	_														
	250	0.035	53	39	٤	28	25	22	58	43	38	31	29	29	62	48	5		3	35	64	50	44	35	36	38
	300	0.050	55	42	36	31	8	25	59	46	40	34	ж К	31	63	51	4	37	37	37	66	53	46	38	39	41
7	350 400	0.068	56 58	44 46	38 40	34 36	31 33	27 29	61 62	49 51	42	37 39	35 37	33 35	65 66	53 55	46 48	39 42	39 42	39 41	67 68	56 58	48 50	41 43	42	43 44
1 '	500	0.139	60	50	42	40	33	32	84	54	47	43	41	35	68	59	51	45	46	44	70	61	53	47	48	47
	600	0.201	61	53	45	43	40	34	65	57	49	46	44	40	69	62	53	49	49	46	72	64	55	50	51	50
	650	0.236	62	54	47	45	42	35	66	59	50	47	46	41	70	63	54	50	50	47	73	66	56	52	53	51
											-			<u> </u>												
	350	0.039	54	40	35	30	27	23	57	45	39	33	31	29	60	49	43	36	35	35	62	52	46	38	37	39
1	400	0.051	56	42	37	32	23	25	59	47	41	35	33	31	62	51	45	38	37	37	63	64	48	40	39	41
[i	450	0.064	57	44	38	34	31	27	60	48	42	37	35	33	63	53	47	40	39	39	65	56	49	42	41	43
8	500	0.079	58	45	39	36	33	29	61	60	44	39	37	35	64	54	48	42	41	41	66	57	51	43	43	45
	600	0.114	60	48	42	39	36	31	63	52	46	42	40	38	66	57	51	45	44	44	68	60	53	46	46	47
1	700	0.155	62	5	44	41	39	34	65	55	48	44	43	40	68	59	53	47	46	46	70	62	55	49	49	50
	800	0.203	64	52	46	43	41	36	67	57	50	46	45	42	70	61	54	49	49	48	71	64	57	51	51	52
	450	0.045	57	46	38	31	29	26	59	51	45	38	35	33	62	56	52	44	41	39	63	59	56	48	45	43
1	500	0.045	57	47	38	32	30	27	59 61	52	45	38	36	33	63	57	52	45	42	40	64	60	56	49	46	44
1	600	0.080	61	48	39	33	31	28	63	53	46	40	37	35	65	59	53	47	43	41	67	62	57	50	47	45
9	700	0.109	63	49	40	34	32	29	65	55	47	41	39	35	67	60	54	48	45	42	69	63	58	52	48	46
1	800	0.142	64	50	41	36	34	30	67	56	48	42	40	36	69	61	55	49	46	43	70	64	59	53	49	47
1	900	0.180	66	51	41	36	34	30	68	57	48	43	40	37	70	62	55	50	47	44	72	65	59	54	50	47
L	1000	0.222	67	52	42	37	35	31	69	57	49	44	41	38	72	63	56	51	47	44	73	66	60	55	51	48

Models: PESV, AESV, DESV I Radiated Sound Power

ARI Certification Rating Points

Inlet	Rated	Min.	Sou	nd P	owe	r Q	1.5"	ΔP,
Size	CFM	ΔP.	2	3	4	5	6	7
4	175	0.019	67	56	46	42	44	42
5	275	0.074	64	53	45	39	40	39
6	400	0.220	66	63	52	42	40	36
7	550	0.200	67	59	51	46	46	43
8	700	0.200	67	57	51	46	45	44
9	900	0.220	70	60	53	47	44	41
10	1100	0.180	72	59	53	48	45	43
12	1600	0.210	71	62	57	51	47	43
14	2100	0.210	77	61	55	50	51	48
16	2800	0.200	70	62	57	53	51	50
24X16	5300	0.063	76	71	70	65	60	54

Figure 123: VAV Terminal Box Radiated Sound Power (Titus Single Duct Pressure Independent)

											5	ioun	d Po	wer	Oct	rve E	land	5								
inie t	CFM	Min.			0.5"	ΔP,					1.0*	ΔP,					2.0"	ΔP,					3.0*	ΔP,		
Size		ΔP,	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	Г
																						_				-
	550	0.038	60	46	39	33	31	29	61	52	46	40	37	35	62	58	54	46	42	41	63	61	58	50	45	14
	600	0.045	61	47	39	34	32	29	62	52	47	40	37	35	64	58	54	47	43	41	65	61	58	51	46	t
	700	0.061	63	48	40	35	33	30	65	53	47	41	38	36	66	59	55	48	44	42	67	62	59	52	47	T
10	800	0.080	65	48	40	35	34	31	67	54	48	42	40	37	68	60	55	49	45	43	69	63	59	52	.48	T.
	1000	0.124	68	50	41	37	36	33	70	55	49	43	41	39	71	61	56	50	47	45	72	64	60	54	50	T
	1200	0.179	71	50	42	38	37	34	72	6 6	49	44	43	40	74	62	57	51	48	46	75	65	61	55	51	Ŀ
	1400	0.244	73	51	43	39	39	35	75	57	50	45	44	41	76	62	57	52	49	47	77	66	61	56	53	
								_			_			-												
	800	0.042	56	49	43	36	33			54	49	22	39	36.			65	48		43	65	62	58	52	48	Ŀ
	900	0.053	58	50	44	37	34	29	61	55	49	43	40	36	65	60	55	49	45	43	67	62	59	53	49	Ŀ
	1000	0.065	60	50	44	38	35	30	63	<u>65</u>	50	44	40	37	66	60	56	50	46	44	68	63	60	54	49	Ļ
12	1200	0.094	62	52	46	39	36	31	65	57	52	45	41	38	69	62	57	51	47	45	71	65	61	55	50	Ļ
	1500	0.146	65 68	53 55	47	41	37	32	69	58	53 54	47	43	39	72	63	59	53	48	46	74	66	63	56	52	Ļ
	1800 2100	0.211	-	55	49 50	42 43	38	33 33	71	59	56		44	40 40	74	64	60	54	50	47	76	67	64	58	53	Ļ
	2100	0.287	70	50	50	4.5	39	33	73	61	50	49	45	40	76	66	62	55	51	47	78	69	65	59	54	I
	1000	0.036	59	47	39	34	33	31	64	52	46	40	39	38	63	58	54	47	45	46	64	61	58	51	49	Т
	1200	0.050	63	47	40	34	35	32	61 65	54	40	42	41	30 40	66	50 59	54 55	47	43	40	68	62	59	52	51	ł
	1500	0.080	67	4 0 50	41	37	35	34	69	55	49	43	43	41	71	61	56	50	50	49	72	64	61	54	53	+
14	1800	0.080	71	50	42	38	39	34	73	57	50	45	45	43	75	62	57	52	51	43 50	76	66	62	56	55	t
	2100	0.158	74	53	43	39	40	37	76	58	51	46	47	4	78	64	58	53	53	51	79	67	63	57	57	t
	2400	0.206	$\overline{\pi}$	54	44	40	42	38	79	59	52	47	48	45	80	65	59	54	54	62	82	68	63	58	58	t
	3000	0.321	81	55	45	42	44	39	83	61	53	49	50	46	85	66	60	55	57	54	86	70	65	59	60	t
	0.00	0.021																								<u>بل</u>
	1400	0.039	55	48	44	38	39	32	59	53	49	43	43	38	63	58	53	48	47	44	66	61	56	51	50	T
	1600	0.050	57	49	45	39	40	33	61	54	50	44	44	40	65	59	54	49	49	46	68	62	57	52	51	t
	2000	0.079	59	51	47	41	42	36	63	56	52	46	46	42	68	61	56	52	50	48	70	64	59	65	53	t
16	2400	0.113	61	52	49	43	44	38	66	58	53	48	48	44	70	63	58	53	52	50	73	66	61	56	54	T
	2800	0.154	63	54	50	45	45	40	68	59	55	50	49	46	72	64	59	55	53	52	74	67	62	58	56	T
	3200	0.202	65	55	51	46	46	41	69	60	56	51	50	47	73	65	60	56	54	54	76	68	63	59	57	T
	4000	0.315	68	57	53	48	48	44	72	62	58	53	52	50	76	67	62	58	56	56	79	70	65	61	59	1
																										_
	3000	0.020	61	57	56	51	46	42	65	61	61	56	50	45	69	65	65	61	54	48	71	67	68	64	56	T
	3500	0.027	64	59	58	52	48	44	67	63	62	57	52	47	71	67	67	63	56	50	73	69	70	66	58	T
	4000	0.035	66	61	60	54	50	45	70	65	64	59	54	49	73	69	69	64	58	52	76	71	71	67	60	Ŧ
24X18	5000	0.056	70	64	62	56	53	48	73	68	67	61	57	52	77	72	71	67	61	65	79	74	74	70	63	Γ
1	6000	0.080	73	67	64	58	56	51	76	71	69	63	60	54	80	74	73	69	63	57	82	77	76	72	66	_
	7000	0.109	75	69	66	60	58	53	79	73	71	65	62	56	83	177	75	70	65	59	85	79	78	73	68	ļ
	8000	0.143	77	71	68	62	60	55	81	75	72	67	63	58	85	78	77	72	67	61	87	81	80	75	69	

Models: PESV, AESV, DESV E Radiated Sound Power

 <u>A</u> P_s is the difference in static pressure from Inlet to discharge.

 Sound power levels are in decibels, re 10⁻¹² watts.

Badiat power is the noise transmitted through the casing walls.
 All Sound Data are based upon tests conducted in accordance with ARI 880-94 in the Laboratory at TITUS, Richardson Texas.

Figure 124: VAV Terminal Box Radiated Sound Power (Titus Single Duct Pressure Independent)

TITUS® Square and Rectangular Diffusers • Performance

Model TDC

Neck Size	Pattern	Neck Vel. Totel Press.	300 0.042	400 0.075	500 0.117	600 0.168	700 0.229	800 0.299	900 0.379
		Total CFM NC Side	75 5 A B	100 13 A B	125 19 A B	150 23 A B	175 27 A B	200 · 31 A B	225 34 A B
6	51	CFM/Side Throw, Feet	75 0 7-9-13 —	100 0 9-11-16 —	125 0 10-12-18 —	150 0 11-13-19 —	175 0 12-1 5 -21 —	200 0 13-16-22 —	225 0 13-17-24 —
х 6	\$2	CFM/Side Throw, Feet	36 38 3-\$-10 3-\$-10	50 50 5-7-12 5-7-12	63 63 6-9-13 6-9-13	75 75 7-10-14 7-10-14	86 88 8-11-15 8-11-15	100 100 9-12-17 9-12-17	113 113 10-12-18 10-12-18
	G2	CFM/Side Throw, Feet	38 38 3-5-10 3-5-10	50 50 5-7-12 5-7-12	63 63 6-9-13 6-9-13	75 75 7-10-14 7-10-14	86 88 8-11-15 8-11-15	100 100 9-12-17 9-12-17	113 113 10-12-18 10-12-18
0.25 Sq. Ft.	A3	CFM/Side Throw, Feet	19 28 3-4-8 3-5-9	25 38 4-6-9 4-7-10	31 47 5-7-10 6-8-11	38 56 6-8-11 7-9-13	44 66 7-8-12 8-8-14	50 75 7-9-13 8-10-15	56 84 8-9-13 9-11-16
	A4	CFM/Side Throw, Feet	19 19 3-4-8 3-4-8	25 25 4-6-9 4-6-9	31 31 5-7-10 5-7-10	38 38 6-8-11 6-8-11	44 44 7-8-12 7-8-12	50 50 7-9-13 7-9-13	56 56 8-9-13 8-9-13
		Total CFM NC Side	169 8 A B	225 15 A B	281 21 A B	334 26 A B	394 30 A B	450 34 A B	506 37 A B
9	S 1	CFM/Side Throw, Feet	169 0 11-14-20 —	225 0 13-17-24 —	261 0 15-19-27	338 0 17-20-29 —	394 0 18-22-31 —	450 0 19-24-34 —	506 0 20-25-36
X 9	S 2	CFM/Side Throw, Feet	84 84 5-8-15 5-8-15	113 113 7-11-18 7-11-18	141 141 9-14-20 9-14-20	169 169 11-15-22 11-15-22	197 197 13-16-23 13-16-23	225 225 14-18-25 14-18-25	253 253 15-19-27 15-19-2
3	G2	CFM/Side Throw, Feet	84 84 5-8-15 5-8-15	113 113 7-11-18 7-11-18	141 141 9-14-20 9-14-20	169 169 11-15-22 11-15-22	197 197 13-16-23 13-16-23	225 225 14-18-25 14-18-25	253 253 15-19-27 15-19-2
0.5625 Sq. Ft.	۲ ۵	CFM/Side Throw, Feet	42 63 4-7-12 5-8-13	56 84 6-9-13 7-11-16	70 105 8-11-15 9-12-17	84 127 9-12-17 11-13-19	96 148 10-13-18 12-14-21	113 169 11-13-19 13-16-22	127 190 14-14-20 13-16-2
	A4	CFM/Side Throw, Feet	42 42 4·7·12 4·7·12	56 56 6-9-13 6-9-13	70 70 8-11-15 8-11-15	84 84 9-12-17 9-12-17	98 98 10-13-18 10-13-18	113 113 11-13-19 11-13-19	127 127 14-14-20 14-14-2
		Total CFM NC Side	300 10 A B	400 17 A B	500 23 A B	600 28 A B	700 32 A B	800 35 A - B	900 38 A B
12	S 1	CFM/Side Throw, Feet	300 0 15-19-27	400 0 18-22-32 -	500 0 20-25-36 —	600 0 22-27-39 —	700 0 24-30-42 —	800 0 26-32-45	900 0 27-34-48 —
х 12	\$2	CFM/Side Throw, Feet	150 150 7-11-20 7-11-20	200 200 10-15-24 10-15-24	250 250 12-19-27 12-19-27	300 300 15-20-29 15-20-29	350 350 17-22-31 17-22-31	400 400 19-24-34 19-24-34	450 450 20-25-36 20-25-3
12	G2	CFM/Side Throw, Feet	150 150 7-11-20 7-11-20	200 200 10-15-24 10-15-24	250 250 12-19-27 12-19-27	300 300 15-20-29 15-20-29	350 350 17-22-31 17-22-31	400 400 19-24-34 19-24-34	450 450 20-25-36 20-25-3
1.0 Sq. Ft	A3	CFM/Side Throw, Feet	75 113 6-9-16 7-11-18	100 150 8-13-18 9-14-21	125 188 11-14-20 12-16-23	150 225 13-16-22 14-18-26	175 263 14-17-24 16-19-28	200 300 15-18-26 17-21-30	225 338 16-19-27 18-22-3
	A 4	CFM/Side Throw, Feet	75 75 8-9-16 6-9-16	100 100 8-13-18 8-13-18	125 125 11-14-20 11-14-20	150 150 13-16-22 13-16-22	175 175 14-17-24 14-17-24	200 200 15-18-26 15-18-26	225 225 16-19-27 16-19-2
		Total CFM NC Side	469 11 A B	625 19 A B	781 25 A B	938 29 A B	1094 33 A B	1250 37 A B	1406 40 A B
15	S 1	CFM/Side Throw, Feet	469 0	625 0 23-28-40 —	781 0	938 0 28-34-49	1094 0 30-37-53 —	1250 0 32-40-57 —	1406 0 34-42-60 —
X 15	S2	CFM/Side Throw, Feet	234 234 9-14-26 9-14-26	313 313 12-19-30 12-19-30	391 391 15-23-33 15-23-33	469 469 19-26-36 19-26-36	547 547	625 625 24-30-42 24-30-42	703 703 26-32-45 26-32-4
15	G2	CFM/Side Throw, Feet	234 234 9-14-26 9-14-26	313 313 12-19-30 12-19-30	391 391 15-23-33 15-23-33	469 469 19-26-36 19-26-36	547 547 22-28-39 22-28-39	625 625 24-30-42 24-30-42	703 703 26-32-45 26-32-4
1.5625 Sq. FL	A3	CFM/Side Throw, Feet	117 176 8-12-20 9-13-23	156 234 11-16-23 12-18-26	195 293 13-18-25 15-21-29	234 352 16-20-28 18-23-32	273 410 17-21-30 20-24-35	313 469 18-23-32 21-26-37	352 527 20-24-34 23-28-4
	A4	CFM/Side Throw, Feel	117 117 8-12-20 8-12-20	156 156 11-16-23 11-16-23	195 195 13-18-25 13-18-25	234 234 16-20-28 16-20-28	273 273 17·21·30 17·21·30	313 313 18-23-32 18-23-32	352 352 20-24-34 20-24-3
		Tetal CFM NC Side	675 12 A B	900 20 A B	1125 26 A B	1350 31 A B	1575 35 A B	1800 38 A B	2025 41 A B
18	\$1	CFM/Side Throw, Feet	675 0 22:29:41 —	900 0 27-34-48 —	1125 0 31 38 -54	1350 0 34-41-59 —	1575 0 36-45-63 —	1800 0 39- 48- 68 —	2025 0 41-51-72 —
X 10	\$2	CFM/Side Throw, Feel	338 338 11-17-31 11-17-31	450 450 15-22-36 15-22 36	563 563 19-28-40 19-28-40	675 675 22-31-44 22-31-44	788 788 26-33-47 26-33-47	900 900 29-36-51 29-36-51	1013 1013 31-38-54 31-38-5
18	G2	CFM/Side Throw, Feet	338 338 11-17-31 11-17-31	450 450 15-22-36 15-22 36	563 563 19 28-40 19-28-40	675 675 22-31-44 22-31-44	788 788 26-33-47 26-33-47	900 900 29-36-51 29-36-51	1013 1013 31-38-54 31-38-5
2.25 Sq. Fl.	AJ	CFM/Side Throw, Feel	169 253 9-14-24 11-18-27	225 338	281 422 16 22-31 18-25-35	338 506	394 591	450 675	506 759 24-29-41 27-33-4

See Page B96 for explanation of Side A and Side B in relation to diffuser configuration and discharge pattern.

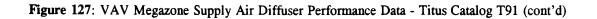
B98

Neck Size	Pattern	Neck Velocity Total Pressure	300 0.042	400 0.075	500 0.117	600 0.168	700 0.229	800 0.299	900 0.379
					<u> </u>		•	•	
		Tetal CFM NC Side	563 12 A B	750 19 A B	838 25 A B	1125 30 A B	1313 34 A B	1500 37 A B	1688 41 A B
	A1 B1	CFM/Side Throw, Feel	563 0 23-28-40 —	. 750 0 27-33-47 —	938 0 30-37-52 —	1125 0 33-40-57	1313 0 35-44-62 —	1500 0 38-47-66	1588 0 40-49-70 —
9 x	A2 82	CFM/Side Throw, Feet	281 281 12-19-33 12-19-33	375 375 17-25-38 17-25-38	469 469 21-30-43 21-30-43	563 563 25-33-47 25-33-47	856 858 29-36-51 29-36-51	750 750 31-38-54 31-38-54	844 844 33-41-58 33-41-58
30	E2 F2	CFM/Side Throw, Feet	84 478 9-14-26 16-22-31	113 638 13-19-30 21-25-36	141 797 16-23-33 23-29-41	169 956 19-26-37 25-31-45	197 1116 23-28-40 28-34-48	225 1275 24-30-42 30-36-51	253 1434 26-32-45 31-38-55
	A3	CFM/Side Throw, Feet	42 260 9-14-23 14-21-30	56 347 13-19-27 19-24-35	70 434 16-21-30 22-27-39	84 520 19-23-33 24-30-42	98 607 20-25-35 26-32-46	113 694 22-27-38 28-35-49	127 780 23-28-40 30-37-52
t.875 iq. Ft.	A3-2	CFM/Side Throw, Feel	394 84 20-25-36 9-14-26	525 113 24-29-42 13-19-30	656 141 27-33-46 16-22-33	788 169 29-36-51 19-26-37	919 197 32-39-55 23-28-40	1050 225 34-42-59 24-30-42	1181 253 36-44-63 26-32-45
Ī	B 4	CFM/Side Throw, Feet	42 239 9-14-23 14-21-30	56 319 13-19-27 19-24-35	70 396 16-21-30 22-27-39	84 478 19-23-33 24-30-42	98 558 20-25-35 26-32-46	113 638 22-27-38 28-35-49	127 717 23-28-40 30-37-52
		Total CFM NC Side	675 12 A B	900 20 A B	1125 26 A B	1350 31 A B	1575 35 A B	1800 38 A B	2025 41 A B
9	A1 81	CFM/Side Throw, Feet	675 0 25-31-44	900 0 29-36-51	1125 0 33-40-57 —	1350 0 36-44-63 —	1575 0 39-48-68	1800 0 42-51-72 —	2025 0 44-54-77 —
X	A2 82	CFM/Side Throw, Feet	338 338 14-21-36 14-21-36	450 450 18-28-42 18-28-42	563 563 23-33-47 23-33-47	675 675 28-36-52 28-36-52	788 788 32-39-56 32-39-56	900 900 34-42-60 34-42-60	1013 1013 36-45-63 36-45-63
36	E2 F2	CFM/Side Throw, Feet	84 591 10-16-28 18-24-34	113 788 14-21-33 23-28-40	141 964 18-26-37 25-31-45	169 1181 21-28-40 28-34-49	197 1378 25-31-43 30-37-53	225 1575 27-33-46 32-40-56	253 1772 28-35-49 34-42-60
2.250	A3	CFM/Side Throw, Feet	42 316 10-18-25 15-23-33	56 422 14-21-29 21-27-38	70 527 17-23-33 24-30-42	84 633 21-25-36 27-33-46	98 738 22-27-39 29-35-50	113 844 24-29-42 31-38-54	127 949 25-31-44 33-40-57
5q. Ft.	EJ	CFM/Side Throw, Feet	506 84 22-28-39 10-16-28	675 113 26-32-46 14-21-33	844 141 29-36-51 18-26-37	1013 169 32-39-56 21-28-40	1181 197 35-43-60 25-31-43	1350 225 37-48-65 27-33-46	1519 253 39-48-69 28-3549
	B 4	CFM/Side Throw, Feet	42 295 10-16-25 15-23-33	56 394 14-21-29 21-27-38	70 492 17-23-33 24-30-42	84 591	98 689 22-27-39 29-35-50	113 788 24-29-42 31-38-54	127 886 25-31-44 33-40-57
				<u></u>		<u></u>	•	·	
		Total CFM NC Side	375 10 A B	500 18 A B	625 24 A B	750 29 A B	875 33 A B	1000 36 A B	1125 39 A B
	A1 B1	CFM/Side Throw, Feet	375 0 19-23-33 -	500 0 22-27-38 —	625 0 24-30-42 -	750 0	875 0 29-35-50 -	1000 0 31-38-54 —	1125 0 33-40-57 -
12 X	A2 82	CFM/Side Throw, Feet	188 188 10-15-27 10-15-27	250 250 14-21-31 14-21-31	313 313 17-25-35 17-25-35	375 375	438 438 24-29-41 24-29-41	500 500 25-31-44 25-31-44	563 563 27-33-47 27-33-47
15	E2 F2	CFM/Side	150 225	200 300	250 375	300 450	350 525	400 500	450 675
	A3	CFM/Side	8-12-21 13-18-25 75 150	10-18-24 17-21-30 100 200	125 250	150 300	18-23-32 22-28-39 175 350	200 400	225 450
1.25 Sq. Fl.	 E3	CFM/Side	8-12-19 11-17-24 117 129	10-15-22 15-20-28	195 215	15-19-27 20-24-35 234 258	16-20-29 21-26-37 273 301	18-22-31 23-28-40 313 344	352 387
	E3 84	CFM/Side	11-17-27 8-12-21 75 113	15-22-31 10-16-24 100 150	18-24-35 13-19-27 125 188	22-27-38 16-21-30 150 225	175 263	25-31-44 20-24-35 200 300	225 338
		Throw, Feet	8-12-19 11-17-24	10-15-22 15-20-28	13-17-24 18-22-31	15-19-27 20-24-35	16-20-29 21-26-37	18-22-31 23-28-40	19-23-33 24-30-42
		Total CFM NC	450	80 0 19	750 24	900 29	1050 33	1200 37	1350 40
10		Side CFM/Side	A B 450 0	A B 600 0	A B 750 0	A B 900 0	A 8 1050 0	A B 1200 0	A B 1350 0
12 X	A1 B1	Throw, Feet CFM/Side	21-25-36 225 225	24-29-42 - 300 300	27 33-47 — 375 375	29-36-51 450 450	32-39-55 - 525 525	34-42-59 600 600	36-44-63 — 675 675
18	E2 F2	Throw, Feet CFM/Side	11-17-30 11-17-30 150 300	15-23-34 15-23-34 200 400	250 500	300 600	350 700	400 800	30-36-52 30-36-52 450 900
1.50	A3	Throw, Feet CFM/Side	8-13-23 14-20-28 75 188	100 250	125 313	150 375	20-25-35 25-30-43 175 438	200 500	225 563
5q. Ft.	A3-2	Throw, Feet CFM/Side	8-13-21 12-19-27 169 141	11-17-24 17-22-31 225 188	14-19-27 20-24-35 281 234	338 281	394 328	450 375	21-25-36 27-33-46 506 422
		Throw, Feet CFM/Side	12-18-29 8-13-23 75 150	16-24-34 11-17-27 100 200	125 250	24-29-42 17-23-33 150 300	26-32-45 20-25-35 175 350	28-34-48 22-27-38 200 400	29-36-51 23-28-40 225 450

a (l

TITUS® Square and Rectangular Diffusers • Performance

Model TDC


Size	Pattern	Neck Velocity Total Pressure		00)42		00 075	50 0.1		0.1		0.1				9. 0.3	00 179
		Total CFM NC Side	1	150 4	2	100	17	7		2		50 16 8		оо 0 В	4	50 3 B
.	A1 B1	CFM/Side Throw, Feet	A 1050 32-39-55	B 0	A 1400 37-45-64	0 	A 1750 41-50-71	<u>0</u>	A 2100 45-55-78	<u>0</u>	A 2450 49-60-85	0	A 2800 52-64-90	0	A 3150 55-68-96	<u></u>
21 - x	A2 82	CFM/Side Throw, Feet	525	525 17-26-45	700	700 23- 35 -53	875	875	1050 35-45-64	1050 35-45-64	1225	1225 40-49-70	1400 43-53-74	1400 43-53-74	- 1575 45- 56 -79	1575 45-56-7
24	E2 F2	CFM/Side Throw, Feet	459 13-20-35	591 22-30-43	613 18-27-41	788 28-35-50	766 22-32-46	984 32-39-56	919 27- 35-5 0	1181 35-43-61	1072 31- 38-5 4	1378 38-46-66	1225 33-41-58	1575 41-50-71	1378 35- 43 -62	1772 43-53-1
3.5	AJ	CFM/Side Throw, Feet	230 13-20-32	411 19-29-41	307 17- 26 -37	547 26-33-47	383 22-29-41	684 30- 3 7-53	460 26-32-45	821 33-41-58	537 28-34-49	958 36-44-63	613 30-37-52	1095 39-47-67	690 32-39-55	1232 41-50-
Sq. FL	A3-2	CFM/Side Throw, Feet	300 18-28-45	375 13-20-35	400 25-37-52	500 18-27-41	501 31-41-58	625 22- 32-4 6	601 37-45-64	750 27- 35 -50	701 40-49-69	875 31- 38 -54	801 42-52-74	1000 33-41-58	901 45-55-78	1125 35- 43 -
	84	CFM/Side Throw, Feet	230 13-20-32	295 19-29-41	307 17-26-37	393 26-33-47	383 22-29-41	492 30-37-53	460 26-32-45	590 33-41-58	537 28-34-49	688 36-44-63	613 30-37-52	787 39-47-67	690 32-39-55	885 41-50-
		Total CFM NC Side	1	13 5 B	17 2 A	2	211 21	3	26. 3	3	30 3	7	35	0	39 4	3
		NC									3					
21	A1 81	CFM/Side Throw, Feet	1313 35-44-62	<u> </u>	1750 41- 50 -71	<u> </u>	2188 46-56-80	<u><u><u>•</u></u></u>	2625 50-62-88	<u> </u>	3063 54-67-95	<u> </u>	3500 58-71-101		3938 62-76-107	
x	A2 B2	CFM/Side Throw, Feet	656 19-29-51	656 19-29-51	875 26-39-59	875 26-39-59	1094 32- 46-6 6	1094 32-46-66	1313 39-51-72	1313 39-51-72	1531 45-55-78	1531 45-55-78	1750 48- 59-8 3	1750 48-59-83	1969 51-62-88	1969 51-62-8
30	E2 F2	CFM/Side Throw, Feet	459 15-22-40	853 25-34-48	613 20- 30-4 6	1138 32-39-56	766 25-36-51	1422 36-44-62	919 30-40-56	1706 39-48-68	1072 35-43-61	1991 42-52-74	1225 37- 46- 65	2275 45-56-79	1376 40- 49 -69	2559 48- 59 -8
		CFM/Side	230	542	306	723	383	903	459	1084	536	1265	613	1445	689	1626
4 375	A3	Throw, Feet		22-32-46	19-29-41	29-37-53	24-32-46	34-42-59	29-35-50	37-46-65	31-38-54	40-50-70	33-41-58	43-53-75	35-43-62	40.30.0
4.375 Sq. Ft.	A3 A3-2		14-22-35 469		625	29-37-53 562 20-30-46	781	702	29-35-50 937 41-50-72	843	1093	983	33-41-58 1250 48-58-83	1124	1406 50-62-88	1264
		Throw, Feet CFM/Side	14-22-35 469 21-31-50 230	22-32-46 421	625 28-41-58 306	562 20- 30- 46 569	781	702 25-36-51 711	937 41-50-72 459	843 30-40-56 853	1093 44- 55 -77 536	983 35-43-61 995	1250 48-58-83 613	1124 37-46-65 1138	1406 50-62-88 689	1264 40-49-0 1280
	A3-2	Throw, Feel CFM/Side Throw, Feel CFM/Side	14-22-35 469 21-31-50 230	22-32-46 421 15-22-40 427	625 28-41-58 306	562 20- 30- 46 569	781 35-46-65 383	702 25-36-51 711	937 41-50-72 459	843 30-40-56 853	1093 44- 55 -77 536	983 35-43-61 995	1250 48-58-83 613	1124 37-46-65 1138	1406 50-62-88 689	1264 40-49-0 1280

		NC Side		5 B		3 8	2 A			і3 В		97 19		ii B		и В
21	A1 81	CFM/Side Throw, Feet	1575 39-48-68	<u>°</u>	2100 45-55-78	0	2625 50-62-88	°	3150 55-68-96	0	3675 60-73-104	0	4200 64-78-111	0	4725 68-83-118	<u>•</u>
X	A2 82	CFM/Side Throw, Feet	788 21-32-56	788 21-32-56	1050 28-43-64	1050 28-43-64	1313 35- 5 1-72	1313 35-51-72	1575 43-56-79	1575 43-56-79	1838 49-60-85	1838 49-60-85	2100 53-64-91	2100 53-64-91	2363 56-68-97	2363 56-68-97
36	E2 F2	CFM/Side Throw, Feet	459 16-24-43	1116 27- 37 -53	613 22-33-50	1487 35-43-61	766 27-40-56	1859 39-48-68	919 33- 43-6 2	2231 43- 53 -75	1072 38-47-67	2603 46-57-81	1225 41- 50 -71	2975 50-61-86	1378 43-53-76	3347 53-65-92
5.25	EA.	CFM/Side Throw, Feet	230 16-24-39	673 24- 35 -50	307 21-32-45	897 32-41-58	383 27-35-50	1121 37-46-65	460 32- 39 -55	1345 41-50-71	537 34-42-60	1569 44-54-77	613 37- 45-6 4	1793 47-58-82	690 39- 48 -68	2018 50-62-87
Sq. Fl.	EJ	CFM/Side Throw, Feet	676 23- 34 -55	450 16-24-43	901 30-45-64	601 22-33-50	1126 38-50-72	751 27- 40-5 6	1351 45-55-78	901 33-43-62	1577 49-60-85	1051 38-47-67	1802 52-64-91	1201 41-50-71	2027 55-68-96	1351 43- 53 -76
	84	CFM/Side Throw, Feet	230 16-24-39	558 24-35-50	307 21-32-45	743 32-41-58	383 27-35-50	929 37- 46 -65	460 32- 39 -55	1115 41-50-71	537 34-42-60	1301 44-54-77	613 37-45-64	1487 47-58-82	690 39-48-68	1673 50-62-87

		Total CFM NC	210 16		28		35 3		42 3		49 3	100 18		00 2		100 15
		Side	•	8	•	6	•	в	•	в	A	B	•	8	•	B
21	A1 81	CFM/Side Throw, Feet	2100 45-55 78	<u>-</u>	2800 52-64-90	<u>-</u>	3500 58-71-101	0	4200 64-78-111	0	4900 69-85-120	<u>_</u>	5600 74-90-128	0	6300 78-96-136	0
x	A2 82	CFM/Side Throw, Feet	1050 24-37-64	1050 24-37-64	1400 33-49-74	1400 33-49 74	1750 41- 59-8 3	1750 41- 59-8 3	2100 49-64-91	2100 49-64-91	2450 57- 70-9 9	2450 57-70-99	2800 61-74-106	2800 61-74-106	3150 64-79-112	3150 64-79-11
48	E2 F2	CFM/Side Throw, Feet	459 19-28-50	1641 31-43-61	613 25- 38 -58	2168 41-50 71	766 32- 46 -65	2735 42-51-73	919 38-50-71	3281 50-61-86	1072 44- 54 -77	3828 54-66-93	1225 47- 58-8 2	4375 57-71-100	1378 50-62-87	4922 61-75-10
7.0	A3	CFM/Side Throw, Feet	230 18-28-45	935 27-41:58	306 25-37-52	1247 37-47-67	383 31-41-58	1559 43-53-75	459 37- 45-6 4	1870 47- 58 -82	563 40- 49 -69	2182 51-63-89	613 42-52-74	2494 55-67-95	689 45-55-78	2805 58-71-10
iq. Fl.	83	CFM/Side Throw, Feet	1181 40-49-70	459 19-28-50	1575 46-57-81	613 25-38-58	1969 52-64-90	766 32-46-65	2363 57-70-99	919 38-58-71	2756 62-75-107	1072 44-54-77	3150 68-81-114	1225 47- 58-8 2	3544 70-88-121	1378 50- 62 -8
	84	CFM/Side Throw, Feet	230 18-28-45	820 27-41-58	306 25-37-52	1094 37-47-67	383 31-41-58	1367 43-53-75	459 37- 45-6 4	1641 47-58-82	536 40-49-69	1914 51-63-89	613 42-52-74	2187 55-67-95	689 45-55-78	2461 58-71-10

See Page B96 for explanation of Side A and Side B in relation to diffuser configuration and discharge pattern.

B108

TITUS[®] Square and Rectangular Diffusers • Performance

lode	TDC				₩				
Neck Size	Patiern	Neck Velocity Total Pressure	300 0.042	400 0.075	500 0.117	600 0.168	700 0.229	800 0.299	900 0.379
					(
		Total CFM	3000	4000	/ 5000	6000	7000	8000	9000

30 X 48 ^{10.0} Sq. FL	A1 81	CFM/Side Throw, Feet	3000 54-66-94	<u>•</u>	4000 62-76-108	<u>•</u>	5000 70-85-121	<u>•</u>	5000 76-94-133	<u>•</u>	8000 83-101-143	<u>•</u>	8000 88-108-153	<u>•</u>	9000 94-115-163	<u> </u>
	A2 82	CFM/Side Throw, Feet	1500 29-44-77	1500 29-44-77	2000 39-59-89	2000 39-59-89	2500 49-70-100	2500 49-70-100	3000 59-77-109	3000 59-77-109	3500 68-83-118	3500 68-83-118	4000 73-89-126	4000 73-89-126	4500 77-95-134	4500 77-95-134
	E2 F2	CFM/Side Throw, Feet	468 22-34-60	2532 37-51-73	624 30-45-70	3376 49-60-84	780 38-55-78	4220 54-67-94	936 45-60-85	5064 60-73-103	1092 53-65-92	5908 64-79-112	1248 57-70-99	6752 69-84-120	1404 60-74-105	7596 73-90-127
	A3	CFM/Side Throw, Feet	468 22-33-54	1266 33-49-70	624 30-44-62	1688 44-57-80	780 37-49-70	2110 52-63-90	936 44- 54 -76	2532 57-70-99	1092 47-58-82	2954 61-75-106	1248 51-62-88	3376 66-80-114	1404 54-66-94	3798 70-85-121
	A3-2	CFM/Side Throw, Feet	1200	900 22-34-60	1600 42-62-88	1200 30-45-70	2000 53-70-99	1500 38-55-78	2400 62-76-108	1800 45-60-85	2800 67-83-117	2100 53-65-92	3200 72-88-125	2400 57-70-99	3600 76-94-133	2700 60-74-105
	B 4	CFM/Side Throw, Feet	468 22-33-54	1032 33-49-70	624 30-44-62	1376 44-57-80	780 37-49-70	1720 52-63-90	936 44-54-76	2064 57-70-99	1092 47-58-82	2408 61-75-106	1248 51-62-88	2752 66-80-114	1404 54-66-94	3096 70-85-121

		Total CFM NC	3600		4800 25		6000 31		7200 36		8400 40		9600 44		10800 47	
		Side	A	в	A	в	•	в	•	в	•	B	A	в	•	в
36 X 48 ^{12.0} Sq. FL	A1 81	CFM/Side Throw, Feet	3600 59-72-103	<u>•</u>	4800 68-84-119	<u>•</u>	6000 76-94-133	<u>•</u>	7200 84-103-145	<u>•</u>	8400 90-111-157	<u>•</u>	9600 97-119-168	<u>•</u>	10800	<u>•</u>
	A2 82	CFM/Side Throw, Feel	1800 38-48-85	1800 38-48-85	2400 43-65-98	2400 43-65-98	3000 54-77-109	3000 54-77-109	3600 65-85-120	3600 65-85-120	4200 74-91-129	4200 74-91-129	4800 80-98-138	4800 80-98-138	5400 85-104-147	5400 85-104-147
	E2 F2	CFM/Side Throw, Feet	677 25-37-66	2927 41-56-80	902 33-50-76	3902 53-65-92	1128 41-60-85	4878 60-73-103	1354 50-66-93	5854 65-80-113	1579 58-71-101	6829 71-86-123	1805 62,76-108	7805 75-92-131	2030 66-81-115	8780 80-96-139
	AJ	CFM/Side Throw, Feel	677 24-37-59	1462 36-54-76	902 33-48-68	1949 48-62-88	1128 41- 54 -76	2436 57-70-99	1354 48-59-84	2923 62-76-108	1579 52-64-90	3410 67-82-117	1805 56- 68 -97	3898 72-88-125	2030 59-72-103	4385 76-93-132
	83	CFM/Side Throw, Feet	1199 35-52-84	1199 25-37-66	1598 46-68-97	1598 33-50-76	1198 58-76-108	1198 41-60-85	2398 68-84-119	2398 50-66-93	2797 74-91-128	2797 58-71-101	3197 79-97-137	3197 62-76-108	3596 84-103-146	3596 66-81-115
	84	CFM/Side Throw, Feet	677 24-37-59	1127 36-54-76	902 33-48-68	1502 48-62-88	1128 41- 54 -76	1878 57-70-90	1354 48-59-84	2254 62-76-108	1579 52-64-90	2629 67-82-117	1805 56-68-97	3005 44-54-76	2030 76-93-132	3380 76-93-132

See Page B96 for explanation of Side A and Side B in relation to diffuser configuration and discharge pattern.

Figure 128: VAV Megazone Supply Air Diffuser Performance Data - Titus Catalog T91 (cont'd)

TITUS * 300/350 Series Grilles & Registers

odeis		-				_									
Core Area, Sq. Ft.	Nomina	I Duct Size	, Inches	Core Vel. Vel. Press. Neg. SP	400 .010 .029	500 .016 .046	600 .022 .064	700 .031 .089	800 .040 .116	900 .050 .145	1000 .062 .180	1100 .075 .218	1200 .090 .261	1300 .105 .354	
.12		6×4		CFM NC	48	60	72	84	95 12	108 17	120 20	130 22	143 25	168 30	
.18	8×4	7×5	6×6	CFM NC	72	90	108	126 10	144 15	162 19	180	198 27	216 31	252 37	• NC-3
.22	10 × 4	7×6		CFM NC	88	110	132	154 11	176	198 21	220 25	242 29	264 32	308 38	
.26	12×4	6×6		CFM NC	104	130	156	182 12	208 17	234 22	260 26	286 30	312 33	364 39	
.30		14 × 4		CFM NC	120	150	180	210 13	240 18	270 23	300 27	330 31	360 34	420 40	
.34	16×4	10×6		CFM NC	136	170	204	238 14	272 19	306 24	340 28	374 32	408 35	476 41	NC-4
.46	20 × 4	14×6	10×8	CFM NC	184	230	276 10	322 16	368 22	414 26	460 30	506 34	552 37	644 43	
.52	24×4	16×6		CFM NC	208	260 —	312 11	364 17	416 22	468 27	520 31	572 35	624 38	728 44	
.69	30 × 4 20 × 6	14 × 8 12 × 10		CFM NC	276	345 —	414 13	483 19	552 25	621 29	690 33	759 37	828 40	966 46	
.81	36×4 22×6	16×8 14×10		CFM NC	324	405	486 14	567 21	648 26	729 30	810 34	891 38	972 42	1134 48	
.90	40 × 4 26 × 6	18 × 8 16 × 10	12 × 12	CFM NC	360	450	540 15	630 21	720 27	810 31	900 35	990 39	1080 42	1260 48	
1.07	48×4 30×6	18×10 14×12		CFM NC	428	535 —	642 17	749 23	856 28	963 32	1070 36	1177 40	1284	1498 50	
1.18	34 × 6 24 × 8	20 × 10 16 × 12	14 × 14	CFM NC	472	590 10	708 17	826 23	944 28	1062 33	11 8 0 37	1298 41	1416 44	1652 50	
1.34	36×6	18×12	16×14	CFM NC	536	670 11	804 18	938 24	1072 29	1206 34	1340 38	1474 42	1608 45	1876 51	NC-5
1.60	30 × 8 24 × 10	22 × 12 18 × 14	16 × 16	CFM NC	640	800 12	96 0 19	1120 25	1280 31	1440 35	1600 39	1760 43	1920 47	2240 53	
1.80	48×6 36×8	30 × 10 24 × 12	18×16	CFM NC	720	900 13	1080 20	1260 26	1440 32	1620 36	1800 40	1980 44	2160 47	2520 53	
2.08	40 × 8 36 × 10	30 × 12 30 × 12	20 × 16 20 × 16	CFM NC	832	1040 14	1248 21	1456 27	1664 33	1872 37	2080	2288 45	2496 48	2912 54	
2.78	36×12 30×14	26 × 16 24 × 18	22 × 20	CFM NC	1112	1390 16	1668 23	1946	2224 35	2502 39	2780 43	3058 47	3336 51	3892 57	
3.11	48 × 10 40 × 12	36 × 14 36 × 14	26 × 18 26 × 18	CFM NC	1244	1555 17	1866 24	2177 30	2488 36	2799 40	3110 44	3421 48	3732 51	4354 57	
3.61	48 × 12 36 × 16	30 × 18 24 × 24		CFM NC	1444	1805 18	2166 25	2527 31	2888 37	3249 41	3610 45	3971 49	4332 52	5054 58	
4.65	48 × 16	36 × 20	30 × 24	CFM NC	1860	2325 20	2790 27	3255	3720 38	4185	4650 47	5115 51	5580 54	6510 60	
5.58	48 × 18	36 × 24		CFM	2232 13	2790	3348 29	3906 35	4464 40	5022 44	5580 49	6138 52	6696 56	7812	NC-6
6.25	48 × 20	30 × 30		CFM	2500	3125	3750	4375 35	5000 41	5625	6250	6875	7500 56	8750 62	

• Core velocities are in feet per minute.

Shaded dividing lines denote ranges

All pressures are in inches of water.

 Neg. SP is negative static pressure. NC values are based on a room absortion of 10 dB, re 10⁻¹² watts.

of NC values.

• Dash (—) in space indicates NC value less than 10.

Data were obtained from tests conducted in accordance with ISO Standard 5219, ISO Standard 3741 and ADC Test Code 1062 GRD84.

E13

Figure 129: VAV Megazone Return Air Grill Performance Data - Titus Catalog T91 (cont'd)

TITUS[®] Single/Dual Duct Terminals ► Heating Coils

Hot Water and Electric Coils for Single Duct Units

Hot Water Coil

The hot water coil is enclosed in a galvanized steel casing module to match the basic terminal unit. It is factory installed on the terminal discharge as shown on page G6.

 Optional on all models of TITUS single duct terminals.

Tubes are 1/2" OD copper.

Connections: Single circuit is 1/2" OD male solder. Multiple circuit is 7/8" OD male solder.

 Fins are aluminum, rippled, ten per inch.

Casing is galvanized steel.

Downstream duct connection is slip and drive cleat.

► For capacities, see pages G33-G36.

► For dimensions, see page G24.

► Water coil valves—pneumatic and electronic are available from TITUS.

Electric Coil

TITUS electric heating coils are designed specifically for use with vanable air volume terminals. They are furnished factory mounted in an integral sound attenuator.

Furnished with TITUS Model PESV, AESV, and DESV pressure independent units. Not furnished with pressure dependent units.

 Elements are high grade nickel chrome.

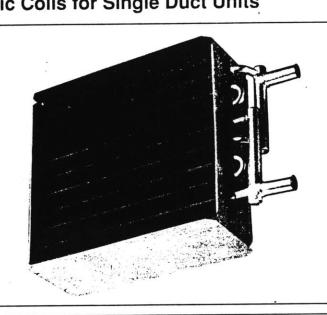
1, 2, or 3 steps of control.

Current characteristics available: 208/240/277 volt. 1 phase, 60 Hertz and 208 or 480 volt, 3 phase. 60 Hertz.

Ratings, dimensions, and additional features, see page G37.

The control panel is an integral part of the coil. The panel mounts on the side of the duct and contains:

Automatic reset thermal cut out.


Secondary protection with replaceable heat limiter.

Positive pressure air flow switch.

 PE switch for each step of control (pneumatic units).

 Magnetic contactor for each step of control (electronic units).

- Fuses per NEC (coils over 48 amps).
- Optional features, see page G37.

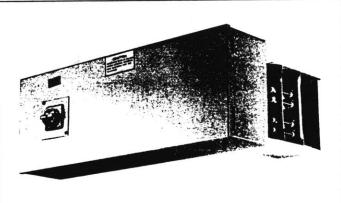


Figure 130: VAV Terminal Box Reheat Coil Physical Properties

► G28

Single/Dual Duct Terminals

Models: PESV, AESV, DESV I Hot Water Coil Data 1 and 2 Row

Rows/		Head					kir Flow, CF	M	-		
Circuits	G.P.M.	Loss	50	100	150	200	250	300	350	400	450
	0.5	0.16	4.0	5.4	6.3	6.8	7.5	8.1	8.5	8.9	9.3
One Row	. 1.0	0.59	42	5.9	7.0	7.7	8.6	9.4	10.1	10.6	11.2
Single	2.0	1.95	4.4	6.3	7.5	8.3	9.4	10.3	11.1	11.8	12.5
Circuit	4.0	6.67	4.4	. 6.5	7.8	8.7	9.8	10.9	11.8	12.6	13.4
	Airsic	le ∆ P,	0.01	0.01	0.02	0.03	0.05	0.07	0.09	0.12	0.14
	1.0	0.17	5.3	8.6	11.0	12.9	14.4	15.6	16.7	17.6	18.4
Two Rows	2.0	0.59	5.5	9.2	12.1	14.4	16.3	18.0	19.5	20.8	22.0
Multi-	4.0	1.95	5.6	9.5	12.7	15.3	17.6	19.6	21.4	23.0	24.4
Circuit	5.0	2.89	5.6	9.6	12.8	15.5	17.9	19.9	<u>2</u> 1.8	23.5	25.0
	Aireic	ie Δ P,	0.01	0.02	0.04	0.07	0.10	0.13	0.18	0.22	0.27

.

Sizes 7-8

Rows/		Head		_			Vir Flow, CF	M			
Circuits	Q.P.M.	Loss	100	200	300	400	500	600	700	800	900
	1.0	0.80	6.9	9.2	10.7	12.2	13.4	14.5	15.3	16.1	16.8
One Row	2.0	2.71	72	9.9	11.7	13.6	15.1	16.4	17.6	18.6	19.5
Single	4.0	9.23	7.4	10.3	12.3	14.4	16.1	17.7	19.0	20.2	21.3
Circuit	6.0	19.00	7.5	10.5	12.5	14.7	16.5	18.1	19.6	20.9	22.0
	Airsic	le Δ P,	0.01	0.02	0.04	0.07	0.10	0.14	0.19	0.24	0.30
	1.0	0.23	9.4	14.3	17.6	20.1	21.9	23.4	24.7	25.7	26.6
Two Rows	3.0	1.64	10.1	16.5	21.2	25.0	28.1	30.8	33.1	35.1	37.0
Multi-	5.0	4.01	10.3	17.0	22.2	26.3	29.9	32.9	35.6	38.0	40.2
Circuit	7.0	7.28	10.3	17.2	22.6	27.0	30.7	34.0	36.9	39.5	41.8
	Airsic	ie∆P,	0.01	0.04	0.08	0.13	0.20	0.27	0.36	0.46	0,56

Sizes 9-10

Rows/		Head				•	ir Flow, Cl	FM			
Circuits	G.P.M.	Loss	200	300	400	500	600	700	800	900	1000
	1.0	0.14	10.7	12.3	13.5	14.8	15.9	16.8	17.6	18.3	19.0
One Row	2.0	0.50	11.7	13.8	15.3	17.0	18.5	19.8	21.0	22.0	23.0
Multi-	4.0	1.67	12.4	14.7	16.5	18.5	20.3	21.9	23.4	24.7	25.9
Circuit	6.0	3.42	12.6	15.1	16.9	19.1	21.1	22.8	24.3	25.8	27.1
	Airsic	e Δ P.	0.01	0.02	0.04	0.05	0.07	0.10	0.12	0.15	0.18
	1.0	0.08	15.7	19.4	22.1	24.2	25.9	27.3	28.5	29.5	30.3
Two Rows	3.0	0.70	18.1	23.6	28.0	31.7	34.9	37.7	40.1	42.2	44.2
Multi-	5.0	1.69	18.7	24.7	29.7	33.9	37.6	40.8	43.7	46.4	48.8
Circuit	7.0	3.05	19.0	25.2	30.4	34.9	38.9	42.4	45.6	48.5	51.1
	Airsic	le Δ P,	0.02	0.04	0.07	0.10	0.14	0.18	0.23	0.29	0.35

Size 12

Rows/		Head					ir Flow, Cl	M			
Circuits	G.P.M.	Loss	200	400	600	800	1000	1200	1400	1600	1900
	1.0	0.18	12.5	16.2	18.4	20.6	22.2	23.6	24.7	25.6	26.4
One Row	2.0	0.66	13.7	18.4	21.4	24.5	26.9	28.9	30 .7	32.2	33.6
Multi-	4.0	2.18	14.4	19.8	23.4	27.1	30.2	32.8	3 5.1	37.2	39.0
Circuit	6.0	4.45	14.7	20.3	24.2	28.2	31.5	. 34.4	37.0	39.3	41.3
	Atraid	le Δ P,	0.01	0.02	0.04	0.07	0.10	0.14	0.19	0.24	0.30
	1.0	0.11	17.3	25.0	29.5	32.5	34.7	36.4	37.8	38.9	39.8
Two Rows	3.0	0.91	19.6	31.3	39.5	45.8	50.9	55.1	58.6	61,7	64.4
Multi-	5.0	2.19	20.2	32.9	42.3	49.8	56.0	61.2	65.8	69.8	73.3
Circuit	7.0	3.94	20.4	33.7	43.7	51.8	58.6	64.4	69.5	74.0	78.0
	Aireic	ie Δ P,	0.01	0.04	0.08	0.13	0.20	0.27	0.36	0.46	0.56

Figure 131: VAV Terminal Box Reheat Coil Performance Data

Models: PESV, AESV, DESV Hot Water Coil Data 1 and 2 Row

Size	14
JILE	

Rows/		Head					Vir Flow, CF	M			
Circuits	G.P.M.	Loss	400	700	1000	1300	1600	1900	2200	2500	2800
	1.0	0.06	18.9	22.3	24.9	27.0	28.6	29.9	31.0	31.9	32.7
One Row	2.0	0.27	21.9	26.8	30.7	34.2	36.9	39.2	41.1	42.8	44.3
Single	4.0	0.89	23.8	29.9	35.0	39.5	43.4	46.6	49.4	51.9	54.1
Circuit	6.0	1.80	24.6	31.1	36.7	41.8	46.1	49.8	53.1	56.0	. 58.6
	Ainsid	le A P _s	0.01	0.03	0.05	0.08	0.12	0.17	0.21	.0.27	0.33
	1.0	0.04	27.5	34.4	38.3	40.9	42.8	44.2	45.3	46.1	46.9
Two Rows	3.0	0.53	34 .5	48.1	57.6	64.8	70.5	75.1	79.0	82.3	85.2
Multi-	5.0	1.27	36.3	52.1	63.8	72.9	80.5	86.8	92.2	97.0	101.2
Circuit	7.0	2.27	37.1	54.0	66.8	77.1	85.7	93.0	99,4	105.0	110.0
	Airsid	θΔP,	0.02	0.05	0.10	0.16	0.23	0.31	0.41	0.51	0.63

Size 16

Rows/		Head					Nir Flow, Cf	M			
Circuits	G.P.M.	Loss	600	1000	1400	1800	2200	2600	3000	3400	3800
	1.0	0.07	23.6	26.9	29.9	32.0	33.6	34.9	36.0	36.9	37.6
One Row	2.0	0.29	28.1	33.3	38.2	41.9	44.9	47.4	49.4	51.2	52.8
Single	4.0	0.98	31.1	37.8	44.5	49.7	54.0	57.7	60.9	63.7	66.2
Circuit	6.0	1.98	32.3	39.7	47.1	53 .1	58.1	62.4	66.2	69.5	72.5
	Airsid	le ∆ P _s	0.02	0.04	0.07	0.11	0.16	0.21	0.27	0.34	0.41
	1.0	0.01	· 32.7	38.3	41.5	43.5	44.9	46.0	46.8	47.5	48.0
Two Rows	3.0	0.17	45.4	59.2	68.5	75.3	80.7	85.0	88.5	91.5	94.1
Multi-	5.0	0.44	49.1	66.1	78.4	87.9	95.5	101.9	107.2	111.9	115.9
Circuit	7.0	0.78	50.8	69.6	83.6	94.6	103.7	111.4	118.0	123.7	128.8
	Airsid	e ∆ P _s	0.03	0.07	0.13	0.21	0.30	0.40	0.51	0.64	0.78

Size 24 X 16

Rows/		Head				A	Ir Flow, CF	M			V
Circuits	G.P.M.	Loss	600	1200	1800	2400	3000	3600	4200	4800	5400
	1.0	0.09	29.4	35.1	38.4	41.2	43.1	44.6	45.7	46.5	47.4
One Row	2.0	0.39	35.5	45.0	51.2	56.7	60.8	64.1	66.8	69.1	71.1
Multi-	4.0	1.29	39.4	52.1	61.0	69.3	75.8	81.3	86.0	90.0	93.5
Circuit	6.0	2.59	40.9	55.0	65.2	74.8	82.6	89.2	94.9	99 .9	104.4
	Airsic	ie Δ P,	0.01	0.02	0.05	0.08	0.12	0.17	0.22	0.27	(0.345
	1.0	0.01	38.0	46.6	50.3	52.3	53.6	54.5	55.2	55.7	56.2
Two Rows	3.0	0.23	52.2	76.1	90.4	100.1	107.2	112.7	117.0	120.6	123.6
Multi-	5.0	0.57	55.9	85.8	105.6	120.0	131.2	140.1	147.5	153.7	159.0
Circuit	7.0	1.02	57.6	90.6	113.5	130.8	144.6	155.9	165.4	173.5	180.6
1	Airelo	ie∆P,	0.01	0.04	0.09	0.15	0.23	0.31	0.41	0.52	0.64

Hot water capacities are in MBH.

Data are based upon 180°F entering water and 65°F entering air.

●HD (head) loss is in feet of water.

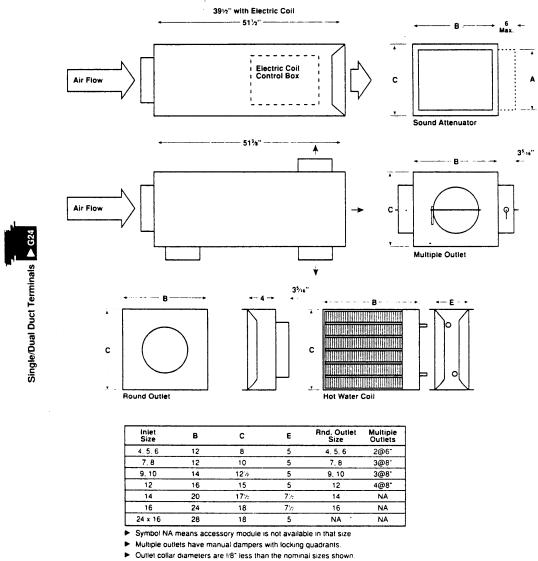
Tables are based upon a temperature difference of 115^{*}F between entering air and entering water. For other temperature differences, multiply MBH values by factors below. • Air temperature rise = 927 x MBH / CFM.

• Water temperature drop = 2.04 x MBH / G.P.M.

Connections: All coils are 5/8" O.D. male solder

 Coils are not for steam application. Contact your TITUS representative for steam coil data.

1 1


Correction Factors For Other Entering Conditions:

1.7	50	60	70	80	90	100	115	125	140	150
	50	00	/0	00	30	3	110	100		
Factor	0.44	0.52	0.61	0.70	0.79	0.88	1.00	1.07	1.20	1.30

Figure 132: VAV Terminal Box Reheat Coil Performance Data (continued)

TIUS[®] Single/Dual Duct Terminals ► Dimensions

Single Duct Units
Accessory Modules

Water coll connections: Single circuit is ¼" OD male solder. Multiple circuit is ¼" OD male solder

Electric heating coils are not available on pressure dependent terminals.

Dimensions are in inches.

G24

Figure 133: VAV Terminal Box Reheat Coil Dimensions

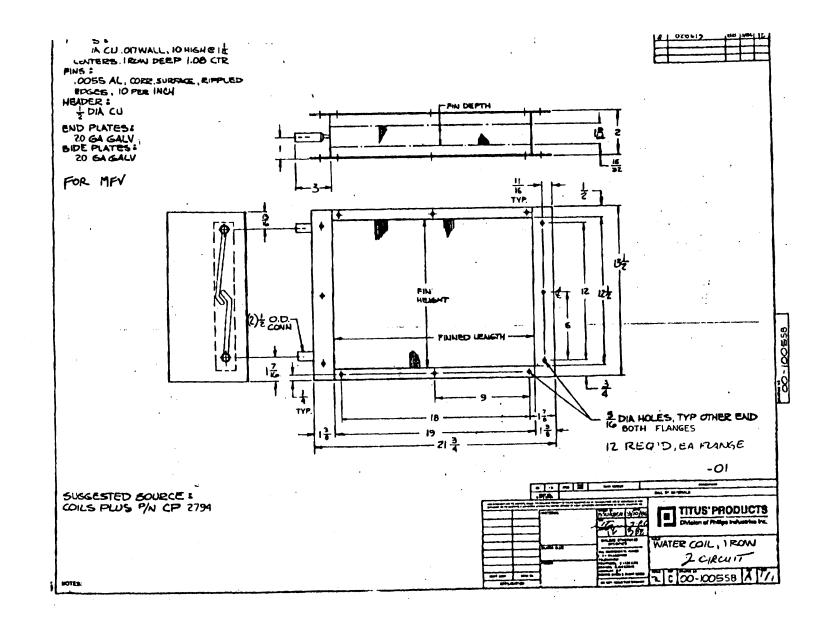
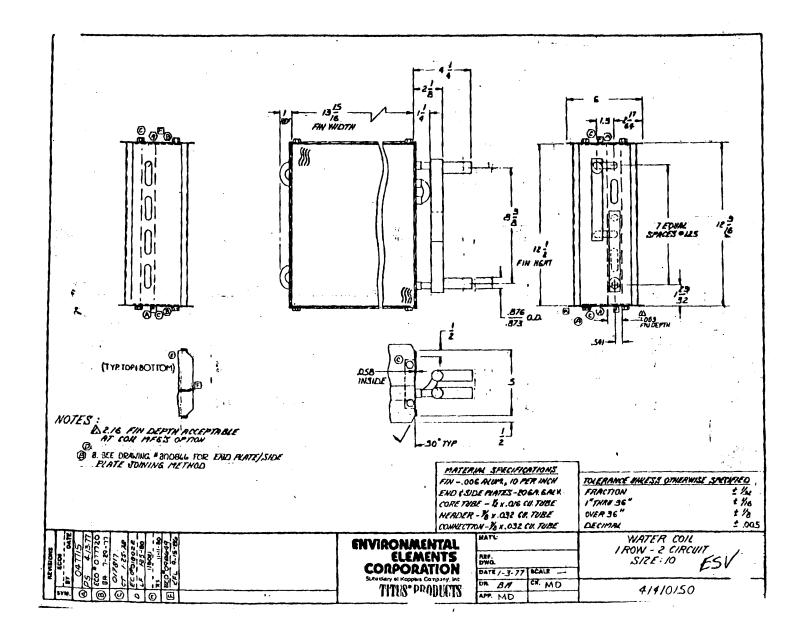
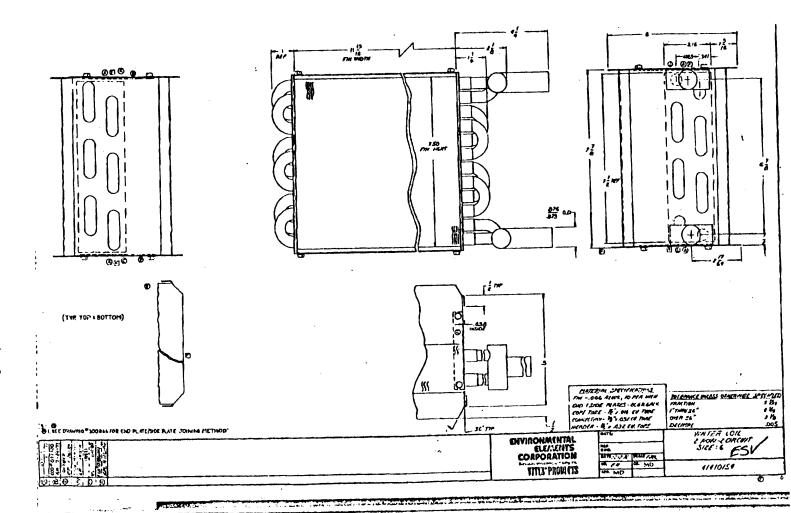
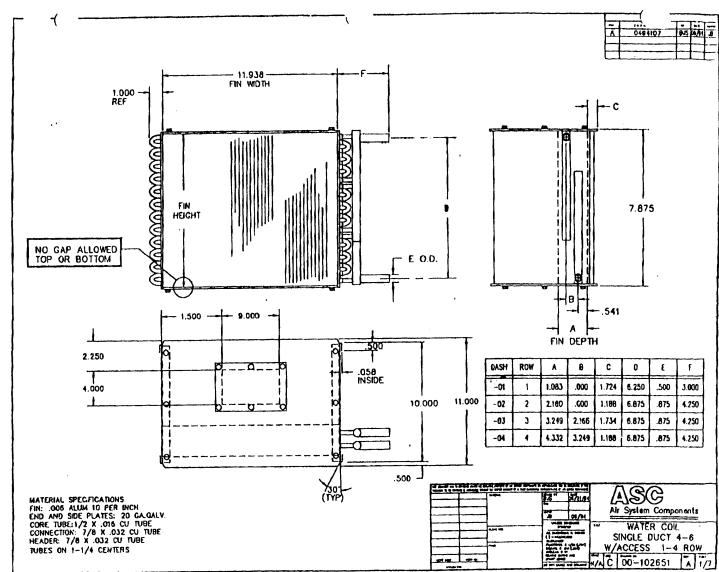




Figure 134: VAV Terminal Box Reheat Coil - Titus Shop Drawing 1

Figure 135: VAV Terminal Box Reheat Coil - Titus Shop Drawing 2



.

