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Abstract

This dissertation presents new constructions and security definitions related to three
areas: authentication, cascadable and commutative crytpography, and private set op-
erations. Existing works relevant to each of these areas fall into one of two categories:
efficient solutions lacking formal proofs of security or provably-secure, but highly in-
efficient solutions. This work will bridge this gap by presenting new constructions
and definitions that are both practical and provably-secure.

The first contribution in the area of efficient authentication is a provably-secure
authentication protocol named HB+. The HB+ protocol is efficient enough to be
implemented on extremely low-cost devices, or even by a patient human with a coin
to flip. The security of HB+ is based on the hardness of a long-standing learning
problem that is closely related to coding theory. HB+ is the first authentication
protocol that is both practical for low-cost devices, like radio frequency identification
(RFID) tags, and provably secure against active adversaries.

The second contribution of this work is a new framework for defining and proving
the security of cascadable cryptosystems, specifically commutative cryptosystems.
This new framework addresses a gap in existing security definitions that fail to handle
cryptosystems where ciphertexts produced by cascadable encryption and decryption
operations may contain some message-independent history. Several cryptosystems,
including a new, practical commutative cryptosystem, are proven secure under this
new framework.

Finally, a new and efficient private disjointness testing construction named HW is
offered. Unlike previous constructions, HW is secure in the face of malicious parties,
but without the need for random oracles or expensive zero-knowledge protocols. HW
is as efficient as previous constructions and may be implemented using standard
software libraries. The security of HW is based on a novel use of subgroup assumptions.
These assumptions may prove useful in solving many other private set operation
problems.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The pervasive deployment of low-cost devices and wireless networks is making many
new and exciting applications viable. Data once stored in centralized databases and
transmitted over fixed networks is becoming available anywhere at any time. Low-
cost devices are increasingly embedded in physical objects as identifiers, creating a
bridge between the digital and physical worlds.

Yet, despite creating new opportunities, these burgeoning technologies may also
create new risks to privacy and security. Data once controlled by single entities or
stored in closed systems are increasingly distributed among different parties, plat-
forms, and network mediums. These varied systems must contend with noisy, unre-
liable environments as well as malicious adversaries and untrusted channels.

While existing security and cryptographic techniques may address many security
and privacy issues in traditional settings, they often make assumptions that do not
hold in a highly-pervasive or ad hoc settings. For instance, parties are often assumed
to have ample computational power, which is not the case in many low-cost systems.

A compelling example of such a technology are radio frequency identification
(RFID) systems. These systems consist of simple, low-cost tags that are attached
to physical objects, and more powerful readers that wirelessly access data stored on
tags. By binding digital data to physical objects, RFID tags enable extremely useful
automatic identification systems.

Billions of RFID tags are already deployed. Tens of billions may be deployed in
the near future, making RFID tags the most pervasive microchip in history. Other
pervasive systems like sensor networks may likewise experience rapid growth.

These types of pervasive devices will be used in applications as far-ranging as
supply-chain management, physical access control, payment systems, environmental
sensors, and anti-counterfeiting. Consumers, retailers, transporters, manufacturers,
and government agencies will all be affected by the widespread adoption of these
devices.

All manner of sensitive data may be stored, collected, and inferred from these
types of pervasive systems. For instance, passports, currency, prescription drugs,
clothing, or military matériel may all contain pervasive devices storing sensitive data.
Without proper security controls, this data might be abused and threaten everything
from personal privacy to national security.
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Often, pervasive devices will have only hundreds of gates available for security
features. These weak devices will often have no battery, no clock, and no way to
communicate except through other possibly untrusted devices. This begs the ques-
tion: Can such feeble devices offer any notion of security?

One might argue that advancements in fabrication and manufacturing will render
this question moot in a matter of years. According to Moore’s law, won’t these devices
be twice as powerful in a couple years? For widely pervasive, low-cost devices, the
answer is no.

Widespread pervasive systems will be under extreme economic pressures. Unlike
personal computers, devices like RFID will be produced in huge quantities and will
have extremely low profit margins. Any additional circuitry must have immediate
economic justification. Unless there is a compelling reason, the vast majority of
purchasers will opt for the cheapest alternative.

Another issue is that future pervasive technologies may be built from printed
organic components [110, 111]. Early organic components have a much lower gate
density than traditional silicon components, and will thus require a much larger sur-
face area. Physical constraints in many pervasive applications will translate into a
tight limit on the gates available in an organic circuit. Since organic circuit technology
is so young, printed circuits will have low gate densities for years to come.

There are several interesting security issues in pervasive and wireless systems. One
issue is that environments may be populated with devices belonging independent sys-
tems, as well as malicious adversaries. In many situations, independent, but mutually
suspicious, parties may have a strong interest to correlate some data without sharing
all data. For instance, independent or competing environmental sensor networks may
each benefit by sharing some of their data.

This type of problem falls under the general category of private set operations or
privacy-preserving data mining. Private set operation problems arise in both tradi-
tional settings as well as pervasive systems. For instance, suppose a reader detects
some unknown tag and wishes to establish whether it “owns” that particular tag.
Neither party can broadcast identifiers in the clear, otherwise an eavesdropper could
collect and correlate data about that system.

This problem may be viewed as a private intersection, private intersection cardi-
nality, or private disjointness test. That is, given a reader’s database R and a tag’s set
of identities T , the reader wishes to respectively learn R ∩ T , |R ∩ T |, or |R ∩ T | > 0
without leaking any information to eavesdroppers.

As another example of this type of private set operation problem in a more general
computing setting, imagine a law-enforcement agency has a list of suspects S and
wishes to determine whether any member of S is among a list of passengers P on
a flight. The law-enforcement agency cannot reveal S without compromising its
investigation, while the airline cannot reveal P (without subpoena) due to privacy
regulations. However, both parties have a strong interest in notifying law-enforcement
whether |P ∩ S| > 0.

Again, there are many existing solutions to these types of problems, since they
can be viewed as general secure multi-party computation problems. Yet, traditional
solutions are often too inefficient to be used in practice, even on general purpose
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personal computers.
Several solutions that might be practical make use of commutative cryptosystems.

These cryptosystems allow several parties to encrypt messages under different keys in
a cascade of operations, then decrypt the ciphertext under the same set of keys in an
arbitrary order. Several “folklore” commutative cryptosystems have existed for over
20 years, and form the basis of many applications and protocols.

Surprisingly, very little has been said about the security of either these specific
constructions, or of commutative cryptosystems in general. For instance, even basic
notions of semantic security may fail to hold if a ciphertext reveals some message-
independent history about the sequence of operations that produce it. Despite being
a useful and intuitive tool, commutative cryptosystems, and in fact, cascadable cryp-
tosystems in general, has been overlooked by traditional security definitions.

Organization: This work will address three of the aforementioned security issues
and present new contributions in each area. Chapter 2 develops a new, efficient,
provably-secure authentication protocol named HB+ that is appropriate for extremely
low-cost devices. Chapter 3 presents a new definitional framework for proving the
security of cascadable and commutative cryptosystems, as well as a new, efficient
commutative cryptosystem construction. Finally, Chapter 4 presents a private dis-
jointness testing construction that is secure against a stronger class of adversaries
than prior work for equivalent computational costs, and without the use of random
oracles, bilinear maps, or expensive zero-knowledge proofs.

1.1 Efficient Authentication

Chapter 2 affirmatively answers the question “Can feeble devices authenticate them-
selves?” by presenting a new, efficient authentication protocol dubbed HB+. The
HB+ protocol is the first authentication protocol secure against active adversaries
that is efficient enough to be implemented in pervasive devices like RFID tags. Work
on HB+ was conducted with Ari Juels of RSA Security and originally appeared in [67].

HB+efficiently addresses a security vulnerability in a protocol due to Hopper and
Blum (HB) [61, 62]. Although secure against passive eavesdroppers, HB critically
fails in the presence of active adversaries able to initiate their own protocols. The HB
protocol was originally intended for human-to-computer authentication, similar to
earlier protocols due to Matsumoto and Imai [79, 80, 118]. This author originally ob-
served the similarities between the human-computer and to the pervasive computing
setting in [121].

Chapter 2 will improve the concrete security bounds of the original HB work [62]
and prove HB+ secure under the same assumptions. It will also consider variants of
the HB+ protocol, such as a parallel version proven secure by Katz and Shin [69], and
a two-round version, whose security is an open question.

The HB protocol’s underlying hardness is based on the “Learning Parity with
Noise” (LPN) problem. This problem is closely related to the problem of decoding
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random linear codes [76, 50] and has been the basis of several cryptosystems over the
years [8, 91, 108, 24, 109, 28].

The LPN problem is the subject of both ongoing complexity research [10, 70, 116,
11, 100] and practical algorithmic design research [119, 63, 54]. The LPN problem is
a viable alternative hardness assumption to factoring or finding discrete logarithms.
Practical implementation costs and key lengths will be analyzed in Chapter 2. De-
veloping practical attacks against HB+ may ultimately improveme the best known
algorithm for solving the LPN problem [11]. In fact, subsequent works motivated
by HB+ have already improved the constant factors of the best known asymptotic
algorithm.

1.2 Commutative Cryptography

Chapter 3 answers the question “How can you prove the security of a commuta-
tive cryptosystem?” by defining a new security framework that is compatible with
cascadable and commutative cryptosystems. This chapter incorporates a flexible
string rewrite system model of cascaded cryptographic operations into a new notion
of cascadable semantic security. A new notion of historical security is also intro-
duced. Several cryptosystems are proven secure under the new model, including a
provably-secure and efficient commutative cryptosystem. The work in this chapter
was conducted with Ronald Rivest and appears in [102].

Several private set operation schemes [27, 1] make use of cascaded or commuta-
tive cryptographic operations. The classic Shamir Three-Pass protocol also relies on
commutativity. These applications typically apply on the well-known commutative
Pohlig-Helman [99] and Massey-Omura [78] encryption schemes. These cryptosys-
tems have the property that one may sequentially encrypt a message under several
different keys, then decrypt in an arbitrary order.

Both Pohlig-Helman and Massey-Omura lack formal proofs of security. In fact, in
working to define a secure commutative encryption scheme that might be used for set
intersection or data mining applications, one finds that standard security definitions
are fundamentally incompatible with cascadable and commutative cryptosystems.

For instance, a standard indistinguishability under chosen plaintext attack (IND-
CPA) experiment does not accommodate commutative cryptosystems. This is be-
cause ciphertexts may have some message-independent history about the cascaded
sequence of operations that produced them. Ciphertexts may be trivially distin-
guished by their history, although nothing about the underlying message is revealed.
Thus, an otherwise valid cascadable cryptosystems would not be semantically secure
in the traditional model.

The same applies to indistinguishability under adaptive chosen-ciphertext attacks
(IND-CCA). In that case, an adversary with access to a decryption oracle may trivially
distinguish ciphertexts in commutative cryptosystems, without learning any informa-
tion about underlying messages.

Chapter 3 addresses these definitional deficiencies by proposing new, generalized
security definitions that accommodate commutative properties. To do so, it will first
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model cryptographic operations with a string rewrite system [34, 32]. Strings of
symbols will represent a cascaded sequence of operations. Rewrite rules will model
the effects of cryptographic operations. Using this type of string rewrite system has
been used in analysis of cryptographic protocols by treating messages as terms in the
rewrite system [48, 86, 82, 83].

Chapter 3 defines a more general notion of semantic security based on the under-
lying string rewrite system model. Basically, one will be able to “plug in” a string
rewrite system into the security definition that meets certain properties. A result is
that these new definitions will be both “backwards compatible” with standard secu-
rity definitions, and may be compatible with more complex string or term rewrite
systems modeling re-randomization or homomorphic operations.

Finally, Chapter 3 will present a new commutative encryption scheme based on
Golle et al.’s universally re-encryptable cryptosystem [53]. This commutative encryp-
tion scheme allows multiple parties to sequentially encrypt a ciphertext, then decrypt
in an arbitrary order. This scheme is efficient and requires only standard modular
exponentiation operations. It will be proved secure using the new string rewrite-based
security definitions presented in this section.

1.3 Private Set Operations

Chapter 4 answers the question “Can two parties efficiently and privately determine
whether they share any values?” by presenting a new, efficient private disjointness
testing construction. This construction is secure against a stronger class of adversaries
than previous constructions, yet requires equivalent computation. Furthermore, this
construction will require no random oracles, bilinear maps, nor any expensive zero-
knowledge protocols. Work in Chapter 4 was conducted with Susan Hohenberger
(thus will be referred to as “HW”) and appears in [59].

Besides general secure multi-party computation techniques, there are many exist-
ing private set operations protocols, for instance works by Pinkas, Naor, and Lindell,
Freedman, and Nissim [90, 75, 98, 46]. A particular application of private set opera-
tions is in privacy-preserving data mining [75, 27, 1].

The Freedman, Nissim, Pinkas (FNP) scheme [46] offers a very useful design
paradigm for private set operations. The FNP format is the basis of both the Kiayias
and Mitrofanova (KM) [71] protocol and HW. However, both FNP and KM suffer a
fundamental security flaw: it is trivial for one malicious party to convince the other
that an intersection exists.

Both FNP and KM address this problem, although they must use random ora-
cles, universally-composable commitments, repeated invocations, or expensive zero-
knowledge proofs to secure their constructions against malicious adversaries. The
HW construction is secure against a single malicious party without any additional
computation.

FNP uses Paillier’s homomorphic encryption scheme [94, 95, 23] as an underlying
operation. Kiayias and Mitrofanova rely on a homomorphic ElGamal variant first used
in voting schemes by Cramer, Gennaro, and Schoenmakers [29]. In contrast, the HW

17



construction will make use of a new “testable and homomorphic commitment” (THC)
primitive that is related to both Pedersen commitments [96] and Boneh, Goh, Nissim’s
(BGN) small-message encryption [13]. We offer an efficient THC construction based
on subgroup assumptions, but does not make use of bilinear maps.

By simply replacing Paillier encryption with THCs, a FNP-style protocol will
be naturally secure against one malicious party with no additional security assump-
tions. The THC construction is simple to implement using standard software libraries
and offers equivalent performance to existing private disjointness testing protocols.
Testable and homomorphic commitments could have useful applications in other set-
tings as well.
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Chapter 2

Efficient Authentication

Forgery and counterfeiting are emerging as serious security risks in low-cost pervasive
computing devices. Authentication could address many of these risks, yet tradi-
tional techniques are often much too costly for low-cost devices. These devices lack
the computational, storage, power, and communication resources necessary for most
cryptographic authentication schemes.

Low-cost Radio Frequency Identification (RFID) tags are examples of a pervasive,
yet resource-constrained device. Since low-cost devices like RFID are major benefi-
ciaries of this work, this chapter will use RFID tags as a motivating example for
discussion of issues surrounding low-cost authentication. However, none of the re-
sults presented in this work are RFID-specific; the protocols presented in this chapter
could be implemented in general computing settings – or even by a human with a
coin to flip and time to spare.

Low-cost RFID tags in the form of Electronic Product Codes (EPC) are poised to
become the most pervasive device in history [40]. Already, there are billions of RFID
tags on the market, used for applications like supply-chain management, inventory
monitoring, access control, and payment systems [101, 123]. Proposed as a replace-
ment for the Universal Product Code (UPC) (the barcode found on most consumer
items), EPC tags are likely one day to be affixed to everyday consumer products.

Today’s generation of basic EPC tags lack the computational resources for strong
cryptographic authentication. These tags may only devote hundreds of gates to secu-
rity operations. EPC tags often passively harvest power from radio signals emitted by
tag readers. This means they have no internal clock, nor can perform any operations
independent of a reader.

In principle, standard cryptographic algorithms – asymmetric or symmetric – can
support authentication protocols. Implementing an asymmetric cryptosystem like
RSA in EPC tags is entirely infeasible. RSA implementations require tens of thou-
sands of gate equivalents. Even the storage for RSA keys would dwarf the memory
available on most EPC tags.

Standard symmetric encryption algorithms, like DES or AES, are also too costly
for EPC tags. While current EPC tags may have at most 2,000 gate equivalents
available for security (and generally much less), common DES implementations re-
quire tens of thousands of gates. Although recent light-weight AES implementations
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require approximately 5,000 gates [43], this is still too expensive for low-cost EPC
tags likely to be deployed within in the next five to ten years.

It is easy to brush aside consideration of these resource constraints. One might
assume that Moore’s Law will eventually enable RFID tags and similar devices to
implement standard cryptographic primitives like AES. But there is a countervailing
force: Many in the RFID industry believe that pricing pressure and the spread of
RFID tags into ever more cost-competitive domains will mean little effective change
in tag resources for some time to come, and thus a pressing need for new lightweight
primitives.

This is especially true in organic printed circuits for RFID [111, 110]. Early organic
components are physically much large than their silicon counterparts. Although,
organic circuits may eventually be much cheaper to produce than traditional silicon
circuits, they will have a much lower gate density. Since physical products may
impose a maximum physical size on tags, organic-based RFID may necessarily have
extremely low gate counts for the foreseeable future.

Surprisingly, low-cost pervasive devices like Radio Frequency Identification (RFID)
tags share similar capabilities with another weak computing device: people. These
similarities motivate the adoption of techniques from human-computer security to the
pervasive computing setting. This chapter analyzes a particular human-to-computer
authentication protocol designed by Hopper and Blum (HB), and shows it to be effi-
cient for low-cost pervasive devices. This chapter offers an improved, concrete proof
of security for the HB protocol against passive adversaries.

The main contribution of this chapter is an augmented version of the HB protocol,
named HB+, that is secure against active adversaries. The HB+ protocol is a novel,
symmetric authentication protocol with an efficient, low-cost implementation. This
chapter proves the security of the HB+ protocol against active adversaries based on
the hardness of the Learning Parity with Noise (LPN) problem. Lack of security
against active adversaries is a crucial flaw of HB that is efficiently addressed by this
work. The HB+ protocol presented in this chapter was originally published with Ari
Juels of RSA Security in [67].

2.0.1 The Problem of Authentication

How does a computer or reader verify that the device it is communicating with is
authentic? In the context of this chapter, “authentic” will mean that a device will
share some secret with a computer, i.e. this work deals only with the symmetric
key setting. A computer or reader will “own” a device if it knows the secret key
stored on that device. This differs from the public-key setting, where devices might
be authenticated using only public data.

It seems inevitable that many applications will come to rely on basic RFID tags
or other low-cost devices as authenticators. For example, the United States Food
and Drug Administration (FDA) proposed attaching RFID tags to prescription drug
containers in an attempt to combat counterfeiting and theft [45]. These tags are
supposed to serve two purposes. One is for inventory control and to detect thefts in
the supply chain.
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The second purpose is to provide a pedigree that allows pharmacists to trace
prescription drugs back to their origin. The reason this is so important is that there is
a massive market for counterfeit drugs. For some drugs, such as anti-malarials, nearly
half of the drugs consumed are counterfeit, causing untold death and suffering [45].
Combined with tamper-evident packaging, RFID pedigrees will help ensure that the
drugs consumed by end-users are real. However, there is an implicit assumption that
RFID pedigrees may be authenticated and are difficult to forge.

Other RFID early-adopters include public transit systems and casinos. Several
cities around the world use RFID bus and subway fare cards, and casinos are beginning
to deploy RFID-tagged gambling chips and integrated gaming tables. Some people
have even had basic RFID tags with static identifiers implanted in their bodies as
payment devices or medical-record locators [115]. Again, the assumption is that it is
difficult to forge these devices.

One heavily-criticized RFID application is the integration of RFID tags carrying
biometric data in United States passports [114]. Although the primary concern is
over personal privacy, forged RFID tags could be a national security risk. This is
especially the case if electronic passports are assumed to be significantly harder to
forge than traditional passports.

Today, most RFID devices simply broadcast a static identifier with no explicit
authentication procedure. This allows an attacker to surreptitiously scan data needed
to produce clones in what is called a skimming attack. An archetypal skimming
setting might be an RFID-based subway pass system. An adversary might interrogate
a device carried by someone riding a subway without detection. Skimming is obviously
simple if tags broadcast fixed identifier values. Some ad hoc approaches for simple
challenge-response protocols, such as XORing a challenge value with a fixed identifier,
would crumble in the face of an active attacker.

Skimming opens the door to several other attacks. For example, in a swapping
attack, a thief skims valid RFID tags attached to products inside a sealed container.
The thief then manufactures cloned tags, seals them inside a decoy container (con-
taining, e.g., fraudulent pharmaceuticals), and swaps the decoy container with the
original. Thanks to the ability to clone a tag and prepare the decoy in advance,
the thief can execute the physical swap very quickly. In the past, corrupt officials
have sought to rig elections by conducting this type of attack against sealed ballot
boxes [107].

Clones also create denial-of-service issues. If multiple, valid-looking clones appear
in a system like a casino, must they be honored as legitimate? Or must they all be
rejected as frauds? Cloned tags could be intentionally designed to corrupt supply-
chain databases or to interfere with retail shopping systems. Denial of service is an
especially critical threat to RFID-based military logistics systems.

Researchers have recently remonstrated practical cloning attacks against real-
world RFID devices. Mandel, Roach, and Winstein demonstrated how to read ac-
cess control proximity card data from a range of several feet and produce low-cost
clones [77], despite the fact that these particular proximity cards only had a legitimate
read range of several inches.

A team of researchers from Johns Hopkins University and RSA Laboratories re-
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cently presented attacks against a cryptographically-enabled RFID transponder used
automobile immobilization systems and a payment system called ExxonMobil Speed-
Pass [14]. SpeedPass allows customers at ExxonMobil service stations to purchase
gas or other goods.

The JHU/RSA team was able to extract secret keys and simulate value transpon-
ders through an active skimming attack. Their attack exploited a weak, proprietary
encryption scheme implemented on the underlying Texas Instruments RFID device,
highlighting the relevance and importance of tag authentication. Millions of Speed-
Pass or automobile immobilization systems could be vulnerable to this type of attack.

2.0.2 Previous RFID Security Work

As explained above, a major challenge in securing RFID tags or other low-cost per-
vasive devices are their limited resources and small physical form. Table 2.1 offers
specifications that might be realistic for near-future EPC tags. Such limited power,
storage, and circuitry, make it difficult to implement traditional authentication pro-
tocols. This problem has been the topic of a growing body of literature.

A number of proposals for authentication protocols in RFID tags rely on the use
of symmetric-key primitives. These works often assume cryptographically enhanced
RFID tag functionality in the future, and do not propose use of any particular primi-
tive. Other authors have sought to enforce privacy or authentication in RFID systems
while avoiding the need for implementing standard cryptographic primitives on tags
as well.

Two papers by Sarma, Weis, Rivest and Engels discuss security and privacy tools
for RFID tags [104, 122]. In addition to privacy issues, they explore both tag-to-
reader and reader-to-tag authentication protocols that rely on hash functions. This
author also introduces the idea of adapting human authentication protocols to low-
cost pervasive systems and highlights the HB protocol in [121].

Juels proposes “minimalist” cryptographic primitives that involve only XOR-
based padding for authentication and privacy [65]. These work only in a limited
adversarial model, however, and require writing of tags (a less reliable operation than
reading). Juels also proposes “yoking proofs” [64] that can attest that pairs of tags
were simultaneously scanned at some time. Yoking proofs do not require symmetric-
key primitives, though, they do function only as one-time operations. Juels and
Pappu discuss authentication issues arising in RFID-tagged currency [66]. In that
specific setting, Juels and Pappu propose the use of optical information, such as a
bar code, to enhance data integrity.

Henrici and Müller [57], and Ohkobu, Suzuki, and Kinoshita [92] present hash-
based RFID privacy enhancements. Floerkemeier and Lampe discuss methods of
implementing access control policies in RFID devices [44]. Feldhofer, Dominikus,
and Wolkerstorfer [43] propose a low-cost AES implementation, potentially useful for
higher-cost RFID tags, but still out of reach for basic tags in the foreseeable future.

Molnar and Wagner have considered RFID security and privacy issues in the li-
brary setting, highlighting security issues arising in other consumer applications [88].
Their authentication protocols rely on symmetric-key primitives, namely pseudo-
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Storage: 128-512 bits of read-only storage
Memory: 32-128 bits of volatile read-write memory

Gate Count: 1000-10000 gates
Security Gate Count Budget: 200-2000 gates

Computation Clock Frequency: 868-956 MHz (UHF)
Scanning Range: 3 meters

Performance: 100 read operations per second
Clock Cycles per Read: 10,000 clock cycles

Tag Power Source: Passively harvested RF signal
Power Consumption: 10 micro-watts

Features: Anti-Collision Protocol Support
Random Number Generator

Table 2.1: Example specification for a low-cost RFID tag

random functions. Notably, though, they address the important question of how
to distribute tag-specific secrets to other principals in an RFID infrastructure. This
is an oft-overlooked keystone of any authentication protocol.

2.0.3 Humans vs. RFID Tags

Low-cost RFID tags and other pervasive devices share many limitations with another
weak computing device: human beings. We will see that in many ways, the com-
putational capacities of people are similar to those of extremely low-cost pervasive
devices.

The target cost for an EPC-type RFID tag is in the US$0.05-0.10 (5-10 cent)
range. The limitations imposed at these costs in 2006 are approximated in Table 2.1.
Organic printed circuits have even tighter resource constraints [111, 110].

Like people, tags can neither remember long passwords nor keep long calculations
in their working memory. Tags may only be able to store a short secret of perhaps
32-128 bits, and be able to persistently store 128-512 bits overall. A working capacity
of 32-128 bits of volatile memory is plausible in a low-cost tag, similar to how most
human beings can maintain about seven random decimal digits in their immediate
memory [87].

Neither tags nor humans can efficiently perform lengthy computations. A basic
RFID tag may have a total of anywhere from 1000-10000 gates, with only 200-2000
budgeted specifically for security. (Low-cost tags achieve only the lower range of
these figures.) As explained above, performing modular arithmetic over large fields
or evaluating standardized cryptographic functions like AES is currently not feasible
in a low-cost device nor for many human beings.

Both humans and tags must authenticate themselves to an untrusted terminal
or reader in the presence of eavesdroppers. Efficiency is important in both settings.
Humans will not accept a long and slow authentication process and tags must support
a performance of perhaps 100 read operations per second.

Tags and people each have comparative advantages and disadvantages. Tags are
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better at performing logical operations like ANDs, ORs and XORs. Tags are also bet-
ter at picking random values than people – a key property of the protocols presented in
this work. However, tag secrets can be completely revealed through physical attacks,
such as electron microscope probing [2]. In contrast, physically attacking people tends
to yield unreliable results [113].

Because of their similar sets of capabilities, this chapter adapts human authen-
tication protocols to low-cost pervasive computing devices. The motivating human-
computer authentication protocols considered were designed to allow a person to log
onto an untrusted terminal while someone spies over her shoulder, without the use
of any scratch paper or computational devices. Clearly, a simple password would be
immediately revealed to an eavesdropper.

Such protocols are the subject of Carnegie Mellon University’s HumanAut project.
Earlier work by Matsumoto and Imai [80] and Matsumoto [79] propose human au-
thentication protocols that are good for a small number of authentications [118].
Naor and Pinkas describe a human authentication scheme based on “visual cryptog-
raphy” [89]. Chaum makes use of visual cryptography in a secure voter-verifiable
election scheme [26]. However, this chapter focuses on the human authentication
protocols of Hopper and Blum [61, 62].

