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Abstract

Traditionally, the design of a transportation system has focused on either the vehicle
design or the network flow, assuming the other as given. However, to define a sys-
tem level architecture for a transportation system, it is advantageous to expand the
system boundary during the design process to include the network definition, the ve-
hicle specifications, and the operations, which couple the vehicle(s) and the network.
The integrated transportation system formulation developed in this thesis examines
these fundamental components by classifying the decisions required to define them
and concurrently optimizing the entire design problem, resulting in a more efficient
transportation architecture.

The integrated transportation system design models are developed for an air and
a space transportation system and an example problem is implemented for each.
The integrated air transportation system example of an overnight package delivery
network quantifies at least a ten percent improvement in cost over traditional opti-
mization approaches. The formulation for a space transportation system first requires
the definition of a space network which is constructed by extending time expanded
networks to account for astrodynamic relationships. An Earth-Moon logistics supply
example quantifies a 19 percent improvement in total mass in Low Earth Orbit as
compared to traditional optimization methods. The improvements in system objec-
tive values obtained can be attributed to the reduction in operational inefficiencies
for the transportation system.

The concurrent optimization of the integrated transportation system design prob-
lem employs a new methodology, embedded optimization, to obtain solutions. Em-
bedded optimization allows Simulated Annealing to effectively find good solutions
to highly constrained problems by embedding deterministic solvers, such as linear or
mixed integer programs, into the perturbation step. Comparing the solutions and
computational performance of SA with and without embedded optimization reveals
that embedded optimization performs significantly better, with 95 percent confidence.
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Nomenclature

Abbreviations

CPLEX

EMLI

LELO

LEO

LES

LP

LPLO

LPS

MATLAB

SA

Symbols

A

AS

gS

NAS

D

E

Isp

Mixed-Integer Programming Software

Ist Earth Moon Lagrangian Point

Low Equatorial Lunar Orbit

Low Earth Orbit

Lunar Equatorial Surface

Linear Programming Software

Low Polar Lunar Orbit

Lunar Polar Surface

Matrix Laboratory

Simulated Annealing

set of all arcs in time expanded network

set of all static arcs

time expanded network graph definition

static network graph definition

objective function

set of all nodes in time expanded network

set of all static nodes

air network distance matrix

element design type

specific impulse



N number of nodes in aircraft network

P aircraft demand matrix

T number of time periods in time expanded network

Wo aircraft take-off weight

WP aircraft payload weight

a reference to a specific arc

c total aircraft cost per day

c element capacity

e element instance e

f fixed aircraft cost

f element fuel selection

ff aircraft fuel fraction

g number of aircraft engines

g general non-linear function

go Earth's sea-level gravitation

h general linear function

I aircraft wing loading

m variable aircraft cost

n number of nodes in general network

n number of aircraft

m element fuel mass

p path

q sub-path corresponding to a burn sequence

r aircraft range

Sf aircraft structural fraction

t aircraft wing loading

t element thrust

w aircraft capacity

v aircraft cruise velocity

x cargo path variable



y element allocation variable

AV velocity change for orbit transfer

St time period length

element fuel fraction

Po sea-level density

Subscripts and Superscripts

(.)A aircraft of type A

(.)E element of type E

Definitions

Path: A path or route is a set of nodes or arcs in a network that defines the sequence

of locations that a vehicle travels.

Cargo: Cargo is the general term describing goods or shipments.

Commodity: A commodity is a discrete unit of cargo that is distinguished by cor-

responding supply and demand information as well as its physical properties.

Package: A package is a commodity that can be represented by a continual flow

instead of by discrete units.

Transport: Transportation refers to the movement between two physical locations.

Thus, when transporting cargo, the vehicle that contains the cargo changes physical

locations within the network.

Transfer; A transfer refers to a cargo containment change. Thus, when transferring

cargo, the vehicle that the cargo is contained within changes, however the physical



location of the cargo does not.

Optimal Solution: An optimal solution, as referred to in this research, is a vector of

feasible design values that obtains the best value of the system objective, as compared

to all other feasible design vectors examined. Therefore, in this research, reference to

an optimal solution does not imply any strict adherence to a mathematically defined

optimum.
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Chapter 1

Introduction

1.1 Motivation

The system-of-systems philosophy [4, 5] has expanded the system boundary to encom-

pass an integrated view of a system during the design process. Systems-of-systems are

collections of systems that can operate independently, but deliver more value when

designed and operated as a synchronized ensemble. Traditional approaches to system

design focus on a narrow system boundary (e.g. a single vehicle) and analyze the best

design given performance targets. The objective of this type of analysis is to mini-

mize the resources required to design and operate the system. For system-of-systems,

however the complexity lies within the interaction of the systems and therefore the

true objective is not available when analyzing a single system in isolation.

As we expand the definition of the system under consideration, we effectively en-

large the design control volume, which defines the boundary of inputs and outputs of

the system. The interior of the control volume is the design space under considera-

tion, where the designer can manipulate the components to achieve desired outputs,

given the inherent physical constraints and the external constraints across the system

boundary. As the control volume expands, greater flexibility in decisions is achieved,

but with this flexibility comes an increase in problem size and complexity.

In order to analyze a system in a holistic fashion we must consider where to

construct the control volume. Traditionally, even in systems engineering the design



pg

mjas

ong b

ston
e/jfkKpnk

laim 6uh

... .pl:~d-r mjuu

Figure 1-1: Left: Airbus 320[1] with specific sub-systems defined in greater detail as

inserts. Right: Jet Blue[2] air transportation network

boundary has been limited to the vehicle design[6]. However for transportation sys-

tems, it is not simply the design of a single vehicle, but the interaction of multiple

vehicles to achieve the desired mission objectives. By expanding the system definition

to include not only the vehicle design but the network the vehicles travel through and

the operations they perform, we can obtain a true system perspective of a transporta-

tion network.

Figure 1-1 depicts both an aircraft with sub-system components and an air trans-

portation network that uses this aircraft. The control volume for vehicle design can

be limited to any single sub-system, a limited interaction of sub-systems, or the entire

vehicle design. Similarly, network optimization theory limits the control volume to

encompass only the transportation network, with the vehicle designs as given inputs

to the problem. Aircraft designers assume that network demand and routing are given

and produce a vehicle design that satisfies the operational requirements, namely the

range and capacity[6]. Operations researchers on the other hand often assume that

vehicle specifications are known and held constant and seek to determine the best



allocation of the fleet[7]. In reality any vehicle is always a compromise design for its

intended operations. This research therefore focuses on the concurrent optimization

of the vehicle design and network flow, referred to as the integrated transportation

system design problem, effectively enlarging the control volume to include all aspects

of Figure 1-1.

The encompassing design space of the integrated transportation system design

problem allows for the exploitation of the coupling inherent between the vehicle de-

sign and network flow. By increasing the decision space and explicitly modeling the

coupling between the vehicle design and the interaction of a fleet of vehicles, effi-

cient transportation architectures can be found that better satisfy the requirements

of transportation systems.

1.1.1 Implications for Space Exploration

The integrated transportation system design problem is of particular interest when

considering the opportunities available for the design of space transportation systems.

With the announcement of the Vision for Space Exploration[8], we are given a new

set of challenges for designing a new space transportation system. The directive given

by President Bush dictates the design of a sustainable space exploration system for

the Moon, Mars, and 'beyond'. Inherent to the problem of transporting people to

destinations in space is sustaining the people and the operations while in transit

and at the respective destinations. Especially for long-term missions, the amount

of consumables required becomes a significant issue in terms of mass required in low

Earth orbit (LEO). In order to develop a sustainable space transportation architecture

it is critical that interplanetary supply chain logistics be considered[9].

To utilize the methods of terrestrial logistics in space mission design, it is necessary

to shift the paradigm from single-point mission designs to an interplanetary network

analysis. Realizing that the goal is no longer to develop an optimal system for a

point design mission (such as Apollo) but to design a transportation architecture for

a series of missions results in a reformulation of the design objectives. Viewing the

set of missions together as multiple demands in a space network and analyzing the



effects of theses demands on the transportation architecture will potentially enable

the production of a sustainable space exploration system that fulfills the given set of

directives.

Unlike terrestrial logistics, space exploration logistics transportation systems have

yet to be developed, which creates a unique opportunity to reduce operational ineffi-

ciencies in the transportation system by including the operational definition into the

design process. By utilizing an integrated transportation system design approach, a

significant advantage can be obtained in the design of the transportation vehicles that

perform the logistics required for sustainable exploration. The increase in efficiency

of the interplanetary logistics architecture may allow the goal of sustainable space

exploration to be fulfilled.

1.2 Literature Review

The research into designing efficient transportation systems is ongoing from both

the vehicle design and operations research prospective. While the literature in each

of the two areas taken separately is voluminous, previous work associated with the

intersection between vehicle design and network operations is surprisingly sparse. In

this section a review of the relevant research in each of these areas is presented.

1.2.1 Vehicle Design

Aerospace vehicle design is a complex process, requiring the understanding of the

physics involved with flight, and the numerous sub-systems required to obtain a fea-

sible vehicle design. In Raymer (1999)[6] and Anderson (1999) [10] a guide to the

conceptual design of an aircraft is presented. In both of these works, a detailed anal-

ysis of the mechanics of flight and the necessary sub-system design considerations are

provided. For example, when defining the design of the wing, the structural require-

ments and aerodynamic considerations are detailed to determine the effect on aircraft

performance. These works present the conceptual design process in the context of

fulfilling a prescribed operations scenario which requires an iterative design process.



Traditionally, aircraft design research has focused on the design of an aircraft,

given prescribed performance levels, such as required range and capacity. In Aron-

stein and Schueler, (2005)[11] the conceptual designs of two supersonic business air-

craft are introduced. The aircraft design concepts are developed using a prescribed

performance level and the results are compared. In Neufeld and Chung (2005)[12]

the conceptual design of an unmanned aerial vehicle is explored using a combination

of genetic algorithms and data mining. Again, the design parameters of the vehicle

are optimized with respect to given operational performance parameters.

Recently, investigations into the design of an aircraft to fulfill multiple operations

have been considered to understand the impact of these requirements on the vehicle

design characteristics. Frommer and Crossley, (2006),[13] compare the designs of

fixed geometry and morphing geometry aircraft for satisfying multiple pre-defined

operational scenarios. Additionally, the study compares the two aircraft designs when

operating as a fleet for service in the operational scenarios, and thereby analyzes the

effects of the fixed or morphing geometry on the system, not just the single vehicle

design.

The effect of aircraft design on a fleet is further examined in Crossley, et al.

(2004)[5] and Crossley and Mane (2005)[14] where the design of a passenger air-

craft for a transportation system is considered. The network is pre-defined and two

pre-existing aircraft types are available to satisfy passenger demand in a hub-spoke

network of three cities. The objective is to optimize the design of a third new aircraft

type and to allocate the newly composed fleet such that the demand is satisfied at the

lowest total direct operating cost (DOC) for the system. Viewing the vehicle design

within the context of a defined network creates a system of systems framework and

allows the new vehicle design and routing to be optimized for the set of operations

considered. This work is expanded in Mane, et al. (2007)[15] and Mane (2005)[16]

where a 31-city problem with an existing fleet of eight different vehicle types are ex-

amined. Here, the results show not only a decrease in DOC by considering the design

of a new vehicle within the fleet context but the scalability of the method for larger

problems.



Research into the design of efficient space transportation vehicles is as numerous,

since the cost of space travel is high and design budgets are tight. Spacecraft Systems

Engineering (1995)[17] and Space Mission Analysis and Design[18] present comple-

mentary works that describe the conceptual design process for spacecraft. In both

of these works, the design process is presented within the context of a mission anal-

ysis, which highlights the importance of understanding the operational requirements

in order to produce a well defined design. These works begin with a background in

astrodynamics in order to appropriately define the mission prior to vehicle design.

Following a mission definition, a conceptual design process is presented that covers

each step in the spacecraft vehicle design process, including all of the sub-system

requirements that need to be examined.

Traditionally, the first step in defining a space mission is to define the trajectory

to be examined. There are numerous works on trajectory analysis, such as Battin

(1999)[19], and Chobotov (1991)[20], which discuss in detail the astrodynamics of

space flight. Trajectory optimization presents a difficult optimization problem. In

Betts (1998), (1999)[21][22] a discussion of potential optimization tools and analysis

methods for trajectory optimization is presented. Given the mission details and the

vehicle design parameters, the actual trajectory is then optimized to minimize the

resources required to perform the mission or maximize the mission reliability.

Walberg (1993)[23] presents a classic spacecraft design analysis for a Mars mission.

Different propulsion systems are considered and the resulting vehicle architectures

are evaluated by comparing the total system mass in LEO required to fulfill the

mission objectives. Every mission assumes a direct flight to Mars, and results in an

architecture that promotes a high ratio of propulsive capability to propulsive mass

requirements for the provided operational scenario.

In Rowell, et al. (1999)[24] the concurrent optimization of a launch vehicle and

launch trajectory are discussed. By concurrently optimizing the control of the launch

vehicle with the launch vehicle sizing and performance parameters, a better launch

architecture can be developed. The recognition of the coupling inherent between

the vehicle design and the trajectory allows for a more efficient launch system to be



developed.

As with aircraft design, recent investigations into the design of spacecraft to fulfill

multiple missions has been considered. In Cassady (1999)[25], an overview of in-

space propulsion technologies was conducted to determine the important technology

areas and mission descriptions for each. Several teams were formed of various experts

in the fields of reusable technologies, integral technologies, interplanetary transfer

technologies and planetary capture and ascent/descent technologies. The outcome of

this collaboration was a list of technologies that can be incorporated into spacecraft

designs that would benefit a variety of mission scenarios, not just a single mission.

In Meissinger and Collins (1999) [26], an innovative method for designing an in-

space propulsion system is discussed. The purpose of the orbit transfer vehicle (OTV)

is to serve many small in-space missions. The paper proposes a set of missions and

analyzes the design requirements, which defines the common elements for the basic

spacecraft and the necessary attachments for the specific missions. By understanding

the requirements of the future missions for the OTV, flexibility is built into the initial

design, allowing for changes in mission requirements as time progresses.

In Gonzalez, et al. (1998)[27], the design of a spacecraft to fulfill multiple missions

is formalized by utilizing a platform-variant decomposition. The relevant vehicle

design variables are categorized into variables that are common to each mission, or

platform variables, and variables that are unique to each mission, or variant variables.

If a specific feature is categorized as a platform variable, the value can not be changed

by a single designer, but must be re-negotiated by all members. Variant variables can

be changed subsequently without consulting other missions, since these features are

unique to the mission. Thus, the optimization is performed on two levels: the product

family level, and the variant level. Although the method presented relies on a human

interaction between iterations, it does provide a basis to adequately compare multiple

designs and achieve results that are satisfactory to the program as a whole.

The new space exploration initiative has spawned a large amount of literature

referring to the design of the space exploration system that will travel to both the

Moon and Mars. Wooster, et al. (2005)[28] discusses a design approach for a crew



exploration vehicle (CEV), which will replace the Space Shuttle in the near term and

function as a main component in space exploration. Using a decision tool known as

object process networks (OPN) a large number of vehicle architectures can be eval-

uated to determine the best set of both physical vehicle parameters and associated

operational architectures. Stanley, et al. (2006)[29] describes the process of design-

ing the transportation architecture for the exploration missions. By defining a set of

design reference missions, architectures are developed and evaluated against perfor-

mance metrics such as cost and reliability. Again, the recognition that sustainable

exploration requires extensible transportation systems that can be utilized to perform

multiple missions is inherent in this analysis.

1.2.2 Network Optimization

The operations research community has produced a large amount of research focusing

on efficient transportation system operations. Transportation systems are modeled

using an underlying transportation network as the framework for analysis. The net-

work model allows for a variety of transportation problems to be analyzed and solved.

The classic network optimization problem formulation is the traveling salesman prob-

lem (TSP). Lawler (1985)[30] provides an extensive reference on the history of the

TSP, multiple formulations of specific instances of the problem and the computational

issues surrounding this combinatorial optimization problem. The TSP belongs to the

class of combinatorial optimization problems that are defined as KfP-hard[30]. This

definition states that for the general case, the computational effort grows exponen-

tially with the number of cities to be visited.

Many practical applications that investigate the sequence of decisions have been

modeled using the TSP. In Alfriend and Lee (2002)[31], the optimal servicing of

geosynchronous satellites is considered. For small inclinations, an approximation to

the distance between satellites is derived based on the angular momentum projec-

tion on the equatorial plane. Further approximations showed that the amount of

AV required to perform the plane change is proportional to the distance between

the angular momentum projections. Thus, when the objective of minimum fuel con-



sumption is considered, the problem effectively becomes the solution to the minimum

distance problem, which can then be formulated as the TSP.

The dynamic TSP incorporates the element of time into the formulation. In

Takahashi (1998)[32] a formulation of the dynamic TSP is developed to show the

application of adaptive networks to dynamic optimization problems. In the dynamic

TSP presented, the distance matrix between two cities is a function of time. The

formulation of the problem then changes to impose additional constraints that relate

the output at one time to the input at the next. In addition, the dynamics that

determine how the distance matrix varies with time must be specified. Although

some limiting constraints are placed on the problem, this paper provides a generalized

formulation for the dynamic TSP and shows the usefulness of adaptive networks in

solving them.

The TSP focuses on the routing of a single vehicle to meet the network demand.

When more than one vehicle is considered, a transportation network routing problem

is created. In transportation networks, the objective is to minimize the total cost

of allocating vehicles in a fleet to routes in order to satisfy the network demand[33].

Additional constraints arise in order to track the fleet and ensure that the allocation

is feasible given the limitations of the vehicle. Toth and Vigo (2002)[34] present

a detailed examination of the vehicle routing problem (VRP), with corresponding

models for many specific implementations with the associated constraints.

The vehicle routing problem is most often applied when examining logistics re-

quirements. Logistics refers more broadly to the requirements associated with provid-

ing goods from manufacturers to customers, which includes efficient transportation

of these goods[35]. Research into efficient transportation within a logistics network

is often considered when examining the less than truckload (LTL) problem. Less

than truckload refers to the size of a shipment that is smaller than the capacity of the

transportation vehicle, thereby allowing multiple shipments to be carried by the same

vehicle to reduce costs. Chan, et al. (2002)[36] examines the LTL problem an investi-

gates efficient methods for obtaining solutions. Simchi-Levi, et al. (1995)[35] utilizes

this analogy when examining the school bus routing problem for the New York City



public schools. In the school bus routing problem, the primary constraints focused on

the timing restrictions inherent in school bus pick-ups and drop-offs, and the optimal

routing and scheduling of the buses is determined. However, when considering the

problem of optimizing the logistics for a transportation system, the capabilities and

limitations of the vehicles available are defined as inputs to the problem.

Investigations into the optimization of the vehicle routing problem have been a

prominent research topic for decades. In Dantzig and Ramser (1959)[37] initial inves-

tigations into the models required to develop the truck routing problem are developed.

This work then discusses the solution of the resulting formulation by computational

approaches. More recently, Tan, et al. (2006)[38] considers the trailer and truck rout-

ing problem. The objective of this problem is to determine the minimum cost routing

of a fleet of trailer trucks that must pick-up a set of containers from multiple locations

and return them to a warehouse. This paper investigates a hybrid multi-objective

evolutionary algorithm to improve the computational efficiency of the optimization.

Transportation logistics is also necessary when defining aircraft routing. In Barn-

hart, et al. (1998)[7] the fleet assignment problem is solved in conjunction with the

aircraft routing problem. By concurrently optimizing these two classes of problems,

the optimal allocation of fleets to routes and the timing of each flight is determined

to provide a more robust methodology for defining the flight scheduling for an air-

line. Alternatively, it may be desirable to define the flight paths and allocate aircraft

to these flights to meet a prescribed demand at lowest cost. Yang and Kornfeld

(2003)[39] examines the optimal allocation of a set of aircraft for an overnight pack-

age deliver system. Given a set of aircraft with different ranges, capacities and costs,

the objective is to minimize the total network costs by choosing the vehicle routes

through the network and allocating the appropriate vehicles to meet the given pack-

age demand. The resulting network is then compared to the traditional hub-spoke

networks utilized for air transportation problems and shows a reduction in cost for

the new aircraft routing.



1.3 Integrated Transportation System Design

The operations required for a transportation system to perform efficiently are depen-

dent on the complex interactions of the vehicles in the fleet, which are significantly

coupled to the vehicle design and performance parameters. As a pre-defined opera-

tions profile is often considered during the design process, the vehicle architecture is

dependent on this profile. Similarly, the routing and allocation of a fleet of vehicles in

a transportation system requires information about the vehicle's design limitations.

However, since this process is performed sequentially, knowledge of the actual ve-

hicle operations is not present during the design process, creating potential costly

inefficiencies in the transportation architecture.

As shown in Section 1.2, a gap still exists between the vehicle design research

and the network optimization research. Although recent research within the vehicle

design community has expanded the traditional system design boundary to examine

the interactions of a fleet in a network, the network definition is defined apriori.

Therefore, this research investigates the opportunities for efficient design when

the operations of a fleet of vehicles are explicitly included in the vehicle design model.

The integrated transportation system design problem removes the boundary between

traditional vehicle design and traditional network flow optimization, creating an inte-

grated model of a transportation system. The objective of this research is to create a

methodology for examining transportation systems in a holistic framework and obtain

more efficient designs. The key contributions of this work are as follows:

* Provide a formal definition and decomposition of the integrated transportation

system design problem. Analyze the coupling relationships and mathematical

structure of each component to provide insight into the complexities of modeling

a transportation system.

* Clearly define a space transportation network by extending the definitions of a

generic transportation network to account for differences in space transporta-

tion. Utilize the network modeling tool of time expanded networks to capture



Figure 1-2: Object-Process Diagram Representation of this Dissertation (Thesis

Roadmap)

the astrodynamic relationships of space transport and provide a mathematical

description of the space network.

* Present two implementations of the integrated transportation system design

problem. Utilize both an air transportation system and a space transportation

system to show the benefits of the integrated transportation system design

methodology as well as the applicability of the methodology to other domains.

* Develop an optimization methodology that effectively solves the integrated

transportation system design problem. Validate the improvement in compu-

tational efficiency and scalability of this new method through a computational

experiment comparing the new optimization methodology with traditional im-

plementations.



1.3.1 Thesis Overview

Figure 1-2 provides a high-level overview of this dissertation using an Object-Process

Diagram (OPD)[40]. In the first chapter, the motivations for defining the integrated

transportation system design problem were explored with an emphasis on the poten-

tial impact for space exploration. A review of the research for both vehicle design and

transportation networks was presented to identify the gap in the existing literature.

Following this, the value of the integrated transportation system was then presented

as the intersection of two often distinct views of transportation system design and

the resulting contributions of the research were presented.

In Chapter 2, a concrete definition of the integrated transportation system design

problem is presented as well as the complexities associated with solving the resulting

implementations. To form an understanding of how the fleet operations and vehicle

design are coupled, a clear distinction between the boundaries of the vehicle design,

the network routing, and the operations must be created. These boundaries will

clearly delineate the control volume of each component in the transportation system

and most importantly, the intersection of these components, where the opportunity

to improve efficiency lies.

Having defined the integrated transportation system design problem, Chapter 2

continues by analyzing the computational issues associated with the resulting problem

size from the network model and the varied mathematical structure of the different

components of the integrated transportation system design problem. To handle the

complexities of the integrated transportation system design problem a new optimiza-

tion methodology referred to as embedded optimization is presented that exploits the

structure of the transportation system model.

The third chapter presents the integrated transportation system models for an air

transportation network and a space transportation network. The air transportation

system design problem is formulated based on the previous work of Crossley, et al.

(2004)[5] and Yang and Kornfeld (2003)[39] and in accordance with the decompo-

sition outlined in Chapter 2. To formulate the space transportation system models,



the definition of the space transportation network is presented. Drawing on analogies

from terrestrial networks and extending these methods to incorporate the astrody-

namic relationships required to perform space transportation, a formal definition of

a space network is presented. Following this, the space transportation system models

are presented.

In Chapter 4, the integrated air transportation system design problem is imple-

mented for two example networks to define concurrent transportation architectures.

The concurrent architectures are compared with traditional vehicle-only and network-

only optimization, to illustrate the quantitative improvement of the integrated trans-

portation system design methodology over current practice.

In Chapter 5, the integrated space transportation system design problem is imple-

mented for an example space network and the concurrently optimized transportation

architecture is defined. Again, to measure the value of the integrated transportation

system design problem against current practice, the concurrently optimized solution

is compared with traditional vehicle-only and network-only optimization approaches.

Chapter 6 presents a computational study to measure the benefits of the embedded

optimization methodology developed in Chapter 2 and utilized to solve the integrated

transportation system design problems presented in Chapters 4 and 5. To quantify

the improvements in performance of the embedded optimization methodology, a com-

putational experiment is performed to compare the performance of the system level

optimizer, Simulated Annealing, with and without embedded optimization.

The final chapter reviews the key ideas and contributions presented in this dis-

sertation and a discussion of the potential benefits and current limitations of the in-

tegrated transportation system design methodology follows. This chapter concludes

with suggestions for future work in this research area.



Chapter 2

Integrated Transportation System

Design Framework

The integrated transportation system design problem examines the coupling between

the vehicle design and the interaction of the fleet. The motivation for examining a

transportation system in this manner is to promote an efficient vehicle design that

more accurately captures the requirements of the transportation system network. The

challenge of this analysis is how to effectively describe, model and finally optimize

the resulting problem, which can become very large and mathematically challenging

to optimize.

This chapter focuses on the fundamental ideas developed to define and solve the

integrated transportation system design problem. To illustrate the concepts presented

in this chapter, a generic transportation system example will be utilized. Figure 2-

1 depicts the example transportation system and the details of this system will be

developed within the chapter. In Section 2.1 the integrated transportation system

design problem is decomposed into the fundamental components that describe the

complex system interactions. In Section 2.2 a brief background and nomenclature

for network modeling is presented, and the complexities that arise from modeling

transportation networks are discussed. Section 2.3 examines the limitations of exist-

ing methods for complex design problems and presents the embedded optimization

methodology developed to handle the complexities of the integrated transportation
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Figure 2-1: Generic Transportation System Example

system design problem.

2.1 Problem Decomposition

Transportation systems involve a complex interaction of a coordinated fleet of ve-

hicles. Given a fleet of vehicles and a prescribed demand for service, each vehicle

in the fleet can be assigned a route, assuming that the route is feasible given the

vehicle's limitations. The integrated transportation system design problem provides

insight into the interactions between the design of the vehicles within the fleet and

the interaction of the fleet when performing the designated tasks.

