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Abstract

State-of-the-art methods for simulating viscoelastic flows couple the conservation
equations for mass and momentum with a model from kinetic theory that describes
the microstructural state of the polymer. Introduction of appropriate numerical dis-
cretization and boundary conditions for these equations leads to a hybrid simulation
for studying the dynamic behavior of polymeric liquids in complex geometries. This
approach represents a rare example of a successful multiscale solution of a physical
problem, as it allows investigation of arbitrary models of kinetic theory.

The simulations, however, are not amenable to standard numerical techniques for
system-level stability, bifurcation, and control analysis as this requires closed form
equations. These simulation either use stochastic descriptions for the polymer mi-
crostructure that cannot be reduced to closed form, or involve equations for the evolu-
tion of a distribution of polymer conformations, which can only be written in closed
form by invoking mathematical closure approximations that can have a significant
qualitative impact on the predictive ability of these simulations.

The focus of this thesis was to develop a novel numerical method that can enable
hybrid simulations to perform system-level analysis of polymeric flows. This numerical
approach has been applied directly to kinetic theory models and hybrid simulations
to obtain stationary states and associated bifurcations and stability information. The
method is general in its applicability in that it treats kinetic theory models and hybrid
simulations as black boxes that are then used to obtain system-level information
without any modification.

The methods developed here are illustrated in a variety of problems. Steady state
results have been obtained for the non-interacting rigid dumbbell model in steady
shear, and for the free-draining bead-spring chain model in both steady shear and
uniaxial elongation that are in excellent agreement with previous studies and steady
state computed from direct integration. The method is also applied to a hybrid
simulation for the pressure-driven flow of non-interacting rigid dumbbells in a planar
channel with a linear array of equally spaced cylinders. The computed steady state is
in agreement with direct integration and qualitatively matches previous computations



with closed models.
Bifurcation analysis has been performed for the Doi model at equilibrium with

the Onsager excluded volume potential. This analysis agrees with previous studies
and accurately predicts the isotropic-nematic transition and turning point for the
unstable to stable transition on the prolate solution branch. Bifurcation analysis has
also been performed for the Doi model in the weak shear flow limit for the Maier-
Saupe excluded volume potential. It is found that stable stationary solutions are
lost at a limit point beyond which time-periodic tumbling orbits are the only stable
solution. This transition occurs via an infinite period global bifurcation, while the
limit point approaches a threshold value as the shear rate approaches zero. This
result matches a recently published scaling analysis and demonstrates the ability of
the method to provide general bifurcation analysis of kinetic theory models.

Stability analysis of the fiber-spinning process for polymeric fluids has also been
performed by using a hybrid simulation that couples the one-dimensional conservation
equations for mass and momentum with a stochastic description for the configura-
tion fields of the Hookean dumbbell model. The steady-state velocity profiles are
in good agreement with previous studies with the Oldroyd-B model. The analysis
predicts onset of the draw resonance instability via a Hopf bifurcation and subse-
quent stabilization via second Hopf bifurcation in draw ratio parameter space. This
result is in good agreement with experimentally observed behavior during polymer
fiber-spinning.

Thesis Supervisor: Robert C. Armstrong
Title: Chevron Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Polymer Processing

In popular usage the word polymer is often understood to mean plastic, a material

that is fairly ubiquitous in the twenty first century. Common examples include items

of daily usage, such as food containers, soft-drink bottles, toys, sports equipment

etc. In addition to consumer goods, plastics are also used extensively in high-tech

engineering applications, such as aerospace parts, as components of high-speed ma-

chinery, and housings for electronic devices. This diversity of application stems from

the diverse mechanical and thermal properties of the finished product. The word

polymer, however, is not restricted to refer to plastics and synthetic materials only,

since polymers also exist naturally. These are often called bio-polymers and include

materials such as natural rubber, ivory, amber, protein-based polymers such as DNA,

and cellulosic based materials. The common feature of all polymers, whether syn-

thetic or natural, is that they are composed of molecules with very large molecular

mass that results from chemical bonding of a large number of repeating units or

monomers. A simple example is that of polyethylene with ethylene as the repeating

unit in the polymer molecule.

Initial interest in polymers originated from the ability to cheaply create synthetic

materials of complicated shapes and good appearance with relative ease. While chem-

istry dictates the potential properties such materials can possess, it is inevitably the
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processing that determines whether those properties can be realized in an economi-

cally feasible manner. To that end, advances in polymer processing have led to the

creation of materials with versatile performance and appearance. Examples include

polymeric fibers of considerable slenderness and strength created by fiber-spinning

and electro-spinning processes, compact discs with intricate features on the order of a

micron that are created using injection molding, and multilayer films and sheets that

can be formed by using the co-extrusion process. These processes typically involve

heating the polymers above their glass transition or melting temperatures, followed

by some forming process, such as extrusion or drawing, and subsequent cooling to

obtain the desired shape. At that point, the crystallization and molecular orienta-

tion of the polymer that results from the processing history dominates the material

properties and performance of the finished product. Clearly, how the polymer flows

in the molten state or in solution significantly affects the processing conditions that

can be imposed on it. For this reason, fluid dynamics of polymers plays a pivotal role

in accurately understanding the effect of various polymer processes on final product

properties.

Advances in polymer processing have significantly increased the complexity of

the flows that are imposed on a given polymer. This complexity emerges either

in the form of a complex geometry through which the polymer is being processed

or in terms of processing conditions, such as high extrusion rates. More recently,

there is also a greater desire to understand how natural polymers such as DNA flow

in novel processing geometries that have been designed for biomedical applications.

The major challenge posed by these processes is the ability to describe how the

microstructure of polymer molecules evolves in a given process. Polymer molecules

are by definition large molecules, often consisting of 10,000 monomer units in a single

polymer chain. This property leads to significantly different flow behavior when

compared with standard Newtonian fluids, such as water. For example, in the molten

state a polymer molecule may either be stiff or flexible depending on the chemical

nature of the monomer units, their physical arrangement, and the resulting forces

they experience from neighboring molecules. These forces could arise either due to
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excluded volume effects or entanglements among polymer molecules. Even in a dilute

solution, polymer molecules take a finite time to respond to changes in the bulk flow

depending on how the polymer structure adjusts to the prevalent flow field. For this

reason, any attempt at understanding how polymeric materials flow, must take into

account the structure of the fluid, as opposed to the ideal of structureless, small–

molecule fluids, and how stresses develop in these fluids as a result of some imposed

deformation.

The science of rheology addresses this primary issue of how flow-induced deforma-

tion affects fluid behavior. Even though rheologists study a wide variety of materials,

polymers have been found to be the most interesting and complex. Rheology recog-

nizes that the stresses that may develop in polymeric fluids can have a nonlinear or

temporal dependence on the rate of deformation, or both. This behavior is strikingly

different from that of Newtonian fluids where stress depends linearly and instanta-

neously on the rate of deformation. As a result, polymeric materials are also known

as non-Newtonian fluids, and non-Newtonian fluid dynamics then focuses on rheolog-

ically complex flows typical of most laboratory and polymer processing operations.

Even though the science of rheology may focus on specific flows that are designed to

measure material properties for developing better molecular theories, non-Newtonian

fluid dynamics aims to study more general flows. As a consequence, such an approach

invariably requires numerical methods and computational techniques, since analytical

solutions can rarely be obtained. This is exactly the focus of this thesis, as it intro-

duces a new numerical approach that furthers the ability of state-of-the-art methods

for studying complex polymeric flows.

1.2 Computational Rheology

The field of computational rheology is concerned with the design, implementation, and

use of numerical methods for the computer simulation of the flow of non-Newtonian

fluids in complex geometries [56]. Even though the field has been under develop-

ment for more than 30 years, it has only recently begun to reach a state of relative
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maturity. Earlier efforts to model the flows of polymers took a continuum approach

by assuming that the macroscopic features of polymer behavior could be described

without a detailed consideration of molecular configuration. The microstructure is

assumed to exist over a sufficiently small spatial scale to permit averaging and the use

of a continuum approximation. This approach was inspired by the approach taken

to model Newtonian fluids where a linear relationship between fluid stresses and de-

formation rate is sufficient to describe the flow behavior without any knowledge of

the behavior of the molecules that make up the fluid. Non-Newtonian fluid dynam-

ics, therefore, makes use of a constitutive equation that relates the stress tensor to

the rate of deformation. When combined with the conservation laws for mass and

momentum, the constitutive equation yields a coupled set of partial differential or

integro-differential field equations that must be solved for a specified flow geometry

and defined boundary conditions.

In most cases the constitutive equations are not connected with the underlying

microstructure and therefore have diverse predictive ability. An exception to this are

equations that although continuum in form, have some basis in molecular theory as

they are derived in terms of certain averages of the distribution of polymer confor-

mations within a macroscopic fluid element. Despite their basis in molecular theory,

such equations invariably make use of mathematical closure approximations for these

averages that can have a significant qualitative impact [109] on their predictive ability.

Despite these significant drawbacks, large scale simulations of polymeric flow that

use the continuum approach have led to significant accomplishments in describing the

stresses and velocities that develop in complicated geometries. A variety of polymeric

flow behavior and non-trivial problems have been modelled with this approach even

though the continuum constitutive models in use give rise to stress boundary layers

and singularities in complex flow geometries [57]. The nonlinear qualitative behavior

of the resulting solutions can indeed be very rich. Most importantly, however, the

formidable mathematical and numerical challenges posed by this approach and the

advantage of solving for a limited number of variables (pressure, the components of

velocity and stress) make continuum modelling the mainstream of the discipline even
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today.

As already discussed, the interesting behavior of polymeric liquids is primarily

due to their underlying molecular structure. Liquid crystal fibers, for example, gain

their strength from the extremely high degree of molecular alignment induced during

processing, while many coating polymers such as those contained in paints and adhe-

sives derive their properties from a carefully engineered lack of molecular alignment.

Hence, it seems natural to incorporate molecular information in complex flow simu-

lations, which is exactly the focus in the emerging and complementary micro-macro

or hybrid approach to polymeric flow modelling. In this approach, the equations for

the evolution of polymer microstructure are directly coupled to the field equations for

mass and momentum conservation. The evolution equation for the the microstruc-

ture is typically available in the form of a Fokker-Planck equation from polymer

kinetic theory or an equivalent stochastic description. Whereas earlier efforts with

this approach were restricted to elementary flow fields, such as plane Couette flow

and well-understood molecular models, the approach has shown great promise when

extended to more complex flows and kinetic theory models with better description

of the polymer microstructure, since the approach circumvents the need to invoke

mathematical closure approximations of doubtful validity.

Despite this significant advantage, the hybrid approach is more demanding in

computer resources than the continuum approach. This can be easily understood

by considering the rigid dumbbell molecular model, which describes the behavior

of a rigid rod with a fixed length. This model molecule can neither stretch nor

entangle and hence has only two orientational degrees of freedom. Typically O(10)

discretization points are needed in orientation space for each degree of freedom to

accurately capture the distribution that describes the probable orientation of the large

number of molecules within a fluid element. This leads to O(100) discrete equations

that must be solved at each material point in a flow geometry. If we contrast this

with the continuum approach that only requires solution of six components of the

stress at each spatial point, it is immediately obvious that a move from continuum to

even the simplest of molecular models leads to a significant increase in computational
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resources. Although this may not have been feasible in the past, computational

resources have increased significantly in the last decade and a half to allow preliminary

computations of 3D transient flows with elementary models of kinetic theory [89] and

more detailed computations of 2D transient flows with kinetic theory models that

incorporate significantly larger degrees of freedom for the microstructural model [61].

More importantly, work has also been carried out to predict the inception of flow

instabilities in plane Couette flow using the hybrid approach without having to resort

to closed form constitutive equations [102].

While these results represent significant developments in polymer flow modelling,

the hybrid approach is currently unsuitable for true system-level analysis of poly-

mer flows, which requires a closed set of equations to yield detailed information, i.e.

bifurcations and stability of the computed solutions. As such, by avoiding closure

approximations, the model is rendered unamenable to system-level stability, oper-

ability, bifurcation, parameter sensitivity, design and control analysis that standard

numerical techniques allow. For example, the work done to predict inception of poly-

meric flow instabilities makes use of precise time-dependent computations to carry

out linear stability analyses by deriving linearized equations for the perturbation to

a Fokker-Planck equation. Although this may be reasonable for a simple molecular

model, the approach is clearly infeasible for kinetic theory models with larger inter-

nal degrees of freedom. Also, the method does not provide for a general approach to

obtaining a sequence of solutions that may be otherwise be possible with closed-form

equations. Hence, having developed stable and efficient algorithms to carry out hy-

brid simulations, there is then a clear need for algorithms and numerical methods that

may bridge the gap between state-of-the-art simulations and system-level analysis to

elucidate the nonlinear coupling between rheological behavior, flow-induced evolution

of the microstructure, flow parameters (such as geometry and boundary conditions),

and final product properties.

To that end, this thesis focuses on proposing a new numerical approach that can

bridge this gap by enabling hybrid simulations to perform system-level analysis of

polymeric flows. In particular, the numerical approach is applied directly to kinetic
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theory models and hybrid simulations to obtain stationary states and associated bi-

furcations and stability information. The method is general in its applicability in

that it treats kinetic theory models and hybrid simulations as black boxes that are

then used to obtain system-level information without any modification. This is a sig-

nificant advantage of this approach as it allows a theoretical rheologist to study the

impact of a new molecular model on the richness of macroscopic scale behavior for the

polymeric material of interest. In industrial practice, on the other hand, the polymer

engineer could predict production problems, such as extrusion instabilities, which

can then be partially overcome with improved design. Most importantly, however,

such an approach may eventually lead to physics-based process control techniques for

polymeric flows typical of processing operations.

1.3 Thesis Outline

The thesis begins in Chapter 2 with a brief review of rheometric experiments that

highlight the non-Newtonian character of polymeric fluids and form the basis for de-

velopment of constitutive equations suitable for studying polymeric flows. In particu-

lar, some of the most commonly used constitutive equations in continuum modelling

are presented along with equations that have some basis in kinetic theory. The pre-

sentation of constitutive equations is accompanied with discussion of their inherent

limitations, which provides the necessary motivation for considering kinetic theory

models to study the flow of polymeric liquids. This is followed by a brief discussion

of two simple kinetic theory models, the rigid and elastic dumbbell, which have been

used extensively in hybrid simulations of polymeric flows, even though they represent

significant simplifications to real polymer molecules. The equations developed for the

rigid and elastic dumbbell form the core of the discussion relating to standard numer-

ical methods that are employed in the hybrid approach, namely the direct solution of

the associated Fokker-Planck equations or the equivalent stochastic description. In

particular, the presentation highlights the current state-of-the-art in computational

techniques that has led to 3D simulations with hybrid methods.
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The numerical approach that allows for bridging the gap between hybrid methods

and system-level analysis of polymeric flows is presented in Chapter 3. The discus-

sion presents the ingredients of the computational approach, namely the coarse time-

stepper framework and iterative methods from numerical linear algebra, along with

two examples that illustrate the application of the approach to models from polymer

kinetic theory. In particular, we consider a dilute solution of rigid dumbbells in simple

shear and a stochastic simulation of polymer chain in simple rheometric flows. These

examples specifically illustrate how the numerical method may be applied to both

deterministic and stochastic descriptions from kinetic theory without any modifica-

tion to well developed computational techniques that represent the state-of-the-art for

such descriptions. In addition to discussion of the novel numerical approach, Chapter

3 also presents a short review of the finite element method, including specific formula-

tions for discretization of the momentum conservation balance and hyperbolic partial

differential equations that arise in kinetic theory models used in this thesis. The

chapter concludes with the presentation of an algorithm for performing stability and

bifurcation analysis of nonlinear dynamical systems that has been used extensively

in this thesis.

Chapter 4 considers three example problems: (1) the equilibrium behavior of the

Doi model with the Onsager excluded volume potential, (2) pressure-driven flow of

non-interacting rigid dumbbells in a planar channel, and (3) pressure-driven flow

of non-interacting rigid dumbbells through a planar channel with a linear array of

equally spaced cylinders. The first example clearly demonstrates that models from

kinetic theory of polymeric liquids possess a compact spectrum of eigenvalues for the

Jacobian matrix associated with the dynamical description. This property of kinetic

theory descriptions makes them specifically suitable for obtaining stationary states

and performing stability and bifurcation analyses with the methods proposed in this

thesis. Whereas the first examples considers a model at equilibrium with a highly

nonlinear excluded volume potential, the next two examples show that the numerical

methods proposed in this thesis may also be used in the context of a hybrid simulation

of a non-homogeneous flow without any significant modification to the simulation
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algorithm. Although the focus is on converging to stable stationary states in order

to facilitate comparison with dynamic simulations, the results are very encouraging

both for incorporation of higher numbers of configurational degrees of the freedom

for the kinetic theory models and for performing stability and bifurcation analyses

with hybrid simulations of benchmark flows.

Chapter 5 investigates flow induced transitions from steady aligned states to pe-

riodic, tumbling states in a linear, weak shear flow for a model suspension of hard

rods in two dimensions. In particular, the Doi-Hess diffusion equation with the Maier-

Saupe excluded volume interaction potential serves as the starting point for the study.

Although the Doi model shows spontaneous alignment even in the absence of flow,

approximations typically made in the solution of the Doi model act to alter its pre-

dictions in flow situations. For this reason, the discussion in Chapter 5 considers the

unapproximated Doi model as a black box simulator which is then wrapped in the

numerical approach presented in this thesis to perform detailed bifurcation analysis.

While bifurcation analysis for the unapproximated model has been carried out pre-

viously [73, 80] for shear flow with moderate to large shear rates, the presentation in

Chapter 5 focuses on the solution behavior in the weak shear limit. Specifically, impo-

sition of a weak shear flow has two main ramifications. First, the shear flow unravels

the pitchfork bifurcation obtained at equilibrium, selects the director and results in

two steady branches - one stable and the other unstable. Second, imposition of shear

results in loss of steady aligned solutions beyond a critical value of the dimensionless

potential, the value of which depends on imposed shear rate and the shape factor that

takes into account the aspect ratio of the rods. The results specifically elaborate on

the mechanism by which the time periodic states originate from the steady solution

families in the weak shear limit, and the existence of a limiting value for the critical

point. The results validate previous asymptotic results in the limit of infinite aspect

ratio and extend the results to arbitrary values of the shape factor.

Chapter 6 considers the isothermal fiber spinning process for polymeric melts

with specific focus on predicting the onset of draw resonance instability. Mathe-

matical modeling of the process has been carried out in the past using a variety of
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constitutive equations that include the White-Metzner model, Phan-Thien and Tan-

ner fluid model, and the Oldroyd-B fluid. The presentation in Chapter 6, however,

develops black box simulators for the fiber spinning process for Oldroyd-B and elastic

dumbbell models. While closed set of equations are available for the Oldroyd-B fluid,

the simulation of the elastic dumbbell model employs a hybrid approach whereby a

stochastic description is evolved with the macroscopic conservation equations. These

black box descriptions are then wrapped in the computational approach presented in

this thesis to obtain steady state results and perform stability and bifurcation anal-

ysis of the fiber spinning process. In particular, the results obtained for the onset of

draw resonance show that the computational framework presented in this thesis not

only yields results consistent with previous studies but also extends the analysis to

unclosed kinetic theory descriptions.

Finally, Chapter 7 presents a summary of the contributions of the work carried

out in this thesis and ideas for exploration in future research efforts.
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Chapter 2

Constitutive Modelling of

Polymers

In order to build reliable predictive power for the modelling of polymer flow processes,

it is important to develop constitutive equations for polymeric fluids that describe

how these large molecules interact with each other and with an imposed flow field.

The earliest pioneers in this area, such as Kuhn, Flory, Rouse, and Kramers recog-

nized that the chemical details of the monomers that constitute the building blocks

of a polymer chain are not as important as the sheer size of the polymer chain in

determining overall impact on flow behavior. In fact, the first major advance came

from Kuhn [62] who took a step back from the atomic detail of polymeric structure

to look at larger length scales characteristic of these macromolecules. We now know

that behavior of polymers in flow, such as non-constant viscosity, differences in normal

stresses in shear flow, other elastic effects, and instabilities, are a direct consequence

of the large length and time scale response of these materials.

An attempt to understand how all these effects come together in a typical indus-

trial process is then an extremely difficult task given the disparity in scales between

the molecular level description and polymer process of interest. Consequently, much

of the work done in the field of polymer flow modelling has been based on the contin-

uum approach rather than molecular-based descriptions. In fact, it has only recently

become feasible to use molecular descriptions to solve macroscopic flow problems as a
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result of rapid rise in computational power and the advent of sophisticated numerical

methods.

The aim of this chapter is to provide an overview of flow behavior that is char-

acteristic of polymeric systems and a brief review of continuum and kinetic theory

approaches to modelling this behavior. The chapter is organized as follows. Sec-

tion 2.1 presents those characteristics of polymeric rheological behavior that distin-

guish them from more familiar Newtonian fluids while Section 2.2 reviews continuum

constitutive equations that form the core of modelling efforts for capturing this be-

havior. While both differential and integral constitutive equations have been used

to describe polymer rheological behavior, the presentation here will focus exclusively

on differential constitutive equation. This is followed by Section 2.3, which discusses

the development of the configurational distribution function and the Fokker-Planck

equation that governs its evolution for the most basic molecular models, namely the

elastic and rigid dumbbells. This discussion forms the basis for description of two

complementary computational approaches: the direct solution of the Fokker-Planck

equation and the solution of its stochastic equivalent to obtain stress and structure

information in simple rheological and complex flows.

2.1 Viscoelastic Fluid Flow Behavior

There are three important phenomena seen in polymeric liquids that make them

different from simple fluids: a non-Newtonian viscosity, normal stresses in shear flow,

and elastic effects. All theses effects are a result of the complex molecular structure

of polymer macromolecules and its inetraction with the flow. First consider a simple

steady shear flow as shown in Fig. 2-1. For a Newtonian fluid, the shear stresses that

develop during deformation are directly proportional to the shear rate γ̇yx such that

τyx = −µγ̇yx (2.1)
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Figure 2-1: Schematic diagram of simple shear flow

where the proportionality constant µ is the Newtonian viscosity, which is considered

to be dependent only on temperature. However, the viscosity of most polymer melts

is shear thinning in addition to being temperature dependent. The shear thinning

refers to a decrease in the viscosity with increasing shear rate. This results from a

disentanglement of polymer molecules at high shear rates as they are stretched out

and begin to slide past each other with greater ease. For a dilute polymer solution

this occurs simply due to stretching and alignment of the polymer molecules with the

flow. This clearly can be a desirable phenomenon as it benefits polymer processing

by relieving the stresses that may develop in these fluids in high shear rate regions of

a process. The shear stress that develops in a non-Newtonian fluid in steady simple

shear flow may then be expressed as

τyx = −η(γ̇)γ̇yx (2.2)

where γ̇ is the magnitude of the strain-rate or the rate-of-deformation tensor γ̇.

In addition to the shear thinning viscosity, the polymer molecules tend to stretch

in shear flow, which results in normal stresses in the fluid. This is in contrast with a

Newtonian fluid where the normal stresses τxx, τyy, and τzz are all zero in steady shear
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flow. The measurable normal stress differences in an incompresible non-Newtonian

fluid, τxx − τyy and τyy − τzz are referred to as the first and second normal stress

differences. These normal stress differences are material dependent and are used to

define two normal stress coefficients, or material functions,

τxx − τyy = −Ψ1γ̇
2
xy

τyy − τzz = −Ψ2γ̇
2
xy

(2.3)

where Ψ1 and Ψ2 are called the first and second normal stress coefficients, respectively.

These are also functions of the magnitude of the strain-rate tensor and temperature;

and, like the viscosity, decrease in magnitude with increasing shear rate. The first

normal stress coefficient, Ψ1, is typically large and positive, whereas Ψ2 is small and

negative. The second normal stress coefficient is difficult to measure and is often

approximated by

Ψ2 ≈ −(const)Ψ1 (2.4)

where the constant is between 0.05 and 0.2. The viscosity and the two normal stress

coefficients are collectively referred to as steady shear flow or viscometric material

functions.

Another type of flow that is used to characterize non-Newtonian behavior is uni-

axial elongational flow, as shown in Fig. 2-2. The elongational viscosity measured in

this flow is defined as

η̄ = −(τzz − τxx)

ǫ̇
(2.5)

where ǫ̇ is the elongation rate. For Newtonian fluids, the elongational viscosity is

equal to three times the the zero-shear-rate viscosity and is also known as Trouton

viscosity. Non-Newtonian fluids, on the other hand, exhibit a variety of behavior

such that η̄ may increase or decrease with increasing elongation rate, that is the fluid

exhibits extension thickening or thinning, or have elongational viscosity independent

of elongation rate. It must be emphasized that measuring elongational or extensional

viscosity is an extremely difficult task since in order to maintain a constant strain

rate, the specimen must be deformed exponentially in a uniform manner. Instead,
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Figure 2-2: Schematic diagram of uniaxial elongational flow

unsteady elongational data are often used for fluid characterization by studying the

transient behavior of the specimen in the startup of elongational flow [8].

A third type of flow that is used to characterize polymer flow behavior is small

amplitude oscillatory shear [8]. When polymer molecules are subjected to this flow,

it is found that for sufficiently small amplitude, the shear stresses oscillate with the

same frequency as the shear rate, but display a phase lag, This is an indication of

viscoelastic behavior since a purely viscous or inelastic material displays no phase

lag. The shear stress can then be expressed as a linear combination of in-phase and

out-of-phase contributions. In this representation, two material functions are defined:

η′, the viscosity associated with the in-phase part of the stress, and η′′, the viscosity

associated with the out-of-phase part of the stress. These are often called the linear

viscoelastic properties of the material and depend on the frequency.

The phase lag displayed by viscoelastic materials in the oscillatory shear experi-

ment indicate that these fluids have memory, that is, the behavior of the fluid at a

given time is dependent on the history of the strain experienced by the fluid in the

past. This idea can be better understood by considering a molecular argument. When
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a polymer melt is deformed either by stretching, shearing, or a combination of these,

the polymer molecules are stretched, oriented, and untangled. If the deformation is

maintained for a short period of time, the molecules can then nearly recover their ini-

tial shape and position, as if they remembered their initial state. On the other hand,

if the deformation continues for an extended period of time, the polymer molecules

cannot recover the initial shape and adjust to their new state of deformation. This

behavior is clearly observed experimentally in a stress relaxation experiment, where

a polymeric fluid at rest after deformation possesses non-zero stress for some time

after flow has ceased, as the conformations of the polymer molecules return gradually

to their equilibrium state. Consequently, the time it takes for a molecule to fully

relax and adjust to its new state of deformation is known as the relaxation time of

the polymeric material and often denoted by λ. This leads to a useful dimensionless

number or parameter, De, known as the Deborah number, that is used to estimate

the elastic or memory effects during flow

De =
λ

tprocess

(2.6)

where tprocess is a characteristic process time. For example, in an extrusion die, a

characteristic process time can be defined by the ratio of characteristic die dimension

and average speed through the die [82]. A Deborah number of zero represents a

viscous fluid, that is a fluid with no memory, whereas a Deborah number of infinity

represents an elastic solid.

The effects discussed so far highlight the primary differences between Newtonian

and polymeric fluids, which are basically a manifestation of differences in molecular

size. A collection of experiments that illustrate interesting non-Newtonian behavior

is compiled in the photo gallery by Boger and Walters [11], and several of these

are discussed in the text by Bird et al. [8]. Among them is the phenomenon of ‘rod-

climbing’ in which a polymeric fluid travels up a spinning rod placed within it, despite

centrifugal and gravitational forces. This effect is directly related to normal stress

differences that counter inertial effects to push the fluid inward from the streamlines
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and upward. Another example is that of the ‘tubeless siphon’ in which a polymeric

fluid can empty itself out of a beaker without the aid of a siphoning tube. This is

a result of molecular alignment along the streamlines that allows the fluid to form a

long thread without breaking. One behavior that is observed in industrial applications

is the phenomenon of ‘extrudate-swell’, in which a viscoelastic fluid exiting a tube

exhibits an increase in diameter of up to 300% compared with an increase of about

13% for a Newtonian fluid. Although many factors affect the amount of extrudate

swell, fluid memory and normal stress effects are the most significant ones. Other

factors include abrupt changes in boundary conditions such as the separation point

of the extrudate from the die. In practice, the fluid memory contribution to die swell

can be mitigated by lengthening the land length of the die [82]. A long die land

separates the polymer from the manifold for enough time to allow it to forget its past

shape.

In polymer processing operations the characteristics of viscoelastic fluid flow de-

scribed here can have significant impact on the quality of the product. The property

of fading memory of the fluid specifically gives rise to many problems. If the Deborah

number is O(1) the polymer does not have enough time to relax during the process,

which can result in possible deviations in the dimensions of the final product. A

well known phenomenon of this type is known as ‘shark skin’ where waves appear

in the extrudate as a result of high speeds during extrusion. One postulate for this

behavior proposes that at high extrusion speeds the polymer is not allowed to re-

lax sufficently, and the accompanying extrudate swell leads to waves on the product

surface. Additionally, if the fluid has been highly stressed during processing, the

residual stresses can remain in the finished product, causing anisotropy, weakness,

and defects. Excellent reviews of the origins of some of these instabilities are given

by Larson [65], Shaqfeh [99], and Denn [25].

In summary, the Deborah number and the magnitude of the deformation imposed

on the polymer during processing strongly affects the modeling of non-Newtonian

flows. For flows with De ∼ O(1), small deformations can be captured with linear

viscoelasticity [8]. However, large deformations that are typical of most processing
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operations require the use of constitutive equations that can reproduce the nonlinear

viscoelastic behavior described above.

2.2 Continuum Approaches

In order to model the flow of polymeric liquids one naturally begins with the conser-

vation equations of mass and momentum to calculate the velocity and pressure fields

within the fluid. However, in order to successfully complete such a calculation one

must also introduce a constitutive equation that relates the stresses in the fluid to the

flow kinematics. As one of the obvious deviations of polymeric liquids from Newtonian

fluids is the property of shear rate dependent viscosity, first attempts at describing

their behavior considered the generalized Newtonian fluid approach that retains the

form of the Newtonian constitutive equation but makes the viscosity dependent on

the shear rate.

Models based on the generalized Newtonian fluid approach are some of the most

widely used models by polymer engineers on a day-to-day basis. Prominent examples

include the power law, Bird-Carreau-Yasuda, and the Bingham fluid models [8]. The

power law model originally proposed by Ostwald and de Waale is a simple model

that accurately represents the shear thinning region in the viscosity versus strain rate

curve but neglects the Newtonian plateau present at small strain rates. This model

postulates a viscosity of the form

η = mγ̇n−1 (2.7)

where m is referred to as the consistency index and n the power law index. The

consistency index is typically used to capture the temperature dependence of the

viscosity while the power law index represents the shear thinning behavior of the

polymer melt.

While such models work very well for predicting shear stresses in steady shear-

ing flows, they are unable to provide good predictions in general flows as they do
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not incorporate either normal stresses of fading memory of the fluid in the consti-

tutive equation. Although fading memory has its basis in molecular configurational

dynamics, its effects must nevertheless be captured by the constitutive equation, re-

gardless of whether this equation is derived from molecular descriptions or not. This

is discussed next for both flexible and rigid polymers.

2.2.1 Flexible Polymers

Two types of nonlinear viscoelastic flow models have been used when describing the

behavior of polymers in complex flow systems: differential and integral models. Of

these the differential type are discussed here, as they represent the bulk of modelling

effort.