2.1 The HB Protocol

Hopper and Blum propose a secure human authentication protocol [61, 62], which
will be referred to as the HB protocol. The HB protocol is only secure against
passive eavesdroppers – not active attackers. While humans may get suspicious with
repeated, failed login attempts if they are actively queried by a computer, a simple
tag will blindly reply to active queries. In other words, HB would not protect against
skimming attacks. In Section 2.3, this work will augment the HB protocol to be
secure against active adversaries that may initiate their own tag queries.

Suppose Alice and a computing device C share an k-bit secret x, and Alice would
like to authenticate herself to C. Device C then selects a random challenge a ∈ {0, 1}k

and sends it to Alice. Alice computes the binary inner-product a · x, then sends the
result back to C. Finally, C computes a · x, and accepts the round if Alice’s parity
bit is correct. This protocol is illustrated in figure 2-1.

In a single round, someone imitating Alice who does not know the secret x will
guess the correct value a · x half the time. By repeating for r rounds, Alice can lower
the probability of näıvely guessing the correct parity bits for all r rounds to 2−r.

Of course, an eavesdropper capturing O(k) valid challenge-response pairs between
Alice and C can quickly calculate the value of x through Gaussian elimination. To
prevent revealing x to passive eavesdroppers, Alice will inject noise into her responses.
Alice intentionally sends the wrong response with constant probability η ∈ (0, 1

2).
C then authenticates (i.e. accepts as valid) Alice’s identity if fewer than ηr of her
responses are incorrect.

Note that there are a couple of ways to define the acceptance threshold. A reader
might also accept a tag if it gets exactly ηr rounds incorrect. Alternatively, one may
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Figure 2-1: A single round of the HB authentication protocol that allows a human be-
ing to authenticate herself to a computer sharing a secret x. The human intentionally
adds noise to an η fraction of her parity bit responses.

consider ηr to be an expected value and accept any tag that gets at most 2ηr rounds
incorrect.

Note that blind guessing would fail an expected r/2 rounds. The gap between ηr
and r/2 will differentiate authentic parties, who know x, from counterfeits. For
instance, if η = 1/4, then a legitimate party will get 3/4 of the parity bits correct.

Figure 2-1 illustrates a round of the HB protocol in the RFID setting. Here, the
tag plays the role of the prover (Alice) and the reader of the authenticating device C.
Each authentication consists of r rounds, where r is a security parameter.

The HB protocol is very simple to implement in hardware. Computing the binary
inner product a · x only requires bitwise AND and XOR operations that can be com-
puted on the fly as each bit of a is received. There is no need to buffer the entire
value a.

The noise bit ν can be cheaply generated from physical properties like thermal
noise, shot noise, diode breakdown noise, meta-stability, oscillation jitter, or any of a
slew of other methods [7, 16, 60, 73, 97, 112]. Only a single random bit value is needed
in each round. Since only a single bit of randomness is needed per round, there is less
risk of being exposed to localized correlations in physical sources of randomness. This
can be a problem in in chaos-based or diode breakdown random number generators,
which cannot be sampled at too high of a frequency.

Remark: The HB protocol can be also deployed as a privacy-preserving identifica-
tion scheme. A reader may initiate queries to a tag without actually knowing whom
that tag belongs to. Based on the responses, a reader can check its database of known
tag values and see if there are any likely matches. This is discussed further in Section
2.7.
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2.2 Learning Parity in the Presence of Noise

Suppose that a passive adversary eavesdrops and captures q rounds of the HB protocol
over several authentications and wishes to impersonate Alice. Consider each k-bit
challenge a as a row in a q × k binary matrix A; similarly, let us view Alice’s set of
responses as a vector z. Given the challenge set A sent to Alice, a natural attack
for the adversary is to try to find a k-bit vector x′ that is functionally close to
Alice’s secret x. In other words, the adversary might try to compute a x′ which,
given challenge set A in the HB protocol, yields a set of responses that is close to z.
(Ideally, the adversary would like to figure out x itself.)

The goal of the adversary is akin to a problem known as the Learning Parity in
the Presence of Noise, or LPN problem, that will be the basis of investigations in this
chapter. The LPN problem involves finding a k-bit vector x′ such that |(A · x′)⊕z| ≤
ηq, where |v| represents the Hamming weight of vector v. Formally, it is as follows:

Definition 1 (LPN Problem) Let A be a random q × k binary matrix, let x be
a random k-bit vector, let η ∈ (0, 1

2) be a constant noise parameter, and let ν be a
random q-bit vector such that |ν| ≤ ηq. Given A, η, and z = (A · x)⊕ ν, find a k-bit
vector x′ such that |(A · x′)⊕ z| ≤ ηq.

The LPN problem may also be formulated and referred to as as the Minimum
Disagreement Problem [30], or the problem of finding the closest vector to a random
linear error-correcting code; also known as the syndrome decoding problem [8, 76].
Syndrome decoding is the basis of the McEliece public-key cryptosystem [81] and
other cryptosystems, e.g., [28, 91]. Algebraic coding theory is also central to Stern’s
public-key identification scheme [109]. Chabaud offers attacks that, although infea-
sible, help to establish practical security parameters for error-correcting-code based
cryptosystems [24].

A resent result due to Regev reduces the shortest-vector problem (SVP) to learning
parity with noise [100]. Several lattice-based cryptosystems, such as NTRU [58], are
based on the hardness of the SVP. One caveat of the Regev reduction is that it makes
use of a quantum computation in one step of the reduction. Regev conjectured that
this assumption may be eliminated, but at this time it has not.

The LPN problem is known to be NP-Hard [8], and is hard even within an ap-
proximation ratio of two [56]. A long-standing open question is whether this problem
is difficult for random instances. A result by Kearns proves that the LPN is not effi-
ciently solvable in the statistical query model [70]. An earlier result by Blum, Furst,
Kearns, and Lipton [10] shows that given a random k-bit vector a, an adversary who
could weakly predict the value a · x with advantage 1

kc could solve the LPN problem.
The best known algorithm to solve random LPN instances is due to Blum, Kalai,

and Wasserman, and has a sub-exponential, yet still non-polynomial, runtime of
2O(k/ log k) [11]. Based on a concrete analysis of this algorithm, Section 2.8 discusses
estimates for lower-bounds on key sizes for the HB and HB+ protocols.

As mentioned above, the basic HB protocol is only secure against passive eaves-
droppers. It is not secure against an active adversary with the ability to query tags.
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Figure 2-2: An active attacker against HB may repeat the same a challenge many
times. In this example a contains a single 1 bit. The attacker may determine the
corresponding bit of the secret x by taking the majority value of the noise parity bit
samples.

To extract a secret x from a tag, an adversary can simply repeat the same a chal-
lenge multiple times. The active adversary knows that an η fraction of the parity bit
responses will be incorrect, so can simply take the majority of the responses as the
true, noise-free parity bit. This attack is illustrated in figure 2-2.

The adversary can determine a noise-free parity bit by taking the majority of q
samples. Recall that there is a (1 − η) probability of obtaining a noise-free parity
bit for a given sample, and that noise is chosen independently for each sample. By
a standard Chernoff bound, the probability that at least q/2 samples are noise-free
is 1− exp(−q/(8(1− 2η)2)). So, with high probability, if q = O((1− 2η)−2), then the
majority value will be the true noise-free parity bit.

By collecting O(k) noise-free parity bits, an active adversary can determine x
through Gaussian elimination. To put it in practical terms, suppose that k = 256,
that η = 1/4, and that a tag supports a conservative estimate of 50 read operations
per second. An active attack could extract this tag’s secret with high probability in
under 2 minutes, illustrating HB’s fatal weakness against skimming attacks.
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Figure 2-3: A single round of the HB+ protocol

2.3 Authentication Against Active Adversaries

This section strengthens the HB protocol against active adversaries. The resulting
protocol will be dubbed HB+ and is secure against skimming attacks. HB+ pre-
vents corrupt readers from extracting tag secrets through adaptive (non-random)
challenges, and thus prevents counterfeit tags from successfully authenticating them-
selves. Happily, HB+ requires only marginally more resources than the “passive” HB
protocol in the previous section.

2.3.1 Defending Against Active Attacks: The HB+ Protocol

The HB+ protocol is quite simple, and shares a familiar “commit, challenge, respond”
format with classic protocols like Fiat-Shamir identification. Rather than sharing a
single k-bit random secret x, the tag and reader now share an additional k-bit random
secret y.

Unlike the case in the HB protocol, the tag in the HB+ protocol first generates
random k-bit “blinding” vector b and sends it to the reader. As before, the reader
challenges the tag with an k-bit random vector a.

The tag then computes z = (a · x)⊕ (b · y)⊕ ν, and sends the response z to the
reader. The reader accepts the round if z = (a · x) ⊕ (b · y). As before, the reader
authenticates a tag after r rounds if the tag’s response is incorrect in less than ηr
rounds. This protocol is illustrated in figure 2-3.

One reason that Hopper and Blum may not have originally proposed this protocol
improvement is that it is inappropriate for use by humans. It requires the tag (playing
the role of the human), to generate a random k-bit string b on each query. If the tag
(or human) does not generate uniformly distributed b values, it may be possible to
extract information on x or y.
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To convert HB+ into a two-round protocol, an intuitive idea would be to have the
tag transmit its b vector along with its response bit z. Being able to choose b after
receiving a, however, may give too much power to an adversarial tag. In particular,
the security reduction in Section 2.4.4 relies on the tag transmitting its b value first.
It’s an open question whether there exists a secure two-round version of HB+, which
will be discussed further in section 2.6. Another open question is whether security is
preserved if a and b are transmitted simultaneously on a duplex channel.

Beyond the requirements for the HB protocol, HB+ only requires the generation
of k random bits for b and additional storage for an k-bit secret y. As before,
computations can be performed bitwise; there is no need for the tag to store the
entire vectors a or b. Overall, this protocol is still quite efficient to implement in
hardware, software, or perhaps even by a human being with a decent randomness
source.

2.3.2 Security Intuition

As explained above, an active adversary can defeat the basic HB protocol and ex-
tract x by making adaptive, non-random a challenges to the tag. In the augmented
protocol HB+, an adversary can also, of course, select a challenges. However, by
selecting its own random blinding factor b, the tag in an HB+ protocol prevents an
active adversary from extracting information on x or y.

Since the secret y is independent of x, we may think of the tag as initiating an
independent, interleaved HB protocol with the roles of the participants reversed. In
other words, an adversary observing b and (b · y)⊕ ν should not be able to extract
significant information on y.

Recall that the value (b · y) ⊕ ν is XORed with the the output of the original,
reader-initiated HB protocol, a · x. This is intended to prevent an adversary from
extracting information through non-random a challenges. Thus, the value (b · y)⊕ ν
should effectively “blind” the value a · x from both passive and active adversaries.

This observation underlies the strategy for proving the security of HB+. The
argument is that an adversary able to efficiently learn y can efficiently solve the LPN
problem. In particular, an adversary that does not know y cannot guess b · y, and
therefore cannot learn information about x from a tag response z.

Blinding therefore protects against leaking the secret x in the face of active at-
tacks. Without knowledge of x or y, an adversary cannot create a fake tag that will
respond correctly to a challenge a. In other words, cloning will be infeasible. Sec-
tion 2.4 will present a concrete reduction from the LPN problem to the security of
the HB+ protocol. In other words, an adversary with some significant advantage of
impersonating a tag in the HB+ protocol can be used to solve the LPN problem with
some significant advantage.
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2.4 Security Proofs

Section 2.4.1 presents concrete security notation used for proofs of security. Section
2.4.2 reviews key aspects of the Blum et al. proof strategy that reduces the LPN
problem to the security of the HB protocol [10]. Section 2.4.3 offers a more thorough
and concrete version of the Blum et al. reduction. Section 2.4.4, presents a concrete
reduction from the HB protocol to the HB+ protocol. Finally, in Section 2.4.5, these
results are combined to show a concrete reduction of the LPN problem to the security
of the HB+ protocol.

2.4.1 Notation and Definitions

A tag-authentication system is defined in terms of a pair of probabilistic functions (R, T ),
namely a reader function R and a tag function T . The tag function T is defined in
terms of a noise parameter η and a k-bit secret x. In the HB+ setting, T will include
an additional k-bit secret y. Let q be the maximum number of protocol invocations
on T in the experiments described in figure 2-4.

In the HB setting, T ’s interaction with an honest reader will be captured by a
set of q random k-bit vectors {a(i)}q

i=1 that for convenience is viewed as a matrix A.
Regularly, a tag would obtain a values adaptively from a reader. For convenience, we
treat the tag as an oracle that provides flat HB transcripts to a passive eavesdropper.

For protocol HB, the fully parameterized tag function is denoted as T (x,A, η).
On the ith invocation of this protocol, T is presumed to output (a(i), (a(i) · x) ⊕ ν).
Here ν is a bit of noise parameterized by η. This models a passive eavesdropper
observing a round of the HB protocol. Note that the oracle T (x,A, η) takes no input
and essentially acts as an interface to a flat transcript.

For this protocol, the reader Rx takes as input a pair (a, z). It outputs either
“accept” or “reject” if it believes the tag is authentic or not, as defined by the HB
and HB+ protocols. That is, the reader will accept a tag as authentic if it passes at
least (1− η) · q rounds correctly.

For protocol HB+, the fully parameterized tag function is denoted as T (x, y, η).
This oracle internally generates random blinding vectors b. On the ith invocation
of T in the protocol, the tag outputs some random b(i), takes a challenge vector a(i)

(that could depend on b(i)) as input, and outputs z = (a(i) · x)⊕ (b(i) · y)⊕ ν. This
models an active adversary querying a tag in a round of the HB+ protocol. For this
protocol, the reader Rx,y takes as input a triple (a,b, z) and outputs either “accept”
or “reject”.

A two-phase attack model involving an adversary comprising a pair of func-
tions A = (Aquery,Aclone), a reader R, and a tag T will be used for both protocols
HB and HB+. In the first, “query” phase, the adversarial function Aquery has oracle
access to T and outputs some state σ.

The second, “cloning” phase involves the adversarial function Aclone. The func-
tion Aclone takes as input a state value σ. In HB+, it outputs a blinding factor b′

(when given the input command “initiate”). In both HB and HB+, when given the
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Experiment ExpHB
A,D[k, η, q]

x
R← {0, 1}k;

A
R← D

σ ← A(k, η, q)T (x,A,η)
query ;

a′
R← {0, 1}k;

z′ ← Aclone(σ, a′, “guess”);
Output Rx(a′, z′).

Experiment ExpHB+

A [k, η, q]

x, y
R← {0, 1}k;

σ ← A(k, η, q)T (x,y,η)
query ;

b′ ← Aclone(σ, “initiate”);

a′
R← {0, 1}k;

z′ ← Aclone(σ, a′,b′, “guess”);
Output Rx,y(a′,b′, z′).

Figure 2-4: HB and HB+ attack experiments with concrete parameters

input command “guess”, Aclone takes the full experimental state as input, and outputs
a response bit z′.

A protocol invocation is presumed to take some fixed amount of computation
steps or runtime (as would be the case, for example, in an RFID system). The total
protocol time is characterized by three parameters: the number q of queries to a T
oracle; the computational runtime t1 of Aquery; and the computational runtime t2

of Aclone. Let D be some distribution of q × k matrices. Let
R← denote sampling a

random value from a given distribution. Other notation should be clear from context.
ExpHB and ExpHB+

are illustrated in figure 2-4.
ConsiderA’s advantage for key-length k, noise parameter η, over q rounds. Again,R

will follow either the HB or HB+ protocol and only accept a tag as authentic if an
expect (1 − η)q rounds are correct. In the case of the HB-attack experiment, this
advantage will be over matrices A drawn from the distribution D:

AdvHB
A,D(k, η, q) =

∣∣∣∣Pr
[
ExpHB

A,D[k, η, q] = “accept”
]
− 1

2

∣∣∣∣

Let Time(t1, t2) represent the set of all adversaries A with runtimes t1 and t2,
respectively. Denote the maximum advantage over Time(t1, t2):

AdvHB
D (k, η, q, t1, t2) = max

A∈Time(t1,t2)
{AdvHB

A,D(k, η, q)}

The definitions for Adv are exactly analogous for HB+-attack, except that there
is no input distribution D, as adversarial queries are active.

2.4.2 Blum et al. Proof Strategy Outline

Given an adversary A that achieves the advantage AdvHB
A,U(k, q, η, t1, t2) = ε, where U

is the uniform distribution of q×k binary matrices, Blum et al. [10] offer a proof strat-
egy to extract bits of x, and thus solve the LPN problem. If ε is greater than 1/poly(k)
for some poly(·), then x can be extracted by their reduction in polynomial time.

To extract the ith bit of the secret x, the Blum et al. reduction takes a given
LPN instance (A, z) and randomly modifies it to produce a new instance (A′, z′).
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The modification involves two steps. First, a vector x′ is chosen uniformly at random
and z′ = (z⊕A) · x′ = (A · (x⊕ x′)) ⊕ ν is computed. Note that thanks to the
random selection of x′, the vector (x⊕ x′) is uniformly distributed. Second, the ith
column of A is replaced with random bits.

To view this another way, denote the subspace of matrices obtained by uniformly
randomizing the ith column of A as RA

i . The second step of the modification involves

setting A′ R← RA
i . Once computed as described, the modified problem instance (A′, z′)

is fed to an HB adversary Aquery.
Suppose that the ith bit of (x⊕ x′), denoted (x⊕x′)i, is a binary ‘1’. In this case,

since A is a randomly distributed matrix (because HB challenges are random), and
the secret x is also randomly distributed, the bits of z′ are random. In other words,
thanks to the ‘1’ bit, the randomized ith row of A′ “counts” in the computation
of z′, which therefore comes out random. Hence z′ contains no information about
the correct value of A · (x⊕ x′) or about the secret x. Since Aquery cannot pass
any meaningful information in σ to Aclone in this case, Aclone can do no better than
random guessing of parity bits, and enjoys no advantage.

In contrast, suppose that (x⊕ x′)i, is a binary ‘0’. In this case, the ith row of A′

does not “count” in the computation of z′, and does not have a randomizing effect.
Hence z′ may contain meaningful information about the secret x in this case. As
a result, when Aclone shows an advantage over modified problem instances (A′, z′)
for a particular fixed choice of x′, it is clear for those instances that (x ⊕ x′)i = 0,
i.e. xi = x′i.

In summary then, the Blum et al. reduction involves presentation of suitably
modified problem instances (A′, z′) to HB adversary A. By noting choices of x′ for
which A demonstrates an advantage, it is possible in principle to learn individual bits
of the secret x. With presentation of enough modified problem instances to A, it is
possible to learn x completely with high probability.

2.4.3 Reduction from LPN to HB-attack

This section shows a concrete reduction from the LPN problem to the HB-attack ex-
periment. This is essentially a concrete version of Blum et al.’s asymptotic reduction
strategy from [10] and is an important step in proving Theorem 1, which is a main
result of this chapter.

Unfortunately, the original Blum et al. proof strategy does not account for the fact
that whileA’s advantage may be non-negligible over random matrices, it may actually
be negligible over modified (A′, z′) values, i.e., over the distribution RA

i . Matrices
are not independent over this distribution: Any two sample matrices are identical in
all but one column. Thus, it is possible in principle that A loses its advantage over
this distribution of matrices and that the reduction fails to work. This problem is
remedied here.

We address the problem by modifying a given sample matrix only once. A modi-
fied matrix A′ in this reduction is uniformly distributed. This is because it is chosen
uniformly from a random RA

i subspace associated with a random matrix A. Addition-
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ally, since a fresh sample is used for each trial, the modified matrices are necessarily
independent of each other. The trade-off is that kL times as many sample matrices
are needed for this reduction, where L is the number of trials per bit.

This is an inefficient solution in terms of samples. It is entirely possible that
the adversary’s advantage is preserved when, for each column j, samples are drawn
from the R

Aj

i subspace for a matrix Aj. It might even be possible to devise a rigorous
reduction that uses a single matrix A for all columns. These are left as open questions.

Lemma 1 Let AdvHB
U (k, η, q, t1, t2) = ε, where U is a uniform distribution over bi-

nary matrices Zq×k
2 , and let A be an adversary that achieves this ε-advantage. Then

there is an algorithm A′ with running time t′1 ≤ kLt1 and t′2 ≤ kLt2, where L =
8(ln k−ln ln k)

(1−2η)2 (1+ε
ε )2, that makes q′ ≤ kLq + 1 queries that can correctly extract all k bits

of x with probability ε′ ≥ 1
k .

Proof: Given an adversary A such that AdvHB
A,U(k, q, η, t1, t2) = ε, this proof will

show how to construct a simulator S to extract all bits of an HB secret x with high
probability. Thus, S will be able solve the LPN problem.

Consider a particular LPN instance (Â, ẑ) that is given as input. The goal of S
will be to use Adv and extract the LPN secret x. The simulator S will first select
one sample row from (Â, ẑ) at random and denote it (â, ẑ). S splits the remaining
samples into kL sets of size q (L will be defined later). The simulator will then
replace a random ith column of L different samples with random bits and randomize
the associated z value as described in Section 2.4.2. Denote these samples as (A′, z′),
respectively.

S will then input each (A′, z′) sample to Aquery. In the cloning phase, S replaces
the ith bit of â with a random bit and challenges Aclone for the result. The simulator S
knows the noisy sample ẑ, thus can verify whether Aclone’s result matches.

Recall from Section 2.4.2 that z′ was generated by choosing a random x′ and
adding the value A′ ·x′ to z. If (x⊕x′)i = 0, then replacing the ith column of A′ does
not affect z′ and (A′, z′) is a valid LPN instance. The hope is that A would maintain
its ε-advantage over this distribution of samples. However, it is conceivable that the
adversary A’s advantage over this modified distribution of samples whose ith secret
bit is necessarily zero is less than ε

However, since the samples are drawn from a valid LPN distribution, the adversary
must still maintain an ε-advantage over all secrets. Thus, any under-performance over
the distribution of ‘0’-valued ith bits is made up over the distribution of ‘1’-valued ith
bits.

Denote the event that the ith secret bit is zero as Z, and when it is one as Z̄.
Suppose Pr[A succeeds |Z] = (ε− δ) and Pr[A succeeds | Z̄] = (ε + δ). If δ is signif-
icantly large enough, then S can simply run A on the original, unaltered samples Â
and observe its performance. An adversary that achieves advantage less than ε would
indicate Z, while advantage greater than ε would indicate Z̄. Note that a significant δ
can be detected by generating random LPN instances and measuring A’s performance
conditioned on Z and Z̄ events.
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Using this näıve approach, A correctly outputs the ith bit when either both ẑ
and A are correct, or they are both wrong (recall that ẑ is a noisy sample). The
event that both ẑ and A are correct, or both are wrong occurs with probability (1−
η)(1

2 + δ
2ε)+η(1

2−
δ
2ε). Thus A would guess xi with expected probability 1

2 + 1
2(1−2η) δ

ε .
However, if we we use the modified A′ samples, the A will correctly guess xi

with expected probability 1
2 + 1

2(1 − 2η)(ε − δ). Thus, if δ
ε ≥ (ε − δ), it would be

advantageous for S to use the näıve method. Simplifying, it will make sense to use
the näıve method if δ ≥ ε2

1+ε .

If δ ≥ ε2

1+ε , then there exists a simulator that simply permutes columns of the

original challenges Â and maintains alignment with the corresponding rows of ẑ. Then
a simulator can run the näıve attack to determine each key bit with advantage 1

2 +
1
2(1 − 2η)( δ

ε ) per trial. The simulator can permute columns such that each key bit
is assigned to the ith column exactly L times. The existence of this simulator relies
on the assumption that the original samples are drawn from a random distribution,
which is closed under permutation.

Thus, in the worst case we have that δ = ε2

1+ε and (ε− δ) = ε
1+ε . For convenience,

denote A’s advantage at guessing a bit per trial as ε̂ = 1
2(1− 2η)( ε

1+ε).
Consider repeating L randomly modified trials per k bits of x and taking the

majority of the outcome for each bit. By a Chernoff bound, after L trials each
guessed bit will be correct with probability p = (1 − exp(−Lbε2

1+2bε )) ≤ (1 − exp(−Lbε2
2 )).

Thus, all k bits will be correct with probability pk.
Thus, if A requires q samples and runs in (t1, t2) time, this reduction will extract

all bits of x using q′ = kLq+1 samples and running in time t′ = tLk with probability:

(1− e
−Lbε2

2 )k ≈ exp

(
−k

exp(Lbε2
2 )

)

Let L = 2(ln k−ln ln k)
bε2 . Plugging this into the above formula gives us a success proba-

bility of 1
k . Substituting in for ε̂, we get that L = 8(ln k−ln ln k) ((1 + ε)/((1− 2η)ε))2.

Thus, we can express t′1 = t1Lk and t′2 = t2Lk concretely in terms of k and η. +,

2.4.4 Reduction from HB-attack to HB+-attack

The next lemma is the main result of this chapter, namely a reduction of the security
of the HB+ protocol to the security of the HB protocol. This lemma implies that an
HB+-attack adversary with ζ-advantage can be used to build an HB-attack adversary
with advantage ζ3(k−2)−2

4k . Concrete costs of this reduction will be used for Theorem 1.
We note that the lemma is only meaningful for relatively large advantage values ζ.

Small advantages, however, can be boosted through the standard technique of taking
majority output from multiple (polynomial) adversarial executions.

Lemma 2 If AdvHB+

U (k, η, q, t1, t2) = ζ, then

AdvHB
U (k, η, q′, t′1, t

′
2) ≥

ζ3(k − 2)− 2

4k
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where q′ ≤ q(2 + log2 q), t′1 ≤ kq′t1, t′2 ≤ 2kt2, and k ≥ 9.

Lemma 2 is the main technical core of this chapter. It is worth briefly explaining
the proof intuition. The proof naturally involves a simulation where the HB-attack
adversary A makes calls to the furnished HB+-attack adversary, which we call A+. In
other words, A simulates the environment for ExpHB+

A+ . The goal of A is to use A+

to compute a correct target response w to an HB challenge vector a that A itself
receives in an experiment ExpHB

A .
A makes its calls to A+ in a special way: It “cooks” transcripts obtained from its

own HB oracle before passing them to A+ during its simulation of the query phase
of ExpHB+

. The “cooked” transcripts are such that the target value w is embedded
implicitly in a secret bit of the simulated HB+ oracle.

In its simulation of the cloning phase of ExpHB+
, the adversary A extracts the

embedded secret bit using a standard cryptographic trick. After A+ has commit-
ted a blinding value b, A rewinds A+ to as to make two different challenges a(0)

and a(1) relative to b. By looking at the difference in the responses, A can extract
the embedded secret bit and compute its own target response w.

There are two main technical challenges in the proof. The first is finding the right
embedding of w in a secret bit of the simulated HB+-oracle. Indeed, this approach is
somewhat surprising. One might intuitively expect A instead to cause A+ to emit a
response equal to w during the simulation; after all, w itself is intended to be a tag
response furnished by A, rather than a secret bit. (We could not determine a good
way to have w returned as a response.) The second challenge comes in the rewinding
and extraction. There is the possibility of a non-uniformity in the responses of A+.

