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Abstract. Computer vision has traditionally focused on extractingicture,
such as depth, from images acquired using thin-lens or f@ntytics. The de-
velopment of computational imaging is broadening this s¢@pvariety of un-
conventional cameras do not directly capture a traditiomalge anymore, but
instead require the joint reconstruction of structure andge information. For
example, recent coded aperture designs have been optitoifailitate the joint
reconstruction of depth and intensity. The breadth of imggiesigns requires
new tools to understand the tradeoffs implied by differérategies.

This paper introduces a unified framework for analyzing cotational imag-
ing approaches. Each sensor element is modeled as an irothrcprover the
4D light field. The imaging task is then posed as Bayesiarrénfee: given the
observed noisy light field projections and a new prior ontlifigld signals, es-
timate the original light field. Under common imaging coraiis, we compare
the performance of various camera designs using 2D ligldt $iehulations. This
framework allows us to better understand the tradeoffs ofi eamera type and
analyze their limitations.

1 Introduction

The flexibility of computational imaging has led to a range ahcon-
ventional designs that facilitate structure inference amast-processing.
Cameras with coded aperturesl,4,3], plenoptic cameras 4[5,6], phase
plates [/,8], stereo P], multi-view systems 10,11,17], depth from defocus sys-
tems [13,14,1516,17,18,19,20,21,22,23,24,25], radial catadioptric imaging 2[d],
lensless imaging /], mirror arrays £8,29, or even random camerag 430 all
record different combinations of the light rays. Reconginn algorithms based on a
combination of signal processing and machine vision thewex the data to viewable
images, potentially with richer information such as depthaofull 4D light field.
Each of these cameras involves tradeoffs along variousrdiioes —spatial and depth
resolution, depth of focus and noise sensitivity. This pagescribes a theoretical
framework that will help us to compare computational cangesigns and understand
their tradeoff in terms of image and structure inference.

Computation is changing imaging in three fundamental waiyst, the information
recorded at the sensor may not be the final image, and the aegdécoding algorithm
must be taken into account to assess camera quality. Seberaijtput and intermediate
data are not limited to flat 2D images anymore and new desiggisle the extraction of
4D light fields and depth information. Finally, ngwiorsor statistical models can cap-
ture regularities of natural scenes to complement the semsasurements and amplify



the power of decoding algorithms. The traditional evalratools based on image PSF
and frequency responsesl[37] are not able to fully model these effects. Our goal in
this paper is to develop tools for a comparison across éiffieimaging designs, taking
into account those three aspects. We want to evaluate tlity &dbrecover a 2D image
as well as depth or other information. We want to model thelffeea decoding step
and the use of natural-scene priors.

Given the variety of designs and types of information, weuarthat a powerful
common denominator is the notion of light fieltl] because it directly encodes light
rays- the atomic entities interacting with the camera sersght fields naturally en-
capsulate some of the more common photography goals suclylasatial image
resolution, and are tightly coupled with the targets of heidel computer vision: sur-
face depth, texture, and illumination information. Thisans that we need to cast the
reconstruction performed in computational imaging as latlfigld inference problem.
In order to benefit from recent advances in computer visiosago need to extend
prior models, traditionally studied for 2D images, to 4Chlidields.

In a nutshell, the operation of camera sensors can be modslétke integration
of a set of light rays, with the optics specifying the mappb®ween rays and sen-
sor elements. Thus, in an abstract way, a camera providegar Iprojection of the
4D light field where each coordinate corresponds to the nreasent of one pixel.
The goal of a decoding process is to infer from such projastis much information
as possible about the 4D light field. Since the number of seslsmnents is signifi-
cantly smaller than the dimensionality of the light fieldred prior knowledge on light
fields is essential. We analyze the limitations of tradiilosignal processing assump-
tions [33,34,35,36,37] and suggest a new prior on light field signals which exgiicit
accounts for their locally elongated structure. We thennagedéi new metric of camera
performance as follows: Given a light field prior, from thealeneasured by the cam-
era, how well can the light field be reconstructed? The nurabsensor elements is of
course a critical variable, and the evaluations in this papenormalized by imposing
a fixed budget ofV sensor elements to all cameras. This is not a strict reqeinéof
our approach, but it provides a meaningful common basis.

Our evaluation focuses on the information captured by aeptmjn, omitting the
confounding effect of camera-specific inference algorghive also do not address
decoding complexity. For clarity of exposition and compiataal efficiency we focus
on the 2D version of the problem (1D image/2D light field). Ve simplified optical
models and do not model lens aberrations or diffractionsétedfects would still follow
a linear projection model and can be accounted for with mzatifins to the light field
projection function.

Using light fields generated by ray tracing, we simulate ssexisting projections
(cameras) under equal conditions, and demonstrate th&yqohteconstruction they
can provide.

