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Abstract

An important research problem in computational biology is the identification of expression pro-
grams, sets of co-activated genes orchestrating physiological processes, and the characterization of the
functional breadth of these programs. The use of mammalian expression data compendia for discov-
ery of such programs presents several challenges, including: 1) cellular inhomogeneity within samples,
2) genetic and environmental variation across samples, and 3) uncertainty in the numbers of programs
and sample populations. We developed GeneProgram, a new unsupervised computational framework
that uses expression data to simultaneously organize genes into overlapping programs and tissues into
groups to produce maps of inter-species expression programs, which are sorted by generality scores that
exploit the automatically learned groupings. Our method addresses each of the above challenges by us-
ing a probabilistic model that: 1) allocates mRNA to different expression programs that may be shared
across tissues, 2) is hierarchical, treating each tissue as a sample from a population of related tissues,
and 3) uses Dirichlet Processes, a non-parametric Bayesian method that provides prior distributions over
numbers of sets while penalizing model complexity. Using real gene expression data, we show that
GeneProgram outperforms several popular expression analysis methods in recovering biologically in-
terpretable gene sets. From a large compendium of mouse and human expression data, GeneProgram
discovers 19 tissue groups and 100 expression programs active in mammalian tissues. Our method au-
tomatically constructs a comprehensive, body-wide map of expression programs and characterizes their
functional generality. This map can be used for guiding future biological experiments, such as discovery
of genes for new drug targets that exhibit minimal “cross-talk” with unintended organs, or genes that
maintain general physiological responses that go awry in disease states. Further, our method is general,
and can be applied readily to novel compendia of biological data.
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1 Introduction

The great anatomic and physiologic complexity of the mammalian body arises from the coordinated expres-
sion of genes. A fundamental challenge in computational biology is the identification of sets of co-activated
genes in a given biological context and the characterization of the functional breadth of such sets. Under-
standing of the functional generality of gene sets has both practical and theoretical utility. Sets of genes
that are very specific to a particular cell type or organ may be useful as diagnostic markers or drug targets.
In contrast, sets of genes that are active across diverse cell types can give us insight into unexpected de-
velopmental and functional similarities among tissues. While there has been considerable effort in systems
biology to understand the structure and organization of co-expressed sets of genes in isolated tissues in the
context of pathological processes, such as cancer and infection [37, 43, 57, 71], relatively little attention has
been given to this task in the context of normal physiology throughout the entire body [63, 65]. By analyzing
gene expression in this latter context, we can gain an understanding of baseline gene expression programs
and characterize the specificity of such programs in reference to organism-wide physiological processes.

In this work, we use a large compendium of human and mouse body-wide gene expression data from
representative normal tissue samples to discover automatically a set of biologically interpretable expression
programs and to characterize quantitatively the specificity of each program. Large genome-wide mammalian
expression data compendia present several new challenges that do not arise when analyzing data from sim-
pler organisms. First, tissue samples usually represent collections of diverse cell-types mixed together in
different proportions. Even if a sample consists of a relatively homogenous cell population, the cells can still
behave asynchronously, due to factors such as microenvironments within the tissue that receive different de-
grees of perfusion. Second, each tissue sample is often from a different individual, so that the compendium
represents a patchwork of samples from different genetic and environmental backgrounds. Finally, the num-
ber of expression programs and distinct cell populations present in a compendium is effectively unknown a
priori.

We present a novel methodology, GeneProgram, designed for analyzing large compendia of mammalian
expression data, which simultaneously compresses sets of genes into expression programs and sets of tissues
into groups. Specific features of our algorithm address each of the above issues relating to analysis of com-
pendia of mammalian gene expression data. First, our method handles tissue inhomogeneity by allocating
the total mRNA recovered from each tissue to different gene expression programs, which may be shared
across tissues. The number of expression programs used by a tissue therefore relates to its functional ho-
mogeneity. We address the second issue, of tissue samples coming from different individuals, by explicitly
modeling each tissue as a sample from a population of related tissues. That is, related tissues are assumed
to use similar expression programs and to similar extents, but the precise number of genes and the identity
of genes used from each program may vary in each sample. Additionally, populations of related tissues
are discovered automatically, and provide a natural means for characterizing the generality of expression
programs. Finally, uncertainty in the numbers of tissue groups and expression programs is handled by using
a non-parametric Bayesian technique, Dirichlet Processes, which provides prior distributions over numbers
of sets.

To understand the novel contributions of the GeneProgram algorithm, it is useful to view our framework
in the context of a lineage of unsupervised learning algorithms that have previously been applied to gene
expression data. These algorithms are diverse, and can be classified according to various features, such as
whether they use matrix factorization methods [2], heuristic scoring functions [14], generative probabilistic
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models [62], statistical tests [58, 68], or some combinations of these methods [6, 17]. The simplest methods,
such as K-means clustering, assume that all genes in a cluster are co-expressed across all tissues, and that
there is no overlap among clusters. Next in this lineage are biclustering algorithms [14, 68, 13, 44, 69],
which assume that all genes in a bicluster are co-expressed across a subset rather than across all tissues. In
many such algorithms, genes can naturally belong to multiple biclusters.

GeneProgram is based on two newer unsupervised learning frameworks, the topic model [23, 30] and
the Hierarchical Dirichlet Process mixture model [70]. The topic model formalism allows GeneProgram
to further relax the assumptions of typical biclustering methods, through a probabilistic model in which
each gene in an expression program has a (potentially) different chance of being co-expressed in a subset
of tissues. The hierarchical structure of our model, which encodes the assumption that groups of tissues
are more likely to use similar sets of expression programs in similar proportions, also provides advantages.
Hierarchical models tend to be more robust to noise, because statistical strength is “borrowed” from items
in the same group for estimating the parameters of clusters. Additionally, hierarchical models can often
be interpreted more easily—in the context of the present application, the inferred expression programs will
tend to be used by biologically coherent sets of tissues. Finally, through the Dirichlet Process mixture model
formalism, GeneProgram automatically infers the numbers of gene expression programs and tissue groups.
Because this approach is fully Bayesian, the numbers of mixture components can be effectively integrated
over during inference, and the complexity of the model is automatically penalized. This is in contrast to
previous methods that either require the user to specify the number of clusters directly or produce as many
clusters as are deemed significant with respect to a heuristic or statistical score without providing a global
complexity penalty. We note that Medvedovic et al. have also applied Dirichlet Process mixture models
to gene expression analysis, but not in the context of topic models, Hierarchical Dirichlet Processes, or
mammalian data [46].

As with previous methods [3, 8, 64, 75], we leverage the power of cross-species information to discover
biologically relevant sets of co-expressed genes. However, these previous analyses generally required genes
to be co-expressed across large sets of experiments [8, 64, 75, 41]. In contrast, GeneProgram uses expression
data more flexibly, and is thus able to produce a refined picture of gene expression across species: expression
programs may be used by only a subset of tissues, and may be unique to one species or shared across multiple
species; tissue groups are similarly flexible. This probabilistic view of expression programs captures the
intuition that the general structure of many programs is evolutionarily conserved, but some genes may be
interchanged or lost.

The remainder of this paper is organized as follows. In Section 2, we present background material on
ordinary and Hierarchical Dirichlet Process mixture models, which are a core component of the GenePro-
gram probability model. In Section 3, we provide a detailed description of the GeneProgram algorithm and
probability model. In Section 4, we apply GeneProgram to the Novartis Gene Atlas v2 [65], consisting of
expression data for 79 human and 61 mouse tissues. Using this data set, we compare GeneProgram’s ability
to recover biologically relevant gene sets to that of biclustering methods, and produce a body-wide map of
expression programs organized by their functional generality scores. Finally, in Section 5, we discuss the
significance of our results and comment on possible future research directions.

3



2 Dirichlet Processes

The task of assigning data to clusters is a classic problem in machine learning and statistics. A common
approach to this problem is to construct a model in which data is generated from a mixture of probability
distributions.

In finite mixture models, data is assumed to arise from a mixture with a pre-determined number of
components [45]. The difficulty with such models is that the appropriate number of mixture components
is not known a priori for many modeling applications. This issue is generally addressed by constructing
a series of models with different numbers of components, and evaluating each model using some quality
score [45].

An alternate, fully Bayesian approach is to build an infinite mixture model, in which the number of
mixture components is potentially unlimited, and is itself a random variable that is part of the overall model.
Obviously, only a finite number of mixture components can have data assigned to them. However, we still
imagine the data as arising from an infinite number of components; as more data is collected, more compo-
nents may be used to model the data more accurately. Thus, the infinite mixture model is a nonparametric
model, in the sense that the number of model parameters grows with the amount of data. The challenge with
such a model is how to place an appropriate prior on the infinite number of mixture component parameters
and weights.

The Dirichlet Process (DP), a type of stochastic process first introduced in the 1960’s [24] and originally
of mostly theoretical interest [21, 22], has recently become an important modeling tool as a prior distribu-
tion for infinite mixture models. In this section, we will introduce the main concepts of DPs necessary to
understand the GeneProgram model. In this regard, we will focus on a constructive definition of DPs in
the context of priors for infinite mixture models. This development, which avoids measure theory, closely
parallels that presented by [49] and [54].

A recent extension to the standard DP model is the Hierarchical Dirichlet Process (HDP), in which
dependencies are specified among a set of DPs by arranging them in a tree structure [70]. HDPs are useful
as priors for hierarchical mixture models, in which data is arranged into populations that preferentially share
the usage of mixture components. In this section, we will discuss the original HDP formulation by Teh et
al. in the context of infinite mixture models.