The process of developing rheologically admissible constitutive equations was laid

out by the work of Oldroyd, who postulated that two requirements should be satisfied

by any constitutive equation. The first was the simple fluid assumption: the stresses

in a given fluid element should not be affected by the deformation history in any

other fluid element. The second was the property of frame invariance: rheological

predictions should not be affected by rigid body rotations of the material. Oldroyd

proposed that frame invariance could be enforced by writing the constitutive equations

in a coordinate system that deformed with the fluid, thus introducing a new time

derivative known as the convected derivative. The most commonly used convected

derivative in the upper-convected derivative defined for a second order tensor τ as

τ (1) ≡
∂τ

∂t
+ v · ∇τ − [(∇v)T

·τ +τ · (∇v)] (2.8)

This process was very useful in improving upon early efforts to model flexible poly-

mers, which were based on the idea of elastic behavior modified by viscous damping.

The mechanical analogue for this is the dynamic response of a spring and dashpot in

series [8]. This leads to the well-known Maxwell model

τ + λ
∂τ

∂t
= −ηγ̇ (2.9)
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that captures the idea of a finite response time for the molecule. Since the Maxwell

model does not satisfy the frame invariance property, the time derivative in Eq. 2.9

was changed to the upper-convected derivative to yield the upper-convected Maxwell

model that has received most attention from computational rheologists. Differen-

tial constitutive equations that represent the bulk of the published literature can be

described by the general form

aτ + λ1τ (1) + λ3{γ̇·τ + τ ·γ̇} + λ4{τ · τ} = −η0{γ̇ + λ2γ̇(1)} (2.10)

where the constants in Eq. 2.10 are defined in Table 2.1 for various viscoelastic mod-

els. One additional model is the White-Metzner model, which is very similar to

Constitutive model a λ1 λ2 λ3 λ4

Upper convected Maxwell 1 λ1 0 0 0
Convected Jeffreys (Oldroyd-B) 1 λ1 λ2 0 0
Phan-Thien Tanner 1 e−trτ(ǫλ/η0) λ 0 ξλ/2 0
Phan-Thien Tanner 2 1 − trτ (ǫλ/η0) λ 0 ξλ/2 0
Giesekus 1 λ1 0 0 −αλ1/η0

Table 2.1: Definition of constants in general differential constitutive equation

the upper convected Maxwell model except that η0 and λ1 in the upper convected

Maxwell model are replaced by η(γ̇) and λ1(γ̇) = η(γ̇)/G where η(γ̇) is the shear-rate

dependent viscosity and G is the constant modulus. While both models provide a

first order approximation to flows in which shear rate dependence and memory effects

are important, they predict zero second normal stress coefficients.

In contrast with introducing shear rate dependence, the convected Jeffreys or

Oldroyd-B model improves over the Maxwell model by including a convected time

derivative of the rate-of-strain tensor. While this model does have a molecular basis,

it fails to produce shear thinning or a non-zero second normal stress coefficient. To

remedy this, Oldroyd proposed including all possible quadratic terms in τ and γ̇ that

are linear in τ , and produced the Oldroyd-8 constant model, which does indeed give

qualitatively correct behavior for material functions. Such an approach has formed the

basis of most constitutive models that introduce higher-order terms with additional
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adjustable parameters or variations of functional forms in order to reproduce observed

behavior empirically and provide greater predictive capability.

More successful models, such as Phan-Thien Tanner and Giesekus models, were

obtained by considering the physics of the flow at the molecular level for a suitable

molecular model and using the insights to suggest important effects that could be

included in the constitutive equation. The Giesekus model, for example, is based on

the two bead molecular model for an elastic dumbbell with the argument that the

forces on each bead are likely to be anisotropic and biased in a particular flow direc-

tion. Further assuming that this anisotropy is proportional to the stress introduces

nonlinear stress terms in the constitutive equation. The Phan-Thien Tanner model

is similarly based on network theory and gives nonlinear terms for the stress tensor.

While both these models are based on molecular arguments, they are nevertheless con-

tinuum models since they treat the stress tensor as a field quantity, with no restriction

imposed by the existence of a molecular length scale. Similar attempts at develop-

ing continuum models from molecular arguments have required the introduction of

closure approximations [18] to cast the equations in continuum form for the stress

tensor and tensorial quantities for averages over the microstructure. Unfortunately,

these approximation tend to be purely mathematical in nature, and the modifications

they introduce in the predictions of the molecular model cannot be known a priori.

A more complete review of the existing viscoelastic models is provided by Bird and

Wiest [10].

2.2.2 Rigid Polymers

The most well studied continuum constitutive equation for the modeling of rigid poly-

mers comes from Leslie-Ericken theory, although it is only valid for low deformation

rates. By assuming that the fluid is anisotropic, a director vector n describing the

anisotropy is defined at every point in space and assumed to be a continuum property

of the fluid. The constitutive equation provided by the theory is

τ = −[α1nnnn : γ̇ + α2nN + α3Nn + α4γ̇ + α5nn · γ̇ + α6γ̇ · nn] (2.11)
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where N ≡ ṅ−n · ω, and ω is the vorticity tensor. The coefficients α2 and α3 deter-

mine the torque exerted by the fluid on the director aligned with the velocity gradient

and flow direction, respectively. If α3 is negative, the director tumbles continuously

in the flow and reaches no steady state. Since Eq. 2.11 contains only linear terms

in γ̇ it is only valid for low γ̇ and does not describe rheological properties like shear

thinning. Additionally, the theory has nothing to say about the extent of molecular

ordering around the director. Despite these deficiencies, the theory has been used

extensively in both experimental and theoretical work to interpret the constants from

a molecular point of view for liquid crystal polymers [75].

In developments similar to those for flexible polymers, several molecular based

continuum equations have been proposed for rigid polymers that incorporate effects

such as an intermolecular potential. The resulting molecular theories require resorting

to closure approximations to obtain closed equations for the stress tensor. Unfortu-

nately, these equations also suffer from similar advantages and disadvantages as those

for flexible molecules. While they are computationally easy to solve in conjunction

with momentum and continuity equations, they are difficult to interpret rigorously

from a molecular viewpoint.

2.3 Micromechanical Models and Kinetic Theory

While continuum constitutive equations have demonstrated considerable predictive

power, a more realistic simulation of polymeric flow necessitates a more comprehen-

sive picture of molecular configurations and its interaction with macroscopic flow.

Even the simplest linear polymer molecule has many internal degrees of freedom that

result from up to 103 to 106 repeating monomer units in the polymer backbone. These

monomer units are connected by bonds that can rotate and stretch to various degrees,

giving rise to a large number of possible configurations. This problem is exacerbated

by the diversity of polymer structure that results from side chains and ring-like con-

formations. In addition, most polymers have a distribution of molecular weights. This

makes it important to consider averaged properties of the polymer and existence of
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molecular interactions such as entanglements, excluded volume, and hydrodynamic

interactions.

As a consequence, a hierarchy of theoretical models have been considered to model

this diversity. Given the large number of degrees of freedom in the polymer molecule,

a modeling approach based on quantum mechanics and related ab initio computa-

tional techniques is clearly impossible with current computational resources, which

leaves atomistic modeling and the associated techniques of non-equilibrium molecular

dynamics as the most detailed level of description that may be applied in rheolog-

ical studies. In fact, most early molecular models described polymer molecules as

long chains of beads connected either by rigid rods or extensible springs, in which

the beads represent carbon atoms in the polymer backbone, while the rods represent

massless interatomic bonds. Variations on this model include allowing some amount

of rotation in each bond, as proposed by Flory [34]. While such an approach has been

used to study the behavior of polymers near walls [52, 51] and geometrical singular-

ties such as re-entrant corners, the atomistic approach to flow simulation is currently

limited to very simple non-equilibrium situations and flow geometries of molecular

dimension.

A more coarse-grained description of the polymer was first introduced by Kuhn

[62] that ignores atomistic processes altogether while producing many of the essential

features of polymer behavior. Kuhn introduced the idea of the persistence length

or Kuhn length, which is an effective segment length of the polymer molecule over

which the position of two monomers can be considered uncorrrelated. The size of this

persistence length determines the flexibility of the polymer chain as a whole. Typical

flexible polymers have Kuhn lengths which are 5-10 times the monomer length, while

rigid rod polymers have Kuhn lengths which are of the order of the molecule length.

The definition of the Kuhn length led to modeling of the polymer molecule as a

freely jointed chain with links of one Kuhn length, in which the orientation of each

link is uncorrelated with that of every other link. The model describes a polymer

molecule as a chain of N beads, each of mass m, connected by N − 1 massless rods of

Kuhn length a. Each bead represents the mass of some finite length of the polymer
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chain rather than of one individual carbon atom or monomer unit. However, the total

mass of the beads is equal to the mass of the molecule and the contour length of the

chain is equal to the length of the polymer molecule. The freely jointed bead rod

chain is often refered to as the Kramers model and is completely described by the

center-of-mass position vector and the two spherical polar angles associated with each

link in the chain. The equilibrium distribution function for each link in the chain can

be shown to be that for a random walk [8], which allows one to obtain the average

root mean square end-to-end distance of the N -bead chain at equilibrium as

√

〈r2〉eq = a
√
N − 1 (2.12)

While this was a major step in the development of micromechanical models for

polymers it suffered from three major limitations. First, the model does not describe

molecules that are highly extended in flow since the result in Eq. 2.12 shows that a

polymer chain at equilibrium is highly coiled. Second, it does not take into account

steric hindrances from other atoms along the polymer backbone; and third, it does

not describe the effect of solvent on polymer conformation. Flory [34] was the first

to introduce thermodynamic understanding of such models by introducing solvent-

polymer interactions. This led to definition of good’ and ‘poor’ solvents that produce

maximum and minimum contact of the polymer chain with the solvent, respectively.

The next level coarse-graining was introduced by Rouse who described the poly-

mer molecule as a chain of beads connected not by rods but by springs. It can be

shown that at small extensions, a sufficient number of Kuhn segments behaves like a

Hookean spring [9] leading to this natural simplification of the freely jointed chain.

Rouse studied the motion of the bead-spring chain and showed that the molecule

possesses a spectrum of relaxation times or modes, that is it responds to changes

in its conformation on a variety of different time scales that result from the large

size of the molecule. This does make intuitive sense as one would expect the overall

molecular conformation to respond slowly to changes in flow field when compared

with orientation of a Kuhn length or a bond length. This is the central idea in de-
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veloping constitutive equations of better predictive power by incorporating more and

more modes in the model. In fact, the parameter λ1 in Table 2.1 may be thought of

as the longest relaxation time of the polymer molecule. Most importantly, however,

it is this existence of a spectrum of relaxation times in polymer dynamics that forms

the basis of the work carried out in this thesis. Following the work of Rouse, Zimm

and Kirkwood separately introduced hydrodynamic interactions into the chain model

to account for changes in flow field experienced by a given bead in the chain due to

flow field modifications by other beads. This was further extended to incorporate

anisotropy in the forces experienced by the beads as a result of both hydrodynamic

interactions and Brownian forces. An excellent review of such work is given by Larson

[66].

In contrast with flexible polymers, the freely jointed model is not applicable for

rigid polymers as the Kuhn length is comparable to the molecular size. Instead, the

dominant balance of forces acting on these molecules is between the rotational action

of the flow field and Brownian motion. Just as for flexible polymers, there is a spec-

trum of relaxation times; but molecular models assume a dominant relaxation time

that governs the orientational rather than the extensional state of the polymer. Both

hydrodynamic interactions and anisotropic drag effects have also been considered in

development of these models [8], including contributions from studies of suspensions

of rigid ellipsoidal particles [48].

The treatment of polymer molecules through construction of micromechanical

models and consideration of forces that act on a large collection of such model

molecules forms the basis of polymer kinetic theory. The goal of kinetic theory

of macromolcules, then, is the same as the kinetic theory for gases or small liquid

molecules, that is, to derive macroscopic constitutive equations based on assump-

tions regarding the structure of the molecules and their interactions. The additional

complication arises from the need to consider flowing or non-equilibrium systems,

which makes the field particularly challenging. While details of general phase-space

polymer kinetic theory are given in the text by Bird et al. [8], the following discussion

presents the kinetic theory development for the dumbbell model, which represents
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the simplest mathematical coarse-grained molecular description.

2.3.1 Dumbbell models

In the dumbbell model each polymer molecule is represented as two beads joined by

a rigid or elastic connector. The justification for the latter representation comes from

the fact that for small deformations a freely jointed chain model behaves effectively

like a Hookean spring. Thus, a dumbbell with a spring connector has some of the

features of a more detailed model. Dumbbells with rigid connectors can be used to

model polymers with stiff backbones, such as liquid crystals. Illustrations of the two

dumbbells is shown in Fig. 2-3. While these models are mathematically more tractable

than the models already discussed, they do not display a spectrum of relaxation

times and can be inaccurate in describing true rheological behavior, such as the shear

thinning viscosity. Nevertheless, they have been used extensively in flow calculation,

as dumbbells represent a drastic reduction in the number of degrees of freedom.

Bead “+1”

Bead “-1”

Rigid dumbbell Elastic dumbbell

u
Q

Figure 2-3: Schematic diagrams for the rigid and elastic dumbbells. The beads rep-
resent mass points of zero volume

In kinetic theory, beads are denoted by the Greek letter ν with position vectors

rν to obtain the simplest representation of the model. Alternatively, the vector along

the connecting link, Lu for the rigid dumbbell (L is the length of the rod and u is

a unit vector pointing from bead -1 to 1) and Q for the flexible dumbbell, can be

specified as well, as shown in Fig. 2-3, along with the position vector for the center

of mass, rc. From this it is evident that the rigid and elastic dumbbells possess 5
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and 6 configurational degrees of freedom per molecule, respectively. The difference

results from the additional constraint of constant length for the rigid dumbbell. The

orientation vector for the rigid dumbbell, u, is therefore generally expressed in polar

coordinates θ and φ. Finally, the beads are assumed to be mass points, each of mass

m with no volume. This information is then sufficient to build a description of the

molecular configuration.

Distribution function and microstructural averages

In order to obtain information about the macroscopic flow properties of a polymeric

fluid described by a dumbbell model we use kinetic theory to understand the dynam-

ical state of a dumbbell molecule. This state can in general be characterized by a

two attributes: the configuration of the dumbbell as defined by the position of each

bead, and its momentum, which is defined by the momentum pν of each bead. Since

pν = mṙν , specifying ṙν is equivalent to specifying pν . In addition, the dumbbell

model is being used to describe a large collection of polymer molecules. Hence, a

distribution of configurations and momenta over the whole range of r1, r2, ṙ1, and ṙ2

is defined in position-velocity space. This distribution, denoted by F (r1, r2, ṙ1, ṙ2, t),

is customarily factored into a configuration space distribution function Ψ(r1, r2, t),

and a velocty space distribution funtion Ξ(r1, r2, ṙ1, ṙ2, t)

F (r1, r2, ṙ1, ṙ2, t) = Ψ(r1, r2, t)Ξ(r1, r2, ṙ1, ṙ2, t) (2.13)

In polymer kinetic theory, the collection of molecules associated with every ma-

terial point is assumed to equilibrate in momentum space, that is the time scale of

momentum fluctuations is much smaller than the time scale of position and orien-

tational changes. If the fluid is observed on a position-fluctuation time-scale, the

particle momenta have already equilibrated to a value described by a Maxwellian ve-

locity distribution for the particles. This leads to a major simplification, as only the

configuration distribution function Ψ is sufficient to obtain a kinetic theory descrip-

tion. If we make the additional assumption that the flow is locally homogeneous, that
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is the velocity field does not change significantly over the length scale of a molecule,

then the configuration distribution function is independent of the physical position

rc of the molecules in space. Hence, the configuration distribution function for the

dumbbell may be written as

Ψ(r1, r2, t) ≡







Ψ(rc,u, t) = nf(u, t) rigid dumbbell

Ψ(rc,Q, t) = nψ(Q, t) elastic dumbbell
(2.14)

where n is the number of molecules per unit volume, and f(u, t) or ψ(Q, t) is the

orientation distribution function. In a locally homogeneous flow, the velocity field

may be written locally as v = v0 + κ · r, where v is the local solution velocity, v0 is

a position independent vector, and κ ≡ ∇vT , which may be time dependent but not

position dependent. The local homogeneity requirement does not mean that κ must

be constant everywhere in the flow. It simply means that it should be constant within

a material point containing a statistically significant number of polymer molecules.

In some sense three length scales are being assumed here: a macroscopic scale for the

flow, a microscopic scale for a material point of the fluid, and a molecular scale for a

polymer molecule. The work done in this thesis deals only with locally homogeneous

flows, which is a standard assumption in hybrid simulations of viscoelastic flows.

If the distribution function F is known, one can calculate average values of any

property B(rc,u) or B(rc,Q) by first using the Maxwellian velocity distribution to

obtain the velocty space average

[[B]] ≡
∫

BΞdṙ1dṙ2 (2.15)

followed by the configuration space average, which is given by

〈B〉 ≡ 1

nV

∫ ∫

[[B]]fdrcdu (2.16)

for a rigid dumbbell, where nV is the total number of macromolecules. For a flexible
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+ side- side

u

n

Figure 2-4: A fluid plane straddled by a rigid dumbbell

dumbbell, the equivalent expression is

〈B〉 ≡ 1

nV

∫ ∫

[[B]]ψdrcdQ (2.17)

If B depends only on u or Q, then 〈B〉 ≡
∫

Bf(u, t)du or
∫

Bψ(Q, t)dQ. Knowledge

of the orientational distribution function and the ability to compute associated aver-

ages forms the basis for obtaining constitutive equations for the polymer contribution

to the fluid stress.

Constitutive equation for stress tensor

The total stress tensor for a fluid is written as the sum of the equilibrium and devia-

toric parts

π = pδ + τ (2.18)

where τ = −ηsγ̇ +τ p. The solvent contribution to the deviatoric stress is taken to be

Newtonian with viscosity ηs and strain rate tensor γ̇ ≡ (∇v + ∇vT ). The task then

for kinetic theory is to develop a constitutive equation for τ p in terms of the average

configuration of a large number of dumbbell models, that is, interms of u for a rigid

dumbbell or Q for an elastic dumbbell.
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Rigid dumbbell To develop the constitutive equation for a rigid dumbbell consider

a plane, as shown in Fig. 2-4, with normal vector n. The plane is straddled by a

dumbbell with rigid connector of length L and orientation u such that one of its

beads is on the ‘+ side’ of the plane, while the others is on the ‘- side’. The number

of dumbbells oriented within the range du about the direction u that penetrate unit

area of this plane is nL(u · n)fu, where n is the total number of dumbbells per unit

volume of solution, and fdu is the probability of finding a dumbbell in the orientation

range du about u. Now, suppose the force that is exerted by the positive-side bead

on the solvent is given by F +. Then the total contribution of all dumbbells to the

force on unit area of the plane on the positive side is

∫

u,u·n>0

nL(u · n)F +fdu (2.19)

Similarly, force contribution by all the negative side beads on the negative side is

∫

u,u·n<0

nL(−u · n)F−fdu (2.20)

Since the forces on the plane from either side must be equal and opposite, we must

have F = F + = −F− and the total force per unit area of the plane is

∫

u

nL(u · n)F fdu (2.21)

Two types of forces act on the bead: Brownian forces that cause random fluctua-

tions of the bead relative to the solvent, and hydrodynamic forces, which only exist

if the bead experiences systematic motion relative to its surrounding solvent. Since

the dumbbell is of fixed length, motion of the bead in the u direction relative to the

center of mass is impossible. But rotational Brownian forces produce non-zero bead

velocities in the angular direction relative to the immediately surrounding solvent.

This rotational Brownian velocity may be written as

vBr =
kT

Lζ

∂ ln f

∂u
(2.22)
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where ζ is a friction coefficient. Note that vBr only has components in the polar

and azimuthal direction, s and t, respectively. Hydrodynamic forces, on the other

hand, play a role in the translational velocity of the bead relative to the center of

mass as the dumbbell cannot stretch. Since the velocity of the solvent at a bead

position relative to the center of the mass of the dumbbell is just v = L
2
κ · u, the

translational velocity of the bead relative to its immediately surrounding solvent is

just the component of v in the u direction. Hence,

L

2
(κ · u)·uu

=
L

2
(κ : uuu)

(2.23)

There should be a Brownian components to the translational velocity as well, since

the entire dumbbell is subject to some translational diffusivity. However, for this

thesis this effect is assumed to be small.

The force exerted by the bead on the fluid is then given by the product of the

friction coefficient (assumed to be isotropic) and the velocity of the bead relative to

the solvent

F = ζvrel = ζ
L

2
(κ : uuu +

2kT

ζL2

∂ ln f

∂u
) (2.24)

The total force contribution from dumbbells in all possible orientations, per unit area

of the plane is then

n · τ p =

∫

u

nL(u · n)F fdu

= n·

[

nζ
L2

2

∫

u

uf
(

κ : uuu +
2kT

ζL2

∂ ln f

∂u

)

du
]

(2.25)

After integration by parts and the substitution ζ = 12kTλ
L2 we get the final expression

for the stress

τ p = −3nkT 〈uu〉 − 6nkTλ κ : 〈uuuu〉 + nkTδ (2.26)

This expression represents the constitutive equation for the stress of a dilute solution

of rigid dumbbells that does not take into account external forces. If external forces
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are described by a potential φ(e) then this expression becomes

τ p = −3nkT 〈uu〉 − 6nkTλ κ : 〈uuuu〉 + nkTδ + n

〈

u
∂φ(e)

∂u

〉

(2.27)

which is known as the Kramers expression [9]. It can be noted that the stress depends

only on the second and fourth moment of the orientational distribution function.

Elastic dumbbell For an elastic dumbbell, there are no constraints on the motion

of the bead relative to the center of mass of the dumbbell. Hence, the contribution to

stress from bead motion across a fluid plane is governed solely by Brownian forces and

turns out to be simply isotropic if a Maxwellian distribution is assumed. However,

the elastic spring in the dumbbell model contributes to stress through tensile or

compressive force transmitted across the plane.

Here we follow the development given in Bird et al. [9] and denote this stress by

τ
(c)
p , that is the polymer stress from the connector spring. Consider a plane in the

fluid similar to that in Fig. 2-4 that is straddled by a dumbbell with configuation Q

and beads numbered ‘1’ on the negative side and ‘2’ on the positive side. Also, let

the force exerted on bead ‘1’ through the connector spring be F
(φ)
1 , which is equal

and opposite to the force exerted on the positive side due to this one dumbbell. The

total number of dumbbells with orientation Q across the plane is n(n ·Q)ψ(Q, t)dQ,

where n · Q is the volume in which bead ‘1’ must be contained and ψ(Q, t)dQ is the

probability that the dumbbell with have an orientation Q within dQ. Thus, the total

force acting on the positive and negative materials is

∫

Q,n·Q>0

n(n · Q)ψ(Q, t)(F
(φ)
2 )dQ (2.28)

and
∫

Q,n·Q<0

n(n · Q)ψ(Q, t)(−F
(φ)
1 )dQ (2.29)

Defining a connector force F (c) = F
(φ)
1 = −F

(φ)
2 leads to the following expression for
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the contribution of the connectors to the polymer stress

n · τ (c)
p = −n ·

∫

Q

nψ(Q, t)Q(−F (c))dQ (2.30)

or

τ (c)
p = −n

∫

Q

ψ(Q, t)Q(−F (c))dQ = −n
〈

QF (c)
〉

(2.31)

If external forces act on the beads, the corresponding stress, τ
(e)
p can be expressed as

τ (e)
p =

1

2
n
〈

Q(F
(e)
2 − F

(e)
1 )
〉

(2.32)

The sum of the connector, external and Brownian contributions to the stress yields

the following equation for the polymer contribution to the stress tensor

τ p = −n
〈

QF (c)
〉

+
1

2
n
〈

Q(F
(e)
2 − F

(e)
1 )
〉

+ nkTδ (2.33)

Diffusion equation

Since the calculation of the distribution function and its averages is essential for

calculation of the polymer contribution to the stress tensor, an equation must be

derived that describes the evolution of the orientational distribution function for

dumbbell models.

Rigid dumbbell The forces that act on a given rigid dumbbell molecule are the

Brownian force, the hydrodynamic force, and forces due to an external potential. The

sum of these forces for each bead is then zero for the dumbbell. This yields

F
(h)
1 + F

(h)
−1 + F

(b)
1 + F

(b)
−1 + F

(e)
1 + F

(e)
−1 = 0 (2.34)

where the subscripts refer to the bead number in Fig. 2-3 and the superscripts refer to

the type of force. This equation describes the translational motion of the dumbbell.

However, since we are only intereseted in equation of motion for the rotational degrees

of freedom, we add up the differences of the various types of forces F
()
1 + F

()
−1 and
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then project this in the polar and azimuthal directions by forming a dot product with

the quantity ss+ tt. Here s is the unit vector in θ direction while t is the unit vector

in the φ direction. Since ss + tt + uu = δ, where δ is the unit tensor, the balance

for the θ and φ components of the force balance can be written as

(δ − uu) · [(F
(h)
1 − F

(h)
−1) + (F

(b)
1 − F

(b)
−1) + (F

(e)
1 − F

(e)
−1)] = 0 (2.35)

We now substitute the following expressions for the Brownian

F (b)
ν = −ν kT

L

∂ ln f

∂u
(ν = ±1) (2.36)

and hydrodynamic force [9]

F (h)
ν = −ζ([[ṙν ]] − vν)

= −ζ([[ṙc]] +
1

2
νL[[u̇]] − v0 − [κ · rc] −

1

2
νL[κ · u])

(ν = ±1) (2.37)

in Eq. 2.35 to obtain the following expression for [[u̇]]

[[u̇]] = [κ · u− κ : uuuu] − 1

6λ

∂ ln f

∂u
− 1

ζL
[(δ − uu) · (F

(e)
1 − F

(e)
−1)] (2.38)

where λ = ζL2/12kT is the time constant for the rigid dumbbell. This expression is

then substituted in the continuity equation for the orientation distribution function

which is a conservation equation that states that dumbbells leaving one orientation

must end up in another. Mathemetically, this is expressed by the following relation

∂f

∂t
= −

( ∂

∂u
· [[u̇]]f

)

(2.39)

Substituting Eq. 2.38 in Eq. 2.39 leads to the diffusion equation for the rigid dumbbell

∂f

∂t
=

1

6λ

( ∂

∂u
·
∂f

∂u

)

− ∂

∂u
·

(

[κκκ · u − κκκ : uuu]f − 1

6kTλ

∂

∂u
φ(e)f

)

(2.40)

58



where [(δ−uu)·(F
(e)
1 −F

(e)
−1)] has be set to (2/L)∂φ(e)/∂u, for an external interaction

potential φ(e). The diffusion equation in Eq. 2.40 is a partial differential equation for

the orientational distribution function f and is periodic in orientation variables θ

and φ. Since the equation is homogeneous in f , it is solved is conjunction with the

normalization condition
∫

u
fdu = 1 to uniquely specify the solution.

Elastic dumbbell To develop the diffusion equation for the elastic dumbbell we

follow a discussion similar to that for the rigid dumbbell. Since there are no con-

straints in the elastic dumbbell, we begin with a force balance on each bead rather

than the whole dumbbell

F (h)
ν + F (b)

ν + F (φ)
ν + F (e)

ν = 0 (ν = 1, 2) (2.41)

where as before, F (h)
ν is the hydrodynamic drag force, F (b)

ν is the Brownian force, F (φ)
ν

is the intramolecular force felt through the connecting spring, and F (e)
ν is an external

force. Each of these forces can be written in a more explicit form as

F (h)
ν = −ζ[[[ṙν ]] − (v0 + κ · r)] (2.42)

F (b)
ν = −kT (∂ ln Ψ/∂rν) (2.43)

F (φ)
ν = −∂φ(c)/∂rν (2.44)

where φ(c) is the connector potential. Again the velocity space is assumed to be

equilibrated and hydrodynamic effects are neglected to obtain

−ζ[[[ṙν ]] − (v0 + κ · r)] − kT (∂ ln Ψ/∂rν) + F (φ)
ν + F (e)

ν = 0 (ν = 1, 2) (2.45)

Since Q = r2 − r1, subtracting the equations for the two beads yields

[[Q̇]] = [κ · Q] − 2kT

ζ

∂

∂Q
lnψ − 2

ζ
F (c) +

1

ζ
[F

(e)
2 − F

(e)
1 ] (2.46)
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This expression is then substituted in the continuity equation for the elastic dumbbell,

which is of the same form as Eq. 2.39

∂ψ

∂t
= −

( ∂

∂Q
· [[Q̇]]ψ

)

(2.47)

to obtain the diffusion equation for the elastic dumbbell

∂ψ

∂t
= −

( ∂

∂Q
·

{

[κ · Q]ψ − 2kT

ζ

∂

∂Q
ψ − 2

ζ
F (c)ψ +

1

ζ
[F

(e)
2 − F

(e)
1 ]ψ

})

(2.48)

Here it is relevant to mention two types of elastic dumbbells that have been used

extensively in flow modeling. The first is the Hookean dumbbell. In this model, the

connector is a Hookean spring and the connector force is given by F (c) = HQ where

H is the Hookean spring constant. It can be shown that this model is equivalent to

the continuum Oldroyd-B model. However, this model is quite unrealistic, as this

spring is infinitely extensible, which is not the case with real polymer molecules.

More importantly, the Hookean dumbbell is incapable of reproducing the strain-rate

dependent material functions that are characteristic of polymers. Instead, a second

model that corrects this shortcoming by imposing finite extensibility has been used

in complex viscoelastic flow simulations. The corresponding connector force is given

by

F (c) =
HQ

1 − (Q/Q0)2
(2.49)

where the connector length Q has an upper limiting length of Q0. This is known as

the Finitely Extensile Non-linear Elastic or FENE dumbbell, and was first proposed

by Warner [116] as an approximation to the inverse Langevin force law, which can be

derived from molecular arguments [9].

The discussion in this section has focused on the diffusion equations for the rigid

and elastic dumbbells that can be solved to obtain the orientation distribution func-

tion of these micromechanical models for real polymer molecules. Once the orientation

distribution function has been obtained, one can evaluate the polymer contribution to

the stress tensor by calculating the necessary averages of this distribution. The next
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two section review this approach and an alternative that uses the stochastic equivalent

of the diffusion equation to calculate the polymer contribution to the stress tensor.

2.3.2 Direct Solution of the Diffusion Equation

Direct solution of the diffusion equation for micromechanical models represents an

approach that does not rely on mathematical closure approximation for the moments

of the orientation distribution function. In doing so, one obtains more accurate pre-

dictions of the physical model. However, such an approach necessitates a suitable

descretization for the distribution in both physical and configuration space in addi-

tion to the discretization of the conservation equations for mass and momentum. The

dimensionality of the resulting problem can be large, even for the simple dumbbell

models described so far, as enough basis functions must be introduced at each point

in space to capture the key features of the distribution function. For this reason, di-

rect solution of the diffusion equation has been restricted to either simple rheometric

flows or hybrid simulation with dumbbell models.

Rheometric flows

In rheometric flows, the velocity field is specified and the distribution function only

depends on the molecular configuration and time. One, therefore, solves for the

distribution function in configuration space with a suitable discretiztion scheme. The

earliest computational study with this approach was done by Stewart and Sørensen

[105] who used Galerkin’s method and spherical harmonics to study the steady shear

flow of a dilute suspension of rigid dumbbells. Motivated by the Laplacian term in

the diffusion equation (see Eq. 2.40), Stewart and Sørensen used spherical harmonics

basis function as these are the eigenfunctions of the operator. In particular, the

choice of basis functions was optimal for describing the distribution function in the

diffusion dominated limit of small deformation rates. Stewart and Sørensen were able

to compute viscosity and normal stress differences for various values of the shear rate.

A similar approach has also been used for the analysis of the Doi model for rod-like
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polymers in the nematic phase. Due to the mean-field interaction potential between

rods, the Doi model is a nonlinear partial differential equation for the distribution

function, but retains the Laplacian term for the dilute case. Several publications that

explore the rich nonlinear dynamical behavior of nematic polymers have used this

approach, including the pioneering work of Larson and Öttinger [67], and we use the

same later in the thesis.