Figure 137: VAV Terminal Box Reheat Coil - Titus Shop Drawing 4

AOF USENTAT DIQUAL IDENS-1

-		Velocity	Basic	Basic +	Basic +	· Basic +	Basic +	Basic +	Basic +	Basic +	Electric
	CFM	Press.	Unit	Atten.	MultOut	Rd. Outlet	1R-Coll	2 R - Coll	3 R - Coll	4 R - Coll	Heater
niet	CFM		ΔP.	ΔP.	ΔP.	ΔP.	ΔP.	ΔP.	ΔP.	ΔP,	ΔP.
Size		A VM		the second se	0.007	0.011	0.013	0.020	0.026	0.032	0.015
- F	100	0.080	0.006	0.007	0.017	0.025	0.030	0.044	0.059	0.073	0.033
4	150	0.181	0.014		0.030	0.044	0.053	0.078	0.104	0.130	0.058
- L	200	0.322	0.025	0.028	0.030	0.069	0.083	0.123	0.163	0.203	0.091
_	250	0.503	0.039	Contraction of the local division of the loc	0.028	0.033	0.044	0.052	0.066	0.081	0.033
1	150	0.072	0.022	0.024		0.058	0.078	0.092	0.118	0.144	0.058
5	200	0.129	0.039	0.043	0.049	0.131	0.175	0,208	0.265	0.323	.0.131
L	300	0.289	0.068	0.096	0.111	0.131	0.238	0.282	0,361	0.440	0.178
	350	0.394	0.119	0.130	0.151		0.088	0.097	0,123	0,149	0.058
	200	0.059	0.044	0.049	0.055	0.071	the second s	0.219	0.277	0.335	0.131
6	300	0.133	0.099	0.109	0.125	0.160	0.199	0.390	0,493	0.595	0.233
1	400	0.236	0.177	0.194	0.221	0.284	0.353	0.493	0.623	0.753	0.295
	450	0.299	0.223	0.246	0.280	0.360	0.447		0.142	0.172	0.071
	300	0.070	0.050	0.056	0.064	0.074	0.097	0.112	0.142	0.307	0.126
7	400	0.125	0.089	0.099	0.113	0.132	0.173	0.450	0.570	0.690	0.284
	600	0.282	0.201	0.222	0.254	0.298	0.388	0,528	0.569	0.810	0.334
	650	0.331	0.236	0.261	0.298	0.349	0.456	0.123	0.164	0.205	0.097
	350	0.052	0.039	0.043	0.048	0.065	0.103	0.123	0.335	0,419	0.197
8	500	0.105	0.079	0.068	. 0.066	0.133	0.209	0.494	0.657	0.821	0.387
	700	0.207	0.155	0.172	0.193	0.260	0.410	0.817	1.087	1,357	0.640
. 1	900	0.342	0.257	0.284	0.319	0.430	0.678		0.183	0.226	0.089
	500	0.069	0.056	0.061	0.071	0.085	0.111	0.143	0.163	0.381	0.151
9	650	0.117	0.094	0.103	0.119	0.144	0.188	0.242	0.309	0.577	0.228
	800	0.177	0.142	0.156	0.181	0.218	0.284	0.366	0.409	0,995	0,393
3	1050	0.306	0.245	0.269	0.311	0.375	0.490	0.631		0.290	0,128
	600	0.060	0.045	0.051	0.057	0.075	0.125	0.171	0.229	0.515	0.120
10	800	0.107	0.080	0.090	0.101	0.133	0.222	0.304	0.406	0.974	0.432
	1100	0.203	0.151	0.171	0.190	0.251	0.420	0.575	0.768	1.578	0.699
	1400	0.328	0.245	0.277	0.308	0.407	0.680	0.931	1.245	0.325	0.118
	900	0.064	0.053	0.058	N/A	0.085	0.128	0.193	0.260		0.205
12	1200	0.113	0.094	0.103	N/A	0.151	0.227	0.343	0.463	0.578	0.32
	1500	0.177	0.146	0.161	N/A	0.236	0.355	0.535	0.723	0.903	0.64
	2100	0.347	0.287	0.315	· N/A	0.462	0.695	1.049	1.416		0.08
	1200	0.063	0.051	0.057	N/A	0.085	0.112	0.129	0.220	0.276	0.15
14	1600	0.113	0.091	0.101	N/A	0.151	0.199	0.230	0.392	0.490	
	2000	0.176	0.143	0.157	N/A	0.236	0.311	0.359	0.612	0.765	0.24
	3000	0.396	0.321	0.354	N/A	0.530	0.700	0.808	1.378	1.722	
	1500	0.056	0.044	0.050	N/A	0.075	0.108	0.166	0.224	0.281	0.07
16	2000	0.100	0.079	0.088	N/A	0.133	0.192	0.295	0.397	0.500	0.14
10	3000	0.225	0.177	0.199	N/A	0.300	0.433	0.663	0.894	1.125	0.31
	4000	0.401	0.315	0.354	N/A	0.533	0.769	1.179	1,589	1,999	
	2500	0.038	0.014	0.015	N/A	N/A	0.067	0.151	0.218	0.282	0.07
-		0.036	0.036	0.038	N/A	NA	0.222	0.387	0.557	0.722	0.20
24X16	6000	0.096	0.080	0.066	NA	N/A	0.500	0.870	1.253	1.623	0.45
5	8000	0.216	0.143	0.152	N/A	N/A	0.889	1.547	2.228	2.886	0.81

Models: PESV, AESV, DESV Application Data Minimum Pressures

•

Minimum Δ P₄ is the lowest static pressure difference (damper wide open).
 Δ P₄ is the difference in static pressure across the assembly.
 To obtain Total Pressure, add the Velocity Pressure for a given CFM to the Static Pressure drop (Δ P₆) of the desired ESV configuration.

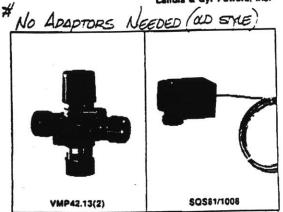
Figure 138: VAV Terminal Box Minimum Pressures (Titus Single Duct Pressure Independent)

v-'VMP Electronic Two-Way and Three-Way Valves

Description

The Powers VE VMP electronic valves are designed to control the flow of water and glycol solutions. The electric actuator receives a 24 Vac floating control signal to control the valve. By removing the cap from the bottom by-pass port (III), this valve assembly is converted to a three-way valve.

Design features include:


- Maintenance-free actuator with reversible synchronous motor
- · Magnetic hysteresis coupling protects against overload
- Manual adjustment on actuator
- Stainless steel stem and plug
- · No tools required to assemble actuator to the valve
- Actuator easily removed for service

Application

Trim

The VMP is used in HVAC installations for the control of the water side of terminal units such as induction units, fan coil units and small reheat coils. It is suitable for use

1	fan coil units and small reh	eat coils. It is suitable for us	ie ,
	Specifications	5.0.0.	Ms
	Actuator		NL
	Operating Voltage		10
	60 Hz	24 Vac - 15% to +5%	L
	50 Hz	24 Vac - 20% to + 10%	5
	Power Consumption	1.3 VA	,
	Running Time		L
•	at 60 Hz	125 s	
	at 50 Hz	150 s	
	Nominal Stroke	7:32 in. (5.5 mm)	
	Ambient Temperature		
	Operation	32° to 122°F (0° to 50°C)
	Transport and Storage	-13° to 149°F	<i>,</i>
		(-25° to 65°C)	
	Dimensions and Weight Valve Body	Refer to Fig. 1 and Table	3.
	Body Style	Globe Screwed	
	Line Size/Capacity	Refer to Tables 1 and 2.	
	Medium	Water, Glycol to 50%	
	Body	Bronze	

IS & GYR

Product Numbers

VALVE	C _v (K _{vs})	Order Number VALVE	Order Number
1/2"	0.29 (0.25)	' VMP42.09(2)	\$Q\$81/1008
1/2"	0.47 (0.4)	VMP42.10(2)	\$0581/1008
1/2"	0.74 (0.63)	VMP42.11(2)	SOS81/1008
1/2-	1.17 (1)	VMP42.12(2)	SQS81/1008
3/4*	1.87 (1.6)	VMP42.13(2)	SQS81/1008
3/4-	2.92 (2.5)	VMP42.14(2)	SOS81/1008

Packing Rangeability 1/2" Valves 3/4" Valves Flow Characteristics

Leakage Rate Max. Medium Temp. Max. Operating Pressure Max. Pressure Differential for Modulating Service Close-off Pressure Dimensions and Weight

Double O-Ring

50:1 100:1 Equal Percentage (II to I) Linear (III to I) 0.02% of C. 41°-230°F (5°-110°C) 232 psi (1600 kPa)

58 psi (400 kPa) Refer to Table 1. Refer to Fig. 2 & Table 3.

Table 1. Product Information.

ALVE	C,	(K _{vs})	Clo psig	se-Off (kPa)	· Ma psig	ix. ΔP (kPa)	External Thread on Valve Body
VMP42.09(2)	0.29	(0.25)	58	(400)	58	(400)	1/2" - 14NPT
VMP42.10(2)	0.47	(0.4)	58	(400)	58	(400)	1/2" - 14NPT
VMP42.11(2)	0.74	(0.63)	58	(400)	58	(400)	1/2" - 14NPT
VMP42.12(2)	1.17	(1)	58	(400)	58	(400)	1/2" - 14NPT
VMP42.13(2)	1.87	(16)	58	(400)	58	(400)	3/4" - 14NPT

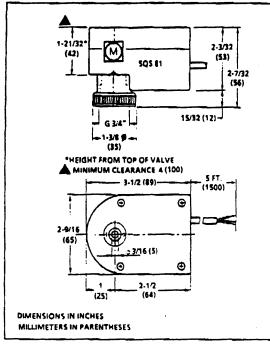
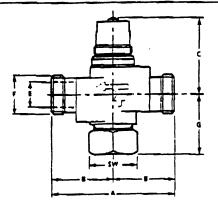
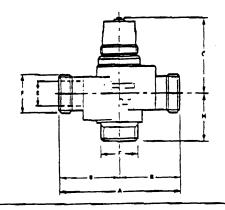

Stainless Steel

Figure 139: VAV Box Reheat Coil Control Valve Description - Landis & Gyr VE-VMP

					PRES	SURE DI	FERENTI	AL psi				
VALVE	C _v 1	2	4	6	8	10	15	20	25	30	40	\$0
VMP42.09(2)	0.29	0.41	0.58	0.71	0.82	0.92	1.12	1.30	1.45	1.59	1.83	2.05
VMP42.10(2)	0.47	0.66	0.94	1.15	1.33	1.49	1.82	2.10	2.35	2.57	2.97	3.32
VMP42.11(2)	0.74	1.05	1.48	1.81	2.09	2.34	2.87	3.31	3.70	4.05	4.68	5.23
VMP42.12(2)	1.17	1.65	2.34	2.87	3.31	3.70	4.53	5.23	5.85	6.41	7.40	8.27
VMP42.13(2)	1.87	2.64	3.74	4.58	5.29	5.91	7.24	8.36	9.35	10.24	11.83	13.22
VMP42.14(2)	2.93	4.14	5.85	7.18	8.29	9.27	11.35	13.10	14.65	16.05	18.53	20.72

Table 2. Maximum Water Capacities – U.S. Gallons per Minute.




Valve Assembly Height

VALV	E SIZE	2-14	AY	3.	WAY
in.	(mm)	In.	(m m)	in.	(mm)
1/2	(15)	5-3/16	(131)	4-15/	16 (124)
3/4	(20)	5-9/16	(141)	5-5/1	6 (134)

Table 3. Dimensions.

Figure 2. Valve Dimensions.

Assembly	c,	A	B	с	E	F	G	sw	н	Weight of Assembly
VMP42.09(2)	0.29	3-5/16 (84)	1-11/18 (42)	1-7/8 (47)	7/16 (11.5)	1/2 - 14 NPT	1-11/16(42)	15/16 (24)	1-3/8 (35)	1.4 lb (0.64 k
VMP42.10(2)	0.47	3-5/16 (84)	1-11/18 (42)	1-7/8 (47)	7/16 (11.5)	1/2 - 14 NPT	1-11/16(42)	15/16 (24)	1-3/8 (35)	1.4 ID (0.64 k
VMP42.11(2)	0.74	3-5/16 (84)	1-11/16 (42)	1.7/8 (47)	7/16 (11.5)	1/2 - 14 NPT	1.11/16(42)	15/16 (24)	1-3/8 (35)	1,4 (D (0.64 k
VMP42.12(2)	1.17	3-5/16 (84)	1-11/16 (42)	1-7/8 (47)	7/16 (11.5)	1/2 - 14 NPT	1-11/16(42)	15/16 (24)	1-3/8 (35)	1.4 lb (0.64 k
VMP42.13(2)	1.87	4 (101)	2 (50.5)	2(51)	11/16 (17)	3/4 - 11 NPT	1-7/8 (48)	1-3/15 (30)	1-5/8 (41)	2.55 10 (1 16
VMP42 14(2)	2.92	4 (101)	2 (50 5)	2(51)	11/16 (17)	3 1 - 1+ NIPT	+ 719 1491		•,=/ 9 (.1*)	2 66 16

Figure 140: VAV Box Reheat Coil Control Valve Capacity - Landis & Gyr VE-VMP

212.4	MBU	Ham																					6.400	6.40	5.600	8.000	1
	Ē																										
Chk Sum =	NDUATE								 		- .																-
	MBN	IIGW														2 AM	2.400	2.400	2.400	2.400	3.500						-
	t																-				2.0						
2nd	MBH/ET																				0.800						-
	MRH													3.200 3.200	2.400	2.400										-	-
	Ŀ	:																				*****					-
İst	MRH/FT								 														•				-
	MRH	4.800	1.600	4.800	3.200	2.400	2.400		1.600	1.600		28.800															-
at per Floor	E	6.0	2.0	. 09	4.0	3.0	3.0		 2.0	2.0		24.0	•														-
Perimeter Heat per Floor 0th	MRH/FT	0.800	0.800	0.800	0.800	0.800	0.800		 0.800	0.800		1.200															-
Output	MBH	4.800	1.600	4.800	3.200	2.400	2.400	19.200	1.600	009-1	4.800	28.800		3.200	2.400	2.400	2.400	2.400	2.400	2.400	3.500	•	6.400	5.600	5.600	8.000	100
cat Cap	MBH/FT	0.800	0.800	0.800	0.800	0.800	0.800		0.800	0.800		1.200									0.700	•					
Perimeter Heat Length	Ē	6.0	2.0	. 0.9	4.0	3.0	3.0		2.0	2.0		24.0	,					•		ç	5.0	,			-		-
Unit	A	C.6	C-7	. ĩ	5	ទ	C3		5 5 5	55		E-24	°,	ີບ	5 5	6 C	55	3 5	C-1	55			2 2	0-13 C-13	C-13	E-	
Room		60	88	8	800	012	012		600	60		20 S		POIL	110	2016	201a	308	210a	210	216	8 8	706	302	302	30	1002
Zone		-			-	-	-			1 8				E	EE		EE	8	E	86	3 8	EI	3 8		в	EI	=

02/02/96 Page 1

Perimeter Heat Tally - Zone by Zone and Floor by Floor

Figure 141: Building E51 Perimeter Heat Requirement Tally (ref: Appendix D)

file: heat_per.wq2

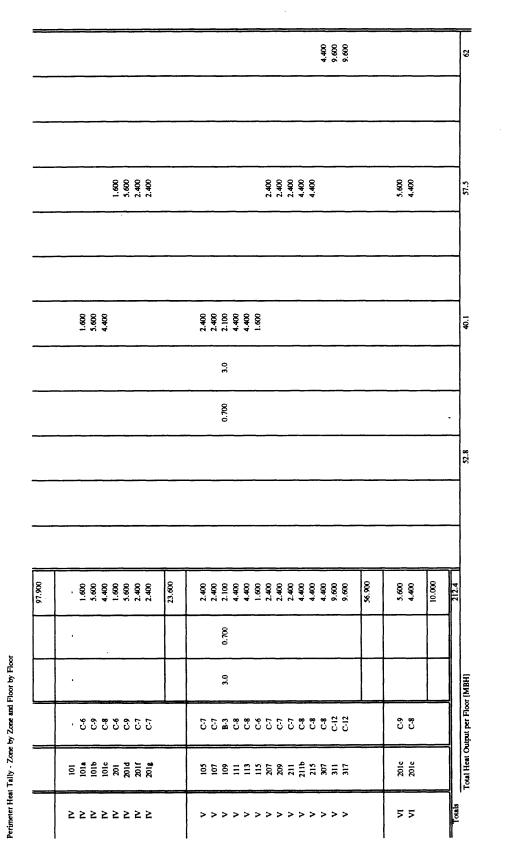


Figure 142: Building E51 Perimeter Heat Requirement Tally - Continued (ref: Appendix D)

373

02/02/96 Page 2

file: heat_per.wg2

TITUS[®] Single/Dual Duct Terminals ► Controls

Choice of two Basic Control Series

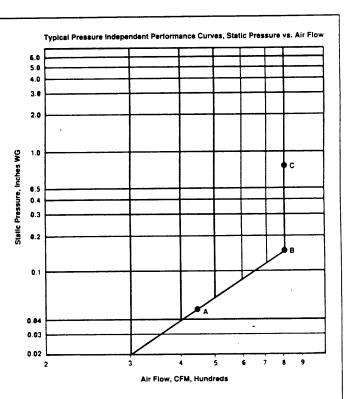
[•] Pressure Independent

The TITUS terminal maintains the flow rate required to meet the load conditions regardless of system pressure fluctuations anywhere within its operating range. It is the best choice where system pressure will vary extensively and where precise control is essential.

A key component is the controller, which compensates for system pressure changes, processes signals from the thermostat, controls the damper actuator and regulates minimum and maximum air flow. Both minimum and maximum are factory preset, but are easily adjustable at the job site.

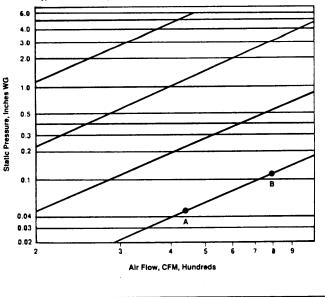
In the curves at right, the vertical, constant cfm (pressure independent) lines represent various cfm settings called for by the thermostat. Line B-C is the maximum cfm setting, while A-B is the pressure dependent characteristic that occurs only below the minimum operating pressure.

Controls are available in pneumatic, analog electronic, and digital electronic models.


Pressure Dependent

This TITUS terminal is designed for those applications where there is no need for either pressure independence or limit control.

The damper, actuator, and all casing parts are the same as pressure independent terminals and all casing dimensions match those of the other series, size for size. However, the controller and the amplifying sensor are omitted.


The curves at right show typical performance characteristics. Each curve represents a different damper setting, with the flow rate varying with static pressure drop through the assembly. In other words, for a given damper setting, the flow rate varies with the inlet pressure. This, of course, is typical of any damper or fixed orifice.

Pressure dependent terminals are available with pneumatic and electric controls only.

Single/Dual Duct Terminals

G7

Figure 143: Zone Temperature Control System - Titus Pressure Independent Series

Appendix O - Supply Air Duct System

•

a	b	С	d	e	f	g	h	i	j	k	1	m
Zone	Velocity	Total	Pmr(*) =	0.129	Implied	Req'd	Resulting	delta	equivalent		ftgs req'd	
&	Press	Press	a'	b'	Length	Length	Head Loss	pressure	loss	ASHRAE	loss	net
Shape	[in w.g.]	[in wg]	[in wg/ft]	[in w.g.]	L [ft]	L [ft]	[in wg]	[in wg]	coefficient	1989 Fund	coefficient	quantity
III sq	0.185	1.398	0.00150	0.810	392	128	1.00	0.40	2.14	3-5 90 deg	0.550	3.9
V sq	0.221	1.398	0.00200	0.915	242	140	1.19	0.20	0.92	3-5 90 deg	0.450	2.0
I rd	0.101	1.398	0.00140	0.594	574	51	0.67	0.73	7.25	3-3 90 deg	1.230	5.9
IV rd	0.092	1.398	0.00130	0.594	618	124	0.76	0.64	6.99	3-3 90 deg	1.150	6.1
VI rd	0.086	1.398	0.00205	0.663	359	102	0.87	0.53	6.13	3-3 90 deg	1.230	5.0
II rd	0.069	1.398	0.00255	0.511	348	41	0.61	0.78	11.35	6-8 Perf	7.700	1.0
										3-3 90 deg	1.250	2.9

Megazone Supply Duct Design Decision Table

a = zone number identification and duct shape

b = velocity pressure for duct size and design flow rate

c = total pressure at system sensor control point = Static + Velocity (ref: MIT Drwg EA51 M07.002 for Static Set Point)

P(static) = 1.250" wg & P(velocity) for Design Flow Rate @ 18,590 cfm or 1,542 fpm = 0.148" wg

d = pressure loss gradient for duct size and flow rate (reference SMANCA HVAC Duct Design Calculator)

e = pressure losses in megazone supply duct design; includes losses from static pressure sensor to MR exit (refer to file pd_sup.wq2)

f = length based on c, d & e [(c-e)/d]

g = length based on equivalent surface area calculation (see file: area_tal.wq2)

h = pressure loss based on req'd duct length [d*g+e]

i = difference between loss resulting from implied and required duct lengths [c-h]

j = loss coefficient required to make up difference between required and resulting head loss [i/b]

k = specification of fitting or bend as defined in the ASHRAE 1989 Fundamentals (English Units)

l = loss coefficient valeu for fitting or bend selected

m = quantity of proposed fittings or bends based on equivalent loss coefficient [j/l]

file: duct_sup.wq2

12/27/95 Page 1

Mechanical Room Supply Duct Pressure Drop Tally

h

Reference: drawings supduct.dwg & climchgr.dwg & damper.dwg

Figure 145: Mechanical Room Supply Air Duct Pressure Drop Tally

А

a	D	C	<u>a</u>	e	1	9				ĸ	1	m
	Description	ASHRAE	Air Flow	Velocity	Friction	Loss	Section	Pressure	Sub-Tot	Sub-Tot	Sub-Tot	Total
		F1989	Velocity	Pressure	Loss	Coefficient	Length	Drop	MR Press	MR Press	MR Press	MR Press
		or							Loss	Loss	Loss	Loss
		Reference	[fpm]	[in wg]	[in wg/ft]	n/a	[ft]	[in wg]	Tally	Tally	Tally	Taliy
1	intake grill	cat cut sheet	350					0.0200		×	×	
	bird screen	cat cut sheet	350	0.008		0.08		0.0006		x	×	
	transition	4-3 F32.35	350	0.008		4.55		0.0347		x	×	
2	90 deg bend	3-10 F32.33	1,859	0.215		0.50		0.1077		×	×	
3	fresh air damper	damper.wq2	1,050					0.0800		×	×	
	transition	4-4 F32.35	1,050	0.069		0.38		0.0261		×	×	
4	hi-cap filter box	Trane DS-CLCH	450					0.0500		×	×	
5	cooling coils	Trane CDS Sim	570					0.2300	0.549	x	x	
6	90 deg bend	3-5 F32.31	1,352	0.114		0.90		0.1025	×		x	
	& offset	combined							×	· ·	x	
	12 ft str duct	SMANCA	1,542	0.148	0.00075		12.00	0.0090	×	0.112	x	
	air measure	F32.20						0.0600	×	x		
7	8 ft str duct	SMANCA	1,542	0.148	0.00075		8.00	0.0060	×	×		1
8	90 deg bend	3-5 F32.31	1,542	0.148		0.25		0.0370	×	×		
9	6.9 ft str duct	SMANCA	1,542	0.148	0.00075		6.90	0.0052	×	×		
10	90 deg bend	3-5 F32.31	1,542	0.148		0.14		0.0207	×	x		
11	re-orientation		1,542	0.148		0.00		0.0000	×	×	0.129	0.790
			1		1	1						

a

h

.

.

k

1

a = section label

b = section description

c = section description per ASHRAE 1989 Fundementals F32 or Reference

d = supply air flow velocity based on 18,590 cfm and the geometry of the related section

e = velocity pressure based on flow speed through corresponding section Pv = 0.075 [(V * V)/(1097 * 1097)]

d

•

f

f = friction loss based on cross section and flow speed per SMACNA HVAC Duct Fitting Loss Calculator

g = duct design fitting pressure loss coefficient (ref: ASHRAE 1989 Fundamentals F32)

h = section length

i = pressure drop through section (delP for certain elements from manufacturer's data sheets or other)

j = pressure drop through mechanical room duct from fresh air intake through cooling coil

k = pressure drop through mechanical room duct AH exit through and not including static air pressure sensor

I = pressure drop through mechanical room duct from a point just before the static pressure sensor to MR exit

m = pressure drop through mechanical room duct from FA intake to MR exit

12/27/95 Page 1

a	Ь	c1	c2	c3	C4	d	e1	e2	e3	e4	1 1	g1	g2	g3	g4	h h	
	Zone		1			· · · · · · · · · · · · · · · · · · ·					•		- ŤII	<u> </u>			1
	Level	0	1	2	3	Total	0	1	2	3	Total	0	1	2	3	Total	1
Zone	Area	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	ft2	
1	Supply	148				148	63										
•	Return	121					48				63	4				4	
	neturn	121				121	48				48						
11	Supply	11				11	64				64						
	Return				_		18		_		18						
							-										
111	Supply	215				215	103				103	77	160	186	112	535	
·	Return	180				180	19				19	39	171	154	62	426	
IV	Supply												104	70		173	
	Return												216	134		350	
					·						t	<u> </u>	210			330	
v	Supply												73	39	220	331	
	Return												64			64	
vi	0																
VI	Supply													58		58	
	Return										ł			147		147	
		I									1				1	l	
а	ь	iı	i2	i3	i4	j	k1	k2	k3	k4	1	1	m2	m3	m4	l n	1
	Zone		IV					V					Vi				
	Level	0	1	2	3	Total	0	1	2	3	Totai	0	1	2	3	Total	
7		ا مبد ا	40	40	4.0						41.0						

45 149 314

60 24

43

16

113 412

90 269

31

13 22

75

28

58

280

508

369

83

34

600

386

43

16

.

46

36

Supply & Return Duct Area Contact Tally (reference file: area_sup.wq2 & area_rtn.wq2)

An entry in the table => a part of the duct serving a register in a given zone has thermal contact with another zone on the level indicated

Figure 146: Megazone Supply & Return Duct Surface Area Tally

8

120

130 132

58 73 8

262 131

120

file: area_tal.wq2

Zone

ł

ŧ1

Ш

IV

٧

VI

Area

Supply

Return

Supply

Return

Supply

Return

Supply

Return

Supply

Return

Supply

Return

12/27/95 Page 1

q

ft

51

40

41

8

128

106

124

123

140

59

102

69

Megazone

Req'd Duct Length

ft2/ft

4.19

4.19

1.83

2.09

10.67

9.33

4.19

4.19

6.67

7.67

2.62

2.88

ft2

215

168

75

18

1.369

993

519

515

931

450

266

199

46

a = zone number

b = designates either supply duct or return duct calculation

c = actual area of duct serving Zone Y in contact with Zone I at levels 0, 1, 2, & 3

d = total area of duct serving Zone Y in contact with Zone I for all levels [@sum(c)]

e = actual area of duct serving Zone Y in contact with Zone II at levels 0, 1, 2, & 3

f = total area of duct serving Zone Y in contact with Zone II for all levels [@sum(e)]

g = actual area of duct serving Zone Y in contact with Zone III at levels 0, 1, 2, & 3

h = total area of duct serving Zone Y in contact with Zone III for all levels [@sum(g)]

i = actual area of duct serving Zone Y in contact with Zone IV at levels 0, 1, 2, & 3

j = total area of duct serving Zone Y in contact with Zone IV for all levels [@sum(i)]

k = actual area of duct serving Zone Y in contact with Zone V at levels 0, 1, 2, & 3

1 = total area of duct serving Zone Y in contact with Zone V for all levels [@sum(k)]

m = actual area of duct serving Zone Y in contact with Zone VI at levels 0, 1, 2, & 3

n = total area of duct serving Zone Y in contact with Zone VI for all levels [@sum(m)]

o = grand total of duct area attributed to Zone Y [@sum(d,f,h,j,l,n)]

p = surface area per foot of duct length in equivalent megazone system for Zone Y

q =length of duct in megazone system for Zone Y to duplicate total calculated in column "o" [o/p]

file: area_tal.wq2

12/27/95 Page 2

Figure 147: Megazone Supply & Return Duct Surface Area Tally (continued)

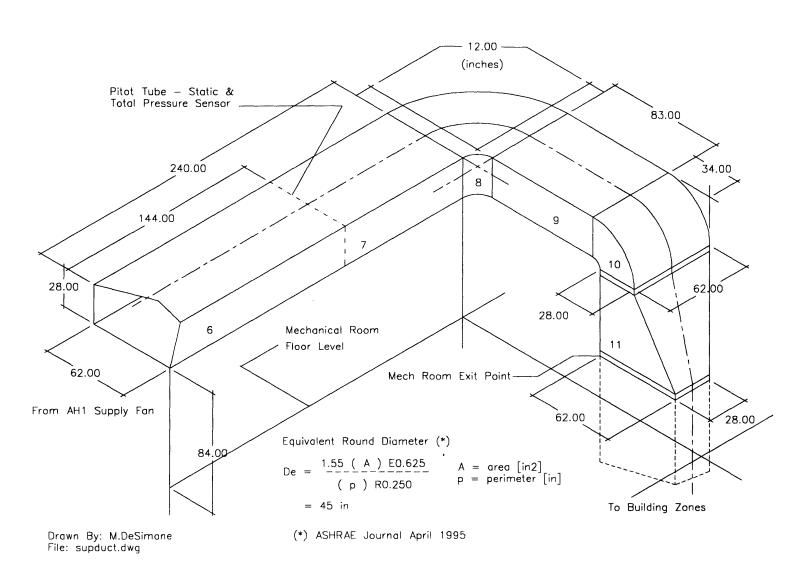
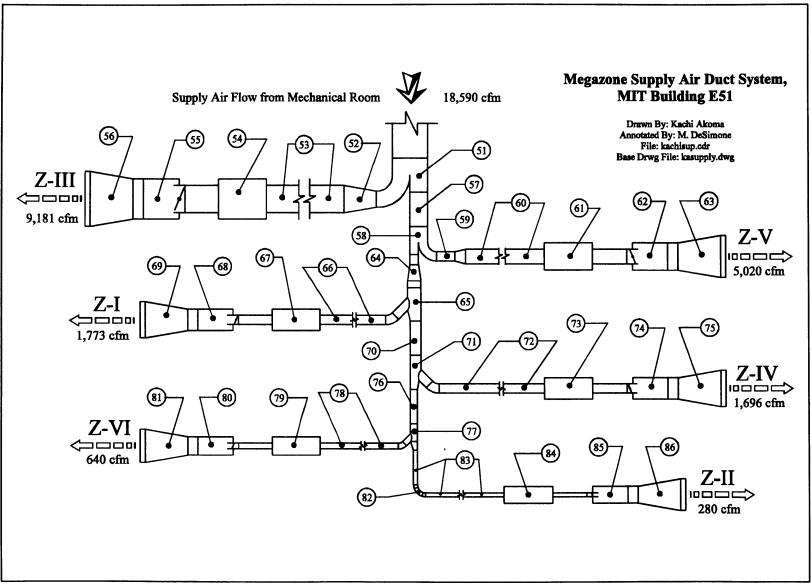




Figure 148: Supply Air Duct Design / Conditioning Equipment (file: climchgr.dwg)

Megazone Supply Duct Pressure Drop Tally

Reference: drawing - kachisup.cdr

Figure 151: Megazone Supply Air Duct Pressure Drop Tally

Number	ASHRAE 1989 Fundamentals	Section	Air Flow																	
	Fundamontala			Velocity	Friction	Loss	Section	Pressure		Total F	Pre	ssure Loss	s In	Supply Du	uct	System Fo	жE	ach Path		
	runuamentais j	Description	Velocity	Pressure	Loss	Coeff	Length	Loss		Fron	n S	tatic Press	sure	Sensor to	Me	chanical	Roo	m Exit		
see	Designation								Zo	ne l	Zo	one li	Zc	ne III	Zc	ne IV	Zo	ne V		Zone VI
drwg			[fpm]	(in wg)	[in wg/ft]	n/a	(ft]	[in wg]	Π	[in wg]		[in wg]		(in wg)		(in wg)	Π	[in wg]	Π	[in wg]
									Π		Π		П		П		П		П	
III:51a	5-22 F32.42	28" x 28" branch	1,686	0.177		0.520		0.092			ļļ		X	0.0921]]			
III:52	4-4 F32.35	transition	1,686	0.177		0.000		0.000	11		11		×	0.0000						
III:53	16" x 48"	square duct	1,721		0.00150		128.0	0.192					0	0.1920						
III:54	3-6 F32.32	4 ea 90 deg L	1,721	0.185		2.200		0.406	11		11		0	0.4061	11		11			
111:55	16x48 VAV Box	damper/box/coil						0.435					×	0.4354	11					
111:56	4-4 F32.35	divergence	1,721	0.185		0.200		0.037					X	0.0369]
· · · · ·	Titus B4 Pattern	30" x 96" diffuser	500					0.117					×	0.1170	11					
TR:51b	5-22 F32.42	28" x 31" main	1,542	0.148		0.050		0.007	×	0.0074	×	0.0074			X	0.0074	X	0.0074	X	0.0074
TR:57	28" x 31"	square duct	1,542		0.00110		5.0	0.006	X	0.0055	×	0.0055			X	0.0055	X	0.0055	X	0.0055
V:58a	5-22 F32.42	28" x 16" branch	1,614	0.162		0.520		0.084					11				X	0.0844		
V:59	4-4 F32.35	transition	1,614	0.162		0.040		0.006							11		X	0.0065		
V:60	24" x 16"	square duct	1,883		0.00200		140.0	0.280									6	0.2800		
V:61	3-5 F32.31	2 ea 90 deg L	1,883	0.221		0.900		0.199					11				0	0.1989		1
V:62	16x24 VAV Box	damper/box/coil						0.521	11		11		11		11		X	0.5210	11	
V:63	4-4 F32.35	divergence	1,883	0.221		0.200		0.044					11		11		×	0.0442		1
	B109 Diffuser	30" x 48" diffuser	500					0.117			11				11		×	0.1170		
TR:58b	5-22 F32.42	28" x 15" main	1,504	0.141		0.050		0.007	X	0.0070	×	0.0070	11		x	0.0070	[[[x]	0.0070
TR:64	28" x 15"	square duct	1,504		0.00160		1.5	0.002	x	0.0024	X	0.0024			×	0.0024			x	0.0024
	4-6 F32.36	transition	1,504	0.141		0.170		0.024	X	0.0240	×	0.0240	11		X	0.0240	11		X	0.0240
	24 " dia	round duct	1,397		0.00110		1.5	0.002	x	0.0017	×	0.0017			X	0.0017	11		x	0.0017
1:65a	5-17 F32.41	16" dia branch	1,270	0.101		0.520		0.052	×	0.0523										
1:66	16" dia	round duct	1,270		0.00140		51.0	0.071	6	0.0714	[]		11		11		11			
1:67	3-3 F32.31	6 ea 90 deg L	1,270	0.101		7.380		0.742	0	0.7418										1
1:68	Titus #16 VAV	damper/box/coil						0.234	X	0.2339	11		Ł		11		11			
1:69	4-4 F32.35	divergence	1,270	0.101		0.140		0.014	x	0.0141										1
	B109 Diffuser	21" x 24" diffuser	500				•	0.117	x	0.1170										
TR:65b	5-17 F32.41	19" dia main	1,329	0.110		0.180		0.020	[]		X	0.0198	11		X	0.0198	[[x	0.0198
TR:70	19 " dia	round duct	1,329		0.00110		5.0	,0.006			X	0.0055			x	0.0055			X	0.0055
IV:71a	5-17 F32.41	16" dia branch	1,215	0.092		0.520		0.048							X	0.0478	11			ł
IV:72	16" dia	round duct	1,215		0.00130		124.0	0.161							0	0.1612				
IV:73	3-3 F32.31	6 ea 90 deg L	1,215	0.092		6.900		0.635	11						0	0.6348				
IV:74	Titus #16 VAV	damper/box/coil						0.214	11						x	0.2142	11			1
IV:75	4-4 F32.35	divergence	1,215	0.092		0.140		0.013							x	0.0129				1
	B109 Diffuser	21" x 24" diffuser	500					0.117							X	0.1170				
TR:71b	5-17 F32.41	12" dia main	1,171	0.085		0.120		0.010	11		x	0.0103							X	0.0103

file: pd_sup.wq2

12/27/95 Page 1

Megazone Supply Duct Pressure Drop Tally

Reference: drawing - kachisup.cdr

a	ь	c	đ	e	f	g	h	i		i		k		1		m		n		<u> </u>
Section	ASHRAE 1989	Section	Air Flow	Velocity	Friction	Loss	Section	Pressure								System Fo				
Number	Fundamentals	Description	Velocity	Pressure	Loss	Coeff	Length	Loss		From	۱S	tatic Press	ure	Sensor to		echanical F				
see	Designation								Zo	nel	Zo	ne II	Zo	ne III	Zo	one IV	Zo	ne V		Zone VI
drwg			[fpm]	[in wg]	[in wg/ft]	n/a	[ft]	[in wg]	П	[in wg]		[in wg]	\square	[in wg]	Ц	[in wg]		[in wg]		[in wg]
TR:76	12 " dia	round duct	1,171	·····	0.00165		5.0	0.008			x	0.0083							x	0.0083
VI:77a	5-17 F32.41	10" dia branch	1,173	0.086		0.560		0.048											x	0.0480
VI:78	10" dia	round duct	1,173		0.00205		102.0	0.209											0	0.2091
VI:79	3-3 F32.31	5 ea 90 deg L	1,173	0.086		6.150		0.527											0	0.5274
VI:80	Titus #10 VAV	damper/box/coil						0.214											×	0.2138
VI:81	4-4 F32.35	divergence	1,173	0.086		0.140		0.012		1					11				X	0.0120
	B109 Diffuser	12" x 15" diffuser	500					0.168											×	0.1680
TR:77b	5-17 F32.41	7" dia main	1,050	0.069		0.140		0.010			x	0.0096								
II:82	3-2 F32.31	5 pc 90 deg L	1,050	0.069		0.190		0.013			х	0.0131								
II:83	7 " dia	round duct	1,050		0.00255		41.0	0.105			0	0.1046							11	
ll:84	3-3 F32.31	3 ea 90 deg L	1,050	0.069		3.750		0.258			0	0.2577								
	6-8 F32.48	perf plate	1,050	0.069		7.700		0.529			о	0.5291								
II:85	Titus #7 VAV	damper/box/coil				·····		0.141			x	0.1408					1			
II:86	4-4 F32.35	divergence	1,050	0.069		0.140		0.010			x	0.0096				•				
	B109 Diffuser	9" x 9" diffuser	500					0.117			X	0.1170								
									Ш										1.1	
																		i r		
Р		Loss in Supply Duc			th (MR Exit	to Louvre)			$ \rightarrow $	1.2784	Ц	1.2732	Ц	1.2796	\square	1.2612	Н	1.2649	\square	1.2701
9		for Straight Duct Le								0.8132 0.8913 0.5981						0.7960	Ц	0.4789	\square	0.7365
r		for Zone XX From N			¥		· · · · · · · · · · · · · · · · · · ·	p-9		0.4652		0.3819	Ц	0.6815	Ц	0.4652	Ц	0.7860	\square	0.5336
S		for Supply Air Path					ensor to M			0.1290	Ц	0.1290	Ц	0.1290	Ц	0.1290	Н	0.1290	⊢∔	0.1290
t	Press Loss for	Zone XX (from SP S	ensor to M	R Exit and	out to Grill))		r+s		0.5942		0.5109		0.8104		0.5942		0.9150	Ц	0.6626

file: pd_sup.wq2

12/27/95 Page 2

ſ	Data	Zon	el		Zon	e II		Zon	e III		Zor	e IV		Zo	ne V		Zor	ne VI	
	Pt		[in wg]	Total Pres		[in wg]	Total Pres		{in wg}	Total Pres		(in wg)	Total Pres		[in wg]	Total Pres		[in wg]	Total Pres
3	0			0.0000			0.0000			0.0000			0.0000			0.0000			0.0000
5	1	1	0.0200	(0.0200)	1	0.0200	(0.0200)	1	0.0200	(0.0200)	1	0.0200	(0.0200)	1	0.0200	(0.0200)	1	0.0200	(0.0200)
ا بت	2		0.0006	(0.0206)		0.0006	(0.0206)		0.0006	(0.0206)		0.0006	(0.0206)		0.0006	(0.0206)		0.0006	(0.0206)
۲	3		0.0347	(0.0553)		0.0347	(0.0553)		0.0347	(0.0553)		0.0347	(0.0553)		0.0347	(0.0553)		0.0347	(0.0553)
9 I	4	2	0.1077	(0.1630)	2	0.1077	(0.1630)	2	0.1077	(0.1630)	2	0.1077	(0.1630)	2	0.1077	(0.1630)	2	0.1077	(0.1630)
	5	3	0.0800	(0.2430)	3	0.0800	(0.2430)	3	0.0800	(0.2430)	3	0.0800	(0.2430)	3	0.0800	(0.2430)	3	0.0800	(0.2430)
azone	6		0.0261	(0.2691)		0.0261	(0.2691)		0.0261	(0.2691)		0.0261	(0.2691)		0.0261	(0.2691)		0.0261	(0.2691)
5	7	4	0.0500	(0.3191)	4	0.0500	(0.3191)	4	0.0500	(0.3191)	4	0.0500	(0.3191)	4	0.0500	(0.3191)	4	0.0500	(0.3191)
- 1	8	5	0.2300	(0.5491)	5	0.2300	(0.5491)	5	0.2300	(0.5491)	5	0.2300	(0.5491)	5	0.2300	(0.5491)	5	0.2300	(0.5491)
nnlv	9	5a	1.5644	(2.1135)															
	10	Fan	3.6230	1.5095															
Air	11	6	0.1025	1.4070	6	0.1025	1.4070	6	0.1025	1.4070	6	0.1025	1.4070	6	0.1025	1.4070	6	0.1025	1.4070
S	12		0.0090	1.3980		0.0090	1.3980		0.0090	1.3980		0.0090	1.3980		0.0090	1.3980		0.0090	1.3980
/stem	13		0.0600	1.3380		0.0600	1.3380		0.0600	1.3380		0.0600	1.3380		0.0600	1.3380		0.0600	1.3380
Ë	14	7	0.0060	1.3320	7	0.0060	1.3320	7	0.0060	1.3320	7	0.0060	1.3320	7	0.0060	1.3320	7	0.0060	1.3320
7	15	8	0.0370	1.2949	8	0.0370	1.2949	8	0.0370	1.2949	8	0.0370	1.2949	8	0.0370	1.2949	8	0.0370	1.2949
	16	9	0.0052	1.2897	9	0.0052	1.2897	9	0.0052	1.2897	9	0.0052	1.2897	9	0.0052	1.2897	9	0.0052	1.2897
	17	10	0.0207	1.2690	10	0.0207	1.2690	10	0.0207	1.2690	10	0.0207	1.2690	10	0.0207	1.2690	10	0.0207	1.2690
E	18	11	0.0000	1.2690	_11	0.0000	1.2690	11	0.0000	1.2690	11	0.0000	1.2690	11	0.0000	1.2690	11	0.0000	1.2690
Pressure	19	x	0.0074	1.2616	x	0.0074	1.2616	x	0.0921	1.1769	x	0.0074	1.2616	×	0.0074	1.2616	x	0.0074	1.2616
Ie	20	x	0.0055	1.2561	×	0.0055	1.2561	x	0.0000	1.1769	x	0.0055	1.2561	x	0.0055	1.2561	x	0.0055	1.2561
ନ	21	x	0.0070	1.2490	x	0.0070	1.2490	0	0.1920	0.9849	x	0.0070	1.2490	×	0.0844	1.1717	x	0.0070	1.2490
rade	22	x	0.0024	1.2466	x	0.0024	1.2466	0	0.4061	0.5788	x	0.0024	1.2466	×	0.0065	1.1652	x	0.0024	1.2466
	23	×	0.0240	1.2226	x	0.0240	1.2226	x	0.4354	0.1434	x	0.0240	1.2226	0	0.2800	0.8852	x	0.0240	1.2226
Line	24	x	0.0017	1.2210	x	0.0017	1.2209	x	0.0369	0.1064	x	0.0017	1.2209	0	0.1990	0.6862	×	0.0017	1.2209
	25	x	0.0523	1.1687	x	0.0198	1.2011	x	0.1170	(0.0106)	x	0.0198	1.2011	x	0.5210	0.1652	X	0.0198	1.2011
Data	26	0	0.0714	1.0973	x	0.0055	1.1956				X	0.0055	1.1956	x	0.0442	0.1210	×	0.0055	1.1956
	27	0	0.7418	0.3555	x	0.0103	1.1854				x	0.0478	1.1478	x	0.1170	0.0040	x	0.0103	1.1854
Ta	28	x	0.2339	0.1216	x	0.0083	1.1771				0	0.1612	0.9866				×	0.0083	1.1771
Table	29	x	0.0141	0.1075	x	0.0096	1.1675				, °	0.6348	0.3518	ļ			x	0.0480	1.1291
	30	x	0.1170	(0.0095)	x	0.0131	1.1544				x	0.2142	0.1376				°	0.2091	0.9200
	31				0	0.1046	1.0499				x	0.0129	0.1247				°	0.5274	0.3926
	32				0	0.2577	0.7922				x	0.1170	0.0077				×	0.2138	0.1788
	33				0	0.5291	0.2631							[×	0.0120	0.1668
	34				x	0.1408	0.1223										x	0.1680	(0.0012)
	35				x	0.0096	0.1127												
	36				x	0.1170	0.0053							ll			1		

Figure 153: Megazone Supply Air System Total Pressure Grade Line Data Table

file: grdtpsup.wq2

12/27/95 Page 1

800 Series Spin-Glas® Fiber Glass Duct and Equipment Insulation

Temperature Limit: 450°F (232°C)

Description

800 Series Spin-Glas board insulations are manufactured from glass fibers bonded by a thermosetting resin.

Applications

800 Series Spin-Glas insulation can be used for heating ducts and equipment. It is ideal for commercial and industrial heating, air conditioning, and power and process equipment

Available Forms

It is available in a wariety of densities and with a choice of vapor retarder facings for a wide range of service requirements.

Advantages

▲ High insulating efficiency

Fire safety. Meets the requirements of NFPA 90A and 90B

- Strong and durable. Resists settling,
- breakdown or sagging from vibration
- . Easy to handle and apply
- ▲ ISO 9000 certified manufacturing location

Physical Properties

Temperature limit (m	ox) .
Unfoced	450°F
Foced	
- unfoced side	450°F
- foced side	150°F
Moisture sorption	Less than 1 0% by volume
Alkolinity	Less than 0 6% (No20)
Resistance to	Does not breed or promote
microbial growth	fungi or bocterial growth
Surface burning	FHC 25/50 per ASTM E 84
characteristics	NFPA 255, UL 723.
(Composite)	CAN/ULC \$102-M88

ype	Density (pcf)	Thickness (in)
812	1 50	11/2 . 4
814	3 00	1 . 4
B15	4 25	1.21/2
817	6.00	1.2

Therma and C	I Conc 5181	lucti	vity (ASTA	AC1	77 w/
48			812			000
- F 44	+	H	814			+ 003
40 			815	H	X	057
40 30 30 32 28 34			817	K		040
· · · 28	++		1	4	2	1 040
		-	-	1	++-	035
20	50 75		150	200	250	300(*F)
	10 24 Meon I	38	00	93	121	1491"C

Specification Property Compliance

ASTM C 612 ASTM C 795

NRC 1 30

Facing Information (ASTM C 1136) FSK (Foil-Scrim-Kraft), Reinforced foil and paper AP (All Purpose). White kroth bonded to aluminum foil, reinforced with fiber glass yarn Water Vapor Transmission (faced) 0.02 perms

For additional product information, please refer to CI-9 data page.

Zeston[®] 2000 PVC Insulated Fitting Covers and Jacketing

Temperature Limits:

PVC: 0°F to 150°F (-18°C to +66°C) Insert: 0°F to 450°F (-18°C to +232°C)

Description

Zeston 2000 PVC fitting covers come in mony shapes and sizes with a Hi-to Temp^{*} fiber glass insulation insert, all of which fit snugly over a variety of fittings. Zeston 2000 PVC jacketing is a highimpact, UV-resistant, polyvinyl chloride covering designed for insulated pipe or bare metal.

Applications

For insulating chilled water, hot water, steam and other piping systems in com-mercial, institutional, industrial construction on indoor or outdoor piping systems.

Available Shapes and Sizes Fitting Covers. Shapes available for 45° and 90° short and long radius elbows, tees and valves plus a wide variety of other fittings; flanges, reducers, end caps, soil pipe hubs, traps and mechanical line tittings.

Rolls. Zeston 2000 PVC jacketing is available in standard thicknesses of 10, 15, 20 and 30 mil.

Cut & Curled". System 2000" PVC Cut & Cutried jacketing in thicknesses of 20 mil or 30 mil is available in factory-cut sizes to fit 3% to 20" iron pipe with 1/2" to 4" thick insulation, and 1/2" to 6%" copper tubing with 1/2" to 4" thick insulation.

Advantages

- · Code compliance. Meets flame spread rating of 25 or less and a smoke devel-oped rating of 50 or less (up to 25 mil), according to ASTM E 84 ▲ Weatherability
- ▲ Ease of maintenance
- ▲ Simple, fast installation
- Neat appearance, paintable
- ▲ Exceptional durability
- Corrosion resistance

Specification Property Compliance

USDA New York City MEA #7-87 SBCCI

ASTM D 1784, Class 14253-C LP-S35E*, Composition A, Type II,Grade GU LP-S35A*, Composition A, Type II, Grade GU Conodo: CGS8 51-GP-S3M

Impact strength determined by Gardner/SPI test method rather than Izad, since Gardner is more appropriate for PVC sheeting materials

Thermal Conductivity of Hi-Lo Temp Fiber **Glass Insulation Insert**

Mean	Temp	-k-	
•F	°C	BTU .in/(hr .h' . *f)	W/m.*C
75	24	28	040
150	00	34	049
300	149	45	065

3

For additional product information, please refer to CI-55 data page.

Figure 154: Fiber Glass Duct Insulation Specifications (Schuller 800 Series Spin-Glas)

Appendix P - Return Air Duct System

•

Megazone Return Duct Design Decision Table

a	b	с	d	e	f	g	h	i	j	k	I	m
Zone	Velocity	Total	Pmr(*) =	0.523	Implied	Req'd	Resulting	delta	equivalent		ftgs req'd	
&	Press	Press	a'	þ,	Length	Length	Head Loss	pressure	loss	ASHRAE	loss	net
Shape	[in w.g.]	[in wg]	[in wg/ft]	[in w.g.]	L [ft]	L [ft]	[in wg]	(in wg)	coefficient	1989 Fund	coefficient	quantity
lli sq	0.122	0.82	0.00075	0.572	331	106	0.65	0.17	1.38	3-7 90 deg	0.260	5.3
V sq	0.108	0.82	0.00095	0.588	244	59	0.64	0.18	1.63	3-7 90 deg	0.362	4.5
l rd	0.088	0.82	0.00120	0.621	166	40	0.67	0.15	1.72	3-2 90 deg	0.540	3.2
VI rd	0.054	0.82	0.00120	0.594	188	69	0.68	0.14	2.65	3-2 90 deg	0.420	6.3
ll rd	0.036	0.82	0.00120	0.593	189	8	0.60	0.22	6.01	6-8 Perf	3.000	1.0
										3-2 90 deg	0.540	5.6
IV rd	0.068	0.82	0.00095	0.620	211	123	0.74	0.08	1.22	3-1 90 deg	0.120	10.2

a = zone number identification and duct shape

b = velocity pressure for duct size and design flow rate

c = total pressure rise across return fan = P(static) + P(velocity) ref: MIT Drwg EA51 M07.002 for Static Pressure

P(static) = 0.75" wg & P(velocity) for Design Flow Rate @ 16,331 cfm or 1,061 fpm = 0.07" wg

d = pressure loss gradient for duct size and flow rate (reference SMACNA HVAC Duct Design Calculator)

e = sum of zone pressure losses in megazone duct design; includes losses from grill to MR entry point (refer to file: pd rtn.wq1)

f = length based on c, d & e [(c-e)/d]

g = length based on equivalent surface area calculation (see file: area_tal.wq2)

h = pressure loss based on req'd duct length [d*g+e]

i = difference between loss resulting from implied and required duct lengths [c-h]

j = loss coefficient required to make up difference between required and resulting head loss [i/b]

k = specification of fitting or bend as defined in the ASHRAE 1989 Fundamentals (English Units)

I = loss coefficient value for fitting or bend selected

m = quantity of proposed fittings or bends based on equivalent loss coefficient [j/l]

Pmr(*) = pressure loss due to duct and fittings in mechanical room; of two possible paths the one with the highest loss is considered critical and that value is used (refer to file: mr_rtn.wq2) Note: the path which results in the highest total pressure difference is to the outside;

the total pressure in mixing box is approx/ -0.24 [inwg]

file: duct_rtn.wq2

01/28/96 Page 1

a	ь	c	d	e	f	g	h	i	j	k
	Description	ASHRAE	Air Flow	Velocity	Friction	Loss	Section	Pressure	Loss via	Loss via
		F1989	Velocity	Pressure	Loss	Coefficient	Length	Drop	Path to	Path to
		Designation							Outside	Mixing Box
			[tpm]	(in wg)	[in wg/ft]	n/a	[ft]	[in wg]	[in wg]	[in wg]
	duct		1.507		0.00055		4.00	0.0022		1
1 2	90 deg bend	3-5 F32.31	1,507	0.142	0.00055	0.18		0.0256		
-	-	3-5 F32.31	1,507	0.142		0.18		0.0256	ł	1
3	45 deg bend	3-5 F32.31		0.142			4.75		1	
4	duct	 3-5 F32.31	1,507	0.142	0.00055			0.0026		1
5	45 deg bend	3-5 F32.31	1,507			0.11			1	
6	duct		1,507		0.00055		6.50	0.0036		
	air measuring	F32.20	1,507					0.0600		
7	90 deg corner	3-10 F32.33	1,507	0.142		0.75		0.1065	i i	
8	90 deg corner	3-10 F32.33	1,507	0.142		0.75		0.1065		
9	45 deg bend	3-5 F32.31	1,375	0.118		0.29		0.0342		
10	duct		1,452		0.00055		2.50	0.0014		
11a (*)	duct		1,452		0.00055		9.50	0.0052	×	
12									, x	ļ
13	45 deg corner	3-6 F32.32	1,452	0.131		0.36		0.0472	x	
14	opposed blade	6-6 F32.47	1,452	0.131		0.52		0.0681	×	
15	90 deg mitered	3-10 F32.33	1,452	0.131		0.75		0.0983	X	0.593
16										×
11b (*)	duct		1,452		0.00055		14.80	0.0081		X
17	opposed blade	6-6 F32.47	1,452	0.131		0.52		0.0681	ł	×
18	27 deg bend	3-6 F32.32	1,452	0.131		0.14		0.0183		×
19	transition	4-3 F32.35	1,452	0.131		0.24		0.0314	1	×
20	screen	6-7 F32.47	762	0.036		0.08		0.0029	1	×
	grill		762					0.0200	0.523	×

Mechanical Room Return Duct Pressure Drop Tally Reference: drawings rtnduct.dwg & damper.dwg

a = section label

b = section description

c = section description per ASHRAE 1989 Fundementals F32

d = return air flow velocity based on 16,331 cfm and the geometry of the related section (assume 2" thick insulation sections 1 to 8 only)

e = velocity pressure based on flow speed through corresponding section Pv = 0.075 [(V * V)/(1097 * 1097)]

f = friction loss based on cross section and flow speed per SMACNA HVAC Duct Fitting Loss Calculator

g = duct design fitting pressure loss coefficient (ref: ASHRAE 1989 Fundamentals F32)

h = section length

i = pressure drop through section

j = pressure drop through mechanical room return duct to outside based on design flow equal to 16,331 cfm

k = pressure drop through mechanical room return duct to mixing box based on design flow equal to 16,331 cfm

(*) = the duct length, section 11, varies depending on the path taken either to the mixing box or to the outside

The design return duct static pressure includes the entire return duct system including the path to the outside or the path returning to the mixing box, whichever is greater.

X = components excluded from total pressure loss for path

file: mr_rtn.wq2

01/28/96 Page 1

Figure 156: Megazone Return Air Duct System - Mechanical Room Pressure Drop Tally

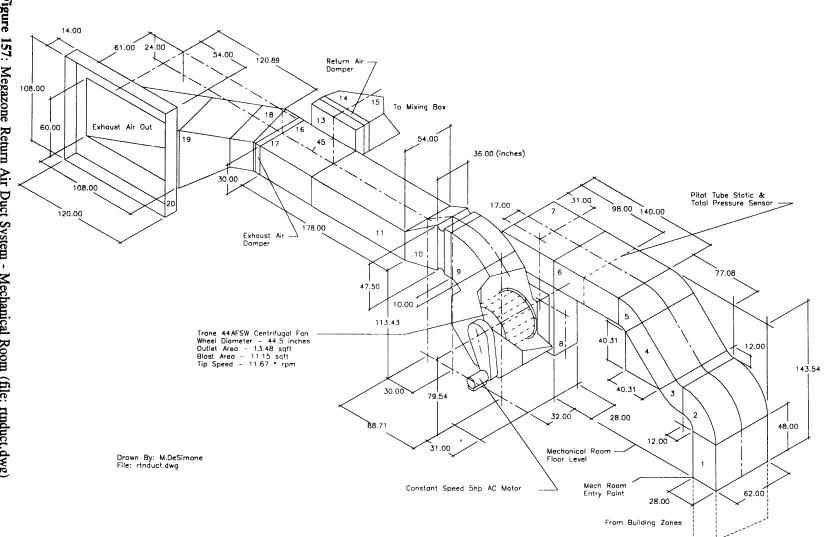
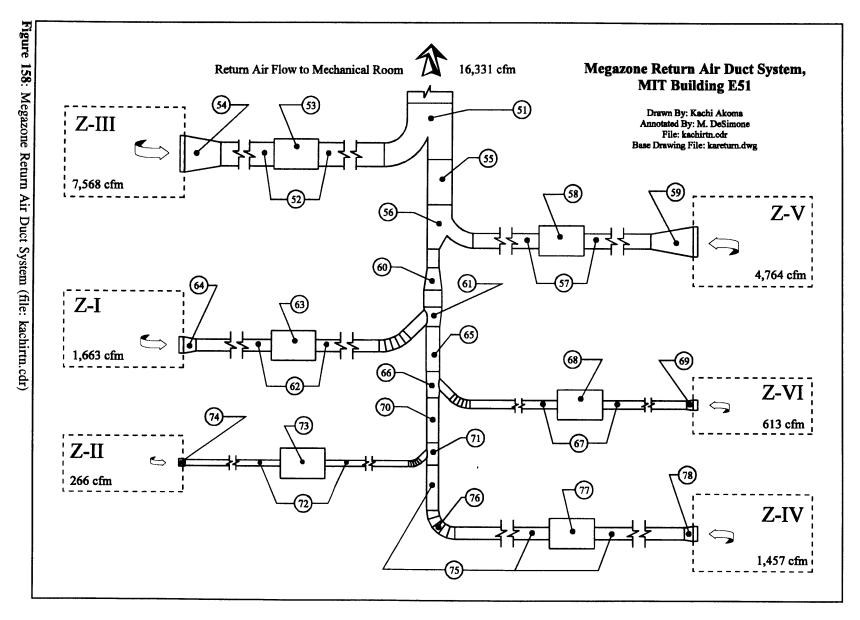



Figure 157: Megazone Return Air Duct System - Mechanical Room (file: rtnduct.dwg)

391 .

Megazone Return Duct Pressure Drop Tally Reference: drawing - kachirtn.cdr

a	ь	с	d	е	f	9	h	i		i		k		<u> </u>		m		n		<u> </u>		
Zone	ASHRAE 1989	Section	Air Flow	Velocity	Friction	Loss	Section	Pressure	1		al Pressure Loss in Return Duct System For Each Path											
8	Fundamentals	Description	Velocity	Pressure	Loss	Coeff	Length	Loss			-			to Mecha	-							
Section	Designation							1	Zo	nel	Zc	ne ll	Z	one III	Zo	ne IV	Zo	ne V		Zone VI		
Number	-		(fpm)	[in wg]	[in wg/ft]	n/a	[ft]	[in wg]		[in wg]	Ц	[in wg]	Ц	[in wg]	14	[in wg]	\square	[in wg]	\square	[in wg]		
111:51a	5-6 F32.39	26" x 30" branch	1,397	0.122		0.000		0.000					×	0.000								
111:52	26 x 30	square duct	1,397		0.00075		106.00	0.080					0	0.080								
111:53	3-7 F32.32	5 ea 90 deg L's	1,397	0.122		1.300		0.158					0	0.158								
III:54	4-1 F32.35	10 deg converge	500	0.016		0.200		0.003					X	0.003			11					
	Titus 300/350	48" x 48" grill	500	0.016				0.046					×	0.046								
TR:51b	5-6 F32.39	26" x 33" main	1,471	0.135		(0.040)		(0.005)	×	(0.005)	X	(0.005)			X	(0.005)	×	(0.005)	X	(0.005)		
TR:55	26" x 33"	square duct	1,471		0.00090		5.0	0.005	×	0.005	×	0.005			X	0.005	×	0.005	×	0.005		
V:56a	5-6 F32.39	26" x 20" branch	1,319	0.108		0.160		0.017									X	0.017				
V:57	26" x 20"	square duct	1,319		0.00095		59.0	0.056									0	0.056				
V:58	3-7 F32.32	5 ea 90 deg L's	1,319	0.108		1.810		0.196									0	0.196				
V:59	4-1 F32.35	10 deg converge	500	0.016		0.200		0.003									X	0.003	11			
	Titus 300/350	40" x 40" grill	500	0.016				0.046					1				X	0.046				
TR:56b	5-6 F32.39	26" x 16" main	1,384	0.119		(0.080)		(0.010)	X	(0.010)	×	(0.010)			×	(0.010)			×	(0.010)		
TR:60	26" x 16"	square duct	1,384		0.00130		1.5	0.002	×	0.002	×	0.002			×	0.002			X	0.002		
	4-5 F32.36	10 deg transition	1,273	0.101		0.150		0.015	×	0.015	X	0.015			X	0.015			X	0.015		
	24" dia	round duct	1,273		0.00085		1.5	0.001	×	0.001	×	0.001			×	0.001	11		×	0.001		
l:61a	5-5 F32.38	16" dia branch	1,191	0.088		0.350		0.031	X	0.031												
	3-2 F32.31	5 pc 45 deg L	1,191	0.088		0.114		0.010	×	0.010				1								
1:62	16" dia	round duct	1,191		0.00120		40.0	0.048	×	0.048									$\left \cdot \right $			
1:63	3-2 F32.31	3 ea 90 deg L's	1,191	0.088		1.620		0.143	×	0.143												
1:64	4-1 F32.35	10 deg converge	500	0.016	i	0.200		0.003	×	0.003							11					
	Titus 300/350	22" x 22" grill	500	0.016				0.046	×	0.046				ļ								
TR:61b	5-5 F32.38	19" dia main	1,186	0.088		0.080		0.007			×	0.007			×	0.007			×	0.007		
TR:65	19" dia	round duct	1,186		0.00100		5.0	0.005			×	0.005		l	×	0.005			X	0.005		
VI:66a	5-5 F32.38	11" dia branch	928	0.054		(0.070)		' (0.004)								1			×	(0.004)		
	3-2 F32.31	5 pc 45 deg L	928	0.054		0.114		0.006								Į			×	0.006		
VI:67	11" dia	round duct	928		0.00120		69.0	0.083											0	0.083		
VI:68	3-2 F32.31	6 ea 90 deg L's	928	0.054		2.520		0.135			1								0	0.135		
VI:69	4-1 F32.35	10 deg converge	500	0.016		0.200		0.003						1					×	0.003		
1 1.00	1	1 0 0	•	•	•																	

file: pd_rtn.wq2

01/28/96 Page 1

a	ь	с	d	е	f	g	h	i		j		k		1		m		n		
Zone	ASHRAE 1989	Section	Air Flow	Velocity	Friction	Loss	Section	Pressure						rn Duct Sy			n Pa	ath		
&	Fundamentals	Description '	Velocity	Pressure	Loss	Coeff	Length	Loss		Fi	ron		<u> </u>	to Mechar	_					
Section	Designation	•							Zo	ne I	Zc	ne li	Zo		Zo	ne IV	Zo	ne V		Zone VI
Number	J.		[fpm]	[in wg]	[in wg/ft]	n/a	[ft]	[in wg]	П	[in wg]		[in wg]		[in wg]	Ц	[in wg]	-+	[in wg]	\vdash	(in wg)
****	Titus 300/350	14" x 14" grill	500	0.016				0.046											×	0.046
TR:66b	5-5 F32.38	17" dia main	1,093	0.074		0.020		0.001			×	0.001			×	0.001				
TR: 70	17" dia	round duct	1,093		0.00100		5,0	0.005			x	0.005			×	0.005				
il:71a	5-5 F32,38	8" dia branch	762	0.036		(0.250)		(0.009)			×	(0.009)								
	3-2 F32.31	5 pc 45 deg L	762	0.036		0,114		0.004			×	0.004								
11:72	8" dia	round duct	762		0.00120	*****	8.0	0.010			0	0.010			11					
ll:73	3-2 F32.31	6 ea 90 deg L's	762	0.036		3.240		0.117			0	0.117								1
	6-8 F32.48	1 ea perf plate	762	0.036	e	3.000		0.109	11		0	0.109								1
11:74	4-1 F32.35	10 deg converge	500	0.016		0.200		0.003			×	0.003								
	Titus 300/350	14" x 14" grill	500	0.016				0.046			×	0.046								
TR:71b	5-5 F32.38	16" dia main	1,043	0.068		0.200		0.014					1		×	0.014				
IV:75	16" dia	round duct	1,043		0.00095		123.0	0.117	H						이	0.117				
IV:76	3-2 F32.31	smooth 90 deg L	1,043	0.068		0.120		0.008			11				X	0.008				
IV:77	3-2 F32.31	10 ea 90 deg L's	1,043	0.068		1.200		0.081							0	0.081				
IV:78	4-1 F32.35	10 deg converge	500	0.016		0.200		0.003							×	0.003				
	Titus 300/350	14" x 14" grill	500	0.016				0.046							×	0.046				
				<u> </u>			L						L		1		Ш		Ц	
											T		—						11	
a	Total Pressure	Loss In Return Duct	System Fo	r Each Path	(Grill to Mi	R Entry)				0.289		0.306	┢	0.287	+	0.295	+	0.318	╉╋	0.289
b	Pressure Loss for Straight Duct Length & 90 deg L's									0.191	\square	0.235	┡	0.238	╇┥	0.198	+	0.252	╉╉	0.218
c	Pressure Loss for Zone XX From Grill to MR Entry less Straight Duct & 90 deg L's									0.098	\vdash	0.071	┞	0.049	+	0.097		0.066	+	0.071
d	Pressure Loss for Critical Path Thru MR (MR entry to Mixing Box)									0.523	\downarrow	0.523	-	0.523	+	0.523	+	0.523	+	0.523
e	Pressure Loss	for Zone XX (Critical	Path Thru	MR + Zone	- Str Duct	& L's)		c + d		0.621		0.593	L	0.572	1	0.620		0.588	Ц	0.594

Megazone Return Duct Pressure Drop Tally

Reference: drawing - kachirtn.cdr

file: pd_rtn.wq2

01/28/96 Page 2

.

.