The integrated transportation system design problem consists of four components:

the transportation network flow, the vehicle design, the operations, and the system

level objective. As shown in Figure 2-2, the vehicle design and the network flow are

the sub-systems that determine the value of the transportation system as defined

by the system-level objective, and the operations define the constraints that couple

them. The following sub-sections provide a generalized definition of the models and
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Figure 2-2: Diagram of the Integrated Transportation System Model

assumptions required to define each component of the integrated transportation sys-

tem design architecture and utilize the transportation system defined in Figure 2-1

as an illustrative example.

2.1.1 Vehicle Design Models

The fundamental distinction of a transportation system from a network flow problem

is the reliance on a set of transportation vehicles. The transportation vehicles have

two functions. The first function of the vehicle is to hold cargo. In a transportation

network, cargo must be contained within vehicles and the vehicles travel through

the network. The second function of a vehicle in a transportation network is to

provide the energy required to maneuver through the network. In order to travel

within a transportation network, it is necessary to expend energy, generally in the

form of propellant. Again, the vehicles and not the commodities, are responsible for

performing these maneuvers.

Referring to Figure 2-1, the example fleet is composed of a single vehicle type and

Vehicle Design

Define feasible aircraft design
variable values that satisfythe

take-off constraint and
determine the aircraft meight

I

Network Flow

Determine the allocation of
aircrafts and packages to routes
to satisfy package demand given

aircraft round-trips

Operations
Ensure that no aircraft is flying a route greater than

the range of the aircraft

Ensure that the package routing satisfies the total
capacity constraints of the aircrafts for each route

-~~~~---~-~~~'



two instances are available for use. The performance parameters for the vehicle design

define the vehicle's ability to function as a cargo carrier and the vehicle's limitations,

with respect to maneuvering through the network. In this example, the vehicle type

defined has the ability to hold 7 units of cargo and has a maximum traveling distance

of 100 miles.

Given the functions of a vehicle in a transportation system, the variables in the ve-

hicle design sub-system define the vehicle design and performance parameters. Specif-

ically, design variables that describe the physical characteristics, are required to define

the level of functionality for carrying commodities. Design variables that describe

the propulsive capability of the vehicle are necessary to define the vehicle's ability

to maneuver within the network. The design variables defined in the vehicle design

sub-system are denoted by Xveh.

The vehicle design vector can consist of variables that explicitly define the cargo

capacity and propulsive capability, or indirectly define these quantities, by determin-

ing the size, shape, and propulsive force capabilities of the vehicle design, which can

be related to the functional requirements through physical and dynamic relationships.

In either case, however, when evaluating the operations of a fleet, the impact of the

vehicle design on the transportation network is determined by the vehicle's ability to

perform the two functions of carrying cargo and propulsive maneuverability.

The constraints within the vehicle design sub-system impose restrictions on feasi-

ble relationships between the vehicle design variables. The vehicle design constraints

consist of both side constraints that define a permissable range for each of the vehicle

design variables, and nonlinear constraints that govern multiple design variables en-

suring a feasible vehicle architecture. This second set of constraints often poses the

greatest difficulty for designing a feasible vehicle model as the complex interactions

of the vehicle design variables can be difficult to satisfy.

In general, the vehicle design constraints can be represented as shown in Equa-

tions 2.1 and 2.2, where XLB and XUB represent the minimum and maximum permiss-

able values of the vehicle design variables, and g,,eh () represents a general non-linear

function of the vehicle design variables that expresses the vehicle design constraints



considered. Furthermore, although not explicitly depicted here, the vehicle design

variables can be discrete, where the permissable range constitutes a set of feasible

values.

XLB • Xveh < XUB (2.1)

gveh (Xveh) < 0 (2.2)

2.1.2 Network Flow Model

The network provides the underlying architecture for the transportation system,

which defines the information governing locations in the network and their connec-

tions. By defining a network, an inherent coupling of decisions is created, which

results in the complexity of transportation systems. By examining Figure 2-1 we see

that on the right hand side of the figure, a simple transportation network is defined.

The arrows connecting the nodes define the allowable direction of transport between

the nodes. The network flow model utilizes the network definition to determine the

movement of both cargo and vehicles through the network.

In transportation systems, the goal is to determine the movement of cargo and

vehicles within the network. Therefore, defining the subset of nodes visited or arcs

traveled is insufficient. Instead, it is necessary to prescribe the order that the nodes

are visited and the sequence of arcs traveled. For this reason, it is necessary to define

paths or routes in the network to model the movement of cargo and vehicles in a

transportation system.

The network flow model defines two sets of variables: cargo paths and vehicle

routes. Cargo paths determine the sequence of locations that the cargo travels from

origin to destination. Vehicle routes specify the assignment of each vehicle to travel

a sequence of locations. In addition, the vehicle allocations, and potentially the

cargo paths, are discrete units, generally requiring integrality of the network design

variables. The cargo and vehicle variables in the network flow model can be denoted

by Xnet and Ynet, respectively.



Constraints in the network flow model govern feasibility of the cargo paths and

vehicle routes. The cargo paths are required to satisfy the supply and demand con-

straints, as shown in Equation 2.3.

hsupply (xnet) = Si (2.3)(2.3)
hdemand (Xnet) = dj Vj

Here, hsupply () represents a generic linear function of the cargo path variables that

expresses the total amount of cargo originating at node i and hdemand () is a generic

linear function expressing the demand terminating at node j and si and dj define the

supply and demand at nodes i and j, respectively.

By examining Figure 2-1 we see that node A has a supply of 4 units, node B has

a supply of 3 units, node C has a demand of 2 units and node D has a demand of 5

units. The supply and demand for all other nodes is zero. Formulating the constraints

defined in Equation 2.3 for this example would ensure that the total amount of cargo

starting and ending at each node satisfies the supply and demand of the network.

Vehicle allocation constraints ensure that the vehicle assignments are feasible.

General vehicle allocation constraints limit the assignment of each vehicle to no more

than one route in the network at a time (first equation in Equation 2.4); however ad-

ditional constraints, such as limiting the total number of vehicles available for assign-

ment, can be added as required by the specific transportation system implementation

(second equation in Equation 2.4).

hroute (Ynet) 1 (2.4)(2.4)
hmax (Ynet) • Nmax

Here, hroute () represents a linear function of the vehicle route variables that ex-

presses that each vehicle travel no more than one route. The first set of equations

ensures that no more than one vehicle route is selected for every vehicle, and is im-

posed for every vehicle in the fleet. For the example presented in Figure 2-1, this

equation yields two constraints, one for each vehicle. In the second equation, hmax ()

expresses the total number of vehicles traveling within the network and limits this

number to be less than the maximum number of vehicles available (Nma). For the



example presented in Figure 2-1, the maximum number of vehicles available for use

is two.

2.1.3 Operations Model

The operations model defines the actual operations of each vehicle for each route,

given the vehicle design parameters. Additional design variables specific to the op-

erations can be defined and can potentially influence the objective function. These

design variables, if they are defined, increase the flexibility of the transportation sys-

tem by increasing the specificity of the architecture for the example considered. For

example, the amount of propellant provided for each vehicle can be different, but

must be within the limits provided by the vehicle design.

The operations constraints define the coupling between the vehicle design model

and the network flow model. In this set of constraints, the actual operations of a

vehicle are evaluated for the prescribed allocation. The vehicle has the associated

physical and performance characteristics determined by the vehicle design and these

limitations are compared to the requirements specified by the cargo paths and vehicle

routes.

The operational constraints consist of two distinct sets of constraints: capacity

and capability. Capacity constraints determine if the cargo can be contained within

the vehicles, given each vehicle's capacity and the locations of vehicles as determined

by the vehicle routes. For the integrated transportation system design problem, this

set of constraints is non-linear, since both vehicle capacity and vehicle routes are

design variables. Equation 2.5 specifies the set of generic capacity constraints that

must be enforced everywhere within the network.

hmcap (acargo, Xnet) _ gmcap (Xveh, Ynet) (2.5)

Again, hmap () describes a linear function of the cargo path variables Xnet as

well as relevant properties of the cargo (acargo) to determine the actual amount of

cargo that must be contained. The right hand side of these equations specifies a



non-linear function (g,,,,ap ()) of the vehicle design variables and the routes of every

vehicle instantiated. These constraints enforce that the total carrier functionality of

all vehicles allocated is sufficient for holding the cargo everywhere within the network.

In the example presented in Figure 2-1, the total amount of cargo transported

through the network is 7 units and the capacity of each vehicle in the fleet is 7 units.

Therefore, for this example, the capacity constraints simply require that the cargo

paths and vehicle routes coincide. However, if the capacity of the vehicles were to

decrease or the demand in the network were to increase, the capacity constraints

would be more difficult to satisfy.

The capability constraints ensure that every vehicle is capable of performing the

assigned operations. In order to travel between two nodes in a transportation net-

work, a vehicle must have the propulsive capability required to transport the arc.

The propulsive capability can be influenced by the vehicle design, cargo paths and

potentially other vehicle routes. Equation 2.6 specifies the set of constraints that

must be enforced for every route and vehicle.

gcap (Ocargo, Xnet, Xveh, Ynet) gvcap (Xveh, Ynet) (2.6)

The left-hand side of Equation 2.6 is a non-linear function of the cargo path

variables, vehicle design variables and vehicle route variables. The right-hand side of

the equation is a non-linear function of the vehicle design and routing variables, which

defines the total propulsive capability present for each vehicle and each route. Since

the capability of a vehicle is often measured by the amount of propellant the vehicle

contains, the ability of the vehicle to traverse the route is influenced by the potential

to refuel at intermediate points along the route. If a vehicle can refuel at any node

within the network, then the capability constraints examine the ability of the vehicle

to traverse all arcs it transports across. If there exists refueling points along the arcs,

as seen when modeling car and truck routes, the capability constraints become trivial.

If however, there are no opportunities for refueling, as exists in space transportation

systems, the capability constraints become extremely difficult to satisfy.

Examining Figure 2-1, the capability of each vehicle in the fleet is defined by the



traveling distance (100 miles). In this example, the definition of a fixed traveling

distance decouples the capability of the vehicle from the cargo and vehicle paths.

Thus, the capability of the vehicle is simply defined by the vehicle design variables.

This simplifying assumption is reasonable if the other factors influencing the vehicle's

capability, namely the cargo routes, do not change the capability significantly. With a

traveling distance of 100 miles, the vehicle is capable of transporting across every arc

within the network. Therefore, if the we assume that there exists refueling opportu-

nities at every node within the network, it is not necessary to evaluate the capability

constraints. If, however, refueling opportunities do not exist, this significantly im-

pacts the vehicle's ability to transport cargo. For example, a single vehicle can not

travel from node B to node A to node C to node D as the total distance of this route

is 120 miles, which exceeds the traveling distance of the vehicle. Therefore, under the

assumption of no re-fueling, either another route must be selected or multiple vehicles

must be employed to transport the cargo.

2.1.4 Objective Function

For transportation systems, multiple configurations exist that satisfy all of the re-

quirements specified by the sub-system constraints. Since resources are limited, the

objective is to find the configuration that requires the least amount of resources to sat-

isfy the demand requirements. Alternatively, for high-value delivery systems, the ob-

jective could be reformulated to maximize robustness to failure. Focusing on limited

resource utilization, as we are considering the interaction of multiple vehicles within

a network, this implies that the objective is to minimize the total system resource

usage, not just the resources required to satisfy a single demand point. Equation 2.7

defines the generic objective function for the transportation system.

min J = g (Xveh, Yveh) (2.7)

Equation 2.7 describes a non-linear objective function that combine the variables

that describe the vehicle design and the vehicle routing variables. As described in



the vehicle design sub-section, the vehicle design variables are utilized to define an

associated value corresponding to the vehicle design. Combined with the routing and

allocation variables, the resource requirements for the transportation architecture can

be evaluated within the system objective.

The objective of minimal resource utilization often translates into minimum sys-

tem cost. Figure 2-3 provides a table listing some of the representative costs associ-

ated with transportation system designs. The first column denotes a title for the cost

breakdown, the second column lists the associated costs for which the given category

represents, and the third column describes how each cost is represented in the trans-

portation architecture. As we can see by examining Figure 2-3, two costs associated

with the vehicle design are defined. The fixed cost of the vehicle is a cost for assigning

a vehicle to travel any route within the network. The variable cost of the vehicle is

a cost for assigning a vehicle to a specific route, where the accumulation of the cost

is dependent on the usage of the vehicle. The final row in this table examines the in-

frastructure costs associated with transportation networks. These costs are generally

not captured when examining the design and allocation of a fleet to satisfy demand,

but are commonly utilized to design the network (i.e. determine where to define new

nodes and arcs).

Examining Figure 2-1 reveals both the fixed and variable cost assignments for the

example problem. For each vehicle, a $10 cost is incurred for utilizing a vehicle to

transport the cargo and for each mile traveled, an additional cost of $1 is imposed.

Cost can be difficult to represent accurately for a vehicle design, given the design

parameters of the problem. In these cases, a representative cost metric can be utilized

to evaluate the transportation architecture. The objective function consists of the

vehicle design variables and the allocation variables, and therefore represents the

resources required to operate the fleet. Costs associated with packages are generally

ignored, since the total amount of cargo traveling through the network is independent

of the transportation architecture, and the relative costs are small, as compared to

the vehicle costs.



Figure 2-3: Breakdown of Costs for Transportation System Modeling

2.1.5 Complexity of the Integrated Transportation System

Design Problem

The goal for a transportation system is not simply to minimize the distance each

vehicle travels. Instead, the goal is to minimize the resources required to transport

all of the cargo from the supply nodes to the demand nodes, which requires analyzing

the interactions of the fleet that transports them. For the example in Figure 2-1

there is a choice of utilizing a single vehicle to delivery all of the cargo to the demand

locations (since the capacity of a single vehicle is large enough to hold all of the

cargo) or utilizing two vehicles, creating separate pick-ups or deliveries. For this

simple example, the options can be enumerated, as shown in Figure 2-4.

Figure 2-4 shows nine options for satisfying the cargo demand where the use of a

single vehicle or two vehicles is considered. The path defines the sequence of nodes

visited by the vehicle(s) and the accumulated travel distance and corresponding travel

time are computed. The total distance refers to the distance traveled by all vehicles

in the transportation system, however the total time refers to the maximum amount

Cost Breakdown Representation Modeling
Parameter

Acquisition Costs Design and Fixed Vehicle Design
Development Costs Costs

Fixed Operating Standing Army, Fixed Vehicle Design
Costs Depreciation of Costs

Investment

Variable Operating Fueling, Maintenance, Variable Vehicle
Costs Operating Personnel Design Costs

Infrastructure Warehousing, Additional Costs
Maintenance (Often not captured

Facilities, Pathways directly)
(ex. Railroad Tracks)



Figure 2-4: Table of Feasible Architectures for Example Transportation System

of time required to deliver the cargo, assuming both vehicles operate simultaneously.

The total cost of each option is computed using the cost parameters defined in Figure

2-1.

Given that for this example, there are no constraints on delivery time imple-

mented, the goal is to minimize the total system cost. Therefore Option 5, which

uses a single vehicle to deliver all commodities would be selected with a total cost of

$90. It is important to realize that this solution may vary for different vehicle archi-

tectures since a change in vehicle capacity, traveling distance, or the fixed or variable

costs significantly influence the decision. It is this coupling that the integrated trans-

portation system design problem, as presented in this thesis investigates.

The integrated transportation system design problem includes the vehicle design

variables with the network flow variables to obtain a transportation architecture that

efficiently sizes the transportation vehicles to meet the demand of the network at

lowest cost. Improvements in efficiency are obtained by specifying the cargo capacity

and propulsive capability to match the requirements of the routes selected. Changes

in the vehicle design can alter both the fixed and variable costs of the vehicle which in

Routing Distance Travel Total Total Total
Path

Options Traveled Time Distance Time Cost

Option 1: 1 vehicle B-A-C-D 120 miles 4 hours 120 miles 4 hours $130

Option 2:1 vehicle A-B-E-C-D 105 miles 6 hours 105 miles 6 hours $115

Option 3: 1 vehicle A-B-E-D-C 85 miles 5 hours 85 miles 5 hours $95
Option 4: I vehicle B-A-E-C-D 100 miles 5.5 hours 100 miles 5.5 hours $110

Option 5: 1 vehicle B-A-E-D-C 80 miles 4.5 hours 80 miles 4.5 hours $90

A-C-D 90 miles 2 hours
Option : 2 vehicles 125 miles 2 hours $145

B-E-D 35 miles 2 hours

A-E-C-D 70 miles 3.5 hours
Option 7: 2 vehicles 105 miles 3.5 hours $135

B-E-D 35 miles 2 hours

A-E-D 30 miles 1.5 hours
Option & 2 vehicles 105 miles 4 hours $135

B-E-C-D 75 miles 4 hours

A-E-D 30 miles 1.5 hours
Option 9: 2 vehicles 85 miles 4 hours $105

6-E-D-C 55 miles 4 hours



turn may promote a different route selection. As these decisions are highly coupled,

the integrated transportation system design problem concurrently designs the vehicle

and network flow variables to obtain efficient transportation architectures.

2.2 Network Theory and Development

In the previous section, the network sub-system describes the requirements of mod-

eling the interactions within a transportation network. As the underlying network

defined for the transportation system is fundamental in the decision process, a clear

definition of a network, and the implications for transportation systems is desirable.

Therefore, in this section, a brief development of the nomenclature necessary to de-

scribe the network is presented as well as a discussion of the implications that network

modeling has on problem size. The network model described in Figure 2-1 will be

utilized as the example network in this section.

2.2.1 Physical Networks

The physical network represents the interactions of points of interest within a trans-

portation system. The locations of interest, or nodes, can be classified into three

categories: supply nodes, demand nodes and transshipment nodes. Supply nodes

designate nodes within a network where the cargo originates. Demand nodes des-

ignate nodes within the network where cargo is required. Transshipment nodes are

way-points within the network, that posses neither a supply nor a demand for cargo,

but can be utilized as intermediate points on route. Figure 2-1, diagrams a small

transportation network with five nodes. In this network, nodes A and B are supply

nodes and nodes C and D are demand nodes. Node E has neither supply or demand,

and therefore is classified as a transshipment node.

Arcs define the connections between pairs of nodes and are represented as arrows

to describe the direction the arc can be traveled. For example, in Figure 2-1 the arc

from node B to E can only be traveled in that direction, however, the arc between

nodes A and B can be traversed in either direction. The arcs in a transportation



system have an associated cost for traveling the arc, such as the distance between

the two nodes. In Figure 2-1 there are ten arcs, each with an associated distance.

For example, the arc between nodes A and B has a length of 30 miles. Arcs in a

transportation network can also have an associated time, which corresponds to the

time required to traverse the arc. The arc between nodes A and B in Figure 2-1

requires 2 hours to traverse.

When defining the network flow model in the previous section, the variables con-

sisted of both cargo paths and vehicle routes. A route or a path through the network

develops when a sequence of arcs is connected. The route or path specifies the order

in which some or all of the nodes in the network are visited. As additional cost is

incurred by traveling each arc, it is reasonable to assume that a path consists of a set

of unique nodes and arcs, which defines an acyclic path.

As the location of the cargo supply and demand nodes is known, defining cargo

paths corresponding to these locations simplifies the number of variables considered.

Therefore, all cargo paths originate at a cargo supply node and terminate at a cargo

demand node. For the example presented in Figure 2-1, the first node in every cargo

path is either node A or node B, as both nodes have cargo supply, and the last node

in every path is either node C or node D, as both nodes have cargo demand.

The number of vehicle paths that must be considered is potentially much larger.

Depending on the problem, it may not be reasonable to restrict vehicle paths to

originate at cargo supply nodes or terminate at cargo demand nodes. Furthermore,

it may be necessary to require the vehicles to return to their initial locations at the

end of the path. However, if the freedom to begin and end vehicle routes at any node

in the network exists, it is then reasonable to assume that all vehicle paths begin and

end at cargo supply and demand nodes, respectively. Examining Figure 2-1, we see

that without additional restrictions on vehicle paths, it is wise to only define vehicle

paths that originate at nodes A or B, where the cargo would be loaded, and terminate

at nodes C or D, where the cargo would be un-loaded.



2.2.2 Time Expanded Networks

In network problems, where operational decisions are time-dependent, it is often

useful to represent the decision framework using a time expanded network[41]. In

transportation systems, arcs in the network often have an associated travel time,

as well as an associated travel cost, as shown in Figure 2-1. In order to represent

these networks in a framework convenient for analysis, a time expanded network is

employed. Time expanded networks allow for the timing decisions to be explicitly

expressed in the network definition, and thereby decouple timing from the network

properties[33]. Thus, the time expanded network expresses the evolution of the static

network in time.

The network shown in Figure 2-1 is classified as a static network, where the

definition of the network is not related to time. Although the arcs in the network

specify an associated travel time, time is only recorded, not utilized for decision

making purposes. Some transportation system problems require operational decisions

that are time dependent. For example, when considering the options for transporting

cargo (Figure 2-4), each option assumes that all of the cargo a vehicle loads at the

supply nodes is delivered by that vehicle at the demand nodes. Alternatively, each

vehicle could pick-up cargo at a single supply node, and deliver cargo to a single

demand node, however this option would require the vehicles to meet at a specific

place and time and transfer some of the cargo. Coordination of the vehicles requires

time to be explicitly stated in the transportation system definition, and therefore a

time expanded network would be created to conveniently capture these interactions.

A time expanded network is generated from a static network as follows. The time

horizon 7 is discretized into T time periods of length 6t. Every node in the static

network is replicated at each of the time periods. Thus for every node i GE N, where

NK is the set of nodes, a node (i, t) is created for every t = 1 ... T. For every transport

arc (i,j) in the static network, a transport arc ((i, t) , (j, t)) is created where t-t = tij

and tij is the travel time of arc (i, j) in the static network. The cost of each arc in the

static network is replicated for each corresponding arc in the time expanded network.



The discretization of the time horizon is chosen to best balance the desire to

accurately represent the dynamics of the transportation network with the desire to

minimize the size of the resulting time expanded network for computation purposes.

Therefore, in some cases, the travel time of an arc may not correspond to a multiple

of the time period length. In these cases, the travel time for the arc is rounded up

to the next time period, and the arc is replicated using this new transport time. For

example, in Figure 2-1, the arc from node A to node E has a transport time of .5

hours. However, all other arcs in the transportation network have travel times in

whole hour increments. Therefore, when defining the time horizon discretization, if a

one hour time period length is selected (6t = 1hr), the transport time of the arc from

node A to node E is subsequently rounded up to be one hour in order to fit within

the time expanded network framework.

In addition to the transport arcs, waiting arcs are also included in the time ex-

panded network. Waiting arcs specify the transport between the same static node at

consecutive time periods. These arcs are generally excluded from the definition of the

corresponding static network, but appear in the time expanded network to represent

the operation of remaining at the same physical node for a finite duration of time.

A waiting arc connects a node (i, t) to the node (i, t + 6t)) for every node i where

waiting can occur and every time period t = 1... T.

Using the rules to generate a time expanded network described above, the static

network in Figure 2-1 is transformed into the time expanded network shown in Figure

2-5. Here, a time horizon of 4 is discretized into 4 time periods using a time period

length of one hour. The horizontal arcs are the waiting arcs connecting the same

physical node at consecutive time periods. The remaining arcs are the transport arcs.

All arcs are defined from left to right, signifying forward movement in time. As such,

the time expanded network is by definition acyclic.

Time Expanded Network Size

The time expanded network can be considerably larger than the corresponding static

network. For a static network with n nodes, the corresponding time expanded net-
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Figure 2-5: Visualization of Time Expanded Network

work has nT nodes, where T is the number of time periods. The number of arcs

generated in the time expanded network is slightly more complicated to evaluate, as

it is dependent on both the number of arcs in the static network, the number of time

periods considered, and the transport times for every arc. The number of waiting arcs

(mwait) generated in the time expanded network is defined in Equation 2.8.

mwait = n (T - 1) (2.8)

Equation 2.8 assumes that waiting arcs can be generated for every node in the static

network. To compute the number of transport arcs in the time expanded network,

it is first necessary to group the arcs in the static network by transport time. After

rounding all static arc travel times to fit within the discretization, the number of

arcs can be grouped by travel time. Defining mi as the number of arcs in the static

network with transport time i6t (for i = 1... T - 1) the total number of transport

arcs in the time expanded network is defined by 2.9.

=trans T-1 (2.9)



where
T-1

Smi = m. (2.10)
i

The total number of arcs a time expanded network (mTEN) can therefore be expressed

as
T-1

mTEN = n (T- 1) + i (2.11)

The time expanded network shown in Figure 2-5 has 20 nodes and 42 arcs. Apply-

ing Equation 2.8, we determine that 15 of these arcs are waiting arcs. To demonstrate

Equation 2.9, we classify 7 arcs in the static network (Figure 2-1 with a travel time

of 6t (one hour), and therefore mi = 7. This includes the arc from node A to node E,

as the travel time is rounded up to the next 6t multiple. The 3 remaining arcs have

a travel time of 26t, and therefore m 2 = 3. Applying Equation 2.9, we confirm that

27 arcs in the time expanded network shown in Figure 2-5 are transportation arcs.

Utility of Time Expanded Network for Transportation Systems

Time expanded networks are a valuable modeling tool when timing constraints enter

the problem formulation. For example, if a restriction on the cargo delivery time is

required, it may be necessary to eliminate some of the options presented in Figure 2-4.

For example, if all cargo must be delivered within 3 hours, only one option (Option

6) is available for satisfying this additional constraint. However, since this constraint

is not tight, there are a number of options available for routing the vehicles using the

sequence of nodes defined by option 6. Figure 2-6 highlights the available paths in

the time expanded network that deliver the cargo within the restricted time frame,

and the corresponding paths are listed in Figure 2-7.

Examining Figure 2-7 reveals that three paths are available in the time expanded

network for each vehicle route. As any combination is possible, this allows nine ve-

hicle routing options to satisfy the demand. Therefore, even for small transportation

networks, operational decisions dependent on timing introduce a significant amount

of complexity into the formulation and solution.
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Figure 2-6: Time Expanded Network with a Sub-set of Paths Highlighted

Routing Path Travel
Options Time

1st Vehicle
Option 1 A,1 - C,2 - D,3 2 hours

Option 2 A,1 - A,2 - C,3 - D,4 3 hours

Option 3 A,1 - C,2 - C,3 - D,4 3 hours

2nd Vehicle

Option 1 B,1 - E,2 - D,3 2 hours

Option 2 B,1 - B,2 - E,3 - D,4 3 hours

Option 3 B,1 - E,2 - E,3 - D,4 3 hours

Figure 2-7: Table of Available Paths for Example Transportation Network with De-

livery Time Restrictions



2.2.3 Growth of Problem Size in Transportation Networks

In transportation systems, the goal is to determine the routes or paths traveled by

the cargo and vehicles in the network. A path is a sequence of nodes that the vehicle

or cargo travels. For cargo, the path originates at the supply node and terminates

at the demand node. For vehicles however, a starting or ending node may not be

specified. Therefore, every path in the network is a potential vehicle path. In order

to understand how the problem size of a transportation network increases with the

number of nodes, we consider a general network and count the number of paths that

arise.