The use of DPs for real-world applications is predicated on practical inference methods. A great advance
in this regard has been the development of efficient Markov Chain Monte Carlo (MCMC) methods for
approximate inference for infinite mixture models using DP priors [60, 50, 54]. Although other approximate
inference methods have been developed [47, 9, 39], MCMC remains the most widely used and versatile
method. In particular, efficient MCMC schemes have been developed for HDP models [70], and can be
readily extended for the GeneProgram model. Thus, our discussion of DP inference in this section will be
restricted to MCMC methods.

The remainder of this section is organized as follows. First, we describe how Dirichlet Processes arise
as priors in terms of the infinite limit of mixture models. Next, we describe the extension of DPs to HDPs.
Finally, we describe basic MCMC sampling schemes for DPs and HDPs.
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2.1 Probability models

2.1.1 Bayesian finite mixture models

We begin by defining a typical Bayesian finite mixture model, which we will subsequently extend to the
infinite case. Figure 1 depicts the model using standard graphical model notation with plates. The model
consists of J mixture components, where each component j has associated with it a mixture weight denoted
πj and a parameter vector denoted θj . Assume we have N data points denoted xi, where 1 ≤ i ≤ N . Each
data point is assigned to a mixture component via an indicator variable zi, i.e., the probability that data point
i is assigned to component j is p(zi = j | π) = πj or zi |π ∼ Multinomial(· | π). The conditional
likelihood for each data point may then be written as:

p(xi | zi = j,θ) = F (xi | θj)

Here, F (· | ·) is a probability density function parameterized by θ.
To complete the model, we need to define prior distributions over the parameters. We will assume that

the component parameters are drawn i.i.d. from some base distribution H , i.e., θj ∼ H(·). We also need
to specify a prior distribution for the weight parameters. As is typical for Bayesian mixture models, we
will assume a symmetric Dirichlet prior on the mixture weights, i.e., π | J, α ∼ Dirichlet(· | α/J). One
consequence of using a symmetric prior is that it is not sensitive to the order of the component parameters.
Note that the Dirichlet prior is conjugate to the multinomially distributed weights, so that the posterior is
also a Dirichlet distribution.

To summarize, our J-dimensional mixture model is defined as:

π | α, J ∼ Dirichlet(· | α/J)

θj | H ∼ H(·)

zi | π ∼ Multinomial(· | π)

xi | zi = j,θ ∼ F (· | θj)

In mixture models, we are primarily interested in knowing which component each data point i has been
assigned to—the weights π are to some extent “nuisance” parameters. It is possible to derive closed form
expressions for the data point assignment variable posterior distributions with the mixture weights integrated
out. These posterior distributions will be particularly useful in the extension to the infinite mixture model.
Note that although the assignment variables z are conditionally independent given the weights, they become
dependent if we integrate out the weights (i.e., the probability of assigning a data point to a particular
component depends on the assignments of all other data points). As it turns out, the probability of assigning
data point i to some component j given assignments of all other data points can be written as a simple closed
form expression (see [54]):

p(zi = j | z−i, α, J) =
∫

p(zi = j | π)p(π | z−i, α, J)dπ

p(π | z−i, α, J) ∝ p(z−i | π)p(π | α, J)

⇒ p(zi = j | z−i, α, J) ∝
∫

p(zi = j | π)p(z−i | π)p(π | α, J)dπ
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π Η

θj

α

J

Figure 1: A graphical model depiction of a finite mixture model with J mixture components and N data
items. Circles represent variables, and arrows denote dependencies among variables. Vectors are depicted
with bold type, and observed variables are shown inside shaded circles. Rectangles represent plates, or
repeated sub-structures in the model.

⇒ p(zi = j | z−i, α, J) ∝
n−i

j + α/J

N − 1 + α
(1)

Here, z−i denotes the assignments of all data excluding data point i, and n−i
j denotes the number of data

points assigned to component j excluding data point i. The second line of the derivation follows simply
from Bayes’ theorem. The final line of the derivation follows from conjugacy between the Dirichlet prior on
the weights and the multinomial distribution on the assignment variables. Thus, the density function under
the integral is that of a non-symmetrical Dirichlet distribution, allowing us to derive the final closed form
expression.

2.1.2 Infinite mixture models and Dirichlet Processes

In this subsection we show how the Dirichlet Process arises as a prior for infinite mixture models.
Figure 2 depicts an infinite mixture model using standard graphical model notation with plates. As can

be seen from the figure, the model is almost structurally identical to the finite version. The distinguishing
feature is that the weight and parameter vectors are now infinite dimensional.

The challenge with this model is then to define an appropriate prior for the infinite dimensional pa-
rameters and weights. As with any mixture model, the infinite dimensional weights must sum to one.
A probability distribution that generates such weights is the stick-breaking distribution, denoted Stick(α),
where α is a scaling or concentration parameter (discussed in more detail below). This distribution is defined
constructively. Intuitively, we imagine starting with a stick of unit length and breaking it at a random point.
We retain one of the pieces, and break the second piece again at a random point. This process is repeated
infinitely, producing a set of random weights that sum to one with probability one [60]. To be more precise,
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the jth weight πj is constructed as:
π′j | α ∼ Beta(1, α)

πj = π′j

j−1∏
l=1

(1− π′l)

The infinite mixture model can be constructed using the stick-breaking distribution as a prior on the mix-
ture weights and the base distribution H as a prior on the component parameters. This can be summarized
as:

π | α ∼ Stick(α)

θj | H ∼ H(·)

zi | π ∼ Multinomial(· | π)

xi | zi = j,θ ∼ F (· | θj)

Note that this construction produces a vector π with a countably infinite number of dimensions, whose
components all sum to one, andH is sampled independently a countably infinite number of times to generate
the mixture component parameter values.

xi N

zi

π Η

8

aα

θj

α

Figure 2: A graphical model depiction of the infinite mixture model. Circles represent variables, and arrows
denote dependencies among variables. Vectors are depicted with bold type, and observed variables are
shown inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

To establish the connection between Dirichet Processes and the model described above, we consider the
distribution over all possible component parameter values for the infinite mixture model. This distribution
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will be non-zero at a countably infinite number of values. Formally, we denote this distribution by G and
can write it as:

G(ψ) =
∞∑

j=1

πjδ(ψ − θj)

Here, ψ is an arbitrary parameter value, and δ(·) is the standard delta-function, which is non-zero only when
its argument is zero.

Each distribution G thus constructed can be viewed as a sample from a stochastic process, which can in
fact be proven to be the Dirichlet Process (see [36] and [60]). In general, we will characterize a Dirichlet
Process by a scalar parameter α, called the concentration parameter, and a base distribution H . A sample
from a Dirichlet Process, which we denote G |α,H ∼ DP(α,H), is thus a distribution that is non-zero
over a countably infinite number of values (with probability one). As we have seen, each sample effectively
parameterizes an infinite dimensional mixture model.

The concentration parameter α affects the expected number of mixture components containing data
items when the DP is used as a prior for the infinite mixture model. As shown in [5], the expected number
of non-empty mixture components J depends only on α and the number of data points N :

E[J | α,N ] = α

N∑
l=J−1

1
α+ l − 1

≈ α ln
(
N + α

α

)
Thus, we see that the number of non-empty components grows approximately as the logarithm of the size
of the data set. Further, we see that the number of components grows as the concentration parameter α
increases.

To make our model fully Bayesian, we would like to treat the concentration parameter α as a random
variable and place a prior on it. The Gamma distribution is commonly used as a prior for α, in part because
efficient inference is possible with this prior, and also because appropriate parameter choices result in a
relatively uninformative prior [49]. Thus, we place a Gamma prior on α with hyperparameters aα, i.e.,
α | aα ∼ Gamma(aα

1 , a
α
2 ).

2.1.3 Hierarchical Dirichlet Process models

In this section, we describe the Hierarchical Dirichlet Process (HDP) models introduced by Teh et al. [70].
As in the previous section on DPs, we will present HDPs in terms of priors for infinite mixture models. We
will describe only a two-level hierarchical model for clarity; additional levels are simply added by applying
the model construction process recursively.

Figure 3 depicts a basic HDP using standard graphical model notation with plates. In HDP models, we
assume that data is divided into T subsets, each consisting of Nt data points denoted xti, where 1 ≤ t ≤ T
and 1 ≤ i ≤ Nt. Each such data set division is modeled by an infinite mixture model with weights πt and
component assignment variables zti. These infinite mixture models are not independent; the mixtures share
component parameters θ and a common Dirichlet Process prior.

The dependencies among the infinite mixture models can be understood in terms of a construction using
the stick-breaking distribution. Beginning at the top of the model, we imagine drawing a sample G from a
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xti
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πt Η

8
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θj

α β0

1

0

Figure 3: A graphical model depiction of the Hierarchical Dirichlet Process represented as an infinite mix-
ture model. Circles represent variables, and arrows denote dependencies among variables. Vectors are de-
picted with bold type, and observed variables are shown inside shaded circles. Rectangles represent plates,
or repeated sub-structures in the model.

Dirichlet Process, i.e., G | α0,H ∼ DP(α0,H). Recall that we can write this sample as:

G(ψ) =
∞∑

j=1

β0
j δ(ψ − θj)

Here, θj are drawn i.i.d. from the base distribution H , and β0 | α0 ∼ Stick(α0).
We next form a second DP using the sample G itself as a base distribution, i.e., we construct DP(α1, G).

