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Abstract

This thesis addresses the problem of reconstruction of multidimensional signals
from zero crossing or threshold crossing information. The basic theoretical result
shows that most two-dimensional, periodic, bandlimited signals are uniquely speci-
fied with zero crossings or with crossings of an arbitrary threshold. This result also
applies to finite length signals. and to situations where only a discrete set of zero
crossing points are available. Additional results show that signals of higher dimen-
sions and nonperiodic signals are also uniquely specified with zero crossings or
threshold crossings. By applying the duality of the Fourier transform in a straight-
forward way, it is also shown that finite-length signals are uniquely specified with
zero crossings (or sign information) in the Fourier domain under analogous sets of
conditions.

A problem distinct from that of uniquely specifying signals with zero crossings
is that of developing specific algorithms for recovering signals from zero crossing
information once it is known that the signals satisfy the appropriate constraints.
Two algorithms for recovering signals from zero crossings or threshold crossings are
presented and one is successfully used to recover example images from threshold
crossings. The thesis concludes with suggestions for future research including possi-
ble applications of these results.

Thesis Supervisor: Prof. Alan V. Oppenheim
Title: Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

The importance of zero crossing locations in determining the nature of both

one- and two-dimensional signals has been recognized for some time. Experiments

in speech processing have shown that speech with only the zero crossing informa-

tion preserved (hard-clipped speech) retains much of the intelligibility of the origi-

nal speech [1]. Also, a wide variety of papers in image processing and vision stress

the importance of the information contained in the edges of objects and one theory

of human vision relies primarily on edge detection as the mechanism by which

humans process visual information [2].

There are also a variety of other types of applications in which the zero cross-

ings or threshold crossings are available and it is desired to recover the original sig-

nal. One possible application occurs when an image is clipped or otherwise dis-

torted in such a way as to preserve zero crossing or level crossing information and it

is desired to recover the original signal from this information. This might happen if

an image is recorded on a high-contrast film or any film with an unknown charac-

teristic. If it is possible to recover the original signal from its threshold crossings,

then it is possible, at least in principle, to recover the original signal from its dis-

torted version and to determine the type of nonlinearity present. In addition, it is

not necessary for the nonlinearity to be monotonic; it is only necessary that it

preserve the threshold crossing information. This could be useful in an application

__ - I 1 _ 1 ~ 1 I _ ____ I___L__1I�^·lllll_^__1 -·P-· IIIIC
_ · l - l 1_1 -·----^
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such as medical archiving, where intensity levels of images recorded on film are

likely to become distorted over time, but threshold crossing information could be

preserved. In some archiving applications it is unlikely that any particular image

may need to be retrieved, but it is important to be able to recover the image if

necessary even if the process is expensive or time-consuming. Another possible

type of application of results on reconstruction from zero crossing information is in

a vriety of design problems such as filter design [3] and antenna design [4]. In

these cases, one could potentially specify the zero crossing points or null points of

the filter response or antenna pattern and then use these points to derive the

remainder of the response.

One might also consider the possibility of exploiting the information in zero

crossings for signal coding and data compression. However, in representing a two-

dimensional signal with zero crossings or threshold crossings, it is important to

recognize that the amplitude information in the original signal is embedded in the

exact location of the zero crossings. Consequently, it is not unreasonable that while

the original signal can be sampled at the Nyquist rate, the zero .rossing representa-

tion may require a considerably higher, possibly infinite, sampling rate to ade-

quately preserve the zero crossing locations. Thus the total number of bits or

bandwidth required in the zero crossing representation might well be higher than

that required by sampling and quantizing the original signal. For this reason, we

expect results on signal reconstruction from zero crossings to be more useful in

applications where the exact zero crossing points are available. It is possible, how-
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ever, to view the representation of signals with zero crossings as a potential trade-

off between the bandwidth and the dynamic range necessary for transmitting a sig-

nal. If the available bandwidth is sufficient to accurately preserve the zero crossing

locations, then the dynamic range requirements might be greatly reduced if the sig-

nal could be recovered from the zero crossing locations.

The possibility of recovering signals from zero crossings has been considered in

a number of different papers in the field of communication theory (see [5] for

references), although the great majority of this work has concentrated on one-

dimensional signals. In this thesis, we study the problem of recovering multidimen-

sional signals from zero crossings. As will be discussed in more detail later, there is

a fundamental difference between one-dimensional zero-crossing problems and mul-

tidimensional problems since in one dimension, zero crossings represent a discrete

set of points and in two dimensions or higher, zero crossings are contours or sur-

faces. Thus it is possible to develop results for the multidimensional problem which

have no direct analog in the one-dimensional case. These results, which shall be

developed in this thesis, appear to be less restrictive and more broadly applicable

than two-dimensional extensions of one-dimensional results previously reported.

We shall begin this thesis by reviewing related research on reconstruction of

signals from zero crossings. In developing our new theoretical results on unique

specification with zero crossings, we shall begin by considering two-dime::sional

periodic signals since these signals can be represented as polynomials with a Fourier

series expansion, allowing us to apply known properties of the zeros of polynomials.

___�1_ _I_�·_Il �I� �I_II II ·I- - I.. ~~~~~~~~~~~---- ·~~~~·- -L_-_·~~~~~~··l~~~·Il~~----
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These results will be presented in chapter 3, along with the extension to signals of

higher dimensions. Most of the results developed for periodic signals can be gen-

eralized to nonperiodic signals; this generalization will be presented in chapter 4.

In chapter 5, we will use the results of chapters 3 and 4 to develop conditions

under which signals are uniquely specified with zero crossings in the Fourier

domain by applying the duality of the Fourier transform in a straight-forward way.

A problem distinct from that of uniquely specifying signals with zero crossings

is the problem of developing effective techniques for recovering a signal from zero

crossing information once it is known that the signal satisfies the appropriate

uniqueness constraints. Two possible algorithms are presented and evaluated in

chapter 6. We include experimental results illustrating images we have successfully

recovered from zero crossing information. We conclude the thesis with suggestions

for future research including possible applications of our results.

__ �_
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CHAPTER 2

RELATED RESEARCH

A significant amount of research in the field of communication theory has

been devoted to the problem of unique representation of signals with zero cross-

ings, primarily for one-dimensional signals. In this chapter, we review this research

to provide background for the results to be developed later in this thesis. A more

detailed review of results in this area can be found in reference [5].

A wide variety of papers have dealt with the importance of zero crossings and

the possibility of recovering a one-dimensional signal from zero crossing information

alone. These results are primarily based upon the theory of entire functions since it

is known that a bandlimited function can be uniquely extended to the complex

plane as an entire function. Most of these results have come from the field of com-

munication theory, where it is often of considerable value to know what type of

information is sufficient to uniquely specify a signal. In addition, the theory of

zeros of entire functions has been used for comparison and analysis of different

types of modulation systems and for studying properties of modulated signals. For

example, Voclcker [6] shows how modulation processes can be considered to be

methods of manipulating or extracting the zeros of a signal, and that different sys-

tems can be analyzed as to how they effect the zeros of a signal. Additional appli-

cations for this work occur in a variety of design problems where one might want to

specify a system response or other signal in terms of zero crossings and derive the

_11_---- -·1 -�_II - --- l--i -··--���---CIIII·-·�·-LI·_IIIIIII�-X-�X
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remainder of the response from these. Systems are often designed and analyzed in

terms of poles and zeros, which in the case of lumped systems, involves he study of

zeros of polynomials, and in the case of distributed systems, involves the study of

zeros of non-polynomial entire functions (an example is given in [7] ).

Most of the results on the unique specification of one-dimensional signals are

based upon the fact that a bandlimited function is entire (analytic everywhere) and

is thus uniquely specified by its zeros (real and complex) to within a constant and

an exponential factor. An arbitrary bandlimited function is uniquely specified by

its (real) zero crossings if all its zeros are guaranteed to be real. Thus, a number of

previous research efforts concentrated on identifying conditions under which signals

have only real zeros and developing methods for modifying a signal so that all of its

zeros become real. One result in this area is that a one-dimensional complex signal

with no energy for negative frequencies is uniquely specified by the zero crossings

of its real part if the complex signal has zeros only in the upper half-plane [5,8].

(A more general form of this result is given in [9].) One method of modifying sig-

nals so that all of their zeros become real is to add a sinusoid of sufficient ampli-

tude at a frequency corresponding to the band edge [10]; another is to repeatedly

differentiate the signal [8]. Some modulation schemes have also been shown to

produce signals with only real zeros [6].

Additional work has involved identifying signals which are uniquely specified

by their (real) zero crossings despite the fact that they also contain complex zeros.

This is possible if the zero crossing rate is in some sense higher than the informa-

__ __
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tion rate or bandwidth of a signal. Voelcker [11] has shown that for angle-

modulated systems, knowledge of the zero crossing locations of the modulated sig-

nal is equivalent to knowledge of samples of the signal before modulation; thus if

the original signal is bandlimited, then the zero crossings of the modulated signal

are sufficient to uniquely specify it. Fairly recently, in response to experimental

results presented by Voelcker and Requicha [12], Logan [9] developed a new class

of bandpass signals which are uniquely specified by their zero crossings. Specifi-

cally, Logan showed that a signal with a bandwidth of less than one octave is

uniquely specified by its zero crossings if it has no zeros in common with its Hiibert

transform other than real simple zeros. This means that almost all bandpass signals

of bandwidth less than one octave are uniquely specified by their zero crossings.

It is also possible to interpret results on unique specification of signals with

zero crossings as a type of sampling, where the "samples" consist of the set of points

(times) corresponding to zero crossings, as opposed to the amplitude of the signal at

particular fixed instants [5]. Using this point of view, "sampling" might consist of

adding a sine wave at the appropriate frequency and recording those instants when

the resulting signal crosses zero, or equivalently, recording those instants where the

original signal crosses a sinusoid. 'Interpolation" would then consist of generating a

signal with sine-wave crossings at the specified instants. Sampling and interpolation

systems using this approach have been designed, implemented, and found to pro-

duce good results [13].

�_�___��_·I _ _I_ IIII I__I I I _II �__L__I 1�--·---�---�-
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Despite the number of results on the unique specification of signals with zero

crossings, most one-dimensional bandlimited signals encountered in practice do not

satisfy the constraints associated with any of the above results and are not uniquely

specified by their zero crossings unless they satisfy some additional constraints

which effectively guarantee that they contain a sufficient number of zero crossings.

In fact, it has been shown [14] that almost all sample functions of a bandlimited

Gaussian random process are not uniquely specified by zero crossings.

Although a considerable amount of theoretical work has been devc:ed to the

problem of reconstruction of one-dimensional signals from zero crossings, much less

work has been devoted to the corresponding two-dimensional problem. Logan's

result has been extended to two dimensions [2,15] by requiring a one-dimensional

signal derived from the original two-dimensional signal to satisfy the constraints of

Logan's theorem. In addition, one-dimensional results on reconstruction from

sine-wave crossings have been extended to two-dimensional problems [16]. How-

ever, as mentioned earlier, the two-dimensional problem is fundamentally different

from the one-dimensional problem since in two dimensions, the zero crossings" are

actually zero crossing contours and not isolated points as in the one-dimensional

case. It is possible to derive results on the unique specification of multidimensional

signals with zero crossings which are based directly on the prcperties of multidimen-

sional signals and are not derived from similar results for one-dimensional signals.

These results will be presented in this thesis.

___ _ __ �
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CHAPTER 3

UNIQUE SPECIFICATION OF PERIODIC SIGNALS WITH ZERO CROSSINGS

The representation of a signal in terms of zero crossings can be thought of as a

form of nonuniform sampling, with each zero crossing representing one sample [5].

Most one-dimensional bandlimited signals are not uniquely determined by zero

crossings since the average rate of zero crossings is not guaranteed to be sufficiently

high [14]. Logan's condition [9] requires signals to be bandpass with a bandwidth

of less than one octave so that the number of zero crossings (or the rate of zerc

crossings) is in some sense consistent with the amount of information or bandwidth

in the signal. In two dimensions, in contrast to one dimension, the "zero crossings"

(sign changes) of a signal are contours and thus each zero crossing contour

corresponds to an infinite number of samples of the signal. Thus it is reasonable to

suggest that a two-dimensional signal may be specified with zero crossings under

more general conditions than those required for a one-dimensional signal.

This is in fact true, and in this chapter, we shall present new results on the

unique specification of bandlimited, periodic, two-dimensional signals from zero

crossings. The results are simpler to develop for periodic signals than for arbitrary

signals since we can represent these signals as polynomials in a Fourier series

representation and apply well-known results on polynomials from algebraic

geometry. (The extension to nonperiodic signals vill be presented in the next

chapter.) In the first section, we shall first define this representation and present

�I ��I I__ 1_1 _ __C_ _I I __CIII_1__11___1__�.-.--·-LU�^�--
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the necessary results on polynomials. Following that, we shall develop a number of

different sets of conditions under which a signal is uniquely specified with zero

crossings. These results can be stated in a number of different forms since it is pos-

sible to uniquely specify a signal with zero crossings under a number of different

sets of constraints. We shall present the primary result in section 2 and then

develop a number of extensions for different types of signals in section 3. In sec-

tion 4, we consider the problem of sampling the zero crossing contours, that is, we

develop conditions under which a signal is uniquely specified with a finite set of

discrete points chosen from the zero crossing contours. In section 5, we extend

these results to signals of dimension higher than two.