For a fully connected, directional network of n nodes, the number of acyclic paths

can be computed. A fully connected network is a network where an arc exists between

every pair of nodes, yielding m = n (n - 1) arcs, where n is the number of nodes in

the network. An acyclic path implies that nodes are not revisited in a path. Given

this assumption, the number of nodes in path p is limited to 2 < Ipl < n. The number

of resulting paths in the network is

(n nr)! (2.12)

The assumption of full connectivity is important, as the reduction of only a few

arcs can reduce the number of paths. A five node network with full connectivity has

20 arcs which results in 200 available paths. The network shown in Figure 2-1 has ten

arcs, however the number of paths in this network is only 45. Therefore, the degree

of connectivity of the network is important when defining a transportation network,

as the number of paths considered is highly dependent on the number of connections

in the network.

The number of paths in a time expanded network is much greater than the number

of paths in the corresponding static network. Although every path can not be repli-

cated at every time period, additional paths are created. The waiting arcs defined in

the above section become additional arcs in the time expanded network. Although

the time expanded network has a lower level of connectivity (due to only forward

time arcs), the increase in the number of nodes creates a large number of paths for



consideration. Given a fully connected static network with the travel time of each arc

defined as 6t, and generating a time expanded network for T time periods, the total

number of resulting paths can be counted by applying Equation 2.13.

T

n(n -1) (T-1) + (n+1) r - (T - r + 1) (2.13)
r=3

Equation 2.13 computes all paths p, where 2 < IpI 5 T, as there can be as

many nodes in a path as there are time periods. In addition, this expression assumes

that all paths involve at least one transport arc. Utilizing this expression, a fully

connected static network with 5 static nodes that is expanded for four time periods

has 1060 paths. Thus, even for small problems, the number of paths becomes large,

resulting in many network flow variables. This analysis, however, only provides an

upper bound on the number of paths in the time expanded network. Examining the

time expanded network provided in Figure 2-5 reveals a total of 159 paths. Although

this is considerably greater than the 45 paths defined in the corresponding static

network, the lower level of connectivity in the static network and the longer travel

times of the arcs provides a great reduction in the number of paths, and therefore the

number of potential network flow variables.

2.3 Optimization Challenges

The integrated transportation system design problem enlarges the design space and

creates new opportunities to optimize the entire system design and obtain better

transportation system architectures. With the enlarged design space resulting from

the integration of the different sub-systems, an inherent complexity arises in the

formulation and optimization of the design problem.

The different sub-systems often have different mathematical structures which re-

quire specific optimization methods to efficiently obtain solutions. In these cases,

combining all variables and constraints of the multi-disciplinary problem into a single

aggregate design problem requires the use of the most general optimization algorithms

which may require computation times that are impractical.



In order to handle the complexity and problem size of the integrated transporta-

tion system design problem, a new implementation of Simulated Annealing is pro-

posed. The integrated transportation system design problem is decomposed by math-

ematical structure, instead of by function or sub-system definition. For each set of

constraints, an appropriate optimizer is embedded within the system optimizer to

find feasible solutions that allow the system optimizer to explore the design space.

The result is a design space exploration tool that produces feasible solutions using

deterministic software.

2.3.1 Motivation for Embedded Optimization

The integrated transportation system design problem, as described in Section 2.1

above, assimilates all of the variables and constraints into a single system level prob-

lem, which optimizes the vehicle design and the network routing concurrently. As

such, the design problem can be classified as a mixed integer non-linear programming

problem (MINLP), which is difficult to solve effectively [42],[43]. Typically, either sim-

plifications are made to the constraints, or the problem is decomposed using methods

such as Collaborative Optimization [44].

For system-of-systems design problems, Collaborative Optimization decomposes

the problem into system and sub-system levels. The sub-systems are separated along

disciplinary boundaries which allows for the utilization of optimization methods spe-

cific to the formulation of the particular sub-system. The sub-systems are related to

the system by compatibility constraints that require the system level variables and

the sub-system-level variables match. Thus, the problem fundamentally explores the

design space by moving from infeasibility to feasibility or coherence of the design

and consequently optimality. Although an effective method for sub-system design,

the compatibility constraints at the system level can be difficult to satisfy and can

present a challenge when optimizing complex, real-world systems.

In Crossley, et al (2004)[5], the design of a new aircraft within the context of

a pre-defined fleet was examined for a small aircraft network where a hub-spoke

network was assumed. Thus, although the allocation of the newly composed fleet was



considered concurrently with the design of a new aircraft, the routing of the fleet was

pre-defined. In this paper, the Collaborative Optimization framework was utilized to

solve the resulting MINLP as the design and allocation problems can be considered

as two-different sub-systems. Utilizing the Collaborative Optimization framework

produced solutions that were in most cases comparable to those obtained by other

MINLP optimization algorithms but with less computational effort. However, for

this decomposition approach to work, significant effort is required to appropriately

decompose the problem and scaling issues can arise.

The integrated air transportation system design problem presented in Chapters 3

and 4 was originally implemented using the decomposition approach of Collaborative

Optimization. As the system objective is a non-linear function of mixed-integer vari-

ables, Simulated Annealing was chosen as the system optimizer. The constraints at

the system level were the compatibility constraints for the sub-system designs, and

were formulated as penalties in the objective function, in accordance with the method-

ology of Collaborative Optimization. The vehicle design model was optimized using

Simulated Annealing and CPLEX was utilized to solve the combined network flow

and operations models. Although the optimization at the sub-system levels worked,

the system level optimizer would not converge on a feasible architecture. Thus, when

considering the design of larger mixed-integer programming problems, it is desirable

to find good decomposition approaches that are robust to the problem definition.

For single-level system of systems problems, the variety of mathematical structure

in the constraints can often cause inefficient or ineffective solution methodologies to

be utilized because the most general optimizer is required to handle all of the con-

straints and variables. In the integrated transportation system design problem, both

continuous and mixed-integer variables are defined to represent the vehicle design and

network flow variables and the constraints include the linear network flow constraints

and the non-linear vehicle design and operations constraints. As the generality of

the problem increases, the effectiveness of the solution methods available to optimize

them decreases. For the most general problems, heuristic methods, such as Simulated

Annealing, have the capability of handling any problem structure.



System Level Optimizer: Simulated Annealing

Figure 2-8: Flow Diagram of Simulated Annealing

Simulated Annealing (SA) was chosen as the system level optimizer because it

can solve problems with mixed-integer variables and analysis functions can be imple-

mented within the framework. Although this a common property of other heuristic

algorithms, such as genetic algorithms (GA) and particle swarm optimization algo-

rithms (PSO), Simulated Annealing analyzes the evolution of a single design vector,

instead of a population. Furthermore, although a general design space exploration

tool initially, the methodology for selecting new design points near the end of the

optimization algorithm mimics the behavior of gradient based optimization methods

where only lower cost architectures are selected. The general solution methodology of

Simulated Annealing is to select a new set of design values by perturbing the original

set and then evaluate the objective function. The new design variables are selected to

replace the previous set if they lower the objective function, or if the raise it slightly in

the early phases, since acceptance is based on a probability. Figure 2-8 describes the

flow of information. A more detailed description of the principles and implementation

of Simulated Annealing can be found in Appendix A or in Kirkpatrick (1983)[45].

The idea behind SA is to explore the design space, keeping track of 'good' solu-



tions found and as the probability of selecting a 'worse' solution decreases the system

will converge to an 'optimal' solution. The constraints that determine feasibility of

a particular set of design variables are generally placed as penalties in the objec-

tive function. However, with a large number of constraints penalty functions can

undermine the effectiveness of the algorithm.

To utilize penalty functions, an appropriate value of the penalties must be deter-

mined with respect to each other and the actual system objective. If the penalties are

too low, the optimizer will select an infeasible solution, but if the penalties are too

high, the constraint violations will override the objective function and the optimizer

will be unable to differentiate between two solutions. Thus, it is often necessary to

restrict a design vector to be feasible before evaluation by the objective function.

To create a feasible set of perturbed design variables, the constraints are evaluated

within the perturbation function, and the design variables are continually perturbed

until a feasible set is obtained. However, for highly coupled systems with many

constraints, it is difficult to randomly perturb variables and find a feasible set.

Simulated Annealing and other heuristic methods allow for problems of any struc-

ture to be analyzed, however these methods can be ineffective for problems with many

constraints. Figures 2-9[46] and 2-10 present a notional graph and explanation chart,

respectively. By examining Figures 2-9 and 2-10, we see that the goal of the embed-

ded optimization methodology is to increase the effectiveness of Simulated Annealing

without losing generality in the problem structures that it can optimize. However,

the ability to maintain generality of the problem structure is hard to prove. As such,

the exact location of embedded optimization in this design space is unknown, but the

goal is to design an optimization methodology that is more effective than traditional

heuristics while approaching the same level of generality in problem scope. Achieving

this goal effectively raises the Pareto front of optimization methods, allowing more

general problems to be analyzed and solved with greater computational effectiveness.
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Figure 2-10: Comparison of Optimization Algorithms by Capability

Methods Variable Constraint Objective
Definition Definition Function

LP Continuous Linear Linear
MIP Continuous Linear Linear

and integer

NLP Continuous Linear and nonlinear Linear and
(smooth) nonlinear (smooth)

Heuristics Continuous Linear, nonlinear Linear, nonlinear
and integer and analysis and analysis

function (smooth function (smooth
and non-smooth) and non-smooth)

Embedded Continuous Linear, nonlinear Linear, nonlinear
and integer and analysis and analysis

function (smooth function (smooth
and non-smooth) and non-smooth)
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Figure 2-11: Mathematical Structure of Integrated Transportation System Design

Problem

2.3.2 Embedded Optimization Methodology

It will be shown that the embedded optimization methodology provides an efficient

approach for solving problems where large numbers of constraints are required to

obtain feasible solutions. Using the decomposition of the integrated transportation

system design problem presented in Section 2.1, an analysis of the mathematical

structure of each component is shown in Figure 2-11.

Examining Figure 2-11 reveals that the vehicle design sub-system requires few

variables and constraints to analyze a high-level conceptual design. Therefore, the

majority of the constraints are supplied by the network flow (Equations 2.3 and 2.4)

and operations sub-systems (Equations 2.5 and 2.6). The network flow constraints

are generally linear constraints governing mixed-integer variables. The variables in

the network-flow sub-system represent both the vehicle and cargo paths. The opera-

tions constraints are the non-linear constraints governing the vehicle design variables,

vehicle routing variables and cargo path variables.

Examining the previous literature presented in Chapter 1.2 provides insight into

the effect of problem size and mathematical structure for transportation system op-



Figure 2-12: Comparison of Optimization Problem Size and Structure for Previous

Aircraft Transportation System Design Problems

timization. Figure 2-12 defines the problem size and structure for the aircraft trans-

portation system design problems detailed in previous work. The first two rows cor-

respond to the aircraft design of a fleet with various operational scenarios [13],[15],

and the next two rows correspond to the aircraft routing problems presented [39], [7],

where the fleet design parameters were provided as inputs. The final row presents the

integrated air transportation system design problem defined and analyzed in Chapters

3 and 4.

Analyzing Figure 2-12 reveals that the aircraft design problems utilize a small

number of variables and constraints, however some of the variables are integer vari-

ables and the vehicle design constraints are non-linear. The variables represent pa-

rameters that specify the aircraft design and allocation of the fleet. The constraints

impose restrictions on the aircraft design variables to ensure feasibility of the design

for satisfying given operational tasks. Although these problems define only a small

number of variables and constraints, the integrality of some of the variables in con-

junction with the non-linear constraints and objective functions make these problems

Previous Research Variable Constraints Objective Optimization
Work Focus Definition Function Methodology

Frommer Aircraft 4 integer 4 non-linear Non-linear Enumeration of
and design(s) for variables, constraints objective integer variables,

Crossley fleet 8 continuous function optimization of
(2006) variables continuous

variables using
SQP

Crossley, Aircraft 249 integer 9 linear Non-linear Decomposition and
et al design and variables, constraints, objective Modified Golden

(2007) allocation for 3 continuous 32 non-linear function Search
fleet variables constraints

Yang and Routing of 147 integer 21 linear Linear CPLEX
Kornfeld fleets variables, constraints objective
(2003) 343 continuous function

variables

Bamhart, Concurrent 1million+ 1781 linear Linear Column Generation
et al fleet and variables constraints objective and CPLEX

(1998) aircraft (majority function
assignment integer)

Taylor, et Concurrent 50 integer 21 linear Non-linear Simulated
al (2006) aircraft variables, constraints, objective Annealing with an

design and 348 continuous 1 non-linear function LP embedded
fleet routing variables constraints



difficult to solve[5]. As such, decomposition and heuristic optimization procedures

are undertaken to simplify the problems and obtain solutions.

Alternatively, the aircraft routing problems examined define a larger number of

variables. In Yang and Kornfeld (2003)[39] the problem size increases significantly,

as compared to the vehicle design problems, however given the linear structure of the

problem, the mixed-integer linear programming problem can be solved simply using

CPLEX. In Barnhart, et al (1998)[7], over 1 million are defined, where the majority

of these variables are discrete. In order to handle mixed-integer linear problems of

this size, it is necessary to use column generation during the optimization process.

Column generation utilizes information about the dual problem in order to select a

sub-set of the variables for consideration[47].

The integrated transportation system design problems contain both the small

number of vehicle design variables and non-linear constraints required to define the

vehicle architectures, as well as the large number of mixed-integer variables and linear

constraints governing the network flow. Therefore, the problems examined will be

larger than the vehicle design problems analyzed, and potentially larger than the

routing problem presented in Yang and Kornfeld (2003), although will probably not

approach the problem size presented in Barnhart, et al (1998)[7]. However, given

the larger mixed-integer non-linear problem that results, it is necessary to analyze

the structure of the integrated transportation system design problem to design a

decomposition approach and define an effective optimization methodology.

By analyzing the decomposition shown in Figure 2-11, two interesting properties

emerge. First, the network flow constraints governing the vehicle routing variables

are completely de-coupled from the vehicle design variables and the cargo path vari-

ables. Thus, the vehicle routes can be defined independently of the vehicle design

variables and cargo paths. Given the hierarchy of decisions described by the inte-

grated transportation system decomposition, we see that the cargo paths variables

are a secondary tactical decision to both the vehicle design and routing variables. The

network flow sub-system only requires feasibility of the cargo paths with respect to

demand. Therefore, the second observation is that if the vehicle design and routing



variables are defined, the operations constraints become linear constraints governing

the cargo path variables and with the demand constraints, form a linear system.

Utilizing these properties to an advantage, embedded optimization regroups the

decision order by defining feasible vehicle design values and feasible vehicle routes, as

prescribed by only the vehicle design and network flow constraints. If there are many

vehicle routing constraints (Equation 2.4), the system of linear constraints is solved by

embedding an appropriate optimizer into the perturbation function of Simulated An-

nealing. Since, the constraints are grouped by structure, there is no clear objective.

However, when using deterministic software to produce feasible design variable values,

without an objective function, the first feasible set of values is returned. By employing

an objective function consisting of randomly generated coefficients that are changed

each time the embedded optimizer is called within SA, different feasible perturbed

solutions are generated. Therefore the implementation of an objective function with

randomly generated coefficients allows embedded optimization to mimic the method-

ology of Simulated Annealing as a design space exploration tool while improving the

effectiveness of the optimization methodology for solving constrained problems.

Given the definition of the vehicle design and routes, the constraints governing

the cargo paths, and any operations variables can then be defined. Again, using an

appropriate optimizer, such as an LP for continuous variables, or CPLEX for integer

variables, the demand constraints and operations constraints can be satisfied. Since

the cargo paths do not affect the objective function, only a feasible distribution is re-

quired. Thus, embedded optimization decomposes the problem by both mathematical

structure and hierarchy of decisions.

Figure 2-13 provides a visualization of the flow of SA with embedded optimiza-

tion. Simulated Annealing begins by perturbing the initial set of design variables.

The vehicle design variables are randomly perturbed as described in Appendix A.

If there are few feasibility constraints governing the vehicle routing variables, then

these variables can also be randomly perturbed by SA. If, however, there are a num-

ber of feasibility constraints (Equation 2.4), then these constraints can be solved by

embedding CPLEX into the perturbation step in SA. Here, an objective function of



randomly generated coefficients is employed to allow for design space exploration. As

the vehicle routing variables are required in both the system-level objective and the

operations constraints, it is necessary to both find feasible values and to vary the

values of these design variables to find good solutions. These steps are repeated until

a feasible set of vehicle design variables and vehicle routing variables are defined, with

respect to Equations 2.2 and 2.4.

Once a set of vehicle design and routing variables are found that satisfy the design

and routing constraints, it is necessary to determine if this transportation architecture

is feasible for the operations constraints and cargo demand. At this point, the con-

straints governing both cargo demand (Equation 2.3) and the operations constraints

(Equations 2.5 and 2.6) are linear constraints governing the cargo variables. Thus,

only feasibility of the cargo paths is required, as these variables are not included in the

objective function. If the cargo variables are discrete, CPLEX is utilized to determine

if a feasible cargo routing exists; however if the cargo variables can be considered as

a continuous distribution, a linear programming algorithm can be utilized instead. If

a feasible set of cargo paths can be determined, then the transportation architecture

is evaluated by the system objective and then compared to previous solutions found.

The new design vector for evaluation is selected as determined by the SA algorithm

described in Appendix A and this process is continued until SA terminates.

2.4 Chapter Summary

This chapter began with a presentation of the integrated transportation system de-

sign problem. The four components of the transportation system, namely the vehicle

design, network flow, operations and system objective, were defined for a general

transportation system to understand how each component interacts to define a trans-

portation system architecture. Next, a brief review of the relevant network theory

involved with formulating a transportation system problem was presented. Issues con-

cerning problem size resulting from both modeling requirements of paths and time

expanded networks were discussed. Given the resulting size and complexity of the in-



Figure 2-13: Generalized Flow Diagram of Embedded Optimization Within Simulated

Annealing

tegrated transportation system design problem, a new optimization methodology was

developed to alleviate some of the difficulties inherent with solving mixed-integer non-

linear optimization problems. The motivation and outline of embedded optimization

was presented.



Chapter 3

Transportation System Models

There are numerous examples of transportation systems on the ground, in the sea,

in the air, and even in space. Automotive transportation systems include the truck

transportation networks that transport supplies from factories to warehouses and to

stores; from suppliers to delivery locations. The railway transportation network moves

people and low-value bulk cargo across the land. Water transportation networks

continue this flow across the oceans. Aircraft move cargo and people from their

origin points to their respective destinations. And in space, the International Space

Station (ISS) is both constructed, manned and re-supplied by shipments from both

Kennedy Space Center (KSC) and Baikonur Cosmodrome.

In Section 2.1, the components of a generic transportation system were defined,

specifically, the network model, the vehicle model, the operations constraints and the

system objective. Although the specific details of each type of transportation system

mentioned above may differ, every transportation system network is composed of these

four sub-systems. This chapter will examine the specific model formulation for two

types of transportation systems: air transportation systems and space transportation

systems and differentiate between them.

This chapter defines the sub-system models for both the air transportation system

and the space transportation system. In Section 3.1, the four sub-systems of the air

transportation system model are presented. Section 3.2 defines a space network and

contrasts the space transportation network to the air transportation network to bet-



ter understand the complexities of modeling space networks. Given the definition of

a space network, Section 3.3 details the relevant models and assumptions required to

formulate the space transportation system problem. The models defined for the ve-

hicle design in both the air transportation and space transportation system problems

are low-fidelity models consistent with the goals of this research and the 'pre-concept'

exploration phase in design.

3.1 Air Transportation System Models

Air transportation systems arise from the need to satisfy the demand of both pas-

sengers and cargo that must be transported between locations within the network.

The locations, or nodes, in the network are defined as the cities, or more specifically

the airports under consideration, which are identified by a unique three letter code.

The arcs in the network are the routes the aircraft fly between pairs of nodes. An

air transportation system arises from the need to efficiently satisfy the demand by

aggregating the shipments to and from multiple nodes into vehicles or aircraft for

transportation.

In this section, we define the model for a hypothetical cargo airline network. The

assumption of a cargo airline was made to limit additional considerations required for

passenger transport, such as preference in routing. Additionally, we assume a fully

connected network where all cities are connected and that the cargo or packages are

small enough to fit within any prescribed volume. Finally, the model is generalized

to allow multiple aircraft types to be designed for the fleet.

Figure 3-1 presents the decomposition for the air transportation system. As shown

in Figure 3-1 the network and aircraft design are coupled through the operational

constraints and the objective function which determines the cost of the transportation

system. The remainder of this section provides the details of the model used to define

the cargo air transportation system.
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Figure 3-1: Air Transportation System Decomposition

3.1.1 Network Model Formulation

The network sub-system defines the allocation of vehicles and packages to routes

through the network. It is assumed that an aircraft flies between two cities and

performs the round trip flight once in a 24 hour period. The distance between each

city pair is provided by Dik. The number of aircraft of type A flying from city i to city

k and returning is defined as nAk. Since only feasible routes are defined, the vehicle

allocation constraints simply impose a limit on the number of aircraft of a given type

flying a given route.

nA < 10 Vi, k = 1...N, VA (3.1)

The package flow constraints ensure that the demand of each city pair is fulfilled.

Although aircraft can fly only round trips between two cities, we assume that packages

may travel through an additional city towards the destination. By defining a route

(i, j, k) as starting at city i traveling through city k and terminating at city j, the

number of packages traveling this route can be defined as Xijk. The demand equality

Vehicle Design

Define feasible aircraft design
variable values that satisfythe

take-off constraint and
determine the aircraft %eight

Network Flow

Determine the allocation of
aircrafts and packages to routes
to satisfy package demand given

aircraft round-trips

Operations

Ensure that no aircraft is flying a route greater than
the range of the aircraft

Ensure that the package routing satisfies the total
capacity constraints of the aircrafts for each route

= - - - -
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Figure 3-2: Description of Network Flow Variables

constraints that govern the feasibility of the package flow are supplied in Equation

3.2.

N

ijk = i i, J = 1... N (3.2)
k=1

Here, Pij is the package demand from city i to city j, and N is the total number of

cities in the network.

Figure 3-2 defines both the aircraft and package variables in the context of a

simple three city network example. On the left, the first leg shows the outbound

flights and the first leg of the package routes. On the right, the second leg shows

the return flights and the final leg of the package routes. As shown in Figure 3-2,

packages originating at node i and traveling to node j can be delivered directly on

the first leg (xijj), wait to be delivered on the second leg (xzij), or travel both legs

towards the destination (xijk).

i



3.1.2 Vehicle Model Formulation

The vehicle sub-system determines the architectural and performance characteristics

of the aircraft design for each type of aircraft. The design of an aircraft of type A

is defined by the range (rA), capacity (wA), cruise velocity (vA), wing loading (lA),

thrust-to-weight ratio (tA), and number of engines (gA)[5]. Equation 3.3 defines the

range of feasible values for each of the design variables.

1,000 nmi < rA < 5, 000 nmi

5, 000 lbs < wA < 250, 000 lbs

250 kts < v A  < 550 kts
(3.3)

95 Ibs < 1A  < 150 bs(

0.3 < tA  < 0.4

gA E {1,2,3,4}

Additionally, a constraint on take-off length is included to ensure that the aircraft

can fly out of any major airport.

1.211A
dTo = A  9000 ft VA (3.4)

gopoCLtA

Here go is the Earth's gravitational acceleration, po is the density at sea-level, CL is the

lift coefficient at take-off and the factor of 1.21 is a constant to account for differences

in aircraft performance during take-off, as recommended in Anderson (1999)[10].

The take-off weight of the aircraft can be calculated from the design variables

assuming a simple cruise profile, as shown in Figure 3-3. Although, the take-off weight

is not constrained explicitly, it is a required input to the cost function described in

the Section 3.1.4. Using a model provided in Raymer (1999) [6], a weight ratio is

assigned to each segment of the cruise profile. The weight ratios for take-off, climb,

and decent/landing are typical values provided by Raymer (1999) [6] and are listed

in Table 3.1.

The weight ratios for the cruise (Wc) and loiter (WL) segments are taken from the

Breguet range and endurance equations, respectively, and are provided in Equation
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Figure 3-3: Diagram of a Simple Cruise Profile

Table 3.1: Defined Weight Ratios for Simple Cruise Profile Segments

Segment Weight Ratio

Take-off 0.97

Climb 0.985

Descent/Landing 0.995

1



Table 3.2: Parameter Values for Aircraft Design

Parameter Value

SFC (1/sec) .6
LoD 17

tL (min) 30

3.5.
A rASFC

WA  = exp A D (35)

WA -tLSFCW = exp LoDLoD
Here, SFC is the specific fuel consumption of the aircraft, LoD is the lift to drag

ratio, and tL is the time spent loitering before landing. The nominal values of these

parameters are listed in Table 3.2. By multiplying the weight ratios together, the

total weight ratio (W A ) for the entire flight profile of vehicle A can be estimated.

The fuel fraction (f A) of aircraft A is computed from the total weight ratio, as shown

in Equation 3.6, where a six percent fuel reserve is assumed.

fA = 1.06 (1 - WA) (3.6)

The total take-off weight (WOA) is defined to be the sum of the cargo weight, the

weight of the fuel for a fully loaded tank, and the structural weight of aircraft A.

Rearranging this relationship, we can express the total take-off weight of the aircraft

as shown in Equation 3.7.

WA A (3.7)
o 1 - SA

Here, the structural fraction (si) is the ratio of the structural mass to the total

take-off mass. The payload weight (WA ) is the total cargo mass of aircraft-type A

plus the weight of two crew members, since these calculations are for cargo flights.

The cargo mass is assumed equal to the aircraft capacity (wA), which decouples the

aircraft performance constraints from the package distribution. The structural or dry

weight of the aircraft accounts for the total unloaded and un-fueled aircraft weight and



is estimated by an empirically derived formula for vehicle mass, taken from Raymer

(1999) [6] and shown in Equation 3.8.

Sf= 1.02WA0 6  (3.8)

The total aircraft weight and the weight of the fuel are determined by numerically

solving the system of equations defined by Equations 3.7 and 3.8.

3.1.3 Operations Model Formulation

The operations of a transportation system determine how the vehicle performs on a

given route and are defined by two sets of equations: capability and capacity con-

straints. The capability constraints, given in Equation 3.9, require that a given vehicle

can not travel between two cities whose distance is greater than the range of the air-

craft. Here, the range of the aircraft is defined for maximum loading, and therefore

is a conservative value.

Dik < rA Vi, k = 1... N, VA (3.9)

To formulate the capacity constraints, we first define the capacity of route (i, k)

as Gik, as in Equation 3.10, and then the capacity constraints can be formulated as

shown in Equation 3.11.