Warner [116] was the first to extend the work of Stewart and Sørensen [105] to

flexible polymers by studying the steady and small-amplitude oscillatory shear flow

of FENE dumbbells. This work was later extended by Fan [30] who used spherical

harmonics for the orientational degrees of freedom and Jacobi polynomials for the

dumbbell length. In this work, Fan had to solve a system of 506 equations to obtain

results for flows with a Deborah number of up to 100. This was the same issue

faced by Stewart and Sørensen who had to retain upto 144 spherical harmonic terms

to accurately capture the highly peaked distribution at high shear rates. At high

deformation rates the flow tends to align the model molecules in a prefered direction,

which results in a highly localized distribution function. Since spherical harmonics

have global support, they are no longer the most appropriate basis functions to use

when solving the diffusion equation. Additionally, for models with a configuration

dependent diffusivity, spherical harmonics are no longer eigenfunctions of any operator

is the diffusion equation. The only significant improvement over spherical harmonics

was proposed by Nayak [80] and Suen et al. [107] who used Daubechies wavelets

as alternative basis functions, in view of their localization properties and compact

support.

Hybrid simulations

The first major work that incorporated the direct solution of the diffusion equation in

studying a complex flow was carried out by Nayak [80] who studied two-dimensional

flows of rigid dumbbells either in the dilute or nematic phase. She discretized the

convection operator in the diffusion equation by means of the discontinuous Galerkin

finite element method, and used Daubechies wavelets for the discretization in con-
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figuration space. This work has been recently extended by several authors (Suen

[108], Chauviere and Lozinski [17, 16]).

In particular, Lozinski et al. use a Galerkin spectral element technique to solve

the conservation equations and decouple the problem in physical and configuration

space by splitting each time step update into two consecutive sub-steps. The first step

updates the solution locally in configuration space with a subsequent global update

of the distribution function in physical space. This methods has been used to study

both the three dimensional configuration space of the FENE dumbbell [16] and an

artificial two-dimensional case where planar dumbbell orientation is assumed [17, 71].

In contrast, Suen [108] has built on the work of Nayak [80] and used a mixed

finite-element/wavelet-Galerkin method for computing two-dimensional flows of rigid

dumbbells and the double reptation tube model Bird et al. [9]. He uses the DEVSS-

G finite element technique [110] to solve the conservation equations along with the

discontinuous Galerkin method to solve the diffusion equation in physical space. A

semi-implicit time-stepping scheme is used for the configurational degrees of freedom,

such that orientational diffusion is treated implicitly and all other operators in the

diffusion equation are treated explicitly. This leads to a particularly efficient solution

within each finite element and can be parallelized very easily. The same approach

has been used in this thesis to develop a hybrid viscoelastic flow simulation of non-

interacting rigid dumbbells.

2.3.3 Brownian Dynamics

Brownian dynamics simulations follow a different approach to the computation of

molecular orientations and the distribution function. The technique does not inv-

ole the solution of the diffusion equation for the distribution function, but instead

uses the 3N Langevin equations to describe the motion of each bead in a N bead

micromechanical model of the polymers. The Langevin equations for the motion of

a collection of polymer molecules are the stochastic equivalent, both physically and

mathematically, of the Fokker-Planck or diffusion equations for the evolution of the

configuration distribution function [83]. In particular, the motion is described by an
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Itô stochastic differential equation [83]

dX(t) = A(t,X(t))dt+ B(t,X(t)) · dW (t) (2.50)

that governs the evolution of a vector variable X under the influence of deterministic

drift and random Brownian forces such that A is the vector representing the deter-

ministic drift velocity, W is a Wiener stochastic process, and B · W is the change

in X due to random forces. In a complex flow the stochastic differential equation

applies along flow trajectories and the time derivateive in Eq. 2.50 becomes a material

derivative. Instead of solving the Fokker-Planck or diffusion equation for the distribu-

tion function, one solves Eq. 2.50 for a large ensemble of realizations of the stochastic

process X by means of a suitable numerical technique. The polymer contribution to

the stress tensor is then obtained as an ensemble average.

For purpose of illustration, we obtain the stochastic equivalent of the diffusion

equation for elastic dumbbell by considering the general Fokker-Planck equation

Dψ

Dt
= − ∂

∂X
· [Aψ] +

1

2

∂

∂X

∂

∂X
: [Dψ] (2.51)

where D is the diffusion matrix given by D = B · BT and D/Dt denotes the La-

grangian or material derivative. The diffusion equation in Eq. 2.48 cast in the form

of Eq. 2.51 reads

Dψ

Dt
= − ∂

∂Q
·

[{

κ · Q − 2

ζ
F (c)

}

ψ
]

+
2kT

ζ

∂

∂Q
·
∂

∂Q
ψ (2.52)

where the time derivative in Eq. 2.48 has been changed to a material derivative

and external forces have been ignored. Comparing Eq. 2.50 and Eq. 2.52 gives the

following Itô stochastic differential equation for the dumbbell connector vector

dQ =
[

κ · Q − 2

ζ
F (c)

]

dt+

√

4kT

ζ
dW (2.53)

This simple example illustrates the relative ease with which one can construct the
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stochastic differential equation for a Fokker-Planck equation from kinetic theory. As

the stochastic approach does not require explicit solution of the distribution function,

a task that can quickly become intractable for diffusion equations that describe mi-

cromechanical models with increasingly larger degrees of freedom, it has been used

extensively to study the dynamical behavior of multi-link bead-rod and bead-spring

chains [27, 104, 40]. Most of these studies have focused on testing various closure

approximations that are used to obtain closed form constitutive equations. For ex-

ample, direct measurements of stresses in a filament stretching rheometer have clearly

demonstrated the existence of a stress conformation hysteresis in startup of uniaxial

elongational flows of dilute polymeric solutions [28]. Brownian dynamics simulation

of the stochastic differential eqution in Eq. 2.53 with the FENE model can capture

this phenomenon, while the FENE-P model that preaverages the nonlinear force law

does not.

In particular, a very comprehensive examination of the Kramer’s bead-rod chain

using Brownian dynamics was carried out by Doyle et al. [27]. They were able to

show that the stress optical law, which postulates a linear relationship between stress

and birefringence of a polymer sample and is used extensively by experimentalists,

is only valid in the limit of small alignment of molecules when Brownian motions

are dominant. They also found that at high shear rates, there is considerable, and

qualitative, discrepancy between the behavior of a FENE dumbbbell and a bead-

rod chain. A similar study was carried out by Ghosh [40] that found that a bead-

spring chain with 5 springs is sufficient to produce a stress-birefringence loop that is

in excellent agreement with prediction of Kramer’s chain. Even though a 5 spring

chain is still computationally expensive to simulate, it represents a significant coarse

graining of the Kramer’s chain.

All these studies deal with molecular models in simple homogeneous flow, so that

only a single constant strain rate is being considered. In a practical flow, the strain

rate will vary with position and the Brownian dynamics simulation must be combined

with a discretization in physical space to compute flow field for viscoelastic fluids.

We now discuss a method that pioneered this approach and a subsequent significant
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improvement.

CONNFFESSIT

Öttinger and Laso [84] were the first to combine finite element techniques with Brow-

nian dynamics simulation in a method known as CONNFFESSIT, which stands for

”Calculation Of Non-Newtonian Flow: Finite Elements and Stochastic SImulation

Technique.” The method is most naturally exploited as a time marching scheme,

and the steady state flow, if it exists, is then obtained as the long time limit of the

calculation. At the start of the simulation, a large number of model molecules (such

as dumbbells, bead-spring chains, or any other coarse-grained model) are distributed

uniformally over the flow domain with initial configuration drawn from the equilib-

rium distribution. At each time step of the simulation, the conservation equations

for mass and momentum are solved first, followed by the integration of the stochastic

differential equation as molecules are convected along flow trajectories. This decou-

ples the conservation laws from the stochastic process. The polymer contribution to

the stress tensor at a given time is then obtained by means of averaging over the local

ensemble of molecules located within each element.

The CONNFFESSIT method has been used to study two-dimensional flows of

dumbbell models of dilute polymeric solutions, colloidal dispersions, and liquid crys-

talline polymers [32, 68, 69]. The method is found to capture all the important

qualitative aspects of viscoelastic flow. Furthermore, it has an attractive interpreta-

tion in terms of mimicking how real molecules contribute to stress in a polymeric flow.

The method is able to accomodate many different types of force laws and molecu-

lar models without significant modification. However, it has three major drawbacks.

First, the intrinsically Lagrangian formulation of the method requires a great deal

of effort and book-keeping to track all the molecules in the flow as they move from

element to element. Given the large number of molecules and elements, typically on

the order of 106 and 103, respectively, in a two-dimensional simulation, the associated

brute force search of a molecule cannot be justified at each time step. Second, the

error in the calculation of the polymer contribution to the stress tensor converges as
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N−1/2, where N is the number of molecules in a given element of the flow domain.

Clearly, each element of the finite element mesh must then contain enough model

molecules during the entire simulation for local ensemble averaging. Ideally a simu-

lation should have N ∼ O(103), which is not easy to insure especially in flow regions

where large spatial gradients develop in the flow field. Third, it has been shown that

CONNFFESSIT can exhibit spurious oscillation in the stress field [69], which can

affect the numerical accuracy of the computed velocity. For these reasons several

improvements were proposed to the CONNFFESSIT algorithm, the most significant

being that of Brownian configuration fields.

Brownian Configuration Fields

(a) (b)

Figure 2-5: Comparison between Lagrangian (CONNFFESSIT) and Eulerian (Brow-
nian configuration fields) implementations. (a) Lagrangian implementation, in which
ensembles at adjacent nodes are uncorrelated. (b) Eulerian implementation, where
the same ensemble of random numbers is generated at each node in the physical
domain.

The method of Brownian configuration fields was introduced by van den Brule

et al. [114] and Hulsen et al. [49] to replace the large ensemble of independent

molecules in the CONNFFESSIT approach with an ensemble of configuration fields.

The main idea is to use correlated ensembles so that instead of tracking the config-

uration of individual molecules along flow trajectories, the method determines the

evolution of a finite number of Eulerian configuration fields such that each field is

subjected to a random Wiener process that is uniform in space. This key difference

is illustrated in the schematic in Fig. 2-5.
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In the original CONNFFESSIT implementation, adjacent points in space were

subjected to different random processes at a given time step, which resulted in noisy

spatial gradients for the polymer contribution to the stress tensor. By constructing

a configuration field in space that is subjected to the same Wiener process results

in adjacent points in space that have strongly correlated fluctuations. Consequently,

in computing the divergence of the stress tensor for use in the momentum equation,

differences are taken for the configurational averages taken over an ensemble of fields,

which reduces fluctuations. With the assumption of correlated ensembles in space,

the Brownian configuration field method in essence behaves as a variance reduced

formulation of the original CONNFFESSIT approach.

The stochastic differential equation that governs the evolution of these configura-

tion fields is given by

dXk = {−v · ∇Xk + A(Xk)}dt+B(Xk) · dW k(t) (2.54)

where {Xk}Nf

k=1 denotes an ensemble of Nf configuration fields defined over the entire

flow domain. This is indeed the Eulerian formulation of the stochastic differential

equation Eq. 2.50 with the addition of the convective term v · ∇Xk. The stochastic

factor dW k, however, only depends on time. As a result, the spatial gradient of

the configuration field is a well defined function of the spatial coordinates. The

discretization of a field Xk can be constructed by means of a standard finite element,

and the polymer contribution to the stress tensor can be computed as an ensemble

average over all configuration fields

τ p =
1

Nf

Nf
∑

k=1

g(Xk) (2.55)

where g is a model dependent tensorial function of configuration. In the original pa-

per by van den Brule et al. [114], the authors performed simulations of a solution of

Hookean dumbbells (the Oldroyd-B model) flowing past a cylinder in a channel, and

obtained smooth stress fields that matched extremely well with simulations performed
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using a conventional, continuum, Oldroyd-B constitutive equation. The simulation

employed the discontinuous Galerkin finite element method to discretize Eq. 2.54,

which allows for element by element solution of the problem through parallel algo-

rithms.

There are, however, two drawbacks to the Brownian configuration field method.

First, it has been shown recently that while the use of correlated ensembles reduces

the variance of the velocity, it increases the variance of the viscoelastic stress (see

work of Bonvin and Picasso [12]). This counter intuitive finding must be due to

the nonlinear coupling between the conservation laws and the stochastic differential

equation, since the variance of the approximate stress should not be affected by the

spatial dependence of the Wiener process for a deterministic velocity field. Second, the

approach cannot be applied to problems that are dominated by physical fluctuations,

such as flows on a molecular length scale, since real molecular orientations are not

continuous and Brownian forces on real molecules are not spatialy correlated.

Despite these two drawbacks, the Brownian configuration field method has been

improved upon with the idea of control variates, which introduces a parallel stochastic

simulation of a quantity that has about the same fluctuations as the original problem,

but with a vanishing average. Subtracting this quantity from the true stochastic

process provides the correct average of the original problem but with reduced variance.

This approach was first demonstrated by Melchior and Ottinger [79] and has been

implemented within the framework of Brownian configuration fields for a complex

flow calculation where a FENE dumbbell model was simulated with a closed FENE-

P model defined as a control variate [112]. This approach has now become standard

and has been used to study two-dimensional flow of bead-spring chains [61] and three-

dimensional flows of Hookean dumbbells [89], which represent significant achievements

in hybrid simulations.
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Chapter 3

System-Level Analysis of

Viscoelastic Flows

3.1 State-of-the-Art Approaches

When the constitutive models described in the last chapter are combined with the

conservation of mass and momentum, one obtains a set of partial differential (or

integro-differential) equations that can be solved by means of a suitable grid-based nu-

merical method. This is the primary approach adopted by computational rheologists

to elucidate the nonlinear coupling between rheological behavior, flow-induced evolu-

tion of the polymer microstructure, flow parameters (such as geometry and boundary

conditions) and final product properties.

While the majority of publications for simulations of complex viscoelastic flow

are based on continuum approaches, significant work has been done to couple the

conservation equations at the macroscopic level with kinetic theory models (both

Fokker-Planck and stochastic models) in order to describe the polymer contribution

to the fluid stress tensor. While such an approach is more demanding in terms of

computer resources, it allows for the direct use of kinetic theory models in complex

flows, without having to resort to closure approximations, which often are of doubtful

validity [57]. An extensively studied example is the Doi model in shear flow, where

it is well known that closure approximations suppress tumbling effects observed ex-
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perimentally with liquid crystals [60], a phenomenon that is qualitatively matched by

the unclosed model [67].

Consequently, sizeable effort has been devoted to the development of hybrid meth-

ods that allow the study of more detailed molecular models in complex flows. Until

recently, such methods were restricted to the computation of molecular orientation

for low-dimensional models in complex, two-dimensional, time-dependent flows [109],

but the work of Koppol et al. [61] has extended hybrid simulations to include more

realistic models, by carrying out stochastic simulation of a bead-spring chain with

up to 6 springs in a circular channel with smooth contraction-expansion geometry.

Despite this significant improvement over the state-of-the-art, such simulations have

been made possible primarily due to availability of better computational resources

with time. Even though they make efficient use of massively parallel computers, no

new numerical approach or method has been proposed. More importantly, however,

such simulations are only able to carry out stability analyses by running very precise

time-dependent computations for perturbations to the base flow [100, 101, 102]. As a

result, it remains impossible to apply the traditional computational tools used to per-

form system-level stability and bifurcation analysis of closed macroscopic equations

to these hybrid simulators.

This chapter begins by describing a computational framework that can enable the

computational rheologist to perform system-level analysis with viscoelastic flows by

running computational “experiments” on the well-developed hybrid simulators. The

computational framework will be described with a simple dynamical system serving

as the example. This is followed by a quick review of the fast developing area of

iterative matrix-free numerical analysis, which is particularly suited to the task of

avoiding closure approximation when bridging microscopic simulations with macro-

scopic system-level modelling. In particular, it will be shown how one can enable

microscopic simulators (kinetic theory models and Brownian dynamics) to obtain

stationary states without the need to pass through an intermediate, macroscopic-

level explicit evolution equation description of the dynamics of viscoelastic fluid flow.

The application of the finite element method for studying viscoelastic flows will be de-
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scribed next, followed by a review of numerical bifurcation analysis and the algorithm

used to generate results in this thesis.

3.2 Coarse Time-stepper Framework

In building hybrid simulators one typically obtains a large system of ordinary differ-

ential equations that describe the detailed dynamics of the polymer microstructure.

This could result either from an appropriate discretization of a Fokker-Planck equa-

tion or from a stochastic description of the internal degrees of freedom of the polymer

molecule. Let us denote these microscopic unknowns by y(t) such that

dy

dt
= f(y), y ∈ R

m, and m≫ 1 (3.1)

This system of ODE’s can be written as a black-box time stepper code that gives

the time-t map (T t
d , subscript d corresponds to detailed) for the system, if provided

initial data and the integration time t. In other words,

y(t0 + t) = T t
d y(t0),

where y is a solution to Eq. 3.1. Computations to extract information about the coarse

dynamics of the system given in Eq. 3.1 are the current state-of-the-art in viscoelastic

flow modelling as the dynamical equations of the corresponding coarse unknowns can

only be obtained via closure approximations. These coarse unknowns are typically

averages of the polymer microstructure or simply the polymer contribution to the

fluid stress tensor. While one may obtain these coarse unknowns during the detailed

simulation, the inability to write close equations for these unknowns limits the utility

of direct simulation of Eq. 3.1 to yielding only the dynamical behavior and stable

solutions. The computational framework presented in this section is the primary

enabling step within the framework for obtaining the behavior of the coarse unknowns

and performing system-level analysis.

Clearly, as a first step, we need to define what constitutes an appropriate macro-
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scopic/coarse representation. In general, our coarse formulation takes the form

dY

dt
= F (Y ), Y ∈ R

M , and M ≪ m, (3.2)

where the function F is not available, but once we choose a coarse variable set, Y ,

we can also define a restriction operator R that takes the microscopic description

y to the chosen macroscopic description Y . This operator could involve averaging

over microstructural state or the ensemble of simulations in a stochastic description.

If the detailed system can be successfully modelled at the coarse/macroscopic level

through the coarse variable set Y , even though the function F is unavailable in

closed form, this suggests that any other coarse variables that may be derived from

the detailed set can be approximated as functionals of the Y . This is indeed the

primary assumption in writing closed equations for the microstructural state of a

polymer in terms of a few low order averages or moments by assuming that higher

moments of the microstructural state can be approximated as functionals of these low

order moments.

Within dynamical systems theory this corresponds to the existence of a fast-

attracting “slow” manifold, parameterized by the selected set Y . This manifold em-

bodies a closure of Eq. 3.1 such that all components of Y vary slowly on this manifold

when observing the dynamics of the detailed time-stepper. Similar assumptions also

underpin the theory of Inertial Manifolds, Approximate Inertial Manifolds [39] and

many singularly perturbed systems that arise in engineering modelling. In particular,

the reduced dynamical models for many chemical and physical processes hinge on the

existence of a low-dimensional, attracting, invariant “slow” manifold that character-

izes the long-term process dynamics. When the dynamics of the problem approach

this manifold, it becomes possible to describe the full state of the system in terms

of the unknowns that parameterize this manifold. As a result many model reduction

schemes are developed around identification of this manifold without invoking pseudo

steady-state or equilibrium assumptions for the “fast” unknowns that are not mathe-

matically rigorous and may not always result in an accurate model [92]. An example
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of such a scheme is the Intrinsic Low-Dimensional Manifold approach of Mass and

Pope [77] that has been used extensively in problems associated with combustion.

Suppose now for example that a “slow” manifold exists for the physical problem

in Eq. 3.1. Using the theory of singularly perturbed systems, it can then be shown

that there exists a change of variables, y 7→ u = (u1,u2) in Eq. 3.1 such that

du1

dt
= g1(u1,u2)

du2

dt
=

1

ǫ
g2(u1,u2)

u1 ∈ R
N ,u2 ∈ R

m−N (3.3)

with ǫ ≪ 1. If we also assume that u2 can be expressed in terms of u1 such that

u2 = h(u1) and g2(u1,h(u1)) = 0, this is sufficient to identify u1 as the coarse

variable. The evolution equation for the coarse variable is then given by

dY

dt
= F (Y ) =

du1

dt
= g1(u1,h(u1)) (3.4)

It is important to note that the functions g1, g2 and h are unknown and cannot be

used as a basis for direct numerical simulation. It will be demonstrated in a numerical

example that a dynamical system in the form of Eq. 3.3 exhibits dynamic behavior

evolving over two vastly different time scales, and for an integration time longer that

the “fast” time scale leads to a good approximation of the “slow” manifold.

The main tool that allows the use of microscopic descriptions to perform numerical

tasks at the coarse/macroscopic level is the coarse time-stepper [111], denoted by

T τ
c , which implements an approximation of the time-τ map for Eq. 3.2 such that the

equation for macroscopic evolution is unavailable in closed form. Since we do not have

the function F , we can only approximate the coarse behavior. More importantly, the

time horizon for the coarse time stepper, τ , should be chosen such that it captures

the true macroscopic dynamics without making the computation of T τ
d too expensive.

At a minimum τ should be large enough so that “fast” dynamics have decayed and

the solution has approached the “slow” manifold.

In addition to the restriction operation described previously, another operator
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links the detailed and coarse time steppers: L is the non-unique lifting operator that

maps the macroscopic description Y onto a consistent microscopic description y.

Consistency requires RL = I so that lifting from the macroscopic to the microscopic

and then restricting back to the macroscopic has no effect on the macroscopic state.

Hence, given an initial macroscopic condition for the macroscopic state, Y (t0), the

coarse time stepper consists of the following steps:

• Construct a single or an ensemble of microscopic states such that y(t0) =

LY (t0).

• Use the detailed time-stepper, Eq. 3.1 to evolve the microscopic states for a

short macroscopic time τ to generate y(t0 + τ) = T τ
d y(t0).

• Obtain the restriction of the evolved microscopic state such that Y (t0 + τ) =

Ry(t0 + τ).

In essence, the coarse time stepper can be defined as

T τ
c = RT τ

d L

If the detailed time-stepper Eq. 3.1 has an equivalent coarse description Eq. 3.4, then

independent of the initial condition provided by the lifting operator, the solution

should quickly approach the slow manifold for τ ≫ ǫ, at which point, the dynamics

of Eq. 3.1 should approximate the real dynamics of the unavailable Eq. 3.4.

Example Let’s consider a simple example where the microscopic equation Eq. 3.1

has the form
dy1

dt
= 1 − y1

dy2

dt
= 50(1 − y3

1 − y2)

(3.5)

Eq. 3.5 is already in the form of Eq. 3.3 with ǫ = 1/50 = 0.02. The results of

numerically integrating Eq. 3.5 are shown in Fig. 3-1 where the solution rapidly moves

to the slow manifold y2 = 1− y3
1 for initial data far from the manifold. We also build

a coarse time-stepper for Eq. 3.5 by defining LY = (Y, 1/2) and Y = R(y1, y2)
T = y1.
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The results for this coarse time-stepper are shown in Fig. 3-2. For τ = 0.1 and

Y (0) = −1 it can be observed that the lifted solutions rapidly approach the slow

manifold at each call to the coarse time-stepper where the solution from the previous

call at t = nτ has been restricted and lifted such that y2 is always initialized to 1/2.

In addition, the restricted solution at t = nτ is also shown as function of time along

with the exact solution obtained from solving Eq. 3.5.
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Slow manifold, y2 = 1 − y3

1

Figure 3-1: Solution of Eq. 3.5 with ǫ = 0.02, y1(0) = −1, y2 = 1. The top figure
shows the solution plotted in (y1, y2) phase space while the bottom figure shows the
solution as a function of time.

In this example, the dynamics evolve at vastly different time scales that can be

estimated by the inverse of the eigenvalues of the Jacobian of Eq. 3.5 at steady state

(1, 0)T . The eigenvalues, which are equal to −1 and −50, have a significant spectral

gap. Here we use τ = 0.1, which is 5 times the characteristic timescale of the faster

eigenmode but only 1/10th of the slower eigenmode. Since τ must be large enough for
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Figure 3-2: Solution of Eq. 3.5 with coarse time-stepper using τ = 5ǫ = 0.1 and
Y (0) = −1. The top figure shows the lifted solution in (y1, y2) phase space while the
bottom figure shows the restricted solution as a function of time along with the exact
solution.
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the “fast” dynamics to approach the slow manifold, this suggests that problems with

large gaps in the eigenspectrum, or small ǫ, will be especially amenable to numerical

analysis with the coarse time-stepper.

To begin with, we will be primarily interested is using the coarse time-stepper

for Eq. 3.1 to obtain the stationary states of Eq. 3.2. One naive way is to use the

coarse time-stepper T τ
c to evolve an initial condition in time through direct simulation.

However, this would be no different from the existing state-of-the-art in computational

rheology. In addition, if the coarse system of Eq. 3.2 also includes a real parameter

λ such that
dY

dt
= F (Y ;λ), Y ∈ R

M , and M ≪ m, (3.6)

then we are also interested in how the qualitative behavior of the stationary solu-

tions change with λ. This task initially appears impossible since we cannot apply the

standard numerical tools used to study closed equations to F , which is unknown in

explicit form. All we have access to is an approximate coarse time-stepper that pro-

vides evolution of Y for short times τ ≪ 1. However, since construction of the coarse

time-stepper requires clear separation of timescales, exhibited in the eigenspectrum of

the system at steady state, this fact can be exploited by combining Newton’s method

with iterative methods for linear systems, in what is known as Newton iterative meth-

ods [54]. The following section describes how such a structure of the eigenspectrum

is particularly well suited for this approach.

3.3 Newton’s Method with Coarse Time-stepper

Let us assume that Eq. 3.6 has a steady state Y ∗(λ). Since dY
dt

= 0 at steady state,

it is then obvious that Y ∗(λ) is also a fixed point for the coarse time-stepper, i.e.

Y ∗ − T τ
c Y ∗ = 0 (3.7)

This relationship suggests that one approach to obtaining the steady state Y ∗ is to

start with some initial guess Y 0 and use the coarse time-stepper to evolve this guess
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in time such that

Y k+1 = T τ
c Y k (3.8)

for k ≥ 0. There are several problems with this approach. First, by assumption the

coarse time-stepper T τ
c can only be called for short τ making this approach clearly

infeasible. Second, it is well-known that convergence rate for the error in fixed-point

iterations is only linear. And finally, fixed-point iterations of the form in Eq. 3.8 will

be unable to find unstable solutions of Eq. 3.6.

For this reason we consider Newton’s method, which gives quadratic convergence

in the error and can also locate unstable solutions to Eq. 3.7. We begin by defining

the nonlinear residual

G(Y ;λ) = Y − T τ
c Y (3.9)

which leads to the following sequence for Newton iterations

Y k+1 = Y k −
[

I − ∂T τ
c

∂Y

]−1(

Y − T τ
c Y

)

(3.10)

The sequence for Newton iterations can also be expressed as a linear system

G′(Y ;λ)s = −G(Y ;λ) (3.11)

where s = Y k+1−Y k denotes the Newton step, and G′ is the Jacobian of Eq. 3.9 with

respect to Y . As a consequence, the process of obtaining Newton iterates requires

computation of the Newton step via solution of Eq. 3.11. If the evaluation, storage

and factorization of the Jacobian matrix is not prohibitive, one can proceed by using

direct methods, such as Gaussian elimination to compute the Newton step. For our

problem, however, this requires the computation of the Jacobian of T τ
c , which is not

available in closed form and is expensive to approximate numerically. Additionally, we

are also concerned with obtaining the eigenvalues of the Jacobian of the coarse time-

stepper in order to ascertain stability of the computed steady states. We address this

issue by invoking iterative methods from numerical linear algebra that only require

the product of the matrix on a given vector to solve the linear system rather than
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the matrix itself. For the linear system in Eq. 3.11 this is equivalent to evaluating

the nonlinear residual in Eq. 3.9, with the negative sign. More importantly, iterative

methods converge in far fewer iterations than the dimension of the linear system and

provide excellent estimates for the extreme eigenvalues of the associated matrix, that

is, eigenvalues near the edge of the spectrum of the matrix. Fortunately, these are

precisely the eigenvalues of interest in determining stability with the coarse time-

stepper framework.

3.3.1 Review of Iterative Methods

Consider the prototypical linear system

Ax = b (3.12)

and eigenvalue problem

Ay = λy (3.13)

where A is a n × n matrix, and x and b are n-dimensional column vectors. Ad-

ditionally, y is the nonzero n-dimensional eigenvector, and λ is the corresponding

eigenvalue. Most algorithms in numerical linear algebra are concerned with obtaining

the solution of either Eq. 3.12 or 3.13. Some of the well-known techniques, also known

as direct methods, include Gaussian elimination, QR factorization, and Schur factor-

ization. These algorithms typically require O(n3) floating point operations, which

can be especially prohibitive as n becomes large, which is typical for most practical

problems including the problems that form the topic of this thesis. In particular,

the large dimension of the matrix under consideration arises indirectly through dis-

cretization of differential or integral equations, even though most large matrices of

computational interest are simpler than their vast number of individual entries might

suggest. For example, a finite element discretization of a partial differential equation

may lead to a matrix with a large dimension, say n = 105, but with only m = 10

nonzero entries per row. This gives special structure to the matrix, often referred to
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as the sparsity of the matrix. Iterative methods exploit this very fact to solve matrix

problems in Eqs. 3.12 and 3.13 in O(n2) rather than O(n3) operations. The primary

distinguishing feature of iterative methods is that they require nothing more than the

ability to compute Ax for any given x, which can be easily obtained in only O(mn)

rather than O(n2) operations. This is clearly different from the algorithms of direct

linear algebra, which explicitly manipulate matrix entries so as to introduce zeros,

but in the process generally destroy sparsity.

Even though sparsity is the most often exploited structure of these large matrices,

primarily due to the discretization of partial differential equations to study physi-

cal phenomenon, more recently it has become apparent that other kinds of matrix

structure may also be exploitable, even though the matrices involved are dense (the

opposite of sparse) [113]. In this thesis, the motivation for using iterative methods

is derived from two reasons. First, only matrix-vector products can be readily ob-

tained for the problem in Eq. 3.11 by making calls to the coarse time-stepper, as

the computation, storage and factorization of the Jacobian matrix for a large-scale

problem is clearly prohibitive. Second, the unknown Jacobian matrix is expected to

contain gaps in its eigenspectrum. This argument follows from the construction of the

coarse time-stepper that exploits the existence of a slow manifold or closure, albeit

an unknown one, for the underlying dynamical system.

Projecting to Krylov Subspaces The iterative methods used in this thesis are

based on the idea of constructing a low-dimensional Krylov subspace for the n-

dimensional problem in Eq. 3.12. Given a matrix A and a vector b, the associated

Krylov sequence is the set of vectors b,Ab,A2b,A3b, . . . that can be readily obtained

by calling a black box code for computing matrix vector products. The corresponding

Krylov subspaces are then the spaces spanned by successively larger groups of these

vectors. While there are several iterative algorithms that are built on Krylov sub-

space methods [95], we will focus on two algorithms, namely the GMRES and Arnoldi

procedures, that solve Eqs. 3.12 and 3.13, respectively, for general non-hermitian ma-

trices (A 6= A∗), where A∗ denotes the transpose of the complex conjugate of A.
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In either procedure, the projection to Krylov subspaces reduces the original matrix

problem to a sequence of matrix problems of dimensions m = 1, 2, 3, . . .. For nonher-

mitian A, this reduction results in matrices that have Hessenberg form, that is they

are almost triangular, with zeros entries either above or below the first superdiag-

onal or subdiagonal, respectively. As will be described next, the Arnoldi algorithm

approximates eigenvalues of A by computing the eigenvalues of certain Hessenberg

matrices of successively larger dimensions.

