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Abstract

The human visual system is remarkably tolerant to
degradations in image resolution: in a scene recognition
task, human performance is similar whether 32 x 32 color
images or multi-mega pixel images are used. Wth small
images, even object recognition and segmentation is per-
formed robustly by the visual system, despite the object be-
ing unrecognizablein isolation. Motivated by these obser-
vations, we explore the space of 32 x 32 images using a
database of 10® 32 x 32 color images gathered from the In-
ternet using image search engines. Each image is loosely
labeled with one of the 70, 399 non-abstract nouns in En-
glish, aslisted in the Wordnet lexical database. Hence the
image database represents a dense sampling of all object
categories and scenes. With this dataset, we use nearest
neighbor methods to perform object recognition across the
108 images.

1 Introduction Figure 1.1 & 3" columns: EighB2 x 32 resolution color images.
When we look the images in Fig. 1, we can recognize the Despite their low resolution, it is still possible to recagnmost
scene and its constituent objects. Interestingly thougdse of thg objects ?nd scenes. These are samples from_ a largetdata
pictures have onlg2 x 32 color pixels (the entire image is ~ °f 10" 32 x 32 images we collected from the web which spans al
just a vector oB072 dimensions witf bits per dimension), ~ V/Sudl object classeg. " & 47 columns: Collages showing the
yet at this resolution, the images seem to already containneareSt neighbors within the dataset to each image in taeeu

. . . column. Note the consistency between the neighbors andidrg g
most of the relevant information needed to support reliable image, having related objects in similar spatial arrangemerhe

recogn_ition. N _ power of the approach comes from the copious amount of data,
Motivated by our ability to perform object and scene rather than sophisticated matching methods.

recognition using very small images, in this paper we ex-

plore a number of fundamental questions: (i) what is the pendent source of information to that presently extracted
smallest image dimensionality that suffices? (ii) how many from high resolution images by feature detectors and the
different tiny images are there? (iii) how much data do we like. Hence any method successful in the low-resolution
need to viably perform recognition with nearest neighbor domain can augment existing methods suitable for high-
approaches? resolution images.

Currently, most successful computer vision approaches Another benefit of working with tiny images is that it be-
to scene and object recognition rely on extracting textural comes practical to store and manipulate datasets orders of
cues, edge fragments, or patches from the image. Thesenagnitude bigger than those typically used in computer vi-
methods require high-resolution images since only they cansion. Correspondingly, we introduce a dataset®imillion
provide the rich set of features required by the algorithms. unique32 x 32 color images gathered from the Internet.
Low resolution images, by contrast, provide a nearly inde- Each images is loosely labelled with on€76f 399 English
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nouns, so the dataset covers all visual object classes. Th|5m1°° B

is in contrast to existing datasets which provide a sparse se K %90
lection of object classes. § 70 - §70
With overwhelming amounts of data, many problems can 8’ 68 . '§,50
be solved without the need for sophisticated algorithms. &’ a0 § '
One example in the textual domain is Google’s “Did you 9 (/i 530
mean?” tools which corrects errors in search queries, notg fg :g‘r’;‘;/rsggfggfhﬂ:]‘g‘na)“) %10 : :: Z'FJW;;“‘V;‘S' -
through a complex parsing of the query but by memorizing - ] ©L —— Rawintensities (PGA)
billions of correct query strings and suggesting the closes % |mage resolution -0 8 106 P l;()esolutlon 256

to the users query. We explore a visual analogy to this tool a)

using our dataset and nearest-neighbor matching schemesFigure 2. a) Human performance on scene recognition as a func
Nearest-neighbor methods have previously been used irfion of resolution. The green and black curves shows the per-

a variety of computer vision problems, primarily for intsre formance on color and grayscale images respectively. Hor co

point matching P, 2, ?]. It has also been used for global 32 x 32 images the performance only dropst relative to full

: tchi Ibeit i trictive d . h resolution, despite having 1/64th of the pixels. (b) Corapuwi-
Image matching, albeit in more restrictive domains such as g, , algorithms applied to the same data as (a). A baselge al

pose estimati(_)n’./]]_. ] ] ] ~rithm (blue) and state-of-the-art algorithms[ 16].
The paper is divided into three parts. In Section 2 we in-

vestigate the performance of human recognition on tiny im-

ages, establishing the minimal resolution required fousbb ~ using very short presentation times4[ 17, 18]. Here, we
scene and object recognition. In Sections 3 and 4 we intro-are interested in characterizing the amount of information
duce our dataset g0 million images and explore the man- available in the image as a function of the image resolution
ifold of images within it. In Section 5 we attempt scene and (there is no constraint on presentation time). We start with
object recognition using a variety of nearest-neighbohmet a scene recognition task.

