
Fast Serial Append File I/O Mode For Cilk

Alexandru Caracaş
CSAIL MIT

Abstract—We introduce Serial Append, a new parallel file
I/O mode well suited for parallel applications. Serial Append
allows parallel applications to efficiently perform file I/O in
parallel while maintaining a structure that makes the
sequential file I/O operations easily available. This property
of Serial Append lets serial applications, that are strictly
dependent on sequential file I/O operation, to be easily
parallelized. Serial Append can be used for example to
parallelize compression utilities such as bz2, or to add
logging to existent parallel applications, or as additional
support to database applications. We present a cost efficient
algorithm for performing Serial Append that uses
concurrent Skip-Lists to guarantee write as well as read and
seek file operations. We discuss the implementation of the
algorithm for the Cilk multithreaded language. We also
show the performance of several serial applications that
were ported to use Serial Append.

As an example of Serial Append consider a parallel
execution (on several processors) of a multithreaded
computation that performs output to a file. The output of the
parallel execution of the program is scrambled, namely the
output of one processor is interleaved with the output of the
others. This does not correspond to the sequential (single
processor) execution of the multithreaded computation.
With negligible slow down in the parallel execution, Serial
Append allows for the serial output to be easily available
and reconstructed by saving the meta-data of the parallel
execution of the computation in an additional structure. This
permits efficient, parallel access, to the parallel file I/O
operations as if they were performed sequentially.

Cilk is a multithreaded language for writing parallel
applications, and it has a provably good work-stealing
scheduler. To make Serial Append work for Cilk it is
important to keep track of the steal operations that occur in
the parallel execution of a Cilk program. We define an I/O
node to contain all the write operations that a processor
performs between two steals. The implementation of Serial
Append for Cilk is closely coupled with the Cilk runtime and
scheduler.

Meta-data about the parallel computation, namely the I/O
nodes that are created when steal operations occur, is saved
in a concurrent Skip-List. This is the only synchronization
required during the parallel execution. By using a Skip-List,
we improve the performance of the read and seek
operations. On each steal operation, a new I/O node is
created and inserted in the right order into the Skip-List,
namely after the I/O node of the processor from which the
current processor stole work. Each processor has its own file
I/O buffer and all its write operations are performed into
this buffer. In practice, an I/O node only contains the

relevant meta-data that allows to access and retrieve the
data written to the file I/O buffers. This scheme makes
possible for all processors to perform parallel file I/O
operations in their own buffers and maximizes the
performance of write operations.

[Full Text Not Available]