3.1. Background

Consider a real, bandlimited, continuous-time, periodic signal f (x,y) with

periods T 1 and T 2 in the x- and y- directions, respectively. We can express f (x ,y)

as a polynomial using the Fourier series representation:

f (x,y) = F(nl,n2 ) W1"' W2 (1)
(1)

SIIti 2

where

.2.n'

W1T= eTr

The coefficients F (n 1,n) are the Fourier series coefficients and represent the spec-

trum of f (x,y). Since we are assuming f (x,y) to b e bandlimited, the sums in

equation (1) must be finite. The set of points (nl,n2) where F(nl,n) is not

_ _I __ __ � ___ I
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constrained to be zero is referred to as the region of support of the spectrum.

Since the Fourier coefficients F (nl,n2 ) are nonzero for positive and negative values

of nl and n2, strictly speaking, f (x ,y) is not a polynomial in the variables W 1 and

W2 since it contains negative powers of n 1 and n 2. However, since f (x,y) is

bandlimited, F (n 1,n 2) is nonzero only over some finite region in the (nl,n2) plane,

and it is easy to modify equation (1) to relate f (x,y) to a polynomial in W 1 and

W 2. Assume F(nl,n2) = 0 outside the region -N 1 - n 1 I l, -N 2 ' n 2 N 2.

Then we can write:

n=12Nl n2=2N2
f'(xy) = Wj W 2 f (xy) = E I F(n-N 1 ,n 2 -N 2 ) W' W2 ()

Although in the discussion that follows we shall refer to the representation of

f (x ,y) as a Fourier series polynomial, it should be kept in mind that, strictly

speaking, we are referring to the representation of the modulated signal f' (x ,y ) in

equation (2) as a polynomial.

Now that we have established a method of representing a signal as a polyno-

mial, we will state a well-established result on polynomials in two variables which

we will later use to develop our results on the unique specification of signals with

zero crossings. We will state this result here without proof; the detailed proof is

available in references [17] and [18], as well as a number of other texts on algebraic

geometry.

_ 1--^�---·11.1 1_-�--1I --- -I-
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Theorem 3.1. If p (x ,y) and q (x ,y) are two-dimensional polyno-
mials of degrees r and s with no common factors, then there are at
most rs distinct pairs (x ,y) where:

p(x,y) = 0 (3)

and

q(x,y) = o

In this theorem, the degree of a polynomial in two variables is defined in

terms of the sum of the degrees in each variable (for each term), that is, the degree

of a two-dimensional polynomial p (x ,y) is equivalent to the degree of the one-

dimensional polynomial p(x, x). The rs distinct pairs (x,y) described in this

theorem consist of rs points anywhere in the complex (x,y)-plane. Essentially,

Theorem 3.1 places an upper bound on the number of points where two two-

dimensional polynomials can both be zero if they do not have a common factor.

A stronger form of Theorem 3.1 is available which guarantees that the zero-

sets of the polynomials intersect in exactly rs points, rather than simply stating an

upper bound. Itis stronger result, referred to as Bezout's Theorem in algebraic

geometry, requires including the multiplicity of intersections as well as points which

lie "at infinity" (e.g., two parallel lines are considered to intersect in one point at

infinity). Bezout's Theorem can be thought of as a generalization of the Funda-

mental Theorem of Algebra, which guarantees that an n degree polynomial has

exactly n roots provided multiplcity is included. To see the connection, consider

applying Theorem 3.1 with f (x,y) = y-h(x), where h(x) is an n -degree poly-

nomial in x and let g (x ,y ) y. The set of points where f (x ,y ) = O is a curve in

the (x ,y )-plane, and the set of points where g (x ,y ) = 0 is the x -axis. The points

_ __ ___ � ��_ __.
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of intersection (where f (x ,y) = g(x ,y) = 0) correspond to the n zeros of the

polynomial h (x). Theorem 3.1 guarantees that there will be at most rs = n such

points of intersection and Bezout's Theorem tells us there will in fact be exactly

rs = n points of intersection.

One interesting aspect of this theorem is that the number of points of intersec-

tion is in general greater tian the number of coefficients or degrees of freedom in

the polynomials. For example, a polynomial of degree N in each variable will have

(N + 1)2 coefficients and one might expect the polynomial to be uniquely specified

to within a scale factor with (N + 1)2- 1 distinct points where it is zero. However,

this is not the case since these polynomials will have an overall degree of 2N and

two such polynomials will have 4N2 points of intersection, so that (N + 1)2 - I points

cannot be guaranteed to uniquely specify the polynomial.

3.2. Primary Result

In this section, we will use the representation of signals as polynomials and the

result on intersection of zero-sets of polynomials presented in the preceding section

to establish our primary result cn the reconstruction of periodic signals from zero

crossings. A number of extensions to this result will be presented in the following

section.

To see how the results presented in the preceding section apply to the problem

of unique specification of two-dimensioial signals with zero crossings, consider a

real, bandlimited, periodic signal f (x ,y) expressed as a polynomial in the Fourier

- I_I ^- --^·I _ II_ ·I��lllll��llll�·LIIIIIL1�-·�---� �I--
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series representation in equation (2). We assume that there are some regions

where f (x ,y) is positive and some regions where f (x ,y) is negative. These

regions are separated from each other by a contour where f (x ,y) = 0. If another

signal g (x ,y) has the same zero crossing contours as f (x ,y), then there are an

infinite number of points where both f (x ,y) and g (x ,y) are zero. We can then

use Theorem 3.1 to show that f (x ,y) and g (x ,y) must have a common factor. If

furthermore we know that f (x ,y) and g (x ,y) are irreducible when expressed as

polynomials as in equation (2), then they must be equal to within a scale factor.

Our result can be stated as follows:

Theorem 3.2. Let f (x ,y ) and g (x ,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with sign f (x ,y) = sign g (x ,y),
where f (x ,y) takes on both positive and negative values. If f (x ,y)
and g(x,y) are nonfactorable when expressed as polynomials in the
Fourier series representation (2), then f (x ,y) = cg (x ,y ).

Proof: We will prove this result by starting with two signals f (x ,y) and

g (x ,y) which satisfy the constraints of the theorem and sowing that they must be

equal to within a scale factor. Since we know that f (x ,y) takes on positive and

negative values, there must be some region of the (x ,y) plane where f (x ,y) > 0

and another region where f (x ,y) < 0. Since f (x ,y) is bandlimited and therefore

continuous, the boundary between these regions is a contour where f (x ,y) = 0.

Since sign f(x,y) = sign g(x,y) for all (x,y), the same arguments also hold for

g (x ,y ). Thus, we have contours in the x ,y plane where:

II_ _ _ _
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f (,Y ) g(x,y) 0 (4)

Also, if N 1 and N 2 are defined as in equation (2), we have:

N1 0 (5)W 1
' W 2 f (x,y) = 0 (5)

1 2 g(XY) = 0

over these contours. Thus we have an infinite set of points where two polynomials

in the variables W 1,W 2 are known to be zero. Thus, by Theorem 3.1, f (x ,y) and

g (x ,y) must have a common factor. If furthermore, we assume that f (x ,y) and

g (x,y) are nonfactorabie when expressed as polynomials ii equation (2), then

f (x ,y ) = cg(x,y).

Note that in order to satisfy Theorem 3.1, it is not necessary to know the loca-

tion of all the zero crossing contours; it is only necessary to know the location of a

sufficient number of points along these contours. Thus any zero contour in the

(x ,y) plane is sufficient to uniquely specify the signal (since it contains an infinite

number of points) even if the region where f (x ,y) < 0 is very small. It is also

possible to sample the zero crossing contours, i.e., to uniquely specify the signal

with only a finite set of discrete points from the zero crossing contours. This possi-

bility will be explored in more detail in section 3.4.

The fact that knowledge of all the zero contours in the (x,y) plane is not

necessary to uniquely specify the signal allows us to extend this result to signals

which are not periodic but are finite length. This extension is important since most

signals encountered in practice are finite length. Consider the case where f (x ,y)
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is a finite segment of a periodic signal satisfying the constraints of Theorem 3.2.

For example, if f (x ,y) represents one period of a bandlimited periodic function

(x ,y ):

f(x,y) = f (x + nT 1, y + n2T) (6)

then it is possible to recover f (x ,y) from its zero crossings provided that f (x ,y)

satisfies the constraints of Theorem 3.2, even though f (x ,y) itself is not bandlim-

ited. More generally, it is not necessary for the duration of f (x ,y) to be equal to

one period of the corresponding periodic function. Thus, f (x ,y ) can represent a

finite segment of a variety of different periodic functions. In order for f (x ,y) to

be uniquely specified by its zero crossings, we only need one periodic function con-

taining f (x ,y ) to be bandlimited. Specifically, let us state:

Theorem 3.3. Let f (x ,y) and g(x ,y) be two-dimensional con-
tinuous functions defined over the same known region R of finite
extent with sign f (x ,y ) sign g (x ,y), where f (x ,y) takes on both
positive and negative values. If f(x,y) = fp(x,y) in R and
g (x ,y ) = g (x ,y ) in R for any periodic, bandlimited functions fp (x ,y )
and gp (x ,y) which are nonfactorable when expressed as polynomials in
the form (2), then f (x ,y ) = cg (x ,y ) for some positive constant c.

Proof: First we note that if fp (x ,y) and gp (x ,y) are not simply periodic repli-

cations of f (x ,y ) and g (x ,y), then fp(x ,y) and g,(x ,y) may contain zero cross-

ings that cannot be obtained from the zero crossings of f (x ,y ) and g (x ,y). Thus,

Theorem 3.3 does not quite follow directly from Theorem 3.2. However, unique

specification in terms of zero crossings does not require knowledge of all the zero

crossing contours; it requires only a specific number of points from these contours.

_ �__ __
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In this case, as long as f (x ,y) contains both positive and negative values, it will

contain at least one zero crossing contour with an infinite number of points. Thus

fp (x ,y ) = gp (x ,y ) = 0 at an infinite number of points, and using arguments taken

from the proof of Theorem 3.2, fp(x,y) = cgp(x,y). Since f (x,y) and g(x,y)

are both known to be defined over the same region R and over R,

f (xy) = fp (x,y) and g (x,y) = gp(x,y), then f (x,y) = cg(x,y).

Having established a set of conditions which guarantee that a signal is uniquely

specified by some partial information, it is worthwhile to determine whether or not

these conditions are likely to apply to a typical signal encountered in practice. First

of all, we .note that the irreducibility constraint is satisfied with probability one,.

since it has been shown that the set of reducible m -dimensional polynomials forms

a set of measure zero in the set of all m-dimensional polynomials (for m >i) [19]

and that this set is an algebraic set [20]. Furthermore, we shall develop an exten-

sion to Theorem 3.2 in the next section which does not require the signals to be

irreducible as Fourier series polynomials. The more restrictive constraint is that of

requiring the signal to strictly bandlimited. Although signals encountered in prac-

tice are generally not strictly bandlimited, in many applications signals are com-

monly assumed to be bandlimited, and furthermore it is common to low-pass filter

signals when necessary for particular processing techniques. Another conceivable

difficulty with this result is that in some applications such as image processing, the

signals are constrained to be positive ad thus will not contain zero crossings. Tis
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problem will be eliminated in the following section when we extend this result to

include crossings of an arbitrary threshold instead of just zero crossings.

3.3. Extensions

Although Theorem 3.2 states a particular set of constraints under which a sig-

nal is uniquely specified with zero crossings, a number of different sets of con-

straints are possible. In this section, we shall introduce four extensions to Theorem

3.2. The first extension imposes most of its constraints on only one signal, as

opposed to imposing a number of constraints on both signals f (x ,y) and g (x ,y).

This result will be convenient to use when discussing algorithms for reconstruction

from the zero crossings of f (x ,y). The second result generalizes the concept of

zero crossings to include crossings of an arbitrary threshold. The third result

extends Theorem 3.2 to include factorable signals by replacing the nonfactorability

constraint with a constraint on each factor. The final result extends Theorem 3.2

to complex signals with spectral components constrained to one half-plane in the

frequency domain. In this case, the signals are uniqurely specified with the zero

crossings of the real part of the signal.

Let us start by considering a case where it would be convenient to have a

result which imposes most of its constraints on only one signal. Suppose a signal

f (x ,y) is kncwr n to satisfy the constraints of Theorem 3.2, and we would like to

develop an algorithm to recover f (x ,y) from its zero crossings. It would be con-

venient to have a set of constraints which guarantee that there are no other signals

g x,y) with sign f(x ,y) = sign g(x,y) whether or not g(x,y) satisfies the

_
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constraints of Theorem 3.2. While it is simpie enough to guarantee that a

recovered signal g(x,y) is bandlimited, it is extremely difficult to guarantee that

g (x ,y ) is nonfactorable. Without this restriction, g (x ,y ) might contain a positive

factor, and thus we could have sign f (x ,y) = sign g (x ,y ) but f (x ,y) * cg (x ,y).

To avoid this problem, we note that since multiplication by an additional factor in

the spatial domain increases the degree of the Fourier series polynomial, the signal

g (x ,y) would then have a larger bandwidth than f (x ,y). Thus, if the exact size

of the bandwidth of f (x ,y) is known, then this information, together with the zero

crossings of f (x ,y ), is - cient to uniquely specify f (x ,y ). Specifically:

Theorem 3.4. Let f (x ,y) and g(x ,y) be real two-dimensional
signals with F(nl,n2) 0 and G(nl,n2) =0 outside the region
-N1 5 nl < N 1, -N2 s n2 N 2, with sign f (x ,y) sign g (x ,y ). If
F [N1, NZ] * 0, f (x ,y ) takes on both positive and negative values, and
f (x,y) is nonfactorable when expressed as a polynomial in equation
(2), then f (x ,y) = cg (x ,y) for some positive constant c.