3.3.2 Arnoldi Method for Computing Eigenvalues

All algorithms for eigenvalue computation of a matrix are based on the basic idea

of carrying out a factorization of the matrix that reduces it to either a diagonal or

triangular matrix such that the eigenvalues of the original matrix explicitly appear

on the diagonal of the resulting matrix. The most widely used and general algorithm

for this is the Schur factorization

A = QTQ∗ (3.14)

where Q is unitary, that is Q∗Q = I, and T is a upper-triangular. The Schur

factorization is accomplished by first producing an upper Hessenberg matrix Hfrom

A, with zeros below the first subdiagonal, followed by a sequence of iterations to

convert the Hessenberg matrix to a triangular form T . The complete reduction of A

to Hessenberg form is expressed as

A = QHQ∗ (3.15)

or AQ = QH . This form is analogous to factorizing the matrix AQ into a unitary

and triangular matrix in what is known as QR factorization. The two most popular

approaches for obtaining the QR factorization are Householder reflections and Gram-

Schmidt orthogonalization [113]. Householder reflections obtain this reduction, by

carrying out transformations that reveal the factorization only at the end of the
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procedure, as it true of all direct methods. In contrast, the Gram-Schmidt process

has the advantage that it can be stopped part-way, leaving one with a reduced QR

factorization of the first m columns of the matrix. The Arnoldi method is essentially

a modified Gram-Schmidt procedure for transforming a matrix to Hessenberg form

when n is large.

Algorithm The Arnoldi iteration uses the stabilized Gram-Schmidt process to

produce a sequence of orthonormal vectors, q1, q2, q3, . . . , called the Arnoldi vec-

tors, such that for every m, the vectors q1, q2, . . . , qm span the Krylov subspace

Km =
〈

b,Ab,A2b, . . . ,Am−1b
〉

. The algorithm starts with an arbitrary vector b

such that q1 = b/‖b‖ and computes

for m = 1, 2, 3, . . .

v = Aqm

for j = 1, . . . ,m

hjm = q∗
jv

v = v − hjmqj

end for

hm+1,m = ‖v‖

qm+1 = v/hm+1,m

end for

(3.16)

In the algorithm, the j-loop implements Gram-Schmidt process by projecting out the

components of qm+1 in the directions of q1, q2, . . . , qm to ensure the orthogonality of

all the generated vectors. From the quantities generated by the algorithm one obtains

the following equality

Aqm =
m+1
∑

j=1

hjmqj (3.17)
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This equality can be written in matrix form as

AQm = Qm+1H̃m (3.18)

or as

AQm = QmHm + hm+1,mqm+1e
∗
m (3.19)

where, e∗ ≡ (0, 0, . . . , 1) is the m-dimensional unit vector. This introduces two ma-

trices: the n×m matrix Qm whose columns are the first m columns of Q,

Qm =











q1 q2 . . . qm











(3.20)

and the (m+1)×m upper-left section of H denoted by H̃m, which is also a Hessenberg

matrix

H̃m =























h11 h12 . . . h1m

h21 h22 . . .
...

. . . . . .
...

hm,m−1 hmm

hm+1,m























(3.21)

Writing out the algorithm in matrix form shows that the product Q∗
mQm+1 is the

n× (n+ 1) identity matrix, i.e. the n× (n+ 1) matrix with 1 on the main diagonal

and 0 elsewhere. Multiplying the right hand side of Eq. 3.18 from the left by Q∗
m

yields Q∗
mQm+1H̃m, which is the m×m Hessenberg matrix obtain by removing the

last row of H̃m

Hm =

















h11 h12 . . . h1m

h21 h22 . . .
...

. . . . . .
...

hm,m−1 hmm

















(3.22)
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Eq. 3.18, therefore, yields the Hessenberg matrix via this simplification as

Hm = Q∗
mAQm (3.23)

While we have just shown how the Arnoldi procedure generates the Hessenberg

reduction of A, one can make several interpretations from the process. First, the

relationship in Eq. 3.17 suggests that the vectors qj generated by the process form

an orthonormal bases of the successive Krylov subspaces, i.e.

Km =
〈

b,Ab,A2b, . . . ,Am−1b
〉

= 〈q1, q2, . . . , qm〉

Hence, if we were to explicitly form a Krylov matrix

Km =











b Ab . . . Am−1b











(3.24)

with a QR factorization Km = QmRm, then the matrix Qm will be same matrix

as given in Eq. 3.20. In the Arnoldi process the matrices Km and Rm are never

formed explicitly, even though one would expect the Krylov matrix to contain good

information about the eigenvalues of A. This is because the columns of the Krylov

matrix approximate the same dominant eigenvector of A and in doing so result in an

exceedingly ill-conditioned matrix.

The desired eigenvalues are instead revealed by the Hessenberg matrix Hm, which

has eigenvalues, λ
(m)
i that constitute very good approximation for corresponding

eigenvalues λi for the matrix A. These approximate eigenvalues are also known

as Ritz values and provide better agreement with the exact eigenvalues as m is in-

creased. Each Ritz value also has an associated Ritz approximate eigenvector defined

by y
(m)
i = Qmu

(m)
i , where u

(m)
i is an eigenvector associated with the eigenvalue λ

(m)
i .

The Ritz values and corresponding eigenvectors can be obtained easily using a stan-

dard direct algorithm for computing eigenvalues and eigenvectors, since m ≪ n for
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a typical computation. Of course, one cannot expect to compute all the eigenvalues

of A by this process since that would be equivalent to using direct methods. Instead

one uses a stopping criteria while increasing m until reasonably accurate eigenvalues

have been obtained. This criteria is derived by using Eq. 3.19 to obtain an estimate

for the residual of the eigenvalue problem, Eq. 3.13

(A − λ
(m)
i I)y

(m)
i = hm+1,m(e∗

mu
(m)
i )qm+1 (3.25)

and the associated norm

‖(A − λ
(m)
i I)y

(m)
i ‖2 = hm+1,m|(e∗

mu
(m)
i )| (3.26)

This relationship then provides the basic criteria for stopping the Arnoldi process,

even though the residual norm is not always indicative of the actual error in λ
(m)
i [95].

The only time this is not possible is when the Arnoldi algorithm breaks down for

hm+1,m = 0. However, this is a desired breakdown since the approximate eigenvalues

are then exact and the iteration can be terminated.

3.3.3 GMRES Method for Linear Systems

While the Arnoldi process can be used to find eigenvalues, it can also be readily

adapted to solve linear systems. The resulting method is commonly known as GMRES

or “generalized minimal residuals.” Assuming that the linear system in Eq. 3.12 has a

solution x∗, GMRES approximates the solution with a vector xm ∈ Km by minimizing

the norm of the residual, rm = b − Axm. Since xm ∈ Km, we can write xm = Qmy,

and state a least squares problem to find y ∈ C
m such that

‖AQmy − b‖ = minimum (3.27)

where Qm is the matrix in Eq. 3.20. The only difference here is that while the Arnoldi

procedure typically starts with a random vector, for the solution of a linear system of

equations, the Arnoldi process instead starts with the right-hand side vector b. We
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further simplify the least squares problem in Eq. 3.27 by using Eq. 3.18 to obtain

‖Qm+1H̃my − b‖ = minimum (3.28)

which further simplifies by multiplication on the left by Q∗
m+1 to

‖H̃my − Q∗
m+1b‖ = minimum (3.29)

Since the matrices Qm have been constructed by starting with b, the term Q∗
m+1b in

Eq. 3.29 can be written as ‖b‖e1 where e1 ≡ (1, 0, 0, . . .)∗. This leaves us with the

final form of the GMRES least squares problem

‖H̃my − ‖b‖e1‖ = minimum (3.30)

which is a problem of dimension (m+ 1) ×m as opposed to n×m in Eq. 3.27. The

final algorithm can be expressed as

q1 = b/‖b‖

for m = 1, 2, 3, . . .

〈Step m of Arnoldi iteration, Eq. 3.16〉

Find y to minimize‖H̃my − ‖b‖e1‖

xm = Qmy

end for

(3.31)

At each step of the algorithm, GMRES minimizes the norm of the residual rm =

b − Axm over all vectors xm ∈ Km, while the least squares problem for finding y

can be solved via standard QR factorization that takes advantage of the Hessenberg

structure of the problem.

The discussion in the section was aimed at providing a basic overview of the

Arnoldi and GMRES procedures. The actual implementation of either algorithms

is not trivial and special attention must be paid when implementing them for use
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with Newton’s method, which is the case in this thesis. In particular, two issues

are of critical importance: the convergence criteria for Newton’s iterations and the

computation of Newton steps that lead to convergence. The two issues are intimately

tied in that the Newton step computed from solution of Eq. 3.11 is never taken in full

in an actual implementation and a sufficient decrease in the residual is appropriate

when computing the Newton step using GMRES. This leads to the inexact Newton

condition

‖(G′(Y k;λ)s + G(Y k;λ))‖ ≤ η‖G(Y k;λ)‖ (3.32)

where Y k is the kth iterate, and η is a forcing term that can be varied as the Newton

iteration progresses. A very small value of η makes the iteration more like Newton’s

method, but makes the computation of the Newton step more expensive. Good imple-

mentations of a Newton iterative method always make use of Eq. 3.32 as a termination

criteria along with an appropriate choice for η [29]. For this reason, calculations in this

thesis were performed using public domain legacy codes for Newton’s method that use

Krylov subspace iterations. Specifically, medium-sized problems with n ∼ O(100),

were solved on MATLAB by using the freely-available code nsoli.m by Kelley [54].

In contrast, larger problems implemented in FORTRAN were solved using the SNES

solver in the PETSc library [5].

3.4 Examples

In this section we present two examples from the kinetic theory of polymeric liquids

to build coarse time-steppers and obtain stationary states. The first example uses

the Fokker-Planck equation for non-interacting rigid dumbbells in steady shear as

the detailed time-stepper, while the second example uses the stochastic simulation

of a free draining bead-spring chain as the black-box microscopic code. The latter

example is considered in standard rheometric flows, i.e. steady shear and steady

uniaxial elongation, and serves to demonstrate that Newton iterative methods may

be used to obtain macroscopic steady states even if there is no true microscopic steady

state for the stochastic model.
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3.4.1 Non-interacting Rigid Dumbbell In Steady Shear

Problem Formulation

Diffusion Equation We begin with the diffusion equation for the rigid dumbbell

model (Eq. 3.33), which is a differential equation that describes the time evolution of

the distribution of rigid dumbbell orientations, f(u, t) or f(θ, φ, t)(z-axis is θ = 0 and

x-axis is θ = π
2
, φ = 0), when the imposed time-dependent, homogeneous velocity field

is described by κκκ(t) = ∇vT . In Eq. 3.33, λ is the time constant of the rigid dumbbell

and u is the orientation vector while Eq. 3.34 is the normalization condition.

∂f

∂t
=

1

6λ
(
∂

∂u
· ∂f
∂u

) − ∂

∂u
· ([κκκ · u − κκκ : uuu])f (3.33)

∫

u

fdu = 1 (3.34)

For simple shearing flow in the x-y plane (vx = γ̇(t)y) the only non-zero component

of the tensor κκκ is κκκxy = γ̇. The diffusion equation can then be written as:

6λ
∂f

∂t
=

[

1

S

∂

∂θ
(S
∂f

∂θ
) +

1

S2

∂2f

∂φ2

]

− (6λγ̇)

[

sc

S

∂

∂θ
(S2Cf) − ∂

∂φ
(s2f)

]

= ΛΛΛf − (6λγ̇)ΩΩΩsf (3.35)

where ΛΛΛ and ΩΩΩs are linear operators with S = sin θ, C = cos θ, s = sinφ and c =

cosφ. Stewart and Sørensen [105] studied this diffusion equation by expanding f in

term of spherical harmonics and we have done the same. When the operator Λ acts

on the spherical harmonics it returns the same spherical harmonic multiplied by a

constant, while Ωs yields a linear combination of spherical harmonics. As a result, the

partial differential equation reduces to an ordinary differential equation with these

basis functions. The M th order spherical harmonic approximation to f is, therefore,

constructed as:

f (M) =
M
∑

n=0

n
∑

m=0

(Am
n P

m
n cos(mφ) +Bm

n P
m
n sin(mφ)) (3.36)
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where the coefficients Am
n and Bm

n are functions of the dimensionless shear rate λγ̇

and have to be determined for each approximation f (M) so as to make it close to the

actual f and Pm
n are the Legendre polynomials, Pm

n (cos θ). Substituting Eq. 3.36 in

Eq. (3.35) and using the orthogonality relationships of spherical harmonics we obtain:

dAp
q

dt
= q(q + 1)Ap

q + (6λγ̇)
∑M

n=0

∑n
m=0 a

mp
nq B

m
n ,

dBp
q

dt
= q(q + 1)Bp

q − (6λγ̇)
∑M

n=0

∑n
m=0 a

mp
nq A

m
n ,

(p = 0, 1, . . . , q)

(q = 0, 1, . . . ,M)
(3.37)

The coefficients amp
nq in Eq. 3.37 are given by Bird et. al1. Once we choose the order of

the expansion, M , the resulting system of ordinary differential equations for Am
n and

Bm
n is used as the microscopic time-stepper within the coarse time-stepper framework.

Moment Equations Instead of evolving Eq. 3.37 in time, one may obtain the

equation of change for any function of dumbbell orientation B(u) that is periodic in

φ by multiplying the diffusion equation by B and integrating over all the configuration

space. The equations for the second and fourth moment of f , i.e. 〈uu〉 and 〈uuuu〉,
are obtained accordingly and are given as:

d 〈uiuj〉
dt

=
1

3λ
δij −

1

λ
〈uiuj〉 − 2κim 〈umujukul〉 + κim 〈umuj〉 + 〈uium〉κT

mj

(3.38a)

d 〈uiujukul〉
dt

= −20

6λ
〈uiujukul〉 +

1

3λ
[δij 〈ukul〉 + δjk 〈uiul〉 + δkl 〈uiuj〉 + δil 〈ujuk〉

+ δjl 〈uiuk〉 + δik 〈ujul〉] − 4κmn 〈unumuiujukul〉 + κim 〈umujukul〉

+ 〈uiujukum〉κT
ml + 〈uiujulup〉κkp + κjp 〈upuiukul〉

(3.38b)

Eq. 3.38b contains an additional unknown term 〈uuuuuu〉, the sixth moment of

f . Of course, an equation for this sixth moment may be derived by taking the

sixth moment of the diffusion equation, but it can easily be seen that this equation

1R.B. Bird, H.R. Warner, Jr., and D.C. Evans (1971), Adv. Polym. Sci., 8 1-90, Table 1 on p.
23
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will include yet higher moments of f . As a result, an appropriate approximation

of 〈uuuuuu〉 has to be found to derive the evolution of 〈uuuu〉. This problem

of closure approximation has been frequently studied in recent years but a definitive

recipe for the closure problem has not been found. Rather, acceptable approximations

specific for each special problem considered have been constructed. Here we follow

the work of Maffettone [72], which proposes:

〈uuuuuu〉 ≈ 〈uuuuuu〉approx = (1 − s) 〈uuuuuu〉isotropic + s 〈uuuuuu〉anisotropic

(3.39)

where 〈uuuuuu〉isotropic represents an accurate approximation of 〈uuuuuu〉 in the

proximity of isotropy, 〈uuuuuu〉anisotropic is the approximation valid in the strongly

aligned limit and the parameter s = 1 − 27| 〈uu〉 | is a scalar measure of the orien-

tation. With the closed set of equations for the second and fourth moment, we have

sufficient information to calculate the stress tensor as given by Kramer’s equation

τ = −ηγ̇ − 3nkT 〈uu〉 − 6nkTλκκκ : 〈uuuu〉 + nkTδ (3.40)

The form of the Kramer’s equation suggests that one may define the second and

fourth moments of the orientational distribution as a coarse set in order to obtain

material functions for steady shear flow. While Eqs. 3.38a and 3.38b are a closed set

of equations for these coarse variables, in order to use the formulation in Eq. 3.37 one

must build a coarse time-stepper for the second and fourth moments. We will use this

approach to illustrate how the coarse time-stepper yields solution in good agreement

with direct simulation of Eq. 3.37.

Lifting and Restriction Steps

The restriction step for the coarse time-stepper involves obtaining the second and

fourth moments in terms of the spherical harmonic coefficients Am
n and Bm

n . This

can be expressed in exact form using certain orthogonality relations for spherical
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harmonics

∫ 2π

0

∫ π

0

Pm
n





cosmφ

sinmφ



Pm′

n′





cosm′φ

sinm′φ



 sin θdθdφ =
2π(n+m)!

(2n+ 1)(n−m)!
δnn′δmm′(1±δm0)

(3.41)

where the positive sign in the factor (1± δm0) is to be used when cosmφ and cosm′φ

appear in the integrals, and the negative sign when sinmφ and sinm′φ appear. Note

that the product of two spherical harmonics integrated over the surface of a unit

sphere is zero unless the two spherical harmonics are identical. Using this approach,

it can be shown that the spherical harmonic coefficients for M = 0, . . . , 4 constitute

a sufficient set to describe the second and fourth moments. While the tensors 〈uu〉
and 〈uuuu〉 have 9 and 81 components, respectively, only 5 and 15 of them are

independent, respectively. In particular, one obtains a linear equation relating the

15 independent components of 〈uuuu〉 to the coefficients in the spherical harmonic

expansion Eq. 3.36

y = Ax (3.42)
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where x = {A0
0, A

0
2, A

1
2, A

2
2, A

0
4, A

1
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2
4, A

3
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4
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1
2 , B

2
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1
4 , B

2
4 , B

3
4 , B

4
4}T
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
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




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






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











































(3.43)
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and

A =


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(3.44)

This relationship suggests that these 15 independent components of 〈uuuuuu〉
can serve as the coarse set, since one can obtain the corresponding set of spherical

harmonic coefficients for M = 0, . . . , 4 directly. As for the remaining coefficients in

the spherical harmonic expansion, we explicitly set them to zero.

Initial Condition and Guess

The isotropic state was chosen as both the initial condition and guess for the moment

equations and the coarse set of 15 unknowns, respectively. In particular, the initial

condition for the second and fourth moments was set to

1

4π

∫

uu duuu =
1

3
δδδ (3.45)

1

4π

∫

uuuu duuu =
1

15

(

δδδδδδ + I + I†
)

(3.46)

where (δδ)ijkl = δijδkl, Iijkl = δikδjl and I†
ijkl = δilδjk. Eqs. 3.38a and 3.38b were then

solved using an adaptive step size Cash-Karp Runge-Kutta method [87]. A similar

integrator was used to evolve the spherical harmonic coefficients within the coarse
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time-stepper, which was then wrapped in a Newton-GMRES solver to obtain the

steady state results.

Results

The steady state for the shear viscosity and first normal stress coefficient are given

in Table 3.4.1 for the moment equations, Eqs. 3.38a and 3.38b, along with the results

of Stewart and Sørensen [105], which were obtained by direct solution of Eq. 3.37

for M = 22. It is immediately clear from these results that even though the closure

approximation yields results in agreement with direct simulation for small Deborah

numbers, the agreement gets worse with increasing De. In the direct simulation of

Stewart and Sørensen [105] Moment Equations
De (η − ηs)/nkTλ Ψ1/nkTλ

2 (η − ηs)/nkTλ Ψ1/nkTλ
2

0.1 0.9949 1.1872 0.9949 1.1855
1.0 0.7676 0.6467 0.7940 0.6634
10.0 0.3344 0.0517 0.3071 0.0881

Table 3.1: Comparison of steady state (η − ηs)/nkTλ and Ψ1/nkTλ
2 from moment

equations and simulation of Stewart and Sørensen [105]
.

the diffusion equation Stewart and Sørensen [105] used an expansion with M =

22, which is equivalent to introducing a closure approximation for the 22nd order

moment of the orientational distribution function. In doing so they avoid the need to

introduce a closure approximation for the sixth moment. In this example, however, we

avoid the closure approximation by building a coarse time-stepper for 15 independent

components of the fourth moment. Doing so will allow for determination of the

material functions, which are a function of second and fourth moments only, by

evolving the diffusion equation for a fixed and short time-horizon.

For the purpose of illustration we exclusively focus on De = 1.0 and De = 10 in the

remaining discussion since there is good agreement between the moment equations

and direct simulation for De = 0.1. We begin by observing the eigenspectrum for

the Jacobian of the right hand side of the diffusion equation at steady state. This

is shown in Fig. 3-3. The first and most important thing to observe is the existence
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Figure 3-3: Eigenspectrum for the Jacobian of the diffusion equation at De = 1.0 and
De = 10.0 with M = 22

Coarse Time-stepper
De Stewart and Sørensen [105] τ = 0.05 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.5
1 0.7676 0.7681 0.7680 0.7677 0.7677 0.7677
10 0.3344 0.3514 0.3613 0.3363 0.3325 0.3403

Table 3.2: Steady state of shear viscosity from coarse time-stepper for varying time
horizons

of gaps in the eigenspectrum at De = 1.0 and how this changes for De = 10.0. As

discussed already, these gaps suggest that a coarse time-stepper may be constructed

with a time horizon dictated by the inverse of the eigenvalues. In particular, for

De = 1.0 there are gaps between the first three eigenvalues at approximately −1,

the next five eigenvalues at approximately −3 and so on. For this reason, we use

time horizons of τ = {0.05, 0.1, 0.2, 0.3, 0.5} for our simulations. The steady state

results for the shear viscosity and first normal stress coefficient for these time horizons

are summarized in Tables 3.2 and 3.3, respectively. It can be observed that the

results from the coarse time-stepper are in better agreement with direct simulation

Coarse Time-stepper
De Stewart and Sørensen [105] τ = 0.05 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.5
1 0.6467 0.6495 0.6490 0.6482 0.6477 0.6470
10 0.0517 0.0380 0.0451 0.0511 0.0495 0.0516

Table 3.3: Steady state of first normal stress coefficient from coarse time-stepper for
varying time-horizons
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when compared with those of the moment equations. Additionally, the agreement

improves with increasing time horizon. In particular, it can be observed that the

agreement is better for De = 1.0 than that for De = 10.0. This can be understood

clearly by considering that even though there are 15 independent unknowns in the

coarse time-stepper, the actual dimension of the coarse time-stepper is 8. This is

because we can eliminate A0
0 due to the normalization conditions and all coefficients

with odd m due to fore-aft symmetry of the dumbbell. Even though the spherical

harmonics corresponding to these remaining coefficients are not necessarily equal to

the eigenfunctions corresponding to the 8 right most eigenvalues in Fig. 3-3(a), the

existence of a gap after these eigenvalues does suggest existence of a closure in term

of 8 spherical harmonic coefficients. On the other hand, a similar gap does not exist

for the eigenspectrum at De = 10.0, suggesting that our assumed closure will never

converge to the exact solution, which is exactly what is observed in Tables 3.2 and 3.3.

In addition to the steady state results, we also obtain the eigenspectrum for the

coarse time-stepper at steady state in Figs. 3-4 and 3-5, where the exact eigenvalues

are compared with the Ritz values obtained from the Arnoldi process at the last

Newton step before convergence. First, it can be observed that the eigenvalues begin

to cluster around unity with increasing time horizon for the coarse time-stepper, which

is beneficial for GMRES iterations. Second, the number of Ritz values returned by

Arnoldi iterations at the last Newton iteration are not always equal to the number of

exact eigenvalues. This is because GMRES iterations never compute the full Newton

step, and instead accept a step that satisfies the inexact Newton condition, or a

sufficient decrease in the nonlinear residual. Better estimates can be obtained for

the eigenvalues by increasing the number of Arnoldi iterations at the last Newton

step. To illustrate this, improved Ritz values are shown in Fig. 3-6 for De = 1.0

and De = 10.0. These new estimates should be compared to Figs. 3-4(d) and 3-5(c)

where four and five Arnoldi iterations, respectively, were sufficient to converge to

steady state. In contrast, in Figs. 3-6(a) and 3-6(b), we used nine and eight Arnoldi

iterations, respectively, which yield Ritz values in far better agreement with the exact
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Figure 3-4: Comparison of exact eigenvalues and Ritz values from Arnoldi iterations
for the coarse time-stepper at De= 1.0
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Figure 3-5: Comparison of exact eigenvalues and Ritz values from Arnoldi iterations
for the coarse time-stepper at De= 10.0

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ℜ

ℑ

Exact eigenvalues
Ritz values

(a) De = 1.0, τ = 0.5

0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

ℜ

ℑ

Exact eigenvalues
Ritz values

(b) De = 10.0, τ = 0.3

Figure 3-6: Comparison of exact eigenvalues and Ritz values with increased Arnoldi
iterations
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eigenvalues. This shows that by increasing the number of Arnoldi iterations, one can

obtain sufficiently accurate estimates for the exact eigenvalues of the coarse time-

stepper and use them to perform stability/bifurcation analysis.
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Figure 3-7: Eigenspectrum for the diffusion equation time-stepper at De = 10.0 with
τ = 0.5

To obtain better results for the the steady state shear viscosity and first nor-

mal stress coefficient at De = 10.0, the time stepper for the diffusion equation was

treated as a black box code similar to the coarse time-stepper. The steady state re-

sults were then obtained by calling this time-stepper from a Newton-GMRES solver.

This process yielded steady state shear viscosity and first normal stress coefficient in

perfect agreement with those of Stewart and Sørensen [105]. The corresponding eigen-

spectrum at steady state is shown in Fig. 3-7, which illustrates that only 3 Arnoldi

iterations were required at the last Newton step, as evident from the three Ritz values

shown in the plot. It is important to note that 3 Arnoldi iterations are sufficient to

yield a very good estimate for the eigenvalue farthest from unity, which is exactly the

eigenvalue of interest in a stability calculation. Most importantly, however, a direct

comparison of the convergence of Newton-GMRES computation (Fig. 3-8) for the dif-

fusion equation time stepper and the coarse time-stepper constructed in this example,
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Figure 3-8: Convergence of Newton-GMRES computation of the steady state for the
diffusion equation time-stepper and coarse time-stepper at De = 10.0 with τ = 0.5

shows that application of Newton-GMRES solver to the Fokker Planck equation has

better convergence that the coarse time-stepper.

In conclusion, this example demonstrates that if the dynamical system of interest

possesses a slow manifold, one can then compute coarse steady states by choosing

either a time-stepper that consists of the complete set of dynamical unknowns or

by building a coarse time-stepper at a level at which one expects closure to exist,

without invoking unnecessary closure approximations. This is only possible because

the Jacobian matrices with either time-stepper have distinct gaps in the corresponding

eigenspectrum, which can be exploited by a Newton iterative method like Newton-

GMRES that essentially takes advantage of the existence of a closure, albeit and

unknown one to compute the coarse steady state. Finally, the extreme eigenvalues

of the dynamical problem can also be obtained readily by increasing the number of

Arnoldi iterations within the Newton-GMRES solver.
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Figure 3-9: The bead spring chain model for a linear polymer molecule

3.4.2 Bead-Spring Chain Model in Steady Shear and Uniax-

ial Elongation

Langevin Equation

We begin with the Langevin equation for a bead spring chain consisting of N beads

connected by N −1 springs (see Fig. 3-9). This equation describes the time evolution

of the connector vectors Qi (i = 1, . . . , N − 1) of the chain as

dQi

dt
= κ · Qi −

1

ζ

N−1
∑

j=1

AijF
(c)
j +

√

2kT

ζ

(dW i+1 − dW i

dt

)

(3.47)

where Aij is the Rouse matrix, κ = ∇vT , ζ is the isotropic drag coefficient, W ν(t)

is the Wiener process that accounts for the Brownian force experienced by bead ν,

and F
(c)
j is the connector force in spring j given by F

(c)
j =

HQj

1 − Q2
j

Q2
j,0

. This equation

is equivalent to the Fokker-Planck equation for the phase-space distribution func-

tion [83]. Here we have used the FENE force law with spring constant H. We now

define the following dimensionless variables, where the superscript * denotes variables

with dimensions

Q =
Q∗

√

kT/H

t =
t∗

λ1

κ =
κ∗

U/L

W =
W ∗

√
λ1

(3.48)
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In these definitions λ1 =
ζ

8H sin2 π
2N

is the longest Rouse relaxation time, whereas

U and L are the characteristic velocity and length scales for the flow problem. In

addition, we also define the maximum extensibility parameter for each chain segment

given by bj =
HQ2

j,0

kT
and rewrite the Langevin equation as,

dQi

dt
= De κ · Qi −

1

α1

N−1
∑

j=1

Aij

Qj

1 − Q2
j

bj

+
1

α2

(dW i+1 − dW i

dt

)

(3.49)

where α1 = 8 sin2 π
2N

, α2 = 2 sin π
2N

, and De = λ1U
L

is the Deborah number for the

flow. Forward time integration of the stochastic differential in Eq. 3.49 to create

an ensemble of trajectories for the polymer molecules is at the core of Brownian

Dynamics simulation method for studying the dynamics of complex fluids.

Numerical integration algorithm

Due to the use of random numbers to represent the Wiener process in the Langevin

equation, there is always the possibility that the forward Euler integration algorithm

may result in unrealistic chain segment extensions that add up to more than the

maximum possible contour length of the chain. While this could be avoided through

an algorithm that rejects unrealistic moves for the chain, the generation of unnecessary

random numbers and the complementary limitation of the time-step for such an

algorithm leads to a simulation with a large computational cost. As a result, we

use a predictor-corrector based scheme, in which no trajectory is rejected due to an

implicit treatment of the connector force in a given segment, while also allowing for

larger time steps than those possible with the Euler scheme.

Predictor Step In formulating the predictor step, we use backward Euler approx-

imation for the spring force in segment i, and forward Euler for the spring force in

all other segments. With this approximation, we obtain the following expression for
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the predicted connector vector,

[

1 +
2∆t

α1

(

1 − Q̂2
i

bi

)

]

Q̂i = Q̄i +

[

De κ · Q̄i −
1

α1

N−1
∑

j=1,j 6=i

Aij

Q̄j

1 − Q̄2
j

bj

]

∆t

+
1

α2

(∆W̄ i+1 − ∆W̄ i)

(3.50)

where Q̄i and W̄ i are the initial connector vector and random numbers, while Q̂i is

the predicted value. As evident from the form of the above expression, we must solve

a cubic equation for Q̂i due to the implicit treatment of the corresponding force term.

It can be shown the this cubic equation has a real root less than
√
bi.

Corrector Step For the corrector step we use a modification of a second order

Adams-Moulton scheme for the spring force in segment i. Given an ordinary differ-

ential equation, dy
dt

= f(t, y), the second order Adams-Moulton scheme yields

yn+1 = yn + ∆t
[1

2
f(tn, yn) +

1

2
f(tn+1, yn+1)

]

(3.51)

This is an implicit scheme that uses an average of the function at time tn and tn+1 to

compute the update. In our formulation, we treat the spring force in segment i im-

plicitly, while using the predictor result to compute the average of the hydrodynamic

term and the contribution from spring forces in all other segments. We thus have

[

1 +
∆t

α1

(

1 − Q2
i

bi

)

]

Qi = Q̄i +
De

2

[

κ · Q̂i + κ · Q̄i

]

∆t

− 1

2

[

1

α1

N−1
∑

j=1,j 6=i

Aij

[

Q̂j

1 − Q̂2
j

bj

+
Q̄j

1 − Q̄2
j

bj

]

]

∆t

− 1

α1

Q̄i

1 − Q̄2
i

bi

∆t+
1

α2

(∆W̄ i+1 − ∆W̄ i)

(3.52)

This equation is also a cubic equation for the connector vector update Qi at the next

time step. It must be noted that the random numbers generated for the predictor
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step are reused in the corrector step.

Coarse Time-stepper

The combination of Eqs. 3.50 and 3.52 is sufficient to formulate a black-box code that

can evolve the conformation of the bead-spring chain over a specified time horizon.

