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Abstract

This thesis describes the redesign of a Byzantine-resilient, quad-redundant computer to
remove proprietary hardware components. The basic architecture consists of four Commer-
cial Off-The-Shelf (COTS) processors in a completely-connected network of point-to-point
ethernet connections. In particular, the focus of this thesis is an algorithm that combines
clock synchronization and communications between fault containment regions by inferring
relative clock skew from the arrival time of expected messages. Both a failsafe and a fault-
tolerant algorithm are discussed, though the fault-tolerant algorithm is not fully analyzed.
The performance of a prototype and the failsafe synchronization algorithm are discussed.
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Chapter 1

Introduction

The advantage of fault tolerant computer systems in critical applications is clear. Comput-
ers are a powerful and ubiquitous resource, and their reliability can dictate the success or
failure of a system. In particular, applications involving human safety require computer
reliability far greater than what is typically needed. In such important applications, fault
tolerant computer systems are absolutely necessary to ensure the safety of the humans in-
volved.

In a naively engineered system, reliability of the whole system is only as good as the
most unreliable piece. Unfortunately, building basic components of a system to the stan-
dards required by critical applications is usually infeasible due to time, cost, or techno-
logical constraints. As a result, systems must be engineered with the low reliability of
individual components in mind.

The reliability of a computer system depends on both the correctness of the software
written for the system and the robustness of the hardware against malfunction, particularly
when the system operates in extreme environments like Earth orbit and beyond. Both hard-
ware and software have their own unique challenges when implementing highly-reliable

systems. This thesis is concerned primarily with techniques to increase the reliability of
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the hardware aspects of critical systems by running identical code on redundant computers.

1.1 Thesis Description

This thesis project spans the first year of a two yéforeto redesign an existing fault tol-
erant computer to remove specialized hardware. The original fault tolerant computer, built
by Draper Laboratory for NASA's X-38 vehicle, features four redundant computers that
communicate via special-purpose hardware. The system also provides a complete API for
user applications to take advantage of the fault tolerance features. The result of the current
thesis work is a prototype fault tolerant computer running entirely on generic hardware,
with the specialized communication protocols implemented entirely in software. Basic ab-
straction layers were built to support a rudimentary API, and an experimental application
was developed to demonstrate the control of a simple inverted pendulum.

The work focused on redesigning the low-level synchronization, communication and
voting protocols that support the fault tolerant properties of the system, since this is the
functionality implemented at the hardware level in the X-38 computer. While the algorithm
used to vote the inputs and outputs of the redundant computers remains largely identical
to that implemented in the X-38 system, the synchronization and communication protocols
are substantially dierent.

In addition to the implementation of a prototype system, a major goal of this thesis
was to propose and develop a Byzantine resilient synchronization algorithm targeted at the
specific requirements for this system. The algorithm runs on each node and determines
how far to adjust that node’s clock forward by inferring other nodes’ clocks from the ar-
rival times of messages. At each round of execution, the algorithm selects the node that
it determines to be the most ahead and adjusts the local clock to match it as closely as

possible. Unfortunately, due to time constraints, the proposed algorithm was not developed

14



sufficiently. Instead, the partial work completed toward the development of the Byzantine
resilient algorithm is given in this thesis, and the continued development and comparison

is left for future work.

1.2 Advantages of Software-Based Fault Tolerant Com-

puters

Traditionally, fault tolerant systems are built using specially designed hardware. This spe-
cialized hardware might act as interfaces between redundant computers, or it may even be
processors designed for fault tolerance at the CPU level via redundant circuitry. Hardware-
level fault tolerance is motivated by performance requirements typically not achievable at a
software level, but the development and low-volume fabrication costs of special hardware
makes fault tolerance typically quite expensive. Fortunately, as processor speeds grow and
communication latencies shrink, the opportunity to lift fault tolerance functionality from
hardware to software becomes more realistic. The migration of fault tolerance support to
software allows the use of generic hardware. As a result, fault tolerant computers will

become cheaper to produce.

In addition, implementing fault tolerance support in software allows an unprecedented
level of flexibility. For instance, if a hardware-based fault tolerant computer loses some
specialized hardware due to a fault, the functionality of that piece of hardware may be lost
for good. A fault tolerant computer in which specialized functions are implemented in

software could migrate that functionality from one generic piece of hardware to another.
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1.3 Organization

Chapter 2 presents a discussion of background information on the subject of fault tolerant
computers and clock synchronization. Chapter 3 follows with a description of the design
of the prototype software-based fault tolerant computer (SBFTC) developed as part of this
thesis work.

Chapter 4 describes the partially-developed Byzantine resilient synchronization algo-
rithm. It begins by describing the motivation for the development of the algorithm and
then introduces the definitions and assumptions used in the design and analysis. A simpler,
failstop (non-Byzantine) version of the algorithm is presented and analyzed as a introduc-
tion and guide to reasoning about the Byzantine resilient algorithm. Finally, the Byzantine
resilient algorithm is introduced. The intuition behind the algorithm is described, and the
beginnings of mathematical analysis are presented, but a full analysis is not yet available.

Chapter 5 describes the experimental application developed to demonstrate and test the
prototype SBFTC, and, finally, Chapter 6 presents the experimental results from this thesis

work and concludes with suggestions for future development.

16



Chapter 2

Background

This chapter provides background information necessary to understand the thesis topic be-
fore the work is described in greater detail. An introduction to fault tolerance, particularly
Byzantine fault tolerance, is presented, followed by an introduction to the Draper Labora-
tory X-38 fault tolerant computer. A brief survey of former research in clock synchroniza-

tion is given, along with additional relevant research.

2.1 Basic Voting Architectures

Techniques to increase the reliability of the hardware of critical systems typically use re-
dundant computers, each executing the same code simultaneously, operating on the same
inputs, and (ideally) producing the same outputs.

Figure 2-1 presents a logical diagram of such a system. Fault detection is done via vot-
ing. When the redundant computers produce output, such as an actuator command or status
message, the outputs from all the redundant computers are compared by a voting element
for discrepancies. If a discrepancy is detected, various actions may be taken, depending

on the number of redundant outputs available for comparison. Assuming only a single er-
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ror, if three or more redundant outputs are available and two are in agreement, the system
may continue to function normally. If only two redundant outputs are available and they
disagree, typically the system cannot continue and merely reports an error and ceases ex-
ecution. This system behavior stands in contrast to a non-redundant system, which would

continueunchec’' *~ * * ) oo " of an error.

Processor 1

Voted output

Redundant
outputs

Processor 2

Processor 3

Figure 2-1:In the basic voter architecture, multiple computers execute the same code simultane-
ously. The redundant output created by the computers is voted to produce a single output masking
any single error.

2.2 Advanced Voting Architectures

The voting system described above is noffisient for many critical applications, par-
ticularly space operations, where radiation can corrupt any part of the system. Although
faults that occur within the redundant computers would be handled correctly, consider the
consequences of a failure of the voter element. While the voter may be considerably less
complex than the redundant processors and less prone to error, the existence of a single
point of failure excludes this design as a viable candidate for space applications.

Figure 2-2 shows an architecture that avoids single points of failure. Each node in

the redundant system represents a fault containment region (FCR). Each FCR experiences
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faults independently from every other. For example, an electrical short in one FCR is
guaranteed not tofiect any other FCR.

Every node is fully connected to every other via a bi-directional link. Messages can
travel from one node to another withodtecting communication in the opposite direction
or between any other pair of nodes. While single failures may cause an FCR or a link to
become unavailable, this architecture supports communication and voting protocols that

are unaﬁcted Processor 1

Redundant Yoted
output output

Froc 1§

Processar 4 Processar 2

Proc 2

Proc 3 <

Froc4F

Processor 3

Figure 2-2:In the advanced voter architecture, processors broadcast their output to all other proces-
sors, which each vote the results.

2.3 Introduction to Byzantine Resilience

One important type of fault tolerance supported by the above architecture is known as
Byzantine resilience. The term “Byzantine” is used as a synonym for “arbitrary.” It was
originally coined in a paper by Lamport, et. al. [3], which described algorithms to reach
consensus among cooperating parties — in their examples, Byzantine military generals —
despite the existence of “traitors” that may fail to pass on messages, lie, or even conspire
to break the consensus among the loyal generals.

The ability to tolerate arbitrary system faults, including lying and collaboration, might
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seem like an excessive precaution. In many kinds of applications for which fault tolerant
systems are required, like manned space exploration, the likelihood that the system may
contain an active adversary is slight. Nonetheless, there are a few reasons why it might be
preferable to design a system to be Byzantine resilient.

First, many types of failures that can occur naturally are similar to the types of attacks
an active adversary might use to break the consistency of a system. For example, a node
with failing hardware could easily transmit slightlyfidirent versions of a message to dif-
ferent recipients, introducing the same sort of confusion to the system an active adversary
would want. Second, designing a system to hamdigfault makes reasoning about the
capabilities of the system much easier.

Lamport’s paper proposes the following scenario. In a groupggnerals, there exists
a single commanding general and 1 lieutenant generals. The commanding general must

send a message to his lieutenants such that the following requirement are satisfied:

1. Allloyal generals obey the same order.
2. If the commander is loyal, every loyal lieutenant obeys the order he sends.

3. If the commander is not loyal (sends conflicting messages), every loyal lieutenant

must agree on the same order (or agree to take no action).

In the architecture shown in figure 2-2, the incorrect execution of any single processor
is considered a single fault. When a system is described as Byzantine resilient, it means
that the system can tolerate some number of arbitrary faults and still function correctly. The
number of tolerated failures depends on the number of nodes in the system, how completely
the nodes are connected, whether the system is synchronous or asynchronous, and also on
the types of messages being passed.

A synchronous system is one where the absence of a message from a particular node

implies that the node is faulty. An asynchronous system makes no such assumption. The
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Internet is an example of an asynchronous system. If a computer sends a message to another
computer across the Internet, the communication medifferono guarantees about the
delivery time of that message or even that the message will arrive at all. A failed delivery
does not implies that the sender is faulty. Systems with more predictable communication
mediums, such as point-to-point connections, can support synchronous communication. If
a node expects a message to arrive from another node by a particular time and it receives
no message, the receiving node may assume the sender is faulty. Lamport et. al. assume
synchronous communication.

Lamport et. al. describe two message types, “oral” and “written”. Intuitively, oral
messages may be modified as they pass through nodes. Written messages, however, cannot
be changed without detection and are always “signed” by the author. As a result, a recip-
ient of a written message can know for certain who composed the message, or else he is
guaranteed to notice a modification.

For synchronous systems using oral messages, Lamport et. al. show that in order to
toleratef faults, there must be at least 3 1 total nodes in the system, i.ef 2 1 loyal
nodes. The system described in this thesis implements oral messages and a synchronous

communication system.

A Simple Byzantine Resilient Protocol

Consider a system designed to han@lleaults. There must ba > 3f + 1 nodes in the
system. Each pair of nodes has a dedicated two-way link through which that pair can send
messages between each other. Thus configuration allows a node to distinguish between
messages from fierent nodes. The generalized algorithm requirescursive iterations,

but the specific case df = 1, which only requires two communication rounds, is described

here.
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The steps of the algorithm are as follows:

1. The node with the message to transmit begins by broadcasting the message to all

other nodes.

2. When a node receives the original message, the node stores it and re-broadcasts it to

all other nodes.
3. When a node receives the re-broadcasted message, the node stores it.

4. After both communication rounds are complete, each node compares all the versions
of the messages it received and accepts the majority version. If no majority is found,

no message is accepted.

This algorithm satisfies the requirements listed above for Byzantine resilience. Con-
sider requirement 2. Given that only one adversary may exist, if a commander sends the
same message to all lieutenants, every node will receive the same mas$agstone
more time. Since each lieutenant receives a maximum of three versions (from the com-
mander and two other lieutenants), two matching messages comprise a majority, and the
correct message is accepted.

Now consider requirement 3. A non-loyal commander is one who does not send the
same original message to all three lieutenants. Fortunately, since the commander is dishon-
est, the three lieutenants are guaranteed to be honest, | &b andmg be three possible
messages the commander can send. Say the commandengdadg/o of the lieutenants
andm, to the third. Then, in the second round, the first two lieutenants will receive another
copy of my from the other and the third will receiv&vo copies ofrm, from the first two.

Thus, all three lieutenants have received a majoritjnpmessages.
Suppose the disloyal commander sengsto the first lieutenantm, to the second,

andmg to the third. This time, after round 2, none of the lieutenants will have received a
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majority of anymessage, thus all the lieutenants will agree to not accept any message.

Requirement 1 follows from 2 and 3.

2.4 Introduction to X-38 Fault Tolerant Computer

The X-38 fault tolerant computer (FTC) is a Byzantine resilient, quad-redundant system on
which this thesis is based [8]. Implemented at Charles Stark Draper Laboratory in 2002 for
NASA's X-38 experimental aircraft, it provides a flexible architecture in which fault toler-
ant properties are provided by specialized hardware elements known as Network Elements
(NE). In addition to the fault tolerant hardware architecture, the X-38 computer includes a
large set of software libraries, which high-level software applications use to inherit the fault
tolerant properties of the system. Since this thesis is primarily concerned with redesigning
the specialized hardware as software, only the X-38’s hardware architecture is described
here.

Five NEs are linked in a fully connected network, and they perform the synchronization
and 10 voting necessary for fault detection. The actual redundant processing is done by
COTS processors that sit behind the NEs. Each redundant processor resides betend a di
ent NE. A group of redundant processors is known as a virtual group. The quad-redundant
virtual group requires processors residing behind four NEs, but the fifth NE still participates
in communicatiofvoting, allowing the system to tolerate two non-simultaneous faults. The
first fault may be a Byzantine fault. After the system has recognized and recovered from
the first fault, it is prepared to handle a second. Under certain conditions, the second fault
may also be Byzantine, but under others, the system may only handle a subset of possible
second faults.

The flexibility in the design is reflected by the ability to add an arbitrary number of

COTS processors behind each NE, with the processors and the associated NE connected
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through a VME backplane. As a result, multiple redundant computers can all exist simulta-
neously in the X-38 architecture, with each NE handling the communication for processors

belonging to one or more redundant computers. A diagram of a potential hardware layout

NE

Al 8] 8] [c]
“®

is given in figure

Figure 2-3: The X-38 is capable of supporting several redundant computers. Each processor of
a redundant computer resides behindféedent NE. In this example, processors marked by A are
part of a quad-redundant computer, processors marked by B are part of a tri-redundant computer,
and processors marked by C are part of a duplex computer. Simplex computers (not shown) are also
supported.

The actual X-38 hardware layout contains only one quad-redundant computer and five
simplex (non-redundant) computers. A diagram depicting the actual hardware layout of
the X-38 computer is given in figure 2-4. The simplexes perform the roles of actuator
and sensor control and communicate with the quad-redundant computer through the fault
tolerant communication services provided by the NEs. Each quad-redundant processor
was referred to as a flight-critical processor (FCP), and each simplex was knowry@s an |
Control Processor (ICP).

Communication between the NEs occurs at regular intervals and follows what is called a
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Figure 2-4:The actual X-38 configuration consists of a single quad-redundant computer (A) and
five simplex computers (B, C, D, E, and F), which control actuators and sensors.

System Exchange Request Protocol (SERP). The basic feature of the SERP is an agreement
step that takes place before each message exchange. During the agreement step, each pair
of boards determines whether there is a message to send, whether the receiving board has
space in its buffers to accept the message, and what class of message is to be sent. When
an agreement is reached, the actual message is sent between the NEs. Once the appropriate
voting steps among the NEs have been completed, the NEs deliver the message to the

appropriate processor that resides behind them.

Since the NEs must know when to perform the SERP, a clock must be shared between
NEs so they may communicate with the other NEs at the correct times. If no clock were
shared, the various clocks used across the system would drift apart, eventually making the
communication system useless. Unfortunately, NEs cannot directly share clock signals,
since this would violate the integrity of the fault containment regions. Instead, clock syn-

chronization is established through messages passed over the fault tolerant network.
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2.5 Clock Synchronization

Much prior research has been published on the topic of fault-tolerant clock synchroniza-
tion in distributed systems. One example of a distributed clock synchronization system is
the Network Time Protocol (NTP),which is heavily in use throughout the modern Internet
[7]. NTP is an extension of the distribute time service originally proposed by [6]. NTP is
designed for a highly unpredictable environment, i.e. the Internet, where communication
between computers can be delayed large and unpredictable lengths of time. NTP uses a
large number of sources to determine the correct time, potentially down to milliseconds.
The algorithm first determines a range of possible correct times based on a sampling of
readings from a single source, with each sample taking a variable length trip across the net-
work. Based on the intersection of a number of such ranges, the algorithm produces a good
approximation of the true time. While NTP is verffective for Internet synchronization,

the amount of overhead required makes it less appealing for embedded applications, where
network latency can be much more predictable. Also, NTP is a “one-direction” algorithm

where there is eventually a single, ultimate source of time, such as an atomic clock.

Algorithms for distributed, embedded systems commonly do not enjoy a connection
to a wide area network, and thus cannot update their time from oracle sources. Instead,
the nodes must cooperatively keep their time synchronized. Fortunately, such applications
have much more predictable networks, which allows clocks to be kept quite synchronized,
and many fault-tolerant algorithms have been developed for this purpose. The properties
of these algorithms guarantee that if enough nodes are operating correctly, that all correct
nodes in the system will adjust their clocks toward a consistent point in time and maintain

synchronized clocks.

A general solution to the problem is given by [2]. This algorithm does not assume a

completely connected network, but instead assumes that all correct nodes are fully con-
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nected through some non-faulty path. The latency between any two correct nodes along
the fault-free path is assumed to be bounded by some constant. The solution also requires
the use of signatures. Like the algorithm presented in this thesis, neighboring clock times

are inferred from the arrival times of messages, but since this solution does not assume a
completely connected network, the achievable bound is not as favorable.

Another, more related solution is presented in [5]. This algorithm is very similar to the
solution proposed here. Messages are sent from each node at a standard time, as measured
by each node’s logical clock, and every node waits long enough to receive the messages
from every other correct node and the arrival time is recorded. Afterwards, an averaging
function is applied to all the times at which the messages were received and the local
clock is adjusted to the calculated average. The achievable synchronization is a function
of the variation in network latency, i.e. minimum and maximum latencies. However, this
algorithm potentially sets some clocks backwards which is not acceptable for the SBFTC.

The above algorithms strive to be optimal in terms of clock agreement between nodes.
The algorithm in [9] provides synchronized clocks that are optimal in reference to accu-
racy, i.e. the departure from real time. The drift of the synchronized clocks from real
time in this algorithm are only as much as the underlying physical clocks” maximum drift
rate. However, the actual synchronization between nodes is not optimal. The maximum
synchronization is a function of the maximum network latency, not of the variation in net-
work latency. This algorithm follows the requirement that clocks may never be adjusted

backwards.
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Chapter 3

System Overview

The aim of this thesis work is to redesign the previously existing X-38 fault tolerant com-
puter architecture to remove proprietary hardware components. Since the X-38 proprietary
hardware’s role is fault-tolerant communication between fault containment regions (FCR),
l.e. a Network Element (NE) and its associated processors, the principal contribution of
this thesis is to implement the fault-tolerant communication protocols as software running
on COTS hardware. This style of computer can be referred to as a software-based fault
tolerant computer (SBFTC).

An SBFTC dfers some advantages over an FTC containing proprietary hardware. One
clear advantage is cost. Producing a system requiring proprietary hardware is a costly
endeavor, requiring greater development resources and low-volume fabrication of the spe-
cialized hardware. Of course, the high development and manufacturing costs imply a less
competitive price on the market. A software-based solution promises faster development
and lower-cost hardware, since it can be purchased from a third-party vendor, who presum-
ably manufactures the product in higher quantities and can sell it cheaply.

Another advantage is flexibility. As more of a system’s functionality is raised to the

software level, the less dependent on any one piece of hardware the system becomes. If a
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node fails due to a physical malfunction, a software process might be moved from executing
on the failed hardware to another spare.

Traditionally, SBFTC's have been infeasible due to technology constraints, particularly
CPU speed. Even with the advent of modern high-speed processors, radiation-hardened
technology required for space operation tends to lag in performance. For example, while
current high-end processor technology approaches clock speeds of several gigahertz, radiation-
hardened computer clock speed remains in the range of hundreds of megahertz.

The SBFTC developed as part of the thesis work is a prototype intended to test the
feasibility of a such a system with current technology. Since the SBFTC is intended to
replace the original X-38 FTC, the design strives to achieve the specifications of the origi-
nal system: two non-simultaneous faults, arbitrary numbers of virtual groups, and similar
computation power and® throughput.

The system currently only handles a single fault, since it has only four nodes and imple-
ments only oral messages. For work on how to augment the SBFTC with written messages

to support two faults, see [1].

3.1 Physical Description

This section describes two architectures. The first is the ideal fault-tolerant architecture
toward which the work described in this thesis is targeted. The second is the actual physical
architecture used in the experimental application of this thesis work. As will be seen,

the actual physical architecture does not provide the properties of the ideal architecture
and, therefore, is not well-suited for the application. Fortunately, the software written for

the application hides the ill-suited architecture via an abstraction layer, so the high-level
software described in this section and the synchronization algorithm described in Chapter

4 are written as if running on the ideal architecture. Unfortunately, the performance of the
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system is adverselyfiected.