Gik = Z nwA (3.10)
A

N

Z Xijk < Gi i,k = 1... N

NJ=1 (3.11)
Xijk Gjk j,k= 1...N

i=1

Since, we assume that a given vehicle travels only between two cities, the capacity of

a route is the same on the return leg as it is on the outbound leg.

3.1.4 System Objective

For the air transportation system, the objective is to minimize the total system cost

for a single day of operation. The aircraft has two associated cost values: a fixed cost



that is associated with an aircraft's allocation, and a variable cost that is associated

with an aircraft's operation. The aircraft's performance parameters define both the

fixed and variable costs for the design, which are taken from the DAPCA IV models

provided in Raymer (1999)[6].

The cost model uses the structural weight of the aircraft (WA), velocity (vA),

number of engines (gA) and thrust per engine (TA,) as inputs to compute the research,

development, testing, and evaluation costs of aircraft-type A. These non-recurring

costs are used to determine the depreciation of the aircraft. The fixed cost (f A) of

the aircraft is the cost per day of ownership of aircraft A, and is equivalent to the

per-day depreciation of the aircraft. The variable costs (mA) are the recurring costs

associated with the usage of aircraft A, and can therefore be computed as the cost

per hour of aircraft flight.

The total system operating costs are defined as

NN

J= Y cAknA (3.12)
i=1 j=1 A

where c A represents the cost of aircraft A traveling on route (i, k), as expressed in

Equation 3.13.

fA A 2 Dik rA > Dik, i k
AfA+ _

cA OO , TA < Dik, i k (3.13)

0 , i= k

Equation 3.13 imposes a cost equal to the fixed cost plus twice the time required to

travel a single leg of the trip (to account for the round-trip) multiplied by the variable

cost per hour of flying the aircraft, if the aircraft can fly a given leg, as determined

by the range requirement. If an aircraft does not have the range required to travel

a given leg, a large cost is assigned to prohibit the selection. Finally, in the current

model, storage at a given city is free, and therefore, same city 'transfers' have no cost.
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Figure 3-4: Representation of Air Transportation [2] and Space Transportation Net-

works

3.2 Space Transportation Networks

There exists many tools and methods in the operations research community for mod-

eling and solving transportation network problems on Earth. [33, 48] However, before

these methods can be applied to a space transportation system design problem, the

differences in the assumptions required to adequately model the transportation net-

work must be understood. In Crossley, et al (2004) [5], and Yang and Kornfeld

(2003) [39], air transportation networks were analyzed for vehicle design and vehicle

routing, respectively. However, since air transportation networks differ significantly

from space transportation networks, as can be seen in Figure 3-4, it is desirable to

compare the two types of transportation system so that the complexities of modeling

a space transportation network can be observed.

Figure 3-5 lists the fundamental differences between modeling assumptions of air

and space networks. The first difference arises in the definition of the underlying

... A,



network. In order to describe the underlying network for a transportation system,

we need to define the nodes, with their associated supply and demand, and the arcs

which represent how the nodes are connected. In air transportation networks, the

nodes represent cities, or more accurately, airports, and each node may have a supply

and demand of packages or people. The arcs represent the routes between cities, which

are defined by the distances between the cities, and it is reasonable to assume a single

route between two nodes which is time-invariant. In space transportation networks,

the nodes can represent locations on the surface of bodies, such as locations on the

Earth and the Moon, as well as locations in space that represent stable orbits, such

as a LEO orbit, and it is reasonable to assume (for now) that all supply originates at

Earth. The arcs represent trajectories between two nodes, where the trajectory can

be defined by the AV required to traverse between the two nodes. However, since

the nodes are in relative motion, the AV required to travel between two nodes may

be time-varying, and in the extreme, the existence of the arc may be time varying as

well.

The next important distinction between air and space transportation network

modeling assumptions is in the definition of the vehicles traveling through the trans-

portation network. In air transportation networks, the aircraft is considered to be a

structure with constant physical parameters. In addition, although massive, an air-

craft can carry substantial payloads compared to their wet mass, yielding high mass

fractions. In space transportation networks, the spacecraft has a very small payload

fraction. Therefore, in order to increase the payload fraction, segments of the vehi-

cle may be staged, or discarded during transportation. This distinction implies that

the configuration of the spacecraft may change while traveling through the network.

Therefore, to accommodate changes in the spacecraft definition the transportation

vehicles will be analyzed at the element level, where the definition of an element is

described in greater detail in the next section.

Finally, an underlying assumption in air transportation networks is that the air-

craft can refuel at any node in the network. This assumption does not hold in space

transportation networks, since fuel is only available on Earth as in-situ resource uti-



Figure 3-5: Comparison between Aircraft Transportation Networks and Space Trans-

portation Networks

lization is still at the research stage. Thus, in order to reach a destination, all the

fuel required by the space transportation system must be provided prior to launch.

This assumption limits the capability of space transportation systems since the fuel

accounts for the majority of the loaded mass of the spacecraft.

In order to capture the dynamic nature of space networks, the modeling concept

of time expanded networks is employed. The following sections describe the definition

of the underlying static network, or physical network that is defined first, as well as

the transformation to the time expanded network.

3.2.1 Static Network

The physical network, or static network, represents the set of physical locations, or

nodes, and the connections, or arcs, between them. The physical nodes, or static

nodes, represent the different physical destinations in space, including the origin and

destination of all the commodities, or supplies, as well as the possible locations for

transshipment. Three types of nodes have been identified: Body nodes, Orbit nodes,

and Lagrange point nodes. These classifications distinguish the type of information

Network Terrestrial Space Transportation
Definition Transportation Networks

Networks
Nodes represent cities Nodes represent locations in space
Arcs represent routes Arcs represent trajectories

Graph defined by distance defined by on V
Definition

Travel between nodes is Travel between nodes is highly
time-invariant time dependent
Static vehicle definition Dynamic vehicle definition

Vehicles Payload mass fraction is Payload mass fraction is small
moderate
Fuel available at every Fuel only available at souice node
node (Earth)

Fuel Fuel consumption sligitly Fuel consumption significantly
effects capability effects capability



Figure 3-6: Depiction of an Earth-Moon Static Network

required to define a node of each type. The physical arcs, or static arcs, represent

the physical connections between two nodes, that is, an element can physically tra-

verse between these two nodes. Taylor, et al (2006) [49] details the mathematical

description of the network.

The mathematical description of the static network is given below.

* Define the static network as a graph GS, where GS = (NS, AS).

* Define the set of nodes, NS = {sl,...,s,n}, in the static network.

* Define the set of arcs, AS C NS x NS in the static network.

An example of an Earth-Moon static network is provided in Figure 3-6. In this

picture, we can see the connection of the Earth surface nodes to the Earth orbit node,

representing launches and returns. Similarly, the lunar surface nodes are connected

to the lunar orbit node, representing descent and ascent trajectories. In addition, the

orbit nodes, as well as the Earth-Moon Lagrange 1 point are connected by in-space

trajectories.

Low Earth
Orbit (LEO)

First Earth-MoonA Lagrangian PointLow Lunar (EML1)Orbit (LLO)



3.2.2 Time Expanded Networks

As described above, time is a critical component in defining space transportation

networks. Moreover, in order to understand the dependency of multiple missions

over an extended period of time, it is necessary to view the network in both space

and time to capture the interaction of these missions.

In the time expanded network, the absolute time interval under consideration is

discretized into T time periods of length st. A copy of each static node is made for

each of the time points and the nodes are connected by arcs according to the following

rules.

* The arc must exist in the static network.

* The arc must create a connection that moves forward in time.

* The arc must represent a feasible transport, with respect to the orbital dynam-

ics.

The mathematical description of the time expanded network is given below.

* Define the time expanded network as a graph 9, where 9 = (Kf, A).

* Define the set of nodes in the time expanded network as

AN = {i = (si, t) I si E NS, t = 1, ... , T}. To simplify the notation, for a given

node i E KV, let s(i) and t(i) denote the physical node and the time period

corresponding to node i, i.e., if i = (si, t) then s(i) = si and t(i) = t.

* Define node s as the general source that generates the supply of elements. This

node is connected to every node in the network where an element can originate.

* Define the set of arcs in the time expanded network as A C KN x KA. An arc

a = (i, j) = ((si, t), (sj, t + T t  )) exists if and only if there exists an arc (si, sj)

in the static network, and the transit time from static node si to static node sj

starting at time t is T(t ,,. Note that if si = sj, then T t = 1 for all t.



* Define path p as a sequence of nodes. In particular, let f(p) and 1(p) denote

the first node and the last node of path p, respectively. If path p originates at

node s, f(p) = s for all such p.

This definition creates two classes of arcs in the time expanded network: waiting

arcs and transport arcs. Waiting arcs correspond to a transport in time between the

same physical node, which represents an element or commodity waiting at a given

node for a duration of time. Transport arcs correspond to the transport between two

different static nodes and have an associated AV for each burn-arc. For convenience,

transport arcs in a space transportation network with two burns are sub-divided

into two burn arcs, representing the departure and arrival burns, respectively. The

division of these transportation arcs is performed as follows. First, a new fictitious

static node labeled fic is introduced. Note that this node is not related to the static

network. On every transport arc (i, j), s(i) Z s(j) requiring two burns we add a new

auxiliary node k = (fic, t) with two arcs; one connects i to k and the other one k to

j. The value of t is irrelevant. In this new network, each arc (i, j) with s(i) $ s(j)

corresponds to a single burn. All such arcs are called burn arcs and we denote the

set of all burn arcs as AB.

The fuel mass fraction, which represents the ratio of the fuel mass to the initial

mass before a burn, for element e to execute the burn corresponding to arc a E AB

is defined as

= 1 - exp (3.14)
¢•=- exp-n I"pgo ]

which is taken from the rocket equation [19].

Using the static network depicted in Figure 3-6, we can create the time expanded

network in Figure 3-7. Here, the time expanded network is notional as not all arcs

are represented, but how the trajectories evolve in time can be readily seen.

3.3 Space Transportation System Models

Space transportation system design has become increasingly important as we begin to

understand the challenges of sustainable space exploration. The goal of interplanetary
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Figure 3-7: Depiction of an Earth-Moon Time Expanded Network

logistics is to determine feasible mission architectures to satisfy the demand generated

by the needs of exploration[50]. The key concept of interplanetary logistics is that

the demand of crew, consumables, equipment, and other exploration requirements at

in-space locations drives the mission requirements.

Given the demand of the mission, it is necessary to determine how and when the

supplies on Earth will be transported to the in-space locations. As missions become

more complex and evolve over a period of time, a solution may become less obvious.

Since the goal is to minimize the cost of any mission, it is desirable to optimize the

timing and method of transport of the supplies to in-space locations. Therefore, it

is necessary to define all pathways and structures used for transport, and allow a

mission designer or optimizer to analyze the different architectures to select the best

one.

This section describes the rationale for decomposing the interplanetary logistics

transportation problem into multiple segments. Following this, the model for the

in-space portion of the integrated transportation system design problem is presented,

along with the assumptions necessary for both modeling and solving the problem.

day 5day 1



3.3.1 Interplanetary Logistics Problem Decomposition

The execution of a space mission requires logistical decisions at every step. Logistics

are required to accumulate all of the required commodities for space missions, as well

as procure and assemble all elements at the launch site. However, since at the time

of launch, all of the items required to perform a space mission are co-located at the

launch pad, the terrestrial logistics can be decoupled from the interplanetary logistics

model. Therefore, the interplanetary logistics model encompasses all of the logistical

decisions required between the launch pad and the locations in-space.

There are numerous decisions made during space missions that can be modeled

and optimized to create a better mission description. Although, from a system per-

spective, it would be desirable to make all of these decisions concurrently, due to

computational limitations, this is not a reasonable approach. Instead, the inter-

planetary logistics model is decomposed into three fundamental components: launch

packing and scheduling, element packing, and in-space network optimization.

Launch is a highly constrained transportation activity, where although traditional

allocation and packing decisions are required, many additional constraints are nec-

essary to model a feasible launch. Launching focuses on selecting the appropriate

elements to perform the launch, satisfying the payload requirements for launch, and

scheduling requirements for launch vehicles and launch sites. For this reason the

launch problem is decoupled at low Earth orbit (LEO), creating a boundary between

the launch allocation and the in-space network optimization. This assumption is only

slightly restrictive, since for many mission architectures, there exists a delay at LEO

before proceeding to in-space destinations and few upper stages are used for both

launch and in-space propulsion.

Element packing is performed once all of the commodities and element routes

have been determined. Given the assignment of commodities and elements to routes

optimized in the in-space network optimization, commodities are assigned to elements.

In this section, constraints focus on feasible assignments while minimizing transfers.

In-space network optimization examines the entire mission design space of routing



from LEO to all locations in-space. Due to the size of the time expanded network

that is generated, this problem can become quite large, with millions of variables and

thousands of constraints. The decision space of the in-space network optimization fo-

cuses on the routing of both commodities and elements to routes, and the assignment

of elements to burns.

3.3.2 Assumptions

In order to define the mathematical model for the in-space network optimization,

the modeling assumptions are first presented. The following assumptions about the

behavior of elements are made to create a computationally tractable model.

Consecutive Burns When an element performs a burn, it is defined as an active

element. An active element burns only on consecutive burn-arcs. Once an

element becomes active, it stays active for a certain number of burns. As soon

as it becomes passive, it can no longer revert to being active. Between two

consecutive burns, an active element can be idle for an arbitrary length of time,

by traveling on waiting arcs in the time expanded network. The number of

consecutive burns is not constrained.

Docking/Undocking We assume that any two elements can be docked and un-

docked. In addition, if any cost is associated with these operations, it is not

explicitly captured. If some elements cannot be docked together, then this must

be captured in a post optimization analysis.

The first assumption eliminates the need to track the consumption of fuel during

each burn by each element allocated within the network. Enforcing the second as-

sumption eliminates the requirement of tracking the position of each element in the

stack, as the stack can continually reconfigure.
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Figure 3-8: Decomposition of the Fundamental Components of a Transportation Sys-

tem

3.3.3 Space Transportation System Decomposition and For-

mulation

Figure 3-8 presents the decomposition for a generic space transportation system.

As shown in Figure 3-8, the network and element designs are coupled through the

operational constraints and are used to define the cost metric for the transportation

architecture. The remainder of this section provides the details of the model used to

define the space transportation system.

3.3.4 Network Model Formulation

The network sub-system defines the allocation of vehicles and commodities to routes

through the network. A route or path through the network is defined as a sequence of

connected nodes through the network. Since elements provide the propulsive capabil-

ity that allows the paths to be traversed, it is also necessary to know which element is

providing the propulsion for each propulsive maneuver. Therefore we define a variable

Vehicle Design
Define feasible element-type
design variable values that
satisfy the dry mass d an

element design

Operations

Ensure that the propulsive element performing a bun
has enough fuel to transport the total mass on the arc

in the time expanded network

Ensure that the cargo routing satisfies the total
capacity constraints of all elements on each arc

·

----~



y,q, for every element instance such that

1 if element e travels on path p

y,,q = and is active during sub-path q (3.15)

0 otherwise,

where p is any feasible path in the time expanded network and q is a sub-path of p.

Furthermore, it is assumed that sub-path q is defined as a sequence of consecutive

burn-arcs and waiting arcs.

Constraints that govern the propulsive elements in the network model are imposed

for feasibility. The first set of constraints restricts a given element instance from being

assigned more than once.

O _E < Y ,q < 1 Ve (3.16)
p q

The second set of constraints imposes the restriction that on any burn-arc only one

instance can be active, or providing propulsion.

0 < eY,q<1 Va E Ab (3.17)
e p:aEp q:aEq

The final set of constraints requires that for any element instance to travel on a

burn-arc, a propulsive element must be assigned to perform the burn

SCE CYp,q <_ ME E C y , E (3.18)
e p:aEp q e p:aEpq:aEq

where M is a large number.

The purpose of developing a model for a space transportation system is to deter-

mine how to meet the demand for the exploration missions. As such, we are investi-

gating how to optimally ship multiple types of commodities. For the purpose of the

logistics problem, a commodity will be defined as a high-level aggregate of a class of

supply, such as crew provisions [51],[52]. Thus, we will define a set of k = 1,..., K

commodities, each with the following parameters.

* Denote the demand of each commodity as cdk.

* Denote the origin of each commodity as sok.



. Define the destination of each commodity as sdk.

* Define the availability interval of each commodity as tok = [stok, etok], where

stok is the starting time of the interval and etok is the ending time of the interval.

* Define the delivery interval of each commodity as tdk = [stdk, etdk], where stdk

is the starting time of the interval and etdk is the ending time of the interval.

* Define the unit mass of each commodity as umk when it arrives at the destina-

tion.

For the purposes of this model, the transportation of the crew is ignored. This

distinction is made to alleviate the extra constraints required to adequately model the

complexities of crewed missions. However, this generic model can easily be extended

to handle crewed missions by including additional constraints that restrict how the

crew is transported from the origin to the destination locations and by narrowing the

time windows for travel.

The flow of commodities through the network can then be defined as Xk , where k

is the commodity identification number and p is the path, where

k u if u units of commodity k travels on path p (3.19)
P- 0 otherwise,

For commodities, the path is defined as a series of nodes, where the first node is

the availability node at a time within the availability interval and the last node is

the destination node at a time within the delivery interval. The only constraints

governing commodity flows in the network are the demand constraints

Zk = cdk Vk (3.20)

where cdk is the demand of commodity k, which is provided in the commodity defi-

nition.



3.3.5 Element Model

In order to ship the commodities from the origin to the destination locations, we

require 'containers' to both hold the commodities and provide propulsion to move

the mass through space. These containers can be abstracted to a single definition of

an element. An element is defined as a physical indivisible functional unit[49], and

therefore when we consider the design of the spacecraft, we consider the design of

the elements that compose the vehicle. The element design considered, is a simplified

structure, as shown in Figure 3-9, and the parameters are defined as follows.

* The fuel type of element-type E is denoted by fE

* The fuel mass capacity of element-type E is denoted by mE

* The structural mass of element-type E is denoted by sE.

* The mass capacity of element-type E is denoted by cE.

* The thrust of element-type E is denoted by tE

* The engine mass of element-type E is denoted by gE

* The dry mass of element-type E is denoted by dE

The parameters of an element type can be described by three design variables that

determine the architectural and performance characteristics. The first element design

variable corresponds to a selection of a fuel for the element. The fuel of element type

E is defined as fE such that

fE = {1,2,..., F} (3.21)

where F is the number of fuel types available. The fuel type is used as an input

to the look-up table functions Ip (fE) and a (fE) to determine the specific impulse

(IE ) and structural fraction (aE) for the given fuel-type selection. The design models

implemented here define three available fuel selections, as shown in Table 3.3.

For each fuel selection provided in Table 3.3, the specific impulse values are the

average specific impulses for a set of both historical, current and proposed element



Table 3.3: Fuel Selection and Corresponding Look-Up Table Function Values

Name ID Iý (sec) a

LOX/kerosene 1 330 0.045

LOX/LH2 2 420 0.079

N204/UDMH 3 310 0.080

mE

fE

tE- gE

Figure 3-9: Representation of an Element

designs, whose parameters are defined in Table B.1. Furthermore, the structural

fractions provided in Table 3.3 where defined by a least squares fit comparing the

actual mass data to the calculated mass data for each element with the specified fuel

selection.

The second element type design variable is the maximum mass of the fuel available

for the design, mE. The fuel mass for an element design is restricted to lie within the

interval 0 < mE < MUB for every E. Finally, the mass capacity for payload is defined

for each element type as cE, and can be any value within the range 0 < cE < CUB for

each element type.

The dry mass of an element-type is the sum of the engine mass and the structural

mass. The dry mass of the element is required to define both the operations con-

straints in Section 3.3.6 and the system objective in Section 3.3.7 and is calculated

as follows. First the thrust of the element type can be computed from the fuel mass



capacity mE and the fuel type fE as shown in Equation 3.22 [53]

tE = mEIsp (fE) go (3.22)
tb

where the specific impulse (Isp) is determine by the fuel type selection, go is the sea-

level gravitational acceleration on Earth, and tb is the maximum burn time, which is

set to 120 seconds to preserve the assumption of impulsive burns. The thrust of the

engine can be related to the mass of the engine by an empirical relationship defined

in Hofstetter (2004) [3] and shown in Equation 3.23.

E .4189 (tE).7764

= 0 (3.23)

The structural mass of the element is determined by two components: the struc-

tural mass required to support the commodities and the structural mass required

to support the fuel. The structural mass resulting from additional sub-systems is

assumed to be small comparatively, and is therefore neglected in this analysis. For

a given fuel selection f, the associated structural fraction, a, is used as a guide to

estimate the total structural mass of the element required to support propulsion[17].

The structural mass computation is modified to include a reduction in mass for large

amounts of fuel of up to 20%. Therefore the total structural mass of element type E

is defined as

E = 2.3931cE + a (fE)mE (1 2mE (3.24)

where the coefficient of commodity mass availability was determined from a least

squares fit to the empirical data provided in Table B.1. Here, mUB is the upper

bound on the allowable fuel mass, which is set to 500,000 kg. The total dry mass of

element type E is defined as

dE = SE + gE. (3.25)

For each element type defined, multiple element instances are available for al-

location in the transportation system. An element instance e retains the physical

properties of element type E if u (e) = E, where u is a look-up table function that

maps the element instance e to its corresponding element-type E.



3.3.6 Operations Model

The operational constraints in a transportation system couple the vehicle design and

the network flow, and are defined by two sets of constraints: capacity and capability.

The capacity constraints determine if the mass capacity of the elements allocated to

each arc are sufficient to handle the total commodity mass on the arc. Equation 3.26

expresses this set of constraints.

S SumkX'k < CE 5 e, Va (3.26)
p:aEp k E e:u(e)=Ep:aEp q

The capability constraints govern the ability of the selected propulsive element

to perform the burn required to traverse a given burn-arc. For space transportation

networks, this set of constraints proves to be the most difficult to both formulate and

satisfy, since the capability of the propulsive element is determined not only by the

element design and arc assignment, but by the assignment of all other elements and

commodities to this arc. To alleviate some of the burden caused by this constraint, we

introduce an additional variable le which represents the loaded fuel mass of instance

e, where

0 < le < mE Ve :u (e) = E, VE (3.27)

Given the assumption that the burn sub-path q consists of consecutive burn arcs,

the capability constraints can be formulated as

le Y,q + M 1- ,q >
p p

x 5 E 5 dEyq
1=1 E' e':u(e')=E'p:alEp q'

+ le'ye_, (3.28)
e',e'#e P q':alEr(p,q')

+le + umk k

k p:alEp J
Ve : u(e) = E, E, path q,



where
IJq

S = 1 (1 - a) (3.29)
l'=1+1

and

SA = 1 - ep7) Va (3.30)

as defined by the rocket equation (Equation 3.14) [19]. Furthermore, the notation

r E (p, q') refers to the path segment formed from the first node in p up to and

including the first node in the burn segment q'.

Equation 3.28 simply states that the total available fuel to traverse a burn sub-

path q is greater than the total fuel required. Therefore, the first term on the left-hand

side of the equation determines the fuel available in the active element instance. The

second term on the left-hand side ensures feasibility of the constraint if the current

arcs being examined are not utilized, since the constraint is implemented for every

path q regardless of whether any commodities or elements transport across the arcs.

In the first-term on the right hand side in brackets refers to the total dry mass of all

elements traveling on each arc in the sub-path, the second term accounts for all fuel

in the element instances and the final term accounts for the total commodity mass.

All terms on the right hand side are multiplied by the mass fraction term defined in

Equation 3.29 to determine the total amount of fuel required to traverse the burn-arc.

3.3.7 System Objective

The objective of the transportation system is to minimize the total system cost. For

space transportation systems, cost is very difficult to adequately model, since few

data points exist. Therefore, as a surrogate for cost, we seek to minimize the total

wet mass of the system in LEO. The objective can therefore be written as

S- (dE + e) ey,q (3.31)
E e:u(e)=E P q



3.4 Chapter Summary

In this chapter, the general integrated transportation system definition presented in

Section 2.1 was implemented for two hypothetical transportation system problems: an

air transportation system and a space transportation system. The air transportation

network was defined in the first section, drawing on previous work performed by Yang

and Kornfeld (2003)[39] and Crossley, et al (2004)[5]. However to develop a space

transportation system model, a formal definition of a space transportation system

network was first described and differentiated from air transportation networks. Given

the space network, the space transportation system models were utilized to develop

a model for interplanetary logistics transport.





Chapter 4

Air Transportation System Design

To evaluate the effectiveness of the integrated transportation system design method-

ology developed in this thesis against conventional practice, two examples of an air

transportation system for an overnight package delivery network, that were presented

earlier by Yang and Kornfeld (2003)[39], are considered. To show the benefits of the

integrated transportation system design methodology over traditional design prac-

tice, each example is optimized using the traditional optimization methodologies

of network-only (assuming the aircraft performance parameters are specified) and

vehicle-only (assuming the network routing is specified) optimization as well as the

integrated optimization methodology. In both examples, the integrated optimization

methodology provides a total system cost that is at least 10% less than the best

solution determined by either of the traditional optimization methods.

In Section 4.1 the details of the two examples are presented with the corresponding

distance and demand information. In Section 4.2, the traditional network design opti-

mization methodology is explained and the solutions for both examples are presented.

Section 4.3 presents the optimization methodology and results for the vehicle-only op-

timization. Section 4.4 begins with a discussion of the specific implementation of the

integrated transportation system design optimization methodology and then presents

the results for both examples. In Section 4.5, the results for each case are analyzed to

understand how and why the integrated optimization methodology provides a more

efficient solution to the air transportation system problem.



Table 4.1: City to City Distances for First Seven City Network Example (nautical

miles)

SABQ ATL BOS CLT ORD CVG CLE

ABQ 0 1222 1933 1426 1160 1209 1393

ATL 1222 0 934 208 622 400 619

BOS 1933 934 0 731 882 755 563

CLT 1426 208 731 0 682 423 448

ORD 1160 622 882 682 0 260 309

CVG 1209 400 755 423 260 0 219

CLE 1393 619 563 448 309 219 0

4.1 Transportation System Design

The models defined in Section 3.1 are implemented for the two examples defined in

Yang and Kornfeld (2003)[39]. The first example is a network of the first seven cities,

alphabetically, consisting of Albuquerque (ABQ), Atlanta (ATL), Boston (BOS),

Charlotte (CLT), Chicago (ORD), Cincinnati (CVG), and Cleveland (CLE). The

distance and demand information is provided in Tables 4.1 and 4.2, respectively. The

second example is a network of the largest seven cities, with respect to demand,

consisting of Atlanta (ATL), Boston (BOS), Chicago (ORD), Dallas (DFW), Los An-

geles (LAX), New York (JFK), and San Francisco (SFO). The distance and demand

information is provided in Tables 4.3 and 4.4, respectively.