Our framework captures the three major elements of the ctatipnal imaging
pipeline — optical setup, decoding algorithm, and prioree @nables a comparison on
a common baseline. This framework allows us to systematicaimpare computational
camera designs at one of the most basic computer visiongaskiating the light field
from sensor responses.



1.1 Related Work

Approaches to lens characterization such as Fourier OatidsMTF [31,37] analyze
an optical element in terms of signal bandwidth and the stesp of the PSF over
the depth of field, but do not address depth information. Tiosvipg interest in 4D
light field rendering has led to research on reconstructiterdi and anti-aliasing in
4D [33,34,35,36,37], yet this research relies mostly on classical signal ssicg as-
sumptions of band limited signals, and do not utilize thé statistical correlations of
light fields. Research on generalized camera famiti€s3p,4 0] mostly concentrates on
geometric properties and 3D configurations, but with anraggion that approximately
one light ray is mapped to each sensor element and thus aecisdiot taken into ac-
count. In 1] aperture effects were modeled but decoding and informatiere not yet
analyzed.

Reconstructing data from linear projections is a fundaadezgamponent in tools
such as CT and tomography4. Fusing multiple image measurements is also used
for super-resolution, and!f] studies inherent uncertainties in this process4ij,[the
concept of compressed sensing is used to study the abilisctmnstruct a signal from
arbitrary random projections, when the signal is suffidiesparse in some representa-
tion. Weiss et al45] attempt to optimize such projections. While sparsity israrsger
statistical assumption than band limited signals, it doks not capture many structural
aspects of light fields.

2 Light fields and camera configurations

Light fields are 4D functions that encode the radiance fondight ray leaving a scene.
Light fields are usually represented with a two-plane patarimtion, where each ray
is encoded by its intersections with two parallel planeguFé1(a,b) shows a 2D slice
through a diffuse scene and the corresponding 2D slice othteofiD light field. The
color at position(ag, by) of the light field in fig. 1(b) is that of the reflected ray in
fig. 1(a) which intersects theandb lines at points:g, by respectively. Each row in this
light field corresponds to a 1D view when the viewpoint shaftsnga. One of the most
distinctive properties of light fields is the strong eloreghlines. For example the green
object in fig.1 is diffuse and the reflected color does not vary alongaltémension.
Specular objects exhibit some variation alongarimension, but typically much less
than along theb dimension. The slope of those lines encodes the objectthdep
disparity [33,34].

Each sensor element records the amount of light collectad fnultiple rays and
can be thought of as a linear sum over some set of light rayseXample, in a con-
ventional lens, the value at a pixel is an integral of rays ¢he lens aperture and the
sensor photosite. We review several existing camera caatigns and express the rule
by which they project light rays to sensor elements. We asghiat the camera aperture
is positioned on tha line parameterizing the light field.

Ideal Pinhole camerasEach sensor element collects light from a single ray, and the
camera projection just slices a row in the light field (f{g)). Since only a tiny fraction
of light is let in, noise is an issue.

LensesLenses can gather more light by focusing all light rays emegrérom a
point at a given distancP to a single sensor point. In the light fieltl D is the slope



(a) 2D slice through a scene (b) Light field (c) Pinhole
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(g) Plenoptic camera (h) Coded aperture lens (i) Wavefroding

Fig. 1. (a) Flat-world scene with 3 objects. (b) The light field, aoji({) cameras and
the light rays integrated by each sensor element (distétgai by color)

of the integration (projection) stripe (fit{d,e)). An object is in focus when its slope
matches this slope (e.g. the green object inlfid)) [33,34,35,36]. Objects in front or
behind the focus distance will be blurred. Larger apertgegher more light but cause
more defocus.

Stereo Stereo pairs ] facilitate depth inference, by recording two views of the
scene (figl(g), to maintain a constant sensor element budget, theutésolof each
image is halved).

Plenoptic camerasTo capture multiple viewpoints, plenoptic cameras use a mi-
crolens array between the lens and the sen58}. [These microlenses separate the rays
according to their direction, thereby recording many sa&soif the full 4D light field
impinging the main lens. If each microlens covérsensor elements, one achieves
different views of the scene, but the spatial resolutioediced by a factor df (k = 3
is shown in figl(Q)).

Coded apertureRecent work P,3] places a code at the lens aperture, blocking light
rays (fig1l(h)). As with conventional lenses, objects deviating fréva tocus depth are
blurred, but according to the aperture code. The code igdedito be highly sensitive
to scale variations. Since the blur scale is a function otlidgy searching for the code
scale which best explains the local image window, depth eainferred. Given depth,
the blur can also be inverted, increasing the depth of field.