ods. We measure performance at a number of semantic lev- .

els, obtaining impressive results for certain object dass 2.1 Scene recognition

despite the labelling noise in the dataset. In cognitive psychology, thgist of the scenel4, 19] refers
" to a short summary of the scene (the scene category, and a
2 Human recognltlon of description of a few objects that compose the scene).
low-resolution images computer vision, the terngist is used to refer to a low

dimensional representation of the entire image that pro-
In this section we study the minimal image resolution which vides sufficient information for scene recognition and con-
still retains useful information about the visual world. In text for object detection. In this section, we show that
order to do this, we perform a series of human experimentsthis low dimensional representation can rely on very low-
on (i) scene recognition and (i) object recognition. resolution information and, therefore, can be computey ver

Studies on face perception,[11] have shown that only  efficiently.

16 x 16 pixels are needed for robust face recognition. This ~ We evaluate the scene recognition performance of both
remarkable performance is also found in a scene recogni-humans and existing computer vision algorithims[?, 16]

tion task [L5. However, there are no studies that have ex- as the image resolution is decreased. The test s&6 of
plored the minimal image resolution required to perform scenes was taken from ). Fig. 2(a) shows human per-
visual tasks such as generic object recognition, segmentaformance on this task when presented with grayscale and
tion, and scene recognition with many categories. In com- color image$ of varying resolution. For grayscale images,
puter vision, existing work on low-resolution images relie  humans need arourtd x 64 pixels. When the images are
on motion cuest]. in color, humans need onB2 x 32 pixels. Below this res-

In this section we provide experimental evidence show- olution the performance rapidly decreases. Interestjngly
ing that 32«32 color imagescontain enough information  when color and grayscale results are plotted against image
for scene recognition, object detection and segmentationdimensionality (number of pixels color bands) the curves
(even when the objects occupy just a few pixels in the im- for both color and grayscale images overlap (not shown).
age). A significant drop in performance is observed when Therefore, humans need around 3072 dimensions of either
the resolution drops below 3ixels. Note that this prob-  color or grayscale data to perform this task. Figh) com-
lem is distinct from studies investigating scene recogniti  pares human performance (on grayscale data) with state of
the art computer vision algorithms as a function of image

13232 is very very small. For reference, typical thumbnail siaee:
Google images (130x100), Flikr (180x150), default Winddtusmbnails 2100% recognition rate can not be achieved in this dataset as there
(90x90). no perfect separation between the 15 categories
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Figure 3. Human segmentation of tiny images. (a) Humans earatly recognize and segment objects at very low resmiatieven when
the objects in isolation can not be recognized (b). ¢) SumroBhuman performances as a function of image resolutionodjett size.
Humans analyze images quite well32t x 32 resolution.

resolution. The algorithms used for scene recognition are: 1
1) PCA on raw intensities, 2) a SVM classifier on a vector o5 |
of Gabor filter outputs[f], and 3) a descriptor built using
histograms of quantized SIFT features4]). We used 100 ©
images from each class for training as i, Raw intensi- § 085 ¢
ties perform very poorly. The best algorithms are (magenta) 2 ;|
Gabor descriptorsf] with a SVM using a Gaussian kernel
and (orange) the SIFT histograms&[® There is not a sig-
nificant difference in performance between the two. All the ORIV
algorithms show similar trends, with performances at?256 Jloef o Lot o

-

pixe|s still below human performanceﬁ% 70 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
False positive rate