The physical layout of the ideal SBFTC consists of five boards, each with its own CPU.
Four of the boards run both an NE and a flight-critical processor (FCP). The remaining
board runs only an/© Control Processor (ICP). The four WECPs have independent,
point-to-point connections. Messages sent on one link will not cause contention with mes-
sages on any other. The fifth ICP board only shares a connection with a single NE. If the
ICP wishes to send a message to any other board, it must send the message first to its asso-
ciated NE, which will forward it to the other nodes. Figure 3-1 depicts the ideal architecture

of the SBI
FCP/NE

FCP/NE K"t pont™ pepyNE ICP

FCP/NE

Figure 3-1:The ideal SBFTC would be composed of four nodes connected over a point-to-point
communication medium. The fifth node, an ICP, may only communicate with its associated NE.

The actual physical layout of the SBFTC also consists of five boards, an ICP and four
NE/FCPs, but all five boards are connected via a common ethernet. Each board, an Em-
bedded Planet EP405, features a 300 MHz IBM PowerPC 4xx processor and a 100BaseTX

ethernet adapter. Figure 3-2 depicts the actual physical layout of the SBFTC.

There are a few noteworthy departures from the ideal design. First, there is a common
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FCP/NE FCP/NE

FCP/NE |— FCP/NE

ICP

Figure 3-2:The actual SBFTC is composed of five boards with ethernet adapters and one ethernet
switch, which provides a common network between all the boards.

ethernet switch connecting all the boards instead of a dedicated channel between each pair
of boards. Clearly, a common switch for all inter-board communication introduces a single
point-of-failure and should not exist in an ideal system.

Additionally, ethernet network contention raises the issue of increased, and even indef-
inite, network delays. The switch alleviates some of the problem. Typically, every board
connected to an ethernet competes to send its message across a shared network. If two
boards try to send a message at the same time, the boards detect the conflict, and each
board waits a random amount of time before trying again. With so many nodes trying to
send messages at the same time, the potential for large delays is high. In fact, theoretically,
an ethernet does not guarantee that a message will ever reach its destination, since there
is an exponentially small probability that nodes may continue to attempt sending at the
same time forever. The switch solves this problem by accepting messages from multiple
nodes simultaneously and storing the competing messages fifies, lous preventing the

boards from ever conflicting and waiting. However, messages with the same destination

32



still need to be sent serially across the same wire. As a result, messages sent at the same
time may take a long time to reach their destination. Fortunately, if there is a known upper
bound on the number of messages in-flight at any time, there is a known upper bound on
the maximum latency. Figure 3-3 illustrates how the switch handles messages.

Due to resource constraints, the common switch is the easiest way to simulate a com-
pletely connected point-to-point network. Fortunately, as long as the network can guaran-

tee a maximum bound on latency, there is no theoretical limitation to the system capability

other than decre:
NE

!

v owitch
NE E NE
__________ M Messages
’,"'Buffel’ Sent
+ serially

Figure 3-3:The common switch allows all boards to send at the same time dfetbthe messages
internally. Messages with a common destination must still be sent serially after theyfieretu

Another curious feature is that not all the nodes connected to the common network are
NEs. Four of the nodes are NEs and the last is an ICP. Recall that in the X-38 FTC, ICPs
and FCPs both reside behind NEs. In the SBFTC, this single ICP should also exist behind
an NE and not have direct access to the common network, but, again, lack of access to the
required hardware necessitated the given topology. Logically, the ICP functions as if it were

located behind a single NE via software-layer abstraction.. It does not participate in any
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communication protocols between NEs and only communicates with a single, designated

NE, but it uses the common network to do so.

3.2 Software Design

Figure 3-4 depicts the hardware and software components of a single FCR of the X-38 FTC
and the new SBFTC and demonstrates a few majderdinces between the two designs.
First, and most importantly, the network element now exists as a software module running
on a commercial fi-the-shelf (COTS) board. Also, while the NE hardware in the X-38

FTC is dedicated entirely to performing NE functions, the COTS board in the SBFTC runs

both t To other NE’s To other NE’s
A A A & + 44
Fault Fault
Caontainment + + + 1 Containment Y ¥ 3
Region Custom Hardware Region COTS Hardware
' NE
NE | | | | peeee
FCP
Ethernet
ICP | . FCP ICP
WME Bus
X-38 FTC SBFTC

Figure 3-4:The physical layout of a single FCR in the X-38 FTC and the SBFTC. In a shift from
the X-38 FTC design, the SBFTC combines the NE and the FCP as logical processors executing on
a single board. The ICP still runs on a separate board.

Both FTCs use a real-time operating system (RTOS) to help ensure that critical tasks

receive stticient CPU resources at the appropriate times. The RTOS used for this project
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is Green Hills Integrity. Integrity is marketed as a “time and space partitioned” RTOS. Its
time partitioning helps support “hard” real-time constraints. A system with tasksinstt

be completed by given deadlines (or else the system fails) is said to have hard real-time
constraints. In contrast, a system with more relaxed deadlines is said to have soft real-
time constraints. Integrity’s time partitioning guarantees that software modules receive
the amount of CPU time intended by the system designer regardless of the behavior of
other modules running on the system. Its space partitioning guarantees that a software
module cannot interact (or interfere) with other software modules running on the same
board unless given explicit permission before runtime. As a result, despite accidental or
malicious behavior of foreign software, the kernel and other software processes remain
unaffected.

A time and space partitioned RTOS is particularly useful in the software design of the
SBFTC, since it allows the NE to reliably coexist on-board with the FCP. Not only must
the NE be protected from the FCP software, which contains application-dependent, foreign
code, both the NE and the FCP must perform time-critical operations despite sharing the
CPU with one another. A time-partitioned RTOS helps guarantee that the CPU is shared

correctly and éiciently.

3.2.1 Abstraction Layers

Abstraction layers in the SBFTC hide low-level implementation details of the system from

higher-level software components. This allows cleaner, clearer code, and it also will allow
the non-ideal physical layout of the system to be changed in the future without modifying
the higher-level code. The SBFTC implementation defines a few layers of abstraction,
depicted by figure 3-5.

The lowest layer of abstraction in the SBFTC is the board layer. A board is the basic
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unit of hardware, and there are always a fixed number of boards in the system. Code written
at this layer is aware of the physical layout of the system.

The virtual processor (VP) layer sits above the board layer. The VP layer defines three
processor types: NEs, FCPs and ICPs. One or more VPs may exist on a single board. The
VP layer keeps track of which processors are running on which physical elements. In the
current prototype, there are a fixed number of NEs, FCPs and ICPs in the system, and the
particular boards where they exist are set before run-time and remain static throughout the
lifetime of the system.

The virtual group (VG) layer is built on top of the processor layer. A VG is a set of one
or more VPs, each sitting behind ddrent NE, that act as a single, logical computer. Each
member of a VG executes the exact same software, operates on exactly the same inputs, and
produces, under error free conditions, exactly the same output. Se\ftgedii VG's may
exist in the SBFTC at the same time, anffelient VG’s may contain éfierent numbers of
members. This software layer maintains knowledge of which processors comprise which
groups. In the prototype, VGs and their members are set before run-time and remain static
throughout the lifetime of the system. Ideally, the system should be capable of assembling
VGs upon startup according to available resources and reconfiguring as resources change

durlng executlon Ciirh an avtancinn ic laft far fiittiira Hn\lalnnnr]ent.
Virtual Group Layer: 1 or more processors

Processor Layer: NE, FCP, ICP

Board Layer: physical elements

Figure 3-5:The SBFTC software implements several abstraction layers, the hierarchy of which is
depicted here. The board layer recognizes individual, fixed physical elements is the system. The
virtual processor layer recognizes processors running on top of the physical elements. The virtual
group layer combines multiple processors into redundant, fault tolerant computers.
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3.2.2 Communication Stack

Each abstraction layer described in Section 3.2 has an associated communication layer.
The communication stack defined for the SBFTC sits atop the layers defined by the Open
Source Interconnect (OSI) model (physical, link, network, and transport). Each commu-

nication layer provides an API to the layer above, which uses the API to route messages
to the corresponding layer on a destination node. The following sections describe the rela-

tlonShIpS | P P | PR i i POV R - DR - R | In flgure 3'6.
T ‘ Virtual Group Layer: Msgs addressed by virtual group 1D

Processor Layer: Msgs addressed by virtual proc 1D

+— QS| ——»«— SBFTC

Figure 3-6: Each SBFTC abstraction layers defines an associated communication medium, the
hierarchy of which is depicted here. The SBFTC layers are built above the Transport OSI layer.
Messages between virtual groups are addressed by virtual group ID. Virtual group messages are
turned into processor layer messages and passed to the processor layer. The processor layer main-
tains a list of which virtual processors are running on which physical nodes, and passes appropriately
addressed packets to the board layer. Each layer may require some message processing at each hop
to determine if the destination has been reached yet.

Board Communication

Boards are the lowest abstraction layer defined by the SBFTC. Messages between boards
are passed via UDP packets, which are sent over a switched 100 Mbps ethernet network.

Each board contains a standard ethernet adapter with a unique ethernet address and unique
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IP address.

Ideally, each NE would have a dedicated point-to-point connection to every other node.
Such a design is simulated by connecting each NE through a shared ethernet switch. The
switch eliminates wire contention between the ethernet adapters at the multiple nodes,
thereby reducing the average transport latency across the network.

In an ideal system, dedicated point-to-point connections would be achieved with multi-
ple communication ports on each board (not necessarily ethernet), with each port connected
directly to that of another board. If this were the case, it would be the responsibility of the
board communication layer to route messages destined for a particular board through the
correct communication port.

In the interests of prototype performance, it should be noted that circumventing the
transport and network layers entirely and using the ethernet link layer directly may be

desirable, however such optimizations are beyond the scope of the thesis.

Virtual Processor Communication

NEs, FCPs and ICPs pass messages via a communication layer that sits above the board
communication layer. If the board communication layer is analogous to the OSI model’s
physical layer, the VP communication layer is analogous to the OSI link layer. It provides

a protocol to send messages across the board layer to an “adjacent” VP.

FCPs and ICPs are considered to be adjacent to their associated NEs, and NEs are
adjacent to each other. This communication layer cannot be used to pass messages between
FCPs and ICPs. Such communication is required to be fault tolerant, and it is handled via
virtual groups at the next communication layer.

Each NE is assigned an ID that is unique to the system, and each FCP or ICP is assigned
an ID that is unique to its associated NE. The IDs are assigned before run-time and remain

constant throughout the lifetime of the system. The processor layer on each NE stores a
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table mapping VP IDs to board IDs. When a message is sent using this layer, the board ID
is fetched from the table, and the message is passed down the communication stack to the

board layer, which sends the message over UDP to the correct board.

A message originating from an FCP or an ICP need not include an address since it may
only send messages to its NE. A message originating from an NE may be addressed to one

or more NEs or to a single VP. NEs may address messages to themselves.

In the current prototype, messages must be a fixed length, although this limitation was
primarily imposed for ease of implementation and analysis. Although there is no funda-
mental minimum limit to the length, the nature of the communication network requires that

a maximum message length be imposed for timing reasons.

Since multiple messages may need to be sent from one NE to another during the same
interval, part of the NENE communication routine’s job is to merge these messages into a

single buffer when transmitting and to split the messages when receiving.

NE/NE messages are exchanged regularly at fixed intervals, and all NEs send their
messages at as close to the same time as possible. Sffetkbdces in send times are due

to discrepancies in each board’s internal clock and fundamental limits of synchronization.

The strategy of sending all messages at the same time is advantageous in a few ways.
First, it eases analysis of the system and allows an easy bound to be determined for the
latency of messages across the network. Also, it provides the opportunity for clock syn-
chronization based on inferring clockidirences between boards via message arrival times.

The clock synchronization algorithm used in the SBFTC is presented in Section 4.

FCP/ICP to NE messages can be sent asynchronously. NE t6GRCRmessages are
sent by the NE at regular intervals following \lNEE message exchanges in order to deliver

incoming messages.
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Virtual Group Communication

The virtual group (VG) communication layer is analogous to the OSI network layer, which
sits above the link layer and provides communication between non-adjacent nodes. The
VG communication layer provides communication between non-adjacent VPs.

Each VG is associated with a system-wide unique ID. In the prototype SBFTC, VG’s
and their members are hard-coded into the system. Ideally, the system should be capable
of assembling VG’s upon startup and reconfiguring during runtime according to available
resources. Such an extension is left for future development.

VGs provide the basic level of Byzantine fault-tolerance in the SBFTC. As discussed
in Section 3.2, a VG is one or more VPs all running the exact same code simultaneously,
operating on the same inputs and producing the same outputs. This communication layer
enforces that communication occur between entire VGs instead of between single VPs.
Any message sent from one VG to another will be delivered reliably, provided that the
system currently is gtering at most one fault.

The guarantee of reliable delivery requires:

1. The output of all members of a VG are correctly voted to mask errors in any one of

the members of the VG.

2. The same input is delivered to all members of the recipient VG.

To achieve these requirements, the SBFTC uses a broadcast and reflect algorithm simi-
lar to that discussed in Section 2.3. There are two kinds of messages that are sent over the
VG communication layer, known as class 1 and class 2 messages. Class 1 messages are
also known as single-source messages and are used when a single-member VG (an ICP)
sends a message to a multi-member VG (an FCP). An example of such a message is an in-

put sensor sending data to a set of FCPs. Class 2 messages are sent when a multi-member
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VG sends a message to another VG of any size, though typically an ICP. An example of
such a message is a set of redundant FCPs belonging to the same VG sending a control
command to an ICP controlling a flap or an engine valve. ICPs may not send messages to

other ICPs, so no message class is defined to handle such cases.

Class 1 Messages

Figure 3-7 shows the path of a class 1 message. A class 1 message makes four hops in

its journey from an ICP to multiple FCPs.

1. The message travels from the ICP to its associated NE.

2. The NE recognizes that the message originated from an ICP, initiates a class 1 mes-

sage exchange by sending a copy of the message to all other NEs in the system.

3. Each receiving NE responds by reflecting its copy of the class 1 message to all other

NEs.

4. Each NE determines the correct message by comparing its multiple copies. Each NE
then checks whether it is responsible for a member of the destination VG indicated

is the message. If so, the NE forwards the message to the appropriate FCP.

Atthe end of the exchange, each FCP receives the exact same message at approximately
the same time.

Note that all NEs vote their multiple message copies regardless of whether they are
responsible for an FCP on not. This way, in the event of an error, each NE reaches a

decision on who the guilty party might be.

Class 2 Messages
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Figure 3-7:A class 1 message requires four steps to travel from an ICP to an FCP. The message is
first sent from the ICP to the adjacent NE. Next, the NE initiates a two-step, Byzantine fault tolerant
message exchange for the message to reach the other NEs. When the multiple copies of the message
have been received by the NEs, each NE votes the message, then forwards it to its adjacent FCP.

Figure 3-8 shows the path of a class 2 message from a set of FCPs to an ICP. A class 2

message requires three hops en route to its destination.
1. The message travels from the FCP to its associated NE.

2. The NE recognizes that the message originated from an FCP, then initiates a class 2

message exchange by sending a copy of the message to all other NEs in the system.

3. Each receiving NE now has a version of the FCP output from all NEs and performs

two steps in parallel

(a) Each NE checks whether it is responsible for a member of the destination VG
indicated is the message. If so, the NE determines the correct message by com-

paring its multiple copies, then forwards the message to the appropriate ICP.

(b) Each NE also reflects the multiple versions of the FCP output to all other NEs

so that, it the event of an inconsistency, all NEs can determine the guilty node.
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Figure 3-8:A class 2 message requires three steps to travel from an FCP to an ICP. The message
is first sent from the FCP to the adjacent NE. Next, the NE sends a copy of the message to all other
NEs. Step three involves two parallel operations. First, each NE checks to see if it is responsible
for the destination ICP. If it is, it forwards the voted message to that ICP. At the same time, each
NE reflects the messages it received in step two to all other NEs. This way, if any of the FCPs send
inconsistent output, all the NEs may agree on the guilty party.

3.2.3 Code Structure

The source code is divided into major components: communication libraries, initializa-
tion routine, and communication loop. These three parts rely heavily on two third-party
libraries, Integrity’'s OS API and Interpeak’s IPCQIMLITE lightweight network stack.
The Integrity API is particularly important for running multiple tasks and scheduling the
execution of those tasks via timers and “alarms.” The Interpeak network stack provides a
BSD-compliant API for IRUDP functionality designed for embedded applications.

The communication libraries define the board and virtual process abstraction layers and
associated APIs. They allow an NE to send and receive messages to its associated FCP and
ICP and to other NEs without having specific knowledge on which physical boards those

processors are executing. Currently, the mapping between VPs and physical nodes is hand-
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coded into the libraries, but further development would allow those tables to be initialized

at startup.

The libraries provide a sefréceive mechanism based on fixed-size packets, and allow
applications to wait on the arrival of packets using a Unix select-like interface. A user
defines a set of NEs afat FCRICPs to wait for a specified (or indeterminate) length of
time. The operation will block until a message arrives for any of the defined processors or
until the specified time elapses. If the wait operation indicates that a particular processor
has messages waiting, a read operation for that processor is guaranteed not to block.

The initialization routine is primarily an implementation of the non-authenticated “Op-
timal Clock Synchronization” algorithm described in [3]. Its job is to ensure the clocks of
the nodes are shiciently synchronized before the synchronization algorithm described in
this thesis takes over maintenance. The implementation consists of two tasks. One task’s
responsibility is to keep track of time and broadcast “init” packets at the start of each syn-
chronization round. The other task waits for incoming packets, which may arrive before
and after what the node believes is the start of the synchronization round. When a packet
arrives, the task takes appropriate action, i.e., recording the packet’s arrival, sending out an
echo packet when appropriate, or adjusting the system clock forward.

Once the initialization routine has completed, control is passed to the communication
loop, which manages both the VP and VG communication layers. The communication loop
is the heart of the NE, which functions as a fault-tolerant bridge between FCPs and ICPs,
maintains synchronization, and controls message sending, receiving and voting. The loop
runs as a single thread, performing each responsibility in sequence and repeating every

fixed amount of time.

The communication loop repeats the following steps:

1. Prepare and send messages
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2. Wait to receive all messages
3. Process and vote appropriate messages

4. Send and receive messages from FCP

At the beginning of a communication round, the communication loop wakes up, ex-
amines its active message table to determine which messages must be sent to other NEs,
prepares a buffer containing the messages specific for each NE, and sends them all. The
contents of the budls to each NE are not necessarily the same. For instance, a NE does not
need to reflect a message back to the node from which it received the message originally.

After sending, each node waits a pre-specified amount of time to allow messages from
trailing nodes to arrive. During this time, the processor is freed for other work to be per-
formed by the CPU, such as executing FCP code.

When the waiting time has elapsed, the NE then checks all the incoming messages for
header corruption and adds the new message information to the appropriate locations in the
active message table. For example, if the NE receives multiple messagesflienerdiNEs
containing diferent versions of the same class 1 message, those versions will be grouped
together in the message table. When enough message versions have been received from the
other NEs, the versions are compared for inconsistencies. If one version contains errors,
they are out-voted by the consistent messages, and thus the errors will not be propagated to
the destination FCP or ICP.

The final task of the NE’s communication loop is to handle messages to and from its
associated FQRCPs. If any voted messages are intended for an FCP or ICP for which the
NE is responsible, the NE then forwards the message. If any messages are available from
the FCRICP to be received by the NE, the NE reads them and adds them to the message
table in preparation for the next communication cycle. The NE then sleeps until the next

cycle, allowing other processes on the node to receive CPU time.
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Message Table

The description of the communication loop mentioned the active message table. Each
NE maintains a table of active messages is the system. An active message is one that has
been sent by an FCP or ICP, but has not yet been delivered to the recipient FCP or ICP.
A message is created in the NE’s table when it is received from arlEERr when it is
received from another NE during a first-round broadcast for a class 1 or class 2 message.
The message is deleted when it either delivered to a recipienti€EERr when the NE
recognizes it is not responsible for the destination processor. The table may be thought of
as part of the Virtual Group layer, since the table keeps track of related class 1 and class 2

messages for voting purposes.

Other Capabilities

In addition to the SBFTC functionality, the system also includes meta-capabilities to as-
sist in development, debugging, and demonstration. First, the system provides a logging
capability that allows debugging text to be stored to a memofiebuwather than a de-
bugging console. This allows debugging and status information to be collected without
significantly impacting the timing of the code, particularly the communication loop, and
then replayed at the developer’s convenience. Text printed directly to the console signif-
icantly delays the execution of code, which causes unpredictable behavior between nodes
expecting messages within time windows.