Figure 160: Megazone Return Air Duct Pressure Drop Tally (continued)

7	Data	Zo	ne I		Zo	ne II		Zo	ne III		Z	one IV		Zo	one V		Zo		
	Pt		[in wg]	Total Pres		[in wg]	Total Pres		[in wg]	Total Pres		[in wg]	Total Pres		[in wg]	Total Pres		[in wg]	Total Pres
oure 161. Megazone Return Air System Total Pressure Grade Line		x x x x x x x x x 1 2 3 4 5 6 7 8 Rtn		Total Pres 0.0000 (0.0460) (0.0491) (0.1923) (0.2504) (0.2813) (0.2826) (0.2978) (0.2997) (0.2902) (0.2947) (0.3327) (0.3353) (0.3553) (0.3545) (0.4145) (0.5275) 0.1925	x x o o o x x x x x x x x x x x x x x x		Total Pres 0.000 (0.0480) (0.0491) (0.1577) (0.2749) (0.2845) (0.2887) (0.2881) (0.2911) (0.2981) (0.2981) (0.3145) (0.3165) (0.3069) (0.3114) (0.3338) (0.3494) (0.3520) (0.3676) (0.3712) (0.5377) (0.6442) 0.1758	x x x 0 0 x 1 2 3 4 5 6 7 8 Rtn		O.0000 0.0000 (0.0460) (0.0491) (0.2867) (0.2887) (0.33145) (0.3301) (0.3327) (0.3443) (0.3519) (0.4119) (0.5184) (0.6249) 0.1951	x x o x o x x x x x x x x 1 2 3 4 5 6 7 8 Rtn		Total Pres 0.0000 (0.0460) (0.0491) (0.1305) (0.1386) (0.2555) (0.2690) (0.2740) (0.2755) (0.2805) (0.2875) (0.2805) (0.2875) (0.2888) (0.3039) (0.3059) (0.2963) (0.2963) (0.2963) (0.2955) (0.2977) (0.3232) (0.3388) (0.3414) (0.3571) (0.3606) (0.4206) (0.4206) (0.42071) (0.6336) (0.1864	x x o o x x x 1 2 3 4 5 6 7 8 Rts		Total Pres 0.0000 (0.0460) (0.0491) (0.2454) (0.3014) (0.3178) (0.3233) (0.3456) (0.3613) (0.3639) (0.3795) (0.3831) (0.4431) (0.5496) (0.6561) (0.1639)	x x o o x x x x x x x x x x x x x x x x	0.0460 0.00460 0.0031 0.1353 0.0828 0.0061 (0.0038) 0.0050 0.0070 0.0013 0.0151 0.0020 (0.0098) 0.0045 (0.0054) 0.0022 0.0256 0.0156 0.0026 0.0026 0.0026 0.0056 0.0026 0.0054 0.0054 0.0050 0.0056 0.	Total Pres 0.0000 (0.0460) (0.0491) (0.1844) (0.2672) (0.2733) (0.2695) (0.2745) (0.2815) (0.2845) (0.2980) (0.2999) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.2949) (0.3325) (0.3511) (0.3547) (0.3547) (0.4147) (0.51212) (0.6277) (0.51212)
	28	9	0.0342	0.1583	9	0.0342	0.1416	9	0.0342	0.1609	9	0.0342	0.1521	9	0.0342	0.1297	9	0.0342	0.1581
Data	29	10	0.0014	0.1569	10	0.0014	0.1402	10	0.0014	0.1595	10	0.0014	0.1508	10	0.0014	0.1283	10	0.0014	0.1567
	30	11b	0.0081	0.1488	11b	0.0081	0.1320	11b	0.0081	0.1513	11b	0.0081	0.1426	11b	0.0081	0.1202	11b	0.0081	0.1486
Table	31	17	0.0681	0.0807	17	0.0681	0.0639	17	0.0681	0.0832	17	0.0681	0.0745	17	0.0681	0.0521	17	0.0681	0.0805
le	32	18	0.0183	0.0623	18	0.0183	0.0456	18	0.0183	0.0649	148	0.0183	0.0562	18	0.0183	0.0337	18	0.0183	0.0621
	33	19	0.0314	0.0309	19	0.0314	0.0141	19	0.0314	0.0334	19	0.0314	0.0247	19	0.0314	0.0023	19	0.0314	0.0307
	34	20	0.0229	0.0080	20	0.0229	(0.0088)	20	0.0 229	0.0105	20	0.0229	0.0018	20	0.0229	(0.0206)	20	0.0229	0.0078

Figure 161: Megazone Return Air System Total Pressure Grade Line Data Table

file: grdtprtn.wq2

01/28/96 Page 1

Appendix Q - Air Handler Control System

•

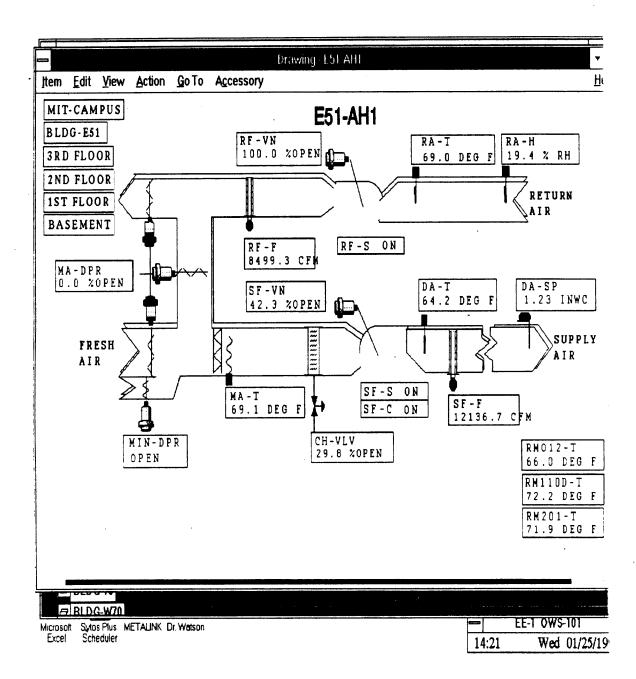
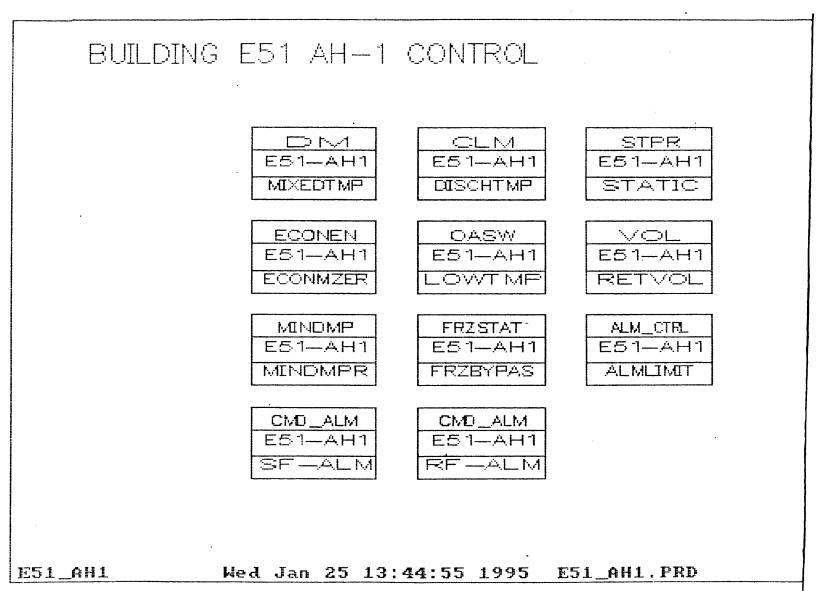
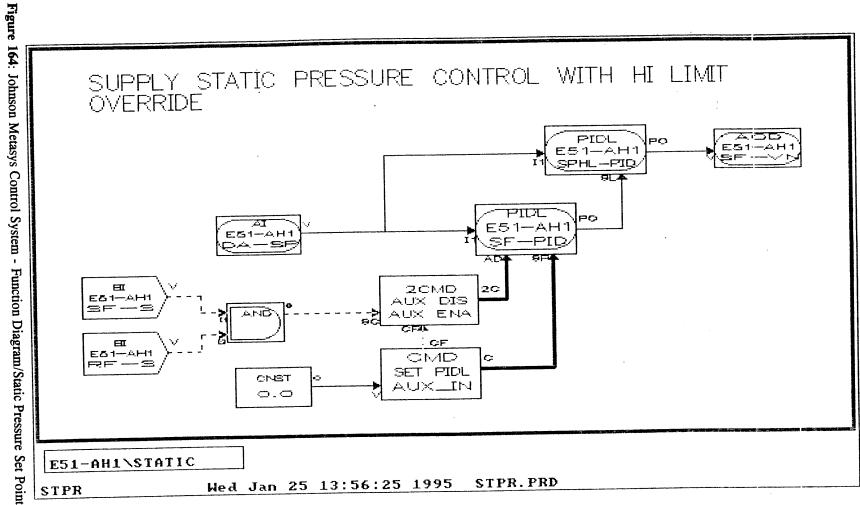




Figure 162: Johnson Metasys Control System - System Drawing

Figure 163: Johnson Metasys Control System - Compound Diagram

Appendix R - Building Zone Modeling: 2C 3R Component Model Structure

-

Annex 10	Terms	1/R(v	wi)							· · · · ·	
Mega-	External	K(lite,ext)		K(lite,interna				K(lite,interna		1	
Zone	Surface			Vertical Roo		Vertical Pler		Horizontal R		Horizontal Ple	
Num-	Compass	Sub-Total	Total	Ka	Kb	Ka	Kb	Ka	КЬ	Ka	Kb
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]
1	South	23.23									
1	West	4.20	ļ							1	
I	North	3.11	30.54	1,636	1,636	351	351	561	561	677	677
11	North	7.31	7.31	334	334	93	93	193	193	233	233
	South	201,76									
	West			}	}	1	}			1	
111	North	13.64								1.	
ĦI	Roof		215.40	4,398	4,398	977	977	1,610	1,610	1,942	1,942
IV	West	28.58									
IV	North	27.28	55.87	1,275	1,275	354	354	480	480	579	579
	North	146.54		1				1			
v	Roof		146.54	3,026	3,026	757	757	1,372	1,372	1,655	1,655
VI	South	5.72									
VI	West	14.29	20.01	113	113	32	32	60	60	72	72

.

file: global01.wq2

01/27/96 Page 1

401

•

.

Annex 10										1/R(
Mega-	External		ner) External S				al) Horizontal			K(hvy,inne	,
Zone	Surface	Room		Plenum		Horizontal Re		Horizontal Ple		Total Sum	
Num-	Compass	Sub-Tot	Total	Sub-Tot	Total	Ka	КЬ	Ka	Kb	Room	Plenum
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]
I	South	38.68		16.10							
1	West	10.98		4.02							
I	North	23.05	72.71	7.12	27.24	2,081	2,081	757	757	4,234	1,542
11	North	21.45	21.45	7.64	7.64	429	429	521	261	880	790
	South	368,43		148.89							
	West	177.45		49.29							
	North	39.71		14.18							
111	Roof		585.59	286.88	499.24	4,737	4,737	1,234	1,234	10,059	2,968
IV	West	87.03		30.77							
IV	North	79.41	166.45	28.35	59.13	843	843	648	648	1,853	1,356
v	North	277.88		111.00		<u> </u>					
v	Roof		277.88	46.44	157.43	2,606	2,606	1,852	1,852	5,490	3,861
VI	South	17.12		6.08							
VI	West	29.64	46.77	11.53	17.61	105	105	81	81	257	179

.

file: global01.wq2

01/27/96 Page 2

.

Annex 10	Terms		K(ext)	· · · · · · · · · · · · · · · · · · ·		thete	ı(i)							
Mega-	External	Roon	n	Pienum		Accessibility	- theta(i)	Global Res	istances					
Zone	Surface	K(window)	+ K(wall)	K(wall		K(hvy,ext)/K(hvy,inner)	R01	R21	R02	R22	R03	R23	R11
Num-	Compass	Sub-Tot	Total	Sub-Tot	Total	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Plenum
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]			[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]
	South	48.37		10.47		47	18							
	West	11.33		2.61		4,234	1,542							
1	North	18.10	77.80	4.63	17.71	0.01116	0.01149	3.27E+01	0	2.64E-03	7.45E-03	2.34E-01	6.41E-01	3.26E+00
H	North	21.25	21.25	4.97	4.97	0.01585	0.00629	1.37E+02	0	1.80E-02	7.97E-03	1.12E+00	1.26E+00	9.47E+00
	South	441.24		96.78		1								
	West	115.34		32.04		381	224							
111	North	39.45		9.22		10,059	2,968							
111	Roof		596.03	86.06	224.10	0.03784	0.07551	4.64E+00	0	3.76E-03	2.54E-02	9.56E-02	3.12E-01	1.14E+00
						108	38							
IV	West	85.16		20.00		1,853	1,356							1
IV	North	78.90	164.06	18.43	38.43	0.05838	0.02834	1.79E+01	0	3.15E-02	2.09E-02	5.08E-01	7.17E-01	3.81E+00
						181	86							
<u>v</u>	North	327.16		72.15		5,490	3,861							
v	Roof		327.16	13.93	86.08	0.03290	0.02229	6.82E+00	0	5.99E-03	5.77E-03	1.76E-01	2.53E-01	1.33E+00
						30	11	j						
VI	South	16.85		3.95		257	179							
VI	West	33.56	50.41	7.50	11.44	0.11839	0.06390	5.00E+01	0	4.61E-01	3.57E-01	3.43E+00	5.23E+00	3.06E+01

file: global01.wq2

01/27/96 Page 3

Annex 10	Terms	K(i)				xi(i)		1/Rec	1 (i)				
Mega-	External	K(i)		K(i)*xi		xi(i)		Keo	4 (i)	aq(i)	at(i)	
Zone	Surface			Cdot(i,out)+									
Num-	Compass	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]			[W/K]	[W/K]				
1	South												
-	West												
1	North	1218.95	188.88	1171.69	171.17	0.96	0.91	5,406	1,713	0.22549	0.11028	0.21675	0.09994
"	North	209.60	33.22	195.65	28.25	0.93	0.85	1,075	818	0.19494	0.04061	0.18197	0.03454
111	South												
	West												
	North												
111	Roof	6563.27	1119.18	6182.63	895.09	0.94	0.80	16,242	3,863	0.40409	0.28973	0.38066	0.23171
IV	West			1									
IV	North	1266.44	203.79	1158.24	165.36	0.91	0.81	3,011	1,521	0.42055	0.13394	0.38462	0.10868
v	North												
v	Roof	3589.98	575.50	3409.35	489.42	0.95	0.85	8,899	4,351	0.40340	0.13228	0.38311	0.11250
VI	South			1									
VI	West	471.42	74.60	441.02	63.15	0.94	0.85	698	242	0.67559	0.30795	0.63203	0.26070

file: global01.wq2

01/27/96 Page 4

•

Annex 10	Terms			I					<u></u>				
Mega-	External	Accessibility	- theta(i)	theta(my v	vay)/	C(hvy,ext,ini	ner) External S	ihell		C(hvy,intern	al) Horizontal		
Zone	Surface	Annex	10	theta(anne	x10)	Room		Plenum		Horizontal Ro	bom	Horizontal Ple	num
Num-	Compass	Room	Plenum	Room	Plenum	Sub-Tot	Total	Sub-Tot	Total	Ca	Сь	Ca	СЬ
ber	Heading					[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
	South				i	4.64E+06	21,324	1.93E+06	7,990	68,447	68,447	61,583	61,583
	West					1.32E+06	9,693	4.82E+05	3,632	31,112	31,112	27,992	27,992
	North	0.01116	0.01149	1.00E+00	1.00E+00	2.77E+06	8.72E+06	8.54E+05	3.27E+06	2.49E+07	2.49E+07	2.24E+07	2.24E+07
							6,290		2,242	11,143	11,143	21,203	21,203
"	North	0.01585	0.00629	1.00E+00	1.00E+00	2.57E+06	2.57E+06	9.17E+05	9.17E+05	4.05E+06	4.05E+06	7.71E+06	7.71E+06
111	South					4.42E+07		1.79E+07				[
	West					2.13E+07	171,736	5.91E+06	127,566	286,433	286,433	100,391	100,391
111	North					4.76E+06	78,062	1.70E+06	57,984	130,197	130,197	45,632	45,632
111	Roof	0.03784	0.07551	1.00E+00	1.00E+00		7.03E+07	2.67E+07	5.22E+07	1.04E+08	1.04E+08	3.65E+07	3.65E+07
						l							
							92,066		32,782	52,746	52,746	52,746	52,746
IV	West					1.04E+07	41,848	3.69E+06	14,901	23,975	23,975	23,975	23,975
IV IV	North	0.05838	0.02834	1.00E+00	1.00E+00	2.72E+07	3.77E+07	9.72E+06	1.34E+07	1.92E+07	1.92E+07	1.92E+07	1.92E+07
		ļ		ļ									
I						0.005.00	232,838		103,574	162,987	162,987	150,622	150,622
V V	North				1.005.05	9.53E+07	105,836	3.80E+07	47,079	74,085	74,085	68,464	68,464
V	Roof	0.03290	0.02229	1.00E+00	1.00E+00		9.53E+07	4.32E+06	4.24E+07	5.93E+07	5.93E+07	5.48E+07	5.48E+07
)	<u> </u>	\			39,185		14.753	6.567	6,567	6,567	6,567
l vi	South					5.87E+06	17,811	2.08E+06	6,706	2,985	2,985	2,985	2,985
VI	West	0.11839	0.06390	1.00E+00	1.00E+00	1.02E+07	1.60E+07	3.95E+06	6.04E+06	2.39E+06	2.39E+06	2.39E+06	2.39E+06
1													

file: global01.wq2

01/27/96 Page 5

Annex 10	Terms	C(si)	1	tau(i)	1					1			
Mega-	External	C(hvy,oa)		Tau(hvy,c	a)	Volume(air,i) w/ rho(air) =	1.22 [kg/m3]	C(lite,air)		C(lite,interna	I) Vertical		
Zone	Surface	C03	C23	Total Sum	ı		Cp(air) =	= 962 [J/kg-K]	1		Vertical Roo		Vertical Pler	um
Num-	Compass	Room	Plenum	Room	Plenum	Room	Plenum	Total	Room	Plenum	Ca	Съ	Ca	СЬ
ber	Heading	[J/K]	[J/K]	[s}	[s}	[m3]	[m3]	[m3]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
	South	160,883	100.154											
<u>_</u>	West	73,129	132,154	10					1,736	335	8,899	8,899	1,908	1,908
	North	5.85E+07	60,070	13	71				789	152	4,045	4,045	867	867
'	NORT	5.652+07	4.81E+07	4.80E+04	2.54E+05	647	125	772 772	7.59E+05	1.46E+05	4.04E+06	4.04E+06	8.67E+05	8.67E+05
		29,362	44,928	14	137				415	115	1,815	1,815	504	504
н	North	1.07E+07	1.63E+07	5.09E+04	4.92E+05	155	43	198	1.82E+05	5.04E+04	8.25E+05	8.25E+05	2.29E+05	2.29E+05
						ļ		198						
	South													
111	West	766.068	344,294						5,576	962	23,916	23,916	5 313	5 040
111	North	348,213	156,497	12	31				2,535	437	10,871	10,871	5,313 2,415	5,313 2,415
111	Roof	2.79E+08	1.25E+08	4.24E+04	1.12E+05	2,077	358	2,436	2.44E+06	4.21E+05	1.09E+07	1.09E+07	2,415 2.41E+06	2,415 2.41E+06
								2,436	2.442100	4.212100	1.032 +07	1.032+07	2.416400	2.412700
		209,066	142,371						1,033	287	6,934	6,934	1,926	1,926
IV	West	95,030	64,714	17	71				470	130	3,152	3,152	875	875
IV	North	7.60E+07	5.18E+07	6.00E+04	2.54E+05	385	107	492	4.52E+05	1.25E+05	3.15E+06	3.15E+06	8.75E+05	8.75E+05
								492						
v		587,918	417,764						3,259	819	16,455	16,455	4,118	4,118
- <u>v</u>	North	267,235	189,893	17	73				1,482	372	7,480	7,480	1,872	1,872
v	Roof	2.14E+08	1.52E+08	5.96E+04	2.64E+05	1,214	305	1,520	1.43E+06	3.58E+05	7.48E+06	7.48E+06	1.87E+06	1.87E+06
		57,217	29,731					1,520	100				172	
vi	South	26,008	13,514	12	40				129 58	36 16	617	617	172	172
vi	West	2.08E+07	1.08E+07	4.41E+04	40 1.45E+05	48	13	61	58 5.62E+04		280	280	78	78
.,		2.002107	1.002+07		1.452 +05	40	,3	61	3.02E+04	1.56E+04	2.80E+05	2.80E+05	7.82E+04	7.82E+04
	المسمو			L				01						

822,961	505.110	Sub	Total	Esti

822,961	505,110		Sub Total Estimated Mass [kg]
		1,328,071	Total [kg]
	82,474		Avg Est'd Mass From Internal Wall
	851,920		Avg Est'd Mass From Horizontal Surfaces
	397,544		Avg Est'd Mass From External Walls x theta
		1,331,937	Total [kg]
		1.00	Ratio

01/27/96 Page 6

				C(i)		
External	C(lite,interne	al) Horitzontal			C(lite,oa)	
Surface	Vertical Roo	m	Vertical Plen	um	C02	C22
Compass	Ca	Cb	Ca	СЬ	Room	Plenum
Heading	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
South	1.055	1.055	1.055	1.055	02 674	C 151
						6,151 2,796
						2,790 2.45E+06
NORTH	2.032+05	2.032+05	2.032+05	2.832 +05	9.416+00	2.455+06
	363	363	363	363	5,096	1,769
North	9.74E+04	9.74E+04	9.74E+04	9.74E+04	2.03E+06	7.03E+05
South						
	3 028	3 028	3 028	3 028	64 878	17.285
						7,857
Roof	8.12E+05	8.12E+05	8.12E+05	8.12E+05	2.58E+07	6.87E+06
	904	904	904	904	18 203	5,936
West						2,698
North	2.42E+05	2.42E+05	2.42E+05	2.42E+05	7.24E+06	2.36E+06
	2.580	2.580	2.580	2,580	44.675	13.794
North	1,173					6.270
Roof	6.92E+05	6.92E+05	6.92E+05	6.92E+05	1.78E+07	5.49E+06
	112	112	112	112	1 703	584
South						266
West	3.02E+04	3.02E+04	3:02E+04	3.02E+04	6.77E+05	2.32E+05
	Surface Compass Heading South West North South West North Roof West North Roof	Surface Compass Vertical Roo Ca Heading [J/K] South 1,055 West 479 North 2.83E+05 North 363 9.74E+04 3,028 North 3,028 North 3,028 North 3,028 North 3,028 North 1,376 Roof 904 411 2.42E+05 North 2,580 North 1,173 Roof 1,173 South 112 South 51	Surface Compass Vertical Room Compass Ca Cb Heading [J/K] [J/K] South 1,055 1,055 West 479 479 North 2.83E+05 2.83E+05 North 363 363 North 3.028 3.028 North 3,028 3.028 North 1,376 1,376 Roof 8.12E+05 8.12E+05 West 1,376 2.42E+05 West 1,173 6.92E+05 North 2.580 2.580 North 1,173 6.92E+05 South 1,173 6.92E+05 North 112 112	Surface Compass Vertical Room Vertical Plen Ca Cb Ca Heading [J/K] [J/K] [J/K] South 1,055 1,055 1,055 West 479 479 479 North 2.83E+05 2.83E+05 2.83E+05 North 9.74E+04 9.74E+04 9.74E+04 South 9.74E+04 9.74E+04 9.74E+04 South 8.12E+05 8.12E+05 8.12E+05 North 1,376 1,376 1,376 North 2.580 2.42E+05 2.42E+05 West 3,028 3,028 3,028 North 1,376 1,376 1,376 Roof 8.12E+05 8.12E+05 2.42E+05 West 411 411 411 North 1,173 1,173 1,173 Roof 6.92E+05 6.92E+05 6.92E+05 North 1,173 6.92E+05 6.92E+05 No	Surface Compass Vertical Room Vertical Plenum Ca Cb Ca Cb Heading [J/K] [J/K] [J/K] [J/K] South 1,055 1,055 1,055 1,055 West 479 479 479 479 North 2.83E+05 2.83E+05 2.83E+05 2.83E+05 North 363 363 363 363 North 9.74E+04 9.74E+04 9.74E+04 9.74E+04 South 3.028 3.028 3.028 3.028 North 1.376 1.376 1.376 1.376 Roof 8.12E+05 8.12E+05 8.12E+05 8.12E+05 West 411 411 411 411 North 2.42E+05 2.42E+05 2.42E+05 2.42E+05 Meest 1.173 6.92E+05 6.92E+05 6.92E+05 6.92E+05 North 1.173 6.92E+05 6.92E+05 6.92E+05 6.92E+05	Vertical RoomVertical PlenumCO2CompassCaCbCaCbRoomHeading[J/K][J/K][J/K][J/K][J/K][J/K]South1,0551,0551,0551,05523,671West47947947947910,759North2.83E+052.83E+052.83E+052.83E+052.83E+05North9.74E+049.74E+049.74E+049.74E+049.74E+04West3,0283,0283,0283,0283,028South3,0283,0283,0283,0282,580North1,3761,3761,3761,3762,580North2.42E+058.12E+058.12E+058.12E+052.58E+07West3,0283,0283,0283,0283,028North1,3761,3761,3761,3762,580North2.42E+052.42E+052.42E+052.58E+07West4114114114118,274North2,5802,5802,5802,5807.24E+06North1,1731,1731,17320,3076.92E+056.92E+056.92E+056.92E+05North1121121121121121,703South51515151774

407

01/27/96 Page 7

Level	Туре	Thkness	**			ZONE (areas	from file: intv	/ert.wq2)	
			Γ	I			IV	V	VI
			F	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
<u>,, , , , , , , , , , , , , , , , , , ,</u>									
All	Internal	t	Р	323	69	1007	305	587	0
All	Gyp & SS		R	1163	249	3626	1099	2093	0
All	Adiabatic	1/2 t	Р	285	108	57 9	330	836	84
		1 1	R	2017	388	4420	1186	3845	301

** implies values for plenum P or room R

Calculation for Resistance per area Rbar(m) of Internal Gypsum and Steel Stud Walls

(refer to document text [Section 3] for calculation of R value)

R = L/kA	previous calcula	tion F	lbar(int wall) =		2.636	[degF-hr-ft2 / Btu]
&	or	۲	(bar(int wall) =		0.379	[btu / degF-hr-ft2]
K = 1/R	or in SI units wit	h	5.678 [(W	/ / ft2 deg	K) / (Btu / de	gF-hr-ft2)]
	the conductance	eis K	(bar(int wall) =		2.152	[W / m2-degK]
	or	F	lbar(int wall) =		0.465	[m2-degK / W]
For the intenal w	all the structure is symm	netrical, therefore	: the	eta(m) =		0.5
from work pre	pared by reserach assis	tant P.Balun	the	eta(am) =		0.35
	-		the	eta(bm) =		0.35
Resistance due t	to Conduction					
Rbar(am) = (1 -	theta(m)) * Rbar(m)	or Rbar(am) :	2	0.232	[m2-degK /	W] or [m2-degK-s / J]
Rbar(bm) = thet	ta(m) * Rbar(m)	or R(bar)bm	=	0.232	[m2-degK /	W] or [m2-degK-s / J]
film resistance for	or vertical surface w/still	air [F22.1 ASHRA	AE (SI)]			
film resistance for	or vert surface *	=	•	0.12	[m2-degK-s	/J]

408

file: rescap01.wq2

01/18/96 Page 1

Level	Туре	Thkness	**	Resistance the	neta(am)*Rar	n [film + con	duction] for Ir	nt'l & Adiabati	ic
		*			11	111	IV	V	VI
				[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]
All	Internal	t	Р	4.11E-03	1.92E-02	1.32E-03	4.35E-03	2.26E-03	
All	Gyp & SS		R	1.14E-03	5.33E-03	3.66E-04	1.21E-03	6.34E-04	
All	Adiabatic	1/2 t	Р	9.31E-03	2.46E-02	4.58E-03	8.04E-03	3.17E-03	3.16E-02
All	Gyp & SS		R	1.32E-03	6.84E-03	6.00E-04	2.24E-03	6.90E-04	8.82E-03
	• • • • • • • • • • • • • • • • • • •								
Level	Туре	Thkness	**	Resistance t	heta(bm)*Rbi	m [film + con	duction] for I	nt'l & Adiabat	ic
		*		I		111	IV	V	VI

Level	Туре	Thkness	**	Resistance ti	neta(bm)*Rbr	n [film + con	duction] for li	nt'l & Adiabat	ic
		*				111	IV	V	VI
				[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]
All	Internal	t	Ρ	4.11E-03	1.92E-02	1.32E-03	4.35E-03	2.26E-03	
All	Gyp & SS		R	1.14E-03	5.33E-03	3.66E-04	1.21E-03	6.34E-04	
All	Adiabatic	1/2 t	Ρ	9.31E-03	2.46E-02	4.58E-03	8.04E-03	3.17E-03	3.16E-02
All	Gyp & SS		R	1.32E-03	6.84E-03	6.00E-04	2.24E-03	6.90E-04	8.82E-03

.

* For adiabatic walls the thickness is 1/2 t. Resistances and capacitances are calculated as for internal walls, but the wall is folded in half (making the effective face area equal to 1/2 of the actual area transverse to the direction of heat flow). The effective area is used to calculate Ram(adiabatic) & Rbm(adiabatic)

** implies values for plenum P or room R

file: rescap01.wq2

Calculation for Capacitance of Internal Gypsum and Steel Stud Walls	35.31	[ft3/m3]
a 1 ft2 piece of the wall has the following capacitive properties	Cam = Cbm	= 0.5 Cm
the density of gypsum is [F22.6 ASHRAE (SI)]:	801	[kg/m3]
the density of steel is [F36.4 ASHRAE (SI)]:	7,833	[kg/m3]
the density of fiberglass is [F22.6 ASHRAE (SI)]:	104	[kg/m3]
the specific heat of gypsum is [F22.6 ASHRAE (SI)]:	1,088	[J/kg-degK]
the specific heat of steel is [F36.4 ASHRAE (SI)]:	502	[J/kg-degK]
the specific heat of fiberglass is [F22.6 ASHRAE (SI)]:	962	[J/kg-degK]
the fractional area of steel transverse to the direction of heat flow is:	0.01	[m2/m2]
the fractional area of fiber glass transverse to the direction of heat flow is:	0.99	[m2/m2]
the volume of 2 ply thkness of 5/8" thk gypsum in 1 ft2 of wall is:	0.00295	[m3/ft2]
the volume of steel in 1 ft2 of wall with 3 5/8" steel studs is:	0.00009	[m3/ft2]
the volume of fiberglass in 1 ft2 of wall with 3 5/8" steel studs is:	0.00818	[m3/ft2]
the mass M(gypsum) in 1 ft2 of wall is:	2.36	[kg/ft2]
the mass M(steel) in 1 ft2 of wall is:	0.67	[kg/ft2]
the mass M(fibergalss) in 1 ft2 of wall is:	0.85	[kg/ft2]
Cbar(gypsum) = Cp(gypsum)* M(gypsum)/ft2 =	2,570	[(J/degK)/ft2]
Cbar(steel) = Cp(steel)* M(steel)/ft2 =	336	[(J/degK)/ft2]
Cbar(fiber glass) = Cp(f-glass)* M(f-glass)/ft2 =	819	[(J/degK)/ft2]
Cbar(total) = sum of individual capacitances	3,725	[(J/degK)/ft2

file: rescap01.wq2

Level	Туре	Thkness	**		Individual zo	ne capacitano	ces Cam		
		*		I	li		IV	V	VI
				[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]
All	Internal	· t	Р	6.02E+05	1.29E+05	1.88E+06	5.68E+05	1.09E+06	
All	Gyp & SS		R	2.17E+06	4.64E+05	6.75E+06	2.05E+06	3.90E+06	
All	Adiabatic	1/2 t	Р	2.65E+05	1.01E+05	5.39E+05	3.07E+05	7.79E+05	7.82E+04
All	Gyp & SS		R	1.88E+06	3.61E+05	4.12E+06	1.10E+06	3.58E+06	2.80E+05
Level	Туре	Thkness	**		Individual zo	ne capacitan	ces Cbm		
	ĺ	*		1		111	IV	V	VI
				[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]	[(J/degK]
All	Internal	t	Р	6.02E+05	1.29E+05	1.88E+06	5.68E+05	1.09E+06	

4.64E+05

1.01E+05

3.61E+05

* For adiabatic walls the thickness is 1/2 t. Resistances and capacitances are calculated as for internal walls, but the wall is folded in half (making the effective face area equal to 1/2 of the actual area transverse to the direction of heat flow). The effective area is used to calculate Cam(adiabatic) & Cbm(adiabatic)

2.17E+06

2.65E+05

1.88E+06

R

Ρ

R

1/2 t

** implies values for plenum P or room R

Gyp & SS

Adiabatic

Gyp & SS

All

All

All

file: rescap01.wq2

01/18/96 Page 4

6.75E+06

5.39E+05

4.12E+06

2.05E+06

3.07E+05

1.10E+06

3.90E+06

7.79E+05

3.58E+06

. -----

7.82E+04

2.80E+05

Level	Туре	Thkness	**		Time constant tau(am)							
		*		I		111	IV	V	VI			
				[s]	[s]	[s]	[s]	[s]	[s]			
All	Internal	t	Р	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03				
All	Gyp & SS	-	R	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03				
	Adiabatic	1/2 t	Р	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03			
All		.,										

Level	Туре	Thkness	**		Time consta	nt tau(bm)			
		*		I			IV	V	VI
				[s]	[s]	[S]	[s]	[s]	[s]
		· · · · · · · · · · · · · · · · · · ·							
All	Internal	t	Р	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03	
All	Gyp & SS		R	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03	
All	Adiabatic	1/2 t	Р	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03
All	Gyp & SS		R	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03	2.47E+03

see notes for resistance and capacitance calculation *

** implies values for plenum P or room R

	Internal	Adiabatic
Time Constant For Internal Wall [hr]	0.69	0.69
Total Heat Capacity for Internal Walls [J/K]		6.60E+07
Estimated Average Mass [kg]		82,474
Total Internal Wall Surface Area [ft2]		24,900
Estimated Average Mass per Unit Area [kg/ft2]	· · · · · · · · · · · · · · · · · · ·	3.3

Figure 170: Time Constants for Internal & Adiabatic Vertical Walls

412

01/18/96 Page 5

file: rescap01.wq2

Vertical Surface Areas - Internal Only

Level	Туре	Thknes				ZONE ***			
		**	*	1			IV	V	VI
				[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
0	Internal	t	Р	323	69	77			
· 0	Gyp & SS		R	1,163	249	277			
0	Adiabatic	1/2 t	Р	285	108	79			
0	Gyp & SS		R	2,017	388	727			
1	Internal	t	Ρ			317	138	174	
1	Gyp & SS		R			1,142	497	624	
1	Adiabatic	1/2 t	Ρ			57	159	280	
1	Gyp & SS		R			1,211	570	1,008	
2	Internal	t	Ρ			524	167	178	
2	Gyp & SS		R			1,887	602	624	
2	Adiabatic	1/2 t	Ρ			176	171	264	84
2	Gyp & SS		R			1,520	616	950	301
							•		
3	Internal	t	Ρ			89		235	
3	Gyp & SS		R			320		845	
3	Adiabatic	1/2 t	Ρ			267		292	
З	Gyp & SS		R			962		1,887	
	· · · · · · · · · · · · · · · · · · ·								
All	Internal	t	Ρ	323	69	1007	305	587	
All	Gyp & SS		R	1163	249	3626	1099	2093	
All	Adiabatic	1/2 t	Р	285	108	579	330	836	84
All	Gyp & SS		R	2017	388	4420	1186	3845	301

* P = plenum R = room

** t = thickness of internal wall & 1/2 t = 1/2 thickness of internal wall

 *** linear wall dimensions taken from drawings:
 e510thrs.cdr
 e512ndrs.cdr

 e511stsr.cdr
 e513rdrs.cdr
 e513rdrs.cdr

using linear measures, areas were calculated w/ 9 ft ceiling & 2.5 ft plenum

file: intvert.wq2

12/27/95 Page 1

Figure 171: Internal Vertical Surface Identification & Area Tally

Sur-	Orien-	Loca-	Mat'i	Thick-	Туре				ZONE Area	s		
face	ation	tion		ness	Code	Int/Ext	1	11	III	IV	V	VI
				[in]			[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
* All	up	Rm	conc	3.00	A	Int	2,707	638	970	0	0	0
All	dn	Rm	ceil	0.63	В	Int	1,763	607	5,061	1,510	4,312	188
All	up	PI	ceil	0.63	в	Int	1,763	607	5,061	1,510	4,312	188
All	dn	PI	conc	6.00	С	Int	1,763	607	2,874	1,510	4,312	188
Alt	dn	Rm	conc	6.00	С	Int	606	0	1,738	0	0	0
Ali	up	Rm	conc	6.00	С	Int	0	0	5,977	1,510	4,666	188
** All	dn	Rm	roof	4.75	D	Ext	0	0	0	0	354	0
All	up	Out	roof	4.75	D	Ext	0	0	0	0	354	0
All	dn	PI	roof	4.75	D	Ext	0	0	2,187	0	0	0
All	up	out	roof	4.75	D	Ext	0	0	2,187	0	0	0
				Check Sur	ns	62,218	8602	2459	26055	6040	18310	752

* concrete foundation slab actual thickness is assumed to be 12" - 1/4 thickness is taken to reflect actaul thermal behavior

** thickness for roof includes 2.5" concrete + 2" insulation + 0.25" built-up roofing surface

Sur-	Orien-	Loca-	Mat'l	Thick-	k	С	Rbar(m)	Film	Density	Density	Ср	Cbar(m)
face	ation	tion		ness	[W/	[W/	[m2-K/	Coeff	[kg/m3]	[kg-m/	[J/kg-K]	[J/m2-K]
				[in]	m-K]	m2-K]	[W]	[m2-K/W]				
All	up	Rm	conc	3.00	1.350	17.730	0.056	0.110	2,250	171	800	1.37E+0
All	dn	Rm	ceil	0.63	0.060	3.782	0.264	0.160	370	6	590	3.46E+0
All	up	PI	ceil	0.63	0.060	3.782	0.264	0.110	370	6	590	3.46E+0
All	dn	PI	conc	6.00	1.350	8.865	0.113	0.160	2,250	343	800	2.74E+0
All	dn	Rm	conc	6.00	1.350	8.865	0.113	0.160	2,250	343	800	2.74E+0
All	up	Rm	conc	6.00	1.350	8.865	0.113	0.110	2,250	343	800	2.74E+0
All	dn	Rm	roof	4.75		0.462	2.163	0.160	1,354	163	1,150	1.88E+0
All	up	Out	roof	4.75		0.462	2.163	0.039	1,354	163	1,150	1.88E+0
All	dn	PI	roof	4.75		0.462	2.163	0.160	1,354	163	1,150	1.88E+0
All	up	out	roof	4.75		0.462	2.163	0.039	1,354	163	1,150	1.88E+0
						•	Average M	ass per ft2 [kg/ft2] =	17		

file: rescap02.wq2

.

Resistances & Capacitances for Internal & External Horizontal Surfaces

Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.5	Resistance	theta(am)*	Ram [film +	conduction]	for Int Horz	Surf
face	ation	tion		ness	theta(am)	0.5	1	11	1	IV	V	VI
			<u> </u>	[in]	(m)	(am)	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]
All	up	Rm	conc	3.00	0.5	0.5	5.49E-04	2.33E-03	1.53E-03			
All	dn	Rm	ceil	0.63	0.5	0.5	1.78E-03	5.18E-03	6.21E-04	2.08E-03	7.29E-04	1.67E-02
All	up	PI	ceil	0.63	0.5	0.5	1.48E-03	4.29E-03	5.15E-04	1.73E-03	6.04E-04	1.39E-02
All	dn	PI	conc	6.00	0.5	0.5	1.32E-03	3.84E-03	8.10E-04	1.54E-03	5.40E-04	1.24E-02
All	dn	Rm	conc	6.00	0.5	0.5	3.84E-03		1.34E-03			
All	up	Rm	conc	6.00	0.5	0.5			3.00E-04	1.19E-03	3.84E-04	9.52E-03
Sur-	Orien-	Loca-	Mat'i	Thick-	theta(m)	0.5	Resistance	theta(bm)*	Rbm (film +	conduction	for Int Horz	Surf
face	ation	(1							
	auon	tion		ness	theta(bm)	0.5		11	111	IV	V	VI
	ation	tion		lin]	theta(bm) (m)	0.5 (bm)	l [s-degK/J]				V [s-degK/J]	VI [s-degK/J]
Ali			conc				 [s-degK/J] 5.49E-04					
Ali	up	Rm		[in]	(m) 0.5	(bm) 0.5		[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J
Ali Ali Ali	up		conc ceil ceil	[in] 3.00	(m)	(bm)	5.49E-04	[s-degK/J] 2.33E-03	[s-degK/J] 1.53E-03	[s-degK/J]	[s-degK/J]	[s-degK/J
All	up dn	Rm Rm	ceil	[in] 3.00 0.63	(m) 0.5 0.5	(bm) 0.5 0.5	5.49E-04 1.78E-03	[s-degK/J] 2.33E-03 5.18E-03	[s-degK/J] 1.53E-03 6.21E-04	[s-degK/J] 2.08E-03	[s-degK/J] 7.29E-04	[s-degK/J 1.67E-02 1.39E-02
All All	up dn up	Rm Rm Pl	ceil ceil	[in] 3.00 0.63 0.63	(m) 0.5 0.5 0.5	(bm) 0.5 0.5 0.5	5.49E-04 1.78E-03 1.48E-03	[s-degK/J] 2.33E-03 5.18E-03 4.29E-03	[s-degK/J] 1.53E-03 6.21E-04 5.15E-04	[s-degK/J] 2.08E-03 1.73E-03	[s-degK/J] 7.29E-04 6.04E-04	[s-degK/J 1.67E-02

.

.

.

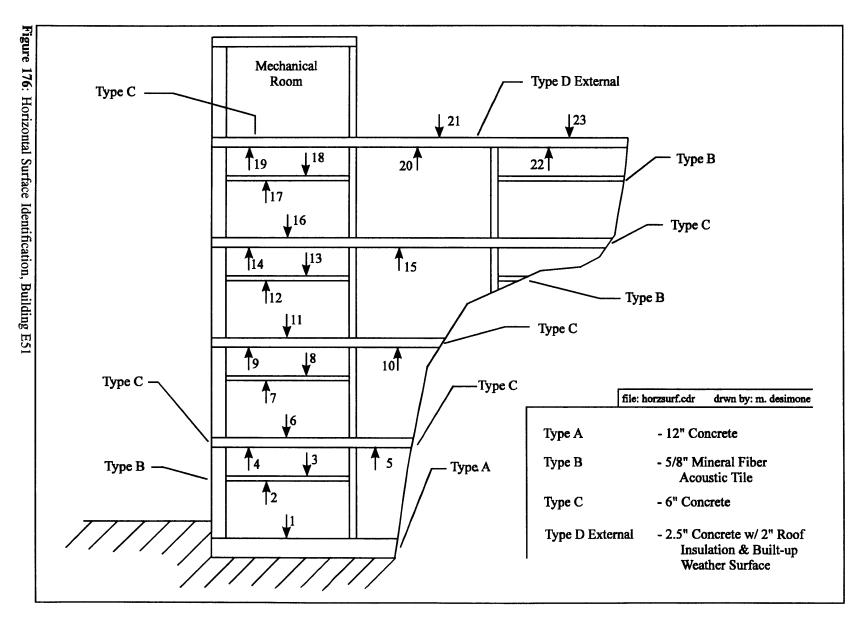
.

Resistances & C	apacitances for	Internal &	External Horizontal Surfaces	;
-----------------	-----------------	------------	------------------------------	---

Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.5	Net Capaci	tance Cam f	or Internal H	lorizontal Su	irfaces	
face	ation	tion		ness	theta(am)	0.5	1	I	111	IV	V	VI
				(in)	(m)	(am)	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
All	up	Rm	conc	3.00	0.5	0.5	1.72E+07	4.05E+06	6.16E+06			
All	dn	Rmi	ceil	0.63	0.5	0.5	2.83E+05	9.74E+04	8.12E+05	2.42E+05	6.92E+05	3.02E+04
All	up	PI	ceil	0.63	0.5	0.5	2.83E+05	9.74E+04	8.12E+05	2.42E+05	6.92E+05	3.02E+04
All	dn	PI	conc	6.00	0.5	0.5	2.24E+07	7.71E+06	3.65E+07	1.92E+07	5.48E+07	2.39E+06
All	dn	Rm	conc	6.00	0.5	0.5	7.70E+06		2.21E+07			
All	up	Rm	conc	6.00	0.5	0.5			7.59E+07	1.92E+07	5.93E+07	2.39E+0

Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.5	Net Capaci	tance Cbm 1	for Internal ⊢	lorizontal Su	urfaces	
face	ation	tion		ness	theta(bm)	0.5	1	11		IV	V	VI
				[in]	(m)	(bm)	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
All	up	Rm	conc	3.00	0.5	0.5	1.72E+07	4.05E+06	6.16E+06			
All	dn	Rm	ceil	0.63	0.5	0.5	2.83E+05	9.74E+04	8.12E+05	2.42E+05	6.92E+05	3.02E+04
All	up	PI	ceil	0.63	0.5	0.5	2.83E+05	9.74E+04	8.12E+05	2.42E+05	6.92E+05	3.02E+04
All	dn	PI	conc	6.00	0.5	0.5	2.24E+07	7.71E+06	3.65E+07	1.92E+07	5.48E+07	2.39E+06
All	dn	Rm	conc	6.00	0.5	0.5	7.70E+06		2.21E+07			
All	up	Rm	conc	6.00	0.5	0.5			7.59E+07	1.92E+07	5.93E+07	2.39E+06

Sur-	Orien-	Loca-	Mat'l	Thick-	•••••••••••••••••••••••••••••••••••••••	Time Const	tants tau(am	n) & tau(bm)	Internal Ho	rizontal Wall	5
face	ation	tion		ness		1			IV	V	VI
				[in]		[s]	[S]	[S]	[S]	[s]	[s]
Ail	up	Rm	conc	3.00		9.44E+03	9.44E+03	9.44E+03			
All	dn	Rm	ceil	0.63		5.05E+02	5.05E+02	5.05E+02	5.05E+02	5.05E+02	5.05E+02
All	up	PI	ceil	0.63		4.18E+02	4.18E+02	4.18E+02	4.18E+02	4.18E+02	4.18E+02
All	dn	PI	conc	6.00		2.96E+04	2.96E+04	2.96E+04	2.96E+04	2.96E+04	2.96E+04
All	dn	Rm	conc	6.00		2.96E+04		2.96E+04			
All	up	Rm	conc	6.00				2.27E+04	2.27E+04	2.27E+04	2.27E+04


Minimum Time Constant

12/27/95 Page 3

Resistances & Capacitances for Internal & External Horizontal Surfaces

Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.3	Net Resista	nce Rm (film	+ conduct	ion) for Exte	rnal Horz W	alls
face	ation	tion		ness			1	11	111	IV	V	VI
	{			[in]	(m)		[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]
All	dn	Rm	roof	4.75	0.3						7.18E-02	
All	up	Out	roof	4.75	0.3	1						
All	dn	PI '	roof	4.75	0.3	}			1.16E-02			
All	up	out	roof	4.75	0.3						÷	
Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.3	Net Capaci	tance Cm fo	r External H	orz Walls		
face	ation	tion		ness		_	1	11		IV	V	VI
				[in]	(m)		[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]	[s-degK/J]
All	dn	Rm	roof	4.75	0.3						6.18E+06	
All	up	Out	roof	4.75	0.3	1						
All	dn	PI	roof	4.75	0.3				3.82E+07			
All	up	out	roof	4.75	0.3	L						
					•							
Sur-	Orien-	Loca-	Mat'l	Thick-	theta(m)	0.3	Time Const	ants tau(m)	External Ho	rizontal Wal	ls (ie. roof)	
face	ation	tion		ness	1		<u> </u>		III	IV	V	VI
				[in]	(m)		[S]	[s]	[s]	[S]	[S]	[s]
All	dn	Rm	roof	6.00	0.3						4.12E+04	
Ali	dn	PI	roof	4.75	0.3	[4.12E+04			
								· ····				
	•	•		al Surface			9.57E+07	2.39E+07		7.77E+07	2.37E+08	9.67E+06
-	•			erials [J/kg	-k] *		900	900	900	900	900	900
Estimated							106,332	26,571	358,589	86,322	263,359	10,747
	A	d Mass	per Unit	Area [kg/f	12]		12.4	10.8	13.8	14.3	14.4	14.3
Estinated	, Average		·									
							Total Estim	ated Mass f	or Horizonta	l Surfaces [kg]	851,920
* based o	on a prop	ortional		aterials fo	r all		· · · · · · · · · · · · · · · · · · ·			I Surfaces [kg]	
* based o		ortional			r all		Time Const	tant 3" (12")	Slab [hr]	I Surfaces [kg]	2.6
* based o	on a prop	ortional			r all		Time Const Time Const	tant 3" (12") tant Roof [hi	Slab [hr] r]	I Surfaces [kg]	
* based o	on a prop	ortional			r all		Time Const Time Const Time Const	tant 3" (12")	Slab [hr] r] [hr]	I Surfaces [kg]	2.6

12/27/95 Page 4

Sur-	Orien-	Loca-	Mat'l	Thick-	Ту	pe			ZONE (7)			
face	ation	tion		ness	Code	Int/Ext				IV	V	VI
(1)	(2)	(3)	(4)	[in]	(5)	(6)	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
1	up	Rm	conc	3.00	A	Int	2,707	638	970			
2	dn	Rm	ceil	0.63	в	Int	1,763	607	142			
3	up	PI.	ceil	0.63	в	Int	1,763	607	142			
4	dn	PI	conc	6.00	c	Int	1,763	607	142			
5	dn	Rm	conc	6.00	с	Int	606					
6	up	Rm	conc	6.00	С	Int			1,660	720	949	
7	dn	Rm	ceil	0.63	В	Int			1,121	720	949	
8	up	PI	ceil	0.63	в	Int			1,121	720	949	
9	dn	PI	conc	6.00	C	Int			1,121	720	949	
10	dn	Rm	conc	6.00	С	Int			1,219			
11	úp	Rm	conc	6.00	С	Int			2,130	790	1,123	188
12	dn	Rm	ceil	0.63	в	Int			1,611	790	1,123	188
13	up	PI	ceil	0.63	В	Int			1,611	790	1,123	188
14	dn	PI	conc	6.00	С	Int			1,611	790	1,123	188
15	dn	Rm	conc	6.00	С	Int			519			
16	up	Rm	conc	6.00	С	Int			2,187		2,594	
17	dn	Rm	ceil	0.63	В	Int			2,187		2,240	
18	up	PI	ceil	0.63	В	Int			2,187		2,240	
19	dn	PI	conc	6.00	С	Int					2,240	
20	dn	Rm	roof	4.75	D	Ext					354	
21	up	Out	roof	4.75	D	Ext					354	
22	dn	PI	roof	4.75	D	Ext			2,187			
23	up	Out	roof	4.75	D	Ext			2,187			
				Check Sun	ns	62,218	8,602	2,459	26,055	6,040	18,310	752
All	up	Rm	conc	3.00	A	Int	2,707	638	970	0	0	0
All	dn	Rm	ceil	0.63	в	Int	1,763	607	5,061	1,510	4,312	188
All	up	PI	ceil	0.63	в	Int	1,763	607	5,061	1,510	4,312	188
All	dn	PI	conc	6.00	C	Int	1,763	607	2,874	1,510	4,312	188
All	dn	Rm	conc	6.00	C C	Int	606	0	1,738	0	0	0
All	up	Rm	conc	6.00	С	Int	0	0	5,977	1,510	4,666	188
All	dn	Rm	roof	4.75	D	Ext	0	0	0	0	354	0
All	up	Out	roof	4.75	D	Ext	0	0	0	0	354	0
All	dn	PI	roof	4.75	D	Ext	0	0	2,187	0	0	0
All	up	out	roof	4.75	D	Ext	0	0	2,187	0	0 .	0
	L	I		Check Sur	<u> </u> ns	62,218	8,602	2,459	26,055	6,040	18,310	752

(1) surface number corresponding to diagram

(2) surface orientation for correct assignation of surface film coefficient

(3) surface location per diagram

(4) surface material and thickness

(5) surface type code for clarification purposes cross referenced to diagram

(6) declaration for internal or external surface

(7) take off quantity based on drawings in appendix

file: surfhorz.wq2

12/27/95 Page 1

Figure 177: Horizontal Surface Identification & Area Tally

R = L/kA	previous calculation	Rbar(ext wall) =	4.500	[degF-hr-ft2 / Btu]
&	or	Kbar(ext wall) =	0.222	[btu / degF-hr-ft2]
K = 1/R	or in SI units with	5.678 [(W/ft2-de	egK) / (Btu/degF	-hr-ft2)]
	the conductance is	Kbar(ext wall) =	1.262	[W / m2-degK]
	or	Rbar(ext wall) =	0.793	[m2-degK / W]
rom Calculatio	ns for External Shell Wall one by Res	search Assistant P.Balun	theta(m) =	0.65
			· · ·	0.65
	ns for External Shell Wall one by Res Resistance per area Rbar(m) of Exter previous calculation		· · ·	
A MARANE AND AND AND AND	Resistance per area Rbar(m) of Exter	nal Windows (ref: 1993 ASHRAE	, F27.19, Ex.8) 2.014	[degF-hr-ft2 / Btu]
A - The Annual Continue of the	Resistance per area Rbar(m) of Exter previous calculation	nal Windows (ref: 1993 ASHRAE Rbar(window) =	, F27.19, Ex.8) 2.014 0.497	[degF-hr-ft2 / Btu] [btu / degF-hr-ft2]
A - The Annual Continue of the	Resistance per area Rbar(m) of Exter previous calculation or	nal Windows (ref: 1993 ASHRAE Rbar(window) = Kbar(window) =	<u>, F27.19, Ex.8)</u> 2.014 0.497 degK) / (Btu / de	[degF-hr-ft2 / Btu] [btu / degF-hr-ft2]

film resistance for vertical surface w/still air [F22.1 1	993 ASHRAE (SI)]				<u> </u>
film resistance for external vertical surface	=	0.039	[m2-degK/W]		
film resistance for internal vertical surface	=	0.120	[m2-degK/W]		·····
		[m2-degK/W]	[W/m2-de	gK]
** Rbar,tot,wall(m) = Rbar(int wall) + R(film out) + R	R(film in) =	0.952	or	1.05	= U-Factor
** Rbar,tot,window(m) = Rbar(window) + R(film out) + R(film in) =	0.514	or	1.95	= U-Factor

** Overall resistance for external vertical walls is the series sum of film resistance + conductive resistance

file: rescap03.wq2

Building Envelope Wall Resistance & Capacitance Calculation

	for Capacitance of Double Glazed Wind				35.31	[ft3/m3]
	e of window has the following capacitive			T		
Layer	Description	Reference		Density	Specific	
					Heat	}
		ļ		[kg/m3]	[J/kg-degK]	1
1	glass (3/16" thick)	[Mills, p. 815	1:	2,220	745	
2	air & 1/2" alum insulated spacer		•			
	2a 1/2" alum spacer	[F36.4 ASHR	AE (SI)]:	2,740	896	
	2b 1/2" air space	[F22.6 ASHR	AE (SI)]:	1.20	962	
3	glass (3/16" thick)	[F22.6 ASHR	AE (SI)]:	2,220	745	
e fraction	al area of aluminum transverse to the dir	ection of heat	flow is:		0.0100	[m2/m2]
e fraction	al area of air transverse to the direction of	of heat flow is:			0.9900	[m2/m2]
Layer	Description	Volume in	Mass in	Heat Cap	Total	
		1 ft2 wall	1 ft2 wall	1 ft2 wall	Heat Cap	
					1 ft2 wall	
		[m3/ft2]	[kg/ft2]	[(J/K)/ft2]	[(J/K)/ft2]	4
1	glass (3/16" thick)	4.44E-04	9.85E-01	7.34E+02		
2	air & 1/2" alum insulated spacer					
	2a 1/2" alum spacer	1.18E-05	3.23E-02	2.90E+01		
	2b 1/2" air space	1.17E-03	1.40E-03	1.35E+00		
3	glass (3/16" thick)	4.44E-04	9.85E-01	7.34E+02	1.50E+03	
	Mass of 1 ft2 of Dbl Glazed Window	=	2.00	[kg/ft2]		-

•

file: rescap03.wq2

01/18/96 Page 2

Calculation for Capacitance of External Shell Walls

A 1 ft2 piece of the curtain wall has the following capacitive properties

Layer	Description	Reference	Density	Specific Heat	
			[kg/m3]	[J/kg-degK]	
1	gypsum	[F22.6 ASHRAE (SI)]:	801	1,088	
2	fiberglass and steel stud				
	2a steel stud	[F36.4 ASHRAE (SI)]:	7,833	502	
	2b fiberglass	[F22.6 ASHRAE (SI)]:	104	962	
3	furring strip and air				
	3a furring strip	[F22.9 ASHRAE (SI)]:	600	1,633	
	3b air	[CRC Handbook]:	1.20	1,000	
4	concrete block	[F22.8 ASHRAE (SI)]:	2,082	920	
5	mopped felp vapor barrier	[F22.6 ASHRAE (SI)]:	230	1,460	
5	steel clips and air				
	6a steel clip	[F36.4 ASHRAE (SI)]:	7,832	502	
	6b air	[CRC Handbook]:	1.20	1,000	
7	brick	[F22.7 ASHRAE (SI)]:	1,922	790	
the fraction	al area of steel transverse to the	direction of heat flow is:	L	0.0100	[m2/m2]
the fraction	al area of fiber glass transverse t	to the direction of heat flow is:		0.9900	[m2/m2]
	al area of furring strip to the dire	and the second sec		0.1458	[m2/m2]
	al area of air transverse to the di			0.8542	[m2/m2]
	al area of steel clip transverse to	and the second second second second second second second second second second second second second second second		0.0005	[m2/m2]
	al area of air transverse to the di			0.9995	[m2/m2]

35.31 [ft3/m3]

Layer	Description		Volume in	Mass in	Heat Cap	Total
			1 ft2 wali	1 ft2 wail	1 ft2 wall	Heat Cap
						1 ft2 wall
			[m3/ft2]	[kg/ft2]	[(J/K)/ft2]	[(J/K)/ft2]
1	gypsum		1.47E-03	1.18E+00	1.28E+03	
2	fiberglass and s	teel stud				
_		eel stud	8.55E-05	6.70E-01	3.36E+02	
	2b fib	erglass	8.18E-03	8.51E-01	8.19E+02	
3	furring strip and	lair				
	3a fur	rring strip	2.58E-04	1.55E-01	2.53E+02	
	3b air		1.51E-03	1.81E-03	1.81E+00	
4	concrete block		1.89E-02	3.93E+01	3.62E+04	
5	mopped felp va	por barrier	2.95E-04	6.78E-02	9.91E+01	
5	steel clips and a	air				
	6a ste	eel clip	1.77E-06	1.39E-02	6.96E+00	
	6b air		3.54E-03	4.25E-03	4.25E+00	
7	brick		8.26E-03	1.59E+01	1.25E+04	5.15E+04
	Ma	ass of 1 ft2 of Curtain W	all =	58	[kg/ft2]	

.

