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Abstract

Automated ground maintenance is a necessity for multi-UAV systems. Without such
automation, these systems will become more of a burden than a benefit as human
operators struggle to contend with maintenance operations for large numbers of vehi-
cles. By creating autonomous UAV systems that can take care of themselves, human
operators will be free to concentrate on higher level tasks such as using the informa-
tion gathered by the system to direct future mission activities. This thesis describes
the design, testing, construction, and usage of the first fully autonomous recharge
system for small, battery-powered UAVs. This system was used to perform the first
fully-autonomous quadrotor UAV long-term flight tests and to conduct multi-UAV
mission management research. In addition, this thesis describes, to the best of our
knowledge, the first landing and recharge of a UAV on a mobile recharge platform.
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Chapter 1

Introduction

Automation is used by many industries to increase operational efficiency while re-

ducing costs. For example, the semiconductor industry uses automated processes

to make cost effective products in an efficient manner. In addition, the automotive

industry uses automated manufacturing systems to produce affordable, high quality

motor vehicles. Since robots are used to perform routine operations such as spot

welding, human workers are able to focus on more advanced, safety-critical tasks.

Similarly, advances in automation and autonomy have lead to the development

of unmanned robotic systems. For example, unmanned aerial vehicles are beginning

to revolutionize both civilian and military aerial activities. Although UAVs are at

the forefront of today’s aerospace industry, the roots of remote controlled unmanned

aerial vehicles reach back over one hundred years to the end of the nineteenth century.

While the pioneers of aviation were attempting to pilot the first flying machines, other

visionary men were anticipating a day when humans would be able to pilot vehicles

remotely. One such man was the great inventor, engineer, and scientist Nikola Tesla.

During the 1890’s, his experiments with radio waves led him to conclude that vehicles

with a self-contained means of propulsion and steering could be operated from a

distance [14]. This work culminated in 1898 at the Electrical Exposition in New

York’s Madison Square Garden where Tesla demonstrated the first remote-controlled

boat [23].

Despite this early start, remote-controlled aerial vehicles were not widely used
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until the 1930’s when the invention and refinement of stabilization systems, radio

telecommunications, and servo-motors allowed low-cost aircraft to be built in large

numbers. Early UAVs, such as the Radioplane OQ-1, were used by the military

as target drones for WWII anti-aircraft gunners [14]. By the time of the Vietnam

War, UAVs were used on a regular basis for a variety of missions. For example,

the AQM-34 Lightning Bug and the GTD-21 performed reconnaissance, electronic

and communications intelligence collection, decoy, leaflet-dropping, and munitions

delivery missions [14, 25]. In the decades after the Vietnam War, UAVs continued to

develop and take advantage of new computational, algorithmic, sensory, propulsion,

and communications technologies to better perform long-endurance missions. For

example, the popular Predator UAV can remain airborne for up to 24 hrs [20].

Although significant progress has been made in automating the mission activities

of UAVs, little has been said on how to automate ground maintenance activities.

UAV systems stand to benefit from the automation of routine maintenance tasks

that are currently performed by human operators. For example, the automation of a

task such as refueling would provide UAV systems with significant cost and efficiency

gains. Such ground maintenance automation would also enable UAV systems to scale

from single- to multi-vehicle systems in a cost effective way. By enabling mission

systems to conduct maintenance activities autonomously, future systems will possess

the capability to autonomously assess, plan, and execute fully-autonomous mission

operations. This capability will be critical in saving time, reducing costs, and making

multi-UAV systems practical.

1.1 Literature Review

Interest in autonomous recharge systems for robotic vehicles began in the early 1950’s

with the design and construction of the Machina Speculatrix autonomous ground ve-

hicle by William Grey Walter [24]. This ground vehicle system was used to investigate

the nature of intelligent life and to test the ability of scientists to create artificial life.

Each of the ground vehicles used by Walter in his experiments had the capability
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to sense a low battery situation, navigate toward a recharge station, recharge in the

station, and continue on with their autonomous operation.

Research into autonomous vehicle recharge systems continues today. At the

University of Tsukuba, researchers constructed an autonomous ground vehicle and

recharge system in order to facilitate autonomous ground vehicle navigation and con-

trol experiments [8]. The system was tested by running an autonomous vehicle for

one week none stop. During the week-long experiment, over one thousand recharge

dockings were successfully accomplished. The Robotic Systems Laboratory at the

Australian National University uses an autonomous recharge system to enable exper-

iments into robotic mapping and localization of dynamic environments [1, 11]. At

the University of Southern California, a similar recharge system for ground vehicles

was created [19]. The MiNT testbed at Stony Brook University uses autonomous

ground vehicles with recharge capability to create a system of mobile autonomous

wireless network nodes that can be used for experimentation with mobile, multi-hop,

wireless network protocols.[3] The recharge capabilities of the MiNT testbed allow

the system to be used at any time. This increases the productivity of the system and

frees researchers to spend less time maintaining the testbed and more time conducting

research.

While knowing how to recharge a vehicle is important, a recharge maintenance

system is of little value if a vehicle does not make it back to the recharge station before

running out of power. Most past research into battery monitoring and state estima-

tion has focused on using direct, invasive measurements of current flow and voltage

level to calculate a battery’s state of charge (SOC). This research focuses on calcu-

lating SOC using complex analytical models of internal battery dynamics [17, 18].

However, these approaches require significant knowledge of battery properties and

internal dynamics. Some recent research has sought to simplify the construction of

battery SOC models by using machine learning techniques [9]. This approach does not

require knowledge of internal battery chemistry and can be easily extended to mul-

tiple battery chemistries. These battery modeling and state prediction technologies

have been used in the computer industry, where laptops are designed to warn users
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of low battery conditions. In addition, hybrid electric vehicles use similar techniques

to efficiently manage their battery subsystems.

As battery chemistries and predictive modeling techniques improve, researchers

continue to push the boundaries of small, battery-powered UAV system capabilities.

Many researchers are interested in creating swarms of cooperative UAVs [5, 15]. The

Department of Defense is interested in swarming technology and refers to fully au-

tonomous swarms in its UAV technology roadmap as the highest level of autonomous

control [20]. At the Massachusetts Institute of Technology, the Aerospace Controls

Laboratory (ACL) has constructed an indoor multi-vehicle testbed for the study of

UAV swarming technologies [22]. The RAVEN system has the ability to fly multiple

UAVs in a controlled environment. This testbed allows for researchers to integrate

and flight test battery recharge, state prediction, and multi-UAV mission management

technologies. The RAVEN also has allow researchers to examine questions relating

to the automation of UAV ground maintenance.

1.2 Thesis Contributions and Outline

The goal of this thesis is to examine and implement an autonomous vehicle recharge

system for small, battery-powered aerial vehicles. This thesis presents the first imple-

mentation of an autonomous UAV battery recharge landing station. This station has

been used to conduct the first fully-autonomous, long-term flight tests with quadro-

tor UAVs. It has also enabled other researchers to conduct state-of-the-art mission

management research using the MIT ACL RAVEN system. In addition, this thesis

also describes the first mobile recharge platform for autonomous UAVs.

This document begins in Chapter 2 describing the recharge system electronics

designed to enable battery-powered autonomous vehicles to recharge themselves au-

tonomously. Chapter 3 explains the customizations applied to the recharge system in

order to create a recharge landing station for small, battery-powered UAVs. Chapter

4 describes the construction of UGVs, specifically the design and testing of a mobile

recharge platform. Chapter 5 concludes the thesis with final thoughts and future work
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directions. The appendices at the end of the thesis support the work of the thesis.