Wavefront coding introduces an optical element with an unconventional shape
(phase plate) so that rays from any world point do not corevéoga single sensor
element []*. This can be thought of as integrating over a curve in lighd fipace (see
fig 1(i)), instead of the straight strip integration of lensesisimakes the defocus of dif-
ferent depths almost identical, which enables deconwamwtithout depth information,

! While wavefront coding is usually derived in terms of waveics, the resulting system is
usually illustrated with ray diagrams.



thereby extending depth of field. To achieve this, a cubis kemape (or phase plate)
is used and the light field integration curve, and the darigatf the cubic surface is

parabolic. Since the integration curve is a function of #reslnormal, it is parabolic as
well (fig 1(i)).

3 Bayesian estimation of light field
3.1 Problem statement

We model an imaging process as an integration of light raysamera sensors, or in
an abstract way, as a linear projection of the light field

y=Tx+n (1)

wherez is the light field,y is the captured image; is an iid Gaussian noise ~
N(0,7%I) andT is the projection matrix, describing how light rays are megpo
sensor elements. Referring to figurel” includes one row for each sensor element, and
this row has non-zero elements for the light field entrieskaduby the corresponding
color (e.g. a pinhol&” matrix has a single non-zero element per row).

The set of realizabl&” matrices is limited by physical constraints. In particutae
entries of the projection matriX' are all non-negative. To ensure equal conditions for
noise issues, we assume that a maximal integration timéowed, and normalize it
so that the maximal value for each entryofs 1. The total amount of light reaching
each sensor element is the sum of the entries in the corrésmdhfi row. It is usually
desired to collect more light to increase the signal to n@se. For example, a pinhole
is noisier because it has a single non-zero entry per rovgvalens has multiple ones.

To simplify notation, most of the following derivation wilddress a 2D slice in the
4D light field, but the 4D case is similar. While the light fiekinaturally continuous,
for simplicity we use a discrete representation.

Our goal is to understand how well we can recover the lighd fiefrom the noisy
projectiony, and whichT' matrices, among the list of camera projections described in
the previous section, permit better reconstructions. Taf one is allowed to take
N measurements/{ can haveN rows), which set of projections leads to better light
field reconstruction? Our evaluation metric can be adameweight fieldw which
specifies how much we care about reconstructing differerns é the light field. For
example, if the goal is an all-focused, high quality imagefra single view point (as
in wavefront coding), we can assign zero weight to all butlayte field row.

The number of measurements taken by most optical systengnificantly smaller
than the light field data, or in other words, the projectioninra’ contains many fewer
rows than columns. This makes the recovery of the light figiddsed and motivates
the use of prior knowledge on the generic structure of lightfi. We therefore start by
asking how to model a light field prior.

3.2 Classical priors

State of the art light field sampling and reconstruction apphes $3,34,35,36,37]

apply signal processing techniques, which are mostly basdshnd-limited signal as-
sumptions. The principle is that the number of non-zerodesgies in the signal has to
be equal to the number of samples. Thus, before sampleskam ane has to apply a



low-pass filter to meet the Nyquist limit. Light field reconsttion is then reduced to a
convolution with a proper low-pass filter. When the depttgeaim the scene is bounded,
these strategies can further bound the set of active fraigewithin a sheared rectan-
gle instead of a standard square of low frequencies and henertentation of the low
pass filter. They also provide principled rules for tradipgtgl and directional samples.
However, they focus on pure sampling/reconstruction aggres and do not address in-
ference for a general projection such as the coded aperture.

One way to express the underlying band limited assumptioagprior terminology
is to think of an isotropic Gaussian prior. In the frequenoyndin, the covariance of
such a Gaussian is diagonal, allowing a very narrow variahttee highest frequencies,
and a wider one at the lower frequencies. Similar priors dam lae expressed in the
spatial domain by penalizing the convolution with a set ghhpass filters:

1 1 _
P(z) ewp(*ﬁ > lfeaz’P) = 6$P(*§$T% 'z) 2
ki

wheref;, ; denotes thé&th high pass filter centered at tité light field entry. In sed,
we will show that band limited assumptions and Gaussianrpimleed lead to equiva-
lent sampling conclusions.

An additional option is to think of a more sophisticated hjgdss penalty and re-
place the Gaussian prior of @yith a heavy-tailed prior4€].

However, as will be illustrated in sectidh4, such generic priors ignore the very
strong elongated structure of light fields, or the fact thattariance along the disparity
slope is significantly smaller than the spatial variance.

3.3 Mixture of Gaussians (MOG) Light field prior

To account for the strong elongated structure of light fields propose modeling a
light field prior using a mixture of oriented Gaussians, vehesich Gaussian component
corresponds to a depth interpretation of the scene. If taresdepth (and hence light
field slope) is known we can define an anisotropic Gaussiam firat accounts for the
oriented structure. For this, we define a slope figlthat represent the slope (one over
the depth of the visible point) at every light field entry (fig{b) illustrates a sparse
sample from a slope field). For a given slope field, our prisuases that the light field
is Gaussian, but has a variance in the disparity directian ithsignificantly smaller
than the spatial variance. The covariatigecorresponding to a slope fieklis then:

To—1 1 T 2 T 2
Vg = Z U—S|gs(i),i17| + U—O|go,ix\ ©)

wherey;, ; is a derivative filter in orientationcentered at théth light field entry (specif-
ically go ; is the derivative in the horizontal/spatial direction)dan << o, especially
for specular objects. Conditioning on depth we h&(e|S) ~ N(0,Ps).

