
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-046
CBCL-273

July 24, 2008

ELASTIC-NET REGULARIZATION IN 
LEARNING THEORY
Christine De Mol, Department of Mathematics and 
ECARES, Universit´·e Libre de, Bruxelles, Ernesto 
De Vito, D.S.A., Universit‘a di Genova, and Lorenzo 
Rosasco, Center for Biological and Computational 
Learning at the Massachusetts Institute of 
Technology, & DISI, Universit‘a di Genova



ELASTIC-NET REGULARIZATION IN LEARNING THEORY

C. DE MOL, E. DE VITO, L. ROSASCO

Abstract. Within the framework of statistical learning theory we analyze in detail
the so-called elastic-net regularization scheme proposed by Zou and Hastie [45] for the
selection of groups of correlated variables. To investigate on the statistical properties
of this scheme and in particular on its consistency properties, we set up a suitable
mathematical framework. Our setting is random-design regression where we allow the
response variable to be vector-valued and we consider prediction functions which are
linear combination of elements (features) in an infinite-dimensional dictionary. Under the
assumption that the regression function admits a sparse representation on the dictionary,
we prove that there exists a particular “elastic-net representation” of the regression
function such that, if the number of data increases, the elastic-net estimator is consistent
not only for prediction but also for variable/feature selection. Our results include finite-
sample bounds and an adaptive scheme to select the regularization parameter. Moreover,
using convex analysis tools, we derive an iterative thresholding algorithm for computing
the elastic-net solution which is different from the optimization procedure originally
proposed in [45].

1. Introduction

We consider the standard framework of supervised learning, that is nonparametric
regression with random design. In this setting, there is an input-output pair (X, Y ) ∈
X × Y with unknown probability distribution P , and the goal is to find a prediction
function fn : X → Y , based on a training set (X1, Y1), . . . , (Xn, Yn) of n independent
random pairs distributed as (X, Y ). A good solution fn is such that, given a new input
x ∈ X , the value fn(x) is a good prediction of the true output y ∈ Y . When choosing
the square loss to measure the quality of the prediction, as we do throughout this paper,
this means that the expected risk E

[
|Y − fn(X)|2

]
is small, or, in other words, that fn

is a good approximation of the regression function f ∗(x) = E [Y | X = x] minimizing this
risk.

In many learning problems, a major goal besides prediction is that of selecting the vari-
ables that are relevant to achieve good predictions. In the problem of variable selection we
are given a set (ψγ)γ∈Γ of functions from the input space X into the output space Y and
we aim at selecting those functions which are needed to represent the regression function,
where the representation is typically given by a linear combination. The set (ψγ)γ∈Γ is
usually called dictionary and its elements features. We can think of the features as mea-
surements used to represent the input data, as providing some relevant parameterization
of the input space, or as a (possibly overcomplete) dictionary of functions used to rep-
resent the prediction function. In modern applications, the number p of features in the
dictionary is usually very large, possibly much larger that the number n of examples in
the training set. This situation is often referred to as the “large p, small n paradigm”
[9], and a key to obtain a meaningful solution in such case is the requirement that the
prediction function fn is a linear combination of only a few elements in the dictionary, i.e.
that fn admits a sparse representation.
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The above setting can be illustrated by two examples of applications we are currently
working on and which provide an underlying motivation for the theoretical framework
developed in the present paper. The first application is a classification problem in com-
puter vision, namely face detection [17, 19, 18]. The training set contains images of faces
and non-faces and each image is represented by a very large redundant set of features
capturing the local geometry of faces, for example wavelet-like dictionaries or other local
descriptors. The aim is to find a good predictor able to detect faces in new images.

The second application is the analysis of microarray data, where the features are the
expression level measurements of the genes in a given sample or patient, and the output is
either a classification label discriminating between two or more pathologies or a continuous
index indicating, for example, the gravity of an illness. In this problem, besides prediction
of the output for examples-to-come, another important goal is the identification of the
features that are the most relevant to build the estimator and would constitute a gene
signature for a certain disease [15, 4]. In both applications, the number of features we
have to deal with is much larger than the number of examples and assuming sparsity of
the solution is a very natural requirement.

The problem of variable/feature selection has a long history in statistics and it is known
that the brute-force approach (trying all possible subsets of features), though theoretically
appealing, is computationally unfeasible. A first strategy to overcome this problem is
provided by greedy algorithms. A second route, which we follow in this paper, makes
use of sparsity-based regularization schemes (convex relaxation methods). The most well-
known example of such schemes is probably the so-called Lasso regression [38] – also
referred to in the signal processing literature as Basis Pursuit Denoising [13] – where a
coefficient vector βn is estimated as the minimizer of the empirical risk penalized with the
`1-norm, namely

βn = argmin
β=(βγ)γ∈Γ

(
1

n

n∑
i=1

|Yi − fβ(Xi)|2 + λ
∑
γ∈Γ

|βγ|

)
,

where fβ =
∑

γ∈Γ βγψγ, λ is a suitable positive regularization parameter and (ψγ)γ∈Γ a
given set of features. An extension of this approach, called bridge regression, amounts
to replacing the `1-penalty by an `p-penalty [23]. It has been shown that this kind of
penalty can still achieve sparsity when p is bigger, but very close to 1 (see [26]). For
this class of techniques, both consistency and computational aspects have been studied.
Non-asymptotic bounds within the framework of statistical learning have been studied in
several papers [25, 8, 28, 37, 24, 39, 44, 26]. A common feature of these results is that they
assume that the dictionary is finite (with cardinality possibly depending on the number of
examples) and satisfies some assumptions about the linear independence of the relevant
features – see [26] for a discussion on this point – whereas Y is usually assumed to be R.
Several numerical algorithms have also been proposed to solve the optimization problem
underlying Lasso regression and are based e.g. on quadratic programming [13], on the
so-called LARS algorithm [20] or on iterative soft-thresholding (see [14] and references
therein).

Despite of its success in many applications, the Lasso strategy has some drawback
in variable selection problems where there are highly correlated features and we need to
identify all the relevant ones. This situation is of uttermost importance for e.g. microarray
data analysis since, as well-known, there is a lot of functional dependency between genes
which are organized in small interacting networks. The identification of such groups of
correlated genes involved in a specific pathology is desirable to make progress in the
understanding of the underlying biological mechanisms.
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Motivated by microarray data analysis, Zou and Hastie [45] proposed the use of a
penalty which is a weighted sum of the `1-norm and the square of the `2-norm of the
coefficient vector β. The first term enforces the sparsity of the solution, whereas the second
term ensures democracy among groups of correlated variables. In [45] the corresponding
method is called (naive) elastic net. The method allows to select groups of correlated
features when the groups are not known in advance (algorithms to enforce group-sparsity
with preassigned groups of variables have been proposed in e.g. [31, 42, 22] using other
types of penalties).

In the present paper we study several properties of the elastic-net regularization scheme
for vector-valued regression in a random design. In particular, we prove consistency under
some adaptive and non-adaptive choices for the regularization parameter. As concerns
variable selection, we assess the accuracy of our estimator for the vector β with respect
to the `2-norm, whereas the prediction ability of the corresponding function fn = fβn

is measured by the expected risk E
[
|Y − fn(X)|2

]
. To derive such error bounds, we

characterize the solution of the variational problem underlying elastic-net regularization
as the fixed point of a contractive map and, as a byproduct, we derive an explicit iterative
thresholding procedure to compute the estimator. As explained below, in the presence
of highly collinear features, the presence of the `2-penalty, besides enforcing grouped
selection, is crucial to ensure stability with respect to random sampling.

In the remainder of this section, we define the main ingredients for elastic-net regular-
ization within our general framework, discuss the underlying motivations for the method
and then outline the main results established in the paper.

As an extension of the setting originally proposed in [45], we allow the dictionary to
have an infinite number of features. In such case, to cope with infinite sums, we need
some assumptions on the coefficients. We assume that the prediction function we have to
determine is a linear combination of the features (ψγ)γ∈Γ in the dictionary and that the
series

fβ(x) =
∑
γ∈Γ

βγψγ(x),

converges absolutely for all x ∈ X and for all sequences β = (βγ)γ∈Γ satisfying
∑

γ∈Γ uγβ
2
γ <

∞, where uγ are given positive weights. The latter constraint can be viewed as a con-
straint on the regularity of the functions fβ we use to approximate the regression function.
For infinite-dimensional sets, as for example wavelet bases or splines, suitable choices of
the weights correspond to the assumption that fβ is in a Sobolev space (see Section 2
for more details about this point). Such requirement of regularity is common when deal-
ing with infinite-dimensional spaces of functions, as it happens in approximation theory,
signal analysis and inverse problems.

To ensure the convergence of the series defining fβ, we assume that

(1)
∑
γ∈Γ

|ψγ(x)|2

uγ
is finite for all x ∈ X.

Notice that for finite dictionaries, the series becomes a finite sum and the previous con-
dition as well as the introduction of weights become superfluous.

To simplify the notation and the formulation of our results, and without any loss in
generality, we will in the following rescale the features by defining ϕγ = ψγ/

√
uγ, so that

on this rescaled dictionary, fβ =
∑

γ∈Γ β̃γϕγ will be represented by means of a vector

β̃γ =
√
uγβγ belonging to `2; the condition (1) then becomes

∑
γ∈Γ |ϕγ(x)|

2 < +∞, for
all x ∈ X. From now on, we will only use this rescaled representation and we drop the
tilde on the vector β.



4 C. DE MOL, E. DE VITO, L. ROSASCO

Let us now define our estimator as the minimizer of the empirical risk penalized with
a (weighted) elastic-net penalty, that is, a combination of the squared `2-norm and of a
weighted `1-norm of the vector β. More precisely, we define the elastic-net penalty as
follows.

Definition 1. Given a family (wγ)γ∈Γ of weights wγ ≥ 0 and a parameter ε ≥ 0, let
pε : `2 → [0,∞] be defined as

(2) pε(β) =
∑
γ∈Γ

(wγ|βγ|+ εβ2
γ)

which can also be rewritten as pε(β) = ‖β‖1,w + ε ‖β‖2
2, where ‖β‖1,w =

∑
γ∈Γwγ|βγ|.

The weights wγ allow us to enforce more or less sparsity on different groups of features.
We assume that they are prescribed in a given problem, so that we do not need to explicitly
indicate the dependence of pε(β) on these weights. The elastic-net estimator is defined
by the following minimization problem.

Definition 2. Given λ > 0, let Eλn : `2 → [0,+∞] be the empirical risk penalized by the
penalty pε(β)

(3) Eλn (β) =
1

n

n∑
i=1

|Yi − fβ(Xi)|2 + λpε(β),

and let βλn ∈ `2 be the or a minimizer of (3) on `2

(4) βλn = argmin
β∈`2

Eλn (β).

The positive parameter λ is a regularization parameter controlling the trade-off between
the empirical error and the penalty. Clearly, βλn also depends on the parameter ε, but we
do not write explicitly this dependence since ε will always be fixed.

Setting ε = 0 in (3), we obtain as a special case an infinite-dimensional extension of
the Lasso regression scheme. On the other hand, setting wγ = 0, ∀γ, the method reduces
to `2-regularized least-squares regression – also referred to as ridge regression – with a
generalized linear model. The `1-penalty has selection capabilities since it enforces sparsity
of the solution, whereas the `2-penalty induces a linear shrinkage on the coefficients leading
to stable solutions. The positive parameter ε controls the trade-off between the `1-penalty
and the `2-penalty.

