

Abstract-- Development of complex products and large systems
is a highly interactive social process involving hundreds of
people designing thousands of interrelated components and
making millions of coupled decisions. Nevertheless, in the
research summarized by this paper, we have created methods to
study the development process, identify its underlying
structures, and critique its operation.

In this article, we introduce three views of product
development complexity: a process view, a product view, and an
organization view. We are able to learn about the complex
social phenomenon of product development by studying the
patterns of interaction across the decomposed elements within
each view. We also compare the alignment of the interaction
patterns between the product, process, and organization
domains. We then propose metrics of product development
complexity by studying and comparing these interaction
patterns. Finally, we develop hypotheses regarding the patterns
of product development interactions, which will be helpful to
guide future research.

Keywords-- Process modeling, product architecture, design
teams, design structure matrix, complexity management

METHODOLOGY

N this research, we study product development situations by
assessing the patterns of interactions within three domains

and then compare the patterns across the domains..

A. Three Product Development Domains

To study product development, we believe that there are three
relevant domains: product, process, and organization. In
complex development situations, each of these three domains
is decomposed in order to manage the complexity. We
therefore begin our analysis by documenting the
decomposition of each of the three domains:

• Product: A complex product or large system is
decomposed into sub-systems, and these in turn may be
further decomposed into sub-assemblies and/or
components.

• Process: A full development process is decomposed into
phases or sub-processes, and these in turn may be further
decomposed into tasks, activities, and work units.

This paper was origianally published in the proceedings of the

International Conference on Engineering Design, ICED 01, titled Design
Research Theories, Methodologies, and Product Modelling, ISBN
1860583547, pp. 283-290. This article is reproduced with permission
from Professional Engineering Publishing on behalf of the Institution of
Mechanical Engineers.

• Organization: A large development organization is
decomposed into teams, and these in turn may be further
decomposed into working groups and individual
assignments.

B. Patterns of Interactions

Once we have documented the decomposition, we then
document the patterns of interaction between the decomposed
elements. It is interesting to do so within each domain (the
three matrices in Figure 1):

• Product: The architecture of the product is defined not
only by the decomposition of the complete product into
elemental components, but also by the interactions
between these components. The interactions may include
well-specified interfaces and undesired or incidental
interactions. System architecture design principles [1] [2]
[3] suggest ways to plan architectures with minimal
interactions across sub-systems, maximizing the density of
interactions within. Documentation of complete patterns
of system architecture interactions has been accomplished
using matrix-based methods [4] [5]. Analysis of such
patterns may be used to suggest clusters forming effective
product modules.

• Process: The product development process is generally a
complex procedure involving information exchange across
the many tasks in order to execute the work. Various
network-based methods have been used to map and study
development processes [6] [7] [8] [9] [10]. Analysis of
product development processes allows us to study
product development efficiency and to suggest process
improvements.

• Organization: The organization structure determines who
works with whom and who reports to whom. However, in
development organizations we are particularly interested
to study the communication patterns of the people
conducting the technical development work. This follows
from well established methods used to study
communication networks in R&D organizations [11] [12]
and can be used to assess whether necessary interactions
are taking place within the organization.

C. Comparison Across Pattern Types

We believe that the three types of patterns should be strongly
related (the three arrows in Figure 1). After all, the
development organization is executing the development
process, which is implementing the product architecture.
When we can compare the map of interactions in one domain
to another, we hope to be able to answer questions such as:

Patterns of Product Development Interactions
Steven D. Eppinger

I

• Does the organization properly execute the development
process?

• Is the development process effectively implementing the
product architecture?

• Are the architecture interactions driving the organizational
communications?

But the comparison across such different types of data can be
problematic. We have found that where there exists a one-to-
one mapping from one domain to another, a direct comparison
becomes straightforward. For example, if there is a single
development task assigned to each individual team member,
then a direct comparison between process and organization is
possible. Similarly, where there is a single team assigned to
each subsystem, we may directly compare the interactions
within the organization to the interactions within the product
architecture [13].