We also need a prioP(S) on the quality of a slope field. Given that depth is
usually piecewise smooth, our prior encourages piecewrsmth slope fields (like
the depth regularization of conventional stereo algorghmiote however that S and
this prior are expressed in light-field space, not image geaitspace. The resulting
unconditional light field prior is an infinite mixture of Gaians (MOG) that sums over
slope fields

P(z) = / P(S)P(2]5) (4)
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Fig. 2. Light field reconstruction.

We note that while each mixture component is a Gaussian wd@ohbe evaluated in
closed form, marginalizing over the infinite set of sloped#eb is intractable, and
approximation strategies are described below.

Now that we have modeled the probability of a light fieldo be “natural”’, we
turn to the imaging problem: Given a camédraand a noisy projection we want to
find a Bayesian estimate for the light fieldFor this, we need to defin(x|y; T'), the
probability thatx is the explanation of the measuremgnUsing Bayes' rule:

Plaly;T) = /S P(z, S|y;T) = /S P(S|y; T)P(aly, S;T) 5)

To express the individual terms in the above equation, we tiaity should be equal
to Tz up to measurement noise, that B(y|z;T) exp(—#\Tx —y)?) . As a
result, for a given slope field, P(z|y, S;T) < P(z|S)P(y|z;T) is also Gaussian
with covariance and mean:

yil=wgl 4 n—12TTT ps = %ESTTy (6)
Similarly, P(y|.S; T) is also a Gaussian distribution measuring how well we cate@xp
y with the slope componerft, or, the volume of light fields: which can explain the
measuremeny, if the slope field wasS. This can be computed by marginalizing over
light fieldsz: P(y|S;T) = fx P(z|S)P(y|x; T). Finally, P(S]y; T') is obtained with
Bayes' rule:P(S|y; T') = P(S)(y|S; 1)/ [¢ P(S)(ylS; T)

To recap, Since we model our light field prior as a mixture of Gauss@orgditioned
on a slope field, the probabiliti’(x|y; T') that a light fieldz explains a measurement
y is also a mixture of Gaussians (MOG). To evaluate it, we meakaw wellz can
explainy, conditioning on a particular slope fielel, and weigh it by the probability
P(S)y) thatS is actually the slope field of the scene.

Inference Given a camerd’ and an observationour goal is to infer a MAP estimate
of x, but the integral in e is intractable. Our strategy is to approximate the MAP
estimate for the slope field, and conditioning on this estimate, solve for the MAP
light field.

The slope field inference stage is essentially inferringuthknown scene depth.
Our inference generalizes MRF stereo algorith@}®of the depth regularization of the
coded aperture approach][ The exact details about slope inference are provided in



the appendix, but as a brief summary, we model slope in logadews as constant or
having one single discontinuity, and we then regularizesftanate using a MRF.

Given the estimated slope fieldl, our light field prior is Gaussian, and thus the
MAP estimate for the light field is the mean of the conditio@aussian.s in eq 6.
This mean will attempt to minimize the projection error umtuise, and regularize the
estimate by attempting to minimize the oriented variatige Note that in traditional
stereo formulations the multiple views are used only fortdestimate. In contrast, the
formulation of our light field estimate seeks a light field tthll satisfy the projec-
tion in all views. Thus, if the individual views include adiag, we can achieve “super
resolution”.

3.4 Empirical illustration

To illustrate the light field inference, figua,b) presents an image and a light field
slice, involving depth discontinuities. Fig(c) presents the numerical SSD estimation
errors. Figure8,4 presents visually the estimated light fields and (spars@ksifrom)
the corresponding slope fields. See supplementary file foe msults. Note that slope
errors often accompany ringing in the reconstruction. Weagare the results of the
MOG light field prior with simpler Gaussian priors (extenglithe conventional band
limited signal assumptions3B,34,35,36,37]) and with modern sparse derivative pri-
ors [46,44)]. For the plenoptic camera case we also explicitly compatie tlie signal
processing reconstruction (last bar in#i@))- as explained in the s&c2this approach
do not apply directly to any of the other cameras.

The choice of prior is critical, and resolution is signifidgnreduced in the ab-
sence of an explicit slope model. For example, if the pleica@mera samples include
aliasing, the last row of figuré demonstrates that with a proper slope model we can
super-resolve the plenoptic camera measurements, andttred enformation encoded
by the recorded plenoptic data is higher than that of theetlireasurements.