We will show that, if ε > 0, the minimizer βλn always exists and is unique. In the paper
we will focus on the case ε > 0. Some of our results, however, still hold for ε = 0, possibly
under some supplementary conditions, as will be indicated in due time.

As previously mentioned one of the main advantage of the elastic-net penalty is that
it allows to achieve stability with respect to random sampling. To illustrate this prop-
erty more clearly, we consider a toy example where the (rescaled) dictionary has only
two elements ϕ1 and ϕ2 with weights w1 = w2 = 1. The effect of random sampling is
particularly dramatic in the presence of highly correlated features. To illustrate this situ-
ation, we assume that ϕ1 and ϕ2 exhibit a special kind of linear dependency, namely that
they are linearly dependent on the input data X1, . . . , Xn: ϕ2(Xi) = tan θn ϕ1(Xi) for all
i = 1, . . . , n, where we have parametrized the coefficient of proportionality by means of
the angle θn ∈ [0, π/2]. Notice that this angle is a random variable since it depends on
the input data.

Observe that the minimizers of (3) must lie at a tangency point between a level set of
the empirical error and a level set of the elastic-net penalty. The level sets of the empirical
error are all parallel straight lines with slope − cot θn, as depicted by a dashed line in the
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Figure 1. The ε-ball with ε > 0 (solid line), the square (`1-ball), which is the
ε-ball with ε = 0 (dashed line), and the disc (`2-ball), which is the ε-ball with
ε →∞ (dotted line).

two panels of Figure 2, whereas the level sets of the elastic-net penalty are elastic-net
balls (ε-balls) with center at the origin and corners at the intersections with the axes, as
depicted in Figure 1. When ε = 0, i.e. with a pure `1-penalty (Lasso), the ε-ball is simply
a square (dashed line in Figure 1) and we see that the unique tangency point will be the
top corner if θn > π/4 (the point T in the two panels of Figure 2), or the right corner if
θn < π/4. For θn = π/4 (that is, when ϕ1 and ϕ2 coincide on the data), the minimizer
of (3) is no longer unique since the level sets will touch along an edge of the square. Now,
if θn randomly tilts around π/4 (because of the random sampling of the input data), we
see that the Lasso estimator is not stable since it randomly jumps between the top and
the right corner. If ε → ∞, i.e. with a pure `2-penalty (ridge regression), the ε-ball
becomes a disc (dotted line in Figure 1) and the minimizer is the point of the straight
line having minimal distance from the origin (the point Q in the two panels of Figure 2).
The solution always exists, is stable under random perturbations, but it is never sparse
(if 0 < θn < π/2).

The situation changes if we consider the elastic-net estimator with ε > 0 (the corre-
sponding minimizer is the point P in the two panels of Figure 2). The presence of the
`2-term ensures a smooth and stable behavior when the Lasso estimator becomes unsta-
ble. More precisely, let − cot θ+ be the slope of the right tangent at the top corner of the
elastic-net ball (θ+ > π/4), and − cot θ− the slope of the upper tangent at the right corner
(θ− < π/4). As depicted in top panel of Figure 2, the minimizer will be the top corner
if θn > θ+. It will be the right corner if θn < θ−. In both cases the elastic-net solution
is sparse. On the other hand, if θ− ≤ θn ≤ θ+ the minimizer has both components β1

and β2 different from zero – see the bottom panel of Figure 2; in particular, β1 = β2 if
θn = π/4. Now we observe that if θn randomly tilts around π/4, the solution smoothly
moves between the top corner and the right corner. However, the price we paid to get
such stability is a decrease in sparsity, since the solution is sparse only when θn 6∈ [θ−, θ+].
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P = T

Q

θ

P

Q

θ

T

Figure 2. Estimators in the two-dimensional example: T=Lasso, P=elastic
net and Q=ridge regression. Top panel: θ+ < θ < π/2. Bottom panel: π/4 <

θ < θ+.

The previous elementary example could be refined in various ways to show the essential
role played by the `2-penalty to overcome the instability effects inherent to the use of the
`1-penalty for variable selection in a random-design setting.

We now conclude this introductory section by a summary of the main results which
will be derived in the core of the paper. A key result will be to show that for ε > 0, βλn
is the fixed point of the following contractive map

β =
1

τ + ελ
Sλ ((τI − Φ∗

nΦn)β + Φ∗
nY )

where τ is a suitable relaxation constant, Φ∗
nΦn is the matrix with entries (Φ∗

nΦn)γ,γ′ =
1
n

∑n
i=1 〈ϕγ(Xi), ϕγ′(Xi)〉, Φ∗

nY is the vector (Φ∗
nY )γ = 1

n

∑n
i=1 〈ϕγ(Xi), Yi〉 (〈·, ·〉 denotes

the scalar product in the output space Y). Moreover, Sλ (β) is the soft-thresholding
operator acting componentwise as follows

[Sλ (β)]γ =


βγ − λwγ

2
if βγ >

λwγ

2

0 if |βγ| ≤ λwγ

2

βγ + λwγ

2
if βγ < −λwγ

2

.

As a consequence of the Banach fixed point theorem, βλn can be computed by means of an
iterative algorithm. This procedure is completely different from the modification of the
LARS algorithm used in [45] and is akin instead to the algorithm developed in [14].
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Another interesting property which we will derive from the above equation is that the
non-zero components of βλn are such that wγ ≤ C

λ
, where C is a constant depending on

the data. Hence the only active features are those for which the corresponding weight lies
below the threshold C/λ. If the features are organized into finite subsets of increasing
complexity (as it happens for example for wavelets) and the weights tend to infinity with
increasing feature complexity, then the number of active features is finite and can be
determined for any given data set. Let us recall that in the case of ridge regression, the
so-called representer theorem, see [41], ensures that we only have to solve in practice a
finite-dimensional optimization problem, even when the dictionary is infinite-dimensional
(as in kernel methods). This is no longer true, however, with an `1-type regularization
and, for practical purposes, one would need to truncate infinite dictionaries. A standard
way to do this is to consider only a finite subset of m features, with m possibly depending
on n – see for example [8, 24]. Notice that such procedure implicitly assumes some order
in the features and makes sense only if the retained features are the most relevant ones.
For example, in [5], it is assumed that there is a natural exhaustion of the hypothesis space
with nested subspaces spanned by finite-dimensional subsets of features of increasing size.
In our approach we adopt a different strategy, namely the encoding of such information
in the elastic-net penalty by means of suitable weights in the `1-norm.

The main result of our paper concerns the consistency for variable selection of βλn. We
prove that, if the regularization parameter λ = λn satisfies the conditions limn→∞ λn = 0
and limn→∞(λn

√
n− 2 log n) = +∞, then

lim
n→∞

∥∥βλn
n − βε

∥∥
2

= 0 with probability one,

where the vector βε, which we call the elastic-net representation of fβ, is the minimizer
of

min
β∈`2

(∑
γ∈Γ

wγ|βγ|+ ε
∑
γ∈Γ

|βγ|2
)

subject to fβ = f ∗.

The vector βε exists and is unique provided that ε > 0 and the regression function
f ∗ admits a sparse representation on the dictionary, i.e. f ∗ =

∑
γ∈Γ β

∗
γϕγ for at least

a vector β∗ ∈ `2 such that
∑

γ∈Γwγ|β∗γ | is finite. Notice that, when the features are
linearly dependent, there is a problem of identifiability since there are many vectors β
such that f ∗ = fβ. The elastic-net regularization scheme forces βλn

n to converge to βε.
This is precisely what happens for linear inverse problems where the regularized solution
converges to the minimum-norm solution of the least-squares problem. As a consequence
of the above convergence result, one easily deduces the consistency of the corresponding
prediction function fn := fβλn

n
, that is, limn→∞ E

[
|fn − f ∗|2

]
= 0 with probability one.

When the regression function does not admit a sparse representation, we can still prove
the previous consistency result for fn provided that the linear span of the features is
sufficiently rich. Finally, we use a data-driven choice for the regularization parameter,
based on the so-called balancing principle [6], to obtain non-asymptotic bounds which are
adaptive to the unknown regularity of the regression function.

The rest of the paper is organized as follows. In Section 2, we set up the mathematical
framework of the problem. In Section 3, we analyze the optimization problem underlying
elastic-net regularization and the iterative thresholding procedure we propose to compute
the estimator. Finally, Section 4 contains the statistical analysis with our main results
concerning the estimation of the errors on our estimators as well as their consistency prop-
erties under appropriate a priori and adaptive strategies for choosing the regularization
parameter.
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2. Mathematical setting of the problem

2.1. Notations and assumptions. In this section we describe the general setting of the
regression problem we want to solve and specify all the required assumptions.

We assume that X is a separable metric space and that Y is a (real) separable Hilbert
space, with norm and scalar product denoted respectively by | · | and 〈·, ·〉. Typically, X
is a subset of Rd and Y is R. Recently, however, there has been an increasing interest for
vector-valued regression problems [29, 3] and multiple supervised learning tasks [30, 2]: in
both settings Y is taken to be Rm. Also infinite-dimensional output spaces are of interest
as e.g. in the problem of estimating of glycemic response during a time interval depending
on the amount and type of food; in such case, Y is the space L2 or some Sobolev space.
Other examples of applications in an infinite-dimensional setting are given in [11].

Our first assumption concerns the set of features.

Assumption 1. The family of features (ϕγ)γ∈Γ is a countable set of measurable functions
ϕγ : X → Y such that

∀x ∈ X k(x) =
∑
γ∈Γ

|ϕγ(x)|2 ≤ κ,(5)

for some finite number κ.

The index set Γ is countable, but we do not assume any order. As for the convergence
of series, we use the notion of summability: given a family (vγ)γ∈Γ of vectors in a normed
vector space V , v =

∑
γ∈Γ vγ means that (vγ)γ∈Γ is summable1 with sum v ∈ V .

Assumption 1 can be seen as a condition on the class of functions that can be recovered
by the elastic-net scheme. As already noted in the Introduction, we have at our disposal
an arbitrary (countable) dictionary (ψγ)γ∈Γ of measurable functions, and we try to ap-
proximate f ∗ with linear combinations fβ(x) =

∑
γ∈Γ βγψγ(x) where the set of coefficients

(βγ)γ∈Γ satisfies some decay condition equivalent to a regularity condition on the functions
fβ. We make this condition precise by assuming that there exists a sequence of positive
weights (uγ)γ∈Γ such that

∑
γ∈Γ uγβ

2
γ <∞ and, for any of such vectors β = (βγ)γ∈Γ, that

the series defining fβ converges absolutely for all x ∈ X . These two facts follow from

the requirement that the set of rescaled features ϕγ = ψγ√
uγ

satisfies
∑

γ∈Γ |ϕγ(x)|2 < ∞.

Condition (5) is a little bit stronger since it requires that supx∈X
∑

γ∈Γ |ϕγ(x)|2 < ∞, so
that we also have that the functions fβ are bounded. To simplify the notation, in the rest
of the paper, we only use the (rescaled) features ϕγ and, with this choice, the regularity
condition on the coefficients (βγ)γ∈Γ becomes

∑
γ∈Γ β

2
γ <∞.