We then generate i.i.d. samples from this DP for each of the T sub-models, i.e., Gt | α1, G ∼ DP(α1, G).
Each sample can be written as:

Gt(ψ) =
∞∑

j=1

πtjδ(ψ − θj)

Notice that these distributions must necessarily be non-zero only at the same points θj asG is. We have now
constructed a set of T dependent infinite mixture models, where each model has separate (but dependent)
weights πt and shared component parameters θ.

It can be shown that the weights πt can be constructed via a stick-breaking process using the top-level
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weights β0 (see [70]):

π′tj ∼ Beta

(
α1β

0
j , α1

(
1−

j∑
l=1

β0
l

))

πtj = π′tj

j−1∏
l=1

(1− π′tl)

2.2 Markov Chain Monte Carlo approximate inference

2.2.1 Single level infinite mixture models

Markov Chain Monte Carlo (MCMC) algorithms are general tools for approximating posterior distribu-
tions of models. With these methods, one alternately samples from the distributions for subsets of variables
conditioned on the remaining variables. Given some mild constraints on the model distributions, the ap-
proximation converges to the true posterior distribution in the large sample limit [26]. The utility of MCMC
methods hinges on the ability to sample from a set of conditional distributions more efficiently than sampling
from the full posterior.

In the case of infinite mixture models using a DP prior, sampling can be made efficient by exploiting a
“trick” that requires tracking of only a finite number of non-empty mixture components and the data points
already assigned to them. Figure 4 presents the overall MCMC sampling scheme for single level infinite
mixture models.

Repeat for all data items i = 1 . . . N :
Sample zi, the assignment of the data item to a mixture component,
from its posterior, i.e., p(zi | z−i, α,θ)

If the data item has been assigned to a new component, sample a new
mixture component parameter θ∗ from its posterior

Repeat for all non-empty mixture components j = 1 . . . J :
Sample the component parameter θj from its posterior

Sample the DP concentration parameter α from its posterior

Figure 4: One iteration of the basic MCMC sampling scheme for an infinite mixture model using a Dirichlet
Process prior.

The key MCMC sampling step for Dirichlet Processes involves picking assignments of data points to
mixture components. We sample the assignment of a data point i conditioned on the other variables from
the distribution given by:

p(zi | z−i, α,θ,x) ∝ p(zi | z−i, α)p(x | z,θ) (2)

The proportionality simply follows from Bayes’ theorem. Recall from equation 1 that for finite mixture
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models, we can write p(zi = j | z−i, α, J) in closed form:

p(zi = j | z−i, α, J) ∝
n−i

j + α/J

N − 1 + α

For the case of infinite mixture models, and in which n−i
j > 0 (i.e., the jth component of the mixture is

non-empty), it can be proven that this distribution converges to (see [54]):

p(zi = j | z−i, α) ∝
n−i

j

N − 1 + α
(3)

For infinite mixture models, we must consider the probability that a data point does not belong to one
of the mixture components containing other data points. That is, we will need to calculate p(zi 6= zl,∀ l 6=
i | z−i, α). It can be proven that this probability is given by (see [54]):

p(zi 6= zl,∀ l 6= i | z−i, α) ∝ α

N − 1 + α
(4)

We can thus combine equations 2, 3 and 4 to obtain the posterior distributions for the assignment vari-
ables:

p(zi = j | z−i, α,θ,x) ∝
n−i

j

N − 1 + α
p(xi | θj) for n−i

j > 0 (5)

p(zi 6= zl,∀ l 6= i | z−i, α,θ,x) ∝ α

N − 1 + α

∫
F (xi | ψ)H(ψ)dψ (6)

Thus, for each iteration, we sample the mixture component assignments for all data points using equa-
tions 5 and 6. For the first J components already containing data items, we use equation 5 to compute the
assignment probability. We use equation 6 to compute the probability of assigning the data point to a new
mixture component. Notice that in equation 6, we integrate over the mixture component parameters, as any
component parameters are possible for a new component. Sampling is most efficient when F (·) and H(·)
are conjugate. However, in cases of non-conjugacy of these distributions, Monte Carlo methods may be
used [50, 54].

We also need to sample from the posterior for the concentration parameter α. It can be shown that the
conditional distribution for α is given by (see [49]):

p(α | J,N,aα) ∝ αaα
1 +J−1e−aα

2 αB(α,N)

Here, B(·, ·) is the standard Beta function defined as:

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

=
∫ 1

0
ηu−1(1− η)v−1dη

Escobar and West describe an efficient sampling scheme for α [20]. They noted that p(α | J,N) can be
written as a marginalization over an auxiliary variable η:

p(α | J,N,aα) ∝
∫ 1

0
p(α, η | J,N,aα)dη
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p(α, η | J,N,aα) ∝ αaα
1 +J−1e−aα

2 αηα−1(1− η)N−1

From the joint distribution, we can see that:

p(α | η, J,N,aα) ∝ Gamma(α | aα
1 + J − 1, aα

2 − ln η)

p(η | α, J,N) ∝ Beta(η | α,N)

Thus, by sampling from the above two conditional distributions, we can sample from the posterior for α to
update the concentration parameter during the MCMC sampling iterations.

2.2.2 Hierarchical Dirichlet Process models

Teh et al. described an MCMC method for HDP infinite mixture models that uses auxiliary variables to make
sampling from the conditional distributions efficient [70]. Figure 5 provides an overview of the sampling
scheme.

Repeat for all data subsets t = 1 . . . T and data items i = 1 . . . N :
Sample zti, the assignment of data item i from subset t to a mixture component,
from its posterior, i.e., p(zti | z−i,β

0,θ,x, α1)
If the data item has been assigned to a new component, sample a new
top-level mixture weight β0

∗ from the stick-breaking distribution and
a new mixture component parameter θ∗ from its posterior

Repeat for all non-empty mixture components j = 1 . . . J :
Sample the component parameter θj from its posterior

Sample the top-level mixture weights β0 from their posterior

Sample the concentration parameters α0 and α1 from their posteriors

Figure 5: One iteration of the basic MCMC sampling scheme for the Hierarchical Dirichlet Process mixture
model with two levels.

The first task is to sample the data point assignment variables, z. The method for this is similar to that
used for ordinary Dirichlet Process mixture models. We begin by considering a finite mixture model of
dimension J and integrating out the individual mixture weights πt to obtain the conditional probability of z
given β0:

p(z | β0, α1) =
T∏

t=1

Γ(α1)
Γ(α1 +Nt)

J∏
j=1

Γ(α1β
0
j + ntj)

Γ(α1β0
j )

(7)

Here, Nt denotes the number of data items in subset t, and ntj represents the number of data items from
subset t assigned to mixture component j. It can be shown that in the limit of an infinite mixture model, the
conditional probability has a particularly simple form:

p(zti = j | z−i,β
0, α1) ∝ α1β

0
j + n−i

tj
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By combining this with the conditional likelihood for data points, F (· | ·), we obtain the posterior distribu-
tion for assigning data points to mixture components:

p(zti = j | z−i,β
0,θ,x, α1) ∝ (α1β

0
j + n−i

tj )F (xti | θj) (8)

This equation holds if j is a non-empty component. The posterior distribution for assigning a data point to
a new component is given by:

p(zti 6= ztl ∀ t, l 6= i | z−i,β
0,θ,x, α1) ∝ (α1β

0
∗)
∫
F (xti | ψ)H(ψ)dψ (9)

Here, we define β0
∗ = 1 −

∑J
l=1 β

0
l , where there are J components with data points assigned to them. As

with ordinary DPs, Monte Carlo methods may be used if F (· | ·) and H(·) are non-conjugate distributions.
So, to sample the data point assignments we use equations 8 and 9. If a data point is assigned to a new

component, we must also generate a new weight β0
J+1 using the stick-breaking distribution, i.e., we sample

b ∼ Beta(1, α0) and set β0
J+1 ← bβ0

∗ .
To sample from the model posterior, we also must sample the top-level weights β0. The method for this

relies on a “trick” using auxiliary variables. For the derivation, we need to use a general property of ratios
of Gamma functions given by:

Γ(n+ a)
Γ(a)

=
n∑

m=0

s(n,m)am (10)

Here, n and a are natural numbers. In equation 10, the ratio of Gamma functions has been expanded
into a polynomial with a coefficient s(n,m) for each term. These coefficients are called unsigned Stirling
numbers of the first kind, which count the permutations of n objects having m permutation cycles (see [1]).
By definition, s(0, 0) = 1, s(n, 0) = 0, s(n, n) = 1 and s(n,m) = 0 for m > n. Additional coefficients
are then computed recursively using the equation s(n+ 1,m) = s(n,m− 1) + ns(n,m).

Note that the β0 weights in the conditional probability p(z | β0) in equation 7 occur as arguments of
ratios of Gamma functions. These ratios can be expanded to yield polynomials in the β0 weights:

Γ(α1β
0
j + ntj)

Γ(α1β0
j )

=
ntj∑

mtj=0

s(ntj ,mtj)(α1β
0
j )mtj (11)

An efficient sampling method can be derived by introducing m as auxiliary variables. The conditional
distributions for sampling m and β0 can be shown to be:

p(mtj = m | z,m−tj ,β
0) ∝ s(ntj ,m)(α1β

0
j )m (12)

p(β0 | z,m) ∝ (β0
∗)

α0−1
J∏

j=1

β
P

t mtj−1
j ∝ Dirichlet(

∑
t

mt1, . . . ,
∑

t

mtJ , α0) (13)

Finally, we need to sample the concentration parameters α0 and α1 for the HDP. As with the regular DP
model, we will assume Gamma priors on the concentration parameters.