The relative ranking of cameras also changes as a functiqgiof- while the
plenoptic camera produced best results for the isotrojicgra stereo camera achieves
a higher resolution under the MOG prior. Our goal in the nextisn is to analytically
evaluate the reconstruction accuracy of different camerad to understand how it is
affected by the choice of prior.

4 Camera Evaluation

Given a light field prior we want to assess how well a light fiefdcan be recovered
from a noisy projectiony = Tz + n, or how much the projectiop nails down the set
of possible light field interpretations. The uncertaintp t@ measured by the expected
reconstruction error:

B(W(w— ")) = [ Plaly )W - ") @)

whereW = diag(w) is a diagonal matrix specifying how much we care about differ
ent light field entries, as discussed in et This measure should prefer distributions
centered at the true solution, and whose variance arousdadfition is small as well
(and thus, less likely to be shifted by noise).

To understand this measure, consider the 3 distributiofigime 5. The first dis-
tribution obtains a high reconstruction error since itskpsalocated away from the
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Fig. 3. Reconstructing a light field from projections. Note sloparnges at depth dis-
continuities.
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Fig. 4. Reconstructing a light field from projections, (continueddte slope changes at
depth discontinuities




original light fieldz°. The second one is centered at the right solution, but theazd
reconstruction error is still high due to the large variaapaund this solution. Such a
high variation suggests that the projection does not nailrde® very firmly and the
estimate can be easily shifted by noise. In contrast thd dstribution achieves the
smallest expected reconstruction error, being peakedemeied at the true solution.

PO
PO
pO)

XI ! Xé)
X X X
E(lz —2°?) = 0.14 E(lz — z°?) = 0.06 E(lz — z°?) = 0.01

Fig. 5. Uncertainty in estimation: The first two distributions wibth lead to a high
averaged error, while the third is picked at the true sofutio

Uncertainty computation To simplify eq7, recall that the average distance between
20 and the elements of a Gaussian is the distance from the cphitgthe variance:

E(W(z —2°)?|S;T) = [W (s — 2°)[* + ) _ diag(W?*2s) (8)

In a mixture model, we need to weigh the contribution of eamrhjgonent by its overall
volume:

E(|W(z —2")*T) = /SP(SIy)E(IW(fL‘ —2°)]’|$;T) (9)

Since the integral in e§ can not be computed explicitly, we evaluate an approximated
uncertainty in the vicinity of the true solution, and we appmate e using a small
set of slope field samples around the true slope interpoetalihis is based on the
assumption that for slope fieldswhich are very far from the true on®,(y|.S) is small
and does not contribute much to the overall integral.

Finally, we use a set of typical light fields) (generated using ray tracing) and
evaluate the quality of a cameTaas the expected squared error over these examples

E(T)=>_ E(W(z—a?)[*T) (10)

Note that this solely measures information captured by {itee® together with the
prior, and omits the confounding effect of specific infereatgorithms.

5 Tradeoffs in projection design

We can now study the reconstruction error of different designd how it is affected by
the light field prior.

Gaussian prior. We start by considering the generic isotropic Gaussiarr jamieq 2.

If the distribution of light fieldse is Gaussian, we can integrate ovein eq10analyt-
ically to obtain:E(T) = 23" diag(1/n*TTT + ¥, *)~! Thus, we reach the classical
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Fig. 6. Evaluating conditional uncertainty in light field estimadteft: projection model.
Middle: estimated light field. Right: variance in estimaggal intensity scale used for
all cameras). Note that while for visual clarity we plot patf square samples, in our
implementation samples were convolved with low pass fitessmulate realistic optics
blurs.

principal components conclusion: to minimize the residuaalance I’ should measure
the directions of maximal variance if. Since the prior is shift invarian#, ' is a
convolution matrix, diagonal in the frequency domain, anel principal components
are the lowest frequencies. Thus, an isotropic Gaussiam pgrees with the classi-
cal signal processing conclusiofij34,35,36,37] - to sample the light field one should
convolve with a low pass filter to meet the Nyquist limit anchgde both the directional
and spatial axis, as with a plenoptic camera configuratibth€ depth in the scene is
bounded, fewer directional samples can be usé}).[This is also consistent with our
empirical prediction, as for the Gaussian prior, the pleitopamera indeed achieved
the lowest error in fig@2(c). However, this sampling conclusion is conservativehas t
directional axis is more redundant than the spatial one sbhece of the problemis the
fact that second order statistics captured by a Gaussi&ibdison do not capture the
high order dependencies of light fields.

Mixture of Gaussian light field prior. We now turn to the more realistic MOG prior
introduced in seB.3. While the optimal projection under this prior cannot bedicted

in closed-form, it can help us understand the major comptsriefiuencing the perfor-

mance of existing camera configurations. The score ifi Eyeals two aspects which
affect the quality of a camera- first, minimizing the variat¢s of each of the mixture

components (i.e., the ability to reliably recover the li§iald given the true slope field),
and second, the need to identify depth and m@kg|y) peaked at the true slope field.
Below, we elaborate on these two components.