Appendix A describes supplemental electronics built during the course of thesis work.

Appendix B presents findings about adding fast recharge capabilities to the recharge

system described by the thesis.
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Chapter 2

An Autonomous Vehicle Battery

Recharge System

This chapter describes a battery recharging station for autonomous vehicles. The goal

of this recharge system is to allow battery-powered aerial vehicles to autonomously

recharge their batteries during long duration missions. The system has the ability to

provide battery charge data in real time. This data can be passed to vehicle health

management systems for use in battery health prediction. This information can also

be used to predict the remaining recharge process time, estimates on vehicle flight

time, and the number of cycles until battery needs replacement.

The full recharge system consists of several components: ground electronics, bat-

tery isolation board, landing pad, and vehicle electrical contacts. This chapter dis-

cusses the ground electronics and battery isolation board that form the functional

core of the recharge system’s technology. At the center of the ground electronics

is a commercially-available lithium polymer battery charger controlled by an AT-

MEGA128 microcontroller on a Robostix board [6]. This microcontroller is the brain

of the recharge system and serves the hub that controls the charge process while

interacting with external computers through a TTL serial interface. In addition, a

battery isolation board may be placed onboard vehicles to isolate the battery from

the vehicle electronics during the recharge process.

While the recharge system described in this thesis focuses on the recharge of
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Figure 2-1: Thunder Power 1010C Lithium Battery Charger

quadrotor aerial vehicles in the RAVEN [22], the electronics and software in the

system can be easily adapted to new types of battery-powered vehicles. As long

as a vehicle uses lithium polymer batteries, this recharge system can recharge it.

Adaptability to a wide range of battery-powered vehicles is a strength of this recharge

technology.

2.1 Lithium Polymer Battery Charger

The ground electronics for the recharge station were built around a commercial avail-

able, off-the-shelf (COTS) lithium polymer batter charger. A COTS charger was

used to reduce the design and construction time of the recharge system. The charger

selected for the recharge system was the Thunder Power 1010C Lithium Battery

Charger, shown in Figure 2-1. The Thunder Power 1010C is one of the most advanced

lithium battery chargers on the market. It possesses a number of safety features that

make it attractive for use in an autonomous recharge system. Safety features include
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Figure 2-2: TP1010C Charger System Diagram

but are not limited to: battery reverse polarity warning, over voltage prevention,

current and voltage monitoring, initial charging mode to recondition deeply depleted

batteries, close integration with cell balancer devices to allow fast recharge times us-

ing currents up to 3C, and a simple user interface that allows for a relatively simple

microcontroller interface.

To integrate the TP1010C charger into the recharger system, it was necessary to

reverse engineer the charger in order to determine how to interface the charger with

the ATMEGA128 microcontroller used to control the recharger system. Figure 2-

2 shows a simplified system diagram of the TP1010C charger. The brain of this

charger is an ATMEGA32 microcontroller. This microcontroller monitors and directs

the charge process using feedback from current and voltage sensing circuitry. It

receives user input from four SPST momentary push button switches and displays

output to the user on an LCD display. While there is no direct electrical interface

to the microcontroller, it is possible to interface with the TP1010C ATMEGA32

microcontroller by simulating user button presses and by reading the LCD control

lines to collect charge process data.
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Figure 2-3: Charger Button Interface Model

2.2 Button Press Interface

In order for an external microcontroller to interact with the TP1010C charger, it

is necessary to tap into the user interface by simulating user button presses. Users

are able to enter commands into the charger by way of four buttons presented on the

exterior of the charger case. Each of these buttons have a different function associated

with them in the various charger modes of operation.

Upon opening of the charger, inspection of the buttons shows that they are push-

to-make SPST momentary switches. These buttons are attached on one end to a

resistor and on the other end to the LCD data lines that run from the ATMEGA32

microcontroller to the LCD display. A schematic of this configuration is shown in

Figure 2-3. When a button is not being pressed, the button acts as an open circuit.

However, when a button is pressed, the circuit is closed, which connects the resistor

to the button’s LCD data line.

The ATMEGA32 microcontroller is able to sense the presence of a resistor on

the data line by activating the internal pull up resistor attached to its I/O pins. As

shown in Figure 2-4, the I/O pin pull up resistor is controlled by an internal FET.

When this FET is off, the pull up resistor is not connected to the I/O pin; when the

FET is on, the pull up resistor is connected to the I/O pin. If the pull up resistor
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Figure 2-4: ATMEGA32 I/O Pin Schematic

is not connected to the I/O pin when the button press has connected the button

resistor to the LCD data line being driven by the I/O pin, then the I/O pin will have

a logic high voltage level. However, if the internal pull up resistor is connected to the

pin during a button press, then the pull up resistor and button resistor will act as

a voltage divider. Since the pull up resistor has a resistance an order of magnitude

larger than the button resistor, the I/O pin will have a logic low voltage level. When

the ATMEGA32 of the TP1010C charger reads the logic value of the LCD data lines,

it can determine whether a button press is occurring by checking whether it reads a

logic high or low value off of the I/O pins connected to these lines.

To simulate a button press on the TP1010C charger, the mechanical switch can

be replaced with a MOSFET. This MOSFET acts as an electrically-controlled switch.

Figure 2-5 shows the schematic for the modified button interface. The drain of the

MOSFET is connected to the button’s LCD data line, while the MOSFET’s source

terminal is attached to ground. A resistor is connected between the MOSFET gate

and ground to protect against floating voltages in situations where the gate is not

connected to a voltage signal during operation. The MOSFET gate can be controlled

by an external microcontroller’s I/O pins to turn the MOSFET off and on. When

all four buttons are bridged by MOSFETS in this way, an external microcontroller
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Figure 2-5: Charger Button Interface Modification

will have full access the all the TP1010C charger’s functions without disabling the

charger’s push button interface. Therefore, an operator can override the microcon-

troller’s commands via the push button interface if necessary.

2.3 LCD Display Information Capture

The TP1010C charger provides feedback to users using a two line, 16 character,

HD44780-based LCD display. Located just above the buttons on the face of the

TP1010C charger, this LCD allows the user to view menus, charger parameters, error

messages, and status information. The key to building a robust autonomous recharge

system around the TP1010C is being able to capture the information displayed on

the LCD. One way to accomplish this capture of LCD text is to directly tap into the

LCD control lines with an external microcontroller and reconstruct the text being

sent to the display.

There are seven control lines for the LCD. The functions of each line are outlined

in Table 2.1. By tapping these lines and running the signals to an external microcon-

troller, as shown in Figure 2-6, it is possible to read the data traveling to the charger

LCD display. When a character is written to the LCD display, the falling edge of the

enable signal is followed by a data and control signal hold period. It is this falling

edge of the enable line that tells the display to check the other six lines for valid
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Figure 2-6: LCD Capture Schematic

Signal Purpose ATMEGA128 Pin Mapping
D4 Data bit 4 PC0
D5 Data bit 5 PC1
D6 Data bit 6 PC2
D7 Data bit 7 PC3
RS Select between instruction or data input PC4

RW Read Write select PC5
E Enable signal to execute command PE6 - External Interrupt 6

Table 2.1: LCD Control Line Functions

27



Figure 2-7: Captured Data from LCD

control signals and data. During the hold period, the data and control instructions

being transferred from the ATMEGA32 microcontroller to the LCD display driver

chip must not change. By connecting the enable signal to an external interrupt pin

on our recharge system’s ATMEGA128 microcontroller, the falling edge of the enable

signal can trigger an external interrupt handler that immediately reads the LCD con-

trol and data lines while they are being held for the LCD. Figure 2-7 shows example

data captured with this interrupt handler.