In practice, a perfect one-to-one mapping rarely exists in real
and dynamic engineering design environments. Many
industrial product development situations involve scarce or
shared resources, multi-tasking, outsourcing, and dynamic or
uncertain development demands, all of which make the
analysis difficult. Utilizing a many-to-one or a many-to-many
mapping from one domain to another yields a model of
potential interactions, not simply expected ones. Since this
reduces the predictability of the model, we prefer to conduct
the analysis in situations with simpler structures (one-to-one
mapping).

a. Product Architecture
Interactions

b. Development Process
Interactions

c. Development Organization
Interactions

components

co
m

po
ne

nt
s

tasks

ta
sk

s

teams

te
am

s

Figure 1. Three domains of product development interactions:
product, process, and organization.

INDUSTRIAL EXAMPLES

While case studies of this type take a great deal of effort, we
have been able to make progress by utilizing graduate student

internship projects at several companies. We are not able to
describe these projects in detail within this summary article,
but publications are available documenting the results of each
application.

Figure 2 illustrates industrial examples showing the patterns of
interactions in the three individual views, product architecture
(Figure 2a), development process (Figure 2b), and development
organization (Figure 2c). Figure 2 also shows examples of
comparing across two of these three domains at a time (Figures
2d, 2e, and 2f). We have not yet attempted to compare all three
views together for a single industrial example.

A. Product Architecture Example

Figure 2a shows a model representing the decomposition of a
climate control system into 16 components and documenting
the product architecture as interactions between the
components. 34 interactions were identified along the
technical dimensions of spatial, energy, materials, and
information [4]. Clusters can be formed along each of the
dimensions of interaction individually or by aggregating all of
the dimensions into an overall distance measure for each pair
of components. The clusters identify groups of highly
interrelated components, thus suggesting modules for
development, production, and/or potential outsourcing.

B. Development Process Example

Figure 2b shows a matrix illustrating the procedure followed by
an automobile manufacturer to determine the feasible layout of
the engine compartment based on a digital mock-up using
CAD solid models [14, p.349]. Interactions in this type of
model represent flows of information and data between the
tasks. The planned and unplanned iterations within the
development process become apparent through analysis of
these process data [15]. Such a model is useful for process
reengineering by suggesting and analyzing alternative
processes in terms of development time, cost, and risk.

C. Development Organization Example

Figure 2c shows the decomposition of the organization used to
develop a new automobile engine. The organization involved
22 cross-functional teams, each with responsibility for design
and manufacturing engineering of a major component or
subsystem. The matrix depicts the interactions across the 22
teams in terms of the frequency of their required technical
communications. A clustering analysis of the team-interaction
data suggested an efficient arrangement of five system-
engineering team assignments, with four system teams focused
on interactions across groups of the components, and one
integration team addressing overall system performance [15]
[16].

D. Comparing Product Architecture to Organization

Figure 2d shows a comparison of the interfaces specifying the
product architecture with the communications inside the
development organization for a jet engine. In this case, there
was a single product development team responsible for the
development of each of the 54 components. This study not

only confirmed the ability of design interfaces to predict
technical communication, but also revealed several reasons
why development professionals do not communicate even
when their components interact, and further reasons why
teams do interact while their components do not share a direct
interface [13]. This research also identified differences in the
behavior of teams designing modular components from that of
teams designing distributed components [17].

E. Comparing Development Process to Organization

Figure 2e shows a comparison of the product development
process to its development organization. In this study of
designing electronics hardware components, there was not a
one-to-one mapping of development tasks to individuals in the
organization. While this did hinder the comparison, it was still
possible to show that the process model predicts technical
communications in the organization much better than earlier
models based on geographical layout of the personnel [18].
We also found that even where the development process
shows uni-directional information transfers, the actual
communications between individuals are predominantly bi-
directional exchanges.

F. Comparing Product Architecture to Process

The comparis on of the product development process to the
product architecture of an elevator system is a case study still
in progress. This example allows us to study the differences
between the nominal and actual development processes and
how these changes arise from the particular implementation of
the architecture chosen for the product.