An example of features satisfying the condition (5) is given by a family of rescaled
wavelets on X = [0, 1]. Let {ψjk | j = 0, 1 . . . ; k ∈ ∆j} be a orthonormal wavelet basis
in L2([0, 1]) with regularity Cr, r > 1

2
, where for j ≥ 1 {ψjk | k ∈ ∆j} is the orthonormal

wavelet basis (with suitable boundary conditions) spanning the detail space at level j. To
simplify notation, it is assumed that the set {ψ0k | k ∈ ∆0} contains both the wavelets
and the scaling functions at level j = 0. Fix s such that 1

2
< s < r and let ϕjk = 2−jsψjk.

1That is, for all η > 0, there is a finite subset Γ0 ⊂ Γ such that
∥∥∥v −∑γ∈Γ′ vγ

∥∥∥
V
≤ η for all finite

subsets Γ′ ⊃ Γ0. If Γ = N, the notion of summability is equivalent to requiring the series to converge
unconditionally (i.e. its terms can be permuted without affecting convergence). If the vector space
is finite-dimensional, summability is equivalent to absolute convergence, but in the infinite-dimensional
setting, there are summable series which are not absolutely convergent.
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Then
∞∑
j=0

∑
k∈∆j

|ϕjk(x)|2 =
∞∑
j=0

∑
k∈∆j

2−2js|ψjk(x)|2 ≤ C
∞∑
j=0

2−2js2j = C
1

1− 21−2s
= κ,

where C is a suitable constant depending on the number of wavelets that are non-zero at
a point x ∈ [0, 1] for a given level j, and on the maximum values of the scaling function
and of the mother wavelet; see [1] for a similar setting.

Condition (5) allows to define the hypothesis space in which we search for the estimator.
Let `2 be the Hilbert space of the families (βγ)γ∈Γ of real numbers such that

∑
γ∈Γ β

2
γ <∞,

with the usual scalar product 〈·, ·〉2 and the corresponding norm ‖·‖2. We will denote by
(eγ)γ∈Γ the canonical basis of `2 and by supp(β) = {γ ∈ Γ | βγ 6= 0} the support of β. The
Cauchy-Schwarz inequality and the condition (5) ensure that, for any β = (βγ)γ∈Γ ∈ `2,
the series ∑

γ∈Γ

βγϕγ(x) = fβ(x)

is summable in Y uniformly on X with

(6) sup
x∈X

|fβ(x)| ≤ ‖β‖2 κ
1
2 .

Later on, in Proposition 3, we will show that the hypothesis space H = {fβ | β ∈ `2} is
then a vector-valued reproducing kernel Hilbert space on X with a bounded kernel [12],
and that (ϕγ)γ∈Γ is a normalized tight frame for H. In the example of the wavelet features
one can easily check that H is the Sobolev space Hs on [0, 1] and ‖β‖2 is equivalent to
‖fβ‖Hs .

The second assumption concerns the regression model.

Assumption 2. The random couple (X, Y ) in X × Y obeys the regression model

Y = f ∗(X) +W

where

(7) f ∗ = fβ∗ for some β∗ ∈ `2 with
∑
γ∈Γ

wγ|β∗γ | < +∞

and

E [W | X] = 0(8)

E
[
exp

(
|W |
L

)
− |W |

L
− 1
∣∣∣X] ≤ σ2

2L2
(9)

with σ, L > 0. The family (wγ)γ∈Γ are the positive weights defining the elastic-net penalty
pε(β) in (2).

Observe that f ∗ = fβ∗ is always a bounded function by (6). Moreover the condition (7)
is a further regularity condition on the regression function and will not be needed for some
of the results derived in the paper. Assumption (9) is satisfied by bounded, Gaussian or
sub-Gaussian noise. In particular, it implies

E [|W |m|X] ≤ 1

2
m! σ2Lm−2, ∀m ≥ 2,(10)

see [40], so that W has a finite second moment. It follows that Y has a finite first moment
and (8) implies that f ∗ is the regression function E [Y | X = x].
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Condition (7) controls both the sparsity and the regularity of the regression function.
If infγ∈Γwγ = w0 > 0, it is sufficient to require that ‖β∗‖1,w is finite. Indeed, the Hölder
inequality gives that

(11) ‖β‖2 ≤
1

w0

‖β‖1,w .

If w0 = 0, we also need ‖β∗‖2 to be finite. In the example of the (rescaled) wavelet
features a natural choice for the weights is wjk = 2ja for some a ∈ R, so that ‖β‖1,w is

equivalent to the norm ‖fβ‖Bs̃
1,1

, with s̃ = a+ s+ 1
2
, in the Besov space B s̃

1,1 on [0, 1] (for

more details, see e.g. the appendix in [14]). In such a case, (7) is equivalent to requiring
that f ∗ ∈ Hs ∩B s̃

1,1.
Finally, our third assumption concerns the training sample.

Assumption 3. The sequence of random pairs (Xn, Yn)n≥1 are independent and identi-
cally distributed (i.i.d.) according to the distribution of (X, Y ).

In the following, we let P be the probability distribution of (X, Y ), and L2
Y(P ) be the

Hilbert space of (measurable) functions f : X × Y → Y with the norm

‖f‖2
P =

∫
X×Y

|f(x, y)|2 dP (x, y).

With a slight abuse of notation, we regard the random pair (X, Y ) as a function on X ×Y ,
that is, X(x, y) = x and Y (x, y) = y. Moreover, we denote by Pn = 1

n

∑n
i=1 δXi,Yi

the
empirical distribution and by L2

Y(Pn) the corresponding (finite-dimensional) Hilbert space
with norm

‖f‖2
n =

1

n

n∑
i=1

|f(Xi, Yi)|2.

2.2. Operators defined by the set of features. The choice of a quadratic loss function
and the Hilbert structure of the hypothesis space suggest to use some tools from the
theory of linear operators. In particular, the function fβ depends linearly on β and can
be regarded as an element of both L2

Y(P ) and of L2
Y(Pn). Hence it defines two operators,

whose properties are summarized by the next two propositions, based on the following
lemma.

Lemma 1. For any fixed x ∈ X , the map Φx : `2 → Y defined by

Φxβ =
∑
γ∈Γ

ϕγ(x)βγ = fβ(x)

is a Hilbert-Schmidt operator, its adjoint Φ∗
x : Y → `2 acts as

(12) (Φ∗
xy)γ = 〈y, ϕγ(x)〉 γ ∈ Γ y ∈ Y .

In particular Φ∗
xΦx is a trace-class operator with

(13) Tr (Φ∗
xΦx) ≤ κ.

Moreover, Φ∗
XY is a `2-valued random variable with

(14) ‖Φ∗
XY ‖2 ≤ κ

1
2 |Y |,

and Φ∗
XΦX is a LHS-valued random variable with

(15) ‖Φ∗
XΦX‖HS ≤ κ,

where LHS denotes the separable Hilbert space of the Hilbert-Schmidt operators on `2, and
‖·‖HS is the Hilbert-Schmidt norm.
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Proof. Clearly Φx is a linear map from `2 to Y . Since Φxeγ = ϕγ(x), we have∑
γ∈Γ

|Φxeγ|2 =
∑
γ∈Γ

|ϕγ(x)|2 ≤ κ,

so that Φx is a Hilbert-Schmidt operator and Tr (Φ∗
xΦx) ≤ κ by (5). Moreover, given

y ∈ Y and γ ∈ Γ

(Φ∗
xy)γ = 〈Φ∗

xy, eγ〉2 = 〈y, ϕγ(x)〉

which is (12). Finally, since X and Y are separable, the map (x, y) → 〈y, ϕγ(x)〉 is
measurable, then (Φ∗

XY )γ is a real random variable and, since `2 is separable, Φ∗
XY is

`2-valued random variable with

‖Φ∗
XY ‖

2
2 =

∑
γ∈Γ

〈Y, ϕγ(X)〉2 ≤ κ|Y |2.

A similar proof holds for Φ∗
XΦX , recalling that any trace-class operator is in LHS and

‖Φ∗
XΦX‖HS ≤ Tr (Φ∗

XΦX). �

The following proposition defines the distribution-dependent operator ΦP as a map
from `2 into L2

Y(P ).

Proposition 1. The map ΦP : `2 → L2
Y(P ), defined by ΦPβ = fβ, is a Hilbert-Schmidt

operator and

Φ∗
PY = E [Φ∗

XY ](16)

Φ∗
PΦP = E [Φ∗

XΦX ](17)

Tr (Φ∗
PΦP ) = E [k(X)] ≤ κ.(18)

Proof. Since fβ is a bounded (measurable) function, fβ ∈ L2
Y(P ) and∑

γ∈Γ

‖ΦP eγ‖2
P =

∑
γ∈Γ

E
[
|ϕγ(X)|2

]
= E [k(X)] ≤ κ.

Hence ΦP is a Hilbert-Schmidt operator with Tr (Φ∗
PΦP ) =

∑
γ∈Γ ‖ΦP eγ‖2

P so that (18)

holds. By (9) W has a finite second moment and by (6) f ∗ = fβ∗ is a bounded function,
hence Y = f ∗(X) +W is in L2

Y(P ). Now for any β ∈ `2 we have

〈Φ∗
PY , β〉2 = 〈Y,ΦPβ〉P = E [〈Y,ΦXβ〉] = E [〈Φ∗

XY , β〉2] .

On the other hand, by (14), Φ∗
XY has finite expectation, so that (16) follows. Finally,

given β, β′ ∈ `2

〈Φ∗
PΦPβ

′, β〉2 = 〈ΦPβ
′,ΦPβ〉P = E [〈ΦXβ

′,ΦXβ〉] = E [〈Φ∗
XΦXβ

′, β〉2]

so that (17) is clear, since Φ∗
XΦX has finite expectation as a consequence of the fact that

it is a bounded LHS-valued random variable. �

Replacing P by the empirical measure we get the sample version of the operator.
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Proposition 2. The map Φn : `2 → L2
Y(Pn) defined by Φnβ = fβ is Hilbert-Schmidt

operator and

Φ∗
nY =

1

n

n∑
i=1

Φ∗
Xi
Yi(19)

Φ∗
nΦn =

1

n

n∑
i=1

Φ∗
Xi

ΦXi
(20)

Tr (Φ∗
nΦn) =

1

n

n∑
i=1

k(Xi) ≤ κ.(21)

The proof of Proposition 2 is analogous to the proof of Proposition 1, except that P is
to be replaced by Pn.

By (12) with y = ϕγ′(x), we have that the matrix elements of the operator Φ∗
xΦx are

(Φ∗
xΦx)γγ′ = 〈ϕγ′(x), ϕγ(x)〉 so that Φ∗

nΦn is the empirical mean of the Gram matrix of the
set (ϕγ)γ∈Γ, whereas Φ∗

PΦP is the corresponding mean with respect to the distribution P .
Notice that if the features are linearly dependent in L2

Y(Pn), the matrix Φ∗
nΦn has a non-

trivial kernel and hence is not invertible. More important, if Γ is countably infinite, Φ∗
nΦn

is a compact operator, so that its inverse (if it exists) is not bounded. On the contrary,
if Γ is finite and (ϕγ)γ∈Γ are linearly independent in L2

Y(Pn), then Φ∗
nΦn is invertible. A

similar reasoning holds for the matrix Φ∗
PΦP . To control whether these matrices have a

bounded inverse or not, we introduce a lower spectral bound κ0 ≥ 0, such that

κ0 ≤ inf
β∈`2 | ‖β‖2=1

〈Φ∗
PΦPβ, β〉2

and, with probability 1,

κ0 ≤ inf
β∈`2 | ‖β‖2=1

〈Φ∗
nΦnβ, β〉2 .