For each of the examples defined, traditional optimization approaches are em-

ployed to solve the problem in order to provide a basis for comparison for the inte-

grated optimization methodology. The traditional optimization methodology embod-

ies two separate views: network-flow optimization and vehicle design optimization.

The remainder of this chapter details the methodology and results obtained for the

three optimization cases as well as an analysis of all three approaches.



Table 4.3:

miles)

Table 4.2: Demand for First Seven City Network Example (lbs)

_ ABQ JATL BOS_ CLT ORD CVG CLE

ABQ 0 2356 2051 673 4572 214 747

ATL 2356 0 14045 4610 31313 1465 5112

BOS 2051 14045 0 4014 27261 1276 4451

CLT 673 4610 4014 0 8948 419 1461

ORD 4572 31313 27261 8948 0 2844 9923

CVG 214 1465 1276 419 2844 0 464

CLE 747 5112 4451 1461 9923 464 0

City to City Distances for Largest Seven City Network Example (nautical

ATLI BOS ORD DFW ILAX JFKI SFO
ATL 0 934 622 688 1921 756 2179

BOS 934 0 882 1538 2629 183 2729

ORD 622 882 0 806 1767 713 1866

DFW 688 1538 806 0 1257 1360 1518

LAX 1921 2629 1767 1257 0 2454 330

JFK 756 183 713 1360 2454 0 2560

SFO 2179 2729 1866 1518 330 2560 0

Table 4.4: Demand for Largest Seven City Network Example (lbs)

ATL BOS ORD DFW LAX JFK FSFO
ATL 0 14045 31313 19984 34506 57949 37318
BOS 14045 0 27261 17398 30041 50451 32489
ORD 31313 27261 0 38788 66975 112479 72434
DFW 19984 17398 38788 0 42743 71784 46227
LAX 34506 30041 66975 42743 0 123948 79820
JFK 57949 50451 112479 71784 123948 0 134050
SFO 37318 32489 72434 46227 79820 134050 0



Table 4.5: Pre-defined Aircraft Type Specifications

Parameter Plane A Plane B Plane C

Capacity w (lbs) 5,000 72,210 202,100

Range r (nmi) 1,063 3,000 3,950

Velocity v (kts) 252 465 526

Fixed Cost f ($/day) 1,481 10,616 26,129

Linear Cost m ($/hr) 758 3,116 7,194

4.2 Case 1: Network-Flow Optimization

In traditional network-flow optimization, a set of vehicles are pre-defined, each with an

associated cost and capability. Using these pre-defined vehicles, an optimal allocation

of vehicles to routes can be found to meet the demand of the network. In Yang and

Kornfeld (2003)[39], three types of aircraft are chosen to provide a representative

sample for a small (Plane A), medium (Plane B) and large (Plane C) airplane. Using

the cost calculation described in Equation 3.13, the fixed and variable costs can be

calculated from the vehicle characteristics and the relevant parameters of each aircraft

are given in Table 4.5.

Using the parameters listed in Table 4.5, and the network and cost models de-

scribed in Section 3.1, an optimal allocation of vehicles to routes can be determined

by employing CPLEX, a mixed-integer linear optimization algorithm[54].

4.2.1 Example 1: First Seven City Network

For the example of the first seven city example defined in Tables 4.1 and 4.2, the

minimum total cost for one day of operations is $107,888, and the corresponding

allocation is depicted in Figure 4-1. By examining Figure 4-1, it is shown that only

the small (Plane A) and medium (Plane B) aircraft are allocated due to the demand

level and range requirements. The solution defines Atlanta as a hub and additionally

routes direct flights between many other cities to lessen the package flow into and

out of Atlanta. As such, most routes only require a single flight of the smallest



PlanseA PlaneB Plane C

Figure 4-1: Optimal Configuration of First Seven City Example for Case 1

plane (Plane A). Although the demand at Albuquerque is low, the distance between

Albuquerque and all other cities in the network exceeds the range of Plane A and

therefore, a single Plane B is allocated. Since Plane B is oversized in terms of both

range and capacity, for every route in the network for which it is allocated, there is a

considerable amount of slack in this transportation architecture.

4.2.2 Example 2: Seven Largest City Network

For the example of the seven largest city example defined in Tables 4.3 and 4.4,

the minimum total cost for one day of operations is $517,030 and the corresponding

allocation is depicted in Figure 4-2. By examining Figure 4-2, it is shown that only

the medium (Plane B) and large (Plane C) are allocated due to both the range and

capacity constraints. The solution defines Chicago (ORD) as a hub and additionally

routes incoming flights from every city except San Francisco into Dallas. Since San

Francisco has only two outgoing flights, it is necessary to utilize the largest capacity

aircraft on both routes to accommodate the packages. Plane C is also allocated on
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Figure 4-2: Optimal Configuration of Seven Largest City Example for Case 1

the New York to Los Angeles and New York to Chicago routes, to accommodate the

large demand originating in New York.

4.3 Case 2: Vehicle Optimization

In traditional vehicle optimization the network flow is defined apriori and the vehi-

cle design characteristics are optimized to produce the lowest system cost. For the

traditional vehicle design optimization problem, a hub-spoke network configuration

is assumed where a single city in the network is designated as the hub and all routes

in the network connect to this city. More precisely, a hub is defined as a node with

nodal degree N - 1, where N represents the number of nodes in the network. The

optimal vehicle design characteristics defined are based on the best compromise in

performance for the network configuration. The vehicle optimization requires an al-

gorithm that can accommodate the mixed-integer variables and non-linear analysis

functions required to define the vehicle design and allocation. As such, Simulated

Annealing (Kirkpatrick, et al. (1993)[45]) is chosen as the optimization algorithm for
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Table 4.6: Aircraft Specifications of First Seven City Example for Case 2

Parameter New Plane Design

Capacity w (lbs) 17,995

Range r (nmi) 1,558

Velocity v (kts) 447

Wing Loading 1 (lb/ft2 ) 105

Thrust to Weight t .315

Number of Engines g 2

Fixed Cost f ($/day) 3,421

Linear Cost m ($/hr) 1,251

this case, as it can handle an optimization problem with both mixed-integer variables

and non-linear constraints.

4.3.1 Example 1: First Seven City Network

For the first seven city example, Atlanta is designated as the hub city, since it arises

as a hub in Case 1 (Figure 4-1). The optimal cost for this network is $94,264 per day

and the design parameters are provided in Table 4.6 for the corresponding network

configuration shown in Figure 4-3. Examining the optimal aircraft design depicted in

Table 4.6 and Figure 4-3 reveals that the range is defined to be higher than the range

of Plane A in order to accommodate the distance requirements of the Albuquerque to

Atlanta flight. The capacity is also set higher than that of Plane A to more accurately

reflect the demand requirements of the network. Although there are still inefficiencies

in the system design, the vehicle optimization produces a better solution for the given

network, with e12% reduction in cost, as compared to Case 1.

4.3.2 Example 2: Largest Seven City Network

For the largest seven city example, Chicago is designated as the hub city, since it

arises as a hub in Case 1 (Figure 4-2). The optimal cost for this network is $570,720
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Figure 4-3: Optimal Configuration of First Seven City Example for Case 2

per day and the design parameters are provided in Table 4.7 for the corresponding

network configuration shown in Figure 4-4. Examining Table 4.7 and Figure 4-4,

shows that the range of the aircraft designed is between that of a Plane A design and

a Plane B design. since a full . 2500 nm transcontinental flight is not required due

to the hub at ORD. The capacity of the aircraft designed by the vehicle optimization

is between that of a Plane B and Plane C, and reflects the large demand requirements

for direct flights into and out of Chicago. Although the vehicle is designed to reduce

inefficiencies in the network, the requirement of only using direct flights (forcing a

hub at ORD) and only allowing a single aircraft type to be used, actually increases

the system cost by d10%, relative to Case 1.
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Table 4.7: Aircraft Specifications of Largest Seven City Example for Case 2

Parameter New Plane Design

Capacity w (Ibs) 128,050

Range r (nmi) 1,920

Velocity v (kts) 540

Wing Loading 1 (lb/ft2) 134

Thrust to Weight t .315

Number of Engines Neng 2

Fixed Cost f ($/day) 14,106

Linear Cost m ($/hr) 4,083

I Traditional Vehide Optimization

Figure 4-4: Optimal Configuration of Largest Seven City Example for Case 2
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4.4 Case 3: Concurrent Vehicle and Network Op-

timization

For the integrated transportation network design, the vehicle, network and operations

definition are concurrently optimized (Figure 3-1). The design vector includes vari-

ables that define both the vehicle design and network flow, and the system is subject

to the constraints that govern the vehicle, network, and operations. The integrated

transportation system design problem is solved using the following methodology.

4.4.1 Embedded Optimization for Integrated Air Transporta-

tion Design

The air transportation system design problem described in Section 3.1 assimilates all

of the design variables and constraints into a single system level problem, resulting

in a mixed-integer, non-linear programming problem. Therefore, the embedded opti-

mization methodology outlined in Section 2.3 is utilized to solve the current vehicle

design and network flow problem.

Figure 4-5 presents the optimization flow diagram for the integrated air trans-

portation system design problem. The design vector consists of the aircraft design

variables as well as the network allocation variables. By perturbing the values of

these variables, the optimizer can evaluate the take-off constraint and determine if

the aircraft design is feasible, given the vehicle design constraint. Due to the limited

constraints governing the network allocation variables, simply perturbing these vari-

ables within a limited range is sufficient. Given a feasible aircraft design and vehicle

allocation, the package variables can be determined by embedding an LP solver to

satisfy the demand and capacity constraints. If there exists a feasible solution, the

current design vector is evaluated to determine the total system cost; otherwise, the

design variables are perturbed to define a new design vector. This process continues

until the algorithm converges.
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Figure 4-5: Integrated Transportation System Design Optimization with Simulated

Annealing

4.4.2 Example 1: First Seven City Network

If we consider the design of a single vehicle and concurrently optimize the vehicle

characteristics and the routes through the network for the first seven city example,

the optimal system design cost is $83,833, which is a reduction in cost of 22% over

the traditional network optimization and a reduction of 11% over the traditional ve-

hicle optimization. The vehicle design parameters for the integrated optimization are

provided in Table 4.8 and the optimal configuration is shown in Figure 4-6.

By analyzing the concurrently optimized design presented in Table 4.8 and Figure

4-6 we can see that a slightly larger aircraft, as compared to Plane A is designed to

handle the distance requirements for both the Albuquerque-Atlanta and Albuquerque-

Chicago flights and the demand requirements for more of the Chicago and Atlanta

flights directly. However, since the concurrently optimized design is not constrained

to fly only direct flights, the capacity of the aircraft is lower than that obtained by

traditional vehicle optimization in Case 2.
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I Concurrently Optimized Vehicle Desgn

Figure 4-6: Optimal Configuration of First Seven City Example for Case 3

Table 4.8: Aircraft Specifications of First Seven City Example for Case 3

Parameter New Plane Design

Capacity w (lbs) 9,850

Range r (nmi) 1,253

Velocity v (kts) 550

Wing Loading iS (lb/ft2) 105

Thrust to Weight t .302

Number of Engines g 2

Fixed Cost f ($/day) 2,320

Linear Cost m ($/hr) 986
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Table 4.9: Aircraft Specifications of Largest Seven City Example for Case 3

Parameter New Plane Design

Capacity w (lbs) 69,884

Range r (nmi) 2,560

Velocity v (kts) 550

Wing Loading 1 (lb/ft2 ) 106

Thrust to Weight t .302

Number of Engines g 2

Fixed Cost f ($/day) 9,633

Linear Cost m ($/hr) 2,807

4.4.3 Example 2: Largest Seven City Network

For the largest seven city example, the optimal system cost is $463,723, which is a

reduction in cost of 10% over the traditional network optimization and a reduction of

18%1 over the traditional vehicle optimization. The optimal vehicle design parameters

for the integrated transportation design optimization are listed in Table 4.9 and the

optimal configuration is provided in Figure 4-7.

The concurrently optimized solution presented in Table 4.9 and Figure 4-7 is

sized to be slightly smaller than Plane B. The reduction in range would no longer

accommodate transcontinental flights from Boston, but would satisfy the distance

requirements for the New York to Los Angeles and New York to San Francisco flights.

By reducing the range and the capacity of the vehicle design slightly, a reduction in

aircraft costs is obtained and it is cheaper to utilize more of these aircraft. Again,

since a strict hub is not enforced, the capacity of the concurrently optimized solution

is less than that of the vehicle optimization design for Case 2, but has a greater range.
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Concurrently Optimized Vehicle Design

Figure 4-7: Optimal Configuration of Largest Seven City Example for Case 3

4.5 Comparative Analysis

The integrated transportation system design methodology exploits the coupling of the

vehicle and network by defining a more efficient set of operations for the transporta-

tion system (Figures 4-8, and 4-9). This effect can best be explained and visualized

by plotting the distance versus demand of each city in the network. In addition, ve-

hicle design points are included by plotting the range versus capacity of the aircraft

involved in Cases 1-3.

The relationship of the vehicle design specifications to the network requirements

can be interpreted as follows. All demand points lying within the (dashed) bounding

box of a vehicle design point can be fulfilled by a single direct flight of that vehicle.

Any points to the right of the vehicle design point but below the upper bound of

the box require at least one connection (stopover, hop), as the distance exceeds the

aircraft's range. Additionally, any points above the vehicle design point but left of

the right bound of the box require more than one flight as the demand exceeds the

capacity of a single vehicle.
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Figure 4-8: Distance versus Demand for First Seven City Example

4.5.1 Example 1: First Seven City Network

Figure 4-8 displays the distance and demand of the first seven city example and

the vehicle design points from all three cases, as summarized in Table 4.10. It is

important to note that Figure 4-8 only displays Plane A from Case 1 (Network-only

optimization) as the other pre-defined aircraft design points far exceed the distance

and demand of the network and are omitted for clarity. The integrated optimized

aircraft design (Case 3) is only slightly right and above the Plane A design point;

however, this difference allows the Albuquerque demand to be accommodated using

a smaller and cheaper plane than Plane B. In addition, the Chicago to Cleveland and

Chicago to Charlotte flights can be handled directly by a Case 3 design aircraft. By

examining Figure 4-6, we see that only a single flight from Chicago to Charlotte is

utilized. The Chicago to Cleveland route has a flight in each direction, however this

is not a result of the package flow between Chicago and Cleveland, but flow from

other cities into and out of Cleveland.

To provide a greater understanding of the transportation architecture efficiency
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4.10: Summary of Design Parameters for Three Optimization

City Example

Cases of First

Table 4.11: Percent-Utilization of Aircraft Capabilities for First Seven City Example

Carrier Capability Propulsive Capability

Case Utilization Utilization

Case 1 47% 32%

Case 2 48 % 40%

Case 3 72% 52%

for each case, Table 4.11 details the percentage of utilized functionality. The carrier

capability utilization is defined as the ratio of the total package weight being trans-

ported through the network (256438 lbs) to the total capacity of each transportation

architecture defined in each of the three optimization cases. The propulsive capability

utilization is defined as the ratio of the total distance traveled in the network to the

total range capability of the aircraft in the network.

Examining Table 4.11 reveals that the network-only optimization (Case 1) pro-

duces the lowest capacity and capability utilization which results in the highest total

system cost. The concurrently optimized solution (Case 3) has both the highest car-

rier and propulsive capability utilization, which produces the lowest system cost for

all three solutions.
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Parameter Case 1: Case 1: Case 1: Case 2 Case 3

Plane A Plane B Plane C

Capacity w (lbs) 5,000 72,210 202,100 17,995 9,850

Range r (nmi) 1,063 3,000 3,950 1,558 1,253

Fixed Cost f ($/day) 1,481 10,616 26,129 3,421 2,320

Linear Cost m ($/hr) 758 3,116 7,194 1,251 986



Table 4.12: Summary of Design Parameters for Three Optimization Cases of Largest

Seven City Example

Parameter Case 1: Case 1: Case 1: Case 2 Case 3

Plane A Plane B Plane C

Capacity w (ibs) 5,000 72,210 202,100 128,050 69,884

Range r (nmi) 1,063 3,000 3,950 1,920 2,560

Fixed Cost f ($/day) 1,481 10,616 26,129 14,106 9,633

Linear Cost m ($/hr) 758 3,116 7,194 4,083 2,807

4.5.2 Example 2: Largest Seven City Network

Figure 4-9 displays the distance and demand of the largest seven city example and the

vehicle design points for all three cases, as summarized in Table 4.12. By examining

Figure 4-9 we see that the integrated optimized aircraft design (Case 3) has a range

that can just handle the distance requirements of a New York to Los Angeles and

New York to San Francisco flight (with a 6% fuel margin), but the demand between

these cities is almost twice the aircraft's capacity. If we examine Figure 4-7 we see

that there are two flights from Los Angeles to New York and a direct flight in each

direction from New York to San Francisco, which can accommodate the New York

to Los Angeles and New York to San Francisco demand, respectively. However, it

is important to realize that some of the package flow between these city pairs may

be handled by other connecting flights as there is a Boston to New York flight that

may require some of the Boston to Los Angles and Boston to San Francisco packages

be flown on the return flights from LA and San Francisco, respectively. Thus, the

optimal solution is a hybrid between a hub-spoke and direct architecture.

Table 4.13 details the percentage of utilized functionality for the largest seven city

example . The carrier capability utilization is defined as the ratio of the total package

weight being transported through the network (2,284,006 lbs) to the total capacity of

each transportation architecture defined by each of the three optimization cases for

the largest seven city example. The propulsive capability utilization is defined as the
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Figure 4-9: Distance versus Demand for Largest Seven City Example

ratio of the total distance traveled in the network to the total range capability of all

aircraft traveling in the network.

Examining Table 4.13 reveals that the vehicle design-only solution (Case 2) has

the highest capability utilization of all three cases, yet has the highest system cost.

The concurrently optimized solution (Case 3) has the highest capacity utilization

of all three solutions, and the lowest cost. Comparing this solution with Cases 1

and 2 shows that efficiency in carrier utilization is more important than efficiency in

propulsive capability. This observation is supported by the dependence of design and

Table 4.13: Percent-Utilization of Aircraft Capabilities for Largest Seven City Exam-

ple

Carrier Capability Propulsive Capability

Case Utilization Utilization

Case 1 75% 40%

Case 2 50 % 61%

Case 3 78% 47%

112

150000.

50
a

50000

a cue 1:

* Case 1:

Plane C

a Case 2:
Vehidle
Design

M Case 3:
Concurren
Design

I

- -



operating costs on aircraft size, and the assumption that the range of the aircraft is

not significantly affected by the actual cargo loading.

4.6 Chapter Summary

In this chapter, the integrated air transportation system design problem presented

in Section 2.1 was implemented for two examples of a cargo air transportation net-

work. Utilizing the models defined in Section 3.1 and the distance and demand data

presented in Yang and Kornfeld (2003) [39], computational results were obtained for

three design methodologies. The traditional design approaches of network-only and

vehicle-only optimization were defined, implemented and compared to the integrated

optimization approach developed in this thesis. The integrated optimization approach

showed a minimum of a 10% improvement in cost for the examples and the analysis of

these solutions revealed that the concurrent design of the aircraft design and routing

allowed for a more efficient transportation system to be defined.
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Chapter 5

Space Transportation System

Design

In this chapter, the integrated space transportation system design problem presented

in Section 3.3 is implemented for an Earth-Moon example network to evaluate the

effectiveness of this method against conventional practice. To quantify the benefits

of employing optimization for space mission design, a baseline architecture is defined.

Following the manual definition of the baseline architecture, the optimization method-

ologies of network flow optimization, vehicle design optimization and concurrent opti-

mization are implemented and the results are compared to the baseline architecture.

The example problem shows that the integrated optimization methodology provides

a total system cost that is at least 19% less than the best solution determined by

conventional practice and either of the traditional optimization methods.

In Section 5.1 the optimization methodology used to solve the space transportation

system design problem is presented. In Section 5.2 the details of the example are

presented with the corresponding astrodynamic and demand information. Section

5.3 develops the baseline architecture. In Section 5.4, the traditional network flow

optimization results are presented. Section 5.5 presents the results for the vehicle

design optimization. Section 5.6 discusses the integrated transportation system design

optimization results for the lunar example. In Section 5.7, the optimization results

are analyzed to understand how the integrated transportation design methodology
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provides a more efficient solution to the space transportation system problem.

5.1 Optimization Methodology

The space transportation system design problem described in Section 3.3 assimilates

all of the design variables and constraints into a single system level problem, resulting

in a mixed-integer, non-linear programming problem. Therefore, the embedded opti-

mization methodology outlined in Section 2.3 is utilized to solve the current vehicle

design and network flow problem.

Figure 5-1 presents the optimization flow diagram for the integrated space trans-

portation system design problem. The first step in the optimization procedure is

to define the commodity paths under consideration for the space transportation sys-

tem. Given the path definitions, the Simulated Annealing optimization algorithm is

entered and the design vector is perturbed to a new design point. As the element

path variables are highly constrained, CPLEX is employed to determine a feasible

perturbation of these design variables as well as the staging variables. Once a feasible

set of element design variables and element path variables are defined, CPLEX is

utilized an additional time to determine if the transportation architecture defined is

feasible with respect to the demand and operations constraints. If a feasible solution

exists, the commodity routing and element fuel loading is defined and the transporta-

tion architecture is evaluated by the system objective. The remainder of this section

describes in greater detail the components of this optimization process.

5.1.1 Commodity Path Algorithm

Prior to entering the SA algorithm, a shortest path algorithm is implemented to de-

termine some of the feasible commodity paths. Due to the large number of paths that

can potentially exist in a time expanded network framework (as defined in Sections

2.2 and 3.2), it is advantageous to select only a small number of the best paths. The

shortest path algorithm proceeds as follows. A commodity is selected at random and

an auxiliary network is constructed. The auxiliary network connects a single source
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Figure 5-1: Optimization Implementation for Integrated Space Transportation Sys-

tem Design

node to the nodes in the availability window and a single sink node to the nodes in

the delivery window. The shortest path from the source node to the sink node is then

constructed, based on arc costs, and the path is returned without the source and sink

nodes.

The arc costs in the auxiliary network initially correspond to the AV of the

arcs. However, in order to encourage the shortest path algorithm to select a different

path on the next iteration, the costs of the arcs are altered in the following manner.

Given the current shortest path selected, the cost of each arc in the path is ran-

domly perturbed by a pre-determined fraction, here, set to be 0.4. This perturbation

can increase, decrease, or leave unchanged the cost of the arc, which therefore does

not necessarily encourage or discourage common arcs between multiple paths. This

process is repeated until the required number of paths have been defined for each

commodity.
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5.1.2 System Level Variables

For the integrated space transportation system design problem, the objective function

presented in Equation 3.31 defines the cost of the system to be the total wet mass

(kg) of all elements allocated. Therefore, the element design and allocation as well

as the fuel loading, determines the objective value, not the package distribution. As

such, the package flow variables are not considered by the system level optimizer.

If we examine Figure 5-1, we see that in addition to the design variables that

contribute to the objective function evaluation, an additional set of decision variables

are defined for each path. The decision variable dp determines if path p is a potential

path to be selected in the current iteration, where

1 if path p can be utlized (5.1)
0 otherwise

The decision variable is then used to constrain the allowable paths of the instances

such that

&y,q! dp Ve, q. (5.2)

The inclusion of a decision variable within the optimization framework reduces some

of the computation burden and promotes a feasible design by restricting the set of

feasible paths in each iteration.

5.1.3 Routing and Allocation of Element Variables

The next step in the optimization flow for the integrated transportation system de-

sign problem is to embed CPLEX to solve the element allocation constraints. The

objective function provided to optimize the set of element allocation variables consists

of randomly generated coefficients and the product of the coefficients and the design

variables are minimized. This objective function is chosen to aid SA in the design

space exploration process, since an adequate objective is unknown at this stage, and

feasibility of the design variables is the only concern. The objective function is defined

to be a set of randomly generate integers between -1 and 9, which discourages too
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many elements from being selected without minimizing the total number of elements

selected.

Figure 5-1 also indicates that the staging of the elements is determined at this

point in the optimization algorithm. The staging variable (Se) determines if an ele-

ment instance stages after it burns. Given that an element has two functions, to carry

commodities and perform propulsive maneuvers, an element will either stage after its

burn sequence is completed, or continue along the assigned path. By implementing

the staging variable, a large reduction in the number of element paths is obtained,

because only paths that correspond to feasible commodity paths are considered, in-

stead of all intermediate paths in the network. The equations that govern the staging

variables simply require that an element instance can not stage if the instance is not

selected for a burn sequence.

se < e,qVe (5.3)
P q:q#O

5.1.4 Commodity Flows and Operations Constraints

Following the CPLEX computation, all system design variables have been defined,

and assuming a feasible set of design values, the operations constraints are analyzed

to determine if a feasible set of commodity flows exists for this architecture. The

operations constraints are the only set of constraints that relate the commodity flows,

element allocations and the element designs.

If we examine the capacity and capability constraints, Equations 3.26, and 3.28,

we see that the interaction of the element design variables and element allocation vari-

ables creates a set of non-linear constraints. However, by decomposing the problem

as we have described, the only design variables at this stage of the analysis are the

commodity flows and the loaded fuel mass of each element instance, since all other

variables have been defined. This decomposition significantly reduces the computa-

tional effort required to formulate the operational constraints, since all paths, and

hence all arcs, under consideration have been selected by the element design vari-

ables, and therefore only a limited number of constraints must be implemented and
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satisfied.

Again CPLEX is embedded into the perturbation stage of SA to allow for the effi-

cient computation of the commodity flow variables and fuel loading variables subject

to the demand constraints (Equation 3.20), the capacity constraints (Equation 3.26),

and the capability constraints (Equation 3.28). However, the capacity and capability

constraints can now be re-written since all terms that apply to the element design and

assignments are known, and therefore are part of the right hand side of the equations.

In addition, since any feasible flow is acceptable, the only objective is to minimize

the total loaded fuel.

If CPLEX returns a feasible flow and fuel loading, the system design variables are

passed to the system objective to be evaluated. If a feasible flow does not exist, the

system design variables are re-perturbed and the process is repeated. SA continues

to perturb the design variables until the system energy decreases and better design

points can no longer be found.

5.2 Space Transportation System Example

The goal of the supply chain logistics problem is to adequately account for and op-

timize the transfer of supplies from Earth to locations in space. Although the con-

sideration of the supplies is of high importance, the commodities themselves may be

of low value on Earth. As such, it is desirable to find the cheapest way to transport

these supplies. The Aquarius project investigated the delivery of 1000 kg "packages"

of water from Earth to LEO using a cheap, low-reliability launch system[55]. Using

low-priority transportation networks on Earth, such as rail and barge transporta-

tion systems, and the design of a single-stage to orbit launch vehicle, a significant

theoretical reduction in launch costs was obtained.