DISCUSSION

A. Impact on Industrial Practice

The matrix-based methods summarized in this paper have
proven useful for diagnosing and improving product
development processes, product architectures, and
development organizations. This approach to documentation
of interactions and interfaces has been successfully applied to
a number of well-established engineering design situations.
However, where there is little industrial experience with the
development challenge at hand, there is less information
available from which to create the models, and we are less able
to predict where the difficulties will arise in the development
process.

Nevertheless, we believe that the approach applies quite
broadly to many engineering-based industries and has special
advantages to design of complex systems. In particular,
analysis in the three individual domains provides direct
benefits:

• Product: Analysis of the product architecture suggests
more effective module and sub-system boundaries,
highlights critical interfaces, and identifies appropriate
outsourcing opportunities.

• Process: Analysis of the product development process
leads to streamlining and accelerating the process,
reducing and focusing design iterations, identification of
failure modes within the process, and replacement of
chaotic information flows with more formal procedures
where necessary.

• Organization: Analysis of the product development
organization can yield more effective system team
arrangements and formation of system engineering
functions for better integration of the overall product or
system.

The three possible comparison views require somewhat more
work to build two independent models and interpret their
patterns jointly. Still, we have found that these analyses serve
to help diagnose cultural and dynamic causes of process-
related and organizational failures to efficiently develop the
selected product architecture. We also expect that such
comparisons will help us to capture system-level knowledge
and better understand where it resides.

B. Complexity Metrics

Meaningful measurement of complexity can serve to improve
our understanding of and ability to work with complex
systems. With the help of complexity metrics, it will be
possible to track complexity changes over several product
generations. We may also be able to benchmark one
company's product or process complexity with respect to its
competitors. We have not utilized complexity metrics in our
research thus far, and this remains an interesting area for future
exploration. However, we believe that useful complexity
metrics will consider several factors:

• The number of decomposed elements (components, tasks,
or teams in our three views)

• The number of interactions to be managed across the
elements

• The uncertainty of the elements and their interfaces

• The patterns of the interactions across the elements
(density, scatter, clustering, etc.)

• The alignment of the interaction patterns from one domain
to another

Figure 2. Examples showing matrix-based mapping of interactions in the product architecture (a),
product development process (b), and development organization (c). We have also found it possible

to compare such models across these domains (d, e, and f).

C. Hypotheses for Future Research

In considering what we have learned through many case
studies, we have formulated several hypotheses about the
dynamics of product development interaction patterns. Future
empirical research will involve additional case studies, data
collection, and analysis specifically designed to test these
hypotheses:

1. Maturity: One hypothesis we have is that the density of
the known interactions within any particular view varies
with maturity of the product architecture, experience of the
organization, and skill in managing the process.
Specifically, we hypothesize that at first there are quite few
interactions known. Then with experience, more
interactions become evident. Finally, a mature architecture
has more focused and clustered interactions, with others
eliminated or minimized in impact.

2. Learning: We expect to find that, of the three views,
experience builds most quickly in the product architecture
view for complex, engineered products. This is because
engineers learn quickly about the product and its
technology, even while the development process and
organization remain informally structured.

3. Evolution: We believe that the pattern of interactions
within each domain changes over time, not in a random or
unplanned manner, but with respect to a reference model
[19]. Such a model may be the should-be product
development process, the perfect product architecture, or
the ideal organization. We believe that the presence of a
reference process or architecture will affect the changes in
the interaction patterns over time.

4. Co-Evolution: We further hypothesize that the interaction
patterns in the three domains change in coupled ways. The
organization evolves to address deficiencies in its ability to
implement the development process and product
architecture. Furthermore, the product architecture and
development process may change to compensate for
shortcomings in the development organization.

5. Alignment: Finally, we expect to find that industrial firms in
which the interaction patterns across the three domains are
well aligned will outperform firms for which the patterns are
not aligned.