Once this data been captured, the microcontroller needs to parse the signal to

determine what character has been written to the display. First, the microcontroller

needs to filter out commands sent to the LCD that do not result in a character being

written to the screen. This is accomplished by checking the values of the RS and

RW lines. When writing characters to the display, the RW line is low and the RS

line is high. Filtering for displayed characters works by looking for data samples

where RW = 0 and RS = 1 and ignoring all the rest. This corresponds to the high

nibble of PortC being 0x1. Figure 2-8 shows the filtered data with strikethrough.

The four pairs of captured datum represent four characters that were written to the

LCD display. It takes two commands to write one character because the LCD is

operating in 4-bit transfer mode. In this mode, one 8-bit unit of data is sent in two

4-bit transfers, with the the high nibble of the data sent first, followed by the low

nibble. The advantage of this mode is that it reduces the number of wires that must

run between microcontroller and LCD.

After filtering for commands corresponding to characters written on the display

has occurred, the next step in the process is to determine which ASCII character

was displayed on the screen. Fortunately, the HD44780 LCD driver chip makes this

step easy. When writing a character to a HD44780-based LCD, the ASCII code
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Figure 2-8: Filtered Data from LCD

Figure 2-9: Representation of LCD Enable Signal Behavior Writing Main Menu on
LCD

of the character is transfered as the data of the write command. This means that

reconstructing the character written to the display consists of combining the the low

order nibbles of write command pairs. The low nibble of the first captured write

command is the high nibble of the ASCII code, and the low nibble of the second

write command is the low nibble of the ASCII code. Table 2.2 shows the conversion

of write command pairs into ASCII characters.

First Command Second Command ASCII Code Character Written
0x14 0x1C 0x4C L
0x16 0x19 0x69 i
0x15 0x10 0x50 P
0x16 0x1F 0x64 o

Table 2.2: Write Command Pair ASCII Code Generation

Once the recharge system ATMEGA128 microcontroller can read individual char-

acters written to the charger LCD display, the last step in the LCD data collection

process is to reconstruct the full text on the display. As demonstrated in Figure 2-9,

the TP1010C charger sends commands to the LCD in bursts. Each burst corresponds

to a complete rewrite of the LCD display. To capture the characters on the display, the

external microcontroller connected to the LCD data and control lines must capture

all characters written during a burst. The length of the bursts and the periodicity of
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the bursts vary depending on the charger’s mode; however, the general burst pattern

holds in all modes needed for the recharge system, mainly the main menu, initial

charging, charging, and finished charging.

To detect the gap between bursts that write characters to the display, a timer

overflow interrupt is used. When the timer overflow occurs, a timer interrupt is

triggered. This interrupt arms the external interrupt handler in order to capture the

data and control signals being sent to the LCD. Each time the external interrupt

triggers, the external interrupt handler immediately reads the values on the LCD

lines. After the control and data lines are read, the handler parses the captured data

for ASCII character codes being written to the display. Captured ASCII character

codes are stored in ATMEGA128 internal SRAM memory. After a burst ends, the

timer overflow occurs a second time and ends the capture of LCD data. This process

is outlined in Figure 2-10. Once all of the display’s characters are in main memory,

the recharge system ATMEGA128 microcontroller is free to parse the characters for

charge process data.

2.4 Charger Isolation Relays

The charger isolation relays sit between the TP1010C charger battery terminals and

the landing pad contacts. The purpose of these isolation relays is to prevent electrical

transients from interfering with vehicle takeoff and landing from the landing pad.

During testing of the recharge system, some vehicles experienced a high rate of receiver

dropouts due to electrical transients. These transients occur when the vehicle battery

breaks contact with the charger battery terminals. As a vehicle takes off from the pad,

the electrical transient causes the vehicle’s receiver to lose contact with its transmitter.

This causes the vehicle to fall back into the pad. After a brief pause, the receiver

regains the signal. However, attempting takeoff again results in another transient and

another failed takeoff attempt. This process only ends either if one transient is not

large enough to disable the receiver or if the receiver regains signal before the vehicle

touches back down on the landing pad.
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Figure 2-10: Capture Process Event Diagram
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Figure 2-11: Charger Isolation Relays

The solution to this electrical transient problem is to physically isolate the charger

from the landing pad and vehicle battery when the battery is not being charged.

This isolation is accomplished by adding two relays in series with the two charger

terminals. When the vehicle battery is being charged, the relays are closed to allow

charging current to flow past them. However, when not in the charging process, the

relays are left open to isolate the vehicle from the charger.

2.5 Battery Isolation Board

In some instances, it is advantageous to isolate the vehicle’s battery from the vehicle

electronics during the charging process. For example, leaving the battery attached

to the vehicle electronics during recharge causes the charger to supply power to the

electronics while it is charging the battery. This power loss to the electronics lengthens

the charge process. The additional time added to the charge process is proportional to

the amount of power drawn by the electronics. In order to avoid longer charge times,

a battery isolation board can be attached to vehicles. Two versions of this board

are outlined in this section. One version simply turns off the vehicle electronics.

The other isolates the vehicle electronics and keeps them on by supplying them with
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Figure 2-12: Battery Isolation Board with Vehicle Electronics Shutoff

offboard power.

Figure 2-12 shows the schematic of the battery isolation board with vehicle elec-

tronics shutoff. A P-channel MOSFET sits on the V+ wire running between the

battery and the vehicle electronics. During flight, the gate of the PFET is connected

to ground through a pulldown resistor. During recharge, a signal relay on the recharge

station connects V+ to Vc. With Vgs = 0, the PFET turns off and blocks current

from flowing to the vehicle electronics. The battery can now be charged through the

V+ and V- contacts on the landing pad without having power from the charger flow

into the electronics.

Figure 2-13 shows the schematic for the battery isolation board with offboard

power for the vehicle electronics. Two power MOSFETs isolate both terminals of the
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Figure 2-13: Battery Isolation Board with Offboard Power for Vehicle Electronics

battery from the vehicle electronics. A signal N-channel MOSFET acts as an inverter

for the offboard control signal. During flight, the two power MOSFETs remain on,

allowing current to flow from the battery to the vehicle electronics. When the recharge

process begins, a relay on the recharge system sends a signal to the isolation board

that shuts off the power MOSFETs. This signal sets the gate voltage of the high side

PFET equal to the voltage at the PFET’s source terminal. With Vgs = 0, the PFET

shuts off. At the same time, the control signal sets the gate voltage on the signal

NFET high. The NFET turns on and lowers the gate voltage on the low side power

NFET. With Vgs = 0, the NFET shuts off. Since the body diodes of the two power

MOSFETs are oriented with the flow of current, turning off the MOSFETs will in

essence introduce diodes into the current path. While these diodes cause voltage drops

along the current path, they allow power to flow into the vehicle electronics. With

the MOSFETs off, the relays connecting offboard power to the vehicle electronics can

be closed by the recharge system. As long as the voltage supplied by the offboard

power supply is higher than the voltage on the positive terminal of the battery, no
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current will flow from the battery to the vehicle electronics. With the offboard power

applied, the battery is isolated from the vehicle electronics and ready for recharge.