Proof: Following the proof of Theorem 3.2, we know that since sign

f (x ,y ) = sign g (x ,y ), f (x ,y ) and g (x ,y ) must contain a common factor. Since

f (x ,y) is nonfactorable, then if f (x ,y ) cg (x ,y ), g (x ,y ) = f (x ,y ) h (x ,y ) for

some real periodic bandlimited function h (x,y). If h (x,y) is not a constant, then

H (k ,) 0 for some (k ,) such that either k >0 or >0. Since F (N 1l,N) * 0, we

Iuaow that G(Nl+kN+l1) * 0, tiolating the constraints of the theorem. Thus

h (x ,y) must be a constant and g (x ,y) = cf (x ,y ).
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Thus, if a signal f (x,y) satisfies the constraints of Theorem 3.4, then we

know that there are no other signals g (x ,y ) with the same bandwidth and the same

zero crossings. Therefore, in a somewhat more general sense than was possible

with Theorem 3.2, we can say that a signal satisfying the constraints of Theorem

3.4 is uniquely specified to within a scale factor with its zero crossings and the

known bandwidth.

It is also possible to generalize Theorems 3.2 and 3.4 to allow unique specifica-

tion with crossings of an arbitrary threshold rather than just zero crossings. The

possibility of developing such an extension provides an important distinction

between our results and earlier results such as Logan's theorem which cannot be

directly extended to include crossings of an arbitrary threshold. In fact, we can

permit a more generalized form of threshold crossings by allowing crossings of an

arbitrary periodic function. This form of threshold crossings can be considered as a

generalization of sine-wave crossings as used in other work such as [16]. also gen-

eralizes previous work with sine-wave crossings mentioned earlier. Using this gen-

eralized form, we can extend Theorem 3.2 as follows:

Theorem 3.5. Let f(x,y), g(x,y), h(x,y) be real, two-
dimensional, doubly-periodic, bandlimited functions with
sign (f (x ,y )-h (x ,y)) = sign (g (x,y )-h (x ,y )), where
f (x ,y)-h (x ,y) takes on both positive and negative values. If
f (x ,y )-h (x ,y ) and g (x ,y )-h (x ,y) are nonfactorable when expressed
as polynomials in the Fourier series representation (2), then
f (x,y)-h(x,y) = c(g(x,y)-h(x,y)).

i
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Proof: Since f (x ,y ), g (x ,y ), and h (x ,y ) are periodic and bandlimited, the

functions f' (x,y) = f (x,y)-h(x,y) and g' (x,y) = g(x,y)-h(x,y) are also

periodic and bandlimited, and according to the theorem statement, will satisfy the

constraints of Theorem 3.2. Thus f' (x ,y) = cg' (x ,y) and

f (x,y)-h(x,y) = c(g(x,y)-h(x,y)).

A further extension to Theorem 3.2 involves replacing the nonfactorability

constraint with a constraint on each factor. Let us express f (x ,y) as a product of

real factors fi (x ,y ) (factors which are real for real values of x ,y). Observe that if

fi(x,y) = 0 for any i, then f (x,y) = 0; similarly, if f(x,y) = 0, then at least

one of the factors fi (x ,y) must be zero. Thus, if each factor contributes a set of'

zero crossing contours, each factor will be uniquely specified by its own zero cross-

ing contours, and thus we can develop a set of conditions under which f (x ,y) will

be uniquely specified by the complete set of zero crossing contours. Specifically, we

state:

Theorem 3.6. Let f (x ,y) and g (x ,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with sign f (x ,y) = sign g (x ,y).
Consider the (polynomial) factorization of f (x ,y ) and g (x ,y ) into real
factors which are irreducible over the set of real factors. If each of
these factors has multiplicity one and takes on both positive and nega-
tive values, then f (x ,y) = cg (x ,y ) for some positive constant c.

Proof: Recall from the proof of Theorem 3.2 that if f (x ,y ) and (x ,y ) have

common zero contours then they must have a common factor. We will assume that
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f (x ,y) cg (x ,y) and attempt to reach a contradiction. For convenience, let us

assume that there is some irreducible factor of f (x ,y) which is not a factor of

g(x,y). First of all, note that if this factor, denoted fi(x,y), is complex, then

fi * (x ,y ) will also be a factor of f (x ,y ) and thus f (x ,y ) will contain a real factor

fi (x ,y ) fi * (x ,y ) which is nonnegative everywhere, violating the constraints of the

theorem. Thus, the factor f(x,y) must be real, and since according to the

theorem hypothesis, it has both positive and negative values and has multiplicity

one, then we must have sign f (x ,y) $ sign g (x ,y) for some values of (x ,y), and

we have reached a contradiction. Thus, there cannot be any factor of f (x ,y)

which is not a factor of g (x ,y ) and thus, f (x ,y ) = cg (x ,y).

This theorem could also be stated in a slightly different manner by considering

all possible factorizations of f (x ,y ) and g (x ,y) rather than one particular factori-

zation. In this case, the requirement would be that every possible factor of f (x ,y)

and g (x ,y) must take on both positive and negative values. The multiplicity con-

straint is then unnecessary since if a factor f, (x ,y ) occurs with multiplicity two (or

higher), then there will also be a factor f 2(x,y) which is nonnegative for real

values of x ,y and violates the constraints of the theorem.

Theorem 3.6 can be easily modified to permit finite length signals or to permit

crossings of an ar-bitrary threshold. To modify this result for finite length signals,

we simply require that the finite length signals be a finite segment of a periodic sig-

nal satisfying the constraints of Theorem 3.6. To modify this result for crossings of

__ I __�_
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an arbitrary threshold a, we simply require that the signals f (x,y)-a and

g (x ,y ) - a satisfy the constraints of Theorem 3.6.

As our final extension, we will modify Theorem 3.2 for complex signals. We

will assume that the zero crossings of the real parts of the signals are available and

that the signal is constrained so that the real part of the signal is sufficient to

specify the imaginary part. This is possible if the spectrum has a region of support

over a nonsymmetric half-plane, i.e., if F[nl,n2] $ O, then F[-nl,-n2] = 0 except

at nl = n2 = 0, where we require F[0,0] to be real. Our result can be stated as

follows:

Theorem 3.7. Let f (x,y) and g(x,y) be complex two-
dimensional, doubly-periodic, bandlimited functions with
sign Re {f (x,y)} = sign Re {g (x,y)}, where Re {f (x,y)) takes on
both positive and negative values. Assume that F[n1,n 2] and G [n1,n2]

have support over the same nonsymmetric half plane (as stated above).
If Re {f (x ,y)) and Re {g (x ,y)} are nonfactorable when expressed as
polynomials in the Fourier series representation (2), then

f (x,y) = g(x ,y).

Proof: Since Re {f (x ,y)} has Fourier series coefficients

F [nln2]l + F[-nl,-nd
F~l2~nj + *, then since f(x,y) is bandlimited, Re {f(x,y)} is

bandlimited, and similarly for g (x ,y). Since Re {f (x ,y )} and Re {g (x ,y )} satisfy

the constraints of Theorem 3.2, Re f (x,y)} = c Re {g(x,y)}. Thus we have

F[nl,n] + F*[-nl,-n] G[nl,nz] + G*[-nl,-n2
= c2 . Since we know that

2 2

if F[nl,nj :* 0, then F[-nl,-n2 1 = 0 and G[-nl,-n2] = 0, we must have

F[nl,n2] = cG[nl,n] and f (x ,y) = cg(x,y).
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3.4. Sampling of Zero Crossing Contours

As mentioned earlier, it is possible to state Theorem 3.2 in a slightly different

way so that it is possible to uniquely specify a signal with a finite set of discrete

zero crossing points, essentially allowing us to sample the zero crossing contours.

This result is important since any practical algorithm for recovering signals from

zero crossing information can only make use of a finite number of zero crossing

points. In this section, we develop this result and discuss a number of related

issues.

Before proceeding, let us first emphasize that we are referring to sampling the

zero crossing locations along a zero crossing contour and we are not referring to

sampling of the sign of the original signal, that is, recording the sign of the signal at

each point on a predetermined grid. This is distinct from the type of sampling used

in many signal processing problems where signals are specified with samples over a

particular grid. The difficulty with sampling the sign information is that the infor-

mation necessary to apply our results to uniquely specify a signal is contained in the

exact location of the zero crossings and this information is lost when (sign f (x ,y))

is sampled. From another point of view, we can say that a finite set of samples of

(sign f (x ,y)) contains a finite number of bits of information and thus cannot be

expected to uniquely specify a signal to infinite precision. This is distinctly dif-

ferent from typical sampling problems where each sample is of (theoretically) infin-

ite precision and thus does not contain a finite number of bits of information.

Note, however, that we are strictly referring to theoretical sampling problems; in
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practical applications, of course, signals are generally represented with a finite

number of bits, and it may be possible for a signal to be represented to sufficient

accuracy with a finite set of samples of (sign f (x ,y)).

Since Theorem 3.1 specifies the number of points where two two-dimensional

polynomials can both be zero, we can use this theorem to establish that a particular

number of arbitrarily-chosen zero crossing points is guaranteed to be sufficient for

unique specification. We shall also show that this number of points may not be

necessary for unique specification; in particular, if the zero crossing points are not

chosen arbitrarily but are chosen in some particular way, a smaller set of zero cross-

ing points can be sufficient for unique specification.

The exact'number of zero crossing points sufficient for unique specification

depends on the size and shape of the spectrum of the signal. We will state our

results in terms of rectangular spectra since these shapes are common in applications

and are straight-forward to understand. The result could be easily modified for

spectra of different shapes or could be applied directly to a problem involving a dif-

ferent spectrum by simply assuming a rectangular region large enough to enclose

the actual region. If reference to a region of support R (N) scifies that the spec-

trum is zero outside the region -N nl,n2 S N, then we can state:
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Theorem 3.8. Let f (x ,y ) and g (x ,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with a spectrum with region of
support R(N). If f (x,y) and g(x,y) are nonfactorable when
expressed as polynomials in the Fourier series representation (2), and
f (x ,y ) = g (x ,y) = 0 at more than 16N2 distinct points in one period,
then f (x ,y ) = cg (x ,y) for some real constant c.

Proof: Recall that the proof of Theorem 3.2 requires stating that two polyno-

mials W1N W 2N f (x,y) and W1N W 2N g(x,y) are equal to within a scale factor

given that they are both zero at an infinite number of points. (Let N = N t = N 2

in the proof of Theorem 3.2.) In the case of Theorem 3.8, we know that

W1N W 2N f ( ,y) = W1N W 2N g(x,y) = 0 at more than 16NV2 points in one period,

that is, at more than 16N2 distinct values of the variables (W 1, W2). These polyno-

mials are of degree 4N and thlus, by Theorem 3.1, can have at most 16N 2 common

zeros. Thus, W 1N W 2N f ( ,y) cWN W2Ng (x,y) and the theorem follows.

This result is important since any practical algorithm designed to recover sig-

nals from zero crossing information can only make use of a finite number of zero

crossing points. In addition, as discussed in the development of Theorem 3.4, it is

necessary to have a result which only requires one signal to be irreducible. We can

now combine both of these ideas into one result which precisely states the condi-

tions we will need to impose later:

41_ __ _ _ __ � _ _ _ �



-31 -

Theorem 3.9. Let f (x ,y) and g(x,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with bandwidth with region of
support R (N). If f (x ,y) is nonfactorable, when expressed as polyno-
mials in the Fourier series representation (2), F(NN) * 0, and
f (x,y) g(x,y) = 0 at more than 16N2 distinct points, then
f (x ,y ) = cg (x ,y ) for some real constant c.

Proof: The proof is identical to'the proof of Theorem 3.8, with the references

to Theorem 3.2 replaced by references to Theorem 3.4.

Another extension one might consider is to permit sampling of zero crossing

contours for factorable signals. However, if a signal is factorable and satisfes the

constraints of Theorem 3.6 (but not the constraints of Theorem 3.2), then a finite

set of zero crossings is not guaranteed to uniquely specify the signal since these zero

crossings may all correspond to the same factor. However, a result similar to

Theorem 3.8 is easily developed for factorable signals by constraining the set of

zero crossings to include Ni zero crossings of the ith factor, where each Ni is chosen

by applying Theorem 3.8 to each factor individually. It would also be necessary to

know which zero crossings correspond to the same factor in order to successfully

recover a signal under these conditions. These constraints would be difficult to ver-

ify in an actual signal reconstruction problem, but would be easier to verify in a

situation such as a filter design procedure [3] which involves first specifying the

zeros of the response and then generating the remainder of the response with signal

reconstruction techniques.

Note that the number of arbitrarily-chosen zero-crossing points sufficient to

uniquely specify a signal is somewhat greater than the number of unknowns in the

_1_1�_ I _· �_�_IXI__� 1----�411·�-� .--C^-C·- -�-·---�^�.---�--·--�--- 111 11 1-1 -·--�--·1111_1111- ---��



signal (i.e., the number of spectral components). Specifically, if a real signal

f (x ,y) has a spectrum with support over R (N), then by the symmetry properties

of the Fourier transform, F [n 1,n2j has 2N 2 + 2N + 1 independent points, which in

general, are complex (except F [0,0]). Since one complex point corresponds to two

real unknowns (the real- part and the imaginary part), f (x,y) contains

4N2 + 4N + 1 real unknowns or degrees of freedom. According to Theorem 3.8,

f (x ,y) is uniquely specified with p zero crossing points if p > 16N2, approxi-

mately four times the number of unknowns.