01/18/96 Page 4

Zone	External	Resistances	Extornal//o	tical	Canacitanaa	- Externel A	lartical	Tour fail with a	A. ()	0.65
1					Capacitances - External/Vertical			Tau [s] w/ thete(m) =		0.65
Number	Surface	Hdg Win-	Heading	Heading	Hdg Win-	Heading	Heading	Hdg Win-	Heading	Heading
	Compass	dow Area	Room	Plenum	dow Area	Room	Plenum	dow Area	Room	Plenum
	Heading	[s-degK/J]	[s-degK/J]	[s-degK/J]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
	_									
	South	4.30E-02	3.98E-02	9.55E-02	1.92E+05	1.33E+07	5.52E+06	1.88E+03	1.20E+05	1.20E+05
	West	2.38E-01	1.40E-01	3.83E-01	3.47E+04	3.76E+06	1.38E+06	1.88E+03	1.20E+05	1.20E+05
	North	3.21E-01	6.67E-02	2.16E-01	2.58E+04	7.90E+06	2.44E+06	1.88E+03	1.20E+05	1.20E+05
II	North	1.37E-01	7.17E-02	2.01E-01	6.05E+04	7.35E+06	2.62E+06	1.88E+03	1.20E+05	1.20E+05
111	South	4.96E-03	4.18E-03	1.03E-02	1.67E+06	1.26E+08	5.10E+07	1.88E+03	1.20E+05	1.20E+05
	West		8.67E-03	3.12E-02		6.08E+07	1.69E+07		1.20E+05	1.20E+05
	North	7.33E-02	3.87E-02	1.09E-01	1.13E+05	1.36E+07	4.86E+06	1.88E+03	1.20E+05	1.20E+05

Building Envelope Wall Resistance & Capacitance Calculation

01/18/96 Page 5

			E	Ale al		- F				
Zone	External		- External/Ve		Capacitance			Tau [s] w/ the	<u>`</u>	0.65
Number	Surface	Hdg Win-	Heading	Heading	Hdg Win-	Heading	Heading	Hdg Win-	Heading	Heading
	Compass	dow Area	Room	Plenum	dow Area	Room	Plenum	dow Area	Room	Plenum
	Heading	[s-degK/J]	[s-degK/J]	[s-degK/J]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]	[J/K]
						1				
IV	West	3.50E-02	1.77E-02	5.00E-02	2.37E+05	2.98E+07	1.05E+07	1.88E+03	1.20E+05	1.20E+05
IV	North	3.67E-02	1.94E-02	5.43E-02	2.26E+05	2.72E+07	9.72E+06	1.88E+03	1.20E+05	1.20E+05
v	North	6.82E-03	5.54E-03	1.39E-02	1.21E+06	9.53E+07	3.80E+07	1.88E+03	1.20E+05	1.20E+05
VI	South	1.75E-01	8.98E-02	2.53E-01	4.73E+04	5.87E+06	2.08E+06	1.88E+03	1.20E+05	1.20E+05
VI	West	7.00E-02	5.19E-02	1.33E-01	1.18E+05	1.02E+07	3.95E+06	1.88E+03	1.20E+05	1.20E+05
Total Hea	at Capacities	for Each Surf	ace Type [J/	< <u></u>	3.94E+06	4.01E+08	1.49E+08			
1		Cp(avg) [kg]	••••	•	4,923	445,937	165,668	Time C	onstants [hr]	
Total Area of Each Surface Type [ft2]			2,629	7,792	2,895	0.5	33.3	33.3		
Approxim	nate Mass pe	r ft2 [kg/ft2]			2	57	57			
	Actual Mass per ft2 calculated above [kg/ft2]			2	58	58				
Total Imp	lied Mass of	External Shel					616,528	-		

Building Envelope Wall Resistance & Capacitance Calculation

file: rescap03.wq2

01/18/96 Page 6

425

Figure 184: External Vertical Surface Identification & Area Tally		N
External		
Vertical		
Surface]		
ldentific		
ation & :		
Area Ta		
Шy		

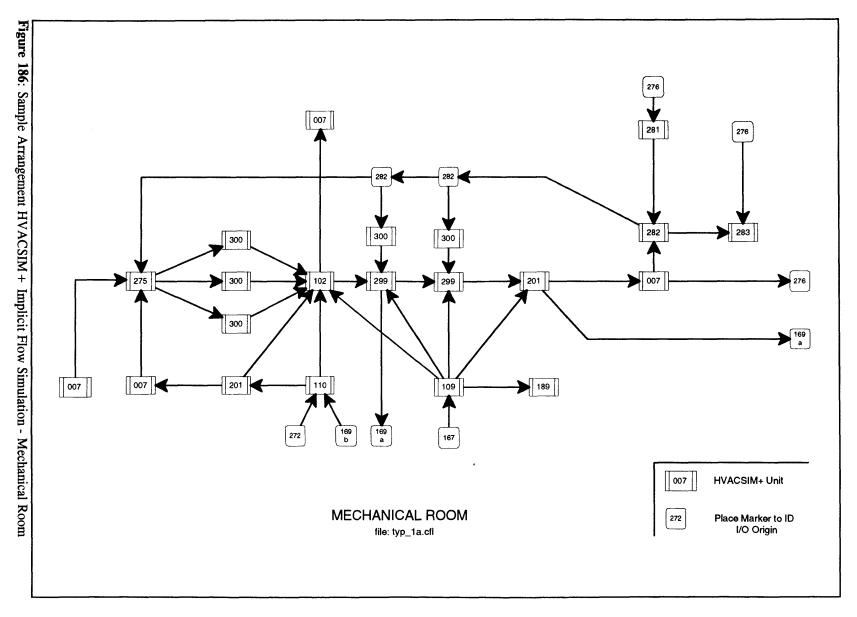
Zone	External	Total Hdg			AREAS *		
Number	Surface	Room &	Heading	Hdg Win-	Heading	Heading	Check
	Compass	Plenum &	Win & Room	dow Area	Room	Plenum	Sum
	Heading	Window	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
,	South	493	386	128	257	107	493
1	West	123	96	23	73	27	123
1	North	218	171	17	153	47	218
11	North	234	183	40	143	51	234
	South	4,558	3,567	1,115	2,452	991	4,558
111	West	1,509	1,181	0	1,181	328	1,509
	North	434	340	75	264	94	434
IV	West	942	737	158	579	205	942
IV	North	868	679	151	529	189	868
v	North	3,398	2,659	810	1,849	739	3,398
VI	South	186	146	32	114	40	186
VI	West	353	276	79	197	77	353
Chk Sums		13,316 13,316	10,421	2,629	7,792 10,421	2,895 2,895	13,316 13,316

* taken from file: extwall.wq2

12/27/95 Page 1

Capacitive Flow of Air Flow Through Zone

Zone Num-		ally.wq2	mass flow	capacitive flow of air thru zone		
ber	[cfm]	[m3/s]	[kg/s]	[J/s-K]	[J/s-K]	
	2,060	0.97	1.19	1,141	171	
11	340	0.16	0.20	188	28	
			0.20			
	10,772	5.08	6.20	5,967	895	
IV	1,990	0.94	1.15	1,102	165	
v	5,890	2.78	3.39	3,263	489	
VI	760	0.36	0.44	421	63	
(p)air =	962	[J/kg-K]	rho(air) =	1.22	[kg/m3]	


file: infltrn.wq2

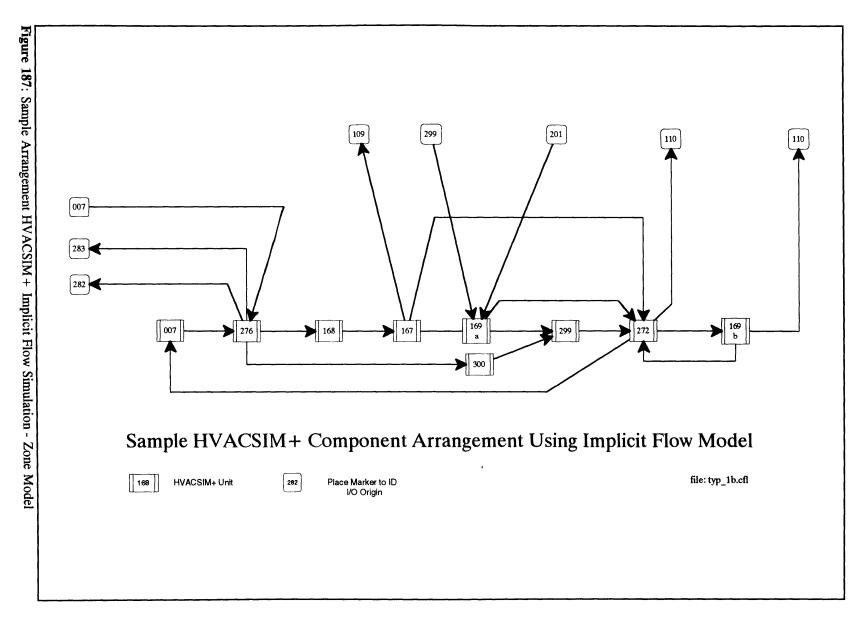

01/27/96 Page 1

Figure 185: Capacitive Flow of Infiltration

•

Appendix S - Thermal and Airflow Schematics

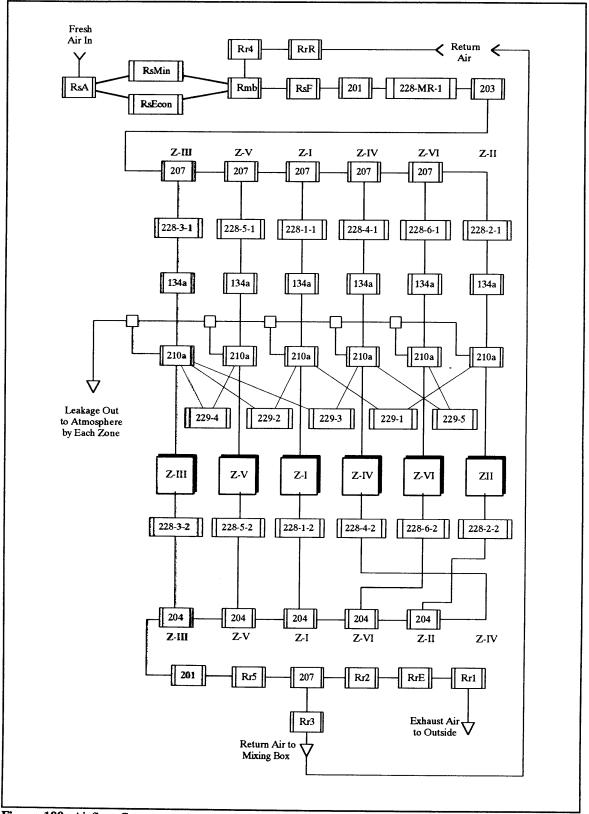


Figure 188: Airflow Component Network Diagram

Appendix T - E51 Simulation: Controllers ¹⁴⁸

148 Controllers modeled by LUT Team.

-

434

-

Appendix U - E51 Simulation: Actuators

•

Type 300: Actuator w/ Faults, Deadband and Hysteresis (revised)

a	ь	c	d	e	f	g	h	i	j
		Mecahr	nical Room						
	Parameter Description	MB Fresh	Air Dampers	MB Return	Air Damper	MB Exhaus	Air Damper	Cooling Co	oil Valve
		English	SI	English	SI	English	SI	English	SI
1	direction: 1=forward, -1=stuck, 0= reverse	1	1	1	1	1	1	1	1
2	starting position (0-1)	0	0	0	0	0	0	0	0
3	actuator travel time [secs] (limit to limit)	5	5	5	5	5	5	9	9
4	min change in demanded position for movement (-)	0	0	0	0	0	0	0	0
5	hsyteresis (-)	0	0	0	0	0	0	0	0
6	crank travel angle [deg] (0 for linear movement)	90	90	90	90	90	90	0	0
7	A: coefficient in range transformation CC=A*C+B	1 .	1	1	1	1 1	1	1	1
8	B: coefficient in range transformation $CC = A^*C + B$	0	0	0	0	0	0	0	0

8	b	k	1	m	n	0	p	<u>q</u>	7
	Parameter Description	Zone I VA	V Damper	Zone I Reh	eat Coil	Zone II V/	V Damper	Zone II Ret	neat Coil
		English	SI	English	SI	English	SI	English	SI
1	direction: 1 = forward, -1 = stuck, 0 = reverse	1	1	1	1	1	1	1	1
2	starting position (0-1)	0	0	0	0	0	0	0	0
3	actuator travel time [secs] (limit to limit)	125	125	125	125	125	125	125	125
4	min change in demanded position for movement (-)	0	0	0	0	0	0	0	0
5	hsyteresis (-)	0	0	0	0	0	0	0	0
6	crank travel angle [deg] (0 for linear movement)	0	0	0	0	0	0	0	0
7	A: coefficient in range transformation CC=A*C+B	1	1	1	1	1	1	1	1
8	B: coefficient in range transformation CC = A*C+B	0	0	0	0	0	0	0	0

_ 2	<u> </u>	5	t	<u>u</u>	v	w	<u>x</u>	у	z
	Parameter Description	Zone III V.	AV Damper	Zone III Re	theat Coil	Zone IV V	AV Damper	Zone IV Re	theat Coil
L		English	SI	English	SI	English	SI	English	SI
1	direction: 1 = forward, -1 = stuck, 0 = reverse	1	1	1	1	1	1	1	I
2	starting position (0-1)	0	0	0	0	0	0	0	0
3	actuator travel time [secs] (limit to limit)	125	125	125	125	125	125	125	125
4	min change in demanded position for movement (-)	0	0	0	0	0	0	0	0
5	hsyteresis (-)	0	0	0	0	0	0	0	0
6	crank travel angle [deg] (0 for linear movement)	0	0	0	0	0	0	0	0
7	A: coefficient in range transformation CC = A*C+B		1	1	1	1	1	1	1
8	B: coefficient in range transformation CC = A*C+B	0	0	0	0	0	0	0	0

<u>a</u>	b	a1	ы	c1_	d1	el	f1	g1	hl
	Parameter Description	Zone V VA	V Damper	Zone V Re	heat Coil	Zone VI V	AV Damper	Zone VI Re	beat Coil
		English	SI	English	SI	English	SI	English	SI
1	direction: 1 = forward, -1 = stuck, 0 = reverse	1	1	1	1	1	1	1	1
2	starting position (0-1)	0	0	0	0	0	0	0	0
3	actuator travel time [secs] (limit to limit)	125	125	125	125	125	125	125	125
4	min change in demanded position for movement (-)	0	0	0	0	0	0	0	0
5	hsyteresis (-)	0	0	0	0	0	0	0	0
6	crank travel angle [deg] (0 for linear movement)	0	0	0	0	0	0	0	0
7	A: coefficient in range transformation CC=A*C+B	1	1	1	1	1 1	1	1	1
8	B: coefficient in range transformation $CC = A C + B$	0	0	0	0	0	0	0	0

file: type_300.wq2

12/27/95 Page 1

Figure 189: E51 Parameters - Type 300 (Actuators)

Appendix V - E51 Simulation: Airflow Components

•

a	b	С	d	e	f
Para-	Description	Referenc	¢	Proposed	Units
Meter		Document	Designation	Value	
1	Auxillary Psychometric Outputs ($0 = no \& 1 = yes$)	establish baseline		0	[-]
2	0 = no faults; $1 = 100%$ oversized; $2 = 20%$ leakage, $3 = $ both	establish baseline		0 '	[-]
3	Fresh Air Damper: Opposed = (0) & Parallel = (1)	inspection		0	[-]
4	Return Air Damper: Opposed = (0) & Parallel = (1)	inspection		0	[-]
5	Exhaust Air Damper: Opposed = (0) & Parallel = (1)	inspection		0	[-]
6	Open Resistance Rr1 [1/(kg-m)] ref: Mixing Box Airflow Network	res_trn.wq2	Rri	1.64E-01	[1/(kg-m)]
7	Open Resistance Rr2 [1/(kg-m)] ref: Mixing Box Airflow Network	res_trn.wq2	Rr2	0.00E+00	[1/(kg-m)]
8	Open Resistance Rr3 [1/(kg-m)] ref: Mixing Box Airflow Network	res_trn.wq2	Rr3	3.80E-01	[1/(kg-m)]
9	Open Resistance Rr4 [1/(kg-m)] ref: Mixing Box Airflow Network	res_trn.wq2	Rr4	2.85E-01	[1/(kg-m)]
10	Open Resistance Rr5 [1/(kg-m)] ref: Mixing Box Airflow Network	res_trn.wq2	Rr5	1.18E-01	[1/(kg-m)]
11	Open Resistance RrE [1/(kg-m)] ref: Mixing Box Airflow Network	damper.wq2	RrE	4.78E-01	[1/(kg-m)]
12	Open Resistance RrR [1/(kg-m)] ref: Mixing Box Airflow Network	damper.wq2	RrR	4.78E-01	[1/(kg-m)]
13	Open Resistance RsA [1/(kg-m)] ref: Mixing Box Airflow Network	res_sup.wq2	RsA	4.67E-01	[1/(kg-m)]
14	Open Resistance RsEcon [1/(kg-m)] ref: Mixing Box Airflow Network	damper.wq2	RsEcon	2.75E-01	[1/(kg-m)]
15	Open Resistance RsMin [1/(kg-m)] ref: Mixing Box Airflow Network	damper.wq2	RsMin	3.55E-01	[1/(kg-m)]
16	Open Resistance Rmb [1/(kg-m)] ref: Mixing Box Airflow Network	res_sup.wq2	Rmb	1.01E-02	[1/(kg-m)]
17	Open Resistance RsF [1/(kg-m)] ref: Mixing Box Airflow Network	res_sup.wq2	RsF	5.36E-01	[1/(kg-m)]
18	Leakage for Exhaust Air Damper, RrE (fraction of full flow)	Агтоw 1770	RrE	4.00E-03	[%]
19	Leakage for Fresh Air Damper, RsEcon (fraction of full flow)	Arrow 1770	RsEcon	4.00E-03	[%]
20	Leakage for Fresh Air Damper, RsMin (fraction of full flow)	Arrow 1770	RsMin	4.00E-03	[%]
21	Leakage for Return Air Damper, RsR (fraction of full flow)	Arrow 1770	RsR	4.00E-03	[%]
22	0 = invert return air damper; $1 =$ not inverted	inspection		0	[-]
		-			

Type xxx: Mixing Box: Parallel and/or Opposed Blade Dampers - Calculates Supply Flow

a = parameter number

b = parameter description

c = document or spreadsheet from which value was taken

d = designation of value in reference document

e = proposed parameter value

f = units on which parameter is based

file: type_xxx.wq2

Type xxx: Mixing Box Damper Resistances

area	10.76	[ft2/m2]	length	3.2808	[ft/m]	volume	35.31	[ft3/m3]	pressure	248.8	[Pa/in wg]	,
Rho =	1.22	[kg/m3]	time	60	[sec/min]	R = delP/(nho*nho*v*v	₽ A ₽ A).	1			
Damper	b Damper	C	d Dampe	e	f Pressu	 n Dann	h Velocity	1	Flow	<u>k</u>	Resistance	m
Designation	Width	Height	(A)		(delP)	сыф	(Velocity		(Q)	MALE	Individual	Average
2 contraction	(in)	(in)	[ft2]	[m2]	[in wg]	[Pa]	[fpm]	[m/s]	[cfm]	[m3/s]	[1/(kg-m)]	[1/(kg-m)]
		<u></u>										
return	54 ·	30	11.3	1.05	0.02	4.976	450	2.29	5,063	2.39	5.85E-01	
e l	54	30	11.3	1.05	0.04	9.952	700	3.56	7,875	3.72	4.84E-01	
exhaust	54	30	11.3	1.05	0.06	14.928	900	4.57	10,125	4.78	4.39E-01	
	54	30	11.3	1.05	0.08	19.904	1,040	5.28	11,700	5.52	4.38E-01	
	54	30	11.3	1.05	0.10	24.88	1,175	5.97	13,219	6.24	4.29E-01	
(RrR & RrE)	54	30	11.3	1.05	0.20	49.76	1,575	8.00	17,719	8.36	4.78E-01	
	54	30	11.3	1.05	0.30	74.64	1,840	9.35	20,700	9.77	5.25E-01	
1 1	54	30	11.3	1.05	0.40	99.52	2,040	10.36	22,950	10.83	5.70E-01	
1	54	30	11.3	1.05	0.50	124.4	2,220	11.28	24,975	11.79	6.01E-01	
	54	30	11.3	1.05	0.60	149.28	2,340	11.89	26,325	12.43	6.49E-01	5.20E-01
											L	
minimum	60	10	4.1	0.38	0.02	4.976	450	2.29	1,856	0.88	4.35E+00	
air intake	60	10	4.1	0.38	0.04	9.952	700	3.56	2,888	1.36	3.60E+00	
	60	10	4.1	0.38	0.06	14.928	900	4.57	3,713	1.75	3.26E+00	
(RsMin)	60	10	4.1	0.38	0.08	19.904	1,040	5.28	4,290	2.02	3.26E+00	
	60 60	10	4.1	0.38	0.10	24.88	1,175	5.97	4,847	2.29	3.19E+00	
	60 60	10	4.1	0.38	0.20	49.76	1,575	8.00	6,497	3.07	3.55E+00	
	60 60	10 10	4.1	0.38	0.30	74.64 99.52	1,840	9.35	7,590	3.58	3.91E+00	
			4.1	0.38	0.40		2,040	10.36	8,415	3.97	4.24E+00	
	60 60	10 10	4.1 4.1	0.38 0.38	0.50 0.60	124.4 149.28	2,220 2,340	11.28	9,158	4.32	4.47E+00	
	OU.	10	4.1	0.38	0.60	149.28	2,340	11.89	9,653	4.56	4.83E+00	3.87E+00
											<u>}</u>	
economizer	60	34	14.2	1.32	0.02	4.976	450	2.29	6,392	3.02	3.67E-01	
air intake	60	34	14.2	1.32	0.04	9.952	70 0	3.56	9,943	4.69	3.03E-01	
1 1	60	34	14.2	1.32	0.06	14.928	90 0	4.57	12,784	6.03	2.75E-01	
(RsEcon)	60	34	14.2	1.32	0.08	19.904	1,040	5.28	14,772	6.97	2.75E-01	
1	60	34	14.2	1.32	0.10	24.88	1,175	5.97	16,690	7.88	2.69E-01	
	6 0	34	14.2	1.32	0.20	49.76	1,575	8.00	22,372	10.56	3.00E-01	
	60	34	14.2	1.32	0.30	74.64	1 ,84 0	9.35	26,136	12.34	3.29E-01	
	60	34	14.2	1.32	0.40	99.52	2,040	10.36	28,977	13.68	3.57E-01	
	60	34	14.2	1.32	0.50	124.4	2,220	11.28	31,533	14.88	3.77E-01	
	60	34	14.2	1.32	0.60	149.28	2,340	11.89	33,238	15.69	4.07E-01	3.26E-01
Ll												

a = damper in mixing box system for resistance calculation (ref: Mixing Box Airflow Resistance Network)

- b = damper width (ref: damper.dwg)
- c = damper height (ref: damper.dwg)
- d = damper area A [b*c]
- e = damper area A [d/10.76]
- f = presure drop across damper (ref: Arrow United Industries, Inc. Series 1770 Damper performance Data)
- g = presure drop across damper [f*248.8]
- h = flow stream velocity v for pressure in f (Series 1770 Damper Performance Data)
- i = flow stream velocity v [h/3.2808/60]
- j = stream flow rate Q [d*h]
- k = stream flow rate Q [j/35.31/60]]
- l = effective resistance R for given pressure, velocity & face area [delP/(rho2*v2*A2)]
- m = average resistance Ravg over performance data provided by Arrow [@avg(l)]

Note: The single underlined resistance values, for each damper type, are for flow rates very close to design conditions.

file: damper.wq2

12/27/95 Page 1

Figure 191: Mixing Box Damper Resistances (Arrow Series 1770 Steel Dampers)

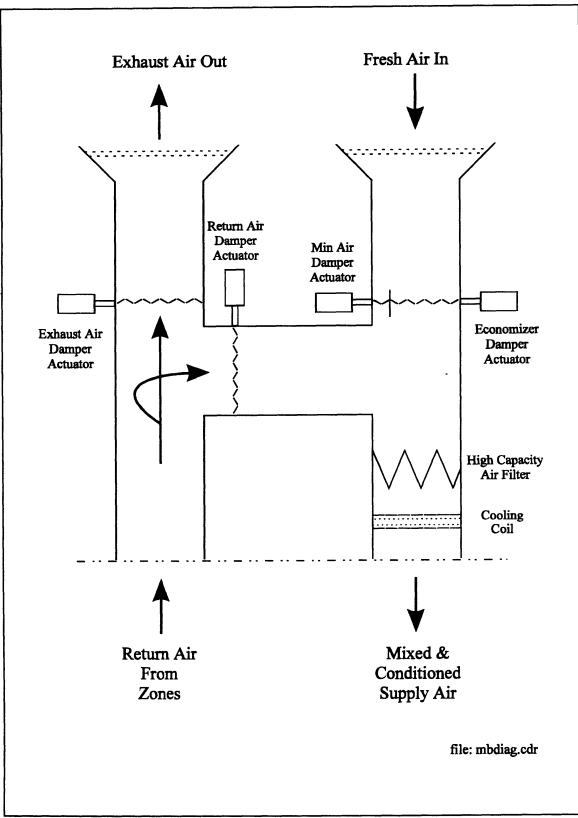


Figure 192: Mixing Box Diagram

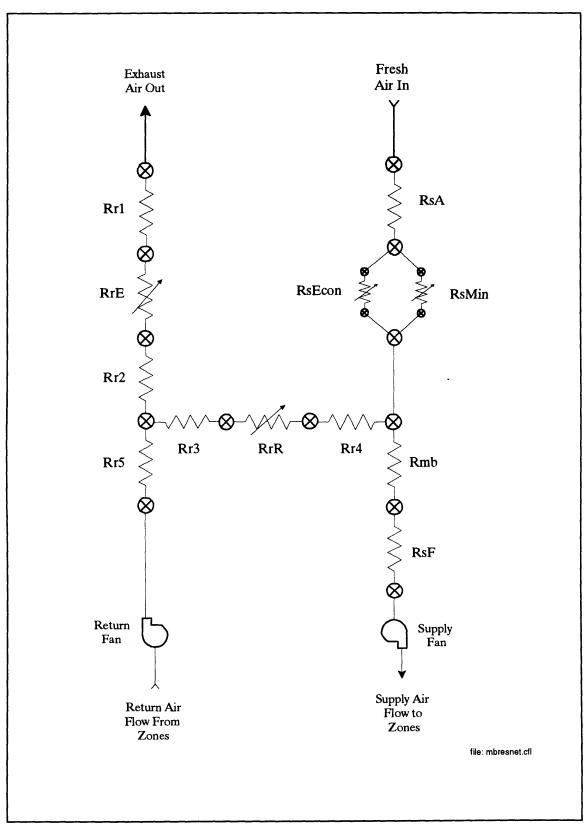


Figure 193: Mixing Box Airflow Resistance Network

Type 134: Pressure Independent VAV Box

	ь	c1	c2	d	e1	e2	f1	f2	gt	g2	h	ı	н	12
a Zone		Nominal Vo		<u> </u>	Reheat Coil					yr.	and the second se	Box Damper		
Zone	1	Air Flow		Output	H2O Flow	Data	Head Los		Hydraulic Re	letence	Dimension		Damper Fac	
1	Box	AITFIOW		Culput	H20 FIOW		Head Los		riyulaulic ne	[.001/			Damperra	e Alea
1	Size									•	h			1
	[in x in]	(cfm)	[m3/s]	[MBH]	[gpm]	[m3/s]	(lbf/in2)	[kPa]	[1/(lbm-ft)]	(kg-m)]	(in)	[in]	[ft2]	[m2]
MR		18,590	8.774	518	74	4.67E-03	1.82	1.25E+01	7.97E-02	5.75E-01				
Parameter	Number		°P1											P2
	T			l	1		l		T			T	l	
1	16	1,773	0.837	19	1	6.31E-05	0.07	4.83E-01	1.68E+01	1.21E+02	15.875		1.37	1.28E-01
н	7	280	0.132	2	1	6.31E-05	0.80	5.52E+00	1.92E+02	1.39E+03	6.875		0.26	2.40E-02
iii iii	48 x 16	9,180	4.333	64	1	6.31E-05	0.05	3.45E-01	1.20E+01	8.66E+01	47.875	15.875	5.28	4.90E-01
IV	16	1,896	0.801	16	1	6.31E-05	0.07	4.83E-01	1.68E+01	1.21E+02	15.875		1.37	1.28E-01
v	24 x 16	5,020	2.369	33	1	6.31E-05	0.09	6.21E-01	2.16E+01	1.56E+02	23.875	15.875	2.63	2.45E-01
VI	10	6 40	0.302	7	1	6.31E-05	0.14	9.65E-01	3.36E+01	2.43E+02	9.875	l	0.53	4.94E-02
	ь	c1	c2	k	11	12	m	n	0	P	qt	q2	rt	r2
Zone	VAV	Air Flow rat	te	Average	Air Flow Pres	sure Drop	Actuator	Minimum	Hysteresis	Controller	Air Flow Pre		Cooling	Coll
	Box			Flow	(box, coil &		Travel	Frac		Gain	(coil o	nlv)	Airflow Res	
1	Size		r	Speed			Time	Motor				Τ		
	(in x in)	[cfm]	[m3/s]	(ft/min)	[in wg]	(Pa)	[990]	Speed			[in wg]	[Pa]	[1/(lbm-ft)]	[1/(kg-m)]
	(11 / 11)	ferrid	[110/0]	[10101]	[w§1		10001	opeed	+		[1. 4	1.1/0.0111.0/1	(1/(.))
MR		18,590	8.774		0.230	57					0.230	57	6.92E-02	4.99E-01
Parameter	Number					P3	P4	P5	P6	P7				
1	16	1,773	0.837	1270	0.154	38	30	1		10	0.083	21	2.74E+00	1.98E+01
R II	7	280	0.132	1048	0.082	20	30	1		10	0.034	8	4.51E+01	3.25E+02
11	48 x 16	9,180	4.333	1721	0.304	76	30	1		10	0.282	70	3.48E-01	2.51E+00
IV	16	1,696	0.801	1215	0.141	35	30	1		10	0.076	19	2.75E+00	1.98E+01
v	24 x 16	5,020	2.369	1883	0.364	91	30	• 1		10	0.337	84	1.39E+00	1.00E+01
l vi	10	640	0.302	1173	0.144	36	30	1		10	0.086	21	2.18E+01	1.58E+02

file: type_134.wq2

Figure 194: E51 Parameters - Type 134 (VAV Terminal Box)

12/27/95 Page 1

442

.

$\mathbf{a} = zone designation$	k = average flow speed based on VAV box size (b) & nominal flow rate (c1)
b = VAV Box Size (for round boxes the diameter is provided)	1 = air pressure drop for VAV box at design flow rate (reference file: sup_vav.wq2)
c = nominal design flow rate for zone [cfm] or [m3/s] type_134:P1	& (ref: CDS Output for Trane Cooling Coil delP) type_134: P3
d = reheat coil output (reference file: flwtally.wq2)	$m = actuator travel time based on conversation with Titus representative type_134: P4$
e = flow rate (Q) for reheat coil design condition (refer Titus Catalog)	$n = min$ fractional motor speed (motor runs at constant speed when operating) type_134: P5
f = head loss (delP) for reheat coil design condition (ref: Titus Catalog)	o = hysteresis when reversing motor turning direction type_134: P6
g = hydraulic resistance (R) based on design flow rate and head loss	p = controller gain (adjust as req'd to reflect actual controller performance) type_134: P7
$R = \{ f2/[rho(h2o)*rho(h2o)*e2*e2] \}$	q = cooling coil airflow pressure drop at nominal flow (ref: Titus Catalog Terminal Box
h = damper dimensions [in] (reference Titus Catalog)	Reheat Coil Performance Data - file: sup_vav.wq2)
i = damper dimensions [in] (reference Titus Catalog)	$r = airflow resistance R$, based on design flow rate $R = \{q2/[rho(air)*rho(air)*c2*c2]\}$
$j = damper area calculated from columns d & e type_134: P2$	
	2 2808 18/1 Justime 7 49

R = delP/(rho*rho*	Q*Q)	[1/(kg-m)]	length	3.2808	[ft/m]	volume	7.48	gal/ft3
rho(H2O) =	62.34	[lbm/ft3]	mass	2.2	[lbm/kg]	pressure	6895	[Pa/psi]
rho(H2O) =	1000	[kg/m3]	mass	32.2	[lbm/slug]	pressure	248.8	[Pa/in wg]
rho(air) =	0.075	[ibm/ft3]	force	1	[(slug-ft/s2)/lbf]			
rho(air) =	1.22	[kg/m3]	i					

file: type_134.wq2

12/27/95 Page 2

•

a	b	С	d	e1	e2	f1	f2	g	h	l	j1	j2
Zone	VAV Box	Flow	Configuration	Titus S	ingle Duc	t Pressure	e Independ	dent VAV	Terminal I	Box Table	Values	
	Size	Rate		y1 Pre	ssure	y2 Pre	ssure	x 1	x2	х3	y3 Pres	sure
				Static	Total	Static	Total				Static	Total
	[in]	[cfm]		[in wg]	[in wg]	[in wg]	[in wg]	[cfm]	[cfm]	[cfm]	[in wg]	[in wg]
•		1773	basic + attenuator 1 row coil	0.050	0.106	0.088	0.188	1500	2000	1773	0.071 0.083	0.151 0.083
			complete unit	0.108	0.164	0.192	0.292	1500	2000	1773	0.154	0.234
11	7	280	basic + attenuator 1 row coil	0.056	0.126	0.099	0.224	300	400	280	0.047 0.034	0.106 0.034
			complete unit	0.097	0.167	0.173	0.298	300	400	280	0.082	0.141
111**	24 x 16	4590	basic + attenuator	0.015	0.111	0.038	0.254	4000	6000	4590	0.022	0.153
	24 x 16	4590	1 row coil								0.282	0.282
			complete unit	0.222	0.318	0.500	0.716	4000	6000	4590	0.304	0.435
۰V	16	1696	basic + attenuator 1 row coil	0.050	0.106	0.088	0.188	1500	2000	1696	0.065 0.076	0.138 0.076
			complete unit	0.108	0.164	0.192	0.292	1500	2000	1696	0.141	0.214
V	24 x 16	5020	basic + attenuator	0.015	0.111	0.038	0.254	4000	6000	5020	0.027	0.184
			1 row coil								0.337	0.337
			complete unit	0.222	0.318	0.500	0.716	4000	6000	5020	0.364	0.521
VI	10	640	basic + attenuator 1 row coil	0.051	0.111	0.090	0.197	600	800	640	0.059 0.086	0.128 0.086
			complete unit	0.125	0.185	0.222	0.329	600	800	640	0.144	0.214

Minimum Static Pressure & total Drop Across Titus DESV VAV Boxes (includes coil, damper and box geometry) (interpolated static & total pressure drops based on Titus catalog data sheets)

Equation for linear interpolation: $y_3 = [(y_2-y_1)/(x_2-x_1)^*(x_3-x_1)] + y_1$ Note: used to interpolate between points in Titus specs which are closest to flow rate for each megazone

** The flow in Zone III exceeds the maximum specification for Titus equipment. As a result the flow stream was divided into two equal portions allowing the pressure drop to be calculated for two boxes sitting side by side in a 16 x 48 duct.

a = zone designation

b = VAV box size

c = design flow rate less 15% for diversity

d = configuration of equipment for which stated pressure difference applies

e1 = lower static pressure drop value for linear interpolaton

e2 = lower total pressure drop value for linear interpolaton

f1 = upper static pressure drop value for linear interpolaton

f2 = upper total pressure drop value for linear interpolaton

g = lower flow rate value for linear interpolaton

h = upper flow rate value for linear interpolaton

i = zone flow rate value

j1a = interpolated static pressure drop value for box, wide open damper, and flow attenuator

j1b = interpolated static pressure drop value coil

j1c = interpolated static pressure drop value for box, wide open damper, flow attenuator, and coil

j2a = interpolated total pressure drop value for box, wide open damper, and flow attenuator

j2b = interpolated total pressure drop value coil

j2c = interpolated total pressure drop value for box, wide open damper, flow attenuator, and coil

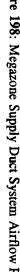
file: sup_vav.wq2

12/27/95 Page 1

Figure 196: Minimum Static Pressure Drop Across Titus DESV Boxes

a	b		c	đ	e	f
Parameter	Description & Coefficient Designation		Unit		·	
Number			Supply Fan		Return Fan	
			[English]	[SI]	[English]	[SI]
1	1st Pressure Coefficient	a4	8.534E-01	8.534E-01	9.816E+00	9.816E+00
2	2nd Pressure Coefficient	a3	-3.929E+00	-3.929E+00	-2.396E+01	-2.396E+01
3	3rd Pressure Coefficient	a2	4.229E+00	4.229E+00	1.221E+01	1.221E+01
4	4th Pressure Coefficient	a1	-1.387E+00	-1.387E+00	-1.634E+00	-1.634E+00
5	5th Pressure Coefficient	a0	4.290E+00	4.290E+00	4.194E+00	4.194E+00
6	1st Efficiency Coefficient	e4	-1.971E-01	-1.971E-01	-3.375E+00	-3.375E+00
7	2nd Efficiency Coefficient	e3	7.664E-01	7.664E-01	6.168E+00	6.168E+00
8	3rd Efficiency Coefficient	e2	-1.483E+00	-1.483E+00	-5.755E+00	-5.755E+00
9	4th Efficiency Coefficient	e1	1.540E+00	1.540E+00	3.142E+00	3.142E+00
10	5th Efficiency Coefficient	e0	1.162E-01	1.162E-01	6.190E-02	6.190E-02
11	Diameter [in] (m)		27.00	6.858E-01	44.50	1.130E+00
12	Mode $1 = air \& 2 = water$		1	1	1	1
13	Lowest Valid Normalized Flow		0.00	0.00	0.00	0.00
14	Highest Valid Normalized Flow		1.00	1.00	1.00	1.00

Type 201: Fan or Pump - Temperature Rise Corrected for Work Done


Note:

The supply & return fans are characterized by equations which calculate the pressure rise and efficiency as a function of dimensionless mass flow rate.

Dimensionless Pressure (Cf) = $a0 + a1 * Cf + a2 * Cf^2 + a3 * Cf^3 + a4 * Cf^4$ Dimensionless Efficiency (Cf) = $e0 + e1 * Cf + e2 * Cf^2 + e3 * Cf^3 + e4 * Cf^4$

where Cf = dimensionless flow

Supply	duct air	low resistance o	alculatio	ns		length mass	3.2808	[ft/m] {lbm/kg]		pressure		[Pa/in wg] [Pa/psi]		mass force		[lbm/slug [(slug-ft/				
	air dens	in the	0.075	[lbm/ft3]		area		[in2/ft2]		time	60 60	[ra/pa] [s/min]		pressure			s2)/(in wg)			
	an dens	Ftg Resistance				laiva	Straight Duc					[a/mm]		Grills, Diffuser				<u>/i</u>		π
		variables =>	k	A	R (english)	R (SI)	variables = >	, c	1	v	A	R (english)	R (SI)	variables = >	del P	V	A	R (english)	R (SI)	
	1	valiables = >	loss	cross	flow		vanables = >	friction	duct	flow	cross	flow		valiables = >	pres	flow	cross	flow	I SI	<u></u>
Zone	Resis	Description	coeff	section	resis	convert	Description	loss	length	speed	section	resis	convert	Description	drop	speed	section	resis	convert	1
		D'oucrip aon	[n/a]	[ft2]	[1/ibm*ft]	[1/kg*m]	Decomputer	[in wg/ft]	(#)	[ft/sec]	[#2]	[1/lbm*ft]	[1/kg*m]	Decompaction	[in wg]	[ft/sec]	[ft2]	[1/lbm*ft]	[1/kg*m]	1 (1
							()					1.1.2.1.1.1.1				1		1		i l a
MR	RsA	bird screen	0.08	48.00	2.31E-04	1.67E-03								intake grill	0.020	5.00	48.00	1.03E-02	7.44E-02	4.
		transition	4.55	48.00	1.32E-02	9.50E-02														1
		90 deg corner	0.50	10.00	3.33E-02	2.41E-01														1
MR	Rmb	transition	0.38	40.88	1.52E-03	1.09E-02														1.
MR	RsF							-+-						hi-cap filters	0.050	3.51	88.16	1.55E-02	1.12E-01	6.
•••					•••								· ··· ·	cooling coil	0.230	9.68	32.00	7.11E-02	5.13E-01	4
MR	Rs8	90 deg L + +	0.90	13.75	3.17E-02	2.29E-01	12 ft duct	0.00075	12	25,7	6.03	1.11E-02	8.04E-02							3.
MR	Rs1													air measuring	0.060	25.70	12.06	1.86E-02	1.34E-01	2.
•						•••					•			mech room	0.069	25.70	12.06	2.13E-02	1.54E-01	1
111	Rs2	tee branch	0.52	5,44	1.17E-01	8.44E-01	***			•••					•••					1.1
		transition	0.16	5.44	3.64E-02	2.63E-01		***												
III-V	Re4	tee main	0.05	6.03	9.17E-03	6.62E-02		••••											· ··· · ·	6.
11	Rs7	bends (bal'd)	2.80	5.33	6.56E-01	4.74E+00	128 ft duct	0.00150	128	28.7	2.67	9.74E-01	7.03E+00							1.
- 111	Rs8	10 deg diverge	0.20	5.33	4.69E-02	3.38E-01								louvre	0.117	7.65	20.00	1.48E-01	1.07E+00	
M-V	Rs11						5 ft duct	0.00110	5	25.7	6.03	6.80E-03	4.91E-02							4.
V-1	Rs12	tee main	0.05	2.85	4.11E-02	2.97E-01	1.5 ft duct	0.00160	1.5	25.1	2.92	1.33E-02	9.62E-02							1.3
		eq-rd trans	0.17	2.92	1.33E-01	9.62E-01		•												4
<u>v</u>	Rs13	tee branch	0.52	3.11	3.58E-01	2.59E+00														2.5
v	Rs14	transition	0.04	3.11	2.76E-02	1.99E-01	140 ft duct	0.00200	140	31.4	2.67	1.19E+00	8.58E+00							2.1
		bends (bal'd)	1.80	2.67	1.69E+00	1.22E+01		•••												
<u>v</u>	Rs15	10 deg diverge	0.20	2.67	1.88E-01	1.35E+00								louvre	0.117	8.37	10.00	4.96E-01	3.58E+00	
<u>V-I</u>	Rs16 Rs17				1.78E+00	1.28E+01	1.5 ft duct	0.00110	1.5	23.3	3.14	9.17E-03	6.62E-02							0. 1.2
1-IV	Rs18	tee branch tee main	0.52 0.18	1.40 1.97	3.09E-01	1.28E+01 2.23E+00														2.2
1-1 V	Rs19		7.64	1.40	2.61E+01	2.23E+00	51 ft duct	0.00145	 51	21.2	1.40	2.52E+00	1.82E+01							2.0
÷	Rs20	bends 10 deg diverge	0.14	1.40	4.79E-01	3.46E+02	51 1 4 4 4	0.00145		21.2	1.40	2.320700	1.820+01	louvre	0.117	8.45	3.50	3.97E+00		3.2
TIV	Rs21	To deg diverge	0.14	1.40	4./#E-01	3.40E + 00	5 ft duct	0.00130	5	22.2	1.97	1.01E-01	7.30E-01					3.8/2400	2.0/2401	7
IV	Rs22	tee branch	0.52	1.40	1.78E+00	1.28E+01		0.00130				1.012-01								1.2
IV-VI	Rs23	tee main	0.12	0.78	1.30E+00	9.38E+00														
IV	Rs24	bends	7.42	1.40	2.54E+01	1.83E+02	124 ft duct	0.00145	124	20.3	1.40	6.68E+00	4.82E+01							2.3
ĪV	Rs25	10 deg diverge	0.14	1.40	4.79E-01	3.46E+00								louvre	0.117	8.08	3.50	4.34E+00	3.13E+01	3.4
IV-VI	Re26						5 ft duct	0.00160	5	19.5	0.78	1.01E+00	7.31E+00							7.5
VI	Rs27	tee branch	0.56	0.55	1.24E+01	8.95E+01														
VI-II	Rs28	tee main	0.14	0.27	1.31E+01						'									9.
VI	Rs29	bends	6.22	0.55	1.38E+02	9.94E+02	102 ft duct	0.00210	102	19.6	0.55	5.53E+01	3.99E+02							1.3
VI	Rs30	10 deg diff	0.14	0.55	3.10E+00	2.24E+01								louvre	0.168	8.53	1.28	4.18E+01	3.02E+02	3.
11	Rs31	90 deg L	0.19	0.27	1.77E+01	1.28E+02	41 ft duct	0.00250	41	17.5	0.27	1.40E+02	1.01E+03							3.
		bends	4.20	0.27	3.92E+02	2.83E+03														
••••		perf plate	7.70	0.11	4.48E+03	3.24E+04														1
11	Rs32	10 deg diff	0.14	0.27	1.31E+01	9.42E+01				····				louvre	0.117	8.33	0.56	1.58E+02	1.14E+03	11

R = k / (2 * rho * A * A)

R = C * I / [(rho * v * A) * (rho * v * A)]

.

R = delta P / [(rho * v * A) * (rho * v * A)]

file: res_sup.wq2

4

02/03/96 Page 1

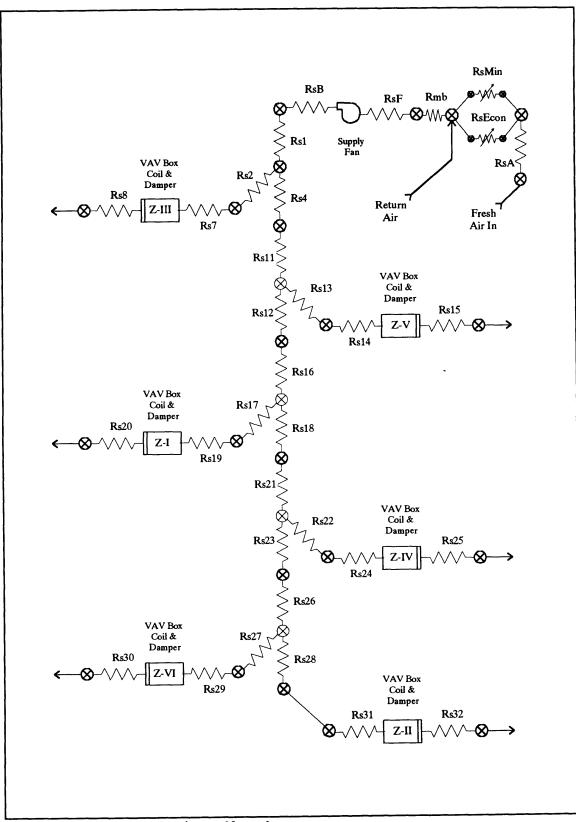


Figure 199: Supply Airflow Resistance Network

High Capacity	Filter	Airflow	Resistance	Calculation

	Englis	h	SI	
Variable	Value	Units	Value	Units
Density (rho)	0.075	[lbm/ft3]	1.22	[kg/m3]
Area (A)	88.16	[ft2]	8.19	[m2]
Flow (Q)	18,590	[cfm]	8.77	[m3/s]
Velocity (v)	211	[ft/min]	1.07	[m/s]
Pressure (delP)	0.05	[in wg]	12.44	[Pa]

 $R = \frac{delP}{(rho*rho*v*v*A*A)}$

R(SI) =	1.09E-01	[1/(kg-m)]
R (English) =	1.50E-02	[1/(lbm-ft)]

Reference: Trane DS CLCH-1/June 1981 Central Station Air Handlers 600-65,000 cfm

file: filters.wq2

12/27/95 Page 1

-

Figure 200: High Capacity Filter Airflow Resistance Calculation

.

•

449

FILE: re	s_rtn.wo	low resistance				length mass	3.2808 2.2	[ft/m] {ibm/kg]		pressur pressur		[Pa/in wg] [Pa/psi]		mass force		{Ibm/slu {(slug-ft/				
	air dens	ity at STP	0.075	[lbm/ft3]	1	area		[in2/ft2]		time		[s/min]		pressure	167		82)/(in wo	M		
		Ftg Resistance	•				Straight Duct	1				[Ground		Grills, Diffuser				71		To
		variables = >	k	A	R (english	R (SI)	variables = >	с	1	v	A	R (english	R (SI)	variables =>	del P	v	A	R (english	R (SI)	R
	1		loss	cross	flow	I SI		friction	duct	flow	cross	flow	SI	runubies =>	pres	flow	cross	flow		
Zone	Resis	Description	coeff	section	resis	convert	Description	loss	length	speed	section	resis	convert	Description	drop	speed	section	resis	convert	-
			[n/a]	[#2]	[1/lbm*ft]			[in wg/ft]	[#]	[ft/sec]	[ft2]	[1/lbm*ft]	[1/kg*m]	Description	[in wg]	[ft/sec]	[ft2]	[1/lbm*ft]	[1/kg*m]	[1/kg
					-	1				1.0000		1.7.0	Trivia int		Tur wat	TIVESCI		17/0/11/10	17/10 111	
MR	Br1	exit bend	0.140	11.25	7.37E-03	5.32E-02	exit duct	0.00055	1.00	24.2	11.25	2.20E-04	1.59E-03	exhaust diff	0.02	11.67	45.00	2.15E-03	1.55E-02	1.64
		bird screen	0.080	45.00	2.63E-04	1.90E-03													1.000-02	1.040
		transition	0.240	11.25	1.26E-02	9.12E-02														
MR	Rr2	outlet/main	0.000	11.25	0.00E+00															0.00E
MR	Rr3	outlet branch	1.000	11.25	5.27E-02															3.80E
MR	Rr4	bend to MB	0.750	11.25	3.95E-02															2.85
MR	Rr5	45 deg bend	0.290	11.88	1.37E-02	9.90E-02	duct & trans	0.00055	12.00	24.2	11.25	2.64E-03	1.91E-02							1.18
MR	Rrð	bend 2	0.180	12.06	8.26E-03	5.96E-02	duct 1	0.00055	4.00	25.1	12.06	7.12E-04	5.14E-02	air measure	0.06	25.1	12.06	1.94E-02	1.40E-01	7.895
		bend 3	0.110	12.06	5.05E-03	3.64E-02	duct 4	0.00055	4.75	25.1	12.06	8.46E-04	6.11E-03		0.08	20.1	12.00	1.846-02	1.40E-01	
		bend 5	0.110	12.06	5.05E-03	3.64E-02	duct 6	0.00055	6.50	25.1	12.06	1.16E-03	8.36E-03							
		bend 7	0.750	12.06	3.44E-02	2.48E-01				2.3.1			0.302-03							
		bend 8	0.750	12.06	3.44E-02															
111	Rr7	inlet branch	0.000	5.42	0.00E+00															
ш	Rr8	bends (actual)	1.380	5.42	3.14E-01	2.26E+00														0.00E
m	Rr9	convergence	0.200	16.00	5.21E-03	3.76E-02	106 ft duct	0.00075	108	23.3	5.42	1.48E-01	1.07E+00	arill						2.26E
V-11	Rr10	inlet main	-0.040	5.42	-9.1E-03	-6.6E-02				23.3	5.42	1.40E-01	1.072+00	1 ° 1	0.046	7.88	16.00	8.58E-02	6.20E-01	1.73E
V-II	Br11	outlet main					5 ft duct	0.00080	5	24.5	5.96	5.57E-03	4.02E-02							-6.56
v	Br12	inlet branch	0.160	3.61	8.18E-02	5.90E-01				24.5	5.90	5.57E-03	4.02E-02							4.026
v	Rr13	bends (actual)	1.629	3.61	8.33E-01	6.01E+00														5.906
v	Rr14	convergence	0.200	11.11	1.08E-02	7.80E-02	59 ft duct	0.00082	59	22.0	3.61	2.28E-01	1.65E+00							6.01E
1-V	Rr15	inlet main	-0.080	2.89	-6.4E-02	-4.6E-01	1.5 ft duct	0.00100	1.5	23.1	2.89	1.00E-02	7.24E-02	grill	0.046	8.32	_11.11	1.60E-01	1.15E+00	2.88E
		rd-sq trans	0.150	3.14	1.01E-01	7.33E-01				2.5.1	2.08	1.002-02	/.24E-UZ							3.44E
FA 1	Br16	outlet main					1.5 ft duct	0.00031	1.5	21.2	3.14	3.11E-03	2.25E-02							
	Rr17	inlet branch	0.350	1.40	1.20E+00	8.64E+00				21.2	3.14		2.200-02							2.25E
		45 deg bend	0.114	1.40	3.90E-01	2.82E+00											****		••••	1.15E
+ 1	Rr18	bends (actual)	1.716	1.40	5.87E+00															
	Rr19	convergence	0.200	3.36	1.18E-01	8.52E-01	40 ft duct	0.00120	40	19.9	1.40	1.86E+00	1.34E+01		0.046					4.24E
VI-I	Rr20	inlet main	0.080	1.97	1.37E-01	9.90E-01				10.0		1.002 4 00	1.346 +01	grill	0.040	8.32	3.30	1.81E+00		2.73E
VI-I	Rr21	outlet main					5 ft duct	0.00100	5	19.8	1.97	9.77E-02	7.05E-01							9.905
VI	Rr22	inlet branch	-0.070	0.66	-1.1E+00						1.57	8.77L-02	7.03E-01							7.05
		45 deg bend	0.114	0.66	1.75E+00															4.86E
vi	Rr23	bends (actual)	2.649	0.66	4.06E+01	2.93E+02														
VI	Rr24	convergence	0.200	1.36		5.19E+00	69 ft duct	0.00120	69	15.5	0.66	2.36E+01	1.70E+02	grill	0.046	8.30	1.23	1.31E+01		2.93E
n-vi [Rr25	inlet main	0.020	1.58	5.37E-02							2.502 +01	1.702 +02		0.040	0.30	1.23	1.31E+01	9.46E+01	2.70E
11-VI	Rr26	outiet main					5 ft duct	0.00100	5	18.2	1.58	1.80E-01	1.30E+00							3.875
	Rr27	inlet branch	-0.250	0.35	-1.4E+01	-1.0E+02														1.30E
		45 deg bend	0.114	0.35	6.30E+00														****	-5.43E
11	Rr28	bends (actual)	6.014	0.35	3.33E+02															
		perf plate	3.000		5.48E+02															6.36E
	Rr29	convergence	0.200	0.56	4.21E+00		8 ft duct	0.00120	8	12.7	0.35	1.47E+01	1.06E+02			8.35				
IV-11	Rr30	inlet main	0.200	1.40		4.94E+00		0.00120		12.1	0.35			grill	0.046		0.53	6.97E+01	5.03E+02	6.40E
IV I	Rr31	sm 90 deg L	0.120	1.40	4.11E-01	2.96E+00									•••-					4.94E
		bends (actual)	1.224	1.40	4.19E+00												••••			3.32E
iv I	Rr32	convergence	0.200		4.13E+00		123 ft duct	0.00095												
		goined		0.00	7.212700	0.046 101	123 11 0001	0.00080	123	17.4	1.40	5.89E+00	4.23E+011	arill	0.046	8.37	2.90	2.32E+001	1.67E+01	I 8 07F

Figure :T07 Megazone Return Duct System Airflow Resistance Schedule

R = k / (2 * rho * A * A)

R = C * I / [(rho * v * A) * (rho * v * A)]

R = deita P / [(rho * v * A) * (rho * v * A)]

file: res_rtn.wq2

450

01/28/96 Page 1

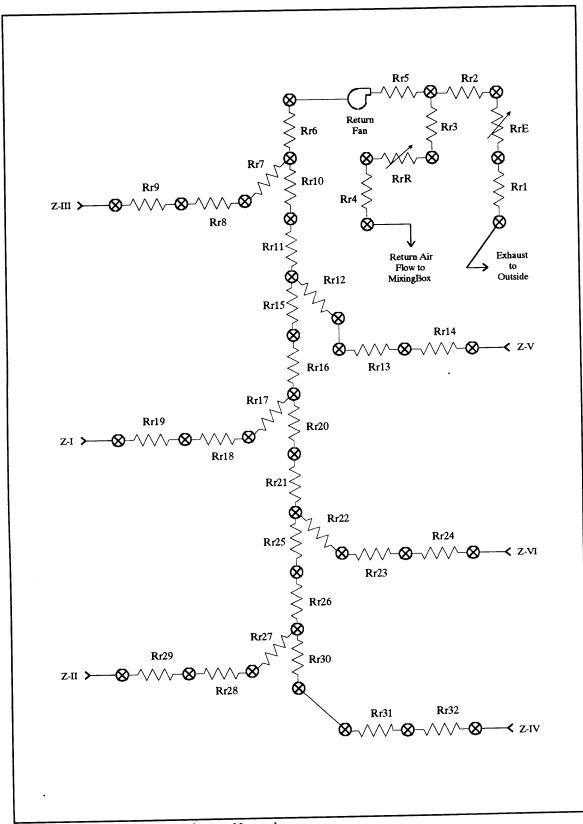


Figure 202: Return Airflow Resistance Network

Type 204: Flow Merge

a	b	С	d	е	f	g
Parameter	Number	P3		P1		P2
Description	Flow Resistance	ces				
	Outlet		Inlet 1 (Branch	ו)	Inlet 2 (Main)	
	Designation	Value	Designation	Value	Designation	Value
		[1/(kg*m)]		[1/(kg*m)]		[1/(kg*m)]
Rtn [IV - II]	Rr26	1.30E+00	Rr27	-5.43E+01	Rr30	4.94E+00
Rtn [II - VI]	Rr21	7.05E-01	Rr22	4.86E+00	Rr25	3.87E-01
Rtn [VI - I]	Rr16	2.25E-02	Rr17	1.15E+01	Rr20	9.90E-01
Rtn [I - V]	Rr11	4.02E-02	Rr12	5.90E-01	Rr15	3.44E-01
Rtn [V - III]	Rr6	7.89E-01	Rr7	0.00E+00	Rr10	-6.56E-02

a = description of flow merge for zones A & B

b = resistance designation per airflow resistance diagram for flow merge outlet

c = resistance value (see file: res_rtn.wq2) type_204: P3

d = resistance designation per airflow diagram for flow merge inlet branch from immediate zone

e = resistance value (see file: res_rtn.wq2) type_204: P1

f = resistance designation per airflow diagram for flow merge inlet main coming from upstream zones

•

g = resistance value (see file: res_rtn.wq2) type_204: P2

file: type_204.wq2

12/27/95 Page 1

Figure 203: E51 Parameters - Type 204 (Flow Merge)

b	С	d	e	f	g
nber	P1		P2		P3
Air FlowFlow Re	esistances [F	Rs = Supply Res	istances & Ri	r = Return Resist	tances]
Iniet		Outlet 1 (Branc	h)	Outlet 2 (Main)	
Designation	Value	Designation	Value	Designation	Value
	[1/(kg*m)]		[1/(kg*m)]		[1/(kg*m)]
Rs1	2.88E-01	Rs2	1.11E+00	Rs4	6.62E-02
Rs11	4.91E-02	Rs13	2.59E+00	Rs12	1.35E+00
Rs16	6.62E-02	Rs17	1.28E+01	- Rs18	2.23E+00
Rs21	7.30E-01	Rs22	1.28E+01	Rs23	9.38E+00
Rs26	7.31E+00	Rs27	8.95E+01	Rs28	9.42E+01
Rr5	1.18E-01	Rr3	3.80E-01	Rr2	0.00E+00
	nber Air FlowFlow Re Inlet Designation Rs1 Rs11 Rs16 Rs21 Rs26	nber P1 Air FlowFlow Resistances [F Inlet Designation Value [1/(kg*m)] Rs1 2.88E-01 Rs11 4.91E-02 Rs16 6.62E-02 Rs21 7.30E-01 Rs26 7.31E+00	nber P1 Air FlowFlow Resistances [Rs = Supply Res Inlet Outlet 1 (Branc Designation Value Designation [1/(kg*m)] Rs1 2.88E-01 Rs2 Rs11 4.91E-02 Rs13 Rs16 6.62E-02 Rs17 Rs21 7.30E-01 Rs22 Rs26 7.31E+00 Rs27	P1 P2 Air FlowFlow Resistances [Rs = Supply Resistances & Ri Inlet Outlet 1 (Branch) Designation Value Designation Value [1/(kg*m)] Rs1 2.88E-01 Rs2 1.11E+00 Rs11 4.91E-02 Rs13 2.59E+00 Rs16 6.62E-02 Rs17 1.28E+01 Rs21 7.30E-01 Rs22 1.28E+01 Rs26 7.31E+00 Rs27 8.95E+01	P1 P2 Air FlowFlow Resistances [Rs = Supply Resistances & Rr = Return Resist Inlet Outlet 1 (Branch) Outlet 2 (Main) Designation Value [1/(kg*m)] Designation Value [1/(kg*m)] Designation Rs1 2.88E-01 Rs2 1.11E+00 Rs4 Rs11 4.91E-02 Rs13 2.59E+00 Rs12 Rs16 6.62E-02 Rs17 1.28E+01 Rs18 Rs21 7.30E-01 Rs22 1.28E+01 Rs23 Rs26 7.31E+00 Rs27 8.95E+01 Rs28

Type 207: Flow Split - Different Resistances, Linearized at Low Flow

a = description of flow split from zone A to zone B

b = resistance designation for flow split inlet

c = resistance value (see file: res_sup.wq2) type_207: P1

d = resistance designation for flow split branch feeding zone

e = resistance value (see file: res_sup.wq2) type_207; P2

f = resistance designation for flow split main trunk going to next zone

g = resistance value (see file: res_sup.wq2) type_207: P3

Refer to airflow resistance diagrams for supply & return networks.

file: type_207.wq2

12/27/95 Page 1

Figure 204: E51 Parameters - Type 207 (Flow Split)

a /pe 210 Pi	b arameter Nu	c	d	e	f	g	<u>h</u>		1	<u>k</u>		<u> </u>
Zone	External	External Su			Tot Ext	Window Area					Hdg Ext	Tot Ex
Number	Surface	Heading	Heading	Heading	Surface	Unit Area	Number	Unit Total	Hdg Win-	Tot Win-	Wall Area	Wall Ar
	Compass	Room	Plenum	Total	Area	per Hdg	of Units	per Hdg	dow Area	dow Area		
	Heading	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]	per Hdg	[ft2]	[ft2]	[ft2]	[ft2]	[ft2]
1	South	386	107	493		21.4	6	128	128		365	
1	West	96	27	123		11.6	2	23	23		100	
1	North	171	47	218	834	8.6	2	17	17	169	201	665
11	North	183	51	234	234	11.6	2	23				
		100	51	204	204	8.6	2	17	40	40	194	194
111	South	3,567	991	4,558		21.4	6	128				
	0000	0.007	551	4,000		41.6	3	125				
						15.8	43	679				
						12.2	10	122				
						20.2	3	61	1,115		3,443	
Ш	West	1,181	328	1,509		0.0	0	0	0		1,509	
111	North	340	94	434	6,501	15.8	4	63			.,	
						12.2	1	12	75	1,191	359	5,31
IV	West	737	205	942		15.8	10	158	158		784	
IV	North	679	189	868	1,810	15.8	8	126				
					·	12.2	2	24	151	309	717	1,50
v	North	2,659	739	3.398	3,398	15.8	42	664				
						12.2	, 12	146	810	810	2,588	2,58
VI	South	146	40	186		15.8	2	32	32		154	
VI	West	276	77	353	539	15.8	5	79	79	411	274	428
nk Sums		10,421	2,895	13,316	13,316			2,629	2,629	2,629	10,687	10,68
	•		13,316	•		1			10,687		13,316	13,31

External Windows & Wall Surface Areas plus Resistance Values for Air Flow Leakage to Outside

External Windows & Wail Surface Areas plus Resistance Val	lues for Air Flow Leakage to Outside
---	--------------------------------------

						n							
Zone	External		ace Area (Wall		Tot Ext	L		the second second second second second second second second second second second second second second second s				mentals, F23.1	
Number	Surface	Heading	Heading	Heading	Surface	Compass He			ading Plenum		Tot Zone	Hdg Zone	Tot Zon
	Compass	Room	Plenum	Total	Area	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Leakag
	Heading	[ft2]	[ft2]	[ft2]	[ft2]	[1/(lbm-ft)]	[1/(kg-m)]	[1/(lbm-ft)]	[1/(kg-m)]	[1/(lbm-ft)]	[1/(ibm-ft)]	[1/(kg-m)]	[1/(kg-m
	South	386	107	493		3.77E+03	2.72E+04	4.89E+04	3.53E+05	2.31E+03		1.67E+04	
	West	96	27	123		6.06E+04	4.38E+05	7.86E+05	5.67E+06	3.71E+04		2.68E+05	
1	North	171	47	218	834	1.93E+04	1.39E+05	2.50E+05	1.81E+06	1.18E+04	8.08E+02	8.53E+04	5.83E+0
11	North	183	51	234	234	1.67E+04	1.21E+05	2.17E+05	1.57E+06	1.03E+04	1.03E+04	7.40E+04	7.40E+0
	South	3,567	991	4,558		4.41E+01	3.19E+02	5.72E+02	4.13E+03	2.70E+01		1.95E+02	
	West North	1,181 340	328 94	1,509 434	6,501	4.03E+02 4.87E+03	2.91E+03 3.51E+04	5.22E+03 6.31E+04	3.77E+04 4.55E+05	2.47E+02 2.98E+03	1.33E+01	1.78E+03 2.15E+04	9.59E+(
	West North	737 679	205 189	942 868	1,810	1.03E+03 1.22E+03	7.46E+03 8.79E+03	1.34E+04 1.58E+04	9.67E+04 1.14E+05	6.33E+02 7.46E+02	1.71E+02	4.57E+03 5.38E+03	1.24E+0
v	North	2,659	739	3,398	3,398	7.94E+01	5.73E+02	1.03E+03	7.43E+03	4.86E+01	4.86E+01	3.51E+02	3.51E+0
vi	South	146	40	186		2.65E+04	, 1.91E+05	3.44E+05	2.48E+06	1.62E+04	· · · · · · · · · · · · · · · · · · ·	1.17E+05	
VI	West	276	77	353	539	7.36E+03	5.31E+04	9.54E+04	6.88E+05	4.51E+03	1.93E+03	3.25E+04	1.40E+0

file: extwall.wq2

Figure 206: E51 Parameters - Type 210 continued (Zone Pressure Balance, w/ Leakage)

12/27/95 Page 2

.

455

External Windows & Wall Surface Areas plus Resistance Values for Air Flow Leakage to Outside

a = zone number designation

b = compass heading of wall within a particular zone

c = room external curtain wall surface area for zone heading

- d = plenum external curtain wall surface area for zone heading
- e = total external curtain wall surface area for zone heading [c+d]

f = total exterior curtain wall surface area for the zone (includes walls and windows)

g = unit area of a specified window configuration type (reference E51 Elevation Drawings)

- h = unit quantity for the window type
- i = total area for each window type for each heading [g*h]
- j = total window area, including all types, for each compass heading
- \mathbf{k} = total window area for the zone
- l = exterior wall surace for each heading [e-j]
- m = total exterior wall surface area for the zone (excluding glass area)
- n = air leakage resistance for room per heading and zone (english) derived from SI calculation [o/(3.2808*2.2)]
- o = air leakage resistance for room per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = \left[\frac{75}{((1.22*1.22)*(1200/1000000)*(1200/1000000)*(c/10.7636)*(c/10.7636))} \right]$

p = air leakage resistance for plenum per heading and zone (english) derived from SI calculation [q/(3.2808*2.2)]

- q = air leakage resistance for plenum per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = \left[\frac{75}{((1.22*1.22)*(1200/1000000)*(1200/1000000)*(d/10.7636)*(d/10.7636))} \right]$
- r = air leakage resistance (for room & plenum as one volume) per heading and zone (english) derived from SI calculation [t/(3.2808*2.2)]
- s = air leakage resistance for entire zone (considering room & plenum a single volume) (english) derived from SI calculation [u/(3.2808*2.2)]
- t = air leakage resistance (for room & plenum as one volume) per heading and zone (SI) ref 1993 ASHRAE F23.14 & F23.16
 - $\mathbf{R} = \left[\frac{75}{((1.22*1.22)*(1200/1000000)*(1200/1000000)*(e/10.7636)*(e/10.7636))} \right]$
- $u = air leakage resistance for entire zone (SI) considering room and plenum as one volume (type_210: P1)$

 $\mathbf{R} = \left[\frac{75}{((1.22*1.22)*(1200/1000000)*(1200/1000000)*(f/10.7636)*(f/10.7636))} \right]$

а	b	c1	c2	d	е	f
Туре	Location	Reference		Airflow Resista	inces	
ID			Component		Values	
			Designations	First	Second	
				Components	Components	Total
				[1/(kg-m)]	[1/(kg-m)]	[1/(kg-m)]
228-111-1	Z-111	res_sup.wq2	Rs8 + Rs7	1.41E+00	1.18E+01	1.32E+01
228-111-2	Z-111	res_rtn.wq2	Rr9 + Rr8	1.73E+00	1.28E+00	3.01E+00
228-V-1	Z-V	res_sup.wq2	Rs15 + Rs14	4.93E+00	2.10E+01	2.59E+01
228-V-2	Z-V	res_rtn.wq2	Rr14 + Rr13	2.88E+00	4.01E+00	6.88E+00
228-1-1	Z-1	res_sup.wq2	Rs20 + Rs19	3.21E+01	2.07E+02	2.39E+02
228-1-2	Z-1	res_rtn.wq2	Rr19 + Rr18	2.73E+01	2.67E+01	5.40E+01
228-IV-1	Z-IV	res_sup.wq2	Rs25 + Rs24	3.48E+01	2.31E+02	2.66E+02
228-IV-2	Z-IV	res_rtn.wq2	Rr32 + Rr31	8.97E+01	8.89E+00	9.86E+01
228-VI-1	Z-VI	res_sup.wq2	Rs30 + Rs29	3.24E+02	1.39E+03	1.72E+03
228-VI-2	Z-VI	res_rtn.wq2	Rr24 + Rr23	2.70E+02	1.39E+02	4.09E+02
228-11-1	Z-11	res_sup.wq2	Rs32 + Rs31	1.24E+03	3.63E+04	3.76E+04
228-11-2	Z-11	res_rtn.wq2	Rr29 + Rr28	6.40E+02	4.39E+03	5.03E+03
228-MR-1	MR	res_sup.wq2	RsB	3.09E-01	0.00E+00	3.09E-01

Type 228: Constant Flow Resistance - Linearized at Low Flow

Note: There are two of these types per zone; one for the supply duct and one for the return duct. In addition, there is one type 228 unit used in the mechanical room.

a = identifies a specific constant flow resistance (type - location - tag number)

b = location of the constant flow resistance

c1 = spreadsheet where calculation is made

c2 = resistance components making up total value

d = first component value

e = second component value

f = total constant flow resistance value [d + e]

file: type_228.wq2

12/27/95 Page 1

Figure 208: E51 Parameters - Type 228 (Constant Flow Resistance)

Interzone Shared Wall Area and Air Flow R	lesistance Values
---	-------------------

a	b Parameter N	C	d	•	f	g	h	i	j		<u>k</u>	 P1
PULLU	arameter											·····
Level	Zone A	Zone B	Shared Wall	Area		Number	Crack	Loss	Crack Area	a	flow	SI
			Linear Dim	9 ft Room	2.5 ft Ceil'g	of	Length	Coefficient			resis	convert
			[ft]	Height (ft2)	Height [ft2]	Doors	<u>[ft]</u>	1/Cd2	[ft2]	[m2]	[1/lbm*ft]	[1/kg*m
Oth		u II	36	324	90	2	40	2.78	0.83	0.077	2.67E+01	1.92E+0
	1	m	72	648	180	3	60	2.78	1.25	0.116	1.19E+01	8.55E+0
1st	- 111	IV	40	594	100	2	40	2.78	0.83	0.077	4.27E+00	3.08E+0
	- 111	v	66	594	165	5	100	2.78	2.08	0.194	7.41E-01	5.35E+0
2nd	. III	IV	33	297	83	3	60	2.78	1.25	0.116	see first l	evel
	- 111	V	58	522	145	5	100	2.78	2.08	0.194	see first l	evel
	- 111	VI	30	270	75	0				·	no openi	ngs
	١٧	VI	12	108	30	1	20	2.78	0.42	0.039	1.07E+02	7.70E+0
3rd	ш	v	72	648	180	2	40	2.78	0.83	0.077	see first l	evel
1	I		I	1	l	1	I I	1	I	I	n	
		door size:		7'0" x 3'0"		rho:	0.075 lbm/	ft3				

crack width: 0.25 inches

a = level shared wall area & air flow resistance is evaluated

b = zone sharing contact area and air flow

c = zone sharing contact area and air flow

d = linear dimension of shared wall area

e = ceiling height [ft]

Figure 209: E51 Parameters - Type 229 (Inlet Constant Flow Resistance)

f = height of volume above suspended ceiling [ft]

g = number of doors in shared wall

1.220 kg/m3

h = resulting crack length based on the number of shared doors

i = loss coefficient (k) based on commonly accepted discharge coefficient for airflow thru cracks in a bldg envelop (93 ASHRAE Fundamentals F23.12) Cd=0.60 & k=1/Cd2

j = effective crack area based on a 0.25 inch crack width

k = air flow resistance [English Units] I = air flow resistance [SI Units] type 229: P1

R(SI) = R * 3.2808 * 2.2

R = k / (2 * rho * A * A)

file: intwall.wq2

01/18/96 Page 1

458

Appendix W - E51 Simulation: Thermal Components

-

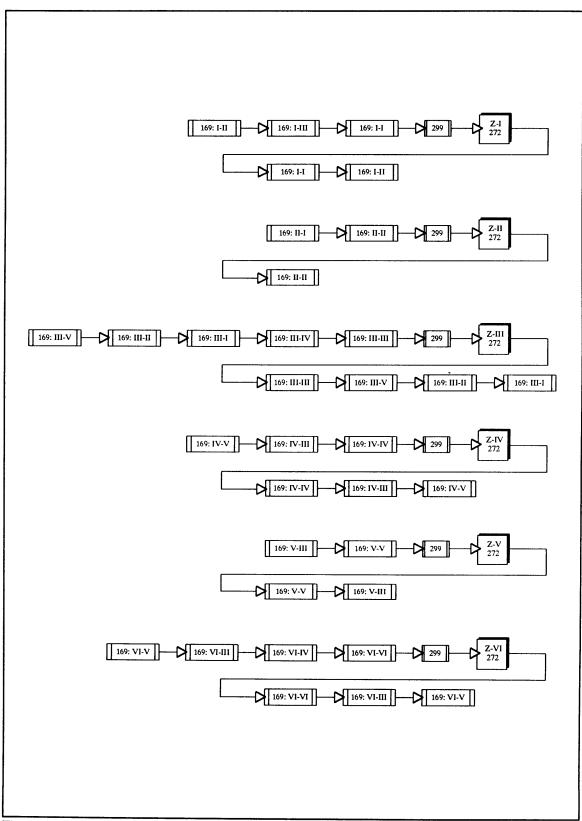


Figure 210: Network for Type 169 (Moist Air Duct - Heat Lose as Output)

a	b	с	d	е	f	g1	g2	h1	h2	it	i2	i	k1	k2
Parameter Numb	Der	P1					P2		P3		P4	P5		P6
Component	Supplu	Shape	Duct Size		lent Diame	tor		Duct	Duct	Wall	Wall	Mat'l	Thermal	Thermal
Component Identification	Supply or	0=round	VAV	Duct Dim		Equivalent	Equivalent	Length	Length	Thickness	Thickness	al=1	Resistance	Resistance
Code	Return	1=square	Box	h	W	Diameter	Diameter	Longui	Lengui	0.0625 in	1.59e-3 m	cu=2	R-value	R-value
Code	netum	i=square	[in x in]	[in]	[in]	[ft]	[m]	[ft]	[m]	[ft]	[m]	fe=3	[F-ft2-hr/Btu]	[K-m2/W]
169: I - II	Supply	0	16	16		1.33	0.41	15	4.57	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: I - III	Supply	0	16	16		1.33	0.41	1	0.30	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: -	Supply	0	16	16		1.33	0.41	35	10.67	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: -	Return	0		16		1.33	0.41	29	8.84	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: I - II	Return	0		16		1.33	0.41	11	3.35	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: 11 - 1	Supply	0	7	7		0.58	0.18	6	1.83	5.21E-03	1.59E-03	3	3,10	5.46E-01
169: 11 - 11	Supply	0	7	7		0.58	0.18	35	10.67	5.21E-03	1.59E-03	3	3.10	5.46E-01
103, 114 11	Guppiy	Ŭ	1			0.00	0.10		10.07	0.212.00	1.002.00	Ŭ	0.10	0.402-01
169: II - II	Return	0		8		0.67	0.20	8	2.44	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: III - V	Supply	0	48 x 16	16	48	2.44	0.74	48	14.63	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: III - II	Supply	0	48 x 16	16	48	2.44	0.74	10	3.05	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: 111 - 1	Supply	0	48 x 16	16	48	2.44	0.74	20	6.10	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: III - IV	Supply	0	48 x 16	16	48	2.44	0.74	1	0.30	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: 111 - 111	Supply	0	48 x 16	16	48	2.44	0.74	50	15.24	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: 111 - 111	Return	0		26	30	2.54	0.77	46	14.02	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: III - V	Return	0	j	26	30	2.54	0.77	40	12.19	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: 11 - 11	Return	0		26	30	2.54	0.77	2	0.61	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: III - I	Return	0		26	30	2.54	0.77	19	5.79	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: IV - V	Supply	0	16	16		1.33	0.41	20	6.10	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: IV - III	Supply	l õ	16	16		1.33	0.41	41	12.50	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: IV - IV	Supply	0	16	16		1.33	0.41	63	19.20	5.21E-03	1.59E-03	3	3.10	5.46E-01
105, 14 - 14	1 outpit	1 0	1 10	1 10	1	1	1 0.41	1 30	1 10.20	1 0.212-00	1.002.00	, 0	1 0.10	0.402-01

Type 169: Moist Air Duct, Heat Loss As Output

file: type_169.wq2

12/27/95 Page 1

461

a	ь	с	d	·e	f	g1	g2	ht	h2	i1	i2	j	k1	k2
Parameter Numb	er	P1					P2		P3		P4	P5		P6
Component	Supply	Shape	Duct Size	e & Equiva	lent Diame			Duct	Duct	Wall	Wall	Mat'i	Thermal	Thermal
Identification	or	0≖round	VAV	Duct Dim	ensions	Equivalent	Equivalent	Length	Length	Thickness	Thickness	al = 1	Resistance	Resistance
Code	Return	1=square	Box	h	w	Diameter	Diameter			0.0625 in	1.59e-3 m	cu=2	R-value	R-value
			[in x in]	[in]	[in]	[ft]	[m]	[ft]	(m)	[ft]	[m]	fe=3	[F-ft2-hr/Btu]	[K-m2/W]
169: IV - IV	Return	0		16		1.33	0.41	31	9.45	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: IV - III	Return	0		16		1.33	0.41	84	25.60	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: IV - V	Return	o		16		1.33	0.41	8	2.44	5.21E-03	1.59E-03	3	0.00	0.00E+00
100.10	netani	Ŭ		10		1.00	0.41	Ű	2.44	0.212.00	1.002.00	Ŭ	0.00	0.002100
169: V - III	Supply	0	24 x 16	16	24	1.78	0.54	50	15.24	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: V - V	Supply	0	24 x 16	16	24	1.78	0.54	9 0	27.43	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: V - V	Return	о		26	20	2.07	0.63	50	15.24	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: V - III	Return	0		26	20	2.07	0.63	8	2.44	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: VI - V	Supply	o	10	10		0.83	0.25	16	4.88	5.21E-03	1.59E-03	з	3.10	5.46E-01
169: VI - III	Supply	0	10	10		0.83	0.25	22	6.71	5.21E-03	1.59E-03	з	3.10	5.46E-01
169: VI - IV	Supply	0	10	10		0.83	0.25	46	14.02	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: VI - VI	Supply	о	10	10		0.83	0.25	17	5.18	5.21E-03	1.59E-03	3	3.10	5.46E-01
169: VI - VI	Return	0		11		0.92	0.28	13	3.96	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: VI - III	Return	o		11		0.92	0.28	51	15.54	5.21E-03	1.59E-03	3	0.00	0.00E+00
169: VI - V	Return	0		11		0.92	0.28	5	1.52	5.21E-03	1.59E-03	з	0.00	0.00E+00

.