In order to support delayed log printing and other on-demand services, an administra-
tion interface provides the ability for a user to send UDP packets to specific nodes that
instruct them to perform actions like dumping the debug log. If a task wishes to accept

external commands, it may register a callback function and a command header such as
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“LOG”. The administrator interface then listens on a dedicated port for incoming packets.
If a packet arrives in which contents follow the pattern “LOG *”, the specified callback
function is invoked with the packet’s contents as an argument.

The administration interface is also used to allow a user to inject faults into the system

at will for testing and demonstration purposes.
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Chapter 4

Synchronization Protocol

Each of the Network Elements (NE) in the SBFTC must maintain its internal clock at
approximately the same time to ensure proper functioning of the system. Periodic adjust-
ments of the local clocks are necessary, since all clocks drift relative to one another, and
eventually the skew will prevent the boards from behaving in a consistent, predictable man-
ner. The primary reason for keeping the clocks on each board synchronized is to ensure
predictability of the communication system and to ease the implementation of the fault
tolerant network.

In many multi-node applications, it is often possible and convenient to directly wire
all the nodes with the same electrical clock signal. However, in a highly available system,
using a common clock signal is impossible because it introduces a single point of failure.
If the clock faults, the entire system goes down.

Fault tolerant solutions using custom hardware are able to solve the problem of syn-
chronization by comparing redundant clock signals emanating from each node and adjust-
ing them via specialized hardware. An SBFTC running on COTS hardware cannot rely on
such a solution, since low-cost hardware does not include mechanisms for reliable electri-

cal clock synchronization. Instead, each node must maintain a synchronized logical clock
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that should keep approximately the same time as the logical clocks on all other nodes. A
node maintains its logical clock through two values, an absolute time and a delta. The
absolute time is incremented according to the hardware clock. The delta may be adjusted
programmatically. The logical clock time is calculated by summing the absolute value and
the delta.

Operating systems provide such a clock. However, the challenge exists in adjusting the
delta component on all nodes correctly. Since no hardware support exists to synchronize
logical clocks, the software is responsible for determining when clock adjustments are
necessary by passing messages over a standard communication medium.

The following sections describe a logical clock synchronization algorithm developed
for the SBFTC as part of this thesis work. The first section introduces the concepts and
intuition behind the algorithm. The next section describes the notation used in this section
as well as the assumptions the algorithm depends on. The third section presents a failstop
(non-Byzantine resilient) algorithm. The fourth section extends the algorithm for Byzantine
resilience. The Byzantine resilient algorithm is introduced, but a complete mathematical

analysis has not been completed.

4.1 Motivation and Description

The fault-tolerant network is a bottleneck resource in the SBFTC. In order to make behavior
of the system predictable and useful, the SBFTC must guarantee a user application that any
data sent across the network will haver@ximumlatency across the network. If that
guarantee is violated, time-critical operations may cease to function correctly.

The smallest maximum latency the SBFTC can promise to user applications is the la-
tency of a standard message across the netplodthe maximum time that message may

have to wait for other, higher priority operations to finish using the network. If the sys-
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tem must reserve the network periodically for system-level operations like clock synchro-
nization, applications can never be guaranteed latencies less than the time that operation

consumes.

Given the importance of reducing required network overhead, the intent of this algo-
rithm is to allow the nodes of the system to maintain a synchronized logical clock while
reserving the network for the smallest time intervals possible. While the Byzantine resilient
algorithm actually requires a large amount of data to be exchanged between nodes, it allows
individual communication rounds to be separated by time, allowing critical messages to be

sent in between.

Another motivation in the design of these algorithms is the requirement that clocks
never be set backward. In real-time systems, where tasks are scheduled via the system clock
and messages may be timestamped, adjusting a clock backwards can result in inconsistent
operation unless great care is taken. These algorithms avoid that pitfall by always setting

clocks forward or not at all.

Defining Clock Synchronization

Synchronization does not imply that the logical clock is exactly the same on every node
at all times. Such perfect synchronization is not possible at the software level. This is not
to say that the logical clocks cannot be perfectly synchronized at swstent but main-

taining constant perfect synchronization over a time interval is not possible without the

high granularity of control possible at the hardware level.

Synchronization of a set of logical clocks is instead defined in a more relaxed way. The

logical clocks of a set ok correctly functioning nodesl = {n;,n,, ..., nc} are considered
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synchronized over a time interval froito t; if

whereC;(t) is the value of nodés logical clock at real timé andD,,«iS a constant.

In other words, the logical clocks of the nodes are considered synchronized if the dif-
ference between any two logical clocks is at nDgt,. This relaxed definition of synchro-
nization is necessary because it is impossible to achieve perfect synchronization.

Equally important, the relaxed constraint allows time to pass and clocks to drift between

synchronization rounds. To describe this notion more precisely, begin with the following

definitions:
1. LetAsyncbe a synchronization algorithm that runs periodically.

2. Let the drift rate between the physical clocks of two nodes be bounded by a constant

dr.

3. LetDpax be the minimum synchronization (i.e. a maximurfielience between logi-

cal clocks) required for an application.
4. LetDgync < Dmax be the minimum synchronization achievedAy,.

Then, the amount of timdtyeyeenallowed between points of maximum synchroniza-

tions is bounded by
Dmax— D
dtpetween< W — €,
wheree is a constant. The role af is to leave opportunity for mid-execution clock
adjustments that may temporarily increase clock skew more than natural drift would.
The algorithms presented below run at well-defined intervals as described above. At the

appropriate time according to its logical clock, each node sends a message to every other
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node, and each receiving node takes note of the time that each message arrives (according

to its own logical clock). Then, given that
¢ All nodes send their messages at what they believe is the correct time,
e The network has a known minimum and maximum latency,

each node can infer the local logical clock value at each of the other nodes and update
its clock appropriately.
As will be shown in the following sections, the achievablg value of the synchro-

nization algorithms depends on properties of the network and the drift rate between nodes.

4.2 Definitions and Assumptions

This section presents definitions and assumptions used in the characterization of the syn-

chronization algorithms presented in the following sections.

Node: Anindependent processing unit with an on-board timekeeper and a method of com-

munication with all other nodes.

Wall clock: A timekeeper that maintains an absolute reference time. This time is not avail-

able to the nodes, but as an observer, one is aware of it.

Local clock: A timekeeper belonging to each node. Each local clock keeps time indepen-
dently from the others. Mierent local clocks may readftkrent times at the same

wall clock time.

Clock drift: The tendency for local clocks onfterent nodes to run at slightly féerent

rates.
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Local clock drift from wall time is assumed to be bounded by a known conptar.

Let Ci(t) be the local clock reading of nodeat timet. Then,

(1+p) Mtz —t1) < Ci(tz) - Ci(t) < (L +p)(t2 — to). (4.1)

The above may be interpreted as, given two timiegndt,, the amount of logical clock
time that could elapse on a node during that period is bounded by linear envelope.

The above may also be rewritten as

(1+p) " (Ci(ty) - Ci(t)) <tz —t1 < (1 + p) (Citz) - Ci(tr)) - (4.2)

Similarly, this may be read as, given two logical clock tim@gt;) andC;(t,), the amount
of real time that could elapse during that period is bounded by a linear envelope.

Note that the local clock drift rate between any two nodes is bounded by

p(2+p)
1+p °

dr=(1+p)-(1+p)?t=
It should be noted that, intuitively, the lower drift bounds might more correctly be
(1-p)(t2—t1) < Ci(t2) —Ci(t1). However, the type of bound given above is more convenient,
and is consistent with other literature, including [9].
Let wall times be denoted by a lowercasand local clock times be denoted by an

uppercasq .

Let Ci(t) be the value of the local clock of nodat timet.

Let Di(t) be the diference between the local clock of nddend timet at timet. In other
words,

Ci(t) =t+ Di(t).
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Let Djj(t) be the diference between the local clocks of nodesd j at timet. This can
be expressed as

Dij(t) = Di(t) - Dy(t) = Gi(t) — Cj(t).

Let Dmax denote the maximum value @f;;(t) acceptable for an application. More pre-
cisely,

¥ nodes, j, v timest, | Djj (t)| < Drmax

Let [Dij]i be the difference between the local clocks on naogexl j, as calculated by
node i Note that[Di,-]i is not a function ot. It represents a single value calculated

by nodei.

Let Tseng be the local time at which all nodes are scheduled to send a message to every

other node.

Let tseng be the time at which nodeactually sends its messages to the other nodes. Note

thatTsengmay correspond to fierenttseng's for different nodes. Note that
Ci (tsend) = Tsend

Let m;; represent a message sent from nottenode].
Letty, be the time at whicim; is received by nod¢.
Let Ty, be the local time on nodpat whichm; was received by nodg

Let £, be the time it takes fom; to travel from node to nodej. Note the relationship

th = tsend + ng.
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The communication network is assumed to deliver a message in a bounded window of

time. Thus,

Let £max be the maximum possible value of afyy, -

Let £min be the minimum possible value of afiy, . In other words,

¥ nodes, j, fmin < fm; < fmax

Let £5ssume represent a constant such thigt, < fassume< fmax It may be interpreted as a

best guess fofy,, . Its optimal value will be calculated as part of the analysis.

Finally, correct functioning of this algorithm requires that all local clocks are initialized
such that they are synchronized to within some known value. No initialization algorithm

based on the discussed algorithm is provided in this paper. It is left for future work.

4.3 Failstop Algorithm

This section presents the characterization of the non-Byzantine resilient synchronization
algorithm. First, the algorithm is analyzed for two nodes. Then the analysis is extended to
include three nodes.

The algorithm runs symmetrically on all participating nodes. Algorithm 4.3.1 defines
the steps of a single round of the failstop algorithm. The algorithm may be broken into two

processes:

1. Receive: The node maintains a process at all times that timestamps packets when

they arrive.

56



2. Send, Wait, and Adjust: Upon a predetermined timé&geng the node sends a mes-
sage to all other nodes. The node then spends a predetermined length afdime
waiting for the arrival of messages from other, slower nodes. From the arrival times
of each message, the node estimates the larg@statice between its local clock
and other local clocks. If the node estimates that its own local clock is ahead of all
others, it does not adjust its local clock. If it estimates that its local clock is behind
the clocks of at least one other node, it adjusts its own clock to match that of the node

estimated to be most ahead.

In the next round of synchronizatiofisnqtakes on another value agreed upon by all
(O

send —

participating nodes. Typically, the value Bfenq at roundi, T , is defined byT

sen

TO +iP, whereP is some constant.
Figure 4-1 depicts a timing diagram of the interaction between two nodes executing

algorithm 4.3.1 between which clocks are initially skewed by an amauniote that

although each node sends a message at what it belieVgs,dsthe messages are actually

sent at diferent times.

57



ts Pnd, tserluzl2 trln 2 trlnz‘
| |

Time t — . — : —

,gm, = frmax i :
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Figure 4-1:An example timing diagram of the interaction between two nodes. Not to scale. The
top horizontal line represents wall time. The lower two represent the progression of local clock
time for nodesl and2. The two nodes send a message at what each believes to be Tsend. Note
that at timetseng, Nodel’s clock readsTsengand node2’s clock readsTsend— A, indicating that
D12(tseng) = A. Each message may take #feiient amount of time to reach its destination. In this
casem» takes the longest time possible angh takes the shortest time possible. Each node counts
out Tyait after sending its message, then checks to see if it should adjust its clock forward. Each
node infers the other’s relative clock skew based on the arrival time of the received message. In this
case, nodd realizes it is first and does not adjust its clock. N&dadjusts its clock forward to
matchl’s as closely as possible, in this case a little too much, since Poeleched” ahead ofl.
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Algorithm 4.3.1: FaiLstor-Sync()

Let N = {n;...n¢} be a set of k participating nodes.
Leti € {1...k} be the number of the node executing the instance of the algorithm.
Twait Will be derived during later analysis

global timestampfk] < {null, ..., null}

processRECEIVE-MESSAGES()
while Ci(t) < Tsena+ Twait
q {if m; received
then timestamplg] = CurrenTTiME()

processSEND-AND-ApyusT ()
local deltas[k < {O,...0,}

if Ci(t) = Tsend
for j « 1tok

do if j#i
then Send messag®; to n;.

while C; (t) < Tsend+ Twait

then do { Nothing

for j «— 1tok

ifj#i
do { then deltagj] « CarcuLare-Derra(timestamplg])

Ser TiME(CUrRrReNT TME() — min(deltag)

procedure CarLcurate-DEeLra(timestamp
d6|ta<— tlmestamp‘ (Tsend+ fassumé
return (delta

Figure 4-2:Failstop synchronization algorithm. Process Receive-Messages and process Send-And-
Adjust run separately. The first process timestamps messages as they arrive from other nodes. The
second sends messages, waits for all messages to arrive, then adjusts the clock forward if necessary.

59



4.3.1 Characterization of Algorithm for Two Nodes

This section provides the mathematical characterization of the failstop synchronization al-
gorithm and demonstrates that it is correct.

The analysis is organized as follows:

1. First, bounds on the nodes’ estimation of the other’s clock skew are determined in

terms the initial relative clock skew between the nodes.

2. Next, the estimation bounds from the previous result are used to determine the clock

adjustment behavior under all possible initial relative clock skews.

3. After understanding how nodes adjust their clocks, bounds are derived for the maxi-

mum clock skew possible following the execution of the algorithm.

4. Next, an expression is derived for the actual maximum skew possible at any point

during the algorithm in term of the elapsed time between synchronizations.

5. Finally, lower bounds are derived on how frequently the algorithm may be executed,
thereby allowing the actual maximum synchronization to be calculated using the

results from step 4.

Determining each node’s perception of local clock dference

To begin, consider two node%,and 2, performing algorithm 4.3.1. The analysis of the
two nodes will not generalize to the case of three or more nodes, but it is described first
because it is the most straightforward to analyze.

Without loss of generality, the local clock of nodes defined to be equal or ahead of

2’s at the start of the algorithm. In other words,

60



Dlz(tstart) 2 0.

The first step of analysis is to determine the boundsarid2’s perception of the other

nodes’ local clocks in terms of the relative skew between them at the start of the algorithm.

The start of the algorithm is defined to be the time at which the first node sends a
message. Since nodés clock is defined to be ahead &6 at the start of the algorithm, by

definition,

Dlz(tstart) = Dlz(tsenq)-

First consider how nod2 perceives the local clock of node Begin by recalling the
formula that the nodes use to estimate th&edence between their local clocks based on

message arrival time,

[Dijli = Ci (tmji) — (Tsend+ Cassumg-

Therefore2 predicts the dierence betweel's and its own local clocks by

[D21]2 = Cz(tmlz) - (Tsend+ fassuma,

which may be also expressed as

[D21]2 = tmlz + Dz(tmlz) - (Tsend+ fassumg- (4-3)

Next, consider amount of time that will elapse &8 local clock from wherl sends
the messagaey; at timetseng 10 When2 receives the message at timgg,. Equation (4.1)

provides bounds on the elapsed time:
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CZ(tmm) - CZ(tsenQ)
CZ(tn’hz) - CZ(tsenQ)

IA

(1 + p)(tmlz - tSGnCi)

(1 + ) (tmy, — tsena)-

\%

SinceC;(t) = t + Di(t), the above can be rewritten as

tmy, + Da(tmy,) — tseng — D2(tsend)

IA

(1 + p)(tm12 - tsenq)

tm12 + D2(tm12) - tsenq - DZ(tsenQ) (1 + P)_l(tmlz - tsend)-

\%

IsolatingDx(tm,,) yields

Dz(tmlz)
D2(tm12)

IA

(1 + p)(tmy, — tsend) — (tmy, — tsend) + Da(tsenq)

(1 + p)_l(tmlz - tsenq) - (tmlg - tsend) + DZ(tsenq)

\%

:> Dz(tm12)

Dz(tmlz)

IA

P(tm12 - tsenq) + Dz(tsenq)

- (]-:;P) (tmlz - tsenq) + Dz(tsenq)-

Recognizing thaty,, — tseng = {m,, and thatmin < €, < €maxgives

Dz(tm12) < (p)lmax+ Dz(tsenq)
Dz(tmlz) > - (l:;p) Cmax + Dz(tsenq)-

From these inequalities, bounds can now be found@gi]p using equation (4.3):
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[D21]2

[D21]2

< tmlg + (p)fmax"' D2(tsenq) - (Tsend+ gassuma
= tm12 - (1’%/?) fmax"‘ Dz(tsenq) - (Tsend+ fassuma-

Finally, by recognizing thaT seng= Ci(tsend) = tseng + D1(tsenq), the following bounds

are achieved:

[D22
[D2>

= [Dal,

[D21],

= [D2il>

[D21],

= [Dail>
[D21],

IA

\%

IA

\%

IA

\%

IA

\%

tmlz + (p)gmax+ Dz(tsenq) - (tsenq + Dl(tsenq) + fassumé

tmlz - (1L) fmax"‘ DZ(tsenq) - (tsenq + Dl(tsenq) + fassuma
+p

(tm12 - tsenq) + (p)fmax"‘ (DZ(tsenq) - Dl(tsenq)) - fassume

(tm12 - 1:senq) - (1:;[)) gmax"‘ (DZ(tsenq) - Dl(tsenq)) - fassume

(fmlz) + (p)fmax"' (D21(tsenC1)) - gassume

(fmlz) - (1:;[)) fmax"‘ (D21(tsene_[)) - fassume

Cmax+ (0)Cmax— Dlz(tsenq) — Lassume

fmin - (ﬁ) fmax_ Dlz(tsenq) - [assume

which finally simplifies to

[Dodz < (14 p)lmax— DlZ(tsend) — lassume
[D21]2 = fmin - (%) fmax_ D12(tsenq) - fassume (4-4)
+p
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In the next step, the bounds b perception oR’s local clock are determined. Begin

by recognizing that

[D12]1 = Cl(tmz1) — (Tsend+ Cassumg- (4.5)

The challenge here is to fir@,(tm,,,) in terms of the local clock dierence at the start
of the algorithm, namelyD;(tseng). Begin by determining the bounds of the elapsed time

on1’s local clock in terms of real time. Equation (4.1) gives the following:

Cl(tm21) - Cl(tsenq)

Cl(tmn) - Cl(tsenq)

IA

(1 + p)(tmy, — tsend)

1+ P)_l(tmzl — tsend)- (4.6)

v

Sincety,, = tseng + fm,, @NACmin < €y, < fmax bDOUNds onty,, are as follows

IA

tseng + Cmax

\%

tseng + Cmin- (4.7)

Bounds ortseng can be determined using equation (4.2):

IA

(1 + p)(Caltseng) — Ca(tsend))

1+ P)_l(CZ(tsencé) — Ca(tsenq))-

tsen(i - tsenq

\%

1:senq - tsenq

Recognizing tha€y(tseng) = Tsend= Ci(tsenq) gives
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tsenq - tsenq

tsenci - tsenq

= tsenq - tsenq

tsenci - tsenq

= tsencﬁ

tsenci

IA

\%

IA

\%

IA

2

(1 + p)(Caltseng) — Ca(tsenq))
1+ P)_l(Cl(tsenQ) — Ca(tsenq))

(1 + ,0) DlZ(tsenq)

1+ p)_lDlZ(tsenG_[)

(1 + p)DlZ(tsenq) + 1:senq

1+ p)_lDlz(tsenq) + tsenq-

Substituting fortseng in equation (4.7) gives

IA

tm21

\%

thl

(1+p) Dlz(tsenq) + tseng + Cmax

1+ P)_lDlz(tsenq) + tsend + Cmin.

Next, referring back to the bounds @i(tm,,) — Ci(tseng) given by equation (4.6) and

substituting fort,,, yields

Cl(tmu) - Cl(tsenQ)
Cl(tmn) - Cl(tsenQ)

IA

\%

IA

= Cl(thl) - Cl(tsenq)
Cl(tmz1) - Cl(tsenQ)

\%

(1+p)((1+ p)D12(tsenq) + tsend + Cmax— tsenq)

1+ p)_l((l + P)_lDlz(tsenq) + tsend + Cmin — tsenq)

1+ p)lez(tsenq) + (1 + p)lmax

1+ p)_2D12(tsenC1) +(1+ p)_lfmin-

Finally, sinceCi(tseng) = Tsena the above bounds can be directly substituted into equa-
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tion (4.5), determining the bounds oB;]1 in terms ofD;(tseng):

A

[Da]s < (1+ P)lez(tsenq) + (1 + p)tmax— Cassume

[D12]1 1+ p)_lez(tsenq) +(1+ P)_lfmin — Cassume (4.8)

\%

Determining limits of behavior

Now that the bounds forl};,]; and [D,1], have been determined in terms of the initial
clock difference, it is possible to evaluate how nodes will adjust their local clocks based on
their approximation of their distance from the other node.

The amount that a nodeadjusts its clock is a function ofj;];, its approximation of
its own clock’s distance frony's clock, but the function is not smooth over all values of

[Dj;li, but rather a piecewise function of the form

_ —[Dili . [Dijli<0
adjus([D;];) = :
0 , [Dijli = 0

The piecewise nature of the adjustment function requires the behavior analysis of the
synchronization to be applied in a piecewise manner as well, with discontinuities existing
when either Dij]i =0or [Dji]j =0.

