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Abstract— A banded invertible matrix � has a remarkable
inverse. All “upper” and “lower” submatrices of ����� have
low rank (depending on the bandwidth in � ). The exact rank
condition is known, and it allows fast multiplication by full
matrices that arise in the boundary element method.

We look for the “right” proof of this property of ����� .
Ultimately it reduces to a fact that deserves to be better known:
Complementary submatrices of any � and ����� have the same
nullity. The last figure in the paper (when � is tridiagonal) shows
two submatrices with the same nullity �
	�� . Then  has rank � .
On and above the diagonal of ����� , all rows are proportional.

Index Terms— Band matrix, low rank submatrix, fast multi-
plication.

I. INTRODUCTION

An � by � tridiagonal matrix � is specified by �������
parameters—its entries on the three central diagonals. In some
way ����� must also be specified by ������� parameters (if � is
invertible). It will be especially nice if those parameters can be
the “tridiagonal part” of ����� . Fortunately they can. ����� can
be built outwards, diagonal by diagonal (and without knowing
� ), because the inverse of a tridiagonal matrix possesses these
two properties:

Upper: On and above the main diagonal, every � by � minor
of ����� is zero.

Lower: On and below the main diagonal, every � by �
minor of ����� is zero.

These allow us to fill in the upper triangular part of ����� and
then the lower triangular part. Expressed in another way, those
properties are statements of low rank. Of course the whole
matrix ����� has full rank! But it has many submatrices of
rank �! :

Upper: On and above the main diagonal, every submatrix
of ����� has rank �" :

For #%$'& : ()� ���+*-,/.10!23,546. (5�7�8�9 parameters *;:
Lower: On and below the main diagonal, every submatrix

of ����� has rank �" :
For #%�'& : ()� ��� *-,/.10!<=,?>�. (5�7�8�9 parameters *;:

Equality 2 , 4 , 0!< , > , along the main diagonal reduces @��8�A�
to ���B�C� , the desired number of parameters.

The friendly but impatient reader will quickly ask for
generalizations and proofs. A natural generalization allows �
to have a wider band. Suppose � ,/. 0ED for F &G�C#;FIHKJ , so
that J 0  means tridiagonal. The corresponding conditions
on ����� involve zero subdeterminants of order JMLN . The key
is to know which submatrices of � ��� are involved when � is
banded:

Upper: Above the J th subdiagonal, every submatrix of �����
has OQP�RTS��UJ .

Lower: Below the J th superdiagonal, every submatrix of
����� has OVP�RTS%�WJ .

Equivalently, all upper and lower minors of order JBLX are
zero. Again ����� can be completed starting from its “banded
part.” The count of parameters in � and �Y��� still agrees.

A next small step would allow the lower triangular part of �
to be full. Only the upper condition will apply to �Y��� , coming
from the upper condition � ,Z.�0[D for #\��&GH]J . We will pursue
this one-sided formulation from now on. Upper conditions on
� (above the J th superdiagonal) will be equivalent to upper
conditions on ����� (above the J th subdiagonal).

Here is a significant extension. Requiring zero entries is a
statement about  by  minors of � . We could ask instead
for all ^ by ^ minors of � to vanish (above the J th diag-
onal). Equivalently, all “upper submatrices” _ would have
OQP�RTS;(?_ *a` ^ . What property does this imply for �Y��� ? The
answer is neat and already known. But this relation between
submatrices of � and � ��� is certainly not well known. The
goal of this paper is to try for a new proof:

Theorem (for invertible � )
All submatrices _ above the J th superdiagonal of �
have OQP�RbSc(5_ *d` ^

if and only if

All submatrices e above the J th subdiagonal of � ���
have OQP�RbSc(fe *
` J�L'^ .

Our tridiagonal case (or Hessenberg case, which is the one-
sided version) had J 0  and ^ 0  . Even more special is
J 0gD and ^ 0  . Then � is lower triangular if and only
if ����� is lower triangular (extremely well known!). The case
J 0hD and ^ 0 � is not so familiar—if � is “rank 1 above
the main diagonal” then so is �Y��� . This also comes from the
Woodbury-Morrison formula [20, p. 82], [16, p. 19] for the
effect on ����� of a rank one change in � .