Proof: Suppose there exists an HB+ adversary A+ with advantage
AdvHB+

A+,U(k, η, q, t1, t2) = ζ, where ζ is non-negligible in k. This adversary will be
used to construct an HB adversary A. As an HB adversary, A queries a tag ora-
cle T (x,A, η) in the query phase of ExpHB

A . We denote the challenge-response pairs
from this phase by (A, w) = {a(i), w(i)}q+uq

i=1 . (Note that we assume a “pool” here of uq
extra challenge-response pairs, where u is a multiplier to be defined later.) In the
cloning phase of ExpHB

A , A takes a challenge vector a and aims to output a correct re-
sponse w = a · x. To accomplish this goal and determine the target value w, A makes
specially formulated calls to the adversary A+ between its experimental phases, as
we now explain.

In its calls to A+ during the simulated query phase, the adversary A simulates
responses for an HB+ tag oracle T (x+, y+, η). To do so, it takes responses from its
own tag oracle T (x,A, η) and “folds in” its own k-bit secret s before passing them
to A+. In effect, A uses s as the tag oracle secret x+: Since the challenges {a+(i)}
that are XORed with x+ are selected actively by A+, the adversary A must have
knowledge of x+ in order to perform the simulation successfully. In contrast, A itself
chooses the blinding factors {b+(i)} that are XORed with y+ in the query phase.
Therefore, A is able to perform its simulation with y+ = x, i.e., since it controls
the challenges, it can incorporate the data (A, w) here that it harvested (passively)
in ExpHB

A .
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Let s[i] denote the ith bit of s. The adversary A selects all bits of the secret s at
random except s[j]. It reserves the bit s[j] as a special unknown one; in its simulation
with A+, it implicitly embeds the target value w in s[j], as we shall explain.

Let us now describe how A executes the query and cloning phases for A+ in its
simulation of ExpHB+

A+ .

Query phase: Recall that in this phase,A+
query queries an HB+ tag oracle T (x+, y+, η).

Let us consider the mth query made by A+
query, which we denote by a+(m). Before the

query is made, A selects a random bit g(m). This is A’s guess at the query bit a+(m)[j].
If g(m) = 0, then A sets b+(m) = a(m). If g(m) = 1, it sets b+(m) = a(m) ⊕ a. A passes
the blinding factor b+(m) to A+ as the first protocol flow.

If A’s guess g(m) is incorrect, i.e., g(m) -= a+(m)[j], then A rewinds to the beginning
of the mth query. It discards the pair (a(m), w(m)) from (A, w) and replaces it with the
next challenge-response pair. In effect, A draws from the “pool” of extra challenge-
response pairs in (A, w). It halts and outputs a random guess at w if the “pool” is
exhausted. A then repeats its simulation for the mth query with a new guess g(i) and
the new challenge-response pair.

If A’s guess g(i) is correct, then A computes its response bit as:

z+(m) =
⊕

i%=j

(a+(m)[i] · s[i])⊕ w(m)

If g(m) = a+(m)[j] = 0, then observe that there is an omitted term u = a+(m)[j]s[j]
in this response bit; since a+(m)[j] = 0, this omitted value u = 0, so the response z+(m)

is still correct. If g(m) = a+(m)[j] = 1, then the omitted term u = a+(m)[j]s[j]⊕ w =
s[j]⊕w. In other words, the response is correct if and only if s[j] = w. This is how A
embeds the target value w in the secret bit s[j] (without knowing w). A then adds
noise to its response according to probability value η before transmitting it to A+.

Cloning phase: In the cloning phase, the goal ofA is to extract the target value s[j] =
w fromA+. In this phase, recall thatA+

clone attempts to simulate the oracle T (x+, y+, η).
Thus, A+ first outputs a blinding factor, which we denote by b̂; then A provides a
challenge value â. Finally, A+ outputs a response bit ẑ. If correct, the value ẑ =
(â · x+)⊕ (b̂ · y+) = (â · s)⊕ (b̂ · x).

A selects a random pair of challenge values (â0, â1). It selects these such that they
differ in the jth bit. Assume without loss of generality that â(0)[j] = 0 and â(1)[j] = 1.
A then initiates an interaction with A+. It receives the blinding factor b̂. It then
transmits challenge â(0), receiving response bit ẑ(0) from A+. It rewinds A+ and
likewise transmits challenge â(1) to get response bit ẑ(1).

Suppose that both ẑ(0) and ẑ(1) are correct. Then:

ẑ(0) ⊕ ẑ(1) = (â(0) · s)⊕ (â(1) · s) =

(∑

i%=j

(â(0)[i]⊕ â(1)[i]) · s[i]
)
⊕ s[j]
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Since A knows all bits of s except s[j], it can compute the first term here, and thus
the target value w = s[j]. If both responses ẑ(0) and ẑ(1) are incorrect, the same
computation works: The errors will cancel out.

What is the probability, given that â(0) and â(1) differ in the jth bit, that they yield
like responses? To answer this question, it is necessary to determine the probability
that ẑ(0) and ẑ(1) are simultaneously either both correct or both incorrect. Let Z0

and Z1 be random variables, where for d ∈ {0, 1}, Zd = 1 if ẑ(d) is correct, and vice
versa. It will be necessary to compute Pr[Z0 = Z1]. Since the adversary has no way
of knowing j in the course of the simulation, assume in computing this probability
that j is selected a posteriori, i.e., after the cloning phase. It is important to note,
however, that Z0 and Z1 are not identically distributed. In particular, the responses
of the adversary A+ are conditioned on the fact that â(0) and â(1) differ in a single
bit.

For this reason, it is necessary to first prove a technical lemma, which bounds
the effect of this conditioning. Lemma 3 bounds the ability of an adversary to cause
failures in the simulation in Lemma 2 in a step where we provide challenge vectors
that differ in a random bit position. Here we let v[j] denote the jth bit of a vector v,
and let ∈R denote uniform random selection from a set:

Lemma 3 Consider an experiment that takes as input a matrix A and a k-bit vector,
where k ≥ 9. The experiment yields either a ‘0’ or a ‘1’ as output. Let pA denote
the probability of a ‘1’ output over random vectors of k bits for a matrix A. Suppose
a pair of random k-bit vectors v0 and v1 is selected such that v0[j] = 0 and v1[j] = 1
for random j ∈ {1, . . . , k}. Let p′A be the probability that for vectors thus selected,
both yield a ‘0’ or both vectors yield a ‘1’. If pA ≥ 1/2 + ε, then p′A ≥ 1/2 + ε′

for ε′ = ε3/2− (ε3 + 1)/k.

Proof: Suppose that v0 and v1 are selected as in the statement of the Lemma 3, i.e.,
with a ‘0’ and ‘1’ fixed respectively at a random position j. Observe that for a set S
of k-bit vectors such that |S| = 2k−d, Pr[v0, v1 ∈ S] is minimized when S consists of
vectors whose first d bits are equal. Consequently, for |S| > 2k−d, it is the case that:

Pr[u0[j] = u1[j] |u0, u1 ∈R S, j ∈R {1, . . . , k}] ≥ (k − d)/k. (2.1)

For a particular matrix A, there is a set SA of vectors for which the experiment
outputs ‘1’, where |SA| = pA2k. For clarity, we drop the subscript and denote this
set by S. Let S denote the complementary set. We shall also assume j ∈R {1, . . . , k}
as appropriate in what follows.

By Bayes’s rule and eq. 2.1, we have Pr[v0, v1 ∈ S | v0[j] = 0, v1[j] = 1] =
Pr[(v0, v1 ∈ S)

∧
(v0[j] = 0, v1[j] = 1)]/Pr[v0[j] = 0, v1[j] = 1] ≥ p2

A(1− .log2 pA//k).
Now consider two cases for a particular matrix A.

Case 1, pA ≤ 1/4: In this case, p′A ≥ Pr[v0, v1 ∈ S | v0[j] = 0, v1[j] = 1] >
(3/4)2(k − 1/k). As k ≥ 9, it follows that p′A ≥ 1/2.
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Case 2, pA > 1/4: Here, p′A = Pr[v0, v1 ∈ S | v0[j] = 0, v1[j] = 1] + Pr[v0, v1 ∈
S | v0[j] = 0, v1[j] = 1] > p2

A + (1 − pA)2(k − 2/k) = (2p2
A − 2pA + 1)(k − 2/k). Note

that this last term is minimized for pA = 1/2, in which case p′A = (k − 2)/2k.

Since p = 1/2 + ε, it is straightforward to show that pA ≥ 1/2 + ε/2 for greater
than an ε-fraction of matrices A. For such matrices, p′A > (2p2

A−2pA +1)(k−2/k) =
(1/2+ε2/2)(k−2

k ). Thus, p′ = E[p′A] > (1−ε)(k−2
2k )+ε(1/2+ε2/2)(k−2

2k ) = ( ε3+1
2 )(k−2

k ).
The lemma then follows by straightforward algebraic manipulation. (End of Lemma
3 proof.) +,

Recall that AdvHB
A+ (k, η, q, t1, t2) = ζ by assumption; thus, the p = 1/2 + ζ in this

lemma. Hence, for k ≥ 9, we have that

Pr[Z0 = Z1] ≥ 1/2 +
ζ3

2
− ζ3 + 1

k
. (2.2)

We must also compute the probability that the simulation halts. This can happen
if rewinding fails, i.e., all of the extra challenge-response pairs in the “pool” are
used up. For simplicity, we can bound this above by q2−u, namely the probability
that any single rewinding results in the discarding of u total pairs from the “pool” ,
where u = log2 q + 1. Let us set u = (log2 q + 1). It follows that we can bound the
halting probability above by q2−u = q2−(log2 q+1) = 1/2.

Given this bound and eq. 2.2, it is the case that

AdvHB+

A+ (k, η, q, t′1, t
′
2) ≥

1

2
+

ζ3

4
− ζ3 + 1

2k
,

for t′1 = kt1q(2+ log2 q) and t′2 = 2kt2. These runtimes are due to the fact that A+
query

may have to do r re-windings for each of k bits. We’ll upper bound the cost of each
“rewind” with the cost of a complete invocation of Aquery. Similarly, A+

clone will run
two copies of Aclone for each of k bits. Note that to achieve a positive advantage in
the reduction, we need ζ3 > 2

k−2 . When the advantage ζ is small, however, it can be
boosted using the standard technique of executing the A+ multiple times and taking
the majority output. (End of Lemma 2 proof.) +,

2.4.5 Reduction of LPN to HB+-attack

Combining Lemmas 1 and 2 yields a concrete reduction of the LPN problem to the
HB+-attack experiment. Given an adversary that has an ε-advantage against the
HB+-attack experiment within a specific amount of time and queries, there exists an
adversary that solves the LPN problem within a concrete upper bound of time and
queries. The following theorem follows directly from Lemmas 1 and 2.

Theorem 1 Let AdvHB+

(k, η, q, t1, t2) = ζ, where U is a uniform distribution over
binary matrices Zq×k

2 , and let A be an adversary that achieves this ζ-advantage. Then
there is an algorithm that can solve a random q′ × k instance of the LPN problem
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in time (t′1, t
′
2) with probability 1

k , where t′1 ≤ k2Lq(2 + log2 q)t1, t′2 ≤ 2k2Lt2, q′ ≤
kLq(2 + log2 q), ε = ζ3(k−2)−2

4k , and L = 8(ln k−ln ln k)
(1−2η)2 (1+ε

ε )2.

To put this in asymptotic terms, the LPN problem may be solved by an adversary
where AdvHB+

(k, η, q, t1, t2) = ζ in time O( (k5 log k)(q log q) t
(1−2η)2ζ6 ), where t = t1 + t2. Note

that these concrete bounds are fairly loose. The LPN extractor presented in Section
2.4.3 uses a “fresh” HB sample in each trial. This may be unnecessary, since it could
be possible to reuse a single sample many times. A tighter reduction might increase
the effective key lengths that will be presented in Section 2.8.

2.5 Man-in-the-Middle Attacks

HB+ is vulnerable to a linear-time man-in-the-middle attack first observed by Gilbert,
Robshaw, and Sibert [49]. This attack is quite simple: a man-in-the-middle will flip
the same bit of either the challenge a or blinding factor b during all q rounds of an
HB+ authentication. The adversary then observes whether the reader accepts the tag
as authentic.

If the reader rejects a tag that should be accepted, the adversary knows that the
single bit of a or b that was changed should have been part of the noisy parity bit
response. In other words, the corresponding bit of the secret x or y is a 1 bit.

By forcing a legitimate tag to fail k authentication rounds, a man-in-the-middle
can completely extract a tag’s secrets. This attack does not violate the security proofs
presented in this work, because in that setting an adversary does not have access to
a reader oracle R during the query phase of the experiment HB+-attack.

Rather, the security experiments depicted in figure 2-4 specify a “detection model”
of anti-counterfeiting. The goal of the adversary in these experiments is to insert a
counterfeit tag into the system without detection by the reader. In contrast, in
a “prevention” model, an adversary could not create a counterfeit tag under any
circumstances.

This weakened model merits some explanation. It may be viewed as defining
a detection-based authentication system where the adversary is presumed to have a
particular aim: to insert a bogus tag into the system without detection. In other
words, if an authentication session fails, and R thus detects an ostensibly counterfeit
tag, the adversary is considered unsuccessful. This is equivalent to saying that during
the query phase of HB+-attack, the adversary can only initiate or observe successful
authentication sessions. Such sessions reveal only information that the adversary can
learn directly from the tag, i.e., that access to R furnishes no additional information.

It is instructive to compare a detection-based model against a prevention-based
model where the adversary has unfettered access to oracles for T and R. The aim in
a prevention-based model is to ensure against tag cloning irrespective of whether or
not an adversary is detected in a counterfeiting attempt against a tag.

A detection-based model is natural and useful in centralized RFID systems, such
as those that might be employed with RFID-tagged casino chips or proximity cards, or

39



in tightly integrated supply chains. In most real-life situations, a man-in-the-middle
attack as described by Gilbert, Sibert and Robshaw [49] is impractical, especially in
the RFID setting. Besides needing to be physically coupled with a pervasive device,
the man-in-the-middle would trigger hundreds of failed authentications to extract a
key of a single device.

In such environments, a failed authentication attempt – such as an attempt at
counterfeiting – would naturally trigger an alert. RFID tags have an important
physical dimension, namely that an HB+ attacker must have some physical presence
or proxy to mount an attack. Thus detection has a value in RFID systems not present
in general communication networks where an attacker may operate remotely.

To limit leakage of tag secrets, a detection-based authentication system can employ
throttling or a lockout in the face of multiple failed authentication attempts. (Of
course, any such policy must be constructed carefully to account for the possibility
of denial-of-service attacks.) Each authentication attempt can in principle leak up to
at most a single bit of information about the secret contained in a tag, as a reader
either accepts or rejects at the conclusion of a session.

2.5.1 Security Against Man-in-the-Middle: HB++

Of course, a stronger prevention-based model is more desirable than a detection-based
model. Bringer, Chabanne, and Dottax propose a prevention-based HB++, purported
to be secure against man-in-the-middle attacks [15]. The main idea behind HB++ is
to generate a second noisy parity bit z′ based on two additional secrets x′ and y′.

The parity bit z′ will be generated by bit-rotating permutations of the challenges a
and blinding factors b. That is, in the ith round, rotate i bits in each of the permu-
tations f(a) and f(b) to obtain a′ = rot(f(a), i) and b′ = rot(f(b), i). The second
noisy parity bit z′ = a′ · x′ ⊕ b′ · y′ ⊕ ν ′, where ν ′ is a second, independent noise bit.
HB++ is illustrated in figure 2-5.

The idea behind HB++ is that the two noisy parity bits will z and z′ will act as
consistency checks. By flipping a single bit of a or b, a man-in-the-middle will likely
induce an error in either z or z′. By observing a reader rejecting an authentic tag,
the man-in-the-middle will not know which noisy parity bit caused it, and thus will
not learn information about the respective secrets.

Unfortunately, at the time of writing HB++ lacks a thorough proof of security and
has not yet appeared in publication (although it apparently has been accepted for
publication in [15]). This author makes no claim on the security of HB++ against
man-in-the-middle attacks. It is included here for completeness.

2.6 HB+ Optimizations

HB+ carries a large communication round complexity, since a total of 3q messages
are sent for each authentication. This motivates two optimized versions: parallel and
two-round HB+.
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Figure 2-5: Bringer, Chabanne, and Dottax’s HB++ protocol

The parallel version is quite natural. Why not send all the blinding and challenge
vectors together as a single q× k matrix? All q rounds of the protocol are essentially
performed in parallel, so only 3 messages of maximum size kq-bits are sent. This
protocol is illustrated in figure 2-6.

There was originally a concern with the parallel version of HB+ since an adversarial
reader is able to condition its choice of challenges on all the blinding factors. In the
sequential-round version, each challenge vector sent by a malicious adversary can
only depend on the transcript of its interaction with a tag so far. There might be a
chance that an active adversary somehow derives more power from seeing all blinding
factors B up front.

Fortunately, this is not the case. Katz and Shin show that a parallel version
of HB+ is, in fact, secure [69]. They also show that HB+ is secure under concurrent
composition. Katz and Shin also simplify several steps of the security proofs presented
in this chapter by making use of a recent result due to Regev [100], that reduces the
LPN problem to solving the Shortest-Vector problem (SVP), albeit requiring the use
of a quantum computational step. Regev conjectures that this quantum assumption
may be eliminated and that the SVP can be reduced to the LPN problem in the
standard model.

A second idea to reduce communication costs is for a tag to send its blinding factor
with the noisy parity bit response. Figure 2-7 illustrates a sequential, two-round HB+

variant. Combined with Katz and Shin’s proof of security under parallel composition,
could potentially reduce the number of rounds required for HB+ to 2.

Unfortunately, it is unclear whether this variant is secure. A malicious tag can
choose a blinding factor b that is conditioned on a challenge a. Although it is unknown
whether this could potentially lead to a security break, it would allow a malicious tag
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Figure 2-6: A parallel version of HB+

with some partial information on the secrets x and y to successfully answer queries.
For instance, suppose a malicious tag somehow obtains the value x ⊕ y. Then

given some challenge a, the tag could choose b = a and return the value a · (x⊕ y),
which would be correct. Although a reader could easily detect this attack, a tag
might know some different partial data on x and y that allows it to respond without
detection.

An interesting observation in this example is that this malicious adversary cannot
be used as a black box to extract the HB+ secrets, although its a priori knowledge
might be extracted. Another observation is that if an active adversary is able to
extract any linear relationship between the two secrets during the challenge phase,
they would be able to successfully answer the second phase. The difficultly of that
problem is unknown. It may be necessary to rely on non-black box proof techniques
in order to prove a two-round HB+ variant is secure.

2.7 Anti-Collision and Identification with HB+

A reader initiating an HB+ protocol may not have a priori knowledge about which
tags it is communicating with. Readers may also operate in environments containing
many tags owned by different parties. Simultaneous response to a reader query may
cause collisions on the wireless communication channel. Fortunately, HB+ authenti-
cation lends itself to both anti-collision and identification.

Individual tags may be singulated from a population using a randomized tree-
walking protocol, as described by the author in [120] and [122]. Implementing a
randomized tree-walking protocol on a tag requires a random number generator, which
conveniently would already be in place for generating blinding factors and noise.
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Alternatively, a slotted Aloha anti-collision protocol, as used in wireless 802.11
(WiFi) networks, may be deployed [9, 84]. A slotted Aloha-style protocol is specified
by the EPCGlobal generation 2 tag standards [39] and would also make use the
random number generator already implemented for the HB+ protocol.

Even when a tag is singulated, a reader will not necessarily know which tag it is
communicating with. In other words, it may not know which secret to check HB+

response noisy parity bits against. Fortunately, it can “whittle” candidates from its
known-tag database after each round of HB+ until it either discovers which tag it is
communicating with, or determines that it is communicating with an unknown tag.

To do so, a reader can compare an unidentified tag’s noisy parity bit response z
against all its known tag secrets. (This would be infeasible for an enterprise with
billions of RFID devices, but could be done by individuals or smaller enterprises.)
Database entries with different secrets will match an expected half of the rounds.
After particular entry has failed above a certain threshold, it may be removed from
consideration or “whittled”. If the unidentified tag’s secret is in the reader’s database,
it will match an expected (1− η) fraction of the rounds. At that point, a reader will
have both identified which tag it is communicating with and authenticated it as valid.

2.8 Lower Bounds on Key Sizes

This section considers the practical implications of the concrete security bounds im-
plied by Theorem 1. Similar to security constructions based on factoring or finding
discrete logarithms, the length of keys that are secure in practice will depend on the
state of the art of algorithms and hardware. As a baseline for for comparison, in
1993 DIMACS issued a set of random LPN instances reduced to CNF formulas as
a satisfiability problem challenge [63]. These challenge problems used a key length
of k = 32, q = 64 queries, and a noise parameter of η = 1

8 .
Solutions were found several years later by specialized exhaustive search algo-

rithms [54, 119]. As an measure of practical hardness, each instance of the DIMACS
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challenge [63] took approximately 5-10 minutes to solve on a 200 MHz SGI R10k pro-
cessor using Warners and van Maaren’s search algorithm [119]. Although this search
algorithm does not necessarily find the same x used to generate the responses, it is
clear that with a key as short as 32 bits, a small set of samples can be trivially broken
on a home PC.

The runtimes in Table 2.2 are based on a concrete analysis of the best known LPN
learning algorithm due to Blum, Kalai, and Wasserman (BKW) [11]. As mentioned,

this algorithm has an asymptotic runtime of 2O( k
log k ).

These runtimes should be taken with a grain of salt, since optimizations to the
best known algorithm or a tighter reduction may yield much lower constant factors.
In fact, Levieil and Fouque (LF) recently reduced the constant factors of the BKW
algorithm, which would increase the necessary key lengths in practice [74]. These
runtimes are included in Table 2.2.

However, it should be noted that both BKW and LF require an exponential num-
ber of samples. In reality, these would be sampled from weak RFID devices which
would be a major bottleneck to actually trying to carry out these attacks in practice.
Thus, the runtimes given in Table 2.2 assume an adversary obtain an exponential
number samples from an RFID device.

The BKW algorithm essentially performs Gaussian elimination on a large set of
noisy samples, except minimizes the number of linear combinations, which minimizes
the noise accumulated throughout the algorithm. By repeating randomized trials,
the BKW algorithm can produce the secret x with high probability.

Omitting details of their algorithm, for αβ ≥ k, given q = α3m2β queries and

running in t = Cα3m2β time, where m = max{
(

1
1−2η

)2α

, β}, the BKW algorithm

can correctly extract x with an error that is negligible in k. In other words:

Advextract−x
BKW (k, η, q, t) ≈ 1− negl(k)

Suppose η = 1/4. Then m = 22α
. If let k = 224, then the values α = 4 and β = 58

minimize the value of t necessary to completely reveal a 224-bit secret x with high
probability. For these values of α and β, it is the case that Cα322α+β ≥ 280. Thus,
a 224-bit LPN secret x with noise parameter η = 1/4 is secure against an adversary
running the improved BKW algorithm that can run for 280 steps.

Just for comparison, if k = 32, as in the DIMACS challenge, the values that
minimize t are α = 2 and β = 16. This yields a t ≈ 224. This could reasonably be
solved in 10 minutes on a modern processor, as were the DIMACS challenges [54, 119].

As mentioned, these runtimes are simply a reflection of the cost of the best known
algorithm. With performance improvements or a tighter analysis, it is likely tha(238)t
the effective key-length of LPN keys are even shorter. In the meantime, these lengths
are still a practical range for low-cost devices and can offer adequate security in many
settings.

2.9 Practical Implementation Costs
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Key Length BKW Runtime LF Runtime

32 224 (224)
64 235 (228)
96 246 233

128 256 (238)
160 264 (243)
192 272 (247)
224 280 252

256 288 (256)
288 296 (260)

Table 2.2: Time to extract LPN keys of various length using BKW and LF algorithms.
Note that these runtimes assume an adversary has access to an exponential number
of samples from a weak device. Estimated runtimes are shown in parenthesis.

Although it could conceivably be implemented in any computing platform (or even
carried out by a patient human armed with a coin to flip), the HB+ protocol is quite
appropriate for low-cost devices. For instance, the hypothetical EPC tag specified
in Table 2.1 could conceivably implement HB+ with perhaps a 256-bit key stored in
read-only memory. If one considers the secret key to be the tag’s identity itself, this
represents no additional cost over a standard device.

The actual HB+ protocol requires very few circuit gates. Computing parity re-
quires only a single XOR and a single AND gate. A single bit register is needed to
store the parity as it is being computed. Another register is needed to store challenges
and blinding factors.

Fortunately, only one bit of both challenges and blinding factors is needed at any
time. Therefore, only a single-bit buffer is needed to temporarily store challenge
bits as they arrive from a communication channel, or blinding factor bits as they are
generated internally.

A very small amount of control logic is needed for HB+. This would essentially
consist of a few bits of protocol state and an log k-bit counter to iterate through
a stored secret. It is quite likely that HB+may be implemented in under 200 gates
of logic. For comparison, implementing DES or SHA-1 normally requires on the
order of 20,000-30,000 gates [41, 42] and highly optimized AES optimizations require
approximately 5,000 gates [43].

2.10 Conclusion and Open Questions

This chapter presented a new authentication protocol named HB+ that is appropriate
for low-cost pervasive computing devices. The HB+ protocol is secure in the presence
of both passive and active adversaries and should be implementable within the tight
resource constraints of today’s EPC-type RFID tags. A number of essential open
questions remain, however, before the HB+ can see practical realization.
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Above all, the security of the HB+ protocol is based on the LPN problem, whose
hardness over random instances remains an open question. It is also an open question
whether the two-round variant of HB+ described in Section 2.6 is secure.

As explained in Section 2.5, HB+ is vulnerable to a simple man-in-the-middle
attack. This attack assumes that a man-in-the-middle is able to tell whether a par-
ticular reader accepted or rejected a tag. To account for this attack, this chapter
defines a “detection model”, where active adversaries do not have access to reader
oracles.

This model is quite reasonable in a real-world setting. Failed authentications will
be detected by legitimate readers and, besides, conducting live man-in-them-middle
attacks between physically coupled hardware is quite difficult. This detection model
is consistent with the strong privacy model proposed by Juels and Weis [68].

Regardless, it is an open question whether an LPN-based protocol may be made
secure against a man-in-the-middle attack. The security of the HB++ protocol de-
scribed in section 2.5.1 and in [15], purported to be secure against man-in-the-middle
attacks, remains to be seen.

The results in this chapter do not offer direct practical guidance for parameters
useful in real RFID tags, something essential for real-world implementation. It would
be desirable to see a much tighter concrete reduction than given in this chapter. One
avenue might be improvement to the Blum et al. reduction. As mentioned in Section
2.4.3, the efficiency of the modified concrete version of Blum et al. reduction [10] may
be improved.

The version in this chapter uses sample values only once. It may be possible to
use a single sample to generate several trials per column, or perhaps to generate trials
for every column. Reusing sample values could lower the concrete query costs. It is
unclear, however, whether the reduction holds over non-uniform input distributions.

It is also unknown what good choices for the noise parameter η are. Choosing η
values close to 0 will leak more information on the true parity values, while values
close to 1/2 will require more protocol rounds. It is likely that for a particular key
length, there is an optimal choice for η against the best-known BKW algorithm. How
to find this optimization is an open question.