For α0, it can be shown that:

p(J = J | α0,m) ∝ s(M,J)αJ
0

Γ(α0)
Γ(α0 +M)

13



Here, M =
∑

t

∑
j mtj and J is the number of non-empty mixture components. Combining the above

equation with the prior for α0 yields the conditional probability for α0, which can be sampled using the
same method as described for sampling concentration parameters for regular DPs.

Sampling α1 requires the introduction of two additional auxiliary variables w and b. The following
update equations can then be derived:

p(wt | α1) ∝ wα1
t (1− wt)Nt−1

p(bt | α1) ∝
(
Nt

α1

)bt

p(α1 | w,b,aα1) ∝ Gamma(aα1
1 +

T∑
t=1

(Mt − bt), aα1
2 −

T∑
t=1

logwt)

Here, aα1
1 and aα1

2 are the hyperparameters for the Gamma prior on α1 and Mt =
∑J

j=1mtj .

3 The GeneProgram algorithm and probability model

3.1 Algorithm overview

The GeneProgram algorithm consists of data integration (pre-processing), model inference, and distribution
summary steps as depicted in Figure 6. Data integration makes data from multiple species comparable
and discretizes it in preparation for input to the model. The first data integration step combines replicates
and normalizes microarray data to make measurements of gene expression comparable across tissues. The
second data integration step uses a pre-defined homology map to convert species specific gene identifiers into
meta-gene identifiers. Meta-genes are virtual genes that correspond one-to-one with genes in each species.
Some genes do not have counterparts in other species, and these are filtered out. In the final data integration
step, continuous expression measurements are discretized. The model inference step seeks to discover
underlying expression programs and tissue groups in the data probabilistically. To accomplish this, we use
Markov Chain Monte Carlo (MCMC) sampling to estimate the model posterior probability distribution.
Each posterior sample describes a configuration of expression programs and tissue groups for the entire data
set; more probable configurations tend to occur in more samples. The final step of the algorithm is model
summarization, which produces consensus descriptions of expression programs and tissue groups from the
posterior samples.

3.2 The probability model

3.2.1 Intuitive overview

We can understand the GeneProgram probability model intuitively as a series of “recipes” for constructing
the gene expression of tissues. Figure 7 presents a cartoon of this process, in which we imagine that we are
generating the expression data for the digestive tract of a person. The digestive tract is composed of a variety
of cell types, with cells of a given type living in different microenvironments, and thus expressing somewhat
different sets of genes. We can envision each cell in an organ choosing to express a subset of genes from
relevant expression programs; some programs will be shared among many cell types and others will be more
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1) Normalize
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     homologous
     genes
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...
N

Figure 6: GeneProgram algorithm steps. The main steps of the algorithm are: data integration (steps 1-3),
model inference (step 4), and posterior sample summarization (step 5). See the text for details.
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specific. As we move along the digestive tract, the cell types present will change and different expression
programs will become active. However, based on the similar physiological functions of the tissues of the
digestive tract, we expect more extensive sharing of expression programs than we would between dissimilar
organs such as the brain and kidneys. As can be seen in Figure 7, the final steps of our imaginary data
generation experiment involve organ dissection, homogenization, cell lysis and nucleic acid extraction, to
yield the total mRNA expressed in the tissue, which is then measured on a DNA microarray.

The conceptual experiment described above for “constructing” collections of mRNA molecules from
tissues is analogous to the topic model, a probabilistic method developed for information retrieval applica-
tions [30, 10] and also applied to other domains, such as computer vision [66, 67] and haploinsufficiency
profiling [23]. In topic models for information retrieval applications, documents are represented as un-
ordered collections of words, and documents are decomposed into sets of related words called topics that
may be shared across documents. In hierarchical versions of such models, documents are further organized
into categories and topics are preferentially shared within the same category. In the GeneProgram model,
a unit of mRNA detectable on a microarray is analogous to an individual word in the topic model. Related
tissue populations (tissue groups) are analogous to document categories, tissues are analogous to documents,
and topics are analogous to expression programs.
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Figure 7: Conceptual overview of the data generation process for gene expression in mammalian tissues.
The GeneProgram probability model can be thought of as a series of “recipes” for constructing the gene
expression of tissues, as depicted in this cartoon example for a digestive tract. In the upper right, four
expression programs (labeled A-D) are shown, consisting of sets of genes (e.g., GA1 represents gene 1 in
program A). Cells (circles) throughout the digestive tract choose genes to be expressed probabilistically
from the programs. The biological experimenter than collects mRNA by dissecting out the appropriate
organ, taking a tissue sample, homogenizing it, lysing cells, and extracting the nucleic acids.

GeneProgram handles uncertainty in the numbers of expression programs and tissue groups by using a
model based on Hierarchical Dirichlet Processes [70]. We note that in the original Hierarchical Dirichlet
Processes formulation [70], data items were required to be manually assigned to groups. The GeneProgram
model extends this work, automatically determining the number of groups and tissue memberships in the
groups.

The GeneProgram probability model consists of a three-level hierarchy of Dirichlet Processes, as de-
picted in Figure 8 part A. Tissues are at the lowest level in the hierarchy. Each tissue is characterized by
a mixture (weighted combination) of expression programs that is used to describe the observed gene ex-
pression levels in the tissue. An expression program represents a set of cross-species meta-genes that are
co-activated to varying extents, as depicted in Figure 8 part B. When a tissue uses an expression program,
the homology map translates meta-genes into the appropriate species specific genes. Tissues differ in terms
of which expression programs they employ and how the programs are weighted. The middle level of the
hierarchy consists of tissue groups, in which each group represents tissues that are similar in their use of ex-
pression programs. The highest and root level in the hierarchy describes a base level mixture of expression
programs that is not tissue or group specific.

Each node in our hierarchical model maintains a mixture of gene expression programs, and the mixtures
at the level below are constructed on the basis of those above. Thus, a tissue is decomposed into a collection
of gene expression programs, which are potentially shared across the entire model, but are more likely to
be shared by related tissues (those in the same tissue group). Because our model uses Dirichlet Processes,
the numbers of both expression programs and tissue groups are not fixed and may vary with each sample
from the model posterior distribution. In the next section, we describe the GeneProgram probability model
in detail.

3.2.2 Formal model description

The GeneProgram model consists of three levels of DPs. Starting from the leaves these are: tissues, tissue
groups, and the root. Each expression program corresponds to a mixture component of the HDP. Because the
model is hierarchical, the expression programs are shared by all DPs in the model. An expression program
specifies a multinomial distribution over meta-genes. Discrete expression levels are treated analogously
to word occurrences in documents in topic models. Thus, a tissue’s vector of gene expression levels is
converted into a collection of expression events, in which the number of events for a given gene equals the
expression level of that gene in the tissue. The model assumes that each gene expression event in a tissue
is independently generated by an expression program. In the original HDP formulation [70], the entire tree
structure was assumed to be pre-specified. We extend this work, by allowing the model to learn the number
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Figure 8: (Part A) Overview of the GeneProgram probability model. The model is based on Hierarchical
Dirichlet Process mixture models, a non-parametric Bayesian method. The model consists of a three-level
hierarchy of Dirichlet Processes. Each node describes a weighted mixture of expression programs (each
colored bar represents a different program; heights of bars = mixture weights). The mixtures at each level
are constructed on the basis of the parent mixtures above. Tissues are at the leaves of the hierarchy, and
may be from either species. The observed gene expression of each tissue is characterized by a vector of
discretized expression levels of species specific genes (row of small shaded squares below each tissue).
(Part B) Example of a gene expression program. A gene expression program specifies a set of cross-species
meta-genes that are co-activated to varying extents in a subset of tissues. On the left is a simple program
containing five meta-genes (colored bars = expression frequencies). In this example, a human tissue uses
the gene expression program, choosing four meta-genes from the set with various levels of expression. The
homology map (center) translates the meta-genes into species specific genes (right).

of groups and the memberships of tissues in these groups. Thus, groups themselves are generated by a DP,
which uses samples from the root process DP as its base distribution.

Figure 9 depicts the model using graphical model notation with plates and Table 1 summarizes the
random variables in the model.

We will begin by describing the model at the level of observed data, and then move up the hierarchy.
Assume that there are T tissues andGmeta-genes. For simplicity, we will assume that there are alsoG genes
for each species and that the ordering of genes uniquely determines the cross-species mapping. Thus, in the
following discussion, genes and meta-genes are used interchangeably. The expression data associated with
each tissue t consists of a G-dimensional vector et of discrete expression levels, i.e., etg ∈ {0, 1, . . . , E} is
the expression level of gene g in tissue t, where there are E possible discrete expression levels.

A tissue’s vector of gene expression levels is converted into a collection of expression events, in which
the number of events for a given gene equals the expression level of that gene in the tissue. This represen-
tation of expression levels as an unordered “bag of expression events” is analogous to the representation of
words in a document as a “bag of words” in topic models. To be precise, let xt denote a set of expression
events for tissue t, and define a mapping ω from xt to genes, where ω(xti) = g iff etg > 0. The vector xt

will have Nt elements, where Nt =
∑G

g=1 etg, i.e., as many elements as there are discrete expression events
in the tissue.