2.6 Recharge System Ground Electronics: The Full

Picture

The recharge system is designed to integrate with other maintenance system compo-

nents under the control of an autonomous health management system that monitors

vehicle battery state. As such, the recharge system is not designed to detect an in-

coming vehicle on its own. When a vehicle docks, the recharge system waits to be

told by an external source to begin the charge process. In the RAVEN laboratory

setup, after a vehicle docks with the station, the mission system commands the vehi-

cle recharge system to begin the recharge process. Once given the command to start,

the recharger will continue charging the vehicle until the battery is full. If the vehicle

needs to take off before a full charge state is reached, then the vehicle or mission sys-

tem can notify the recharge system to stop the charge process. Similarly, the recharge

system only transmits state data over the station’s serial link when requested.

As shown in Figure 2-14, the recharge system is composed of several components.

As described earlier, the central component is the Thunder Power TP1010C lithium

polymer battery charger; this is the device that charges the battery onboard the

vehicle. An ATMEGA128 microcontroller controls the charger and runs the recharge

system internal software. This microcontroller interacts with the TP1010C charger by

simulating user button presses and by reading the characters displayed to the charger’s

LCD display. It controls the charger isolation and signal relays. The microcontroller

interacts with the outside world through a TTL serial interface. Each Recharge

station can be connected to vehicle health management computers using a USB-

to-TTL cable. A picture of the recharge system within its enclosure is shown in

Figure 2-15.

The recharge station is commanded by sending alphanumeric characters over the
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Figure 2-14: Recharge System Diagram

serial connection. The protocol consists of three commands. A “1” character is sent

to the recharge system over the serial line to start the recharge process, while a “2”

is sent to stop recharge before it has completed. In addition, a “3” is sent to request

the state of the system. The recharge system transmits data over the serial line

only in response to a request for charger state command. There are no automatic

acknowledgments to start or stop recharge commands. Table 2.3 summarizes this

simple command protocol.

Character ASCII Code Command
1 0x31 Start Recharge
2 0x32 Stop Recharge
3 0x33 Request Charger State

Table 2.3: Recharge System Command Codes

The recharger state response is formatted as shown in Table 2.4. The response is

a series of alphanumeric characters that represent the state of the recharge system,

the voltage of the battery under charging, the current flowing into the battery, the
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Figure 2-15: Recharge System Electronics Within Plastic Enclosure
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cumulative current that has flown into the battery, and the duration of the charge pro-

cess. This string is terminated with a newline character. Tabl 2.5 lists the recharger’s

states.

State Voltage Current mAh Time
3 12.60 0.76 00089 0:05:44

Table 2.4: Format of Response to Recharge State Request Command

Character State
1 Ready to Charge
2 Initial Charge
3 Charging
4 Finished Charging

Table 2.5: Recharge System States

2.7 Summary

Using the recharge system described in this chapter, it is possible to monitor battery

charging in real time and collect data used to analyze the charging profiles about

batteries. Figure 2-16 shows an example charge cycle of a 1320 mAh battery. Voltage,

current, and cumulative current are plotted against time. This data can be used by

vehicle health management algorithms to predict remaining time till charge process

complete, vehicle flight time, and number of cycles until battery needs replacement.
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Figure 2-16: Captured Recharge Process Data for a 1320 mAh LiPoly Battery
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Chapter 3

Automated Ground Maintenance

for Autonomous Unmanned Aerial

Vehicles

While the recharge system electronics described in the previous chapter are appli-

cable to any vehicle powered by a lithium polymer battery, the hardware described

in this chapter is specific to the vehicles used in the testing of the recharge sys-

tem. Specifically, this chapter describes the vehicle-specific components that allow

for the automated recharge of autonomous UAVs. The small, battery-powered UAVs

described in this chapter are COTS quadrotor helicopters. The extent of recharge

modifications to the vehicles consist of electrical contacts attached to the frame of the

vehicle and, in some cases, a battery isolation board inserted between the battery and

the vehicle. No modifications were made to the vehicle electronics. Customization

of the ground recharge system consists of adding a landing pad above the electronics

that mate with the electrical contacts fitted to the frame of the quadrotor UAVs. This

landing pad is designed to passively guide the UAV into the proper landing location

for recharge.
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Figure 3-1: Draganflyer Quadrotor Helicopters in Flight

3.1 COTS Unmanned Aerial Vehicles

Two commercially-available, off-the-shelf (COTS) quadrotor helicopters were selected

as the UAVs adapted for use with the recharge system: the Draganflyer V Ti Pro and

the X-CSM Hightech X-3D/X-UFO [4, 7, 16]. These quadrotors were selected because

they are small, lightweight, durable, and fly for over ten minutes with a charged

battery. The Draganflyer quadrotor with black nylon blades is approximately 80 cm

from blade tip to blade tip while the X-UFO is approximately 36 cm from blade tip to

blade tip [7]. Without batteries, the Draganflyer weighs approximately 400 g and the

X-UFO weighs 300 g. With a 2000mAh battery, the Draganflyer can fly 13-17 mins

while the X-UFO can fly for 20-30 min. Furthermore, the quadrotor design of the

vehicles has well understood dynamics and control strategies [2, 21].

In order to simplify landing pad design and construction, the X-UFO vehicle was
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Figure 3-2: X-UFO Quadrotor Helicopter in Flight

outfitted with a Draganflyer frame. Figure 3-2 shows the added frame components.

This modification provides the X-UFO with the same base as the Draganflyer and

allows both quadrotors to share one landing pad design. An extra benefit to adding

the Draganflyer frame to the X-UFO vehicle is the additional mounting points for

motion capture system reflectors, seen in Figure 3-2.

3.2 Vehicle Electrical Contacts

The copper electrical contacts were attached to the bottom of the quadrotor base to

provide an electrical conduit for power and signals to flow from the recharge station.

Shown in Figure 3-3, these electrodes a attached to the bottom of each plastic leg

with exterior-grade, double-sided tape. Because the plastic feet are not conductive,

additional electrical isolation between the electrode and the quadrotor leg is not

required.

A fifth electrical contact can be made by applying a conductive material to the
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Figure 3-3: Quadrotor Base with Copper Contacts

bottom of the quadrotor battery plate. Caution is required in using this contact since

the battery plate is carbon fiber. A layer of electrical tape is sufficient to insulate the

contact from the conductive plate and prevent short circuits on board the vehicle.

Figure 3-4 shows an early recharge system prototype vehicle with a fifth contact on

the underside of the battery base plate.

3.3 UAV Recharge Station Landing Pad

The recharge station UAV landing pad is designed to passively guide UAVs into the

proper landing location for recharge. Shown in Figure 3-5, the landing pad has an

inverted pyramid shape. If a quadrotor descends into the pad with X-Y position error,

its base will slide down against the sidewalls of the pad toward the electrical contacts

in the middle of the pad. This passive approach to creating landing error tolerance

was selected over active methods of position error correction due to its simplicity,
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Figure 3-4: Fifth Vehicle Electrical Contact Underneath Quadrotor Battery Base
Plate

ease of construction, and effectiveness.