Finally, there is second human authentication protocol by Hopper and Blum, based
on the “Sum of k Mins” problem and error-correcting challenges [12, 62]. Unlike the
HB protocol, this protocol is already supposed to be secure against active adversaries.
However, the hardness of the “Sum of k Mins” has not been studied as much as the
LPN problem, nor is it clear whether this protocol can efficiently be adapted for
low-cost devices. These questions remain open avenues of research.
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Chapter 3

Commutative and Cascadable
Cryptography

Performing sequential or cascaded encryption and decryption operations is an intuitive
and useful ides used in many applications. For instance, triple-DES (3DES) encryp-
tion performs three sequential DES encryption operations under different keys [4].
Public-key encryption operations are often cascaded as well. For example, messages
are sequentially encrypted under different public keys in both mix networks for elec-
tronic voting [25] and privacy-enhancing “onion routing” [52].

Cascadable cryptosystems are a particular type of multiple encryption system.
Multiple encryption systems encrypt data under several keys and possibly under
different underlying cryptosystems. In general, a multiple cryptosystem does not
necessarily specify the order of decryption operations or define intermediate states of
partial decryption. The only requirement is that all keys used to encrypt a message
must also be used to decrypt it. In cascadable cryptosystems, one may arbitrarily
encrypt an existing ciphertext, or decrypt a ciphertext with a valid key. (Which keys
are “valid” for a ciphertext will depend on the specific cryptosystem.) This chap-
ter will focus on cascadable cryptosystems involving a single underlying encryption
operator, as opposed to hybrid cryptosystems using several independent encryption
schemes.

Unfortunately, standard formal security definitions do not fully capture adver-
sarial abilities in these settings. Adversaries performing chosen-plaintext or chosen-
ciphertext attacks may be able to obtain chosen plaintexts or chosen ciphertexts under
a cascade of operations, rather than a single operation as in traditional settings. Ad-
versaries may be able to distinguish some message-independent history about the
operations that produced a particular ciphertext. To address the absence of appro-
priate security definitions, this chapter formally defines cascadable semantic security
and introduces a new notion of historical security.

The most basic cascadable cryptosystem has intuitive properties: one must de-
crypt in the opposite order of encryption operations. A plaintext encrypted under a
sequence of keys x, y, denoted as c = ey(ex(m)), must be decrypted under the corre-
sponding keys in reverse order, i.e. m = dx(dy(c)). For convenience, parentheses will
be omitted. The aforementioned sequence of encryption operations evaluated on a
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message m would be represented by eyex(m). However, other classes of cascadable
cryptosystems may allow different decryption orders.

A particularly useful and interesting class of cascadable cryptosystems are those
that exhibit commutative properties. In commutative cryptosystems, one may de-
crypt with any key that a ciphertext has already been encrypted with. A cipher-
text c = eyex(m) may be decrypted as either m = dydx(c) or m = dxdy(c).

Commutative cryptosystems, such as Pohlig-Hellman [99] and Massey-Omura [78],
have existed for over 25 years and are the basis of many proposed applications. For
instance, Shamir, Rivest, and Adleman’s classic “Mental Poker” and three-pass key
exchange protocols both rely on commutativity [105, 106]. More recently, Agrawal,
Evfimievski, and Sriakant [1], and Clifton et al. [27] present data mining and private
set intersection applications based on commutativity.

To illustrate an application of commutativity, consider the three-pass key exchange
protocol illustrated in figure 3-1. In this protocol, Alice and Bob each have respective
secret keys a and b. Alice wishes to share a secret s with Bob. If Alice and Bob
have a cascadable, commutative cryptosystem at their disposal, they can engage in
the following protocol:

Three-pass Key Exchange

1. Given input s, Alice generates a random key a and sends Bob ea(s).

2. Bob generates a random key b and sends Alice ebea(s) 0 eaeb(s).

3. Alice sends Bob daeaeb(s) = eb(s).

4. Bob computes dbeb(s) = s.

Figure 3-1: Three-pass key exchange based on commutativity

Commutativity is just one of many possible properties exhibited by cascadable
cryptosystems. To model these various flavors, the new cascadable cryptosystem
definition in this work incorporates string rewrite systems. String rewrite systems
model cryptographic operations as strings of symbols and capture the interaction
between various symbols with rewrite rules. Rewrite systems will be a useful and
flexible tool that may model a wide variety of cryptosystems.

Organization. Section 3.1 offers a brief primer on rewrite systems. Similar rewrite
models may be applied toward developing security definitions for re-randomizable,
homomorphic, or threshold cryptographic systems. Section 3.2 will formally define
cascadable cryptosystems and a notion of efficiently cascadable cryptosystems. Sec-
tion 3.3 formally defines cascadable semantic security and introduces a new notion of
historical security. Section 3.4 presents two cascadable semantically secure cryptosys-
tems. One construction is built from a generic semantically secure cryptosystem. The
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second is a new, cascadable semantically secure, commutative public-key cryptosys-
tem. This construction is based on an arbitrary, semantically secure cryptosystem
that supports homomorphic multiplication, such as ElGamal.

3.1 String Rewrite System Primer

In order to discuss cascadable cryptosystems, it is necessary to have the language and
tools to describe sequences of cryptographic operations. A simple way of representing
these operations is with strings of symbols. As alluded to in figure 3-1, encrypting or
decrypting under a key k may be represented by ek and dk symbols.

Different sequences of operations represented by strings may yield equivalent dis-
tributions when actually evaluated on a message. To model this notion of string
equivalence, this section will develop a set of rewrite rules that allow one to trans-
form one string of operations to another.

Thus, string rewrite systems (SRS) will be used to model cascaded cryptographic
operations. Similar rewrite systems were used by Dolev and Yao [38], and Dolev,
Even, and Karp [37] to model sequential cryptographic operations in two-party pro-
tocols. Different SRS models may capture different properties, for instance commu-
tativity.

Several cryptosystems are based on the hardness of various rewrite problems. The
works of Wagner and Magyari [117], Oleshchuk [93], and Samuel et al. [103] are all
examples of rewrite systems being used as hard underlying problems. This chapter
does not apply rewrite systems in this manner, and instead uses them for analysis
along the lines of Dolev et al.

This section provides a brief primer on rewrite system concepts that are relevant
to this chapter. This is by no means a thorough review of the topic, as rewrite
systems are the subject of a rich and broad body of literature. Surveys by Dershowitz,
Jouannaud [33], and Plaisted [34] offer a much more extensive introduction to rewrite
systems.

Symbols, Alphabets, and Strings. As in the three-pass key exchange protocol
from figure 3-1, encryption and decryption operations under a key k are respectively
represented by symbols ek and dk. The set of symbols for encryption or decryption
under every possible key is defined to be the alphabet Γ.

Strings are elements in Γ∗. Symbols in Γ may represent operations in either public-
key or symmetric cryptosystems that may be either deterministic or randomized. This
chapter exclusively focuses on randomized, public-key operations. Both encryption
with public key pk and decryption with public key sk will use pk as a symbolic index,
i.e. epk and dpk. This allows someone to reference a decryption operation, without
necessarily knowing the secret key.

Rewrite Rules. A rewrite rule denoted as x → y specifies that a string x may be
replaced, wherever it appears, by a second string y, but not necessarily vice versa.

49



Given a string s = αxβ, applying the rule x → y yields the string t = αyβ. For
example, if Γ = {e, d}, applying the rule de → ε to the string s = edde yields t = ed.

String Rewrite Systems. A string rewrite system (SRS) is defined as a pair (Γ, R),
consisting of an alphabet Γ and a set of rules R. As an example, consider the SRS
modeling cascadable cryptographic operations, similar to the rewrite systems used by
Dolev and Yao [38] and Dolev, Even, and Karp [37]:

Definition 2 (Cascadable Cryptosystem Model) Let K be the set of all possible
keys and let ε represent the empty string. Define the string rewrite system Scasc =
(Γ, R) as follows:

Γ =
⋃

k∈K

{ek, dk}, R =
⋃

k∈K

{dkek → ε}

The alphabet in Scasc contains a symbol for encryption and decryption under every
possible key. Strings in Scasc represent sequences of operations that may be evaluated
on a plaintext. For instance, the string ekej models the operation m 2→ E(k,E(j, m)),
for an arbitrary m. Rules of the form dkek → ε in Scasc model decryption operations.

Derivability. If there exists some sequence of rules that when applied to a string s,
yield a string t, then s derives t, or alternatively, t is derived from s. This deriv-
ability relation is denoted as s

∗→ t. For example in Scasc, the string djdkekej
∗→ ε,

since djdkekej → djej and djej → ε.

Normal Strings. A string in a SRS (Γ, R) is normal (or irreducible) if there do
not exist any rules in R which can be applied to it. In Scasc, the strings ek, ej, and dk

are each normal, while dkek is not. Normal strings are relevant to the definition of
string equivalence.

Derivation Cycles. A SRS may have two strings s and t such that s derives t
and t derives s, i.e. s

∗→ t and t
∗→ s. This is referred to as a derivation cycle and is

denoted s
∗↔ t.

Termination. A SRS is terminating (or Noetherian) if no derivation cycles exist.
In other words, only a finite number of rules may be applied to any string in Γ∗ before
a normal string is derived. Normal forms are not necessarily unique. A string s may
have different normal forms that are derivable by applying different sequences of rules.
Termination is relevant to the definition of string equivalence.

Confluence. Confluent string rewrite systems have the property that any string’s
derivations must share a common derivation. That is, in a confluent system, given s, s

∗→
t, and s

∗→ u, there must exist some w such that t
∗→ w and u

∗→ w. In string rewrite
systems, confluence is equivalent to what is called the Church-Rosser property, and
is relevant to the definition of equivalence.
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Canonical Forms. Canonical string rewrite systems are both terminating and con-
fluent. In a canonical SRS, every string has a unique normal form, called its canonical
form. Given a string s in a canonical system, its canonical form is denoted as s̄. By
inspection, the cascadable SRS Scasc from definition 2 is a canonical SRS.

String Equivalence. This work defines two strings in a canonical SRS to be equiv-
alent if and only if they have the same canonical form, i.e (s 0 t) ⇐⇒ (s̄ = t̄) 1.
In Scasc the strings s = ek and t = djejek are equivalent because s̄ = ek = t̄. However,
the string u = dkekej is not equivalent to either, because its canonical form is ū = ej.

Strings versus Terms. Rewrite system literature often deals with more general
term rewrite systems. Rather than simply symbols from Γ, terms may also contain
variables representing arbitrary terms. Term rewrite systems can model a richer set
of cryptographic properties like re-randomization, threshold operations, homomor-
phic operations, signatures, hashing, etc. For instance, one might model an additive
homomorphic property with a term rewrite rule ek(x) ∗ ek(y) → ek(x + y).

The definitions and concepts in this chapter are based on string rewrite systems,
but might be adapted to a term rewrite model and applied to a broader range of cryp-
tosystems. Adapting the definitions appearing in the following sections to support
term rewrite systems is left as an open problem.

3.2 Cascadable Cryptosystems

This section first introduces convenient notation, then formally defines cascadable
cryptosystems and efficiently cascadable cryptosystems.

3.2.1 Notation and Definitions

Negligible Functions. The notation negl(·) to denotes some function such that for
all positive polynomials poly(·) and sufficiently large κ, it is the case that negl(κ) <
1/poly(κ).

Evaluating Strings. A string s ∈ Γ∗ represents a sequence of encryption and
decryption operations. Each operation in a string may be evaluated in sequential
order on some plaintext from a message space M . Given a string s ∈ Γ∗ and a
message m ∈ M , s(m) will represent the evaluation of the operations represented
by s from right-to-left on m.

Symbols in s may represent randomized operations, so s(m) is defined as a dis-
tribution of ciphertexts. The notation s(m) = t(m) means that evaluating strings s
and t on message m yields identical distributions. Note that s(m) = ⊥, where ⊥ is a

1This may be a non-standard notion of equivalence compared to the traditional string rewrite
system literature. Equivalence may be defined differently in non-canonical rewrite systems, for
example two strings may be defined as equivalent if they belong to the same derivation cycle.
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special error symbol is allowable, and will be typical in some systems. For instance,
this may be the defined behavior when m is not a valid ciphertext.

Net Encryption Height. Given any string s ∈ Γ∗, the net encryption height
function ν(s) is defined as the minimum length of any string t such that ts 0 ε.
If no such t exists, ν(s) = ∞. Define the height of the empty string ν(ε) = 0.
Informally, ν(s) is the minimum number of decryptions needed to recover a ciphertext
obtained by evaluating s on some message.

The function ν is defined with respect to a particular SRS model. In Scasc, it is
the case that ν(ek) = 1 since dkek = ε. Similarly, ν(ekej) = 2. It is also the case
that ν(dk) = ∞ and ν(ekdk) = ∞, since there are no strings which may decrypt for dk

or ekdk. Changing the model will change ν. For instance, if the rules ekdk → ε were
added to the cascadable SRS, then ν(ekdk) = 0.

Cipherspaces. Let M be the set of all plaintext messages; typically M = Σ&(κ),
where Σ is some fixed set of symbols (perhaps binary) and * : N → N is some
fixed function. Let Si = {s ∈ Γ∗|ν(s) = i}. Define Ci to be the set of all possible
ciphertexts that can result by evaluating a string with encryption height i, i.e. Ci =
{c|c ∈ s(m), m ∈ M, s ∈ Si}. Define C0 = M .

For some cryptosystems, it may be the case that there is a single cipherspace. It
may also be the case that the Ci’s are disjoint from each other. Cipherspaces will
also be defined with respect to specific strings. Define Cs = {c|c ∈ s(m), m ∈ M}.
Define Cε = C0 = M and C∞ =

⋃
s∈Γ∗ Cs.

Abuse of Set Notation. This chapter may use the notation e ∈ s or d ∈ s to
indicate that a symbol appears in a string s. This is a bit of an abuse of notation
since s is a string, and not a set. However, meaning should be clear from context.

3.2.2 Cascadable Cryptosystems

This section formally defines cascadable cryptosystems. This definition differs from
traditional cryptosystems by explicitly defining how encryption and decryption op-
erations behave over cipherspaces. This requires introducing a new property called
rewrite fidelity, akin to the completeness property in traditional settings. Rewrite
fidelity defines semantic meaning to evaluating symbolic strings on messages.

Definition 3 (Cascadable Cryptosystem) A cascadable cryptosystem C is a quadru-
ple of probabilistic polynomial time algorithms (SysGen, G, E, D,S) and a string rewrite
system S = (Γ, R) that satisfy the following properties, given a security parameter κ:

1. Message Space: M = C0 = Σ&(κ) where * : N → N is a fixed function.

2. System Parameters: SysGen(1κ) → ρ

3. Key Generation: G(ρ) → (pk, sk)
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4. Encryption: ∀(pk, sk) ∈ G(ρ), ∀i ≥ 0, ∀c ∈ Ci, E(pk, c) ∈ Ci+1

5. Decryption: ∀(pk, sk) ∈ G(ρ), ∀i > 0, ∀c ∈ Ci, D(sk, c) ∈ Ci−1 ∪ {⊥}

6. Rewrite Fidelity: ∀m ∈ M , ∀s ∈ Γ∗, s(m) = s̄(m).

The function SysGen outputs some system parameters that are used to generate all
keys within a particular instance of the cryptosystem. The key generation function G
is defined as it would be in a traditional cryptosystem.

One detail that needs to be addressed is binding the generated keys (pk, sk) ∈ G(ρ)
with their respective e and d symbols. Define a key pair’s “index” to be the value of
its public key. Thus, the symbols corresponding to (pk, sk) will be epk and dpk. Any
party knowing a public key pk can specify its corresponding encryption and decryption
symbols, but can only evaluate e symbols on a given input message. Evaluating a d
symbol requires the corresponding sk.

Encryption and decryption functions differ somewhat from traditional definitions.
In the traditional model, an encryption function may be defined to operate on input
from Σ∗. There is no distinction between arbitrary strings and elements from some
cipherspace.

This definition specifies that on a valid input from some cipherspace Ci and a
public key pk, E will output a valid element of the next cipherspace Ci+1. Decryption
is more subtle. If given some c ∈ s(m), dk(c) may output ⊥ if ν(dks) = ∞. In Scasc,
this would be the case if one tried to decrypt with a key that a message was not just
encrypted with.

Rewrite fidelity is a critical property of cascadable rewrite systems and is impor-
tant to both correctness and proofs of security. An important consequence of rewrite
fidelity is that (s 0 ε) =⇒ (s(m) = {m}). As one would expect, a string s that
is equivalent to doing nothing should return the original plaintext. Another conse-
quence is that (s 0 t) =⇒ (s(m) = t(m)), which captures the property that two
equivalent strings should yield the same distribution of ciphertexts when evaluated
on any message.

A cascaded operation may expand the length of successive ciphertexts. Some
cascadable cryptosystems may, for example, double the length of the output after
each encryption. In that case, cascaded ciphertexts would exponentially grow as a
function of ν(s). We define efficiently cascadable cryptosystems so that the difference
in length between an encryption input and output may only be some polynomial of κ.
The difference may not be a function of the input length:

Definition 4 [Efficiently Cascadable Cryptosystems] A cascading cryptosystem C is
efficiently cascadable if

∃c, ∀ρ ∈ SysGen(1κ), ∀(pk, sk) ∈ G(ρ), ∀x ∈ Σ∗ |E(pk, x)|− |x| = O(κc)
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3.3 Security Definitions

Traditional notions of semantic security do not accommodate commutative cryptosys-
tems, since an adversary may be able to distinguish a ciphertext by some message-
independent information, such as which keys successfully decrypt it. (This will be
explained in more detail later.) At its core, this incompatibility occurs because cas-
caded encryption or decryption operations may embed some observable history in a
ciphertext. This history may contain the number of times a message has been en-
crypted, which public keys it was encrypted with, which secret keys will successfully
decrypt it, or any number of other efficiently computable historical properties.

Because traditional semantic security is defined only over a plaintext message
space M and involves only a single encryption, history is not an issue. However, in
an indistinguishability under chosen plaintext attack (IND-CPA) experiment with a
cascadeable system, an adversary may choose two ciphertexts with different histories
as challenge messages, such that it is trivial to distinguish their encryptions.

Essentially, rather than being limited to choosing plaintext messages from M
in the IND-CPA experiment, an adversary in a cascadable setting may also choose
arbitrary ciphertexts as challenge messages. That is, challenge messages may be
from one or more Cs cipherspace domains. To consider semantic security over a
specific message domain, we define semantic security over message domain D as
simply semantic security where challenge messages in the IND-CPA experiment are
drawn from domain D.

This section will define a notion of cascadable semantic security that ensures that
challenge messages have the same history. It will compare and contrast cascadable
semantic security to traditional semantic security over various domains. Section 3.3.3
then discusses a notion of historical security and historical revelation properties. Fi-
nally, Section 3.3.4 considers the problem of defining a stronger notion of CCA security
in a cascadable model.

3.3.1 Cascadable IND-CPA Experiment

This section defines a cascadable indistinguishability under chosen plaintext attack
(CIND-CPA) experiment. Denote a cascadable cryptosystem as C = (SysGen, G, E, D,S).
Denote a probabilistic polynomial time interactive Turning machine adversary as Adv.

In definition, 5, Steps 1 and 2 generate system parameters ρ and a set of n key
pairs. This differs from a traditional public-key IND-CPA experiment, as shown in
definition 6 where a single key pair would be generated. Step 3 denotes a set of
symbols K containing an encryption symbol epk for each public key generated in step
2.

In step 4, the adversary is provided all values generated during setup. This adver-
sary may internally compute any of the cryptosystem functions, SysGen, G, E, or D
using any of the public keys it was provided in step 2, or any keys it generates itself. At
this point, a traditional IND-CPA experiment would simply output two messages m0

and m1 from the plaintext message space M . The cascading CIND-CPA experiment
outputs an additional string s ∈ Γ∗.
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Definition 5 (CIND-CPA Experiment) A cascadable indistinguishability under
chosen plaintext attack experiment with adversary Adv and cascadable cryptosystem C
is defined as follows:

ExpCIND−CPA
Adv,C [κ, n]:

1. SysGen(1κ) → ρ
2. Call G(ρ) n times to generate (pk1, sk1), . . . , (pkn, skn)
3. Denote the key symbol set K = {epk1 , . . . , epkn}.
4. Adv(ρ, pk1, . . . , pkn) finds (m0, m1, s) such that:

(a) m0, m1 ∈ M
(b) s ∈ Γ∗ such that (∞ > ν(s) > 0) ∧ (∃epk)(epk ∈ K ∧ epk ∈ s̄)

5. Let b
R← {0, 1} and c ∈R s(mb)

6. Adv(c) outputs guess bit b′

There are two restrictions on which s values may be output by Adv. First, ν(s)
must be finite and non-zero, meaning there must exist some non-empty string t such
that ts 0 ε. This means that trivial values like s = ε or s = dkek are forbidden.
In Scasc, strings like dk would be forbidden, since ν(dk) = ∞.

The canonical form s̄ must also contain at least one encryption symbol corre-
sponding to a key generated in step 2. In other words, s must have at least one net
encryption under a public key that Adv did not generate on its own, i.e., (∃epk)(epk ∈
K ∧ epk ∈ s̄). Otherwise, s might contain encryptions strictly under keys that Adv
generated itself.

How does this experiment relate to the traditional IND-CPA experiment? Recall
the setup of the traditional IND-CPA experiment:

Definition 6 (IND-CPA Experiment) An indistinguishability under chosen plain-
text attack experiment with adversary Adv and cryptosystem C is defined as follows:

ExpIND−CPA
Adv,C [κ]:

1. ρ ← SysGen(1κ)
2. (pk, sk) ← G(ρ)
3. Adv(ρ, pk) finds two messages (m0, m1)

4. b
R← {0, 1}

5. Adv(epk(mb)) outputs guess bit b′

In the traditional IND-CPA experiment, an adversary given a single public key pk
will output two messages m0 and m1 and expects E(pk, mb) in response. An adversary
with a significant advantage in the IND-CPA experiment would be able to trivially
break the CIND-CPA experiment by simply selecting s = epk for some random pk ∈
K. It would then obtain the exact input it would expect in the IND-CPA experiment,
namely epk(mb).

3.3.2 Cascadable Semantic Security

This cascadable CIND-CPA experiment ExpCIND−CPA
Adv,C “succeeds” if Adv distinguishes

the ciphertext c ∈ s(mb) and outputs the correct bit b′ = b.
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Definition 7 [Cascadable Semantic Security] A cascadable cryptosystem
C = (SysGen, G, E, D,S) is cascadable semantically secure if:

∀n = poly(κ), ∀Adv ∈ Time(poly(κ)) Pr
[
ExpCIND−CPA

Adv,C [κ, n] succeeds
]
≤ 1

2
+negl(κ)

This cascadable semantic security definition implies several criteria about which
string rewrite models could potentially be part of a cascadable semantically secure
cryptosystem. For example, the CIND-CPA experiment implies several criteria that
a SRS S must have, such as:

• S must be canonical, since canonical forms are necessary in the definition of
cascadable cryptosystems.

• The string s generated by Adv in the security experiment must contain at least
one e symbol corresponding to a randomly generated key, thus Γ must contain
an e symbol for every possible key generated by G.

• The string s chosen by an adversary must have a finite, non-zero encryption
height ν(s). Thus, S must contain rules to at least decrypt arbitrary e symbols.

This by no means characterizes all string rewrite systems which could potentially
be part of a cascadable semantically secure cryptosystem. Completely characterizing
this class of string rewrite systems is left as an open problem.

Theorem 2 C is cascadable semantically secure =⇒ (∀s ∈ Γ∗) C is semantically
secure over domain Cs.

Proof: Recall the definition of Cs is the space of all messages in M encrypted
under string s. Suppose C is not semantically secure over messages drawn from
some message space Cs. Then there exists an adversary able to distinguish encryp-
tions c ∈ epk(s(mb)). Such an adversary could simply output s′ = epks, m0, and m1

in a CIND-CPA experiment. +,

Theorem 3 If (∀s ∈ Γ∗) C with rewrite system Scasc is semantically secure over
domain Cs then C with rewrite system Scasc is cascadable semantically secure.

Proof: Suppose that a cryptosystem with rewrite system Scasc is not cascadable
semantically secure. Then some adversary outputting s, m0, m1 will be able to distin-
guish c ∈ s(mb) with some non-negligible advantage. Recall s must contain some epk

that the adversary did not generate itself, and must have finite ν(s) > 0.
As will be shown in the proof of theorem 6, canonical strings s̄ with finite non-

zero ν(s) must consist entirely of e symbols. Let epk be the last (left-most) encryption
in s that the adversary did not generate and denote s = uepkv. Since all symbols
in u may be evaluated by an adversary, there exists some polynomial-time adversary
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able to distinguish ciphertexts in epk(v(mb)). This means that the cryptosystem is
not semantically secure over Cv. +,

An open question remains whether this holds for arbitrary rewrite systems. The-
orem 3 does not immediately follow if canonical strings might contain d symbols. A
first step would be to characterize which rewrite systems could conceivably be part
of a cascadable rewrite system.

The author conjectures that this implication does not hold for arbitrary rewrite
systems. There may be artificial cascadable cryptosystem or rewrite models construc-
tions designed specifically not to be semantically secure for some Cs.

Theorem 4 If C is cascadable semantically secure it does not imply (∀s, t ∈ Γ∗|s -0
t) C is semantically secure over domain Cs ∪ Ct.

Proof: The commutative cascadable semantically secure cryptosystem Ccom defined
in Section 3.5 is not semantically secure over domain C∞. In the traditional semantic
security model, an adversary may generate its own keys x and y and choose mes-
sage m0 ∈ ex(m) and m1 ∈ ey(m). The adversary then obtains c ∈ epk(mb), and tries
to compute da(c) and db(c).

In Ccom, one of these evaluations will successfully decrypt to epk(m), while the other
will output ⊥. Thus, an adversary is distinguishing c by the history of operations
that produced it. Since m0 ∈ Cex and m1 ∈ Cey , Ccom is not semantically secure over
domain Cex∪Cey . This obviously implies that Ccom is not semantically secure over C∞
either. +,

3.3.3 Historical Security

Cascadable semantic security is a direct analogy of traditional semantic security, but
does not capture an important facet of cascadable cryptosystems. Namely, what
happens when an adversary is able to distinguish some message-independent history
of a ciphertext? The essential question of historical security is what information can
an adversary learn about s given c ∈ s(m)?

The deterministic history of a ciphertext c ∈ s(m) is entirely defined by the
operation string s. It is assumed that random inputs used during evaluation are not
contained in s, which is why this section is concerned only with the deterministic
history. Alternative rewrite systems might model randomization operations with
symbols like rx, which could represent re-randomization with a value x. However, this
work will exclusively focus on deterministic histories and will not consider random
inputs used in evaluating e and d symbols.

In the cascadable semantic security model, historical security is not an issue since
the CIND-CPA experiment adversary chooses s itself. Whatever information that
the ciphertext c ∈ s(mb) reveals about s is irrelevant. A cascadable semantically
secure cryptosystem might even include s verbatim in its output. As Theorem 4
illustrates, history does matter in the traditional semantic security setting. If an
IND-CPA adversary chooses m0 ∈ s(x) and m1 ∈ t(x), and is able to distinguish
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between ciphertexts encrypted under epks or epkt, then the cryptosystem will not be
semantically secure over domain Cs∪Ct. In the commutative example from the proof
of Theorem 4, it is the case that s = ex and t = ey.