The model assumes that each gene expression event in a tissue is independently generated by an ex-
pression program. The variable zti assigns gene expression events to programs, i.e., zti = j indicates that
xti was generated from the jth expression program. An expression program is a multinomial probability
distribution over genes. To be precise, let θj represent a parameter vector of size G for expression program
j. Then, the probability of generating expression event xti corresponding to gene g given that it is assigned
to expression program j is p(ω(xti) = g | zti = j,θj) = θjg. We use a symmetric Dirichlet prior for θj

with parameter λ, and a Gamma prior for λ with hyperparameter vector aλ.
The mixing probabilities over expression programs are generated by the DPs in the hierarchy. To be

precise, let πt denote the mixing probabilities at the leaf level in the DP hierarchy. That is, πt denotes the
mixing probabilities over expression programs for tissue t, i.e., p(zti = j | πt) = πtj . Let βk denote the
mixing probabilities at the middle level in the DP hiearchy. That is, βk denotes the mixing probabilities over
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Var. Dim. Description Cond. distribution or prior
xti 1 Expression event i in tissue t; Multinomial, given the assignment to

corresponds directly to observed expression program j.
data.

zti 1 Assignment variable of an Generated from mixing probabilities over
expression event to an expression expression programs for the tissue, i.e.,
program, i.e., zti = j indicates that p(zti = j | πt) = πtj .
expression event i in tissue t is
assigned to expression program j.

πt ∞ Mixing probabilities over expression DP, given the assignment of the tissue to
programs for tissue t. group k, its parent DP mixing probabilities,

and its concentration parameter, i.e.,
πt | qt = k, α1,β

k ∼ DP(α1,β
k).

βk ∞ Mixing probabilities over expression DP, given its parent mixing probabilities
programs at the level of and concentration parameters, i.e.,
tissue group k; middle βk | α0,β

0 ∼ DP(α0,β
0).

level in the DP hierarchy.
β0 ∞ Root level mixing probabilities in DP, generated from the stick-breaking

the DP heterarchy. distribution given its concentration
parameter, i.e., β0 | α0 ∼ Stick(α0).

θj G Parameters for expression, Dirichlet distribution prior
program j, describing a multinomial (parameterized by λ).
distribution over G meta-genes.

λ 1 Pseudo-count parameter for a Gamma distribution prior with a two-
symmetric Dirichlet distribution. dimensional hyperparameter vector aλ.

qt 1 Assignment variable of tissues to Generated from mixing probabilities over
groups, i.e., qt = k indicates that tissue groups, i.e, p(qt = k | ε) = εk.
tissue t belongs to tissue group k.

ε ∞ Mixing probabilities over the tissue DP, generated from the stick-breaking
groups. prior given its concentration parameter,

i.e, ε |γ ∼ Stick(γ).
α1 1 Concentration parameter for πt. Gamma distribution prior with two-

dimensional hyperparameter vector aα1 .
α0 1 Concentration parameter for β0 Gamma distribution prior with two-

and βk. dimensional hyperparameter vector aα0 .
γ 1 Concentration parameter for ε. Gamma distribution prior with two-

dimensional hyperparameter vector aγ .

Table 1: Summary of random variables in the GeneProgram model. The columns are: variable name (vectors
are in bold type), dimensions of the variable, description, and the conditional or prior distribution on the
variable.
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Figure 9: The GeneProgram model is depicted using graphical model notation with plates. Circles repre-
sent variables, and arrows denote dependencies among variables. Vectors are depicted with bold type, and
observed variables are shown inside shaded circles. Rectangles represent plates, or repeated sub-structures
in the model. See the text and Table 1 for details.

expression programs at the level of tissue group k. Finally, we let β0 denote the root-level mixing probabil-
ities. In the stick-breaking construction for HDP models, it is assumed that root level mixing probabilities
are generated by the stick-breaking distribution, i.e., β0 | α0 ∼ Stick(α0), where α0 ∼ Gamma(aα0). The
hierarchical structure of the model then implies that βk is conditionally distributed as a Dirichlet Process,
i.e., βk | α0,β

0 ∼ DP(α0,β
0), where we assume that βk also uses concentration parameter α0.

The tissue level expression program mixing probabilities πt depend on the group that the tissue is as-
signed to. The variable qt assigns tissues to groups, i.e., qt = k indicates that tissue t belongs to tissue
group k and p(qt = k | ε) = εk, where ε represents mixing probabilities over the tissue groups. The mixing
probabilities ε over tissue groups are also modeled using a Dirichlet Process. That is, ε | γ ∼ Stick(γ),
where γ is a concentration parameter with γ ∼ Gamma(aγ). Given an assignment of tissue t to group
k, the tissue level mixing probabilities over expression programs πt are then generated from the middle
level mixing probabilities βk. That is, πt | qt = k, α1,β

k ∼ DP(α1,β
k), where α1 is a concentration

parameter with hyperparameters aα1 , i.e., α1 ∼ Gamma(aα1). This completes our formal description of
the GeneProgram probability model.
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3.3 Model inference

The posterior distribution for the model is approximated via Markov Chain Monte Carlo (MCMC) sampling
using the follow steps:

1. Sample each assignment of an expression event to an expression program, zti; create new expression
programs as necessary.

2. Sample β0 and βk and auxiliary variables for all tissue groups.

3. Sample tissue group assignments qt for all tissues; create new tissue groups as necessary.

4. Sample concentration parameters α0, α1, and γ.

5. Sample expression program Dirichlet prior parameter λ.

Steps 1, 2, and 4 are identical to those described by Teh et al. in their auxiliary variable sampling
scheme [70] (see Section 2.2 for further details). Note that xti | zti = j,θj ∼ Multinomial(θj), and θj is
Dirichlet distributed, allowing us to integrate out θj when computing the posterior for zti. This means that
we do not need to represent θj explicitly during sampling. In step 3, we must compute the posteriors for
tissue group assignments. This can be written as:

p(qt = k | zt,q−t, α0, γ,β
k) ∝ p(qt = k | q−t, γ)

Nt∏
i=1

∫
p(zti | πt)p(πt | βk, α0)dπt

Here, q−t denotes all tissue group assignments excluding tissue t. Note that because the conditional dis-
tributions for zti and πt are conjugate, the integral in the above equation can be computed in closed form.
Step 5 uses the auxiliary variable sampling method for resampling the parameter for a symmetric Dirichlet
prior, as detailed in [20].

We implemented the sampling scheme in Java. Inference was always started with all data assigned to
a single expression program. We burned in the sampler for 100,000 iterations, and then collected relevant
posterior distribution statistics from 50,000 samples. We set the hyperparameters for all concentration pa-
rameters to 10−8 to produce vague prior distributions. Both hyperparameters for the Gamma prior on λwere
set to 1.0, biasing λ toward a unit pseudo-count Dirichlet distribution.

3.4 Summarizing the model posterior probability distribution

3.4.1 Overview

In order to produce interpretable results, GeneProgram needs to create a summary of the model posterior
distribution that was approximated using MCMC sampling.

The final step of the GeneProgram algorithm summarizes the approximated model posterior probability
distribution with consensus tissue groups (CTGs) and recurrent expression programs (REPs). The posterior
distributions of Dirichlet Process mixture models are particularly challenging to summarize because the
number of mixture components may differ for each sample. Previous approaches for summarizing Dirichlet
Process mixture model components have used pair-wise co-clustering probabilities as a similarity measure
for input into an agglomerative clustering algorithm [46]. This method is feasible if there are a relatively
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small number of items to be clustered, and we employ it for producing consensus tissue groups. However,
this method is not feasible for summarizing expression programs in large data sets because of the number of
pair-wise probabilities that would need to be calculated for each sample.

We developed a novel method for summarization of the model posterior distribution, which discovers
recurrent expression programs by combining information from similar expression programs that reoccur
across posterior samples. Our method is based on the observation that each expression program is signifi-
cantly used by only a limited number of tissues. Thus, this limited set of tissues serves as a unique signature
that allows us to track the expression program across model posterior samples. A recurrent expression pro-
gram is summarized by the average frequency of expression of meta-genes across many model posterior
samples.

3.4.2 Detailed description of recurrent expression programs and consensus tissue groups

CTGs are constructed by first computing the empirical probability that a pair of tissues will be assigned
to the same tissue group. The empirical co-grouping probabilities are then used as pair-wise similarity
measures in a standard bottom-up agglomerative hierarchical clustering algorithm using complete linkage
(e.g., as discussed in [19]). To be precise, let S denote the total number of samples, and q(l)t the tissue group
assignment for tissue t in sample l. The empirical co-grouping probability for tissues t and r is then:

p̂tr =
S∑

l=1

I(q(l)t = q(l)r )/S

Here, I(·) is the indicator function.
Clustering is stopped using a pre-defined cut-off ctg to produce the final CTGs. We used a cut-off of ctg

= 0.90 to produce strongly coherent groups. However, we note that the empirical co-grouping probabilities
tend to be either very small or close to 1.0, rendering our results relatively insensitive to the choice of ctg.