However, we still need to choose a set of coarse variables that may then be used to

construct a coarse time-stepper. The inspiration for the coarse set comes from the

Kramer’s expression used to evaluate the polymer contribution to the fluid stress

tensor [9]

τ p =
N−1
∑

j=1

τ p,j =
N−1
∑

j=1

(

δ −
〈

F
(c)
j Qj

〉)

(3.53)

where 〈·〉 is the ensemble average and the total contribution is a sum over the con-

tributions from each chain segment. If we choose the polymer contribution to the

stress tensor as the coarse variable, Eq. 3.53 would then constitute the restriction

step. However, the inverse of this or the lifting operator is clearly not unique, since

this would involve constructing an ensemble of conformations consistent with the

total contribution to the stress tensor. To help with the choice of the lifting step

we, therefore, look at the macroscopic quantities one would measure in a rheological

experiment in the laboratory to validate the Brownian dynamics simulation.

In this section we consider the bead-spring chain undergoing steady shear and

steady uniaxial elongation flow. For steady shear flow, one can measure three material

functions, namely the viscosity η, and the first and second normal stress coefficients,

Ψ1 and Ψ2, respectively. For steady shear flow, vx = γ̇y, vy = 0, and vz = 0, these

materials functions can be obtained from τp,xy, τp,xx−τp,yy, and τp,yy−τp,zz, whereas for

steady uniaxial elongation flow, vx = − ǫ̇
2
x, vy = ǫ̇

2
y, and vz = ǫ̇z, we can only obtain

one material function, the extensional viscosity η̄ from τp,zz − τp,xx. If the stochastic

simulation consisted of a single spring, i.e. an elastic dumbbell, these components of

the polymer contribution to the stress tensor would serve as the natural choice for

the coarse set. Hence, it seems reasonable to choose contributions from the chain

segments for these same components of the stress tensor as the coarse set for our
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problem.

Interestingly, if we choose to express chain segment conformation in cartesian

coordinates, we will need to solve for three unknowns {Qx,j, Qy,j, Qz,j} in order to

construct a chain segment conformation. For the steady shear flow problem, this

should be trivial since each chain segment contributes three variables to the coarse

set. On the contrary, the same is not true for the steady elongation flow, where the

three unknowns {Qx,j, Qy,j, Qz,j} must be constructed from a single coarse variable,

(τp,zz − τp,xx)j. However, for steady elongation flow, one would expect chain segments

to align primarily in the z direction. Hence, as a first approximation one may choose

to set {Qy,j, Qz,j} to zero.

So far, we have not addressed the issue of initializing an ensemble of segment

conformations since we do not know the corresponding distribution function. For the

work presented here, we assume that the distribution function is a delta function such

that all components of the ensemble are identical. Hence, the distribution function

is given by

fN−1 =
N−1
∏

j=1

f j(Qx,j, Qy,j, Qz,j)

=
N−1
∏

j=1

δ(Qx,j − xj)δ(Qy,j − yj)δ(Qz,j − zj)

(3.54)

where {xj, yj, zj} are the lifted values of the microscopic variables {Qx,j, Qy,j, Qz,j}.
This introduces an unknown error in the lifting step in addition to the approximation

{Qy,j, Qz,j} = {0, 0} for uniaxial elongation. Table 3.4 summarizes the discussion

for the lifting steps for steady shear and steady uniaxial elongation flows, where

it is understood that the microscopic unknowns are given by {xj, yj, zj} for j =

1, 2, . . . , N − 1.

Results

We used the lifting steps summarized in Table 3.4 and the restriction step given by

Eq. 3.53 to construct a coarse time-stepper for a bead-spring chain consisting of 6

beads with a total maximum extensibility of b = 120. For the Brownian dynamics
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Flow Type Coarse Variables Lifting Step

Steady shear

(τyx)j

(τxx − τyy)j

(τyy − τzz)j

x2
jy

2
j

1 − (x2
j + y2

j + z2
j )/bj

= (τyx)j

y2
j − x2

j

1 − (x2
j + y2

j + z2
j )/bj

= (τxx − τyy)j

z2
j − y2

j

1 − (x2
j + y2

j + z2
j )/bj

= (τyy − τzz)j

Uniaxial elongation (τzz − τxx)j xj = 0, yj = 0,
−z2

j

1−x2
j/b

= (τzz − τxx)j

Table 3.4: The lifting step for the free-draining bead spring chain model in steady
shear and uniaxial elongation flows
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Figure 3-10: Variation of shear viscosity with dimensionless shear rate λγ̇. The error
bars denote one unit of standard error at steady state as computed from Brownian
dynamic simulation.
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simulator, we chose an ensemble size of 1000 with a time-step of ∆t = 0.01. Steady

state results were obtained by time integrating the Brownian dynamics simulator to

tfinal = 10, while the time-horizon of the coarse time-stepper was set to τ = 1.0.

The steady state results for several values of the dimensionless shear and extension

rates were computed from direct simulation and compared with steady state results

obtained by making calls to the coarse time-stepper from a Newton-GMRES solver.

For steady shear flow, the profiles for the steady state shear viscosity and first

normal stress coefficient as a function of dimensionless shear rate are shown in Figs. 3-

10 and 3-11, respectively. It can be observed that there is excellent agreement between

the results of the direct simulation and Newton-GMRES, such that the steady state

computed from Newton-GMRES is within the standard error of the steady state

result from the detailed time-stepper. The ensemble size of 1000 was found to be

the minimum ensemble size necessary in order to converge with the Newton-GMRES

solver. This situation was not remedied by increasing the time-horizon of the coarse

time-stepper. This suggests that since Newton-GMRES estimates the action of the

unknown Jacobian of the closed description by calling the coarse time-stepper, the

latter must return sufficiently accurate estimates when called from nearby initial

conditions.

For steady uniaxial elongational flow, the profile for the extensional viscosity as

a function of dimensionless extension rate is shown in Fig. 3-12. Once again we

find excellent agreement between the steady state computed from Newton-GMRES

solver and direct simulation for the entire range of dimensionless extension rates, with

perfect agreement for λǫ̇ > 1. More importantly, the results extend to dimensionless

extension rates lower than the dimensionless shear rates that were studied for the

steady shear flow problem.

In conclusion, we find that the coarse time-stepper for a stochastic simulator

can indeed be enabled to yield macroscopic stationary states, provided the underling

stochastic simulator yields macroscopic quantities with small variance. This require-

ment should be easy to appreciate when considering that we are trying to estimate

a steady state by using a simulator that does not have a “true” microscopic steady
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state.

3.5 The Finite Element Method

The finite element method is a type of weighted residual method used to obtain

approximate solutions for a wide class of boundary value problems. In particular,

the approximate solution is represented as an expansion in a convenient (and finite)

set of linearly-independent basis function with unknown coefficients. Substituting

the expansion in the governing ordinary or partial differential equation results in an

error, called the residual. In order to determine the unknown coefficients the residual

is orthogonalized against a set of linearly-independent basis functions. While there

are several sets of functions against which one may orthogonalize, choosing the same

basis functions as the ones in the original expansion provides one way of finding the

coefficients. This is known as the Galerkin approach, or the Galerkin finite element

method.

Spatial discretization of the conservation of mass and momentum or the constitu-

tive equation via the Galerkin finite element method yields a set of algebraic or ordi-

nary differential equations. Since this is the primary task of computational rheology,

we describe the Galerkin finite element method for spatial discretization by consider-

ing the standard diffusion equation in one spatial dimension. This problem is repre-

sentative of Stokes flow of a Newtonian fluid in a channel, which is considered next.

The equations for the Newtonian fluid are then adapted into the one-dimensional

discrete elastic-viscous split-stress gradient (DEVSS-G) formulation, which is con-

structed by the introduction of the velocity gradient interpolant and a constitutive

equation for the polymer contribution to the stress tensor. In particular, we will only

consider the steady problem, as the method can be easily extended to the unsteady

problem with a time integration method of choice.

In addition to discussion of the Stokes problem, numerical methods appropriate

for hyperbolic problems are also discussed. This is relevant as the constitutive de-

scriptions considered in this thesis are hyperbolic in nature. First, it is shown why
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the standard Galerkin approach fails for the hyperbolic problem. This is followed by

a short description of the discontinuous Galerkin method for hyperbolic problems and

details of how to deal with the convective term encountered in various constitutive

descriptions for the polymer contribution to the fluid stress. It is important to note

that the details provided in this section are by no means comprehensive when trying

to understand the finite element method and only serve to illustrate how the method

is used for simulating complex viscoelastic flows. To learn further details about the

method, the reader should refer to more general texts [45, 90].

3.5.1 The diffusion equation

Consider the two point boundary value problem for the unknown u(x) on the domain

0 ≤ x ≤ 1

−d
2u

dx2
= f (3.55)

with boundary conditions

u(0) = 0 (3.56)

du

dx

∣

∣

∣

x=1
= 0 (3.57)

This problem can be solved by integrating Eq. 3.55 twice and using the boundary

conditions in Eqs. 3.56 and 3.57. An equivalent formulation for the problem is to find

a function u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V (3.58)

where the functionals a(., .) and (., .) are defined as

a(u, v) ≡
∫ 1

0

du

dx

dv

dx
dx (3.59)

(f, v) ≡
∫ 1

0

fvdx (3.60)
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and the function space V is defined as

V = {v : v ∈ C0 on [0, 1], v(0) = 0}

that is V is a function space consisting of continuous functions, C0, on the domain

[0, 1] such that v(0) = 0. The two formulations can be shown to be equivalent by

rewriting a(u, v) as

a(u, v) = −
∫ 1

0

v
d2u

dx2
dx+ v

du

dx

∣

∣

∣

1

0

and subtracting (f, v) to get

a(u, v) − (f, v) = 0 = −
∫ 1

0

v
(d2u

dx2
+ f
)

dx+ v
du

dx

∣

∣

∣

1

0
(3.61)

If a solution has been found to the boundary value problem in Eq. 3.55, then it can

be seen that the integrand in Eq. 3.61 is zero along with the last term due to the

requirement that v(0) = 0 and the boundary condition
du

dx

∣

∣

∣

x=1
= 0.

The above argument demonstrates that the solution of the “weak formulation” of

Eq. 3.58 is equivalent to the classical or “strong formulation” of Eqs. 3.55 to 3.57. The

weak form of any differential equation is constructed by multiplying the differential

equation by a test function, v, and then integrating over the spatial domain. Boundary

conditions are enforced according to their type. Dirichlet boundary conditions like

Eq. 3.56 are handled by the choice of the function space V such that it contains only

those functions that satisfy the boundary condition, whereas Neumann boundary

conditions like that in Eq. 3.57 are enforced through the boundary integral term (the

last term in Eq. 3.61). Such boundary conditions are also referred to as “natural”

boundary conditions.

Minimization principle

The model boundary value problem can also be formulated as a minimization problem

to find u ∈ V such that

F (u) ≤ F (v) ∀v ∈ V (3.62)
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where the linear functional F is defined as

F (v) ≡ 1

2
a(v, v) − (f, v). (3.63)

To show that a solution u for Eq. 3.55 satisfies Eq. 3.63, we choose a function w = u+v

such that w also belongs to the function space V . Substituting this into Eq. 3.63 yields

F (w) = F (u+ v) =
1

2
a(u+ v, u+ v) − (f, u+ v)

F (w) =
1

2
a(u, u) +

1

2
a(v, v) + [a(u, v) − (f, v)] − (f, u)

(3.64)

The term in the square brackets is zero, which yields the final result that

F (w) = F (u) +
1

2
a(v, v) ≥ F (u). (3.65)

Hence, solving the minimization problem in Eq. 3.63 provides a solution u to the weak

formulation. The minimization problem can be understood more clearly by defining

w = u+ εv with w, v ∈ V and defining a new function g(ε) such that

g(ε) ≡ F (w) = F (u+ εv) =
1

2
a(u, u) + εa(u, v) +

ε2

2
a(v, v) − (f, u) − ε(f, v) (3.66)

If the functional F is minimized by the function u, then the function g has a minimum

at ε = 0 with
dg

dε

∣

∣

∣

ε=0
= 0. Hence

dg

dε

∣

∣

∣

ε=0
= 0 = a(u, v) − (f, v) (3.67)

which is exactly the weak formulation of Eq. 3.58. The ability to write Eq. 3.58 as

a minimization problem is useful when obtaining the Galerkin approximation to the

conservation of momentum equation.
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Ritz-Galerkin Approximation

The spatial discretization of boundary value problems can be formulated by applying

the Ritz-Galerkin approximation, where the infinite dimensional function space V

is replaced by a finite dimensional subspace Vh ⊂ V , so that the weak formulation

changes to finding uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh (3.68)

The functions in Vh can be written as vh(x) =
∑

i ciφi(x) where {φi(x)} define a set

of linearly independent basis functions that span the function space Vh. The task of

finding a solution to Eq. 3.68 is then reduced to a linear algebra problem

Auh = b (3.69)

where Aij ≡ a(φi, φj), uh is the vector of coefficients in the expansion uh(x) =
∑

j uh,jφj(x), and bi ≡ (f, φi). Because the basis functions {φi} are linearly indepen-

dent, Eq. 3.69 has a unique solution.

In general the choice of the approximation space Vh is dictated by the form of

a(u, v) and (f, v). For the diffusion equation, the weak formulation only requires that

products of the gradients of u and v and the functions f and v be L2-integrable. The

most general Vh under these conditions is the space of all functions whose derivatives

up to the first order are in L2. However, this space does not take into account the

boundary conditions. The functions in Vh must be restricted to have zero values on

the boundary as well. In the finite element method, the space Vh consists of low degree

polynomials defined on a finite number of subintervals, Ij, or elements of the original

domain, [0, 1]. Common approximation spaces include piecewise linear and piecewise

quadratic functions on each element. For the diffusion equation, the function space

V is continuous, so the approximation space Vh should have C0 continuity as well.

However, for other equations, continuity at the element boundaries is not required.
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The piecewise linear and piecewise quadratic approximation spaces are defined as

Vh =

{

v : v ∈ C0 on [0, 1], v|Ij
∈ Π1, v(0) = 0

}

(3.70)

and

Vh =

{

v : v ∈ C0 on [0, 1], v|Ij
∈ Π2, v(0) = 0

}

(3.71)

where Πn is the set of all real polynomial whose degrees do not exceed n. Here v|Ij

represent the restriction of the function v to the subinterval or element Ij. If {xj},
for j = 1, . . . , n are the nodes of the finite element mesh, then a function vi in Vh

can be associated with each node xj so that the family of functions vi satisfies the

following condition

vi(xj) = δij (3.72)

where δij is the Kronecker delta and a basis which satisfies Eq. 3.72 is called a nodal

basis.

3.5.2 The momentum balance for Stokes flow

Having considered the finite element formulation for the diffusion equation, it becomes

relatively straightforward to consider the corresponding formulation for Stokes flow of

a Newtonian fluid in one spatial dimension. For fully developed flow, the momentum

equation is given by

−d
2u

dx2
+
dp

dy
= f (3.73)

where u is the flow velocity in the y direction,
dp

dy
the corresponding pressure drop,

and f is a body force such as gravity. For boundary conditions, we consider symmetry

boundary condition at the center of the channel and no-slip at the wall, i.e.

du

dx

∣

∣

∣

x=0
= 0 (3.74)

and

u(1) = 0. (3.75)
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If f and the pressure drop are specified, then the method described for the diffusion

equation can be applied directly to find an approximate solution to this problem.

Post-processing of the solution can then yield the volumetric flow, if so desired.

However, if the volumetric flow rate is specified instead, the pressure drop must

also be determined as part of the weak formulation. One way to address this problem

is to define a functional to be minimized like in Eq. 3.63 that takes into account the

flow rate constraint. One can construct such a functional by introducing the pressure

drop as a Lagrangian multiplier in the functional defined previously, Eq. 3.63. This

yields a functional

Λ(u, λ) = F (u) − λ
(Q

2
−
∫ 1

0

u dx
)

(3.76)

which is then minimized by a solution u for the velocity and λ for the pressure drop,

which now appears as a Lagrange multiplier. Since the multiplier is a real constant,

we now seek to minimize the functional Λ with respect to perturbations v ∈ V and

c ∈ ℜ in velocity and pressure drop, respectively. Following the procedure described

previously, we define the function

g(ε, δ) = Λ(u+ εv, λ+ δc) = F (u+ εv) − (λ+ δc)
(Q

2
−
∫ 1

0

(u+ εv) dx
)

=
1

2
a(u, u) + εa(u, v) +

ε2

2
a(v, v) − (f, u) − ε(f, v)

− (λ+ δc)
(Q

2
−
∫ 1

0

(u+ εv) dx
)

(3.77)

This leads to the minimization conditions

dg

dε

∣

∣

∣

δ=0
= 0 = a(u, v) − (f, v) + λ

∫ 1

0

v dx ∀v ∈ V (3.78)

dg

dδ

∣

∣

∣

ε=0
= 0 = c

(Q

2
−
∫ 1

0

u dx
)

∀c ∈ ℜ (3.79)

Application of the Ritz-Galerkin approximation to this formulation yields the solution

to the momentum equation.
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Failure of viscous formulation in β → 0 limit

While the finite element formulation just presented for the momentum balance is

sufficient to obtain a solution for a Newtonian fluid, it fails when applied to the

momentum balance which incorporates polymer contribution to the fluid stress tensor.

This can be understood clearly by considering the momentum balance for Stokes flow

∇ · (τ + pδ) = 0 (3.80)

where τ = −ηsγ̇ + τp is the total fluid stress. Substituting this expression into

Eq. 3.80 yields

−β∇2u + ∇ · τp + ∇p = 0 (3.81)

where β ≡ ηs/η0 is the dimensionless solvent viscosity. A quick look at Eq. 3.81

suggests that any finite element formulation for the momentum balance must be

solvable in the β → 0 limit for simulation of viscoelastic flows. Here it will be

shown that the finite element formulation presented previously for the Newtonian

fluid will be unsuitable in the β → 0 limit and a different formulation must therefore

be constructed.

To illustrate this, consider the one-dimensional version of Eq. 3.81 along with a

Newtonian constitutive equation for the polymer contribution to the fluid stress. This

yields the following system of equations

−βd
2u

dx2
+
dτp
dx

+ λ = 0 (3.82)

τp = −(1 − β)
du

dx
(3.83)

Q

2
=

∫ 1

0

u dx (3.84)

Using the result presented in Eqs. 3.78 and 3.79 the corresponding finite element
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formulation is

βa(uh, vh) +
(dτph

dx
, vh

)

+ (λ, vh) = 0 ∀vh ∈ Vh

(τph, sh) + (1 − β)
(du

dx
, sh

)

= 0 ∀sh ∈ Sh

(Q

2
−
∫ 1

0

u dx, c
)

= 0 ∀c ∈ ℜ

(3.85)

where Vh = {v : v ∈ Π2, v(1) = 0} and Sh = {s : s ∈ Π1}. This is called the viscous

formulation where the elliptic term in Eq. 3.81 is simply replaced by a(uh, vh). Since

the scaling with β is retained, the viscous formulation is singular in the limit β → 0.

This can be demonstrated with a simple case where only a single element is defined

on the domain x ∈ [0, 1] with xi = {0, 1
2
, 1} for i = 1, 2, and 3. The nodal bases {ψi}

and {φi} for Π1 and Π2, respectively, are given by

ψ1 = 1 − x

ψ2 = x

φ1 = 2(x− 1)
(

x− 1

2

)

φ2 = 4x(1 − x)

φ3 = 2x
(

x− 1

2

)

(3.86)

Using these bases with the viscous formulation yields the following system of linear

algebraic equations for the coefficients uhi and τphi in the basis function expansions

for the velocity and stress











A B C

D E 0

CT 0 0





















uh

τ ph

λ





















0

0

Q
2











(3.87)

where uh ≡ [uh1, uh2, uh3]
T and τ ph ≡ [τph1, τph2]

T are the vectors of coefficients in the

expansion for velocity and polymer contribution to the stress tensor. The submatrices
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in Eq. 3.87 are defined as

Aij ≡ a(φi, φj) i, j = 1, 2, 3

Bij ≡
(

φi,
dψj

dx

)

i = 1, 2, 3; j = 1, 2

Ci ≡ (φi, 1) i = 1, 2, 3

Dij ≡
(

ψi,
dφj

dx

)

i = 1, 2; j = 1, 2, 3

Eij ≡ (ψi, ψj) i, j = 1, 2

(3.88)

In this linear system uh ∈ Π2 instead of uh ∈ Vh. The latter condition can be met by

imposing the essential boundary condition, Eq. 3.75 by zeroing the third row of the

matrix in Eq. 3.87 and placing a one on the diagonal. The final form of Eq. 3.87 with

imposition of the essential boundary condition and computed inner products becomes





























7β
3

−8β
3

β
3

−1
6

1
6

1
6

−8β
3

16β
3

−8β
3

−2
3

2
3

2
3

0 0 1 0 0 0

−5(1−β)
6

2(1−β)
3

1−β
6

1
3

1
6

0

−1−β
6

−2(1−β)
3

5(1−β)
6

1
6

1
3

0

1
6

2
3

1
6

0 0 0

























































uh1

uh2

uh3

τph1

τph2

λ





























=





























0

0

0

0

0

Q
2





























(3.89)

Solving this linear system leads to the correct solution for the boundary value problem,

uh(x) =
3Q

4
(1 − x2)

τph = (1 − β)
3Q

2

λ = −3Q

2

(3.90)

However, the determinant of the matrix in Eq. 3.89 is equal to −4β/7, so the viscous

formulation is singular for β = 0. This simple example demonstrates that the viscous

formulation cannot be used for discretization when using a model where the solvent

viscosity is zero. It is important to note that this result has nothing to do with the
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constitutive equation used for the polymer contribution to the stress tensor. Instead

the result demonstrates that the elliptic term in the momentum balance must be

retained in the β → 0 limit.

Alternative formulations and DEVSS-G

Several alternative formulations have been proposed and used in the literature for

the momentum balance Baaijens [4] that retain the elliptic term. For purposes of

discussion only the Elastic-Viscous Split Stress (EVSS) method of Rajagopalan et al.

[88] and the Discrete Elastic-Viscous Split Stress (DEVSS) formulation of Guenette

and Fortin [46] are discussed here.

In the EVSS formulation the polymer contribution to the stress tensor is split into

viscous and elastic parts

τ p = −(1 − β)γ̇ + Σ (3.91)

to yield a modified momentum balance

−∇2u + ∇ · Σ + ∇p = 0 (3.92)

In this new formulation the term ∇2u is no longer scaled with β but requires rewriting

the constitutive equation in terms of the elastic stress Σ. This often leads to an

equation more complicated that the original constitutive equation. For example, the

upper convected Maxwell model becomes

Σ + λ[Σ(1) − (1 − β)γ̇(1)] = −(1 − β)γ̇ (3.93)

where the term γ̇(1) contains second order derivatives of the velocity, similar to the

elliptic operator in the momentum equation. In a finite element formulation this term

would, therefore, require a boundary condition on the entire boundary of the com-

putational domain, which is not appropriate for a hyperbolic equation like Eq. 3.93.

For this reason, Rajagopalan et al. [88] introduced a piecewise linear, continuous
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interpolant for each ij component of the rate of strain tensor such that

({γ̇h − (∇uh + ∇uT
h )}ij, sh) = 0 ∀sh ∈ Sh (3.94)

This interpolant is then used in the constitutive equation 3.93 for calculation of the

term γ̇(1). Brown et al. [13] introduced a slight modification to this called the EVSS-

G (Elastic-Viscous Stress Split Gradient) formulation where the momentum balance

remained unchanged as Eq. 3.92 but the gradient of the velocity is interpolated instead

of the rate of tensor such that

({Gh − ∇uh}ij, sh) = 0 ∀sh ∈ Sh (3.95)

The components of the interpolant Gh are also chosen to be piecewise linear and

continuous, but in the EVSS-G formulation, the interpolant is used to evaluate both

γ̇(1) and Σ(1). Both these formulations have been used extensively with the UCM

and Oldroyd-B models Owens and Phillips [85] but they prove difficult to use with

more complicated constitutive equations, such as FENE-P model from kinetic theory

of polymers. Instead, Guenette and Fortin [46] proposed substituting Eq. 3.91 into

Eq. 3.92 to obtain

−∇2u + ∇·[τ p + (1 − β)(G + GT )] + ∇p = 0 (3.96)

such that the interpolant Gh is used in the original constitutive equation. This has

proven to be the most successful numerical formulation in viscoelastic fluid dynam-

ics [91, 4] when used in conjunction with a suitable formulation for the constitutive

equation. Revisiting the one-dimensional momentum balance that failed in the β → 0

limit (Eq. 3.85), the following formulation is obtained for DEVSS-G method on a sin-
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gle element

a(uh, vh) +
(dτph

dx
, vh

)

+ (1 − β)
(dGh

dx
, vh

)

+ (λ, vh) = 0 ∀vh ∈ Vh

(τph, sh) + (1 − β)
(

Gh, sh

)

= 0 ∀sh ∈ Sh

(Gh, sh) −
(duh

dx
, sh

)

= 0 ∀sh ∈ Sh

(Q

2
−
∫ 1

0

u dx, c
)

= 0 ∀c ∈ ℜ

(3.97)

Here it is assumed that the function space for Gh is the same as that for τph. Com-

puting the necessary inner products in Eq. 3.97 yields the final system









































7
3

−8
3

1
3

1
6
(−1 + β) 1−β

6
−1

6
1
6

1
6

−8
3

16
3

−8
3

−2
3
(1 − β) 2(1−β)

3
−2

3
2
3

2
3

0 0 1 0 0 0 0 0

5
6

−2
3

−1
6

1
3

1
6

0 0 0

1
6

2
3

−5
6

1
6

1
3

0 0 0

0 0 0 1−β
3

1−β
6

1
3

1
6

0

0 0 0 1−β
6

1−β
3

1
6

1
3

0

1
6

2
3

1
6

0 0 0 0 0

















































































uh1

uh2

uh3

τph1

τph2

Gh1

Gh2

λ









































=









































0

0

0

0

0

0

0

Q
2









































(3.98)

The determinant of the matrix in Eq. 3.98 is equal to −1/81, which shows that with

the DEVSS-G formulation the discrete form of the momentum balance in nonsingular

for all values of β. This formulation is, therefore, used in all calculations done with

the momentum balance in this thesis.

One final point to consider is the choice of function spaces when constructing

the finite element formulation for the momentum balance in more than one spatial

dimension. The approach is similar to what has been presented so far where an

appropriate functional to be minimized is defined for the momentum balance with the

continuity equation serving as the Lagrangian constraint rather than a constraint on

the flow rate. The resulting conditions from the minimization of this functional allows

for direct solution for the pressure and velocities. However, when applying the Ritz-
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Galerkin approximation, certain requirements on the function spaces for the velocity

and pressure must be met in order to obtain a unique solution to the momentum

balance. These requirements are given by the inf-sup or Babus̆ka-Brezzi condition [3].

Without providing details, it is sufficient to state that the function spaces used for

the one-dimensional problem (Eqs. 3.70 and 3.71) satisfy this condition. Details can

be obtained from the work of Fortin et al. [38] who performed a rigorous analysis of

the DEVSS-G formulation from a generalized Babus̆ka-Brezzi theory.

3.5.3 Hyperbolic PDEs

In addition to solution of the momentum balance, any viscoelastic flow simulation

must also consist of an appropriate treatment of the constitutive equation for polymer

contribution to the stress tensor. As discussed already, the constitutive equations are

typically either in the form of continuum-like evolution equations for average quan-

tities describing molecular conformations, or require direct solution of the Fokker-

Planck equation describing the distribution function for molecular orientations or

stochastic simulation of individual molecule trajectories. All these descriptions yield

partial differential equations that are hyperbolic in nature. This section demonstrates

why the standard Galerkin method fails for linear hyperbolic problems, and how to

treat the convective term in these constitutive equations with the stable and conver-

gent discontinuous Galerkin method.

Galerkin approximation for hyperbolic equations

For purposes of discussion we will consider a linear hyperbolic equation

C + v · ∇C = f (3.99)

which is defined on a domain Ω with boundary Γ with a forcing function f . The

inflow boundary of Ω is defined as Γinflow and is defined as the portion of Γ with

outward unit normal n where the inequality v · n < 0 is satisfied. Additionally, the

velocity field is assumed to be divergence free, i.e. ∇ · v = 0. The significance of this
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assumption will become clear shortly. We also introduce a a new inner product and

norm in addition to the inner product of Eq. 3.60 and the standard L2-norm

〈u,w〉 ≡
∮

Γ

(n · v)uwds (3.100)

|w| = 〈w,w〉
1
2 (3.101)

where Eq. 3.100 represents a line integral in ℜ2. If we now multiply Eq. 3.99 by a

test function C and integrate over the domain Ω in ℜ2 we obtain

(C,C) + (v · ∇C,C) = (f, C) (3.102)

The inner product between a test function w and the convective term in Eq. 3.99 can

be simplified to

∫

Ω

(v · ∇C)w dA =

∫

Ω

∇·(vCw) dA−
∫

Ω

(∇ · v)Cw dA−
∫

Ω

(v · ∇w)C dA

=

∮

Γ

(n · v)Cwds−
∫

Ω

(v · ∇w)C dA

(3.103)

This results allows for rewriting Eq. 3.102 as

(C,C) +
1

2
〈C,C〉 = (f, C) (3.104)

Since C is a solution of the original partial differential equation Eq. 3.99, an expression

can be obtained for the right hand side of Eq. 3.104 by using the following equality

(v · ∇C,v · ∇C) = (f − C, f − C)

= (f, f) − 2(f, C) + (C,C).
(3.105)

Substituting the expression for (f, C) in Eq. 3.104 yields the bounds on the value of

C and on its gradient in the streamwise direction in terms of the norm of the forcing

function f

|C|2 + ‖C‖2 + ‖v · ∇C‖2 = ‖f‖2 (3.106)

125



In trying to obtain a solution to Eq. 3.99 by using the standard Galerkin finite element

method, we get the following formation

(Ch, wh) + (v · ∇Ch, wh) = (f, wh) ∀wh ∈Wh (3.107)

where the function space Wh ≡ {w : w ∈ C0(Ω), w = 0 on Γ}. The corresponding

form of Eq. 3.104 is now

(Ch, Ch),
1

2
〈Ch, Ch〉 = (f, Ch) (3.108)

where we can no longer simplify the right hand side of Eq. 3.108 as before because

the solution Ch only satisfies Eq. 3.99 weakly. Instead, we use the Schwarz’ inequality

(f, Ch) ≤ (f, f)(Ch, Ch) (3.109)

to obtain the following condition on the norm

|Ch|2 + ‖Ch‖2 ≤ ‖f‖2‖Ch‖2 (3.110)

For problems with smooth solutions, this formulation of the model hyperbolic problem

leads to approximate solutions with good convergence properties since the norm of the

solution is bounded by the norm of the forcing function. However, if the solution has

sharp gradients, the approximate solution does not control the error in the gradient

of the solution in the streamwise direction. When sharp gradients occur, the solution

Ch over-estimates the magnitude of the gradient in order to minimize the error in Ch,

and because the functions in the approximating function space Wh are continuous, the

overshoot in the gradient leads to large oscillations within the surrounding elements.

This deficiency can be alleviated by either introducing a term which controls the

gradient, for e.g. numerical diffusion, or by relaxing the requirement that Ch be

continuous. This is primary reason for considering the discontinuous Galerkin method

for solution of hyperbolic constitutive equations.
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The Discontinuous Galerkin Method

The discontinuous Galerkin (DG) method was first introduced by Reed and Hill [91]

and has evolved considerably since then, gaining significant popularity in the last

decade and a half. The primary reasons for its popularity include some of the main

advantages of the finite element method over classical finite volume and finite dif-

ference methods, such as the ability to obtain solutions of arbitrarily high order of

accuracy by choosing the approximating polynomials of suitable order or the ability

to handle complicated geometries. More importantly, however, the DG method is

highly parallelizable since the approximating elements are discontinuous and decou-

pled, which leads to matrices of the same size as the number of degrees of freedom

inside a given element. This means that the matrices can be computed and inverted

once and for all. In addition, the method can easily handle mesh-adaptivity strate-

gies without taking into account the continuity restrictions typical of conforming

finite element methods. This is of critical importance in hyperbolic problems given

the complexity of the structure of the discontinuities [21].