Why might the ciphertext history matter? There are many settings in which
it could benefit an attacker to identify which parties have encrypted a ciphertext,
for example mix-nets for electronic voting [25] or onion routing for private commu-
nication [52]. Different settings may require a ciphertext to hide different aspects
of its history. For example, cascaded encryptions and re-randomization in mix-nets
may need to hide the corresponding public keys, which motivated the development
of universally re-randomizable encryption [53].

Historical Revelation Properties. Which ciphertext historical properties might
be revealed to an adversary in a cascadable cryptosystem? As an example, the Ccom

construction in Section 3.4 reveals the net encryption height ν(s). For this reason,
this construction may be considered “height revealing”. An IND-CPA adversary
allowed to select challenge messages from Cs ∪ Ct where ν(s) -= ν(t) would be able
to trivially distinguish encryptions by their length. Traditional semantic security
definitions usually avoid this issue by assuming that challenge messages are of the
same length.

As another example, a ciphertext c ∈ s(m) may reveal the set of keys used to
encrypt it, i.e. it may reveal {ek|ek ∈ s̄}. This revelation property is informally called
“public key set revealing”. One may also consider a variant where K is a set of e
symbols, and c ∈ s(m) reveals {epk|epk ∈ s̄ ∧ epk ∈ K}. This property will be called
“known public key set revealing”.

By contrast, a “known secret key set revealing” cascadable cryptosystem reveals
if any public keys corresponding to a set of d symbols K were used to encrypt a
ciphertext. That is, c ∈ s(m) will reveal {epk|epk ∈ s̄ ∧ dpk ∈ K}. “Last encryption
revealing” cryptosystems would, as expected, reveal the last (left-most) epk symbol
in s̄. Various “sequence revealing” properties may reveal the string s̄, the string s̄
given an unordered set of symbols in s, or the string s itself.

Historical revelation will be defined by a parameterized function h : Γ∗×Γ∗ → Σ∗

that takes as input a string s and some auxiliary string of symbols x. The essential
idea is that a cryptosystem will be consider h-revealing if there exists some prob-
abilistic, polynomial-time algorithm A that is able to compute h(s, x) given x, a
message m, and a ciphertext c ∈ s(m). In other words, a cryptosystem is h-revealing
if x and a ciphertext c, where c ∈ Cs, reveals h(s, x)

The auxiliary “advice” string x represents a priori knowledge that an adversary
may have. For instance, x may contain public keys or keys that an adversary generated
herself. An alternative formulation of h-revelation might do away with x altogether.
In fact, many of the interesting historical revelation properties that will be discussed
do not make use of any x advice.

Definition 8 (h-Revealing Cryptosystems) A cascadable cryptosystem C is con-
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sidered h-revealing if for a security parameter κ:

∃Appt, ∃poly(κ), ∀ρ ← SysGen(1κ), A(ρ) → (m, x);

∀s ∈ Γpoly(κ), ∀c ∈ s(m), Pr [A(ρ, c, m, x) = h(s, x)] ≥ 1

poly(κ)

One may also consider a strongly h-revealing cryptosystem, which is defined iden-
tically, except that an adversary will have better than a 1 − negl(κ) advantage in
computing h(s, x). For example, the net encryption height ν(s) of a string s will
often be a strongly revealed property.

By varying h functions and defining different types of x advice values, one may
describe arbitrary historical revelation properties. Table 3.1 informally defines several
potentially important or interesting revelation properties that a cascadable cryptosys-
tem C might exhibit. Each row contains a name of a revelation property, a description
of an advice value, and a definition of a history h function.

Revelation Property Advice x History Function h(s, x)

Height Revealing ε ν(s)
Known Secret Key Set Revealing Set of dpk symbols {epk|epk ∈ s̄ ∧ dpk ∈ x}
Known Public Key Set Revealing Set of epk symbols {epk|epk ∈ s̄ ∧ epk ∈ x}
Public Key Set Revealing ε {ek|ek ∈ s̄}
Last Encryption Revealing ε ek if s̄ = eks′

Canonical Sequence Revealing ε s̄
Known Set, Sequence Revealing {γ|γ ∈ s̄} s
Sequence Revealing ε s

Table 3.1: Example historical revelation properties

Section 3.5.5 will compare various historical revelation properties shown by con-
structions presented in this work. Several basic observations may be made about
the interplay between cascadable semantic security, historical revelation properties,
and traditional semantic security. For instance, a cascadable cryptosystem that is
public-key set revealing will not be semantically secure (in the traditional sense) over
domains encrypted by different public keys:

Theorem 5 If C is (known) public-key set revealing and (∃epk) such that (epk ∈
s̄ ∧ epk -∈ t̄), then C is not semantically secure over domain Cs ∪ Ct.

Proof: If C is (known) public-key set revealing, then a ciphertext c ∈ s(m) or c ∈
t(m) will reveal whether epk was used to produce c. An adversary in an IND-CPA
experiment would be able to select m0 ∈ s(m) and m1 ∈ t(m) and could distinguish
the resulting encryption by the public-key set revelation property. +,
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This work will not extensively delve into the issue of historical security. However,
it does raise many questions. Which historical revelation properties are theoreti-
cally interesting or relevant to practice? How does historical security relate to the
underlying rewrite system?

Traditional semantic security settings typically assume messages have equal length,
so their encryptions are not trivially distinguishable and cascadable semantic secu-
rity artificially forces messages to have the same history. Are there more natural
IND-CPA experiment definitions that accommodate messages with different histo-
ries? These questions are left as open.

3.3.4 Cascadable CCA Security

Defining notions of security for cascadable cryptosystems stronger than the proposed
cascadable semantic security is left as an open problem. Defining a suitable cas-
cadable indistinguishability under adaptive chosen ciphertext (IND-CCA) security
experiment is not as clear-cut as defining a CIND-CPA experiment. A problem arises
if a particular cascadable cryptosystem’s rewrite model S necessarily implies cipher-
text malleability.

In a traditional IND-CCA experiment, an adversary has access to an Odpk(·) de-
cryption oracle and may ask for decryptions of any ciphertext except a specific chal-
lenge c ∈ epk(mb). An adversary in a cascadable cryptosystem may apply cascaded
operations to c to obtain some c′, then ask Odpk(·) to decrypt c′. Depending on the
rules in the rewrite model S, this may help an adversary.

For example, consider commutative rewrite models that allows decryption opera-
tions in any order, as would a cryptosystem used in a three-pass key exchange proto-
col. This type of rewrite model will be presented in Section 3.4.3. Suppose an adver-
sary obtains a challenge ciphertext c ∈ epk(mb) then computes c′ ∈ eA(c) = eAepk(mb),
where A is some key the adversary generated on its own. This adversary may now
query Odpk(c′) to obtain c′′ ∈ eA(mb), which it may trivially decrypt. Thus commu-
tativity seems inherently incompatible with the traditional CCA setting.

A similar issue arises in re-randomizable cryptosystems where an adversary can
trivially re-randomize a ciphertext and ask Odpk(·) for its decryption. This moti-
vated the development of Re-playable Chosen Ciphertext (RCCA) security by Canetti,
Krawczyk, and Nielson [21].

Essentially, the RCCA definition allows an adversary in a CCA experiment to
ask for a decryption of any ciphertext that is not a trivial re-randomization of the
challenge ciphertext. RCCA security does not immediately accommodate commuta-
tivity, since it does not restrict asking a decryption oracle to decrypt a commutatively
encrypted ciphertext. Regardless, RCCA may be a useful starting point in defining
a notion cascadable or commutative CCA security.

One related work is due to Dodis and Katz, who show how to construct a generic
multiple encryption system that offers CCA security [36]. However, in this construc-
tion, decryption is an all-or-nothing operation – all keys must be used together to
decrypt a ciphertext. One cannot remove a single layer of encryption, or for that
matter, add a layer of encryption.
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3.4 Constructions

As an exercise, Section 3.4.1 defines a trivial XOR cascadable cryptosystem that is
not cascadable semantically secure. Section 3.4.2 shows how to construct a cascad-
able semantically secure cryptosystem Ccasc from an arbitrary semantically secure
cryptosystem.

Section 3.4.4 presents a commutative cascadable semantically secure cryptosystem
built from an arbitrary multiplicative homomorphic, semantically secure cryptosys-
tem (like ElGamal). The research in this chapter was originally motivated by the
desire to define security for commutative cryptosystems like this one.

3.4.1 XOR Commutative Encryption

As an exercise, simple XOR encryption is framed in the cascadable cryptosystem
framework. A commutative SRS Sxor is defined for keyspace K = {0, 1}κ as follows:

Γ =
⋃

k∈K

{ek}, R =
⋃

k∈K

{ekek → ε,
⋃

j∈K|j<k

ejek → ekej}

By inspection, this SRS is canonical. Given a string s, its canonical form will
contain all unmatched ek symbols in order of key value. A cascadable cryptosys-
tem Cxor = (SysGen, G, E, D,Sxor) is defined as:

• SysGen(1κ) = 1κ

• G(1κ) → s ∈ {0, 1}κ

• E(s, m) = s⊕m, where m ∈ {0, 1}κ

• D(s, c) = s⊕ c

Obviously, Cxor is not cascadable semantically secure, and in fact, cannot even
be framed in a CIND-CPA experiment. However, an interesting aspect is that the
information theoretic security of Cxor implies it has perfect historical security – that
is, no historical properties can be revealed.

A ciphertext c may be the result of evaluating any s ∈ {0, 1}κ on some message m.
Therefore, a ciphertext c yields no information on s. A consequence is that Cxor does
not reveal any historical properties about s.

This illustrates how cascadable semantic security and historical security are or-
thogonal issues. A cryptosystem may completely reveal its entire history and still be
cascadable semantically secure. Or, as is the case with Cxor, a cryptosystem may not
be cascadable semantically secure, yet can offer complete historical security.

3.4.2 A Cascadable Semantically Secure Cryptosystem

It is simple to construct in a straightforward manner, as we show in this section,
a cascadable semantically secure cryptosystem from an arbitrary semantically se-
cure cryptosystem (SysGen, G, E′, D′). This section offers a construction Ccasc as a
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“proof of concept” construction in the cascadable semantic security model. The idea
behind Ccasc is simple: encrypt a ciphertext, encode it as a list of plaintexts, and
encrypt each element.

Ccasc will consist of four probabilistic, polynomial-time algorithms SysGen, G, E, D
and the rewrite model Scasc defined in definition 2. Let message space M = Σ&(κ), for
some fixed function *. Let SysGen(1κ) → ρ, G(ρ) → (pk, sk) and E′ and D′ have the
properties that ∀(pk, sk) ∈ G(ρ), ∀m ∈ Σ&(κ), D′(sk, E′(pk, m)) = m. Let ξ : Σ∗ → Σ∗

be an efficiently computable, efficiently invertible function that outputs a prefix-free
encoding of an arbitrary input.

Ccasc is defined in figures 3-2 and 3-3.

Cascadable Encryption on inputs pk and x ∈ Σ∗:

1. Let m = ξ(x)||ξ(pk), where || signifies concatenation.

2. Parse m into blocks in Σ&(κ) denoted (m1, . . . ,mn), padding as necessary.

3. Define Epk(x) = ξ(E′pk(m1))|| . . . ||ξ(E′pk(mn)).

Figure 3-2: Cascadable encryption from a generic, semantically secure cryptosystem.

Cascadable Decryption on input sk and x ∈ Σ∗:

1. Attempt decode x under ξ−1 as elements ci = ξ−1(xi).

2. Output ⊥ if decoding fails.

3. Attempt to decrypt each ci as mi = D′
sk(ci).

4. If any D′
sk operation fails or some ci is outside the domain of D′, output ⊥.

5. Attempt to decode m1m2 . . . mn under ξ−1 as x||pk.

6. If pk is not the public key associated with sk or decoding fails, output ⊥.

7. Otherwise output x.

Figure 3-3: Cascadable decryption from a generic, semantically secure cryptosystem.

Theorem 6 Ccasc exhibits rewrite fidelity.

Proof: To prove its security, it is important to first show that Ccasc exhibits rewrite
fidelity, that is ∀s ∈ Γ∗, ∀m ∈ M , s(m) = s̄(m). Consider a pair of values t and t′

along the derivation path from s to s̄ such that t′ is derivable by applying a single
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rule to t: s
∗→ t

1→ t′
∗→ s̄. In Ccasc’s rewrite model Scasc specified in definition 2 on

page 50, there is only one type of rule dpkepk → ε.
Thus, it must be the case that t = udpkepkv and t′ = uv. Clearly, it will be the case

that t(m) = t′(m) if dpkepkv(m) = v(m). Consider an element c ∈ v(m). If c = ⊥,
then clearly dpkepk⊥ = ⊥.

Otherwise, when evaluating epk, E will encode v(m)||pk under ξ into blocks m1, . . . ,mj

from Σ&(κ), and encrypt and encode the blocks as ξ(E(pk, m1))|| . . . ||ξ(E(pk, mj)).
Evaluating the subsequent dpk symbol with D will simply decode and decrypt each
ciphertext under sk. Since ∀x ∈ Σ∗, (ξ−1(ξ(x)) = x) and ∀(pk, sk) ∈ G(ρ), ∀m ∈
M , (D′(sk, E′(pk, m)) = m), the cascaded decryption specified in figure 3-3 will faith-
fully recover each mi, obtain v(m)||pk, and output some c ∈ v(m).

Thus it is the case that dpkepkc = c for any c ∈ v(m). Thus, ∀m ∈ M , t(m) =
t′(m). Since t was chosen arbitrarily along the derivation path from s to s̄ and s is
an arbitrary term, we can inductively argue that ∀s ∈ Γ∗, ∀m ∈ M , s(m) = s̄(m). In
other words, Ccasc exhibits rewrite fidelity. +,

Theorem 7 Ccasc is cascadable semantically secure.

Proof: Assume for the sake of contradiction that there is some probabilistic polyno-
mial time adversary cAdv that has greater than a polynomial advantage 1/poly(κ) in
the experiment ExpCIND−CPA

Ccasc,cAdv [κ, n], for some n that is polynomial in κ.
The traditional IND-CPA experiment will be reduced to the CIND-CPA experi-

ment by constructing a probabilistic polynomial time adversary Adv that makes calls
to cAdv. Adv will contradict the assumed semantic security of the generic cryptosys-
tem (G, E, D).

Let (pk∗, sk∗) be the key pair output by G(ρ) in the traditional IND-CPA experi-
ment, as stated in definition 6. Adv obtains public pk∗ and system parameters ρ in its
standard IND-CPA experiment. Adv then generates (n− 1) other (pk, sk) pairs, and
passes ρ and all n public keys in random order to cAdv. These values are distribution
identically as the input that cAdv expects in the CIND-CPA experiment.

cAdv then outputs m0, m1 ∈ M and s ∈ Γ∗. Because Ccasc exhibits rewrite fidelity,
it is the case that ∀m, s(m) = s̄(m). Furthermore, by the definition of the cascading
CIND-CPA experiment, s̄ must contain an encryption symbol epk corresponding to
at least one pk initially input to cAdv. Since public keys are randomly generated and
permuted when input to cAdv, there is at least a 1/n chance that the first symbol
of s̄ (i.e. the last operation) is epk∗ . Assume this to be the case and that s̄ = epk∗s′.

Assume Adv obtains all key material generated by cAdv. This allows Adv to evalu-
ate any symbol output by cAdv except dpk∗ . Because of rewrite fidelity, Adv can eval-
uate s̄ without changing cAdv’s input distribution. Since ν(s) > 0, by the model S, s̄
cannot contain any decryption symbols. Thus, Adv can perfectly simulate cAdv’s
expected input s(mb).

Since it was assumed that s̄ = epk∗s′, cAdv will expect input from epk∗(s′(mb)).
Consider the last step of this operation: the cascaded encryption defined in fig-
ure 3-2 would parse c ∈ s′(mb) into *(κ)-bit blocks denoted mb

1, . . . ,m
b
j. Given
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E(pk∗, mb
1)‖ . . . ‖E(pk∗, mb

j), Adv will correctly identify b with non-negligible proba-
bility.

Consider “hybrid” cascadable ciphertexts of the form:

ci = E(pk∗, m0
1)‖ . . . ‖E(pk∗, m0

i−1)‖E(pk∗, m1
i )‖ . . . ‖E(pk∗, m1

j)

In other words, the first (i − 1) blocks of a hybrid ciphertext will be spliced in
from an encryption of m0, while the remaining (j − i) blocks will be splied from an
encryption of m1. Thus, there will be j different hybrid ciphertexts indexed from 1
to j. Hybrid ciphertext i and (i + 1) will differ in the ith block.

By a standard hybrid argument, there must exist two hybrid ciphertexts ci and ci+1

where cAdv maintains at least a 1/(j · poly(κ)) advantage. (More on the bounds of j
later.) Adv may take advantage of this for its own IND-CPA experiment. To do so, it
will output the messages m0

i and m1
i , and will obtain E(pk∗, mb

i) in response. Adv will
the provide the following ciphertext to cAdv:

E(pk∗, m0
1)‖ . . . ‖E(pk∗, m0

i−1)‖E(pk∗, mb
i)‖E(pk∗, m1

i+1)‖ . . . ‖E(pk∗, m1
j)

This ciphertext will be one of the two hybrids that cAdv maintains a polynomial
advantage in distinguishing. Thus, considering there is a 1/n chance that the first
symbol of s is epk∗ , Adv has a 1/(j · n · poly(κ)) advantage in its own IND-CPA
experiment.

One outstanding issue is the value of j. If Ccasc is not efficiently cascadable,
then it is possible that j is exponential in κ. However, cAdv must still run in time
polynomial in κ. If provided c ∈ s(mb) on a tape, it can only access some polynomial
number h(κ) bit of c. Thus, j is effectively upper bounded by the number of accesses
that cAdv makes to its challenge ciphertext. Adv can generate its hybrid ciphertext by
providing E(pk∗, m0) blocks on the first i−1 queries, then E(pk∗, mb

i), then E(pk∗, m1)
blocks on all remaining queries.

Thus, Adv will have at least a 1/(h(κ) · n · poly(κ)) advantage in distinguish-
ing E(pk∗, mb

i) ciphertexts through calls to cAdv. Since this advantage is polynomial
in κ, it contradicts the assumed semantic security of the underlying (G, E, D) cryp-
tosystem. Therefore, no such polynomial time cAdv can exist and Ccasc must be
cascadable semantically secure. +,

Ccasc historical revelation properties. The underlying encryption scheme E′

may reveal various historical properties. For example, if the length of the encoding ξ
and encryption E′ outputs are predictable, then Ccasc would be height revealing. If E′

included the public key with a ciphertext output, then Ccasc would be last encryption
revealing.

3.4.3 A Commutative String Rewrite System Model

We now define a simple, canonical SRS that models commutative encryption:
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Definition 9 (Commutative Cryptosystem Model) Let K be a keyspace and ε
represent an empty string. Define the string rewrite system Scom = (Γ, R) as follows:

Γ =
⋃

k∈K

{ek, dk}, R =
⋃

k∈K

{
dkek → ε,

⋃

j∈K−{k}

dkej → ejdk

}

The alphabet Γ contains symbols for encryption or decryption under all possible
keys. There are two types of rules in Scom. The first are familiar decryption rules of
the form dkek → ε, which are identical to those in the basic cascading model Scasc

from definition 2. The second type of rule, of the form dkej → ejdk, is less intuitive.
These rules allow a decryption symbol dk to skip past any encryption under a different
key ej. For this reason, these rules are informally referred to as “d-skip” rules.

The intuition behind d-skip rules are that one should be able to decrypt any
existing encryptions. Shamir identified this relationship in the “third commutative
diagram” in [105]. This is the commutative property used in most applications of
commutativity [1, 27, 106]. A decryption symbol may skip past the immediately
preceding encryption symbol, if that encryption is under a different key. One may
think of the decryption symbol di as being able to scan from left to right along a
string until it matches a corresponding encryption ei or can no longer move right.
For example, consider the string s = dkejek. In Scasc, we’d have that s would be in
its canonical form since no rules could be applied. However, in Scom, one may apply
the d-skip rule dkej → ejdk, followed by a decryption rule dkek → ε to obtain the
canonical form s̄ = ej.

Why use d-skip rules instead of something more intuitive, like ejek ↔ ekej? Un-
fortunately, such rules would create derivation cycles and Scom would neither be ter-
minating nor canonical. The definition of equivalence requires a canonical rewrite
system, so non-terminating rewrite systems cannot be used in the definition of cas-
cadable semantic security.

Suppose a more intuitive rewrite system, denoted S ′com, used rules of the form ejek ↔
ekej instead of d-skip rules. Although S ′com is not canonical, one could adapt it for
use in cascadable cryptosystems by defining a “class rewrite system” [32, 33, 34].
Given a string s, define its class C(s) = {t ∈ Γ∗|s ∗↔ t}. Two strings s and t will
be considered equivalent if C(s) = C(t). A string exeyez in S ′com shares a class with
every permutation of {ex, ey, ez}.

For simplicity, this work will stick to basic, terminating string rewrite systems.
It is left as an open problem to define a notion of security that is compatible with
non-terminating rewrite systems, and for that matter, general term rewrite systems.

Theorem 8 Scom is canonical.

Proof: S is terminating. Suppose there is a derivation cycle in S. Let s be a
string in the cycle, and (r1, . . . , rn) be the minimum length sequence of rules such
that s →r1 s1 →r2 . . . sn−1 →rn s. Clearly, since there are no length-increasing rules
in S, no rule ri can be a decryption rule. Otherwise, by repeating a derivation cycle,
a string would dwindle to an empty string.
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Therefore, each ri must be a d-skip rule. The position of some d symbol must
decrease and move to the right in each subsequent derivation si. Since there is no
rule that can move any d symbol to the left, there is no way to return to the original
string s. For example, once a string diej is replaced with ejdi, there is no way to
return back to the original string. Thus, there cannot be any derivation cycles in S,
and so it is terminating.

S is confluent. Recall that confluence means that for all s ∈ Γ∗ if s
∗→ t

and s
∗→ u, there exists some w such that t

∗→ w and u
∗→ w. A weaker property

is local confluence, which is the property that s ∈ Γ∗ if s → t and s → u, then
there exists some w such that t

∗→ w and u
∗→ w. In other words, any single-rule

descendants of s must have a common descendant.
A well known result is that a terminating, locally confluent system is confluent [33].

Thus, it will be sufficient to show that S is locally confluent. Consider a string s that
derives two strings t and u under respective rules r and r′.

In S, r and r′ are only applied to length-2 sub-strings of s. Recall that all of the
rewritten strings of rules in S are either of the form diei or diej. Wherever r and r′

are applied in s, they cannot overlap. So, every r and r′ must be applied to disjoint
sub-terms. Then it is trivial to see that applying r′ to t yields the same string as
applying r to u.

Since every t and u derived in one step from s have a common descendant, S is
locally confluent. Since it is also terminating, it is confluent. Thus, S is canonical. +,

3.4.4 Commutativity from Homomorphic Encryption

We show how to build a commutative, cascadable semantically secure cryptosys-
tem from an arbitrary, semantically secure cryptosystem that supports homomorphic
multiplication of ciphertexts, like ElGamal. This is the fundamental idea behind the
detailed construction presented in Sections 3.5.1 and 3.5.2.

Theorem 9 A semantically secure, re-randomizable cryptosystem (SysGen, G, E′, D′)
that supports homomorphic multiplication of ciphertexts implies the existence of a
commutative, cascadable semantically secure cryptosystem C = (G, E, D,Scom).

Proof: This section describes an abstract construction of a commutative semantically
secure cryptosystem. Section 3.5 contains a detailed construction based on ElGamal
that is proved to be cascadable semantically secure in Section 3.5.4.

The function E′ supports homomorphic multiplication of ciphertexts, that is,
given E′pk(m1) and E′pk(m2), one may compute E′pk(m1 · m2) as E′pk(m1) · E′pk(m2).
Alternatively, E′ only needs to support homomorphic multiplication of a ciphertext
by some constant, that is, given E′pk(m) and x, one can compute E′pk(xm).

Ciphertexts in the cryptosystem (G, E, D,Scom) will be a list of tagged E′ cipher-
texts, each of the form (pk, E′(pk, v)). Denote the space of lists of tagged ciphertexts
of length i as Ci. Define commutative encryption as shown in figure 3-4.
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Commutative Encryption E(pk, z):

1. Input is public key pk, message z ∈ Cn for n ≥ 0, and randomness.

2. If the input is malformed, return ⊥.

3. If n = 0, return (pk, E′(pk, z)).

4. Denote z = [(pk1, E
′(pk1, v1)), . . . , (pkn, E

′(pkn, vn))].

5. Generate (n + 1) random values ri such that
∏n+1

i=1 ri = 1.

6. Homomorphic multiply to compute c′i = E′(pki, vi · ri) for i = 1, 2, . . . , n.

7. Re-randomize each c′i.

8. Let c′n+1 = E′(pk, rn+1).

9. Return (pk1, c′1), . . . , (pkn+1, c′n+1).

Figure 3-4: Commutative encryption from multiplicative homomorphic encryption

When given a plaintext message m, E simply returns the result of the underly-
ing E′ encryption function, tagged with the public key used to encrypt it. Other-
wise, E’s input will be a list of n tagged ciphertexts output from E′. These cipher-
texts have the property that the product of their decryptions is the plaintext. In
other words,

∏n
i=1 D(ski, ci) = m. E generates a new ciphertext that maintains this

property. To do so, E selects (n + 1) random ri values such that
∏n+1

i=1 ri = 1. E ho-
momorphically multiplies an ri value into each E′ ciphertext, then encrypts the final
randomization rn+1 as E′(pk, rn+1), and finally outputs all (n+1) tagged ciphertexts.
These operations preserve that

∏n+1
i=1 D(ski, ci) = m.

The process for decrypting commutative ciphertexts is illustrated in figure 3-5.
Decryption is fairly straightforward. Someone with a secret key sk will first scan

through a list of n ciphertexts from E′ and check for any that have been encrypted
with a corresponding public key pk. If there are multiple such values, D can pick
one arbitrarily and decrypt it to obtain some value D′(sk, ck) = vk. D will then
choose (n−1) values ri such that

∏
j %=k rj = vk and homomorphically multiply each rj

into each corresponding cj ciphertexts. Thus, by the following, it is the case that
correctness of decryption will be preserved:

m =
n∏

i=1

vi = vk

n∏

j %=k

vj =
n∏

j %=k

rjvj

In practice, ElGamal would satisfy this definition. However, there are two weak-
nesses in this formulation related to historical security. First, is that this scheme is
public key set revealing. Someone trivially knows which public keys have encrypted
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Commutative Decryption D(sk, z):

1. Input is a secret key sk and a ciphertext z ∈ Cn, for n ≥ 1.

2. If the input is malformed, return ⊥.

3. Denote z = [(pk1, E
′(pk1, v1), . . . , (pkn, E

′(pkn, vn)].

4. Search for an element ck such that ck = (pk, E′(pk, vk)), where pk is sk’s
corresponding public key.

5. If no such element exists, return ⊥.

6. If n = 1, and z = (pk, c), return m = D′(sk, c).

7. Else, choose (n− 1) random rj values such that
∏n

j %=k rj = D′(sk, ck) = vk.