Clearly we can have κ0 > 0 only if Γ is finite and the features (ϕγ)γ∈Γ are linearly
independent both in L2

Y(Pn) and L2
Y(P ).

On the other hand, (18) and (21) give the crude upper spectral bounds

sup
β∈`2 | ‖β‖2=1

〈Φ∗
PΦPβ, β〉2 ≤ κ,

sup
β∈`2 | ‖β‖2=1

〈Φ∗
nΦnβ, β〉2 ≤ κ.

One could improve these estimates by means of a tight bound on the largest eigenvalue
of Φ∗

PΦP .
We end this section by showing that, under the assumptions we made, a structure of

reproducing kernel Hilbert space emerges naturally. Let us denote by YX the space of
functions from X to Y .

Proposition 3. The linear operator Φ : `2 → YX , Φβ = fβ, is a partial isometry from `2
onto the vector-valued reproducing kernel Hilbert space H on X , with reproducing kernel
K : X × X → L(Y)

(22) K(x, t)y = (ΦxΦ
∗
t )y =

∑
γ∈Γ

ϕγ(x) 〈y, ϕγ(t)〉 x, t ∈ X , y ∈ Y ,

the null space of Φ is

(23) ker Φ = {β ∈ `2 |
∑
γ∈Γ

ϕγ(x)βγ = 0 ∀x ∈ X},
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and the family (ϕγ)γ∈Γ is a normalized tight frame in H, namely∑
γ∈Γ

| 〈f, ϕγ〉H |
2 = ‖f‖2

H ∀f ∈ H.

Conversely, let H be a vector-valued reproducing kernel Hilbert space with reproducing
kernel K such that K(x, x) : Y → Y is a trace-class operator for all x ∈ X , with trace
bounded by κ. If (ϕγ)γ∈Γ is a normalized tight frame in H, then (5) holds.

Proof. Proposition 2.4 of [12] (with K = Y , Ĥ = `2, γ(x) = Φ∗
x and A = Φ) gives that Φ is

a partial isometry from `2 onto the reproducing kernel Hilbert space H, with reproducing
kernel K(x, t). Eq. (23) is clear. Since Φ is a partial isometry with range H and Φeγ = ϕγ
where (eγ)γ∈Γ is a basis in `2, then (ϕγ)γ∈Γ is normalized tight frame in H.
To show the converse result, given x ∈ X and y ∈ Y , we apply the definition of a
normalized tight frame to the function Kxy defined by (Kxy)(t) = K(t, x)y. Kxy belongs
to H by definition of a reproducing kernel Hilbert space and is such that the following
reproducing property holds 〈f,Kxy〉H = 〈f(x), y〉 for any f ∈ H. Then

〈K(x, x)y, y〉 = ‖Kxy‖2
H =

∑
γ∈Γ

| 〈Kxy, ϕγ〉H |
2 =

∑
γ∈Γ

| 〈y, ϕγ(x)〉 |2,

where we used twice the reproducing property. Now, if (yi)i∈I is a basis in Y and x ∈ X∑
γ∈Γ

|ϕγ(x)|2 =
∑
γ∈Γ

∑
i∈I

| 〈yi, ϕγ(x)〉 |2 =
∑
i∈I

〈K(x, x)yi, yi〉 = Tr (K(x, x)) ≤ κ.

�

3. Minimization of the elastic-net functional

In this section, we study the properties of the elastic net estimator βλn defined by (4).
First of all, we characterize the minimizer of the elastic-net functional (3) as the unique
fixed point of a contractive map. Moreover, we characterize some sparsity properties of
the estimator and propose a natural iterative soft-thresholding algorithm to compute it.
Our algorithmic approach is totally different from the method proposed in [45], where
βλn is computed by first reducing the problem to the case of a pure `1 penalty and then
applying the LARS algorithm [20].

In the following we make use the of the following vector notation. Given a sample of n
i.i.d. observations (X1, Y1), . . . , (Xn, Yn), and using the operators defined in the previous
section, we can rewrite the elastic-net functional (3) as

(24) Eλn (β) = ‖Φnβ − Y ‖2
n + λpε(β),

where the pε(·) is the elastic net penalty defined by (2).

3.1. Fixed point equation. The main difficulty in minimizing (24) is that the functional
is not differentiable because of the presence of the `1-term in the penalty. Nonetheless
the convexity of such term enables us to use tools from subdifferential calculus. Recall
that, if F : `2 → R is a convex functional, the subgradient at a point β ∈ `2 is the set of
elements η ∈ `2 such that

F (β + β′) ≥ F (β) + 〈η, β′〉2 ∀β′ ∈ `2.
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The subgradient at β is denoted by ∂F (β), see [21]. We compute the subgradient of the
convex functional pε(β), using the following definition of sgn(t)

(25)

 sgn(t) = 1 if t > 0
sgn(t) ∈ [−1, 1] if t = 0
sgn(t) = −1 if t < 0.

We first state the following lemma.

Lemma 2. The functional pε(·) is a convex, lower semi-continuous (l.s.c.) functional
from `2 into [0,∞]. Given β ∈ `2, a vector η ∈ ∂pε(β) if and only if

ηγ = wγsgn(βγ) + 2εβγ ∀γ ∈ Γ and
∑
γ∈Γ

η2
γ < +∞.

Proof. Define the map F : Γ× R → [0,∞]

F (γ, t) = wγ|t|+ εt2.

Given γ ∈ Γ, F (γ, ·) is a convex, continuous function and its subgradient is

∂F (γ, t) = {τ ∈ R | τ = wγsgn(t) + 2εt},
where we used the fact that the subgradient of |t| is given by sgn(t). Since

pε(β) =
∑
γ∈Γ

F (γ, βγ) = sup
Γ′ finite

∑
γ∈Γ′

F (γ, βγ)

and β 7→ βγ is continuous, a standard result of convex analysis [21] ensures that pε(·) is
convex and lower semi-continuous.
The computation of the subgradient is standard. Given β ∈ `2 and η ∈ ∂pε(β) ⊂ `2, by
the definition of a subgradient,∑

γ∈Γ

F (γ, βγ + β′γ) ≥
∑
γ∈Γ

F (γ, βγ) +
∑
γ∈Γ

ηγβ
′
γ ∀β′ ∈ `2.

Given γ ∈ Γ, choose β′ = teγ with t ∈ R, it follows that ηγ belongs to the subgradient of
F (γ, βγ), that is,

(26) ηγ = wγsgn(βγ) + 2εβγ.

Conversely, if (26) holds for all γ ∈ Γ, by definition of a subgradient

F (γ, βγ + β′γ) ≥ F (γ, βγ) + ηγβ
′
γ.

By summing over γ ∈ Γ and taking into account the fact that (ηγβγ)γ∈Γ ∈ `1, then

pε(β + β′) ≥ pε(β) + 〈η, β′〉2 .
�

To state our main result about the characterization of the minimizer of (24), we need
to introduce the soft-thresholding function Sλ : R → R, λ > 0 which is defined by

(27) Sλ (t) =

 t− λ
2

if t > λ
2

0 if |t| ≤ λ
2

t+ λ
2

if t < −λ
2

,

and the corresponding nonlinear thresholding operator Sλ : `2 → `2 acting componentwise
as

(28) [Sλ (β)]γ = Sλwγ (βγ) .
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We note that the soft-thresholding operator satisfies

Saλ (aβ) = aSλ (β) a > 0, β ∈ `2,(29)

‖Sλ (β)− Sλ (β′)‖2 ≤ ‖β − β′‖2 β, β′ ∈ `2.(30)

These properties are immediate consequences of the fact that

Saλ (at) = aSλ (t) a > 0, t ∈ R
|Sλ (t)− Sλ (t′) | ≤ |t− t′| t, t′ ∈ R.

Notice that (30) with β′ = 0 ensures that Sλ (β) ∈ `2 for all β ∈ `2.
We are ready to prove the following theorem.

Theorem 1. Given ε ≥ 0 and λ > 0, a vector β ∈ `2 is a minimizer of the elastic-net
functional (3) if and only if it solves the nonlinear equation

(31)
1

n

n∑
i=1

〈Yi − (Φnβ)(Xi), ϕγ(Xi)〉 − ελβγ =
λ

2
wγsgn(βγ) ∀γ ∈ Γ,

or, equivalently,

(32) β = Sλ ((1− ελ)β + Φ∗
n(Y − Φnβ)) .

If ε > 0 the solution always exists and is unique. If ε = 0, κ0 > 0 and w0 = infγ∈Γwγ > 0,
the solution still exists and is unique.

Proof. If ε > 0 the functional Eλn is strictly convex, finite at 0, and it is coercive by

Eλn (β) ≥ pε(β) ≥ λε ‖β‖2
2 .

Observing that ‖Φnβ − Y ‖2
n is continuous and, by Lemma 2, the elastic-net penalty is

l.s.c., then Eλn is l.s.c. and, since `2 is reflexive, there is a unique minimizer βλn in `2. If
ε = 0, Eλn is convex, but the fact that κ0 > 0 ensures that the minimizer is unique. Its
existence follows from the observation that

Eλn (β) ≥ pε(β) ≥ λ ‖β‖1,w ≥ λw0 ‖β‖2 ,

where we used (11). In both cases the convexity of Eλn implies that β is a minimizer if and
only if 0 ∈ ∂Eλn (β). Since ‖Φnβ − Y ‖2

n is continuous, Corollary III.2.1 of [21] ensures that

the subgradient is linear. Observing that ‖Φnβ − Y ‖2
n is differentiable with derivative

2Φ∗
nΦnβ − 2Φ∗

nY , we get

∂Eλn (β) = 2Φ∗
nΦnβ − 2Φ∗

nY + λ∂pε(β).

Eq. (31) follows taking into account the explicit form of ∂pε(β), Φ∗
nΦnβ and Φ∗

nY , given
by Lemma 2 and Proposition 2, respectively.
We now prove (32), which is equivalent to the set of equations

(33) βγ = Sλwγ

(
(1− ελ)βγ +

1

n

n∑
i=1

〈Yi − (Φnβ)(Xi), ϕγ(Xi)〉

)
∀γ ∈ Γ.

Setting β′γ = 〈Y − Φnβ, ϕγ(X)〉n − ελβγ, we have βγ = Sλwγ

(
βγ + β′γ

)
if and only if

βγ =


βγ + β′γ −

λwγ

2
if βγ + β′γ >

λwγ

2

0 if |βγ + β′γ| ≤
λwγ

2

βγ + β′γ + λwγ

2
if βγ + β′γ < −λwγ

2

,
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that is, 
β′γ = λwγ

2
if βγ > 0

|β′γ| ≤
λwγ

2
if βγ = 0

β′γ = −λwγ

2
if βγ < 0

or else β′γ =
λwγ
2

sgn(βγ)

which is equivalent to (31). �

The following corollary gives some more information about the characterization of the
solution as the fixed point of a contractive map. In particular, it provides an explicit
expression for the Lipschitz constant of this map and it shows how it depends on the
spectral properties of the empirical mean of the Gram matrix and on the regularization
parameter λ.