Landing pads can be configured with up to five electrical contacts. As shown in

Figure 3-6, each electrical contact has a layered structure that places a conductive

plate, usually made of copper, on top of four pieces of soft foam. The sponginess

of the foam ensures that quadrotors settle onto the ground station contact pads

correctly, even in situations where quadrotor frames have become slightly deformed

due to vehicle wear. Four small pieces of foam were used on each contact, rather

than one large piece, in order to ensure that the contacts compressed sufficiently for

good electrical contact despite the light weight of the quadrotors. Figure 3-7 shows

a quadrotor sitting in a recharge landing pad.
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Figure 3-5: Landing Pad Design Configured with Five Electrical Contacts

3.4 Flight Testing Results

3.4.1 Long Term Flight Test

Long term flight testing of the recharge system was performed using the MIT ACL

RAVEN system in order to assess the repeatability of quadrotor landings into recharge

stations. For this testing, quadrotors outfitted with the recharge system modifications

described in this chapter were programmed to take off from the ground, hover over

a recharge station until its battery had depleted, and then autonomously land in the

recharge station below it. Once the system had finished recharging the vehicle battery,

the quadrotor would repeat the cycle. Figure 3-8 shows a vehicle hovering over the

recharge system during a long term flight test. This test has been run several times,

once for a nine hour period and twice for twenty four hours each. Figure 3-9 shows

the a graph of recharge system data collected during the nine hour long term flight

test. Over the course of this test, the vehicle completed nine flights, nine successful

landings, and nine battery recharges. During this fifty plus hours of recharge system
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Figure 3-6: Landing Pad Electrical Contact Structure

long term flight testing, only one landing failure occurred.

3.4.2 Mission Management Research

Shown in Figure 3-10, a number of recharge stations were constructed to support

multi-agent mission management UAV research. These recharge stations have been

used to perform experiments with multiple quadrotor vehicles operating in cooper-

ation with one another. In one such experiment, several recharge pads were set up

in the RAVEN indoor flight testbed to support quadrotor vehicles flying a persistent

surveillance mission. The goal of this mission was to keep one quadrotor hovering over

a location of interest for an indefinite period of time. As shown in Figure 3-11, while

one vehicle hovers over a surveillance area, other vehicles recharge their batteries in

recharge stations. Once the flight vehicle has exhausted its battery or experienced a

failure, it will attempt to return to base. In addition, the mission manager software
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Figure 3-7: Draganflyer Quadrotor Vehicle in Recharge Station

takes off a vehicle whose battery has been recharged by the recharge system and sends

it out into the field to replace the returning vehicle. In a persistent surveillance mis-

sion, this process perpetuates indefinitely. For more flight results and a description

of these experiments, consult Ref. [21].

3.4.3 Battery Isolation Board Performance Tradeoff

A set of flight tests were performed to assess the trade offs associated with adding

a battery isolation board to the vehicle for power management purposes. First note

that anytime additional electronics are added to a system, there are trade offs. This

is especially true in high current power systems where a small change in resistance

can have a noticeable impact on the system. Such is the case when adding additional

power semiconductors to the current path between vehicle and battery. Figure 3-

12 shows a picture of a battery isolation board on a Draganflyer quadrotor. This

board was configured for vehicle electronics shutdown. The board consists of a single
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Figure 3-8: UAV Hovering Over Recharge Landing Station During a Long Term Flight
Test
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Figure 3-9: Charge Process Data from a Nine Hour Long Term Flight Test
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Figure 3-10: Recharge Stations Built for Multi-agent UAV Mission Management Re-
search

Figure 3-11: Persistent Surveillance Mission Setup
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Figure 3-12: Battery Isolation Board Connected to 2000mAh Battery and Draganflyer
Vehicle

Figure 3-13: Flight Testing with Voltage Measurement Device
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P-channel power MOSFET acting as a diode that blocks current from flowing into

the vehicle electronics during recharge. During flight, this MOSFET is on, allowing

current to flow into the vehicle. Flights were conducted using the same Draganflyer

vehicle and the same battery. Battery voltage measurements were collected during

flight using the device described in Appendix A.

Flight results demonstrate that the addition of a P-channel MOSFET in the cur-

rent path of the vehicle significantly degrades flight performance. Figure 3-14 shows

flight data achieved without the isolation board. The Draganflyer vehicle flew for

over 15 minutes. Figure 3-15 shows flight data recorded with the isolation board. In

this experiment, the Draganflyer vehicle flew for about half the time. This is caused

by the voltage drop associated with the internal resistance of the PFET. This addi-

tional voltage drop reduces the power available to the quadrotor for flight. To get the

necessary power for flight, the quadrotor must draw more current from the battery

by increasing the collective command. Higher current counters the lower voltage in

order to provide the power necessary for the vehicle to hover. However, this increased

current also causes the battery to deplete faster.

The way to reduce the severity of this trade off is to reduce the voltage drop caused

by the battery isolation board. Several possibilities exist to reduce the resistance that

causes this undesirable voltage drop. N-channel MOSFETs have a lower on resistance

than their P-channel brethren, generally about an order of magnitude lower. Using

an N-channel MOSFET on the battery negative terminal reduces the voltage drop.

However, sometimes it is unavoidable to use a P-channel MOSFET. For example,

the battery isolation board with offboard power for vehicle electronics requires both

P-channel and N-channel MOSFETs. In this situation, either a different P-channel

MOSFET with a lower on resistance can be used, or several P-channel MOSFETs

can be placed in parallel to create a lower equivalent resistance.

Regardless, the performance of a hybrid system will never exactly match that of

the original vehicle design, assuming most things such as batteries and motors are

the same. Anytime external electronics are added to a stock system, a trade off will

be created.
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Figure 3-14: Battery Voltage Data During Flight Without Battery Isolation Board
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Figure 3-15: Battery Voltage Data During Flight With Battery Isolation Board
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Chapter 4

Mobile Recharge Platform

One application of multi-agent UAV technologies is convoy protection in a hostile

environment. A coordinated team of surveillance and reconnaissance UAVs that

operate from ground vehicles can provide a convoy with aerial information about

the immediate vicinity of the vehicles. These vehicle could fly ahead to scout the

path ahead or maintain a perimeter around the convoy to make sure no enemies are

approaching.

In order to build a mobile recharge platform for UAVs, it is necessary to research

the interaction between ground and aerial vehicles. Controllers must be designed to

enable UAVs to land on ground vehicles. Recharge stations must be designed to sit

on ground vehicles and allow for UAVs to recharge themselves between flights.

This chapter describes the beginnings of a UGV and UAV cooperative mission

recharge platform for use with indoor UAV testbeds. Commercially available ground

vehicles are used as the basis for the testbed’s UGVs. In addition, the UAV recharge

system described in previous chapters was used in creating the mobile recharge landing

platform.

4.1 COTS Unmanned Ground Vehicle

The Duratrax Mini Quake RC car was selected as the base COTS vehicle adapted

for use into UGV mission management [10]. This vehicle was selected for a number
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Figure 4-1: Miniquake UGV with Vicon Position System Reflectors

of reasons. It is small size and well suited for an indoor testbed environment. It

is approximately 24 cm long, 19 cm wide, and 12 cm tall. It has a tight turning

radius and can accelerate quickly. Despite the high quality of the vehicle’s mechanical

components, the stock electronic speed controller lacks the ability to drive the vehicle

at low velocities. It allows only two speeds: zero or maximum. Fortunately, this

limitation can be avoided by replacing the stock electronics with custom electronics.

4.1.1 UGV Electronics

To provide greater velocity control to the Mini Quake vehicle, a custom set of elec-

tronics were designed and incorporated into the base vehicle setup. Figure 4-2 shows

a top view of the vehicle’s revised electronics. Note that all electronics fit underneath

the vehicle top. The electronics schematic is shown in Figure 4-3. The electronics

of the Mini Quake-based UGV are centered around an ATMEGA128 microcontroller

on a Robostix board [6]. This microcontroller controls the velocity of the vehicle by
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Figure 4-2: Miniquake UGV Electronics

Figure 4-3: UGV Electronics Schematic
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generating a PWM signal. This signal is sent from the microcontroller to a National

Semiconductor LMD18200 H-bridge. The H-bridge chip amplifies the PWM velocity

signal from the microcontroller and applies this amplified power signal to the motor.