Even though the theoretical and computational development of the method oc-

curred in the framework of linear hyperbolic systems and ordinary differential equa-

tions [45] significant developments have taken place in its use with parabolic prob-

lems and the numerical approximation of viscoelastic flows. During the evolution

of the method, it was first extended to nonlinear hyperbolic problems using implicit

schemes, which were later adapted to explicit schemes known as Runge-Kutte DG or

RKDG [22]. Following this important development with nonlinear hyperbolic prob-

lems, Bassi and Rebay [6] proposed an extension of DG for the discretization of

compressible Navier-Stokes. The resulting methods were highly parallelizable and of

high-order accuracy. This work was generalized with the introduction of the local

discontinuous Galerkin (LDG) method of Cockburn and Shu [23] who proved both

stability and high-order accuracy of the method. An excellent review of these methods

can be found in the text by Cockburn et al. [21].
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Ritz-Galerkin Approximation In the standard Galerkin method the unknown

function, say u, is approximated by piecewise continuous functions defined on each

element of the discretized mesh. Hence, the discretization of u, denoted by uh is

continuous. In contrast, in a discontinuous Galerkin finite element method, piecewise

continuous functions are defined on the element such that the value of the approxi-

mating function at a node when approached from the left or right is not continuous.

This is shown in Fig. 3-13 for piecewise linear basis functions.

Despite this main difference, the steps in a continuous or DG discretization are

the same. We first derive the weak formulation by multiplying the equation by an

arbitrary test function and integrate over the domain of validity. This is followed

by expanding the unknown function in each element in a series in terms of a finite

number of basis functions. Each basis function has compact support within each

element (see Fig. 3-14), that is the basis functions are only nonzero locally within an

element including the element boundary, and zero elsewhere. This expansion is then

substituted into the weak formulation and the test functions are chosen to be the same

as the basis functions. Finally, the integrals in the weak formulation are evaluated

using a local or reference coordinate system (also known as isoparametric coordinates)

(see Fig. 3-15) to yield the discretized weak formulation, which is typically a linear

or nonlinear algebraic system.

For the purpose of describing the finite element approximation using discontinuous

basis functions, we will consider the one-dimensional hyperbolic equation

∂C

∂t
+
∂(vC)

∂x
= −KC (3.111)

which describes the conservation of a chemical species being swept by flow in the x

direction with velocity v and consumed in a first order reaction with rate constant K.

Since solution to hyperbolic problems require the specification of an initial condition

and an appropriate boundary condition that takes into account the propagation of

information, proper specification of the term vC, which represents a flux, on element

boundaries is essential for communication between adjacent elements. This can be
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seen by considering the weak form of the convective term in Eq. 3.111

∫

Ω

∂(vC)

∂x
φi dx = vCφi

∣

∣

∣

Γ
−
∫

Ω

(vC)
∂φi

∂x
dx (3.112)

which shows that the weak formulation requires the specification of the flux on ele-

mental boundaries, such that it is consistent when viewed from either the upstream

or downstream element. There are several options that may be considered. One may

choose either the upstream or downstream flux or a combination, however, it makes

most sense to consider the upstream flux for an element since information travels

along “characteristics” or in the streamwise direction. A more rigorous explanation

of this choice can be found in the text by Cockburn et al. [21].

While this is sufficient to solve the problem, it is not always convenient to use

such a formulation as it requires additional book keeping for element orientation and

fluxes. This is particularly demanding for problems in more than one dimension. As

a result, we will now look at a different formulation that replaces the weak form of the

convective term with an appropriate correction on all inflow sides. Let us reconsider

the weak form of the convective term in three dimension such that the flux vC is

replaced by a flux f

∫

Ωe

(∇ · f)φi dV = −
∫

Ωe

(f · ∇φi) dV +

∫

Γe

φif · dA (3.113)

It is convenient to define a flux f in as the flux computed interior to an element, and

opposite to the outward unit normal direction on the element boundary, whereas f ex

denotes the flux computed exterior to an element in the direction of the unit normal

on the element boundary. Additionally, we divide the boundary of an element into

non-overlapping subsets that are considered inflow and outflow boundaries such that

Γe, in ≡ Γe : n · v < 0 (3.114)

Γe, out ≡ Γe : n · v ≥ 0 (3.115)

This allows us to rewrite the surface integral in Eq. 3.113 as a sum of integrals over
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the inflow and outflow boundaries such that

∫

Γe

φif · dA =

∫

Γe, in

φif · dA +

∫

Γe, out

φif · dA

=

∫

Γe, in

φif
ex · dA +

∫

Γe, out

φif
in · dA

(3.116)

where the flux on the inflow boundary is evaluated from the upstream side external to

the element, and the flux on the outflow boundary is also evaluated on the upstream

side, which is within the element. We can also rewrite the first term on the right

hand side of Eq. 3.113 as

−
∫

Ωe

(f · ∇φi) dV = −
∫

Ωe

(f in
· ∇φi) dV (3.117)

where flux is evaluated within the element as differentiation has been passed onto the

local basis functions. Combining Eqs. 3.116 and 3.117 we get

∫

Ωe

(∇ · f)φi dV = −
∫

Ωe

(f in
· ∇φi) dV +

∫

Γe, in

φif
ex ·dA+

∫

Γe, out

φif
in ·dA (3.118)

We now add and subtract the term

∫

Γe, in

φif
in · dA from the right hand side of

Eq. 3.118 to get

∫

Ωe

(∇ · f)φi dV = −
∫

Ωe

(f in
· ∇φi) dV +

∫

Γe, in

φif
ex · dA

+

∫

Γe, out

φif
in · dA +

∫

Γe, in

φif
in · dA −

∫

Γe, in

φif
in · dA.

(3.119)

The third and fourth terms on the right hand side of Eq. 3.119 can be rewritten as
∫

Γe

φif
in · dA leading to the simplification

∫

Ωe

(∇ · f)φi dV = −
∫

Ωe

(f in
· ∇φi) dV +

∫

Γe

φif
in · dA +

∫

Γe, in

φi[f
ex − f in] · dA

=

∫

Ωe

(∇ · f in)φi dV +

∫

Γe, in

φi[f
ex − f in] · dA

(3.120)
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Figure 3-13: In a continuous Galerkin finite element method, the unknown function
u = u(x) is approximated globally in a continuous manner (top figure). In contrast,
in a discontinuous Galerkin finite element method, the unknown u = u(x) is approxi-
mated globally in a discontinuous manner and locally in each element in a continuous
way (bottom figure). In this example the approximating basis are piecewise linear
functions.

This final result is at the heart of most DG implementations, where the convective

term is replaced by an evaluation of the flux within the element along with a jump

term across the inflow boundary of the element. This formulation is used for the

convective terms appearing in this thesis.

3.6 Bifurcation Analysis

The methods described so far allow the computation of a single stationary solution

for a given parameter value and its associated linear stability using the Arnoldi pro-

cess. However, one is often interested in learning how the qualitative nature of these

solutions change across a range of parameters. Bifurcation analysis is the mathemat-
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Figure 3-14: Global picture of discontinuous linear basis functions, emphasizing the
lack of overlap between basis functions across element boundaries
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Figure 3-15: Linear discontinuous basis functions local to element k, shown in isopara-
metric coordinates. These basis functions are non-zero only within element k.
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ical study of understanding how the long-term behavior (equilibria/fixed points or

periodic orbits) of a dynamical system varies as a function of some bifurcation pa-

rameter. Here we will consider the standard dynamical system consisting of ordinary

differential equations to discuss the basic principles underlying continuation and ho-

motopy methods, and provide one specific example called the “predictor–corrector”

method that has been used in this thesis to perform bifurcation analysis. Finally, we

will argue that the resulting equations are particularly amenable for solution with

Newton iterative methods.

We are concerned with finding solutions of the equation

f(x;µ) = 0 (3.121)

over a range of parameter values, µ = [µ0, µf ], such that both f and x are vectors of

length n, and f is assumed to be continuously differentiable everywhere in R
n. Here

f represents the right hand side of a system of ordinary differential equations that

may not be known explicitly. We also assume that for the initial parameter value of

µ0, we are able to solve the equation using Newton’s method with a sufficiently good

initial guess. For example, a parameter value of zero, may lead to an equation that

is easy to solve or one for which the solution is known. Once we have the solution at

the initial parameter value, we can use this as an initial guess to solve the equation

for the next parameter value until we have obtained the entire solution curve. This

is an idea imported from the general class of methods known as homotopy methods,

where one solves a complex equation by starting with a simple equation for which the

solution is known or easy to calculate, followed by a relaxation of the simplifications

step by step, such that the solution of each equation serves as an initial guess to the

following more complicated equation [98].

As an example consider the case where the problem is easy to solve at µ = µ0 due

to a good initial guess. We can then immediately introduce a new real parameter λ
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that varies in 0 ≤ λ ≤ 1, such that

µ(λ) = (1 − λ)µ0 + λµf (3.122)

With this our problem is modified to generating a solution path x(λ) where

f(x(λ);µ(λ)) = 0

Starting with λ = 0 and solution x(0) we can obtain the solution at δλ if we have an

expression for dx/dλ. This can be done easily via a Taylor expansion for small δλ

f(x(λ+ δλ);µ(λ+ δλ)) = f(x(λ);µ(λ)) +

(

∂f

∂xT

)(

dx

dλ

)

δλ

+

(

∂f

∂µ

)(

dµ

dλ

)

δλ+ O(δλ2)

(3.123)

Since

f(x(λ+ δλ);µ(λ+ δλ)) = f(x(λ);µ(λ)) = 0

we obtain
dx

dλ
= −

(

∂f

∂xT

)−1
∂f

∂µ

dµ

dλ
(3.124)

3.6.1 Principal tasks in a continuation method for bifurca-

tion analysis

The above approach captures the essence of a continuation method where one gener-

ates a chain of solutions at a finite number of parameter values by framing a homotopy

method as an initial value problem. However, this approach should also be able to de-

tect and capture the richness of the bifurcation diagram that may exist for Eq. 3.121.

An example of this is presented in Fig. 3-16. First, it is not unusual to have more than

one solution existing at a given value of the parameter. The solution arrived at by a

given solution method can, therefore, depend sensitively on the initial guess supplied

to the method. In other words, the branch traced out by the continuation method
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will depend on where the initial solution converges. Also, if two solution branches are

close to each other, the parameter step size for the method must be sufficiently small

to converge to the same solution branch.

Second, one can see that Eq. 3.124 works fine as long as the Jacobian of the

function, ∂f/∂xT is non-singular. Values of the parameter at which all eigenvalues

of the Jacobian are non-zero are termed regular points. If one eigenvalue of the

Jacobian is zero at a given point, it is then termed either as a turning point or a

simple stationary bifurcation point. At a turning point the solution curve turns back

upon itself in parameter space as shown in Fig. 3-16. If such a point is present,

ranges of parameter space may exist in which no steady-state solution exists. On

the other hand, a stationary bifurcation point is characterized by intersection of two

branches of stationary solutions that have two distinct tangents. With continuation

methods that aim to trace out a single solution branch, turning points can be handled

naturally, while stationary bifurcation points are not. This is because even though

the matrix fx = ∂f/∂xT is singular or rank deficient for both type of bifurcations,

the augmented matrix (fx|fµ), where fµ = ∂f/∂µ, is full rank. For further details

see §2.5 of Seydel [98]. As a result, using a continuation method one can easily trace

a solution branch around a turning point. If needed, one can also add a method to

check for stability of the computed solutions. An example of this would be branch

A in Fig. 3-16 containing both stable and unstable solutions. In addition, if one is

interested in computing branch B given that branch A has already been computed,

this can be done with a branch switching algorithm that provides one point on branch

B, after which the entire branch can be easily computed via continuation.

Given the nature of solutions that may arise, any parameter study of Eq. 3.121

must consist of a (1) continuation method for tracing out smooth branches of Eq. 3.121

while checking for stability, and a (2) method for switching from one branch to another

with or without the option of calculating the branch point itself. In what follows we

will restrict ourselves to “predictor-corrector” type continuation methods, which have

been used successfully in many scientific and engineering applications and constitute

the most time-consuming part of any such study. Methods for branch switching will
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Figure 3-16: Schematic description of solution families, bifurcations and limit points

not be presented but further details can be obtained from the text by Seydel [98].

3.6.2 Predictor-Corrector Method

Assuming one solution on the branch for Eq. 3.121 has been computed, say (x0;µ0),

our task is to then compute further solutions on the branch,

(x1;µ1), (x2;µ2), . . .

until one reaches the target point µf . With predictor-corrector methods the jth

continuation step starts from a solution (xj;µj) and attempts to calculate the solution

(xj+1;µj+1) in two steps:

(xj;µj)
predictor−−−−−→ (x̄j+1; µ̄j+1)

corrector−−−−−→ (xj+1;µj+1)

where the predictor (x̄j+1; µ̄j+1) is not a solution of Eq. 3.121 (see Fig. 3-17). The

distance between two consecutive solutions is called the step size or step length and
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(xj;λj)

(x̄j+1; λ̄j+1)

(xj+1;λj+1)

x

λ

Figure 3-17: Schematic for the predictor-corrector method

is generally unknown a priori. In addition to Eq. 3.121, we also need a relationship

that identifies the location of a solution on the branch in terms of a curve parameter.

This relationship is different from the one introduced earlier to express µ in terms

of λ (Eq. 3.122). Specifically we will look at arc-length s, which has been used

extensively in literature and does not pose any problems with turning points [98].

While a robust continuation method incorporates predictor and corrector steps along

with a parametrization strategy, and a step length control algorithm, we will focus

on a simple tangent predictor combined with an iterative corrector method that uses

a fixed step size arc-length parametrization.

Parametrization

We begin by introducing a new parametrization of the solution curve, where both x

and λ are considered to be functions of the arclength parameter s, such that x = x(s)

and λ = λ(s). Once λ is known, the original parameter for the problem, µ, can be

readily obtained using Eq. 3.122. For a particular value of s, the system f(x;λ) = 0
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consists of n equations for the n+1 unknowns (x;λ). The additional scalar equation

needed to find the unknowns (x;λ) is provided by a relationship for the change in

the path length as we move along the solution curve in (x;λ) space by an amount δx

and δλ. This is given by

(δs)2 = (δλ)2 + δx · δx (3.125)

and results in the following extended system

F (x, λ; s) =





f(x;λ)

(x − xj) · (x − xj) + (λ− λj)
2 − (s− sj)

2



 = 0 (3.126)

where (xj;λj) is the solution previously calculated during continuation at arclength

sj. Solving Eq. 3.126 with a generic solver for nonlinear equations provides the

solution curve at discretized arclengths with a spacing of ∆s = s− sj. This spacing

or step size is generally fixed in a given calculation.

While it is sufficient to solve the system in Eq. 3.126 to obtain the solution curve,

the calculation is not guaranteed to move in a unique direction along the curve and

requires solution of a nonlinear system for each discretized arclength. We can avoid

these extra computations by employing a predictor-corrector scheme, where New-

ton iterations of Eq. 3.126 are not invoked if the predicted result, (x̄j+1; µ̄j+1), is

sufficiently close to the solution branch or used alternatively as an initial guess for

corrector iterations. The latter case involves application of Newton’s method to

f(x;λ) = 0 with the imposition of an appropriate side condition on the iterations.

In most instances, these iterations can be made more efficient by using results from

the predictor step.

Tangent Predictor

It was shown in §3.6 that given the derivatives of Eq. 3.121 we can reduce the problem

of obtaining the solution curve to an ordinary differential equation. Most predictor

methods, and specifically the tangent predictor, is based on this idea of using the
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solution at s = sj to obtain an explicit Euler update to the solution such that





x̄j+1

λ̄j+1



 =





xj

λj



+















dx

ds

∣

∣

∣

∣

∣

sj

dλ

ds

∣

∣

∣

∣

∣

sj















∆s (3.127)

To solve for
dx

ds

∣

∣

∣

sj

and
dλ

ds

∣

∣

∣

sj

, which form the components of the vector tangent to

the solution curve, we use the following Taylor expansion in δs

f(x(s+ δs);µ(s+ δs)) = f(x(s);µ(s)) +

(

∂f

∂xT

)(

dx

ds

)

δs

+

(

∂f

∂µ

)(

dµ

dλ

)(

dλ

ds

)

δs+ O(δs2)

(3.128)

to obtain the linear system

(

∂f

∂xT

)∣

∣

∣

∣

sj

dx

ds
+

(

∂f

∂µ

dµ

dλ

)∣

∣

∣

∣

∣

sj

dλ

ds
= 0 (3.129)

As already mentioned, we are guaranteed a solution to this problem as long as the

matrix (fx|fλ) is of rank n. However, the length and orientation of the tangent

vector are still undetermined, and a normalization condition must be imposed for the

tangent vector to get a unique solution. One way of doing this is to use the equation

cT













dx

ds

dλ

ds













= 1 (3.130)

where c is some vector not perpendicular to the tangent. Traditional methods use

c = ek where ek is the (n+1)-dimensional unit vector with all elements equal to zero

except the kth, which equals unity. Beers [7] suggests using a randomly generated

vector as it is highly unlikely to ever be perpendicular to the tangent. This yields the

139



final linear system









(

∂f

∂xT

)∣

∣

∣

∣

sj

(

∂f

∂µ

dµ

dλ

)∣

∣

∣

∣

∣

sj

. . . cT . . .





















dx

ds

dλ

ds













=





0

1



 (3.131)

where we enforce the following check to ensure that we are moving in a consistent

direction in (x;λ) space












dx

ds

dλ

ds













·





xj − xj−1

λj − λj−1



 ≥ 0 (3.132)

Before proceeding to corrector iterations, it may be useful to check if the predicted

result is sufficiently close to the solution curve with the criterion

‖f(x̄j+1; λ̄j+1)‖ ≤ δtol

This check can save unnecessary corrector iterations along “flat” segments of the

solution branch provided a sufficiently small step size is being used to perform con-

tinuation.

Corrector Step

To construct a robust corrector step, it is helpful to consider one step of the Newton

iteration for the nonlinear system f(x;λ) = 0. This yields

(

∂f

∂xT

)∣

∣

∣

∣

(xk;λk)

∆xk +

(

∂f

∂µ

dµ

dλ

)∣

∣

∣

∣

∣

(xk;λk)

∆λk = −f(xk;λk)

xk+1 = xk + ∆xk, λk+1 = λk + ∆λk

(3.133)

with the initial guess given by

(x0;λ0) = (x̄j+1; λ̄j+1)
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As with the predictor step, this is a system of n equations in n + 1 unknowns

(∆xk; ∆λk) and requires an additional equation to parameterize the course of cor-

rector iterations. By requiring that the iterations be perpendicular to the tangent

computed in the predictor step we can append the necessary equation

[

dx

ds

T dλ

ds

]





∆xk

∆λk



 = 0

to converge to a solution (xj+1;λj+1) as shown in Fig. 3-17, where circles represent

subsequent iterations of the correct step. More importantly, for small ∆s, the algo-

rithm can be made more efficient by reusing the derivatives computed in the predictor

step to yield a linear system











(

∂f

∂xT

)∣

∣

∣

∣

sj

(

∂f

∂µ

dµ

dλ

)∣

∣

∣

∣

∣

sj

dx

ds

T dλ

ds















∆xk

∆λk



 =





−f(xk;λk)

0



 (3.134)

It must be noted that while the right hand side of Eq. 3.134 is updated in each

corrector iteration, the matrix on the left hand side is factorized only once and reused

in subsequent iterations. The iterations are terminated with the criterion

‖f(xk;λk)‖ ≤ δtol

where δtol is a tolerance set at the beginning of the iterations.

The components of the predictor–corrector scheme can be modified as needed,

with the exception of parametrization strategy, to solve the problem at hand. Since

the predictor step provides a prediction by computing a tangent to the solution curve,

it is less susceptible to failure in comparison to the corrector step that may become

too expensive as the dimensionality of the system is increased or when the derivatives

computed in the predictor step cannot be reused. This problem can be avoided by

employing iterative methods such as GMRES to determine an approximate solution

of Equation 3.134. As mentioned previously, one main advantage of such methods is
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that they are always implemented as matrix-free methods, since only matrix-vector

products, rather than details of the matrix itself (in our case the matrix on the left

hand side of Equation 3.134) are needed to implement the method. Additionally,

in this problem, the eigenvalues of the matrix in Equation 3.134 are dominated by

those of the Jacobian fx, which is the Jacobian of the coarse time-stepper. As a

consequence, we would expect iterative methods like GMRES to rapidly converge to

a solution for the corrector step.
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Chapter 4

Using Newton-GMRES for

Viscoelastic Flow Time-steppers

The majority of publications in computational rheology have been based on a macro-

scopic approach that utilizes constitutive equations inspired by kinetic theory. This

approach invariably requires the use of closure approximations in the derivation of

the constitutive models, which can have a significant qualitative impact on predic-

tions of such simulations. However, the recent, complementary approach of hybrid

simulations circumvents the need for a closure approximation by directly coupling

the macroscopic equations of change with a microscopic kinetic theory model. In

doing so, the polymer contribution to the stress tensor is evaluated at each material

point by solving the associated Fokker-Planck equation or equivalent stochastic dif-

ferential equation and evaluating appropriate averages of the distribution function.

To date, available stochastic and Fokker-Planck hybrid techniques have been imple-

mented for kinetic theory models that have relatively few configurational degrees of

freedom [109, 57]. In addition, while previous studies [102, 103] of simulating complex

flows with hybrid methods have employed dynamic simulators to converge to steady

states and perform linear stability analysis, there is no simple method for performing

bifurcation analysis without reverting to long-time simulations. This is primarily due

to the unavailability of closed equations to which existing numerical techniques for

bifurcation analysis may be applied.
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In this chapter, we use the mathematical framework presented in Chapter 3 to

converge a dynamic simulation from kinetic theory of polymeric liquids to steady

states and perform stability analysis without invoking closure approximations. We

will first present an overview of the approach and argue why coarse-grained models

of kinetic theory are appropriate for its application. This will be followed by three

examples: (1) the equilibrium behavior of the Doi model with the Onsager excluded

volume potential, (2) pressure-driven flow of a dilute solution of non-interacting rigid

dumbbells in a planar channel, and (3) pressure-driven flow of non-interacting rigid

dumbbells through a planar channel with a linear array of equally spaced cylinders. In

the first example we demonstrate the existence of a compact spectrum of eigenvalues

for the Jacobian matrix associated with a well studied model from kinetic theory of

polymeric liquids. More importantly, we illustrate the ability to obtain stationary

states and perform stability/bifurcation analysis of the Doi model with the more

realistic Onsager excluded volume potential. With the second set of examples we

show that the method may also be used in the context of a hybrid simulation of a non-

homogeneous flow without any significant modification to the simulation algorithm.

Although in this chapter we focus on converging to stable stationary states in order

to facilitate comparison with dynamic simulations, the results are very encouraging

both for incorporation of higher numbers of configurational degrees of the freedom

for the kinetic theory models and for performing stability/bifurcation analyses with

hybrid simulations.

4.1 Time-steppers and Newton-GMRES

Hybrid methods for simulating complex viscoelastic flows directly employ models from

kinetic theory for capturing the polymeric contribution to the stress tensor without

obtaining a closed form expression for the stress tensor. This approach leads to a

dynamical system or “time-stepper” of the form

dx

dt
= f(x;µ), (4.1)
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where x represents the state of the system and µ is a parameter of the problem. For

our work, where closed form constitutive models cannot be written, the state of the

system is a set of moments of the underlying conformational distribution function.

These could be obtained either from the conformational distribution function or from

ensemble averaging of polymer conformations computed by using stochastic models.

Given the state of the system at a moment in time, the time-stepper allows determi-

nation of the state at a later moment. For the hybrid simulations of interest here,

a closed form expression for f(x, µ) is not available. The action of the time-stepper

can only be determined with a “black-box” simulation.

4.1.1 Steady State Solutions

We propose recasting the time-stepper as a fixed point solver for the nonlinear system

x − ΦT (x;µ) ≡ F (x;µ) = 0 F : R
N → R

N , (4.2)

where F is assumed to be continuously differentiable everywhere in R
N and

ΦT (x;µ) = x +

∫ T

0

f(x(t′);µ) dt′, (4.3)

is the result of integration of Eq. 4.1 for time T with initial condition x. The key

idea is to be able to evaluate F (x;µ) through calls to the time-stepper rather than

a closed expression for f(x;µ). Once we have formulated the system in Eq. 4.2, we

can then apply Newton’s method to converge to steady states of the system. Doing

so requires, at the kth step, the solution of the linear Newton equation for step sk

F x(xk)sk = −F (xk), (4.4)

where xk is the current approximate solution and F x is the Jacobian of the system.

Since the system in Eq. 4.4 is inevitably large due to discretization of a PDE or a

model with large number of degrees of freedom, we revert to methods of large scale

computational linear algebra. To this end we employ GMRES, which is an iterative
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linear solver for determining an approximate solution of Eq. 4.4. GMRES belongs to

the general class of Krylov subspace methods that approximately solve linear systems

of the form Ay = b by minimizing the norm of the residual r = b − Ay. One

main advantage of such methods is that they are always implemented as matrix-free

methods, since only matrix-vector products, rather than details of the matrix itself (in

our case the Jacobian F x) are needed to implement the method. This is in contrast to

direct methods, which require that the computation, storage, and cost of factorizing

the Jacobian not be excessive.

More importantly, such methods perform best if the eigenvalues of F x are in a

few tight clusters [113, 15]. This is observed in the context of hybrid simulations of

complex viscoelastic flows, in which time-steppers evolve a microscopic description of

the system, whereas the interest of the computational rheologist lies with prediction

of macroscopic properties (such as stress) that depend on certain low order moments

of the microscale model. In fact, closed constitutive models are always written in

terms of a few moments of the underlying microscale model by assuming that the

remaining higher-order moments quickly become functionals of a few, lower-order,

slow “master” moments [59]. This occurs over timescales that are short compared to

the macroscopic observation timescales. It is this separation of timescales that leads

to the few tight clusters of the eigenvalues of F x.

4.1.2 Stability

The stability of a steady state x∗ of Eq. 4.1 can be determined from the n eigenvalues

(σi, i = 1, . . . , N) of the unavailable Jacobian fx(x∗;µ). Since we compute the steady

state from Eq. 4.2, we note that the Jacobian F x(x∗;µ) also has N eigenvalues that

can be expressed as νi = 1− eσiT . For a stable steady state, the σi must all lie in the

left half of the complex plane. The term eσiT in the expression for νi transforms these

stable eigenvalues to within a unit disc centered at the origin. Hence, the stability

criterion can be expressed as |1−νi| < 1. It should be noted that the neutrally stable

eigenvalue of 0 for the dynamical system corresponds to an eigenvalue of 1 for the

system in Eq. 4.4.
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4.1.3 Continuation

The task of performing continuation also fits into this framework in the form of

an augmented system that contains the appropriate continuation algorithm. For

example, for pseudo-arclength continuation we add an additional arclength parameter

s and write the augmented system as

G(x(s), µ(s), s) =





F (x(s), µ(s))
dx

ds
· (x − xj) +

dµ

ds
(µ− µj) − (s− sj)



 , (4.5)

where (xj, µj) represents a solution previously calculated during continuation at

arclength sj. This formulation does not require any modification to the Newton-

GMRES method. More importantly, assuming that the long-term dynamics of the

timestepper are dictated by p slow moments, where p ≪ N , it can be shown that

the GMRES iteration for Eq. 4.4 will converge in at most p + 1 iterations, whereas

for continuation the dimension of the slow subspace of moments increases from p to

at most p+ 2. For a detailed convergence analysis the reader is referred to the work

of Kelley et al. [55].

To illustrate the use of the method described above, we first present the Doi model

from kinetic theory of polymeric liquids in Section 4.2 to demonstrate the existence of

a compact spectrum of eigenvalues for the linearized system in Eq. 4.4. We then ex-

ploit this property not only to converge to both stable and unstable stationary states

but also to perform continuation to construct the bifurcation diagram without invok-

ing any closure approximations. This is followed in Section 4.3 by a set of examples

to demonstrate that we can also employ Newton-GMRES to obtain stationary states

of a hybrid simulation in which a linear diffusion equation for the conformational

distribution function of rigid rods is coupled with the macroscopic conservation of

mass and momentum equations in two spatially non-homogeneous flows.
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4.2 Equilibrium Bifurcation Diagram of the Doi

Model with the Onsager Excluded Volume Po-

tential

The Doi diffusion equation [26] coupled with suitable representations of the interbody

excluded volume potential has been used to study problems involving rigid, rodlike

nematic polymers (e.g., liquid crystalline polymers). In the absence of flow, the

orientation distribution function f(uuu, t) for a spatially homogeneous solution of rigid

rods with infinite aspect ratio follows the diffusion equation given by

∂f

∂t
=

1

6λ

∂

∂uuu
·
[

∂f

∂uuu
+

f

kT

∂V (uuu)

∂uuu

]

, (4.6)

where uuu is the radial unit vector in spherical coordinates, kT is the Boltzmann factor,

λ is the rotational time constant of a rigid rod, and V (uuu) is a mean field interaction

potential. In this study we use the Onsager mean field potential

V (uuu) = UkT

∫

|u× u′u× u′u× u′|f(u′u′u′, t) du′u′u′, (4.7)

where U is the dimensionless potential intensity.

For this work we choose to study the scalar structure parameter S, which rep-

resents a scalar measure of the degree of order of the sample, as a function of the

dimensionless potential U . The structure parameter is defined as S =
[

9
2
(S · SS · SS · S) : SSS

] 1
3
,

in which the structure tensor SSS = 〈uuuuuu〉 − δ
3
, 〈uuuuuu〉 =

∫

uuuuuuf(uuu) duuu and δ is the unit

tensor.

For real-valued f satisfying f(u) = f(−u) we substitute a spherical harmonic

expansion for the distribution function into Eq. 4.6 such that

f(uuu, t) =
∞
∑

l=0
l=even

m=+l
∑

m=−l

am
l (t)Pm

l cm + bml (t)Pm
l sm, (4.8)
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where Pm
l are the Legendre polynomials Pm

l (cos θ), cm = cosmφ, and sm = sinmφ.

Normalization of f ,
∫

f(uuu)duuu = 1, yields a0
0 = (4π)−1∀ t, whereas a−m

l = (−1)mam
l ,

and b−m
l = (−1)mbml for all m ≥ 0. Truncating the expansion in Eq. 4.8 at a cer-

tain level, M , and using the orthogonality property of spherical harmonics trans-

forms Eq. 4.6 into a set of first-order ODEs for the spherical harmonic coefficients am
l

and bml . This system of ODEs resembles Eq. 4.1 and can be recast as a “black-box”

simulator of the form of Eq. 4.3, such that it takes a set of spherical harmonic coeffi-

cients and returns the evolved coefficients after a specified time interval. Approximate

models of such a system are often written for the evolution of the structure tensor SSS

or the second moment 〈uuuuuu〉 of the distribution function by invoking various closure

approximations for the fourth moment. By choosing the complete set of spherical

harmonic coefficients as defining the state of the system, we capture the full distri-

bution function without any closure approximation in terms of the second moment,

which is equivalent to writing the above system in terms of just the am
2 and bm2 coef-

ficients. Moreover, as we will show next, this system exhibits a compact spectrum of

eigenvalues that suggests a closure, albeit an unknown one, that need not be invoked

when using the framework of Section 4.1.