Corollary 1. Let ε ≥ 0 and λ > 0. Pick up any arbitrary τ > 0. Then β is a minimizer
of Eλn in `2 if and only if it is a fixed point of the following Lipschitz map Tn : `2 → `2,
namely

(34) β = Tnβ where Tnβ =
1

τ + ελ
Sλ ((τI − Φ∗

nΦn)β + Φ∗
nY ) .

With the choice τ = κ0+κ
2

, the Lipschitz constant is bounded by

q =
κ− κ0

κ+ κ0 + 2ελ
≤ 1.

In particular, with this choice of τ and if ε > 0 or κ0 > 0, Tn is a contraction.

Proof. Clearly β is a minimizer of Eλn if and only if it is a minimizer of 1
τ+ελ

Eλn , which

means that, in (32), we can replace λ with λ
τ+ελ

, Φn by 1√
τ+ελ

Φn and Y by 1√
τ+ελ

Y . Hence

β is a minimizer of Eλn if and only if it is a solution of

β = S λ
τ+ελ

(
(1− ελ

τ + ελ
)β +

1

τ + ελ
Φ∗
n(Y − Φnβ)

)
.

Therefore, by (29) with a = 1
τ+ελ

, β is a minimizer of Eλn if and only if β = Tnβ.
We show that Tn is Lipschitz and calculate explicitly a bound on the Lipschitz constant.
By assumption we have κ0I ≤ Φ∗

nΦn ≤ κI; then, by the Spectral Theorem,

‖τI − Φ∗
nΦn‖

`2,`2
≤ max{|τ − κ0|, |τ − κ|},

where ‖·‖
`2,`2

denotes the operator norm of a bounded operator on `2. Hence, using (30),

we get

‖Tnβ − Tnβ′‖2 ≤ 1

τ + ελ
‖(τI − Φ∗

nΦn)(β − β′)‖2

≤ max{|τ − κ0

τ + ελ
|, | τ − κ

τ + ελ
|} ‖β − β′‖2

=: q ‖β − β′‖2 .

The minimum of q with respect to τ is obtained for

τ − κ0

τ + ελ
=

κ− τ

τ + ελ
,

that is, τ = κ+κ0

2
, and, with this choice, we get

q =
κ− κ0

κ+ κ0 + 2ελ
.

�
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By inspecting the proof, we notice that the choice of τ = κ0+κ
2

provides the best possible
Lipschitz constant under the assumption that κ0I ≤ Φ∗

nΦn ≤ κI. If ε > 0 or κ0 > 0, Tn
is a contraction and βλn can be computed by means of the Banach fixed point theorem.
If ε = 0 and κ0 = 0, Tn is only non-expansive, so that proving the convergence of the
successive approximation scheme is not straightforward2.

Let us now write down explicitly the iterative procedure suggested by Corollary 1 to
compute βλn. Define the iterative scheme by

β0 = 0,

β` =
1

τ + ελ
Sλ
(
(τI − Φ∗

nΦn)β
`−1 + Φ∗

nY
)

with τ = κ0+κ
2

. The following corollary shows that the β` converges to βλn when ` goes to
infinity.

Corollary 2. Assume that ε > 0 or κ0 > 0. For any ` ∈ N the following inequality holds

(35)
∥∥β` − βλn

∥∥
2
≤ (κ− κ0)

`

(κ+ κ0 + 2ελ)`(κ0 + ελ)
‖Φ∗

nY ‖2 .

In particular, lim`→∞
∥∥β` − βλn

∥∥
2

= 0.

Proof. Since Tn is a contraction with Lipschitz constant q = κ−κ0

κ+κ0+2ελ
< 1, the Banach

fixed point theorem applies and the sequence
(
β`
)
`∈N converges to the unique fixed point

of Tn, which is βλn by Corollary 1. Moreover we can use the Lipschitz property of Tn to
write ∥∥β` − βλn

∥∥
2
≤

∥∥β` − β`+1
∥∥

2
+
∥∥β`+1 − βλn

∥∥
2

≤ q
∥∥β`−1 − β`

∥∥
2
+ q

∥∥β` − βλn
∥∥

2

≤ q`
∥∥β0 − β1

∥∥
2
+ q

∥∥β` − βλn
∥∥

2
,

so that we immediately get∥∥β` − βλn
∥∥

2
≤ q`

1− q

∥∥β1 − β0
∥∥

2
≤ (κ− κ0)

`

(κ0 + κ+ 2ελ)`(κ0 + ελ)
‖Φ∗

nY ‖2

since β0 = 0, β1 = 1
τ+ελ

Sλ (Φ∗
nY ) and 1− q = 2(κ0+ελ)

κ0+κ+2ελ
. �

Let us remark that the bound (35) provides a natural stopping rule for the number of
iterations, namely to select ` such that

∥∥β` − βλn
∥∥

2
≤ η, where η is a bound on the distance

between the estimator βλn and the true solution. For example, if ‖Φ∗
nY ‖2 is bounded by

M and if κ0 = 0, the stopping rule is

`stop ≥
log M

ελη

log(1 + 2ελ
κ

)
so that

∥∥β`stop − βλn
∥∥

2
≤ η.

Finally we notice that all previous results also hold when considering the distribution-
dependent version of the method. The following proposition summarizes the results in
this latter case.

2Interestingly, it was proved in [14] using different arguments that the same iterative scheme can still
be used for the case ε = 0 and κ0 = 0.
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Proposition 4. Let ε ≥ 0 and λ > 0. Pick up any arbitrary τ > 0. Then a vector β ∈ `2
is a minimizer of

Eλ(β) = E
[
|ΦPβ − Y |2

]
+ λpε(β).

if and only if it is a fixed point of the following Lipschitz map, namely

(36) β = T β where T β =
1

τ + ελ
Sλ ((τI − Φ∗

PΦP )β + Φ∗
PY ) .

If ε > 0 or κ0 > 0, the minimizer is unique.

If it is unique, we denote it by βλ:

(37) βλ = argmin
β∈`2

(
E
[
|ΦPβ − Y |2

]
+ λpε(β)

)
.

We add a comment. Under Assumption 2 and the definition of βε, the statistical model
is Y = ΦPβ

ε +W where W has zero mean, so that βλ is also the minimizer of

(38) inf
β∈`2

(
‖ΦPβ − ΦPβ

ε‖2
P + λpε(β)

)
.

3.2. Sparsity properties. The results of the previous section immediately yield a crude
estimate of the number and localization of the non-zero coefficients of our estimator.
Indeed, although the set of features could be infinite, βλn has only a finite number of
coefficients different from zero provided that the sequence of weights is bounded away
from zero.

Corollary 3. Assume that the family of weights satisfies infγ∈Γwγ > 0, then for any
β ∈ `2, the support of Sλ (β) is finite. In particular, βλn, β

` and βλ are all finitely
supported.

Proof. Let w0 = infγ∈Γwγ > 0. Since
∑

γ∈Γ |βγ|2 < +∞, there is a finite subset Γ0 ⊂ Γ

such that |βγ| ≤ λ
2
w0 ≤ λ

2
wγ for all γ /∈ Γ0. This implies that

Sλwγ (βγ) = 0 for γ 6∈ Γ0,

by the definition of soft-thresholding, so that the support of Sλ (β) is contained in Γ0.
Equations (32), (36) and the definition of β` imply that βλn, β

λ and β` have finite support.
�

However, the supports of β` and βλn are not known a priori and to compute β` one
would need to store the infinite matrix Φ∗

nΦn. The following corollary suggests a strategy
to overcome this problem.

Corollary 4. Given ε ≥ 0 and λ > 0, let

Γλ = {γ ∈ Γ | ‖ϕγ‖n 6= 0 and wγ ≤
2 ‖Y ‖n (‖ϕγ‖n +

√
ελ)

λ
}

then

(39) supp(βλn) ⊂ Γλ.

Proof. If ‖ϕγ‖n = 0, clearly βγ = 0 is a solution of (31). Let M = ‖Y ‖n; the definition of
βλn as the minimizer of (24) yields the bound Eλn (βλn) ≤ Eλn (0) = M2, so that∥∥Φnβ

λ
n − Y

∥∥
n
≤M pε(β

λ
n) ≤

M2

λ
.

Hence, for all γ ∈ Γ, the second inequality gives that ελ(βλn)
2
γ ≤M2, and we have

|
〈
Y − Φnβ

λ
n, ϕγ(X)

〉
n
− ελ(βλn)γ| ≤M(‖ϕγ‖n +

√
ελ)
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and, therefore, by (31),

|sgn((βλn)γ)| ≤
2M(‖ϕγ‖n +

√
ελ)

λwγ
.

Since |sgn((βλn)γ)| = 1 when (βλn)γ 6= 0, this implies that (βλn)γ = 0 if
2M(‖ϕγ‖n+

√
ελ)

λwγ
<

1. �

Now, let Γ′ be the set of indexes γ such that the corresponding feature ϕγ(Xi) 6= 0 for
some i = 1, . . . , n. If the family of corresponding weights (wγ)γ∈Γ′ goes to infinity3, then
Γλ is always finite. Then, since supp(βλn) ⊂ Γλ, one can replace Γ with Γλ in the definition
of Φn so that Φ∗

nΦn is a finite matrix and Φ∗
nY is a finite vector. In particular the iterative

procedure given by Corollary 1 can be implemented by means of finite matrices.
Finally, by inspecting the proof above one sees that a similar result holds true for the

distribution-dependent minimizer βλ. Its support is always finite, as already noticed, and
moreover is included in the following set

{γ ∈ Γ | ‖ϕγ‖P 6= 0 and wγ ≤
2 ‖Y ‖P (‖ϕγ‖P +

√
ελ)

λ
}.

4. Probabilistic error estimates

In this section we provide an error analysis for the elastic-net regularization scheme.
Our primary goal is the variable selection problem, so that we need to control the error∥∥βλn

n − β
∥∥

2
, where λn is a suitable choice of the regularization parameter as a function of

the data, and β is an explanatory vector encoding the features that are relevant to recon-
struct the regression function f ∗, that is, such that f ∗ = ΦPβ. Although Assumption (7)
implies that the above equation has at least a solution β∗ with pε(β

∗) <∞, nonetheless,
the operator ΦP is injective only if (ϕγ(X))γ∈Γ is `2-linearly independent in L2

Y(P ). As
usually done for inverse problems, to restore uniqueness we choose, among all the vectors
β such that f ∗ = ΦPβ, the vector βε which is the minimizer of the elastic-net penalty.
The vector βε can be regarded as the best representation of the regression function f ∗

according to the elastic-net penalty and we call it the elastic-net representation. Clearly
this representation will depend on ε.

Next we focus on the following error decomposition (for any fixed positive λ),

(40)
∥∥βλn − βε

∥∥
2
≤
∥∥βλn − βλ

∥∥
2
+
∥∥βλ − βε

∥∥
2
,

where βλ is given by (37). The first error term in the right-hand side of the above
inequality is due to finite sampling and will be referred to as the sample error, whereas
the second error term is deterministic and is called the approximation error. In Section 4.2
we analyze the sample error via concentration inequalities and we consider the behavior
of the approximation error as a function of the regularization parameter λ. The analysis
of these error terms leads us to discuss the choice of λ and to derive statistical consistency
results for elastic-net regularization. In Section 4.3 we discuss a priori and a posteriori
(adaptive) parameter choices.