5.1 Conditional light field estimation — known depth

Fig 6 shows light fields estimated by several cameras, assumagde depth (and
therefore slope field), was successfully estimated. We dilggay the variance of the
estimated light field - the diagonal &fs (eq6).



In the right part of the light field, the lens reconstructisrsharp, since it averages
rays emerging from a single object point. On the left, theslmtonstruction involves
a higher uncertainty, since the lens averages light rays frultiple object points and
blurs high frequencies. In contrast, integrating over abpalic curve (wavefront cod-
ing) achieves low uncertainties for both slopes, since alpala “covers” all slopés A
pinhole also behaves identically at all depths, but it @#i@nly a small amount of light
and the uncertainty is high due to the small signal to noise.rainally, the uncertainty
increases in stereo and plenoptic cameras due to the smaiftérer of spatial samples.

The central region of the light field demonstrates the ytditmultiple viewpointin
the presence of occlusion boundaries. Occluded parts valneehot measured properly
lead to higher variance. The variance in the occluded pantrigmized by the plenoptic
camera, the only one that spends measurements in this reffioa light field.

Since we deal only with spatial resolution, our conclusioagespond to known
imaging common sense, which is a good sanity check for ouremétbwever, note
that they cannot be derived from a naive Gaussian model hadrigphasizes the need
for a prior such as as our new mixture model.

5.2 Depth estimation

Light field reconstruction involves slope (depth) estimatiindeed, the error in €9
also depends on the uncertainty about the slopefieitle need to mak®(S|y) peaked

at the true slope field. Since the observatjos 7'z + n, we want the distributions of
projectionsT'z to be as distinguishable as possible for different slopedisl One
way to achieve this is to make the projections corresponttirgjfferent slope fields
concentrated within different subspaces of the N-dimeradispace. For example, a
stereo camera yields a linear constraint on the projectiom#V/2 samples from the
first view should be a shifted version of the ot¥éf2. The coded aperture camera also
imposes linear constraints: certain frequencies of thealefed signals are zero, and
the location of these zeros shifts with depth [

To test this, we measure the probability of the true slopel fiél(S|y), aver-
aged over a set of test light fields (created with ray tracifidgje stereo score is
< P(Sly) >= 0.95 (where< P(S|y) >= 1 means perfect depth discrimination)
compared to< P(S|y) >= 0.84 for coded aperture. This suggests that the disparity
constraint of stereo better distributes the projectionrsesponding to different slope
fields than the zero frequency subspace in coded apertur¢heOother hand, while
linear dependency among the elementg tifelps us identify slopes, it means we are
measuring less dimensionsafand the variance ii?(z|y, S) is higher. For example,
they resulting from a plenoptic camera measurement lies iiVvah dimensional space
(wherek is the number of views), comparing to afy2 dimensions of a stereo camera.
The accuracy of the depth estimation in the plenoptic camasiincreased t0.98.
This value is not significantly higher than stereo, while asndnstrated in figureé,

2 When depth is locally constant and the surface diffuse, wentap a light field integration
curve into a classical Point Spread Function (PSF), by ptiojg it along the slope direction
s. Projecting a parabolf(a, b)|b = o} at directions yields the PSks f(b) = |b—s/2|7°5.
That is, the PSF at different depths are equal up to spatiél simich does not affect visual
quality or noise sensitivity



the planoptic camera increases the variance in estimatithge to the loss of spatial
resolution.

We can also use the averagdS|y) score to quantitatively compare stereo with
depth from defocus (DFD) - two lenses with the same centerajéption, focused at
two different depths. As predicted by {, when the same physical size is used (stereo
baseline shift doesn’t exceed aperture width) both degign®rm similarly, with DFD
achieving< P(S|y) >= 0.92.

Our probabilistic treatment of depth estimation goes beylorear subspace con-
straints. For example, the average slope estimation sé@éens was< P(S|y) >=
0.74, indicating that, while weaker than stereo, a single mofezémnage captured with
a standard lens contains some depth-from-defocus infasmas well. This result can-
not be derived using a disjoint-subspace argument, bugifuh probability is consid-
ered, Occam’s razor principle applies and the simpler exgilan is preferred. To see
why, suppose we are trying to distinguish between 2 constape explanatios roc..s
corresponding to the focus depth, afigh roc.s corresponding to one of the defocus
depths. The set of images at a defocus depth (which inclundegds with low frequen-
cies only) is a subset of the set of images at the focus depttuding both low and
high frequency images). Thus, while a high frequency imagele explained only as
an object at the focus depth, a low frequency image can béyesnglained by both.
However, since a probability sums to one, and since the sfotus images occupies
a smaller volume in the N-dimensional space, the defocushassigns individual low
frequency instances a higher probability.