In other words, the behavior of the system depends on whether one, both, or neither
node adjusts its local clock during the algorithmftBrent equations will bound the achiev-

able synchronization for each case.

Returning to node& and2, the following questions are considered:

1. Under what conditions i€J;,]; > 0 possible?
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2. Under what conditions i€J;,]; < O possible?
3. Under what conditions i€)>;], > 0 possible?

4. Under what conditions i€),,], < 0 possible?

The conditions for all cases are expressed in terni3; 8tsenq):

[D12]1 = 0 possible: [Djy]1 = 0 is possible when the upper bound &f;f]; is positive.

Equation (4.8) gives

\%

1+ p)lez(tsenq) + (1 + p)tmax— Cassume 0

Y

= Dlz(tsenq) (1 + P)_zfassume_ (1 + P)_lfmax-

Note that, by definitionp > 0, fassume < €max andDaix(tsenq) = O, thus the above
inequality is always true. Therefore, it is always possible that riodstimates its local
clock to be ahead a?’s. This makes sense, sind& clock is defined to be the same or

ahead oR’s at the start of the algorithm.

[D12]1 < 0 possible: [Di2]; < 0 is possible when the lower bound @], is negative.

Equation (4.8) gives

1+ p)_2D12(tsen(1) +(1+ p)_lgmin — lassume < O

= Dlz(tsenq) < (1 + p)zfassume_ (1 + P)fmin-

The above condition can be true or false depending on the valyggfy and{assume

[D21]2 > 0 possible: Equation (4.4) gives

(1 + P)fmax_ Dlz(tsenq) — lassume = 0
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IA

= Dlz(tsenq) (1 + P)fmax — Lassume

[D21]» < O possible: Equation (4.4) gives

0

A

fmin - (]-:;P) Kmax_ Dlz(tsenq) - fassume

= DlZ(tsenq)

\%

gmin - (%) fmax - gassume
+p

Sincelassume> £min, this inequality is always true.
With these limits established, limits can now be found for each of the behavior cases by

looking at the intersection of the limits.

[D12]1 = O0A [D21]2 < O possible: The case of only nod2 adjusting its clock is always

possible, i.e.,

DlZ(tsenq) > (1+ p)_zfassume_ 1+ P)_lfmax
Dlz(tsenq) > Cmin — (1:;/3) Cmax— Cassume

= Dlz(tsend) > 0.

[D12]1 < OA[D2y]2 < 0 possible: The case of both noddsand2 adjusting their clocks

is possible when

D12(tsenq) < (1 + p)zgassume_ (1 + P)gmin

D12(tsenq) gmin - (%p) gmax_ fassume

\%

= D12(tsent1) < (1+ p)zfassume_ (1 + p)lmin
Dlz(tsenq) 0

Vv
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[D12]1 < OA [D24]2 = 0 possible: The case of only nodg adjusting its clock is possible

when

Dlz(tsenq) < (1 + P)zfassume_ (1 + P)fmin

Dlz(tsenq) < (1 + P)fmax — Lassume

[D12]1 = OA [D2y]2 = 0 possible:  Finally, the case of neither node adjusting its clock is

possible when

\%

Dlz(tsenq) (1 + P)_zfassume_ (1 + p)_lfmax

D12(tsenq)

IA

(1 + p)lmax— Cassume

0

\%

= Dlz(tsenci)
D12(tsenq)

IA

(1 + p)fmax — Cassume

From these results, the range®f,(tseng) Can be broken up into regions wheré&drent
clock adjustment behavior is known to occur. Analysis can then be performed for each
region independently, then compared. The regions depend on the valig Qf Let {mig
be defined as the value 6fssumewhen (1+ p)fmax— fassume= (1 + 0)*Cassume— (1 + P)Cmin-
Then,

-1

bmia = (L + p)bmax+ (1 + p)min) (1 + (1 + p)?)

Cassume™> Cmid,

then
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1+ P)zfassume_ (1 + p)lmin > (L + p)lmax— Cassume

and the possible node behavior ififdrent regions are as follows:

Dio(tsend) € [0, (1 + p)lmax— Cassumd : 1 Sets,2 sets, both set, neither sets
€ [(1 + p)gmax_ fassume(l + p)zfassume_ (1 + p)fmm] . 2 SetS, bOth Set

€ [(1+ p)*lassume— (1 + p)min, ) : 2 Sets.

Alternatively, if

gassume< fmid,

then

(1 + p)zfassume_ (1 + P)gmin < (1 + p)fmax_ Cassume

and the possible node behavior iffdrent regions are instead

Dia(tseng) € [0,(1+ 0)*Cassume— (1 + p)emin] © 1 Sets 2 sets, both set, neither sets
€ [(1 + p)z‘gassume_ (1 + p)‘gmm, (1 + p)fmax_ gassum; . 2 SetS, nelther SetS

€ [(A + p)lmax— Cassume ) : 2 S€tS.

Determining limits of synchronization

The maximum synchronization achievable through the algorithm depends not only on en-

vironment variables likénax {min, @aNdp, but also on how frequently the synchronization
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algorithm can run. Given the synchronization of the nodegt..y) at the start of a round
and the maximum timeétyeweenbetween rounds, the synchronization of the nodes at the

start of the next round)1»(t£),,), is bounded by

2
D1o(t2),

Dlz(t(s%grt) = DlZ(tstart) + Asyncmn - dr . dtbetweerq (4-9)

IA

Dio(tstarr) + Asyngax + dr - dtpetween

\

whereAgyng,, and Asyne,., @re the minimum and maximum change in clock skew due
to adjustment in a single round, add - dtyeweeniS the maximum drift between two local
clocks possible between the start of two rounds. No{gg., andAgyng.,, May be broken

down further into

ASyn(c?nin = Asyn(?minl +Asyn(}nin2

Asym‘iﬂax = AsynGnaxl + AsynGnaoQ’

whereAsyng,,, is the change contributed by notlendAsyng,,, is the change contributed
by node2. Note that a positive value &y, Or Asyng,., INdicates that nodé adjusted its
clock forward (generally undesirable) while a negative value means thatraatjasted its
clock forward (generally desirable).
The previous section determined the boundary cases for how nodes adjust their clocks,
so it is now possible to calculatsyyg,, and Asyng.,, for each of the dierent adjustment

cases in each of theftierent regions.

Caselassume™ Cmids D12(tseng) € [0, (1 + p)lmax— fassumé- 1N this case the smallest contri-

bution of nodel is
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Asyngyn, = —min{0,max{[D1]1}}

—min {0, 1+ p)lez(tsenq) + (1 + p)lmax— gassumt}

= 0.

The largest contribution of nodeis

Asyn(;naxl = _min{O,min{[DH]l}}

—min {0, a+ P)_2D12(tsenq) +(1+ p)_lfmin - 5assum<}

= —(1+ P)_2D12(tsenq) -1+ p)_lfmin + Cassume

The smallest contribution of nod&is

ASynGninz = min{0,min {[D21]2}}

min {O, Cmin — (%p) Cmax— Dlz(tsend) - fassum%

fmin - (l:;p) fmax_ DlZ(tsenQ) - €assume

The largest contribution of nod&is

Async;na)? = min{O, max{[DZl]Z}}

min {O’ (1 + P)gmax - D12(tsenq) - fassumé

= 0.
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Therefore, fOf' the Casgssume> €m|d, Dlz(tsenq) € [0, (1 + p)fmax_ gaSSum;,

Asyn(‘min = 0+ fmin - (ﬁ) fmax_ D12(tsenq) - fassume
Asyngnay = -1+ p)_lez(tsenq) -1+ P)_lfmin + Cassumet O
= As NGni = fmin - L gmax_ D12(tsen(1) - fassume
YNGnin 1 +p
Async;nax = _(1 + p)_leZ(tsenq) - (1 + p)_lfmin + fassume

Substituting these results into equation (4.9) yields

2
D1o(t2),

IA

Dia(tseng) — (1 + P)_lez(tsenq) -1+ P)_lfmin + Cassumet Ar - Athetween

Dlz(t(s%;n) = D12(tsenq) + fmin - (]_pr) fmax_ D12(tsenq) - fassume_ dr : dtbetween

\%

= D12(t(521r < (1 -1+ P)_z) Dio(tseng) — (1 + P)_lfmin + Cassumet Ar - Atyerween
D12(t(521r = fmin - (1:;/?) fmax_ fassume_ dl’ . dtbetween

SinceDiy(tseng) < (1 + p)lmax — Lassume SUbStituting forD15(tsenq) gives

2
D1o(t2),

IA

(1 - (1 + P)_z) ((1 + P)gmax - fassuma - (1 + p)_lfmin + Cassumet dr- dtbetween

D12(t(s%z)ar = fmin - (]-:‘;P) fmax_ fassume_ dr . dtbetween

= D12(t(521r < ((1 + P) - (1 + P)_l) Cmax + (1 + p)_zfassume_ (1 + P)_lfmin + dr - dtpetween
D12(t(52m) = fmin - (1:;/?) fmax_ fassume_ dl’ . dtbetween

Caselassume> Cmid, Dlz(tsenq) € [(1 + p)lmax— Lassume (1 +p)2€assume_ (1+p)tmin]:  Inthis

case, the only possible behaviors are that only ribaéjusts its clock or that both nodgs
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and?2 adjust their clocks.

The smallest contribution of nodeis

Asyngur, = —min{0,max{[D12];}}

= 0.

The largest contribution of nodeis

Asynq,naxl = —min {0, min {[D12]1}}

= —min {0, 1+ P)_ZDlz(tsenq) + (L +p)  min— [assume} .

The smallest contribution of nod&is

Asyn(,;nm2 = min {O, min {[DZI]Z}}

= fmin - (%’0) fmax_ Dlz(tsenq) - fassume

The largest contribution of nod&is

Asyn(.‘m)Q min {O’ max{[D21]2}}

(1 + p)lmax— Dlz(tsenq) — Cassume

Therefore, for the casBssume> Cmid, Dlz(tsenq) € [(1 +p)€max_ fassume(l +P)2€assume_
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(L + 0)minl,

Asyn(,:mn = fmin - (]_pr) fmax_ Dlz(tsenq) - fassume
Asyn(;nax = —min {Oa 1+ p)_lez(tsenq) +(1+ p)_lfmin - fassum;

+(1 + p)lmax— D12(tsenq) — Cassume

Substituting these results into equation (4.9) yields

A

Dlz(t(s%:);xrt) = = min {07 (1 + p)_ZDlz(tsenq) + (1 + P)_lfmin - fassum;
+(1 + p)lmax— Cassumet dr - Alyerween

Je,
D12(t(si')j\r > fmin - (m) fmax_ fassume_ dr- dtbetween

The smallest possible value fBr(tseng) in this case is chosen as a substitution, giving

Dlz(t(s%z)ﬂ < —min {0» (1 + p)_z ((1 + P)lmax— Lassumd + 1+ p)_lfmin - fassum&}

+(1 + p)lmax— Cassumet dr - Alperween

DlZ(t(s%;rt) = gmin - (ﬁ) fmax_ gassume_ dr- dtbetween
= DlZ(t(s%;r < - ((1 + p)_z ((1 + P)lmax— fassumg +(1+ p)_lfmin - fassum;

+(1 + p)lmax— Cassumet dI - Alyerween

P
p) fmax_ fassume_ dl’ : dtbetweem

Dlz(tgf):lrt) fmin - (F

\%

which simplifies to

75



D12(t(521r < ((1 +p)—(1+ p)_l) Cmax— (1 + p)_lfmin +(1+ P)_Zfassume"' dr - dipetween
DlZ(tg;r = fmin - (1L) fmax_ fassume_ dr . dtbetween
tp

possible behavior is that only no@edjusts its clock. The limits of adjustment are

ASymﬁ’ninl - 0
ASynGnaxl =0
Asyn‘+‘min2 = gmin - (%p) fmax_ DlZ(tsenQ) - gassume

AsynGnax2 = (1 + p)tmax— Dia(tsend) — Cassume

giving
As NGni = fmin - L gmax_ D12(tsenq) - fassume
YNGnin 1+p
Asynq;nax = (1 + p)gmax_ D12(tsen(1) - fassume
and

IA

DlZ(t(sgr (1 + p)fmax - fassume"‘ dr : dtbetween

Dlz(t(s%;r 2 fmin - (l:;p) fmax_ assume— dl’ ' dtbetween
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The same analysis is now performed for the cases Whgl@e< {mid-

Caselassume< Cmids DlZ(tsenq) e[0,(1+ p)zfassume_ (1 + p)lminl:

Asyn(?snin1 = _min{oamax{[DlZ:ll}}

—min {0, 1+ P)lez(tsenq) + (1 + p)lmax— fassumt}

=0

Async;naxl = _min{oamin{[DH]l}}

—min {0, a+ P)_2D12(tsenq) +(1+ p)_lfmin - 5assum<}

= —(1+ P)_2D12(tsenq) -1+ p)_lfmin + Cassume

Asyn(;@nin2 = min {O, min {[D21]2}}

= min {O, gmin - (ﬁ) fmax_ D12(tsenq) - fassum%

fmin - (]_:;p) fmax_ DlZ(tsenq) - fassume

Asynt;na)Q = min {O’ max{[DZI]Z}}

min {O’ (1 + p)fmax - DlZ(tsenq) - fassumé s

which gives
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Asyn(.;mn = fmin - (%p) fmax_ DlZ(tsenq) - fassume
Asyn%ax = _(1 + p)_lez(tsenq) - (1 + P)_lfmin + Cassume

+min {0’ (1 + p)fmax_ Dlz(tsenq) - fassumé

and

DlZ(tg;r < (1 - (1 + ,0)_2) DlZ(tsenq) - (1 + P)_lgmin + gassume
+ min {O, (1 + P)Kmax_ Dlz(tsenq) - gassumé + dr . dtbetween
DlZ(t(s%;r 2 Kmin - (]_:;p) fmax_ assume— dr- dtbetweer-\

Ideally, to find the maximum possible value Bf,(t2),) under these conditions, the
value ofD,(tsenq) Should be selected such that{p)fmax — Dia(tsend) — Cassume= 0. Any
smaller value would decrease the total via(the 1+ p)_z) D1a(tseng) term, and any larger
value would also decrease the total via hg(tseng) Within the min function. Solving gives
D12(tsend) = (1 + 0)max — Cassume

However, sinC&assume< fmid, then (1+ p)?Cassume— (L + p)lmin < (L + p)lmax— Lassume
so the largest valuB1(tseng) May take is (I p)?Cassume— (1 + p)lmin- Therefore, the limits

of Dyo(t& ) become

Dlz(t(s%)ar < (1 -1+ p)_z) ((1 + p)zfassume_ 1+ P)fmin) -1+ p)_lfmin + Cassume
+dr : dtbetween

D12(t(s%;r = fmin - (1:;/?) fmax_ assume— dr- dtbetween

\
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= D12(t(521r < (1+ P)zfassume_ (1 + p)min + dr - dtyetween
D12(tg;rt) = fmin - (]_:;p) fmax_ gassume_ dr . dtbetween

Caselassume< tmids D12(tsenq) € [(1 +P)2€assume_ (14 p)lmin, (1 + p)lmax— Cassumd: [N this

case, the possible node behaviors are eitaatjusts its clock or neither adjusts its clock:

ASym?’ninl =0
Asyn(c‘maxl =0
A = lomin— [ 2| €max— Dialtsend) — €
SYNGnin, min 1+p max 12\!send assume
Asyn('ﬁ,]a>9 = O.
Therefore,
A = Loin— | =L | fmax— Dialtsend) — €
SYNGhin  — min 1 +p max 12\'send assume
Asyngae = 0
and
Dlz(t(sgrt) < (14 p)lmax— Cassumet Ar - Atperween
DlZ(t(s%;rt) 2 fmin - (]_:_;p) fmax_ fassume_ dr- dtbetween

Caselassume< Cmids D12(tsend) € [(1 + 0)lmax— Cassume©0]: I this case, nod@ adjusts its

clock:
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Asyn(}ninl
Asyn(ﬁﬂaxl
Asyn%ing

Asyn(}ﬂa@

Therefore,

ASyn(?’nin

Asynﬁ‘max

and

2
Dot

2
D12(t(st21r

IA

0

0

fmin - (ﬁ) fmax_ Dlz(tsenq) - gassume

1+ p)lmax— Dlz(tsenq) — Lassume

gmin - (ﬁ) fmax_ Dlz(tsenq) - fassume

(1 + p)lmax— Dlz(tsenq) — Lassume

(1 + p)lmax— Cassumet A - Alpetween
Conin — (1L) Cmax— Cassume— AT - Alpetween
+p

At this point, three upper bounds and three lower bounds have been derived for the

clock skew between nodes at the start of the following synchronization round for each of

the conditionassume> €mig @Nd assume < €mig- It IS NOW possible to evaluate the actual

upper and lower bounds lez(tg;n) by comparing the bounds in each case and selecting

the most extreme. In addition, sinfgsumdS a tunable parameter, it is possible to minimize

the extremes by selectifgssumeappropriately.

Note that for all six cases,
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D12(t(s%e)art) 2 fmin - (%,0) fmax_ fassume_ dr : dtbetweera

making the selection of the actual (most extreme) lower bound trivial.

The possible maximum values Bfi»(t2) ) whenfassume> fmia are

2
Dot

IA

((1 + P) - (1 + P)_l) Cmax+ (1 + P)_Zgassume_ (1 + P)_lfmin + dr - dtpetween

2
D1o(t2),

IA

(1 + p)lmax— Cassumet AI - Atpetween

and whenassume< €mig, the possible maximum values are

D12(t(s%;rt) 1+ p)zfassume_ (1 + p)lmin + dr - diperween

D12(tge)ar

IA

IA

(1 + p)lmax— Cassumet AI - Alpetween

Since each of the bounds is linear with respecftQumes and since for each pair of
bounds one is positively sloped and one is negatively sloped, the upper bound is at its
minimum when the lines intersect. For both pairs, the intersection occtys@tec= {min-

In addition, at that value af;ssumes

|(1 + p)fmax_ gassume"‘ dr : dtbetwee||1 >

gmin - (1L) [max_ assume— dr - dtbetwee =
+p

(1 + p)lmax— Cassumet A - Atpetween >  —Cmin + (1:;/)) Cmax+ Cassumet A - Alpetween=

(1 + p)fmax - gassume > _fmin + ( ) fmax + fassume

o
1+p
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Therefore, the most extreme bound Bmz(t(sf;n) is minimized atfassume = €miq and

evaluates to

-1
|D12(tg;n)| < (1+p)€max_ (1 + (1 + P)Z) ((1 + p)gmax"' (1 + p)gmin) +dr- dtbetween (4-10)
Determining maximum synchronization

It is tempting to assume that, given the bounds [ﬁaﬁ(tg;n) above, the task of finding
the maximum synchronization supported is trivial: simply plug in the valueg,Qf £min,

p, dr, and the smallest value dt,ceen@chievable and evaluate. However, to do so would
neglect the fact that clocks may continue to drift during the execution of the algorithm

before node adjusts its clock forward.

Therefore, determining the actual maximum synchronization achievable requires knowl-
edge of how much time may pass between the start of the algorithm and the tim& node

adjusts its clock.

The intervaldts; between the beginning of the algorithm and when niodéjusts its

clock is given by

dtset = tsend + dtwait; + dtcalq — tstarts

wheretseng is the time at which nodesends its messages to all other nodkg,;; is
the length of time it waits to receive messages from other natlgg, is the length of time
the node takes to perform subsequent calculations after receiving all messages and before
adjusting its clock, andk is the time at which the algorithm begins. Note that for the

running example with nodesand2,
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dtsetg = tsenci + dt\Naitz + dtcalcz - tsenq-

The termdt., is bounded above by,

dtcalq < dtcalcmax,

wheredt;,., IS determined experimentally.

A benchmark to determine the maximum amount of time required for calculations
would use local clock readings. In other words, a benchmark would determgige.,.

By the bounds of clock drift from real time,,., gives

Alacy, < (14 P)Tcalgmax

and

dtcalq < (1+p)Tca|Cmax'

The possible values aft,,;, must be restricted to values thgiaranteethat the node
will receive all messages from all other functioning nodes before continuing on to deter-
mine how to adjust its clock. Letty,, be the minimum value dt,.; that provides such
a guarantee. Let the related valtg;,, be the amount dbcal time a node must count on

its own local clock to guarantee the passagétpf;,, in real time.

Note thatryai., # dlvai., P€CaUse of local clocks’ tendency to drift from real time.
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If a node is required to wait an intervelyag,, in real time, it must actually count out
Twaite, > Ubwaite, UNIts Of time on its local clock, since it is possible for a local clock to

count faster than real time.

From the bounds on clock drift provided by equation (4.2), the actual amount of real

time dt,ait that may elapse over a local clock intervakgf;,., can be bounded as follows:

IA

dtyait 1+ p)Twaitreq

d tWait

\%

1+ p)_lTwait,eq,

Where‘l'waitreq = Ci(tseng + dtwait) — Ci(tseng)-

The requirement thattyai > dtyai,, gives

Twaitreq > (1 + p)dtwait(eq'

Now an expression fodt,ai,.,, must be determined. Recall that,.;,, is the length
of time a node must wait after it sends its messages to guarantee it receives all messages

before continuing. Thus, the value df;,., may be expressed as

dtwait"eq = max{tsenq - tsen(:i} + Cmax (4-11)

wheremax{tsenq - tsend} is the maximum time possible between when nodasd |

send their messages.