Although Theorem 3.8 states that a particular number of zero crossing points

is sufficient for unique specificatien, it does not state that this number of points is

necessary for unique specification. In particular, as we show next, it is possible to

specify a signal consisting of s spectral components with s -1 zero crossing points if

the zero crossing points are not chosen arbitrarily but are specifically chosen so that

they uniquely specify the signal. To establish this result, note that we can write a

set of linear equations of the form:

.2wnzv .2wyn 2

C F F[nl,n2 c T2 0 (7)

where each equation uses a different pair of points (xi, y) on a zero crossing con-

tour, i.e., for which the equality is known to hold. If we assume that f (x ,y) sais-

fies the constraints of Theorem 3.9, then F[N,N] O, so we can substitute

F[N, N] = 1 and obtain a non-zero solution. Thus, if F[n1,n 2] consists of s

points, these equations contain s -1 (complex) unknowns. Although we have not
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shown that s -1 equations of this form are guaranteed to have a unique solution,

we know from Theorem 3.9 that if a sufficient number of equations is used (say, p

equations, where p > 16N 2) then these equations are guaranteed to have a unique

solution. If we have p equations in s -1 unknowns and p > s -1, then some of

the equations must be dependent and can be eliminated. Thus, it is possible

(theoretically) to find s -1 independent equations from the set of p equations, and

thus the corresponding s -1 zero crossing points are sufficient to uniquely specify

f (x ,y). This result, however, does not suggest a practical algorithm for choosing

the s -1 zero crossing points so that these points uniquely specify the signal.

3.5. Higher-Dimensional Signals

Although up to this point we have been primarily concerned with the recon-

struction of two-dimensional signals from zero crossings, it is also possible to

recover signals of dimension higher than two from this information. One approach

to this problem is to take two-dimensicnal slices of the higher-dimensional signal

and recover a two-dimensional signal whose spectrum is a projection of the spec-

trum of the original signal and apply the results developed earlier. This is analo-

gous to one method used by Hayes [21] to develop results on the unique specifica-

tion of two-dimensional signals with Fourier phase information. Another approach,

the one we shall follow here, is to extend the results developed earlier directly to

m -dimensional problems by applying an m-dimensional extension of Theorem 3.1.

Such an extension is available, although the result is not quite as straight-forward as

Theorem 3.1. In general, it is not possible to state that two polynomials in an
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arbitrary number of variables have common zeros at a finite number of points.

However, it is possible to characterize the intersection of two surfaces, each

described by a polynomial equation, as another surface with a specified dimension

and degree.

In the terminology used in algebraic geometry, a variety is defined as the inter-

section of the zero-sets of one or more polynomials, corresponding to our intuitive

notion of surfaces. The dimension of a variety is the number of independent vari-

ables present. In a three-dimensional space, a plane (or a sphere, paraboloid, etc.)

is defined by one equation and thus has two independent variables and dimension

two. A line is defined by two independent equations (the intersection of the zero-

sets of two polynomials) ani thus has one independent variable and dimension one.

For a variety defined by one polynomial equation, the degree is equivalent to the

degree of the polynomial defining it. A finite set of points is considered to have

dimension zero, and in this case, the degree is defined as the number of points in

the set.

In order to develop results on the unique specification of higher-dimensional

signals with zero crossings, we need to characterize the intersection of varieties of

arbitrary dimension. We begin by stating a result on the dimension of the intersec-

tion as given in [22]:
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Theorem 3.10. Let f (x) be an irreducible polynomial in the vari-
ables xl, x 2, ... , x, and let Vf denote the (m - 1)-dimensional irreduci-
ble variety {x:f (x) = 0} in the space CM. Let V5 denote any variety
of dimension r in C m . If V. is irreducible and V, ZVf, then every
component of the intersection Vf n V has dimension r -1.

In fact, it is possible to characterize the intersection of two varieties in more

detail. In particular, under the conditions stated in Theorem 3.10 it is also possible

to show that V/fn-Vs will have dimension r -1 and degree (deg Vf)x (deg V,),

provided that when counting the degree of intersections we consider the multipli-

city of intersections and also include intersections which lie "at infinity". (In this

case, two parallel planes can be considered to intersect in a line at infinity.) This

stronger result, generally referred to as Bezout's Theorem in m dimensions, is given

in [22, 23, 24], but will not be stated precisely here since a precise statement would

require the introduction of a number of additional concepts from algebras

geometry and Theorem 3.10 is sufficient to develop our results.-

Before proceeding further, it is worthwhile to consider a few examples in order

to understand these results on the intersection of varieties. First of all, consider the

case m =2. Curves in a plane have dimension 1 and their intersection has dimen-

sion 0, that is, their intersection is a finite set of points. The number of points in

this set (the degree of the intersection) is equal to the product of the degrees of the

curves, as we found in Theorem 3.1. The case m = 3 corresponds to the intersec-

tion of surfaces in three-dimensional space. For example, two ellipsoids each have

dimension 2 and degree 2. Their intersection consists of two ellipses, a one-
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dimensional curve of degree 4 which is reducible into two curves of degree 2.

Theorem 3.10 can be applied to the problem of unique specification with zero

crossings in the same way Theorem 3.1 was used to develop Theorem 3.2. We will

show that if two signals have the same sign for all (x,y), then their zero crossing

surfaces must intersect in a surface of dimension m -1; thus, by Theorem 3.1, the

two surfaces must be identical and the two signals must be equal to within a scale

factor. Specifically, we state the following theorem:

Theorem 3.11. Let f(a) and g(a) be real, m-dimensional,
periodic, bandlimited functions with sign f () = sign g (a), where
f (x) takes on both positive and negative values. If f (x) and g (x) are
nonfactorable when expressed as polynomials in the Fourier series
representation (2), then f () = cg (a).

Proof: Following the proof of Theorem 3.2 but extending it to arbitrary

dimensions, from the fact that sign f (a) = sign g (x), we have a set of points

where:

W1N, W2N, . . WU NM f()= 0 (8)

and

WIN' W22 . WA m g(a) = 0,

that is, a set of points where two polynomials in the variables

W = W 1,W 2 , ... WM are known to be zero. The sets of all points (real and com-

plex) V = {(W):f(W) = 0) and V = {(W):g(WE) = 0) are (m -1)-dimensional

varieties. By Theorem 3.10, if V and V are not identical, then V f nVg must

have dimension m -2. However, we know Vf nv, includes surfaces separating

I __ __ __ __ _ __ _ _ __
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regions where f (o) > 0 from regions where f (x) < O. Consider two-dimensional

slices of the signals f () and g (x) defined by x = a 1, x2 = ac2, ... x,-2 = a,,2,

where the ak are chosen so that each successive slice contains positive and negative

values of f (a) and g (,r) and thus contains some but not all of the zero crossings of

f(&) and g(r). (If necessary reorder the x to make this possible.) This two-

dimensional slice contains positive and negative values and thus contains a zero

crossing contour consisting of an infinite number of points. From the point of view

of varieties, taking a slice of a signal corresponds to forming the intersection of the

original zeros with series of hyperplanes Pk: W = = 3 By Theorem

3.10, forming the intersection of Vf n V, with each hyperplane reduces the dimen-

sion by one. (In general the intersection may be reducible, but we can apply

Theorem 3.10 to each irreducible component as long as no irreducible component is

completely contained in the next slice.) We thus find that the resulting variety

V n v,s P {nP 2 ' ' ' nPm-2 has dimension zero, and thus can only consist of a

finite number of points. Thus, we have reached a contradiction, and Vf n V, must

have dimension m -1, Vf = V, and f () = cg ().

It is also possible to develop a number of extensions to Theorem 3.11 as we

did for Theorem 3.2. In particular, Theorems 3.3, 3.4, 3.5, and 3.6 can be

extended to the m-dimensional case. These results allow us to generalize Theorem

3.11 to permit finite length signals, constaints on one signal, threshold crossings,
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and factorable signals. Specifically, these results are identical to Theorems 3.3

through 3.6 except that signals of any dimension m ' 2 are permitted. These

extensions can be derived by using the proof of the corresponding extension to

Theorem 3.2 and replacing all references to Theorems 3.1 and 3.2 with references

to Theorems 3.10 and 3.11.

A somewhat more difficult problem arises when we attempt to extend

Theorem 3.11 to the case where only a finite set of zero crossing points are avail-,

able. While in the two-dimensional case, a result is available which allows us to

state that two curves may intersect in only a finite number of points, our results in

the m-dimensional case inherently involve surfaces with an infinite number of

points. Thus it is not possible to say that N zero crossing points are always suffi-

cient to specify an m -dimensional signal for any- finite value of N. However, it is

possible to say that when the chosen points are independent in the sense that they

do not lie on an (m -2)-dimensional contour of the appropriate degree, then these

points are sufficient to uniquely specify the signal.

I ---
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CHAPTER 4

UNIQUE SFECIFICATION OF NONPERIODIC SIGNALS

In this chapter, we extend the results developed earlier for periodic signals to

the case of nonperiodic signals.* This problem is more difficult mathematically since

it is in general not possible to express an arbitrary signal as a polynomial in a

Fourier series representation. Nevertheless, it is possible to find applicable results

on the intersection of zero sets of functions, this time from the theory of analytic

sets. We will begin by developing the necessary mathematical background and then

present the main result and a number of extensions.

4.1. Background

In this section, we define the notation and terminology to be used in the

remainder of this chapter. In addition, mathematical results to be used later are

presented here.

A two-dimensional complex-valued function (denoted f (s,w)) is said to be

holomorphic if it is holomorphic (or analytic) in each variable separately. A func-

tion holomorphic for all finite values of s and w is called entire. We shall be pri-

marily concerned with entire functions of exponential type (EFET) (see [5] for a

review of the properties of EFETs in one variable, and [26,271 for EFETs in

several variables). These functions are constrained to have at most an exponential

'The work presented in this chapter was performed in collaboration with S. Shitz and also ap-
pears in reference [25].
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growth rate in any direction in complex space. As is well known [28,29], any

bandlimited function of real variables can be uniquely extended to complex space as

an EFET. (We will use the notation f (x ,y) to denote a function of real variables

and f (s ,w) to denote its extension to complex variables.) This statement applies

for a wide variety of common definitions of bandlimited functions. For finite

energy signals, the Fourier transform will exist and any bandlimited signal will have

a Fourier transform with a compact region of support. For bounded signals (with

possibly infinite energy), alternate definitions of bandlimitation are possible by

using the Fourier-Stieltjes transform or the so-called 2-transform (see [5] for defini-

tions and for other possible definitions of bandlimitation). It is also possible to use

a more general definition of bandlimitation derived from the theory of generalized

functions or distributions. This definition requires- the spectral distribution as

defined in [28] to have compact support. Unless otherwise noted, the results

presented in this chapter apply to this more general type of bandlimitedness,

although in most practical applications the usual Fourier or Fourier-Stieltjes defini-

tion will apply.

Entire functions can be characterized in terms of their complex zeros much

like polynomials (see [27] for a precise characterization). For either polynomials or

entire functions, the represention of a function in terms of zeros requires both the

real and complex zeros, not just the real zeros (zero crossings). However, there are

some important differences between polynomials and entire functions since it is pos-

sible to have entire functions which are not constant yet still have no real or com-
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plex zeros (for example, the function e' is nonzero for all real or complex values of

s ). Thus if the set of complex zeros of an entire function is known, then the entire

function may not be known even to within a constant due to the possibility of posi-

tive factors. However, it is known that the only positive EFETs are exponentials,

and these can be eliminated by placing restrictions on the growth rate of the func-

tion. Such restrictions are often implicit in the definition of a andlimited func-

tion. For example, if the Fourier transform definition of a bandlimited signal is

used, then the signals are assumed to be finite energy. A more general class of

one-dimensional bandlimited functions is characterized precisely in [5] by develop-

ing a subset of EFETs referred to as B -functions. The class of B -functions includes

the set of bandlimited signals under a number of common definitions of bandlimita-

tion (e.g., Fourier or Fourier-Stieltjes), as well as including a class of other signals

with similar properties but which do not possess a Fourier (or similar) transform.

B -functions are known to satisfy a number of different growth restrictions on the

real axis which are given in [5] and can be used to eliminate the possibility of

exponential factors. For functions of several variables, the Paley-Wiener-Schwartz

theorem [29], which states that a function with a spectral distribution with compact

support has at most polynomial growth in any direction in the real plane (or space),

can be used to eliminate the possibility of exponential factors.

Because of the possibility of nonconstant positive factors in entire functions, it

is common to exclude such factors when considering the factorization of entire

functions into irreducible factors in the same way constants are excluded when con-
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sidering the factorization of polynomials. Specifically, let Vf and V. denote the set

of real or complex zeros of f(s,w) and g(s,w), respectively, i.e.,

V = ( ,w): f (s ,w) = 0) and V = {(s ,w): g (s ,w) = 0. The function f (s ,w)

will then be referred to as irreducible if it cannot be expressed as

f (s ,w) = g (s,w)h (s ,w) where g (s,w) and h (s,w) are entire functions and Vs

and Vh are both nonempty sets. (This definition is also used in [30].) Note that if

h is an entire function which never vanishes (such as e') then f can still xc irredu-

cible in the sense defined aboe although f = g x h.