The case study presented here begins where the Aquarius project left off, in low

Earth orbit. In this example we divide the 1000 kg packages of water that the Aquar-

ius project considers into ten 100 kg packages. The objective is to minimize the total

system mass required to deliver a number of units of 100 kg packages from LEO to
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multiple in-space destinations.

In this hypothetical example, the Earth-Moon network consists of six nodes: low

Earth orbit (LEO, node 1), the first Earth-Moon Lagrange point (EML1, node 2), a

low circular equatorial lunar orbit (LELO, node 3), a low circular polar lunar orbit

(LPLO, node 4), the lunar equatorial surface (LES, node 5), and the lunar south

polar surface (LPS, node 6). In this example, all commodities originate at LEO for

transport to further in-space destinations, and therefore LEO has only outgoing arcs.

In addition, the lunar surface nodes have only incoming arcs, which excludes lunar

ascent trajectories and lunar surface transfers. All other in-space nodes are connected

as astrodynamics permits. The network is depicted in Figure 5-2.

Figure 5-2: Static Earth-Moon Transportation Network

We assume an impulsive trajectory prior to analysis and compute the required

AV and time of flight for each allowable transfer. It is important to note that due

to the nature of the time expanded network definition, self-arcs in the static network

(which become waiting arcs in the time expanded network) have a time of flight of

one time period. The AV and transport time (tof) values are provided in Table 5.1.

Referring to Table 5.1, there are either one or two values of AV for the transport

arcs. For the case of transport arcs with two AV values, the first burn allows the
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Table 5.1: Transport AV (m/s) [3]

NODES From To EMLI LELO LPLO LES LPS
LEO burn 1 3085 3108 3108

burn 2 740 850 850

tof 3 4 4

EML1 burn 1 0 248 248 2746 2746

burn 2 0 632 632 0 0

tof 1 2 2 2 2

LELO burn 1 632 0 1500 2083

burn 2 248 0 0 0

tof 2 1 1 1

LPLO burn 1 248 1500 0 2083

burn 2 632 0 0 0

tof 2 1 1 1

element to enter the arc and the second burn allows the element to exist the arc.

For example, to travel from LEO to LELO, a trans-lunar injection (TLI) burn is

performed with a AV of 3108 m/s and an orbit insertion burn is performed at lunar

orbit with a AV of 850 m/s. These two-burn arcs are split into two arcs within the

network, as described in Section 3.2.

An element can transfer directly from LEO to the Lagrangian point (EML1) and

to the lunar orbits (LELO and LPLO), however to reach the surface nodes (LES

and LPS), an element must transfer through another node. In this example, we

restrict all elements and commodities to begin the transfer in LEO. Furthermore,

both elements and commodities can travel through any feasible path in the network,

however, elements are restricted to be a propulsive element on at most two consecutive

burns.

Using the network defined in Figure 5-2 the problem is to determine the architec-

tural and performance characteristics of the element types and the element path and

burn assignments paths through the network to minimize the total system wet mass.
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Table 5.2: Commodity Information

Comm. Comm. Demand Start Availability End Delivery Mass

# Type (# Units) Node Interval Node Interval (kg/unit)

1 1 18 LEO 1, 15 EML1 1, 15 100

2 1 9 LEO 1, 8 LES 8, 8 100

3 1 6 LEO 1,15 LPS 9 15 100

4 1 2 LEO 1, 12 LPS 12, 12 100

The example considers the design of two element types, which allows for, although

does not require, a specialization of carrier elements and propulsive elements, as is

traditionally seen in space transportation systems. The demand scenario presented in

Table 5.2 lists the information, supplied as an input to the problem, for each commod-

ity. It is important to note that although the commodity type for each commodity

is the same, corresponding to 100 kg of water, four separate listings are required to

differentiate between the delivery locations and time intervals.

The commodity definitions in Table 5.2 were chosen to represent three mission

scenarios. Commodity 1 represents the desire to 'warehouse' commodities at the

Lagrange point. As such, the availability and delivery time windows are open. The

second and fourth commodities represent the need to supply a mission to the lunar

equatorial landing site and lunar polar landing site, respectively. As such, the delivery

time window for these two commodities is set to only a single day. Commodity 3

represents a re-supply at the lunar equatorial surface, which is a mission situation

that would become necessary if a lunar base were to be constructed. Thus, the

four commodity definitions provide a variety of operational requirements that the

transportation architecture must satisfy.

For the example space network defined, a manually defined architecture is devel-

oped to provide a baseline for comparison of the optimization results. The traditional

optimization approaches are then employed to examine the benefits of optimization

for space system design. The traditional optimization methodology embodies two

views: network optimization with pre-defined element types and vehicle optimization
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with pre-defined direct paths. The concurrent optimization, which expands the de-

sign space to concurrently define the vehicle and network flow, is then implemented

and the results are compared to the baseline architecture and traditional optimization

results. The following sections detail the results obtained for each of these approaches

using the example Earth-Moon transportation network.

5.3 Baseline Solution

Traditionally, space mission design utilizes existing vehicle resources when designing

space missions, to minimize cost. The mission requires a direct delivery, and the least

costly operational architecture is defined. Therefore, for the baseline solution, a set

of direct paths from LEO to the in-space commodity destinations are defined, corre-

sponding to a separate flight for each delivery. Furthermore, the baseline architecture

assumes that the missions performed will utilize existing vehicles. In order to select,

useful elements to execute the mission objectives, it is necessary to understand the

capabilities of existing elements.

Elements can be classified by their size and functionality. Figure 5-3 displays

a plot of the pre-existing elements, defined in Appendix B, to asses the size and

functionality of these elements. Examining Figure 5-3 shows a definite distinction

between elements that are propulsive-only elements, carrier-only elements, and dual

function elements. In addition, a range of sizes for each of these categories exists.

For each of the elements considered in Figure 5-3 the capacity, fuel-type, and fuel

mass were used as inputs to the dry mass computation defined in Equation 3.25. The

maximum A V achievable for each propulsive element was calculated assuming a fully

loaded, fully fueled element assuming no other elements in the stack. For the network

optimization, a single element-type is defined to represent the capabilities of elements

in each category of functionality and size. Table 5.3 displays the categorization and

representative element type assigned, with its corresponding physical properties.

For the baseline solution, the large propulsive-only element (Element 412) is se-

lected to perform the trans-lunar injection burn from LEO for each of the delivery
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Figure 5-3: Maximum Delta V versus Capacity for Pre-existing Elements

Table 5.3: Pre-defined Space Transportation Element Specifications

Classifications Propulsive Dual Carrier

Lunar CEV SM Apollo DS Apollo CM

Element 310 Element 307 Element 305

Small Com. Mass = 0 kg Com. Mass = 500 kg Com. Mass = 524 kg

Fuel Mass = 7222 kg Fuel Mass = 8804 kg Fuel Mass = 0 kg

Dry Mass = 2143 kg Dry Mass = 2509 kg Dry Mass = 1253 kg

EDS LSAM DS ISS CEV cargo

Element 412 Element 312 Element 368

Large Com. Mass = 0 kg Com. Mass = 2200 kg Com. Mass = 3500 kg

Fuel Mass = 129500 kg Fuel Mass = 28932 kg Fuel Mass = 0 kg

Dry Mass = 15852 kg Dry Mass = 9449 kg Dry Mass = 8375 kg

125

367 37 _1 55- 303

'"^"""
U100000U. . . .. ... .. . .. .. . .. . . .. ..r. .. . . .. .. ... . . .



Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. 0 0

* 0

* 0

* 0

* 0

IC4 = 400 kg
Fueled EDS o Fueled LM DS o" Un-fueled LM DS
ID # 412 ID # 307 ID # 307

Figure 5-4: Manually Defined Baseline Architecture

flights. To provide carrier capability and some propulsive capability, the small dual

function element (Element 307) is utilized to encapsulate the commodities and provide

the remaining propulsion. The total system wet mass for the baseline architecture is

228,584 kg and the corresponding allocation is shown in Figure 5-4.

Examining Figure 5-4 reveals that the approach of using only direct missions

creates inefficiencies in the transportation architecture. Since each mission must be

performed separately, efficient utilization of the available carrier mass can not be ex-

ploited. Furthermore, the large propulsive capabilities of Element 412 are not always

utilized, as the direct mission architecture cannot combine multiple flights leaving

LEO. The direct mission architecture, and resulting element selection decisions, are

analogous to a pure direct flight network in air transportation systems. As in the

aircraft direct flight scenario, smaller vehicles with less propulsive capabilities are

utilized when possible, as trans-shipments are not permitted.
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5.4 Case 1: Network Optimization

In traditional network flow optimization a set of vehicles or elements are pre-defined,

with their corresponding performance characteristics. Using the pre-defined element

parameters, an optimal allocation of elements to paths and burns can be defined to

meet the demand of the network. In this example two pre-defined element types will

be optimally allocated to the network, at lowest system cost.

Network optimization determines the optimal routing of the transportation ele-

ments using the network, operations, and objective function models defined in Section

3.3. The optimization is performed by utilizing CPLEX, a mixed-integer linear opti-

mization program[54]. Given the element design parameters as inputs to the problem,

the model can be linearized by defining additional variables and constraints. The de-

tails of this linearized model are provided in Appendix C.

The network optimization was executed for each pair of elements in Table 5.3,

where combinations of two propulsive-only elements and two carrier-only elements

were excluded, since these combinations are automatically infeasible. Table 5.4 dis-

plays the results for the 13 combinations that were evaluated. Examining Table 5.4

we see that the minimum total system wet mass for network only optimization is

196,501 kg, which provides a 14% decrease in system wet mass, as compared to the

baseline architecture. This cost is obtained by utilizing the large propulsive only

element together with the small dual function element, thereby providing commod-

ity carrying capability and both small and large propulsive capability. Furthermore,

we see that only combinations that involve Element type 412 are feasible. Element

type 412 (Earth Departure Stage, EDS) is the large propulsive element and there-

fore has the ability to maneuver large payloads through arcs with large A V's. The

corresponding allocation is shown in Figure 5-5.

Examining Figure 5-5 shows that for the two element types defined, two flights are

made from LEO to EML1. The demand for commodity 1 at EML1 can be satisfied

by both flights since the delivery time for this commodity is open. The first transport

flight at time one requires 5 instances of element type 307 to hold the commodities
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Figure 5-5: Optimal Configuration for Case 1

Table 5.4: Results from Optimization of Case 1

Element ID Element ID Objective Value (kg)

SM #310 LM DS #307 Infeasible

SM #310 LSAM DS #312 Infeasible

SM #310 CM #305 Infeasible

SM #310 ISS Cargo #368 Infeasible

EDS #412 LM DS #307 196,501

EDS #412 LSAM DS #312 624,489

EDS #412 CM #305 333,091

EDS #412 ISS Cargo #368 440,490

LM DS #307 LSAM DS #312 Infeasible

LM DS #307 CM #305 Infeasible

LM DS #307 ISS Cargo #368 Infeasible

LSAM DS #312 CM #305 Infeasible

LSAM DS #312 ISS Cargo #368 Infeasible
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and a single element 412 to perform the burn from LEO to EML1. Upon arrival

at EM11, 1300 kg of payload are dropped off and the remaining elements travel to

LELO and finally LES to satisfy the demand of 900 kg of payload at time 8. To

perform the transfer, two fueled element type 307s perform the burns and carry the

commodities to their final destination. The second flight from LEO travels to EM11

and delivers the remaining 500 kg of payload before splitting to satisfy the demand

for commodities 3 and 4, at LES and LPLO respectively. This architecture allocates

4 unfueled instances of element 307, four fueled instance of element 307 and 2 fueled

instance of element 412 to satisfy the network flow and operational constraints at

minimum total system wet mass.

This solution essentially establishes the Lagrangian point (EML1) as a 'hub' in the

space transportation network. In contrast to the baseline solution, the network opti-

mization, using the same pre-defined space elements chooses to incur the additional

AV penalty of traveling through the EML1 point on route to the lunar surface, in-

stead of utilizing the direct paths. However, by doing so, a 14% reduction in wet mass

is obtained, which provides a quantitative basis for exploring EML1 as a potential

'warehouse' in space.

5.5 Case 2: Vehicle Optimization

In traditional vehicle optimization the network flow is defined apriori and the vehicle

design characteristics are optimized to produce the lowest system wet mass. For the

vehicle design optimization problem, direct routes are assumed, as is traditionally

employed for space missions, and the element design characteristics are defined based

on the best compromise in performance for the network configuration. The vehicle

optimization uses the methodology defined in Figure 5-1, where a single direct path

for each commodity is specified, however for this case, the optimization customizes

the design of the elements, instead of selecting elements from Table 5.3. The lowest

system wet mass found for the space network with direct routes and optimized element

designs is 203,260 kg and the design parameters are provided in Table 5.5 for the
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Figure 5-6: Optimal Configuration for Case 2

Table 5.5: Element Specification for Case 2

Element Fuel Fuel Capacity Dry

Type Type Mass (kg) (kg) Mass (kg)

1 1 80646 0 10427

2 1 14191 1200 2222

corresponding network shown in Figure 5-6.

Examining Table 5.5 and Figure 5-6 reveals that the element design types continue

the trend of selecting a large-propulsive only element and a smaller dual function ele-

ment. Here, however, the dual function element is much larger than the dual function

element selected in both the baseline and Case 1. By allowing the optimization to

specify the vehicle size and operations, an 11% reduction in total system wet mass,

as compared to the baseline architecture is obtained. The imposition of direct paths

requires a large carrier size on some of the paths, and creates a large amount of slack

on paths where the package flow is low. The direct path architecture does not allow

for the efficient use of the element types by allowing an interaction of the commodities
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and therefore the total system wet mass is an increase of 3% over Case 1.

5.6 Case 3: Concurrent Element and Network Op-

timization

For the integrated transportation system design problem, the element design, network

flow, and operations definition are concurrently optimized. The design vector includes

variables that define both the element design, and network flow, and the system is

subject to the constraints that govern the elements, network and operations. The

integrated transportation system design problem is solved using the methodology

defined in Figure 5-1. However, due to the resulting problem size, it is necessary to

utilize the information obtained from analyzing the results of Case 1 and Case 2 to

make the computation of Case 3 more tractable.

Given the same set of 20 potential paths utilized in Case 1, the resulting problem

defines 2960 element routing variables, which represent the path and burn alloca-

tions for 10 available instances of each of two design types. The large number of

network flow variables within the integrated transportation system design framework

requires too much computation time (over 3 weeks) for solution using the optimization

methodology defined in Figure 5-1.

As the Case 1 solution provided a lower wet mass than the direct architecture in

Case 2, and chose to exclusively route all commodities through the Lagrangian point,

only these paths were selected as paths in this case. Thus, the concurrent element and

network optimization examined here effectively seeks to improve the solution obtained

in Case 1 by allowing the optimizer to concurrently define the element performance

parameters and the element routing using a 'hub' at EML1.

The minimum system wet mass obtained is 158,650 kg, which is a reduction of

31% over the baseline solution, a reduction of 22% over traditional element design

optimization (Case 2), and a reduction of 19% over traditional network optimization.

The optimal vehicle design parameters for the concurrent design optimization are
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Figure 5-7: Optimal Configuration for Case 3

Table 5.6: Element Specification for Case 3

Element Fuel Fuel Capacity Dry

Type Type Mass (kg) (kg) Mass (kg)

1 2 68581 0 9025

2 2 9519 600 2998

listed in Table 5.6 and the optimal configuration is provided in Figure 5-7.

Examining Table 5.6 and Figure 5-7 reveals that the element design types continue

the trend of selecting a large-propulsive only element and a smaller dual function

element. Here, however, the dual function element is only slightly larger than the

dual function element selected in both the baseline and Case 1. The large propulsive-

only element designed here (Element Type 1) is much smaller than the propulsive-only

element in Case 1 (Element 412).

Comparing Figures 5-5 and 5-7, the two architectures seem remarkably similar

upon an initial examination. Utilizing the same network paths and the same num-

ber of large propulsive-only elements and dual function elements, it is not initially

apparent where the 19% reduction in total system wet mass is obtained. However,
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Figure 5-8: Summary of Design Parameters for Baseline and Three Optimization

Cases of Space Transportation Example

the slight increase in both carrier capability and propulsive capability of the dual

function element is enough to allow the large propulsive element to be much smaller

in size. In Figure 5-5, Element 412 is utilized to perform both the burn from LEO

and the burn into EML1; however in Case 3 (Figure 5-7), Element type 1 is only used

for the burn out of LEO and the dual function element performs the burn into EML1

for both flights. The reduction in fuel mass for the large propulsive-only element de-

sign produced by Case 3 decreases the total system wet mass for the transportation

architecture significantly.

5.7 Comparative Analysis

Utilizing the space representation in Figure 5-3, the elements utilized in the trans-

portation architectures for Cases 1 through 3 are plotted in Figure 5-9. The maximum

AV of each element is defined as the fully loaded fully fueled propulsive capability of

the element when utilized in isolation. The maximum payload capacity defines each
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Classlficatlons Design & Network-Only Vehicle-Only Concurrent

Parameter (Case 1) (Case 2) (Case 3)

Element ID # 412 EDS Element Type I Element Type I

Com. Mass 0 kg 0 kg 0 kg
Propulsive Only

Fuel Mass 129500 kg 80646 kg 68561 kg

Dry Mass 15852 kg 10427 kg 9025 kg

Element D # 307 Apollo DS Element Type 2 Element Type 2

Com. Mass 500 kg 1200 kg 600 kg
Dual Function

Fuel Mass 8804 kg 14191 kg 9519 kg

Dry Mass 2509 kg 2222 kg 2998 kg
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Figure 5-9: Delta V versus Demand for Space Transportation Network Example

elements carrier functionality.

In addition to the element design points, each commodity is plotted in this func-

tional design space to obtain a perspective on the functional requirements of the

network. The commodity design points represent the minimum cumulative AV re-

quired to transport each commodity from its supply node to its demand node and

the total mass of each commodity. Thus, utilizing the commodity points as a guide,

the efficiency of the elements can be examined.

Examining Figure 5-9 reveals that none of the elements designed are capable of de-

livering any of the commodities alone, and therefore a combination of elements must

be selected to satisfy the demand. However, by forming stacks of elements, the total

payload mass that any given element must transport is significantly increased, which

decreases the total AV that the element can provide. As the effects of these combina-

tions are non-linear, the space transportation system element design points can not

be neatly decomposed, as defined in the air transportation system analysis provided

in Section 4.5. However, analyzing Figure 5-9 provides insight into the efficiency of

the elements selected and designed with respect to the network requirements.
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Examining Figure 5-9 shows that the large propulsive elements designed in Case

2 and Case 3 have similar capabilities to that of Element 412. However, examining

Table 5-8, reveals that the large propulsive-only elements designed in Cases 2 and

3 are smaller than Element 412 (Case 1). Thus, the additional fuel mass provided

by Element 412 is balanced by the larger structural mass and therefore does not

significantly impact the propulsive capability, as compared to the propulsive-only

designs from Cases 2 and 3.

A greater differentiation exists when comparing the dual function elements from all

three cases. As the fuel and structural masses of these elements are smaller than the

propulsive-only elements, changes in the fuel and carrier capabilities produce a larger

change in functionality. The pre-defined dual function element from Case 1 (Element

307) has the lowest propulsive and carrier capability. The dual function element

designed by the vehicle-only optimization (Case 2) has significantly more carrier and

propulsive capability than Element 307. The dual function element designed in the

concurrent optimization has only slightly more carrier functionality than Element

307, however has significantly more propulsive capability than both dual function

elements. By examining Figure 5-8 we see that the dual function element from Case

3 has only a slightly greater fuel mass capacity than Element 307 and significantly less

fuel mass capacity, as compared to the dual function element in Case 2. However, as

described above, the increased fuel mass capacity of the Case 2 dual function element

results in an increased dry mass, which limits the capability of this element. Thus,

the Case 3 dual function element seems to provide a good balance between carrier

functionality and propulsive capability.

To provide a greater understanding of the transportation architecture efficiency

for each case, Table 5.7 details the percentage of utilized functionality. The carrier

capability utilization is defined as the ratio of the total commodity mass of the net-

work (3700 kg) to the total carrier capacity of each transportation architecture. The

propulsive capability utilization is defined as the ratio of the total fuel required to

perform the transportation to the total fuel capacity of the elements within the net-

work. The inclusion of propulsive elements that are not-fueled and are solely utilized
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Table 5.7: Percent-Utilization of Total Element Architecture Capabilities for all Cases

Propulsive Capability

Utilization

(Fueled Elements Only)

Case

Propulsive Capability

Utilization

(All Elements)

24%

44%

38%

54%

for their carrier functionality distinguish the last two columns.

Examining Table 5.7 reveals that the network-only optimization produces the

highest carrier utilization, with a 92% efficiency. The highest propulsive capability

utilization is obtained by the concurrently optimized element designs from Case 3.

Comparing the transportation architecture costs for the baseline solution and the

three optimization cases reveals that increased efficiency in propulsive utilization di-

rectly correlates with lower system wet mass and efficient carrier utilization is less

important. For example, the vehicle-only optimization (Case 2) shows only a 2%

improvement in carrier utilization, as compared to the baseline architecture, but a

15% improvement in propulsive capability, which can therefore be attributed to the

11% decrease in system wet mass.

5.8 Chapter Summary

In this chapter, the integrated transportation system design problem presented in

Section 2.1 was implemented for a space transportation system example. Using the

space transportation system definition presented in Section 3.2 and the models devel-

oped in Section 3.3, computational results were obtained for both traditional design

methodologies and the integrated transportation system method. A baseline solu-

tion was first constructed, using a direct mission architecture and existing elements.

The baseline architecture was compared to the traditional design methodologies of
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network-only and vehicle-only optimization, which showed that by optimizing the

transportation architecture by either of these methods produced a reduction in total

system wet mass in LEO. Finally, using the results obtained from the traditional

optimization approaches, a solution to the integrated transportation system design

problem was obtained and showed a 19% improvement in total system wet mass, as

compared to the best traditional solution found. Upon analyzing the results, the pri-

mary reduction in system wet mass was attributed to a higher efficiency in propulsive

functionality.
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Chapter 6

Computational Study of Embedded

Optimization Methodology

The integrated transportation system design problems presented in previous chapters

have shown improvements in operational efficiency over traditional design methods.

The embedded optimization methodology presented for solving the integrated air and

space transportation systems embeds a deterministic constraint solver, such as an LP

or CPLEX, into the heuristic optimization algorithm Simulated Annealing (SA) to

aid SA in solving the large number of constraints generated by the network flow

and operations sub-systems. The motivation behind augmenting SA in this manner

was to increase the effectiveness of SA for finding good, feasible solutions to highly

constrained problems.

In this chapter, a computational study is presented to validate the use of em-

bedded optimization over traditional implementations of Simulated Annealing, such

as penalty parameters and smart perturbation, for solving constrained optimization

problems. In Section 6.1 the formulations for each of the traditional implementations

of Simulated Annealing, as well as the embedded optimization approach is presented

for the integrated air transportation problem. Section 6.2 presents the example prob-

lem and a preliminary experiment used to determine a suitable set of algorithm pa-

rameters. Section 6.3, discusses the results of the computational experiment, and a

statistical analysis of these results is presented in Section 6.4 to validate the efficiency
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of embedded optimization over the traditional SA implementation.

6.1 Optimization Methodology Formulation

To measure the effectiveness of embedded optimization against the traditional Simu-

lated Annealing implementations of penalty parameters and smart perturbation, all

three methods are implemented for the integrated air transportation system design

problem presented in Section 3.1. The remainder of this section details the specific im-

plementations required to optimize the integrated air transportation network design

problem using each methodology.

6.1.1 Formulation of SA with Penalty Parameters

Penalty parameters are a typical method for implementing constraints in optimization

methods, and particularly in heuristics. Penalty parameters weigh constraint viola-

tions in the objective, allowing non-feasible solutions to be evaluated, but penalizing

the objective proportionally to the violation. For this implementation, an increasing

penalty is imposed as the algorithm progresses. Specifically, given the number of

system evaluations (ny.) the penalty parameter (A) for each constraint is defined as

A = exp n8 y,/1000 (6.1)

where the constant of 1000 is imposed to provide the appropriate order of magnitude

of the penalty parameter.

Figure 6-1 provides a description of the implementation of Simulated Annealing

with penalty parameters. The design variables for this implementation include the ve-

hicle design variables, the aircraft allocation variables, and the package flow variables.

Each perturbed design vector is evaluated to determine the total system objective,

which for this implementation, augments the system objective with the constraint

violations as provided in Equation 6.2.
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Figure 6-1: Flow Diagram of Simulated Annealing with Penalty Parameters

J = ~-~ciknik+ •[

i k (i j+ 1: E if Xijk >

+ I (if zijk >

E iik - j
k

Gik ( Xijk - Gik 1
Gjk ECijk - Gjk

The first term in Equation 6.2 is the system level objective, as defined in Equation

3.12, which represents the total operating costs of the air transportation system for

a single day of operations. The second term represents the violation of the demand

constraints. As the demand constraints are equality constraints, any deviation from

equality produces increases the system objective. The third term and fourth terms

represent violations in the capacity constraints, for the first and second legs of the

trip, respectively. As the capacity constraint is a set of inequality constraints, the

system objective is only penalized if the total package mass exceeds the total aircraft

capacity available.
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Figure 6-2: Flow Diagram of Simulated Annealing with Smart Perturbation

6.1.2 Formulation of SA with Smart Perturbation

For problems with many constraints, the use of penalty parameters may become

ineffective. An alternative approach to satisfying constraints within Simulated An-

nealing is to implement constraints within the perturbation function to ensure that

the perturbed solution is feasible, before evaluation by the objective function. How-

ever, for problems with equality constraints, randomly perturbing the design values

is unlikely to produce a feasible solution. The idea of smart perturbation, as referred

to here, is to perturb the variables in an intelligent manner that promotes constraint

satisfaction, using a set of rules.

As can be seen in Figure 6-2 the design vector consists of the vehicle design

variables, the aircraft allocation variables and the package flow variables. Since the

demand constraints require equality of the package flow to the prescribed demand,

randomly perturbing the package flow variables will not likely produce a feasible

solution. Therefore, given an understanding of the problem structure a smart pertur-

bation routine can be developed for perturbing the package variables.
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The package variable perturbation proceeds as follows. First, a random package

variable is selected. The package variable is denoted by xfik and is a continuous

variable between 0 < xftk • PL . Next, the perturbation value for this variable (6x)

is selected such that 0 < 6x <- xi , where 6x is rounded to the nearest integer.

The amount 6x is subtracted from the given package variable and added to another

package variable axj k . This perturbation scheme produces a package flow that always

satisfies the demand constraints, given an feasible initial solution. The remainder

of the variables are perturbed as typically done in Simulated Annealing, and once

a perturbed design vector satisfies all constraints, it is evaluated by the objective

function.

6.1.3 Formulation of SA with Embedded Optimization

The embedded optimization methodology provides an efficient approach for solving

problems where large numbers of constraints are required to obtain feasible solutions.