We comment in advance about our proof (and a second
proof!). For pairs of submatrices _ and e of � and �Y��� , the
goal is to show that

OVP�RTS;(?_ *i` ^ if and only if OQP�RbSc(fe *
` J�L'^ : (1)

Our proof will use an inequality for ranks of products. Wayne
Barrett observed that our lemma is a special case of the
Frobenius Rank Inequality

OVP�RTSc(5j�_ * LNOVP�RTSc(5_�e * �'OVP�RTS;(?_ * LNOQP�RbS�(?j�_�e *;: (2)

Then we noticed that (2) follows quickly from our special
case. Conceivably this provides a new proof of (2).



Barrett also pointed out that (1) follows immediately from
the beautiful observation by Fiedler and Markham [10] that
(in this notation)

R�� ��������� (?_ * 0 R�� �����	��� (fe *;: (3)

This approach surely gives the best proof of the Theorem. It
has the great merit that (3) is an equality (of nullities) instead
of an inequality (of ranks). After returning to this discussion
in Section III, the Theorem is applied to fast multiplication by
these “semiseparable” matrices.

Notice that there are an equal number of free parameters in
� and ����� . Figure 1 shows how the entry in position (  �
5JML
��^ * of both � and � ��� is generically the first to be determined
from the (equivalent) conditions in the theorem. (This entry
is in the upper corner of a square singular submatrix for both
matrices. There will be degenerate cases when that entry is not
determined, in the same way that specifying three entries of a
singular � by � matrix does not always determine the fourth.)
The entries on all earlier diagonals, before position (  �
?JGL ��^ * ,
can be the free parameters for � and also for �Y��� .
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Fig. 1. For both � and � ��� , the first entry to be determined from earlier
diagonals is in position �� "!�#�$&%"')( . The earlier diagonals are free.

II. PROOF OF THE THEOREM

Lemma. Suppose the matrices j and e are * by + and +
by , . Then

OQP�RTS;(?j * LNOVP�RTSc(fe * �-+ LNOQP�RTS;(?j1e *;: (4)

Proof. If j�e 0 zero matrix, the column space of e is
contained in the nullspace of j . The dimensions of those
spaces give OQP�RTS;(5e * �.+ �WOQP�RbSc(5j * . This is (4) in the case
OVP�RTSc(5j�e * 0!D .

To reduce every other case to that one, suppose j�e has
rank / H D . Then j�e can be written as the product j10 e20 of
an * by / matrix and an / by , matrix. Now two block
matrices multiply to give zero:3 j j 01465 e

��e2017 0 j�e"�Aj 0 e 0 0 zero matrix :

This returns us to the first case, with +[L8/ columns and rows
instead of + :

OQP�RTS;(?j * LNOVP�RTS;(5e * � OVP�RTSc( 3 j j 0 4 * LNOVP�RTSc( 5 e��e2097 *
�:+hL;/6
 which is (4) :

Note. This lemma is a key to our proof of the main Theorem,
but (on such a basic subject!) it could not possibly be new. It is
the special case _ 0=<?> of the Frobenius rank inequality [16,
p. 13] for three matrices:

OVP�RTSc(5j�_ * LNOVP�RTSc(5_�e * �'OVP�RTS;(?_ * LNOQP�RbS�(?j�_�e *;: (5)

We noticed that our weaker result (4) leads quickly to the
Frobenius inequality (5). Suppose _ is any + � by +A@ ma-
trix with OVP�RTS�(5_ * 0 + . Then _ factors into _ � _B@ 0
(C+ � by + * (C+ by +A@ * . Applying (4) to the matrices j�_ � and
_ @ e gives

OVP�RTS;(?j�_ � * LCOQP�RTS;(?_ @ e * �D+ LNOVP�RTSc(5j�_ae *;: (6)

Always OVP�RTSc(5j�_ * 0 OQP�RbSc(5j�_ � _ @ * � OQP�RTS;(?j�_ � * . Sim-
ilarly OVP�RTSc(5_�e * 0 OVP�RTS;(?_ � _ @ e * � OQP�RTS;(?_ @ e * . So (6)
implies (5). E

Now we restate the Theorem and prove it using the rank
inequality (4).