3The sequence (wγ)γ∈Γ′ goes to infinity, if for all M > 0 there exists a finite set ΓM such that |wγ | > M ,
∀γ /∈ ΓM .
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4.1. Identifiability condition and elastic-net representation. The following propo-
sition provides a way to define a unique solution of the equation f ∗ = ΦPβ. Let

B = {β ∈ `2 | ΦPβ = f ∗(X)} = β∗ + ker ΦP

where β∗ ∈ `2 is given by (7) in Assumption 2 and

ker ΦP = {β ∈ `2 | ΦPβ = 0} = {β ∈ `2 | fβ(X) = 0 with probability 1}.

Proposition 5. If ε > 0 or κ0 > 0, there is a unique βε ∈ `2 such that

(41) pε(β
ε) = inf

β∈B
pε(β).

Proof. If κ0 > 0, B reduces to a single point, so that there is nothing to prove. If ε > 0,
B is a closed subset of a reflexive space. Moreover, by Lemma 2, the penalty pε(·) is
strictly convex, l.s.c. and, by (7) of Assumption 2, there exists at least one β∗ ∈ B such
that pε(β

∗) is finite. Since pε(β) ≥ ε ‖β‖2
2, pε(·) is coercive. A standard result of convex

analysis implies that the minimizer exists and is unique. �

4.2. Consistency: sample and approximation errors. The main result of this sec-
tion is a probabilistic error estimate for

∥∥βλn − βλ
∥∥

2
, which will provide a choice λ = λn

for the regularization parameter as well as a convergence result for
∥∥βλn

n − βε
∥∥

2
.

We first need to establish two lemmas. The first one shows that the sample error can
be studied in terms of the following quantities

(42) ‖Φ∗
nΦn − Φ∗

PΦP‖HS and ‖Φ∗
nW‖2

measuring the perturbation due to random sampling and noise (we recall that ‖·‖HS

denotes the Hilbert-Schmidt norm of a Hilbert-Schmidt operator on `2). The second
lemma provides suitable probabilistic estimates for these quantities.

Lemma 3. Let ε ≥ 0 and λ > 0. If ε > 0 or κ0 > 0, then

(43)
∥∥βλn − βλ

∥∥
2
≤ 1

κ0 + ελ

(∥∥(Φ∗
nΦn − Φ∗

PΦP )(βλ − βε)
∥∥

2
+ ‖Φ∗

nW‖2

)
.

Proof. Let τ = κ0+κ
2

and recall that βλn and βλ satisfy (34) and (36), respectively. Taking
into account (30) we get

(44)
∥∥βλn − βλ

∥∥
2
≤ 1

τ + ελ

∥∥(τβλn − Φ∗
nΦnβ

λ
n + Φ∗

nY )− (τβλ − Φ∗
PΦPβ

λ + Φ∗
PY )

∥∥
2
.

By Assumption 2 and the definition of βε, Y = f ∗(X) + W , and ΦPβ
ε and Φnβ

ε both
coincide with the function f ∗, regarded as an element of L2

Y(P ) and L2
Y(Pn) respectively.

Moreover by (8) Φ∗
PW = 0, so that

Φ∗
nY − Φ∗

PY = (Φ∗
nΦn − Φ∗

PΦP )βε + Φ∗
nW.

Moreover

(τI − Φ∗
nΦn)β

λ
n − (τI − Φ∗

PΦP )βλ = (τI − Φ∗
nΦn)(β

λ
n − βλ)− (Φ∗

nΦn − Φ∗
PΦP )βλ.

From the assumption on Φ∗
nΦn and the choice τ = κ+κ0

2
, we have ‖τI − Φ∗

nΦn‖
`2,`2

≤ κ−κ0

2
,

so that (44) gives

(τ + ελ)
∥∥βλn − βλ

∥∥
2
≤
∥∥(Φ∗

nΦn − Φ∗
PΦP )(βλ − βε)

∥∥
2
+ ‖Φ∗

nW‖2 +
κ− κ0

2

∥∥βλn − βλ
∥∥

2
.

The bound (43) is established by observing that τ + ελ− (κ− κ0)/2 = κ0 + ελ. �
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The probabilistic estimates for (42) are straightforward consequences of the law of
large numbers for vector-valued random variables. More precisely, we recall the following
probabilistic inequalities based on a result of [32, 33]; see also Th. 3.3.4 of [43] and [34]
for concentration inequalities for Hilbert-space-valued random variables.

Proposition 6. Let (ξn)n∈N be a sequence of i.i.d. zero-mean random variables taking
values in a real separable Hilbert space H and satisfying

(45) E[‖ξi‖mH] ≤ 1

2
m!M2Hm−2 ∀m ≥ 2,

where M and H are two positive constants. Then, for all n ∈ N and η > 0

(46) P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H

≥ η

]
≤ 2e

− nη2

M2+Hη+M
√

M2+2Hη = 2e−n
M2

H2 g(
Hη

M2 )

where g(t) = t2

1+t+
√

1+2t,
or, for all δ > 0,

(47) P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H

≤

(
Hδ

n
+
M
√

2δ√
n

)]
≥ 1− 2e−δ.

Proof. Bound (46) is given in [32] with a wrong factor, see [33]. To show (47), observe

that the inverse of the function t2

1+t+
√

1+2t
is the function t+

√
2t so that the equation

2e−n
M2

H2 g(
Hη

M2 ) = 2e−δ

has the solution

η =
M2

H

(
H2δ

nM2
+

√
2
H2δ

nM2

)
.

�

Lemma 4. With probability greater than 1−4e−δ, the following inequalities hold, for any
λ > 0 and ε > 0,

(48) ‖Φ∗
nW‖2 ≤

(
L
√
κδ

n
+
σ
√
κ
√

2δ√
n

)
≤
√

2κδ(σ + L)√
n︸ ︷︷ ︸

if δ≤n

and

(49) ‖Φ∗
nΦn − Φ∗

PΦP‖HS ≤

(
κδ

n
+
κ
√

2δ√
n

)
≤ 3κ

√
δ√
n︸ ︷︷ ︸

if δ≤n

.

Proof. Consider the `2 random variable Φ∗
XW . From (8), E [Φ∗

XW ] = E [E [Φ∗
XW |X]] = 0

and, for any m ≥ 2,

E [‖Φ∗
XW‖m2 ] = E

[
(
∑
γ∈Γ

| 〈ϕγ(X),W 〉 |2)
m
2

]
≤ κ

m
2 E [|W |m] ≤ κ

m
2
m!

2
σ2Lm−2,

due to (5) and (10). Applying (47) with H =
√
κL and M =

√
κσ, and recalling the

definition (19), we get that

P

[
‖Φ∗

nW‖2 ≤
√
κLδ

n
+

√
κσ
√

2δ√
n

]
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with probability greater than 1− 2e−δ.
Consider the random variable ΦXΦ∗

X taking values in the Hilbert space of Hilbert-Schmidt
operators (where ‖·‖HS denotes the Hilbert-Schmidt norm). One has that E [ΦXΦ∗

X ] =
ΦPΦ∗

P and, by (13)

‖ΦXΦ∗
X‖HS ≤ Tr (ΦXΦ∗

X) ≤ κ.

Hence

E [‖ΦXΦ∗
X − ΦPΦ∗

P‖
m
HS] ≤ E

[
‖ΦXΦ∗

X − ΦPΦ∗
P‖

2
HS

]
(2κ)m−2

≤ m!

2
κ2κm−2,

by m! ≥ 2m−1. Applying (47) with H = M = κ

P [‖ΦnΦ
∗
n − ΦPΦ∗

P‖HS] ≤
κδ

n
+
κ
√

2δ√
n
,

with probability greater than 1 − 2e−δ. The simplified bounds are clear provided that
δ ≤ n. �

Remark 1. In both (48) and (49), the condition δ ≤ n allows to simplify the bounds
enlightening the dependence on n and the confidence level 1 − 4e−δ. In the following
results we always assume that δ ≤ n, but we stress the fact that this condition is only
needed to simplify the form of the bounds. Moreover, observe that, for a fixed confidence
level, this requirement on n is very weak – for example, to achieve a 99% confidence level,
we only need to require that n ≥ 6.

The next proposition gives a bound on the sample error. This bound is uniform in the
regularization parameter λ in the sense that there exists an event independent of λ such
that its probability is greater than 1− 4e−δ and (50) holds true.

Proposition 7. Assume that ε > 0 or κ0 > 0. Let δ > 0 and n ∈ N such that δ ≤ n, for
any λ > 0 the bound

(50)
∥∥βλn − βλ

∥∥
2
≤ c

√
δ√

n(κ0 + ελ)

(
1 +

∥∥βλ − βε
∥∥

2

)
holds with probability greater than 1− 4e−δ, where c = max{

√
2κ(σ + L), 3κ}.

Proof. Plug bounds (49) and (48) in (43), taking into account that∥∥(Φ∗
nΦn − Φ∗

PΦP )(βλ − βε)
∥∥

2
≤ ‖Φ∗

nΦn − Φ∗
PΦP‖HS

∥∥βλ − βε
∥∥

2
.

�

By inspecting the proof, one sees that the constant κ0 in (43) can be replaced by any
constant κλ such that

κ0 ≤ κλ ≤ inf
β∈`2|‖β‖2=1

∥∥∥∥∥∑
γ∈Γλ

βγϕγ

∥∥∥∥∥
2

n

with probability 1,

where Γλ is the set of active features given by Corollary 4. If κ0 = 0 and κλ > 0, which
means that Γλ is finite and the active features are linearly independent, one can improve
the bound (52) below. Since we mainly focus on the case of linearly dependent dictionaries
we will not discuss this point any further.
The following proposition shows that the approximation error

∥∥βλ − βε
∥∥

2
tends to zero

when λ tends to zero.
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Proposition 8. If ε > 0 then

lim
λ→0

∥∥βλ − βε
∥∥

2
= 0.

Proof. It is enough to prove the result for an arbitrary sequence (λj)j∈N converging to

0. Putting βj = βλj , since ‖ΦPβ − Y ‖2
P = ‖ΦPβ − f ∗(X)‖2

P + ‖f ∗(X)− Y ‖2
P , by the

definition of βj as the minimizer of (37) and the fact that βε solves ΦPβ = f ∗, we get∥∥ΦPβ
j − f ∗(X)

∥∥2

P
+ λjpε(β

j) ≤ ‖ΦPβ
ε − f ∗(X)‖2

P + λjpε(β
ε) = λjpε(β

ε).

Condition (7) of Assumption 1 ensures that pε(β
ε) is finite, so that∥∥ΦPβ

j − f ∗(X)
∥∥2

P
≤ λjpε(β

ε) and pε(β
j) ≤ pε(β

ε).

Since ε > 0, the last inequality implies that (βj)j∈N is a bounded sequence in `2. Hence,
possibly passing to a subsequence, (βj)j∈N converges weakly to some β∗. We claim that

β∗ = βε. Since β 7→ ‖ΦPβ − f ∗(X)‖2
P is l.s.c.