To calculate an upper bound fgng — tseng, @ maximum allowed skew between local
clocks at the start of the algorithm must first be defined. The conBtagpt,, is defined to

be this limit. In other words,
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A

Dij (tsend) = DStal’tmax

DiJ' (tsend)

\%

-D startmax:

Note that a node which iBgg,,, behind another node at the start of the algorithm is
not guaranteed to send its messages exaxfly, . time units after the first. It may send

them later, due to the possibility of the node’s local clock counting slower than real time.

Whatis guaranteed, however, is that if two nodieand j, begin with

Dij (tsend) = Dstartmax

= Ci(tsend) = Cj(tsend)+ Dstartmax,

then

Cj(tsenq) = Cj(tsenql) + Dstarty oy

In other words, if the two nodes begin with their clodis,,,, apart, then between the
times when nodé and nodej send their messages, noge clock must count & exactly
DStal"ﬁnax'

This fact can be used with equation (4.2) to determine the maximum time that can

elapse between when nodeand | send their messages:

tsenq —tseng < 1+ P)(Cj(tsenq) - Cj (tsend))
tseng — tseng = (1+ p)_l(cj (tSEHQ) - Cj(tsend))
= lseng —lseng < (1 + p)Dstarta
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tsenq - tsend = (1 + p)_letart,nax~ (4-12)

Finally, substituting the largest value Rfq — tseng into equation (4.11) yields

dtwaitreq = (1 + p)Dstartmax + Cmax

and

Twaitreq = (1 + p)zDStartmax + (1 + p)gmax'
Of course, if a node counts Otfait,., ON its local clock, the maximum interval of real
time dtyai,,, @ Node may actually wait is
dtwaitmax = (1 + p)SDStartmax + (1 + p)zgmax' (413)

The maximum intervadits; _, is calculated by

dtsetnaX = max{tsend — tstart} + dtWaitmax + dtcalcmax-

With the condition thatgit # tseng @nd using equations (4.12) and (4.13), the expres-

sion becomes

Otsepg, = ((1+0)° + (1+ p)) Dstare + (1 + £)*limax + Ulcaicyay (4.14)
From here, it is possible to determine the maximum synchronization possible. Define

Dmaxto be the constant which bounds clock skew at all times. Then,

Dmax > Ds'[arnmx + dl’ : dtsetnaX’
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wheredr - dts, ., IS the maximum drift possible between nodes from the start time of
the algorithm to the time when the last node adjusts its clock.

Substituting fordts ., Via equation (4.14) gives

Dimax 2 dr (((1+ p)° + (1 + p) + dr™!) Dstaripe, + (1 + 0)*limax+ Atcaicy,) -

Fortunately, a bound fdDsr,,, has already been calculated in the guise of bounds for

D1o(t%) in equation (4.10), WherBsar,,, = max{|D1(t),)|}. Therefore,

star

Dmax 2= df(((l +p)3 +(1+p)+ dr—l)
(@4 s = (1 (A5 )2) ™ (L )+ (5 )i + T - ey

+ (1 + p)zgmax + dtcak;max) .

Determining timing constraints

The final step of analysis is to determine the minimdigeenthat will guarantee correct
operation of the algorithm over multiple rounds. There are two conditions on the minimum

length of time between rounds to ensure correct operation:

\

VY nodes, j, t?

send

¥ nodes, T@, > Ciltser).

+lmin 2 tsel;

In the first condition, the time at which each node sends its messages for round two
must be late enough that those messages arrive at the other nodes after those nodes have
adjusted their clocks from round one. If this were not the case, a node receiving a message

for round two would be timestamping using a clock that was not yet updated given the
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information in the first round. The incorrect timestamp might cause the node incorrectly

approximate the source node’s relative clock skew.

In the second condition, for each node, after the local clock is adjusted, the local clock

should read less thart?

-nq the local time at which the nodes are to send their messages for

the next round of synchronization. For intuition as to why this is a requirement, consider

if a node’s clock were adjusted to a time beyond the point at which it was to send its next
round of messages. Possibly, the node may never recognize that it didn’t send its messages
at the correct time, but more probably, the node would realize it was late and send the
messages immediately. Unfortunately, other nodes would perceive the local clock of that
node as being at an earlier time than is correct, i.e. they would not realize how ahead that
node’s clock actually is. Therefore, the other nodes would not adjust their clocks forward

enough, and the same synchronization guarantees could not be maintained.

To begin, recall that

V¥ nodesd, j, t?

send+€min > lsey.

For nodesl and?2, this means

{@

send

{@

seng

+ fnﬂn

\Y

tsetg

+ gnﬂn

\Y

tse&.

Recognizing thatse; < tseng + dlsey,,, givVEs
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{@

send

{@

seng

+ fmin

\%

tsen(i + dtse;nax

\%

+ fmin = tsenq + dtsetnax,

and recalling by (4.12) that (2 p) *Dstar,,, < tseng — tsend < (1 + p)Dstartys, (With
i=1,j=2)yields

{@

send

{@

seng

\%

+ Cmin tsend + (1 + 0)Dstartna, + Alsetnay

+ Cimin tsenci - (1 + ,0)_1Dstartmax + dtsetmx

\%

v

= t(SZe)nq — tsend (1 + o) Dstaripa, + Atsetyay — £min

{@

Sen(i - tsen(i

\%

-1+ .0)_1Dstartmax + dtset;nax — Cmin

\%

= dtbetween (1 + P)Dstartmax + dtsetnax — Lmin

dtbetween _(1 + p)_letari}nax + dtsetnax - fmin-

\%

Clearly, the first bound is more strict, so it is the only one considered now. Substituting

for dtsey,,, Via (4.14) gives

dtyetween> (1+p)Dstartmax+ ((1 + p)3 +(1+ p)) Dstartpa,t (:I-‘|'P)2€max+ d'fcalqﬁax_gmin- (4.15)

Substituting forDstar, ., gives
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dtyetween > ((1 + P)3 + 2(1 + P)) ((1 + P)Kmax — Cassumet I - dtbetweel)

+(1+ p)zfmax — min + dtcalcmax-

Solving fordtpemweenfinally gives

dtyetween > ((1 + p)S +2(1+ p)) ((1 + p)lmax— fassuma

+(1 + p)zfmax - fmin + dtcak?max]

-1

-(1— dr- ((1+p)3 + 2(1+p)))

The second condition requires that for a node

T(2)

send

> Ci (tset),

which can be rewritten as

2 .
Tée)nd > Tsena+ Twaitreq t Tcaltmax — min {[Dij]i}

U
—
n =
e
a
|
—
n
3
o
\%

Twaie, + Talenas = Min ([ Dy ]

= Tpetween =  Twaiteq T Tcalcnax — min {[Dij]i} .
For nodesl and?2, this becomes

Thetween = Twaltreq + Tcalcnax — min {[DlZ] 1}
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Thetween = Twaiteq T Tcaltnax — min {[D21] 2}

=  Tpetween = Twaitreq + Tcalcnax — ((1 + P)_ZDlZ(tsenq) + (1 + P)_lfmin - fassum;

Twaiteq T Tcaltmax — (gmin - (1:;’0) Cmax— Dlz(tsenq) - fassum; .

v

Thetween

Substituting the appropriate minimum and maximum value3:gftsenq) gives

\%

-1
Thetween Twaiteq T Tcaltnax — (1 + ,0) Cmin + Cassume

0
Toetween <  Twaitreq + Tcalcnax — Cmin + (m) Cmax+ Dstarnﬂax + Cassume

\Y

Since the second lower bound is stricter, it is the only one considered further. Substi-

tuting forrwait,eq gives

2
Thetween = (1 + P) Dstartmax + (1 + P)fmax"‘ Tcalcmax

_fmin + (

Jol
1+ p) Cmax + Dstartmax + Cassume

\%

(1 +(1+ p)z) Dstartya, + (1 + p)lmax+ TcalGnax
_fmin + (1L) fmax"‘ fassume (4-16)
+p

= Tpetween

Substituting foDgar,,, 9ives

Thetween > (1 + (1 + p)Z) ((1 + p)fmax - fassume"‘ dl' ' dtbetweea

+ (1 Tp+ 1 i p) fmax - fmin + fassume"' Tcalcnax:
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The analysis has resulted in a lower boundmfeendescribed in terms aitpemeen
Since a bound fodt,eneenhas already been determined from the first condition, the bound

for Thetweenmay be found by substitution.

4.3.2 Characterization of Algorithm for Three or More Nodes

The analysis of the failstop algorithm for three or more nodes proceeds similarly to the
case of two nodes. Theftkrent results for three or more nodes stem from a removal of
assumptions implicit in the two-node case. Specifically, in the two-node case, iRweae
sufficiently behind nod&, nodel was guaranteedot to adjust its clock forward. In the

case of three or more nodes, that assumption can no longer be made, since the leading node
may adjust its clock based on its approximation of the clock of a node other than the trailing
node. Similarly, even if the clocks of the leading and trailing nodes are within a range that
permits both nodes to adjust their clocks forward, the existence of additional nodes loosens
the bounds of how far forward the leading node may adjust its clock forward. The broken
assumptions result in less favorable bounds on the achievable synchronization.

Definen nodes 1, 2,...,n. Without loss of generality, let

Cl(tstart) 2 Cz(tstart) 2. 2 Cn (tstart)-

Once againtsart = tseng-

Determining each node’s perception of local clock dference

By the same analysis performed for the two-node case, each node’s perception of the oth-

ers’ clocks may be bounded as follows:

Y nodeg €1,...n:
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¥ nodes <j:

(1 + p)lmax— Dij (tsend) — Cassume

[Dji ]j > fmin - (1:;/)) fmax_ Dij (tsend) - fassume

i
A

¥ nodesk > j :

O
=~
IA

(1 + p)szk (tsenql) + (1 + P)fmax - fassume

1+ p)_szk (tsenqi) +(1+ p)_lfmin — lassume

O
=~
\Y

Note that for nodd,, the leading node, the first set of bounds do not apply, and for node

n, the trailing node, the second set of bounds do not apply.

Determining limits of behavior

Using the above bounds, conditions are established for the behavior of the nodes. For

each node € 1, ...,n, the following questions are considered:
1. Under what conditions is it possible for nod® set its clock?
2. Under what conditions is it possible for nod® not set its clock?

To determine the necessary conditions, recall that a node determines whether to adjust
its clock based on its approximation of all clock skews. The function used by intade

calculate the magnitude of the adjustment may be expressed as

_J.Tli:p]{[Dij]} ajrgig{[Dij]} <0
adjust([Dili, [Dic]is ... [Din])) =9 ™ " .
0 , min{[D;]} > 0

J#i
In other words, each node selects the smallest value among its approximations of clock

skews. If that value is smaller than zero, the node’s clock is adjusted forward by that
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amount, otherwise, the clock is not adjusted.
To find the conditions that make it possible for node adjust its clock, the conditions

must be found that satisfy

min {jrr'}i“rg{[Dij]}} <0,

j#i
i.e., the largest possible value afl just() is greater than zero. Similarly, to find the
conditions that make it possible for nod# leave its clock alone, the conditions must be

found that satisfy

max{jmliﬂrrl1 {[Dlj]}} >0,

j#i

i.e., the smallest possible valuead just() is zero.

Recall that for any node

Dli(tsenq) > Dzi(tsenq) 2.2 Dni(tsenq)

Dil(tsenq) < Di2(tsenq) <..< Din(tsenq)-

Therefore, for nodd,

mln{jr:nzlﬂ {[Dlj]}} <0
= (1+ p)_lez(tsenq) +(1+ p)_lfmin — lassume < O

= Dlz(tsenq) < (1 + P)Zfassume_ (1 + P)fmin-

Thus, the possibility of nod#& adjusting its clock is dependent on the relative skew of

its closest neighbor.
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In addition,

max{jrrzi"rr]‘{[Dlj]}} > 0
= (1+p)’Dialtseng) + (1 + p)lmax— Lassume = O
= Dis(tsend) = (1+p) *lassume= (1 + ) imax
— Dia(tseng) = O.

Again, the possibility of nodé not adjusting its clock is dependent on the relative skew

of its closest neighbor.

Continuing, for node € 2..n,

A
o

min{j@g{[Dij]}}

j#i

= fmin - (]_l.%p) fmax_ Dli(tsenq) - fassume < 0
= Dli(tsenq) > Lrmin — (1:;’0) Cmax— Cassume
- Dli(tsenq) > 0.

It is always possible for these nodes to adjust their clocks forward.

Next it is determined under what conditions it is possible for ndlesto not adjust

their clocks at all:

\%
o

J#l

max{jmm {[D,,]}}

W%

= (l + p)fmax - Dli(tsend) - fassume 0

IA

= Dli(tsenq) (1 + p)fmax — Lassume
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Thus the possibility for these nodes exists only when the relative skew of the leading
nodel is small enough.

Now it is possible to identify the set of initial conditions of the nodes’ clocks that
require independent analysis. Once again, the set of relevant initial conditions will depend

on whether

?
1+ P)Zfassume_ I+ p)lmin > (1 + p)lmax— Lassume

-1
Cassume™ Cmid = ((1 + P)lmax+ (1 + p)fmin) (1 +(1+ p)z) >

then the statement is true.
Thus, the list of all initial conditions that may need to be independently analyzed is as

follows:
1. V nodes € 2..n,Dj(tseng) € [0, (1 + p)lmax— Cassumé

2. Y nodes € 2..n-1,Djj(tseng) € [0, (1 + p)lmax— Cassumd

Dln(tsenq) € ((1 + P)fmax - fassume(l + p)zgassume_ (1 + p)gmin]

3. Y nodes € 2..n-1,Djj(tseng) € [0, (1 + p)lmax— Cassumd

Dln(tsenq) € ((1 + P)zfassume_ (1 + p)fmin, oo)

4. ¥ nodes € 2..n-2,D1(tseng) € [0, (1 + p)lmax— Cassumd

V nOdeS € n-l..n, D1| (tsenq) € ((l + p)fmax_ gassume(l + p)zgassume_ (1 + p)gm"q]

5. Dlz(tsenq) € (1 + p)lmax— Cassume (1 + p)zfassume_ (1 + p)lmin

¥ nodes € 3..n, Dyi(tsenq) € (1 + p)*Cassume— (1 + 0)Cmin, )
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6- V nOdeS. c 2..n, Dl|(tsenq) S ((1 +p)2€assume_ (1 + p){m"'], OO)

In total, there ar%n(n + 1) number of diferent ways for the nodes’ clocks to reside in
different regions. Fortunately, most of these configurations may be ignored.

Recall that the goal of distinguishing between initial conditions is to identify which
conditions may result in éierent limits of synchronization after the possible adjustment of
all the clocks. Keeping this in mind, it is possible to eliminate many of the possible initial
conditions that result in equivalent synchronization limits.

In fact, the number of interesting cases may be reduced to the following:

1. DlZ(tsenq) € [0» (1 + P)gmax - fassuml
Dln(tsenq) € [0, (1 + p)fmax - fassumi

2. Dlz(tsenq) € [0, (1 + p)lmax — Lassumé
Dln(tsenq) € ((1 + p)fmax_ gassume(l + P)Zfassume_ (1 + p)fmin]

3. Dlz(tsenq) € [0, (1 + p)lmax— Lassumé

Dln(tsenq) e(@+ P)zfassume_ (1 + p)lmin, o)

4. Dlz(tsenq) € ((1 + P)fmax_ Cassume (1 + P)Zfassume_ (1 + P)fmin]

Dln(tsenq) € (1 + p)lmax— Cassume (1 + p)zfassume_ (1 + p)lmin

5. Dlz(tsenq) € ((1 + P)fmax_ Cassume (1 + P)Zfassume_ (1 + P)fmin]

Dln(tsenq) € ((1 + P)Zfassume_ (1 + P)gmina °°)

6. Dlz(tsenq) e(@+ P)zfassume_ (1 + p)lmin, )

Dln(tsenq) € ((1 + p)zfassume_ (1 + P)fmin, OO)

For the case ofssume< ¢mig, the following initial condition cases are interesting:

1. D12(tsenq) e[0,(1+ p)zfassume_ (1 + p)lmin
Dln(tsenq) € [O, (1 + P)Zfassume_ (1 + p)fmin]
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2. Dlz(tsenq) € [0» (1 + P)Zfassume_ (1 + P)fmin]

Dln(tsend) e((1+ p)zfassume_ (1 + p)lmin, (1 + p)lmax— Cassumd

3. Dlz(tsenq) € [05 (1 + p)zfassume_ (1 + p)fmin]

Din(tseng) € ((1 + 0)fmax— Cassume )

4. Dlz(tsenq) e(@+ p)zfassume_ (1 + p)lmin, (1 + p)lmax— Cassumd

Dln(tsenq) € ((1 + P)Zfassume_ (1 + P)fmin, (1 + P)Zmax_ fassum;

5. DlZ(tsenq) € ((1 + P)Zgassume_ (1 + P)gmin’ (1 + P)fmax_ fassum;

Dln(tsenq) € ((1 + P)fmax — Lassume 00)

6. Dlz(tsenq) € ((1 + P)fmax_ Cassume oo)

Dln(tsenq) € ((1 + p)tmax— Cassume ™)

Determining limits of synchronization

The synchronization of two nodesandj, at the start of the next synchronization round is

given by

Dj (t(s%z)art) < Dy (tstar) + Asyn<.;nam. +dr - dipetween
Dij (t(s%z)ar 2 Dij (tstart) + Asyncwm,‘j —dr- dtbetween

whereAsyncmm andAsyncmm are the minimum and maximum change in clock skew be-
tween nodes andj due to adjustment in a single round, aht dtpeqeeniS the maximum
drift between two local clocks possible between the start of two round€;(tifar) >

Ci (tstart), thenAsynGmm andAsyn%am may be broken down further into
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Asyn(.:ninij = min{adjust()} - max{adjus;()}

Asyn%am_ = max{adjust()}—min{adjus}()},

wheread just() is the amount node adjusts its clock forward aned jusi() is the
amount nodg adjusts its clock forward.

There are three interesting clock skews for which bounds will be analyzed for each
of the 12 initial conditions listed aboved;,(t4),), D1n(t4), andD,n(t8,). The bounds
of these three skews are guaranteed to be equal to or greater to those of any other, since
¥ nodes € 3..n-1,Cp(tseng) < Ci(tseng) < Ci(tsenq), making analysis of any other bounds

unnecessary.

Case Ofgassume> gmm

First note the following implications:

Dlz(tsenq) € [0, (1+ p)lmax— Cassumd

— min{adjust()} = O

— max{adjust()} = —(1+p)?Diaotseng) — (L + p) Lunin + Lassume
— min{adjust()} = O

— max{adjust()} = —lmin+ (J%p)fmaﬁ Dia(tsend) + Cassume

Dlz(tsenq) € ((A+ p)tmax— Cassume(1 + p)zfassume_ (1 + p)lmin
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— min{adjusg()} = O

— max{adjusti()} = —(1+ p)_ZDlz(tsenq) -(1+ p)_lfmin + Cassume
— min{ad JUSIZ()} = _(1 + P)gmax + Dlz(tsenq) + Cassume
- max{ad JUSIZ()} = _fmin + (]-:;P) fmax"‘ Dlz(tsenq) + gassume

DlZ(tsenq) € (A+ p)zfassume_ (1 + p)lmin, o)

— min{adjusg()} = O

— max{adjust()} = O
—  min{ad jU SE()} = _(1 + P)gmax + Dlz(tsenq) + Cassume
— max{adjust()} = —lmin+ (]_pr) Cmax + Dlz(tsenq) + Cassume

Dln(tsenq) € [0,(1+ p)lmax— Cassumd

— min{adjust()} = O

- max{adjush()} = _fmin + (m)fmax"‘ Dln(tsenq) + fassume

Dln(tsenq) € ((1 + P)fmax — Cassume 00]

- min{adjush()} = _(1 +P)fmax‘|‘ Dln(tsenq) + Cassume

—  max{ad justk()} —Cmin + (]—’fp)fmax+ Dln(tsenq) + Cassume

Next, the minimum and maximum relative changes in clock skew between ao#es
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andn are determined for each set of initial conditions listed in the previous section. Since
the results of some sets of initial conditions are the same, they have been combined below

for brevity.