22 Object recognition Figure 4. Car detection task on the PASCAL 2006 test Qatﬁhgt.
colored dots show the performance of four human subjecssiela
Recently, the PASCAL object recognition challenge eval- fying tiny versions of the test data. The ROC curves of the bes
uated a large number of algorithms in a detection task for vision algorithms (running on full resolution images) ar@wn
several object categorie§]| Fig. 4 shows the performances for comparison. All lie below the performance of humans aa th
(ROC) of the best performing algorithms in the competition tiny images, which rely on none of the high-resolution cues e
in the car classification task (is there a car present in thePloited by the computer vision algorithms.
image?). These algorithms require access to relatively hig 2-3 Object segmentation
resolution images. We studied the abl'lty of human partic- A more Cha”enging task is that of object Segmentation_
ipants to perform the same detection task but at very low- Here, participants are shown color images at different-reso
resolutions. Human participants were shown color imagesjutions (122, 162, 242, and322) and their task is to segment
from the test set scaled to hage piXG'S on the smallest and Categorize as many objects as they can.3fa'g.shows
axis. Fig.4 shows some examples of tiny PASCAL im-  some of the manually segmented images23t It is im-
ages. Each participant classified betweea and400 im- portant to note that taking objects out of their context dras
ages selected randomly. Figgshows the performances of tjcally reduces recognition rate. Fig(b) shows crops of
four human observers that participated in the experiment.some of the smallest objects correctly recognized. The res-
Although around 10% of cars are missed, the performancep|ution is so low that recognition of these objects is almost
is still very good, significantly outperforming the compute  entirely based on context. Fig(c) shows human perfor-
vision algorithms using full resolution images. mance (evaluation is done by a referee that sees the original
high resolution image and the label assigned by the partici-
°SIFT descriptors have an image support6f 16 pixels. Therefore, 504 The referee does not know at which resolution the im-
when working at low resolutions it was necessary to upsathglémages. . .
The best performances were obtained when the images weamplesi to age was presented). The horizontal axis corresponds to the
2562. number of pixels occupied by the object in the image. The
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this by extracting all non-abstract nouns from the database

To‘tal,‘uniq‘ue,‘ — al£avist;1 - . ..

1800) non-uniform images: 70 mm ask 75,378 of them in total. Note that in contrast to existing
$1eoo| 73454453 o i object recognition datasets which use a sparse selection of
%1400 Total number of words: === google ) classes, by collecting images for all nouns, we have a dense

50| picsearci H . .
% 12000 70,399 é —vebehots tcr:)veragﬁ of afll_wsual forms.I Fig(a) shows a histogram of
;1000 Mean # images per word: | 5 40 e number of images per class.
1,043 o . : )

£ 800 Q39 We selected’ independent image search engines: Al-

=} . . .

Z 600 2 tavista, Ask, Flickr, Cydral, Google, Picsearch and Web-
400 shots (others have outputs correlated with these). We auto-
200 10 matically download all the images provided by each engine

0 , uns. Runni W , thi
for all 75,378 nouns. Running oves months, this method

01000 2000 3000 0 00 200 300 ] : i
Number of images per keyword Recall (image rank) gathered)5, 707, 423 images in total. Once intra-word du-

Figure 5. Statistics of the tiny images database. a) A hiatng  plicates and uniform images (images with zero variance)
of images per keyword collected. AroundZ2®f keywords have  are removed, this number is reduced$9454, 453 images
very few images. b) Performance of the various enginesated  from 70, 399 words (around 10% of the keywords had no
on hand-labeled ground truth). Google and Altavista areo®  jmages). Storing this number of images at full resolution
performing and Cydral and Flickr the worst. is impractical on the standard hardware used in our experi-

two plots show the recognition rate (% objects correctly la- ments so we down-sampled the image§2c_>< 32 as they
b . (% obj y were gatheréd The dataset fits onto a single hard disk,

belled) and the number of objects reported for each object ) .
size. Each curve corresponds to a different image resolu-OCCUpy'nQGOOGb in total.
tion. At 322 participants report arourlobjects per image
and the correct recognition rate is arowidds. Clearly, suf-
ficient information rem.ains for reliable segmentatio_n. 3.2 Characterization of labeling noise

Of course, not all visual tasks can be solved using such
low resolution images, the experiments in this section hav-
ing focused only on recognition tasks. However, we argue The images gathered by the engines are loosely labeled in
that32 x 32 color images are the minimum viable size at that the Visual content iS Often Unrelated to the query WOI‘d.

which to study the manifold of natural images. any further In Fig. 5(b) we quantify this using a hand-labeled portion of
lowering in resolution results in a rapid performance drop. the datasetr8 animal classes were labeled in a binary fash-

ion (belongs to class or not) and a recall-precision cung wa

3 A |arge dataset of 32x32 images plotted for each search engine. The differing performance
of the various engines is visible, with Google and Altavista
Current experiments in object recognition typically u6é- performing the best and Cydral and Flickr the worst. Vari-