Before proceeding further, we must first address the degeneracy in the problem

with regards to the nematic states that bifurcate from the trivial isotropic state. The

nematic state of the system is characterized by a director vector that corresponds

to the peak in the orientation distribution function. For the equilibrium problem

being studied, this director is rotationally degenerate. Therefore, we restrict the

director based on the work of Gopinath et al. [42, 43] by setting all l = odd and bml

coefficients to zero when initializing the time-stepper. This restriction does not alter

the prediction of the structure parameter or the stability of the computed steady

state. It only prevents the continuation algorithm from exploring states with the

same value of S that differ by a rotation. Even if this restriction were removed, the

time-stepper based algorithm would converge to the correct steady state. However,

due to the inherent degeneracy in the problem, the associated director vector would

be non-unique. For our simulations we set M = 10, T = 0.1λ, and µ = U and use
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Figure 4-1: Equilibrium phase diagram for the Doi model with the Onsager excluded
volume potential. The nematic branches bifurcate from the critical point Uc

.
= 10.19

for the Doi equation. The turning point on the S > 0 branch occurs at U
.
= 8.87.

(−) Stable, (− · −) unstable, (◦) data from Gopinath et al. [42].

pseudo-arclength continuation to trace the solution branches. Excluding the odd and

bml coefficients, we obtain a set of 20 real, first order ODEs. A fourth-order Runge-

Kutta scheme was used to formulate the time-stepper with a time-step size of 0.005λ.

Starting with the prolate (S > 0) steady state solution at U = 13 the curve shown

in Fig. 4-1 was obtained via continuation. For the purpose of comparison, we also

show the the results obtained by Gopinath et al. [42] in which isolated integrations to

steady state were used. In Fig. 4-1, solid lines represent stable stationary solutions

whereas dashed lines are unstable stationary solutions. Two solution branches (one

isotropic and the other nematic) cross at a transcritical bifurcation point, Uc = 10.19.

This is in excellent agreement with the prediction of Uc = 32/π from linear stability

analysis [42]. A turning point is obtained on the nematic S > 0 branch at U = 8.87.

Thus, for U < 8.87 only a stable isotropic phase is predicted, whereas for 8.87 < U <

10.19, one stable isotropic solution, and two nematic solutions (one stable and the

other unstable) are predicted. Both these solutions are prolate. For U > 10.19 three
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solutions coexist: a stable prolate nematic solution (S > 0), an unstable isotropic

solution (S = 0), and an unstable oblate nematic solution (S < 0).

U = 12 U = 8.877
0.0495 0.0202
0.0579 0.1176
0.0663 0.1599
0.1048 0.2011
0.2623 0.6141
0.4949 0.9967

Table 4.1: List of five eigenvalues, |1 − νi|, farthest from 0 on the prolate branch
(T = 0.1λ)

In Table 4.2 we present a list of the five eigenvalues |1− νi| that are farthest from

zero. For a parameter value such as U = 12 that is far from the turning point, we

see that most of the eigenvalues are close to zero except for three at approximately

0.1, 0.2 and 0.5. The fact that most of the eigenvalues are clustered around zero

allows GMRES to converge to the steady state. Increasing T would improve GMRES

performance as more eigenvalues approach zero, but this would occur at the cost of

longer simulation time for the Doi model. For the second parameter value U = 8.877,

which lies near the turning point, we see that eigenvalues start leaving the cluster at

zero, though they still exist in distinct groups with the largest eigenvalue approaching

the unit circle. The change in stability at the turning point corresponds to the crossing

over the boundary of the unit circle of this largest eigenvalue. The corresponding

eigenmode in configuration space is shown in Fig. 4-2.
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Figure 4-2: (a) Distribution function and (b) contour plot for the eigenmode corre-
sponding to the most dangerous eigenvalue of 0.9967 (Table 1) at U = 8.877. The
distribution function was computed with M = 10.

4.3 Pressure-Driven Flow of Non-Interacting

Rigid Dumbbells In a Planar Channel and

Through a Planar Channel with a Linear Ar-

ray of Cylinders

To demonstrate that a hybrid simulation can be cast in the framework of Section 4.1

we study pressure-driven flow of a dilute solution of non-interacting rigid dumbbells

both in an infinitely wide planar channel and through an infinitely wide planar channel

with an infinite linear array of cylinders oriented perpendicular to the flow direction

and equally spaced along the centerline in the flow direction. We solve the momentum

(Eq. 4.9) and continuity (Eq. 4.10) equations for the velocity and pressure fields in

the Stokes limit, whereas the polymeric contribution to the stress tensor τp (Eq. 4.11)

is computed from the moments of the orientational distribution function obtained by

solving the diffusion equation for rigid rods (Eq. 4.12). We thus use

β∇ ·(∇v + ∇vT )·(∇v + ∇vT )·(∇v + ∇vT ) −∇p− ∇ · τp = 0, (4.9)

∇·v·v·v = 0, (4.10)
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τp =
1 − β

λV
L

(

δ − 3 〈uuuuuu〉 − 6(
λV

L
) κ :κ :κ : 〈uuuuuuuuuuuu〉

)

, (4.11)

∂f

∂t
+ vvv · ∇f =

1

6λ
(
∂

∂uuu
· ∂
∂uuu

)f − ∂

∂uuu
· ([κκκ · uuu− κκκ:uuuuuuuuu])f, (4.12)

where f = f(rrr,uuu, t), β = ηs/η0 (ratio of solvent to solution zero-shear-rate viscosity),

κ = ∇vT , and V and L are the characteristic velocity and length scales. The mo-

mentum and continuity equations are solved with the Discrete Elastic Viscous Split

Stress - Gradient (DEVSS-G) formulation of Szady et al. [110] through introduction

of a new variable G = ∇v, whereas the discontinuous Galerkin (DG) method is used

to solve the diffusion equation. For the planar channel and the planar channel with

a linear array of cylinders, the strength of the flow is characterized by the Deborah

number, De =
3λQ

L2
, and the Weissenberg number, We =

λ 〈v〉
L

, respectively, where

Q is the flow rate per unit width of the channel and 〈v〉 is the average velocity.

4.3.1 Weak Form of the Diffusion Equation

The PDE for the distribution function for polymer conformations (Eq. 4.12) is first

rewritten in the form

∂f

∂t
+ vvv · ∇f =

1

6λ
∇2

uuuf + Γ(uuu,κ)f, (4.13)

where

Γ(uuu,κ) =
[

3(κ : uu: uu: uu) − κ : u
∂

∂u

]

.

We then solve this time dependent PDE by using a spherical harmonic-Galerkin

method to discretize the equation in orientation space (uuu or θ, φ), and the discontin-

uous Galerkin method to discretize the equation in physical space. The DG method

uses basis functions that are discontinuous across element boundaries. Each basis

function is associated with a node within an element, such that it has a value of unity

at its own node and a value of zero at all other nodes. Outside the element under

consideration, the basis function is identically zero. This decouples the problem on

every element from that on every other element, so that the problem can be solved
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element by element. It is important to note that the element-by-element solution can

only be carried out if the solution on the inflow element has already been computed.

Two options are available: either the elements are solved according to their ordering

along a streamline or the problem is solved in a time-dependent context, treating

the convection term (vvv · ∇f) explicitly. We reject the first option, since it involves

computing an element ordering for every new flow field. The second option allows

us to obtain maximum benefit of the elemental decoupling that results from the DG

method.

We use the following expansion for f

f(rrr, θ, φ, t) =

# of nodes
∑

i

M
∑

n=0

n
∑

m=0

fm
n,1i(t)ΨDG,i(rrr)P

m
n cm + fm

n,2i(t)ΨDG,i(rrr)P
m
n sm. (4.14)

The ΨDG,i(rrr) are discontinuous basis functions for physical space, andM denotes some

level of truncation for the expansion in orientation space. We designate fk(rrr,uuu) =

f(rrr,uuu, tk) as the value of f at time t = t0+k∆t. Since it is computationally efficient to

avoid performing a matrix inversion for each element at each time-step, all operators

that vary in space or time are treated explicitly. Only the diffusion operator in

orientation space (∇2
uuu) is treated implicity.

Introducing test/weight functions ΨDG,jP
l
scl and ΨDG,jP

l
ssl along with time dis-

cretization leads to the following weak form over an element A

∫

A

∫

uuu

(

1 − ∆t

6λ
∇2

uuu

)

fkΨDG,j







P l
scl

P l
ssl







duuu dA =

∆t

∫

A

∫

uuu

Γ(uuu,κ)fk−1ΨDG,j







P l
scl

P l
ssl







duuu dA+

∫

A

∫

uuu

fk−1ΨDG,j







P l
scl

P l
ssl







duuu dA

− ∆t

∫

A

∫

uuu

(

vvv · ∇fk−1
)

ΨDG,j







P l
scl

P l
ssl







duuu dA

− ∆t

∫

δA−

∫

uuu

(n · vn · vn · v)[f e − f i]k−1ΨDG,j







P l
scl

P l
ssl







duuu dl. (4.15)
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In this formulation the weak form of the convective term,
∫

A

(

vvv · ∇f
)

ΨDG dA, has

been expressed as the sum of an area integral over the element and a line integral

involving the jump in f across the inflow element boundary

∫

A

(

vvv · ∇f
)

ΨDG dA =

∫

A

(

vvv · ∇f i
)

ΨDG dA+

∫

δA−

(n · vn · vn · v)[f e − f i]ΨDG dl, (4.16)

such that f e and f i represent the external value of f convected into the element A from

the adjacent upstream element and the internal elemental value, respectively, and δA−

represents the inflow boundary. It is this line integral that conveys information in

a streamwise direction and embodies all the communication between the element of

interest and the ‘upstream’ elements. This inclusion of a ‘jump’ term at the inflow

boundary alone serves the same purpose as do the various types of upwinding schemes

used in solution of hyperbolic PDEs.

4.3.2 Parallelization

The DG formulation yields equations that are local to the generating element with-

out dependence on neighboring elements. The only exception is the need to obtain

boundary data from its neighbors. This renders the problem particularly well suited

for parallelization. For pressure-driven flow solved on a two-dimensional rectangu-

lar domain, each element only needs boundary information from the upstream ele-

ment. The physical domain is decomposed uniformly among processors, such that

each processor solves the distribution function on only one subdomain. With this

decomposition, the steps for the parallel computation are:

1. Processor 0 computes the velocity and pressure fields or solves the vvv − p −GGG

problem in the entire domain. The computation of the flow field is cheaper than

solving for the distribution function.

2. Processor 0 then sends the nodal velocity in each subdomain to the appropriate

processor.

3. Each processor integrates the diffusion equation by one time step on each ele-
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Figure 4-3: Computational domain for processor 1 with boundaries that communicate
with adjacent processors

ment within its subdomain in order to update the distribution function f and

polymeric contribution to the stress τp.

4. Each processor then sends and receives the solution of the diffusion equation

to and from other processors that share a common boundary. This is shown

in Fig. 4-3 for processor 1, which solves the diffusion equation on subdomain

1. Once processor 1 has updated the solution for f in its domain, it sends the

the new solution for f on its upper boundary to processor 2 and receives the

corresponding solution for f on the lower boundary of processor 2. A similar

communication is also performed at the lower boundary of processor 1. This

communication is essential in order to deal with flows in which streamlines are

not parallel to the x-axis or there is a small upwinding term from elements that

reside on other processors.

5. Processors 1 to n-1 then send the τp information to processor 0, which computes

nodal averages from adjacent elements and updates the flow field.

6. Steps 1 through 5 are repeated until convergence to steady state.

A flow chart for the parallel computation is presented in Fig. 4-4.
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Figure 4-4: Flowchart for problem parallelization on nodes of a computational cluster
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Figure 4-5: Computational domain and boundary conditions for flow through an
infinitely wide planar channel
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along the centerline of the channel and since the flow is assumed symmetric about
the midplane of the channel, computation is restricted to the unit cell shown. The
cylinders have radius L and the cylinder–to–cylinder spacing is 2.5L
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4.3.3 Boundary conditions

The boundary conditions and the computational domain for the planar channel and

the channel with linear array of cylinders are shown in Figs. 4-5 and 4-6, respectively.

For the planar channel the computational domain has length and width equal to the

characteristic length scale of the geometry with a flow rate specified at the inlet,

x = 0. As a result, the hyperbolic character of the diffusion equation in physical

space requires boundary conditions on the distribution function to be imposed at the

inflow boundary only. The one-dimensional, fully-developed (v · ∇fv · ∇fv · ∇f = 0) diffusion

equation is, therefore, solved at the inflow boundary yielding an essential boundary

condition for the solution of the diffusion equation in the bulk flow. Similarly for

velocity, the one–dimensional momentum equation is solved at the inflow boundary

by using the one–dimensional solution of the diffusion equation. The inflow velocities

obtained from this solution furnish essential boundary conditions for the bulk flow

problem. The x-component of the velocity at the outflow boundary is assumed to be

fully-developed, whereas a no–slip boundary condition is imposed at the wall, and a

symmetry boundary condition is imposed at the centerline.

For flow through the channel with a linear array of cylinders, the problem is solved

on a periodic domain of length 2.5L, which is also the inter-cylinder spacing, by

specifying the dimensionless pressure drop across the domain. Here the characteristic

length L is taken to be the radius of the cylinder. No–slip boundary conditions

are imposed on the cylinder and the channel wall (y = 2L) along with symmetry

boundary conditions at y = 0.

4.3.4 Newton-GMRES wrapper

Given that we have a dynamic simulator for the viscoelastic flow problem, we can

then wrap it in a Newton-GMRES solver to obtain the steady state of the system.

This can be achieved by treating the time-stepper as a black box integrator that takes

a given distribution function for the flow domain and returns an evolved distribution

function, f (T ), after integration over time horizon T . In doing so, the integrator
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Figure 4-7: Newton-GMRES solver for viscoelastic flow time-stepper

computes consistent flow fields at each intermediate time-step, which is built into the

integrator. The task of the Newton-GMRES solver then is to solve for the steady

state f (ss) of the nonlinear system G(f) = f − f (T ) = 0 given an initial guess f (0). A

schematic diagram of the method is shown in Fig. 4-7.
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Figure 4-8: Pressure drop across channel as a function of (a) distribution function
truncation parameter M (200 element mesh), and (b) mesh size with M = 12
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Figure 4-9: Velocity profile for varying (a) distribution truncation parameter M (200
element mesh), and (b) mesh size (M3 = 200 elements, M5 = 400 elements) with
M = 12
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Figure 4-10: Contour plots for the distribution function at y = 0.2 as a function of
the truncation parameter M for a 200 element mesh.

161



 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

θθ

θθθ

φφ

φφφ

M1 M2 M3

M4 M5

Figure 4-11: Contour plots for the distribution function at y = 0.2 as a function of
mesh size (M1 = 50 elements, M2 = 100 elements, M3 = 200 elements, M4 = 300
elements, M5 = 400 elements) with M = 12.
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Figure 4-12: Steady state of τE
p,yx = −3(1−β)

λV/L
〈uyux〉 with β = ηs/ηo = 0.9, De = 3.0,

T = λ, and ∆t = 0.05λ. (−) Solution obtained from dynamic simulation. Solution
obtained from Newton-GMRES simulation at (•) x = 0.2, and (⋄) x = 0.8.
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Figure 4-13: Contour plots for the distribution function across the channel, with wall
at y = 0 and centerline at y = 1
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Figure 4-14: Steady state of τE
p,yx for β = 0.59, ∆P = 9, and We = 0.5201
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4.3.5 Results

Convergence in physical and configuration space

To demonstrate convergence in both configuration and physical space, the dynamic

simulation was run for the planar channel at De = 3.0 and with β = 0.9. A stable

time-step of ∆t = 0.05λ was chosen, while steady state was defined as the point

at which the L2 norm of the change in the distribution function was below 10−8.

The steady-state pressure drop and velocity profile are shown as a function of the

distribution function truncation parameter, M , and mesh size in Figs. 4-8 and 4-9,

respectively. It can be observed that the steady state pressure drop converges in both

configuration and physical space whereas there is no change in streamline velocity

with either mesh size or truncation parameter M . This is most probably due to

the large value of β used in this study. Additionally, Figs. 4-10 and 4-11 show that

the distribution function near the wall also converges with M and the mesh size.

These results suggest that it is sufficient to use M = 12 and a 200 element mesh

to obtain converged results, since the error in the pressure drop for the 200 element

mesh relative to the 400 element mesh is only approximately 0.03%.

Planar Channel

For the planar channel the time-horizon of the Newton-GMRES solver was set to

T = λ, with convergence defined by ‖G(f)‖2

‖G(f (0))‖2
< 10−8. An isotropic distribution

function was chosen both as an initial condition and initial guess for the dynamic and

Newton-GMRES simulations, respectively. The polymer contribution to the stress

tensor consists of both elastic and viscous components. In Fig. 4-12, the steady state

of the yx component of the elastic part of the polymer contribution to the stress

tensor, τE
p

= 1−β
λV/L

(δ− 3 〈uu〉), is shown as a function of y for two values of x. There

is excellent agreement between the steady states computed from the dynamic and

Newton-GMRES simulations. We also plot the steady–state distribution function

across the channel in Fig. 4-13 to demonstrate the degree of alignment with varying

shear rate across the channel. As expected, the distribution function is peaked near
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the wall (y = 0) and is nearly isotropic, f = 1/4π, near the symmetry plane (y = 1).

Linear Array of Cylinders in a Planar Channel

The steady–state results of dynamic and Newton-GMRES simulations were also com-

pared for flow through a planar channel with a linear array of cylinders. Previously,

Liu et al. [70] have presented results for the flow of flexible polymer solutions through

this geometry at β = 0.59 and We = 0.5 and 2.0. They describe the polymer solutions

with the Giesekus model, the finitely extensible, nonlinear elastic dumbbell model

with Peterlin’s approximation (FENE-P), and the FENE dumbbell model of Chilcott-

Rallison (CR). These three constitutive equations can be derived from kinetic theory

models of dilute polymer solutions; the latter two invoke closure approximations in

their derivations. Because Liu et al. [70] show stresses only for We = 0.5, we chose

this value of We for our simulations. We run both the dynamic and Newton–GMRES

simulations at We = λ 〈v〉 /L = 0.5201 and β = 0.59 for a qualitative comparison of

polymeric contribution to the stress tensor with the results of Liu et al. [70].

For this study we used a 1896 element mesh, a stable time-step of ∆t = 0.01λ, and

a dimensionless pressure drop of ∆P = 9 to obtain converged results. An isotropic

distribution function was once again chosen as the initial condition for the dynamic

simulation and as the initial guess for the Newton–GMRES solver, whereas the time–

horizon was set to T = λ. The steady state for τE
p,yx obtained from both the dynamic

simulation and Newton-GMRES solver is shown in Fig. 4-14. Once again excellent

agreement is observed between the solutions of the dynamic and Newton-GMRES

simulations. In addition, there is good qualitative agreement with the results of Liu

et al. [70](cf. Fig. 21 in that reference). First, flow for an inter–cylinder spacing of

2.5L is characterized by the development of a recirculation region between adjacent

cylinders with small fluid velocity and velocity gradient. This results in stresses that

are near equilibrium, in contrast with a larger inter–cylinder spacing where polymer

molecules along the centerline of the geometry are far from equilibrium. Second, the

largest stresses exist at the solid boundaries in the gap between the cylinder and the

channel wall where the flow is shear dominated with the extrema occurring up- and
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down-stream of x = 0.

Most importantly, however, in contrast with the planar channel, which is an in-

homogeneous flow in one dimension, this geometry represents a complex, inhomoge-

neous flow in two spatial dimensions, demonstrating the applicability of the method

to hybrid simulations of general complex flows. With either geometry, the Newton-

GMRES solver obtains the steady state of the problem by computing the function

G(f) (cf. Fig. 4-7), which is obtained from running the “black-box” dynamic simula-

tion, without any modification, over a short time horizon. For the example problems

presented here, the main goal was to demonstrate that the framework introduced in

this thesis can enable a hybrid simulation to converge to steady state. The steady

state computed here is a stable steady state as it is also accessible via a dynamic sim-

ulation. However, these results when combined with those presented in Section 4.2

indicate that the method presented in this thesis may also be used to obtain unstable

steady states and to perform bifurcation analysis of a viscoelastic flow.

4.4 Conclusions

In this chapter we have presented a method to enable dynamic simulators or time-

steppers from kinetic theory to obtain stationary states and perform

stability/bifurcation analysis. The separation in the time scales of evolution of kinetic

theory moments leads to a linearization with a compact spectrum of eigenvalues. This

allows the use of matrix-free iterative methods to locate steady states and perform

continuation/bifurcation analysis of the unavailable closed-form macroscopic system.

We demonstrate this, first by obtaining the equilibrium bifurcation diagram for the

structure parameter for the unclosed Doi-model with the Onsager excluded volume

potential. We show that most of the eigenvalues of the linearized system lie in a

tight cluster about zero, with only a few eigenvalues leaving this cluster near a fold

bifurcation.

The second set of examples involve dynamic hybrid implementations of pressure-

driven flow of non-interacting rigid dumbbells in a planar channel and through a

168



planar channel with a linear array of equally spaced cylinders. We show that short

bursts of a state-of-the-art parallel implementation with the discontinuous Galerkin

method can be used to obtain steady states of the system with our method. Most im-

portantly, we did not have to modify the hybrid simulation algorithm, which indicates

that such an approach can be quickly adapted to other state-of-the-art simulators.

In addition, since the method requires only short bursts of a viscoelastic timestep-

per, it presents a feasible approach of studying macroscopic flows through hybrid

simulations that incorporate more configurational degrees of freedom in the kinetic

theory description. Finally, these results are particularly encouraging, as the method

presented in this thesis, contrary to previous methods, also allows for convergence to

unstable steady states, opening up the possibility of performing stability/bifurcation

analysis of viscoelastic flows via hybrid timesteppers.
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Chapter 5

Flow Induced Transitions in a

Hard-Rod Suspension

Flow induced aligning of rigid rod suspensions occurs in many forms and variations

in manufacturing processes as well as in nature. A specific example which is of

theoretical and practical significance is a liquid crystal polymeric (LCP) suspension

- the state of which is usually described by a Fokker-Planck like equation for the

distribution function - the Doi-Hess diffusion supplemented with a suitable excluded

volume interaction potential [81, 97, 63, 64, 96, 67, 76, 73, 74, 2, 20] equation or by

simpler lower-dimensional closed versions [31, 1, 94, 93, 36, 35, 115]. Equilibrium base

states of such homogeneous suspensions at rest possess symmetries and degeneracies

which the imposition of flow destroys, and it is of critical importance to understand

and characterize changes in the modes of alignment seen in response to imposed flow.

Such studies can then be extended to understand realistic inhomogeneous suspensions.

A homogeneous suspension of hard rods with fore-aft symmetry moving around

purely due to Brownian motion in an ideal solvent can be described in the mean field

limit by the Doi-Hess diffusion equation. When the concentration of the rods is very

dilute, inter-rod interactions are negligible and the distribution function characteriz-

ing rod alignment relaxes to a constant - the isotropic value. In the semi-dilute and

concentrated regimes, rod-rod interactions can be modeled using potentials based on

excluded volume interactions. Typical forms of these are the Onsager potential and
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the Maier-Saupe potential [81, 97, 74]. Analysis of the equilibrium problem indicates

that there exists a critical concentration of rods, or equivalently a critical dimension-

less potential strength, U = UIN beyond which the isotropic state is no longer stable.

Instead for U > UIN, the rods tend to align along a mean direction - termed the

director which can be arbitrary. The steady distribution function for this nematic

state is uniaxial and characterized by two parameters - the scalar structure factor and

the director vector that indicates the mean direction of rod alignment. There are no

persistent time-dependent states in the equilibrium problem, as there is just one time

scale - the inverse of the diffusion coefficient. In the presence of flow, however, there

is competition between the tendency to align due to the potential and align in the

direction of the flow. The strength of the flow is measured in terms of a dimensionless

shear rate, G, given by the ratio of the shear rate to the diffusivity. This competition

determines whether steady or unsteady states are seen.

There is a wealth of information on the effect of shearing on the alignment of

rods in homogeneous suspensions. At the same time much remains to be elucidated.

Bifurcation studies of Doi-Hess diffusion [63, 64, 96, 67, 73, 36, 35, 37, 19] have been

performed over a range of rod concentrations as well as shear rates. The emphasis

has been mainly on moderate to large flow strengths with a view to understanding

specifically the route from periodic states to chaotic states. Both Maier-Saupe [73,

74, 36, 35, 37] and Onsager excluded volume potentials [67, 42] have been considered

- again for moderate to large shear rates, for which rich bifurcation maps with a

multitude of stationary and time-periodic states exist. Transition to chaotic behavior,

shear-induced biaxiality, Hopf-Poincaré bifurcations from in-plane tumbling to out

of plane wagging oscillations, frequency locking in oscillatory shear have all been

explored in these papers.

The complementary low flow limit, which is of interest in polymer applications and

rheological studies, has only been briefly addressed in these works. In-plane, steady

tumbling orbits that exist at low shear rates were calculated by Larson and Ottinger

[67] using numerical solutions of the diffusion equation with the Onsager potential.

The stability of these solutions to out-of-plane disturbances as well as the transition
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to in-plane and out-of plane wagging modes were elucidated. Similar studies with

the Maier-Saupe potential for a linear shear flow [73, 36, 35, 37] indicate that at low

shear rates steady aligned solutions exist until a critical value of the concentration,

after which periodic non-sinusoidal oscillations are seen. In spite of the detailed and

illuminating nature of these studies, questions still remain to be resolved. The nature

of the bifurcation leading to loss of steady solutions and dependence of this critical

point (at which periodic orbits are born) on the flow rate and on the aspect ratio of

the rods has not been fully explored. It has been suggested that the tumbling orbits

arise from a global homoclinic bifurcation - but investigations of the amplitude and

frequency of these to confirm this are lacking. A part of the reason for this is that

most computations have been done for G > 10−1 - while going to much lower values

is indicated to discern the true behavior as G → 0. Perhaps a more serious issue is

that all studies treat the concentration as a fixed parameter and vary the shear rate.

This approach unfortunately prevents a clear evaluation of the role played by shear in

unfolding the equilibrium solution map and birthing new solutions. In the parlance of

bifurcation theory, the role played by shear as an imperfection is yet to be elucidated

completely in the weak shear flow analysis of the full Doi-Hess equation. A recent

step towards this has been the asymptotic analysis of Zhou and Wang [117] wherein

the solutions to the 2-D Doi Hess equation are analyzed for infinite aspect ratio rods

and G ≪ 1. We will treat their paper as a benchmark to validate our numerical

technique. Our results are consistent with their asymptotic results and extends the

solutions known to finite aspect ratio values.

More detailed analyses of the G→ 0 limit also exist for lower dimensional approx-

imations to the full diffusion equations using a modified Landau-deGennes (LDG) [1]

and and alternative closed model [19]. Although it is well known that solutions to

these models can yield predictions at variance with results from the full diffusion

equations, it is nevertheless very instructive to study these in detail. These stud-

ies have posited the existence of tumbling in-plane solutions that are stable to out

of plane disturbances with orbital periods that depend inversely on the shear rate

parameter. Unfortunately, the LDG model predicts un-physical structure parameter
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values; and, in addition, it is unclear how the parameters in the LDG model relate to

those in the diffusion equation. It is therefore important to analyze the full equations

without resorting to closed forms. This enables us to discriminate and identify effects

caused by the closure and/or the lower dimensionality of the models. Furthermore,

the general formalism allows us to study bifurcations and all states, steady and pe-

riodic, in terms of just three parameters that arise physically: the strength of the

inter-rod potential, the shear rate, and the aspect ratio of the rods.

In this chapter we discuss the change in the equilibrium properties induced due to a

weak shearing flow - the strength of the flow being characterized by the dimensionless

shear rate G. Specifically, we focus on the bifurcation from steady to time-periodic

tumbling state of hard-rod liquid crystals for 0 < G ≪ 1. For this purpose we have

chosen a physically relevant yet simple model, wherein high aspect ratio rigid rods

undergo steady shear flow while begin restricted to lie in the plane defined by the

velocity gradient. Unlike previous studies using low dimensional closed form models,

we consider the unclosed diffusion equation with a Maier-Saupe type excluded volume

potential as the starting point for our analysis and perform numerical continuation

and spot calculations to identify steady and unsteady solution states. These calcu-

lations are supplemented by asymptotic theory wherever possible. Calculations are

performed for the range 10−4 ≤ G ≤ 10−1, which are much smaller shear rates than

addressed previously. By computing the scaling of the frequency and amplitude of

these time-periodic solutions in the weak shear flow limit, we are able to characterize

correctly the nature of the bifurcation. In addition, we also investigate the effects of

finite aspect ratio in detail to discern general trends and scalings. Finally, we demon-

strate how our results are consistent with or sometimes differ from results from lower

dimensional closed form models and comment on extensions to the full 3-D case.

From an applications perspective, characterization of complex fluids and crystal-

lizing polymers typically requires the measurement of the elastic and viscous proper-

ties using a cone and plane viscometer or a Couette cell and subjecting the sample

to steady or oscillating shearing and extensional flows. The measured torques and

forces are related to the material properties of the sample. In this instance it would
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be interesting to understand the difference in measured properties between steady

and periodic shearing especially in the limits of small and large shear rates. Recent

work builds on previous experimental and theoretical work to address this question in

the framework of closed models [2, 1, 37, 19]. The current work may thus be looked

at as the base work needed to be accomplished before consideration of the effects of

oscillatory shear flow.

5.1 Theoretical framework

Previous studies on both the diffusion equation [67, 36, 35, 115] and on the LDG/closed

models [1, 19] show that in-plane tumbling orbits are stable to out of plane distur-

bances over a range of parameter values. It is thus possible to learn about the birth

of these orbits by studying a restricted 3-D diffusion equation, one which considers

purely in-plane modes. With this in mind, we proceed to the formulation of the

governing equations for the 2-D Doi-Hess diffusion model. We choose to represent

the inter-rod potential via the Maier-Saupe form, but the results are easily extended

to cover the Onsager potential as well; detailed forms needed for this change are in

[42, 43].

5.1.1 Governing equations for the 2-D model

The particles comprising the homogeneous dispersion are modeled as rigid rods of

length L and width d, with the aspect ratio, r ≡ L/d ≫ 1, and the suspension is

subjected to a homogeneous shear flow v = Γyex. All rods are assumed to lie in places

parallel to that defined by the velocity gradient. In the mean-field approximation it

suffices to consider one test particle in a mean potential due to the other rods, and the

one-particle orientation distribution function f(u, t) is sufficient to characterize the

suspension. The orientation of a test rod is specified by the unit vector u ≡ cos θex +

sin θey with θ being the polar angle. Assuming a constant rotational diffusivity, we
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can write the Doi diffusion equation in two dimensions [63, 64, 73],

∂tf + ∂u · (utf) = Dr∂u · (∂uf + f(kBT )−1∂uVev) (5.1)

with Vev being the excluded volume potential measured in units of kbT and ut the rate

at which u changes due to the shear flow given by (ui)t = ωijuj +p (γ̇ijuj− γ̇jkujukui).

Here, p = (a2 − 1)/(a2 + 1) is a shape factor with a being the aspect ratio of the

particles and ω = (∇v − ∇v†)/2 and γ̇ = (∇v + ∇v†)/2 are the antisymmetric

and symmetric parts of the velocity gradient tensor ∇v. Let us define the average

of a quantity, X(u), as 〈X〉 ≡
∫

X(u) f(u)du. The distribution function satisfies the

normalization condition, 〈1〉 = 1. If the excluded volume intermolecular potential is

assumed to be of the Maier-Saupe type, then we have Vev(u) = −2UkBT 〈uu〉 : uu, U

being a phenomenological constant proportional to the concentration of rods. Using

∂u = t∂θ, t being the tangent vector, we can write the following evolution equation

for f in terms of the angle θ ∈ (0, π),

∂τf +GΦs[f ] = ∂2
θf + UΦev[f ], (5.2)

the forcing term due to the shear being

Φs[f ] = −fp sin 2θ + p cos2 θ(∂θf) − (p+ 1)

2
(∂θf), (5.3)

and the excluded volume potential term is of the Maier-Saupe form and given by

Φev[f ] = 2 cos 2θ(−α1∂θf + 2fα2) + 2 sin 2θ(α2∂θf + 2fα1). (5.4)

Here, τ = tDr is a scaled time, α1 = 〈sin 2θ〉, α2 = 〈cos 2θ〉 and G = Γ/Dr is

a dimensionless shear rate. Note that substituting p = 1 in the previous equation

reduces it to the evolution equation derived earlier [73].