REPs consist of sets of tissues and genes that appear together with significant probability in expression
programs across multiple samples. For each expression program in each sample, a set of index tissues
is determined based on the extent of overlap of genes in the program and those expressed by the tissue
(significance is determined using the hypergeometric distribution). To be precise, let J (s) be the number
of expression programs used in sample s. Let η(s)

tj denote the number of genes expressed in tissue t and

assigned to expression program j in sample s, i.e., η(s)
tj = |{ω(xti) : z(s)

ti = j}|. We use the hypergeometric

distribution to compute a p-value, v(s)
tj , for each tissue and expression program pair:

v
(s)
tj = 1− HyperCDF(η(s)

tj − 1, G,
J(s)∑
l=1

η
(s)
tl ,

T∑
l=1

η
(s)
lj )

Here, HyperCDF denotes the cumulative distribution function for the hypergeometric distribution. We use
the p-values, v(s)

tj , to compute the index tissues V (s)
j for expression program j in sample s, i.e., V (s)

j = {t :

v
(s)
tj < c1} , i.e., the set of all tissues whose p-values for expression program j are below a threshold c1 in

sample s. We used a p-value threshold c1 of 5%.
A hash table using the index tissues enables the algorithm to efficiently determine whether an expression

program has already occurred in previous samples. If it has not, a new REP is instantiated; otherwise the
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expression program is merged into the appropriate REP. Statistics are tracked for each REP, including the
number of samples it occurs in, its average weighting in the tissue’s mixture over programs, and average
expression levels of species specific genes and meta-genes in the program. To be precise, let Sj denote the
number of samples in which REP j occurs. Then, the empirical mean expression level for gene g in REP j
is defined as:

êgj =

∑S
s=1

∑
t,i I(z(s)

ti = j)
|Vj |Sj

s.t. t ∈ V (s)
j , ω(xti) = g

The empirical mean gene occurrence for gene g in recurrent expression program j is defined as:

ôgj =

∑S
s=1

∑
t I
(∑

i I(z(s)
ti = j) > 0

)
|Vj |Sj

s.t. t ∈ V (s)
j , ω(xti) = g

The empirical mean tissue weighting for tissue t in recurrent expression program j is defined as:

ŵtj =

∑S
s=1 η

(s)
tj

NtS

After all samples have been collected, several post-processing steps are then performed, including fil-
tering out infrequently occurring REPs and genes, and merging of similar REPs. We filtered out REPs that
occurred in fewer than 50% of samples, and filtered out genes with ôgj scores less than 5%. The final merg-
ing step uses the same agglomerative procedure described for CTGs. In this case, the similarity measure
is the fraction of genes shared by REPs. Only common index tissues are retained in merging two REPs.
Merging is stopped when the similarity measure is less than a cut-off of 50%.

3.5 Expression data discretization

Expression data input into GeneProgram was first discretized using a mutual information-based greedy
agglomerative merging algorithm, essentially as described in Hartemink et al. [32]. In brief, continuous
expression levels are first uniformly discretized into a large number of levels. The algorithm then repeatedly
finds the best two adjacent levels to merge by minimizing the reduction in the pair-wise mutual information
between all expression vectors. The appropriate number of levels to stop at is determined by choosing the
inflection point on the curve obtained by plotting the score against the number of levels. In this case, we
obtained three levels.

For completeness, we describe the discretization algorithm here. We begin by initializing the algorithm
with sets of expression levels for each tissue. We denote gene i in tissue t by gti, where there are T
tissues. Let r(gti) denote the rank of gene i in tissue t based on the continuous expression value of the
gene. To initialize the algorithm, we begin by assigning genes in each tissue t to an ordered set Λ(0)

t

of NL discrete expression levels that induce uniform bins on the gene rankings for the tissue. That is,
Λ(0)

t = (L(0)
t1 , . . . , L

(0)
tNL

), where gti ∈ L(0)
tl iff l − 1 < r(gti)NL/Gt ≤ l. Here, Gt is the number of genes

in tissue t that are considered expressed (e.g., expression values greater than some threshold).
Each iteration consists of a set of trial merges, in which adjacent levels are merged and a score is

computed. For iteration q and for each trial h, the adjacent levels h and h + 1 are merged, forming a new
set of levels with one less element, i.e., (L(q−1)

t1 , . . . , L
(q−1)
th

⋃
L

(q−1)
t(h+1), L

(q−1)
t(h+2), . . . , L

(q−1)
t(NL−q)). Let e(qh)

t
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denote the discrete vector of expression levels for tissue t for iteration q of the algorithm and trial merge
h. That is, e(qh)

ti = l iff gti is in level l for trial merge h and gti is expressed in the tissue (otherwise,
we set e(qh)

ti = 0). The score for a trial merge h is the mutual information between all pairs of vectors of
discretized expression data, i.e., Sq

h =
∑T−1

t1=1

∑
t2>t1

MI(e(qh)
t1

, e
(qh)
t2

). At each iteration, the single merge
operation that produces the highest score is retained. Note that because the algorithm is greedy, its run-time
is O(N2

LT
2).

4 GeneProgram discovered biologically relevant tissue groups and expres-
sion programs in a large compendium of human and mouse body-wide
gene expression data

Our objective was to apply GeneProgram to a large compendium of mammalian gene expression data, both
to compare our method’s performance against that of other algorithms, as well as to explore the biological
relevance of discovered tissue groups and expression programs. In this regard, we used the Novartis Gene
Atlas v2 [65], consisting of genome-wide expression measurements for 79 human and 61 mouse tissues.
This dataset was chosen because it contains a large set of relatively high-quality expression experiments,
with body-wide samples representative of normal tissues measured on similar microarray platforms. Further,
the data is from two species, potentially allowing for the discovery of higher quality cross-species gene
expression programs.

4.1 Data set pre-processing

All arrays in the data set were first processed using the GC content-adjusted robust multi-array algorithm
(GC-RMA) [73]. To correct for probe specific intensity differences, the intensity of each probe was normal-
ized by dividing by its geometric mean in the 31 matched tissues. For genes represented by more than one
probe, we used the maximum of the normalized intensities. A gene was considered expressed if its normal-
ized level was greater than 2.0 and was called present in one or more replicates of the MAS5 Absent/Present
calls [33].

We identified pairs of related genes using Homologene (build 47) [72], which attempts to find homolo-
gous gene sets among the completely sequenced eukaryotic genomes by using a taxonomic tree, conserved
gene order, and measures of sequence similarity. Of the approximately 16,000 homologous human-mouse
pairs identified by Homologene, 9851 gene pairs appear in the Gene Atlas v2.

4.2 GeneProgram discovered 19 consensus tissue groups and 100 recurrent expression pro-
grams

Figure 10 depicts all 19 tissue groups. Supplemental online Table 1 [27] provides a summary and supple-
mental online Table 2 [28] contains the full data for all 100 expression programs. The tissue groups were
of various sizes, ranging from 1–38 tissues (median of 4). Expression program sizes ranged from 12–292
meta-genes (median of 72) and 1–38 tissues (median of 4). A large fraction (67%) of meta-genes appeared
in at least one expression program and 31% were shared by several expression programs. Forty-two per-
cent of tissue groups and 33% of expression programs contained at least one tissue from each species. It is
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important to realize that the number of cross-species tissue groups and expression programs was limited by
the data set: only 62 out of the 140 tissue samples could be directly paired between species and some key
tissues with distinct functions, such as the stomach and eye, were represented in only one species.

4.3 GeneProgram automatically assigned tissues to biologically relevant groups

To provide a quantitative assessment of the biological relevance of sets of tissues, we manually classified
tissues into 10 high-level, physiologically based categories and then calculated an enrichment score for each
discovered tissue group using the hypergeometric distribution. See the supplemental online material for [29]
for the complete manually derived tissue categories. To correct for multiple hypothesis tests, we used the
procedure of Benjamini and Hochberg [7] with a false-discovery rate cut-off of 0.05.

Seventy-nine percent of tissue groups had significant enrichment scores, and in all such cases, the score
was significant for only a single category (see Figure 10). For instance, tissue group “L,” which was sig-
nificantly enriched only for the “hematological/immune” category, consisted exclusively of human immune
cells such as natural killer cells, and CD4+ and CD8+ T-cells. As another example, tissue group “B,” sig-
nificantly enriched only for the “neural” category, consisted exclusively of neural tissues from both species.
We note that GeneProgram discovered these groups in a wholly unsupervised manner, and that many of the
groups clearly represent a more refined picture of the data than the 10 broad categories we had manually
compiled.

4.4 GeneProgram outperformed biclustering algorithms in the discovery of biologically rel-
evant gene sets

Because expression programs characterize both genes and tissues, we used both Gene Ontology (GO)
categories [4] and the 10 manually derived tissue categories to assess GeneProgram’s ability to recover
biologically relevant gene sets and to compare this performance to that of two biclustering algorithms,
Samba [68, 61] and a non-negative matrix factorization (NMF) implementation [12]. We chose these two
algorithms for comparison because they are popular in the gene expression analysis community, they have
previously outperformed other biclustering algorithms, and available implementations are capable of han-
dling large data sets.

We mapped genes to GO annotations using RefSeq identifiers from the May 2004 (hg17) and August
2005 (mm7) assemblies of human and mouse genomes [4, 72]. For calculating enrichments, we used both
mouse and human GO annotations from the biological process categories with between 5 and 200 genes.
Enrichment score calculation and correction for multiple hypothesis tests were the same as described in
Section 4.3.

As Table 2 shows, GeneProgram clearly outperformed the other two algorithms in the tissue dimension
(60% of expression programs significantly enriched for tissue categories, versus 10% for Samba and 20% for
NMF). GeneProgram outperformed NMF and had equivalent performance to Samba in the gene dimension
(61% of expression programs significantly enriched for GO categories, versus 62% for Samba and 27% for
NMF).