The H-bridge also allows the microcontroller to determine the direction of motor ro-

tation, allowing the vehicle to drive both forwards and backwards. Power is supplied

by a three cell lithium polymer battery. Additionally, the microcontroller produces

a second PWM signal to control the vehicle steering servo. This signal is applied

directly to the servo.

Wireless connectivity between the ground vehicle and the control computer is pro-

vided by a Tmote Sky [13]. This device uses an IEEE 802.15.4 radio to communicate

with other 802.15.4 devices. One Tmote is connected to the vehicle control computer

and one is onboard the UGV, connected to the ATMEGA128 microcontroller through

a UART link.

4.1.2 Controller Design

For vehicle velocity and steering controllers, simple PID control was used. The PID

gains of these controllers were determined experimentally. For steering control, a

simple waypoint follower was designed. Steering error was computed by subtracting

the desired heading from the current heading of the vehicle. Desired heading is taken

to be the heading that points from the vehicle’s current position directly toward the

next waypoint. The geometry of the heading error calculation is slightly different in

each quadrant. Figures 4-4 to 4-7 show the geometry of the heading error calculation

in each of the quadrants. The equations for each quadrant’s steering error calculation

are also outlined below.

First quadrant heading error equations:

d =
√

(xcar − xwp)2 + (ycar − ywp)2 (4.1)

α = arcsin
xcar − xwp

d
(4.2)

θ = α− 180 (4.3)
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Figure 4-4: First Quadrant Heading Error Geometry

Figure 4-5: Second Quadrant Heading Error Geometry
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η = θ − ϕ (4.4)

if(η < −180) then (ην = η + 360) (4.5)

Second quadrant heading error equations:

d =
√

(xcar − xwp)2 + (ycar − ywp)2 (4.6)

α = arcsin
xwp − xcar

d
(4.7)

θ = 180− α (4.8)

η = θ − ϕ (4.9)

if(η > 180) then(ην = η − 360) (4.10)

Third quadrant heading error equations:

d =
√

(xcar − xwp)2 + (ycar − ywp)2 (4.11)

θ = arcsin
xwp − xcar

d
(4.12)

η = θ − ϕ (4.13)

if(η > 180) then (ην = η − 360) (4.14)

Fourth quadrant heading error equations:

d =
√

(xcar − xwp)2 + (ycar − ywp)2 (4.15)

θ = arcsin
xcar − xwp

d
(4.16)

η = θ − ϕ (4.17)

if(η < −180) then (ην = η + 360) (4.18)

4.1.3 Results

The ground vehicles described above were tested using the ACL’s RAVEN system.

This robotic testing environment uses multiple cameras and vision processing to cal-

culate the positions of the ground vehicles in real time [22]. This real-time data is
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Figure 4-6: Third Quadrant Heading Error Geometry

Figure 4-7: Fourth Quadrant Heading Error Geometry
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then processed and used to compute the necessary control commands to move the

ground vehicles between waypoints at a desired velocity. The control commands are

transmitted to the vehicles using a Tmote Sky 802.15.4 wireless device plugged into

the USB port of a control computer.

Figure 4-8 shows results of the UGV driving in a box pattern. The car was

traveling in a counterclockwise direction. As the UGV reached a waypoint, the UGV

would be assigned the next waypoint in the sequence. By rearranging the order of

the waypoints, the UGV drove a figure eight path, shown in Figure 4-9.

4.2 Mobile Recharge Vehicle

There are several components needed in order to create a mobile recharge vehicle.

First, a landing station is needed to recharge batteries of small, battery-powered

UAVs. The fully-autonomous recharge station described in the previous chapter will

serve this purpose. Next, a moving platform large enough to carry the recharge

landing system is needed. For this role, an ActivMedia Pioneer 2 ground robot was

selected because of its large size and payload capacity. The ground vehicle is about

fifty centimeters by fifty centimeters and can carry a payload of forty kilograms. The

final component needed for a mobile recharge system is an aerial vehicle outfitted

with recharge modification. The battery-powered UAVs described in Chapter 3 of

this thesis will work in this role.

4.2.1 Configuration of the Mobile Recharge Vehicle

The construction of the mobile recharge vehicle is very simple. A recharge landing

station and power supply are placed on top of an ActivMedia Pioneer 2 ground vehicle

and secured with extra-duty, exterior double-sided tape. This strong tape is needed

so that the landing pad does not slide around on the top of the ground vehicle. A shift

between the ground vehicle and landing pad would throw off the calibration of the

vehicle and prevent UAVs from landing correctly in the recharge station. Figure 4-10

shows the recharge station sitting on top of the ground vehicle. Power is provided
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Figure 4-8: UGV Driving a Box Defined by Four Waypoints
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Figure 4-9: UGV Driving a Figure Eight Defined by Four Waypoints
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Figure 4-10: Mobile Recharge Vehicle with Quadrotor Attempting to Land
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to the recharge station using a power extension cable. Communication between the

vehicle and control computers is accomplished over two RS-232 serial cables, one for

ground vehicle movement commands and one for the recharge station. The serial

cable and the power cord from the power supply tether the mobile recharge vehicle

to a home base location from which it cannot roam more than 4 meters away.

4.2.2 Results

The results presented in this section were accomplished using the MIT ACL RAVEN

system. The ground vehicle was placed within the test environment with a quadrotor

UAV. The quadrotor was commanded to take off and fly over to the location of

the mobile recharge station. Once the quadrotor was in the air, a human operator

commanded the mobile recharge vehicle to begin moving forward. The quadrotor

maintained position above the moving ground vehicle during its descent into the

landing pad. Once the quadrotor had landed and shut down its motors, a human

operator stopped the mobile recharge vehicle. The recharge station then charged the

quadrotor vehicle battery.

Figure 4-11 shows four pictures of the mobile recharge station landing test. As

the mobile recharge vehicle moved across the room, the quadrotor landing controller

made sure to keep the UAV above the recharge pad during descent in the mobile

station. Figure 4-12 shows an X-Y plot of the quadrotor vehicle taking off from the

ground, flying over to the location of the mobile recharge vehicle, and following the

vehicle as it moves across the room. Figure 4-13 shows the quadrotor’s height from

takeoff to landing in the recharge landing pad on the mobile recharge vehicle. Once

the quadrotor had landed and the mobile recharge platform had stopped moving,

the recharge station began charging the quadrotor battery. Data from the recharge

process can be found in Figure 4-14. This process was repeated five times, with a

successful recharge landing occurring each time.
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(a) (b)

(c) (d)

Figure 4-11: Mobile Recharge Platform Landing Sequence

69



Figure 4-12: X-Y Plot of Quadrotor Landing on Moving Recharge Platform
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Figure 4-13: Plot of Quadrotor Height over Time from Takeoff to Landing on Mobile
Recharge Platform
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Figure 4-14: Charge Data from Mobile Recharge Platform
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Chapter 5

Conclusion and Future Work

This thesis describes the design, testing, construction, and usage of the first fully

autonomous recharge system for small, battery-powered UAVs. This system was used

to perform the first quadrotor UAV twenty-four hour autonomous long-term flight

test and to conduct multi-agent UAV mission management research. In addition,

this thesis describes the first UAV mobile recharge platform. This system was used

to conduct the first UAV mobile recharge landing.