Finally, a pinhole camera-projection just slices a row dithe light field, and this
slice is invariant to the light field slope. The parabola fithé a wavefront coding lens
is also designed to be invariant to depth. Indeed, for th@secameras, the evaluated
distribution P(S]y) in our model is uniform over slopes.

Again, these results are not fully surprising but they ar@ioled within a general
framework that can qualitatively and quantitatively comgpa variety of camera de-
signs. While comparisons such as DFD vs. stereo have beelucizal in the pastl[]],
our framework encompasses a much broader family of cameras.

5.3 Light field estimation

In the previous section we gained intuition about the vaioarts of the expected error
in eq9. We now use the overall formula to evaluate existing cameisisg a set of dif-
fuse light fields generated using ray tracing. Evaluatederarnonfigurations include
a pinhole camera, lens, stereo pair, depth-from-defoclsn&es focused at different
depths), plenoptic camera, coded aperture cameras andedrarvcoding lens. An-
other advantage of our framework is that we can search famapparameters within
each camera family, and our comparison is based on optirpeseineters such as base-
line length, aperture size and focus distance of the indaditens in a stereo pair, and
various choices of codes for coded aperture cameras.

By changing the weight$})” on light field entries in eq, we evaluate cameras for
two different goals: (a) Capturing a full light field. (b) Aiglving an all-focused image
from a single view point (capturing a single row in the ligteidi.)

We consider both a Gaussian and our new mixture of Gausdié@&| prior. We
consider different levels of depth complexity as charaoter by the amount of dis-
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continuities. We use slopes betweer5° to 45° and noise with standard deviation
n = 0.01. Fig. 7(a-b) plot expected reconstruction error with our MOG prighile
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Fig. 9. Evaluating expected reconstruction error as a functioroggfen

figs 7(c-d) use a generic isotropic Gaussian prior (note the i@iffeaxis scale). In fig-
ure8 we evaluate changes in the depth range (using light fieldswitdest amount of
depth discontinuities angl = 0.01), and in figured changes in the noise level (using
light fields with modest amount of depth discontinuitiesy &fopes ranging between
—45° t0 45°).

Full light field reconstruction Fig. 7(a) shows full light field reconstruction with our
MOG prior. In the presence of depth discontinues, lowestt Ifggld reconstruction is
achieved with a stereo camera.

While a plenoptic camera improves depth information our jparison suggests it
may not pay for the large spatial resolution loss. Yet, asudised in seb.1a plenoptic
camera offers an advantage in the presence of complex amtlosundaries.

For planar scenes (in which estimating depth is easy) theccagerture surpasses
stereo, since spatial resolution is doubled and the ireeggampling of light rays can
avoid high frequencies loss due to defocus blur.

While the performance of all cameras decreases when thé& deptplexity in-
creases, a lens and coded aperture are much more senstivettters.

While the depth discrimination of DFD is similar to that oésto (as discussed in
secb.2), its overall reconstruction error is slightly higher sinthe wide apertures blur
high frequencies.

The relative ranking in figg(a,c) agrees with the empirical prediction in figafe).
Note, however, that while figga,c) measure inherent optics information A{g) folds-
in inference errors as well.

Single-image reconstructionWhen addressing the single row reconstruction goal
(fig 7(b)) one still has to account for issues like defocus, depfieta, signal to noise
ratio and spatial resolution. Thus, a pinhole camera (dingrthis single row alone)

is not ideal, and there is an advantage for wide aperturequmafiions collecting more
light (recording multiple light field rows) despite not bgimvariant to depth.



The parabola filter (wavefront coding) does not captureldaggormation and thus
performs very poorly for the light field estimation goal. Hever, the evaluation in
fig 7(b) suggests that for the goal of recovering a single lighd fiew, this filter outper-
forms all other cameras. The reason is that since the filiev@iant to slope, a single
central light field row can be recovered without knowledgelepth. For this central
row, it actually achieves high signal to noise ratios fordspths, as demonstrated in
figure 6. To validate this observation, we have searched over a lgef lens curva-
tures, or light field integration curves, parameterizedmmess fitted to 6 key points.
This family includes both slope sensitive curves (in theispf [8] or a coded aper-
ture), which identify slope and use it in the estimation, aleghe invariant curves (like
the parabola{]), which estimate the central row regardless of slope. @sults show
that, for the goal of recovering a single light field row, thawefront-coding parabola
outperforms all other configurations. This extends the mguts in previous wavefront
coding publications which were derived using optics reaspiand focus on depth-
invariant approaches.