Dlz(tsenq) € [0» (1 + P)fmax - fassuml
Dln(tsenQ) € [0, (1 + p)fmax - fassumi

- Asyn(;mn12 = fmin— (ﬁ) Cmax— Dlz(tsenq) — Cassume
- Async.;nax12 = —(1+ p)_lez(tsenq) -1+ P)_lfmin + Cassume
_ 1Y%
- AsynQninln = lmin— (Fp) Cmax— Dln(tsenq) — Lassume
— Asynqmay1n = —(1+ P)_lez(tsenq) -1+ p)_lfmin + Cassume
SA = loin— | =£— ) fmax— Din(tsena) = £
SYNGniny, —  tmin T+p max 1n\lseng assume
- Asynenayzn = —lmin+ (l:;p) Cmax+ D12(tseng) + Cassume

DlZ(tsenq) € [0» (1 + P)fmax - fassum;

Din(tsend) € ((1+ p)lmax— Cassume ]

- A:syn(,:nin12 = fmin - (ﬁ) fmax_ Dlz(tsenq) - fassume

- Asynt;mlx12 = —(1+ p)_lez(tsenq) -(1+ P)_lfmin + Cassume
_ P

- Asyn(;ninln = lmin— (Fp) Cmax— Dln(tsenq) — Cassume

- Asyn(;naxln = —(1+ p)ilez(tsenq) -1+ P)ilfmin + Cassume
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= Asyngan,,

- Asyn(fma)gn

+(1 + p)lmax— Dln(tsenq) — Cassume

fmin - (%) gmax— Dln(tsenq) - fassume
—,0) gmax + Dlz(tsenq) + fassume

+(1 + p)fmax_ Dln(tsenq) — Cassume

Dlz(tsenq) €

Dln(tsenq) €

Asyn(ininlz -

AsynGnaxlz -

ASym‘r‘ninln -

ASynGnaxln -

Asyncninzn -

ASyn‘PnaxZn -

((1 + p)fmax — Cassume (1 + p)zfassume_ (1 + p)fmin]

((1 + P)fmax — Lassume 00]

gmin - (%p) gmax_ D12(tsenq) - fassume

-1+ P)_2D12(tsenq) -1+ P)_lfmin + Cassume

+(1 + p)lmax— D12(tsent1) — Cassume

fmin - (%p) fmax_ Dln(tsenq) - fassume
-1+ p)_lez(tsenq) -1+ p)_lfmin + Cassume

+(1 + p)lmax— Dln(tsenq) — Cassume

_(1 + P)Zmax"‘ Dlz(tsenq) + fassume

+€min - (1’%/)) gmax_ Dln(tsenq) - fassume

_fmin +

p )fmax"' D12(tsenq) + fassume
+p

+(1 + p)lmax— Dln(tsenq) — Cassume

Dlz(tsenq) € ((1 + P)zfassume_ (1 + P)fmin’ 00)
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Dln(tsenq) € ((1 + p)zgassume_ (1 + P)Kmin, OO)

- AsynGninlz = fmin— (%p) Cmax— Dlz(tsenq) — Cassume
- Asyn(;naxlz = (1 + p)fmax - D12(tsen(1) - fassume
- As NGni = fmin - L fmax_ Dln(tsenq) - fassume
Yy ing 1 + p

- ASynGnayin = (1+ p)lmax— Dan(tsend) — Cassume
- Asynenin2n = _(1 + p)fmax‘*' D12(tsen(1) + fassume

+5min - (l:;p) fmax_ Dln(tsenq) - fassume
- Asyn(;na&n = _fmin + 1:;/) fmax"‘ DlZ(tsenq) + fassume

+(1 + p)lmax— Dln(tsenq) — Cassume

With the maximum and minimum change in clock skew determined for all cases, the

next step is plug these values into the appropriate synchronization equation.

Each resulting maximum bound @ (t2.,) is listed below:

DlZ(tsenq) € [O’ (1 + p)fmax_ fassum;

Dln(tsenq) € [Oa (1 + P)gmax_ fassum;
- Dlz(t(s%;r < DlZ(tstart) - (1 + P)_2D12(tsenq) - (1 + P)_lfmin + Cassumet dr- dtbetween
- Dln(t(s%;r < Dln(tstart) - (1 + p)_lez(tsenq) - (1 + p)_lfmin + Cassumet Ar - Atyerween
- D2n(t(sgr < DZn(tstart) - fmin + (Lp) fmax"‘ D12(tsenC1) + fassume"‘ dr- dtbetween

1+
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DlZ(tsenq) € [O’ (1 + p)fmax_ fassum;
Dln(tsenq) € ((1 + p)fmax — Cassume 00]
DlZ(t(s%;r < DlZ(tstart) - (1 + P)_2D12(tsenq) - (1 + P)_lfmin + Cassumet Ar - Atyerween
Dln(t(s%;r < Din(tstar) — (1 + p)_lez(tsenq) -1+ p)_lfmin + Cassume
+(1 + p)lmax— Dln(tsenq) — Cassumet AT - Atpetween
D2n(t(s%;r < D2n(tstart) - fmin + (1:;/)) fmax + Dlz(tsenq) + gassume
+(1 + p)fmax_ Dln(tsenq) — Cassumet dI - Atyerween
Dlz(tsenq) € ((1 + P)fmax - [assume(l + P)Zfassume_ (1 + P)fmin]
Dln(tsenq) € ((1 + P)fmax — Cassume 00]
- Dlz(t(s%;n) < Dlz(tstart) - (1 + p)_lez(tsenq) - (1 + P)_lfmin + Cassume
+(1 + p)fmax_ DlZ(tsenQ) - fassume"‘ dl’ . dtbetween
- Dln(t(s%;)ﬂ < Dan(tstar) — (1 + p)_lez(tsenq) -1+ P)_lfmin + Cassume

+(1 + P)fmax_ Dln(tsenq) - fassume"‘ dl’ . dtbetween

- D2n(tg;r < D2n(tstart) - fmin + (1:;/)) fmax + D12(tsenq) + fassume

+(1 + P)fmax_ Dln(tsenq) - gassume"' dr . dtbetween

Dlz(tsenq) € ((1 + P)zfassume_ (1 + P)fmina OO)

Dln(tsenQ) € (Q+ p)zfassume_ (1 + p)lmin, o)
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— Dyt

IA

D12(tstart) + (1 + P)gmax_ DlZ(tsenq) - fassume"‘ dr : dtbetween
- Dln(t(s?ar < Dln(tstart) + (1 + p)fmax— Dln(tsenq) - fassume"‘ dr- dtbetween

- D2n(t(s?an) Don(tstart) = €min + (%p) Cmax + DlZ(tsenq) + Cassume

IA

+(1 + p)fmax_ Dln(tsenQ) - fassume"‘ dl’ ' dtbetween

Noting thatDan(tsenq) = Din(tseng) — D12(tseng) @and substituting the appropriate min-
imum or maximum values foD;,(tseng) and Din(tseng) 1O yield the largest bounds, the

above equations become

- D12(t(s%;rt) < ((1 +p)—-(1+ p)_l) Cmax+ (1 + P)_zgassume_ 1+ P)_lfmin + dr - dtpetween
- Dln(t(s%;)ar < (L+p)lmax— (1 + p)_lfmin + dr - dtpetween

- D2n(t(s%;)ar < (1 +tp+ (1 i P)) Cmax— Cmin + dI - Alpetween

- DlZ(t(si');\r < ((1 +p)—-(1+ P)_l) Cmax+ (L + P)_Zfassume_ 1+ P)_lfmin + dr - dtpetween
- Dln(t(s%;r < (1 + p)fmax - (1 + p)_lgmin + dr - ditpetween

- D2n(t(52\rr) < (1 tp+ (1 i P)) fmax - fmin + dr . dtbetween

- D12(t(s%z);\rt) < ((1 +p)—(1+ p)_l) Cmax+ (1 + p)_zfassume_ 1+ p)_lfmin + dr - dtpetween
- Dln(t(s%;r < ((1 + ,0) - (1 + p)_l) Cmax + (1 + P)_zfassume_ (1 + p)_lfmin + dr - dtpetween
- DZn(t(s%;r < (1 tp+ (]-:;P)) Cmax— Cmin + AI - Apetween

- DlZ(t(s?ar < (1 + p)fmax_ Cassumet AI - Alyetween
— Dln(t(s%z)ar < (1 + p)lmax— Cassumet I - Alpetween
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- D2n(t(si)ar < (1 +p+ (]_:;p)) Cmax— €min + dI - dlyetween

Comparing all the possible upper bounds reveals that the third condition,

D2n(t(s%;)art) < (1 +p+ (]-:;P)) gmax_ fmin + dr : dtbetween

gives the greatest possible bound for any skew between two nodes. Note that, unlike

the case of two nodes, the upper bound has no dependerfgg @i

The same analysis is also done for the lower bounds.

Dlz(tsenq) € [Oa (1 + p)gmax_ fassum;
Din(tsenq) [0, (1 + p)lmax— Lassumd

m

- Dlz(t(s%;r > Dlz(tstart) + 5min - ]-:;P Kmax_ Dlz(tsenq) - fassume_ dl‘ : dtbetween
- Dln(t(s%)ar > Dln(tstart) + fmin - ]-pr fmax_ Dln(tsenq) - fassume_ dr- dtbetween
- D2n(t(s%;r > D2n(tstart) + fmin - ]-:;P fmax_ Dln(tsenq) - fassume_ dr : C“:between

D12(tsenq) € [0,(1+ p)lmax— Cassumd

Dln(tsenq) € ((1 + p)fmax — Lassume 00]

- D1z(t(521r > Dlz(tstart) + €min - 1:;[) fmax— Dlz(tsenq) - fassume_ dr- dtbetween
- Dln(t(s%;rt) 2 Dln(tstart) + fmin - ]-:;P fmax_ Dln(tsenq) - fassume_ dr : dtbetween
- D2n(t(sgn) > D2n(tstart) + fmin - ]_l:_;p fmax_ Dln(tsenQ) - fassume_ dl’ ' dtbetween
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Dlz(tsenq)
Dln(tsenq)

— Dt
2
- Dln(t(st;rt)

- D2n(t(521rt)

Y

\%

\%

((1 + P)fmax — Lassume (1 + p)zfassume_ (1 + p)fmin]

((1 + P)fmax — Cassume oo]

Dlz(tstart) + fmin - (1:;/3) fmax_ Dlz(tsenq) - fassume_ dr- dtbetween
Dln(tstart) + fmin - (]_pr fmax_ Dln(tsenq) - fassume_ dl’ : C“:between

D2n(tstart) - (1 + P)gmax + D12(tsenq) + fassume

+[min - (]_:;p) fmax_ Dln(tsenq) - fassume_ dr : dtbetween

Dlz(tsenq)
Dln(tsenq)

- Dlz(t(z)

star
—  Dun (t(s%;rt)

- Dzn(t(S?:ll'

\%

\%

v

A+ p)zfassume_ (1 + p)lmin, o)

((1 + p)zfassume_ (1 + p)fmin’ 00)

Dlz(tstart) + fmin - (1:;/)) fmax_ Dlz(tsenq) - fassume_ dr- d'[between
Dln(tstart) + fmin - (]_:;p) fmax_ Dln(tsenq) - fassume_ dl’ : dtbetween
D2n(tstart) - (1 + P)fmax + DlZ(tsenq) + fassume

+£min - (1:;/?) fmax_ Dln(tsenq) - fassume_ dr : dtbetween

The above inequalities reduce to

- Dlz(t(s?ar 2 fmin - ]-pr) fmax - fassume_ dr- dtbetween
D (2 ) P dr-d
- 1n(tstar 2 fmln - m fmax — tassume— Al - 1:between
(2) %
- D2n(tstar > lmin—|1+p+ m) Cmax— dr - dipetween
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2
—  Dyo(t2)
- Dln(t(s%;r

- DZn(t(Z)

star

2
— Dyt

- Dln(tg;r

star

- Dlg(t(z)

star

4 Dln(t(z)

star

star

\%

\%

\%

%

\%

\%

v

\%

v

fmin -
fmin -

fmin -

fmin -
fmin -

fmin -

fmin -
gmin -

gmin -

P
1+p

P
1— Kmax_ fassume_ dr . dtbetween
+p

)fmax_ fassume_ dr- dtbetween

l1+p+ —1:)_p)5max_ dr - dtpetween

P

m) fmax_ fassume_ dr- dtbetween

1L fmax— assume— dr- dtbetween
+p

1+p+ —1f_p)€max_ dr - dtpetween

1L) fmax— assume— dr- dtbetween
+p

1L) fmax— fassume— dr- dtbetween
+p

1 +p+ ]-’%p)fmax_ dr - dtpetween

Comparing all the above bounds reveals that the third bound,

D2n(t(s%z)art) > Cmin — (

provides the smallest possible lower bound. Again, note that this lower bound is not

dependent Ofiassume

Furthermore, note that

l+p+ L) Cmax— dr - dtyerween

1+p
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’min {DZn(t(j;r }| ’max{ Don(t }‘

=

gmin_(l"‘P‘Flp )fmax_dr'dtbetwee* = ‘(1+p+(L))gmax_fmin"‘dr'dtbetwee-
+p 1+p

In other words, neither the maximum upper bound nor the minimum lower bound dom-
inates the other.
So finally, for the casé,ssume> ¢mid, the limit of synchronization at the start of the next

round may be expressed as

Case Offassume< €m|n

The details of the second case will be omitted, since the analysis is very similar to the
case Offassume> fmin- The resulting synchronization limit is also independent.gf,meand
turns out to be the same as the result above. Thus, the bounds expressed in (4.17) hold for
all values offassume

Comparing the synchronization bounds for the case of three or more nodes (4.17) with
that of the case of only two nodes (4.10) shows that the case of three or more nodes permits

weaker synchronization.

Determining maximum synchronization

Once again, it is necessary to realize that the boundsﬁ)mg;r | described in the pre-
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vious section do not directly translate into an upper bound on clock skew for the algorithm.
To determine the actual synchronization achievable, it is necessary to determine the largest
clock skew possible during the execution of the algorithm, a value that was ignored in pre-
vious analysis. Although much of the analysis from the two-node case may be reused, once
again the existence of additional nodes relaxes some previous assumptions, and hence, the
achievable bounds.

Any increase in clock skew between two nodes during execution will be caused by two
factors, clock drift and leading nodes adjusting their clock forward before the trailing nodes
do. The latter reason could occur if the leading node incorrectly calculates a closely trailing
node’s clock as ahead of its own.

Thus, an expression fddnay the constant that bounds actual maximum clock skew,

may be expressed as

Dmax Z Iﬁg?)rf{D” (tstart) + adeStO} + dr : dtsetnax.

In other words, the bound is established both by clock drift and by the maximum pos-
sible skew between any two nodes caused by adjustment of a clock.
The value ofdts,, iS the same as that calculated for the two-node case in (4.14).

Specifically,

dtsetnax = ((1 + P)3 +(1+ p)) Dstartmax +(1+ p)zfmax + dtcalcmax-

Additional work is required to find the maximum possible skew via clock adjustment,
since this factor was not relevant in the two-node case. There are two possible worst-case

contributors:

1. Dln(tsent’J) = DStaffmax
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Dlz(tsenq) € [0» DSIarlinax]
D2n(tsend) = Dln(tsenQ) - Dlz(tsenq)

adjustz() = —lmin + (ﬁ) Cmax+ Dlz(tsenq) + Cassume

2. Dln(tsenl’J) = DSta”max
Dlz(tsenq) =0
adjust() = —(1+ ) *Dia(tsenq) — (1 +0) " min + Cassume

For the first case above,

Dmax

v

max{ D2n(tstart) + ad JUSEO} + dr : dtsetnax

= Dmax

W%

Dstartmalx - fmin + (l:;p) fmax+ fassume"' dr- dtsetrnaX

For the second case,

Dmax

\%

max{Din(tstart) + @d just()} + dr - dtsey,,,

\%

= Dmax Dstartmax - (1 + p)_lfmin + fassume"' dr- dtsetnax

Comparing the two results shows that the first bound is strictly larger than the second,
and is thus the one of interest. Furthermore, note that by choégiqge= ¢min, the bound

may be minimized. Thus, the achievable synchronization is
Dmax > Dstartm + L Kmax"‘ dl‘ : dtsetn .
ax 1+p ax

By substituting equation (4.14) faitse;,.,, the following expression can be obtained:

Dmax > (1+dr ((1+p)* + (1 + p))) Dstaripe, + (%p) Cmax+ dr - (14 p)bmax+ dr - dicaig,,
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SubSHitUtingDstari,,, = Max{|D; (t%,)|} from (4.17) yields

Dmax > (1 +dr ((1 + p)3 + (1 +p))) . ((1 +p+ (]-’%p)) Cmax— Cmin + dr- dtbetweer)

+ (ﬁ) [max"‘ dr * (1 +p)2€max+ dr * dtcak:max. (4.18)

Determining timing constraints

As in the two-node case, the minimum time between synchronization rounds required for
correct execution is constrained by

T (2)
Y nodes, j, to

¥ nodes, T@ ., > Ciltsey).

+
I
=)
5
\Y%

tseq

The first condition requires that no message sent in the next synchronization round
should reach a node before the node has completed adjusting its clock in the current round.
The second condition requires that no node must ever adjust its clock forward beyond the

next time at which it needs to send the next round of messages.

To satisfy the first condition for the case of three or more nodes, it is possible to reuse
(4.15), since the analysis is the same up to that point. The expression is reprinted here for

convenience:

dtpetween> (1 + p)Dstartmax + ((1 + p)3 +(1+ p)) Dstarfmax +(1+ p)zfmax + dtcalomax = Lmin.

Substituting the new value fdDg,, ., Calculated for the current case of three or more
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nodes gives

dloetween = ((1+p)° +2(1+p))- ((1 +p+ (1%0)) Cmax— Cmin + dr - dtbetwee)

+(1+ p)zfmax"' dtcalqnax — Lmin.

Solving fordtyeweenfinally gives

d tbetween 2

((1 +p)2+2(1+ p)) ((1 +p+ (%’0)) Cmax— é’mm)

+(1 + p)zfmax — Cmin + dtcalcmax

-1

(1=dr-(@+p)°+2(1+p))) (4.19)

To satisfy the second condition, it is possible to reuse (4.16), since the analysis is the

same up to that point. The expression is reprinted here for convenience:

L) fmax + fassume
o

Thetween = (1 + (1 + P)Z) Dstartmax + (1 + p)fmax + Tcalgnax — Cmin + (1 n

Substituting forDgar,,, gives

Thetween = (1 +(1+ P)Z) ((1 tp+ (lpfp)) Cmax— Cmin + dI - dtbetweer)

+ (l +p+ 1’%/)) Cmax— Cmin + Cassumet Tcalomay

Once again, the analysis has resulted in a lower boung@pne.described in terms of
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dtpetwveen Since a bound fodt,eeenhas already been determined from the first condition,

the bound fofrpeeenmay be found by substitution.

4.4 Byzantine Resilient Algorithm

A Byzantine resilient algorithm is one that is executed by a group of nodes and can tol-
erate arbitrary incorrect actions by at least one member of the group. Algorithm 4.3.1 is
not Byzantine resilient. If a single node behaved incorrectly, such as sending messages at
different times to dierent nodes, dlierent nodes may adjust their clocks according to in-
consistent information, and the correctness of the algorithm could no longer be preserved,

and no synchronization bounds could be guaranteed.
Description of Adversary

The adversary that the Byzantine resilient algorithm must cope with has the power to con-
trol the contents of whatever messages it sends, and it may also control when it sends its
messages to each other node, if it sends one at all. Since connections between nodes are
point-to-point, a message sent by the adversary to one node can never be seen by another
node, allowing the adversary more secrecy than if there were a common broadcast medium.
However, the point-to-point connection also prevents the adversary from pretending to be
another node. A receiving node always knows the source of a message because there is a
unique physical port associated with every other node. Only one adversary may exist in the

system at any time.

Description of Algorithm
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The Byzantine resilient algorithm requires three communication rounds. The first com-
munication round requires no algorithm-specific data. It only requires that a message be
sent. From the arrival times of the first messages, each node infers the others’ relative clock
skew. The next two rounds involve each node broadcasting its calculated clock skew data
to all other nodes in a Byzantine resilient manner. The arrival times of the round 2 and
round 3 messages are not considered. Thus, after the third communication round, all hon-
est nodes are guaranteed to know the same information, i.e., every node’s reported clock
skew from every other node. Of course, a faulty node could report incorrect information,
but every other node will know the exact same incorrect information, allowing consistent
behavior among honest nodes. Once the nodes all have consistent information, they may
then analyze the data, recognize faults, and adjust their clocks forward appropriately.
Algorithm 4.4.1 augments algorithm 4.3.1 with Byzantine resilient properties. The

algorithm is split across pages in figures 4-3 and 4-4.
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Algorithm 4.4.1: Byz-Sync()

Let N = {n;...n¢} be a set of k participating nodes.
Leti € {1...k} be the number of the node executing the instance of the algorithm.

global timestampfk] < {null, ..., null}
global deltagk][k][k] « {{0,...0},...,{0,...0}}

processREcEIVE-MEssaGES()
while Ci(t) < Tsend+ Twait
do {if m; received
then timestamplg] = CurrentTiME()

while C(t) < T, 4+ 71
if n; received

do then {deltas n;
deltagi][ j] = deltas

wait

while C(t) < T2, 4+ 7,
if n; received

oy en {deltas; n;
deltagj] = deltas,

wait

procedure CarcuLate-DEeLTA(timestamp
delta<_ tlmestamp‘ (Tsend+ fassuma
return (delta)

Figure 4-3: Part 1 of the Byzantine synchronization algorithm. Process Receive-Messages
timestamps messages that arrive in the first round, and stores information for node’s reported clock
skews that arrive in the second and third rounds.
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processSEND-AND-A DiusT()
if Ci(t) = Tsend

for j < 1tok,j#i
do {Send any messags; ton;.

while C(t) # Tsend+ Twait

then do {Nothing.
for j < 1tok
do ifj#i
then deltagi][i ][ j] « Carcurare-Decta(timestampg])
if Ci(t) = Tlpg

h for j<— 1tok j#i
t do {Sendny, = deltagil[] to n;

if Ci(t) = T, 4
for j < 1tok,j#Ii
do {Sendny/ = deltagi] to n;.
then
while C(t) # T2 4+ Twait

do { Nothing.