Figure 11 shows the same trends using correspondence plots, which are sensitive, graphical methods
for comparing biclustering algorithms [69]. These plots depict log p-values on the horizontal axis and
the fraction of biclusters with p-values below a given value on the vertical axis. Depicted p-values are
from the most abundant class for each bicluster (i.e., that with the largest number of genes or tissue in the
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Figure 10: GeneProgram discovered 19 consensus tissue groups using gene expression data from 140 human
and mouse tissue samples. The algorithm identified these groups in a wholly unsupervised manner. In each
tissue group (denoted A-S), human tissues are designated with bold type and mouse tissues with italic type.
Tissues were classified manually into 10 broad categories based on physiological function, and it was found
that 79% of tissue groups were significantly enriched for at least one category (boxed legend, lower right
corner). To the right of each tissue is a blue vertical bar depicting its weighted average of generality scores
for expression programs, which provides a measure of the extent to which the tissue uses programs shared
by diverse tissue types (see the text for details).

algorithm gene dimension tissue dimension
(GO category enrichment) (manually derived category enrichment)

GeneProgram 61% 60%
Samba 62% 10%
NMF 27% 20%

Table 2: Comparison of GeneProgram to biclustering algorithms for recovery of biologically interpretable
gene sets. GeneProgram’s ability to recover biologically interpretable gene sets from a large compendium of
mammalian tissue gene expression data was compared against that of two popular biclustering algorithms,
Samba and a non-negative matrix factorization (NMF) implementation. GeneProgram dominated the other
two algorithms in the tissue dimension; it outperformed NMF and had equivalent performance to Samba
in the gene dimension. Biological interpretability of gene sets was assessed using Gene Ontology (GO)
categories in the gene dimension, and manually constructed categories in the tissue dimension. Each cell in
the table shows the percentage of sets significantly enriched for at least one category in a given dimension
(p-value < 0.05, corrected for multiple hypothesis tests).

overlap) and calculated using the hypergeometric distribution. Note that biclusters with large p-values are
not significantly enriched for any class, and may represent noise.

These results suggest several performance trends related to features of the different algorithms. Samba
generally appeared to be successful at finding relatively small sets of genes that are co-expressed in subsets of
tissues, but had difficulty uncovering larger structures in data. Presumably, our algorithm’s clear dominance
of both Samba and NMF in the tissue dimension was partly attributable to GeneProgram’s hierarchical
model. Both of the other algorithms lack such a model, so the assignment of tissues to biclusters was not
guided by global relationships among tissues.

We note also that the algorithms differed substantially in runtimes: Samba was fastest (approximately
3 hours), GeneProgram the next fastest (approximately 3 days), and NMF the slowest (approximately 6
days), with all software running on a 3.2 GHz Intel Xenon CPU. Although these runtime differences may be
attributable in part to implementation details, it is worth noting that GeneProgram, a fully Bayesian model
using MCMC sampling for inference, ran faster than the NMF algorithm, which uses a more “traditional”
objective maximization algorithm to search for the appropriate number of biclusters.
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Figure 11: Correspondence plots comparing GeneProgram to biclustering algorithms. These plots com-
pare GeneProgram’s ability to recover biologically interpretable gene sets from a large compendium of
mammalian tissue gene expression data against that of two popular biclustering algorithms, Samba and a
non-negative matrix factorization (NMF) implementation. GeneProgram clearly dominated the other two
algorithms in the tissue dimension; it outperformed NMF and had equivalent performance to Samba in the
gene dimension. Biological interpretability of gene sets was assessed using Gene Ontology (GO) categories
in the gene dimension, and manually derived high-level, physiologically based categories in the tissue di-
mension. The plots depict p-values (enrichment scores) on the horizontal axis and the fraction of biclusters
with p-values below a given value on the vertical axis (the p-value for the most abundant class was used).

4.5 GeneProgram cross-species expression programs outperformed single-species programs
in terms of biological relevance in both the gene and tissue dimensions

Seventy-nine percent of cross-species programs were significantly enriched for GO categories versus 52%
of single-species programs, and 82% of cross-species programs were significantly enriched for the manually
derived tissue categories versus 51% of single-species programs. These results suggest that combining data
from both species was valuable for discovery of biologically relevant expression programs. However, this
conclusion must be interpreted cautiously for the gene dimension, because GO annotations may be biased
toward extensively studied genes that are expressed in both species.

It is also relevant to ask whether single species expression programs represent biologically important
differences in gene expression between mice and humans. Unfortunately, substantial differences in how
samples from the two species were obtained, prepared and experimentally analyzed were confounding fac-
tors. Nonetheless, some single-species expression programs appeared to reflect real biological differences
between mice and humans. For instance, expression program 78 contained only mouse tissues, including
general and snout epidermis. Interestingly, the program contained many keratin genes, which are compo-
nents of hair fibers, and the Cochlin gene, which has been detected in spindle-shaped cells located along
nerve fibers that innervate hair cells [55]; such structures are considerably more abundant in fur-covered
mouse skin than in human skin.

4.6 Automatic inference of tissue groups resulted in significant improvements in model per-
formance

We used cross-validation to analyze the importance of automatic tissue group inference in our model. We
tested the full GeneProgram model versus a simplified version in which there were no groups and all tissues
are attached directly to the root of the hierarchy.

We used 10-fold cross-validation on the 140 tissues; the order of the tissues was first randomly permuted
so that there would be no bias toward selecting training sets from only a single species.

The perplexity was then calculated for each held-out tissue; perplexity is a measure commonly used for
evaluating statistical language and information retrieval models [56]. In this context, it is inversely related
to the predicted model likelihood of the expression data in the held-out tissue given the training data. Thus,
smaller perplexity values indicate a better model fit.
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The model was burned in with 100,000 iterations as described in Section 3.3. After burn-in, the model
posterior was sampled ten times (we allowed 100 iterations between samples to reduce dependencies). For
each of the ten samples, the held-out tissue t was then added back, the model was burned in for 10,000
iterations and 500 samples were generated to compute:

L
(s)
t =

Nt∑
i=1

log p(xti |D)

Here, t denotes the tissue, s the sample, andD all the training data. An estimate of the tissue log-likelihood
L̂t was then computed from the 5,000 L(s)

t samples using the harmonic mean method described by Kass and
Raftery [38]. The tissue perplexity was then estimated as:

perplexity = 2bLt/Nt

The full GeneProgram model consistently yielded reduced perplexity values compared to the simplified
model, with a median perplexity reduction of 24%. Figure 12 shows a graph of these results. Perplexity re-
ductions of 10% or greater have typically been considered significant [56]. Thus, we conclude that allowing
the model to infer tissue groups automatically significantly improves performance.
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Figure 12: Automatic inference of tissue groups improves cross-validation performance of the GeneProgram
model. We used 10-fold cross-validation to test the full GeneProgram model (“groups”) versus a simplified
version in which there are no groups and all tissues are attached directly to the root of the hierarchy (“no
groups”). Each data point represents the calculated perplexity value for each held-out tissue (1-79 = human
tissues, 80-140 = mouse tissues). Lower perplexity values indicate better model performance. The median
reduction in perplexity for the full versus the simplified model was 24%.

4.7 The generality score quantified the functional specificity of expression programs and
organized programs into a comprehensive body-wide map

We developed a score for assessing the functional generality of expression programs, and demonstrated its
utility for automatically characterizing the spectrum of discovered programs—from gene sets involved in
general physiologic processes to highly tissue-specific ones.

The generality score is the entropy of the normalized distribution of usage of an expression program by
all tissues in each tissue group. Because the distribution employed for calculating the score is normalized,
tissue groups that only use an expression program a relatively small amount will have little effect on the
score. Thus, a high generality score indicates that an expression program is used fairly evenly across many
tissue groups; a low score indicates the program is used by tissues from a small number of groups.

To be precise, let qt denote the consensus tissue group (CTG) assignment for tissue t. We compute the
usage for CTG k of recurrent expression program (REP) j as:

hkj =
T∑

t=1

ŵtjI(qt = k)

The normalized usage is then computed as:

ĥkj =
hkj∑K
l=1 hlj

Here, K is the total number of CTGs. The generality score for REP j is then computed as:

GSj = −
K∑

k=1

ĥkj log ĥkj

We note that the generality score requires a global organization of tissues into groups, rather than just
the local associations of subsets of tissues with individual gene sets provided by biclustering algorithms.
Because there is uncertainty in the number of tissue groups, GeneProgram’s Dirichlet Process-based model
provides a natural framework for computing the generality score.

4.7.1 Evaluation of the weighted average of generality scores across all expression programs for each
tissue uncovered several trends relating to tissue function and anatomic location

Figure 10 depicts the weighted scores for all tissues. As is evident from this figure, some tissues types,
including neural, testicular and thyroid samples, had very low average generality scores, presumably reflect-
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ing the highly specialized functions of these tissues. In contrast, a number of other tissue types, including
embryologic, hematologic progenitors, immune, malignant, epithelial and adipose samples, had very high
average generality scores. In the case of embryologic and relatively undifferentiated malignant tissues, high
scores presumably reflected the activation of large numbers of expression programs shared with many other
types of tissues. The other high-scoring tissues mentioned also shared programs with many types of tissues,
but this sharing may be attributed to both common biological functions as well as the fact that cells from
these high-scoring tissues are found in many organs throughout the body.

We note that it is likely that some tissues had artificially high average generality scores due to sample
contamination from anatomically nearby tissues. For instance, expression program 24, a program associated
with muscle function, was used by fetal thyroid (3%), prostate (8%), lower spinal cord (4%), bone marrow
(5%), and brown fat (12%). Each of these tissues is underneath substantial amounts of muscle, making
contamination likely [48]. As another example, expression program 83 contained many genes involved
in pancreatic function. However, this program was also used by mouse spleen (18%) and stomach (4%).
Because the pancreas is anatomically proximal to both the stomach and spleen and can leave pancreatic
tissue surrounding the duodenum as a result of its migration during development [53], contamination of
these tissues seems likely.