We shall also use he term analytic set, defined as the intersection of the zero

sets of one or more holomorphic functions [26,27]. For example, V1 and V as

defined above are analytic sets, as is V1 n Vs . An irreducible analytic set is an ana-

lytic set which cannot be expressed as the union of two distinct analytic sets. For

example, if f (s ,w) is irreducible (as defined above), then V1 is an irreducible ana-

lytic set. If f (s ,w) is reducible, it can be expressed as f (s ,w) = g (s,w)h (s ,w)

and V can be expressed as V = V U V,. An irreducible analytic set is also

referred to as an analytic surface [26].

In this chapter, analytic sets play the same role as the zero sets of polynomials

in the preceeding chapter. Thus, to develop results on reconstruction of signals

from zero crossings, we .will need a result from the theory of intersection of analytic

sets:
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Theorem 4.1. [26] Two surfaces analytic over a closed bounded
region D intersect in at most a finite number of points in D. Two sur-
faces analytic over all of C 2 coincide if they have in common some
sequence of points along with their limit point.

This theorem is similar to Theorem 3.1 but it only states that the number of

points of intersection in a closed region must be finite; it does not specify the

number of points of intersection. This is because in general EFETs can be thought

of as "infinite-order polynomials" and thus will intersect in an infinite number of

points. Nevertheless, it is still possible to constrain the number of points of inter-

section to be finite over any region. This fact allows us to apply the theory of ana-

lytic sets -to the problem of unique specification with zero crossings.

4.2. Primary Result

In this section, we will apply the mathematical results stated in the preceeding

section to the problem of unique specification with zero crossings. Theorem 4.1

allows us to develop our result on reconstruction from zero crossings in a straight-

forward way. Note that if two irreducible signals f (x ,y) and g (x ,y ) have identi-

cal zero crossing contours then the sets Vf and V1 must intersect in curves (at the

zero crossing contours). Since these curves contain an uncountably infinite number

of points in a finite region, by applying Theorem 4.1 we can show that the sets Vf

and V. must be identical. Then we know that f and g must be equal to within

multiplication by an EFET which never vanishes, that is, by an exponential factor.

This possibility can be eliminated by placing restrictions on the rate of growth of

the function, as mentioned earlier. Specifically, let us state (see section 4.4 for
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proof):

Theorem 4.2. Let f (x,y) and g(x,y) be real, two-dimensional,
bandlimited signals whose complex extensions are irreducible as entire
functions in the sense defined in the previous section. If f (x ,y) takes
on positive and negative values in a closed bounded region D C R 2 and
signf(x,y) = signg(x,y) for all values of (x,y) in D, then
f (x ,y ) = cg (x ,y ) for some real positive constant c.

Note that in this theorem it is not necessary for te zero crossings of f (x ,y)

and g (x ,y) to be identical for all values of (x,y); it is sufficient for the signals to

have one zero crossing contour in common. This fact allows us to apply this

theorem to signals which are finite length are thus not strictly bandlimited. If the

finite length signal represents a finite segment of some bandlimited function, then

we can apply Theorem 4.2 by considering the region D to be the region of support

of the function. Specifically, if f (x ,y) and g(x ,y) are finite length segments of

the bandlimited signals (x,y) and (x,y), signf(x,y) = sign g(x,y), and

f (x ,y ) contains sign changes, then f (x ,y) = cg (x ,y). This is similar to a result

presented in chapter 3 which allows finite length signals to be uniquely specified by

zero crossings if their periodic replications satisfy appropriate constraints. The

result presented here is less restrictive since it does not require the underlying

bandlimited function to be periodic.

While in chapter 3 -we argued that the set of reducible polynomials has meas-

ure zero, the same statement does not apply to reducible EFETs. It is possible,

however, to make a number of comments concerning the reducibility of EFET's.

Although the only one-dimensional EFETs which are irreducible are of the form

it _I
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f (s) = e 'b (s -c), this is not the case in two dimensions. Although we cannot

precisely characterize the likelihood that a two-dimensional EFET is irreducible, it

is commonly assumed that loosely speaking, most two-dimensional EFETs are

irreducible [30, 31, 32]. However, even if it could be shown that in some statistical

sense "almost all" EFETs are irreducible, there are some important examples of

functions which are reducible. One example occurs if the two-dimensional

bandlimited function can be expressed as a bandlimited function of only one vari-

able, as is the case for circularly symmetric functions. Another example occurs if

the function is separable and can thus be expressed as a product of two bandlimited

functions, one in each variable. Irn the next section, we shall extend Theorem 4.2

to include factorable signals.

4.3. Extensions

Although Theorem 4.2 stated a number of conditions under which a signal is

uniquely specified with its zero crossings, it is also possible to develop a number of

variations or extensions of this result. These extensions are similar to those

presented in chapter 3 for the case of periodic signals, but sufficiently different

mathematically so that it is worthwhile to present these results in detail.

We begin by developing a result similar to Theorem 3.4 which allows us to

impose the irreducibility constraint on only one signal. In Theorem 3.4, we

imposed this constraint by requiring the signal to have a non-zero spectral com-

ponent at the band edge. For the case of nonperiodic signals, we will require that

the signal be bandlimited to a particular region B but no smaller region.
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Specifically, (see section 4.4 for proof):

Theorem 4.3. Let f (x ,y) and g (x ,y) be real, two-dimensional,
signals and bandlimited to a region B but no smaller region. Let
f (s ,w) be irreducible in the sense defined in the previous section. If
f (x,y) takes on positive and negative values in a closed bounded
region D C R 2 and signf (x ,y ) = signg (x,y) for all values of (x,y) in
D, then f (x ,y ) = cg (x ,y) for some positive real constant c.

It is also possible to generalize the results presented above to a broader defini-

tion of zero crossings. In particular, it is possible to develop a result similar to

Theorem 4.2 which allows the signals to be specified by crossings of an arbitrary

threshold rather than simply zero crossings. As we found in chapter 3, it is also

possible to allow the threshold to vary across the signal. While for the case of

periodic signals we assumed that the threshold could be described as a periodic

function, the result to be developed here allows the threshold to be specified by an

arbitrary bandlimited function. In particular, let us state (see section 4.4 for

proof):

Theorem 4.4. Let f (x,y), g(x,y), and h(x,y) be real, two-
dimensional, bandlimited signals, where f (s ,w)- h (s ,w) and
g(s,w)-h(s,w) are irreducible in the sense defined in the previous
section. If f (x ,y ) - h (x ,y ) takes on positive and negative values in a
closed bounded region D C R 2 and
signf (x ,y) - h (x,y)] = sign[g (x,y) - h (x,y)] for all values of
(x ,y) in D, then f (x ,y)-h (x,y) c (g(x ,y)-h (: ,y)) for some posi-
tive real constant c.

Another extension to Theorem 4.2 which we will develop here is to allow

reducible signals. This extension is important since, as mentioned earlier, we can-

__ I � __ I�



- 47 -

not precisely state the likelihood that a signal is irreducible. The reasoning used to

develop this result is similar to the reasoning used in chapter 3 to develop a similar

result for periodic signals. Let f (s ,w) denote the complex extension of a signal

f (x ,y ) and consider the factorization of f (s ,w) into real factors fi (s ,w) (factors

which are real for real values of s ,w) which are irreducible over the set of real fac-

tors. We will assume that the number of such factors is finite. Observe that if

fi(s,w) = 0 for any i, then f (s ,w) = 0; similarly, if f (s,w) = 0, then at least

one of the factors fi (s ,w) must be zero. Thus if each factor contributes a set of

zero crossing contours, each factor will be uniquely specified by its own zero cross-

ing contours, and thus we can develop a set of conditions under which f (x ,y) will

b: uniquely specified by its complete set of zero crossing contours. These conditions

can be stated as follows (see section 4.4 for proof):

Theorem 4.5. Let f (x ,y) and g (x ,y) be real, two-dimensional,
bandlimited signals. If f (s ,w) and g (s ,w) can be factored into a finite
number of real irreducible factors (as described above), and if each fac-
tor of f (s ,w) and g(s,w) has multiplicity one and talkes on positive
and negative values in a closed bounded region D C R 2 and
signf(x,y) = signg(x,y) for all values of (x,y) in D, then
f (x ,y) = cg (x ,y ) for some positive real constant c.

This result allows us to argue that a broad class of bandlimited two-

dimensional signals are uniquely specified with zero crossings without relying on

assumptions of nonfactorability. In particular, it can be shown [25] that almost all

signals in a class of bandlimited Gaussian random fields will contain zero crossings.

Thus, if each factor is chosen in a random way, the resulting signal is quite likely to
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satisfy the constraints of Thecrem 4.5.

Although the results we have presented so far are limited to real signals, these

results can be extended to permit signals which are complex but which have a spec-

tral distribution limited to a half-plane. In these cases, it is possible to recover the

real part of the signal from its zero crossings and then recover the imaginary part of

the signal from the real part. This extension is very similar to Theorem 3.7 and is

given in detail in [25].

At this point we should also point out that although the results presented here

apply to periodic signals as well as nonperiodic signals, the results presented in

chapter 3 are not a special case of the results presented here. This is because the

results presented in chapter 3 consider the possible factorization of a signal in terms

of a polynomial in ei' and e j" whereas the results presented in this chapter con-

sider the possible factorization of a signal in terms of an entire function in s and w.

It is possible for a signal to be irreducible as a polynomial in ei',ei" but reducible

as an entire function in s,w, as is the case, for example, with the function

.$ W . .W

f(s,w) = 1-ej'ej = (1-e '2' 2)(i+e'je 2). A similar problem is mentioned

by Sanz and Huang [30] when comparing their work on the reconstruction of sig-

nals from magnitude or phase to the work of Hayes [331. In this case, it was found

that the discrete-time problem considered by [33] is not a special case of the

continuous-time problem considered by [30] As is discussed in [30], this problem

can also be viewed in terms of different methods of extending the real signal to

complex variables. In the case of periodic signals, the approach taken in chapter 3
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and in [33, 34, 35] was effectively to map the periodic signal onto the unit surface in

the complex space, as opposed to mapping the original signal onto the real plane in

complex space as is done in this paper and in [30]. This problem is discussed in

more detail in [30].

4.4. Proofs

In this section, we include the proofs for the results developed in this chapter.

Proof of Theorem 4.2.

As was mentioned earlier, if f (x ,y) and g (x ,y) are real, bandlimited (in the

broad sense) functions, then it is well known [28,29] that these functions can be

extended to C2 as entire functions of exponential type (EFET) denoted as f (s ,w)

and g(s,w), which are also EFETs in each variable separately, and have at most

polynomial growth in the real plane. If f (x ,y) and g(x ,y) are finite energy (in

the real plane), then their Fourier transforms exist and this result is known as the

Polya-Planckerel Theorem [27].

If f (x ,y) takes on positive and negative values in ths closed, bounded region

D, then since f (x ,y) is continuous (since it is entire), there must exist a contour

(an uncountable number of points) where f(x,y) = 0. The same is true for

g(x,y). If there exists at least an infinite number of points (x,y)E D where

f (x,y) = 0 and g(x,y) = 0 hen there exists a limit point (see [26], proof of

Theorem 4.11, p.72) which is contained in D. The set V is an analytic set [27,

p.217] and is also an analytic surface [26, p.71] over a (complex) closed, bounded
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domain E D C E C C 2 since the analytic set is irreducible by assumption. In any

bounded and closed set E C C2 if two distinct analytic surfaces have a sequence of

points in common along with their limit point then by Theorem 4.1, the sets coin-

cide not only in E but in C 2 so Vf = V in all of C 2. Then we can make use of a

theorem stated precisely by Sanz and Huang [30]:

Theorem 4.6. Let f ,g: C"-C be entire functions such that
V = V. If g is irreducible, then there exists an entire function
h: C"-.C that satisfies f = g x h.

Thus we now have:

f (s,w) = h(s,w)g(s,w) (9)

where h (s ,w) is entire and nonzero everywhere in C 2. Using growth arguments as

in [30, p.1448] or by applying [36, Theorem 12] to any one-dimensional slice of

f ,g, and h ,, we can also show that h (s ,w) is an EFET. It is well known that the

only EFET which is nonzero in all of C 2 is e "Pw' y. Since f (s ,w) and g(s ,w)

must be real for all real values of s and w, then a,,'y must all be real. We can

also show that a and 5 must be zero, since otherwise f (s ,w) or g (s ,w) would

have exponential growth in the real plane, and thus would not be bandlimited [29].

Thus h (s ,w ) = e ' = c and f (x ,y) = cg(x,y).

Note that in this proof we have only used the fact that there are an infinite

number of points where f (x ,y) = 0 and g (x ,y) = 0. Thus it is only necessary to

know a countably-infinite set of points on a zero crossing contour (e.g., a discrete

sequence of points); it is not necessary to know the complete zero crossing con-
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tours.

Proof of Theorem 4.3.

Proceeding as in the proof of Theorem 4.2, we have:

g(s ,w) = f (s ,w)k(s ,w) (10)

where k (s ,w) is an EFET in C 2. We cannot assume that k (s ,w) is nonzero since

we have not assumed that g(s ,w) is irreducible. Instead, we can establish a rela-

tionship between the bandwidths of f ,g,k by applying known properties of the so-

called P-indicators:

Theorem 4.7. [27, Thm. 3.4.4] Let f (z) and k(z) be EFETs
such that for almost all x E RN the function f(x +w),X E RN, has
completely regular growth in the variable w E C. Then the P-indicator
of the function g (z) = f (z )k (z) is the sum of the P-indicators of f z)
and k(z): h(X) = hf(X) + hk(X).