Every submatrix _ above the J th superdiagonal of
� has OQP�RTS;(?_ *�` ^ IFF every submatrix e above
the J th subdiagonal of ����� has OQP�RbSc(fe *
` J�L'^ .

Our proof comes directly from � � ��� 0F< . Look at the first* rows of � (with ^ �G* ` � �8J ). They always multiply
the last ���H* columns of ����� to give a zero submatrix of < :

j _
* *

* e
* I 0 <KJ D

* *L $M#:NPO L O1# L N1O L
Thus j�e!L'_ I 0 D . The lower left entry of _ is in row* and column * LUJ L! , so the submatrix _ is above the

J th superdiagonal of � . We are given that OVP�RTS;(?_ *�` ^ and
therefore OQP�RTS;(?j1e *�0 OVP�RTS;(?_ I *�` ^ . Since j has * LWJ
columns, the Lemma gives

OVP�RTS;(?j * LCOQP�RTS;(5e *i` * L J�L'^ : (7)

If j has full rank * , it follows that OVP�RTSc(fe *
` J�LA^ , as we
wished to prove.

Note that the lower left entry of e is in row * L�J
and column * LE . The difference J��  means that e
is immediately above the J th subdiagonal of ����� . As *
varies, we capture all the submatrices of �Y��� above that J th
subdiagonal.

In case j fails to have full rank * , perturb it a little. The
new � is still invertible and the theorem applies. We have
proved that the new submatrix e in �Y��� has rank less than
J L ^ . That rank cannot jump as the perturbation goes to zero,
so the actual e also has rank less than J�L'^ .



The proof of the converse is similar, but with a little twist.
(We need a fifth matrix � .) For the same j 
V_ 
Ve1
 I with
j�e[LN_ I 0 D , we must prove:

If OQP�RbSc(fe *
` J�L'^ then OQP�RTS;(?_ *
` ^ .

Since e has ��� * columns, and its rank is less than JYL'^ ,
its nullspace has dimension at least , 0 �8� * �BJ �C^1L  .
Put , linearly independent nullvectors of e into the columns
of a matrix � , so that e�� 0 D . Then j�e�� 0 D implies
_ I � 0!D and we can apply the Lemma:

OVP�RTSc(5_ * LCOQP�RTSc( I � * � ( number of columns of _ *
0 � � * �8J : (8)

If I � has full column rank , , our conclusion follows:

OVP�RTSc(5_ * �9��� * ��J%� , 0 ^��9 �
 as desired :
Notice that I � has �8� * � J rows, which is at least , . If
it happens that OVP�RTS;( I � *�` , , perturb I a little to achieve
full rank. We don’t change e or � , so our proof applies and
the new submatrix _ (in the new � ) has rank less than ^ . As
the perturbation of ����� goes to zero, the new � approaches
the actual � . So the actual submatrix _ has rank less than ^
(since the rank can’t suddenly increase).

This completes the proof, when * takes all values from  
to � � JY�U^ . That largest * captures the submatrix _ in the
last ^ columns of � , above the J th superdiagonal. We have
proved that all ^ by ^ submatrices of � above that diagonal
are singular.

Note on the proof : To see why the matrix � is needed, write
out j1e[LN_ I 0!D in the � by � case for J 0 ^ 0 * 0  :3 � �V� � � @ 4

��
OVP�RTS ` ���� LN� ��� 3 � ���� @ � ����	� 4 0 3 D D 4 :

We must prove OVP�RTS;(?_ * `  , in other words � ��� 0!D . When
these matrices multiply a � by  nullvector � of that low rank
matrix e , the first term j�e�� disappears to leave

� �
� 3 I 4 �� � �� 0!Di:
This proves � �
� 0!D , after possible perturbation of I to makeI ���0 D .