10* images spread over a few different classes; the largesious methods exist for cleaning up the data by removing im-
available dataset being one with 256 classes from the Cal-ages visually unrelated to the query word. Berg and Forsyth
tech vision group [0]. Other fields such as speech, rou- [3] have shown a variety of effective methods for doing this
tinely usel0° data points for training, since they have found with images of animals gathered from the web. Beirgl.

that large training sets are vital for achieving low errors [2] showed how text and visual cues could be used to clus-
rates in testing. As the visual world is far more complex ter faces of people from cluttered news feeds. Feeyak

than the aural one, it would seem natural to use very large[9, 8] have shown the use of a variety of approaches for
set of training images. Motivated by this and the ability of improving Internet image search engines. However, due to
humans to recognize objects and scene®in 32 images, the extreme size of our dataset, it is not practical to em-
we have collected a databasel 6f such images, made pos- ploy these methods. In Section 5, we show that reasonable
sible by the minimal storage requirements for each image. recognition performances can be achieved despite the high

. labelling noise.
3.1 Collection procedure

We use Wordnétto provide a comprehensive list of all
classeslikely to have any kind of visual consistency. We do

streets, beaches, mountains, as well category-levelesdassd more spe-
“Wordnet P(] is a lexical dictionary, meaning that it gives the semantic ~ cific objects such as US presidents, astronomical objeatsAyssinian

relations between words in addition to the information Ugugiven in a cats.
dictionary. 6We also stored a version maintaining the original aspeict (tite min-
5The tiny database is not just about objects. It is about ¢viery that imum dimension was set 8 pixels) and a link to the original thumbnail

can be indexed with Wordnet and this includes scene-leaskel such as  and high resolution URL.



4 The manifold of natural images

Using the dataset we are able to explore the manifold of + -

natural images Despite32 x 32 being very low resolu-

tion, each image lives in a space3ff72 dimensions. This

is still a huge space - if each dimension 8dsts, there are Target Neighbor ~ Warping Pixel shifting
a total of10™°° possible images. However, natural images D1=1.04 D»=0.54 D3=0.32
only correspond to a tiny fraction of this space (most of the Figure 6. Image matching using distance metfias D and Ds.

images correspond to white n_oise), and it is natL_JraI to _in- For D, and D3 we show the closest manipulated image to the
vestigate the size of that fraction. To measure this fractio target.

we must first define an appropriate distance metric to use in

the 3072 dimensional space. 5 oas
We introduce three different distance measures betweeng °° '
a pair of images; andi,. We assume that all images have §°® £ 03
. . . x ©
already been normalized to zero mean, unit variance. g 07 2025 p>0.8
5 00 1000 2 02
e Sum of squared differences (SSD) between the nor-gz'5 | §015
. . 4 .. = U,
malized images (across all three color channels). Note§ " | - 700000 o
. . . = 8 - _—
thatD; = 2(1—p), p being the normalized correlation. & ,[ 2 |=70000000 o
% s = white noise| 0.05 p>0.9
= 01
Dy = i1(z,y, ) —is(z, 1, c))> g .
Z( ( e ) ( ks )) 3 %0 0107 03 04 05 08 07 05 08 1 104 105 106 107
T,Y,¢ Max normalized correlation p=(1-D1 / 2) number of images
a) b)

1
0.9

cates

e Warping. We optimize each image by transforming §
i (horizontal mirror; translations and scalings up to 5 o7
o 06

10 pixel shifts) to give the minimum SSD. The trans- &
formation parameters are optimized by gradient de- £ 4

Probability for same category

o
scent. S0z
50 = 0
. . . ] 04 05 06 07 08 09 1 04 05 06 07 08 09 1
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(— e c) d)
Y,

Figure 7. Exploring the dataset usinyg . (a) Cumulative probabil-
o Pixel shifting. We allow for additional distortion in ity for the correlation with the nearest neighbor. (b) Cresstion

the images by shifting every pixel individually within of figure (a) plots the probability of finding a neighbor witbre
a5 by 5 window to give minimum SSDy = 2). We relation> 0.9 as a function of dataset size. (c) Probability that

assume that has altacy been warped — T[] [4%,7mages e thplcaes s s rcton of pese ok
The minimum can be found by exhaustive evaluation y 9 g gory

. . . function of pixelwise correlation (duplicate images armoved).
of a_II shifts, only possible due to the low resolution of Each curve represents a different human labeler.
the images.
_ . . ) 4000 neighbors are then computef); taking negligible
D3 = phin > (ir(z,y,¢)—iz(z+ Dy, y+ Dy, c)) time while D, and D5 take a minute or so. Figh shows
Ty a pair of images being matched using thmetrics. Fig.1
shows examples of query images and sets of neighboring
images from our dataset found using.