8. Let c′j = E′(pkj, vj · rj) and re-randomize c′j.

9. Return (c′1, . . . , c
′
k−1, c

′
k+1, c

′
n).

Figure 3-5: Commutative decryption from multiplicative homomorphic decryption

a message. It is also canonical sequence revealing, since it reveals the exact order of
operations. Obviously, it is also height revealing.

Fortunately, all of these historical properties, except height, can be hidden by using
a universal re-encryption scheme, such as one due to Golle et al. [53]. Universal re-
encryption allows one to re-randomize without the corresponding public key, which
allows us to remove pk values from the ciphertext. One may also simply permute
the order of the ciphertext blocks after each operation, which removes any sequence
information. A detailed description of just such a cryptosystem, denoted Ccom is given
in Section 3.5.

3.4.5 Commutativity from Semantic Security

We will briefly digress to sketch a commutative cryptosystem based on a generic
semantically secure cryptosystem (G′, E′, D′) and simple XOR operations. This con-
struction will demonstrate that the cascadable semantic security definition given in
section 3.3.2 is not sufficient to guarantee a reasonable notion of security for some
protocols, like three-pass key exchange [105]. This discrepancy motivates the devel-
opment of a new notion of transcript security, which is informally defined below in
definition 11.

The construction is quite simple. Assume (G′, E′, D′) is a standard semantically
secure, public-key cryptosystem. Each cascaded encryption will generate a random
value r, then XOR r with the message payload as m⊕r, and finally append a labeled
public-key encryption (pk, E′(pk, r)) to the output:
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XOR Commutative Encryption E(pk, z):

1. Input is public key pk, message z ∈ Cn for n ≥ 0, and randomness.

2. If the input is malformed, return ⊥.

3. Denote z = [c, (pk1, c1), . . . , (pkn, cn)].

4. Generate a random value r and compute cn+1 = E′(pk, r).

5. Return z′ = [c⊕ r, (pk1, c1), . . . , (pk, cn+1)].

Figure 3-6: Commutative encryption from semantic security

To decrypt, a party can search for its public key among the list of ciphertexts,
decrypt the specific ciphertext, and XOR the decryption out of the message payload.
However, consider an application like three-pass key exchange. As can be seen in figure
3-1, an eavesdropper would obtain three ciphertexts: [m⊕ ra, (a, E′(a, ra))], [m⊕ ra⊕
rb, (a, E′(a, ra)), (b, E

′(b, rb))], and [m⊕ rb, (b, E
′(b, rb))]. Clearly, an eavesdropper can

obtain m by comparing these ciphertexts.
Yet based on the underlying semantic security of E′, this construction appears2 to

be a cascadable, semantically secure cryptosystem. This is not a flaw or contradiction
of the cascadable semantic security definition. In the CIND-CPA experiment an
adversary receives a single ciphertext encrypted under an arbitrary s. Adversaries
do not receive intermediate ciphertexts, as an eavesdropper would when monitoring
a three-pass key exchange protocol.

Transcript Security: This discrepancy motivates a new notion of transcript se-
curity. The idea is that an adversary should be able to obtain a transcript of all
intermediate, non-trivial ciphertexts used to generate a particular cascaded cipher-
text c ∈ s(m). The cryptosystem as described in figure 3-6 would fail to meet such a
definition.

To address this issue, we introduce a CIND-CPA experiment with transcripts.
Rather than simply obtaining an encryption c ∈ s(mb), as in the CIND-CPA experi-
ment, an adversary will obtain an intermediate ciphertext for non-trivial suffixes of s
denoted s1, . . . , sj. The symbolic difference between each non-trivial suffix will be de-
noted by ti. That is, si = ti◦si−1 and t1 = s1. Thus, si = ti◦si−1 = ti◦ti−1◦. . .◦t1(m).

Note that a traditional chosen-plaintext attack could obtain independent encryp-
tions of any non-trivial suffix si(mb). However, we wish to give the adversary access
to ciphertexts that depend on previous encryptions. Thus, we will provide the adver-
sary c1 ∈ t1(mb) and ci ∈ ti(ci−1) for each 1 < i ≤ j.

2This observation is upon inspection and no formal proof is provided.
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Definition 10 (CIND-CPAT Experiment) A cascadable indistinguishability un-
der chosen plaintext attack with transcripts experiment with adversary Adv and cas-
cadable cryptosystem C is defined as follows:

ExpCIND−CPA
Adv,C [κ, n]:

1. SysGen(1κ) → ρ
2. Call G(ρ) n times to generate (pk1, sk1), . . . , (pkn, skn)
3. Denote the key symbol set K = {epk1 , . . . , epkn}.
4. Adv(ρ, pk1, . . . , pkn) finds (m0, m1, s) such that m0, m1 ∈ M .
5. Let s1, . . . , sj be the set of suffixes of s such that:

(a.) sj = s
(b.) (∀si)(∞ > ν(si) > 0)
(c.) (∀si)(∃epk)(epk ∈ K ∧ epk ∈ s̄i)

6. Let t1, . . . , tj be the set of symbolic differences between si suffixes such that:
(a.) s1 = t1
(b.) si = ti ◦ si−1 for 1 < i ≤ j

7. Let b
R← {0, 1}.

8. Let c1 ∈ t1(mb) and ci ∈ ti(ci−1) for 1 < i ≤ j
9. Adv(c1, . . . , cj) outputs guess bit b′

Cryptosystems where no polynomial time adversary can gain a significant advan-
tage in this experiment are considered transcript secure:

Definition 11 (Transcript Security) A cascadable cryptosystem
C = (SysGen, G, E, D,S) is transcript secure if:

∀n = poly(κ), ∀Adv ∈ Time(poly(κ)) Pr
[
ExpCIND−CPA

Adv,C [κ, n] succeeds
]
≤ 1

2
+negl(κ)

Clearly, the cryptosystem described in figure 3-6 is not transcript secure. An
adversary could obtain intermediate encryptions of the three non-trivial suffixes s =
s3 = daebea, s2 = ebea, and s1 = ea. The differences between these suffixes are t3 =
da, t2 = eb, and t1 = ea. The adversary would obtain ciphertexts c3 = da(c2), c2 =
eb(c1), and c1 = ea(mb), which would trivially allow it to distinguish (and extract) mb.

This chapter will not elaborate further on transcript security. The author conjec-
tures that the constructions presented in sections 3.4.4 and 3.5.1 are in fact transcript
secure. Proving these cryptosystems to be transcript secure is left as an open problem.

3.5 A Universally Re-encryptable, Commutative
Cryptosystem

We present a commutative cryptosystem that is cascadable semantically secure and
reveals less information than the construction presented in Section 3.4.4.
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3.5.1 Universal Re-Encryption based on ElGamal

Section 3.5.2 presents a practical commutative public-key cryptosystem based on
Golle et al.’s universal re-encryption based on ElGamal [53], referred to as GJJS. The
GJJS universally re-randomizable cryptosystem is defined as follows:

• System Parameters: SysGen(1κ) → (G, g), where G is a group with prime order q
and g is a generator of G.

• Key Generation: G(G, g) → (y = gx, x) = (pk, sk), where x ∈R Zq.

• Encryption: uE(G, g, y, r, s, m) → c = [(α, β); (γ, δ)] = [(myr, gr); (ys, gs)], where y ∈
G , m ∈ G, and random (r, s) ∈ Z2

q. This may be abbreviated as c = uEy(m).

• Decryption: uD(G, g, x, c) where x ∈ Zq and c = [(α, β); (γ, δ)] ∈ G4: Test
if γ/δx = 1. If so, output m = α/βx. Otherwise output ⊥. This may be
abbreviated as m = uDx(c).

• Universal Re-Encryption: uRe(c, t, u) → [(αγt, βδt); (γu, δu)], where
c = [(α, β); (γ, δ)] ∈ G4 and random (t, u) ∈ Z2

q. Abbreviate this operation
as c′ = uRe(c).

3.5.2 Commutative Cryptosystem Construction

We now define a commutative cryptosystem Ccom = (SysGen, G, E, D,Scom) based on
the GJJS universally re-randomizable cryptosystem (SysGen, G, uE, uD). Figure 3-7
specifies the method for encrypting commutative ciphertexts using the GJJS cryp-
tosystem.

When given a plaintext message m ∈ G, E simply outputs the result of the un-
derlying uE encryption function. Otherwise, E’s input will be a list of n cipher-
texts output by uE, which are each four-tuples of elements in G. These ciphertexts
have the property that the product of their decryptions is the plaintext. In other
words,

∏n
i=1 αi/β

xi
i = m. E generates a new ciphertext that maintains this property.

To do so, E selects (n + 1) values ri such that
∏n+1

i=1 ri = 1. E multiplies an ri

value into each αi and re-randomizes the resulting ciphertext with uRe. Thus, this
commutative cryptosystem relies on the homomorphic properties of the GJJS cryp-
tosystem. E then then encrypts the final randomization rn+1 as uEy(rn+1) and per-
mutes the entire list of (n+1) uE ciphertexts. These operations preserve the property
that

∏n+1
i=1 (riαi)/β

xi
i = m.

Figure 3-8 specifies the method for decrypting commutative ciphertexts.
Again, decryption is fairly straight forward. Someone with a secret key x will first

scan through a list of n uE ciphertexts and check for any that have been encrypted
with a corresponding public key y. To do so, D tests whether any γk/δx

k = 1. If there
are multiple such values, D can pick one arbitrarily and decrypt it to obtain some
value αk/βx

k . D will then choose (n−1) values ri such that
∏

j %=k rj = αk/βx
k , multiply
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Commutative Encryption E(y, z):

1. Input is public key y ∈ G, message z ∈ G or z ∈ G4n for n ≥ 1, and
randomness.

2. Otherwise, return ⊥.

3. If z ∈ G return uEy(z).

4. Else, parse z as a list of n elements of the form ci = [(αi, βi); (γi, δi)] ∈ G4.

5. Generate (n + 1) random values ri ∈ Zq such that
∏n+1

i=1 ri = 1.

6. Let c′i = uRe([(riαi, βi); (γi, δi)]) for each i ∈ [1, n].

7. Let c′n+1 = uEy(rn+1).

8. Return a random permutation of (c′1, . . . , c
′
n+1).

Figure 3-7: Commutative encryption based on the GJJS cryptosystem

each rj into each corresponding cj’s αj value, then universally re-randomize each mod-
ified ciphertext. Recall that a ciphertext will have the property that

∏n
i=1 αi/β

xi
i = m.

Thus, by the following, it is the case that correctness of decryption will be preserved:

m =
n∏

i=1

αi

βxi
i

=
αk

βx
k

n∏

j %=k

αj

β
xj

j

=
n∏

j %=k

rj
αj

β
xj

j

Theorem 10 Ccom is efficiently cascadable.

Proof: A E input in Ci will be a permuted list of i uE ciphertexts, each of size poly(κ).
The output will simply be a list of (i+1) uE ciphertexts, so the difference in size will
be poly(κ). +,

3.5.3 Ccom exhibits rewrite fidelity

Theorem 11 Ccom exhibits rewrite fidelity.

Proof of Theorem 11: Rewrite fidelity is a required property for cascadable cryp-
tosystems and will be important in proving the cascadable semantic security of Ccom.
We show that for any string s ∈ Γ∗ and any message m ∈ M , evaluating s(m) yields
the same distribution as s̄(m). We first characterize the distribution s̄(m), then will
inductively show that s̄(m) = s(m).

Definition 12 (Effective Key Multi-set) For a string s ∈ Γ∗, if ν(s) is finite
then the effective key multi-set K(s) = {k|ek ∈ s̄}. If ν(s) = ∞, then K(s) = {⊥}.

72



Commutative Decryption D(x, z):

1. Input is a secret key x ∈ Zq and a ciphertext z ∈ G4n, for n ≥ 1.

2. Otherwise, return ⊥.

3. Parse z as a list of n elements of the form ci = [(αi, βi); (γi, δi)] ∈ G4.

4. Search for an element ck such that γk/δx
k = 1.

5. If no such element exists, return ⊥.

6. If n = 1, return m = αk/βx
k .

7. Otherwise, choose (n− 1) random elements rj such that
∏n

j %=k rj = αk/βx
k .

8. Let c′j = uRe([(rjαj, βj); (γj, δj)]) for j ∈ [1, k − 1] ∪ [k + 1, n].

9. Return a random permutation of (c′1, . . . , c
′
k−1, c

′
k+1, c

′
n).

Figure 3-8: Commutative decryption based on the GJJS cryptosystem

Definition 13 (T (K, m) Distribution) Define T (K, m) to be the uniform distribu-
tion over all permutations of sets of ciphertexts {uEk(ri) |k ∈ K} for every (r1, . . . , r|K|) ∈
G|K| such that

∏|K|
i=1 ri = m. If K = ∅ then T (K, m) = {m} and if K = {⊥},

then T (K, m) = {⊥}.

The following theorem, Theorem 12, is necessary in the proof of Theorem 11.

Theorem 12 In Ccom, ∀s ∈ Γ∗, ∀m ∈ M , s̄(m) = T (K(s), m).

Proof of Theorem 12: Clearly, Theorem 12 holds for the base case where s̄ = ε.
Note that in Scom, if s̄ contains a d symbol, then ν(s̄) = ∞ since there does not
exist any string t such that ts = ε. Otherwise, ν(s̄) is finite only if s̄ contains only e
symbols. This proof will look at each of these cases and show that s̄ = T (K(s), m).

Case 1 (∃d ∈ s̄): Since no rules in Scom may be applied to s̄, it cannot contain any
substrings of the form diei or diej. So any d symbols must be the right-most symbols
in s̄. Therefore, the first symbol in such a s̄ that is evaluated on any message m
must be a d. By the definition of E, dk(m) = ⊥ for all messages and keys. Thus,
if s̄ contains a d symbol, then s̄(m) = {⊥}. Because ν(s̄) = ∞, it is the case
that s̄(m) = T (K(s), m) = {⊥}.

Case 2 (¬∃d ∈ s̄): In this case, s̄ consists entirely of ek symbols. Evaluating
a string of ek symbols will encrypt random values whose product is m under each
key in K(s), and permute the output. This is exactly the distribution described
by T (K(s), m). (End proof of Theorem 12.) +,
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We will now make an inductive hypothesis that ∀s such that |s| ≤ n, that ∀m ∈
M , s(m) = s̄(m). This hypothesis will show that for all strings t of length n+1, t(m) =
t̄(m). Consider the base case of n = 0, or s = ε = s̄. Clearly s(m) = {m} = s̄(m).
The hypothesis holds for n = 1, where either s = ek or s = dk, for some key k.
Evaluating ek(m) means encrypting the message m under the key k, which yields
an element from T ({k}, m) = s̄(m). Evaluating dk(m) would yield ⊥, which is also
identical to s̄(m).

Assume the hypothesis holds for some arbitrary n, i.e. ∀s ∈ Γn, ∀m ∈ M assume
that s(m) = s̄(m) = T (K(s), m). Now consider a string t = eks or t = dks. First,
note that if ν(s) = ∞, then s(m) = {⊥} and clearly t(m) = {⊥}. Since ν(t) =
∞, t̄(m) = {⊥}. Thus, induction holds if ν(s) = ∞.

If ν(s) is finite then K(s) is a multi-set of keys. Under Scom if t = eks, then t̄ = eks̄.
This is because no decryption operation removes ek and there are no rewrite rules
that replace a substring of the form ed or ee. By the definition of E, applying ek

to an element in s(m) = T (K(s), m) will output an element in T (K(s) ∪ {k}, m) =
T (K(t), m) = t̄(m). Thus, the induction holds if ν(s) is finite and t = eks.

The remaining case is if ν(s) is finite and t = dks. This is a trickier case because
in Ccom, attempting to decrypt an element c ∈ s(m) with a key k that it has not been
encrypted with will output a ⊥ symbol.

Consider first the case where ek ∈ s̄. Then an element c ∈ s̄(m) will contain a
ciphertext encrypted under k. D will search c for that ciphertext, decrypt it, ran-
domly split its contents among the remaining ciphertexts, and output the remaining
ciphertexts. Thus, it is the case that t(m) = T (K(s)− {k}, m).

Since ν(s) is finite, s̄ will contain strictly e symbols. The canonical form of dks̄
will be obtained by applying d-skip rules dkej → ejdk until a decryption rule dkek can
be applied. Thus, t̄ will be identical to s̄, except with the first occurring ek symbol
spliced out. Thus, K(t) = K(s) − {k}. Since t̄(m) = T (K(t), m), it is the case
that t(m) = t̄(m).

The final case is if t = dks and ek /∈ s̄. While evaluating dk on some c ∈ s̄(m),
since k /∈ K(s) the function D will not locate a decryptable ciphertext block and will
output ⊥, so t(m) = {⊥}.

Now one must consider the canonical form of t = dks. Clearly, it is the case
that t

∗→ dks̄. Any rules applied at this point must involve dk, since s̄ is canonical.
Because ν(s) is finite, s̄ contains strictly e symbols and because it was assumed ek /∈ s̄,
only d-skip rules can be applied. These will be applied until they no longer can, so t̄ =
s̄dk and ν(t) = ∞. By definition, K(t) = {⊥} and t̄(m) = {⊥}. Thus t(m) = t̄(m).

For both finite and infinite ν(s) for n-length s, it was shown that for both t = eks
and t = dks that t(m) = t̄(m) for all m ∈ M . Thus, for any (n+1)-length string, the
inductive hypothesis holds. Since n was chosen arbitrarily, it is the case that ∀s ∈
Γ∗ ∀m ∈ M , s(m) = s̄(m), that is, rewrite fidelity holds. (End proof of Theorem
11.) +,

3.5.4 Ccom is cascadable semantically secure

74



cAdv

G

cAdv

G, g, y*
G(G, g)!(y1, ..., yn-1)  

Perm(y1, ..., yn-1, y*)  

s, m0, m1

 Adv

Public keys: ya1 , ya2 ...

b' b'

m'0 , m'1

Perm(UE(y*,m'b), !j"i UE(yj, mj))  UE(y*,m'b)

m'0  = m0 / #
k
j=1  rj 

m'1  = m0 / #
k
j=1  rj 

k  = $(s) - 1

s = e1e2...ek | ei =ey*   

Pick random r1 , ..., rk 

Figure 3-9: Reduction of IND-CPA security to CIND-CPA security in Ccom

Theorem 13 Ccom is cascadable semantically secure.

Proof: This proof will reduce a traditional IND-CPA experiment in the underlying
GJJS cryptosystem (SysGen, G, uE, uD) to a CIND-CPA experiment with Ccom. The
reduction described in this proof is illustrated in figure 3-9. Assume that GJJS is
semantically secure under standard complexity assumptions. Assume, for the sake
of contradiction, that some probabilistic polynomial time adversary cAdv succeeds
in the cascadable CIND-CPA experiment ExpCIND−CPA

Ccom,cAdv [κ, n] with non-negligible,
polynomial advantage 1/poly(κ) for some n = poly(κ).

With cryptosystem Ccom, the cascadable CIND-CPA experiment will first input
the system parameters (G, g) and a list of public keys (y1 = gx1 , . . . , yn = gxn) to cAdv.
Then cAdv will output m0, m1 ∈ G and some s ∈ Γ∗. Finally, on input c ∈ s(mb), cAdv
will correctly identify b with probability at least 1/2 + 1/poly(κ).

We now define an adversary Adv that will use cAdv to obtain an advantage in its
own traditional IND-CPA experiment. Adv will first receive a single public key y∗ as
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input, then output two messages m0, m1 ∈ G, obtain c = uEy∗(mb) and finally output
a guess bit b′.

Adv will call to G to generate (n−1) other public keys, then will randomly permute
all n keys before providing them to cAdv as input. These n keys come from an identical
distribution as cAdv would typically expect, so will not affect its advantage.

cAdv will then output s, m0 and m1. The canonical form s̄ must contain at least
one unmatched e symbol corresponding to one of the n keys that Adv just gave as
input. Since these symbols were randomly generated and randomly permuted, there
is at least a 1/n chance that y∗ is among the unmatched e symbols in s̄. Assume that
this is the case.

Let k = ν(s) − 1. This is the net number of encryptions besides y∗ represented
by s̄. Adv will choose k random values in G denoted r1, . . . , rk and will output
messages m′

0 = m0/
∏

j rj and m′
1 = m1/

∏
j rj in its own IND-CPA experiment.

Adv then receives c∗ = uEy∗(m′
b) in response.

Adv now encrypts each rj value under the respective keys {j|ej ∈ s̄}, i.e. cj =
uEj(rj). Adv will then randomly permute the ciphertexts (c1, . . . , ck, c∗) and present
it to cAdv as a Ccom commutative ciphertext. This ciphertext is a randomly permuted
list of uE ciphertexts encrypted under each public key represented by s̄, such that
the product of their decrypted plaintexts is mb = m′

b

∏
j rj. In other words, this

ciphertext comes from the distribution s̄(mb), which by rewrite fidelity, is identical
to s(mb).

Adv may then submit this ciphertext to cAdv, which distinguishes b with some non-
negligible advantage 1/poly(κ) by assumption. Since this reduction is conditioned
on ey∗ being an unmatched symbol in s̄, Adv will maintain at least a 1/(n · poly(κ))
advantage in its own traditional IND-CPA experiment. Since n is polynomial in κ,
this would still constitute a polynomial advantage in distinguishing GJJS ciphertexts.
That violates the assumption that GJJS is semantically secure. Therefore, no such
probabilistic polynomial time cAdv can exist and Ccom must be cascadable semantically
secure. +,

3.5.5 Ccom historical revelation properties

Clearly, Ccom is both height revealing and known secret key set revealing. Given a
ciphertext c ∈ G4i, anyone can can determine i with no x advice. Similarly, given a
set of secret keys X, an adversary may scan through a permuted list of uE ciphertexts
searching for any (γ, δ) values such that γ/δx = 1 for some x ∈ X. If any such x
values are found found, the adversary knows with high probability that some y = gx

was used to encrypt the message, i.e. that ey ∈ s̄.
However, Ccom is not public key set revealing. This is due to the use of GJJS

universally re-randomizable scheme. A semantically secure construction could simply
use ElGamal encryption as the underlying scheme, and include the public key with
each ciphertext, i.e. using E(y, m, r) = (y, gr, myr) as the underlying building block.
This method was described in Section 3.4.4. However, that would clearly reveal which
public keys have encrypted a particular ciphertext. Under standard complexity as-
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sumptions, GJJS will hide which public keys have encrypted each ciphertext and Ccom

is not public key set revealing.
Finally, because uE ciphertext blocks are permuted on each operation, any infor-

mation about the sequence of operations is lost. Encryptions under a set of keys yields
the same distribution of ciphertexts, regardless of order of operations. A consequence
is that Ccom is neither last encryption revealing nor sequence revealing. Table 3.2
compares Ccom’s historical properties to Ccasc and Cxor.

Cryposystem Property Ccasc Ccom Cxor

Cascadable Semantically Secure Yes Yes No
Efficiently Cascadable Maybe Yes Yes

Height Revealing Maybe Yes No
Last Encryption Revealing Maybe No No

Known Secret Key Set Revealing Last key only Yes No
Known Public Key Set Revealing No No N/A

Sequence Revealing No No No

Table 3.2: Various properties of Ccasc, Ccom, and Cxor

3.6 Conclusion and Open Questions

This chapter presented a new security framework for cascadable cryptography that
is particularly useful for commutative cryptosystems. The new cascadable semantic
security definition works sensibly in spite of any historical properties that might
be revealed by a ciphertext. By contrast, traditional semantic security definitions
may fail miserably in settings where the message space may contain history-revealing
ciphertexts. To illustrate the practical use of this model, this work offers two practical
constructions that are provably cascadable semantically secure. This work raises
many interesting open questions:

• Can we define a notion of CCA security for cascadable, and specifically, com-
mutative cryptosystems? How would this notion relate to Re-playable CCA
(RCCA) security [21]?

• Can we fully characterize which string rewrite models could conceivably be part
of a cascadable semantically secure cryptosystem? Section 3.3.2 briefly discusses
this issue.

• Can we prove that if a cryptosystem is semantically secure over all message
domains Cs, then it is cascadable semantically secure?

• How can we accommodate non-terminating rewrite system models? Section
3.4.3 proposes a class rewrite system approach.
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• Homomorphism, blinding operations, threshold operations, signatures, re-randomization,
or hashing might be modeled with term rewrite systems. How can we adapt the
definitions in this chapter to more general term rewrite systems?

• Which historical revelation properties are interesting in either a practical or a
theoretical sense?

• Besides commutativity, which sub-classes of cascadable cryptosystems are of
particular theoretical or practical interest?

• Can we implement a cascadable semantically secure cryptosystem with Scasc

plus rules of the form ekdk → ε as the rewrite model? This type of cryptosystem
was proposed by Diffie and Hellman [35].

• Are there any constructions of cascadable semantically secure cryptosystems
based on Scasc that are not height revealing?
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Chapter 4

Honest-Verifier Private
Disjointness Testing

This chapter presents an efficient construction of a private disjointness testing pro-
tocol that is secure against malicious provers and honest-but-curious (semi-honest)
verifiers, without the use of random oracles. In a completely semi-honest setting,
this construction implements a private intersection cardinality protocol. This work
appears in [59] and was developed with Susan Hohenberger, so will be referred to as
HW.

Suppose two parties, Alice and Bob, each have a private database of values, respec-
tively denoted A and B, where the set cardinalities |A| and |B| are publicly known.
Alice wishes to learn whether their two sets are disjoint, that is, whether A ∩B = ∅,
or how large the intersection is, that is, |A ∩ B|. In doing so, Alice cannot reveal
information about her set A to Bob, who in turn does not want to reveal information

about his set B, other than the bit A ∩ B
?
= ∅ or, perhaps, the size of the inter-

section |A ∩ B|. These are respectively the private disjointness testing (PDT) and
private intersection cardinality (PIC) problems.

For example, Alice may be a law enforcement agent ensuring that no suspects
under investigation purchased tickets on a flight operated by Bob. Alice cannot
simply reveal her list of suspects to Bob without compromising her investigation.
Nor can Bob disclose any passenger names without explicit subpoenas. Yet, both
parties have an interest in alerting Alice whether any suspects are on Bob’s flight.

As another example, suppose Bob wants to anonymously login to Alice’s system.
Bob needs to prove that one of his identities in a set B, which may be a singleton, is
among the set of Alice’s valid users, denoted A. Alice should be convinced that Bob
is a legitimate user, without learning which specific user he is. Thus, both parties
wish to determine whether |A ∩B| -= 0.

These types of private set operations may be implemented by several existing tech-
niques. Private set operations may be viewed as a general two-party secure computa-
tion problem, solvable by classic secure multiparty computation techniques [51, 125].
Zero-knowledge sets due to Micali, Rabin and Killian [85], support private operations
like disjointness testing, set union, and set intersection.

Unfortunately, these techniques have remained unused in practice due to their
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high computation, communication, and implementation costs. Oblivious polynomial
evaluation protocols, such as those due to Naor and Pinkas [90], may also be applied
to private set operations. However, using generalized oblivious polynomial evaluation
for private set operations is inefficient in comparison to specialized protocols.