III. REFERENCES AND ALTERNATIVE PROOFS

Normally we would comment on the existing literature
before adding to it! That is the proper order, especially for
a theorem to which many earlier authors have contributed.
But the “best” proof was pointed out to us by Wayne Barrett
and it becomes particularly easy to describe in terms of the
matrices _ and e above. The proof will follow directly from
a simple and beautiful result of Fiedler and Markham.

The first reference we know is to Edgar Asplund [1] in
1959. He discovered the banded case: bandwidth J in � and
rank J submatrices in ����� . Rereading his proof, we see that
he anticipated many of the ideas that came later. Combining
his theorem with the Woodbury-Morrison formula for a rank

^ perturbation would complete the proof. Remarkably, it was
a paper by his father (in the same journal) that led Asplund
to the problem.

The crucial tridiagonal case appears (independently and
with earlier references) in the famous 1960 text of Gantmacher
and Krein [11, p. 95]. There is a close connection to second-
order differential equations, noted in our final section below.
Karlin’s 1968 book Total Positivity [18] refers to ����� as
a “Green’s matrix”. Subsequently Barrett [2] proved from
explicit formulas that tridiagonality of � is equivalent to rank
1 submatrices in ����� . The formulas allowed him to clarify all
cases of zero entries in � .

The natural extension to block tridiagonal matrices was
given in the same year by Ikebe [17]. Then Cao and Stewart [6]
allowed J H! and blocks of varying sizes. The crucial step to
^�H! was taken by Barrett and Feinsilver [3]. Their proof of
the Theorem is based on the formula for the minors of � ��� .
Meurant [19] has provided an extremely helpful survey of the
literature, and a stable algorithm for computing ����� in the
tridiagonal case.

It is interesting to recognize these two approaches: deter-
minant formulas or rank and nullity formulas. The former
come ultimately from Jacobi and Sylvester. They led in [3]
to the conditions of unique completion of � ��� starting from
its central band (for ^ 0  and any J ). We now give the
nullity formula (too little known!) which proves the Theorem
in a single step.

The Nullity Theorem was given in 1984 by Gustafson [13]
in the language of modules over a ring and in 1986 by Fiedler
and Markham [10] in matrix language. A neat and simple
proof will be in Section 0.7.5 of the forthcoming new edition
of [16]. Here is an equivalent statement:

Nullity Theorem
Complementary submatrices of a matrix and its
inverse have the same nullity.

Two submatrices are “complementary” when the row numbers
not used in one are the column numbers used in the other. If
the first submatrix j is * by + , the other submatrix I is
� � + by � �;* . Suppose j is the upper left corner of � ,
so that I is the lower right corner of the inverse:* rows 5 j *

* * 7 ��� 0 5 * *
* I 7+ columns �8� * columns

(9)

has R�� ��������� (?j * 0 R�� �����	��� ( I *;:
Note that all blocks can be rectangular. One partitioning is
the “transpose” of the other, to allow block multiplication.
A permutation will put both submatrices into the upper right
corner (appropriately for our proof):* rows 5 * _

* * 7 ��� 0 5 * e
* * 7+ columns � � * columns

(10)

has R � �����	��� (5_ * 0 R�� ��������� (5e *;:
The submatrices j� and I  (as well as _� and e� ) are
again complementary, after the entire block matrices are trans-



posed. So the Nullity Theorem applies also to the transposed
submatrices (but we don’t use it):

R � �����	��� (?j  *G0 R�� �����	��� ( I  *;: (11)

Fiedler and Markham begin their proof with direct multi-
plication of the block matrix and its inverse to produce < . The
nullspace matrix that we called � enters in the same way.
After two examples, we show how this neater formulation
leads instantly to the desired submatrix ranks in �Y��� .

In the first special case, I (or e ) is a  by  matrix. If its
single entry is zero the nullity is  . By the standard cofactor
formula for the entries of the inverse matrix, the determinant of
j (or _ ) of order �1�� is also zero. The nullity is therefore at
least  —but why not greater? Because a greater nullity would
imply that the whole � by � matrix is not invertible.