Type 169: Moist Air Duct, Heat Loss As Output

file: type_169.wq2

12/27/95 Page 2

.

.

Type 169: Moist Air Duct, Heat Loss As Output

a	b	с	d	·e	f	g1	g2	ht	h2	i1	i2	i	k1	k2
Parameter Numb	per	P1					P2		P3		P4	P5		P6
Component	Supply	Shape	Duct Size	e & Equiva	alent Diame	eter		Duct	Duct	Wall	Wall	Mat'i	Thermal	Thermal
Identification	or	0=round	VAV	Duct Dim	nensions	Equivalent	Equivalent	Length	Length	Thickness	Thickness	al=1	Resistance	Resistance
Code	Return	1=square	Box	h	w	Diameter	Diameter			0.0625 in	1.59e-3 m	cu=2	R-value	R-value
			[in x in]	[in]	[in]	[ft]	[m]	[ft]	(m)	(ft]	(m)	fe=3	[F-ft2-hr/Btu]	[K-m2/W]

a = identifies a specific moist air duct (type: primary zone - secondary zone)

b = direction of duct flow - into or out of zone (supply or return)

- c = duct shape (all ducts are considered to be round; an equivalent diameter is used for rectangular ducts) type_169: P1
- d = VAV box size [in x in]
- e = duct height (for round ducts this number represents the diameter) [in]
- f = duct width [in]
- g = equivalent diameter (for round ducts this value is the diameter) [ft];

An equivalent diameter is calculated based on the Equation 25 in 1993 ASHRAE Handbook - Fundamentals, F32.6. De = 1.3[(ab) ^.0625]/[(a+b) ^ 0.25] type_169.wq2:P2

h = length of primary zone duct exposed to secondary zone plenum [ft]

(reference file: area_169.wq2) type_169: P3

- i = duct wall thickness [ft] type_169: P4
- j = duct wall material type_169: p5
- k = resistance value for duct insulation [[F-ft2-hr/Btu] (return ducts are uninsulated) type_169: P6
- Note: Parameter numbers 7 & 8 are zero. Pressure drop due flow resistance is calculated in the airflow component network.

file: type_169.wq2

464

Supply & Return Moist Air Duct Area Contact Calculation (reference file: area_tal.wq2)

ع [v	σ	Ð	•	в	ء		i	×	-	٤	c	0	٩
Zone		Req'd	Duct Leng	Duct Length within Each Zone	ach Zone										Duct
	Type	Duct	Zone I		Zone II		Zone III		Zone IV		Zone V		Zone VI		Length
		Length	Percent	Actual	Percent	Actual	Percent	Actual	Percent	Actual	Percent	Actual	Percent	Actual	Check
		[#]	of Duct	Length	of Duct	Length	of Duct	Length	of Duct	Length	of Duct	Length	of Duct	Length	Sums
			in Zone	[#]	in Zone	[#]	in Zone	[#]	in Zone	ŧ	in Zone	[#]	in Zone	[#]	[#]
-	Supply	51	0.69	35	0.29	15	0.02	-	00.0		00.0		00.0		ι.
	Return	40	0.72	29	0.28	1	00.0		0.00		0.00		0.00		40
=	Supply	41	0.15	ø	0.85	35	00.0		00.0		00.0		00 0		41
	Return	Ø	0.00		1.00	ω	0.00		0.00		0.00		0.00		; æ
H	Supply	128	0.16	20	0.08	10	0.39	50	0.01	-	0.37	48	00.0		128
	Return	106	0.18	19	0.02	N	0.43	46	0.00		0.37	40	0.00		106
≥	Supply	124	0.00		00.0		0.33	41	0.51	ន	0.16	20	00.0		124
	Return	123	00.0		00.0		0.68	84	0.25	31	0.07	80	0.00		123
>	Supply	140	00.0		0.00		0.36	50	00.0		0.64	06	00.0		140
	Return	59	00.0		00.0		0.14	ø	0.00		0.86	50	0.00		59
5	Supply	102	0.00		0.00		0.22	22	0.45	46	0.16	16	0.17	17	102
	Return	69	0.00		0.00		0.74	51	0.00		0.08	S	0.18	13	69
a = zo	a = zone supplied or serviced by duct	or serviced	by duct					i = duct ler	= duct length in contact w/ this zone [c*h]	ict w/ this z	one [c*h]				
b = de	fines duct u	se - either a	ns a supply c	onduit or r	b = defines duct use - either as a supply conduit or return conduit	.		j = % of re	% of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [j/o])	gth in conte	tet w/ this ze	one (ref: are	sa_tal.wq2 []	([o/	

k = duct length in contact w/ this zone [c*j]

c = duct length req'd for the mega-zone duct system (ref: area_tal.wq2 [q]) d = % of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [d/o])

I = % of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [l/o])

m = duct length in contact w/ this zone [c*I]

n = % of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [n/o])

m = duct length in contact w/ this zone [c*n]

p = check sum must equal column "c"

h = % of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [h/o])

f = % of req'd duct length in contact w/ this zone (ref: area_tal.wq2 [f/o])

g = duct length in contact w/ this zone [c*f]

e = duct length in contact w/ this zone [c*d]

file: area_169.wq2

Figure 212: Supply & Return Moist Air Duct Area Contact Calculation Summary

	a	b
	Num-	F
	ber	
	1 2	
	3	RC
	4	RC
	5	RC
	6	R2
	7	R2
	8	R2
	9	R1
1	10	C
	11	C
	12	Ca
	13	C
	14	
	15	
	16	
	17	

Figure 213: E51 Parameters - Type 272 (2 Node Room Plenum)

a	b		d1	d2	d3	d4	d5	d6
					Megazone Des	ignation		
Num- ber	Par	ameter Description	I	11	111	iV	v	VI
1		Room Capcity Multiplier [-]						
2		Zone Number (Parameter File = zoneN.par, N>0)						
3	R01	RWSR: Direct Resistance Room Air Node <-> Ambient [K/kW]	3.27E+01	1.37E+02	4.64E+00	1.79E+01	6.82E+00	5.00E+01
4	R02	RISR: Resistance Room Air Node <-> Room Mass Node [K/kW]	2.64E-03	1.80E-02	3.76E-03	3.15E-02	5.99E-03	4.61E-01
5	R03	ROSR: Resistance Ambient <-> Room Mass Node [K/kW]	2.34E-01	1.12E+00	9.56E-02	5.08E-01	1.76E-01	3.43E+00
6 7	R21	RWSP: Direct Resistance, Plenum Air Node <-> Ambient [K/kW]	infinite	infinite	infinite	infinite	infinite	infinite
<i>'</i>	R22	RISP: Resistance Plenum Air Node <-> plenum Mass Node [K/kW]	7.45E-03	7.97E-03	2.54E-02	2.09E-02	5.77E-03	3.57E-01
8	R23	ROSP: Resistance Ambient <-> plenum Mass Node [K/kW]	6.41E-01	1.26E+00	3.12E-01	7.17E-01	2.53E-01	5.23E+00
9	R11	RR: Resistance Room Air Node <-> Plenum Air Node [K/kW]	3.26E+00	9.47E+00	1.14E+00	3.81E+00	1.33E+00	3.06E+01
10	C03	CSR: Capacitance of Room Mass Node [kJ/K]	5.85E+04	1.07E+04	2.79E+05	7.60E+04	2.14E+05	2.08E+04
11	C02	CR: Capacitance of Room Air Node (unmodifed) [kJ/K]	9.41E+03	2.03E+03	2.58E+04	7.24E+03	1.78E+04	6.77E+02
12	C23	CSP: Capacitance of Plenum Mass Node [kJ/K]	4.81E+04	1.63E+04	1.25E+05	5.18E+04	1.52E+05	1.08E+04
13	C22	CP: Capacitance of Plenum Air Node [kJ/K]	2.45E+03	7.03E+02	6.87E+03	2.36E+03	5.49E+03	2.32E+02
14		Volume of Room [m3]	6.47E+02	1.55E+02	1.82E+03	3.85E+02	1.21E+03	4.80E+01
15		Volume of Plenum [m3]	1.25E+02	4.30E+01	3.96E+02	1.07E+02	3.30E+02	1.30E+01
16		Number of Occupants						
17		Lighting Heat Gain [kW]						
18		Fraction of Lighting Heat Gain to Plenum						
19		Equipment Heat Gain [kW]						

.

Type 272 - 2 Node Room/Plenum - Interzone and Leakage, Ducted Return

a = parameter number (heat input parameters to be changed to heat input variables)

b = 2C3R model global element designation

c = parameter description

d1 - d6 = parameter value (reference file: global01.wq2 pages 3,6, and 7)

a	ь	c	d	e	f	g	h	i	j
					Coil Location	n			
	Parameter Description	Mechanica	al Room	Zone I (Size	16)	Zone II (Size	7)	Zone III (Size	e 48 x 16)
		English	SI	English	SI	English	SI	English	SI
		•							
1	method: 0 = steady state; 1 = dynamic	1	1	1	1	1	1	1	1
2	fault: $0 = no$ faults	0	0	0	0	0	0	0	0
3	psycho: 0 = no psychrometric output calculations	0	0	0	0	0	0	0	0
4	number of rows of tubes	4	4	11	1	1	1	1	1
5	number of tubes per row	36	36	14	14	8	8	14	14
6	number of parallel water circuits	1	1	1	1	1	1	1	1
7	length of finned section in air flow direction [in] & [m]	9.5	2.41E-01	2.16	5.49E-02	2.16	5.49E-02	2.16	5.49E-02
8	height of finned section [in] & [m]	54	1.37E+00	18	4.57E-01	10	2.54E-01	18	4.57E-01
9	width of finned section [in] & [m]	109	2.77E+00	24	6.10E-01	12	3.05E-01	56	1.42E+00
10	tube outside diameter [in] & [m]	0.625	1.59E-02	0.5	1.27E-02	0.5	1.27E-02	0.5	1.27E-02
11	tube wall thickness [in] & [m]	0.020	0.02	0.016	4.06E-04	0.016	4.06E-04	0.016	4.06E-04
12	tube material (Al = 1, Cu = 2, Fe = 3, CaCo3 = 4)	2	2	2	2	2	2	2	2
13	fin spacing (pitch) [in] & [m]	0.0833	2.12E-03	0.1000	2.54E-03	0.1000	2.54E-03	0.1000	2.54E-03
14	fin thickness [in] & [m]	0.0085	2.16E-04	0.0060	1.52E-04	0.0060	1.52E-04	0.0060	1.52E-04
15	fin material (Al = 1, Cu = 2, Fe = 3)	1	1	1	1	1	1	1	1
16	flow resistance parameter on air side [1/(lbm-ft)] & [0.001/(kg	6.92E-02	4.99E-01	2.74E+00	1.98E+01	4.50E+01	3.25E+02	3.48E-01	2.51E+00
17	Kv: valve capacity index [ft3/hr @ 1 psi] or [m3/hr @ 1 bar]	38	32.68	0.74	0.64	0.29	0.25	2.92	2.51
18	valve mode: (0=lin/lin, 1=exp/lin, 2=exp/exp, 3=lin/exp)	1	1	1	1	1	1	1	1
19	valve characteristic exponent Ngl (-)	3.54	3.54	3.22	3.22	3.22	3.22	3.22	3.22
20	adjusting ratio (>1)	35	35	50	50	50	50	100	100
21	valve leakage (fractional when valve is closed)	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
22	coil hydraulic resistance [1/[lbm-ft] or [0.001/(kg-m)]	2.88E+00	2.08E+01	6.06E+02	4.38E+03	6.93E+03	5.00E+04	4.33E+02	3.13E+03
23	3-way valve bypass hydraulic resistance [1/[lbm-ft] or [0.001/(1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06

Type 299: Liege Coil and L&G Valve, Water Pressure I/P

file: type_299.wq2

Figure 214: E51 Parameters - Type 299 (Liege Coil and L&G Valve)

а	b	k	1	m	n	0	p
				Coil Location			
	Parameter Description	Zone IV (Size	: 16)	Zone V (Size	24 x 16)	Zone VI (Size	: 10)
		English	SI	English	SI	English	SI
1	method: 0 = steady state; 1 = dynamic	1	1	1	1	1	1
2	fault: $0 = no$ faults	0	0	0	0	0	0
3	psycho: 0 = no psychrometric output calculations	0	0	0	0	0	0
4	number of rows of tubes	1	1	1	1	1	1
5	number of tubes per row	14	14	14	14	10	10
6	number of parallel water circuits	1	1	1	1	1	1
7	length of finned section in air flow direction [in] & [m]	2.16	5.49E-02	2.16	5.49E-02	2.16	5.49E-02
8	height of finned section [in] & [m]	18	4.57E-01	18	4.57E-01	12.5	3.18E-01
9	width of finned section [in] & [m]	24	6.10E-01	28	7.11E-01	14	3.56E-01
10	tube outside diameter [in] & [m]	0.500	1.27E-02	0.500	1.27E-02	0.500	1.27E-02
11	tube wall thickness [in] & [m]	0.016	4.06E-04	0.016	4.06E-04	0.016	4.06E-04
12	tube material (Al = 1, Cu = 2, Fe = 3, CaCo3 = 4)	2	2	2	2	2	2
13	fin spacing (pitch) [in] & [m]	0.1000	2.54E-03	0.1000	2.54E-03	0.1000	2.54E-03
14	fin thickness [in] & [m]	0.0060	1.52E-04	0.0060	1.52E-04	0.0060	1.52E-04
15	fin material (Al = 1, Cu = 2, Fe = 3)	1	1	1	1	1	1
16	flow resistance parameter on air side [1/(1bm-ft)] & [0.001/(kg	2.74E+00	1.98E+01	1.39E+00	1.00E+01	2.19E+01	1.58E+02
17	Kv: valve capacity index [ft3/hr @ 1 psi] or [m3/hr @ 1 bar]	0.74	0.64	1.87	1.61	0.47	0.40
18	valve mode: (0=lin/lin, 1=exp/lin, 2=exp/exp, 3=lin/exp)	1	1	1	1	1	1
19	valve characteristic exponent Ngl (-)	3.22	• 3.22	3.22	3.22	3.54	3.54
20	adjusting ratio (>1)	50	50	100	100	50	50
21	valve leakage (fractional when valve is closed)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
22	coil hydraulic resistance [1/[1bm-ft] or [0.001 (kg-m)]	6.06E+02	4.38E+03	7.80E+02	5.63E+03	1.21E+03	8.75E+03
23	3-way valve bypass hydraulic resistance [1/[lbm-ft] or [0.001/(1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06
				1			

Type 299: Liege Coil and L&G Valve, Water Pressure I/P

file: type_299.wq2

468

`

Appendix X - E51 Simulation: Sensors

470

Appendix Y - Internal and External Heat Gains

	Heat Gain Prof	ile: Occupants	, Equipment	& Lighting				
	Zone N		1	2	3	4	5	6
		Tot internal	Prof/Stud	Computer	Admin	Prof/Stud	Classroom	Admin
		Heat Gain	Offices	Data/Proc	Offices	Offices	& Confer	Offices
<u> </u>	Area [ft2]	16,139	2,369	607	6,799	1,510	4,666	188
•	1	4,150	490	3,100	310	240	0	10
	2	3,870	49 0	2,820	310	240	0	10
	3	3,590	490	2,540	310	240	0	10
	4	3,310	49 0	2,260	310	240	0	10
	5	3,310	490	2,260	310	240	0	10
	6	3,310	490	2,260	310	240	0	10
	7	12,660	490	2,260	9,410	240	0	260
	8	15,890	490	2,260	12,560	240	0	340
	9	32,820	1,240	2,480	15,710	610	12,350	430
	10	34,390	590	2,480	15,710	290	14,890	430
	11	34,620	490	2,480	15,710	240	15,270	430
	12	25,910	2,080	2,480	10,980	1,020	9,050	300
	13	26,130	1,990	2,480	10,980	980	9,400	300
	14	33,410	990	2,480	15,710	490	13,310	430
	15	32,950	1,180	2,480	15,710	580	12,570	430
	16	31,910	1,700	2,710	15,710	840	10,520	430
	17	30,340	2,430	2,930	15,710	1,200	7,640	430
	18	21,800	2,850	3,160	8,150	1,400	6,020	220
	19	18,200	1,530	3,380	7,670	750	4,660	210
	20	12,740	1,310	3,380	7,200	650	o	200
	21	11,780	990	3,380	6,730	490	0	190
	22	4,680	660	3,380	310	320	0	10
	23	4,190	330	3,380	310	160	0	10
	24	4,430	490	3,380	310	240	0	10
				······································		· · · · · · · · · · · · · · · · · · ·	F	
Min Va	alue W	3,310	330	2,260	310	160	0	10
Max V	alue W	34,620	2,850	3,380	15,710	1,400	15,270	430
	alue W	17,100	1,032	2,758	7,768	508	4,820	213
Min Ga	ain W/ft2	0.21	0.14	3.72	0.05	0.11	0.00	0.05
	ain W/ft2	2.15	1.20	5.57	2.31	0.93	3.27	2.29
Avg G	ain W/ft2	1.06	0.44	4.54	1.14	0.34	1.03	1.13
.		r						
Baselii	ne W	4,012	492	2,960	310	240	0	10

.

Heat Gain Profile: Occupants, Equipment & Lighting

file: heat_oel.wq2

01/18/96 Page 4

•

Figure 216: Internal Heat Gain - Data: Total Occupancy, Equipment & Lighting

	Heat Gain Profi	le: Occupants	3					
	Zone Number		1	2	3	4	5	6
	Туре		Prof/Stud	Computer	Admin	Prof/Stud	Classroom	Admin
			Offices	Data/Proc	Offices	Offices	& Confer	Offices
i	Area	[ft2]	2,369	607	6,799	1,510	4,666	188
i	Occ Density	[ft2/person]	70	40	170	70	15	170
ü	Max Occup	[persons]	34	15	40	22	311	1
v	Max Heat	[W]	2,550	1,125	3,000	1,650	23,325	75
	4		0.07	0.75	0.00	0.07	0.00	
	1		0.07	0.75	0.00	0.07	0.00	0.00
	2 3		0.07 0.07	0.50 0.25	0.00 0.00	0.07 0.07	0.00 0.00	0.00 0.00
	4		0.07	0.25	0.00	0.07	0.00	0.00
	5		0.07	0.00	0.00	0.07	0.00	0.00
	6		0.07	0.00	0.00	0.07	0.00	0.00
	7		0.07	0.00	0.33	0.07	0.00	0.00
	8		0.07	0.00	0.33	0.07	0.00	0.33
	9		0.18	0.00	1.00	0.07	0.00	1.00
	10		0.08	0.20	1.00	0.18	⁻ 0.45	1.00
	10		0.07	0.20	1.00	0.00	0.45	1.00
	12		0.30	0.20	0.50	0.30	0.47	0.50
	13		0.30	0.20	0.50	0.30	0.20	0.50
	14		0.14	0.20	1.00	0.20	0.22	1.00
	15		0.14	0.20	1.00	0.14	0.39	1.00
	16		0.17	0.40	1.00	0.17	0.33	1.00
	17		0.35	0.60	1.00	0.24	0.14	1.00
	18		0.41	0.80	0.20	0.00	0.07	0.20
	19		0.22	1.00	0.15	0.22	0.02	0.15
	20		0.19	1.00	0.10	0.19	0.02	0.10
	21		0.14	1.00	0.05	0.14	0.00	0.05
	22		0.09	1.00	0.00	0.09	0.00	0.00
	23		0.05	1.00	0.00	0.05	0.00	0.00
	24		0.07	1.00	0.00	0.07	0.00	0.00

i = area of megazone (ref file: heatin.wq2)

ii = occupancy density based on survey data recorded in files: heatin.wq2 & classocc.wq2

iii = based on i & ii

iv = based on iii & 75 watts/person

file: heat_oel.wq2

01/18/96 Page 1

Figure 217: Internal Heat Gain - Occupancy Distribution Profiles, Megazones 1 thru 6

	Heat Gain Profil	e: Equipmen	r	,				
	Zone Number		1	2	3	4	5	6
	Туре		Prof/Stud	Computer	Admin	Prof/Stud	Classroom	Admin
			Offices	Data/Proc	Offices	Offices	& Confer	Offices
i	Area	[ft2]	2,369	607	6,799	1,510	4,666	188
vi	Eqt. Density	[W/ft2]	0.95	2.80	0.95	0.26	0.00	0.95
vii	Max Heat	[W]	2,251	1,700	6,459	396	0	179
			0.07	1.00	0.00	0.07	0.00	0.00
	2		0.07	1.00	0.00	0.07	0.00	0.00
	3		0.07	1.00	0.00	0.07	0.00	0.00
	4		0.07	1.00	0.00	0.07	0.00	0.00
	5		0.07	1.00	0.00	0.07	0.00	0.00
ĺ	6		0.07	1.00	0.00	0.07	0.00	0.00
	7		0.07	1.00	0.33	0.07	0.00	0.33
	8		0.07	1.00	0.67	0.07	0.00	0.67
	9		0.18	1.00	1.00	0.18	0.00	1.00
	10		0.08	1.00	1.00	0.08	0.00	1.00
	11		0.07	1.00	1.00	0.07	0.00	1.00
	12		0.30	1.00	0.50	0.30	0.00	0.50
	13		0.28	1.00	0.50	0.28	0.00	0.50
	14		0.14	1.00	1.00	0.14	0.00	1.00
	15		0.17	1.00	1.00	0.17	0.00	1.00
	16		0.24	1.00	1.00	0.24	0.00	1.00
	17		0.35	1.00	1.00	0.35	0.00	1.00
	18		0.41	1.00	0.20	0.41	0.00	0.20
	19		0.22	1.00	0.15	0.22	0.00	0.15
	20		0.19	1.00	0.10	0.19	0.00	0.10
	21		0.14	1.00	0.05	0.14	0.00	0.05
	22		0.09	1.00	0.00	0.09	0.00	0.05
	23		0.05	1.00	0.00	0.05	0.00	0.00
- 1	24		0.07	1.00	0.00	0.03	0.00	0.00

Heat Gain Profile: Equipment

vi = based on surveys reviewed in Section 3.2.1 & survey data recorded in file heatin.wq2 vii = based on i & vi

file: heat_oel.wq2

.

01/18/96 Page 2

Figure 218: Internal Heat Gain - Equipment Usage Profiles, Megazones 1 thru 6

	Zone Number		1	2	3	4	5	6
	Туре		Prof/Stud	Computer	Admin	Prof/Stud	Classroom	Admin
			Offices	Data/Proc	Offices	Offices	& Confer	Offices
i	Area	[ft2]	2,369	607	6,799	1,510	4,666	188
viii	Lite Density	[W/ft2]	0.92	0.92	0.92	0.92	0.92	0.92
ix	Max Heat	[₩]	2,179	558	6,255	1,389	4,293	173
	1		0.07	1.00	0.05	0.07	0.00	0.05
	2		0.07	1.00	0.05	0.07	0.00	0.05
	3		0.07	1.00	0.05	0.07	0.00	0.05
	4		0.07	1.00	0.05	0.07	0.00	0.05
	5		0.07	1.00	0.05	0.07	0.00	0.05
	6		0.07	1.00	0.05	0.07	0.00	0.05
	7		0.07	1.00	1.00	0.07	0.00	1.00
	8		0.07	1.00	1.00	0.07	0.00	1.00
	9		0.18	1.00	1.00	0.18	1.00	1.00
	10		0.08	1.00	1.00	0.08	1.00	1.00
	11		0.07	1.00	1.00	0.07	1.00	1.00
	12		0.30	1.00	1.00	0.30	1.00	1.00
	13		0.28	1.00	1.00	0.28	1.00	1.00
	14		0.14	1.00	1.00	0.14	1.00	1.00
	15		0.17	1.00	1.00	0.17	1.00	1.00
	16		0.24	1.00	1.00	0.24	1.00	1.00
	17		0.35	1.00	1.00	0.35	1.00	1.00
	18		0.41	1.00	1.00	0.41	1.00	1.00
	19		0.22	1.00	1.00	0.22	1.00	1.00
	20		0.19	1.00	1.00	0.19	0.00	1.00
	21		0.14	1.00	1.00	0.14	0.00	1.00
	22		0.09	1.00	0.05	0.09	0.00	0.05
	23		0.05	1.00	0.05	0.05	0.00	0.05
	24		0.07	1.00	0.05	0.07	0.00	0.05

Heat Gain Profile: Lighting

viii = based on survey data recorded in file: heatin.wq2 ix = based on i & viii

file: heat_oel.wq2

01/18/96 Page 3

Figure 219: Internal Heat Gain - Lighting Usage Profiles, Megazones 1 thru 6

	e: global(01.wq2									ASHRAE		yes	SAMSON		no
K(ext,m)	25.1	10.5	7.1	2.6	15.0	4.6	23.2	0.0	4.2	0.0	3.1	0.0	0.0	77.8	17.7	
K(ext)	77.8	17.7	77.8	17.7	77.8	17.7	77.8	17.7	77.8	17.7	77.8	17.7	17.7	77.8	17.7	
														Zone 1	Data Date:	20-Jul-90
Time	Vert Wa	I - South	Vert Wal	I - West	Vert Wal	I - North	Vert Gla	z - South	Vert Gla	z - West	Vert Gla	z - North	Roof	Solair Ten	ND ASHRAE	Ambient
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
[hr]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]			[C]
1	7.3	13.4	2.1	3.3	4.4	5.9	6.7	0.0	1.2	0.0	0.9	0.0	0.0	22.6	22.6	23.6
2	7.4	13.5	2.1	3.4	4.4	6.0	6.8	0.0	1.2	0.0	0.9	0.0	0.0	22.9	22.9	23.9
3	7.2	13.2	2.0	3.3	4.3	5.8	6.6	0.0	1.2	0.0	0.9	0.0	0.0	22.3	22.3	23.3
4	6.9	12.5	1.9	3.1	4.1	5.5	6.3	0.0	1.1	0.0	0.8	0.0	0.0	21.2	21.2	22.2
5	6.9	12.5	1.9	3.1	4.1	5.5	6.3	0.0	1.1	0.0	0.8	0.0	0.0	21.2	21.2	22.2
6	7.5	13.6	2.1	3.4	4.5	6.1	7.1	0.0	1.3	0.0	1.0	0.0	0.0	23.4	23.1	23.9
7	8.4	15.3	2.3	3.7	4.9	6.6	9.4	0.0	1.5	0.0	1.1	0.0	0.0	27.5	25.6	25.6
8	9.8	17.9	2.6	4.1	5.4	7.4	12.9	0.0	1.7	0.0	1.3	0.0	0.0	33.7	29.4	28.3
9	10.5	19.3	2.7	4.4	5.8	7.8	14.4	0.0	1.8	0.0	1.3	0.0	0.0	36.6	31.5	30.0
10	11.7	21.5	2.9	4.7	6.2	8.4	18.1	0.0	2.0	0.0	1.5	0.0	0.0	42.4	34.5	31.7
11	13.2	24.2	3.1	5.0	6.5	8.8	24.1	0.0	2.3	0.0	1.7	0.0	0.0	51.0	38.0	32.8
12	12.6	23.0	3.1	5.1	6.5	8.9	20.3	0.0	2.3	0.0	1.6	0.0	0.0	46.5	36.9	33.3
13	12.1	22.1	3.4	5.4	6.6	8.9	17.0	0.0	2.9	0.0	1.6	0.0	0.0	43.5	36.5	33.9
14	11.5	21.1	3.6	5.7	6.4	8.7	15.6	0.0	3.7	0.0	1.6	0.0	0.0	42.4	35.5	32.8
15	10.7	19.5	3.2	5.2	6.3	8.6	10.8	0.0	2.6	0.0	1.4	0.0	0.0	35.1	33.3	33.3
16	10.2	18.7	3.2	5.1	6.2	8.4	10.0	0.0	2.7	0.0	1.4	0.0	0.0	33.7	32.2	32.2
17	9.8	17.9	3.0	4.8	6.0	8.1	9.4	0.0	2.3	0.0	1.4	0.0	0.0	31.9	30.9	31.1
18	9.7	17.7	3.0	4.8	6.0	8.2	9.2	0.0	2.5	0.0	1.6	0.0	0.0	32.0	30.7	30.6
19	9.0	16.5	2.6	4.1	5.4	7.3	8.3	0.0	. 1.5	0.0	1.1	0.0	0.0	28.0	28.0	28.9
20	6.5	11.9	1.8	3.0	3.9	5.3	6.0	0.0	1.1	0.0	0.8	0.0	0.0	20.1	20.1	21.1
21	7.4	13.5	2.1	3.4	4.4	6.0	6.8	0.0	1.2	0.0	0.9	0.0	0.0	22.9	22.9	23.9
22	7.6	13.8	2.1	3.5	4.5	6.1	7.0	0.0	1.3	0.0	0.9	0.0	0.0	23.4	23.4	24.4
23	7.6	13.8	2.1	3.5	4.5	6.1	7.0	0.0	1.3	0.0	0.9	0.0	0.0	23.4	23.4	24.4
24	7.4	13.5	2.1	3.4	4.4	6.0	6.8	0.0	1.2	0.0	0.9	0.0	0.0	22.9	22.9	23.9

Sol-air Temperatures (averaged over south, west, and north faces + roof)

file: sa1_temp.wq2

01/28/96 Page 1

from file	e: global0	1.wq2									ASHRAE		yes	SAMSON		no
K(ext,m)	0.0	0.0	0.0	0.0	13.9	5.0	0.0	0.0	0.0	0.0	7.3	0.0	0.0	21.2	5.0	
K(ext)	21.2	5.0	21.2	5.0	21.2	5.0	21.2	5.0	21.2	5.0	21.2	5.0	5.0	21.2	5.0	
														Zone 2	Data Date:	20-Jul-90
Time	Vert Wal	I - South	Vert Wal	I - West	Vert Wal	I - North	Vert Gla	z - South	Vert Gla	z - West	Vert Gla	z - North	Roof	Solair Ten	np ASHRAE	Ambient
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
[hr]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]
1	0.0	0.0	0.0	0.0	· 14.8	22.6	0.0	0.0	0.0	0.0	7.7	0.0	0.0	22.6	22.6	23.6
2	0.0	0.0	0.0	0.0	15.0	22.9	0.0	0.0	0.0	0.0	7.8	0.0	0.0	22.9	22.9	23.9
3	0.0	0.0	0.0	0.0	14.6	22.3	0.0	0.0	0.0	0.0	7.6	0.0	0.0	22.3	22.3	23.3
4	0.0	0.0	0.0	0.0	13.9	21.2	0.0	0.0	0.0	0.0	7.3	0.0	0.0	21.2	21.2	22.2
5	0.0	0.0	0.0	0.0	13.9	21.2	0.0	0.0	0.0	0.0	7.3	0.0	0.0	21.2	21.2	22.2
6	0.0	0.0	0.0	0.0	15.2	23.2	0.0	0.0	0.0	0.0	8.4	0.0	0.0	23.7	23.2	23.9
7	0.0	0.0	0.0	0.0	16.6	25.2	0.0	0.0	0.0	0.0	9.6	0.0	0.0	. 26.2	25.2	25.6
8	0.0	0.0	0.0	0.0	18.5	28.2	0.0	0.0	0.0	0.0	11.0	0.0	0.0	29.5	28.2	28.3
9	0.0	0.0	0.0	0.0	19.6	29.9	0.0	0.0	0.0	0.0	11.6	0.0	0.0	31.2	29.9	30.0
10	0.0	0.0	0.0	0.0	21.0	32.0	0.0	0.0	0.0	0.0	12.9	0.0	0.0	33.8	32.0	31.7
11	0.0	0.0	0.0	0.0	22.2	33.8	0.0	0.0	0.0	0.0	14.7	0.0	0.0	36.9	33.8	32.8
12	0.0	0.0	0.0	0.0	22.2	33.9	0.0	0.0	0.0	0.0	14.0	0.0	0.0	36.3	33.9	33.3
13	0.0	0.0	0.0	0.0	22.4	34.2	0.0	0.0	0.0	0.0	13.6	0.0	0.0	36.1	34.2	33.9
14	0.0	0.0	0.0	0.0	21.8	33.3	0.0	0.0	0.0	0.0	13.6	0.0	0.0	35.4	33.3	32.8
15	0.0	0.0	0.0	0.0	21.5	32.8	0.0	0.0	0.0	0.0	12.0	0.0	0.0	33.5	32.8	33.3
16	0.0	0.0	0.0	0.0	21.0	32.1	0.0	0.0	0.0	0.0	12.3	0.0	0.0	33.4	32.1	32.2
17	0.0	0.0	0.0	0.0	20.4	31.1	0.0	0.0	0.0	0.0	12.1	0.0	0.0	32.5	31.1	31.1
18	0.0	0.0	0.0	0.0	20.6	31.4	0.0	0.0	0.0	0.0	13.5	0.0	0.0	34.1	31.4	30.6
19	0.0	0.0	0.0	0.0	18.4	28.0	0.0	0.0	0.0	0.0	9.8	0.0	0.0	28.2	28.0	28.9
20	0.0	0.0	0.0	0.0	13.2	20.1	0.0	0.0	0.0	0.0	6.9	0.0	0.0	20.1	20.1	21.1
21	0.0	0.0	0.0	0.0	15.0	22.9	0.0	0.0	0.0	0.0	7.8	0.0	0.0	22.9	22.9	23.9
22	0.0	0.0	0.0	0.0	15.4	23.4	0.0	0.0	0.0	0.0	8.0	0.0	0.0	23.4	23.4	24.4
23	0.0	0.0	0.0	0.0	15.4	23.4	0.0	0.0	0.0	0.0	8.0	0.0	0.0	23.4	23.4	24.4
24	0.0	0.0	0.0	0.0	15.0	22.9	0.0	0.0	0.0	0.0	7.8	0.0	0.0	22.9	22.9	23.9

Sol-air Temperatures (averaged over south, west, and north faces + roof)

.

file: sa1_temp.wq2

01/28/96 Page 2

477

from file	e: global0	1.wq2									ASHRAE		yes	SAMSON		no
K(ext,m)	239.5	96.8	115.3	32.0	25.8	9.2	201.8	0.0	0.0	0.0	13.6	0.0	86.1	596.0	224.1	
K(ext)	596.0	224.1	596.0	224.1	596.0	224.1	596.0	224.1	596.0	224.1	596.0	224.1	224.1	596.0	224.1	
														Zone 3	Data Date:	20-Jul-90
Time		I - South	Vert Wa	I - West	Vert Wa	I - North	Vert Gla	z - South	Vert Gla	z - West	Vert Gla	z - North	Roof	Solair Ten	np ASHRAE	Ambient
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
[hr]	[0]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]
														¥.		
1	9.1	9.8	4.4	3.2	1.0	0.9	7.6	0.0	0.0	0.0	0.5	0.0	8.3	22.6	22.2	23.6
2	9.2	9.9	4.4	3.3	1.0	0.9	7.7	0.0	0.0	0.0	0.5	0.0	8.4	22.9	22.5	23. 9
3	9.0	9.6	4.3	3.2	1.0	0.9	7.5	0.0	0.0	0.0	0.5	0.0	8.2	22.3	21.9	23.3
4	8.5	9.2	4.1	3.0	0.9	0.9	7.1	0.0	0.0	0.0	0.5	0.0	7.7	21.2	20.8	22.2
5	8.5	9.2	4.1	3.0	0. 9	0.9	7.1	0.0	0.0	0.0	0.5	0.0	7.8	21.2	20.8	22.2
6	9.3	10.0	4.5	3.3	1.0	1.0	8.0	0.0	0.0	0.0	0.6	0.0	8.6	23.3	22.8	23.9
7	10.4	11.2	4.9	3.6	1.1	1.0	10.6	0.0	0.0	0.0	0.6	0.0	10.1	27.6	25.9	25.6
8	12.2	13.1	5.4	4.0	1.2	1.2	14.6	0.0	0.0	0.0	0.7	0.0	12.0	34.2	30.2	28.3
9	13.1	14.1	5.8	4.3	1.3	1.2	16.4	0.0	0.0	0.0	0.8	0.0	12.8	37.3	32.4	30.0
10	14.6	15.7	6.2	4.6	1.4	1.3	20.5	0.0	0.0	0.0	0.9	0.0	14.6	43.5	36.2	31.7
11	16.4	17.7	6.6	4.9	1.5	1.4	27.3	0.0	0.0	0.0	1.0	0.0	17.3	52.8	41.2	32.8
12	15.6	16.8	6.6	4.9	1.5	1.4	23.0	0.0	0.0	0.0	0.9	0.0	16.4	47.7	39.5	33.3
13	15.0	16.1	7.1	5.3	1.5	1.4	19.3	0.0	0.0	0.0	0.9	0.0	15.6	43.8	38.5	33.9
14	14.3	15.4	7.5	5.5	1.4	1.4	17.7	0.0	0.0	0.0	0.9	0.0	15.5	41.9	37.8	32.8
15	13.3	14.3	6.9	5.1	1.4	1.3	12.2	0.0	0.0	0.0	0.8	0.0	13.2	34.6	33.8	33.3
16	12.7	13.7	6.7	5.0	1.4	1.3	11.3	0.0	0.0	0.0	0.8	0.0	12.5	33.0	32.5	32.2
17	12.2	13.1	6.3	4.7	1.3	1.3	10.6	0.0	0.0	0.0	0.8	0.0	11.7	31.3	30.7	31.1
18	12.0	12. 9	6.4	4.7	1.4	1.3	10.5	0.0	0.0	0.0	0.9	0.0	11.4	31.1	30.3	30.6
19	11.2	12.1	5.4	4.0	1.2	1.2	9.4	0.0	0.0	0.0	0.7	0.0	10.3	27.9	27.6	28.9
20	8.1	8.7	3.9	2.9	0.9	0,8	6.8	0.0	0.0	0.0	0.5	0.0	7.3	20.1	19.7	21.1
21	9.2	9.9	4.4	3.3	1.0	0.9	7.7	0.0	0.0	0.0	0.5	0.0	8.4	22.9	22.5	23.9
22	9.4	10.1	4.5	3.3	1.0	1.0	7.9	0.0	0.0	• 0.0	0.5	0.0	8.6	23.4	23.0	24.4
23	9.4	10.1	4.5	3.3	1.0	1.0	7.9	0.0	0.0	0.0	0.5	0.0	8.6	23.4	23.0	24.4
24	9.2	9.9	4.4	3.3	1.0	0.9	7.7	0.0	0.0	0.0	0.5	0.0	8.4	22.9	22.5	23.9

Sol-air Temperatures (averaged over south, west, and north faces + roof)

.

01/28/96 Page 3

•

from file	e: global0	1.wq2									ASHRAE		yes	SAMSON		no
K(ext,m)	0.0	0.0	56.6	20.0	51.6	18.4	0.0	0.0	28.6	0.0	27.3	0.0	0.0	164.1	38.4	
K(ext)	164.1	38.4	164.1	38.4	164.1	38.4	164.1	38.4	164.1	38.4	164.1	38.4	38.4	164.1	38.4	
														Zone 4	Data Date:	20-Jul-90
Time	Vert Wal		Vert Wal		Vert Wal		Vert Gla		Vert Gla		Vert Gla		Roof		np ASHRAE	Ambient
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
[hr]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[C]
											1					
1	0.0	0.0	7.8	11.8	7.1	10.8	0.0	0.0	3.9	0.0	3.7	0.0	0.0	22.6	22.6	23.6
2	0.0	0.0	7.9	11.9	7.2	11.0	0.0	0.0	4.0	0.0	3.8	0.0	0.0	22.9	22.9	23.9
3	0.0	0.0	7.7	11.6	7.0	10.7	0.0	0.0	3.9	0.0	3.7	0.0	0.0	22.3	22.3	23.3
4	0.0	0.0	7.3	11.0	6.7	10.2	0.0	0.0	3.7	0.0	3.5	0.0	0.0	21.2	21.2	22.2
5	0.0	0.0	7.3	11.0	6.7	10.2	0.0	0.0	3.7	0.0	3.5	0.0	0.0	21.2	21.2	22.2
6	0.0	0.0	8.0	12.0	7.3	11.1	0.0	0.0	4.1	0.0	4.1	0.0	0.0	23.5	23.1	23.9
7	0.0	0.0	8.7	13.1	7.9	12.1	0.0	0.0	4.8	0.0	4.6	0.0	0.0	26.1	25.2	25.6
8	0.0	0.0	9.7	14.6	8.9	13.5	0.0	0.0	5.5	0.0	5.3	0.0	0.0	29.4	28.2	28.3
9	0.0	0.0	10.3	15.5	9.4	14.3	0.0	0.0	5.8	0.0	5.6	0.0	0.0	31.1	29.9	30.0
10	0.0	0.0	11.0	16.6	10.1	15.3	0.0	0.0	6.5	0.0	6.2	0.0	0.0	33.8	31.9	31.7
11	0.0	0.0	11.7	17.7	10.7	16.2	0.0	0.0	7.5	0.0	7.1	0.0	0.0	37.0	33.9	32.8
12	0.0	0.0	11.8	17.8	10.7	16.3	0.0	0.0	7.5	0.0	6.8	0.0	0.0	36.8	34.1	33.3
13	0.0	0.0	12.7	19.2	10.8	16.4	0.0	0.0	9.4	0.0	6.6	0.0	0.0	39.5	35.6	33.9
14	0.0	0.0	13.4	20.2	10.5	16.0	0.0	0.0	12.1	0.0	6.6	0.0	0.0	42.5	36.1	32.8
15	0.0	0.0	12.2	18.4	10.3	15.7	0.0	0.0	8.5	0.0	5.8	0.0	0.0	36.9	34.2	33.3
16	0.0	0.0	12.0	18.1	10.1	15.4	0.0	0.0	8.7	0.0	6.0	0.0	0.0	36.8	33.5	32.2
17	0.0	0.0	11.2	17.0	9.8	14.9	0.0	0.0	7.6	0.0	5.9	0.0	0.0	34.4	31.9	31.1
18	0.0	0.0	11.3	17.1	9.9	15.1	0.0	0.0	8.2	0.0	6.5	0.0	0.0	35.9	32.1	30.6
19	0.0	0.0	9.7	14.6	8.8	13.4	0.0	0.0	5.0	0.0	4.7	0.0	0.0	28.2	28.1	28.9
20	0.0	0.0	6.9	10.5	6.3	9.6	0.0	0.0	3.5	0.0	3.3	0.0	0.0	20.1	20.1	21.1
21	0.0	0.0	7.9	11.9	7.2	11.0	0.0	0.0	4.0	0.0	3.8	0.0	0.0	22.9	22.9	23.9
22	0.0	0.0	8.1	12.2	7.4	11.2	0.0	0.0	4.1	0.0	3.9	0.0	0.0	23.4	23.4	24.4
23	0.0	0.0	8.1	12.2	7.4	11.2	0.0	0.0	4.1	0.0	3.9	0.0	0.0	23.4	23.4	24.4
24	0.0	0.0	7.9	11.9	7.2	11.0	0.0	0.0	4.0	0.0	3.8	0.0	0.0	22.9	22.9	23.9

Sol-air Temperatures (averaged over south, west, and north faces + roof)

01/28/96 Page 4

	e: global(_								ASHRAE		yes	SAMSON		no
(ext,m)	0.0	0.0	0.0	0.0	180.6	72.1	0.0	0.0	0.0	0.0	146.5	0.0	13.9	327.2	86.1	
K(ext)	327.2	86.1	327.2	86.1	327.2	86.1	327.2	86.1	327.2	86,1	327.2	86.1	86.1	327.2	86.1	
														Zone 5	Data Date:	20-Jul-9
Time	Vert Wa		Vert Wa			II - North		z - South			Vert Gla		Roof	Solair Ten	np ASHRAE	Ambier
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
<u>[hr]</u>	[0]	[C]	[C]	[C]	[C]			[0]	[C]	[0]	[C]	[C]	[0]	[C]	[C]	[C]
1	0.0	0.0	0.0	0.0	12.5	18.9	0.0	0.0	0.0	0.0	10.1	0.0	3.5	22.5	22.4	23.6
2	0.0	0.0	0.0	0.0	12.6	19.2	0.0	0.0	0.0	0.0	10.2	0.0	3.5	22.8	22.7	23.9
3	0.0	0.0	0.0	0.0	12.3	18.7	0.0	0.0	0.0	0.0	9.9	0.0	3.4	22.2	22.1	23.3
4	0.0	0.0	0.0	0.0	11.7	17.8	0.0	0.0	0.0	0.0	9.4	0.0	3.3	21.1	21.0	22.2
5	0.0	0.0	0.0	0.0	11.7	17.8	0.0	0.0	0.0	0.0	9.5	0.0	3.3	21.2	21.1	22.2
6	0.0	0.0	0.0	0.0	12.8	19.5	0.0	0.0	0.0	0.0	11.0	0.0	3.6	23.8	23.1	23.9
7	0.0	0.0	0.0	0.0	13.9	21.2	0.0	0.0	0.0	0.0	12.5	0.0	4.3	26.5	25.4	25.6
8	0.0	0.0	0.0	0.0	15.6	23.6	0.0	0.0	0.0	0.0	14.4	0.0	5.0	29.9	28.7	28.3
9	0.0	0.0	0.0	0.0	16.5	25.0	0.0	0.0	0.0	0.0	15.1	0.0	5.4	31.6	30.5	30.0
10	0.0	0.0	0.0	0.0	17.6	26.8	0.0	0.0	0.0	0.0	16.7	0.0	6.2	34.4	33.0	31.7
11	0.0	0.0	0.0	0.0	18.7	28.4	0.0	0.0	0.0	0.0	19.1	0.0	7.3	37.8	35.7	32.8
12	0.0	0.0	0.0	0.0	18.7	28.4	0.0	0.0	0.0	0.0	18.3	0.0	6.9	37.0	35.3	33.3
13	0.0	0.0	0.0	0.0	18.9	28.6	0.0	0.0	0.0	0.0	17.8	0.0	6.6	36.6	35.2	33.9
14	0.0	0.0	0.0	0.0	18.4	27. 9	0.0	0.0	0.0	0.0	17.7	0.0	6.5	36.1	34.4	32.8
15	0.0	0.0	0.0	0.0	18.1	27.5	0.0	0.0	0.0	0.0	15.6	0.0	5.5	33.7	33.0	33.3
16	0.0	0.0	0.0	0.0	17.7	26.9	0.0	0.0	0.0	0.0	16.0	0.0	5.3	33.7	32.2	32.2
17	0.0	0.0	0.0	0.0	17.2	26.1	0.0	0.0	0.0	0.0	15.8	0.0	4.9	33.0	31.0	31.1
18	0.0	0.0	0.0	0.0	17.3	26.3	0.0	0.0	0.0	0.0	17.6	0.0	4.8	34.9	31.1	30.6
19	0.0	0.0	0.0	0.0	15.5	23.5	0.0	0.0	0.0	0.0	12.8	0.0	4.4	28.2	27.8	28.9
20	0.0	0.0	0.0	0.0	11.1	16.8	0.0	0.0	0.0	0.0	8.9	0.0	3.1	20.0	19.9	21.1
21	0.0	0.0	0.0	0.0	12.6	19.2	0.0	0.0	0.0	0.0	10.2	0.0	3.5	22.8	22.7	23.9
22	0.0	0.0	0.0	0.0	12.9	19.6	0.0	0.0	0.0	0.0	10.4	0.0	3.6	23.3	23.2	24.4
23	0.0	0.0	0.0	0.0	12.9	19.6	0.0	0.0	0.0	0.0	10.4	0.0	3.6	23.3	23.2	24.4
24	0.0	0.0	0.0	0.0	12.6	19.2	0.0	0.0	0.0	0.0	10.2	0.0	3.5	22.8	22.7	23.9

.

Sol-air Temperatures (averaged over south, west, and north faces + roof)

01/28/96 Page 5

Sol-air Temperatures (averaged over south, west, and north faces + roof	Sol-	air Tem	peratures	(averaged	over south	, west, and	d north t	faces + roof
---	------	---------	-----------	-----------	------------	-------------	-----------	--------------

from file	e: global0	1.wq2				······			·······		ASHRAE		yes	SAMSON		no
K(ext,m)	11.1	3.9	19.3	7.5	0.0	0.0	5.7	0.0	14.3	0.0	0.0	0.0	0.0	50.4	11.4	
K(ext)	50.4	11.4	50.4	11.4	50.4	11.4	50.4	11.4	50.4	11.4	50.4	11.4	11.4	50.4	11.4	
														Zone 6	Data Date:	20-Jul-90
Time	Vert Wal		Vert Wal			I - North		z - South	Vert Gla		Vert Gla	z - North	Roof	Solair Ten	np ASHRAE	Ambient
of Day	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum	Room	Plenum		Room	Plenum	Temp
[hr]	[C]	[C]	[C]	[C]	[C]	[C]	[C]	[0]	[C]			[C]	[C]	[C]	[C]	[C]
								[[[
1	5.0	7.8	8.6	14.8	0.0	0.0	2.5	0.0	6.4	0.0	0.0	0.0	0.0	22.6	22.6	23.6
2	5.1	7.9	8.8	15.0	0.0	0.0	2.6	0.0	6.5	0.0	0.0	0.0	0.0	22.9	22.9	23.9
3	4.9	7.7	8.5	14.6	0.0	0.0	2.5	0.0	6.3	0.0	0.0	0.0	0.0	22.3	22.3	23.3
4	4.7	7.3	8.1	13.9	0.0	0.0	2.4	0.0	6.0	0.0	0.0	0.0	0.0	21.2	21.2	22.2
5	4.7	7.3	8.1	13.9	0.0	0.0	2.4	0.0	6.0	0.0	0.0	0.0	0.0	21.2	21.2	22.2
6	5.1	8.0	8.8	15.1	0.0	0.0	2.7	0.0	6.7	0.0	0.0	0.0	0.0	23.3	23.1	23.9
7	5.7	8.9	9.6	16.5	0.0	0.0	3.6	0.0	7.8	0.0	0.0	0.0	0.0	26.7	25.4	25.6
8	6.7	10.4	10.8	18.4	0.0	0.0	4.9	0.0	9.0	0.0	0.0	0.0	0.0	31.3	28.9	28.3
9	7.2	11.3	11.4	19.5	0.0	0.0	5.5	0.0	9.5	0.0	0.0	0.0	0.0	33.6	30.8	30.0
10	8.0	12.5	12.2	20. 9	0.0	0.0	6.9	0.0	10.6	0.0	0.0	0.0	0.0	37.7	33.4	31.7
11	9.0	14.1	13.0	22.2	0.0	0.0	9.2	0.0	12.2	0.0	0.0	0.0	0.0	43.4	36.3	32.8
12	8.6	13.4	13.1	22.5	0.0	0.0	7.7	0.0	12.2	0.0	0.0	0.0	0.0	41.6	35.9	33.3
13	8.3	12.9	14.1	24.1	0.0	0.0	6.5	0.0	15.3	0.0	0.0	0.0	0.0	44.1	37.0	33.9
14	7.9	12.3	14.8	25.4	0.0	0.0	5.9	0.0	19.6	0.0	0.0	0.0	0.0	48.3	37.7	32.8
15	7.3	11.4	13.5	23.2	0.0	0.0	4.1	0.0	13.9	0.0	0.0	0.0	0.0	38.8	34.6	33.3
16	7.0	10.9	13.3	22.8	0.0	0.0	3.8	0.0	14.2	0.0	0.0	0.0	0.0	38.3	33.7	32.2
17	6.7	10.5	12.5	21.3	0.0	0.0	3.6	0.0	12.3	0.0	0.0	0.0	0.0	35.0	31.8	31.1
18	6.6	10.3	12.5	21.5	0.0	0.0	3.5	0.0	13.3	0.0	0.0	0.0	0,0	35.9	31.8	30.6
19	6.2	9.6	10.7	18.4	0.0	0.0	3.2	0.0	8.1	0.0	0.0	0.0	0.0	28.2	28.0	28.9
20	4.4	6.9	7.7	13.2	0.0	0.0	2.3	0.0	5.7	0.0	0.0	0.0	0.0	20.1	20.1	21.1
21	5.1	7.9	8.8	15.0	0.0	0.0	2.6	0.0	6.5	0.0	0.0	0.0	0.0	22.9	22.9	23.9
22	5.2	8.1	8.9	15.3	0.0	0.0	2.6	0.0	6.6	0.0	0.0	0.0	0.0	23.4	23.4	24.4
23	5.2	8.1	8.9	15.3	U.O	0.0	2.6	0.0	6.6	0.0	0.0	0.0	0.0	23.4	23.4	24.4
24	5.1	7.9	8.8	15.0	0.0	0.0	2.6	0.0	6.5	0.0	0.0	0.0	0.0	22.9	22.9	23.9

file: sa1_temp.wq2

01/28/96 Page 6

h(out):	28.3	[W/K-m2]	1993 ASHRAE F22.1, Table 1	l(r,h):	63	W/m2
alpha:	0.63	surface absorptance	Mills, p.818	sigma:	. 90	deg
epsilon:	0.90	emittance	Mills, p.818	C:	0.136	Table 7 F27.9
rho(g):	0.14	ground reflectance	1993 ASHRAE F27.27, Table 19	Y:	0.45	ASHRAE F27.28

Solair Temperatures, South Vertical Wall

	a	b	c	d	•	f	g	h	i	j	k	1	m	n 🖯	0	p
-	hour	solar	incident	global	direct		to	otal solar h	eat gain co	mponents		net solai	radiation	ambient	sol-air te	emperature
	of	altitude	angle	horz	normal	diffuse		E(d	s)	E(d	3)			air		
	day	beta	south	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
	[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]			[C]
	1	-27	144	0	0	0	0	0	0	0	0	0	0	23.6	22.6	22.6
	2	-23	134	0	0	0	0	0	0	0	0	0	0	23.9	22. 9	22.9
	3	-17	124	0	0	0	0	0	0	0	0	0	0	23.3	22.3	22.3
	4	-9	114	0	0	0	0	0	0	0	0	0	0	22.2	21.2	21.2
	5	-0	103	11	4	11	0	0	6	0	1	0	6 ·	22.2	21.2	21.3
	6	10	94	69	89	53	0	6	27	2	8	8	35	23.9	23.1	23.7
	7	21	85	228	279	127	25	22	64	10	27	57	116	25.6	25.9	27.2
	8	32	77	392	372	195	83	34	98	17	50	134	231	28.3	30.3	32.4
	9	43	71	521	340	289	109	33	145	19	84	162	338	30.0	32.6	36.5
	10	54	68	647	456	280	174	47	140	30	89	251	403	31.7	36.3	39.7
	11	63	66	819	711	187	284	75	94	51	64	409	441	32.8	40. 9	41.6
	12	68	68	843	543	340	202	56	170	40	123	298	495	33.3	38.9	43.3
	13	67	72	718	427	325	129	41	163	32	124	202	416	33.9	37.4	42.2
	14	60	79	742	489	318	95	43	159	34	127	172	381	32.8	35.6	40.3
	15	50	87	412	168	282	9	13	141	11	114	33	264	33.3	33.0	38.2
	16	39	96	321	165	216	0	11	108	9	84	20	192	32.2	31.7	35.5
	17	28	106	253	108	201	0	7	101	5	69	11	170	31.1	30.3	33.9
	18	17	116	154	140	112	0	8	56	4	30	12	86	30.6	29.9	31.5
	19	7	127	42	8	41	0	0	21,	0	7	1	27	28.9	27.9	28.5
	20	-3	137	0	0	0	0	0	0	0	0	0	0	21.1	20.1	20.1
	21	-12	146	0	0	0	0	0	0	0	0	0	0	23.9	22.9	22.9
	22	-20	152	0	0	0	0	0	0	0	0	0	0	24.4	23.4	23.4
	23	-25	155	0	0	0	0	0	0	0	0	0	0	24.4	23.4	23.4
	24	-27	151	0	0	0	0	0	0	0	0	0	0	23.9	22. 9	22.9

file: sa2_wall.wq2

01/18/96 Page 1

Figure 221: Support Calculations - Solair Temperature, Vertical Walls

Solair Temperature Calculation, Vertical Walls

h(out):	28.3 [W/K-m2] 1993 ASHRAE F22.1, Table 1	l(r,h): 63 W/m2
alpha:	0.63 surface absorptance Mills, p.818	sigma: 90 d e g
epsilon:	0.90 emittance Mills, p.818	C: 0.136 Table 7 F27.9
rho(g):	0.14 ground reflectance 1993 ASHRAE F27.27, Table 19	Y: 0.45 ASHRAE F27.28

Solair Temperatures, West Vertical Wall

a	b	c	d	e	f	g	' h	i	j	k	1	m	n	o	р
hour	solar	incident	giobal	direct		to	otal solar h	eat gain co	mponents		net sola	radiation	ambient	sol-air te	mperature
of	altitude	angle	horz	normal	diffuse		E(d	S)	E(d	3)			air		
day	beta	west	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[C]	[C]
1	-27	113	0	0	0	0	0	0	0	0	0	0	23.6	22.6	22.6
2	-23	127	0	0	0	0	0	0	0	0	0	0	23.9	22.9	22.9
3	-17	141	0	0	0	0	0	0	0	0	0	0	23.3	22.3	22.3
4	-9	154	0	0	0	0	0	0	0	0	0	0	22.2	21.2	21.2
5	-0	167	11	4	11	0	0	6	0	1	0	6 ·	22.2	21.2	21.3
6	10	169	69	89	53	0	5	27	2	10	7	37	23.9	23.1	23.7
7	21	158	228	279	127	0	16	64	10	39	25	102	25.6	25.2	26.9
8	32	145	392	372	195	0	20	98	17	83	38	180	28.3	28.1	31.3
9	43	131	521	340	289	0	18	145	19	153	38	297	30.0	29.8	35.6
10	54	117	647	456	280	0	26	140	30	163	56	303	31.7	31.9	37.4
11	63	103	819	711	187	0	45	94	51	106	96	199	32.8	33.9	36.2
12	68	89	843	543	340	8	41	170	40	167	89	345	33.3	34.3	40.0
13	67	76	718	427	325	106	39	163	32	130	177	399	33.9	36.8	41.8
14	60	63	742	489	318	225	54	159	34	100	314	485	32.8	38.8	42.6
15	50	50	412	168	282	107	22	141	11	69	140	317	33.3	35.4	39.3
16	39	40	321	165	216	126	24	108	9	40	159	274	32.2	34.7	37.3
17	28	33	253	108	201	90	17	101	5	28	112	219	31.1	32.6	35.0
18	17	32	154	140	112	119	22	56	4	11	145	186	30.6	32.8	33.7
19	7	37	42	8	41	6	1	21	0	2	8	29	28.9	28.1	28.6
20	-3	47	0	0	0	0	0	0	0	0	0	0	21.1	20.1	20.1
21	-12	59	0	0	0	0	0	0	0	0	0	0	23.9	22.9	22.9
22	-20	71	o	0	0	0	0	0	0	0	0	0	24.4	23.4	23.4
23	-25	85	0	0	0	0	0	0	0	0	0	0	24.4	23.4	23.4
24	-27	99	o	o	0	o	o	0	0	o	0	o	23.9	22.9	22.9

file: sa2_wall.wq2

.