5.4 Plenoptic sampling: signal processing and Bayesian @stion

As another way to compare the conclusions derived by clalssignal processing ap-
proaches with the ones derived from our new MOG light filepnve follow [33]
and ask: suppose we use a camera with a fiXgaxels resolution, how many different
views (N pixels each) do we actually need for a good ‘virtual reafity’

Figure 10 plots the expected reconstructiogxm,z
error as a function of the number of views fo ‘ "1 [— Gaussian prior
both MOG and naive Gaussian priors. While
a Gaussian prior requires dense sampling, tk :
MOG error is quite low after 2-3 views (such, ﬂf;?ﬁ"“
conclusions depend on depth complexity and th :
range of views we wish to capture). For compatt
ison, we also mark on the graph the significantly
larger views number imposed by a Nyquist limit
analysis, like 3. Note that to simulate a re-
alistic camera, our directional axis samples are 10 20 30 40
aliased. This is slightly different fron3[] which  Fig. 10. Reconstruction error as a
blur the directional axis in order to eliminate frefunction number of views.
guencies above the Nyquist limit.

6 Discussion

The growing variety of computational camera designs caltsafunified way to ana-
lyze their tradeoffs. We show that all cameras can be awcaljtimodeled by a linear
mapping of light rays to sensor elements. Thus, interpget@nsor measurements is the
Bayesian inference problem of inverting the ray mapping siMaw that a proper light
fields prior is critical for the successes of camera decadMganalyze the limitations
of traditional band-pass assumptions and suggest thabavgich explicitly accounts
for the elongated light field structure can significantlyueel sampling requirements.



Our Bayesian framework estimates both depth and imagen#tion, accounting
for noise and decoding uncertainty. This provides a toobtojgare computational cam-
eras on a common baseline and provides a foundation for ciatigal imaging. We
conclude that for diffuse scenes, the wavefront codingelgis (and the parabola light
field curve) is the optimal way to capture a scene from a sivigle point. For capturing
a full light field, a stereo camera outperformed other knoamfigurations.

We have focused on providing a common ground for all desigfribie cost of sim-
plifying optical and decoding aspects. This differs fromuditional optics optimization
tools such as Zemax¥)] that provide fine-grain comparisons between subtly-déffie
designs (e.g. what if this spherical lens element is repldgean aspherical one?). In
contrast, we are interested in the comparison betweeniémnoif imaging designs (e.g.
stereo vs. plenoptic vs. coded aperture). We concentrateeasuring inherent informa-
tion captured by the optics, and do not evaluate camerafgpaecoding algorithms.

The conclusions from our analysis are well connected tdtye&lor example, it
can predict the expected tradeoffs (which can not be deris@nly more naive light
field models) between aperture size, noise and spatiautisodiscussed in seg 1. It
justifies the exact wavefront coding lens design derivedgisptics tools, and confirms
the prediction of { J relating stereo to depth from defocus.

Analytic camera evaluation tools may also permit the studynexplored camera
designs. One might develop new cameras by searching farlprejections that yield
optimal light field inference, subject to physical implertetion constraints. While the
camera score is a very non-convex function of its physicatatteristics, defining cam-
era evaluation functions opens up these research dirsction

7 Appendix

This appendix extends sectiBrBto provide details on the slope field (depth) inference
under our MOG light field prior.

Given a camerd’ and an observation our goal is to infer a MAP estimation of.
The probability of a light field explanatign(z|y) is defined as:

(zly; T /P Sly; T)P(x|y, S;T) (11)

however, the integral in efyl is intractable. Our strategy was to compute an approx-
imated MAP estimate for the slope fiekl and conditioning on this estimated slope
field, solve for the MAP light field.

To compute an approximated MAP estimate for the slope fiekdbreak the light
field into small overlapping window§w} along the spatial axis, and pigk, - them
most central entries af according to the slope orientation, as illustrated inlfig\We
can then ask locally what i8(ys, |S.), or how well are the measurements, ex-
plained by theS,, slope field window interpretation. For example, if we useearest
camera, the locajs, measurements should satisfy the disparity shift conggain-
posed bysS,,. We approximate the slope score as a product over local wisdhat is,
we look for a slope fields maximizing:

P(Sly) ~ HP Swlys.,) (12)




If we consider sufficiently small light field windows, we cagasonably cover the set
of slope field interpretations with a discrete {&!, ..., SK}. The list{S?, ..., S¥} we
use includes constant slope field windows and slope fieldslavis with one depth
discontinuity. We approximate th(S!|yg:) integral with a discrete sum:

P(SY)P(ysi|S) (13)
7 Yriey P(S¥)P(ysi|S*)

We optimize eql2 using Belief Propagation (enforcing the slope fields in hbiy-
ing windows to agree). The exact window size poses a tradewidller windows will
increase the efficiency of the computation but also decrdeseobustness of the ap-
proximation.

We note that this algorithm is a generalization of other camdecoding algorithms.
For example if the number of centralentriesm is decreased to two pixels we achieve
the classical MRF stereo matching. The coded aperture usedilar framework as
well, except that only constant depth interpretations veeresidered in each window,
andP(S,|ys, ) were approximated using maximum likelihood.

P(S'lysi) =
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Fig. 11.Small slope field windows and the centragamples (highlighted in red), for a
stereo camera
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