A particular form of block matrix arises frequently in
applications, with a square zero block on the diagonal. It is
interesting to see the Nullity Theorem in action once more:

5 <KJ �
� D�> 7 ��� 0 5 <KJ � � ()� �G* ���V� � ()� �G* ���

(?� �G* ��� � ��(?� �G* ��� 7 : (12)

These block matrices are invertible exactly when the +
columns of � and the + rows of � are independent (requiring* $ + ). The nullity of D�> is + . The complementary
submatrix <KJ � � ()� �G* ���V� must have the same nullity. In
this case the + columns of � are a basis for the nullspace of
that submatrix:

( < J � � ()� �G*+��� � *��A0 zero matrix :
Returning to the upper right submatrices _ and e in our

proof of the main Theorem, we have

R�� ��������� (?_ * 0 R�� �����	��� (fe *;:
The matrix _ has �]�D* �WJ columns, and e has �]�=*
columns. Therefore

� � * �8J �]OVP�RTSc(5_ * 0 � � * �WOQP�RbSc(fe *;: (13)

Then (exactly!) OQP�RTS;(5e * 0 J L�OQP�RbSc(5_ * . This means that
OVP�RTSc(5_ *
` ^ if and only if OQP�RTS;(5e *
` J\L�^ , and the Theorem
is proved.

Notice that both proofs extend immediately to block ma-
trices � and ����� because they deal one at a time with
complementary pairs _ and e . Suppose that � has block
entries � ,Z. (of any compatible sizes), with � ,Z. 0 zero block
for # ��&�H!J . The inverse of this block band matrix � has
low rank submatrices e above the J th block subdiagonal. The
proof is the same except that the choices of _ respect the
block form of � . The * th row of _ comes at the end of a
block in � .

This block case is of utmost importance in applications.

IV. FAST MATRIX MULTIPLICATION AND APPLICATIONS

For a tridiagonal matrix � , the upper blocks e in �Y��� (and
also the lower blocks) have OVP�RTSc(fe * �  . How quickly can
we multiply an � by � matrix � ��� of this “semiseparable”
form by a vector � ? We take this tridiagonal case (J 0  and

^ 0 D ) as our model, and approach the complexity of �Y�����
in the most direct way.

If e 0����  is an * by + matrix of rank one, the product
e	� 0
� ( �  � * requires * L + individual multiplications
(rather than * + ). We want to partition ����� into blocks e
that do not cross the diagonal. The natural choice is to begin
with square blocks e � @ and e @ � of size ����� , in the upper
right and lower left corners of �Y��� . This leaves blocks e �V�
and e @ @ of size ����� on the diagonal of ����� , to be partitioned
(recursively) in the same way. The multiplication count A()� *
obeys a rule much like the FFT:](?� *G0 ���� � ��� L'��� � � L �

��� : (14)

This recursion is satisfied by A()� *G0 �7� ����� @ � .
The true applications of the Theorem in this paper are not

to tridiagonal matrices but to integral equations—often with
space dimension greater than one. Now a model problem is
the approximate computation of a single or double integral:���

(���
�� *�� (�� * > � or
�����

(���
� "
!� 
�� *!� (�� 
!� * > � > � :
The kernel

�
may be the Green’s function of an underlying

differential equation. We expect to see blocks, rather than
scalar entries, when approximating double integrals. The pa-
rameters J (for bandwidth) and ^ (for off-diagonal rank) have
“continuous” analogs for an integral operator:

Decay rate: Fast decay away from the diagonal
�
(�� 
�� *

corresponds to low bandwidth.
Smoothness: A slowly varying kernel corresponds to low

rank submatrices.

In both cases the word “approximate” should be included. We
have matrix analysis rather than matrix algebra.