01/18/96 Page 2

483

Solair Temperature Calculation, Vertical Walls

h(out):	28.3 [W/K-m2] 1993 ASHRAE F22.1, Table 1	l(r,h): 63 W/m2
alpha:	0.63 surface absorptance Mills, p.818	sigma: 90 deg
epsilon:	0.90 emittance Mills, p.818	C: 0.136 Table 7 F27.9
rho(g):	0.14 ground reflectance 1993 ASHRAE F27.27, Table 19	Y: 0.45 ASHRAE F27.28

Solair Temperatures, North Vertical Wall

<u>a</u>	b	с	d	e	f	g	h	i	i	k	I	m	n	o	р
hour	solar	incident	global	direct		to	otal solar h	eat gain co	mponents		net sola	r radiation	ambient		mperature
of	altitude	angle	horz	normal	diffuse		E(d	s)	E(d	a)			air		
day	beta	north	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[0]	[C]
															<u>_</u>
1	-27	36	0	0	0	0	0	0	0	0	0	0	23.6	22.6	22.6
2	-23	46	0	0	0	0	0	0	0	0	0	o	23.9	22.9	22.9
3	-17	56	0	0	0	0	0	0	0	0	0	o	23.3	22.3	22.3
4	-9	66	0	0	0	0	0	0	0	0	0	0	22.2	21.2	21.2
5	-0	77	11	4	11	1	0	6	0	1	1	7	22.2	21.2	21.4
6	10	86	69	89	53	6	7	27	2	7	15	40	23.9	23.2	23.8
7	21	95	228	279	127	0	19	64	10	31	29	95	25.6	25.2	26.7
8	32	103	392	372	195	0	24	98	17	71	41	169	28.3	28.2	31.1
9	43	109	521	340	289	0	20	145	19	138	40	282	30.0	29.9	35.3
10	54	112	647	456	280	0	27	140	30	158	57	298	31.7	32.0	37.3
11	63	114	819	711	187	0	41	94	51	116	92	209	32.8	33.8	36.5
12	68	112	843	543	340	0	32	170	40	216	72	386	33.3	33.9	40.9
13	67	108	718	427	325	0	26	163	32	198	58	360	33.9	34.2	40.9
14	60	101	742	489	318	0	32	159	34	172	66	331	32.8	33.3	39.2
15	50	93	412	168	282	0	12	141	11	125	23	266	33.3	32.8	38.2
16	39	84	321	165	216	17	13	108	9	72	39	197	32.2	32.1	35.6
17	28	74	253	108	201	29	10	101	5	46	44	176	31.1	31.1	34.0
18	17	64	154	140	112	62	15	56	4	16	81	133	30.6	31.4	32.6
19	7	53	42	8	41	5	1	21	0	3	6	28	28.9	28.0	28.5
20	-3	43	0	0	0	0	0	0 [·]	0	Ō	Ō	0	21.1	20.1	20.1
21	-12	34	0	0	0	0	0	0	0	0	0	ō	23.9	22.9	22.9
22	-20	28	0	0	0	0	o	o	ō	0	o	ŏ	24.4	23.4	23.4
23	-25	25	0	0	o	0	ō	0	0	o	ō	.0	24.4	23.4	23.4
24	-27	29	0	0	o	ō	0	o	o	ŏ	o	0	23.9	22.9	22.9
	•		•	1	- 11	- 1	- 1	- I		, v 1	v I	v 1	20.0	22.3	22.0

file: sa2_wall.wq2

01/18/96 Page 3

Solair Temperature Calculation, Glazing

h(out):	23.90	[W/K-m2]	l(r,h):	63	W/m2
alpha:	0.15	surface absorptance	sigma:	90	deg
epsilon:	0.85	emissivity	C:	0.136	Table 7 F27.9
rho(g):	0.14	ground reflectance	Y :	0.45	ASHRAE F27.28
SHGC(m):	0.23	1993 F27.19, Ex-8	U:	1.95	rescap03.wq2

Solair Temperature, South Glazing

a	b	c	d	8	f	g	h	i	j	k	1	m	n	o	р
hour	solar	incident	global	direct		to	otal solar h	eat gain co	mponents		net sola	radiation	ambient	sol-air te	mperature
of	altitude	angle	horz	normal	diffuse		E(d	s)	E(d	g)			air		
day	beta	south	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[C]	[C]
1	-27	144	0	0	0	0	0	0	0	0	0	0	23.6	22.5	22.5
2	-23	134	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8
3	-17	124	0	0	0	0	0	0	0	0	0	0	23.3	22.2	22.2
4	-9	114	0	0	0	0	0	0	0	0	0	0	22.2	21.1	21.1
5	-0	103	11	4	11	0	0	6	0	1	0	6	22.2	21.1	21.8
6	10	94	69	89	53	0	6	27	2	8	8	35	23.9	23.8	26.9
7	21	85	228	279	127	25	22	64	10	27	57	116	25.6	31.3	38.4
8	32	77	392	372	195	83	34	98	17	50	134	231	28.3	43.2	54.8
9	43	71	521	340	289	109	33	145	19	84	162	338	30.0	48.3	69.4
10	54	68	647	456	280	174	47	140	30	89	251	403	31.7	60.7	78.8
11	63	66	819	711	187	284	75	94	51	64	409	441	32.8	80.7	84.5
12	68	68	843	543	340	202	56	170	40	123	298	495	33.3	67.9	91.5
13	67	72	718	427	325	129	41	163	32	124	202	416	33.9	56.9	82.6
14	60	79	742	489	318	95	43	159	34	127	172	381	32.8	52.3	77.3
15	50	87	412	168	282	9	13	141	11	114	33	264	33.3	36.1	63.9
16	39	96	321	165	216	0	11	108	9	84	20	192	32.2	33.5	54.1
17	28	106	253	108	201	0	7	101	5	69	11	170	31.1	31.3	50.3
18	17	116	154	140	112	0	8	56	4	30	12	86	30.6	30.9	39.8
19	7	127	42	8	41	0	0	21	0	7	1	27	28.9	27.8	31.0
20	-3	137	0	0	0	0	0	0	o	0	0	Ο.	21.1	20.0	20.0
21	-12	146	О	0	0	0	0	o	0	0	0	0	23.9	22.8	22.8
22	-20	152	o	0	0	o	0	o	0	0	0	0	24.4	23.3	23.3
23	-25	155	o	0	0	0	0	0	0	0	0	0	24.4	23.3	23.3
24	-27	151	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8

file: sa3_glaz.wq2

01/18/96 Page 1

Solair Temperature Calculation, Glazing

h(out):	23.90	[W/K-m2]	l(r,h):	63	W/m2
alpha:	0.15	surface absorptance	sigma:	90	deg
epsilon:	0.85	emissivity	C:	0.136	Table 7 F27.9
rho(g):	0.14	ground reflectance	Y:	0.45	ASHRAE F27.28
SHGC(m):	0.23	1993 F27.19, Ex-8	U:	1.95	rescap03.wq2

Solair Temperature, West Glazing

a	b	с	d	e	f	g	_ h	i	j	k	1	m	n	o	р
hour	solar	incident	global	direct		to	otal solar h	eat gain co	mponents		net sola	radiation	ambient	sol-air te	mperature
of	altitude	angle	horz	normal	diffuse		E(d	s)	E(d	g)			air		
day	beta	west	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[0]	[C]
1	-27	113	0	0	0	0	0	0	0	0	0	0	23.6	22.5	22.5
2	-23	127	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8
3	-17	141	0	0	0	0	0	0	0	0	0	0	23.3	22.2	22.2
4	-9	154	0	0	0	0	0	0	0	0	0	0	22.2	21.1	21.1
5	-0	167	11	4	11	0	0	6	0	1	0	6	22.2	21.1	21.8
6	10	169	69	89	53	0	5	27	2	10	7	37	23.9	23.6	27.2
7	21	158	228	279	127	0	16	64	10	39	25	102	25.6	27.5	36.7
8	32	145	392	372	195	0	20	98	17	83	38	180	28.3	31.7	48.8
9	43	131	521	340	289	0	18	145	19	153	38	297	30.0	33.4	64.5
10	54	117	647	456	280	0	26	140	30	163	56	303	31.7	37.3	66.9
11	63	103	819	711	187	0	45	94	51	106	96	199	32.8	43.2	55.5
12	68	89	843	543	340	8	41	170	40	167	89	345	33.3	42.9	73.5
13	67	76	718	427	325	106	39	163	32	130	177	399	33.9	54.0	80.6
14	60	63	742	489	318	225	54	159	34	100	314	485	32.8	69.3	89.7
15	50	50	412	168	282	107	22	141	11	69	140	317	33.3	48.9	70.1
16	39	40	321	165	216	126	24	108	9	40	159	274	32.2	50.1	63.9
17	28	33	253	108	201	90	17	101	5	28	112	219	31.1	43.4	56.2
18	17	32	154	140	112	119	22	56 [']	4	11	145	186	30.6	46.8	51.7
19	7	37	42	8	41	6	1	21	0	2	8	29	28.9	28.7	31.3
20	-3	47	0	0	0	0	0	0	0	0	0	0	21.1	20.0	20.0
21	-12	59	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8
22	-20	71	0	0	0	0	0	0	0	0	0	0	24.4	23.3	23.3
23	-25	85	0	0	0	0	0	0	0	0	0	0	24.4	23.3	23.3
24	-27	99	0	0	o	0	0	0	0	0	0	0	23.9	22.8	22.8

01/18/96 Page 2

Solair Temperature Calculation, Glazing

h(out):	23.90	[W/K-m2]	l(r,h):	63	W/m2
alpha:	0.15	surface absorptance	sigma:	90	deg
epsilon:	0.85	emissivity	C:	0.136	Table 7 F27.9
rho(g):	0.14	ground reflectance	Y:	0.45	ASHRAE F27.28
SHGC(m):	0.23	1993 F27.19, Ex-8	U:	1.95	rescap03.wq2

Solair Temperature, North Glazing

a	b	с	d	0	f	g	h	i	1	k	1	m	n	0	р
hour	solar	incident	global	direct		to	otal solar h	eat gain co	mponents		net sola	r radiation	ambient	sol-air te	mperature
of	altitude	angle	horz	normal	diffuse		E(d		E(dg	3)			air		
day	beta	north	radiation	radiation	radiation	E(D)		SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[C]	[C]
1	-27	36	0	0	0	0	0	0	0	0	0	0	23.6	22.5	22.5
2	-23	46	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8
3	-17	56	0	0	0	0	0	0	0	0	0	0·	23.3	22.2	22.2
4	-9	66	0	0	0	0	0	0	0	0	0	0	22.2	21.1	21.1
5	-0	77	11	4	11	1	0	6	0	1	1	7	22.2	21.2	21.9
6	10	86	69	89	53	6	7	27	2	7	15	40	23.9	24.5	27.5
7	21	95	228	279	127	0	19	64	10	31	29	95	25.6	28.0	35.8
8	32	103	392	372	195	0	24	98	17	71	41	169	28.3	32.1	47.4
9	43	109	521	340	289	0	20	145	19	138	40	282	30.0	33.7	62.7
10	54	112	647	456	280	0	27	140	30	158	57	298	31.7	37.4	66.3
11	63	114	819	711	187	0	41	94	51	116	92	209	32.8	42.7	56.8
12	68	112	843	543	340	0	32	170	40	216	72	386	33.3	40.8	78.4
13	67	108	718	427	325	0	26	163	32	198	58	360	33.9	39.7	75.9
14	60	101	742	489	318	0	32	159	34	172	66	331	32.8	39.6	71.3
15	50	93	412	168	282	0	12	141	11	125	23	266	33.3	34.9	64.0
16	39	84	321	165	216	17	13	108	9	72	39	197	32.2	35.8	54.6
17	28	74	253	108	201	29	10	101	5	46	44	176	31.1	35.3	51.0
18	17	64	154	140	112	62	15	56 '	4	16	81	133	30.6	39.2	45.4
19	7	53	42	8	41	5	1	21	0	3	6	28	28.9	28.5	31.2
20	-3	43	0	0	0	0	0	0	0	0	0	0	21.1	20.0	20.0
21	-12	34	0	0	0	0	0	0	0	0	0	0	23.9	22.8	22.8
22	-20	28	0	0	0	0	0	0	0	0	0	0	24.4	23.3	23.3
23	-25	25	O	0	0	0	0	0	0	0	0	0	24.4	23.3	23.3
24	-27	29	0	0	0	o	o	O	0	0	0	0	23.9	22.8	22.8

file: sa3_glaz.wq2

01/18/96 Page 3

Fig	Solair Tei	mperature (Calculation,	, Roof										•		488
Figure	h(out):		28	[W/K-m2]		l(r,h):	63	W/m2			I					
4	alpha:			surface ab	sorptance	sigma:	0	deg								
223:	epsilon:		0.9	emissivity		C:		Table 7 F2	79							
	rho(g):		0.14	ground ref	lectance	Y:		ASHRAE F								
ldn			0.14	ground ron		1	0.40	AUTHAL	27.20		1					
Support Calculations	a	b	с	d	e	f	g.	h	i	j	k	1	m	· n	o	р
ā	hour	solar	incident	global	direct		to	tal solar he	at gain com	ponents		net solar	radiation	ambient	sol-air te	mperature
alc	of	altitude	angle	horz	normal	diffuse		E(ds	3)	E(dg)			air		
Ĕ	day	beta	horizontal	radiation	radiation	radiation	E(D)	ASHRAE	SAMSON	ASHRAE	SAMSON	ASHRAE	SAMSON	temp	ASHRAE	SAMSON
atio	[hr]	[deg]	[deg]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]	[C]	[C]
g																
	1	-27	117	0	0	0	0	0	0	0	0	0	0	23.6	21.6	21.6
Solair Temperature, Roof	2	-23	113	0	0	0	0	0	0	0	0	0	0	23.9	21.9	21.9
ai	3	-17	107	0	0	0	0	0	0	0	0	0	0	23.3	21.3	21.3
-	4	-9	99	0	0	0	0	0	0	0	0	0	0	22.2	20.2	20.2
Ê	5	-0	90	11	4	11	0	1	11	0	0	1	11	22.2	20.2	20.4
lpe	6	10	80	69	89	53	16	12	53	0	0	28	69	23.9	22.4	23.2
ïa	7	21	69	228	279	127	99	38	127	0	0	137	226	25.6	26.3	28.0
E E	8	32	58	392	372	195	197	51	195	0	0	247	392	28.3	31.1	34.0
, e	9	43	47	521	340	289	232	46	289	0	0	278	521	30.0	33.4	38.2
Ro	10	54	36	647	456	280	367	62	280	0	0	429	647	31.7	38.1	42.4
e,	11	63	27	819	711	187	632	97	187	0	0	729	819	32.8	45.1	46.9
	12	68	22	843	543	340	504	74	340	0	0	578	844	33.3	42.6	47.9
	13	67	23	718	427	325	393	58	325	0	0	451	718	33.9	40.7	46.0
	14	60	30	742	489	318	424	67	318	0	0	490	742	32.8	40.4	45.3
	15	50	40	412	168	282	129	23	282	0	0	152	411	33.3	34.3	39.4
	16	39	51	321	165	216	105	22	216	0	0	127	321	32.2	32.7	36.5
	17	28	62	253	108	201	51	15	201	0	0	66	252	31.1	30.4	34.0
	18	17	73	154	140	112	42	19	112	0	0	61	154	30.6	29.8	31.6
	19	7	83	42	8	41	1	1	41	0	0	2	42	28.9	26.9	27.7
	20	-3	93	0	0	0	0	0	0	0	0	0	0	21.1	19.1	19.1
	21	-12	102	0	0	0	0	0	0	0	0	0	0	23.9	21.9	21.9
	22	-20	110	0	0	0	0	0	0	0	0	0	0	24.4	22.4	22.4
	23	-25	115	0	0	0	0	0	0	0	0	0	0	24.4	22.4	22.4
	24	-27	117	0	0	0	о	0	0	0	0	0	0	23.9	21.9	21.9

file: sa4_roof.wq2

01/18/96 Page 1

Location:		Boston		Data Date:		20-Jul-90								
Local Latit		42												
Local Long				Local Star		67.5		Eastern St	andard Tim	le				
Solar Decl		20.6	deg	Equation of		-6.2	mins							
Bldg Surfa	ce Azimut	-15	deg	75	deg	165	deg							
a	ь	c	d	e	f	g	h	i	j	k	I	m	n	o
							solar	incident		incident		incident		incident
Time	Hour		sin(beta)	beta	cos(Phi)	absolute	azimuth	angle	cos(IA)	angle	cos(IA)	angle	cos(IA)	angle
	Angle	Solar				value	value	horz	vert	vert	vert	vert	vert	vert
		Time				PHI	PHI		South	South	West	West	North	North
[hr]	[deg]		<u> </u>	[deg]		[deg]	[deg]	[deg]		[deg]	L	[deg]	ļ	[deg]
1	170	0.7	-0.45	-27	-0.98	170	-170	117	-0.81	144	-0.38	113	0.81	36
2	155	1.7	-0.40	-23	-0.90	155	-155	113	-0.70	134	-0.60	127	0.70	46
3	140	2.7	-0.30	-17	-0.78	141	-141	107	-0.56	124	-0.77	141	0.56	56
4	125	3.7	-0.16	-9	-0.63	129	-129	99	-0.40	114	-0.90	. 154	0.40	66
5	110	4.7	-0.00	-0	-0.48	118	-118	90	-0.23	103	-0.97	167	0.23	77
6	95	5.7	0.17	10	-0.32	109	-109	80	-0.06	94	-0.98	169	0.06	86
7	80	6.7	0.36	21	-0.16	99	-99	69	0.09	85	-0.93	158	-0.09	95
8	65	7.7	0.53	32	0.00	90	-90	58	0.22	77	-0.82	145	-0.22	103
9	50	8.7	0.68	43	0.19	79	-79	47	0.32	71	-0.66	131	-0.32	109
10	35	9.7	0.80	54	0.42	65	-65	36	0.38	68	-0.45	117	-0.38	112
11	20	10.7	0.89	63	0.71	44	-44	27	0.40	66	-0.23	103	-0.40	114
12	5	11.7	0.93	68	0.98	13	-13	22	0.37	68	0.01	89	-0.37	112
13	-10	12.7	0.92	67	0.91	24	24	23	0.30	72	0.25	76	-0.30	108
14	-25	13.7	0.87	60	0.61	52	52	30	0.19	79	0.46	63	-0.19	101
15	-40	14.7	0.77	50	0.34	70	70	40	0.06	87	0.64	50	-0.06	93
16	-55	15.7	0.63	39	0.13	83	83	51	-0.10	96	0.77	40	0.10	84
17	-70	16.7	0.47	28	-0.05	93	93	62	-0.27	106	0.84	33	0.27	74
18	-85	17.7	0.30	17	-0.22	102	102	73	-0.44	116	0.85	32	0.44	64
19	-100	18.7	0.12	7	-0.37	112	112	· 83	-0.60	127	0.79	37	0.60	53
20	-115	19.7	-0.06	-3	-0.53	122	122	93	-0.73	137	0.68	47	0.73	43
21	-130	20.7	-0.21	-12	-0.68	133	133	102	-0.83	146	0.52	59	0.83	34
22	-145	21.7	-0.33	-20	-0.82	145	145	110	-0.89	152	0.32	71	0.89	28
23	-160	22.7	-0.42	-25	-0.94	159	159	115	-0.90	155	0.09	85	0.90	25
24	-175	23.7	-0.46	-27	-1.00	175	175	117	-0.88	151	-0.15	99	0.88	29

Solar Altitude - Solar Azimuth - Solar Component Normal to Bldg Surface

.

1

file: sa5_suna.wq2

01/18/96 Page 1

Figure 224: Support Calculations - Local Sun Angles & Normals to Building Surfaces

Solar Radiation and Temperature Data

.

	Location: Blue Hill Observatory, Canton, Massachusetts							
Data	SAMSON D		oorvatory, e					
Time	1	2	3	4	5	8		
	Extra	Extra	Giobal	Direct	Diffuse	Ambient		
	Horz	Direct	Horz	Normal	Horz	Temp		
[hr]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[W/m2]	[C]		
1	0	0	0	0	0	23.6		
2	0	0	0	0	0	23.9		
3	0	0	0	0	0	23.3		
4	0	0	0	0	0	22.2		
5	62	683	11	4	11	22.2		
6	238	1323	69	89	53	23.9		
7	475	1323	228	279	127	25.6		
8	702	1323	392	372	195	28.3		
9	903	1323	521	340	289	30.0		
10	1064	1323	647	456	280	31.7		
11	1175	1323	819	711	187	32.8		
12	1227	1323	843	543	340	33.3		
13	1217	1323	718	427	325	33.9		
14	1146	1323	742	489	318	32.8		
15	1018	1323	412	168	282	33.3		
16	842	1323	321	165	216	32.2		
17	631	1323	253	108	201	31.1		
18	399	1323	154	140	112	30.6		
19	163	1323	42	8	41	28.9		
20	30	265	0	0	0	21.1		
21	0	0	0	0	0	23.9		
22	0	0	0	0	0	24.4		
23	0	0	0	0	0	24.4		
24	0	0	0	0	0	23.9		

Data Date: 20-Jul-90 Location: Blue Hill Observatory, Canton, Massachusetts

file: sa6_data.wq2

01/18/96 Page 1

Figure 225: Support Calculations - Solar Radiation and Ambient Air Temperature Data

Appendix Z - HVACSIM+ Type Models

•

TEMPERATURE SENSOR **TYPE 007:**

Inputs:

- 1. TEMPERATURE INPUT TEMPERATURE 2. CONTROL SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)

Outputs:

1. CONTROL - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)

Parameters:

- 1. SENSOR TIME CONSTANT (SEC)
- 2. TEMPERATURE OFFSET (C) 3. TEMPERATURE RANGE (C)

TYPE 087: 8-WAY PATCHBOARD

Inputs:

1.	Input	1
2.	Input	2
з.	Input	3
4.	Input	4
5.	Input	5
6.	Input	6
7.	Input	7
8.	Input	8

Outputs:

1.	Output	1
2.	Output	2
з.	Output	3
4.	Output	4
5.	Output	5
6.	Output	6
7.	Output	7
8.	Output	8

Parameters:

1.	Input	connected	to	output	1	(-)
2.	Input	connected	to	output	2	(-)
з.	Input	connected	to	output	3	(-)
4.	Input	connected	to	output	4	(-)
5.	Input	connected	to	output	5	(-)
6.	Input	connected	to	output	6	(-)
7.	Input	connected	to	output	7	(-)
8.	Input	connected	to	output	8	(-)

TYPE 102: MIXING BOX + DAMPERS

Inputs:

- Fresh air dry bulb temperature [C]
 Fresh air humidity ratio [kg/kg]
 Extract air dry bulb temperature [C]
 Extract air humidity ratio [kg/kg]

- Extract air humidity ratio [kg/kg]
 Fresh air intake gauge static pressure [kPa]
 Exhaust air outlet gauge static pressure [kPa]
 Supply air gauge static pressure [kPa]
 Extract dry air mass flow rate [kg/s]
 Fresh air damper position (0=closed, 1=open)
 Return air damper position (0=open if PAR(15)=0)

11. Extract air damper position (0=closed, 1=open)

Outputs:

- 1. Supply air dry bulb temperature [C] 2. Supply air humidity ratio [kg/kg]
- 3. Supply dry air mass flow rate [kg/s]
- Supply air specific enthalpy [kJ/kg]
 Supply air relative humidity [%]
 Supply humid air mass flow rate [kg/s]

- 7. Extract air gauge static pressure [kPa]
- 8. Fresh dry air mass flow rate [kg/s]
- 9. Return dry air mass flow rate [kg/s] 10. Exhaust dry air mass flow rate [kg/s]

Parameters:

- Auxiliary psychometric outputs (0 = no, 1 = yes)
 Fault: 0=no faults, 1=100% oversized, 2=20% leakage, 3=both
 Fresh air damper: opposed (0) or parallel (1)
 Return air damper: opposed (0) or parallel (1) 5. Exhaust air damper: opposed (0) or parallel (1) 6. Open resist. for fresh air damper (p.d. (kPa) at 1 m3/s)
 7. Open resist. for return air damper (p.d. (kPa) at 1 m3/s)
 8. Open resist. for exhaust air damper (p.d. (kPa) at 1 m3/s)
 9. Leakage for fresh air damper (fraction of full flow)
 10. Leakage for return air damper (fraction of full flow) 11. Leakage for exhaust air damper (fraction of full flow) 12. Authority of fresh air damper 13. Authority of return air damper 14. Authority of exhaust air damper
- 15. 0=invert return air damper, 1=not inverted

TYPE 133: PSYCHROMETRICS

Inputs:

- 1. Inlet air dry bulb temperature (C)
- 2. Inlet relative humidity (%) (used if mode=1)
- 3. Inlet humidity ratio (kg/kg) (used if mode=2)
- 4. Inlet air wet bulb temperature(C) (Mode=3)
- 5. Atmospheric pressure (Pa)

Outputs:

- 1. Air dry bulb temperature (C)
- 2. Relative humidity (%)
- Air humidity ratio (kg/kg)
 Air enthalpy (kJ/kg)
- 5. Dew point temperature (C)
- 6. Air wet bulb temperature (C)
 - (If par(3) = 0, twb = 0.)

Parameters:

```
1. Nothing
```

- 2. Mode(1 or 2 or 3)
- 3. If 0:twb not included in the outputs
 - 1:twb included in the outputs

TYPE 134: PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER)

Inputs:

- Mair : Air mass flow rate (kg/s)
 Pout : Outlet pressure (kPa)
 Fflowset : Demanded flowrate (norm to nom) (0-1)

Outputs:

1.	Pin	:	Inlet pressure (kPa)
2.	Damppos		Damper position (0=closed, 1=open)
з.	Fsped		Fractional motor velocity (0-1)
4.	Tssrev	:	Number of stops/starts/reversals (-)
5.	Ttrav	:	Total distance travelled by valve/damper (-)

Parameters:

2.	Farea	:	Nominal volumetric flow rate (m3/s) Face area of damper(s) (m2)
з.	Pdadd	:	Additional pressure drop at nominal flow (kPa)
4.	Ttran	:	Travel time (0-90 deg) (s)
5.	Fspedmin	:	Minimum fractional motor speed (-)
6.	Hys	:	Hysteresis (-)
7.	Kp	:	Controller gain (frac speed/frac error)

TYPE 135: REAL-TIME GRAPHS of PRESSURE, FLOW & CONTROL SIGNALS

.

Inputs:

1.	PRESSURE - FIRST PRESSURE TO BE PLOTTED
2.	PRESSURE - SECOND PRESSURE TO BE PLOTTED
з.	PRESSURE - THIRD PRESSURE TO BE PLOTTED
4.	PRESSURE - FOURTH PRESSURE TO BE PLOTTED
5.	FLOW - FIRST FLOW TO BE PLOTTED
6.	FLOW - SECOND FLOW TO BE PLOTTED
7.	FLOW - THIRD FLOW TO BE PLOTTED
8.	FLOW - FOURTH FLOW TO BE PLOTTED
9.	CONTROL - FIRST CONTROL SIGNAL TO BE PLOTTED
10.	CONTROL - SECOND CONTROL SIGNAL TO BE PLOTTED
11.	CONTROL - THIRD CONTROL SIGNAL TO BE PLOTTED
12.	CONTROL - FOURTH CONTROL SIGNAL TO BE PLOTTED

Outputs:

1. CONTROL - DUMMY OUTPUT (DO NOT USE CONTROL 0)

Parameters:

 TIME INTERVAL FOR PLOTTING (S)
 STOPPING TIME (S)
 SCALING FACTOR FOR TIME AXIS (3600. -> HOURS) [-]
 MAXIMUM PRESSURE (KPA)
 MINIMUM PRESSURE (KPA)
 MINIMUM PRESSURE (KPA) 5. MINIMUM PRESSURE (KPA)
6. MAXIMUM FLOW RATE (KG/S)
7. MINIMUM FLOW RATE (KG/S)
8. MAXIMUM CONTROL SIGNAL (-)
9. MINIMUM CONTROL SIGNAL (-)
10. NUMBER OF PRESSURES TO PLOT (-)
11. NUMBER OF FLOW RATES TO PLOT (-)
12. NUMBER OF CONTROL SIGNALS TO PLOT (-)
13. INDEX OF FIRST PRESSURE (-) INDEX OF FORTROL STORALS TO
 INDEX OF FIRST PRESSURE (-)
 INDEX OF SECOND PRESSURE (-)
 INDEX OF THIRD PRESSURE (-)
 INDEX OF FOURTH PRESSURE (-) 17. INDEX OF FIRST FLOW RATE (-) 18. INDEX OF SECOND FLOW RATE (-) 19. INDEX OF THIRD FLOW RATE (-) 20. INDEX OF FOURTH FLOW RATE (-) 21. INDEX OF FIRST CONTROL SIGNAL (-) INDEX OF FIRST CONTROL SIGNAL (-)
 INDEX OF THIRD CONTROL SIGNAL (-)
 INDEX OF FOURTH CONTROL SIGNAL (-)

Inputs:

1.	FLOW:	kg/s	(Air mass flow rate)
2.	P2 :	kPa	(Pressure at conduit outlet)
З.	TIN:	С	(Air inlet temperature)
4.	WIN:	kg/kg	(Air inlet humidity ratio)
5.	TEXT:	С	(External temperature)

Outputs:

1.	TOUT:	С	(Air outlet temperature)
2.	WOUT :	kg/kg	(Air outlet temperature)
з.	P1:	kPa	(Pressure at conduit inlet)
4.	QEXT:	kW	(Heat loss to exterior)

Parameters:

1.	ISHAPE:	Shape of duct (round=0, square=1)
2.	SIZE:	Size of duct - round: diameter, square: side (m)
з.	LEN:	Length of duct (m)
4.	THICK:	Wall thickness (m)
5.	IMAT:	Wall material (Al=1, Cu=2, Fe=3)
6.	RVAL:	Insulation R-value (K.m2/W)
7.	K:	Flow resistance (0.001 kg.m)
8.	H:	Height of outlet above inlet (m)

TYPE 189: FIRST ORDER VELOCITY SENSOR MODEL

Inputs:

- Mass flow rate
 Sensor output (modified by gain and offset)

Outputs:

1. Sensor output (modified by gain and offset)

Parameters:

- Cross sectional area of duct (m²)
 Mode: 1 = air, 2 = water
 Sensor time constant (s)
 Velocity offset (m/s)
 Velocity range (m/s)

TYPE 196: READ FROM UNIX SOCKET (16 REALS)

Inputs:

1. CONTROL - DUMMY (MUST NOT BE CONTROL 0!)

Outputs:

2.	CONTROL -	SIMULATION SIMULATION	INPUT /	SOCKET SOCKET	OUTPUT	1 2
		SIMULATION		SOCKET		3
		SIMULATION		SOCKET		4
		SIMULATION		SOCKET		5
		SIMULATION		SOCKET		6
		SIMULATION	· · · · · · · · · · · · · · · · · · ·	SOCKET		7
		SIMULATION		SOCKET		8
9.	CONTROL -	SIMULATION	INPUT /	SOCKET	OUTPUT	9

-

10.	CONTROL	-	SIMULATION	INPUT	/	SOCKET	OUTPUT	10
			SIMULATION					11
			SIMULATION					12
			SIMULATION			SOCKET	OUTPUT	13
			SIMULATION			SOCKET		14
			SIMULATION					15
16.	CONTROL	-	SIMULATION	INPUT	1	SOCKET	OUTPUT	16

Parameters:

- 1. SOCKET NUMBER (0-4)
- SAMPLE TIME (INTERVAL BETWEEN TRANSFERS) [S]
 REAL TIME SCALING FACTOR (0=NO WAIT, 0.5=DOUBLE SPEED)
 WAIT FOR DATA (0=NO WAIT, 1=WAIT)

TYPE 197: WRITE TO UNIX SOCKET (16 REALS)

Inputs:

1.	CONTROL	-	SIMULATION	OUTPUT	/	SOCKET	INPUT	1
	CONTROL				/	SOCKET	INPUT	2
з.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	3
4.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	4
			SIMULATION		1	SOCKET	INPUT	5
6.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	6
7.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	7
8.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	8
9.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	9
10.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	10
11.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	11
12.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	12
13.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	13
14.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	14
15.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	15
16.	CONTROL	-	SIMULATION	OUTPUT	1	SOCKET	INPUT	16

Outputs:

1. CONTROL - DUMMY (MUST NOT BE CONTROL 0!)

Parameters:

- SOCKET NUMBER (0-4)
 SAMPLE TIME (INTERVAL BETWEEN TRANSFERS) [S]
 REAL TIME SCALING FACTOR (0=NO WAIT, 0.5=DOUBLE SPEED)

TYPE 200: FAN CONTROLLER WITH TRACKING (P.Haves - LUT - 7.9.93)

•

Inputs:

1.	CPM	: control signal from static pressure sensor ("kPa")
2.	CPS	: static pressure set-point ("kPa")
з.	CMODE	: control mode (0=open loop, 1=closed loop) (-)
4.	CMANS	: manual output for supply fan (0-1)
5.	CMANR	: manual output for return fan (0-1)

Outputs:

			supply fan rotation speed (rev/s)
2.	REXT	:	extract fan rotation speed (rev/s)

Parameters:

1. PROPG : proportional gain (kPa.s/rev)

FAN or PUMP MODEL **TYPE 201:**

Inputs:

1.	mass flow rate of fluid
2.	outlet pressure
з.	Fan or pump rotational speed
4.	inlet fluid temperature

Outputs:

1.	Inlet pressure
2.	Outlet fluid temperature
3.	Power consumption

Parameters:

- 1st Pressure coefficient 1. 2nd Pressure coefficient 2.
- з. 3rd Pressure coefficient
- 4th Pressure coefficient 4. 5th Pressure coefficient 5.
- 6.
- 7.
- 8.
- 1st Efficiency coefficient 2nd Efficiency coefficient 3rd Efficiency coefficient 4th Efficiency coefficient 5th Efficiency coefficient 9.
- 10.
- 11.
- Fan wheel diameter [m] Mode: 1 = air, 2 = water 12.
- Lowest valid normalized flow 13.
- Highest valid normalized flow 14.

TYPE 203: FIRST ORDER STATIC PRESSURE SENSOR MODEL

Inputs:

- 1.
- 2.
- Input total pressure Mass flow rate Sensor output (modified by gain & offset) 3.

Outputs:

1. Sensor output (modified by gain & offset)

Parameters:

- Sensor time constant 1.
- Pressure offset Pressure Range 2.
- з.
- Cross sectional area [m²] Mode: 1 = air, 2 = water 4. 5.

TYPE 204: FLOW MERGE MODEL

Inputs:

1.	Inlet	mass	flow	rate	1
2.	Inlet	mass	flow	rate	2
з.	Outlet	pres	ssure		

Outputs:

1.	Outlet mass flow rate
2.	Inlet pressure 1
з.	Inlet pressure 2

Parameters:

1.	Inlet flow resistance 1 [0.001/(kg - m)]
2.	Inlet flow resistance 2 [0.001/(kg - m)]
з.	Outlet flow resistance [0.001/(kg - m)]

TYPE 205: FAN OR PUMP MODEL - POWER & TEMPERATURE RISE ONLY

•

Inputs:

1.	Inlet	mass	flow	rate	1
2.	Inlet	mass	flow	rate	2

3. Outlet pressure

Outputs:

- Outlet mass flow rate Inlet pressure 1 Inlet pressure 2 1. 2. 3.

Parameters:

1.	Inlet flow resistance 1 [0.001/(kg - m)]
2.	Inlet flow resistance 2 [0.001/(kg - m)]
3.	Outlet flow resistance [0.001/(kg - m)]

TYPE 207: FLOW SPLIT MODEL - DIFFERENT RESISTANCES, TREATS NEAR-ZERO FLOW (Ph Haves - LUT - 4/8/93)

Inputs:

1.	Inlet mass flow rate
2.	Outlet pressure 1
з.	Outlet pressure 2

Outputs:

1.	Outlet mass flow rate 1	
2.	Outlet mass flow rate 2	
з.	Inlet pressure	

Parameters:

 Inlet flow resistance [0.001/(kg - m Outlet flow resistance 1 [0.001/(kg Outlet flow resistance 2 [0.001/(kg
--

Inputs:

1.	Inlet mass flow rate	(positive in) - stream 1		
2.	Inlet mass flow rate	(positive in) - stream 2		
з.	Inlet mass flow rate	(positive out) - stream 3		
4.	Room pressure			
-				

5. Ambient pressure

Outputs:

Outlet dry air mass flow rate
 dry air mass flow rate lost

Parameters:

leakage resistance [0.001/(kg - m)]
 Local extract fan mass flow rate [kg/s]

TYPE 211: SIMULATES THE MIXING OF TWO AIR FLOWS

Inputs:

1.	Inlet	air	dry bulb	temperature - stream 1
2.	Inlet	air	humidity	ratio – stream l
3.	inlet	dry	air mass	flow rate - stream 1
4.	Inlet	air	dry bulb	temperature - stream 2
5.	Inlet	air	humidity	ratio – stream 2
6.	inlet	dry	air mass	flow rate - stream 2

Outputs:

1.	Outlet	air	dry	bulb	tempe	erature
2.	Outlet	air	hum:	idity		
3.	outlet	dry	air	mass	flow	rate

Parameters:

0. none

TYPE 212: SIMULATES THE MIXING OF FIVE AIR FLOWS

Inputs:

1.		temperature - stream 1
2.	Inlet air humidity	ratio - stream 1
3.	inlet dry air mass	flow rate - stream 1
4.		temperature – stream 2
5.	Inlet air humidity	ratio – stream 2
6.	inlet dry air mass	flow rate - stream 2
7.	Inlet air dry bulb	temperature - stream 3
8.	Inlet air humidity	ratio – stream 3
9.	inlet dry air mass	flow rate - stream 3
10.	Inlet air dry bulb	temperature - stream 4
11.	Inlet air humidity	ratio - stream 4
12.	inlet dry air mass	flow rate - stream 4
13.	Inlet air dry bulb	temperature - stream 5
14.	Inlet air humidity	ratio - stream 5
15.		flow rate - stream 5

Outputs:

Outlet air dry bulb temperature
 Outlet air humidity

3. outlet dry air mass flow rate

Parameters:

0. none

TYPE 228: CONSTANT FLOW RESISTANCE MODEL Linearised at low flow (Ph Haves - University of Oxford - August 1992) Modified 20/9/93 to use FUNCTION DPTURLAM

Inputs:

Fluid mass flow rate
 Outlet pressure

Outputs:

1. Inlet pressure

Parameters:

1. Flow resistance [0.001/(kg - m)]

TYPE 229: INLET CONSTANT FLOW RESISTANCE MODEL - NEG. 0/P

Inputs:

Inlet pressure
 Outlet pressure

Outputs:

- Fluid mass flow rate
 Negative of fluid mass flow rate
- Parameters:
 - 1. Flow resistance [0.001/(kg m)]

TYPE 272: 2 NODE ROOM/PLENUM MODEL - RS AND CS AS PARAMETERS, DUCTED RETURN

Inputs:

Supply air dry bulb temperature
 Supply air humidity ratio
 Supply dry air mass flow rate
 Interzone 1 air dry bulb temperature
 Interzone 1 air humidity ratio
 Interzone 1 dry air mass flow rate
 Interzone 2 air dry bulb temperature
 Interzone 2 air dry bulb temperature
 Interzone 2 dry air mass flow rate
 Extract dry air mass flow rate
 Equivalent "sol-air" outdoor temperature for room
 Equivalent "sol-air" outdoor temperature for plenum
 Ambient dry bulb temperature
 Fractional occupancy
 Fractional lighting heat gain

18. Heat gain from supply duct

- 19. Heat gain from extract duct
- 20. Room temperature
- 21. Room structure temperature
- 22. Plenum temperature
- 23. Plenum structure temperature 24. Room humidity ratio
- 25. Plenum humidity ratio

Outputs:

- 1. Room temperature
- 2. Room structure temperature
- 3. Plenum temperature
- 4. Plenum structure temperature
- 5. Room humidity ratio
- 6. Plenum humidity ratio
- 7. Return temperature
- 8. Leakage dry air mass flow rate
- 9. Sensible heat gains of room
- 10.sensible heat gains of plenum
- 11.water gains of room

Parameters:

- 1. Room air capacity multiplier 2. Zone number (parameter file='zoneN.par', N > 0) 3. RWSR: direct resistance room air node <-> ambient (K/kW) 4. RISR: resistance room air node <-> room mass node (K/kW) 5. ROSR: resistance ambient <-> room mass node (K/kW) 6. RWSP: direct resistance plenum air node <-> ambient (K/kW)
 7. RISP: resistance plenum air node <-> plenum mass node (K/kW)
 8. ROSP: resistance ambient <-> plenum mass node (K/kW)
 9. RR: resistance room air node <-> plenum mass node (K/kW)
 10. CSR: capacitance of room mass node (kJ/K) 11. CR: capacitance of room air node (unmodified) (kJ/K)12. CSP: capacitance of plenum mass node (kJ/K)13. CP: capacitance of plenum air node (kJ/K) 14. Volume of room (m3) 15. Volume of plenum (m3)
 16. Number of occupants (-) 17. Lighting heat gain (kW) 18. Fraction of lighting heat gain to extract air
- 19. Equipment heat gain (kW)

TYPE 275: C-1-1 Simple Reversing Control for Mixing Dampers w/ Cooling Demand - Separate Manual Control of Each Damper

Inputs:

1. Ambient temperature sensor (C) 2. Return temperature sensor (C) 3. Cooling demand for dampers (0-1) OSS: (0=outside OPT start and stop, 1=between OSS)
 OTP: (0=non-occupied, >0=occupied) 6. Open/closed loop (0=open, 1=closed)
7. Open loop fresh air damper position (0-1)
8. Open loop recirc air damper position (0-1)
9. Open loop exhaust air damper position (0-1)

Outputs:

- 1. Fresh air damper demanded position (0-1)
- 2. Recirc air damper demanded position (0-1)
- 3. Exhaust air damper demanded position (0-1)

Parameters:

- 1. Minimum demanded damper position (0-1)
- 2. Reschedule time (sec)
- 3. Number of times entered in sequence table

4. Controller number (parameter file='contN.par', N > 0)

TYPE 276: VAV Terminal Box with Reheat

Inputs:

1. Supply air temperature sensor (C) 2. Space temperature (C) 3. OSS: (0=outside OPT start and stop, 1=between OSS) 4. OTP: (0=occupied, 1=non-occupied) 5. Fan: (1=ahu fan(s) on, 0=fan(s) off) 6. Mode: (0=auto, 1=closed, 2=min, 3=max, 4=open)

Outputs:

Normalised velocity setpoint (0-1)
 Reheat coil demand (0-1)

3. Room demand (heating and cooling) (-1 - +1)

Parameters:

1. Cooling setpoint for space (C) Deadband: cooling setpoint - heating setpoint (C)
 Night set back setpoint (heating) (C) 4. Proportional gain for heating demand (%/C)5. Integral time for heating demand (sec) 6. Proportional gain for cooling demand (%/C)7. Integral time for cooling demand (sec) 8. Maximum velocity setpoint (m3/s)
 9. Minimum velocity setpoint (m3/s)
 10. Reschedule time (sec) 11. Number of times entered in sequence table 12. Controller number (parameter file='contN.par', N > 0)

TYPE 281: Generation of Supply Temp SP for VAV AHU w/ Heating

Inputs:

1. demand from 1st zone (-1 - +1) 2. demand from 2nd zone (-1 - +1)3. demand from 3rd zone (-1 - +1)4. demand from 4th zone (-1 - +1) 5. demand from 5th zone (-1 - +1) 6. AHU status (0=off, 1=on)

Outputs:

1. supply air temperature setpoint ("C") 2. boost mode (0=off, 1=on)

Parameters:

1. number of zones 2. maximum supply air temperature setpoint (cooling) (C) 3. minimum supply air temperature setpoint (cooling) (C) boost supply air temperature setpoint (heating) (C)
 maximum rate of change of temperature setpoint (C/s) 6. proportional gain (%/C)7. integral time (sec) reschedule time (sec)
 number of times entered in sequence table 10. controller number (parameter file="contN.par", N > 0)

TYPE 282: Generation of AHU Plant Demands with boost over-ride on cooling coil

Inputs:

1. Supply air temperature sensor (C) Supply air temperature setpoint (C)
 Oss: (0=outside opt start and stop, 1=between oss) Boost mode (0=off, 1=on)
 Open/closed loop (0=open, 1=closed)' '-' Manual heating coil demand' '-'
 Manual cooling coil demand' '-'

Outputs:

- Ahu heating coil demand (0-1)
 Damper cooling demand (0-1)
- 3. Cooling coil demand (0-1)

Parameters:

1. Proportional gain (%/C) 2. Integral time for (sec) 3. Breakpoint between free and pay cooling demand (0-1) 4. Deadband (offset in cooling setpoint) (C) 5. Time delay for boost mode over-ride of cooling coil (s) 6. Reschedule time (sec) 7. Number of times entered in sequence table 8. Controller number (parameter file="contN.par", N > 0)

TYPE 283: Component on/off controller - uses up to six demands to switch component on and off - includes delay and hysteresis

Inputs:

1) = 1st demand (heating demand 0 - +1) 2) = 2nd demand (heating demand 0 - +1) 3) = 3rd demand (heating demand 0 - +1) 4) = 4th demand (heating demand 0 - +1) 5) = 5th demand (heating demand 0 - +1) 6) = 6th demand (heating demand 0 - +1) 7) = plant enable (0=off, 1=on)

Outputs:

1) = component status (0=off, 1=on)

Parameters:

1) = number of demands 2) = sign of demand to act on (+1=heating, -1=cooling) 3) = threshhold to switch on (upper limit of deadband) (0-1) 4) = threshhold to switch off (lower limit of deadband) (0-1) 5) = off delay (s)6) = reschedule time (sec) 7) = number of times entered in sequence table

TYPE 299: HEATING/COOLING COIL WITH L&G 3 PORT VALVE, WATER PRESSURE I/P

Inputs:

1. TAI : inlet air dry bulb temperature (C)

2. GI : inlet air humidity ratio (kg/kg) PO : outlet air gauge static pressure (kPa)
 MA : dry air mass flow rate (kg/s)
 TWI : inlet water temperature (C)
 Y1 : valve stem position (-)
 PWI : inlet water pressure (kPa)
 PWO : outlet water pressure (kPa)
 TSDYN : effective coil surface temperature (C)

Outputs:

1.	TS	:	effective coil surface temperature (C)
2.	TAO	:	outlet air dry bulb temperature (C)
з.	GO	:	outlet air humidity ratio (kg/kg)
4.	PI	:	inlet air gauge static pressure (Pa)
5.	TWO	:	outlet water temperature (C)
6.	TRET	:	mixed return water temperature (C)
7.	MW	:	coil water mass flow rate (kg/s)
8.	MWS	:	supply water mass flow rate (kg/s)
9.	QTOTAL	:	total heat transfer to the air (kW)
10.	SHR	:	sensible heat ratio (-)
11.	EFFECT	:	coil effectiveness (-)
12.	BF	:	coil by-pass factor (-)
13.	HO	:	outlet air specific enthalpy (kJ/kg)
14.	RHO		outlet air relative humidity (%)
15.	HS	:	air spec. enthalpy in coil surface condition (kJ/kg)
16.	TWBO	:	outlet air wet-bulb temperature (C)

Parameters:

1.	DYNAMIC	: 0 for steady state, 1 for dynamic
2.	FAULT	: 0 for no faults,
з.	PSYCHO	: 0 for no psychometric output calcs, 1 for calcs
4.	NROW	: number of rows of tubes (-)
5.	NTPR	: number of tubes per row (-)
6.	NCIR	: number of parallel water circuits (-)
7.	LCOIL	: length of finned section in direction of flow (m)
8.	HCOIL	: heigth of finned section (m)
9.	WCOIL	: width of finned section (m)
10.	DOTUBE	: tube outside diameter (m)
11.	THITUBE	: tube wall thickness (m)
12.	MATUBE	: tube material (Al=1,Cu=2,Fe=3,CaCO3=4)
13.	SPAFIN	: fin spacing (pitch) (m)
14.	THIFIN	: fin thickness (m)
15.	MAFIN	: fin material (Al=1,Cu=2,Fe=3)
16.	х	: flow resistance parameter on air side (0.001 kg.m)
17.	Kv	: valve capacity index (cu. m/hr at 1 bar)
		-> resistance K=1296/(Kv)**2 (0.001 kg.m)
18.	ISEL	: valve mode: 0=>lin/lin,
		1=>exp/lin, 2=>exp/exp, 3=>lin/exp (-)
19.	NGL	: coefficient of exponential valve characteristic
20.	sv	: valve adjusting ratio (> 1)
21.	CL	: valve leakage (closed flow/open flow at const P) (-)
22.	KC :	resistance of coil circuit (0.001 kg.m)
23.	KB :	resistance of bypass circuit (0.001 kg.m)
	-	

TYPE 300: RATE LIMIT ACTUATOR MODEL WITH "DEADBAND" AND HYSTERESIS (Adapted from TYPE100 by Ph Haves - LUT -16.6.94)

INPUTS :

1. C : control signal input to actuator (-)

OUTPUTS

_			• •• · · · · · ·
1.	Y	:	valve/damper position (-)
2.	CV	:	actuator position (-)
З.	TSSREV	:	number of stop/starts/reversals (-)
4.	TTRAV	:	total distance travelled by valve/damper (-)

PARAMETERS

- DIRECTN : 1=forward, -1=reverse, 0=stuck
 STARTPOS : starting position (0-1)
 TTRAN : travel time (lim-lim) (s)
 RESTART: minimum change in demanded position for movement (-)
 HYS : hysteresis (-)
 CRANG : crank travel angle (0 for linear)
 A : coefficient in range transformation CC=A*C+B
 B : coefficient in range transformation CC=A*C+B

-

Appendix AA - Sample HVACSIM+ Simulation "ACREF2" w/ Explicit Air Flow ¹⁴⁹

Simulation prepared and executed by Phil Haves, Loughborough University of Technology, Loughborough England, 1995.

¹⁴⁹

ACREF2

SUPERBLOCK 1 BLOCK 1 UNIT 1 UNIT 2	TYPE196 - READ FROM UNIX SOCKET (16 REALS) TYPE133 - PSYCHROMETRICS
SUPERBLOCK 2	
BLOCK 2	
UNIT 3	TYPE282 - AHU PLANT DEMANDS WITH MANUAL MODE (BOOST OVE
UNIT 4	TYPE275 - MIXING BOX CONTROL, INDEPENDENT MANUAL CONTRO
UNIT 5 UNIT 6	TYPE200 - FAN CONTROLLER WITH TRACKING TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT
UNIT 6 UNIT 7	TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT
UNIT 8	TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT
UNIT 9	TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT
UNIT 10	TYPE276 - TREND E-3-4 VAV TERMINAL BOX WITH REHEAT
UNIT 11 UNIT 12	TYPE283 - COMPONENT ON/OFF CONTROL WITH HYSTERESIS AND TYPE281 - SUPPLY AIR TEMPERATURE RESET CONTROLLER - 5 Z
ONIT 12	THEZOT - SOTTER AIR TEMPERATORE RESET CONTROLLER - S Z
SUPERBLOCK 3	
BLOCK 3	
UNIT 13 UNIT 14	TYPE 87 - 8-WAY PATCHBOARD TYPE 87 - 8-WAY PATCHBOARD
UNIT 15	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 16	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 17	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 18	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 19 UNIT 20	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 21	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 22	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 23	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
UNIT 24	TYPE300 - ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (RE
SUPERBLOCK 4	
BLOCK 4	
UNIT 25 UNIT 26	TYPE102 - Mixing box: par/opp dampers, calculates suppl TYPE228 - CONSTANT FLOW RESISTANCE - LINEARISED AT LOW
UNIT 27	TYPE201 - FAN OR PUMP - TEMP RISE CORRECTED FOR WORK DO
UNIT 28	TYPE228 - CONSTANT FLOW RESISTANCE - LINEARISED AT LOW
UNIT 29	TYPE207 - FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISE
UNIT 30 UNIT 31	TYPE207 - FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISE TYPE207 - FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISE
UNIT 32	TYPE207 - FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISE
UNIT 33	TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL
UNIT 34	TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL
UNIT 35	TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL
UNIT 36 UNIT 37	TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL TYPE134 - PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLL
UNIT 38	TYPE210 - MIXING OF THREE MOIST AIR STREAMS WITH LEAKAG
UNIT 39	TYPE210 - MIXING OF THREE MOIST AIR STREAMS WITH LEAKAG
UNIT 40 UNIT 41	TYPE210 - MIXING OF THREE MOIST AIR STREAMS WITH LEAKAG TYPE210 - MIXING OF THREE MOIST AIR STREAMS WITH LEAKAG
UNIT 42	TYPE210 - MIXING OF THREE MOIST AIR STREAMS WITH LEARAG
UNIT 43	TYPE229 - INLET CONSTANT FLOW RESISTANCE + NEG. O/P
UNIT 44	TYPE229 - INLET CONSTANT FLOW RESISTANCE + NEG. O/P
UNIT 45 UNIT 46	TYPE229 - INLET CONSTANT FLOW RESISTANCE + NEG. O/P TYPE229 - INLET CONSTANT FLOW RESISTANCE + NEG. O/P
UNIT 47	TYPE229 - INLET CONSTANT FLOW RESISTANCE + NEG. O/P
UNIT 48	TYPE204 - FLOW MERGE
UNIT 49	TYPE204 - FLOW MERGE
UNIT 50 UNIT 51	TYPE204 - FLOW MERGE TYPE204 - FLOW MERGE
UNIT 52	TYPE201 - FAN OR PUMP - TEMP RISE CORRECTED FOR WORK DO
UNIT 53	
SUPERBLOCK 5	
BLOCK 5	
	TYPE 26 - CONTROL SIGNAL INVERTER
CITERED OCY C	
SUPERBLOCK 6 BLOCK 6	
UNIT 55	TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P

UNIT 56 TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P TYPE205 - FAN OR PUMP - POWER AND TEMP RISE ONLY UNIT 57 UNIT 58 TYPE212 - MIXING OF FIVE MOIST AIR STREAMS TYPE205 - FAN OR PUMP - POWER AND TEMP RISE ONLY UNIT 59 TYPE211 - MIXING OF TWO MOIST AIR STREAMS UNIT 60 BLOCK 7 UNIT 61 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P TYPE272 - 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, D UNIT 62 UNIT 63 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT UNIT 64 BLOCK 8 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P TYPE272 - 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, D TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT UNIT 65 UNIT 66 UNIT 67 UNIT 68 BLOCK 9 UNIT 69 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P TYPE272 - 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, D UNIT 70 UNIT 71 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT UNIT 72 BLOCK10 UNIT 73 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT UNIT 74 TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P UNIT 75 TYPE272 - 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, D UNIT 76 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT BLOCK11 UNIT 77 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT UNIT 78 TYPE299 - LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P TYPE272 - 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, D UNIT 79 UNIT 80 TYPE169 - MOIST AIR DUCT, HEAT LOSS AS OUTPUT SUPERBLOCK 7 BLOCK12 UNIT 81 TYPE 26 - CONTROL SIGNAL INVERTER SUPERBLOCK 8 BLOCK13 UNIT 82 TYPE 7 - TEMPERATURE SENSOR TYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSOR UNIT 83 UNIT 84 TYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSOR UNIT 85 UNIT 86 TYPE 7 - TEMPERATURE SENSOR TYPE203 - STATIC PRESSURE SENSOR UNIT 87 UNIT 88 TYPE189 - VELOCITY SENSOR TYPE189 - VELOCITY SENSOR TYPE203 - STATIC PRESSURE SENSOR UNIT 89 UNIT 90 UNIT 91 TYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSORTYPE7-TEMPERATURESENSOR UNIT 92 UNIT 93 UNIT 94 UNIT 95 UNIT 96 SUPERBLOCK 9 BLOCK14 UNIT 97 TYPE197 - WRITE TO UNIX SOCKET (16 REALS) UNIT 98 TYPE135 - REAL TIME GRAPHS OF PRESSURE, FLOW AND CONTRO SUPERBLOCK10 BLOCK15 UNIT 99 TYPE 26 - CONTROL SIGNAL INVERTER UNIT TYPE 196 1 READ FROM UNIX SOCKET (16 REALS) 1 INPUTS : 2 OUTPUTS : 1 - SIMULATION INPUT / SOCKET OUTPUT 1 2 - SIMULATION INPUT / SOCKET OUTPUT 2 CONTROL CONTROL a - SIMULATION INPUT / SOCKET OUTPUT
 4 - SIMULATION INPUT / SOCKET OUTPUT
 5 - SIMULATION INPUT / SOCKET OUTPUT
 6 - SIMULATION INPUT / SOCKET OUTPUT CONTROL 3 CONTROL 4 CONTROL 5 CONTROL 6 7 - SIMULATION INPUT / SOCKET OUTPUT
8 - SIMULATION INPUT / SOCKET OUTPUT
9 - SIMULATION INPUT / SOCKET OUTPUT CONTROL 7 CONTROL 8 CONTROL 9

10 - SIMULATION INPUT / SOCKET OUTPUT 10 11 - SIMULATION INPUT / SOCKET OUTPUT 11 12 - SIMULATION INPUT / SOCKET OUTPUT 12 CONTROL CONTROL CONTROL 12 - SIMULATION INPUT / SOCKET OUTPUT
 13 - SIMULATION INPUT / SOCKET OUTPUT
 14 - SIMULATION INPUT / SOCKET OUTPUT
 15 - SIMULATION INPUT / SOCKET OUTPUT
 16 - SIMULATION INPUT / SOCKET OUTPUT CONTROL 13 CONTROL 14 CONTROL 15 CONTROL 16 3 PARAMETERS: SOCKET NUMBER (0-4) 1.00000 SAMPLE TIME (INTERVAL BETWEEN TRANSFERS) [S] 5.00000 REAL TIME SCALING FACTOR (0=NO WAIT, 0.5=DOUBLE SPEED) 0. Ο. WAIT FOR DATA (0=NO WAIT, 1=WAIT) _____ UNIT 2 TYPE 133 PSYCHROMETRICS 1 INPUTS: 1 - DRY BULB TEMPERATURE 117 - RELATIVE HUMIDITY (USED IF MODE=1) 1 - DRY BULB TEMPERATURE TEMPERATURE CONTROL

 HUMIDITY RATIO
 1
 HUMIDITY RATIO (USED IF MODE=2)

 TEMPERATURE
 79
 - WET BULB TEMPERATURE (USED IF MODE=3)

 PRESSURE
 27
 - ATMOSPHERIC PRESSURE

 OUTPUTS : 2 TEMPERATURE 0 - DRY BULB TEMPERATURE 0 - RELATIVE HUMIDITY CONTROL 0 - HUMIDITY RATIO 0 - SPECIFIC ENTHALPY HUMIDITY RATIO ENERGY TEMPERATURE 0 - DEW POINT TEMPERATURE 0 - WET BULB TEMPERATURE (TWB=0 IF PAR(3)=0) TEMPERATURE PARAMETERS: 3 (NOT USED) ο. 0. (NOI USED) 0000 MODE: 1 -> RH AS I/P, 2 -> H RATIO AS I/P, 3 -> WET BUL 0. 0 -> TWB NOT INCLUDED IN O/P, 1 -> TWB INCLUDED IN O/P 1.00000 _____ UNIT 3 TYPE 282 AHU PLANT DEMANDS WITH MANUAL MODE (BOOST OVER-RIDE ON COOLING) INPUTS : 1 CONTROL 20 - SUPPLY AIR TEMPERATURE SENSOR 6 - SUPPLY AIR TEMPERATURE SETPOINT CONTROL 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS CONTROL 59 - BOOST MODE (0=OFF, 1=ON) CONTROL 7 - OPEN/CLOSED LOOP (0=OPEN, 1=CLOSED) CONTROL 5 - MANUAL HEATING COIL DEMAND CONTROL 4 - MANUAL COOLING COIL DEMAND CONTROL 2 OUTPUTS : CONTROL 40 - AHU HEATING COIL DEMAND (0-1) 35 - DAMPERS COOLING DEMAND (0-1) 39 - COOLING COIL DEMAND (0-1) CONTROL CONTROL 3 PARAMETERS: PROPORTIONAL GAIN (%/C) 1.00000 INTEGRAL TIME (SEC) 120.000 0.500000 BREAKPOINT BETWEEN FREE AND PAY COOLING DEMAND (0-1) DEADBAND (OFFSET IN COOLING SETPOINT) (C) 1.00000 600.000 TIME DELAY FOR BOOST MODE OVER-RIDE OF COOLING COIL (S) 5.00000 RESCHEDULE TIME (SEC) NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 1.00000 CONTROLLER NUMBER (PARAMETER FILE="contN.par" IF N > 0) 1.00000 4 TYPE 275 UNIT MIXING BOX CONTROL, INDEPENDENT MANUAL CONTROL INPUTS: 1 17 - AMBIENT TEMPERATURE SENSOR CONTROL 18 - RETURN TEMPERATURE SENSOR CONTROL

CONTROL 2 - OPEN LOOP RECIRC AIR DAMPER POSITION (0-1) 3 - OPEN LOOP EXHAUST AIR DAMPER POSITION (0-1) CONTROL OUTPUTS : 2 36 - FRESH AIR DAMPER DEMANDED POSITION (0-1) CONTROL 37 - RECIRC AIR DAMPER DEMANDED POSITION (0-1) CONTROL 38 - EXHAUST AIR DAMPER DEMANDED POSITION (0-1) CONTROL 3 PARAMETERS: MINIMUM DEMANDED DAMPER POSITION (0-1) 0.200000 RESCHEDULE TIME (SEC) 5.00000 NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 1.00000 CONTROLLER NUMBER (PARAMETER FILE="contN.par" IF N > 0) 2.00000 UNIT 5 TYPE 200 FAN CONTROLLER WITH TRACKING INPUTS : 1 CONTROL 23 - STATIC PRESSURE SENSOR SIGNAL CONTROL 10 - STATIC PRESSURE SETPOINT 11 - CONTROL MODE: (0=OPEN LOOP, 1=CLOSED LOOP) CONTROL 8 - MANUAL OUTPUT FOR SUPPLY FAN (0-1) CONTROL CONTROL 9 - MANUAL OUTPUT FOR EXTRACT FAN (0-1) 2 OUTPUTS : RVPS 1 - SUPPLY FAN ROTATION SPEED 2 - EXTRACT FAN ROTATION SPEED RVPS PARAMETERS: 3 0.300000 PROPORTIONAL GAIN (KPA.S/REV) INTEGRAL TIME (SEC) 300.000 SAMPLE TIME (SEC) MAXIMUM ROTATION SPEED (REV/S) 5.00000 30.0000 TIME FROM ZERO TO FULL SPEED (S) 40.0000 A COEFF IN CEXT = ACOEFF + BCOEFF*CSUP (-) B COEFF IN CEXT = ACOEFF + BCOEFF*CSUP (-) CONTROL UPD ACOEFF + BCOEFF*CSUP (-) 0. 0.950000 3.00000 CONTROLLER NUMBER (PARAMETER FILE= --------6 TYPE 276 UNTT TREND E-3-4 VAV TERMINAL BOX WITH REHEAT 1 INPUTS: CONTROL 20 - SUPPLY AIR TEMPERATURE SENSOR CONTROL 28 - SPACE TEMPERATURE SENSOR CONTROL 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS 119 - OTP: (0=OCCUPIED, 1=NON-OCCUPIED) 120 - FAN: (1=AHU FAN(S) ON, 0=FAN(S) OFF) 12 - MODE: (0=AUTO, 1=CLOSED, 2=MIN, 3=MAX) CONTROL CONTROL CONTROL 2 OUTPUTS : CONTROL 42 - NORMALISED VELOCITY SETPOINT 43 - REHEAT COIL DEMAND CONTROL CONTROL 44 - ROOM DEMAND (HEATING AND COOLING) PARAMETERS: 3 COOLING SETPOINT FOR SPACE (C) 24.0000 2.00000 DEADBAND: COOLING SETPOINT - HEATING SETPOINT (C) NIGHT SET BACK SETPOINT (HEATING) (C) 10.0000 PROPORTIONAL GAIN FOR HEATING DEMAND (%/C) 0.300000 300.000 INTEGRAL TIME FOR HEATING DEMAND (SEC) 0.300000 PROPORTIONAL GAIN FOR COOLING DEMAND (%/C) 300.000 INTEGRAL TIME FOR COOLING DEMAND (SEC) 2.05000 MAXIMUM VELOCITY SETPOINT (M3/S) 0.820000 MINIMUM VELOCITY SETPOINT (M3/S) 5.00000 RESCHEDULE TIME (SEC) NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 1.00000 CONTROLLER NUMBER (PARAMETER FILE="cont.par" IF N > 0) 4.00000 UNIT 7 TYPE 276 TREND E-3-4 VAV TERMINAL BOX WITH REHEAT 1 INPUTS: CONTROL 20 - SUPPLY AIR TEMPERATURE SENSOR 29 - SPACE TEMPERATURE SENSOR CONTROL 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS

510

CONTROL

119 - OTP: (0=OCCUPIED, 1=NON-OCCUPIED) 120 - FAN: (1=AHU FAN(S) ON, 0=FAN(S) OFF) CONTROL CONTROL 13 - MODE: (0=AUTO, 1=CLOSED, 2=MIN, 3=MAX) CONTROL 2 OUTPUTS : CONTROL 45 - NORMALISED VELOCITY SETPOINT 46 - REHEAT COIL DEMAND 47 - ROOM DEMAND (HEATING AND COOLING) CONTROL CONTROL 3 **PARAMETERS**: COOLING SETPOINT FOR SPACE (C) 24.0000 2.00000 DEADBAND: COOLING SETPOINT - HEATING SETPOINT (C) 10.0000 NIGHT SET BACK SETPOINT (HEATING) (C) PROPORTIONAL GAIN FOR HEATING DEMAND (%/C) 0.300000 INTEGRAL TIME FOR HEATING DEMAND (SEC) 300.000 PROPORTIONAL GAIN FOR COOLING DEMAND (%/C) 0.300000 INTEGRAL TIME FOR COOLING DEMAND (SEC) 300.000 MAXIMUM VELOCITY SETPOINT (M3/S) MINIMUM VELOCITY SETPOINT (M3/S) 0.990000 0.400000 RESCHEDULE TIME (SEC) NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 5.00000 1.00000 CONTROLLER NUMBER (PARAMETER FILE="contn.par" IF N > 0) 5.00000 -----**TYPE 276** UNIT 8 TREND E-3-4 VAV TERMINAL BOX WITH REHEAT INDUTS 1 20 - SUPPLY AIR TEMPERATURE SENSOR CONTROL 30 - SPACE TEMPERATURE SENSOR CONTROL. 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS CONTROL 119 - OTP: (0=OCCUPIED, 1=NON-OCCUPIED) 120 - FAN: (1=AHU FAN(S) ON, 0=FAN(S) OFF) 14 - MODE: (0=AUTO, 1=CLOSED, 2=MIN, 3=MAX) CONTROL CONTROL CONTROL OUTPUTS: 2 CONTROL 48 - NORMALISED VELOCITY SETPOINT CONTROL 49 - REHEAT COIL DEMAND 50 - ROOM DEMAND (HEATING AND COOLING) CONTROL 3 **PARAMETERS**: 24.0000 COOLING SETPOINT FOR SPACE (C) 2.00000 DEADBAND: COOLING SETPOINT - HEATING SETPOINT (C) NIGHT SET BACK SETPOINT (HEATING) (C) 10.0000 0.300000 PROPORTIONAL GAIN FOR HEATING DEMAND (%/C) INTEGRAL TIME FOR HEATING DEMAND (SEC) 300.000 PROPORTIONAL GAIN FOR COOLING DEMAND (%/C) 0.300000 INTEGRAL TIME FOR COOLING DEMAND (SEC) 300.000 MAXIMUM VELOCITY SETPOINT (M3/S) MINIMUM VELOCITY SETPOINT (M3/S) 0.990000 0.400000 NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 5.00000 1.00000 CONTROLLER NUMBER (PARAMETER FILE="contN.par" IF N > 0) 6.00000 ----------**TYPE 276** UNIT 9 TREND E-3-4 VAV TERMINAL BOX WITH REHEAT 1 INPUTS : CONTROL 20 - SUPPLY AIR TEMPERATURE SENSOR 31 - SPACE TEMPERATURE SENSOR CONTROL 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS CONTROL 119 - OTP: (0=OCCUPIED, 1=NON-OCCUPIED) 120 - FAN: (1=AHU FAN(S) ON, 0=FAN(S) OFF) 15 - MODE: (0=AUTO, 1=CLOSED, 2=MIN, 3=MAX) CONTROL CONTROL CONTROL 2 OUTPUTS : 51 - NORMALISED VELOCITY SETPOINT CONTROL 52 - REHEAT COIL DEMAND 53 - ROOM DEMAND (HEATING AND COOLING) CONTROL CONTROL 3 PARAMETERS: COOLING SETPOINT FOR SPACE (C) DEADBAND: COOLING SETPOINT - HEATING SETPOINT (C) 24.0000 2.00000 NIGHT SET BACK SETPOINT (HEATING) (C) 10.0000 0.300000 PROPORTIONAL GAIN FOR HEATING DEMAND (%/C) INTEGRAL TIME FOR HEATING DEMAND (SEC) 300.000 0.300000 PROPORTIONAL GAIN FOR COOLING DEMAND (%/C)

INTEGRAL TIME FOR COOLING DEMAND (SEC) 300.000 MAXIMUM VELOCITY SETPOINT (M3/S) MINIMUM VELOCITY SETPOINT (M3/S) 0.990000 0.400000 5.00000 RESCHEDULE TIME (SEC) NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 1.00000 CONTROLLER NUMBER (PARAMETER FILE="contN.par" IF N > 0) 7.00000 _ _ _ _ _ _ _ _ _ _ UNIT 10 TYPE 276 TREND E-3-4 VAV TERMINAL BOX WITH REHEAT 1 INPUTS: 20 - SUPPLY AIR TEMPERATURE SENSOR CONTROL 32 - SPACE TEMPERATURE SENSOR CONTROL CONTROL 118 - OSS: (0=OUTSIDE OPT START AND STOP, 1=BETWEEN OSS CONTROL 119 - OTP: (0=OCCUPIED, 1=NON-OCCUPIED) 120 - FAN: (1=AHU FAN(S) ON, 0=FAN(S) OFF)16 - MODE: (0=AUTO, 1=CLOSED, 2=MIN, 3=MAX)CONTROL CONTROL 2 OUTPUTS : 54 - NORMALISED VELOCITY SETPOINT CONTROL 55 - REHEAT COIL DEMAND CONTROL 56 - ROOM DEMAND (HEATING AND COOLING) CONTROL PARAMETERS: З COOLING SETPOINT FOR SPACE (C) DEADBAND: COOLING SETPOINT - HEATING SETPOINT (C) NIGHT SET BACK SETPOINT (HEATING) (C) 24.0000 2.00000 10.0000 PROPORTIONAL GAIN FOR HEATING DEMAND (%/C) INTEGRAL TIME FOR HEATING DEMAND (%/C) PROPORTIONAL GAIN FOR COOLING DEMAND (%/C) 0.300000 300.000 0.300000 INTEGRAL TIME FOR COOLING DEMAND (SEC) 300.000 MAXIMUM VELOCITY SETPOINT (M3/S) MINIMUM VELOCITY SETPOINT (M3/S) 0.990000 0.400000 5.00000 RESCHEDULE TIME (SEC) 1.00000 NUMBER OF TIMES ENTERED IN SEQUENCE TABLE 8.00000 CONTROLLER NUMBER (PARAMETER FILE="contN.par" IF N > 0) _ _ _ _ _ _ _ UNIT 11 TYPE 283 COMPONENT ON/OFF CONTROL WITH HYSTERESIS AND DELAY - 6 I/Ps INPUTS: 1 CONTROL 40 - 1st demand (heating demand 0 - +1) CONTROL 43 - 2nd demand (heating demand 0 - +1) 46 - 3rd demand (heating demand 0 - +1) CONTROL 49 - 4th demand (heating demand 0 - +1) CONTROL 52 - 5th demand (heating demand 0 - +1) 55 - 6th demand (heating demand 0 - +1) CONTROL CONTROL 121 - plant enable (0=off, 1=on) CONTROL OUTPUTS : 2 CONTROL 57 - component status (0=off, 1=on) 3 PARAMETERS: number of demands 6.00000 1.00000 sign of demand to act on (+1=heating, -1=cooling) 0.500000E-01 threshhold to switch on (upper limit of deadband) (0-1) 0.250000E-01 threshhold to switch off (lower limit of deadband) (0-1 600.000 off delay (s) 5.00000 reschedule time (sec) 1.00000 number of times entered in sequence table ____ TYPE 281 UNIT 12 SUPPLY AIR TEMPERATURE RESET CONTROLLER - 5 ZONES 1 INPUTS: 44 - DEMAND FROM 1ST ZONE (-1 - +1) CONTROL 47 - DEMAND FROM 2ND ZONE (-1 - +1)50 - DEMAND FROM 3RD ZONE (-1 - +1)CONTROL CONTROL 53 - DEMAND FROM 4TH ZONE (-1 - +1) 56 - DEMAND FROM 5TH ZONE (-1 - +1) CONTROL CONTROL 121 - AHU STATUS (0=OFF, 1=ON) CONTROL 2 OUTPUTS : 58 - SUPPLY AIR TEMPERATURE SETPOINT 59 - BOOST MODE (0=OFF, 1=ON) CONTROL CONTROL

3	0.167000E- 1.00000 2700.00 5.00000 1.00000 9.00000	NUMBER OF ZONES MAXIMUM SUPPLY AIR TEMPERATURE SETPOINT (COOLING) (C) MINIMUM SUPPLY AIR TEMPERATURE SETPOINT (COOLING) (C) BOOST SUPPLY AIR TEMPERATURE SETPOINT (HEATING) (C) 02 MAXIMUM RATE OF CHANGE OF TEMPERATURE SETPOINT (C/S) PROPORTIONAL GAIN (%/C) INTEGRAL TIME (SEC) RESCHEDULE TIME (SEC) NUMBER OF TIMES CONTROLLER ENTERED IN SEQUENCE TABLE CONTROLLER NUMBER (PARAMETER FILE="cont.par" IF N > 0)
	13 TYPE PATCHBOARD	87
1	INPUTS : CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	36 - INPUT 1 37 - INPUT 2 38 - INPUT 3 39 - INPUT 4 40 - INPUT 5 41 - INPUT 6 42 - INPUT 7 43 - INPUT 8
2	OUTPUTS: CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	60 - OUTPUT 1 61 - OUTPUT 2 62 - OUTPUT 3 63 - OUTPUT 4 64 - OUTPUT 5 65 - OUTPUT 5 66 - OUTPUT 7 67 - OUTPUT 8
	PARAMETERS: 1.00000 2.00000 4.00000 5.00000 6.00000 7.00000 8.00000	INPUT CONNECTED TO OUTPUT 1 (-) INPUT CONNECTED TO OUTPUT 2 (-) INPUT CONNECTED TO OUTPUT 3 (-) INPUT CONNECTED TO OUTPUT 4 (-) INPUT CONNECTED TO OUTPUT 5 (-) INPUT CONNECTED TO OUTPUT 6 (-) INPUT CONNECTED TO OUTPUT 7 (-) INPUT CONNECTED TO OUTPUT 7 (-)
	14 TYPE PATCHBOARD	87
1	INPUTS: CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	45 - INPUT 1 46 - INPUT 2 48 - INPUT 3 49 - INPUT 4 51 - INPUT 5 52 - INPUT 6 54 - INPUT 7 55 - INPUT 8
2	OUTPUTS: CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	68 - OUTPUT 1 69 - OUTPUT 2 70 - OUTPUT 3 71 - OUTPUT 4 72 - OUTPUT 4 73 - OUTPUT 5 73 - OUTPUT 6 74 - OUTPUT 7 75 - OUTPUT 8
3	PARAMETERS: 1.00000 2.00000 3.00000 4.00000 5.00000 6.00000 7.00000	INPUT CONNECTED TO OUTPUT 1 $(-)$ INPUT CONNECTED TO OUTPUT 2 $(-)$ INPUT CONNECTED TO OUTPUT 3 $(-)$ INPUT CONNECTED TO OUTPUT 4 $(-)$ INPUT CONNECTED TO OUTPUT 5 $(-)$ INPUT CONNECTED TO OUTPUT 6 $(-)$ INPUT CONNECTED TO OUTPUT 7 $(-)$

8.00000 INPUT CONNECTED TO OUTPUT 8 (-) -----UNIT 15 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) 1 INPUTS : CONTROL 60 - CONTROL SIGNAL INPUT TO ACTUATOR 2 OUTPUTS: 76 - VALVE/DAMPER POSITION CONTROL CONTROL 0 - ACTUATOR POSITION CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER 3 PARAMETERS: 1.00000 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000 STARTING POSITION (0-1) ACTUATOR TRAVEL TIME (LIM-LIM) (S) 200.000 MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. Ο. HYSTERESIS (-) ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. TYPE 300 UNIT 16 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS: 1 CONTROL 61 - CONTROL SIGNAL INPUT TO ACTUATOR 2 OUTPUTS : 77 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL 3 PARAMETERS : 1.00000 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK Ο. STARTING POSITION (0-1) 200.000 ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) HYSTERESIS (-) Ο. Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. UNIT 17 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) 1 INPUTS CONTROL 62 - CONTROL SIGNAL INPUT TO ACTUATOR 2 OUTPUTS : CONTROL 78 - VALVE/DAMPER POSITION 0 - ACTUATOR POSITION CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER 3 PARAMETERS: 1.00000 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000 STARTING POSITION (0-1) 200.000 ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. HYSTERESIS (-) CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B Ο. 1.00000 Ο. ------UNIT 18 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) 1 INPUTS: CONTROL 63 - CONTROL SIGNAL INPUT TO ACTUATOR

2 OUTPUTS: 79 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER PARAMETERS: 3 1.00000 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK STARTING POSITION (0-1) ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. 200.000 MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. Ο. HYSTERESIS (-) Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 0. UNIT 19 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS: 1 CONTROL 64 - CONTROL SIGNAL INPUT TO ACTUATOR OUTPUTS : 2 80 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER PARAMETERS: з DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000 Ο. STARTING POSITION (0-1) ACTUATOR TRAVEL TIME (LIM-LIM) (S) 200.000 Ο. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. HYSTERESIS (-) CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) Ο. A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. UNIT 20 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS: 1 CONTROL 67 - CONTROL SIGNAL INPUT TO ACTUATOR OUTPUTS: 2 81 - VALVE/DAMPER POSITION CONTROL CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER PARAMETERS : 3 1.00000 DIRECTION: 1=FORWARD. -1=REVERSE. 0=STUCK STARTING POSITION (0-1) ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. 200.000 MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. Ο. HYSTERESIS (-) Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. ----. _ _ _ _ _ _ _ _ _ _ _ _ UNIT 21 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS: 1 69 - CONTROL SIGNAL INPUT TO ACTUATOR CONTROL OUTPUTS : 2 82 - VALVE/DAMPER POSITION CONTROL CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL 3 PARAMETERS: DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000

STARTING POSITION (0-1)

0.