REesoLvE-INcONsISTENCIES (delta9

Ser TiME(Current-TiME() — min(deltag)

Figure 4-4:Part 2 of the Byzantine synchronization algorithm. Process Send-And-Adjust sends
out appropriate information in each round. At the end of round three, after all nodes have consistent
information, procedure Resolve-Inconsistencies uses consistency checks, described later, to recover
from a possible faulty node. The clock is then adjusted as necessary.
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Fault Scenarios

This section describes the various ways an adversary ifiegtdhe system. Some fault
scenarios allow the honest nodes to identify the source of the failure. Others scenarios
make it impossible to pinpoint the source. The scenarios described below assume a total
of four nodes, three honest nodes and a single adversary. Note that the following scenarios
do not include an adversary deviating from the Byzantine exchange protocol in communi-

cation rounds 2 and 3.

1. The adversary sends no round 1 messagesNo honest node receives any mes-

sages from the faulty node. This faulty node is easily identified and may be safely ignored.

2. The adversary sends a round 1 message to only one other nodddere, two
honest nodes believe the adversary to be faulty, and one honest node does not. Since the
naive node knows that two nodes cannot falsely accuse another node (due to the assumption

of one faulty node), it accepts that the adversary is faulty.

3. The adversary sends a round 1 message to only two nodedn this case only
one honest node knows that the adversary is faulty, and the other two are naive. However,
the lone informed node cannot convince the others the adversary is faulty. The naive nodes
have no way to discern if the informed node is falsely accusing the adversary, and therefore
must proceed as if the adversary were behaving correctly. If the node that detected the fault
is to remain correctly synchronized, it must also proceed as if the adversary is behaving
correctly, but infer the adversary’s clock skew via the other nodes’ approximations.

Consider what would happen if the node that claims to detect the fault were trusted
unconditionally. If that node were actually lying and the node under scrutiny were actually

honest and ahead of the other nodes, synchronization would never be achieved. The two
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naive, honest nodes would accept the lying node’s claim that the leading node was faulty,
and they would not adjust their clocks forward to meet the leading node. Since the leading

node may not adjust its clock backward, no synchronization could be maintained.

4. The adversary sends a round 1 message to all nodes simultaneously, but at a
time such that the Dgar,,, @ssumption is violated for all three honest nodes. For three

honest node$, 2 and3 and the adversar®,

|[D14]1| > DStanmax t+e€
|[D24]2| > Dstartmax t+e€

|[D34]3| > Dstartmax"‘@

The adversary is easily identified and ignored, since all three honest nodes ageee that

is in violation of the synchronization assumption.

5. The adversary sends a round 1 message to all other nodes at the same time,
but at a time such that the Dgar,,, assumption is violated for two of the three honest

nodes. In this case,

I[D1alil > Dstartac t+ €
|[D24]2| > DStartmax +€

I[D3alsl <= Dstargpay + €-

The adversary can be identified, siricend2 both agree that is faulty. Since the naive
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node3 knows thatl and2 could not both falsely implicaté, it accepts thad is faulty.

6. The adversary sends a round 1 message to all other nodes at the same time, but
at a time such that the D, ., @ssumption is violated for only one of the honest nodes.

For the three honest nod&s2, 3 and the adversar,

|[D14]1| > DStartmax +€
I[D2slal <= Dstartpey + €

I[D3alsl <= Dstargyay + €-

In this case, the adversary’s fault has only been noticed by a single honest node. From
the point of view of the two naive nodezand3, either4 could have sent a message at an
inappropriate time ot is misrepresenting whehactually sent its message 1o Consider

the worst case,

[Dis]i = —2* (Dstarta, + €)
[D2d], = —Dstartya, + €
[Dasls = —Dstartya, + €.

In other words, node® and 3’s clocks are roughly the sam#’s is as far behind as
possible, andl, the adversary, sent its messages such2hatl3 believe it is as far ahead
as possible (and they are as far behind as possible) &ndws4 is faulty. Node<2 and3
can’t know for sure whether their own clocks ran fast or slow since the last synchronization,

so they cannot know whether it is correct #to be in front. Therefore, nodésand3
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must accepd’s claim that it is ahead and set their clock forward appropriately, and hode

knowing the action tha and3 will take, must accordingly set its clock drastically ahead.

Note that if4 were incorrectly assumed to be faul®yand3 would not set their clocks
forward, and the clock skew between those nodesdanduld never be closed (sinek

may not set its clock backward), and no synchronization guarantees could be made.

7. The adversary sends a round 1 message to each other node at verffelient
times. Honest nodes may determine whether a participant node sent all its round 1 mes-
sages at the same time. Each node may confirm its own approximation of another node’s
local clock by adding its approximation of a second node with that second node’s approx-
imation of the node in question. L&t 2, 3 and4 be participating nodes. Nodemay

confirm its approximation offp,,]; by checking that

[D12ls

[D12]1

Q

[D13]; + [Dz2]5

[D1a]1 + [Da]s .

X

Of course, the three filerent approximations will not be exact, due to varying message
latencies and processing times, but the checks do limit the flexibility of an adversary to

influence the behavior of the other nodes.

If both of those consistency checks fail, all honest nodes realize2thaiist be the
culprit. Under the assumption that only one node may be faulty, the two nodes used to
confirm the skew approximation cannot both be misreporting their approximation of the
first node’s skew (or misrepresenting their own clock). Thus, the honest nodes may agree

that the adversary is faulty.
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8. The adversary sends a round 1 message to two of the honest nodes at the same
time, and sends to the third honest node at a dierent time. As in the previous case,
the nodes will notice a fault because one of the consistency checks will fail. However,
since only a single check fails, the nodes will not be able to pinpoint the adversary. Thus,
the node that received faulty data about the adversary’s clock must instead adjust its clock
according an indirect approximation of the adversary. For example, if an advdrgave
consistent clock information t& and 3, but revealed a fault to node nodel would be

forced to calculatd’s advertised clock skew by

[D1al1(2) = [D12]1 + [D24]; .

9. The adversary misrepresents its relative clock skew with two or more nodes
by broadcasting incorrect values in round 2. All nodes behave honestly in round 1,
but the adversary lies in round 2, indicating that messages from two or more nodes were
received by him at dierent times than they actually were. The honest nodes can identify
this adversary because itects two pieces of information that are independently verifiable.
Say nodedl, 2, and3 are honest, whilel has reported incorrect approximations of
[D42]4 and Dygls. Sincel, 2, and3 are honest, they report relative skews of the other

nodes such that

[D2i], =~ [D2i]ys = [D2s]z + [Dsils
[Da1]o ~ [D21]oay = [D24]2 + [Dails
[D3i]s = [Dailsg = [Ds2]s +[D2i]2
[Dai]ls =~ [Dailaay = [Daals + [Dails
[Di2]1 = [Di2lyz = [D1sl1 +[Ds2]s
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[Ds2ls

[Dais]y
[D23],

Q

[D32]51) = [Dai]s + [D12]1

[D1al1z) = [D12]1 + [D2al2
[Da2s]oqy = [D21]2 + [Dagls -

X

&

Since4 has been dishonest, the following approximations are not true, indicating a

fault:

[D12]1

[D32]3

[D1a]1

[D23],

[D24],

[Dadl3

% [Di2]ias) = [D14]1 + [Dazls

% [Da2laay = [D3a]s + [Dazls

% [Dis]as) = [D1a]1 + [Dasls

% [Das]ow) = [D24]2 + [Dasls

% —[Dao]s

#% —[Dasls.

Nodesl, 2, and3 may all determine that nodts faulty. Node® and3 are immediately

convinced of4’s fault from[Dy4]» # [Daz]4 and[ D343 # [Das]4, respectively. Nodé must

combine two inconsistencies to be convinced4d fault. For example, fromD,4], #

[D42]4, nodel knows that eithe or 4 is faulty. From Da4]s # [Das]4, 1 knows that either

3or4is faulty. By intersecting the sets of possibly faulty nodes from both, it may conclude

that4 must be the faulty node.
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10. The adversary misrepresents its relative clock skew with a single other node by
broadcasting a single incorrect value in round 2. All nodes behave honestly in round
1, but the adversary lies in round 2, indicating that a single message from another node was
received by him at a flierent time than it actually was. In this case, it is not possible for
the honest nodes to agree on which node is faulty.

Say noded, 2, and3 are honest, whil& has reported an incorrect approximation of

[Das]4- As aresult, the following consistency checks fail:

[Dis]s # [Disli4) = [Dia]s + [Dasls

[D2s]; # [Daslow = [Da24]2 + [Dasls

[Das]s # [Dasls.

Both nodel and node2 suspect eitheB or 4 as faulty, and nod8 knows for sure that
4 is faulty. However3'’s certainty is of no help td and2, since they already vie® as
suspicious. Thus, the honest nodes have no choice but to treat all other nodes as if they

could be honest and adjust their clocks forward as necessary.

11. A single node commits errors in multiple communication stages. If a single
node makes errors in multiple communication stages, and if it commits a grievous enough
fault at any single stage to be pinpointed as faulty, its actions from other stages may be
safely ignored.

Also, through a series of several faults ifffdrent stages, each honest node may be
able to pinpoint the source of the two faults. For example, say nbdzsnd3 are honest,

while 4 sent an early message 2an round 1 and misrepresented its skew with n8de

124



the exchange steps. Thely}], and [D43], are inconsistent with the rest of the data, and

the following checks would not hold:

[Dis]s # [Dislia) = [Dials + [Dasls

[D2s], # [Daslow = [Da2a]2 + [Dasls

[Dis]i # [Dia]iz) = [D12l1 + [D24l>

[Dasls # [Dazalsg) = [Ds2]s + [D24]2

[D24], # —[Da2]s

[Dasls # —[Dags-

Nodesl, 2 and3 may all determinel as faulty, sincet is independently involved with

multiple inconsistencies.

Determining Consistency Checks

The previous descriptions of fault scenarios discussed how nodes might discover various
inconsistencies in skew data. The following sections characterize the consistency checks

the nodes may use to confirm proper operation of other nodes.

Pair Consistency

The pair consistency check involves verifying whether two nodes report approximately

the same relative clock skew from each other. Recall that the consistency check can only
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be approximate due to unpredictable message latencies, varying processing times, and con-
tinual clock drift. Therefore, certain ranges of approximations indicate correct behavior by

the other nodes, while approximations outside those ranges indicate a fault.

Consider an honest no@dhat sends a round 1 message to nbdodel can approx-

imate [D;,]; to within

[D12]1

[D12]1

IA

Dlz(tsenq) + (1 + p)lmax— Cassume

\%

Dlz(tsen(i) +(1+ p)_lfmin — Cassume

After communication rounds 2 and 3, notl&nows2’s announced value oDl,], and

may perform this consistency check:

[D12]1 +[D21], = O.

Sincel knows that a correct),;], must be bounded by

IA

[D21]2 DZl(tsenq) + (1 + P)fmax — Cassume

[D21]2

\%

DZl(tsenq) + (1 + p)_lgmin — Cassume

then the acceptable error fdD{,]; + [D21], is
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[D12]1 + [D24]»

[D12]1 + [D24]2

IA

DlZ(tsenq) + D21(tsenq) + 2(1 + P)fmax_ 2fassume

Dlz(tsenq) + D21(tsenq) + 2(1 + P)_lfmin - 2€assume

\%

[D12]1 + [D24]2

[D12]; + [D21]2

IA

Dlz(tsenq) - Dlz(tsenq) + 2(1 + P)fmax_ 2fassume

Dlz(tsenq) - Dlz(tsenq) +2(1+ P)_lfmin — 2Cassume

Y

[D12]1 + [D21]2 dr |tsenq - tsenq[| + 2(1 + P)fmax — 20assume

[D12]; + [D21]2

IA

—dr |tsenc§ - tsenq| +2(1+ P)_lfmin — 28assume

\%

Loose bounds Oftseng — tseng| Can be provided by

IA

|tsenq - tsen(g[| 1+ p)Dstartmax

IA

|tsenq - tsenq| 1+ p)_lDStanmax‘

but stricter bounds Ohlsenq - tsenq| are possible by inferring them from the information

provided by eitherD1,], or [D2;], and using it to calculate a smaller acceptable range.

Given an approximation};,];, a node knows that the possible valuesDab(tseng)

which produced it are bounded in terms of tig ], by
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[D1a]1

[D1a]s

IA

Dlz(tsenq) + (1 + P)gmax — Cassume

\%

Dlz(tsenq) + (1 + P)_lfmin — Cassume

DlZ(tsenq) [DlZ]l - (1 + P)_lfmin + fassume

D12(tsenc1)

IA

\%

[D12]1 — (1 + p)lmax+ Lassume

A node also knows that bounds b&nq — tseng| CaN be provided by

IA

(1 + p) |D1altsen)|

1+ p)_l |D12(tsend)| .

|tsenq - tsenq|

\%

|tsenci - tsenq|

and the following can be obtained:

IA

1+ p)max{|[D12]1 -(1+ p)_lfmin + fassumL [[D12l1 — (1 + p)lmax+ gassumla}

(1 + P)_lmin “[DlZ]l - (1 + P)_lfmin + fassum*a’ |[D12]1 - (1 + P)gmax+ fassumla} .

|tsenq - 1:senq|

\%

|tsenq - 1:senq|

Finally, bounds on[Dy,]; + [D21], may be obtained by substituting the above:
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[D12]l + [D21]2 < dl‘(l + p)maX“[DlZ]l - (1 + p)_lfmin + fassumia» |[D12]1 - (1 + p)gmax"‘ fassumla}
+2(1+ p)lmax— 2lassume
[D12]l + [D21]2 2 —dl’(l + p)ilmin “[DlZ]l - (1 + p)ilfmin + fassumL |[D12]1 - (1 + P)fmax'*' fassumla}

+2(1 + P)_lfmin — 2lassume

Thus, if the sumD1,]; + [D21], is outside the boundaries above, that indicates a fault
has taken place.

A node may similarly usel),], in addition to D;,], by checking that

[D12]1 + [D24]»

IA

dr(l + P)maX“[DZl]Z - (1 + p)_lfmin + fassum4a» |[D21]2 - (1 + p)fmax + fassumla}

+2(1 + P)fmax — 2lassume

[D12]1 + [D24]»

v

—dr(1+ P)_lmin {|[D21]2 -(1+ P)_lfmin + fassumJE, I[D21]2 — (1 + p)fmax+ fassumle}

+2(1+ p)_lfmin — 2assume

Maximum Skew Consistency

A central tenet of the algorithms described in this thesis is that the maximum clock skew
between any two nodes at the start of the algorithm must be equal to or less than a quantity
Dstartyoe the value of which depends on the physical properties of the system. Any node
that does not maintain this property must be faulty.

Consider two honest noddsand?2 that begin the execution of the algorithm with

Dlz(tsenq) = Dstartmax-
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Then, since the bounds of no@is skew approximation of is bounded by

[D21]2 = D21(tsenq) + (1 + p)_lfmin - [assume

then the smallest value obp,], that node2 should ever report is

[D21]2 = _Dstartmax + (1 + p)_lfmin - fassume

Also, since
[D12]2 < Dlz(tsenq) + (1 + p)_lfmin - fassume
and
Dlz(tsend) < DlZ(tsenQ) + dr(tsen(i - tsenq),
and

tsen(i - tsenq < (1 + P)D12(tsenq)a

then the largest value oDj;,], that nodel should ever report is

[D12]1 < Dstartmax + dr(l + p)Dstartmax + (1 + p)fmax_ Cassume
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These bounds can generalize for the reported skew for any pair of nodes. For any two

nodesiandj, a reported skev[/Di,-]i must be within

Dstartmax + dr(l + P)Dstartmax + (1 + p)fmax — Cassume

::U
A

—Dstartpa, + (1 + p)_lfmin — Cassume

::U
v

If node i reports otherwise, either nodeor | must be faulty. Which one is faulty,
however, may be impossible to determine unless one of the nodes can be implicated by an

additional inconsistency.

Transitive Consistency

Transitive consistency involves verifying a node’s reported relative clock skew with a sec-
ond node by using reported clock skews between those nodes and a third, independent
node. Again, this consistency check can only be approximate.

Consider honest nodds2 and3 exchanging messages. The reported skew]| may

be verified by checking

&

[D12]; + [D23],

= [D12]1 + [D23], — [D13]1

[D13]1

2
o

The following bounds hold true for a system without faults:

[D13]1
[D1al1

IA

D13(tsen@) + (1 + P)fmax — Cassume

Dl3(tsen@) + (1 + P)ilfmin — Lassume

\%
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[D12]1
[D12]1

[Da2s],
[D23]>

IA

Dlz(tsenci) + (1 + p)lmax— Cassume

\%

D12(tsenq) + (1 + P)_lfmin — Cassume

IA

D23(tsen@) + (1 + p)lmax— Cassume

D23(tsenc§) + (1 + P)_lfmin — Lassume

v

Therefore, the results of the consistency check should be bounded by

IA

[D12]1 + [D23lz — [D1al1

[D12]1 + [Da23]; — [Da3ls

\%

[D12]; + [D23], — [D13]y <
[D12]; + [D23], — [D13]s 2
[D12]s + [Da23], — [Daag]; <

\%

[D12]1 + [D23]; — [D1al1

Dlz(tsenq) + D23(tsenq},) - DlS(tsen@)
+2(1+ p)lmax— (L + p)_lfmin — Cassume
Dlz(tsenq) + D23(tsen@) - Dls(tsen@)

+2(1+ p)_lfmin — (1 + p)lmax— Cassume

D12(tsenci) - D12(tsene§) +2(1+ p)bmax— (1 + p)_lfmin — Cassume

D12(tsen<i) - Dlz(tsen@) + 2(1 + p)_lfmin - (1 + p)gmax_ fassume

dr |tsenq - tsen(él + 2(1 + p)fmax - (1 + p)_lfmin — Lassume

—dr |tsent1 - 1:sene_t,| + 2(1 + p)_lfmin - (1 + P)fmax_ Cassume

To find the bounds Oftseng — tsena|, NOte that
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[D2s]>

[D2s];

IA

D23(tsen@) + (1 + P)gmax — Cassume

\%

D23(tsen@) + (1 + P)_lfmin — Lassume

D23(tsen@) [DZS]Z - (1 + P)_lfmin + fassume

D23(tsen@)

IA

\%

[D23]2 — (1 + p)fmax+ Lassume

Also note that

IA

1+p) |D23(tsen@)|

1+ p)_l |D23(tsen%)

|tsenq - tsen@|

\%

|tsenci - tsen@|

9

and the following can be obtained by substitution:

IA

(1 + p)max{|[D23]2 - (1 + p)_lfmin + fassumL |[D23]2 - (1 + p)fmax"‘ gassumla}

(1 + P)_lmin {|[D23]2 - (1 + p)_lfmin + fassum*a’ |[D23]2 - (1 + p)gmax"' gassumla} .

|tsenq - 1:sencé|

\%

|tsenq - 1:senc_l;|

Finally, bounds on[D1,]41 + [D23], — [D13]; may be obtained by substituting the above:
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[D12]1 + [D23lz — [D1al1

IA

dr(1 + p)
. maX“[DZS]Z - (1 + p)_lfmin + fassum*e» |[D23]2 - (1 + p)fmax"‘ fassumla}
+2(1 + P)fmax — 2lassume

[D12]1 + [D23lz — [D1al1 —dr(1+p)*

Y

- min {|[D23]2 — (L +p) min + gassumtia’ [[D23]2 = (1 + p)fmax+ fassumla}

+2(1+ p)_lfmin — 2lassume

Thus, if the sumD,,]; + [D23], — [D13]4 is outside the boundaries above, that indicates

a fault has taken place.

Analysis Incomplete

Unfortunately, that is all that analysis that has been completed for the Byzantine tolerant al-
gorithm. A complete analysis would finish the characterization of the transitive consistency
check, then proceed to characterize the synchronization capabilities using the consistency

checks.
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Chapter 5

Experimental Application

A control system to balance an inverted pendulum was built to run on the SBFTC to demon-
strate its fault tolerant capabilities. The application provides control commands to a motor
that drives a horizontal, radial arm either clockwise or counterclockwise. The radial arm
may move freely in a full circle. The pendulum is attached to the end of the radial arm
and can swing freely in a full vertical circle, perpendicular to the radial arm. The job of
the controller is to balance the pendulum upright while keeping the radial arm in front and
centered. Appropriate control commands are determined by sensor data from two poten-
tiometers measuring the angle of the pendulum and the radial arm. Figure 5-1 depicts the

demonstration setup.