The requirement that f ,g (and therefore k) be strictly bandlimited (and thus any

one-dimensional slice of f or g is bandlimited) guarantees that they have com-

pletely regular growth along any slice [5]. The P-indicator corresponds to the smal-

lest convex domain completely containing the region of support of the spectrum

(see [27] for precise definitions). Roughly speaking, Theorem 4.7 states that the

bandwidth of g is the sum of the bandwidths of f and k. However, in Theorem

4.3, we have constrained g and f to have the same known bandwidth and thus k

must have "zero bandwidth", i.e., h(X) = 0 in the notation of [27]. Thus, k must

be constant, and the theorem is proven.
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Proof of Theorem 4.4.

The proof is straight-forward due to Theorem 4.2. The functions

f l(x,y) = f (x,y) - h (x,y) and gl(x,y) = g(x,y) - h (x,y) satisfy the con-

straints of Theorem 4.2. Note that if the functions f ,g ,h are bandlimited in the

general sense then so are f and gl.

Proof of Theorem 4.5.

The proof of this theorem is similar to the proof of Theorem 4.2 applied to

each factor separately. Consider the factorization of f (s ,w) and g(s ,w) into a

finite set of real factors, irreducible over the set of real factors, as described earlier.

For each point where f(s,w) O0 and g(s,w) = 0, at least one of the factors

fi(s ,w) must be zero and at least one of the factors g, (s ,w) must be zero. For

each zero contour of f (s ,w) and g (s ,w) corresponding to the irreducible factors

f (s ,w ) and j (s,w), we can use Theorem 4.2 to show that fi(s ,w) = cgi (s ,w).

Let us assume that f (x ,y) * cg (x ,y) and attempt to reach a contradiction. For

convenience, let us assume that there is some irreducible factor of f (s ,w) which is

not a factor of g(s ,w). First of all, note that if this factor, denoted fi(s,w), is

complex, then fi * (s ,w) wil also be a factor of f ( ,w) and thus f (s,w) will con-

tain a real factor fi (s ,w )fi * (s ,w) which is nonnegative everywhere, violating the

constraints of the theorem. Thus, the factor fi(s,w) must be real, and since

according to the theorem hypothesis, it has both positive and negative values and

has multiplicity one, then we must have sign f (x ,y ) * sign g (x ,y ) for some values
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of (x ,y , and we have reached a contradiction. Thus, there cannot be any factor

of f (s ,w ) which is not a factor of g (s ,w ) and thus, f (x ,y ) = cg (x ,y).
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CHAPTER 5

UNIQUE SPECIFICATION WITH FOURIER SIGN INFORMATION

The results developed so far on the unique specification of signals with zero

crossings can be applied to the problem of unique specification of finite-length

discrete-time sequences with sign information in the Fourier domain. In particular,

since the Fourier transform of a finite length sequence is itself a periodic, bandlim-

ited function, the results from chapter 3 can be applied directly. Similarly, the

results of chapter 4 can be applied to the problem of uniquely specifying finite-

length continuous-time signals with sign information in the Fourier domain. In this

chapter, we will primarily discuss the unique specification of discrete-time

sequences, although it should be kept in mind that by using the results of chapter

4, similar results can be developed for continuous-time signals.

A significant amount of research has been devoted to the problem of recover-

ing finite length sequences from various forms of partial information in the Fourier

domain [37], particularly the Fourier magnitude or phase [21,33,38]. In this

chapter, we will begin by reviewing this previous research. We will then state some

notation in section 2, and present our results in this area in section 3.

5.1. Related Research

Over the past few years, a considerable amount of research has been devoted

to problems related to reconstructing a signal from various forms of partial informa-
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tion in the Fourier domain, particularly the Fourier transform magnitude or phase.

This work has involved developing conditions under which a signal is uniquely

specified by its FT magnitude or phase and developing signal reconstruction algo-

rithms.

In a variety of practical applications, only the magnitude or phase of a signal is

available and it is desired either to reconstruct the original signal from this informa-

tion or to synthesize a signal which retains many of the properties or features of the

original signal. Reconstruction from magnitude (or "phase-retrieval") problems

occur in areas such as electron microscopy [39], x-ray crystallography [40], and opti-

cal astronomy [41], where the magnitude or intensity of a diffraction or interfer-

ence pattern is recorded and it is hoped that more complete information can be

recovered. Reconstruction from phase (or "magnitude-retrieval') problems arise in

cases where the "direction" of a field or signal is available and the magnitude is

degraded in some unknown way; applications of these results have been suggested

in image deblurring [21], arrival time estimation [42], and in the field of

paleomagnetism [37].

In a number of different applications, it has been observed that many of the

features of a signal are preserved when FT phase information is preserved and mag-

nitude information is discarded but not in the opposite situation [43]. These results

suggest that much of the intelligibility information resides in the phase, and that

perhaps under some conditions, a signal could be reconstructed from the phase

information alone. This is in fact true, and the restrictions are sufficiently mild to

I
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allow almost all signals in one or more dimensions to be uniquely specified with FT

phase. Specifically, it has been shown that if a one-dimensional discrete-time signal

is finite length and has a z-transform with no zeros on the unit circle or in conju-

gate reciprocal pairs, then phase information alone is sufficient to uniquely specify

the signal to within a scale factor [21,38]. A similar result has been developed for

multidimensional signals which requires that the z-transform have no nontrivial

symmetric factors [21,33]. These results have also been extended to the situation

where the phase is known only at a set of sample frequencies such as when the

phase of the DFT is available.

Unfortunately, a similar set of conditions has not been developed for the prob-

lem of reconstruction from Fourier transform magnitude. One-dimensional signals

are not in general uniquely specified by FT magnitude since in the z-traiisform

domain, zeros can be flipped inside or outside the unit circle without changing the

magnitude on the unit circle. Cne-dimensional signals are uniquely specified bly FT

magnitude when all zeros are known to be either inside or outside the unit circle

(the minimum or maximum phase conditions). In two or more dimensions, how-

ever, it has been shown that a finite-length discrete-time signal is uniquely specified

to within a translation, reflection with respect to the origin, and a sign, by samples

of Fourier transform magni'.ide [21,33] when its z-transform is not factorable,

which is satisfied in most cases of practical iiterest. Similar results have been

developed for reconstruction of a complex multidimensional bandlimited signal

from either the magnitude or phase of the signal itself [30. This is equivalent to

_�__I�� �I_ I_·I_ _ _ _



- 57 -

reconstructing a continuous-time signal from the magnitude or phase of its Fourier

Transform.

The lack of satisfactory results on reconstruction of one-dimensional signals

from FT magnitude prompted researchers to study the problem of unique specifica-

tion with "signed-FT magnitude" (magnitude and one bit of phase). With the addi-

tional sign information, it is usually possible to reconstruct a one-dimensional sig-

nal. In particular, it has been shown that if a signal is real, causal, and its z-

transform has no zeros on the unit circle it is uniquely specified by its signed-FT

magnitude [37, 44, 45].

A variety of algorithms have been developed for reconstructing signals from

the FT phase, magnitude, or signed magnitude. One algorithm for recovering a

sequence from FT phase involves solving a set of linear equations. However, this

method is practical only for small signals and applies only to reconstruction from

phase. Another algorithm, used for solving a variety of reconstruction problems, is

an iterative procedure which alternately imposes the finite length constraint in the

time domain and the known Fourier domain information in the frequency domain

[21,33, 46]. A number of variations of these algorithms have been developed using

different methods of imposing the constraints and different techniques for

accelerating the convergence rate.

For reconstruction from phase, several forms of the iterative algorithm have

been shown to converge to the correct sequence [47], and to yield good results in

practice. In addition, Musicus [48, 49] has shown that by itroducing two

I_ � _ _ �_ __ ___ ���__
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extrapolation steps at each iteration, this algorithm can be converted to a conjugate

gradient algorithm, guaranteed to converge in a finite number of iterations. The

problem of reconstruction from magnitude appears to be more difficult, since the

iterative algorithm will often generate a sequence which does not contain any

-recognizable features of the original image. A number of modifications have been

proposed, with different authors claiming different degrees of success [21,33,50].

In general, the quality of the reconstruction depends strongly on the initial estimate

and on the degree of complexity of the image. In fact, if an initial estimate is

chosen which has the correct signed-magnitude, then the algorithm will converge to

the desired result.

From the results discussed above, it is apparent that in many cases, use of

either the phase or the signed-magnitude of the Fourier transform leads to good

results, but that magnitude alone is not sufficient. This is true in the problem of

direct Fourier synthesis, the development of theoretical results for one-dimensional

signals, and in the development of reconstruction algorithms for signals of any

dimension. These results suggest that important information about the signal is

contained in the most significant bit of phase, the only information which is con-

tained in both the signed-magnitude and the phase. In fact, it was shown in [37]

that images synthesized with the most significant bit of phase (sign of the real part),

unity magnitude, and zero or random numbers for the remainder of phase were

found to be quite intelligible. As in previous work, this obsevation suggests that

perhaps under some conditions, it may be possible to recover a signal from the one
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bit of phase information, that is, from sign information in the Fourier domain. By

applying the duality of the Fourier transform, we can use results on reconstruction

from zero crossings to develop new results on reconstruction from sign information

in the Fourier domain.

5.2. Notation

Before proceeding to develop results on the unique specification with Fourier

sign information, let us define our notation for dealing with sequences. First of all,

we will use x [n ] to denote a discrete-time sequence of arbitrary dimension, and we

will use x [n I] or x [nl,n:J when the discussion is restricted to sequences of one or

two dimensions, respectively. Similarly, we will use X (z) to denote the z-

transform, and X () to denote the Fourier transform, i.e.:

x(w) = x[a]-' (11)

X (0) U= x [a ] e-j

The Fourier transform sign information, or one bit of phase, will be defined as:

( 1 if Re {X(Q)} 1 O
) = -1 otherwise (12)

We will also refer to the even (symmetric) and odd (antisymmetric) components of

a signal, defined as:

x,[l] =x[n] + x[-nl (13)

xno ] - x[-nl
2

Similarly, X, (z) will denote the z-transform of x, [a . We will refer to z-transforms

_ ____
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as symmetric if they correspond to symmetric sequences, that is, X(z) is symmetric

if X(z) = X (- 1). A factor of X(v) will be said to be a real symmetric factor if it

is symmetric as defined above and if all of its coefficients are real. This does not

imply that X (z) will take or only real values but does imply that X (z) will be real

on the unit surface Iz I = 1 for all i. Furthermore, the set of real symmetric fac-

tors of a z-transform includes all possible factors which satisfy the definition above

and is not limited to irreducible factors.

We shall also refer to two-dimensional signals with a region of support over a

nonsymmetric half-plane (NSHP), defined to mean that if (nl,n) is in the region

of support, then (-nl,-n2 ) is not in the region of support unless n = n 2 0.

Note that if a signal has NSHP support, then it is uniquely specified by its even

component, since by equation (13) we have:

xn[nln2 nl n n2= 0
X[nlnZl= 2x,[n1,n2 otherwise (14)

for values of (nl,n2) in the specified region of support. Also, note that since

x,[nI,nd <=> Re {X(o 1 , f)), if x[nl,n] has NSHP support, then it is uniquely

specified with Re {X (w, w2)}.

5.3. Results

We will next apply our results on unique specification of signals with zero

crossings to the problem of unique specification of sequences with the Fourier

transform sign information S(el1 ,w2). These results can be sated in a number of

different forms since a number of different results were developed for the dual

�__� ___ _^
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problem. Since many extensions follow directly from earlier results by duality, we

will simply present the main result here and extend it for different definitions of

S,(o 1,w 2). Details of other possible extensions of these results can be found in

[34].

First of all, we note that since the real part of the Fourier transform only con-

tains information about the even component of the sequence, we must require that

x[nl,n2] be even or be defined only over a nonsymmetric half-plane so it can be

recovered from its even part. Also, as vwas the case for the unique specification

with zero crossings, we note that if Re {X(o 1, fz)} > 0 for all (l,o2), then we

could not expect sign (Re {X(ol, w2)}) to be sufficient to reconstruct the original

signal. Thus, we will also assume that Re {X(ow, w2)} and Re {Y (,c2)} are posi-

tive in some regions of the (1,2) plane and negative in other regions.

Specifically, we state the following theorem:

Theorem 5.1. Let x [nl,n ] and y [n ,n2 ] be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with
$s(ol oz) = S(w 1 ow2). If Re {X ( 1, Oz)) takes on both positive and
negative values and X(zl,z2) and Y,(zl,zz) are nonfactorable, then
x [n ,n2 = cy[n ,n2] for some positive constant c.

Proof: Since x[nl,n2] and y[nl,n2 are finite length sequences, x,[nl,njz and

y,[n,n 2 ] are finite length sequences, and Re {X(l, o2)} and Re {Y(ol,oz)} are

periodic, bandlimited signals. Since X,(zl,z2 ) and Y,(zl,z2) are nonfactorable,

Re {X(ol, z2)} and Re {Y(wo,oz)) are nonfactorable as polynomials. Since
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Re {X (wo, w 2)} and Re {Y (ol,2)} contain sign changes, we know that they must

satisfy the constraints of Theorem 3.2, so Re {X( 1, 02)} = cRe {Y(o,W 2))},

xe[nl,n2 ] = cye[n1 ,n2J, and x[n,n2] = cy[nl,n2].

It is also possible to generalize Theorem 5.1 to allow unique specification with

broader classes of sign information than the S,(wI,w2) as defined in equation (12).