‖ΦPβ∗ − f ∗(X)‖2
P ≤ lim inf

j→∞

∥∥ΦPβ
j − f ∗(X)

∥∥2

P
≤ lim inf

j→∞
λjpε(β

ε) = 0,

that is β∗ ∈ B. Since pε(·) is l.s.c.,

pε(β∗) ≤ lim inf
j→∞

pε(β
j) ≤ pε(β

ε).

By the definition of βε, it follows that β∗ = βε and, hence,

(51) lim
j→∞

pε(β
j) = pε(β

ε).

To prove that βj converges to βε in `2, it is enough to show that limj→∞ ‖βj‖2 =
‖βε‖2. Since ‖·‖2 is l.s.c., lim infj→∞ ‖βj‖2 ≥ ‖βε‖2. Hence we are left to prove that
lim supj→∞ ‖βj‖2 ≤ ‖βε‖2. Assume the contrary. This implies that, possibly passing to a
subsequence,

lim
j→∞

∥∥βj∥∥
2
> ‖βε‖2

and, using (51),

lim
j→∞

∑
γ∈Γ

wγ|βjγ| <
∑
γ∈Γ

wγ|βε|.

However, since β 7→
∑

γ∈Γwγ|βγ| is l.s.c.

lim inf
j→∞

∑
γ∈Γ

wγ|βjγ| ≥
∑
γ∈Γ

wγ|βε|.

�

From (50) and the triangular inequality, we easily deduce that∥∥βλn − βε
∥∥

2
≤ c

√
δ√

n(κ0 + ελ)

(
1 +

∥∥βλ − βε
∥∥

2

)
+
∥∥βλ − βε

∥∥
2

(52)

with probability greater that 1−4e−δ. Since the tails are exponential, the above bound and
the Borel-Cantelli lemma imply the following theorem, which states that the estimator
βλn converges to the generalized solution βε, for a suitable choice of the regularization
parameter λ.
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Theorem 2. Assume that ε > 0 and κ0 = 0. Let λn be a choice of λ as a function of n
such that limn→∞ λn = 0 and limn→∞ nλ2

n − 2 log n = +∞. Then

lim
n→∞

∥∥βλn
n − βε

∥∥
2

= 0 with probability 1.

If κ0 > 0, the above convergence result holds for any choice of λn such that limn→∞ λn = 0.

Proof. The only nontrivial statement concerns the convergence with probability 1. We
give the proof only for κ0 = 0, being the other one similar. Let (λn)n≥1 be a sequence
such that limn→∞ λn = 0 and limn→∞ nλ2

n − 2 log n = +∞. Since limn→∞ λn = 0,
Proposition 8 ensures that limn→∞

∥∥βλn − βε
∥∥

2
= 0. Hence, it is enough to show that

limn→∞
∥∥βλn

n − βλn
∥∥

2
= 0 with probability 1. Let D = supn≥1 ε

−1c(1 +
∥∥βλn − βε

∥∥
2
),

which is finite since the approximation error goes to zero if λ tends to zero. Given η > 0,

let δ = nλ2
n
η2

D2 ≤ n for n large enough, so that the bound (50) holds providing that

P
[∥∥βλn

n − βλn
∥∥

2
≥ η
]
≤ 4e−nλ

2
n

η2

D2 .

The condition that limn→∞ nλ2
n − 2 log n = +∞ implies that the series

∑∞
n=1 e

−nλ2
n

η2

D2

converges and the Borel-Cantelli lemma gives the thesis. �

Remark 2. The two conditions on λn in the above theorem are clearly satisfied with the
choice λn = (1/n)r with 0 < r < 1

2
. Moreover, by inspecting the proof, one can easily

check that to have the convergence of βλn
n to βε in probability, it is enough to require that

limn→∞ λn = 0 and limn→∞ nλ2
n = +∞.

Let fn = fβλn
n

. Since f ∗ = fβε and E [|fn(X)− f ∗(X)|2] =
∥∥ΦP (βλn

n − βε)
∥∥2

P
, the above

theorem implies that

lim
n→∞

E
[
|fn(X)− f ∗(X)|2

]
= 0

with probability 1, that is, the consistency of the elastic-net regularization scheme with
respect to the square loss.

Let us remark that we are also able to prove such consistency without assuming (7) in
Assumption 2. To this aim we need the following lemma, which is of interest by itself.

Lemma 5. Instead of Assumption 2, assume that the regression model is given by

Y = f ∗(X) +W,

where f ∗ : X → Y is a bounded function and W satisfies (8) and (9). For fixed λ and
ε > 0, with probability greater than 1− 2e−δ we have

(53)
∥∥Φ∗

n(f
λ − f ∗)− Φ∗

P (fλ − f ∗)
∥∥

2
≤

(√
κDλδ

n
+

√
2κδ

∥∥fλ − f ∗
∥∥
P√

n

)
,

where fλ = fβλ and Dλ = supx∈X |fλ(x)− f ∗(x)|.

We notice that in (53), the function fλ − f ∗ is regarded both as an element of L2
Y(Pn)

and as an element of L2
Y(P ).

Proof. Consider the `2-valued random variable

Z = Φ∗
X(fλ(X)− f ∗(X)) Zγ =

〈
fλ(X)− f ∗(X), ϕγ(X)

〉
.

A simple computation shows that E [Z] = Φ∗
P (fλ − f ∗) and

‖Z‖2 ≤
√
κ|fλ(X)− f ∗(X)|.
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Hence, for any m ≥ 2,

E [‖Z − E [Z]‖m2 ] ≤ E
[
‖Z − E [Z]‖2

2

](
2
√
κ sup
x∈X

|fλ(x)− f ∗(x)|
)m−2

≤ κE
[
|fλ(X)− f ∗(X)|2

](
2
√
κ sup
x∈X

|fλ(x)− f ∗(x)|
)m−2

≤ m!

2
(
√
κ
∥∥fλ − f ∗

∥∥
P
)2(
√
κDλ)

m−2.

Applying (47) with H =
√
κDλ and M =

√
κ
∥∥fλ − f ∗

∥∥
P
, we obtain the bound (53). �

Observe that under Assumption (7) and by the definition of βε one has that Dλ ≤√
κ
∥∥βλ − βε

∥∥
2
, so that (53) becomes

∥∥(Φ∗
nΦn − Φ∗

PΦP )(βλ − βε)
∥∥

2
≤

(
κδ
∥∥βλ − βε

∥∥
2

n
+

√
2κδ

∥∥ΦP (βλ − βε)
∥∥
P√

n

)
.

Since ΦP is a compact operator this bound is tighter than the one deduced from (49).
However, the price we pay is that the bound does not hold uniformly in λ. We are now
able to state the universal strong consistency of the elastic-net regularization scheme.

Theorem 3. Assume that (X, Y ) satisfy (8) and (9) and that the regression function f ∗

is bounded. If the linear span of features (ϕγ)γ∈Γ is dense in L2
Y(P ) and ε > 0, then

lim
n→∞

E
[
|fn(X)− f ∗(X)|2

]
= 0 with probability 1,

provided that limn→∞ λn = 0 and limn→∞ nλ2
n − 2 log n = +∞.

Proof. As above we bound separately the approximation error and the sample error. As
for the first term, let fλ = fβλ . We claim that E

[
|fλ(X)− f ∗(X)|2

]
goes to zero when λ

goes to zero. Given η > 0, the fact that the linear span of the features (ϕγ)γ∈Γ is dense
in L2

Y(P ) implies that there is βη ∈ `2 such that pε(β
η) <∞ and

E
[
|fβη(X)− Y |2

]
≤ E

[
|f ∗(X)− Y |2

]
+ η.

Let λη = η
1+pε(βη)

, then, for any λ ≤ λη,

E
[
|fλ(X)− f ∗(X)|2

]
≤
(
E
[
|fλ(X)− Y |2

]
− E

[
|f ∗(X)− Y |2

])
+ λpε(β

λ)

≤
(
E
[
|fβη(X)− Y |2

]
− E

[
|f ∗(X)− Y |2

])
+ λpε(β

η)

≤ η + η .

As for the sample error, we let fλn = fβλ
n

(so that fn = fλn
n ) and observe that

E
[
|fλ(X)− fλn (X)|2

]
=
∥∥ΦP (βλn − βλ)

∥∥2

P
≤ κ

∥∥βλn − βλ
∥∥2

2
.

We bound
∥∥βλn − βλ

∥∥
2

by (53) observing that

Dλ = sup
x∈X

|fλ(x)− f ∗(x)| ≤ sup
x∈X

|fβλ(x)|+ sup
x∈X

|f ∗(x)|

≤
√
κ
∥∥βλ∥∥

2
+ sup

x∈X
|f ∗(x)| ≤ D

1√
λ

where D is a suitable constant and where we used the crude estimate

λε
∥∥βλ∥∥2

2
≤ Eλ(βλ) ≤ Eλ(0) = E

[
|Y |2

]
.
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Hence (53) yields

(54)
∥∥Φ∗

n(f
λ − f ∗)− Φ∗

P (fλ − f ∗)
∥∥

2
≤

(√
κδD√
λn

+

√
2κδ

∥∥fλ(X)− f ∗(X)
∥∥
P√

n

)
.

Observe that the proof of (43) does not depend on the existence of βε provided that we
replace both ΦPβ

λ
n ∈ L2

Y(P ) and Φnβ
λ
n ∈ L2

Y(Pn) with f ∗, and we take into account that
both ΦPβ

λ ∈ L2
Y(P ) and Φnβ

λ ∈ L2
Y(Pn) are equal to fλ. Hence, plugging (54) and (48)

in (43) we have that with probability greater than 1− 4e−δ∥∥βλn − βλ
∥∥

2
≤ D

√
δ

κ0 + ελ

(
1√
n

+
1√
λn

+

∥∥fλ(X)− f ∗(X)
∥∥
P√

n

)
whereD is a suitable constant and δ ≤ n. The thesis now follows by combining the bounds
on the sample and approximation errors and repeating the proof of Theorem 2. �

To have an explicit convergence rate, one needs a explicit bound on the approximation
error

∥∥βλ − βε
∥∥

2
, for example of the form

∥∥βλ − βε
∥∥

2
= O(λr). This is out of the scope

of the paper. We report only the following simple result.

Proposition 9. Assume that the features ϕγ are in finite number and linearly indepen-
dent. Let N∗ = |supp(βε)| and w∗ = supγ∈supp(βε){wγ}, then∥∥βλ − βε

∥∥
2
≤ DN∗λ.

With the choice λn = 1√
n
, for any δ > 0 and n ∈ N with δ ≤ n

(55)
∥∥βλn

n − βε
∥∥

2
≤ c

√
δ√

nκ0

(
1 +

DN∗
√
n

)
+
DN∗
√
n
,

with probability greater than 1 − 4e−δ, where D = w∗

2κ0
+ ε ‖βε‖∞ and c = max{

√
2κ(σ +

L), 3κ}.

Proof. Observe that the assumption on the set of features is equivalent to assume that
κ0 > 0. First, we bound the approximation error

∥∥βλ − βε
∥∥

2
. As usual, with the choice

τ = κ0+κ
2

, Eq. (36) gives

βλ − βε =
1

τ + ελ

[
Sλ
(
(τI − Φ∗

PΦP )βλ + Φ∗
PΦPβ

ε
)
− Sλ (τβε) + Sλ (τβε)− τβε

]
− ελ

τ + ελ
βε.