Inspired by studies on the statistics of image patcligs [
we use our dataset to explore the density of images using
D,. Fig. 7 shows several plots measuring various proper-
ties as the size of the dataset is increased. InHaj, we
show the probability that the nearest neighbor has a normal-
ized correlation exceeding a certain value. Fi@n) shows

Computing distances t@0, 000,000 images is computa-
tionally expensive. To improve speed, we index the images
using the firs0 principal components of thg0, 000, 000
images. With only20 components, al metrics are equiv-
alent and the entire index structure can be held in memory.
Using exhaustive search we find the closiit0 images in

30 second$ per image. The distancds,, D», D5 to these

7Although our dataset is large, it is not necessarily repriesiee of all a vertical section through Figi(a) at0.8 and 0.9 as the
natural images. Images on the Internet have their own hiasgsobjects number of images grows Iogarithmically. FE(.C) shows
tend to be centered and faily large in the image. the probability of the matched image being a duplicate as

8Undoubtedly, if efficient data structures such as a kd-treeewased, . . . .
the matching would be significantly faster. Nister and Steue[13] used a function of D;. While we remove duplicatesithin each

related methods to index ovémillion images in~ 1sec. word, it is not trivial to remove therbetween words.



In Fig. 7(d) we explore how the plots shown in Fig(a) Qemantig Ievgl: 1 S1enjantig Ievgl: 2 S1emantic level: 3

& (b) relate to recognition performance. Three human sub- ‘ : i Herb = :
jects labelled pairs of images as belonging to the same vi- °**[ = N oss Bird- - /]
sual class or not. As the normalized correlation exceeds ... ... o ol 0s A"tthDOd-r
0.8, the probability of belonging to the same class grows e o | Flower |
rapidly. From Fig.7(b) we see that a quarter of the images :’E""“' o |'§°‘85 ‘ff""“ Fish - 1]
in the dataset are expected to have a neighbor with corre-Q ost- - <~ 1O o0s 1O o8 értﬁt 9
lation > 0.8. Hence a simple nearest-neighbor approach $ S Q |romeEn,
. . . . 075 F - A/ - b 0.75 B 0.75 PRI B
might be effective with our size of dataset. o e o |
© o7/ 110 o7 ® o7 14
... 0 Location | |2 o |
5 Recognition Zosst Object | 1Ko} Zoss g
. . . Subtanc

We now attempt to recognize objects and scenes in our °Sf 'O:ganisr?p- “I'" Mountain| '
dataset. While a variety of existing computer vision algo- s\ Region 11 oss| o] 055 !
. . gion Vehicle |
rithms could be adapted to work &2 x 32 images, we Artifact. ., ~ Animal._, g
prefer to use a simple nearest-neighbor scheme based on * 7108 _7,166 7108 7104 7108 7108 7107 7_156 7108

one of the distance metrid3;, D, or D3. Instead of rely- # images # images # images

ing on the complexity of the matching scheme, we let the Figure 9. Average ROC curve area at different semantic $eae!

data to do the work for us: the hope is that there will always a function of number of images in the dataset, for (red), D

be images close to a given query image with some semantidgreen) andDs (blue). Words within each of the semantic levels

connection to it. are shown in each subplot. The red dot shows the expected per-
Given the large number of classes in our data&@t199) fqrmance if all imgge§ in Google image search were use@ (

and their highly specific nature, it is not practical or de- P1on). extrapolating linearly.

sirable to try and classify each of the classes separatelyyy gifferent levels in the tree, each image voting with unit
Instead we make use of Wordnet] which provides se-  yeight. For clarity, we only show parts of the tree with
mantic hierarchy (hypernyms) for each noun. Using this ¢ |east three votes (the full Wordnet tree Has815 non-
hierarchy, we can perform classification at a variety of dif- |6a¢ nodes). The nodes shown in red illustrate the branch
ferent semantic levels, thus instead of trying to recognize itn the most votes, which matches the majority of levels
the noun “yellowfin tuna” we can also perform recognition ;, query image branch (Figi(c)). Note that many of the

at the level of “tuna” or *fish” or “animal”.  Other work  haighhors, despite not being vices, are some kind of device
making use of Wordnet includes Hoogs and Collitjsfho or instrument.

use it to assist with image segmentation. Barretral. [?]
showed how to learn simultaneously the visual and text tags5.2 Results
of images etc.