5.1 Future Work

There are many improvements that can be made to enhance the capabilities of the

recharge system described in this thesis. The fast recharge design considerations

outlined in Appendix B can be used to create a fast recharge system for small, battery-

powered UAVs. This fast recharge system will make these UAVs more productive

during mission management research experiments. Fewer UAVs will be necessary to

run missions such as persistent surveillance. Additionally, adaptive machine learning

algorithms can be integrated into the recharge system to provide a prediction of

recharge time remaining. This prediction could also be used by mission management

software to make better decisions about resource management and allocation.

Improvement to the mobile recharge platform can be made by integrating the UGV

electronics and controller to make the mobile recharge platform itself an autonomous
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UGV. This autonomous mobile recharge platform could then be used for mission

management scenarios involving UGV convoys. Further improvement to the UGVs

described in this thesis can be had by build recharge stations for UGVs so they

can operate for long periods of time without human operator intervention to recharge

batteries. This would allow UGVs and UAVs to operate together in long-term mission

scenarios.
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Appendix A

Supplemental Electronics

The electronics described in this section were used by researchers in the Aerospace

Controls Laboratory to support testing being performed on the RAVEN platform.

An RC Control Capture device was designed and constructed to assist with vehicle

system identification and controller design. Also, a voltage measurement tether was

designed and constructed to provide in-flight battery voltage measurements for the

design of battery monitoring algorithms.

A.1 RC Control Transmission Capture

In order to support system identification efforts, it is useful to record a system’s re-

sponse to control inputs. For RC vehicles piloted manually using an RC transmitter,

it is difficult to measure the control commands being issued by a human pilot. As

shown in Figure A-1, we developed a device that creates a universal method of in-

tercepting RC commands for System ID purposes. The device works by receiving

RC commands using a standard RC receiver. The Pulse-Position-Modulation (PPM)

signal from this receiver is then processed by a microcontroller and transmitted over

a serial link to a computer that stores the data.

A PPM signal encodes several channels of servo control signals into a single signal.

This multiplexing of servo signals is what allows RC transmitters to control several

servos over a single RF channel. PPM signals are structured into frames. Figure A-2
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Figure A-1: RC Control Transmission Capture Device

Figure A-2: Structure of a Pulse-Position-Modulation (PPM) Signal
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Figure A-3: RC Signal Capture Device Schematic

shows the structure of a PPM frame. Each servo channel is separated by a constant

length high pulse. The time separation between these pulses represents servo channel

signals. Since servo pulses range from 1ms to 2ms, the maximum time separation

between high pulses is 2ms. Separation between frames is achieved using a synchro-

nization low pulse. This low pulse is much longer than the low pulses that encode

the servo frames, therefore allowing the receiver electronics to differentiate between

these two low pulses.

The capture device uses an ATMEGA128 microcontroller on a Robostix board

to digitize the analog servo pulses in the PPM signal [6]. Figure A-3 shows the

schematic of the capture device. The Futaba R148DF receiver used by the capture

device outputs a PPM signal with a high voltage level of 3.3V. Since the ATMEGA128

microcontroller uses a high TTL voltage of 5V, it is necessary to amplify the PPM

signal up to TTL levels. An LT1008 opamp provides this amplification. The amplified

PPM signal from the LT1008 is connected to two of the ATMEGA128’s external

interrupts.

The ATMEGA128 uses three interrupts to digitize the PPM signal. Two external

interrupts are needed in order to differentiate between the rising and falling edges of

a pulse. A timer interrupt is used both to find the synchronization pulse between

frames and to measure the analog time delay between pulses for each servo channel.
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Figure A-4: RC Signal Capture Device Software Flow Chart
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The flow diagram in Figure A-4 shows how the ATMEGA128 captures and digitizes

the PPM signal.

Character ASCII Code Command
1 0x31 Capture Single Frame of Data
2 0x32 Continuously Capture Data
3 0x33 Stop Capturing Data

Table A.1: Capture Device Command Codes

The capture device is connected to an external computer using a USB-to-TTL

serial cable. The device is commanded by sending alphanumeric characters over the

serial connection. The protocol consists of three commands. To capture and output

a single frame’s data, a “1” character is sent to the capture device over the serial line.

To continuously capture and output data, a “2” is sent. A “3” stops the continuous

capture process. Table A.1 summarizes this command protocol. The capture device

response is a series of alphanumeric characters that represent the length of each servo

channel pulse. Each data value is separated by a space character. Each string of data

represents one captured frame and is terminated with a newline character. Table A.2

shows example output for a single captured frame with seven channels. Figure A-5

shows a plot of a single channel’s data over time. This data represents the relative

movement of the transmitter stick in the hands of a human operator. Data for other

channels can be plotted in a similar manner.

Number of Channels CH1 CH2 CH3 CH4 CH5 CH6 CH7
7 0x3F57 0x41AB 0x3F59 0x41C9 0x1F46 0x4586 0x3E29

Table A.2: Format of Capture Device Output

A.2 Quadrotor In-flight Battery Voltage Measure-

ment

In order to build battery performance models and analyze the effects of recharge

modifications to vehicles, we developed a device that records battery voltage during
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Figure A-5: Captured Data from One Channel Showing Transmitter Stick Motion
Over Time
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Figure A-6: Flight Testing with Voltage Measurement Device

UAV flight operations. As shown in Figure A-6, the device connects to vehicles

through a tether in order to measure battery voltage during flight testing. The voltage

measurement device consists of an ATMEGA128 microcontroller, a voltage divider,

a tether, and a battery harness. The harness, shown in Figure A-7, connects to

the battery being measured and to the vehicle electronics. In addition, this battery

harness is attached a tether that runs down from the vehicle to a voltage divider

circuit, shown in Figure A-8. The voltage divider steps down the battery voltage

to a range that is readable by the analog to digital conversion circuitry built into

the ATMEGA128 microcontroller. The divider consists of three equal sized resistors

that divide the battery voltage by a factor of three. Voltage data is collected by

the ATMEGA128 microcontroller and transmitted out its TTL serial port. Any

computer can be connected to the microcontroller using either a RS232-to-TTL or

USB-to-TTL serial cable. As soon as the microcontroller is powered up, it begins

transmitting voltage data. Figure A-9 shows a block diagram of this system, while
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Figure A-7: Voltage Measurement Harness

Figure A-10 shows an electrical schematic. Battery voltage data taken during a flight

is shown in Figures 3-14 and 3-15.
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Figure A-8: Voltage Measurement Device

Figure A-9: Block Diagram of Voltage Measurement Device
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Figure A-10: Schematic of Voltage Measurement Device
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Appendix B

Fast Recharge

The ground electronics presented in this thesis are sufficient to perform safe recharge

on modern lithium polymer batteries at rates up to 1C. Charging multi-cell batteries

at rates faster than 1C with this recharge system runs the risk of creating imbalance

between battery pack cells. This imbalance can lead to overvoltage situations in

battery packs that prematurely degrade the pack and possibly cause it to explode.

In order to address such safety concerns, a cell balancer must be integrated with the

charging system to allow for the fast recharge of batteries.

B.1 Cell Balancing

Various methods of balancing the cells within a battery pack exist [12]. The simplest

and most cost effective of these methods is the passive balancing method. Here, the

cell balancer is made up of a bank of resistors used to bleed energy from cells that have

a higher voltage than the others, thus maintaining all cells at approximately the same

voltage level. This ensures that no cell reaches an overvoltage state, which could result

in the rapid degradation or rupture of that cell. Cell balancers must be connected to

all of the battery’s cell terminals, even the ones internal to the battery. For three-cell

lithium polymer batteries, there are four such voltage nodes: two external battery

terminal nodes and two internal to the battery.