200.000 ACTUATOR TRAVEL TIME (LIM-LIM) (S) 0. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) HYSTERESIS (-) Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) Ο. A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. TYPE 300 UNIT 22 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS: 1 CONTROL 71 - CONTROL SIGNAL INPUT TO ACTUATOR OUTPUTS : 2 83 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL PARAMETERS: 3 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000 Ο. STARTING POSITION (0-1) 200.000 ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) HYSTERESIS (-) CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) Ο. 0. A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 ο. UNIT 23 TYPE 300 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) 1 INPUTS: CONTROL 73 - CONTROL SIGNAL INPUT TO ACTUATOR 2 OUTPUTS: CONTROL 84 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER 3 PARAMETERS : DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 1.00000 STARTING POSITION (0-1) ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. 200.000 MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) Ο. HYSTERESIS (-) Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B Ο. 1.00000 Ο. TYPE 300 UNIT 24 ACTUATOR W/ FAULTS, DEADBAND & HYSTERESIS (REVISED) INPUTS : 1 CONTROL 75 - CONTROL SIGNAL INPUT TO ACTUATOR OUTPUTS : 2 CONTROL 85 - VALVE/DAMPER POSITION CONTROL 0 - ACTUATOR POSITION CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER 3 PARAMETERS: 1.00000 DIRECTION: 1=FORWARD, -1=REVERSE, 0=STUCK 0 STARTING POSITION (0-1) 200.000 ACTUATOR TRAVEL TIME (LIM-LIM) (S) Ο. MINIMUM CHANGE IN DEMANDED POSITION FOR MOVEMENT (-) HYSTERESIS (-) Ο. Ο. CRANK TRAVEL ANGLE (0 FOR LINEAR) (DEG) A : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B B : COEFFICIENT IN RANGE TRANSFORMATION CC=A*C+B 1.00000 Ο. -----

UNIT 25 TYPE 102 Mixing box: par/opp dampers, calculates supply flow INPUTS: 1 TEMPERATURE 1 - Fresh air dry bulb temperature HUMIDITY RATIO 1 - Fresh air humidity ratio TEMPERATURE 78 - Extract air dry bulb temperature HUMIDITY RATIO 24 - Extract air humidity ratio Fresh air intake gauge pressure
 Exhaust air outlet gauge pressure PRESSURE PRESSURE 2 - Mixed air gauge pressure PRESSURE 24 - Extract dry air mass flow rate FLOW 76 - Fresh air damper position (0=closed, 1=open)
77 - Return air damper position (0=open if PAR(15)=0) CONTROL CONTROL 78 - Extract air damper position (0=closed, 1=open) CONTROL 2 OUTPUTS: TEMPERATURE 0 - Mixed air dry bulb temperature 0 - Mixed air humidity ratio HUMIDITY RATIO 2 - Mixed dry air mass flow rate
0 - Mixed air specific enthalpy FLOW ENERGY 0 - Mixed air relative humidity CONTROL 0 - Mixed humid air mass flow rate FLOW PRESSURE 24 - Extract air gauge pressure 1 - Fresh dry air mass flow rate FLOW 25 - Return dry air mass flow rate FLOW 0 - Exhaust dry air mass flow rate FLOW 3 PARAMETERS: Auxiliary psychometric outputs (0 = no, 1 = yes) 0=no faults, 1=100% oversized, 2=20% leakage, 3=both Ο. Ο. Fresh air damper: opposed (0) or parallel (1) Return air damper: opposed (0) or parallel (1) Ο. 0. 0. Exhaust air damper: opposed (0) or parallel (1) 0.127000E-03 Open resist. for fresh air damper (p.d. (kPa) at 1 m3/s 0.223000E-03 Open resist. for return air damper (p.d. (kPa) at 1 m3/ 0.223000E-03 Open resist. for exhaust air damper (p.d. (kPa) at 1 m3/ 0.100000E-01 Leakage for fresh air damper (fraction of full flow) 0.100000E-01 Leakage for return air damper (fraction of full flow) 0.100000E-01 Leakage for exhaust air damper (fraction of full flow) Authority of fresh air damper Authority of return air damper 0.109000 0.129000 0.700000E-01 Authority of exhaust air damper 1.00000 0=invert return air damper, 1=not inverted UNIT 26 TYPE 228 CONSTANT FLOW RESISTANCE - LINEARISED AT LOW FLOW 1 INPUTS: 2 - FLUID MASS FLOW RATE 3 - OUTLET PRESSURE FLOW PRESSURE OUTPUTS : 2 PRESSURE 2 - INLET PRESSURE PARAMETERS: 3 0.562400E-02 FLOW RESISTANCE [0.001/(KG M)] UNIT 27 TYPE 201 FAN OR PUMP - TEMP RISE CORRECTED FOR WORK DONE INPUTS: 1 FLOW 2 - MASS FLOW RATE OF FLUID 4 - OUTLET PRESSURE 1 - FAN OR PUMP ROTATIONAL SPEED PRESSURE RVPS TEMPERATURE 4 - INLET FLUID TEMPERATURE 2 OUTPUTS: 3 - INLET PRESSURE PRESSURE 0 - OUTLET FLUID TEMPERATURE 1 - POWER CONSUMPTION TEMPERATURE POWER PARAMETERS : 3 4.47318 1ST PRESSURE COEFFICIENT 2ND PRESSURE COEFFICIENT 3RD PRESSURE COEFFICIENT -1.30791 6.16939

-5.75617 4TH PRESSURE COEFFICIENT 5TH PRESSURE COEFFICIENT 0.505184 0.105200E-01 1ST EFFICIENCY COEFFICIENT 2ND EFFICIENCY COEFFICIENT 2.10726 3RD EFFICIENCY COEFFICIENT -1.757504TH EFFICIENCY COEFFICIENT 0.536622 5TH EFFICIENCY COEFFICIENT -0.127430 0.570000 DIAMETER (M) 1.00000 MODE: AIR=1, WATER=2 0.800000 LOWEST VALID NORMALISED FLOW (-) 1.50000 HIGHEST VALID NORMALISED FLOW (-) -----UNIT 28 TYPE 228 CONSTANT FLOW RESISTANCE - LINEARISED AT LOW FLOW INPUTS: 1 2 - FLUID MASS FLOW RATE 5 - OUTLET PRESSURE FLOW PRESSURE 2 OUTPUTS : 4 - INLET PRESSURE PRESSURE PARAMETERS : 3 0.740000E-03 FLOW RESISTANCE [0.001/(KG M)] UNIT 29 TYPE 207 FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISED AT LOW FLOW 1 INPUTS: FLOW 2 - INLET MASS FLOW RATE 6 - OUTLET PRESSURE 1
7 - OUTLET PRESSURE 2 PRESSURE PRESSURE OUTPUTS : 2 3 - OUTLET MASS FLOW RATE 1 4 - OUTLET MASS FLOW RATE 2 5 - INLET PRESSURE FLOW FLOW PRESSURE PARAMETERS: 3 0.503000E-03 INLET FLOW RESISTANCE [0.001/(KG M)] 0.184900E-02 OUTLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.178000E-02 OUTLET FLOW RESISTANCE 2 [0.001/(KG M)] _____ UNIT 30 **TYPE 207** FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISED AT LOW FLOW INPUTS: 1 FLOW 3 - INLET MASS FLOW RATE 8 - OUTLET PRESSURE 1 9 - OUTLET PRESSURE 2 PRESSURE PRESSURE 2 OUTPUTS : 6 - OUTLET MASS FLOW RATE 1
7 - OUTLET MASS FLOW RATE 2
6 - INLET PRESSURE FLOW FLOW PRESSURE 3 PARAMETERS: 0.261000E-02 INLET FLOW RESISTANCE [0.001/(KG M)] 0.123950E-01 OUTLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.308200E-01 OUTLET FLOW RESISTANCE 2 [0.001/(KG M)] UNIT 31 TYPE 207 FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISED AT LOW FLOW 1 INPUTS: 4 - INLET MASS FLOW RATE 18 - OUTLET PRESSURE 1 17 - OUTLET PRESSURE 2 FLOW PRESSURE PRESSURE 2 OUTPUTS: FLOW 5 - OUTLET MASS FLOW RATE 1 10 - OUTLET MASS FLOW RATE 2 FLOW 7 - INLET PRESSURE PRESSURE

3 **PARAMETERS**: 0.144000E-02 INLET FLOW RESISTANCE [0.001/(KG M)] 0.744500E-02 OUTLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.272100E-01 OUTLET FLOW RESISTANCE 2 [0.001/(KG M)] TYPE 207 UNIT 32 FLOW SPLIT - DIFFERENT RESISTANCES, LINEARISED AT LOW FLOW INPUTS: 1 5 - INLET MASS FLOW RATE FLOW 15 - OUTLET PRESSURE 1 16 - OUTLET PRESSURE 2 PRESSURE PRESSURE OUTPUTS : 2 8 - OUTLET MASS FLOW RATE 1 9 - OUTLET MASS FLOW RATE 2 FLOW FT.OW 18 - INLET PRESSURE PRESSURE PARAMETERS : ٦ 0.744500E-02 INLET FLOW RESISTANCE [0.001/(KG M)] 0.718600E-01 OUTLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.192390E-01 OUTLET FLOW RESISTANCE 2 [0.001/(KG M)] _____ TYPE 134 UNIT 33 PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER) INPUTS: 1 FLOW 6 - AIR MASS FLOW RATE 10 - OUTLET PRESSURE 66 - DEMANDED FLOWRATE (NORM TO NOM) PRESSURE CONTROL 2 OUTPUTS: PRESSURE 8 - INLET PRESSURE CONTROL 122 - DAMPER POSITION (0=CLOSED, 1=OPEN) 0 - FRACTIONAL MOTOR VELOCITY CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL 3 PARAMETERS: 2.05000 NOMINAL VOLUMETRIC FLOW RATE (M3/S) 1.04000 FACE AREA OF DAMPER(S) (M2) ADDITIONAL PRESSURE DROP AT NOMINAL FLOW (KPA) 0.108800 125.000 ACTUATOR TRAVEL TIME (0-90 DEG) (S) 0.500000E-01 MINIMUM FRACTIONAL MOTOR SPEED (-) 0. HYSTERESIS (-) 000 CONTROLLER GAIN (FRAC SPEED/FRAC ERROR) 10.0000 _____ TYPE 134 UNIT 34 PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER) INPUTS . 1 7 - AIR MASS FLOW RATE 11 - OUTLET PRESSURE FLOW PRESSURE 68 - DEMANDED FLOWRATE (NORM TO NOM) CONTROL 2 OUTPUTS : 9 - INLET PRESSURE PRESSURE 123 - DAMPER POSITION (0=CLOSED, 1=OPEN) CONTROL 0 - FRACTIONAL MOTOR VELOCITY CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL PARAMETERS: 3 NOMINAL VOLUMETRIC FLOW RATE (M3/S) 0.990000 FACE AREA OF DAMPER(S) (M2) 0.505000 0.997000E-01 ADDITIONAL PRESSURE DROP AT NOMINAL FLOW (KPA) 125.000 ACTUATOR TRAVEL TIME (0-90 DEG) (S) 0.500000E-01 MINIMUM FRACTIONAL MOTOR SPEED (-) 0. HYSTERESIS (-) 10.0000 CONTROLLER GAIN (FRAC SPEED/FRAC ERROR)

UNIT 35 TYPE 134 PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER) INPUTS : 1 8 - AIR MASS FLOW RATE FLOW 12 - OUTLET PRESSURE PRESSURE 70 - DEMANDED FLOWRATE (NORM TO NOM) CONTROL 2 OUTPUTS : 15 - INLET PRESSURE 124 - DAMPER POSITION (0=CLOSED, 1=OPEN) PRESSURE CONTROL 0 - FRACTIONAL MOTOR VELOCITY CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL з PARAMETERS : 0.792000 NOMINAL VOLUMETRIC FLOW RATE (M3/S) 0.404000 FACE AREA OF DAMPER(S) (M2) 0.116300 ADDITIONAL PRESSURE DROP AT NOMINAL FLOW (KPA) 125.000 ACTUATOR TRAVEL TIME (0-90 DEG) (S) 0.500000E-01 MINIMUM FRACTIONAL MOTOR SPEED (-) 0. HYSTERESIS (-) 10.0000 CONTROLLER GAIN (FRAC SPEED/FRAC ERROR) UNIT 36 TYPE 134 PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER) INPUTS: 1 9 - AIR MASS FLOW RATE FLOW 13 - OUTLET PRESSURE PRESSURE 72 - DEMANDED FLOWRATE (NORM TO NOM) CONTROL OUTPUTS : 2 PRESSURE 16 - INLET PRESSURE 125 - DAMPER POSITION (0=CLOSED, 1=OPEN) CONTROL 0 - FRACTIONAL MOTOR VELOCITY
 0 - NUMBER OF STOPS/STARTS/REVERSALS
 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER CONTROL CONTROL CONTROL PARAMETERS: 3 NOMINAL VOLUMETRIC FLOW RATE (M3/S) 1.11000 0.565000 FACE AREA OF DAMPER(S) (M2) 0.126300 ADDITIONAL PRESSURE DROP AT NOMINAL FLOW (KPA) 125.000 ACTUATOR TRAVEL TIME (0-90 DEG) (S) 0.500000E-01 MINIMUM FRACTIONAL MOTOR SPEED (-) 0. HYSTERESIS (-) 10.0000 CONTROLLER GAIN (FRAC SPEED/FRAC ERROR) ----------UNIT 37 TYPE 134 PRESSURE-INDEPENDENT VAV BOX (BELIMO CONTROLLER) 1 INPUTS: 10 - AIR MASS FLOW RATE 14 - OUTLET PRESSURE 74 - DEMANDED FLOWRATE (NORM TO NOM) FLOW PRESSURE CONTROL 2 OUTPUTS : PRESSURE 17 - INLET PRESSURE CONTROL 126 - DAMPER POSITION (0=CLOSED, 1=OPEN) 0 - FRACTIONAL MOTOR VELOCITY CONTROL 0 - NUMBER OF STOPS/STARTS/REVERSALS CONTROL CONTROL 0 - TOTAL DISTANCE TRAVELLED BY VALVE/DAMPER 3 PARAMETERS : 1.03000 NOMINAL VOLUMETRIC FLOW RATE (M3/S) 0.527000 FACE AREA OF DAMPER(S) (M2) 0.897000E-01 ADDITIONAL PRESSURE DROP AT NOMINAL FLOW (KPA) ACTUATOR TRAVEL TIME (0-90 DEG) (S) 125.000 0.500000E-01 MINIMUM FRACTIONAL MOTOR SPEED (-) HYSTERESIS (-) Ο. 10.0000 CONTROLLER GAIN (FRAC SPEED/FRAC ERROR)

UNIT 38 TYPE 210 MIXING OF THREE MOIST AIR STREAMS WITH LEAKAGE INPUTS: 1 6 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1 11 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 2 15 - INLET MASS FLOW RATE (POSITIVE OUT) - STREAM 3 FLOW FLOW FLOW PRESSURE 10 - ROOM PRESSURE 27 - AMBIENT PRESSURE PRESSURE OUTPUTS : 2 16 - OUTLET DRY AIR MASS FLOW RATE 0 - DRY AIR MASS FLOW RATE LOST FLOW FLOW PARAMETERS: 3 LEAKAGE RESISTANCE [0.001/(KG M)] LOCAL EXTRACT FAN MASS FLOW RATE [KG/S] 1.00000 Ο. UNIT 39 TYPE 210 MIXING OF THREE MOIST AIR STREAMS WITH LEAKAGE INPUTS: 1 7 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1 12 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 2 11 - INLET MASS FLOW RATE (POSITIVE OUT) - STREAM 3 FLOW FLOW FLOW 11 - ROOM PRESSURE PRESSURE 27 - AMBIENT PRESSURE PRESSURE OUTPUTS: 2 17 - OUTLET DRY AIR MASS FLOW RATE FLOW 0 - DRY AIR MASS FLOW RATE LOST FLOW PARAMETERS: 3 1.00000 LEAKAGE RESISTANCE [0.001/(KG M)] 0. LOCAL EXTRACT FAN MASS FLOW RATE [KG/S] --------UNIT 40 TYPE 210 MIXING OF THREE MOIST AIR STREAMS WITH LEAKAGE 1 INPUTS: 8 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1 13 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 2 12 - INLET MASS FLOW RATE (POSITIVE OUT) - STREAM 3 12 - ROOM PRESSURE 27 - AMBIENT PRESSURE FLOW FLOW FLOW PRESSURE PRESSURE OUTPUTS : 2 18 - OUTLET DRY AIR MASS FLOW RATE 0 - DRY AIR MASS FLOW RATE LOST FLOW FLOW 3 PARAMETERS :

 1.000000
 LEAKAGE RESISTANCE [0.001/(KG M)]

 0.
 LOCAL EXTRACT FAN MASS FLOW RATE [KG/S]

 UNIT 41 TYPE 210 MIXING OF THREE MOIST AIR STREAMS WITH LEAKAGE 1 INPUTS FLOW 9 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1 14 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1
14 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 2
13 - INLET MASS FLOW RATE (POSITIVE OUT) - STREAM 3
13 - ROOM PRESSURE
27 - AMBIENT PRESSURE FLOW FLOW PRESSURE PRESSURE OUTPUTS: 2 19 - OUTLET DRY AIR MASS FLOW RATE 0 - DRY AIR MASS FLOW RATE LOST FLOW FLOW PARAMETERS: 3 LEAKAGE RESISTANCE [0.001/(KG M)] LOCAL EXTRACT FAN MASS FLOW RATE [KG/S] 1.00000 0. _____

```
UNIT 42
              TYPE 210
MIXING OF THREE MOIST AIR STREAMS WITH LEAKAGE
      INPUTS:
1
                         10 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 1
15 - INLET MASS FLOW RATE (POSITIVE IN) - STREAM 2
14 - INLET MASS FLOW RATE (POSITIVE OUT) - STREAM 3
       FLOW
        FLOW
       FLOW
                         14 - ROOM PRESSURE
27 - AMBIENT PRESSURE
        PRESSURE
       PRESSURE
     OUTPUTS :
2
                         20 - OUTLET DRY AIR MASS FLOW RATE
0 - DRY AIR MASS FLOW RATE LOST
       FLOW
       FLOW
      PARAMETERS:
3
                      LEAKAGE RESISTANCE [0.001/(KG M)]
LOCAL EXTRACT FAN MASS FLOW RATE [KG/S]
          1.00000
0. LOCAL EXTRACT FAN MASS FLOW
UNIT 43 TYPE 229
INLET CONSTANT FLOW RESISTANCE + NEG. O/P
1
      INPUTS :
                   11 - INLET PRESSURE
10 - OUTLET PRESSURE
       PRESSURE
       PRESSURE
2
     OUTPUTS :
                        11 - FLUID MASS FLOW RATE
      FLOW
                           0 - NEGATIVE OF FLUID MASS FLOW RATE
       FLOW
3
     PARAMETERS :
        0.100000E-01 FLOW RESISTANCE [0.001/(KG M)]
            UNIT 44
              TYPE 229
INLET CONSTANT FLOW RESISTANCE + NEG. O/P
      INPUTS :
1
                  12 - INLET PRESSURE
11 - OUTLET PRESSURE
       PRESSURE
       PRESSURE
     OUTPUTS :
2
                        12 - FLUID MASS FLOW RATE
       FLOW
                          0 - NEGATIVE OF FLUID MASS FLOW RATE
       FLOW
     PARAMETERS:
3
        0.100000E-01 FLOW RESISTANCE [0.001/(KG M)]
UNIT 45
               TYPE 229
INLET CONSTANT FLOW RESISTANCE + NEG. O/P
      INPUTS:
1
                       13 - INLET PRESSURE
12 - OUTLET PRESSURE
       PRESSURE
       PRESSURE
      OUTPUTS :
2
       FLOW
                        13 - FLUID MASS FLOW RATE
                          0 - NEGATIVE OF FLUID MASS FLOW RATE
       FLOW
3
     PARAMETERS:
        0.100000E-01 FLOW RESISTANCE [0.001/(KG M)]
UNIT 46
               TYPE 229
INLET CONSTANT FLOW RESISTANCE + NEG. O/P
1
      INPUTS:
                    14 - INLET PRESSURE
13 - OUTLET PRESSURE
       PRESSURE
       PRESSURE
2
      OUTPUTS :
      FLOW
                         14 - FLUID MASS FLOW RATE
                          0 - NEGATIVE OF FLUID MASS FLOW RATE
       FLOW
3
      PARAMETERS:
0.100000E-01 FLOW RESISTANCE [0.001/(KG M)]
```

UNIT 47 TYPE 229 INLET CONSTANT FLOW RESISTANCE + NEG. O/P INPUTS: 1 10 - INLET PRESSURE 14 - OUTLET PRESSURE PRESSURE PRESSURE 2 OUTPUTS : 15 - FLUID MASS FLOW RATE 0 - NEGATIVE OF FLUID MASS FLOW RATE FLOW FLOW 3 PARAMETERS : 0.100000E-01 FLOW RESISTANCE [0.001/(KG M)] -----UNIT 48 TYPE 204 FLOW MERGE 1 INPUTS: 16 - INLET MASS FLOW RATE 1 17 - INLET MASS FLOW RATE 2 FLOW FLOW PRESSURE 20 - OUTLET PRESSURE 2 OUTPUTS : 22 - OUTLET MASS FLOW RATE FLOW 10 - INLET PRESSURE 1 11 - INLET PRESSURE 2 PRESSURE PRESSURE PARAMETERS: 3 0.163910E-01 INLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.354950E-01 INLET FLOW RESISTANCE 2 [0.001/(KG M)] 0.326800E-02 OUTLET FLOW RESISTANCE [0.001/(KG M)] UNIT 49 TYPE 204 FLOW MERGE INPUTS: 1 18 - INLET MASS FLOW RATE 1 FLOW 19 - INLET MASS FLOW RATE 2 19 - OUTLET PRESSURE FLOW PRESSURE 2 OUTPUTS : 21 - OUTLET MASS FLOW RATE FLOW 12 - INLET PRESSURE 1 13 - INLET PRESSURE 2 PRESSURE PRESSURE **PARAMETERS**: 3 0.108100 INLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.162170E-01 INLET FLOW RESISTANCE 2 [0.001/(KG M)] 0.649300E-02 OUTLET FLOW RESISTANCE [0.001/(KG M)] -------UNIT 50 TYPE 204 FLOW MERGE INPUTS: 1 21 - INLET MASS FLOW RATE 1 FLOW 20 - INLET MASS FLOW RATE 2 21 - OUTLET PRESSURE FLOW PRESSURE OUTPUTS : 2 23 - OUTLET MASS FLOW RATE 19 - INLET PRESSURE 1 14 - INLET PRESSURE 2 FLOW PRESSURE PRESSURE PARAMETERS: 3 0.649300E-02 INLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.680600E-01 INLET FLOW RESISTANCE 2 [0.001/(KG M)] 0.114200E-02 OUTLET FLOW RESISTANCE [0.001/(KG M)] TYPE 204 UNIT 51 FLOW MERGE 1 INPUTS: 22 - INLET MASS FLOW RATE 1 23 - INLET MASS FLOW RATE 2 FLOW FLOW

-

PRESSURE 22 - OUTLET PRESSURE OUTPUTS : 2 24 - OUTLET MASS FLOW RATE FLOW 20 - INLET PRESSURE 1 21 - INLET PRESSURE 2 PRESSURE PRESSURE **PARAMETERS**: 3 0.129800E-02 INLET FLOW RESISTANCE 1 [0.001/(KG M)] 0.212000E-03 INLET FLOW RESISTANCE 2 [0.001/(KG M)] 0.621000E-02 OUTLET FLOW RESISTANCE [0.001/(KG M)] -----UNIT 52 TYPE 201 FAN OR PUMP - TEMP RISE CORRECTED FOR WORK DONE 1 INPUTS: 24 - MASS FLOW RATE OF FLUID FLOW 23 - OUTLET PRESSURE 2 - FAN OR PUMP ROTATIONAL SPEED PRESSURE RVPS 77 - INLET FLUID TEMPERATURE TEMPERATURE 2 OUTPUTS : 22 - INLET PRESSURE
0 - OUTLET FLUID TEMPERATURE
2 - POWER CONSUMPTION PRESSURE TEMPERATURE POWER 3 **PARAMETERS:** 4.47318 1ST PRESSURE COEFFICIENT -1.30791 2ND PRESSURE COEFFICIENT 6.16939 3RD PRESSURE COEFFICIENT 4TH PRESSURE COEFFICIENT -5.75617 5TH PRESSURE COEFFICIENT 0.505184 0.105200E-01 1ST EFFICIENCY COEFFICIENT 2.10726 2ND EFFICIENCY COEFFICIENT 3RD EFFICIENCY COEFFICIENT 4TH EFFICIENCY COEFFICIENT -1.75750 0.536622 5TH EFFICIENCY COEFFICIENT -0.127430 0.518000 DIAMETER (M) MODE: AIR=1, WATER=2 LOWEST VALID NORMALISED FLOW (-) 1.00000 1.50000 HIGHEST VALID NORMALISED FLOW (-) -----UNIT 53 TYPE 228 CONSTANT FLOW RESISTANCE - LINEARISED AT LOW FLOW INPUTS: 1 24 - FLUID MASS FLOW RATE 24 - OUTLET PRESSURE FLOW PRESSURE OUTPUTS : 2 PRESSURE 23 - INLET PRESSURE PARAMETERS : 3 0.267400E-02 FLOW RESISTANCE [0.001/(KG M)] UNIT 54 TYPE 26 CONTROL SIGNAL INVERTER INPUTS: 1 CONTROL 1 - INPUT CONTROL SIGNAL OUTPUTS : 2 CONTROL 0 - OUTPUT CONTROL SIGNAL 3 PARAMETERS: Ο. MULTIPLIER [DIMENSIONLESS] ----------UNIT 55 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P 1 INPUTS:

 TEMPERATURE
 1 - INLET AIR DRY BULB TEMPERATURE

 HUMIDITY RATIO
 1 - INLET AIR HUMIDITY RATIO

 PRESSURE
 1 - OUTLET AIR GAUGE PRESSURE

 TEMPERATURE

	FLOW	2 - DRY AIR MASS FLOW RATE
	TEMPERATURE	56 - INLET WATER TEMPERATURE
	CONTROL	79 - VALVE STEM POSITION
	PRESSURE	20 - INLEI WATER PRESSURE
	TEMPERATURE	2 - DRY AIR MASS FLOW RATE 56 - INLET WATER TEMPERATURE 79 - VALVE STEM POSITION 28 - INLET WATER PRESSURE 29 - OUTLET WATER PRESSURE 58 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O
2	OUTPUTS:	ER - FEFERTINE COTL SIDENCE TEMOFONTIDE
	TEMPERATURE	3 - OUTLET DRY BULB AIR TEMPERATURE
	HUMIDITY RATIO	58 - EFFECTIVE COIL SURFACE TEMPERATURE 3 - OUTLET DRY BULB AIR TEMPERATURE 3 - OUTLET AIR HUMIDITY RATIO
	PRESSURE	0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE
	TEMPERATURE	0 - COIL OUTLET WATER TEMPERATURE
	FLOW	57 - RETURN MIXED WATER TEMPERATURE 27 - COIL WATER MASS FLOW RATE
	FLOW	26 - SUPPLY WATER MASS FLOW RATE
	POWER	0 - TOTAL HEAT TRANSFER TO THE AIR 0 - SENSIBLE HEAT RATIO 0 - COIL EFFECTIVENESS
	CONTROL CONTROL	0 - SENSIBLE HEAT RATIO 0 - COIL EFFECTIVENESS
	CONTROL	 0 - COIL EFFECTIVENESS 0 - COIL BY-PASS FACTOR 0 - OUTLET AIR SPECIFIC ENTHALPY 0 - OUTLET AIR RELATIVE HUMIDITY 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION 0 - OUTLET AIR WET-BULB TEMPERATURE
	ENERGY	0 - OUTLET AIR SPECIFIC ENTHALPY
	CONTROL	0 - OUTLET AIR RELATIVE HUMIDITY
	TEMPERATURE	0 - AIR SPECIFIC ENTRALPY IN COLL SURFACE CONDITION 0 - OUTTET AIR WET-BILD TEMPERATURE
	TEMPERATORE	
3	PARAMETERS :	
	1.00000	METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS FAULT : 0 FOR NO FAULTS, PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF FUBES PER ROW NUMBER OF PARALLEL WATER CIRCUITS LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M) HEIGHT OF FINNED SECTION (M) WIDTH OF FINNED SECTION (M)
	0.	PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS
	6.00000	NUMBER OF ROWS OF TUBES
	45.0000	NUMBER OF TUBES PER ROW
	45.0000	NUMBER OF PARALLEL WATER CIRCUITS
	1.44000	HEIGHT OF FINNED SECTION (M)
	1.36000	WIDTH OF FINNED SECTION (M)
	0.12/0006-01	TUBE OUTSIDE DIAMETER (M) TUBE WALL THICKNESS (M)
		TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4)
		FIN SPACING (PITCH) (M)
		FIN THICKNESS (M) FIN MATERIAL (AL=1,CU=2,FE=3)
	0.486000E-02	FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M)
	31.0000	<pre>Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP VALVE CHARACTERISTIC EXPONENT Ngl (-) ADJUSTING RATIO (>1) (-)</pre>
	1.00000	VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP
	100.000	ADJUSTING RATIO (>1) (-)
	0.20000E-03	VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-)
	0.522000	
		COLL HYDRAULIC RESISTANCE (0.001 KG.M)
		COIL HYDRAULIC RESISTANCE (0.001 KG.M) BYPASS HYDRAULIC RESISTANCE (0.001 KG.M)
UNIT	56 TYPE 299)
UNIT	56 TYPE 299	
UNIT LIEGE	56 TYPE 299)
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE	G JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO	G JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE	G JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE	2 JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL	2 VE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE	JUE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE
UNIT LIEGE	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE	2 VE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE	3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR HUMIDITY RATIO 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE
UNIT LIEGE	56 TYPE 295 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE OUTPUTS:	 JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O
UNIT LIEGE 1	56 TYPE 295 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE OUTPUTS:	3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR HUMIDITY RATIO 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO	 JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE OUTPUTS: TEMPERATURE TEMPERATURE HUMIDITY RATIO PRESSURE	 JUE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO	 JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE FLOW	 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET AIR HUMIDITY RATIO 6 - INLET AIR HUMIDITY RATIO 6 - INLET AIR GAUGE PRESSURE 6 - COIL OUTLET WATER TEMPERATURE 6 - RETURN MIXED WATER TEMPERATURE 29 - COIL WATER MASS FLOW RATE
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE TEMPERATURE HUMIDITY RATIO PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE FLOW	 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE 60 - RETURN MIXED WATER TEMPERATURE 60 - RETURN MASS FLOW RATE 28 - SUPPLY WATER MASS FLOW RATE
UNIT LIEGE 1	56 TYPE 295 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE TEMPERATURE OUTPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE FLOW FLOW POWER	 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET AIR HUMIDITY RATIO 6 - INLET AIR HUMIDITY RATIO 6 - INLET AIR GAUGE PRESSURE 6 - COIL OUTLET WATER TEMPERATURE 6 - RETURN MIXED WATER TEMPERATURE 29 - COIL WATER MASS FLOW RATE
UNIT LIEGE 1	56 TYPE 299 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE PRESSURE TEMPERATURE TEMPERATURE HUMIDITY RATIO PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE FLOW	 JVE, WATER PRESSURE I/P 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR HUMIDITY RATIO 0 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE 60 - RETURN MIXED WATER TEMPERATURE 29 - COIL WATER MASS FLOW RATE 28 - SUPPLY WATER MASS FLOW RATE 0 - TOTAL HEAT TRANSFER TO THE AIR
UNIT LIEGE 1	56 TYPE 295 COIL AND L&G VAI INPUTS: TEMPERATURE HUMIDITY RATIO PRESSURE FLOW TEMPERATURE CONTROL PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO PRESSURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE FLOW FLOW POWER CONTROL	 3 - INLET AIR DRY BULB TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 2 - DRY AIR MASS FLOW RATE 59 - INLET WATER TEMPERATURE 80 - VALVE STEM POSITION 30 - INLET WATER PRESSURE 31 - OUTLET WATER PRESSURE 61 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 61 - EFFECTIVE COIL SURFACE TEMPERATURE 4 - OUTLET DRY BULB AIR TEMPERATURE 6 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE 6 - COIL OUTLET WATER TEMPERATURE 60 - RETURN MIXED WATER TEMPERATURE 29 - COIL WATER MASS FLOW RATE 28 - SUPPLY WATER MASS FLOW RATE 0 - TOTAL HEAT TRANSFER TO THE AIR 0 - SENSIBLE HEAT RATIO

ENERGY 0 - OUTLET AIR SPECIFIC ENTHALPY CONTROL 0 - OUTLET AIR RELATIVE HUMIDITY 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION ENERGY TEMPERATURE 0 - OUTLET AIR WET-BULB TEMPERATURE 3 PARAMETERS: 1.00000 METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS FAULT : 0 FOR NO FAULTS, . ο. PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF TUBES PER ROW Ο. 1.00000 48.0000 NUMBER OF PARALLEL WATER CIRCUITS 6.00000 0.380000E-01 LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M) 1.44000 HEIGHT OF FINNED SECTION (M) WIDTH OF FINNED SECTION (M) 1.36000 0.127000E-01 TUBE OUTSIDE DIAMETER (M) 0.430000E-03 TUBE WALL THICKNESS (M) TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4) 2.00000 0.250000E-02 FIN SPACING (PITCH) (M) 0.160000E-03 FIN THICKNESS (M) FIN MATERIAL (AL=1, CU=2, FE=3) 1.00000 0.328000E-03 FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M) Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP VALVE CHARACTERISTIC EXPONENT Ngl (-) 10.0000 1.00000 3.00000 100.000 ADJUSTING RATIO (>1) (-) 1.200000E-03 VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-) 11.0400 COIL HYDRAULIC RESISTANCE (0.001 KG.M) 11.0400 11.0400 BYPASS HYDRAULIC RESISTANCE (0.001 KG.M) UNIT 57 TYPE 205 FAN OR PUMP - POWER AND TEMP RISE ONLY 1 INPUTS : CONTROL 120 - ON/OFF SWITCH 4 - INLET FLUID TEMPERATURE TEMPERATURE 2 - MASS FLOW RATE OF FLUID FLOW 2 OUTPUTS: PRESSURE 42 - TOTAL PRESSURE RISE 5 - OUTLET FLUID TEMPERATURE TEMPERATURE 3 - POWER CONSUMPTION POWER RVPS 3 - ROTATION SPEED PARAMETERS : 3 4.47318 1ST PRESSURE COEFFICIENT 2ND PRESSURE COEFFICIENT 3RD PRESSURE COEFFICIENT -1.30791 6.16939 4TH PRESSURE COEFFICIENT -5.75617 0.505184 5TH PRESSURE COEFFICIENT 0.105200E-01 1ST EFFICIENCY COEFFICIENT 2.10726 2ND EFFICIENCY COEFFICIENT -1.75750 3RD EFFICIENCY COEFFICIENT 0.536622 4TH EFFICIENCY COEFFICIENT -0.127430 5TH EFFICIENCY COEFFICIENT DIAMETER (M) 0.570000 1.00000 MODE: AIR=1, WATER=2 0.800000 LOWEST VALID NORMALISED FLOW (-) 1.50000 HIGHEST VALID NORMALISED FLOW (-) 0.300000 STATIC PRESSURE SET-POINT (ZERO FOR RETURN FAN) [KPA] 0.158000 DUCT/PIPE CROSS SECTIONAL AREA AT SENSOR (M2) 0.830000E-02 RESISTANCE OF DUCT/PIPE SYSTEM UPSTREAM OF SENSOR (0.00 UNIT 58 TYPE 212 MIXING OF FIVE MOIST AIR STREAMS INPUTS -1 TEMPERATURE51 - INLET AIR DRY BULB TEMPERATURE - STREAM 1HUMIDITY RATIO19 - INLET AIR HUMIDITY RATIO - STREAM 1 FLOW 16 - INLET DRY AIR MASS FLOW RATE - STREAM 1 52 - INLET AIR DRY BULB TEMPERATURE - STREAM 2 TEMPERATURE HUMIDITY RATIO 20 - INLET AIR HUMIDITY RATIO - STREAM 2 FLOW 17 - INLET DRY AIR MASS FLOW RATE - STREAM 2 TEMPERATURE 53 - INLET AIR DRY BULB TEMPERATURE - STREAM 3

HUMIDITY RATIO 21 - INLET AIR HUMIDITY RATIO - STREAM 3

FLOW

18 - INLET DRY AIR MASS FLOW RATE - STREAM 3

TEMPERATURE54 - INLET AIR DRY BULB TEMPERATURE - STREAM 4HUMIDITY RATIO22 - INLET AIR HUMIDITY RATIO - STREAM 4 TEMPERATURE 19 - INLET DRY AIR MASS FLOW RATE - STREAM 4 54 - INLET AIR DRY BULB TEMPERATURE - STREAM 5 HUMIDITY RATIO 23 - INLET AIR HUMIDITY RATIO - STREAM 5 20 - INLET DRY AIR MASS FLOW RATE - STREAM 5 FLOW OUTPUTS : 2 TEMPERATURE 77 - OUTLET AIR DRY BULB TEMPERATURE HUMIDITY RATIO 24 - OUTLET AIR HUMIDITY RATIO FLOW 0 - OUTLET DRY AIR MASS FLOW RATE PARAMETERS : 3 -----TYPE 205 UNIT 59 FAN OR PUMP - POWER AND TEMP RISE ONLY INPUTS : 1 120 - ON/OFF SWITCH CONTROL
 CONTROL
 120 - ON/OFF SHITCH

 TEMPERATURE
 77 - INLET FLUID TEMPERATURE

 FLOW
 24 - MASS FLOW RATE OF FLUID
 2 OUTPUTS: 43 - TOTAL PRESSURE RISE PRESSURE 78 - OUTLET FLUID TEMPERATURE 4 - POWER CONSUMPTION TEMPERATURE POWER RVPS 4 - ROTATION SPEED PARAMETERS: 3 4.47318 1ST PRESSURE COEFFICIENT 2ND PRESSURE COEFFICIENT -1.30791 6.16939 3RD PRESSURE COEFFICIENT -5.75617 4TH PRESSURE COEFFICIENT 5TH PRESSURE COEFFICIENT 0.505184 0.105200E-01 1ST EFFICIENCY COEFFICIENT 2ND EFFICIENCY COEFFICIENT 2.10726 3RD EFFICIENCY COEFFICIENT -1.75750 4TH EFFICIENCY COEFFICIENT 0.536622 -0.127430 5TH EFFICIENCY COEFFICIENT 0.519000 DIAMETER (M) MODE: AIR=1, WATER=2 1.00000 0.800000 1.50000 LOWEST VALID NORMALISED FLOW (-) HIGHEST VALID NORMALISED FLOW (-) 0. STATIC PRESSURE SET-POINT (ZERO FOR RETURN FAN) [KPA] 999.000 DUCT/PIPE CROSS SECTIONAL AREA AT SENSOR (M2) 0.170000E-01 RESISTANCE OF DUCT/PIPE SYSTEM UPSTREAM OF SENSOR (0.00 _____ UNIT 60 TYPE 211 MIXING OF TWO MOIST AIR STREAMS 1 INPUTS: INPUTS:TEMPERATURE1 - INLET AIR DRY BULB TEMPERATURE - STREAM 1HUMIDITY RATIO1 - INLET AIR HUMIDITY RATIO - STREAM 1FLOW1 - INLET DRY AIR MASS FLOW RATE - STREAM 1TEMPERATURE78 - INLET AIR DRY BULB TEMPERATURE - STREAM 2HUMIDITY RATIO24 - INLET AIR HUMIDITY RATIO - STREAM 2FLOW25 - INLET DRY AIR MASS FLOW RATE - STREAM 2 OUTPUTS: 2

 TEMPERATURE
 2 - OUTLET AIR DRY BULB TEMPERATURE

 HUMIDITY RATIO
 2 - OUTLET AIR HUMIDITY RATIO

 FLOW
 0 - OUTLET DRY AIR MASS FLOW RATE

 3 PARAMETERS: UNIT 61 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT 1 INPUTS: 6 - AIR MASS FLOW RATE FLOW PRESSURE PRESSURE1-OUTLETPRESSURETEMPERATURE5-INLETAIRTEMPERATUREHUMIDITYRATIO3-INLETAIRHUMIDITYRATIOTEMPERATURE31-EXTERNALTEMPERATURE

2 OUTPUTS : 6 - OUTLET AIR TEMPERATURE TEMPERATURE HUMIDITY RATIO 4 - OUTLET AIR HUMIDITY RATIO 0 - INLET PRESSURE PRESSURE 5 - HEAT LOSS RATE POWER PARAMETERS : 3 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) 1.00000 LENGTH OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) 0.500000 20.0000 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) 0.173300 R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) FLOW RESISTANCE (0.001 KG.M) HEIGHT OF OUTLET ABOVE INLET (M) Ο. Ο. UNIT 62 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P INPUTS : 1 TEMPERATURE6-INLET AIR DRY BULB TEMPERATUREHUMIDITY RATIO4-INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE PRESSURE 6 - DRY AIR MASS FLOW RATE FLOW 62 - INLET WATER TEMPERATURE 81 - VALVE STEM POSITION TEMPERATURE CONTROL 32 - INLET WATER PRESSURE 37 - OUTLET WATER PRESSURE PRESSURE PRESSURE 72 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O TEMPERATURE 2 OUTPUTS : TEMPERATURE 72 - EFFECTIVE COIL SURFACE TEMPERATURE TEMPERATURE 11 - OUTLET DRY BULB AIR TEMPERATURE HUMIDITY RATIO 0 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE PRESSURE TEMPERATURE TEMPERATURE 67 - RETURN MIXED WATER TEMPERATURE FLOW 0 - COIL WATER MASS FLOW RATE 30 - SUPPLY WATER MASS FLOW RATE FLOW POWER 0 - TOTAL HEAT TRANSFER TO THE AIR CONTROL 0 - SENSIBLE HEAT RATIO CONTROL 0 - COIL EFFECTIVENESS 0 - COIL BY-PASS FACTOR CONTROL 0 - OUTLET AIR SPECIFIC ENTHALPY 0 - OUTLET AIR RELATIVE HUMIDITY ENERGY CONTROL 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION ENERGY 0 - OUTLET AIR WET-BULB TEMPERATURE TEMPERATURE PARAMETERS : 3 1.00000 METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS FAULT : 0 FOR NO FAULTS, ... FSULT : 0 FOR NO FAULTS, ... FSYCHO : 0 FOR NO FSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF TUBES PER ROW ο. Ο. 1.00000 24.0000 NUMBER OF PARALLEL WATER CIRCUITS 3.00000 0.380000E-01 LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M) 0.720000 HEIGHT OF FINNED SECTION (M) 0.680000 WIDTH OF FINNED SECTION (M) 0.127000E-01 TUBE OUTSIDE DIAMETER (M) 0.430000E-03 TUBE WALL THICKNESS (M) TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4) 2.00000 0.250000E-02 FIN SPACING (PITCH) (M) 0.160000E-03 FIN THICKNESS (M) FIN INICIALES (AL, FIN MATERIAL (AL=1, CU=2, FE=3) FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M) 1.00000 0. Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP VALVE CHARACTERISTIC EXPONENT Ngl (-) 5.54000 1.00000 3.00000 100.000 ADJUSTING RATIO (>1) (-) 0.100000E-01 VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-) 42.2000 COIL HYDRAULIC RESISTANCE (0.001 KG.M) 42.2000 BYPASS HYDRAULIC RESISTANCE (0.001 KG.M)

UNIT 63 TYPE 272 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, DUCTED RETURN INPUTS : 1 TEMPERATURE 11 - SUPPLY AIR DRY BULB TEMPERATURE 4 - SUPPLY AIR HUMIDITY RATIO HUMIDITY RATIO 6 - SUPPLY DRY AIR MASS FLOW RATE FLOW 17 - INTERZONE 1 AIR DRY BULB TEMPERATURE 10 - INTERZONE 1 AIR HUMIDITY RATIO TEMPERATURE HUMIDITY RATIO 11 - INTERZONE 1 DRY AIR MASS FLOW RATE 20 - INTERZONE 2 AIR DRY BULB TEMPERATURE FLOW TEMPERATURE 13 - INTERZONE 2 AIR HUMIDITY RATIO 15 - INTERZONE 2 DRY AIR MASS FLOW RATE HUMIDITY RATIO FLOW 16 - EXTRACT DRY AIR MASS FLOW RATE FLOW. TEMPERATURE 26 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR ROOM 41 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR PLENUM TEMPERATURE 1 - AMBIENT DRY BULB TEMPERATURE TEMPERATURE 1 - AMBIENT HUMIDITY RATIO 86 - FRACTIONAL OCCUPANCY HUMIDITY RATIO CONTROL 91 - FRACTIONAL LIGHTING HEAT GAIN CONTROL 96 - FRACTIONAL EQUIPMENT HEAT GAIN CONTROL 5 - HEAT GAIN FROM SUPPLY DUCT POWER 10 - HEAT GAIN FROM EXTRACT DUCT POWER TEMPERATURE 16 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT) 21 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT) TEMPERATURE 31 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT) 36 - PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT) TEMPERATURE TEMPERATURE HUMIDITY RATIO 9 - ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT) HUMIDITY RATIO 14 - PLENUM HUMIDITY RATIO (SAME AS 6TH OUTPUT) 2 OUTPUTS: TEMPERATURE 16 - ROOM TEMPERATURE (SAME AS 11TH INPUT) TEMPERATURE 21 - ROOM STRUCTURE TEMPERATURE (SAME AS 12TH INPUT) TEMPERATURE 31 - PLENUM TEMPERATURE (SAME AS 13TH INPUT) 36 - PLENUM STRUCTURE TEMPERATURE (SAME AS 14TH INPUT)
 9 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT) TEMPERATURE HUMIDITY RATIO HUMIDITY RATIO 14 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT) 46 - RETURN TEMPERATURE TEMPERATURE 0 - LEAKAGE DRY AIR MASS FLOW RATE (NET) FLOW 0 - SENSIBLE HEAT GAINS OF ROOM 0 - SENSIBLE HEAT GAINS OF PLENUM POWER POWER 0 - WATER GAINS OF ROOM FLOW PARAMETERS : 3 ROOM AIR CAPACITY MULTIPLIER (-) 5.00000 1.00000 ZONE NUMBER (PARAMETER FILE=zoneN.par, N > 0) RWSR: DIRECT RESISTANCE ROOM AIR NODE <-> AMBIENT (K/KW 4.06000 8.23000 RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW ROSR: RESISTANCE AMBIENT <-> ROOM MASS NODE (K/KW) 10000.0 10000.0 RWSP: DIRECT RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/ 0.410000 RISP: RESISTANCE PLENUM AIR NODE <-> PLENUM MASS NODE (10000.0 ROSP: RESISTANCE AMBIENT <-> PLENUM MASS NODE (K/KW) RR: RESISTANCE ROOM AIR NODE <--> PLENUM AIR NODE (K/KW) CSR: CAPACITANCE OF ROOM MASS NODE (KJ/K) 2.28000 22828.1 CR: CAPACITANCE OF ROOM AIR NODE (UNMODIFIED) (KJ/K) 667.640 17428.0 CSP: CAPACITANCE OF PLENUM MASS NODE (KJ/K) CP: CAPACITANCE OF PLENUM AIR NODE (KJ/K) VOLUME OF ROOM (M3) VOLUME OF PLENUM (M3) NUMBER OF OCCUPANTS (-) 255.830 575.500 220.500 22.0000 LIGHTING HEAT GAIN (KW) 2.15200 FRACTION OF LIGHTING HEAT GAIN TO PLENUM 0.500000 EQUIPMENT HEAT GAIN (KW) Ο. UNIT 64 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT INPUTS: 1 FLOW 16 - AIR MASS FLOW RATE PRESSURE 1 - OUTLET PRESSURE TEMPERATURE 46 - INLET AIR TEMPERATURE HUMIDITY RATIO 9 - INLET AIR HUMIDITY RATIO 31 - EXTERNAL TEMPERATURE TEMPERATURE 2 OUTPUTS : TEMPERATURE 51 - OUTLET AIR TEMPERATURE HUMIDITY RATIO 19 - OUTLET AIR HUMIDITY RATIO

0 - INLET PRESSURE PRESSURE POWER 10 - HEAT LOSS RATE 3 PARAMETERS: SHAPE OF CONDUIT (ROUND=0, SQUARE=1) SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) 1.00000 0.500000 20.0000 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) 0.173300 FLOW RESISTANCE (0.001 KG.M) Ο. HEIGHT OF OUTLET ABOVE INLET (M) 0 UNIT 65 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT 1 INPUTS : 7 - AIR MASS FLOW RATE FLOW PRESSURE 1 - OUTLET PRESSURE 5 - INLET AIR TEMPERATURE TEMPERATURE
 HUMIDITY RATIO
 3
 INLET AIR HUMIDITY RATIO

 TEMPERATURE
 32
 EXTERNAL TEMPERATURE
 OUTPUTS : 2 TEMPERATURE7 - OUTLET AIR TEMPERATUREHUMIDITY RATIO5 - OUTLET AIR HUMIDITY RATIO PRESSURE 0 - INLET PRESSURE 6 - HEAT LOSS RATE POWER 3 PARAMETERS : 1.00000 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) LENGTH OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) 0.500000 20.0000 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) WALL MATERIAL (AL=1, CO=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) FLOW RESISTANCE (0.001 KG.M) HEIGHT OF OUTLET ABOVE INLET (M) 0.173300 ο. Ο. ----UNIT 66 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P 1 INPUTS: TEMPERATURE 7 - INLET AIR DRY BULB TEMPERATURE HUMIDITY RATIO 5 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE 7 - DRY AIR MASS FLOW RATE 63 - INLET WATER TEMPERATURE PRESSURE FLOW TEMPERATURE CONTROL PRESSURE 82 - VALVE STEM POSITION 33 - INLET WATER PRESSURE 38 - OUTLET WATER PRESSURE PRESSURE TEMPERATURE 73 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 2 OUTPUTS: TEMPERATURE 73 - EFFECTIVE COIL SURFACE TEMPERATURE TEMPERATURE 12 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO HUMIDITY RATIO PRESSURE 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE 68 - RETURN MIXED WATER TEMPERATURE TEMPERATURE TEMPERATURE 0 - COIL WATER MASS FLOW RATE FLOW FLOW 31 - SUPPLY WATER MASS FLOW RATE POWER 0 - TOTAL HEAT TRANSFER TO THE AIR CONTROL 0 - SENSIBLE HEAT RATIO CONTROL 0 - COIL EFFECTIVENESS CONTROL. 0 - COIL BY-PASS FACTOR ENERGY 0 - OUTLET AIR SPECIFIC ENTHALPY CONTROL 0 - OUTLET AIR RELATIVE HUMIDITY 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION ENERGY TEMPERATURE 0 - OUTLET AIR WET-BULB TEMPERATURE 3 **PARAMETERS**: 1.00000 METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS FAULT : 0 FOR NO FAULTS, ... PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS Ο. 0. 1.00000 NUMBER OF ROWS OF TUBES

24.0000	NUMBER OF TUBES PER ROW
3.00000	NUMBER OF PARALLEL WATER CIRCUITS
0.380000E-01	LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M)
0.720000	HEIGHT OF FINNED SECTION (M)
0.680000	WIDTH OF FINNED SECTION (M)
0.127000E-01	TUBE OUTSIDE DIAMETER (M)
0.430000E-03	TUBE WALL THICKNESS (M)
2.00000	TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4)
0.250000E-02	FIN SPACING (PITCH) (M)
0.160000E-03	FIN THICKNESS (M)
1.00000	FIN MATERIAL (AL=1,CU=2,FE=3)
0.	FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M)
2.68000	KV: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR)
1.00000	VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP
3.00000	VALVE CHARACTERISTIC EXPONENT Ngl (-)
100.000	ADJUSTING RATIO (>1) (-)
0.100000E-02	VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-)
180.200	COIL HYDRAULIC RESISTANCE (0.001 KG.M)
180.200	BYPASS HYDRAULIC RESISTANCE (0.001 KG.M)

UNIT 67 TYPE 272 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, DUCTED RETURN

1	INPUTS:	
-		12 - SUPPLY AIR DRY BULB TEMPERATURE
		5 - SUPPLY AIR HUMIDITY RATIO
	FLOW	7 - SUPPLY DRY AIR MASS FLOW RATE
	TEMPERATURE	
	HUMIDITY RATIO	11 - INTERZONE 1 AIR HUMIDITY RATIO
	FLOW	12 - INTERZONE 1 DRY AIR MASS FLOW RATE
	TEMPERATURE	16 - INTERZONE 2 AIR DRY BULB TEMPERATURE
		9 - INTERZONE 2 AIR HUMIDITY RATIO
	FLOW	11 - INTERZONE 2 DRY AIR MASS FLOW RATE
	FLOW	17 - EXTRACT DRY AIR MASS FLOW RATE
	TEMPERATURE	27 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR ROOM
	TEMPERATURE	42 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR PLENUM
	TEMPERATURE	1 - AMBIENT DRY BULB TEMPERATURE
		1 - AMBIENT HUMIDITY RATIO
	CONTROL	87 - FRACTIONAL OCCUPANCY
	CONTROL	92 - FRACTIONAL LIGHTING HEAT GAIN
	CONTROL	97 - FRACTIONAL EQUIPMENT HEAT GAIN
	POWER	6 - HEAT GAIN FROM SUPPLY DUCT
	DOMED	11 TEAT OF IN EDOM EVED ACT DUCT
	TEMPERATURE	17 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT)
	TEMPERATURE	11 - HEAT GAIN FROM EXTRACT DUCT 17 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT) 22 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT)
	TEMPERATURE	32 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT)
	TEMPERATURE	37 - PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT)
	HUMIDITY RATIO	10 - ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT)
	HUMIDITY RATIO	32 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT) 37 - PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT) 10 - ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT) 15 - PLENUM HUMIDITY RATIO (SAME AS 6TH OUTPUT)
2	OUTPUTS :	
	TEMPERATURE	17 - ROOM TEMPERATURE (SAME AS 11TH INPUT)
	TEMPERATURE	22 - ROOM STRUCTURE TEMPERATURE (SAME AS 12TH INDUT)
	TEMPERATURE	32 - PLENUM TEMPERATURE (SAME AS 13TH INPUT)
	TEMPERATURE	 32 - PLENUM TEMPERATURE (SAME AS 13TH INPUT) 37 - PLENUM STRUCTURE TEMPERATURE (SAME AS 14TH INPUT) 10 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT)
	HUMIDITY RATIO	10 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT)
	HUMIDITY RATIO	15 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT)
	TEMPERATURE	47 - RETURN TEMPERATURE
	FLOW	0 - LEAKAGE DRY AIR MASS FLOW RATE (NET)
	POWER	0 - SENSIBLE HEAT GAINS OF ROOM
	POWER	0 - SENSIBLE HEAT GAINS OF PLENUM
	FLOW	0 - WATER GAINS OF ROOM
3	PARAMETERS:	
	5.00000	ROOM AIR CAPACITY MULTIPLIER (-)
	2.00000	ZONE NUMBER (PARAMETER FILE=zoneN.par, $N > 0$)
	9.65000	RWSR: DIRECT RESISTANCE ROOM AIR NODE <-> AMBIENT (K/KW
	17.9400	RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW
	10000.0	ROSR: RESISTANCE AMBIENT <-> ROOM MASS NODE (K/KW)
	10000.0	RWSP: DIRECT RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/
	0.560000	RISP: RESISTANCE PLENUM AIR NODE <-> PLENUM MASS NODE (
	10000.0	ROSP: RESISTANCE AMBIENT <-> PLENUM MASS NODE (K/KW)
	3.09000	RR: RESISTANCE ROOM AIR NODE <-> PLENUM AIR NODE (K/KW)
	15269.3	CSR: CAPACITANCE OF ROOM MASS NODE (KJ/K)
	491.980	CR: CAPACITANCE OF ROOM AIR NODE (UNMODIFIED) (KJ/K)
	12842.5	CSP: CAPACITANCE OF ROOM AIR NODE (GRADDITIED) (RO/R)
	188.520	CP: CAPACITANCE OF PLENUM AIR NODE (KJ/K)

VOLUME OF ROOM (M3) 424.100 162.500 VOLUME OF PLENUM (M3) NUMBER OF OCCUPANTS (-) 16.0000 1.58600 LIGHTING HEAT GAIN (KW) 0.500000 FRACTION OF LIGHTING HEA 0. EQUIPMENT HEAT GAIN (KW) FRACTION OF LIGHTING HEAT GAIN TO PLENUM ------UNIT 68 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT INPUTS: 1 FLOW17 - AIR MASS FLOW RATEPRESSURE1 - OUTLET PRESSURETEMPERATURE47 - INLET AIR TEMPERATURE HUMIDITY RATIO 10 - INLET AIR HUMIDITY RATIO 32 - EXTERNAL TEMPERATURE TEMPERATURE OUTPUTS : 2
 TEMPERATURE
 52
 OUTLET AIR TEMPERATURE

 HUMIDITY RATIO
 20
 OUTLET AIR HUMIDITY RATIO

 PRESSURE
 0
 INLET PRESSURE

 DOUTD
 0
 INLET PRESSURE
 TEMPERATURE 0 - HEAT LOSS RATE POWER PARAMETERS: З 1.00000 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) 0.500000 SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) 20.0000 LENGTH OF CONDUIT (M) 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) FLOW RESISTANCE (0.001 KG.M) HEIGHT OF OUTLET ABOVE INLET (M) 0.173000 ο. Ο. UNIT 69 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT INPUTS: 1 FLOW 8 - AIR MASS FLOW RATE PRESSURE 1 - OUTLET PRESSURE FRESSUREI - OUTLEL FRESSURETEMPERATURE5 - INLET AIR TEMPERATUREHUMIDITY RATIO3 - INLET AIR HUMIDITY RATIOTEMPERATURE33 - EXTERNAL TEMPERATURE 2 OUTPUTS: TEMPERATURE 8 - OUTLET AIR TEMPERATURE
 HUMIDITY RATIO
 6
 OUTLET AIR HUMIDITY RATIO

 PRESSURE
 0
 INLET PRESSURE

 POWER
 7
 HEAT LOSS RATE
 3 PARAMETERS: SHAPE OF CONDUIT (ROUND=0, SQUARE=1) SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) 1.00000 0.500000 20.0000 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) FLOW RESISTANCE (0.001 KG.M) 0.173300 Ο. 0. HEIGHT OF OUTLET ABOVE INLET (M) UNIT 70 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P INPUTS: 1 TEMPERATURE 8 - INLET AIR DRY BULB TEMPERATURE HUMIDITY RATIO 6 - INLET AIR HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE PRESSURE 1 - OUTLET AIR GAUGE THESE 8 - DRY AIR MASS FLOW RATE FLOW
 FLOW
 8 - DRY AIK MASS FLOW RATE