An additional factor in our dataset is the labelling noise.
To cope with this we use a voting scheme based around thi
Wordnet semantic hierarchy.

We used a test set 823 images, hand-picked so that the
visual content was consistent with the text label. Using
She voting tree described above, we classified them using
K = 80 neighbors at a variety of semantic levels. To sim-
e . . . plify the presentation of results, we collapsed the Wordnet
5.1 Classification using Wordnet voting tree by hand (which hatl9 levels) down to3 levels corre-
Wordnet provides semantic relationships between thesponding to one very high level (“organism”, “object”), an
70, 399 nouns for which we have collected images. We de- intermediate level (“person”, “plant”, “animal”) and a kv
compose the graph-structured relationships into a tree bytypical of existing datasets (“fish”, “bird”, “herb”).

taking the most common meaning of each word. This tree  In Fig. 9 we show the average ROC curve area for a clas-
is then used to accumulate votes from the set of neighborssification task per word at each of the three semantic levels
found for a given query image. Each neighbor has its own for Dy, Dy, D3 as the number of images in the dataset is
branch within the tree for which it votes. By accumulat- varied. Note that (i) the classification performance insesa
ing these branches the query image may be classified at as the number of images increases; [ii) outperforms the

variety of levels within the tree. other distance metrics; (iii) the performance drops offas t
In Fig. 8(a) we show a query image of a vise from our classes become more specific.
test set. In Fig8(b) we show a selection from th& = In Fig. 10 we show the ROC curve area for a number of

80 nearest neighbors usirgs; over the70 million images. classes at different semantic levels, comparingitheand
In Fig. 8(c) we show the Wordnet branch for “vise”. In D3 metrics. For the majority of classe®z may be seen to
Fig.8(d) we show the accumulated votes from the neighborsoutperformbD; .
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5.3 People

For certain classes the dataset is extremely rich. For exam-
ple, many images on the web contain pictures of people.
Thus for this class we are able to reliably find neighbors
with similar locations, scales and poses to the query image,
as shown in Figl2.

6 Conclusions

Many recognition tasks can be solved with images as small
as32 x 32 pixels. Working with tiny images has multiple
benefits: features can be computed efficiently and collect-
ing and working with larger collections of images becomes
practical. We have presented a dataset ®itF000, 000 im-
ages, organized on a semantic hierarchy, and we have shown
that, despite the dataset being weakly labeled, it can be ef-
fectively used for recognition tasks.

We have used simple nearest neighbor methods to ob-
tain good recognition performance for a number of classes,
such as “person”. However, the performance of some other
classes is poor (some of the classes in Eighave ROC
curve areas around 65-70%). We believe that this is due
to two shortcomings of our dataset: (i) sparsity of images
in some classes; (ii) labelling noise. The former may be
overcome by collecting more images, perhaps from sources

To illustrate the quality of the recognition achieved by other than the Internet. One approach to overcoming the la-
using the70, 000, 000 weakly labeled images, we show in belling noise would be to bias the Wordnet voting toward
Fig. 11, for categories at three semantic levels, the imagesimages with high rank (using the performance curves ob-
that were more confidently assigned to each class. Note thatained in Fig.5(b)).
despite the simplicity of the matching procedure presented The dense sampling of categories provides an important
here, the recognition performance achieves reasonable levdataset to develop transfer learning techniques useful for
els even for fine levels of categorization.

object recognition. Small images also present challenges
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Figure 11. Test images assigned to words at each semangic [Eae images are ordered by voting confidence from leftgbtr{the
confidence is shown above each image). The color of the tdiddtes if the image was correctly assigned (green) or ed) (IThe text
on top of each image corresponds to the string that retutmedriage as a result of querying online image indexing tdeéch word is
one of the70, 399 nouns from Wordnet.

for recognition - many objects can not be recognized in iso- 2005.2
lation. Therefore, recognition requires algorithms tmat i [10] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. n-ear
corporate contextual models, a direction for future work. ing object categories from google's image search Priec.
ICCV, volume 2, pages 1816-1823, Oct 20@5.
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