Property (30) implies that∥∥βλ − βε
∥∥

2
≤ 1

τ + ελ

(∥∥(τI − Φ∗
PΦP )(βλ − βε)

∥∥
2
+ ‖Sλ (τβε)− τβε‖2

)
+

ελ

τ + ελ
‖βε‖2 .

Since ‖τI − Φ∗
PΦP‖ ≤ κ−κ0

2
, ‖βε‖2 ≤ N∗ ‖βε‖∞ and

‖Sλ (τβε)− τβε‖2 ≤ w∗N∗λ

2
,

one has∥∥βλ − βε
∥∥

2
≤ κ+ κ0 + 2ελ

2(κ0 + ελ)

(
2

κ+ κ0 + 2ελ
w∗N∗λ

2
+

2ελ

κ0 + κ+ 2ελ
‖βε‖2

)
≤ (

w∗

2κ0

+ ε ‖βε‖∞)N∗λ = DN∗λ.

The bound (55) is then an straightforward consequence of (52). �
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Let us observe this bound is weaker than the results obtained in [26] since the constant
κ0 is a global property of the dictionary, whereas the constants in [26] are local.

4.3. Adaptive choice. In this section, we suggest an adaptive choice of the regularization
parameter λ. The main advantage of this selection rule is that it does not require any
knowledge of the behavior of the approximation error. To this aim, it is useful to replace
the approximation error with the following upper bound

(56) A(λ) = sup
0<λ′≤λ

∥∥∥βλ′ − βε
∥∥∥

2
.

The following simple result holds.

Lemma 6. Given ε > 0, A is an increasing continuous function and∥∥βλ − βε
∥∥

2
≤ A(λ) ≤ A <∞

lim
λ→0+

A(λ) = 0.

Proof. First of all, we show that λ 7→ βλ is a continuous function. Fixed λ > 0, for any h
such that λ+ h > 0, Eq. (36) with τ = κ0+κ

2
and Corollary 1 give∥∥βλ+h − βλ

∥∥
2
≤
∥∥Tλ+h(β

λ+h)− Tλ+h(β
λ)
∥∥

2
+
∥∥Tλ+h(β

λ)− Tλ(βλ)
∥∥

2

≤ κ− κ0

κ+ κ0 + 2ε(λ+ h)

∥∥βλ+h − βλ
∥∥

2
+

+

∥∥∥∥ 1

τ + ε(λ+ h)
Sλ+h (β′)− 1

τ + ελ
Sλ (β′)

∥∥∥∥
2

where β′ = (τI−Φ∗
PΦP )βλ+Φ∗

PY does not depend on h and we wrote Tλ to make explicit
the dependence of the map T on the regularization parameter. Hence∥∥βλ+h − βλ

∥∥
2
≤ τ + ε(λ+ h)

κ0 + ε(λ+ h)

(∣∣∣∣ 1

τ + ε(λ+ h)
− 1

τ + ελ

∣∣∣∣ ‖β′‖2 +

+
1

τ + ελ
‖Sλ+h (β′)− Sλ (β′)‖2

)
.

The claim follows by observing that (assuming for simplicity that h > 0)

‖Sλ+h (β′)− Sλ (β′)‖2
2 =

∑
wγλ≤|β′γ |<wγ(λ+h)

|β′γ − sgn(β′γ)wγλ|2 +
∑

|β′γ |≥wγ(λ+h)

w2
γh

2

≤ h2
∑

|β′γ |≥wγλ

w2
γ ≤ h2

∑
|β′γ |≥wγλ

(β′γ/λ)2 ≤ h2 ‖β′‖2
2 /λ

2 ,

which goes to zero if h tends to zero.
Now, by the definition of βλ and βε

ελ
∥∥βλ∥∥2

2
≤ E

[
|ΦPβ

λ − f ∗(X)|2
]

+ λpε(β
λ) ≤ E

[
|ΦPβ

ε − f ∗(X)|2
]
+ λpε(β

ε) = λpε(β
ε),

so that ∥∥βλ − βε
∥∥

2
≤ ‖βε‖2 +

1√
ε
pε(β

ε) =: A.

Hence A(λ) ≤ A for all λ. Clearly A(λ) is an increasing function of λ; the fact that∥∥βλ − βε
∥∥

2
is continuous and goes to zero with λ ensures that the same holds true for

A(λ). �
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Notice that we replaced the approximation error with A(λ) just for a technical reason,
namely to deal with an increasing function of λ. If we have a monotonic decay rate at our
disposal, such as

∥∥βλ − βε
∥∥

2
� λa for some a > 0 and for λ→ 0, then clearly A(λ) � λa.

Now, we fix ε > 0 and δ ≥ 2 and we assume that κ0 = 0. Then we simplify the
bound (52) observing that

(57)
∥∥βλn − βε

∥∥
2
≤ C

(
1√
nελ

+A(λ)

)
where C = c

√
δ(1 + A); the bound holds with probability greater than 1−4e−δ uniformly

for all λ > 0.
When λ increases, the first term in (57) decreases whereas the second increases; hence to
have a tight bound a natural choice of the parameter consists in balancing the two terms
in the above bound, namely in taking

λopt
n = sup{λ ∈]0,∞[ | A(λ) =

1√
nελ

}.

Since A(λ) is continuous, 1√
nελopt

n
= A(λopt

n ) and the resulting bound is

(58)
∥∥βλn − βε

∥∥
2
≤ 2C
√
nελopt

n

.

This method for choosing the regularization parameter clearly requires the knowledge of
the approximation error. To overcome this drawback, we discuss a data-driven choice for
λ that allows to achieve the rate (58) without requiring any prior information on A(λ).
For this reason, such choice is said to be adaptive. The procedure we present is also
referred to as an a posteriori choice since it depends on the given sample and not only on
its cardinality n. In other words, the method is purely data-driven.

Let us consider a discrete set of values for λ defined by the geometric sequence

λi = λ02
i i ∈ N λ0 > 0.

Notice that we may replace the sequence λ02
i be any other geometric sequence λi = λ0q

i

with q > 1; this would only lead to a more complicated constant in (60). Define the
parameter λ+

n as follows

(59) λ+
n = max{λi|

∥∥βλj
n − βλj−1

n

∥∥
2
≤ 4C√

nελj−1

for all j = 0, . . . , i}

(with the convention that λ−1 = λ0). This strategy for choosing λ is inspired by a
procedure originally proposed in [27] for Gaussian white noise regression and which has
been widely discussed in the context of deterministic as well as stochastic inverse problems
(see [6, 35]). In the context of nonparametric regression from random design, this strategy
has been considered in [16] and the following proposition is a simple corollary of a result
contained in [16].

Proposition 10. Provided that λ0 < λopt
n , the following bound holds with probability

greater than 1− 4e−δ

(60)
∥∥∥βλ+

n
n − βε

∥∥∥
2
≤ 20C
√
nελopt

n

.

Proof. The proposition results from Theorem 2 in [16]. For completeness, we report here
a proof adapted to our setting. Let Ω be the event such that (57) holds for any λ > 0; we
have that P[Ω] ≥ 1− 4e−δ and we fix a sample point in Ω.
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The definition of λopt
n and the assumption λ0 < λopt

n ensure that A(λ0) ≤ 1√
nελ0

. Hence

the set {λi | A(λi) ≤ 1√
nελi

} is not empty and we can define

λ∗n = max{λi | A(λi) ≤
1√
nελi

}.

The fact that (λi)i∈N is a geometric sequence implies that

(61) λ∗n ≤ λopt
n < 2λ∗n,

while (57) with the definition of λ∗n ensures that

(62)
∥∥βλ∗nn − βε

∥∥
2
≤ C

(
1√
nελ∗n

+A(λ∗n)

)
≤ 2C√

nελ∗n
.

We show that λ∗n ≤ λ+
n . Indeed, for any λj < λ∗n, using (57) twice, we get∥∥βλ∗nn − βλj

n

∥∥
2
≤
∥∥βλj

n − βε
∥∥

2
+
∥∥βλ∗nn − βε

∥∥
2

≤ C

(
1√
nελj

+A(λj) +
1√
nελ∗n

+A(λ∗n)

)
≤ 4C√

nελj
,

where the last inequality holds since λj < λ∗n ≤ λopt
n and A(λ) ≤ 1√

nελ
for all λ < λopt

n .

Now 2mλ0 ≤ λ∗n ≤ λ+
n = 2m+k for some m, k ∈ N, so that∥∥∥βλ+
n

n − βλ
∗
n

n

∥∥∥
2
≤

k−1∑
`=0

∥∥βm+1+`
n − βm+`

n

∥∥
2
≤

k−1∑
`=0

4C√
nελm+`

≤ 4C√
nελ∗n

∞∑
`=0

1

2`
=

4C√
nελ∗n

2 .

Finally, recalling (61) and (62), we get the bound (60):∥∥∥βλ+
n

n − βε
∥∥∥

2
≤
∥∥∥βλ+

n
n − βλ

∗
n

n

∥∥∥
2
+
∥∥βλ∗nn − βε

∥∥
2
≤ 8C√

nελ∗n
+

2C√
nελ∗n

≤ 20C
1

√
nελopt

n

.

�

Notice that the a priori condition λ0 < λopt
n is satisfied, for example, if λ0 <

1
Aε
√
n
.

To illustrate the implications of the last Proposition, let us suppose that

(63)
∥∥βλ − βε

∥∥
2
� λa

for some unknown a ∈]0, 1]. One has then that λopt
n � n−

1
2(a+1) and

∥∥∥βλ+
n

n − βε
∥∥∥

2
�

n−
a

2(a+1) .
We end noting that, if we specialize our analysis to least squares regularized with a

pure `2-penalty (i.e. setting wγ = 0, ∀γ ∈ Γ), then our results lead to the error estimate
in the norm of the reproducing kernel space H obtained in [36, 7]. Indeed, in such a
case, βε is the generalized solution β† of the equation ΦPβ = f ∗ and the approximation
error satisfies (63) under the a priori assumption that the regression vector β† is in the
range of (Φ∗

PΦP )a for some 0 < a ≤ 1 (the fractional power makes sense since Φ∗
PΦP is

a positive operator). Under this assumption, it follows that
∥∥∥βλ+

n
n − βε

∥∥∥
2
� n−

a
2(a+1) . To

compare this bound with the results in the literature, recall that both fn = f
β

λ+
n

n

and

f ∗ = fβ† belongs to the reproducing kernel Hilbert space H defined in Proposition 3. In

particular, one can check that β† ∈ ran (Φ∗
PΦP )a if and only if f ∗ ∈ ranL

2a+1
2

K , where
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LK : L2
Y(P ) → L2

Y(P ) is the integral operator whose kernel is the reproducing kernel K
[10]. Under this condition, the following bound holds

‖fn − f ∗‖H ≤
∥∥∥βλ+

n
n − βε

∥∥∥
2
� n−

a
2(a+1) ,

which gives the same rate as in Theorem 2 of [36] and Corollary 17 of [7].

Acknowledgments

We thank Alessandro Verri for helpful suggestions and discussions. Christine De Mol
acknowledges support by the “Action de Recherche Concertée” Nb 02/07-281, the VUB-
GOA 62 grant and the National Bank of Belgium BNB; she is also grateful to the DISI,
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