Since S(o,oz2) can be viewed as one bit of Fourier transform phase, we can gen-

era!ize S.(ol,o2) to allow quantizing the phase in different ways. Specifically, we

can define:

1 if a - -< ( %1 ) < a 2 (15)
$ (e°1'°2) = -1 otherwise

or equivalently,

S(O1,o2) = sign (Re {X(wl,w2 ) eiu}) (16)

The case a = 0 corresponds to the definition of S(o 1,co2) given in equation (12).

Alternatively, since S, (ol,w2) can be viewed as the zero crossings of the real par:t of

the Fourier transform, we can generalize S,(wl,w) to allow crossings of an arbi-

trary threshold as follows as we did in Theorem 3.5:

S,:(wj,t2) = sign(Re {X (X, 2)}- 3) (17)

To develop a result on unique specification with "generalized one bit of

phase", we Aill combine these two ideas and define:

S,' ( ,,c) = sign(Re {X(w,0a)ei") - a) (18)

We can then develop a result similar to Theorem 5.1 for this definition of sign

_��I�_ __XI--IIIII·YI·III�L^ III--II .. _.1-1- 1 --



-63 -

nation:

'Theorem 5.2. Let x[nl,nj2 and y[nl,nj be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with
SI'(01,(0) S--S'(01,0 2 ) for any a and A3 such that
Re {X( 1 ,0c2)eJ }) - - takes on both positive and negative values.
Also, let:

[ = x[n,nz cJ' + x* I-n, - n 2 (19)
i[nl,,1 - , - 15 8 [nln2 (9)

y[nl,nl2z Cj + y*[-nl, -n]J c - j a
2 - 5[nl,n2]Y[n,"2j =

where

1 if(nl,n2 ) = (0,0)
8 n xn = 0 otherwise

If X(zl,z2 ) and ;(zl,z2) are nonfactorable, then x[nl,nj = cy[nl,n
-for (nl,n2) A (0,0), and x[0,0 cos a - = c(y[O,O] cos a - 3) for
some positive constant c.

Proof: Since x[nl,n2] and y[nl,n2] are finite length sequences, [nl,n2] and

y[nl,n2] are finite length sequences, and X (w0,02) and Y(0c1,02) are real, periodic,

bandlimited signals. Since X(z1,z2) and Y(zl,z 2) are nonfactorable, X(o,0 2) and

Y (,0w 2) are nonfactorable as polynomials. Note that with the definitions given in

the theorem statement,

( 1 , 2) = Re X (i,02)ej} - (20)

i(wl,o 2) = Re {Y(,z)ej} - (

Then, we note that S 'P(o, 1,w 2) = S ( 1,w 2), and since S'4(O,02) = S'13(o1,00),

$5 (01,02) = S (w 1,2), and X (Ol,2) contains sign changes. Since X (w,o2) and

Y(wo1,02) satisfy the constraints of Theorem 3.2, X( 1l,w2) = cY(Q 1,w 2), and

infon
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.[n1,nj = c[n,n]. Then, with some algebra, x[nl,n2] = cy[nl,n2] for

(nl,n2 ) + (0,0), and x[0,O] cos a -[ - c(y[O,0] cos a - 5) for some positive

constant c.

The ambiguity at (nl,n2) = (0,0) is not just a scale factor; it is a scaling of the

value with respect to a threshold . Note that if a for some odd integerCosa 2

k, then S (l,cz2) contains no information about x[0,0], and even if v = 0,

x [0,0] cannot be recovered.

The definition of Fourier sign information can also be modified to include

complex values of (,c2). In particular, from a z-domain viewpoint, the real

values of (l,w2) correspond too values of (zl,zz2) on the unit surface

lzl! = 1z2 1 = 1; we might also be interested in sign information on the surface

1 Ij = r, [z21 = r 2. In this case, if the sequence y[nl,n2] = x[nl,nJ] rl- n t r 2
"

satisfies the constraints of the results developed earlier, then it is uniquely specified

with the zero crossings of Re {Y(w,w2z)}, or equivalently, with the zero crossings

of:

Re {Y (a,z)} Iz=l1, IZl 1 Re {X(r z 1, r 2zz)} il=, I2zl (21)

Then, since we can recover x[n1,n2 from y[nl,n2 ], x[nl,nj is uniquely specified

with sign information over the surface Il = r, 1 2 1 = r2 .
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CHAPTER 6

RECONSTRUCTION ALGORITHMS

Having established that particular classes of signals are uniquely specified by

some partial information, it is of interest to develop algorithms for recovering the

original signal from this information. One common approach to developing algo-

rithms for reconstruction from various forms of partial information is to develop an

iterative algorithm which alternately imposes constraints in the space and frequency

domains (similar to the Gerchberg-Saxton algorithm [51]). Another approach is to

express the solution as a set of simultaneous linear equations. In this section, we

will discuss each of these methods and present experimental resuits obtained with

each method.

6.1. Iterative Method

The class of iterative algorithms mentioned above can be applied to the prob-

lem of reconstruction from zero crossings by imposing the correct sign of the signal

(perhaps with respect to some threshold) in tae space domain and the correct

bandwidth in the Fourier domain. A similar algorithm can be developed for the

problem of reconstruction from Fourier sign information as discussed in chapter 5.

Since knowledge of the exact points of discontinuity is necessary for the signal

to be uniquely specified, the convergence of an iterative algorithm to the correct

solution necessarily depends upon the use of the exact zero crossing points. Thus,
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an algorithm for reconstruction from a sampled version of the sign of f (x ,y) can-

not be guaranteed to converge to the correct solution. However, it can be shown

that the continuous-space version of the algorithm (that is, a similar algorithm

imposing the correct sign for all values of (x ,y) and thus using an actual Fourier

transform and not a DFT) will converge to the correct signal. It is also possible to

show that the sampled version of the algorithm will converge to a signal which satis-

fies both the space and frequency domain constraints (provided such a solution

exists), although the solution is not unique. These results can be developed within

the theory of projections onto convex sets, as was used in [52] to establish the con-

vergence of a number of different signal reconstruction algorithms. Specifically, the

results developed in [52] apply directly to this problem provided the constraints in

each domain are imposed in such a way as to be projections onto convex sets; the

details will be presented in Appendix 1.

Once the theoretical properties of a reconstruction algcrithm have been deter-

mined, it is important to empirically determine the effectiveness of the algorithm in

recovering an actual signal. In particular, it is worthwhile to determine if a practi-

cal sampling rate limits the set of solutions to a sufficiently small set and if conver-

gence (or a good approximation) can be obtained with a practical number of itera-

tions. It is also worthwhile to investigate the effect of using different initial esti-

mates in te iteration.

Experimentally, we have found that different types of signals require different

sampling rates to limit the set of possible solutions to a reasonable size. Specifically,

_ I



- 67 -

signals with most of their energy concentrated in low frequencies inherently contain

fewer zero crossing contours in the Fourier domain and thus each zero crossing

point must be known to a greater accuracy, requiring the sign function to be signi-

ficantly oversampled. When recovering practical signals from zero crossings, this is

a serious problem since most signals which art bandlimited do not have their

energy uniformly distributed throughout the passband. For these signals, the

energy at frequencies near zero is often several orders of magnitude greater than

the energy at frequencies near the band edges. For the dual problem of recovering

sequences from Fourier sign information, there is no reason to believe that

sequences would tend to have most of their energy in a particular region of the

image. In fact, typical images tend to have many more zero crossing contours in

the real part of their Fourier transform than threshold crossing contours (of any

threshold) in the original image. Thus the problem of recovering signals from

Fourier sign information tends to be more stable numerically (when typical pictures

are used) and is less susceptible to inaccuracies in zero crossing locations caused by

sampling the sign information.

We have had very little success with the iterative technique in recovering

images from zero crossings due to the problems mentioned above. When recover-

ing signals from Fourier sign information, we have found that it is necessary to use.

a DFT size at least 4 or 8 times the signal size, and that it is extremely desirable to

start with an initial estimate which in some sense resembles the original signal.

Specifically, we have had some success when using an initial estimate formed from

_____1_1 __ _1_1_�_____ �_I_ _-~_ _ _I 



-68 

the correct one bit of Fourier transform phase and a Fourier transform magnitude

which is the average of a number of unrelated images. This is because images often

have most of their energy at low frequencies and thus the Fourier transform magni-

tudes corresponding to different images are often quite similar. In fact, as was

shown in [37] an image synthesized from the correct one bit of Fourier transform

phase and an average Fourier transform magnitude bears a strong resemblance to

the original image. When the initial estimate has a flat Fourier transform magni-

tude (such as if random noise is used), then the recovered signal appears to be a

noisy version of the original signal.

An example of an image reconstructed with this technique is included in Fig-

ure 1, where we show the original image (a) and the image reconstructed from

Fourier sign information (b). In this xample, the original image is 64x 64 points,

256x 256 DFTs vwere used, and the rsults shown were obtained with 25 iterations,

accelerated with a method similar to that used in [21]. The initial estimate used

here was an average Fourier transform magnitude combined with the correct one

bit of phase or Fourier sign information.. Although a large number of iterations are

required for the algorithm to converge to a sequence satisfying the space and fre-

quency domain constraints, the improvement of image quality after the first 20

iterations or so is somewhat negligible even if the image at this stage does not

satisfy the frequency domain constraints at every point.

___ _
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Figure 1. Reconstruction from Fourier Sign Information

(a) original image

(b) recovered image
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6.2. Linear Equation Method

As mentioned earlier, it is also possible to express the solution to the problem

of reconstruction from zero crossings as a set of linear equations. Thus, another

possible reconstruction algorithm would involve solving the set of equations:

2zn . 29wyn
j r,' J r

F[nl,n e O (22)

where each equation uses a different pair of points (xi ,Yi) for which the equality is

known to hold. This approach has the advantage that the exact zero crossing loca-

tions are used as opposed to sampling the sign information. Since these equations

are written in terms of complex unknowns we can modify them for real unknowns

and to take advantage of the fact that f (x ,y ) is real as follows:

, Z FRtnl,nj cos(2irxijn+2ryinj) - Fl[nl,n2 sin(2rxinl+2yinyn = 0(23)

where FR[nl,n2J and F[nl,nj denote the real and imaginary parts of F[nl,nj

respectively.

As mentioned earlier, if we assume that f (x ,y) satisfies the' constraints of

Theorem 3.9 and the number of equations used (i.e., the number of zero crossing

points used) is also consistent with the constraints of Theorem 3.9, then these equa-

tions have a unique solution once the scale factor is specified by setting one point

to its known value. We have found it simplest to set FR [0,0] to the known mean

value of the signal (and F [,O] - 0 since the image is real). We have also found

that the number of equations specified by Theorem 3.9 is significantly higher than

the number of equations usually required in practice. Our experience is that with a
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small number of equations (signals with a narrow bandwicdh), it is often possible to

use the same number of equations as unknowns. As the number of unknowns

(spectral components) increases, it is desirable to use more equations than unk-

nowns and to compute a least squares solution in order to reduce the numerical dif-

ficulties associated with solving linear equations.

Examples of two images recovered with this method are shown in Figures 2

and 3,* which show (a) the original image, (b) an image consisting of the threshold

crossings (i.e., contours showing where the original image crosses a partic;lar thres-

hold, and (c) the image reconstructed by solving the linear equations and then. tak-

ing the inverse transform. The original image was obtained from a very similar

image by low-pass filtering the image and removing some low-amplitude Fourier

transform points so that it would be practical to solve a set of linear equations for

the remaining points. The exact size and shape of the spectrum of the resulting

image (i.e., the region of support of the Fourier transform) was then assumed to be

known. Precise values of the zero crossing locations were found (to approximately

16 digit accuracy) by expressing the image as a polynomial as in equation (2) and

using a numerical technique to find the zeros of this polynomial. The equations

were then solved by using a QR decomposition [54] and double-preciion arith-

metic. In the case of Figure 2, the image contains 228 independent spectral com-

ponents, a total of 600 equations in 454 unknowns were used (here almost all

points are complex and contribute two unknowns), and the normalized rms error

'I would like to gratecully acknowledge the help of M. Steinberg in generating these figures
and the ones that follow. Additional examples can be found in [53].
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Figure 2. Reconstruction from Zero Crossings
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Figure 3. Reconstruction of X-Ray
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(rms error/rms signal) is approximately 0.000065. In the case of Figure 3, the

image has 178 independent spectral components, a total of 600 equations in 354

unknowns were used, and the normalized rms error is approximately 0.027.

The success of this method depends on a number of different factors. The sig-

nificant factors appear to be the accuracy of the zero crossing points and the degree

to which the zero crossing points are spread out evenly throughout the picture.

The locations of zero crossing points depend on the type of image as well as the

threshold used. For example, we note that the reconstruction of the image in Fig-

ure 2 was more accurate than that of Figure 3 (despite the fact that the image of

Figure 3 contains fewer spectral components and the same number of equations

were used) and that Figure 2 contains more contours spread out throughout the

picture. For both of these. examples, the threshold chosen was somewhere near the

mean value of the image. The mean value is not necessarily the best threshold to

use but the best threshold is likely to be fairly close to the mean in most images.

As the threshold is increased or decreased away from the mean, there will be fewer

picture elements on one side of the threshold than the other, and furthermore

these picture elements will tend to be concentrated in small areas of the picture.

This means that the threshold crossing contours will be less evenly distributed

throughout the picture, and the reconstruction process will be less stable. In partic-

ular, errors occtrring during reconstruction will be greatest in areas which are the

farthest from any zero crossing contour. For most images, there is a range of thres-

holds for which the reccnstruction works well, and outside this range, significant

I
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errors occur which increase as the threshold varies further from this range.