To summarize the applications to fast solution of integral
equations, our best plan is to point to several active groups
(with apologies to others). The first group has emphasized
the connections to earlier “panel methods” and the delicate
partitioning that can sometimes reduce the operation count to" ()� * —for matrix inversion as well as multiplication. We hope
these names and references will help the reader:

1) Hackbusch [14], [15]
2) Chandrasekaran and Gu [7]
3) Tyrtyshnikov [12], [21]
4) Eidelman and Gohberg [8], [9]

V. TRIDIAGONAL MATRICES AND DIFFERENTIAL

EQUATIONS

The tridiagonal case is the simplest and most important.
If we look at the first two columns of �Y��� , below the first
row, then the “lower” statement at the start of our paper
means: Those columns are proportional. We want to discuss
this conclusion directly, and also to recognize the analogous
statement for second-order differential equations and their
Green’s functions.

In the matrix case, the tridiagonal � multiplies the first
column of ����� to give zeros below the diagonal. Key point:
When the second column of � ��� is proportional to the first,
multiplication by � gives those zeros again (below the � 
Q�



entry). These columns of �Y��� contain a solution of the
“second-order difference equation � � 0KD .” It is the solution
that satisfies the “boundary condition” at the right endpoint.

We see multiples of this homogeneous solution in all
columns of ����� , below the diagonal. They meet multiples of
the other solution on the main diagonal. That other solution of
� � 0[D satisfies the boundary condition at the left endpoint.

Since � can be any invertible tridiagonal matrix, � � 0
D may not look like a second-order difference equation.
We could choose three numbers 2 � 
 4 � 
 < � to multiply� @ � � 
 � � � 
 � � to match row ^ of � . It may be useful to
compare with the standard approach to second-order differen-
tial equations, where the analog of column # in � �Y��� 0 <
is , � 0!2 (�� * � 0 0 L 4 (�� * � 0 L < (�� * � 0�� ( �%� 23*
with boundary conditions at � 0 D and � 0  . The solution�;( � *
0�� (�� 
 2 * is the Green’s function and it corresponds to
()����� * ,Z. .

A good text like [5, pp. 15–18] notes the equivalence
between computing � and variation of parameters. The latter
begins with two independent solutions � � (�� * and ��@ (�� * of, � 0!D and finds a particular solution to , � 0�� of the form��(�� * 0 � � ( � * � � ( � * L � @�(�� * ��@ (�� *;: (15)

The underdetermined � � and � @ are constrained by� 0 � ( � * � � ( � * L � 0@ (�� * � @ (�� * 0!Di: (16)

Substituting (15) into , � 0�� (��B� 2 * gives� 0 � (�� * � 0� (�� * L � 0@ ( � * � 0@ ( � * 0�� (��B� 2 *;: (17)

Solving (16) and (17) for � 0 � and � 0@ involves the nonzero
Wronskian of � � and � @ . Integration gives � � ( � * and � @ ( � * ,
and equation (15) gives ��(�� * .

A few remarks will connect this continuous problem , � 0
� with the discrete � ����� 0 < . Suppose � @ ( � * is chosen to
satisfy the boundary condition at the right endpoint � 0  ,
as well as , ��@ 0 D . Similarly � � ( � * satisfies , � � 0 D and
the boundary condition at � 0!D . With those special choices,
the Green’s function � ( � 
 2 * will be a multiple of � @ (�� * for�!$ 2 and a multiple of � � ( � * for �!� 2 . Those multiples� � (�� * and � @�( � * correspond to the “proportionality constants”
that connect the columns of � ��� , above and below its main
diagonal. And those constants are given by the first and last
rows of ����� , which solve the adjoint problem based on the
transpose of � .

Perhaps we can summarize the discrete case in this way.
The matrix ����� is determined by its first and last columns
and rows. It has rank  above and below the diagonal. Those
parameters are reduced to the correct number ���[� � by
equality along the diagonal.

To close the circle, we specialize the matrices _ and e in
this paper to this tridiagonal case. For * 0 � rows, _ is a �
by ���%� submatrix of zeros and its nullity is ���%� . Then e is
a � by �8�]� matrix with the same nullity. Therefore its rank
is  ! As * varies, all the submatrices e of �Y��� have rank  .

�

_
��	8�

�����

e
�a		�
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