CONCLUSION

This paper presents three important perspectives for studying
product development: product architecture, product
development process, and the development organization.
Within each domain, we focus on the pattern of internal
interactions. We analyze these patterns to learn about the
particular product development situation and how to improve
it. We are also able to compare patterns across the three
domains to assess the effectiveness of the process and
organization to develop the particular product. After using
this approach to study several industrial situations, we have

developed some hypotheses which may guide future research
in this area.

REFERENCES

[1] Alexander, C. Notes on the Synthesis of Form, Harvard
University Press, Cambridge, MA, 1964.

[2] Rechtin, E. and Maier, M.W. The Art of Systems
Architecting, CRC Press, Boca Raton, 1997.

[3] Suh, N.P. The Principles of Design, Oxford, New York,
1990.

[4] Pimmler, T.U. and Eppinger, S.D. "Integration Analysis
of Product Decompositions", ASME Conference on
Design Theory and Methodology, Minneapolis, MN,
pp. 343-351, September 1994.

[5] Malmström, J. and Malmqvist, J. "Trade Off Analysis in
Product Structures: A Case Study at Celsius Aerotech",
Proceedings of NordDesign'98, Stockholm, pp. 187-196,
1998.

[6] Steward, D.V. "The Design Structure System: A
Method for Managing the Design of Complex
Systems", IEEE Transactions on Engineering
Management, vol. EM-28, no 3, pp. 71-74, August 1981.

[7] Marca, D.A. and McGowan, C.L. SADT: Structured
Analysis and Design Technique, McGraw Hill, New
York, 1988.

[8] Warfield, J.N. A Science of Generic Design: Managing
Complexity through Systems Design, Intersystems
Publ., Salinas, CA, 1990.

[9] Eppinger, S.D., Whitney, D.E., Smith, R.P., and Gebala,
D.A. "A Model-Based Method for Organizing Tasks in
Product Development", Research in Engineering
Design, vol. 6, no. 1, pp. 1-13, 1994.

[10] Park, H. and Cutkosky, M.R. "Framework for Modeling
Dependencies in Collaborative Engineering Processes",
Research in Engineering Design, vol. 11, pp. 84-102,
1999.

[11] Allen, T.J. Managing the Flow of Technology:
Technology Transfer and the Dissemination of
Technological Information Within the R&D
Organization, MIT Press, Cambridge, MA, 1977.

[12] Van den Bulte, C. and Moenaert, R.K. "The Effects of
R&D Team Co-location on Communication Patterns
among R&D, Marketing, and Manufacturing",
Management Science, vol. 44, no. 11, pp. S1-S18,
November 1998.

[13] Sosa, M.E., Eppinger, S.D., and Rowles C.M.
"Understanding the Effects of Product Architecture on
Technical Communication in Product Development

Organizations", MIT Sloan School of Management
Working Paper, no. 4130, August 2000.

[14] Ulrich, K.T. and Eppinger, S.D. Product Design and
Development, McGraw-Hill, New York, Second Edition,
2000.

[15] Eppinger, S.D. "Innovation at the Speed of
Information", Harvard Business Review, vol. 79, no. 1,
pp. 149-158, January 2001.

[16] Eppinger, S.D. "A Planning Method for Integration of
Large-Scale Engineering Systems", International
Conference on Engineering Design, Tampere, Finland,
pp. 199-204, August 1997.

[17] Sosa, M.E., Eppinger, S.D., and Rowles C.M.
"Designing Modular and Integrative Systems", ASME
Conference on Design Theory and Methodology,
Baltimore, MD, September 2000.

[18] Morelli, M.D., Eppinger, S.D., and Gulati, R.K.
"Predicting Technical Communications in Product
Development Organizations", IEEE Transactions on
Engineering Management, vol. 42, no. 3, pp. 215-222,
August 1995.

[19] Salminen V. and Pillai B. "Strategic Management of
Adaptive, Distributed Product Development of a
Mechatronic Product", International Conference on
Machine Automation, Osaka, Japan, September 2000.

CONTACT ADDRESS

Prof. Steven D. Eppinger
Massachusetts Institute of Technology
Sloan School of Management
Cambridge, MA 02142-1347 USA
Email: eppinger@mit.edu