Examples of reconstruction showing the effects of different thresholds are

shown in Figures 4 and 5. Figure 4 shows a range of different thresholds for the

"eye" picture shown in Figure 1, and Figure 5 shows a range of different thresholds

for the x-ray picture shown in Figure 2. IThe images are on a scale of 0 to 1, with

mean values close to 0.5. Figure 4 (a) shows the threshold crossing contours

obtained with a rather small threshold (.27), such that most of the picture elements

are brighter than this threshold and the threshold crossing contours are concen-

trated in the center of the picture. Figure 4 (b) shows the image recovered from

these contours. Notice that there are significant errors in the corners of the image,

areas which are far from any threshold crossing contours. Figure 4 (c,d) shows

another example with a slightly larger threshold (.30); in this case the image was

recovered fairly accurately. Figure 4 (e,f) shows a different threshold (.62) some-

what above than the mean, where the signal was recovered accurately, and Figure 4

(g,h) shows a slightly larger threshold (.64) where again we begin to see distortions

in areas far from the threshold crossing contours. Thus, the reconstruction appears

to be most successful in the range of thresholds between .30 (Figure 4(c)) and .62

(Figure 4(e)).

A similar set of examples is shown in Figure 5 for the x-ray picture. Figure 5

(a,b) illustrates reconstruction using a threshold of .40. The distortions in the

recovered image appear as a horizontal stripe rather than in a small area as was the

case in the previous example. In the Fourier domain, the errors in these images

I_ __ __·__�_1�1___·_________1__·11_1�·1 1�^- 1_( 11-- 1---^ -· - ~ --
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Figure 4.

y

~-.I 

\ _ ,,>. v I

(a) threshold = 0.27

0> /~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Effect of Different Thresholds

(b) image recovered from (a)

(d) image recovered from (c)

I

: 

- - - - ---- - --- -

1 __

CZ 
.

V~

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Al

(c) threshold = 0.30



- 77 -

Figure 4 (cont'd).
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Figure 5. Effect of Different Thresholds on X-Ray
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Figure 5 (cont'd). Effect of Different Thresholds on X-Ray
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show up in the spectral components which have zero horizontal frequency and

fairly low but nonzero vertical frequency. These components are under-constrained

by the threshold crossing information since the threshold crossing contours are very

nearly horizontal in this example. As seen in Figure 5 (c,d), when the threshold is

increased to .43, the reconstruction is improved. Figure 5 (e,f) shows a reconstruc-

tion obtained with a threshold of 0.52, just slightly above the mean value. While

this example was effectively recovered, when the threshold is increased slightly to

0.53, noticeable errors occur in the reconstruction (Figure 5 (g,h)). Note that in

this image, the range of thresholds which result in effective signal reconstruction is

much smaller than in the previous example and furthermore, this range is not cen-

cered about the mean value of the image (.49).

The stability of the reconstruction process can be improved by increasing the

number of equations. An example is shown in Figure 6. Figure 6(a) shows the

threshold crossings of the "eye" image used in Figure 1, with a threshold of 0.27.

When 600 equations (454 unknowns) are used, the resulting image has significant

distortion near the comers, which are far from the threshold crossing contours.

When 750 equations are used, the resulting image has improved but the distortion

is still noticeable. When 900 equations are used, the recovered image appears very

similar to the original.
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Figure 6. Effect of Additional Equations
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we have developed a number of new theoretical results on the

unique specification of multidimensional signals with zero crossing or threshold

crossing information. We began by considering the unique specification of two-

dimensional periodic signals since these signals can be represented as a polynomial

using the Fourier series. Our basic result established that a two-dimensional,

periodic, bandlimited signal is uniquely specified to within a scale factor by its zero

crossings if the .signal is nonfactorable when expressed as a polynomial. We

extended this result to include finite-length signals, crossings of an arbitrary thres-

hold, sampling of the zero crossing contours, and factorable signals. We also

developed similar results for signals of higher dimensions and for nonperiodic sig-

nals. We applied these results to the problem of unique specification of signals with

zero crossings or sign information in the Fourier domain by using the duality of the

Fourier transform in a straight-forward way.

We also discussed two algorithms for reconstruction from zero crossing infor-

mation once it is known that a signal satisfies the uniqueness results. An iterative

algorithm which imposes the known sign information in the space domain and the

known bandwidth in the frequency domain was shown to converge to a signal satis-

fying the given constraints. This method was found not to be successful in practice

because the constraints involved sampling the sign information and did nt involve

1_1_ _ I_ �I _ __ _· �_1_ __I_-----·II CI �I1II�� I-LII·l--__ 1 -- 11·-.·_-·-_1�-n1--�
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imposing the exact zero crossing locations. An alternative method, involving the

solution of linear equations where each equation uses one exact zero crossing point,

was shown to have a unique solution if enough equations are used. This method

was found to give results which are indistinguishable from the original signal pro-

vided that the original signal has a limited bandwidth and that the zero crossing

locations are known very accurately.

A wide variety of different directions are possible for expanding or extending

the results of this thesis. First of all, there are a number of theoretical issues which

we have not investigated. One problem we have not addressed is the problem of

determining when it is possible to synthesize an image with an arbitrary set of zero

crossing points. In the results we have developed, we have always assumed that the

zero crossing points did correspond to an image which we were trying to recover.

A different problem involves assuming that the zero crossing points are not known

apriori to correspond to an original image, but it is desired to develop constraints

on the zero crossing locations such that it is possible to synthesize an image with

zero crossings at these points. This problem has been investigated experimentally in

[55] and has applications in areas such as microlithography where it is desired to

create an image which will have the correct zero crossings after passing through

some type of bandlimited or diffraction-limited system.

Another problem in the theoretical area is to develop a technique or criterion

for choosing as few zero crossing points as possible to uniquely specify a signal.

Although we have shown that it is possible to uniquely specify an image with a fin-
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ite number of arbitrarily-chosen zero crossing points and furthermore it is possible

to choose the zero crossing points in such a way that p zero crossing points will

uniquely specify a signal with p degrees of freedom, a practical criterion for choos-

ing the p zero crossing points so that this is possible could be beneficial in applica-

tions of this work.

A wide variety of experimental or algorithmic work is also possible to extend

this thesis. One obvious possibility is to develop new reconstruction algorithms

which might be more robust or more efficient than the method of solving linear

equations. One possible method is to develop an iterative algorithm which uses the

exact zero crossing points as opposed to sampling the sign of the signal, perhaps by

using a conjugate-gradient or other numerical optimization routine [56]. Another

possibility involves the use of regularization or stabilization techniques used in prob-

lems such as bandlimited extrapolation, which are known to be ill-conditioned.

Another direction worth investigating involves using multiple thresholds or a thres-

hold which varies across the picture. The thresholds can then be chosen in such a

way that there are more zero crossing contours distributed more evenly throughout

the picture, making the reconstruction process more stable. It would also be

worthwhile to analyze the stability of the reconstruction process theoretically both

with respect to errors in zero crossing locations and with respect to the assumption

of bandlimitedness.

Another area for possible extension of the results in this thesis involves

developing applications of these results. One possible application occurs in image

_·�_�_____11__�______LII__I__ 311 ^_�___·I �_I _ ___I-__1111111_1 1� ·sl_- lC-I_.- II----11I-II---I_ .-1._
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restoration. If an image is recorded with a high-contrast recording medium, then

the recorded image consists primarily of two distinct levels of intensity, with a

boundary between these two levels. In this case, it may be possible to determine

the exact threshold crossing points even if it is not possible to determine the ampli-

tude of the original signal at most points. By using the results presented in this

thesis, it should be possible to recover the original image before recording provided

that the image satisfies the constraints of any of the results developed earlier. A

number of variations on this problem are possible. For example, if an image is

over- or under- exposed unintentionally such that intensity values in a particular

range are reproduced accurately but values are clipped outside this range, then

again it should be possible to recover.an undistorted version of the image.

Another method of applying the results developed in this area is to use the

theoretical properties in developing additional theoretical results in areas such as

communication theory as well as in signal processing. One possibility along these

lines is to use the results to develop new results on multidimensional sampling

theory. Although results on sampling of one-dimensional bandlimited functions are

well established, sampling theorems for two-dimensional functions are generally lim-

ited to sampling on rectangular or other periodic grids. Cne area where it would

be useful to develop new results pertains to sampling on polar grids.

To show how the results on zero crossings apply to sampling, let us define the

phrase "sampling set" to specify a set of points chosen such that the samples of the

signal at those points ar: sufficient to uniquely specify the signal. It can be easily

I
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shown [5] that a set of points is a sampling set if and only if there is no signal which

has zero crossings at these points (and has the required bandwidth). Specifically,

note that if there are two signals f (x ,y) and g (x ,y) of the same bandwidth with

the same sample values at a particular set of points S, then

h (x ,y) = f (x ,y)-g(x,y) is zero on the set of points in S. Thus if there is no

signal h (x ,y) with zero crossings which include all the points in S, the set S will be

a sampling set. Thus if we have a particular set of points and we want to know if

these points form a sampling set, we can attempt to recover a signal which has zero

crossings at all points in the set. If such a signal does not exist, we know that the

points-form a sampling set. Furthermore, we may be able to create interpolation

functions by recovering signals which are unity at one point in the set and zero at

the other N -1 points in the set. It may also be possible to use the results of this

thesis to develop new theoretical results pertaining to other aspects of multidimen-

sional sampling theory or to related fields such as communication theory.
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Appendix 1. Convergence of Iterative Reconstruction Algorithm

In this appendix, we establish the convergence of our algorithm for reconstruc-

tion from zero crossings by using the theory of projection onto convex sets, using

the approach presented in [52] for establishing the convergence of a variety of sig-

nal reconstruction algorithms. Specifically, the result we shall be using is as fol-

lows*:

Theorem Al. Let H be a Hilbert space, G be a composition of
projection operators onto closed convex sets, at least one of which is
finite-dimensional, and G* denote the intersection of these sets. If G*
is nonempty, then for all x E H, the sequence G"x converges to a point
in G * .

The results developed in [52] include showing that a wide variety of constraints

often imposed in signal reconstruction algorithms can be imposed in such a way

that the transformations will satisfy the constraints of Theorem Al. In fact, the

constraints used in our algorithm for reconstruction from zero crossings differ from

some of those discussed in [52] in only trivial ways. The basic approach shall be

repeated here although the mathematical details shall be omitted.

To show that Theorem A1 applies to our iterative algorithm, we must first

carefully define the transformations applied in the time (or space) and frequency

domains at each iteration so that they can be characterized as projection operators

onto closed convex sets. First let us note that although the continuous-space

'Theorem Al is a weak form of the results in [52, S71 but it is sufficient for our purpcses.

_ I . .~ .
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variables (x ,y) will be used throughout the discussion below, the properties of the

transformations in the space and frequency domains apply equally well if the sam-

pies (xk ,Yk) are used. The only difference is that in the continuous-space case, the

set G* will contain exactly one sequence (provided the proper constraints are satis-

fied), whereas in the discrete-space case, the set G* will contain an infinite number

of signals.

Let h (x,y) denote the signal we are trying to recover which is known to

satisfy the constraints of Theorem 3.9 and is thus uniquely specified by

sign h (x ,y). Let W* denote the set of sequences which satisfy the frequency

domain constraints:

F[nl,n2j O0 for n or n2 [-NN ] (Al)

F [N, N] = [N, N]

and T* denote the set of sequences which satisfy the spatial domain constraints:

f (x ,y ) 0 if sign h (x,y) = 1
f (x ,y ) 0 if sign h (x ,y) = -1 (A2)

Note that the set W* is finite-dimensional even if the space H includes

infinite-length signals. Also note that the definition of the set T* may not be pre-

cisely the same as stating sign f (x ,y) = sign h (x ,y), since at a zero crossing point

where f (x ,y) = 0 it is considered to satisfy either constraint sign h (x ,y) = 1 or

sign h(x ,y) = -1. It is necessary to use the definition of T* given in (A2) in

order for T* to be a closed set (a set which includes its limit points.)

Next we will define the operators T and W to be projections onto the sets T*

and W*. For T and W to be projections, we need:

_ �
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I Tx -xl I I ly -x I I for ally E T* (A3)

and

I lwX -X I I I Y -x I I for ally W* (A4)

Thus the operator W which imposes frequency domain constraints is:

F(nl,n2 ) 0 - nl,n2 s N (nl,n) - (N, N)

W[F[nl,n2]] = H(N, N) (nl,n2) = (N,N) (A)

0 n 1,n 2 > N

or in words, simply substituting the known values of H[nl,n2]. The operator T

which imposes spatial domain constraints is:

T[f (x ,y )] f ( ,y ) if sign f (x,y) = sign h (x ,y (
T(Xy)] ={f ) otherwise (A6)

or in words, setting the signal to zero at points where its sign is incorrect.

Next, we express our iterative algorithm in the form

xk + = Gxk (A7)

where G =TW is a composition of projection operators. Then, by Theorem Al,

the sequence in equation (A7) will converge to a point in G*, that is, a sequence

which satisfies the time and frequency domain constraints. Thus, if h (x ,y) satisfies

the constraints of Theorem 3.9, and the iteration imposes the correct sign h (x ,y)

for all points (continuous-space, not sampled) then G* contains exactly one

sequence, and the iteration must converge to that sequence. If sign h (x ,y) is sam-

pled, then the iteration must converge to a sequence in G*, i.e., a sequence which

satisfies the time and frequency domain constraints, although this solution is not

unique and the solution crtually obtained depends on the initial estimate.
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