 TEMPERATURE
 64 - INLET WATER TEMPERATURE

 CONTROL
 83 - VALVE STEM POSITION

 PRESSURE
 34 - INLET WATER PRESSURE

 PRESSURE
 39 - OUTLET WATER PRESSURE

 TEMPERATURE
 74 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O

2	HUMIDITY RATIO PRESSURE TEMPERATURE FLOW FLOW POWER CONTROL CONTROL ENERGY CONTROL	 74 - EFFECTIVE COIL SURFACE TEMPERATURE 13 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE 69 - RETURN MIXED WATER TEMPERATURE 0 - COIL WATER MASS FLOW RATE 32 - SUPPLY WATER MASS FLOW RATE 32 - SUPPLY WATER MASS FLOW RATE 0 - TOTAL HEAT TRANSFER TO THE AIR 0 - SENSIBLE HEAT RATIO 0 - COIL EFFECTIVENESS 0 - COIL BY-PASS FACTOR 0 - OUTLET AIR SPECIFIC ENTHALPY 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION 0 - OUTLET AIR WET-BULB TEMPERATURE
2	DADAMETEDC.	
3	PARAMETERS:	METHOD · O FOR STEADY STATE 1 FOR LIFEE DYNAMICS
	1.00000	METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS FAULT : 0 FOR NO FAULTS, PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF TUBES PER ROW NUMBER OF PARALLEL WATER CIRCUITS
	Ο.	PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS
	1.00000	NUMBER OF ROWS OF TUBES
	24.0000	NUMBER OF TUBES PER ROW
	3.00000	LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M)
	0.38000000-01	HEIGHT OF FINNED SECTION IN DIRECTION OF FLOW (M)
		WIDTH OF FINNED SECTION (M)
		TUBE OUTSIDE DIAMETER (M)
	0.430000E-03	TUBE WALL THICKNESS (M)
		TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4)
		FIN SPACING (PITCH) (M)
		FIN THICKNESS (M)
	1.00000	FIN MATERIAL (AL=1, CU=2, FE=3)
	0.	FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M)
	1 00000	<pre>Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP VALVE CHARACTERISTIC EXPONENT Ngl (-) ADJUSTING RATIO (>1) (-)</pre>
	3.00000	VALVE CHARACTERISTIC EXPONENT Ngl (-)
	100.000	ADJUSTING RATIO (>1) (-)
	0.100000E-02	VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-)
		COIL HYDRAULIC RESISTANCE (0.001 KG.M)
		BYPASS HYDRAULIC RESISTANCE (0.001 KG.M)
	71 TYPE 27 E ROOM/PLENUM - 1	2 INTERZONE AND LEAKAGE, DUCTED RETURN
1	INDIMO.	
1	INPUTS:	13 - SUPPLY AIR DRY BULB TEMPERATURE
	HUMIDITY RATIO	6 - SUPPLY AIR HUMIDITY RATIO
	FLOW	 6 - SUPPLY AIR HUMIDITY RATIO 8 - SUPPLY DRY AIR MASS FLOW RATE 19 - INTERZONE 1 AIR DRY BULB TEMPERATURE 12 - INTERZONE 1 AIR HUMIDITY RATIO 13 - INTERZONE 1 DRY AIR MASS FLOW RATE 17 - INTERZONE 2 AIR DRY BULB TEMPERATURE 10 - INTERZONE 2 AIR HUMIDITY RATIO
	TEMPERATURE	19 - INTERZONE 1 AIR DRY BULB TEMPERATURE
	HUMIDITY RATIO	12 - INTERZONE 1 AIR HUMIDITY RATIO
	FLOW	13 - INTERZONE 1 DRY AIR MASS FLOW RATE
	TEMPERATURE	17 - INTERZONE 2 AIR DRY BULB TEMPERATURE
	HUMIDITY RATIO	10 - INTERZONE 2 AIR HUMIDITY RATIO

10 - INTERZONE 2 AIR HUMIDITY RATIO
12 - INTERZONE 2 DRY AIR MASS FLOW RATE
18 - EXTRACT DRY AIR MASS FLOW RATE
28 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR ROOM
43 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR PLENUM
1 - AMBIENT DRY BULB TEMPERATURE
1 - AMBIENT HUMIDITY RATIO
88 - FRACTIONAL OCCUPANCY
93 - FRACTIONAL LIGHTING HEAT GAIN
98 - FRACTIONAL EQUIPMENT HEAT GAIN
7 - HEAT GAIN FROM SUPPLY DUCT
12 - HEAT GAIN FROM EXTRACT DUCT
18 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT)
23 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT) FLOW FLOW TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO CONTROL CONTROL CONTROL POWER POWER TEMPERATURE TEMPERATURE

23 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT) 33 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT) TEMPERATURE

- Imperature38 PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT)HUMIDITY RATIO11 ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT)HUMIDITY RATIO16 PLENUM HUMIDITY RATIO (SAME AS 6TH OUTPUT)

2	TEMPERATURE TEMPERATURE TEMPERATURE HUMIDITY RATIO HUMIDITY RATIO	 18 - ROOM TEMPERATURE (SAME AS 11TH INPUT) 23 - ROOM STRUCTURE TEMPERATURE (SAME AS 12TH INPUT) 33 - PLENUM TEMPERATURE (SAME AS 13TH INPUT) 38 - PLENUM STRUCTURE TEMPERATURE (SAME AS 14TH INPUT) 11 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT) 16 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT) 16 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT) 16 - RETURN TEMPERATURE 0 - LEAKAGE DRY AIR MASS FLOW RATE (NET) 0 - SENSIBLE HEAT GAINS OF ROOM 0 - SENSIBLE HEAT GAINS OF PLENUM 0 - WATER GAINS OF ROOM
3	18.0000 1.84700 0.500000 0.	ROOM AIR CAPACITY MULTIPLIER (-) ZONE NUMBER (PARAMETER FILE=zonEN.par, N > 0) RWSR: DIRECT RESISTANCE ROOM AIR NODE <-> AMBIENT (K/KW RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW) RWSF: DIRECT RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/ RISP: RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/ RISP: RESISTANCE PLENUM AIR NODE <-> PLENUM MASS NODE (ROSP: RESISTANCE AMBIENT <-> PLENUM MASS NODE (K/KW) RR: RESISTANCE AMBIENT <-> PLENUM AIS NODE (K/KW) RR: RESISTANCE AMBIENT <-> PLENUM AIR NODE (K/KW) CSR: CAPACITANCE OF ROOM AIR NODE (KJ/K) CSP: CAPACITANCE OF ROOM AIR NODE (KJ/K) CSP: CAPACITANCE OF PLENUM MASS NODE (KJ/K) CP: CAPACITANCE OF PLENUM MIR NODE (KJ/K) VOLUME OF ROOM (M3) VOLUME OF ROOM (M3) VOLUME OF PLENUM (M3) NUMBER OF OCCUPANTS (-) LIGHTING HEAT GAIN (KW) FRACTION OF LIGHTING HEAT GAIN TO PLENUM EQUIPMENT HEAT GAIN (KW)
	72 TYPE 169 FAIR DUCT, HEAT I	
1	INPUTS:	
-	FLOW PRESSURE TEMPERATURE	18 - AIR MASS FLOW RATE 1 - OUTLET PRESSURE 48 - INLET AIR TEMPERATURE 11 - INLET AIR HUMIDITY RATIO 33 - EXTERNAL TEMPERATURE
2	HUMIDITY RATIO	53 - OUTLET AIR TEMPERATURE 21 - OUTLET AIR HUMIDITY RATIO 0 - INLET PRESSURE 12 - HEAT LOSS RATE
3	0.50000 20.0000 0.200000E-02 3.00000 0.173300 0. 0.	SHAPE OF CONDUIT (ROUND=0, SQUARE=1) SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) WALL THICKNESS (M) WALL MATERIAL (AL=1, CU=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) FLOW RESISTANCE (0.001 KG.M) HEIGHT OF OUTLET ABOVE INLET (M)
UNIT MOIST	73 TYPE 169 AIR DUCT, HEAT L	
1	INPUTS: FLOW PRESSURE TEMPERATURE HUMIDITY RATIO TEMPERATURE	 9 - AIR MASS FLOW RATE 1 - OUTLET PRESSURE 5 - INLET AIR TEMPERATURE 3 - INLET AIR HUMIDITY RATIO 34 - EXTERNAL TEMPERATURE
2	HUMIDITY RATIO	9 - OUTLET AIR TEMPERATURE 7 - OUTLET AIR HUMIDITY RATIO 0 - INLET PRESSURE 8 - HEAT LOSS RATE

3 **PARAMETERS**: 1.00000 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) 0.500000 SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) 20.0000 LENGTH OF CONDUIT (M)

 20:0000 LENGTH OF CONDUCT (M)

 0.200000E-02 WALL THICKNESS (M)

 0. WALL MATERIAL (AL=1, CU=2, FE=3)

 0.173300 R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W)

 0. FLOW RESISTANCE (0.001 KG.M)

 0. HEIGHT OF OUTLET ABOVE INLET (M)

 -----UNIT 74 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P 1 INPUTS: TEMPERATURE9-INLET AIR DRY BULB TEMPERATUREHUMIDITY RATIO7-INLET AIR HUMIDITY RATIO TEMPERATURE PRESSURE 1 - OUTLET AIR GAUGE PRESSURE 9 - DRY AIR MASS FLOW RATE FLOW TEMPERATURE 65 - INLET WATER TEMPERATURE 84 - VALVE STEM POSITION CONTROL 35 - INLET WATER PRESSURE PRESSURE 40 - OUTLET WATER PRESSURE PRESSURE TEMPERATURE 75 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O 2 OUTPUTS: 75 - EFFECTIVE COIL SURFACE TEMPERATURE TEMPERATURE 14 - OUTLET DRY BULB AIR TEMPERATURE TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE PRESSURE 0 - COIL OUTLET WATER TEMPERATURE TEMPERATURE 70 - RETURN MIXED WATER TEMPERATURE TEMPERATURE FLOW 0 - COIL WATER MASS FLOW RATE FLOW 33 - SUPPLY WATER MASS FLOW RATE POWER 0 - TOTAL HEAT TRANSFER TO THE AIR 0 - SENSIBLE HEAT RATIO CONTROL CONTROL 0 - COIL EFFECTIVENESS 0 - COIL BY-PASS FACTOR CONTROL ENERGY 0 - OUTLET AIR SPECIFIC ENTHALPY 0 - OUTLET AIR RELATIVE HUMIDITY CONTROL 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION 0 - OUTLET AIR WET-BULB TEMPERATURE ENERGY TEMPERATURE 3 PARAMETERS: METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS 1.00000 FAULT : 0 FOR NO FAULTS, ... FSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF TUBES PER ROW NUMBER OF PARALLEL WATER CIRCUITS 0. ο. 1.00000 24.0000 3.00000 0.380000E-01 LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M) HEIGHT OF FINNED SECTION (M) 0.720000 0.680000 WIDTH OF FINNED SECTION (M) 0.127000E-01 TUBE OUTSIDE DIAMETER (M) 0.430000E-03 TUBE WALL THICKNESS (M) 2.00000 TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4) 0.250000E-02 FIN SPACING (PITCH) (M) 0.160000E-03 FIN THICKNESS (M) 1.00000 FIN MATERIAL (AL=1,CU=2,FE=3) Ο. FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M) Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0=LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP VALVE CHARACTERISTIC EXPONENT Ngl (-) 2.99000 1.00000 3.00000 100.000 ADJUSTING RATIO (>1) (-) 0.100000E-02 VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-) 145.200 COIL HYDRAULIC RESISTANCE (0.001 KG.M) 145.200 BYPASS HYDRAULIC RESISTANCE (0.001 KG.M) -----UNIT 75 TYPE 272 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, DUCTED RETURN INPUTS : 1 TEMPERATURE 14 - SUPPLY AIR DRY BULB TEMPERATURE 7 - SUPPLY AIR HUMIDITY RATIO HUMIDITY RATIO FLOW 9 - SUPPLY DRY AIR MASS FLOW RATE 20 - INTERZONE 1 AIR DRY BULB TEMPERATURE TEMPERATURE HUMIDITY RATIO 13 - INTERZONE 1 AIR HUMIDITY RATIO

FLOW 14 - INTERZONE 1 DRY AIR MASS FLOW RATE TEMPERATURE 18 - INTERZONE 2 AIR DRY BULB TEMPERATURE 11 - INTERZONE 2 AIR HUMIDITY RATIO HUMIDITY RATIO FLOW 13 - INTERZONE 2 DRY AIR MASS FLOW RATE FLOW 19 - EXTRACT DRY AIR MASS FLOW RATE 29 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR ROOM 44 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR PLENUM TEMPERATURE TEMPERATURE 1 - AMBIENT DRY BULB TEMPERATURE 1 - AMBIENT HUMIDITY RATIO TEMPERATURE HUMIDITY RATIO 89 - FRACTIONAL OCCUPANCY
94 - FRACTIONAL LIGHTING HEAT GAIN CONTROL CONTROL 99 - FRACTIONAL EQUIPMENT HEAT GAIN CONTROL 8 - HEAT GAIN FROM SUPPLY DUCT
13 - HEAT GAIN FROM EXTRACT DUCT
19 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT) POWER POWER TEMPERATURE TEMPERATURE TEMPERATURE 2 OUTPUTS : TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE

24 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT) 34 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT) TEMPERATURE 39 - PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT) HUMIDITY RATIO 12 - ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT) HUMIDITY RATIO 17 - PLENUM HUMIDITY RATIO (SAME AS 6TH OUTPUT) 19 - ROOM TEMPERATURE (SAME AS 11TH INPUT) 24 - ROOM STRUCTURE TEMPERATURE (SAME AS 12TH INPUT) 34 - PLENUM TEMPERATURE (SAME AS 13TH INPUT) 39 - PLENUM STRUCTURE TEMPERATURE (SAME AS 14TH INPUT)
 12 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT) HUMIDITY RATIO 17 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT) 49 - RETURN TEMPERATURE HUMIDITY RATIO TEMPERATURE FLOW 0 - LEAKAGE DRY AIR MASS FLOW RATE (NET) POWER 0 - SENSIBLE HEAT GAINS OF ROOM POWER 0 - SENSIBLE HEAT GAINS OF PLENUM 0 - WATER GAINS OF ROOM FLOW PARAMETERS: 5.00000 ROOM AIR CAPACITY MULTIPLIER (-) ZONE NUMBER (PARAMETER FILE=zoneN.par, N > 0) RWSR: DIRECT RESISTANCE ROOM AIR NODE <-> AMBIENT (K/KW 4.00000 5.24000 16.0100 RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW) ROSR: RESISTANCE AMBIENT <-> ROOM MASS NODE (K/KW) RWSP: DIRECT RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/ RISP: RESISTANCE PLENUM AIR NODE <-> PLENUM MASS NODE (///W) 10000.0 10000.0 0.330000 10000.0

10000.0ROSP: RESISTANCE AMBIENT <-> PLENUM MASS NODE (K/KW)1.82000RR: RESISTANCE ROOM AIR NODE <-> PLENUM AIR NODE (K/KW)24479.7CSR: CAPACITANCE OF ROOM MASS NODE (KJ/K)834.740CR: CAPACITANCE OF ROOM MARS NODE (KJ/K)21789.8CSP: CAPACITANCE OF PLENUM MASS NODE (KJ/K)319.850CP: CAPACITANCE OF PLENUM AIR NODE (KJ/K)719.600VOLUME OF ROOM (M3)275.700VOLUME OF PLENUM (M3)27.0000NUMBER OF OCCUPANTS (-)

2.70000 LIGHTING HEAT GAIN (KW) 0.500000 FRACTION OF LIGHTING HEAT GAIN TO PLENUM 0. EQUIPMENT HEAT GAIN (KW)

UNIT 76 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT

INPUTS: FLOW 19 - AIR MASS FLOW RATE PRESSURE 1 - OUTLET PRESSURE TEMPERATURE 49 - INLET AIR TEMPERATURE HUMIDITY RATIO 12 - INLET AIR HUMIDITY RATIO TEMPERATURE 34 - EXTERNAL TEMPERATURE OUTPUTS: TEMPERATURE 54 - OUTLET AIR TEMPERATURE HUMIDITY RATIO 22 - OUTLET AIR HUMIDITY RATIO PRESSURE 0 - INLET PRESSURE

1.00000 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) 0.500000 SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) 20.0000 LENGTH OF CONDUIT (M) 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3)

536

3

1

2

R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) 0.173300 FLOW RESISTANCE (0.001 KG.M) HEIGHT OF OUTLET ABOVE INLET (M) Ο. 0. UNIT 77 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT INPUTS: 1 10 - AIR MASS FLOW RATE FLOW PRESSURE 1 - OUTLET PRESSURE 5 - INLET AIR TEMPERATURE 3 - INLET AIR HUMIDITY RATIO TEMPERATURE HUMIDITY RATIO 35 - EXTERNAL TEMPERATURE TEMPERATURE OUTPUTS: 2 TEMPERATURE 10 - OUTLET AIR TEMPERATURE HUMIDITY RATIO 8 - OUTLET AIR HUMIDITY RATIO 0 - INLET PRESSURE PRESSURE POWER 9 - HEAT LOSS RATE 3 PARAMETERS: SHAPE OF CONDUIT (ROUND=0, SQUARE=1) 1.00000 SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) 0.500000 20.0000 0.200000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W) 0.173300 FLOW RESISTANCE (0.001 KG.M) Ο. HEIGHT OF OUTLET ABOVE INLET (M) Ο. UNIT 78 TYPE 299 LIEGE COIL AND L&G VALVE, WATER PRESSURE I/P INPUTS: 1 10 - INLET AIR DRY BULB TEMPERATURE 8 - INLET AIR HUMIDITY RATIO TEMPERATURE HUMIDITY RATIO 1 - OUTLET AIR GAUGE PRESSURE PRESSURE 10 - DRY AIR MASS FLOW RATE FLOW 66 - INLET WATER TEMPERATURE
85 - VALVE STEM POSITION
36 - INLET WATER PRESSURE TEMPERATURE CONTROL PRESSURE 41 - OUTLET WATER PRESSURE 76 - EFFECTIVE COIL SURFACE TEMPERATURE (SAME AS 1ST O PRESSURE TEMPERATURE 2 OUTPUTS: TEMPERATURE 76 - EFFECTIVE COIL SURFACE TEMPERATURE TEMPERATURE 15 - OUTLET DRY BULB AIR TEMPERATURE 0 - OUTLET AIR HUMIDITY RATIO HUMIDITY RATIO 0 - INLET AIR GAUGE PRESSURE PRESSURE TEMPERATURE 0 - COIL OUTLET WATER TEMPERATURE TEMPERATURE 71 - RETURN MIXED WATER TEMPERATURE 0 - COIL WATER MASS FLOW RATE FLOW 34 - SUPPLY WATER MASS FLOW RATE FLOW POWER 0 - TOTAL HEAT TRANSFER TO THE AIR 0 - SENSIBLE HEAT RATIO CONTROL CONTROL 0 - COIL EFFECTIVENESS 0 - COIL BY-PASS FACTOR CONTROL 0 - OUTLET AIR SPECIFIC ENTHALPY ENERGY 0 - OUTLET AIR RELATIVE HUMIDITY CONTROL 0 - AIR SPECIFIC ENTHALPY IN COIL SURFACE CONDITION ENERGY 0 - OUTLET AIR WET-BULB TEMPERATURE TEMPERATURE 3 **PARAMETERS**: 1.00000 METHOD : 0 FOR STEADY STATE, 1 FOR LIEGE DYNAMICS Ο. FAULT : 0 FOR NO FAULTS, .. ο. PSYCHO : 0 FOR NO PSYCHOMETRIC OUTPUT CALCS NUMBER OF ROWS OF TUBES NUMBER OF TUBES PER ROW 1.00000 24.0000 NUMBER OF PARALLEL WATER CIRCUITS 3.00000 0.380000E-01 LENGTH OF FINNED SECTION IN DIRECTION OF FLOW (M) HEIGHT OF FINNED SECTION (M) 0.720000 WIDTH OF FINNED SECTION (M) 0.680000 0.127000E-01 TUBE OUTSIDE DIAMETER (M) 0.430000E-03 TUBE WALL THICKNESS (M) TUBE MATERIAL (AL=1, CU=2, FE=3, CaCO3=4) 2.00000

0.250000E-02 FIN SPACING (PITCH) (M)

0.160000E-03 FIN THICKNESS (M) 1.00000 FIN MATERIAL (AL=1, CU=2, FE=3) FLOW RESISTANCE PARAMETER ON AIR SIDE (0.001 KG.M) Kv: VALVE CAPACITY INDEX (CU. M/HR AT 1 BAR) VALVE MODE: (0-LIN/LIN, 1=EXP/LIN, 2=EXP/EXP, 3=LIN/EXP Ο. 2.79000 1.00000 3.00000 VALVE CHARACTERISTIC EXPONENT Ngl (-) ADJUSTING RATIO (>1) (-) 100.000 0.100000E-02 VALVE LEAKAGE (FRACTIONAL FLOW WHEN CLOSED) (-) 166.500 COIL HYDRAULIC RESISTANCE (0.001 KG.M) 166.500 BYPASS HYDRAULIC RESISTANCE (0.001 KG.M) _ _ _ _ _ _ _ _ _ UNIT 79 TYPE 272 2 NODE ROOM/PLENUM - INTERZONE AND LEAKAGE, DUCTED RETURN 1 INPUTS: 15 - SUPPLY AIR DRY BULB TEMPERATURE TEMPERATURE HUMIDITY RATIO 8 - SUPPLY AIR HUMIDITY RATIO FLOW 10 - SUPPLY DRY AIR MASS FLOW RATE TEMPERATURE 16 - INTERZONE 1 AIR DRY BULB TEMPERATURE 9 - INTERZONE 1 AIR HUMIDITY RATIO HUMIDITY RATIO 15 - INTERZONE 1 DRY AIR MASS FLOW RATE 19 - INTERZONE 2 AIR DRY BULB TEMPERATURE FLOW TEMPERATURE 12 - INTERZONE 2 AIR HUMIDITY RATIO 14 - INTERZONE 2 DRY AIR MASS FLOW RATE HUMIDITY RATIO FLOW 20 - EXTRACT DRY AIR MASS FLOW RATE 30 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR ROOM FLOW TEMPERATURE 45 - EQUIVALENT SOL-AIR OUTDOOR TEMPERATURE FOR PLENUM TEMPERATURE 1 - AMBIENT DRY BULB TEMPERATURE 1 - AMBIENT HUMIDITY RATIO TEMPERATURE HUMIDITY RATIO 90 - FRACTIONAL OCCUPANCY CONTROL CONTROL 95 - FRACTIONAL LIGHTING HEAT GAIN CONTROL 100 - FRACTIONAL EQUIPMENT HEAT GAIN 9 - HEAT GAIN FROM SUPPLY DUCT 14 - HEAT GAIN FROM EXTRACT DUCT POWER POWER TEMPERATURE 20 - ROOM TEMPERATURE (SAME AS 1ST OUTPUT) 25 - ROOM STRUCTURE TEMPERATURE (SAME AS 2ND OUTPUT) TEMPERATURE TEMPERATURE 35 - PLENUM TEMPERATURE (SAME AS 3RD OUTPUT) TEMPERATURE 40 - PLENUM STRUCTURE TEMPERATURE (SAME AS 4TH OUTPUT) HUMIDITY RATIO 13 - ROOM HUMIDITY RATIO (SAME AS 5TH OUTPUT) HUMIDITY RATIO 18 - PLENUM HUMIDITY RATIO (SAME AS 6TH OUTPUT) 2 OUTPUTS: TEMPERATURE 20 - ROOM TEMPERATURE (SAME AS 11TH INPUT) 25 - ROOM STRUCTURE TEMPERATURE (SAME AS 12TH INPUT)
 25 - PLENUM TEMPERATURE (SAME AS 13TH INPUT) TEMPERATURE TEMPERATURE 40 - PLENUM STRUCTURE TEMPERATURE (SAME AS 14TH INPUT) 13 - ROOM HUMIDITY RATIO (SAME AS 15TH INPUT) TEMPERATURE HUMIDITY RATIO HUMIDITY RATIO 18 - PLENUM HUMIDITY RATIO (SAME AS 16TH INPUT) TEMPERATURE 50 - RETURN TEMPERATURE FLOW 0 - LEAKAGE DRY AIR MASS FLOW RATE (NET) POWER 0 - SENSIBLE HEAT GAINS OF ROOM POWER 0 - SENSIBLE HEAT GAINS OF PLENUM FLOW 0 - WATER GAINS OF ROOM 3 PARAMETERS : 5.00000 ROOM AIR CAPACITY MULTIPLIER (-) 5.00000 ZONE NUMBER (PARAMETER FILE=zoneN.par, N > 0) 6.84000 RWSR: DIRECT RESISTANCE ROOM AIR NODE <-> AMBIENT (K/KW 7.35000 RISR: RESISTANCE ROOM AIR NODE <-> ROOM MASS NODE (K/KW 10000.0 ROSR: RESISTANCE AMBIENT <-> ROOM MASS NODE (K/KW) 10000.0 RWSP: DIRECT RESISTANCE PLENUM AIR NODE <-> AMBIENT (K/ 0.460000 RISP: RESISTANCE PLENUM AIR NODE <-> PLENUM MASS NODE (10000.0 ROSP: RESISTANCE AMBIENT <-> PLENUM MASS NODE (K/KW) RCSP: RESISTANCE AMBIENT (-> FLENON PLASS NODE (K/KW) RR: RESISTANCE ROOM AIR NODE (-> PLENUM AIR NODE (K/KW) CSR: CAPACITANCE OF ROOM MASS NODE (KJ/K) CR: CAPACITANCE OF ROOM AIR NODE (UNMODIFIED) (KJ/K) 2.54000 21760.3 598.850 CSP: CAPACITANCE OF PLENUM MASS NODE (KJ/K) 15632.2 229.470 CP: CAPACITANCE OF PLENUM AIR NODE (KJ/K) VOLUME OF ROOM (M3) 516.300 VOLUME OF PLENUM (M3) NUMBER OF OCCUPANTS (-) 197.000 19.0000 1.93000 LIGHTING HEAT GAIN (KW) 0.500000 FRACTION OF LIGHTING HEAT GAIN TO PLENUM 0. EQUIPMENT HEAT GAIN (KW)

UNIT 80 TYPE 169 MOIST AIR DUCT, HEAT LOSS AS OUTPUT INPUTS: 1 20 - AIR MASS FLOW RATE FLOW
 PRESSURE
 1
 - OUTLET
 PRESSURE

 TEMPERATURE
 50
 - INLET
 AIR
 HUMIDITY RATIO 13 - INLET AIR HUMIDITY RATIO TEMPERATURE 35 - EXTERNAL TEMPERATURE 2 OUTPUTS: TEMPERATURE 55 - OUTLET AIR TEMPERATURE HUMIDITY RATIO 23 - OUTLET AIR HUMIDITY RATIO 0 - INLET PRESSURE PRESSURE 14 - HEAT LOSS RATE POWER PARAMETERS: 3 SHAPE OF CONDUIT (ROUND=0, SQUARE=1) SIZE OF CONDUIT - ROUND: DIAMETER, SQUARE: SIDE (M) LENGTH OF CONDUIT (M) 1.00000 0.500000 20.0000 20.0000E-02 WALL THICKNESS (M) 3.00000 WALL MATERIAL (AL=1, CU=2, FE=3) 0.173300 R-VALUE OF INSULATION BASED ON INSIDE AREA (K.M2/W)ο. FLOW RESISTANCE (0.001 KG.M) Ο. HEIGHT OF OUTLET ABOVE INLET (M) UNIT 81 TYPE 26 CONTROL SIGNAL INVERTER INPUTS : 1 1 - INPUT CONTROL SIGNAL CONTROL OUTPUTS : 2 0 - OUTPUT CONTROL SIGNAL CONTROL PARAMETERS: 3 MULTIPLIER [DIMENSIONLESS] 0. ------UNIT 82 TYPE 7 TEMPERATURE SENSOR INPUTS: 1 1 - INPUT TEMPERATURE 17 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL 2 OUTPUTS : CONTROL 17 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) PARAMETERS : 3 30.0000 SENSOR TIME CONSTANT (SEC) Ο. TEMPERATURE OFFSET (C) 1.00000 TEMPERATURE RANGE (C) TYPE UNIT 83 7 TEMPERATURE SENSOR 1 INPUTS : 77 - INPUT TEMPERATURE 18 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL OUTPUTS : 2 18 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL PARAMETERS: 3 30.0000 SENSOR TIME CONSTANT (SEC) Ο. TEMPERATURE OFFSET (C) 1.00000 TEMPERATURE RANGE (C) -----UNIT 84 TYPE 7 TEMPERATURE SENSOR 1 INPUTS: 2 - INPUT TEMPERATURE 19 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL

2 OUTPUTS : CONTROL 19 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) 3 PARAMETERS: 30.0000 SENSOR TIME CONSTANT (SEC) Ο. TEMPERATURE OFFSET (C) 1.00000 TEMPERATURE RANGE (C) -----UNIT 85 TYPE 7 TEMPERATURE SENSOR 1 INPUTS: 5 - INPUT TEMPERATURE 20 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL 2 OUTPUTS : CONTROL 20 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) 3 **PARAMETERS**: 30.0000 SENSOR TIME CONSTANT (SEC) TEMPERATURE OFFSET (C) 0. 1.00000 TEMPERATURE RANGE (C) --------UNIT 86 TYPE 7 TEMPERATURE SENSOR INPUTS: 1 56 - INPUT TEMPERATURE 21 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL 2 OUTPUTS : CONTROL 21 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) PARAMETERS : 3 30.0000 SENSOR TIME CONSTANT (SEC) Ο. TEMPERATURE OFFSET (C) 1.00000 TEMPERATURE RANGE (C) -----UNIT 87 TYPE 7 TEMPERATURE SENSOR INPUTS : 1 59 - INPUT TEMPERATURE 22 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL OUTPUTS : 2 22 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL **PARAMETERS**: 3 30.0000 SENSOR TIME CONSTANT (SEC) 0. TEMPERATURE OFFSET (C) 1.00000 TEMPERATURE RANGE (C) --------------UNIT 88 TYPE 203 STATIC PRESSURE SENSOR 1 INPUTS: PRESSURE 15 - INPUT (TOTAL) PRESSURE
8 - MASS FLOW RATE FLOW CONTROL 23 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) 2 OUTPUTS : CONTROL 23 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) з PARAMETERS: SENSOR TIME CONSTANT (SEC) Ο. PRESSURE OFFSET (C) PRESSURE RANGE (C) CROSS SECTIONAL AREA (M2) MODE: AIR=1, WATER=2 Ο. 1.00000 0.158000 1.00000 ----------

540

TYPE 189 UNIT 89 VELOCITY SENSOR 1 INPUTS: 2 - MASS FLOW RATE 24 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) FLOW CONTROL OUTPUTS: 2 24 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL PARAMETERS: 3 1.96000 CROSS SECTIONAL AREA OF DUCT OR PIPE (m2) MODE: 1=AIR, 2=WATER (-) SENSOR TIME CONSTANT (SEC) 1.00000 Ο. VELOCITY OFFSET (m/s) ο. VELOCITY RANGE (m/s) 1.00000 ----------UNIT 90 **TYPE 189** VELOCITY SENSOR INPUTS: 1 24 - MASS FLOW RATE FLOW 25 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL OUT PUTS : 2 25 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL 3 PARAMETERS: CROSS SECTIONAL AREA OF DUCT OR PIPE (m2) 1.96000 MODE: 1=AIR, 2=WATER (-) SENSOR TIME CONSTANT (SEC) 1.00000 Ο. Ο. VELOCITY OFFSET (m/s) 1.00000 VELOCITY RANGE (m/s) . UNIT 91 TYPE 203 STATIC PRESSURE SENSOR INPUTS: 1 12 - INPUT (TOTAL) PRESSURE
8 - MASS FLOW RATE PRESSURE FLOW CONTROL 26 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) 2 OUTPUTS : 26 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL 3 PARAMETERS : Ο. SENSOR TIME CONSTANT (SEC) Ο. PRESSURE OFFSET (C) 1.00000 PRESSURE RANGE (C) CROSS SECTIONAL AREA (M2) 999.000 1.00000 MODE: AIR=1, WATER=2 UNIT 92 TYPE 7 TEMPERATURE SENSOR 1 INPUTS: 16 - INPUT TEMPERATURE 28 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL OUTPUTS : 2 28 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) CONTROL PARAMETERS: 3 SENSOR TIME CONSTANT (SEC) 300.000 Ο. TEMPERATURE OFFSET (C) TEMPERATURE RANGE (C) 1.00000 _ _ _ _ _ _ _____ -----------UNIT 93 TYPE 7 TEMPERATURE SENSOR INPUTS : 1 17 - INPUT TEMPERATURE 29 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET) TEMPERATURE CONTROL

```
2
         OUTPUTS:
           CONTROL
                                  29 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
3
         PARAMETERS:
              300.000
                                SENSOR TIME CONSTANT (SEC)
                                TEMPERATURE OFFSET (C)
                      Ο.
                                TEMPERATURE RANGE (C)
               1.00000
               -----
                                       ------
UNIT 94
                    TYPE
                               7
TEMPERATURE SENSOR
         INPUTS:
1
          TEMPERATURE
                                 18 - INPUT TEMPERATURE
30 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
          CONTROL
2
         OUT PUTTS .
          CONTROL
                                 30 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
3
         PARAMETERS
              300.000
                                SENSOR TIME CONSTANT (SEC)
                      Ο.
                                TEMPERATURE OFFSET (C)
               1.00000
                                TEMPERATURE RANGE (C)
UNIT 95
                    TYPE
                               7
TEMPERATURE SENSOR
         INPUTS:
1
          TEMPERATURE
                                 19 - INPUT TEMPERATURE
          CONTROL
                                 31 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
2
         OUTPUTS :
          CONTROL
                                 31 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
3
         PARAMETERS :
              300.000
                                SENSOR TIME CONSTANT (SEC)
                                TEMPERATURE OFFSET (C)
                      Ο.
              1.00000
                               TEMPERATURE RANGE (C)
                                UNIT 96
                    TYPE
                              7
TEMPERATURE SENSOR
1
         INPUTS:
          TEMPERATURE
                                 20 - INPUT TEMPERATURE
                                 32 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
          CONTROL
2
        OUTPUTS:
          CONTROL
                                 32 - SENSOR OUTPUT (MODIFIED BY GAIN AND OFFSET)
3
         PARAMETERS:
                                SENSOR TIME CONSTANT (SEC)
              300.000
                                TEMPERATURE OFFSET (C)
                     Ο.
              1.00000
                               TEMPERATURE RANGE (C)
                                                           -----
                   TYPE 197
UNIT 97
WRITE TO UNIX SOCKET (16 REALS)
         INPUTS:
1

17 - SIMULATION OUTPUT / SOCKET INPUT 1
18 - SIMULATION OUTPUT / SOCKET INPUT 2
19 - SIMULATION OUTPUT / SOCKET INPUT 3
20 - SIMULATION OUTPUT / SOCKET INPUT 4
21 - SIMULATION OUTPUT / SOCKET INPUT 5
22 - SIMULATION OUTPUT / SOCKET INPUT 6
23 - SIMULATION OUTPUT / SOCKET INPUT 7
24 - SIMULATION OUTPUT / SOCKET INPUT 7
24 - SIMULATION OUTPUT / SOCKET INPUT 8
25 - SIMULATION OUTPUT / SOCKET INPUT 9
26 - SIMULATION OUTPUT / SOCKET INPUT 10
27 - SIMULATION OUTPUT / SOCKET INPUT 11
28 - SIMULATION OUTPUT / SOCKET INPUT 12
29 - SIMULATION OUTPUT / SOCKET INPUT 13
30 - SIMULATION OUTPUT / SOCKET INPUT 14
31 - SIMULATION OUTPUT / SOCKET INPUT 15
32 - SIMULATION OUTPUT / SOCKET INPUT 16

          CONTROL
                                17 - SIMULATION OUTPUT / SOCKET INPUT
          CONTROL
          CONTROL
```

542

CONTROL

OUTPUTS : 2 33 - DUMMY (MUST NOT BE CONTROL 0!) CONTROL 3 PARAMETERS : SOCKET NUMBER (0-4) 1.00000 SAMPLE TIME (INTERVAL BETWEEN TRANSFERS) [S] 5.00000 REAL TIME SCALING FACTOR (0=NO WAIT, 0.5=DOUBLE SPEED) ο. _ _ _ _ _ _ _ TYPE 135 UNIT 98 REAL TIME GRAPHS OF PRESSURE, FLOW AND CONTROL INPUTS: 1 PRESSURE 2 - FIRST PRESSURE TO BE PLOTTED PRESSURE 4 - SECOND PRESSURE TO BE PLOTTED PRESSURE 15 - THIRD PRESSURE TO BE PLOTTED 12 - FOURTH PRESSURE TO BE PLOTTED PRESSURE FLOW 2 - FIRST FLOW TO BE PLOTTED 6 - SECOND FLOW TO BE PLOTTED 7 - THIRD FLOW TO BE PLOTTED FLOW FLOW 24 - FOURTH FLOW TO BE PLOTTED FLOW CONTROL 36 - FIRST CONTROL SIGNAL TO BE PLOTTED 8 - SECOND CONTROL SIGNAL TO BE PLOTTED
 9 - THIRD CONTROL SIGNAL TO BE PLOTTED CONTROL CONTROL 122 - FOURTH CONTROL SIGNAL TO BE PLOTTED CONTROL OUTPUTS : 2 34 - DUMMY OUTPUT (DO NOT USE CONTROL 0) CONTROL 3 PARAMETERS : 1.00000 TIME INTERVAL FOR PLOTTING (S) STOPPING TIME (S) Ο. SCALING FACTOR FOR TIME AXIS (3600. -> HOURS) [-] MAXIMUM PRESSURE (KPA) MINIMUM PRESSURE (KPA) 1.00000 1.00000 -0.500000 MAXIMUM FLOW RATE (KG/S) MINIMUM FLOW RATE (KG/S) 10.0000 -1.00000 1.10000 MAXIMUM CONTROL SIGNAL (-) -0.100000 MINIMUM CONTROL SIGNAL (-) 4.00000 NUMBER OF PRESSURES TO PLOT (-) NUMBER OF FLOW RATES TO PLOT (-) NUMBER OF CONTROL SIGNALS TO PLOT (-) 4.00000 4.00000 INDEX OF FIRST PRESSURE (-) INDEX OF SECOND PRESSURE (-) INDEX OF THIRD PRESSURE (-) INDEX OF FOURTH PRESSURE (-) 2.00000 4.00000 15.0000 12.0000 2.00000 INDEX OF FIRST FLOW RATE (-) 6.00000 INDEX OF SECOND FLOW RATE (-) INDEX OF THIRD FLOW RATE (-) 7.00000 INDEX OF FOURTH FLOW RATE (-) 24.0000 36.0000 INDEX OF FIRST CONTROL SIGNAL (-) INDEX OF SECOND CONTROL SIGNAL (-) INDEX OF THIRD CONTROL SIGNAL (-) 8.00000 9.00000 122.000 INDEX OF FOURTH CONTROL SIGNAL (-) UNIT 99 TYPE 26 CONTROL SIGNAL INVERTER 1 INPUTS: 1 - INPUT CONTROL SIGNAL CONTROL 2 OUTPUTS : CONTROL 0 - OUTPUT CONTROL SIGNAL PARAMETERS: 3 Ο. MULTIPLIER [DIMENSIONLESS] ----------Initial Variable Values: PRESSURE Ο. 1 -> (kPa) PRESSURE 2 -> 0. 0. (kPa) 3 -> PRESSURE (kPa) 4 -> 5 -> 6 -> 0. 0. 0. PRESSURE (kPa) PRESSURE (kPa) PRESSURE (kPa) PRESSURE 7 -> Ο. (kPa) PRESSURE 8 -> Ο. (kPa)

PRESSURE	9 ->	0.	(kPa)
PRESSURE	10 ->	0.	(kPa)
PRESSURE	11 ->	0.	(kPa)
PRESSURE PRESSURE	12 -> 13 ->	0.	(kPa)
PRESSURE	13 -> 14 ->	0. 0.	(kPa) (kPa)
PRESSURE	15 ->	0.	(kPa)
PRESSURE	16 ->	0.	(kPa)
PRESSURE	17 ->	0.	(kPa)
PRESSURE	18 ->	0.	(kPa)
PRESSURE	19 ->	0.	(kPa)
PRESSURE PRESSURE	20 -> 21 ->	0. 0.	(kPa) (kPa)
PRESSURE	22 ->	0.	(kPa)
PRESSURE	23 ->	ů.	(kPa)
PRESSURE	24 ->	0.	(kPa)
PRESSURE	25 ->	Ο.	(kPa)
PRESSURE	26 ->	0.	(kPa)
PRESSURE	27 ->	0.	(kPa)
PRESSURE PRESSURE	28 -> 29 ->	74.2400 0.	(kPa) (kPa)
PRESSURE	30 ->	49.1000	(kPa)
PRESSURE	31 ->	0.	(kPa)
PRESSURE	32 ->	8.00000	(kPa)
PRESSURE	33 ->	8.00000	(kPa)
PRESSURE	34 ->	8.00000	(kPa)
PRESSURE PRESSURE	35 -> 36 ->	8.00000 8.00000	(kPa) (kPa)
PRESSURE	37 ->	0.	(kPa) (kPa)
PRESSURE	38 ->	0.	(kPa)
PRESSURE	39 ->	0.	(kPa)
PRESSURE	40 ->	0.	(kPa)
PRESSURE	41 ->	0.	(kPa)
PRESSURE	42 ->	0.	(kPa)
PRESSURE FLOW	43 -> 1 ->	0. 0.	(kPa)
FLOW	2 ->	0.	(kg∕s) (kg∕s)
FLOW	3 ->	0.	(kg/s)
FLOW	4 ->	0.	(kg/s)
FLOW	5 ->	0.	(kg/s)
FLOW	6 ->	0.	(kg/s)
FLOW FLOW	7 -> 8 ->	0. 0.	(kg/s)
FLOW	9->	0.	(kg/s) (kg/s)
FLOW	10 ->	ů. 0.	(kg/s)
FLOW	11 ->	0.	(kg/s)
FLOW	12 ->	0.	(kg/s)
FLOW FLOW	13 ->	0.	(kg/s)
FLOW	14 -> 15 ->	0. 0.	(kg/s) (kg/s)
FLOW	16 ->	0.	(kg/s)
FLOW	17 ->	0.	(kg/s)
FLOW	18 ->	Ο.	(kg/s)
FLOW	19 ->	0.	(kg/s)
FLOW FLOW	20 -> 21 ->	0.	(kg/s)
FLOW	21 -> 22 ->	0. 0.	(kg/s) (kg/s)
FLOW	23 ->	ö.	(kg/s)
FLOW	24 ->	Ο.	(kg/s)
FLOW	25 ->	Ο.	(kg/s)
FLOW	26 ->	0.	(kg/s)
FLOW FLOW	27 -> 28 ->	0.	(kg/s)
FLOW	28 ->	0. 0.	(kg/s) (kg/s)
FLOW	30 ->	0.	(kg/s)
FLOW	31 ->	0.	(kg/s)
FLOW	32 ->	0.	(kg/s)
FLOW	33 ->	0.	(kg/s)
FLOW TEMPERATURE	34 ->	0.	(kg/s)
TEMPERATURE	1 -> 2 ->	14.0000 14.0000	(C) (C)
TEMPERATURE	3 ->	14.0000	(C) (C)
TEMPERATURE	4 ->	14.0000	(C)
TEMPERATURE	5 ->	14.0000	(C)
TEMPERATURE	6 ->	14.0000	(C)
TEMPERATURE	7 ->	14.0000	(C)
TEMPERATURE TEMPERATURE	8 -> 9 ->	14.0000 14.0000	(C) (C)
		11.0000	(C)

.

544

TEMPERATURE	10 -:	>	14.	0000	(C)
TEMPERATURE	11 -:	>	14.	0000	(C)
TEMPERATURE	12 ->	>	14.	0000	(C)
TEMPERATURE	13 -:		14.	0000	(C)
TEMPERATURE	14 -:		14.	0000	(C)
TEMPERATURE	15 -:			0000	(C)
TEMPERATURE	16 ->			0000	(C)
	17 ->			0000	(C)
TEMPERATURE					(C)
TEMPERATURE	18 -:			0000	
TEMPERATURE	19 -:			0000	(C)
TEMPERATURE	20 -:			0000	(C)
TEMPERATURE	21 -:			0000	(C)
TEMPERATURE	22 ->			0000	(C)
TEMPERATURE	23 -:			0000	(C)
TEMPERATURE	24 - 3			0000	(C)
TEMPERATURE	25 -:			0000	(C)
TEMPERATURE	26 - 3			0000	(C)
TEMPERATURE	27 -:			0000	(C)
TEMPERATURE	28 -:			0000	(C)
TEMPERATURE	29 ->			0000	(C)
TEMPERATURE	30 -:			0000	(C)
TEMPERATURE	31 ->	>		0000	(C)
TEMPERATURE	32 -:	>		0000	(C)
TEMPERATURE	33 -:	>	20.	0000	(C)
TEMPERATURE	34 ->	>	20.	0000	(C)
TEMPERATURE	35 -:	>	20.	0000	(C)
TEMPERATURE	36 -:	>	20.	0000	(C)
TEMPERATURE	37 -:	>	20.	0000	(C)
TEMPERATURE	38 - :	>	20.	0000	(C)
TEMPERATURE	39 -:	>	20.	0000	(C)
TEMPERATURE	40 - 3	>	20.	0000	(C)
TEMPERATURE	41 ->	>	20.	0000	(C)
TEMPERATURE	42 -:	>	20.	0000	(C)
TEMPERATURE	43 - 2			0000	(C)
TEMPERATURE	44 - 2			0000	(C)
TEMPERATURE	45 ->	>		0000	(C)
TEMPERATURE	46 ->			0000	(C)
TEMPERATURE	47 ->			0000	(C)
TEMPERATURE	48 - 2			0000	(C)
TEMPERATURE	49 -:			0000	(C)
TEMPERATURE	50 -:			0000	(C)
TEMPERATURE	51 ->			0000	(C)
TEMPERATURE	52 ->			0000	(C)
TEMPERATURE	53 -:			0000	(C)
TEMPERATURE	54 -:			0000	(C)
TEMPERATURE	55 ->			0000	(C)
	56 -:			0000	(C)
TEMPERATURE	57 -:			0000	(C)
TEMPERATURE TEMPERATURE	58 -:			0000	(C)
TEMPERATURE	59 -:			0000	(C)
TEMPERATURE	60 -:			0000	(C)
				0000	(C)
TEMPERATURE	61 -: 62 -:			0000	(C)
TEMPERATURE TEMPERATURE	63 -:			0000	(C)
TEMPERATURE	64 ->			0000	(C)
	65 -:			0000	(C)
TEMPERATURE	66 -:			0000	(C)
TEMPERATURE	67 -:			0000	(C)
TEMPERATURE	68 -:			0000	(C)
TEMPERATURE	69 -:			0000	(C)
TEMPERATURE	70 -:			0000	(C)
TEMPERATURE	71 -:			0000	(C)
TEMPERATURE	72 -:			0000	(C)
TEMPERATURE	73 -:			0000	(C)
TEMPERATURE	74 -:			0000	(C)
TEMPERATURE	75 -:			0000	(C)
				0000	(C)
TEMPERATURE TEMPERATURE	76 -: 77 -:			0000	(C)
				0000	(C) (C)
TEMPERATURE	78 -:		∠0.	0.000	(C)
TEMPERATURE	79 -:		1 ^		
CONTROL	1 -:		т.0	0000	(-)
CONTROL	2 - 2			0.	(-)
CONTROL	3 -:		1.0	0000	(-)
CONTROL	4 - 2			0.	(-)
CONTROL	5 -:			0.	(-)
CONTROL	6 -:		13.	0000	(-)
CONTROL	7 -:		_	0.	(-)
CONTROL	8 - :	>	1.0	0000	(-)

-

546

CONTROL	9->	1.00000	(-)
CONTROL	10 ->	0.300000	(-)
CONTROL	11 ->	0.	(-)
CONTROL	12 ->	3.00000	(-)
CONTROL	13 ->	3.00000	(-)
CONTROL	14 ->	3.00000	(-)
CONTROL	15 ->	3.00000	(-)
CONTROL	16 ->		
		3.00000	(-)
CONTROL	17 ->	14.0000	(-)
CONTROL	18 ->	20.0000	(-)
CONTROL	19 ->	14.0000	(-)
			• •
CONTROL	20 ->	14.0000	(-)
CONTROL	21 ->	7.00000	(-)
CONTROL	22 ->	82.0000	(-)
			• •
CONTROL	23 ->	0.	(-)
CONTROL	24 ->	0.	(-)
CONTROL	25 ->	0.	(-)
			• •
CONTROL	26 ->	0.	(-)
CONTROL	27 ->	0.	(-)
CONTROL	28 ->	20.0000	(-)
CONTROL	29 ->	20.0000	(–)
CONTROL	30 ->	20.0000	(-)
CONTROL	31 ->	20.0000	(-)
CONTROL			• •
	32 ->	20.0000	(-)
CONTROL	33 ->	0.	(-)
CONTROL	34 ->	0.	(-)
CONTROL	35 ->	1.00000	
			(-)
CONTROL	36 ->	1.00000	(-)
CONTROL	37 ->	ο.	(-)
CONTROL	38 ->	1.00000	(-)
CONTROL	39 ->	0.	(–)
CONTROL	40 ~>	ο.	(-)
CONTROL	41 ->	0.	(-)
CONTROL	42 ->	0.	(–)
CONTROL	43 ->	0.	(-)
CONTROL	44 ->	0.	(-)
CONTROL	45 ->	0.	(-)
CONTROL	46 ->	Ο.	(-)
CONTROL	47 ->	0.	(-)
CONTROL			
	48 ->	0.	(-)
CONTROL	49 ->	Ο.	(-)
CONTROL	50 ->	0.	(-)
CONTROL	51 ->		1 1
		0.	(-)
CONTROL	52 ->	0.	(-)
CONTROL	53 ->	Ο.	(-)
CONTROL	54 ->	0.	(-)
CONTROL			
	55 ->	Ο.	(-)
CONTROL	56 ->	ο.	(-)
CONTROL	57 ->	Ο.	(-)
CONTROL	58 ->	Ο.	(-)
CONTROL			
	59 ->	0.	(-)
CONTROL	60 ->	0.	(-)
CONTROL	61 ->	0.	(-)
CONTROL	62 ->		
		0.	(-)
CONTROL	63 ->	0.	(-)
CONTROL	64 ->	Ο.	(-)
CONTROL	65 ->	0.	(-)
CONTROL	66 ->	0.	(-)
CONTROL	67 ->	0.	(-)
CONTROL	68 ->	ο.	(-)
CONTROL	69 ->	0.	(-)
CONTROL			
		0.	(-)
CONTROL	71 ->	0.	(-)
CONTROL	72 ->	0.	(-)
CONTROL	73 ->	0.	(-)
CONTROL	74 ->	0.	(-)
CONTROL	75 ->	Ο.	(-)
CONTROL	76 ->	ο.	(-)
CONTROL			
	77 ->	0.	(-)
CONTROL	78 ->	0.	(-)
CONTROL	79 ->	0.	(-)
CONTROL	80 ->		(-)
		0.	<u>;-</u> !
CONTROL	81 ->	0.	(-)
CONTROL	82 ->	Ο.	(-)
CONTROL	83 ->	0.	(-) (-)
			(-)
CONTROL	84 ->	0.	(-)
CONTROL	85 ->	Ο.	(-)
CONTROL	86 ->	0.	(-)
		v.	(-)

•

CONTROL		87	->	0. (-)
CONTROL		88	->		-)
CONTROL		89	->		-)
		90	->		-)
CONTROL		91	->		-)
CONTROL		92	->		-)
		93	->		-)
CONTROL		94			-)
CONTROL			->		
CONTROL		95	->		-)
CONTROL		96	->		-)
CONTROL		97	->		-)
CONTROL		98	->		-)
CONTROL		99	->		-)
CONTROL		100	->		-)
CONTROL		101	->		-)
CONTROL		102	->		-)
CONTROL		103	- >		-)
CONTROL		104	->		-)
CONTROL		105	- >		-)
CONTROL		106	->		-)
CONTROL		107	->		-)
CONTROL		108	->		-)
CONTROL		109	- >		-)
CONTROL		110	~ >		-)
CONTROL		111	->		-)
CONTROL		112	->		-)
CONTROL		113	->		-)
CONTROL		114	->		-)
CONTROL		115	->		-)
CONTROL		116	->		-)
CONTROL		117	->		-)
CONTROL		118	->	1.00000 (-)
CONTROL		119	- >		-)
CONTROL		120	- >		-)
CONTROL		121	->	1.00000 (-)
CONTROL		122	->	0. (-)
CONTROL		123	->	0. (-)
CONTROL		124	->	0. (-)
CONTROL		125	->	0. (-)
CONTROL		126	- >	0. (-)
RVPS		1	->	0. (rev/s)
RVPS		2	->	0. (rev/s)
RVPS		3	- >	0. (rev/s)
RVPS		4	->	0. (rev/s)
POWER		1	- >	0. (kW)
POWER		2	->	0. (kW)
POWER		3	->	0. (kW)
POWER		4	- >	0. (kW)
POWER		5	->	0. (kW)
POWER		6	->	0. (kW)
POWER		7	->	0. (kW)
POWER		8	->	0. (kW)
POWER		9	->	0. (kW)
POWER		10	->	0. (kW)
POWER		11	->		kW)
POWER		12	->		kW)
POWER		13	->		kW)
POWER		14	->		kW)
HUMIDITY	RATIO	1	->	0.400000E-02(
HUMIDITY	RATIO	2	->	0.40000E-02(kg/kg)
HUMIDITY	RATIO	3	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	4	->	0.40000E-02(
HUMIDITY	RATIO	5	->	0.40000E-02(
HUMIDITY	RATIO	6	->	0.40000E-02(
HUMIDITY	RATIO	7	->	0.40000E-02(
HUMIDITY	RATIO	8	->	0.40000E-02(
HUMIDITY	RATIO	9	->	0.400000E-02(
HUMIDITY	RATIO	10	->	0.400000E-02(
HUMIDITY	RATIO	11	->	0.400000E-02(
HUMIDITY	RATIO	12	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	13	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	14	->	0.40000E-02(kg/kg)
HUMIDITY	RATIO	15	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	16	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	17	->	0.400000E-02(
HUMIDITY	RATIO	18	->	0.400000E-02(
HUMIDITY	RATIO	19	->	0.400000E-02(kg/kg)
HUMIDITY	RATIO	20	->	0.400000E-02(kg/kg)

 HUMIDITY RATIO
 21 ->
 0.400000E-02(kg/kg)

 HUMIDITY RATIO
 22 ->
 0.400000E-02(kg/kg)

 HUMIDITY RATIO
 23 ->
 0.400000E-02(kg/kg)

 HUMIDITY RATIO
 23 ->
 0.400000E-02(kg/kg)

 HUMIDITY RATIO
 23 ->
 0.400000E-02(kg/kg)
 ---------. Simulation Error Tolerances: 1 RTOLX= 0.100000E-03 ATOLX= 0.100000E-04 XTOL= 0.200000E-03 TTIME= 1.00000 SUPERBLOCK 1 FREEZE OPTION 0 SCAN OPTION 0 2 SUPERBLOCK 2 FREEZE OPTION 0 SCAN OPTION 0 3 SUPERBLOCK 3 FREEZE OPTION 0 SCAN OPTION 0 4 SUPERBLOCK 4 5 FREEZE OPTION 0 SCAN OPTION 0 SUPERBLOCK 5 6 FREEZE OPTION 0 SCAN OPTION 0 SUPERBLOCK 6 7 FREEZE OPTION 0 SCAN OPTION 0 SUPERBLOCK 7 FREEZE OPTION 0 8 SCAN OPTION 0 SUPERBLOCK 8 FREEZE OPTION 0 SCAN OPTION 0 9 SUPERBLOCK 9 10 FREEZE OPTION 0 SCAN OPTION 0 SUPERBLOCK10 11 FREEZE OPTION 0 SCAN OPTION 0 -----------_ _ _ _ _ _ _ _ _ _ The following are Boundary Variables in the simulation: ------The following are the reported variables: SUPERBLOCK 1 REPORTING INTERVAL 5.00000 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 4 5 CONTROL CONTROL 6 7 CONTROL CONTROL 8 CONTROL 9 CONTROL 10 CONTROL 11 CONTROL 12 CONTROL 13 CONTROL 14 CONTROL 15 CONTROL 16 SUPERBLOCK 2 REPORTING INTERVAL 5.00000 CONTROL 36 37 CONTROL CONTROL 38 CONTROL 39 CONTROL 40 SUPERBLOCK 3 REPORTING INTERVAL Ο. SUPERBLOCK 4 REPORTING INTERVAL 5.00000 PRESSURE 2 PRESSURE 3 PRESSURE 8 PRESSURE 9

.

548

PRESSURE PRESSURE PRESSURE PRESSURE PRESSURE PRESSURE FLOW FLOW FLOW FLOW FLOW FLOW FLOW FLOW	15 16 17 10 11 12 13 14 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
SUPERBLOCK 5 CONTROL CONTROL CONTROL CONTROL CONTROL	REPORTING IN 122 123 124 125 126	TERVAL 5.00000
SUPERBLOCK 6 TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE RVPS RVPS RVPS RVPS	REPORTING IN 2 3 4 5 11 12 13 14 15 16 17 18 19 20 77 78 1 2 3 4	FERVAL 5.00000
SUPERBLOCK 7 SUPERBLOCK 8 SUPERBLOCK 9 SUPERBLOCK10	REPORTING INT REPORTING INT REPORTING INT REPORTING INT	TERVAL 0. TERVAL 0.

Appendix BB - Corrected 2C3R LPM Values per §2.2.3

		Megazo	ne - Global F	arameters (r	ounded)	
Parameter]	[I	I	Ι	Ω
	Room	Plenum	Room	Plenum	Room	Plenum
1/R _{wi} [W/°K]	30	0	10	0	220	0
1/R _i [W/°K]	47	18	14	5	381	224
θ	0.011	0.011	0.016	0.006	0.038	0.076
Cdot _{i,out} [W/°K]	0	0	0	0	0	0
K _i [W /° K]	80	20	20	5	600	220
ξi	0.39	0	0.34	0	0.36	0
1/R _{eq} [W/°K]	4,270	1,540	890	790	10,280	2,970
C _{si} [J/°K]	5.85e+07	4.81e+07	1.07e+07	1.63e+07	2.79e+08	1.25e+08
τ _i [hr]	210	750	140	910	130	160
С _і [J/°К]	9.41e+06	2.18e+06	2.03e+06	7.03e+05	2.58e+07	6.87e+06

 Table - 51: Corrected Global Parameter Summary for Megazone I - III (refer to Figure 165)

		Megazone - Global Parameters (rounded)									
Parameter	Г	V		V	V	Л					
	Room	Plenum	Room	Plenum	Room	Plenum					
1/R _{wi} [W/°K]	56	0	147	0	20	0					
1/R _i [W/°K]	108	38	181	86	30	11					
θι	0.058 0.028		0.033	0.022	0.118	0.064					
Ć _{i,out} [W/°K]	0	0	0	0	0	0					
K _i [W/°K]	164	38	327	86	50	11					
ξi	0.34 0		0.45	0	0.4	0					
1/R _{eq} [W/°K]	1,900	1,360	5,640	3,860	280	180					
C _{si} [J/°K]	7.60e+07	5.18e+07	5.14e+08	5.14e+08 1.52e+08		1.08e+07					
τ _i [hr]	130	370	180	490	120	260					
C _i [J/°K]	7.24e+06	7.24e+06	1.78e+07	5.49e+06	6.77e+05	2.32e+05					

Parameter	2C3R L	2C3R Lumped Parameter Model Characteristics for Each Zone i *									
	Ι	П	ш	IV	V	VI					
R _{01,i} [°K/kW]	3.27e+01	1.37e+03	4.64e+00	1.79e+01	6.82e+00	5.00e+00					
R _{02,i} [°K/kW]	2.36e-01	1.14e+00	9.94e-02	5.40e-01	1.82e-01	3.89e+00					
R _{03,i} [°K/kW]	2.09e+01	7.06e+01	2.53e+00	8.70e+00	5.35e+00	2.90e+01					
C _{02,i} [kJ/°K]	9.41e+03	2.03e+03	2.58e+04	7.24e+03	1.78e+04	6.77e+02					
C _{03,i} [kJ/°K]	5.85e+04	1.07e+04	2.79e+05	7.60e+04	2.14e+05	2.08e+04					
R _{11,i} [°K/kW]	3.26e+00	9.47e+00	1.14e+00	3.81e+00	1.33e+00	3.06e+00					
R _{21,i} [°K/kW]	infinite	infinite	infinite	infinite	infinite	infinite					
R _{22,i} [°K/kW]	6. 49e- 01	1.27e+00	3.37e-01	7.37e-01	2.59e-01	5.58e+00					
R _{23,i} [°K/kW]	5.58e+01	2.00e+02	4.13e+00	2.53e+01	1.14e+01	8.18e+01					
C _{22,i} [kJ/°K]	2.18e+03	7.03e+02	6.87e+03	2.36e+03	5.49e+03	2.32e+02					
C _{23,i} [kJ/°K]	4.81e+04	1.63e+04	1.25e+05	5.18e+04	1.52e+05	1.08e+04					

Table - 53: Corrected 2C3R LPM Characteristics (refer to Figure 2 & 165)

The parameters in this table, expressed in terms of the variable names used in the Annex 10 * report, are shown in the following list:

 $\mathbf{R}_{01,i} = \mathbf{R}_{\text{wi,room}} \quad \mathbf{R}_{02,i} = \mathbf{R}_{i,\text{room}} \boldsymbol{\theta}_{i,\text{room}} \quad \mathbf{R}_{03,i} = \mathbf{R}_{i,\text{room}} (1 - \boldsymbol{\theta}_{i,\text{room}})$ $\mathbf{C}_{02,i} = \mathbf{C}_{i,room} \qquad \mathbf{C}_{03,i} = \mathbf{C}_{si,room}$ $\mathbf{R}_{21,i} = \mathbf{R}_{wi,plenum} \quad \mathbf{R}_{22,i} = \mathbf{R}_{i,plenum} \boldsymbol{\theta}_{i,plenum}$ $C_{22,i} = C_{i,plenum}$ $C_{23,i} = C_{si,plenum}$ $\mathbf{R}_{11,i} = \mathbf{R}_{i,j,connecting}$

$$\mathbf{R}_{23,i} = \mathbf{R}_{i,plenum}(1 - \boldsymbol{\theta}_{i,plenum})$$

Global Parameters

Annex 10	Terms						- <u></u>			K(hvy,ir	ner)	K(i)*[1-)		
Mega-	External	K(hvy,ext,ini	ner) External S	Shell		and the second se	al) Horizontal			K(hvy,ir	ner)	1/R(i)		
Zone	Surface	Room		Plenum		Horizontal R		Horizontal Plu		Total Sum		Total Sum		
Num-	Compass	Sub-Tot	Total	Sub-Tot	Total	Ka	КЪ	Ka	КЬ	Room	Plenum	Room	Plenum	
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]	
1	South	38.68		16,10										
1	West	10.98		4.02										
1	North	23.05	72.71	7.12	27.24	2,081	2,081	757	757	4,234	1,542	47	18	
11	North	21.45	21.45	7.64	7.64	429	429	521	261	880	790	14	5	
	South	368.43		148.89										
	West	177.45		49,29		1	(
	North	39.71		14.18		1	1	1						
	Roof		585.59	286.88	499.24	4,737	4,737	1,234	1,234	10,059	2,968	381	224	
1V	West	87.03		30.77				1						
IV	North	79.41	166.45	28.35	59.13	843	843	648	648	1,853	1,356	108	38	
	North	277.88		111.00		1								
v	Roof	211.00	277.88	46.44	157.43	2,606	2,606	1,852	1,852	5,490	3,861	181	86	
		i		0.00		1	<u> </u>	<u> </u>						
<u>VI</u>	South	17.12	46.77	6.08	17.61	105	105	81	81	257	179	30	11	
VI	West	29.64	46.77	11.53	17.61	105	105	81	61	257	1/9	30		

Alert: Corrected calculation for 1/R(i). See Section 2.2.3 in text for explanation.

file: global01.wq2

02/09/96 Page 2

Global Parameters

Annex 10	Terms		K(ext)			thet	a(i)							
Mega-	External	Roor	n	Plenum		Accessibility - theta(i)		Global Res	istances					
Zone	Surface	K(window)	+ K(wall)	K(wai	1)	K(hvy,ext)/K((hvy,inner)	R01	R21	R02	R22	R03	R23	R11
Num-	Compass	Sub-Tot	Total	Sub-Tot	Total	Room	Plenum	Room	Plenum	Room	Plenum	Room	Pienum	Plenum
ber	Heading	[W/K]	[W/K]	[W/K]	[W/K]			[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]	[K/kW]
	South	48.37		10.47		47	18							
	West	11.33		2.61		4,234	1,542							
1	North	18.10	77.80	4.63	17.71	0.01116	0.01149	3.27E+01	0	2.36E-01	6.49E-01	2.09E+01	5.58E+01	3.26E+00
11	North	21.25	21.25	4.97	4.97	0.01585	0.00629	1.37E+02	0	1.14E+00	1.27E+00	7.06E+01	2.00E+02	9.47E+00
	South	441.24		96.78										
	West	115.34		32.04		381	224							
	North	39.45		9.22		10,059	2,968							
	Roof	03.40	596.03	86.06	224.10	0.03784	0.07551	4.64E+00	0	9.94E-02	3.37E-01	2.53E+00	4.13E+00	1.14E+00
	1001		000.00	00.00	224.10	0.03704	0.07551	4.042+00	0	9.942-02	3.372-01	2.332+00	4.132+00	1.142+00
						108	38							
IV	West	85.16		20.00		1,853	1,356							
IV	North	78.90	164.06	18.43	38.43	0.05838	0.02834	1.79E+01	0	5.40E-01	7.37E-01	8.70E+00	2.53E+01	3.81E+00
						181	86							
V	North	327.16		72.15		5,490	3,861							
v	Roof		327.16	13.93	86.08	0.03290	0.02229	6.82E+00	0	1.82E-01	2.59E-01	5.35E+00	1.14E+01	1.33E+00
						30	11							
VI	South	16.85		3.95		257	179							
VI	West	33.56	50.41	7.50	11.44	0.11839	0.06390	5.00E+01	0	3.89E+00	5.58E+00	2.90E+01	8.18E+01	3.06E+01

554

Alert: Corrected calculations for LPM parameters using the corrected 1/R(i). See Section 2.2.3 in text for explanation.

file: global01.wq2

02/09/96 Page 3