4.7.2 Generality scores classified the functional specificity of individual expression programs

Figure 13 displays a histogram of generality scores for all expression programs (EPs) with non-zero scores.
Based on the generality score, we divided expression programs into three broad categories: 1) general body-
wide physiology, 2) specialized organ physiology, and 3) tissue specific. Below we provide illustrative
examples from each category.

General body-wide physiology expression programs. EPs with high generality scores were involved in
common physiological functions of cells present in a variety of tissues throughout the body. For instance,
EP 13 (generality = 2.50, 25 tissues) contained many genes critical for DNA replication and EP 33 (gen-
erality = 2.34, 28 tissues) contained a striking number of genes involved with RNA processing, including
numerous nuclear ribonucleoprotein components [40]. Interestingly, both EPs were used by many of the
same tissues containing rapidly dividing cells, including embryologic, immune, and malignant tissues. Two
additional examples include, EP 39 (generality = 2.88, 13 tissues), significantly enriched for genes involved
in epithelial function, such as keratins and collagens; and, EP 24 (generality = 1.88, 15 tissues), signifi-
cantly enriched for genes involved in general muscle function, including several known to be expressed in
both cardiac and skeletal muscle such as alpha-actin-1 [31], myoglobin [25], and phosphoglycerate mutase
isozyme M [18]. Interestingly, the tongue used both EPs 39 and 24 to a considerable extent, reflecting its
mixed muscular and epithelial physiological functions.

Specialized organ physiology expression programs. EPs with intermediate generality scores were in-
volved in specialized functions of a few closely related—but not necessarily anatomically proximate—
tissues. For instance, EP 15 (generality = 1.44, 6 tissues) was significantly enriched for genes involved in
erythropoiesis and was used primarily by adult bone marrow from both species and human fetal liver. Inter-
estingly, the fetal liver is known to be critical for erythropoiesis during embryonic development, after which
bone marrow becomes the predominant organ involved in this process [52]. Another example in this cate-
gory includes EP 73 (generality = 0.93, 6 tissues), which was used by the kidney and liver in both species,
and was enriched for genes involved in oxidative metabolism and gluconeogenesis. A final interesting ex-
ample of this type is EP 88 (generality = 0.84, 3 tissues), which was used by the pituitary in both species and
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to a smaller extent by human pancreatic islets (5%). This EP contained a number of specific genes involved
with pituitary function such as PIT1 [51] and the prolactin precursor [15]. A literature search revealed that
several of the genes contained in this EP are known to be shared between the pituitary and islets, including
prohormone convertase I [76] and proopiomelanocortin preproprotein [11, 35]. However, many of the genes
in EP 88 have not previously been characterized as shared between the two endocrine organs, and thus may
constitute interesting future candidates for experimental biology work.

Tissue specific expression programs. Finally, EPs with very low generality scores were used by essen-
tially a single type of tissue, and represented very specialized aspects of organ functions. For instance, EP 19
(generality = 0.0, 6 tissues) was used exclusively by testicular tissues in both species, and was significantly
enriched for genes involved in spermatogenesis. Two additional examples clearly illustrate GeneProgram’s
ability to automatically allocate tissues’ gene expression to both general and specific programs. EP 43 (gen-
erality = 0) was used exclusively by the eye and was highly enriched for lens and retina specific genes.
The eye also used EP 39, the general epithelial program described above, reflecting its more prosaic com-
ponents. EP 58 (generality = 0) was exclusively used by the heart in both species, and contained cardiac
specific genes such as atrial natriuretic peptide [16] and cardiac troponin T [59]. The heart also used the
general muscle topic, EP 24, described above. Finally, EP 53 (generality = 0.26, 38 tissues), which was
significantly enriched for genes involved in neurotransmission, illustrates that the generality score can be
low despite usage of a program by a large number of tissues. Neural tissues were very abundant in the data
set (31% of all tissues); because GeneProgram collapsed these tissues into a small number of groups, the
generality score for EP 53 accurately reflected the biological homogeneity of the exclusively neural tissues
using the expression program.

5 Conclusion and discussion

We presented a new computational methodology, GeneProgram, specifically designed for analyzing large
compendia of mammalian expression data. We applied our method to a large compendium of human and
mouse body-wide gene expression data from representative normal tissue samples, and demonstrated that
GeneProgram outperformed other methods in the discovery of biologically interpretable gene sets. We
further showed that allowing the GeneProgram model to infer tissue groups automatically significantly
improved performance. Using the data compendium, GeneProgram discovered 19 tissue groups and 100
expression programs active in mammalian tissues. We introduced an expression program generality score
that exploits the tissue groupings automatically learned by GeneProgram, and showed that this score char-
acterizes the functional spectrum of discovered expression programs.

GeneProgram encodes certain assumptions that differ from some previous methods for analyzing expres-
sion data and so merit further discussion. First, we model expression data in a semi-quantitative fashion,
assuming that discrete levels of mRNA correspond to biologically interpretable expression differences. We
believe this is appropriate because popular array technologies can only reliably measure semi-quantitative,
relative changes in expression; many relevant consequences of gene expression are threshold phenom-
ena [34, 42, 74]; and it is difficult to assign a clear biological interpretation to a full spectrum of continuous
expression levels. Second, GeneProgram assumes that discrete “units” of mRNA are independently allo-
cated to expression programs, which captures the phenomena that mRNA transcribed from the same gene
can be translated into proteins that may participate in different biological processes throughout a cell or tis-
sue. Independence of mRNA units is an unrealistic assumption, but this approximation, which is important
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Figure 13: The generality score organized expression programs discovered by GeneProgram into a compre-
hensive body-wide map. A histogram using the generality score summarizes the functional specificity of the
expression programs (EPs) discovered by GeneProgram in a large compendium of human and mouse gene
expression data. The horizontal axis displays bins of generality scores. A high generality score indicates that
an expression program is used fairly evenly across many tissue groups; a low score indicates the program is
used by tissues from a small number of groups. Only EPs with non-zero scores are shown. EPs are depicted
as numbered circles stacked within score bins. Two rings around each EP provide additional information.
The innermost ring shows individual tissue usage percentages as shaded wedges (darker shading = higher
usage). The outer ring depicts tissue groups, with arc sizes proportional to the number of tissues in the
group using the EP. The boxed example shows EP 24 (generality = 1.88), which is used by 15 tissues from
6 groups. The legend below the boxed example depicts the broad physiological category that each tissue
group was significantly enriched for.

for efficient inference, has worked well in practice for many other applications of topic models [23, 30, 10].
Finally, although GeneProgram does not directly model down-regulation of genes, it does capture this phe-
nomenon implicitly in that a tissue’s non-use of an expression program provides critical information for the
algorithm. However, this approach does not take into account the magnitude of a gene’s down-regulation or
distinguish down-regulation from a lack of significant change in a gene’s expression. GeneProgram can be
usefully extended to take such information into account for application to datasets consisting of time-series
or samples and controls, such as two-color microarray data.

Our method produced a comprehensive, body-wide map of expression programs active in mammalian
physiology with several distinguishing features. First, by simultaneously using information across 140 tis-
sue samples, GeneProgram was able to finely dissect the data, automatically splitting mRNA expressed
in tissues among both general and specific programs. Second, because our model explicitly operates on
probabilistically ranked gene sets throughout the entire inference process, rather than finding individual dif-
ferentially expressed genes or merging genes into sets in pre-processing steps, our results are more robust to
noise. Third, the fact that expression programs provide probabilistically ranked sets of genes also provides a
logical means for prioritizing directed biological experiments. Fourth, because our model is fully Bayesian,
providing a global penalty for model complexity including for the number of tissue groups and expression
programs, the generated map represents a mathematically principled compression of gene expression in-
formation throughout the entire organism. Finally, although such a large, comprehensive map is inherently
complicated, we believe that GeneProgram’s automatic grouping of tissues and the associated expression
program generality score aid greatly in its interpretation.

We believe that the features of the discovered map discussed above will make it particularly useful for
guiding future biological experiments. Tissue-specific expression programs can provide candidate genes
for diagnostic markers or drug targets that exhibit minimal “cross-talk” with unintended organs. General
expression programs may be useful for identifying genes important in regulating and maintaining general
physiological responses, which may go awry in disease states such as sepsis and malignancy. Both general
and tissue-specific discovered programs contained many functionally unannotated genes, and in some cases
the programs were shared among unexpected sets of tissues. Additionally, some such unannotated genes
appear in cross-species expression programs, making them particularly attractive candidates for further bio-
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logical characterization.
The map’s utility can be further enhanced by adding new data as it becomes available, particularly

body-wide tissue samples profiling gene expression in additional species. Further, our method is general,
making it suitable for analyzing any large expression data compendium, including those relating to devel-
opmental or disease processes. Our framework is also flexible, and could accommodate other genome-wide
sources of biological data in future work, such as DNA-protein binding or DNA sequence motif informa-
tion. GeneProgram’s ability to discover tissue groups and expression programs de novo using a principled
probabilistic method, as well as its use of data in a semi-quantitative manner, makes it especially valuable
for novel “meta-analysis” applications involving large data sets of unknown complexity in which direct fully
quantitative comparisons are difficult.
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