This chapter builds on specialized private set operation protocols recently devel-
oped by Freedman, Nissim, and Pinkas (FNP) [46], and Kiayias and Mitrofanova
(KM) [71], and offers a new construction that is more efficient in a malicious-prover
setting. When both parties are honest-but-curious (semi-honest), the Hohenberger
and Weis (HW) construction is a private intersection cardinality protocol, where a
verifier party (who is played by Alice in the above examples) learns |A ∩ B|. The
efficiency in this setting is equivalent to both FNP and KM, but is based on a different
complexity assumption.

Note that in the context of “honest-verifier”, we are using the term “honest”
interchangeably with “semi-honest”. This means the verifier is honest-but-curious
about the values it receives and while abiding by the protocol, may examine any
received values further to try to learn more about B. The notion of semi-honest or
honest-but-curious was introduced in [51]

The HW construction improves on existing results in settings where the prover is
malicious and the verifier is honest-but-curious. In this malicious-prover setting, the
HW construction implements a private disjointness testing protocol. A malicious,
polynomial-time bounded prover able to send arbitrary messages cannot convince a
verifier that their sets intersect, unless they actually do. In the anonymous login
example, Bob will not be able to login unless he possesses a legitimate identity string.

The HW honest-but-curious (semi-honest) private intersection cardinality proto-
col presented in this chapter as is becomes a private disjointness testing protocol in
the malicious-prover setting. By contrast, previous works require additional compu-
tations, such as adding zero-knowledge proofs [71] or homomorphic encryptions [46],
to be made secure in a malicious-prover setting. Moreover, both FNP and KM require
random oracles to be made secure in the presence of a malicious prover, whereas the
HW construction does not.

4.0.1 The FNP Protocol Paradigm

The FNP protocol [46] is quite intuitive and simple, and is the design paradigm
used in both the KM and HW protocols. An FNP invocation where Bob has a
singleton set is informally outlined in figure 4-1. To provide further technical details,
suppose (G, E, D) is a semantically-secure homomorphic encryption scheme. Let V
have set A = {a1, . . . , an} and P have set B = {b1, . . . , bm}.

As shown in figure 4-1, the verifier (also known as Alice) first selects a random
constant or irreducible polynomial G(x) (i.e. G(x) will have no roots). The verifier
than computes f(x) = G(x) · (

∏
ai∈A(x − ai)) =

∑
αixi. Note that the roots of f

are exactly the values in the set A. The verifier then encrypts the α coefficients of f
under a public key pk that she chooses, and sends them to the prover. That is, V
encrypts each coefficient as ci = Epk(αi) with a homomorphic cryptosystem such as
Paillier’s [94, 95].
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The FNP Protocol:

1. V chooses a random constant or irreducible polynomial G(x).

2. V computes f(x) = G(x) · (
∏

ai∈A(x− ai)) =
∑

αixi.

3. If any αi = 0, restart the protocol.

4. V encrypts the coefficients of f(x) with a homomorphic encryption scheme
and sends the encryptions ci = E(αi) to P .

5. Using the homomorphic properties of E, P obliviously evaluates f(x) at
some value b, obtaining E(f(b)).

6. P randomizes his evaluation as c = E(Rf(b)) and sends it to V .

7. V decrypts c. If D(c) = 0, V knows P ’s value intersects with A.

Figure 4-1: An overview of the Freedman, Nissim, and Pinkas (FNP) protocol

Recall that homomorphic cryptosystems like Paillier’s allow a party given Epk(x)
and Epk(y) to obliviously compute Epk(x)·Epk(y) = Epk(x+y), or to compute Epk(x)z =
Epk(x · z), where z is some constant. Note that given the encryptions ci, these ho-
momorphic operations are sufficient to obliviously evaluate the polynomial f . For
example, the encryptions c0 = Epk(4) and c1 = Epk(3) commit the polynomial f(x) =
3x + 4. A second party may evaluate this at a particular value x = 2, by computing

c2
1 · c0 = Epk(3 · 2) · Epk(4) = Epk(6 + 4) = Epk(10) = Epk(f(2))

Thus, given coefficients encrypted as ci values, the prover (Bob) may obliviously
evaluate f(bi) for each element bi ∈ B. Note that if bi ∈ A, then f(bi) = 0. The prover
will now randomize all his obliviously evaluated f(bi) values by homomorphically
multiplying them by a random nonzero value. That is, he computes Epk(f(bi))r =
Epk(r · f(bi)) where r is a random nonzero value. Thus, if f(bi) = 0, then the
encryption of Epk(r · f(bi)) = Epk(0). Otherwise, Epk(r · f(bi)) is some random value.
This hides any information about elements in the prover’s set that are not in the
verifier’s set.

The prover now sends each of these encrypted oblivious evaluations E(ri · f(bi))
to the verifier. The verifier then decrypts and tests whether any of the resulting
plaintexts are zero. If bi ∈ A, then f(bi) = 0, so if any decrypted values are zero,
then the verifier believes there is an intersection with the prover’s set. Note that
the original FNP protocol reveals the elements in the intersection of the two sets, by
having the prover return the ciphertext Epk(r · f(bi) + bi) instead. Thus if f(bi) = 0,
the verifier will get the actual elements of the intersection – not just the cardinality.

We focus on applications where the prover explicitly does not want to reveal
anything about his set, except the size or existence of the intersection. For instance,
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the anonymous login application cannot have the verifier learn the actual intersection
values. This chapter will only focus on the private intersection cardinality protocol
version of FNP, although finding actual intersection values will be discussed further
in Section 4.6.6.

In the KM protocol [71], the same techniques as FNP are applied, except that
it uses a new primitive called superposed encryption based on Pedersen commit-
ments [96]. Superposed encryption is closely related to a homomorphic ElGamal
variant first used in voting schemes by Cramer, Gennaro, and Schoenmakers [29]. In
the KM protocol the prover returns to the verifier a single ciphertext Epk(r · |A∩B|),
where r is a random value. Thus, this is specifically a PDT protocol rather than
a PIC protocol. The verifier accepts if the ciphertext decrypts to zero and rejects
otherwise.

Both the FNP and KM constructions, based on Paillier’s homomorphic encryp-
tion [94, 95] and Pedersen’s commitment scheme [96], suffer from a crucial flaw:
malicious adversaries may simply encrypt or commit to zero values. For instance, in
the FNP case, someone can simply encrypt 0 with the public key and convince the
verifier that an intersection exists when it does not.

This is a critical failure which both FNP and KM immediately recognize and
address. To cope with malicious provers, FNP proposes a fix that relies on the
random oracle model (ROM), despite its inherent problems [5, 20].

The FNP fix essentially binds the randomness used to prepare encryptions of
coefficients to the values of the coefficients themselves and is quite simple. Assum-
ing random oracles G and H, the prover will first generate a random s and com-
pute (r, r′, r′′) ← G(s). Then the prover will oblivious compute c = Epk(r, r′ ·f(x)+s)
as well as a check value h = H(r′′, x).

Upon decrypting c, if f(x) = 0, the verifier will obtain s and be able to search for
a x ∈ A that is consistent with s and h. Since the ciphertext c depends entirely on s
and x, the verifier should be able to re-create the prover’s computation and produce
the identical ciphertext c. Note that this returns the intersection to an honest verifier.

Otherwise, if f(x) -= 0, the randomizing factor r′ will hide any information
about f(x) and s. This construction prevents a malicious prover from simply encrypt-
ing a 0 value directly. This is similar in many respects to constructions of adaptive
chosen-ciphertext (CCA) secure cryptosystems in the random oracle model [6, 47].

Fixing KM against malicious adversaries requires both the use of random oracles
as well as universally-composable (UC) commitments [19], which require the assump-
tion of a common reference string. While relatively efficient, the best known UC
commitment schemes are interactive and would increase communication complexity
by a quadratic factor [18, 22, 31].

The weakness of FNP and KM in the face of malicious provers begs the question:
Can we implement an efficient private disjointness testing protocol without the use
of random oracles or costly sub-protocols? This chapter answers this question in the
affirmative.

4.0.2 Overview of the HW Construction
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This section provides intuition for understanding the Hohenberger and Weis (HW)
construction in the context of prior work. Essentially, the main difference is that in
both the FNP and KM protocols, a prover convinces a verifier to accept by returning
an encryption of zero. If the prover was honest, then if the verifier receives an encryp-
tion of a zero value, it implies some element in P ’s set is also in V ’s set. However, if
the prover is malicious, then he can easily encrypt a zero value from scratch and send
it to the verifier. To prevent this, both FNP and KM must add costly computations
to check that the prover follows a specified protocol.

To cope with malicious provers, the HW construction essentially substitutes a
cryptographic primitive dubbed “testable and homomorphic commitment” in the
place of Paillier’s homomorphic encryption. Instead of encryptions of zero, elements
belonging to the intersection of the two sets will be encoded to have a specific or-
der in a multiplicative group. In other words, a prover convinces a verifier that an
intersection exists by returning elements of a specific order.

The necessary complexity-theoretic assumptions are that it is hard to for a prover
to decide whether group elements belong to a particular subgroup of unknown order,
and that it is hard to compute elements in the subgroup. Under this subgroup com-
putation assumption, computing an element of this order is hard for a prover, unless
he correctly follows the protocol (and there is a non-empty intersection). Thus, in
the malicious-prover setting, the HW construction is sound by default, whereas FNP
and KM must augment their protocols with costly computations in the random oracle
model.

In the HW construction presented in Section 4.3, the verifier begins, as in FNP,
by selecting a random polynomial f(·) whose roots correspond to set A. The verifier
computes a testable and homomorphic commitment (THC) of each coefficient, which
is essentially a BGN encryption [13] set in group G, which has order n = pq where p
and q are large primes.

For each element bi ∈ B, the prover uses THCs to compute a value that will be
a random element in G if bi -∈ A or will be a random element of order p if bi ∈ A.
The verifier, with knowledge of p and q, can test the order of each element returned
by the prover. In this way, the verifier learns the cardinality of the intersection, just
as in FNP.

The main benefit, however, is that a malicious prover cannot, under the subgroup
computation problem, compute an element of order p from scratch. As will be proven
in Section 4.4.1, the HW construction remains sound in the malicious-prover setting
without any augmentation. As in the FNP PDT protocol, the verifier can potentially
learn the cardinality of the intersection, but is not guaranteed to do so when talking
with a malicious prover. That is, if the prover happens to be honest, the verifier
will learn the cardinality – but there is no way to know whether a prover is honest.
Table 4.1 compares the behavior of FNP, KM, and the HW construction in different
security settings.

4.0.3 Related Work
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Security Setting FNP KM HW

Semi-Honest Cardinality Disjointness Cardinality
Malicious Prover Cardinality Disjointness Disjointness

(Requirements) (ROM) (NIZK Proofs) (None)
(ROM)

Malicious Verifier Cardinality Disjointness See Section 4.6.1
(Requirements) (Multiple (UC-Commitments)

Invocations) (ROM)

Table 4.1: Three private set protocols compared in different security settings. ROM
stands for “Random Oracle Model”, NIZK for “Non-Interactive Zero Knowledge”,
and UC for “Universally Composable”.

Kissner and Song [72] offer FNP-inspired schemes for solving several closely related
privacy-preserving set operations like set disjointness, cardinality, and set union. They
offer improved efficiency compared to FNP in the multiparty, honest-but-curious set-
ting. Again, when translated to the malicious adversary model, their constructions
require relatively costly zero-knowledge proof of knowledge sub-protocols. In all fair-
ness, Kissner and Song address a richer set of problems than simple disjointness
testing like set union, set intersection, and multiplicity testing. They also work in a
multiparty model, so it is not surprising that their solutions require more computa-
tion.

Constructions from both Pedersen’s commitment scheme [96] and Paillier’s ho-
momorphic cryptosystem [94, 95] are both closely related to the “testable and homo-
morphic commitment” primitive presented in Section 4.3.2.

The Subgroup Decision Assumption (SDA) and the Subgroup Computation As-
sumption (SCA) described in Section 4.1.2 are both crucial to proving security of the
construction presented in this chapter. Yamamura and Saito apply the SDA to the
private information retrieval problem [124]. The composite residuosity assumptions
made by Paillier are also closely related.

A similar bilinear subgroup complexity assumption is made by Boneh, Goh, and
Nissim for their 2DNF ciphertext evaluation scheme [13]. Groth, Ostrovsky, and
Sahai also make the same complexity assumption to implement non-interactive zero
knowledge proofs [55].

4.1 Preliminaries

4.1.1 Notation

Let Z be the integers. Let negl(·) be a negligible function such that for all polyno-
mials p(·) and all sufficiently large k ∈ Z, we have negl(k) < 1/p(k). We will denote
that two distributions C and D are perfectly indistinguishable using C ≈ D and

computationally indistinguishable using C
c≈ D notation. A Mppt subscript will indi-
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cate that a interactive Turing machine M runs in probabilistic polynomial time. The
value ord(x) will be the order of an element x. The transcript ViewM[M(x)N (y)] will
represent the view of algorithm M after interacting with algorithm N on inputs x
and y, respectively. M’s view includes its input, its randomness, and the public
transcript of the protocol. We will denote a distribution of views over random inputs
as {ViewM[M(x)N (y)]}.

4.1.2 Complexity Assumptions

The complexity assumptions applied in the HW construction exist in various forms
throughout the literature. The formalization here is closest to that of Yamamura and
Saito [124]. Recently, Boneh, Goh, and Nissim introduced a stronger version of these
assumptions for bilinear groups [13].

Definition 14 (Subgroup Decision Assumption (SDA) [13, 124]) Let S(1k) be
an algorithm that produces (G, p, q) where G is a group of composite order n = pq,
and p < q are k-bit primes. Then, we say that the subgroup decision problem is hard
in G if for all probabilistic polynomial time adversaries A,

Pr
[
(G, p, q) ← S(1k); n = pq; x0 ← G; x1 ← xq

0; b ← {0, 1}; b′ ← A(G, n, xb) :

b = b′
]
≤ 1

2
+ negl(k).

Basically, the SDA means that given the description of a group G, in the form of
a generator g, and its order n = pq, a probabilistic polynomial-time adversary cannot
distinguish random elements of order p in G from random elements in G. Clearly, if
factoring is easy, then the SDA fails to hold. Similarly, someone able to compute dis-
crete logarithms given (G, n, x) can decide this problem by computing gcd(logg x, n),
for some generator g. It is not clear how the SDA relates to the Decisional Diffie-
Hellman (DDH) assumption.

Additionally, the security of the HW scheme requires the following computational
assumption:

Definition 15 (Subgroup Computation Assumption (SCA)) Let S(1k) be an
algorithm that produces (G, p, q) where G is a group of composite order n = pq,
and p < q are k-bit primes. Then, we say that the subgroup computation problem is
hard in G if for all probabilistic polynomial time adversaries A,

Pr
[
(G, p, q) ← S(1k); n = pq; x ← A(G, n) : ord(x) = p

]
≤ negl(k).

An example group where these assumptions may be applied is a subgroup G of
order n = pq, consisting of the quadratic residues of Zp′ , where p′ = 2pq+1 and p′, p, q
are all primes. Of course, the HW construction can also operate over the bilinear
groups where Boneh et al. [13] assume the subgroup decision problem is hard. It is
not clear that the SDA assumption implies SCA, or vice versa, although a relation
between the two seems plausible. Further exploration of both assumptions could be
valuable in other schemes as well.
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4.2 Problem Definitions

This section formally defines private intersection cardinality (PIC) and private dis-
jointness testing (PDT) protocols. Let 1k be a security parameter in unary. Let Q
be the domain of values for this protocol such that |Q| ∈ Θ(2k). Let the universe U
be the set of all poly(k)-sized subsets of Q. For sets A ∈ U and B ∈ U , define the
disjointness predicate D(A, B) = (A ∩ B = ∅), that is, D(A, B) will have value 1 if
and only if A and B are disjoint.

Let a verifier V and a prover P be two probabilistic polynomial time interactive
Turing machines. Each party takes an element of U (i.e. a poly(k)-size subset of Q)
as input. The interaction of P and V yields a result to V only.

4.2.1 Private Disjointness Testing Definition

Definition 16 (Honest-Verifier Private Disjointness Testing) Two probabilis-
tic polynomial time interactive Turing machines (P ,V) define an Honest-Verifier Pri-
vate Disjointness Testing protocol if the following conditions hold:

1. Completeness: For honest parties, the protocol works and the verifier learns
the disjointness predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = D(A, B)

]
≥ (1− negl(k))

where the probability is taken over the randomness of P and V.

2. Soundness: For a random set A ∈ U , the probability that the prover will
convince the verifier to accept is negligible; that is,

∀P∗
ppt, Pr

A∈U

[
P∗V(A) -= 0

]
≤ negl(k)

where probability is taken over the choice of A ∈ U and the randomness of P∗

and V.

3. Malicious-Prover Zero Knowledge (MPZK): A malicious prover learns
nothing about the verifier’s set; that is,

∃Sppt, ∀P∗
ppt, ∀A ∈ U, {ViewP∗[P∗V(A)

]
} c≈ {ViewP∗[P∗S(1|A|)

]
}

4. Honest-Verifier Perfect Zero Knowledge (HVPZK): An honest-but-curious
verifier learns nothing about the prover’s set beyond the size of the intersection;
that is,

∃Sppt, ∀A ∈ U, ∀B ∈ U, {ViewV[
P(B)V(A)

]
} ≈ {S(A, 1|B|, 1|A∩B|)}

Note that an honest-but-curious verifier is allowed to potentially learn |A∩B|, but
he is not guaranteed to learn that value. One might define a stronger definition where
rather than being provided 1|A∩B|, the simulator would only be provided D(A, B).
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4.2.2 Private Intersection Cardinality Definition

Definition 17 (Honest-Verifier Private Intersection Cardinality) An Honest-
Verifier Private Intersection Cardinality protocol has the same setup as in Definition
16, except for the following differences:

1. Completeness: For honest parties, the protocol works and the verifier learns
the cardinality predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = |A ∩B|

]
≥ (1− negl(k))

where probability is taken over the randomness of P and V.

2. Cardinality Soundness: A malicious prover can not convince an honest ver-
ifier that the cardinality is larger than it really is; that is,

∀P∗
ppt, ∀B ∈ U, Pr

A∈U

[
P∗(B)V(A) > |A ∩B|] ≤ negl(k)

where probability is taken over the choice of A ∈ U and the randomness of P
and V.

4.2.3 Informal Explanation of the Definitions

Completeness means that a correct execution between two honest parties will return
the correct value to V with negligible chance for error. In a PDT protocol, the correct
value is the disjointness predicate D(A, B) and in a PIC protocol it is the intersection
cardinality |A ∩B|.

PDT soundness implies that on a random input set A ∈ U , V has a negligible
chance of obtaining a non-zero result when interacting with any malicious probabilistic
polynomial-time prover P∗. That is, unless P∗ actually knows a value in V ’s set, or
is extremely lucky, then V will not be fooled into thinking otherwise.

Neither the FNP nor KM protocols are sound by this definition. In those schemes,
a verifier will believe that there is an intersection if it receives the value zero encrypted
under a public-key. A malicious prover could trivially violate the soundness property
by encrypting a zero value itself.

PIC soundness is similar to the PDT soundness definition, except that for any
set B, and random set A, the protocol has a negligible chance of returning a value
greater than |A ∩ B| to a verifier V interacting with P∗(B). The idea is that this
prevents a malicious prover from doing trivial attacks like duplicating elements in its
set B to inflate the cardinality returned to the verifier. Of course, a malicious prover
can always run the protocol on some subset of B, which would with high probability
under-report the cardinality. This is unavoidable and is why cardinality soundness
is only concerned with over-reporting the cardinality. As it turns out, this property
will be the reason why the HW construction in Section 4.3 is not an Honest-Verifier
Private Intersection Cardinality protocol. Section 4.5 will discuss this further.
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Since a verifier is allowed to potentially learn |A ∩ B| in both the PDT and PIC
protocols, the zero knowledge definitions presented in this chapter are the same. This
relaxation appears in FNP as well, but not KM.

The Malicious-Prover Zero Knowledge (MPZK) property means that no proba-
bilistic polynomial-time potentially malicious prover P∗ can learn anything about a
set A from an interaction with V that it could not simulate on its own. In other
words, the verifier’s set, for example a database of passwords, remains hidden from
even malicious provers. Here the distributions are computationally indistinguishable.
Any action that V takes as a result of a successful protocol invocation, such as allow-
ing P∗ to anonymously login, is considered outside the protocol definition.

Finally, the Honest-Verifier Perfect Zero Knowledge (HVPZK) property implies
that a probabilistic polynomial-time semi-honest verifier V does not learn anything
about B beyond the size of the set intersection. There is a subtle point here in
the PDT protocol: the verifier is only guaranteed to learn the bit D(A, B), but we
allow an honest-but-curious verifier to potentially learn the size of the intersection.
The flexibility suits the applications mentioned in the introduction. In fact, in the
semi-honest setting, the distribution an adversary can simulate on its own is perfectly
indistinguishable from a real transcript distribution.

The definitions in this chapter do not explicitly consider auxiliary inputs in the
zero-knowledge definitions in this chapter. To do so, one need simply quantify over all
polynomial-size advice strings and provide this string to both the party in question
and the simulator.

4.3 HW Private Disjointness Testing

This section presents the Hohenberger-Weis (HW) construction, originally presented
in [59], which implements an efficient PDT protocol. Section 4.4.1 proves that the
HW construction securely meets the requirements of Definition 16. Overall, HW is
very similar to those of Freedman, Nissim, and Pinkas (FNP) [46] and Kiayias and
Mitrofanova (KM) [71].

FNP and KM respectively rely on Paillier’s homomorphic encryption system [94,
95] and a Pedersen commitment variant [96] as underlying primitives. This chapter
offers a new testable and homomorphic commitment (THC) primitive that will be
used in a FNP-style oblivious polynomial evaluation scheme. The THC construction
presented is reminiscent of both Paillier’s and Pedersen’s schemes. It is very similar to
the encryption scheme for small messages due to Boneh, Goh, and Nissim (BGN) [13],
but is used for the full range of messages.

The advantage of the HW construction is that it offers a stronger security guar-
antee than the basic FNP and KM protocols, with equivalent computation and com-
munication costs. Although variants of both FNP and KM can be modified to offer
stronger security, they require either the use of random oracles or significantly more
computation.
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4.3.1 Verifier System Setup

Verifier System Setup:

1. Run S(1k) to obtain (G, p, q).

2. Choose two random generators g and u from G.

3. Compute n = pq and h = uq.

4. Publish (G, n) and keep (p, q, g, h) private.

Figure 4-2: HW verifier system setup

As illustrated in figure 4-2, the HW construction is initialized by a verifier that
selects some group of order n = pq, where p and q are secret large primes. The verifier
will also select two random generators g and u, and will compute h = uq. Note that h
is a random generator of the subgroup of order p.

The verifier only needs to publish G and n. The prover will not know p, q, h or
even g. Learning h, p, or q would allow a malicious prover to spuriously convince the
verifier that an intersection exists.

4.3.2 Testable and Homomorphic Commitments

The public order n and private values g and h may be used for a testable and ho-
momorphic commitment (THC) scheme. This primitive will be the basis of the HW
construction. Informally, a THC scheme supports the following operations:

• Commit: Com(m, r) a message m with randomness r,

• Addition: For all m, r, m′, r′, Com(m, r) · Com(m′, r′) = Com(m + m′, r + r′),

• Constant Multiplication: For all m, r, c, Com(m, r)c = Com(cm, cr)

• Equality Test: Test(Com(m, r), x), returns 1 if m = x.

Testable and homomorphic commitments should be computationally hiding:

Definition 18 (Testable and Homomorphic Commitment Hiding Property)
Let n be an integer, and let a0, a1, r be values in Z∗

n. Then, we say that a testable
and homomorphic commitment Com set in a group G of order n is computationally
hiding over the distribution of r if

∀a0, a1 ∈ Z∗
n, {G, n, a0, a1, Com(a0, r)}

c≈ {G, n, a0, a1, Com(a1, r)}
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The encryption scheme for small messages due to BGN is very similar to the
HW construction, except for two differences. First, we provide the adversary with
even less information about the commitment; that is, the values g and h remain
private. Secondly, BGN allow and support bilinear map operations, whereas we do
not consider them. Similarly to their scheme, the HW testable and homomorphic
commitment primitive operates as shown in figure 4-3.

Testable and Homomorphic Commitments Operations:

1. Setup: Let S(1k) be an algorithm that outputs (G, p, q) where G is a group
of composite order n = pq, and p < q are k-bit primes. Let g, u be random
generators of G and let h = uq. Publish n; keep all else private.

2. Commit: Given m and r ∈ Z∗
n, compute: Com(m, r) = gmhr

3. Addition: Com(m, r) · Com(m′, r′) = gm+m′
hr+r′ = Com(m + m′, r + r′)

4. Constant Multiplication: Com(m, r)c = gcmhcr = Com(cm, cr)

5. Equality Test: If Test(Com(m, r)) = (gmhr/gx)p = (gp)m−x = 1, output
1; else, output 0.

Figure 4-3: Testable and homomorphic commitment construction

Lemma 4 The testable and homomorphic commitment scheme described in figure
4-3 is computationally hiding, i.e., it satisfies definition 18.

This lemma follows, more or less, from the semantic security of the encryption
scheme of Boneh, Goh, and Nissim. For completeness, however, Section 4.4.1 will
prove that this construction is computationally hiding.

4.3.3 Oblivious Polynomial Evaluation

Suppose a party knowing h has some polynomial f(x) =
∑

αixi ∈ Zq[x]. This
party can publish commitments to f ’s coefficients as Com(αi, γi) = gαihγi , where γi

values are random. Let s = .
√

n/. Assuming p and q are not twin primes, we
have that p < s < q. Let the group Z∗

s be the domain of set values. Due to
the homomorphic properties of Com, anyone can obliviously evaluate a commitment
to f(z) for any z ∈ Z∗

s.
The HW construction uses this ability by having a verifier V compute a poly-

nomial f with A as its set of roots. P can then obliviously evaluate f and return
the result to V . Note, this is not a contribution due to HW. Similar constructions
were proposed by Naor and Pinkus [90] and FNP [46]. It is also the basis of the KM
scheme [71]. V ’s polynomial is constructed as shown in figure 4-4.
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Oblivious Polynomial Evaluation:

1. V chooses a random constant or irreducible polynomial G(x).

2. V computes f(x) = G(x) · (
∏

ai∈A(x− ai)) =
∑|A|

i=0 αixi ∈ Zq[x].

3. If any αi = 0, restart the protocol.

4. V chooses a random polynomial r(x) =
∑|A|

i=0 γixi ∈ Zp[x].

5. V publishes commitments Com(αi, γi) = gαihγi , for i = 0 to |A|.

Figure 4-4: HW oblivious polynomial evaluation

V(A)
Com(α0, γ0), . . . , Com(α|A|, γ|A|)!

w1, . . . , w|B|"
P(B)

Figure 4-5: An illustration of HW private disjointness testing

Given these commitments to the αi coefficients, P may use the homomorphic
operations to compute a commitment to f(z) for an arbitrary point z ∈ Z∗

s:∏
i Com(αi, γi)zi

= g
P

i αizi
h

P
i γizi

= gf(z)hr(z) = Com(f(z), r(z))
Because P does not want to accidentally reveal information about values z /∈ A

to V , he can select a random R ∈ Z∗
n and compute the value Com(Rf(z), Rr(z)) =

gRf(z)hRr(z) = Com(f(z), r(z))R. If f(z) -= 0 mod q, then Rf(z) will be some random
value in Zn, and Com(f(z), r(z))R will be some random value in G.