The embedded optimization framework is similar to that of SA with smart perturba-

tion in that the design variables are perturbed until a feasible design vector is found.

However, unlike the smart perturbation methodology, embedded optimization uses a

deterministic optimizer embedded into the perturbation step of Simulated Annealing

to effectively solve the set of constraints governing the package variables.

By examining Figure 6-3, we see that the package variables need not be part

of the design vector as they do not contribute to the objective function and are

not perturbed by SA. Furthermore, by embedding a linear programming solver (LP)

within the perturbation, a feasible set of package variables is determined, if one

exists. If a feasible set of package variables does not exist, then the design vector is

perturbed until a feasible architecture is constructed, and can be evaluated by the

objective function.
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Figure 6-3: Flow Diagram of Simulated Annealing with Embedded Optimization

6.2 Computational Study Preliminaries

The computational study investigates the effect of increasing problem size on the

computational requirements of each method described in Section 6.1. The integrated

transportation system design problem can increase in size by including additional

vehicle design variables or additional network flow variables. Increasing the vehicle

design variables would consist of increasing the number of design variables required to

define an aircraft design, or the number of designs considered. Increasing the network

flow variables allows for additional cities to be considered in the network. Since the

three optimization methodologies considered differ most significantly in constraint

handling, an increase in the number of cities in the network would most drastically

change the number of constraints. As such, the experiment conducted will measure

the performance of the three optimization methodologies as the number of cities in

the network increases, while keeping the number of vehicle design variables fixed.
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Table 6.1: City to City Distances for Largest Seven City Network (nautical miles)

SATL BOS ORD DFW LAX JFK SFO
ATL 0 934 622 688 1921 756 2179

BOS 934 0 882 1538 2629 183 2729

ORD 622 882 0 806 1767 713 1866

DFW 688 1538 806 0 1257 1360 1518

LAX 1921 2629 1767 1257 0 2454 330

JFK 756 183 713 1360 2454 0 2560

SFO 2179 2729 1866 1518 330 2560 0

Table 6.2: Demand for Largest Seven City Network (lbs)

ATL BOS ORD DFW LAX JFK SFO
ATL 0 14045 31313 19984 34506 57949 37318
BOS 14045 0 27261 17398 30041 50451 32489
ORD 31313 27261 0 38788 66975 112479 72434

DFW 19984 17398 38788 0 42743 71784 46227

LAX 34506 30041 66975 42743 0 123948 79820

JFK 57949 50451 112479 71784 123948 0 134050

SFO 37318 32489 72434 46227 79820 134050 0

6.2.1 Example Problem

To measure the effectiveness of embedded optimization against the traditional Simu-

lated Annealing implementations of penalty parameters and 'smart' perturbation, all

three methods are implemented for the integrated air transportation system design

problem presented in Section 3.1. The computational experiment will measure the

performance of each algorithm as the number of cities in the network grows. To this

end, the specific example considered is the N-largest city network presented in Section

4.1, and reproduced below for convenience.

The N-largest city network is defined to be the N-cities with the greatest demand.
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Beginning with the largest two cities of JFK and SFO, the number of cities considered

is expanded by including the next largest demand city, and therefore the network

expands to include LAX, ORD, DFW, ATL, and finally BOS.

6.2.2 Determining Suitable SA Parameters

As a heuristic method, Simulated Annealing does not guarantee a bound on the opti-

mality of the solution, but instead relies on parameters that govern convergence and

stopping criteria. Three parameters were identified as potentially having a significant

effect on performance: temperature step (dT), number of perturbations at equilib-

rium for a given temperature (neq), and the number of temperature steps without

improvement before termination (nfz). The temperature step governs the temper-

ature profile for Simulated Annealing which determines how likely a given design

vector is to be accepted as the current solution. The number of points at equilibrium

specifies the required number of evaluations that do not improve the objective value

before the temperature can be lowered. The final parameter, nfz, specifies the re-

quired number of temperature steps to be taken without improvement in the solution

before the algorithm can terminate. A more detailed description of these algorithm

parameters and the methodology of Simulated Annealing can be found in Appendix

A and in Kirkpatrick (1983)[45].

As with many heuristics, good values of the SA algorithm parameters identified

are highly problem dependent. In addition, a good set of parameters may vary for

each optimization method; however to compare the optimization algorithms fairly it

is desirable to find a single set of parameter values to apply uniformly for all cases.

Therefore, a small design of experiments (DOE) is performed on the three city case

(consisting of JFK, LAX and SFO) to determine a good set of parameters for the

computational experiment.

To perform a design of experiments, multiple values, or levels, are selected for

each of the factors in question, which in this case corresponds to the SA algorithm

parameters. For each SA parameter identified above, a high and low level are defined,

as shown in Table 6.3. The experiment consists of eight trials, corresponding to a full
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Table 6.3: SA Algorithm Parameter Levels

I dT  neq nfz
High .95 40 15

Low .85 20 5

Table 6.4: Trial Parameters for Design of Experiments

Trial dT neq nfz

Trial 1 High High High

Trial 2 High High Low

Trial 3 High Low High

Trial 4 High Low Low

Trial 5 Low High High

Trial 6 Low High Low

Trial 7 Low Low High

Trial 8 Low Low Low

factorial experiment of the SA algorithm parameter values, and each trial is performed

once for each optimization method. For each trial, two performance criteria were

selected, computational time and best objective function value found. Table 6.5 and

Figure 6-4 provide the results of this experiment.

Figure 6-4 reveals that Trial 6 is non-dominated for each of the three optimiza-

tion implementations and produces the lowest objective function value for each. In

addition, Trial 6 produces these objective values within a reasonable time (approx-

imately 9 minutes or less). Trial 8 is also non-dominated for all three optimization

methodologies as well, but results in significantly higher objective function values

with only a small decrease in computation time. Therefore, the SA algorithm param-

eters of dT = .85, neq = 40, nfz = 5, corresponding to Trial 6, will be used for the

computational experiment.
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Experimental Results from SA Parameter Study
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Table 6.5:

Penalty Parameter Smart Perturbation Embedded Optimization

Trial # Cost ($) Time (sec) Cost ($) Time (sec) Cost ($) Time (sec)

Trial 1 266410 3632 233240 4477 158320 2261

Trial 2 266410 3328 236250 3265 179480 1908

Trial 3 265560 1227 236100 1273 160300 799

Trial 4 262890 651 222110 916 186640 531

Trial 5 261020 932 205130 1121 164090 604

Trial 6 242690 502 193550 543 153210 366

Trial 7 266410 276 240210 379 175330 229

Trial 8 266410 203 254000 240 175190 178
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6.3 Computational Study

Utilizing the SA algorithm parameters obtained from the pre-experiment, each op-

timization method presented in Section 6.1 will be implemented for the N-City op-

timization problem. For each number of cities, each optimization methodology will

be run five times to provide a reasonable sample size. The problem is implemented

in Matlab[56] and the embedded LP is provided by the Matlab Optimization Tool-

box. All results are run on a dedicated Dell Precision M65 laptop with a 2.33 GHz

dual-core processor and 2 Gb DDR2 RAM.

To compare each optimization method, four performance metrics will be evalu-

ated: best system objective found (J), computational time (t), number of objective

function evaluations (nsys), and number of perturbations (npert). The best system

objective determines how effective the optimization methodology is at finding good

design regions. The computational time measures how quickly good design regions

can be found and how quickly the optimizer can evaluate the constraints. This per-

formance metric is especially important when evaluating the embedded optimization

methodology since it is important to determine how costly it is to embed an LP solver

into a heuristic. The next two performance metrics determine how many evaluations

SA requires in order to satisfy the termination criteria. The number of system eval-

uations determines how many design points are evaluated by the objective function.

However, since both the smart perturbation and embedded optimization methodolo-

gies often require multiple iterations to obtain a feasible perturbed design point, it

is important to measure the number of perturbed solutions as well to obtain a fair

comparison with the penalty parameter implementation.

6.3.1 Computational Study Results

The results from the computational study described above are provided in this section.

However, it is important to note two deviations from the plan described earlier. First,

for the 2-city case of penalty optimization, it was necessary to run approximately

20 optimizations to obtain 5 feasible solutions. For this small case, the optimal
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configuration returned often had violations in the constraints, and these solutions

were discarded. Secondly, results are not available for the 7-city case with smart

perturbation optimization. This case was neglected due to time constraints as the

computation time significantly increased, as compared to the 6-city case and became

prohibitive.

Figure 6-5 displays the results for the best objective function values (J) versus

number of cities (N) for each optimization method, and Table 6.6 provides the aver-

age values obtained by each optimization methodology for this performance metric.

By examining Figure 6-5 and Table 6.6 we see that embedded optimization has the

lowest average objective function value for every N-city optimization. In addition, the

standard deviations in objective function values for embedded optimization are lower

than the standard deviations for each of the traditional optimization methodologies

for every N-city optimization, with the exception of the smart perturbation imple-

mentation for the 5-city network. Given that the objective function values obtained

by embedded optimization are lower, by at least 20%, and generally more consistent

than the traditional optimization implementations, implies that embedded optimiza-
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Table 6.6: Average Objective Function Values for N-City Optimization

# Penalty Smart Embedded % Improvement % Improvement

Cities Parameter Perturbation Optimization Embedded Embedded

($/day) ($/day) ($/day) vs. Penalty vs. Smart

2 93886 87200.6 66022 30% 23%

3 257842 232502 160970 38% 31%

4 479898 418998 286348 40% 32%

5 721384 651866 410260 43 % 37%

6 973552 834556 555870 43% 33%

7 1263880 N/A 650862 49% N/A

tion can reliably return lower cost solutions for the integrated transportation system

design problem.

Figure 6-6 displays the results for the computational time versus number of cities

for each optimization method, and Table 6.7 provides the average values obtained by

each optimization methodology for this metric. By examining Figure 6-7 and Table

6.8 we see that embedded optimization also has the lowest average computation times

and grows at the slowest rate with increasing problem size. In addition, the stan-

dard deviations in computation time for embedded optimization are lower than the

standard deviations for each of the traditional optimization methodologies for every

N-city optimization, which implies that the performance of embedded optimization

is more predictable than the other methods.

Performing an empirical fit to the equation t = aN 3 and requiring a confidence

interval of 95%, we obtain coefficient values of a = .88 ± 1.99 and f = 4.56 ± 1.19 for

penalty parameter optimization, a = 2.88E - 5 + 6.11E - 4 and / = 11.67 ± 11.85

for smart perturbation optimization, and a = 100.66 ± 25.11 and 3 = 1.21 ± .14 for

embedded optimization. Examining these coefficients reveals that the computation

time for the penalty parameter implementation scales at four times the rate as em-

bedded optimization. For the smart perturbation implementation, this ratio increases

to approximately ten times that of embedded optimization. Although, the number of
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Table 6.7: Average Computational Time for N-City Optimization

# Penalty Smart Embedded % Improvement % Improvement

Cities Parameter Perturbation Optimization Embedded Embedded

(sec) (sec) (sec) vs. Penalty vs. Smart

2 288.6 361.6 242.6 16% 41%

3 549.8 580.4 403.8 27% 30%

4 944.8 1121 551 42% 51%

5 1546.2 3967 707.6 54% 82%

6 2566 34462.6 789.8 69% 98%

7 6487.4 N/A 1129.2 83% N/A
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cities in the network (N) defines N2 allocation variables and N3 package variables,

the computation time for embedded optimization increases O (N 1.2 1), which is a con-

siderable improvement, considering that embedded optimization also produces the

best objective function values.

The ranges for the a coefficients are fairly large with respect to magnitude of the

values, however, the ranges for the 3 coefficients are tighter, which is important since

the / coefficients determine the increase in computation time for growing problem

size. For smart perturbation the ranges for both coefficients (a and /) are so large that

the numbers provided may be meaningless, which is due to the increased variation

between data points for each run. The /3 coefficient for embedded optimization has

the tightest range which ensures that the actual growth in computation time for

increasing problem size is close to the predicted value.

Figure 6-7 displays the results for the number of system evaluations versus the

number of cities for each optimization methodology, and Table 6.8 provides the aver-

age values obtained by each optimization methodology for this performance metric.

By examining Figure 6-7 and Table 6.8 we see that embedded optimization has the

153

F Penalty Parameter
* Smart Perturbation

* Embedded Optimization

Penalty Parameter tsgreaelon Une

- Smart Perturbation Regresialon Line

Embedded Opmilzation Regresalon Line "Smart Perturbation
, a = 514 ± 413

/ = 2.18 .48

S Penalty
- -----Parameter

a = 1484 ± 338
8 = 1.3 ± .13

Embedded Optimization
a = 2315 ± 284
6 = .63 : .074



Table 6.8: Average Number of System Iterations for N-City Optimization

# Penalty Smart Embedded % Improvement % Improvement

Cities Parameter Perturbation Optimization Embedded Embedded

vs. Penalty vs. Smart

2 4311.2 5035.8 3200.8 26% 43%

3 6588.4 6677.6 4837.8 27% 28%

4 8965.6 9333.6 5741 36% 38%

5 11557.4 15125 6509 44% 57%

6 13987.6 26698.8 6752.2 52% 75%

7 19736.8 N/A 7843.4 60% N/A

lowest average number of system evaluations and grows at the slowest rate with in-

creasing problem size. In addition, the standard deviations in the number of system

evaluations for embedded optimization are lower than the standard deviations for

each of the traditional optimization methodologies for every N-city optimization ex-

cept the 2-city case, which implies that the performance of embedded optimization is

more predictable than for the other methods.

Performing an empirical fit to the equation t = aNO and requiring a confidence

interval of 95%, we obtain coefficient values of a = 1484 ± 338 and 0 = 1.3 ± .13

for penalty parameter optimization, a = 514 ± 413 and 3 = 2.18 ± .48 for smart

perturbation optimization, and a = 2315 ± 284 and 3 = .63 ± .074 for embedded

optimization. Examining these coefficients reveals that the number of system eval-

uations for the penalty parameter implementation scales at about twice the rate as

embedded optimization. For the smart perturbation implementation, this ratio in-

creases to approximately four times that of embedded optimization. Given the order

of increase in problem size with number of cities (N), the resulting increase in sys-

tem evaluations for embedded optimization, which is approximately O (N 625), is a

significant improvement.

The coefficient ranges are tighter when evaluating the curve fits for number of sys-

tem evaluations, providing a reliable estimate on the number of system evaluations.

154



80000

80000 -

. 40000-0

Z 820000

1ooot:a. 40000* 30000

Z '"20000

10000

0 1 2 3 5 7 8 9
Number of City Pairs

Figure 6-8: Number of Perturbed Solutions versus Number of Cities

The penalty parameter curve fit provides a reliable estimate for the 3 coefficient which

predicts a super-linear growth in number of system evaluations with growing problem

size. For smart perturbation, there is still ambiguity in the a coefficient, however

the 3 coefficient shows that the number of system evaluations scales approximately

quadratically with the number of city pairs. The 3 coefficient for embedded opti-

mization provides the tightest range and reveals that the growth in number of system

evaluations for increasing problem size is sub-linear.

Figure 6-8 displays the results for the number of perturbed solutions versus num-

ber of cities for each optimization methodology, and Table 6.9 provides the average

values obtained by each optimization methodology for this metric. By examining

Figure 6-8 and Table 6.9 we see that embedded optimization has the lowest average

number of perturbed solutions and grows at the slowest rate with increasing problem

size. In addition, the standard deviations in number of perturbed solutions for em-

bedded optimization are lower than the standard deviations for each of the traditional

optimization methodologies for every N-city optimization except the 2-city case, which

implies that the performance of embedded optimization is more predictable than the
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Table 6.9: Average Number of Perturbed Solutions for N-City Optimization

# Penalty Smart Embedded % Improvement % Improvement

Cities Parameter Perturbation Optimization Embedded Embedded

vs. Penalty vs. Smart

2 4311.2 7742.4 4010.8 7% 87%

3 6588.4 11856.6 5896.8 10% 50%

4 8965.6 16554.6 6976.4 22% 58%

5 11557.4 26812.4 7677.6 34% 71%

6 13987.6 46539.8 7471.8 47% 84%

7 19736.8 N/A 8954.4 55% N/A

other methodologies.

Performing an empirical fit to the equation t = aNP and requiring a 95% con-

fidence interval, we obtain coefficient values of a = 1484 ± 388 and 3 = 1.3 ± .13

for penalty parameter optimization, a = 892 ± 649 and P = 2.2 ± .43 for smart

perturbation optimization, and a = 3113 ± 479 and / = .54 ± .094 for embedded

optimization. Examining these coefficients reveals that the number of perturbed so-

lutions for the penalty parameter implementation scales at about twice the rate as

embedded optimization. For the smart perturbation implementation, this ratio in-

creases to approximately four times that of embedded optimization. The number of

perturbed solutions required by embedded optimization increases at approximately

O (N 53), which is a marked improvement given the increasing dimensionality of the

problem.

The coefficient ranges produced for the curve fits for number of perturbed so-

lutions are fairly tight. For smart perturbation, there is still ambiguity in the a

coefficient, however the 3 coefficient shows that the number of perturbed solutions

scales approximately quadratically with the number of city pairs. The 0 coefficient

for embedded optimization provides the tightest range and reveals that the growth

in number of perturbed solutions for increasing problem size is sub-linear.
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6.4 Statistical Analysis

The computational results presented in the previous section show an improvement in

the computational performance of embedded optimization over traditional Simulated

Annealing optimization implementations. However, it is important to quantify these

improvements using a formal analysis. As such, a statistical test of the hypothesis

that embedded optimization performs better than the other two methods.

Due to the small sample sizes, a t-test was used to compare two groups, namely

embedded optimization and each of the traditional optimization methodologies. The

t-test determines if a result is significant, given a required confidence interval for the

results. In order to perform a t-test, the average, standard deviation, and sample

size for each group is used to compute the t-value, which is then compared to a table

of values to determine if the null hypothesis can be rejected. Details regarding the

specifics of the t-test can be found in any basic statistics reference, such as Schaum's

Outlines [57]. For each of the hypothesis tests performed, an unpaired two-tail t-

test with a 95% confidence interval was evaluated to determine if the results were

significant. The significance tests were performed for the four performance metrics,

objective function value, computation time, number of system evaluations, and num-

ber of perturbed solutions, and the results are provided in Tables 6.10, 6.11, 6.12,

and 6.13, respectively.

Table 6.10 presents the hypothesis test for a decrease in the objective function

values obtained by embedded optimization as compared to optimization with penalty

parameters (JE < Jp), and smart perturbation (JE < Js). Examining Table 6.10,

reveals that embedded optimization produces significantly lower objective function val-

ues than both penalty parameter and smart perturbation with a confidence interval of

95%. Furthermore, for the networks with three or more cities, the results are consid-

ered extremely statistically significant, with probabilities of the null hypothesis less

than .001%.

Table 6.11 presents the hypothesis tests for a decrease in computation times ob-

tained by embedded optimization as compared to optimization with penalty param-
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Table 6.10: Hypothesis Test for Improvement of Objective Function Value using 95%

Confidence Interval

# of Cities Hypothesis t-value Probability Significance

2 JE < Jp t(8) = 4.99 p = 1.065E-3 Significant

3 JE < Jp t(8) = 9.29 p = 1.463E-5 Significant

4 E < Jp t(8) = 16.30 p = 2.024E-5 Significant

5 JE < Jp t(8) = 10.72 p = 5.026E-6 Significant

6 E < Jp t(8) = 15.60 p = 2.846E-7 Significant

7 JE < Js t(8) = 30.22 p = 1.559E-9 Significant

2 JE < Is t(8) = 3.28 p = 1.127E-2 Significant

3 lE < Js t(8) = 5.64 p = 4.877E-4 Significant

4 lAE < Is t(8) = 11.71 p = 2.579E-6 Significant

5 lE < KS t(8) = 23.37 p = 1.196E-8 Significant

6 JE < Js t(8) = 9.75 p 1.029E-5 Significant

eters (tE < tp), and smart

that embedded optimization

perturbation (tE < tS) Examining Table 6.11 reveals

produces significantly lower computation times than both

penalty parameter and smart perturbation with a confidence interval of 951%. In addi-

tion, many of these tests produce results that are considered extremely statistically

significant.

Table 6.12 presents the hypothesis tests for a decrease in the number of system

evaluations obtained by embedded optimization as compared to optimization with

penalty parameters (nsysE < nsysp), and smart perturbation (nsysE < nsyss). Ex-

amining Table 6.12 reveals that embedded optimization produces significant decreases

in number of system evaluations as compared to both penalty parameter and smart

perturbation with a confidence interval of 95%. Furthermore, for the networks with

three or more cities, the results are considered extremely statistically significant, with

probabilities of the null hypothesis less than .001%.

Table 6.13 presents the hypothesis tests for a decrease in the number of perturba-

tions obtained by embedded optimization as compared to optimization with penalty
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Table 6.11: Hypothesis Test for Improvement of Computation Time using 95% Con-

fidence Interval

# of Cities Hypothesis t-value Probability Significance

2 tE < tp t(8) = 4.62 p = 1.709E-2 Significant

3 tE < tp t(8) = 5.07 p = 9.607E-4 Significant

4 tE < tp t(8) = 5.81 p = 3.986E-4 Significant

5 tE < tP t(8) = 7.01 p = 1.116E-4 Significant

6 tE < tP t(8) = 11.38 p = 3.211E-6 Significant

7 tE < tS t(8) = 6.10 p = 2.884E-4 Significant

2 tE < tS t(8) = 10.66 p = 5.24E-6 Significant

3 tE < tS t(8) = 8.39 p = 3.096E-5 Significant

4 tE < tS t(8) = 8.91 p = 1.991E-5 Significant

5 tE < tS t(8) = 3.58 p = 7.2156E-3 Significant

6 tE < tS t(8) = 3.27 p = 1.133E-2 Significant

Table 6.12: Hypothesis Test for

59 % Confidence 
Interval

Improvement in Number of System Iterations using
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# of Cities Hypothesis t-value Probability Significance

2 nsySE < nsysp t(8) = 4.81 p = 1.340E-3 Significant

3 nsySE < nsysp t(8) = 8.17 p = 3.747E-5 Significant

4 nsysE < nsysp t(8) = 9.11 p = 1.696E-5 Significant

5 nsysE < nsysp t(8) = 14.52 p = 4.942E-7 Significant

6 nsysE < nsysp t(8) = 26.48 p = 4.443E-9 Significant

7 nsySE < nsyss t(8) = 17.58 p = 1.119E-7 Significant

2 nsysE < nsyss t(8) = 7.91 p = 4.769E-5 Significant

3 nsysE < nsyss t(8) = 10.40 p = 6.317E-6 Significant

4 nsysE < nsyss t(8) = 18.60 p = 7.2101E-8 Significant

5 nsysE < nsyss t(8) = 7.63 p = 6.126E-5 Significant

6 nsySE < nsyss t(8) = 8.46 p = 2.912E-5 Significant
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Table 6.13: Hypothesis Test for Improvement in Number of Perturbations using 95%

Confidence Interval

# of Cities Hypothesis t-value Probability Significance

2 npertE < npertp t(8) = 2.11 p = 6.830E-2 Not Significant

3 npertE < npertp t(8) = 2.74 p = 2.549E-2 Significant

4 npertE < npertp t(8) = 5.21 p = 8.099E-4 Significant

5 npertE < npertp t(8) = 9.20 p = 1.575E-5 Significant

6 npertE < npertp t(8) = 17.22 p = 1.318E-7 Significant

7 npertE < nperts t(8) = 15.42 p = 3.108E-7 Significant

2 npertE < nperts t(8) = 18.00 p = 9.392E-8 Significant

3 npertE < nperts t(8) = 18.43 p = 7.734E-8 Significant

4 npertE < nperts t(8) = 19.57 p = 4.826E-8 Significant

5 npertE < nperts t(8) = 9.63 p = 1.126E-5 Significant

6 npertE < nperts t(8) = 10.46 p = 6.047E-6 Significant

parameters (npertE < npertp), and smart perturbation (npertE < nperts). Exam-

ining Table 6.13, reveals that embedded optimization produces significant decreases

in number of perturbed solutions as compared to penalty parameters for every N-city

network except 2 cities and every network for smart perturbation with a confidence

interval of 95%. The comparison of embedded optimization to penalty parameters

for the 2-city case is significant with a 90% confidence interval.

6.5 Chapter Summary

In this chapter, the embedded optimization methodology outlined in Section 2.3 and

utilized for solving the air and space transportation systems in Chapters 4 and 5,

respectively is compared to traditional SA implementations of penalty parameter

and smart perturbation. The air transportation system example in Chapter 4 is

utilized as a test problem and the three optimization methods are compared by best

objective function value, computation time, number of system evaluations and number
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of perturbations as the number of city-pairs in the network grows. The results showed

a significant improvement in the performance of embedded optimization for each

performance metric.
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Chapter 7

Conclusions and Recommendations

System-of-systems design problems require the analysis of the system design and the

resulting interaction of the systems. Transportation systems are classified as system-

of-systems problems as the value of the system is not in a single vehicle but in the

coordinated interaction of the fleet of vehicles. Traditional research into transporta-

tion system design has focused on either the coordination of the fleet or the vehicle

design assuming the other as given, however for a true systems perspective these

decisions must be made concurrently.

Integrated transportation system design expands the system boundary to include

the interactions of a fleet into the design process of the vehicle. By explicitly modeling

these interactions simultaneously with the vehicle design, the coupling between the

vehicle and the fleet coordination can be exploited. Utilizing this flexibility to an

advantage, the design space is enlarged and more efficient transportation architectures

can be developed.

7.1 Thesis Summary and Conclusions

The integrated transportation system design problem arises from the need to develop

efficient transportation architectures. Furthermore, the advent of a new era of space

exploration presents an opportunity to design new vehicles that will enable sustain-

able space exploration. To promote sustainability in space exploration activities it
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is necessary to provide the insight and efficiency currently available for terrestrial

logistics activities to space transportation design problems.

Chapter 1 provides a brief review of the current state of the art in both aerospace

vehicle design and network flow optimization. Recent trends, especially in the vehicle

design sector, show a movement towards understanding the implications of multiple

operational requirements within the design process. Specifically research into aircraft

design problems [5] and spacecraft design problems [28] displays a new paradigm for

design where multiple missions are considered and the impact of a fleet on the vehicle

design is analyzed. However, there still exists a gap between designing a vehicle

using multiple operational scenarios as a test measure and designing the vehicles

concurrently with the operations.

The integrated transportation system design problem bridges the gap between the

vehicle design community and the operations research community by expanding the

control volume under consideration to include the models utilized by both commu-

nities into a single problem definition. In Chapter 2, a formal decomposition of the

integrated transportation system design problem was presented to pinpoint the cou-

pling between the vehicle design and network flow optimization. The decomposition

distinguishes the variables and constraints that govern only the vehicle design prob-

lem, only the network routing and allocation problem, and the interactions of the fleet

and vehicle design. The operations constraints, which define the coupling parameters

are explored to understand the inherent difficulty that arises by allowing both the

vehicle design and operations variables to be simultaneously defined.