The experimental setup depicted in the figure is actually simulated by computer. A
Simulink simulation of the dynamic system runs on the ICP, accepting control commands,
updating the state of the system, and returning the new “sensor” data. Periodically, the
ICP forwards the current state of the system to a graphical display running on a Windows
machine. A user interface running on the Windows machine also allows a human to view
the state of each FCP, manually inject faults into the fault-tolerant system, and “bump”

the simulated pendulum. Implementing the demonstration as a simulation allowed the
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IWotor control
To {+-, magnitude)
B ICP
Fot1 reading
Fot2 reading

Figure 5-1:The inverted pendulum sits atop a radial arm extending from the center of a base. The
pendulum should remain upright with the radial arm at then@rk unless disturbed by an external
force, after which the system should recover. The radial arm is controlled by a motor which can
push the arm in the clockwise and counterclockwise directions. Control is based on data from two
potentiometers, which measure the angles of the pendulum and radial arm. The ICP acts as the
interface to the motor and sensors, relaying information to and from the FCPs via its NE.
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slowdown of time, which was necessary because the SBFTC proved unable to provide a
control loop with a sfficiently high frequency. Figure 5-2 depicts the physical setup of the
experiment and shows how software is distributed in the system. Figure 5-3 shows a screen
shot of the experiment.

The demonstration in an example of a closed control loop. Control commands are sent
from the FCPs to the simulated motor on the ICP, which drives the radial arm. In response,
the ICP sends new potentiometer data back to the FCPs. The FCPs evaluate the data in
preparation to issue the next command, closing the loop. The faster the data may travel
back and forth between the FCPs and the ICP, the better the system will be able to balance
the pendulum.

In the demonstration system, packets are sent between nodes every 8 ms, meaning that
a class 1 message takes 16 ms to travel to its destination in a fault-tolerant manner and a
class 2 message takes 8 ms. Since each cycle of the control loop requires a class 1 and
a class 2 message, a full loop requires at least 24 ms, assuming that a control message or
sensor message is ready to be sent at every communication cycle. Unfortunately, this is not
the case. The NE’s communication loop naively checks for messages from tiikCPEP
immediately after it sends data to them. Therefore, the communication loop only learns
about a response message in the following cycle, and the response can only be sent out in
the cycle after that. Thus, a cycle is wasted at each end of the control loop. This translates
to a control period of 40 ms and a frequency of 25 Hz. Figure Bdr® an approximate
timing diagram of single control cycle.

Unfortunately, 25 Hz is not enough to successfully balance an inverted pendulum sys-
tem with the specifications given earlier. In fact, to reliably balance the pendulum, it was
necessary to slow simulation time down by a factor of 6,ffea raising the control loop
frequency to 150 Hz.

The demonstration system used the failstop synchronization algorithm described in Sec-
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Figure 5-2: The physical components of the experimental application. Each FCP executes the
control logic and sends the resulting motor commands to the ICP running the Simulink dynamic
simulation software. The simulation software updates the state of the simulation and produces the
next set of potentiometer readings, which are sent back to the FCPs. Periodically, the simulation
state information is sent by the ICP to the Windows machine, which renders a graphical depiction
of the pendulum. The Windows machine also runs a simple user interface, which allows a person to
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Figure 5-3: A screen shot of the SBFTC experimental application. The Pendulum Sim window
depicts the current state of the pendulum simulation running on the ICP. The SBFTC Status Window
panel allows a user to see the current state of th#RPBs, inject faults of varying severity into the
system, and bump the pendulum in either direction. In this particular demonstration, node 2 is
sufering from a “continuous” fault, meaning it is consistently corrupting the contents of messages
it sends to other NEs. The graphical renderer of the pendulum was created by David Chau.
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Figure 5-4: Visualization of demonstration application timing. Not to scale. Arrows between
horizontal lines indicate messages being sent from one node to another. (a) NEs perform the 1st
step of class 2 exchange with motor control data. (2nd step not pictured) (b) After voting and other
processing, NE 1 sends control data to ICP. (c) After updating simulation state, ICP sends new
sensor data to NE 1. (d) After recognizing the arrival of the sensor data in the previous round, NE
1 initiates a class 1 exchange. (e) All NEs wait until next communication round, then complete
the class 1 message exchange. (f) After voting, each NE forwards sensor data to the FCP (on
the same node). (g) After processing, FCPs sends new command to its respective NE. (h) After
recognizing the arrival of the control data in the previous round, the NEs perform the 1st step of
a class2 exchange, repeating the cycle. The communication medium has approximatejysa 500
delay. Communication rounds occur approximately once every 8 ms. This diagram is slightly
misleading, since NEs do not all send their messages at the same time. In fact, the imperfect
synchronization is a large part of why communication rounds are so far apart.
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tion 4.3, since the Byzantine resilient algorithm has not yet been develofiedesly to

be correctly implemented.
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Chapter 6

Results and Conclusions

The previous sections have described the design of the SBFTC, provided implementation
details, and described the experimental application built to demonstrate the system. This
section describes some tangible results that were achieved during that work and provides
an evaluation of the results and recommendations based on that work. The section ends
with a summary of the thesis and recommendations for future work in continuance of this

thesis.

6.1 Prototype and Experimental Results

The section begins by evaluating the current capabilities of the prototype SBFTC. Next, the
performance of the synchronization algorithms are discussed. Since the failstop algorithm

has been fully characterized, some theoretical and actual performance data is presented.

6.1.1 Current SBFTC Limitations

The prototype SBFTC handles only a limited number of fault scenarios. Most importantly,

it correctly handles any single FENFE which produces inconsistent output gsrccorrupts
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the message bodies from other NEs by detecting and eliminating the inconsistency via
voting. Corrupted message headers are recognized, but they are not handled in a consistent
way. It is assumed that only a single node is faulty at any one time.

The system does not currently handle omitted messages correctly. A node that does not
receive a message from another node at the expected time just assumes tifanthieg
node is faulty. The honest nodes do not communicate to make a consistent decision if a
node is faulty. If a node fails to send a message to only a subset of the other nodes, only a
subset of the correct nodes might believe the bad node is faulty, and inconsistent behavior
may result.

The SBFTC does not tolerate faulty nodes during startup. All four NEs are required to
be available for initialization. The SBFTC also does not handle reintegration of a manually-
reset node into a running system. Once a node hiésred a major fault, it cannot rejoin.

The SBFTC was designed with four NEs instead of five, like the X-38, since the goal is
to eventually implement a cryptographic signature scheme for messages. The SBFTC does
not currently implement such signatures. For research performed toward this goal, see [1].

There is currently a significant, intermittent bug that causes nodes to stop responding all
together until the power is cycled. The most likely cause of this bug is the implementation
of the synchronization algorithm, which timestamps UDP packets when they are received
by a node. Currently, the packets are timestamped by reading the system clock within the

interrupt routine that handles incoming packets, which may cause kernel-level deadlock.

6.1.2 Synchronization Algorithm Performance

The failstop synchronization algorithm presented in this thesis manages to achieve syn-
chronization smaller in magnitude than the maximum network latency. It manages to do

so by incorporating knowledge of the minimum network latency as well. The achievable
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synchronization is largely a function of the spread between the minimum and maximum

network latencies.

Using equations (4.18) and (4.19) and reasonable values for the required constants,
the graphs in figures 6-1 and 6-2 emphasize that latency spread is the primary factor in

achievable synchronization.

The Byzantine resilient version of the algorithm, though still not fully developed, ap-
pears to be an interesting candidate. Like the failstop algorithm, it will still be highly
dependent on the predictability of the network latency, but in the controlled environment of
an embedded system running an RTOS, it appears that the network latency can be tightly

controlled, allowing the algorithm introduced in this paper to be usistively.

Take note, however, that the achievablg., for a Byzantine resilient implementation
will be much less favorable than that achievable for failstop implementation. In addition to
requiring a much longer period of time to execute, reducing possible synchronization, an
adversary may cause nodes to set their clocks unnaturally far forward, causing temporary
clock skews between nodes to be more than twice as large as possible without an adversary.

However, if network latency is sticiently predictable, this limitation could be managed.

More development of the algorithm needs to be performed, not just to fully characterize
the Byzantine resilient algorithm, but also to describe how an initialization strategy might
work. The analysis done in this thesis assumes that all clocks begin with some bounded
skew, but it is dificult to make such an assurance on startup. Currently, the prototype imple-
mentation uses Optimal Clock Sync to reach an acceptable level of synchronization before

the algorithm described in this paper takes over to maintain the same synchronization.
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Figure 6-1:Achievable synchronization with = 107, dtcaiq,,, = 50uS, anddtyetween= 1. The

second graph corresponds to the thick line running up the slope in the first graph. Note that when the
minimum latency is close to the maximum latency, the achievable synchronization becomes very
small. The flat and level region is wheffi@i, > {maxandDmaxis undefined.
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Figure 6-2: These graphs are taken from the same data as figure 6-1. The first emphasizes that
the achievable synchronization is largely a function of the latency spread rather than the actual
latency. The second graph corresponds to the thick line running perpendicular to the slope in the
first graph. It demonstrates the second ord&ect of absolute network latency in determining

achievable synchronization.
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6.1.3 SBFTC Performance

The prototype SBFTC is not as successful as hoped, since itis unable to balance a simulated
inverted pendulum in real time. The most critical reason for the performance failure is
communication latency. As described in Chapter 5, messages are sent between NEs only
once every 8 ms, much too slowly. The long delay between messages ensures that every
NE has completed the work required in the previous communication loop before it must

send another message.

There are several reasons why a single communication loop takes so long, one of which
is the point-to-point latency. Of course, large latencies diredilycathe communication
loop frequency, since messages may not be sent as quickly. However, large latencies also
indirectly dfect the system in a more dramatic way Ifkeating the level of achievable syn-
chronization. As noted in Section 6.1.2, uncertain latency, not large latency, is the primary
factor in unfavorable clock synchronization. However, since the nodes share a common
network, there is much variation in the latency, and the variation is only aggravated by
large maximum latencies. Hence, the systeffiesa from poor synchronization. The far-
ther spread apart clocks are, the longer a node’s communication loop must wait to ensure

all other nodes have completed their own loop before continuing on to the next cycle.

One reason for the large latency is that the NE communication layers were built on top
of the UDP protocol. UDP is a transport-layer protocol, designed to move packets over a
large network with routes consisting of several hops. Since NE communication is point-to-
point, UDP gives no advantage over the lower-level, mdfieient ethernet protocol that

runs at the link layer.

In the SBFTC prototype, UDP packets are approximately 1 KB in size. A one-way
trip of a 1 KB UDP packet over the prototype SBFTC’s empty network takes about 400

us. Also recall that several communication layers were built on top of the UDP protocol
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that also contribute to the time spent in the network stack. A message sent at the virtual
processor (VP) layer (NE-to-NE) takes approximately p8@o travel one-way, about 100

us longer than if the message were sent at the transport layer. Furthermore, a message sent
from an NE to an FCP on the same physical node takes approximatelys29bese three

values imply that during a trip across the network, a packet spendaslbOthe SBFTC
network layers, 15@s in the lower communication layers, and 2&0on the actual wire.

These values are summarized in table 6.1.

Communication Layer(s) Typical Latency (us)
Physical layer (wire) 250
Link, network, transport layers 150
SBFTC board, processor layers 100

Table 6.1: Latencies of Network Layers for a 1 KB Packet

More significant than the actual maximum network latency is the uncertainty in the
possible spread of network latencies. As demonstrated in Section 6.1.2, the possible syn-
chronization is moreféected by the unpredictability of the network than by the absolute la-
tency of the network. Unfortunately, all the nodes of the prototype SBFTC share a common
network, and therefore the network latency is very unpredictable due to wire contention.

The message processing components of the communication loop take an encouragingly
short amount of time. Voting the flierent versions of a single class 1 or class 2 message,
which consists of three memory fder comparisons of 128 bytes, takes approximately 30
us, and the processing required to execute a single round of clock synchronization takes
approximately 5@:s. The major time sink of the loop tends to be the overhead required by
the network stacks when sending and receiving messages to NEs, ICPs, and FCPs, which
may occur several times per loop. Table 6.2 lists tHEedknt functions performed by the
communication loop and the various associated execution times.

Clearly, the CPU time spent in the communication stack reading and writing messages
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Function Approximate Execution
Time (us)

Setup before sending. Examine messages table 26r

messages ready to be sent.
Send appropriate messages to other NEs. (3 131370
byte bufers)
Wait to ensure messages from other NEs arrvé&200
(Pre-specified sleeping period)
Read arrived NE messages from memory. (3 13280
byte bufers)
Parsie messages and update active messages tal860
Compare arrival time of messages and adjustiBg
clock. (periodic)
\ote a single group of messages versions. (3 138
byte bufer comparisons)
Forward appropriate messages to |EeP 500
Receive messages from IEFCP 60

Table 6.2: Communication Loop Functions and Execution Times

takes up the majority of the time during the execution of a single cycle, although what parts
of the stack are time consuming is not immediately clear. If a method was found to slash
these times, the frequency of the communication loop could be increased substantially.
Why parsing messages and updating the active messages table takes so long has not been

analyzed, but it is likely that irfcient algorithms, like full table searches, are responsible.

Another problem with the communication loop is that the ACPs are polled for
messages at a rather poor time. When a message is sent from ACF@®an NE, the
message is received by the NE’s hardware and stored ifferblihe NE chooses when to
poll that bufr for any waiting messages. In the current communication loop, tfierbs
polled only once per loop, directly after any voted messages are sent to the processor.

The FCRICP may receive a message from the NE, complete its processing, and send
a reply back to the NE in time for the next communication cycle. However, the NE will

not poll its bufer and discover the waiting message until émal of the next loop, after
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that round’s messages have already been sent. As a result, that cycle is wasted and the
message is forwarded in the following cycle. A more intelligently timed poll (just before
NE messages are sent) could eliminate two wasted cycles and 16 ms from the control

period, increasing the control frequency by about 38%.

6.1.4 Design Alternatives

A critical design decision in this prototype SBFTC was to pass messages between NEs
only at pre-specified times. This decision was made because of the ease of implementation
and predictability. The major drawback is that message passing between virtual groups is
inefficient, since each step of the fault-tolerant algorithm requires a complete cycle of the
communication loop.

An alternative design would have been event driven, with NEs quickly reacting to mes-
sages arriving from their FGEZPs and other NEs and immediately forwarding or reflecting
them. Such a design would certainly reduce message latency across the fault-tolerant net-
work, but would likely be more dlicult to correctly design and analyze. For example,
given that messages from FCPs should have the lowest latency possible, if an NE receives
a message to forward from its ICP, it needs to make a decision whether to forward it im-
mediately, wait for an expected FCP packet, defer to a synchronization routine that might
begin soon, etc. Careful scheduling would be required to make the system predictable.

One downside to event driven programming is that it is non-deterministic. There is
no way to predict exactly when a piece of code will be executed if it is triggered by an
external event. If a CPU intensive task were executed as the result of some unpredictable
event, that code might usurp another important task in a dangerous way. Thus, event driven

programming is typically ill-suited for critical applications.

An alternative to event driven programming is polling. While the current SBFTC pro-
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totype already uses polling to determine whether messages have arrived from other NEs
or FCP/ICPs, in order to approach the response times of event driven programming, the
frequency of polling would need to be much higher. Unfortunately, polling is a CPU in-
tensive process. Since NEs and FCPs reside on the same node, a constantly polling NE
might starve the FCP of CPU time. Scheduling the FCP for the CPU between polling could
impose large overhead from context switches. Reducing the frequency of polling increases

available CPU, but decreases response times.

6.2 Discussion and Recommendations

This section discusses conclusions and recommendations arising from this thesis.

General Design

In general, the periodic, synchronized communication loop was an intuitive and easily
implemented design. It was chosen after a fellow student ran ifiioudties designing an
event driven system. If the fliculties with large communication latencies are solved, this
design will become quite feasible.

The choice of putting the FCP on board with the NE in an interesting one, since it cut
communication latency between the NE and the FCP by about half. However, doing so
requires careful analysis of the execution time required by the FCP, since it no longer has
the full resources of its hardware available to it. Due to the time-partitionifegex by
Integrity, the FCP will never be unexpectedly starved, but the system designer must treat
the NE partition with priority (or else the system will fail), and the FCP may not get the
proper resources to complete in a timely manner. If communication latencies are slashed

and the communication loop runs at a much higher frequency, its possible that the NE
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process will require all of the CPU to keep up. In this case, the FCP will be better moved
to a diferent node. Communication between the NE and FCP would be increased, but it

would be better than giving a 3 FCP process only 1@ every 10Qus to execute.

Software Design

During the development of the SBFTC prototype, not much care was taken to optimize
code paths and data structures. This choice turned out to be acceptable, since the majority
of execution time is spent during communication. However, once the high communication
time is solved, more attention should be paid to optimizing the actual message processing

routines.

Communication Network

This thesis has demonstrated that communication latency and predictability, both on the
wire and in the software stack, are the major limiting factors in the current SBFTC system.
Effort should be put into redesigning the existing physical layout to support point-to-point
NE communications and backplane communications with ICPs. Removing the network
and transport layers from the current communication stack, and optimizing the SBFTC

communication layers should be a priority.

Synchronization

The original synchronization algorithm suggested for this system was the Optimal Clock
Synchronization. However, given that minimal drift rate from real-time is not specified as
a requirement, algorithms like the one presented here, for which agreement properties de-

pend on latency variation rather than absolute latency, are attractive candidates, given the
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potentially highly-predictable network.

The algorithm presented here may be substituted with the nféeeat (and fully
analyzed) algorithm presented in [5], but care must be taken to correctly handle clocks that
are set backwards. One solution is to amortize the clock adjustment over a large period
of time, as discussed in [4], but this requires building a level of indirection to access the
corrected system clock.

The advantage of the algorithm presented here is that no such amortization is needed to
ensure that clocks are not set backwards. However, it should be noted that the large adjust-
ments forward may still require amortization to smooth the clock progression, depending
on how the SBFTC is implemented, and thus, the presented algorithm may not provide any

advantage over [5].

6.3 Summary and Future Work

This thesis described the design of a prototype software-based fault tolerant computer that
can mask errors that may arise during runtime. The ultimate goal of the project is to re-
place the X-38 fault tolerant computer, which requires proprietary hardware, in favor of a
software-based solution that may run on cheap, commercially-available hardware. The cur-
rent prototype implements a basic system of four nodes which can support a four-redundant
logical computer, synchronize each redundant processor, and handle input and output to and
from the redundant nodes in a Byzantine fault-tolerant way.

This thesis also analyzed a failstop synchronization algorithm that infers clock skews
based on the arrival times of expected messages from other nodes and guarantees that
clocks are never set backward. An extension to the algorithm to provide Byzantine fault-
tolerance is proposed and described, but the analysis is not complete. Both algorithms are

well-suited for embedded systems, since the achievable synchronization is heavily depen-
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dent on the predictability of the communication network between the nodes. The non-fault-
tolerant algorithm was used by the prototype SBFTC.

A demonstration application was built that balanced a simulated inverted pendulum and
could handle corrupted messages produced by a single node. The demonstration was not a
complete success, since the prototype SBFTC proved incapable of supporting the control
frequency required to balance the pendulum unless the simulation was slowed by a factor
of six.

There are several results presented in this thesis that could be improved. First, the
prototype SBFTC needs to be completed. This includes extending the startup routine for
real-time virtual group configuration, extending fault handling to enforce consistent behav-
ior among honest nodes in the event of a fault, setting up true point-to-point communication
between the nodes, and relocating the ICP so that it no longer communicates with its NE
over the common network.

Beyond such major changes, the SBFTC may be improved in other ways. The com-
munication loop of the prototype SBFTC could be dramatically optimized. For example
data structures and associated code can be improved, particularly with regards to the active
message table. Also, the timing of message sending could be better analyzed to reduce
the amount of time each node waits for messages from other nodes. Another improvement
could be more intelligent scheduling of polling for messages from ICPs and FCPs.

The synchronization algorithms could be better developed. Clearly, the Byzantine-
resilient algorithm needs to be fully analyzed, but there are other needs as well. For ex-
ample, no initialization strategy to synchronize nodes at startup is presented in this thesis.
Also, no analysis is done on the rate of drift of the synchronized clocks from real time.
Clocks drift naturally from real time, however, the forward adjustment of the clocks as part
of the synchronization routine could cause the synchronized clocks to drift faster than the

natural rate. Thisfect should be better understood.
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The synchronization algorithms might also be optimized. Currently, all nodes wait
for the arrival of other messages after they have sent their own. However, it might not be
necessary for the trailing node to wait at all. A trailing node would know it was last because
it already received messages from all other nodes before it sent its own. Thus the amount
of time required for the algorithm to complete would be reduced, increasing the achievable
synchronization.

Other future work might include removing the network and transport layers from the

SBFTC communication stack.
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