An example of a cell balancing device is the Thunder Power TP-205V lithium
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Figure B-1: The Thunder Power TP-205V Lithium Polymer Battery Cell Balancer

polymer battery cell balancer, shown in Figure B-1. This device implements the

passive balancing method. This device also has the ability to work in cooperation

with the Thunder Power 1010C lithium polymer battery charger, the same charger

used as the basis for the autonomous recharge system described in this thesis. The TP-

205V comes with a data link cable that connects into the 1010C charger, enabling the

charger to monitor and balance a battery’s cells during the charge process. According

to Thunder Power, the combination 1010C and TP205V allows for the charging of

Thunder Power lithium polymer batteries at rates up to 3C. Thus, integrating the

TP-205V balancer with the autonomous recharge system will enable battery-powered

UAVs to be charged at a 3C rate, which dramatically reduces the time a vehicle must

remain in ground maintenance during the recharge process.
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Figure B-2: Resistive Model of Landing Pad with Four Contacts and Cell Balancing

B.2 Number of Landing Pad Contacts Needed for

Fast Recharge

At first, it may seem possible to achieve fast recharge using only four contacts: the

two external battery terminals and the two internal terminals. However, a closer look

at the resistive model of the recharge landing pad in this configuration, as shown in

Figure B-2, illustrates that this is not the case. During the charge process, current

flows from the positive terminal of the charger, through a wire, to the copper landing

pad contact, into the vehicle electrical contact, through a wire, and into the battery.

Current then traverses this path in reverse from the negative terminal of the battery

back to the charger. When only four contacts are used to balance the battery of a

vehicle on the recharge landing pad, the upper and lower voltages being measured

by the balancer are not the voltages at the battery positive and negative terminal.

The measured voltages are offset by the voltage drop associated with current passing

through the resistances of the electrical contacts and the wires onboard the vehicle.

While the balancer thinks it is measuring the battery terminal voltages, it is actually

measuring voltages at two points in the middle of the charging current path. This

error in cell voltage measurement can cause the balancer to perceive a battery cell

imbalance when, in fact, one does not exist. When the balancer attempts to correct
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Figure B-3: Resistive Model of Landing Pad with Six Contacts and Cell Balancing

this imbalance, it causes the battery to become imbalanced. The higher the charge

current used, the greater the cell voltage measurement error, and the greater the

imbalance created by the balancer.

In order to integrate cell balancing into the recharge system, a minimum of six

contacts must be made between the vehicle and the recharge landing pad. Shown

in Figure B-3, this configuration allows the balancer to measure the actual voltage

at the terminals of the battery, and not the voltage at points in the middle of the

charging current path. Accurate cell voltage measurements are key to system safety

and reliability.

B.3 Fast Recharge Time and Robustness

With the regular slow recharge system described by this thesis, new batteries charged

at a 1C charge rate can take over 70 minutes to complete. Fast recharge with the

TP1010C and TP-205V system allows for charge rates up to 3C. Although the battery

charge times are decreased, the charge time will not be reduced by a factor of three

because batteries do not behave in a linear way. In order to approximate the time for

fast recharge to complete, recharge tests were conducted under varying conditions in
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Figure B-4: Corroded Landing Pad

Figure B-5: Clean Landing Pad
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Figure B-6: Vehicle Electrical Contact Sizes
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Figure B-7: Fast Recharge Test Setup

order to determine the robustness of fast recharge time to variations in landing pad

contact corrosion, vehicle electrical contact size, and battery manufacturing using

new batteries. First, two different recharge landing pads were used to investigate the

effects of contact corrosion. The corroded pad, shown in Figure B-4, had not been

cleaned for several months and had been touched by human hands several times over

this period. The clean pad, shown in Figure B-5, had been wiped down the day of

the tests with a metal polisher. Additionally, two different vehicle electrical contacts,

shown in Figure B-6, were used during the tests to investigate the effects of varying

contact size. Finally, three different batteries of similar condition were used to assess

whether variations between batteries of a similar type would have a large effect on

fast charge time.

All fast recharge tests were conducted using the setup shown in Figure B-7. In

order to perform fast recharge safely and without a landing pad configured with six

contacts for fast recharge, a TP-205 balancer was manually connected to the batteries
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Figure B-8: Data from Fast Recharge Tests

on board the vehicles; the balancer is the silver box in Figure B-7 resting on the edge

of the landing pad. The variations in the fast recharge setup were arranged in the

following way. One test used the large vehicle contacts with the cleaned landing

pad. Another test used the small contacts with the cleaned pad. The last test used

the large vehicle contacts with the corroded landing pad. To ensure similar starting

capacities of the batteries, each battery was fully charged and then discharged by a

TP1010C charger. The results of these tests, shown in Figure B-8, demonstrate that

variations in landing pad contact corrosion, vehicle electrical contact size, and battery

manufacturing did not significantly effect the performance of the fast recharge setup.

These results also show an approximate fast recharge time of under 30 minutes. This

is approximately a factor of two improvement over slow recharge.
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Figure B-9: Vehicle Contact Without Tape

B.4 Vehicle Electrical Contact Considerations

While variations in landing pad contact corrosion, vehicle electrical contact size, and

battery manufacturing did not significantly effect fast recharge performance in our

tests, we found that wrapping the vehicle contacts with electrical tape disrupted

the fast charging process in some instances. Figure B-9 shows an unwapped contact

while Figure B-10 shows a contact wrapped in electrical tape. This tape was originally

applied to the contacts in order to avoid potential battery terminal short circuits and

prevent copper contact feet from catching on the landing pad during vehicle takeoff.

However, it was also found that in some charging cycles, this tape caused oscillations

in the charge process.

Figure B-11 shows data gathered from a charge test using the small vehicle con-

tacts wrapped in electrical tape. In this test, the charge rate was set to 2.5A and
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Figure B-10: Vehicle Contact With Tape
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Figure B-11: Battery Charge Data Showing Oscillatory Behavior
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Figure B-12: Battery Charge Data from 3A Recharge Using Contacts with Tape

there was no balancer attached to the battery. This data shows a significant oscil-

lation in both the battery voltage during the constant current charge phase and the

constant voltage charge phase. Our data suggests that this oscillation may be caused

by the heating of the copper vehicle electrical contacts during the charge process. As

copper heats up, its resistance increases. However, increasing the resistance along

the current path also has the effect of decreasing current flow. In some cases, these

opposing effects can cause an oscillation in charging voltage and current. Here, the

electrical tape insulates the copper contacts preventing them from radiating heat.

At high currents, these oscillations become more pronounced. For safety, data

taken at higher charge current rates was performed with the TP-205 cell balancer.

Figure B-12 shows data from a 3A charge process while Figure B-13 shows data from a

6A charge process. Both graphs indicate that voltage and current oscillations during

the charge process cause the charger to stop the charge process.
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Figure B-13: Battery Charge Data from 6A Recharge Using Contacts with Tape
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Therefore, these tests show that careful attention must be paid to the vehicle

electrical contacts. Adequate cooling ability is needed to ensure that the charging

system is not driven to oscillate. While it is advisable to limit battery terminal

exposure by wrapping contacts or embedding them in a vehicle frame, contact cooling

is a design constraint of fast recharge systems.

B.5 Conclusion

By integrating a six contact landing pad and a cell balancer into the recharge system

described by this thesis, it will be possible to autonomously recharge small, battery-

powered UAVs in under 30 minutes. With this improvement in recharge time, UAVs

can be cycled more quickly. Thus, mission scenarios such as persistent surveillance

will be possible with fewer UAVs working in cooperation.
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