However, if f(z) = 0 mod q, then gRf(z) will have order p (or 1). Since h has
order p, this means that Com(f(z), r(z))R will have order p, which can be tested by V
by checking if the Test operation returns a 1 value. Thus, if P returns some value
with order p, V concludes that P obliviously evaluated the polynomial at a root.

Recall that P does not know p, q, or even g or h. To erroneously convince V
that he knows a root, a malicious P∗ must produce some value of order p. Finding
such a value is at least as hard as the Subgroup Computation Problem described in
Definition 15.

4.4 HW Private Disjointness Testing

Given the oblivious polynomial evaluation protocol from the previous section, the
HW construction to implement Private Disjointness Testing with a testable and ho-
momorphic commitment primitive is quite simple. As mentioned, the overall protocol
paradigm originally proposed by FNP [46]. Figure 4-5 illustrates the HW private dis-
jointness testing protocol that is specified in figure 4-6.
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HW Private Disjointness Testing:

1. V runs S(1k) to obtain (G, p, q), selects random generators g, u in G, and
computes n = pq and h = uq. V publishes (G, n).

2. V and P announce |A| and |B| for respective input sets A and B, which
are poly(k)-sized subsets of Z∗

s.

3. V publishes commitments to polynomial coefficients Com(αi, γi) = gαihγi ∈
G for i = 0 to |A|.

4. For each bj ∈ B selected in random order:

(a) P obliviously evaluates f(bj) as vj = gf(bj)hr(bj).

(b) P selects a random exponent Rj ∈ Z∗
n.

(c) P sends V the value wj = v
Rj

j .

5. V halts if any wj = 1.

6. V tests each wj by computing wp
j .

7. If any wp
j = 1, then V concludes that A ∩B -= ∅.

8. Otherwise, V concludes A ∩B = ∅.

Figure 4-6: HW private disjointness testing

Theorem 14 The HW construction is correct and secure, i.e., it satisfies Defini-
tion 16, under the Subgroup Decision and the Subgroup Computation assumptions.

Remark: Note that when talking to an honest prover, a verifier will actually learn |A∩
B| in this protocol by counting the number of elements returned with order p. We
could change the protocol to obfuscate this value, but having the prover return a
random number of copies of each element in his set. This would not be true zero-
knowledge, but it would be good enough for many practical applications. After all,
there is no guarantee that the number of elements with order p is the correct cardi-
nality, because a malicious prover might evaluate the same value many times. This
protocol can be modified to hide |A ∩ B| at a cost of increased communication as
discussed in Section 4.6.3. In many PDT applications this extra information is not a
problem, but users should still be aware that cardinality is revealed when provers are
honest.

4.4.1 Security Proof
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Theorem 14 is proven in four steps: completeness, soundness, malicious-prover zero
knowledge, and honest-verifier zero knowledge.

Proof of Completeness

Recall the PDT completeness property:

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = D(A, B)

]
≥ (1− negl(k))

In the oblivious polynomial evaluation protocol discussed in Section 4.3.3, a veri-
fier V sends (|A|+1) different Com(αi, γi) values to a prover P , where f(x) =

∑
αixi

and r(x) =
∑

γixi. P will respond with |B| values wj = Com(f(bj), r(bj))Rj for
random Rj. If the protocol is followed correctly, then with high probability bj ∈ A if
and only if ord(wj) = p.

Case 1: bj ∈ A =⇒ ord(wj) = p w.h.p. over r(x) ∈ Zp[x].
If bj ∈ A then f(bj) = kq for some k. Then we have that the value Com(f(bj), r(bj))Rj =

(gkqhr(bj))Rj . Recalling that n = pq, gn = 1, and that hp = 1, we have that the
value wp

j = (gknhr(bj)p)Rj = 1.
Note that there is also a negligible chance that Rjkq = Rjr(bj) = 0 mod p,

i.e. wj = 1. This will cause V to halt the protocol. Since Rj ∈ Z∗
n, this would

mean that k = r(bj) = 0 mod p.
Recall that r(x) is chosen uniformly at random from Zp[x]. Thus, the chance that

a particular bj is a root is at most |A|/p. The chance that none of the |B| values are
roots of r(x) is:

(
1− |A|

p

)|B|

=




(

1− 1
p
|A|

) p
|A|





|A||B|
p

≈ e−( |A||B|
p ) > e−(poly(k)

2k ) > 1− negl(k)

Case 2: bj /∈ A =⇒ ord(wj) -= p.
If bj /∈ A, then f(bj) -= 0 mod q. So, wp

j = gRjf(bj)phRjr(bj)p = gRjf(bj)p. Note
that Rj ∈ Z∗

n, so Rjf(bj) -= 0 mod q. Therefore, we have Rjf(bj)p -= 0 mod n and
can conclude that wp

j -= 1.

Proof of Soundness

Recall the PDT soundness property:

∀P∗
ppt, Pr

A∈U

[
P∗V(A) -= 0

]
≤ negl(k)

The verifier V will only accept when one of the poly(k) values sent to V by P∗ has
order p. Recall that (even a malicious) P∗ only knows (G, n) and V ’s commitments.
It does not know p, q, h or even g.

In the given soundness definition, V is operating with a random set A ∈ U . P∗

has no a priori knowledge about A, other than |A|. By testable and homomorphic
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commitment hiding property, P∗ can learn nothing about A from the commitments
themselves.

It is worth elaborating on this particular definition of soundness. It assumes
that a malicious prover knows nothing about the set he is trying to cause a spurious
intersection with. Otherwise, if he has some partial knowledge, say that some element
is in the set A with a 1/1000 chance, a malicious prover could cause a spurious
intersection with with 1/1000 probability. Our formulation captures the notion that
malicious provers should not be able to trick verifiers that an intersection exists
without the use of some previous knowledge of A.

Alternatively, one could formulate this as an experiment where an adversary P∗

chooses a set B∗ as input for an honest PDT prover P . Any partial knowledge of A
could be embedded in B∗. The probability that V believes there is an intersection
interacting with P(B∗) would be non-negligibly different than when interacting di-
rectly with P∗. However, the soundness formulation as given is clearer and captures
the same properties.

With no information on A, P∗ can try to evaluate f(x) at |B∗| = poly(k) random
values and will fail to guess a member of A with probability approximately e(−|A||B∗|/p)

which is greater than 1 − negl(k). Note by the Subgroup Decision Assumption, P∗

won’t actually be able to verify when he correctly guesses a value in A.
There is one caveat concerning the distribution of α coefficients. It could be the

case that some coefficient, or linear combination of coefficients, has a non-negligible
chance of being zero. Note that a zero coefficient corresponds to a commitment of
the form Com(0, ri) = g0hri . In other words, the commitment corresponding to a zero
coefficient has order p. Thus, all P∗ would have to do to break soundness is return
this commitment to V . The same applies if some linear combination of coefficients is
zero with non-negligible probability.

To avoid this issue, αi values are checked when f(x) is created to ensure they are
non-zero. Recall that to generate f(x) the verifier will choose a random constant or
irreducible polynomial G(x) and multiply it by

∏
(x− ai). If one G(x) fails, another

random irreducible polynomial can be chosen until all αi values are non-zero. For
each iteration, there is a high probability that no coefficients will be zero, so with
high probability a constant number of iterations will be necessary.

Since the αi coefficients are determined by some random irreducible polyno-
mial G(x), and in this case, a random set A, they are unpredictable to a prover P∗.
A malicious prover cannot send any trivial linear combinations of committed coeffi-
cients back to the verifier since the coefficients are determined entirely by a random A
and G(x).

Thus, P∗ essentially must try to generate order p values directly from (G, n). We
will use the Subgroup Computation Assumption (SCA), from Definition 15. The SCA
asserts that it is difficult for a polynomial-time adversary, given the description of an
efficiently sample-able group G of order n = pq, to find an element of order p. We
will show that any adversary A that violates Soundness also violates the SCA.

Suppose we have some adversary A that violates Soundness. A would take (G, n)
and V ’s commitments as input and would have a non-negligible probability of re-
turning an element of order p. By the MPZK property, A’s behavior cannot change
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significantly when we substitute V ’s commitments with random values.
Given such an adversary A and setup (G, n), we could feed it random values

sampled from G and obtain an element of order p. Obviously, this violates the SCA.
Thus by the facts that A is chosen uniformly at random, that f has a negligible
probability of having zero coefficients, and by the SCA, the Soundness property from
the PDT definition holds.

Proof of PDT Malicious-Prover Zero Knowledge

Recall the PDT Malicious-Prover Zero Knowledge (MPZK) property:

∃Sppt, ∀P∗
ppt, ∀A ∈ U, {ViewP∗[P∗V(A)

]
} c≈ {ViewP∗[P∗S(1|A|)

]
}

The proof that a malicious-prover P∗ is not able to glean any information about A
from the values Com(αi, γi) follows from the hiding property of the testable and
homomorphic commitment scheme from Lemma 4 (which in turn essentially follows
from the semantic security of the BGN cryptosystem [13].) The proof will argue this
step, then describe a zero-knowledge simulator.

First, the Subgroup Decision Assumption (SDA), from Definition 14, implies
that Com is computationally hiding. Suppose the contrapositive, that Com is not
hiding. Let A be a probabilistic polynomial time adversary that runs the indistin-
guishability under chosen plaintext attack (IND-CPA) experiment shown in figure 4-7
for a given input (G, n) where g, h ∈ G and h has order p.

ExpIND−CPA
A (G, n, g, h):

1. A(G, n) → (a0, a1)

2. t ← Z∗
n

3. b ← {0, 1}

4. A(G, n, gabht) → b′

Figure 4-7: Testable and homomorphic commitment IND-CPA experiment

Suppose, for the sake of contradiction, that Pr[b = b′] ≥ 1/2 + 1/poly(k). If this
is the case, we can construct an adversary A∗ that violates the SDA assumption. To
do so, given same input (G, n) and a challenge x ∈ G, the adversary A∗ must be able
to distinguish whether x = gr or grq for r ∈ Z∗

n. (We ignore the case where x = 1.)
Now, A∗ selects a random generator g ∈ G and runs ExpIND−CPA

A (G, n, g, x)
with the adversary A. If x = grq then it will have order p, and thus the A∗ simu-
lates ExpIND−CPA

A perfectly for A, so A will maintain a 1/2 + 1/poly(k) advantage.
If x = gr, in step 4 of ExpIND−CPA

A , the adversary A will receive the value ga0grt

(w.l.o.g.). Because r and t are chosen uniformly at random from Z∗
n, it’s equally
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possible that A has received the value ga1gr′t′ , where r′t′ = rt + a0− a1. Thus, A has
necessarily a 1/2 chance of guessing b when x = gr.

By running repeated ExpIND−CPA
A (G, n, g, x) experiments, A∗ can observe A’s

performance at guessing b. If A displays a 1/2 + 1/poly(k) advantage, A∗ will guess
that x = grq. If A has no advantage, then A∗ will guess that x = gr. Thus, A∗ can
distinguish distributions of (G, n, grq) from (G, n, gr), violating the SDA.

Therefore, if the SDA holds, then the commitment scheme Com is computationally
hiding. A malicious adversary cannot distinguish a commitment to a particular a0

from a commitment to a random message. Based on this, we will construct a simu-
lator S(1|A|) that will be indistinguishable from a verifier V(A) to any probabilistic
polynomial time P∗.

S is quite simple: it will send |A| random values in G to P∗. Because random
values are individually indistinguishable from commitments to particular αi coeffi-
cients, P∗ will not be able to distinguish S(1|A|) from V(A). Thus, by the SDA, the
Malicious-Prover Zero Knowledge property holds.

Proof of Honest-Verifier Perfect Zero Knowledge

Recall the PDT Honest-Verifier Perfect Zero Knowledge (HVPZK) property:

∃Sppt, ∀A ∈ U, ∀B ∈ U, {ViewV[
P(B)V(A)

]
} ≈ {S(A, 1|B|, 1|A∩B|)}

The HVPZK property implies that an adversary given ViewV [P(B)V(A)] cannot
learn anything about B that it could not learn given |A ∩ B| and |B|. The quan-
tification is over all choices of input A, which includes adversarial choices of A that
might be based on some prior knowledge or some partial knowledge of a particular
set B. By running the legitimate protocol, however, a semi-honest V should not learn
anything beyond what is can conclude from the size of |A ∩B|.

Because the adversary is semi-honest, it cannot deviate from the protocol, ma-
nipulate its choice of (G, n), or manipulate its committed coefficients. Its power is
equivalent to choosing a query set A and running the legitimate verifier V . We will de-
scribe a simulator S, that on inputs (A, 1|B|, 1|A∩B|) produces a view that is perfectly
indistinguishable from ViewV [P(B)V(A)].

The HVPZK simulator works as shown in figure 4-8 (recall the PDT protocol from
Section 4.4). This simulator perfectly generates the distribution ViewP [P(B)V(A)].
Here, S follows the same setup as V and P in steps 1, 2, and 3. In step 4, the response
of the simulated prover is |A ∩ B| random values of order p in G and |B| − |A ∩ B|
random values in G. This is exactly the distribution than an honest prover would
return. Thus, the two views are perfectly indistinguishable and the HVPZK property
holds.

4.5 Semi-Honest Private Intersection Cardinality

The construction in Section 4.3 is not an Honest-Verifier Private Intersection Car-
dinality protocol. Unfortunately, there are trivial ways a malicious-prover can ma-
nipulate the actual cardinality value obtained by the verifier. The simplest attack
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HVPZK Simulator:

1. S runs S(1k) to obtain (G, p, q), selects random generators g, u in G, and
computes n = pq and h = uq. S publishes (G, n).

2. S announces |A| and |B|.

3. S publishes committed polynomial coefficients Com(αi, γi) = gαihγi in G
for i = 0 to |A|, exactly as V would.

4. S ignores the values from step 3 and generates |B| random elements of G,
raises a random selection of |A ∩ B| of these values to q (thereby making
them of order p), leaves the other |B| − |A ∩ B| values as is, and outputs
these |B| elements as the response of P .

Figure 4-8: Honest-verifier perfect zero knowledge simulator

would be to obliviously evaluate each element in B twice. The verifier will think the
cardinality is 2 · |A ∩ B|. By the HVPZK property, an honest verifier cannot detect
this attack, otherwise it could distinguish different evaluations by the prover.

For this reason, the HW construction violates the Cardinality Soundness property
from definition 17. However, we may consider a weaker PIC setting by assuming
that both the prover and verifier are honest-but-curious (semi-honest). Recall that a
honest-but-curious party will follow a protocol as specified, but may further examine
any received values with the intention of learning more [51].

Definition 19 (Semi-Honest Private Intersection Cardinality) An Semi-Honest
Intersection Cardinality protocol has the same setup as in Definition 16, except for
the following difference:

Completeness: For semi-honest parties, the protocol works and the verifier
learns the cardinality predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = |A ∩B|

]
≥ (1− negl(k))

where probability is taken over the randomness of P and V.

Corollary 1 The HW construction from Section 4.3 implements a Semi-honest Pri-
vate Intersection Cardinality Protocol, under the Subgroup Decision and the Subgroup
Computation assumptions.

Corollary 1 follows directly from the proof of Theorem 14.
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4.6 Discussion

4.6.1 Malicious Verifiers

The HW construction is only secure against honest-but-curious verifiers. A malicious
verifier V∗ can choose arbitrary setup parameters (G, n), such as G = Zp′ where p′ =
2n+1, and send P an arbitrary set of values gci ∈ G, where the ci values define some
polynomial f(x) =

∑
cixi. In response, a legitimate P will send values w = gRf(b)

for each b ∈ B, where R is chosen uniformly at random from Z∗
n.

If gf(b) has order n, then w will be a random element of order n. However, a
malicious V∗ can design the polynomial f(·) to have different orders for different
inputs. So, if p′ = 2pq + 1, V∗ might have two sets S, T such that ∀s ∈ S, f(s) =
0 mod p and ∀t ∈ T, f(t) = 0 mod q. Thus, V∗ would be able to distinguish how
many elements of B were in either S or T . In fact, V∗ could choose n to have many
factors. This would allow her to test how many elements of B belonged to any of
several different sets.

To make the HW construction secure against malicious verifiers, V could provide a
zero knowledge proof that n was the product of two large primes p and q. V could then
include a proof that each of her commitments was the product of at least one value
with order p. Camenisch and Michels describe efficient zero knowledge proofs which
can be applicable in this setting [17]. Of course, the costs of creating and verifying
these proofs may be equivalent to the costs of the existing malicious verifier-secure
protocols due to FNP and KM.

4.6.2 Computation and Communication Costs

The computation and communication costs of the HW construction are equivalent
to the costs of FNP’s malicious-prover secure scheme, except the HW construction
offers security against malicious provers without random oracles. The costs of HW
are as follows:

V Computation Costs: Computing αi coefficients naively requires O(|A|2)
modular additions and multiplications. Committing requires O(|A|) modular expo-
nentiations and multiplications. Testing whether responses have order p requires O(|B|)
modular exponentiations.

P Computation Costs: Using Horner’s method, P can obliviously evaluate
a d-degree polynomial with O(d) modular exponentiations and multiplications. Nor-
mally, P will perform O(|A||B|) operations; that is, one polynomial evaluation at a
cost of O(|A|) operations for each of the |B| elements in P ’s set. However, as de-
scribed in FNP, if the balanced hash-bucket scheme of Azar et al. [3] is employed P
can perform only O(|B| ln ln |A|) modular operations.

Communication Costs: The total exchange between P and V is O(k(|A|+|B|))
bits or O(k(|A| ln ln |A|+ |B|)) if a hash-bucket optimization is used, where 1k is the
security parameter.
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4.6.3 Hiding Set Sizes and Small Set Domains

In the HW construction, the size of the prover and verifier’s sets is public information.
In practice, however, the prover P with set B or the verifier V with set A might wish
to mask the true size of their sets using well-known techniques. To do this, the
verifier V can compute a random polynomial f(·) with roots in set A as normal, then
multiply it by some irreducible polynomial of arbitrary degree d. Then, P (or anyone
else) will only learn that V ’s set is of some size less or equal to |A|+ d. Similarly, P
can evaluate f on each value in B an arbitrary number of times. Each copy will
be randomized by the regular protocol. This will maintain correctness of Private
Disjointness Testing, but would obviously change the results of an honest-but-curious
private intersection cardinality protocol, as described in Section 4.5.

The HW construction requires that sets A and B are small with respect to the
domain of set values. Obviously, in the HW PDT protocol, if |B| = Θ(

√
n), then

a malicious adversary can factor n in time polynomial to the size of its input. This
would allow an adversary to generate values of order p and violate the Soundness
property.

4.6.4 Private Information Retrieval

Recalling Private Information Retrieval (PIR), one party will have a database of m+1
bits x0, . . . , xm, while a second party wishes to privately query a particular bit xi

without revealing i. Putting this in the context of the HW construction, A would
be the set of indices where x is 1 and B = {i}. Unfortunately, it may be the case
that |A| is large with respect to the domain Z∗

m.
As a result, the requirement of small set domains mentioned in Section 4.6.3

precludes directly using the HW construction for PIR in general. Yamamura and
Saito offer a simple PIR solution based on the SDA [124]. However, their PIR solution
approach is very inefficient and requires O(km) bits of communication to privately
retrieve a single bit from a m-bit database, where k is a security parameter.

4.6.5 Multiparty Extensions

Another interesting variant to the 2-party PDT protocol is considering a multi-verifier,
single-prover PDT scenario. For example, suppose that law enforcement agencies
from different countries, in the role of verifiers, wish to be assured by an airline, in
the role of the prover, that no one on any of their watch-lists is getting on the next
flight. The law enforcement agencies neither trust each other nor the airline with
their individual databases, yet may want to corroborate their watch lists (so as to
possibly work together).

Suppose there are two verifiers. The HW construction may be extended as fol-
lows. First, each verifier computes his own values ni = piqi and a group of known
order

∏
i ni is published. Next, both verifiers publish commitments to their own

polynomials using a random generator g from the group of order n1n2 and, respec-
tively, h1 of order (n1n2)/p1 = q1n2 and h2 order (n1n2)/p2 = n1q2. That is, values of
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the form gαihri
1 and gβjh

rj

2 , where f(x) =
∑

αixi and z(x) =
∑

βjxj. A third party
can obliviously evaluate commitments to the sum of these polynomials. If the third
party’s set contains an element ci such that f(ci) = z(ci) = 0, then this party can
output elements hr

1h
r′
2 , which have order q1q2.

This is interesting because no single party could compute elements of order q1q2

by themselves; this only occurs when the airline makes an evaluation on an element
contained in both of the law enforcement agencies’ sets. Each agency, knowing q1

and q2 respectively, could collaborate to detect this fact and take further action. The
benefit here is that the contents of the sets of the law enforcement agencies and
the airline all remain private, up to knowledge of any three-way intersections. This
digression is just to illustrate that unknown order subgroups might be applied in
other interesting applications.

4.6.6 Finding Intersection Values with HW

As previously mentioned, basic FNP is actually a Private Intersection or Private
Matching protocol. The verifier party learns which specific values are in the set inter-
section. Essentially, the prover will send homomorphic encryptions of the form Epk(r ·
f(b) + b) for values b ∈ B. If b ∈ A, then f(b) = 0 and the verifier will receive an
encryption of b. Otherwise, the verifier receives a random value.

Of course, this is still susceptible to malicious prover attacks. A malicious prover
can encrypt any value he likes or can encrypt values like Epk(r1 ·f(b1)+r2 ·f(b2)+b1),
which can be interpreted as “If (b1 ∈ A) and (b2 ∈ A), then tell the verifier that (b1 ∈
A)”. FNP’s fixes the problem by using the random oracle model to force a prover to
use the encrypted coefficient values prepared by the verifier.

This begs the question of whether the HW testable and homomorphic commit-
ment primitive could be used in a private intersection protocol. Initially, one may
consider using the exact FNP construction and having the prover obliviously evalu-
ate gRf(b)+bhr. If f(b) = 0, raising this to the power q will result in the value (gq)b.
The verifier can then check whether for any of its own values a, that (gq)a = (gq)b.

Unfortunately, like FNP, a malicious prover could also send conditional evalua-
tions, like “if x is in A, then reveal that y is in B”. This would violate the soundness of
a private intersection protocol. Thus, a HW-style private intersection protocol offers
no advantage over FNP. They have equivalent computation costs and the same level
of security.

An open question is whether a HW testable and homomorphic commitment-based
private intersection protocol may be constructed without the use of random oracles.
It may be possible to leverage groups that have several different ordered subgroups as
discussed in Section 4.6.5. The verifier might be able to commit A in a polynomial f
that has roots in different subgroups. Then a malicious prover would not be able
simply to mix-and-match oblivious evaluations of different b values. This idea is not
fully developed and can be the subject of future work.
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4.7 Conclusion and Open Questions

This chapter presented the Hohenberger-Weis (HW) honest-verifier private disjoint-
ness testing protocol, which originally appeared in [59]. HW is secure against mali-
cious provers without requiring multiple invocations, random oracles, non-interactive
zero knowledge proofs, or universally-composable commitments. The related FNP
and KM protocols require one or more of these assumptions to be made secure against
malicious provers, while HW requires only the subgroup decision and subgroup com-
putation assumptions.

There are several open questions and problems related to HW. First, disjointness
testing is a fairly limited application. An open question is whether there are natural
constructions of private set operations like union or intersection based on the sub-
group assumptions. It is likely that several of the FNP-inspired privacy-preserving set
operations due to Kissner and Song [72] may be adapted using this chapter’s testable
and homomorphic commitment primitive.

The testable and homomorphic commitment based on the subgroup assumptions
and described in Section 4.3.2 may be useful in other applications. Essentially, this
commitment scheme allows one party to obliviously evaluate functions, and another
party to test properties of the evaluation. In this chapter there was a single property
that was tested – whether a polynomial evaluated to zero.

However, testable and homomorphic commitment may be especially useful with
groups with many subgroups of unknown order, as described in Section 4.6.5. This
would allow a party to test several properties of an evaluation, or even several parties
to test different properties independently. As discussed at the end of Section 4.6.6,
groups with many subgroups of different order might be useful in developing a HW
testable and homomorphic commitment-based private intersection protocol – where
the verifier learns the actual values of the intersection.

More research must be focused on the hardness of both the subgroup decision and
subgroup computation assumptions. First, does one assumption imply the other?
Second, what is the relation, if any, between these assumptions and the Decisional
or Computation Diffe-Hellman assumptions? Either subgroup assumption implies
that factoring is hard, otherwise someone could just factor a group’s order to obtain
the order of its subgroups. Does assuming that factoring is hard imply either of the
subgroup decision assumptions? These are all important questions that are relevant to
both the HW construction and other works based on subgroup decision assumptions.
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Appendix A

Glossary

BGN Boneh, Goh, Nissim encryption [13]; hardness based on SCA, page 88.

BKW Blum, Kalai, and Wasserman [11] algorithm for solving the LPN problem;
best known asymptotic runtime, page 43.

Canonical SRS property; both confluent and terminating, page 49.

CIND-CPA Cascadable indistinguishability under chosen plaintext attack, page 54

Confluence SRS property; any string’s derivations must share a common derivation,
page 49.

d-skip rules Rewrite rules in Scom of the form dkej → ejdk, sufficient to model
commutative properties, page 64.

Efficiently Cascadable Property of cascadable cryptosystems; length of cipher-
texts will grow linearly as a function of the net encryption height, page 53.

Equivalence SRS property; strings are equivalent if they have the same canonical
form, page 49.

EPC Electronic product codes, page 20.

FNP Freedman, Nissim, and Pinkas [46] PIC protocol, 80.

GJJS Golle, Jakobsson, Juels and Syverson [53] universal re-encryption scheme, page
71.

HB Hopper-Blum human-to-computer authentication protocol, page 24.

HB+ Augmented Hopper-Blum tag-to-reader authentication protocol, page 28.

HW Hohenberger and Weis [59], honest-verifier PDT protocol, page 88.

HVPZK Honest-verifier perfect zero knowledge, page 86.

IND-CCA Indistinguishability under adaptive chosen ciphertext attack, 60
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IND-CPA Indistinguishability under chosen plaintext attack, page 54

IND-RCCA Indistinguishability under re-playable adaptive chosen ciphertext at-
tack, 60

KM Kiayias and Mitrofanova [71] PDT protocol, page 80.

LPN Learning Parity with Noise problem, page 26.

MPZK Malicious-prover zero knowledge, page 86.

Net Encryption Height Given a SRS string s, minimum length of a string t such
that ts 0 ε, page 51.

PDT Private disjointness testing; two parties wish to determine whether their re-
spective sets contain any mutual elements, page 79.

PIC Private intersection cardinality; two parties wish to compute the value of the
intersection of their two private sets, page 79.

Rewrite Fidelity Notion that evaluating a SRS string will be equivalent to evalu-
ating its canonical form, page 52.

RFID Radio frequency identification, page 19.

SCA Subgroup computation assumption, page 85.

SDA Subgroup decision assumption, page 85.

SRS String rewrite system, page 49.

SVP Shortest vector problem, page 26.

Termination SRS property; only a finite number of rules may be applied to any
string, page 49.

THC Testable and homomorphic commitment, page 89.
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