Chapter 2 also examines the resulting complexity that arises from expanding

the system boundary to include models that are generally separated. The result-

ing mixed-integer non-linear design problem creates difficulties when selecting an

efficient optimization methodology. However, having analyzed the constraints for the

fundamental structure that is created by the integrated optimization system design

problem, an optimization methodology was developed to specifically handle the inte-

grated transportation system design problem. Chapter 2 further details the embedded

optimization methodology.
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Given the definition of an integrated transportation system, two domain appli-

cations are developed in Chapter 3: air transportation system models and space

transportation system models. The air transportation system models are developed

by combining both the work of Crossley, et al (2004)[5] on aircraft vehicle design and

Yang and Kornfeld (2003)[39] on aircraft routing. The space transportation system

example however, required some new developments prior to defining the integrated

transportation system models.

Unlike air transportation networks, space transportation networks have not been

previously defined. Therefore, Chapter 3 details the definitions of a space network,

drawing on analogies from terrestrial networks, extending modeling tools, and under-

standing where assumptions traditionally utilized in transportation network models

are no longer valid for space networks. Given the space network definition, the space

transportation system models are developed.

In Chapter 4, the air transportation system design problem is implemented for

two examples of an overnight package delivery network. For each example, three cases

were considered: network flow optimization, vehicle design optimization and the con-

current optimization presented in this research. For each of the examples, concurrent

optimization produced a solution that reduced the total system costs by at least a 10%

over the traditional approaches. By analyzing the design space of the network from

the viewpoint of distance verses demand, it can be readily seen that the concurrently

optimized solution more closely fits the requirements of the transportation network.

Thus, by expanding the decision space more efficient transportation architectures

were developed.

Chapter 5 examines an implementation of the space transportation system design

problem. An Earth-Moon example network is considered, however, for space trans-

portation systems, time becomes a variable as well. Therefore, the resulting time

expanded network is much larger than the aircraft transportation network. Addition-

ally, employing the knowledge of current space transportation systems, the vehicle

model was defined at the element-level, and two types of elements are considered

for allocation within the network. Again, the concurrent optimization of the space
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transportation system is compared against a traditional network flow optimization

and a vehicle design optimization. The results yielded a decrease in total system wet

mass of at least 19% as compared to the traditional optimization approaches. The

improvement in system wet mass can be attributed to the high percent utilization of

the propulsive capability in the transportation architecture.

For each of the integrated transportation system design problems implemented,

an optimization approach defined as embedded optimization was utilized to obtain

solutions for the concurrently optimized designs. Chapter 6 provides a quantitative

analysis of the benefits of embedded optimization over traditional implementations

of Simulated Annealing, the system-level optimizer. The integrated air transporta-

tion system design problem was used as a test example, and four computational

performance metrics were measured for increasing problem size. For the performance

metrics of best objective function, computation time, and number of system eval-

uations, embedded optimization provided a statistically significant improvement over

traditional SA implementations for every problem size considered with a confidence

interval of 95% as determined by a t-test. Furthermore, for the final performance

metric of number of perturbed solutions, embedded optimization provided a statis-

tically significant improvement with a confidence interval of 95% for every network

size except the smallest one, and in all cases this improvement was significant with a

confidence interval of 90%.

7.2 Thesis Contributions

The goal of this thesis was to develop and validate a comprehensive methodology for

defining, modeling, and solving integrated transportation system design problems,

where both the network flow and vehicle design are considered together. The following

specific thesis contributions can be identified.

* Further defined the integrated transportation system design problem

- Decomposed the integrated problem into fundamental components and
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analyzed the structure and coupling of the model

* Formulated a concrete definition of a space network

- Systematically analyzed each component of a general transportation net-

work and developed corresponding definitions for a space network

- Extend the modeling tool of time expanded networks to incorporate astro-

dynamic relationships

- Developed and validated a network generation tool that is currently uti-

lized in SpaceNet[50],[9]

* Demonstrated the integrated transportation system design method by modeling

and optimizing air and space transportation networks

- Developed and validated toolbox suites for both integrated air transporta-

tion and space transportation system design

- Quantified improvement of integrated air transportation system design

over traditional design approaches ( a minimum of 10% cost reduction)

- Quantified improvement of integrated space transportation system design

over traditional design approaches (a minimum of 19% wet mass reduction)

Demonstrated future potential for modeling other transportation systems

by analyzing two types of transportation systems

* Developed and validated the embedded optimization methodology for trans-

portation system design problem

- Demonstrated a statistically significant improvement ( with a 95% confi-

dence interval) of embedded optimization over traditional Simulated An-

nealing using either penalty parameter or smart perturbation approaches
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7.3 Limitations

The limitations of the integrated transportation system design problem primarily arise

from two areas: model fidelity and computational requirements. In both the air and

space transportation networks, the vehicle design models are rather limited in scope.

The focus of this research was to demonstrate the gains in efficiency from expanding

the system boundary in the design process; however to utilize this methodology for

designing transportation systems, a greater level of detail in the vehicle design models

is required to capture the complexity of vehicle design requirements. However, the

formulation of both the model and software allows for a more detailed vehicle design

to be included without significant changes.

For air transportation system design problems computation time is low, both in

terms of real time and in comparison to the other optimization methodologies, as

shown by the computational experiment in Chapter 6. However, the computational

requirements for space transportation system design are much greater. Due to the size

of the resulting time expanded network, and the removal of path length assumptions,

the number of variables required to define the integrated space transportation system

problem are very large, even for small instances. The result is a problem that is

two orders of magnitude larger than the aircraft design problem, and thus much

more difficult to solve and may present insurmountable difficulties when applied to

real-world design problems, in the current state.

7.4 Recommendations for Future Work

The integrated transportation system design problem explored in this thesis only

begins to investigate the complex interactions inherent in transportation systems.

There exists a great deal of potential efficiency gains during the design process by

employing the integrated optimization methodology in both model formulation and

solution approaches. Some specific recommendations for future work include

* Expand the fidelity of the vehicle models for both air and space to provide a
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greater level of detail and increased accuracy of the resulting designs

* Examine the effects of multiple vehicle type designs to understand the trade-

off between specialization and cost. In the extreme, a custom vehicle could be

developed for each route. Thus, an important application of this research would

be a method for formally defining the optimal number of design types in a fleet;

however for this analysis to be valid, the scope of the cost models would need to

expand to capture costs associated with training and maintenance of multiple

vehicle types.

* Examine the definition of a new vehicle within the context of an existing fleet

* Extend the integrated transportation system formulation to account for and

optimize the transportation network within a stochastic demand framework. By

modifying the objective function to define a low cost transportation architecture

that is robust to changes in network demand would result in a stochastic decision

tool for transportation system design

* Include non-chemical propulsion technologies into the design decisions for space

transportation and analyze the effect these differing trajectories have on the

definition of the time expanded network

* Decrease the computational requirements for the space transportation system

optimization by employing formal selection strategies of the path variables,

such as column generation, on each iteration. Conversely, investigations into

the utility of parallel computing may alleviate some of the computational issues

* Expand the system boundary by including facility costs and other effects that

influence the transportation architecture

* Understand the effect of increasing the problem size in other ways on the per-

formance of embedded optimization. The computational study of embedded

optimization presented in Chapter 6 examines the performance against increas-

ing number of cities in the network; however including more vehicle designs
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would increase the problem size as well, and possibly result in different algo-

rithm performance

* Apply embedded optimization approach to other heuristic algorithms, such

as genetic algorithms and particle swarm optimization, that can solve mixed-

integer non-linear programming problems. Determine if a type of heuristic op-

timization algorithm is better suited for embedded optimization or if embedded

optimization provides a universal improvement in solution effectiveness

7.5 Implications of Thesis Research

The research developed in this thesis can potentially impact many areas of the

aerospace design community. The primary potential customers would be the aircraft

design community. By expanding both the scope and fidelity of the aircraft design

models, and incorporating the transportation networks for potential customers, the

design decisions affecting both a new design type and potential variants could be

analyzed in a holistic framework to produce competitive and efficient aircraft designs

that better meet customer needs.

Similarly, this research is applicable to the space transportation design community

as we embark on a new era of space exploration. As space transportation is an

expensive industry, efficient research utilization is at a premium. By defining the

logistics transport for space exploration within the context of a space network, a

formal interplanetary logistics analysis can be performed, which can significantly

impact the efficiency of the transportation architecture. Furthermore, by concurrently

defining the design decisions within the transportation network framework, as shown

by example in this research, even greater gains in efficiency can be obtained.

The embedded optimization methodology developed within this thesis can poten-

tially impact the systems design community, as well. Although further investigations

are required to define the extensibility of the method to larger problem sizes and

other application domains, great promise is shown by the current performance of

embedded optimization. As the system design community often faces optimization
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problems with mathematical structures that are not effectively solved by traditional

optimization approaches, expanding the scope and efficiency of embedded optimiza-

tion could serve to provide an optimization tool that allows system design problems

to be effectively optimized.
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Appendix A

System Optimization Using

Simulated Annealing (SA)

The information contained in this appendix is taken from de Weck (2004)[58] and

references the original work by Kirkpatrick (1983)[45]. As Simulated Annealing is the

primary optimization algorithm utilized in this research, a more detailed description

of the optimization methodology and algorithm is presented in this appendix.

A.1 Background of Simulated Annealing: Statis-

tical Mechanics

The origins of Simulated Annealing (SA) lie in the field of statistical mechanics.

Statistical mechanics is the central discipline of condensed matter physics, a body

of methods developed to analyze the behavior and aggregate properties of a large

number of atoms, typically found in samples of liquid or solid matter. Oftentimes

a cubic centimeter of liquid under Normal Temperature and Pressure (NTP) will

contain on the order of 1023 atoms.

Statistical mechanics is particularly interested in the behavior of agglomerations

of atoms as they are cooled from their high temperature state (from above melting

temperature). There are many configurations that these atoms could take and as the
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number of states (configurations) is often too large to count we resort to statistics

and the concept of ensemble to describe the behavior of a system. An ensemble

is a large set of configurations, separated in time or space, that, taken as a whole,

can describe the system via its statistical properties. Thus, in statistical mechanics

(atomic) systems are not described by a single configuration, but rather by their

ensemble statistics.

Each configuration can be described by a set of atomic positions, {ri}, where

i = 1,2,..., N is the atomic index and E ({ri ) is the energy of the index. The

probability that a particular configuration, {ri}, will occur in a given sample of atoms

is expressed by the Boltzmann probability factor,

P (ri) = expr) (A.1)

where kB is generally set to one in Simulated Annealing. Examining Equation A.1

reveals that at the same temperature, T, lower energy configurations are more likely

to occur than higher energy configurations.

In practice, only the most probable behavior of a system in thermal equilibrium

at a given temperature, T, is observed in experiments. The equilibrium state at a

certain temperature is characterized by an average behavior of the system as well as

small fluctuations around that average state. Statistically, the macroscopic ensemble

behavior is then obtained as the summation of each theoretically feasible configura-

tion, {ri}, weighted by its probability of occurrence, as determine by Equation A.1.

This results in a so-called Boltzmann distribution.

The central question then becomes, how each of the possible configurations of the

system is represented in the ensemble. At very large temperatures (above "melting")

the probabilities of occurrence all tend to one, as can be ascertained by substituting

T = oc in Equation A.1. At lower temperatures, however, the low energy states will

be more likely to occur than the high energy states.

A fundamental question in statistical mechanics pertains to the behavior of the

system in the limit of low temperature. Ground states and configurations close to

them are extremely rare in all the configurations of a macroscopic body, yet they
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dominate its properties at low temperatures because, as T is lowered, the Boltzmann

distribution collapses into the lowest energy state(s).

A.2 Finding Low Energy States by Simulated An-

nealing

The ultimate goal of Simulated Annealing is to find the ground state(s), i.e. the

minimum energy configuration(s), with a relatively small amount of computation. In

the previous section we defined minimum energy states as those with a high likelihood

of existence at low temperatures. Therefore, the system temperature is set to a low

value in order to find the lowest energy configuration in the ensemble. However, for

real physical systems and large scale design problems, the number of configurations,

NR, can be extremely large and therefore performing a full factorial experiment is

prohibitive for finding "optimal" configurations.

Drawing on another analogy with statistical mechanics reveals that when cooling

liquids, defect-free crystals are formed when the liquid is cooled very slowly from

melting temperature, with a lot of time spent at temperatures near freezing in order

to allow the atoms to find the lowest energy state at a given temperature. This

process of slow cooling is called annealing. If this is not done properly, the substance

is allowed to get out-of-equilibrium and the resulting crystal will have many defects.

Cooling very quickly from melting temperature is called quenching. It has been shown

that quenching corresponds to steepest gradient search in optimization. This is an

effective procedure for purely convex problems. For non-convex and combinatorial

situations, however, quenching is prone to getting stuck in local minima. Therefore it

is desirable to define an algorithm that allows the system to be cooled slowly enough

from n initial high-energy configuration to a low energy configuration such that the

system can reach equilibrium at each progressively cooler temperature.
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A.2.1 Metropolis Algorithm

Metropolis et al (1953)[59] provided an algorithm for simulating a collection of atoms

in equilibrium at a given temperature. In each step of the algorithm, an atom is

given a small random displacement, Ari, and the resulting change in the energy

of the system, AE, is computed. If AE < 0, the displacement is accepted, and

the perturbed configuration is used as the starting point of the next step. The case

AE > 0 is treated probabilistically: The probability that the perturbed, higher energy

configuration is accepted is P(AE) = exp(-AE/kBT). This probability decreases

with increasing (positive) energy increments and decreasing temperature. Random

numbers, uniformly distributed in the interval [0,1] are used to implement this random

choice. At each step, one such number is selected and compared with P(AE). If it

less than P(AE), the new perturbed configuration is retained; if not, the original

configuration is used to start the next step.

By repeating this basic step many times, one simulates the thermal motion of

atoms in thermal contact with a heat bath at temperature, T. This choice of P(AE)

causes the system to evolve according to a Boltzmann distribution.

A.3 Simulated Annealing Algorithm

It is clearer now how to extend the Metropolis algorithm to simulate annealing by

searching for the equilibrium conditions at successively colder temperatures. This

process of successive cooling is repeated until the system appears to be frozen. A flow

diagram of the basic Simulated Annealing algorithm is shown in Figure A-1.

The algorithm begins with an initial configuration, Ro and initial temperature To.

This configuration can be random or an initial best guess. The energy of the initial

configuration, E(Ro) is evaluated. Next, a perturbed configuration, Ri+l is created

by (slightly) modifying the current configuration, Ri. Next, the energy, E(Ri+1 ) and

energy difference AE = E(Ri+) - E(Ri) are computed. If AE < 0, then the new per-

turbed configuration is "better" than the current configuration and it is automatically

accepted as the new configuration. Otherwise, if, AE > 0, a uniformly distributed

182



Step

Figure A-i: Simulated Annealing Flow Diagram

random number v E [0, 1] is generated and it is compared with the Boltzmann prob-

ability P(AE) = exp[-A(E)/T]. If v is smaller than P(AE) the perturbed solution

is accepted even though it is "worse", otherwise the unperturbed configuration, Ri,

remains as the current configuration.

Following this analysis, the system is checked to determine if thermal equilibrium

has been reached at temperature Tj. If thermal equilibrium has not been reached, the

perturbation of the design vector continues at the current temperature. If thermal

equilibrium has been reached the system temperature is reduced by some increment

AT and the process of creating and evaluating configurations at the new, lower tem-

perature Tj+I = Tj - AT is repeated. The algorithm terminates, once the system

appears "frozen", which occurs when the system temperature falls below Tmin or no

new configurations have been accepted in a large number of attempts. As there is no

guarantee that the last configuration is the best, the lowest configuration found dur-

ing Simulated Annealing is stored and returned upon termination of the algorithm.

This Simulated Annealing process is quite generic and individual steps in this process

may be implemented in various ways.
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Appendix B

Existing Space Elements

The space transportation system models defined in Chapter 3.3 use empirically de-

fined coefficients to determine the structural mass of the element designs. These

coefficients provide the scaling criteria for the structural element mass based on both

carrier capability and propulsive capability. In addition, the coefficients that scale

the structural mass based on propulsive capability are unique for each fuel-type con-

sidered. Thus, the structural fraction a is defined in a look-up table function based

on the fuel type. Finally a look-up table function is generated to define the specific

impulse (Isp) using the fuel type as an input.

This appendix provides the actual data utilized to define the empirically derived

coefficients that determine the structural mass of the element designs. Table B.1 pro-

vides the list of pre-existing elements by ID number (as referenced in the thesis) with

the corresponding names. In addition, the values corresponding to the element design

variables and the actual dry masses are provided. The data presented represents a

sub-set of the relevant information found in the SpaceNet database [60].

The look-up table function values for the structural fractions and the coefficient

of the carrier mass capability are solved simultaneously using a least-squares analy-

sis. The coefficients determined present the values that, in the least squares sense,

minimize the difference between the calculated dry mass and the provided dry mass

in Table B.1. The fuel ID numbers reference Table B.2 which is replicated below.

This table includes the empirically derived structural fraction and the average spe-
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Table B.1: List of Pre-existing Element Parameters

Element Element Fuel Fuel Commodity Structural

ID Name ID Mass (kg) Mass (kg) Mass (kg)

303 S-IVB 2 107725 0 12014

305 CM 3 0 524 4841

306 SM 3 18413 60 6053

307 LM DS 3 8804 500 2770

308 LM AS 3 2358 250 1719

309 Lunar CEV CM 6 363 500 8034

310 Lunar CEV SM 5 7222 0 3027

312 LSAM DS 2 28932 2200 6182

313 LSAM AS 4 5257 100 4964

314 EDS 2 226693 0 22500

321 LSAM Cargo Carrier 0 0 15000 1000

330 Soyuz TM 3 900 255 7250

331 Soyuz TMA 3 900 355 7220

332 Progress M 3 900 2350 7450

333 Progress M1 3 900 1800 7150

335 Service Module 0 0 10000 20000

349 STS - Stage 2 (Orbiter) 2 12412 18000 78498

352 Soyuz - Stage 2 (Upper) 1 22845 0 2355

355 Proton - Stage 2 3 46562 0 4115

366 ISS CEV CM (3 Crew + Cargo) 6 2000 400 8008

367 ISS CEV CM (6 Crew) 6 2000 0 8079

368 ISS CEV (Pressurized Cargo) 0 0 3500 7683

370 ISS CEV SM 4 2033 0 3997

400 ATV 5 2613 5500 10470

405 HTV:H-II Transfer Vehicle 5 2000 6000 10000

411 ISS CEV CM Prop 5 2000 400 8008

412 EDS (75 mt) 2 129500 0 19986
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Table B.2: Fuel Selection and Corresponding Look-Up Table Function Values

Name ID I,, (sec) a

LOX/kerosene 1 330 0.045

LOX/LH2 2 420 0.079

N204/UDMH 3 310 0.080

LCH4/LOX 4 318 .958

MMH/N204 5 307 .226

GOX/Ethanol 6 300 3.9353

cific impulse for each type of fuel considered, which provides the data to the look-up

table functions of fuel properties as a function of fuel types.

The structural fraction (a) for the last three fuel types is extremely high. However,

the element types defined to have these fuel type IDs are not existing elements but

rather elements in the conceptual design process, and as such, the data in Table B.1

may not be accurate. As these fuel types do not have specific impulses that differ

greatly from the other fuel types, the high structural fractions will cause the elements

designed to have significantly lower propulsive capability. Therefore, these fuel types

will not be considered as options for the element designs.

In order to provide a fair comparison between the pre-existing elements considered

and the new elements designed, the dry mass of these elements is computed using

the models defined in Section 3.3 with the empirically derived coefficients. The rele-

vant equations for the structural mass and engine mass calculations are replicated in

Equations B.1 and B.2, for convenience. Table B.3 provides the computed dry mass

values.

SE = 2.3931cE + a(fE E 2m EmU  (B.1)
mUB

gE .4189 (tE).7
764

GE = (B.2)

Given the values of the element design values and the computed dry mass, the
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maximum AV that can be provided by this element is computed. The maximum AV

assumes that the element is fueled to capacity and loaded to capacity. The maximum

AV provides a metric of capability and allows for elements to be compared based on

their individual capabilities.
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Table B.3: List of Pre-existing Element Parameters and Calculated Values

Element Fuel Fuel Commodity Structural Maximum

ID ID Mass (kg) Mass (kg) Mass (kg) AV (m/s)

303 2 107725 0 107725 9040

305 3 0 524 524 0

306 3 18413 60 18473 6199

307 3 8804 500 9304 4154

308 3 2358 250 2608 3210

309 6 363 500 863 318

310 5 7222 0 7222 4436

312 2 28932 2200 31132 5137

313 4 5257 100 5357 2015

314 2 226693 0 226693 9391

321 0 0 15000 15000 0

330 3 900 255 1155 1892

331 3 900 355 1255 1525

332 3 900 2350 3250 318

333 3 900 1800 2700 406

335 0 0 10000 10000 0

349 2 12412 18000 30412 739

352 1 22845 0 22845 7665

355 3 46562 0 46562 6644

366 6 2000 400 2400 566

367 6 2000 0 2000 652

368 0 0 3500 3500 0

370 4 2033 0 2033 2744

400 5 2613 5500 8113 378

405 5 2000 6000 8000 273

411 5 2000 400 2400 2085

412 2 129500 0 129500 9120
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Appendix C

Linear Space Network Model

The space transportation network model used to solve the Network-only optimization

case in Section 5.4 utilizes the space transportation network flow model, operations

constraints, and objective function that were presented in Section 3.3 and the addi-

tional model augmentations discussed in Section 5.1. In every transportation system

model defined in this work, the commodities and network are provided as inputs to

the problem. In addition, the element-type design variables are provided as inputs

to the network-only optimization problem. In order to formulate this problem a

mixed-integer linear programming problem, additional variables must be defined and

additional constraints must be formulated to relate these newly defined variables.

The linear model is presented below.

C.1 Variable Definition

The definition of the element allocation variables and the package variables remains

the same. The element allocation decision variable is denoted by ypq where

1 if element e travels on path p

ype, = and is active during sub-path q (C.1)

0 otherwise,
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and where p is any feasible path in the time expanded network and q is a sub-path

of p.

The flow of commodities through the network is defined as zx, where k is the

commodity identification number and p is the path, where

k U u if u units of commodity k travels on path p
xP= 0 otherwise, (C.2)

The additional variables defined for the linearized model are extensions of previ-

ously defined variables, namely the loaded fuel mass and staging variables. For the

linearized model, each of these variables must be defined for every element allocation

variable y,,q. Therefore the loaded fuel variable becomes

v if element e travels on path p

P, = and is active during sub-path q with v kg of fuel (C.3)

0 otherwise,

where v is the amount of fuel in kg and 0 < v < mfEVe : u (e) = E. The staging

variable is defined as

1 if element e travels on path p

S6,, = and is active during sub-path q and is not staged after the burn

0 otherwise,

(C.4)

It is important to note that an instance e that is assigned to a path p but is not

assigned to a burn is automatically not staged.

C.2 Linear Network Model

The linear network model can be formulated using these variables as shown below.

Following each equation, a short description of the function of the constraint is pro-

vided.

The objective of the network model is to minimize the total system wet mass at
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LEO.

minJE E E dEe+lm j=Z S 5 d y,q p,q
E e:u(e)=E p q

subject to

0 < 1 e (C.5)
p q

The first set of constraints ensures that an element instance is assigned no more than

once within the network.

0 5 Ype,q <1 Va E Ab (C.6)
e p:aEp q:aEq

The next set of constraints ensures that for every burn arc in the network, at most

one element is assigned to perform the burn.

S 5 Y ;,q M5 5 Yq VaE Ab (C.7)

e p:aEp q e p:aEpq:aEq

The above set of constraints ensures that an element is assigned to perform a burn if

any element is traveling that burn-arc.

The next set of constraints governs the additional variables required to linearize

the network model.

lpe,q mEyp,q Ve : u (e) = E, E,p, q (C.8)

The above set of constraints governs the fuel variable and ensures that an element is

only fueled to its maximum fuel amount (as determined by the element type) if it is

selected as a burn element.

S,q < yJq Ve : u(e) = E, E,p,q (C.9)

The above set of constraints governs the staging variable and ensures that staging

can only occur for element instances selected to operate in the network.

The final two sets of constraints govern the capacity and capability requirements.

p:aEp k E e:u(e)=Ep:aEpq:aCr(p,q(L-1)) (C.10)

+ 5EEE E cS ,qVa
E e:u(e)=Ep:aEp q:aEr(q(L),p)
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Equation C.10 represents the capacity constraints. The left hand side of the equa-

tion defines the total commodity mass on a given burn-arc. The right hand side

of the equation defines the total carrier capacity on a given burn-arc. Note that

r (p, q (L - 1)) refers to the sub-path defined by the path p up to the last burn-arc of

q but not including it. This distinction accounts for the fact that if an element does

stage after the burn, it is not available to traverse the arc it burns on, and therefore

does not provide carrier capacity. Similarly, r (q (L) , p) denotes the sub-path defined

by the path p starting with the last burn-arc of q. If an element is not staged after

its burn, it is available to provide carrier functionality on this arc.

(IQ
le, + M( 1e- yeq x dE'e

Sp =1 E' e':u(e')=E' p:alEp q':alEr(p,q'(L))

+EE E E E'Se+ d SEISpq,+ 5 5 e'q
E' e':u(e')=E' p:alEp q':alEr(q'(L+1),p) e' P q':alEr(p,q(L))

+ umk k
k p:a1Ep J

Ve : u (e) = E, E, path q,

(C.11)

The capability constraints require that the total amount of propulsive capability

available is greater than that required. Thus, the left-hand side of the equation has

two terms. The first term determines how much fuel is available and the second term

ensures that the constraints are feasible if no elements are assigned to this burn sub-

path. The first term on the right hand side represents the mass fraction corresponding

to the AV of the arc, as shown in Equation C.12. The next two terms define the

total element dry mass on every burn-arc in the sub-path. Again, a distinction is

required on where the current arc is located in the path. Thus, r (p, q' (L)) refers to

the sub-path of p defined by the sequence of arcs from the first arc of p through the

last arc in q', and r (q' (L + 1), p) is defined as the sub-path from the arc following

the last burn-arc of q' until the last arc of p. The next term accounts for the fuel

mass of all element instances on that arc that have yet to burn and therefore still
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have fuel. The final term accounts for the total commodity mass on each arc in the

burn sub-path q.

Iql

Pe,s = J: J (1 - 4) (C.12)
l'=1+1

and

0 , = 1 - e ( f (C.13)
a• 1 xpIsp (f()) go
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