Three dimensionless parameters arise in Eqs. 5.2, 5.3, and 5.4 - p, U and G.

Note that p and G arise as two independent combinations pG and p. The forcing
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term due to shear is linear in f whereas the interaction term due to the Maier-Saupe

approximation to the hard rod potential is quadratic in f . The dimensionless potential

strength U is proportional to the concentration of rods, c, and the excluded area for

two rods (since we have a 2-D system). In reality the interaction term has additional

terms that also depend on the aspect ratio - however these are found to be an order

of magnitude smaller than the leading term and can be neglected. In any case, the

Maier-Saupe potential is itself an approximation to the actual hard rod interaction;

and thus we choose to treat the parameter U as a phenomenological parameter that

may be related to the concentration of the rods and geometry. The analysis here

may be extended to more general excluded volume potentials such as the Onsager

potential [81, 67, 42, 43] in 2-D and 3-D1.

5.1.2 Eigenfunction expansion in Fourier modes and evolu-

tion equations

The orientational distribution function, f , is real and π periodic due to fore-aft sym-

metry of the rods. That is f(θ, τ) = f(θ + π, τ). For a non-isotropic solution, two

physically significant parameters characterize the state of the suspension. These are

the scalar structure factor that denotes the extent of orientation around the average

direction of the rods, S ≡ (α2
1 + α2

2)
1/2, and the angle the director makes with ex

given by α = (1/2) tan−1 (α1/α2). Note that one can define a symmetric, traceless

structure tensor, S = 〈uu〉 − (1/2)δ. In three dimensions, this tensor has five inde-

pendent elements whereas in two dimensions it has two independent elements, S11

and S12 with S22 = −S11 and S21 = S12. Thus, the diagonal form of this matrix in

two dimensions remains traceless and has eigenvalues that are equal in magnitude

1To obtain a more general form for the excluded volume interaction for arbitrary aspect ratio
rods in 3-D, consider two rigid rods aligned in directions u and u

′ with centers of mass located
at rm and r

′

m. The potential is zero if the two rods are not in contact and is infinite if they try
to cross or touch each other. Thus the repulsive potential may be written as νP (u,u′, rm, r′m).
We fix the orientations of the two rods and the center of mass of one of them. The second rod
is now moved and the volume inaccessible to it due to the presence of the first is estimated as
VP (u,u′) = −(1/V )

∫

drm

∫

dr′mFM (u,u′, rm, r′m) where the Mayer function FM is given by FM =
exp (−νP (u,u′, rm, r′m) − 1). For two spherocylinders with length L and diameter D, for instance,
we get VP (u,u′) = L2D|u × u

′| + 4D3/3π + 2πLD2.
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with opposite signs, say λ and −λ. Thus one anticipates two equilibrium states in

2-D, with scalar structure factor, S and −S. Note also that the isotropic state in

2-D resembles the oblate nematic in 3-D wherein the rods are arranged randomly in

planes perpendicular to the director. The nematic state in 2-D does not directly map

onto a nematic state in 3-D. However, the nature of the solutions and their dynamical

nature do bear a resemblance to corresponding solutions obtained from 3-D with the

rods constrained to rotate in the plane of shear.

Guided by the periodicity and forms of the governing equations, we write f(θ, τ) =

A0(τ) +
∑∞

m=1(Am(τ)e2imθ + A−m(τ)e−2imθ). Since f is constrained to be real, this

implies an equivalent form for f ,

f(θ, τ) = f0 +
∞
∑

m=1

am(τ) cos (2mθ) +
∞
∑

m=1

bm(τ) sin (2mθ), (5.5)

where f0 corresponds to the isotropic solution, ∂τf0 = 0 and ∂θf0 = 0. Normalization

then yields f0 = π−1. Note that α1 = b1π/2 and α2 = a1π/2. The evolution of

modes am and bm is obtained by substituting Eq. 5.5 into Eq. 5.2 and taking suitable

inner-products. For m ≥ 2 this yields

dam

dτ
= −4m2am +

mG

2
(−pbm−1 + 2bm − pbm+1) +mπU{a1(am−1 − am+1)

− b1(bm−1 + bm+1)}
(5.6)

dbm
dτ

= −4m2bm +
mG

2
(pam−1 − 2am + pam+1) +mπU{b1(am−1 + am+1)

+ a1(bm−1 − bm+1)}
(5.7)

The m = 1 modes evolve according to

da1

dτ
= −4a1 +

G

2
(2b1 − pb2) + πU{a1(

2

π
− a2) − b1b2} (5.8)

db1
dτ

= −4b1 +
G

2
(p

2

π
− 2a1 + pa2) + πU{b1(

2

π
+ a2) − a1b2} (5.9)

We note that in the time dependent, G = 0 evolution problem, starting with an
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initial state with bk(τ = 0) = 0 results in bk(τ > 0) = 0. That is when G = 0,

solutions with modes bk≥1 = 0 form an invariant subspace [42, 43]. This result

can be used to find scaling relationships of these coefficients with k and U . The

base nematic state can be written in terms of the set (aN
k , 0) for k ≥ 1. Setting

all bk = 0 and seeking a steady nematic solution yields a recursion relationship for

aN
k≥2, namely 4k[πUaN

1 ]−1aN
k = (aN

k−1 − aN
k+1). The equation for the first mode yields

0 = −4aN
1 + πU(aN

1 (2π−1 − aN
2 )) and thus we find that when aN

1 6= 0, the second

mode is independent of aN
1 . Analysis yields aN

2 = 2/π(1 − 2/U), aN
3 = aN

1 − 16(U −
2)(π2U2aN

1 )−1, and aN
4 = 2π−1 − 16(πU)−1 + 192(U − 2)π−3U−3(aN

1 )−2. The value

of aN
1 is obtained from the implicit integral equation. These results imply that as

U → ∞, aN
1 , aN

2 , aN
3 and aN

4 all tend to 2/π. This is not surprising and implies that

as U → ∞, a finite mode representation up to k = k∞ modes yields

f0(θ, U → ∞|k∞) ∼ 1

π
+

2

π

k∞
∑

k=1

cos (2kθ) =
sin (Mθ)

π sin θ
.

where M = (2k∞ + 1). In the vicinity of small θ, expanding the denominator about

θ and taking the limit of infinite terms indicates that f(θ, U → ∞) approaches

a delta function peaked at θ = 0 as is to be expected, viz., f0(θ, U → ∞) ∼
limM→∞sin (Mθ)(π sin θ)−1 = δ(0). The peak at θ = 0 is also accompanied by a

peak at θ = π due to circular symmetry.

5.1.3 Numerical methodology

The ODEs for the Fourier coefficients am and bm can be expressed as a single system

dτx = f(x, µα, µ
∗) where x = {am, bm} for m = 1, . . . , N , µα denotes the set of

parameters held constant, and µ∗ is the parameter which is used to continue solution

branches. For the purpose of tracing out stationary solution branches of this system,

we introduce an additional arclength parameter s and employ arclength continuation.

The kth solution along a branch is calculated by solving the augmented system

g(xk(s), µ
∗
k(s), s) = 0 =
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



f(xk(s), µ
∗
k(s))

∑

i(xi,k − xi,k−1)
2 + (µ∗

k − µ∗
k−1)

2 − (sk − sk−1)
2



 (5.10)

The continuation was performed over the provided parameter space (µ∗
0, µ

∗
f ) by first

solving the system f(x, µ∗) = 0 at the initial starting value, µ∗ = µ∗
0, followed by a

modified predictor-corrector continuation algorithm, where corrector iterations were

replaced with Newton-GMRES iterations. For the first and subsequent nonlinear

solves we used absolute and relative tolerances of 10−6 to terminate iterations, whereas

solutions produced by the predictor iterations were accepted for ‖f(xk, µ
∗
k)‖2 < 10−6.

The continuation algorithm was finally terminated at the final value µ∗
k ≥ µ∗

f . For

each computed solution, the eigenvalues of the Jacobian of Eq. 5.10 were calculated to

determine stability. For the simulations carried out in this chapter we chose N = 10.

Higher values of N gave practically identical results for the parameter ranges studied.

5.2 The base states p = 1

We begin by summarizing the characteristics of the base states given by the limiting

cases (G = 0, p = 1) (no flow) and (U = 0, p = 1) (no interaction potential). These

results provide convenient starting points for the discussion of more general cases.

When G = 0 the suspension of rods becomes aligned by an Isotropic-Nematic

(IN) transition beyond a critical concentration UIN. The director, or the average

orientation of the rods, is arbitrary, since there is no intrinsically preferred direction.

Anticipating that the solution is uniaxial about the director, we find that the base

state depends on u and the director n through the functional form f0(u ·n). We now

choose to consider solutions with the director aligned such that α1 = 0. All other

solutions may then be obtained by suitably rotating this base canonical solution

2. Then we have f0(θ, τ) = exp (Uα2 cos (2θ))(
∫ π

0
exp (Uα2 cos (2θ)) dθ )−1, so that

2Consider rotating the director by a small angle ϕ so that n goes to n + ϕ × n. However, since
f0 = f0(u ·n) and fR

0
= f0(u ·(n+ϕ×n)) both satisfy ∂u ·(∂uf +f(kBT )−1∂uVev[f ]) = 0, it follows

that to leading order in ϕ, Ψ[ϕ · (n×∂f0/∂n)] = 0 where Ψ is the linearized operator corresponding
to the right side of Eq. 5.1. This implies that the steady solutions have a neutral eigenvalue λR = 0,
which corresponds to rotating the director. The eigenvector is just ϕ · (n × ∂f0/∂n). Rotating the
director while keeping the distribution about the director fixed thus constitutes a soft mode. In
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α2 = SN
0 (U) is given by,

α2 = SN
0 =

∫ π

0
cos (2θ) exp (Uα2 cos (2θ)) dθ
∫ π

0
exp (Uα2 cos (2θ)) dθ

(5.11)

Solving this implicit equation for SN
0 (U) yields the equilibrium curve indicated as

a solid line in Fig. 5-1 (a). For U < UIN = 2, the isotropic solution is stable and

is the only equilibrium solution. For U > UIN, the isotropic branch constitutes an

unstable equilibrium solution, the only stable solution being a prolate nematic branch.

The bifurcating nematic branch arises from the isotropic branch via a supercritical

pitchfork bifurcation, as expected from the symmetries of the structure tensor S. This

implies that Û ≡ U−UIN satisfies Û(−SN
0 ) = Û(SN

0 ). A simple asymptotic expansion

using this yields for 0 < SN
0 ≪ 1,

Û ≈ (SN
0 )2 +

5

6
(SN

0 )4 +
19

24
(SN

0 )6 +
143

180
(SN

0 )8 (5.12)

which is plotted in Fig. 5-1 (a) as the dashed line. A linear stability analysis of Eqs.

(8) and (9) shows that the m = 1 modes have growth rates that become positive for

U > 2. The eigenvalues corresponding to the m ≥ 2 modes remain negative and do

not change sign. Fig. 5-1 (b) compares the computed and predicted Fourier coefficients

for the nematic state with the director parallel to the x-axis. As can be seen, we have

excellent agreement. In the limit (U = 0, p = 1), only one stable stationary aligned

solution branch is found. The scalar structure factor increases with increasing shear

rate, and the director orientation approaches the shearing direction ex. This is shown

in Fig. 5-1 (c). There is no bifurcation observed in this scenario. This result may

be compared with that for a general 2-D symmetric potential flow field as seen for

example when the rods are subjected to planar elongation flow (v = ǫ̇ ex − ǫ̇ ey). The

distribution function in this case has the form f0 = J−1 exp (γ̇ : uu/2), J being a

normalizing factor, γ ≡ (γ̇ : γ̇)1/2 a characteristic strength of the field and θ being

other words, there is no energy penalty due to the rotation as long as the shape of f and the value
of SN

0
are kept constant. In terms of the Fourier coefficients, setting all the bk = 0 for k ≥ 1 is

equivalent to pinning the director and removing this rotational degeneracy.
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the angle made by the rod with ex. Taking averages, we find that 〈sin 2θ〉 = 0 while

the structure factor S(U = 0) = 〈cos 2θ〉 ≈ γ/4. The linearity of the equations in

γ imply a well behaved solution and a structure factor that smoothly varies as γ

increases from zero. Thus there is no bifurcation for U = 0. Results for small shear

rates also show that as γ → 0, the angle of alignment is exactly π/4 with the axis of

flow and the structure factor is approximately linear in the shear rate.

5.3 Results of computations: The effects of weak

shearing on the equilibrium bifurcation map

Imposition of weak shearing has two main ramifications: First weak shearing acts as

an imperfection pinning the director (thus removing the degeneracy) and unravels

the pitchfork bifurcation. The breaking up of the pitchfork results in two steady

states, one stable and the other unstable. Imposition of shearing also breaks the I-N

bifurcation at U = UIN into stable and unstable nematic branches separated by a gap

(that vanishes in the limit G = 0) with no persistent isotropic states. This effect is

seen for both p = 1 and p < 1. Second, for a given shear rate 0 < G ≪ 1, steady

solutions are lost beyond a critical value of U = UL(G, p). Instead for U > UL(G, p),

we obtain periodic solutions with a frequency and amplitude incommensurate with

the requirements for a Hopf bifurcation. This suggests that the periodic tumbling

orbits arise from a global bifurcation that cannot be discerned from a simple linear

stability analysis about the limit point.

5.3.1 Steady aligned nematic solutions at small shear rates

Weakly aligned states as perturbations to the isotropic branch and breakup

of the pitchfork

We first focus on the para-nematic states with 0 < S ≪ 1 induced for small shear

rates. These states may be looked at as small perturbations to the isotropic state

due to imposition of shearing. Two branches of these exist for arbitrary p : a steady,
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weakly aligned, stable branch for 0 < U ≪ UIN and a steady, weakly aligned but

unstable branch for U ≫ UIN. The form of the stable and unstable nematic branches

are illustrated in Fig. 5-2 (a) for p = 1 and G = 10−2 and G = 10−1. Fig. 5-3 (a)

shows a typical bifurcation curve for G = 10−3 and various values of p < 1. Note that

as either G → 0 or p → 0, these weakly aligned branches collapse onto the isotropic

branch. As one approaches UIN either from lower or higher values of U , the degree of

alignment increases rapidly as seen in the closeup in Fig. 5-2 (b) and also observed

near U = 2 in Fig. 5-3 (a).

The weak perturbation to the isotropic state imposed by the shear flow can be

easily calculated by means of a simple regular perturbation analysis so long as |(U −
UIN)/UIN| ≫ 1. Consider the equations for the expansion coefficients (ak, bk) in the

limit where 0 < G ≪ 1. Define f = f0 + Gf (1) + G2f (2), (ak, bk) = (a
(0)
k , b

(0)
k ) +

G(a
(1)
k , b

(1)
k ) +G2(a

(2)
k , b

(2)
k ) = (a

(0)
k , b

(0)
k ) +G(a∗k, b

∗
k) such that (a

(0)
k , b

(0)
k ) = 0 for k ≥ 1

characterizes the isotropic state. Linearizing the no-flow (G = 0) evolution equation

for (a1, b1) about this isotropic state indicates that these modes become unstable at

UIN = 2 with growth rates λ
(0)
1 = (2U − 4). The growth rates for (ak, bk) when

k ≥ 2 and G = 0 are λ
(0)
m = −4m2. Thus the eigenvalues occur in pairs of two

as anticipated by the form of the expansion chosen. Continuing with the regular

perturbation, we obtain at O(G), the equations da
(1)
1 /dτ = 2a

(1)
1 (U−2) and db

(1)
1 /dτ =

2b
(1)
1 (U − 2) + p/π. These not only imply that the steady base state is given by

(a
(1)
1 , b

(1)
1 ) = (0,−p(2π)−1(U − 2)−1), but also show that this perturbed solution is

unstable for U > 2 and stable for U < 2 with no solution at U = 2. The higher

modes are all zero, that is (a
(1)
k≥2, b

(1)
k≥2) = (0, 0). Continuing to O(G2), we have

da
(2)
1 /dτ = 2(U − 2)a

(2)
1 + b

(1)
1 and db

(2)
1 /dτ = 2(U − 2)b

(2)
1 , which yield the steady

solution, (a
(2)
1 , b

(2)
1 ) = (b

(1)
1 (2−U)−1/2, 0) valid so long as (U − 2) 6= 0. The a

(2)
2 mode

follows da
(2)
2 /dτ = −16a

(2)
2 − pb

(1)
1 − 2πU(b

(1)
1 )2 which implies the steady solution

a
(2)
2 = −p2(16π(U − 2)2)−1. The complementary mode b

(2)
2 = 0 and all higher modes

(a
(2)
k≥3, b

(2)
k≥3) = (0, 0). Using these results we obtain the asymptotic value of S when
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Figure 5-2: The effect of weak shear flow on the G = 0 bifurcation map for p = 1. (a)
For G ≪ 1, the pitchfork bifurcation at U = 2 vanishes. The two steady branches,
one stable the other unstable, meet at the limit point, U = UL(G, p = 1). (b)
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0 < G≪ 1 and |U − 2|/2 ≫ 1, namely

S ≈ Gp

4|U − 2|(1 +
G2

8|U − 2|2 ) +O(G3p). (5.13)

This expression is physically consistent with the observation that as p → 0, the

structure parameter goes to zero. Similarly, as G→ 0, S → 0 as well, indicating that

the base state tends to an isotropic state. Finally note that when U → 0 and G > 0,

the structure factor S > 0, a result consistent with the U = 0 base state calculations

of the previous section.

A close up of the region around the I-N transition point UIN = 2 for non-zero values

of G shown in Fig. 5-2 (b) for p = 1 suggests that shear flow acts as a small per-

turbation unfolding the pitchfork bifurcation into stable and unstable para-nematic

branches. A gap develops close to the critical point around which no persistent per-

turbations of the isotropic state exist. Both the steady, weakly aligned states are seen

to move away from U = 2 as indicated schematically by L+ and L− in Fig. 5-2(b).

The behavior also persists for smaller values of p suggesting that the asymptotic ex-

pansion developed previously ceases to be valid. The extent of the gap is seen to

depend on both G (with p fixed) and p (with G fixed) as is seen from Fig. 5-3(a).

The scaling of widths |L+| and |L−| for which there are no small amplitude, O(G)

perturbed solutions can be estimated by a different perturbation analysis, in a man-

ner analogous to that in [96] and [37, 117]. We treat G as a parameter on which

the curves U(G) and S(G) vary. Thus the bifurcation map of S vs. U represents

a phase plot in which G is implicit. Solvability (marginal stability) and consistency

criteria are used then to evaluate scalings for the perturbed solutions. Repeating

their analysis indicates that these gaps scale as G2/3 for 0 < G≪ 1.

Highly aligned steady solutions: perturbations from the equilibrium ne-

matic state

Examination of the nematic branches at moderate values of S for both p = 1 and

p < 1 (Figs. 2(a) and 3(a)) show that both the stable branches exist up to the
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limit point; the two (stable and unstable) steady branches are arbitrarily close to the

equilibrium nematic branch and collapse onto it at G = 0. The branches seem to meet

at a limit point U = UL(G, p) rather sharply. This is seen very clearly in Fig. 5-2 (c),

for instance, when comparing the curves for G = 10−1 and G = 10−2. The smaller the

value of G, the more dramatic the collapse as illustrated in Fig. 5-4 (a). As already

discussed, the equilibrium nematic state is degenerate due to the lack of an intrinsic

direction; and thus the eigenvalues characterizing the equations linearized about the

nematic branch possess a zero eigenvalue. Imposition of shearing essentially destroys

this, and the zero eigenvalue attains a non-zero value. We expect that this eigenvalue

value is negative on the stable nematic, positive on the unstable branch, and exactly

zero at the limit point where the two meet. The stable, steady branch in effect turns

around and becomes the unstable steady branch. The smaller the value of G or p,

the sharper the turn.

The dramatic collapse is perhaps the clearest illustration of symmetry breaking

in this system. To obtain some insight into the nature of these steady branches, we

consider a perturbation about the nematic state, characterized by the set of coeffi-

cients (ak, bk) = (aN
k , 0). Consider the expansion for Uc = 2 ≪ U ≪ UL(G, p) and

0 < G≪ 1, such that to leading order S = SN
0 +O(G). We choose ak = aN

k +Ga
(1)
k and

bk = Gb
(1)
k . We seek steady non-trivial solutions (a

(1)
k , b

(1)
k ). Expanding the equations

to O(G) yields a
(1)
2 = (πUaN

1 )−1(2(U − 2) − πUaN
2 )a

(1)
1 = β2,1a

(1)
1 = 0. For k ≥ 2

4k

πU
(
a

(1)
k

aN
1

) = (a
(1)
k−1 − a

(1)
k+1) +

4k

πU
(
a

(1)
1

aN
1

)(
aN

k

aN
1

). (5.14)

The form of these equations also suggests that one can write in general a
(1)
k = βk,1a

(1)
1 .

Fixing the first mode fixes all the modes. Note that the equations do not involve any

b
(1)
k modes; this is because we are essentially considering only small terms linear in

G. This decoupling is similar to that seen for G = 0. However, when one considers

the b
(1)
k terms, a different scenario emerges. We find

b
(1)
2 =

1

2πUaN
1

(2
p

π
− 2aN

1 + paN
2 ) + b

(1)
1 (2(U − 2) + πUaN

2 )
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and for k ≥ 2,

b
(1)
k =

1

8k
(p(aN

k−1 + aN
k+1) − 2aN

k )

+
πU

4k
(b

(1)
1 (aN

k−1 + aN
k+1) + aN

1 (b
(1)
k−1 − b

(1)
k+1)).

For a non-trivial steady solution to exist, at least one of these coefficients has to be

non-zero. We note that even if b
(1)
1 = 0, b

(1)
2 is not zero. This indicates that we do

not have any subspace of steady solutions wherein only a
(1)
k modes exist. Since then

(ak, bk) ≈ (aN
k , Gb

(1)
k ), the flow breaks the degeneracy and symmetry associated with

the invariant subspace of equilibrium solutions.

5.3.2 Limit point and loss of steady solutions at moderate to

large alignment

A very important feature of the branches that emerge from our calculations is the

loss of steady - both stable and unstable solutions - by the formation of a limit point

seen in Fig. 5-2 (a) and in more detail in Fig. 5-2 (c) for p = 1. Similar features exist

for p < 1. The steady, stable nematic aligned family turns back at the limit point,

U = UL(G, p), and returns along a descending curve. These two independent solution

branches superimpose and become indistinguishable as G → 0. The superposition is

very sharp, leading to a cusp like behavior at the limit point. For example, Fig. 5-

2 (a) shows the curves for G = 10−1 and G = 10−2, and the result for the even smaller

value G = 10−4 is illustrated in Fig. 5-4 (a).

In order to understand the stability characteristics of these two branches we plot

the angle made by the director with the flow axis as a function of U , which is shown in

Fig. 5-4 (b). It is seen that the transition from stable to unstable solutions marks the

change in sign of the director orientation from positive to negative with respect to ex.

As G→ 0, the rods in the steady nematic branch orient at an angle +π/4 to the flow

axis, whereas those in the unstable branch are oriented at −π/4 degrees. A negative

α is unstable as the flow imposes a clockwise moment on the rods that is largest

when they are in the negative orientation. As the critical limit point is approached,
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U → UL(G, p), the angle made by the rods approaches α = 0 denoting that the point

is neutrally stable. In Figs. 5-5 (a) and 5-5 (b) we plot UL(G, p = 1) and second

show how UL(G, p) varies as p changes for fixed G. In general, keeping G fixed and

decreasing p pushes the limit point monotonically to lower values of U . Specifically,

UL(G≪ 1, p→ 0) → UIN. The trend for fixed p, say p = 1, and varying G is as seen

in Fig. 5-5 (a). Let us start, for example, at G = 10−2 and p = 1. When we move to

higher values of G, there is a region over which the limit point roughly has the same

value, and then UL(G, 1) is seen to slowly increase with increasing G. As we move in

the other direction towards smaller values of G, the value of the critical point tends

towards a finite value that is p dependent. Specifically UL(G→ 0, p→ 1) → 2.4114...

This value is in excellent agreement with previous asymptotic estimates of the limit

point [117]. Note that our numerical calculations also suggest that the limiting value

is actually an excellent approximation to values of up to G ∼ O(10−1).

5.3.3 Onset of periodic solutions via global bifurcation

For a small, but constant value of G, we find no steady solutions for U > UL(G, p).

Instead, periodic, non-sinusoidal oscillations in the coefficients are observed. These

periodic orbits emanate from the limit point and correspond to tumbling modes where

the rods rotate continuously but with a fixed mean structure parameter. The average

value of S for these stable, time-dependent solutions is approximately SN
0 (U).

Examples of such states are presented in Fig. 5-6 (p = 1) and Fig. 5-7 (p = 0.8).

The periodic orbits for G = 10−2 were computed at 2.5114. Under these conditions

the simulation had to be run for up to 5000 rotational relaxation times in order to

capture a few periods of the structure factor. Figs. 5-6 and 5-7 illustrate the limit

cycle observed by plotting the first two Fourier modes, a1 and b1, representing the

two independent components, S11 and S12, of the structure tensor. A short transient

is seen after which the components attain their unsteady but stable values. The

scalar structure factor fluctuates about a mean that has value approximately equal to

SN
0 (U) close to UL(G, p) with variations that are O(G) (see Fig. 5-8 (b)) and periodic

with period Tp = ω−1
T ∼ O(G−1). The qualitative forms of the periodic trajectories
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(U,G) = (2.5114, 10-2)
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do not change much for 0 ≪ p < 1.

From the nature of the periodic solutions, we deduce that they correspond to

tumbling behavior rather than wagging behavior for the rod director. In the wagging

state, the director oscillates between two angles whereas for tumbling, the director

rotates continuously. The two Fourier modes, a1 and b1, represent averages of the

cosine and sine of the polar angle θ and hence provide a measure of the average

orientation of a test rod placed in the shear flow. Consider Fig. 5-6 (c). During

one period of the oscillation, a1 remains positive for majority of the period, while

b1 changes sign from positive to negative. This is followed by a quick transition to

negative and then positive values for a1 as it goes through zero twice, while b1 only

goes through zero once in the quick transition before completing the period. During

the first transition, the test rod slowly rotates past ex, as α changes sign from positive

to negative. In this transition, the cosine remains positive while the sine goes through

zero. In the second transition, the rods quickly rotate across −ey since the clockwise

moment on the rods is largest once they rotate cross ex. This behavior is repeated

as the rod continues to tumble.

As U → [UL(G, p)]+, the tumbling solutions have increasingly larger periods. In

addition, the oscillations emerge with finite amplitude at the limit point. Although

this is sufficient to eliminate the possibility that the critical point marks a Hopf

bifurcation to periodic solutions, the spectrum of eigenvalues evaluated on the stable

branch(es) shows that only a single eigenvalue is close to crossing the imaginary

axis. This is contrary to the typical scenario for a Hopf bifurcation where the real

part of a complex conjugate pair of eigenvalues with non-zero imaginary part passes

through the imaginary axis. Furthermore, the eigenspectrum seems also to rule out

a homoclinic bifurcation, a distinguishing feature of which is a complex conjugate

pair of eigenvalues with zero imaginary parts crossing the imaginary axis. Therefore,

we characterize the bifurcation by analyzing numerical results for the amplitude and

frequency of the time-periodic states as a function of the distance from criticality (U−
UL). This is shown in Figs. 5-8 (a) and 5-8 (b). As the critical point is approached,

the amplitude of the oscillation stays O(1) while the frequency decreases like |U −
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Figure 5-8: Frequency and amplitude scalings for bifurcating periodic solutions for
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portrait. For U < UL the fixed point splits into a saddle point and a stable node that
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1
2 , which is consistent with the scaling for a global

infinite period bifurcation in two-dimensions.

UL(G, p)|ρ with ρ ≈ 0.49. This scaling is obtained through a power law fit for the

three values of G shown in the plots (see Fig. 5-10) and suggests that the time-periodic

states arise because of an infinite-period global bifurcation at the limit point.

The infinite period bifurcation is characterized by the collision of a stable node

and a saddle point in phase space that results in a stable limit cycle, or vice versa.

This is exactly the case in this problem, where we have stable periodic solutions or a

limit cycle in phase space for U > UL, and as U decreases through UL we obtain both

stable and unstable stationary solutions. This change in the phase space is shown in

Fig. 5-8 (b) for a prototypical two-dimensional system [106]. As already demonstrated

through numerical simulations, the limit cycle develops a bottleneck as U → (UL)+

resulting in oscillations with larger and larger periods. At U = UL the period becomes

infinite as a pseudo-fixed point appears in the phase portrait. For U < UL the fixed

point splits into a saddle point and a stable node that are characterized by the sign

of the most critical eigenvalue.
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5.4 Summary and concluding remarks

The results of our bifurcation analysis of the full, unclosed equations can be compared

to scaling results obtained by analysis of lower dimensional approximations. We focus

on results obtained for the LDG form [1] by Alonso, Wheeler and Sluckin and for the

Doi-Hess mesoscopic tensor model [19] coupling structure factor variations to director

dynamics. The two give similar scaling predictions, and so we choose to revisit the

Doi-Hess tensor model as it is closer in form and spirit to the full diffusion equation

we have investigated.

The Doi-Hess closed form equations (DHC) for the 3-D form of the equations

[19] involve the parameters N (the dimensionless potential), p , and the shear flow

parameter Pe ∝ G. The equilibrium nematic structure parameter for this form is

given by Sc = (1 + 3
√

1 − 8/(3N))/4 so that the I-N bifurcation now occurs at

N = 3 with a turning point (which is not present in our system) seen at N = 8/3.

Note that the oblate nematic state in 3-D (−1/2 < Sc < 0) corresponds to the

isotropic state in 2-D. Any connecting orbits between the 2-D isotropic U > UIN and

the 2-D prolate nematic state are to be compared to the orbits connecting the 3-D

oblate (−1/2 < Sc < 0) and the 3-D prolate (Sc > 0) states. With this in mind,

let us compare our results with those obtained by asymptotic analysis of the DHC

equations. We note that the tumbling states have a structure factor that is to leading

order O(SN
0 (U)) and O(SN

0 (UL)) close to U = UL with the first order corrections to

this being O(G) that vary on a time scale given by the slow time scale of O(ωT t).

These compare very favorably to the DHC results (cf. Eqs. (2)-(5) in [19]). Note

that the slow time scale characterizing the tumbling orbits is found to be (in terms

of our parameters) ωT = (G/2π)(1 − Sc(N)2)2
√

1 − λ2
0 ≡ (G/2π)Ψ(N, p), which is

consistent with the scaling for the exact model in terms of the G dependence. The

tumbling parameter λ0(N, p) = (p/3)(1+2/Sc(N)) introduces the dependence on the

aspect ratio; and thus for p = 1, we have λ0(N, 1) = (1 + 2/Sc(N))/3.

To conclude, we have presented a detailed numerical study of the shear induced

transition from steady to in-plane periodic states of a suspension of rods in the low
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shear rate limit. The 2-D Doi-Hess diffusion equation with a Maier-Saupe excluded

volume potential was used to model the interactions between rods. It is shown that

flow breaks the degeneracy and symmetry of the nematic state at equilibrium, yield-

ing both stable and unstable solution branches that exist arbitrarily close to the

equilibrium solution. Results are also presented from asymptotic analysis for the per-

turbation to the isotropic and nematic solutions in the weak shear flow limit around

the equilibrium isotropic-nematic transition. These asymptotic results show that no

solutions exist in a gap of O(G1/2) around the transition point. Analysis of numerical

solutions obtained via continuation and spot calculations strongly suggests the birth

of periodic orbits at the critical potential strength, U = UL, via an infinite period

bifurcation. This is supported by a study of the eigenspectrum of the stationary solu-

tions near the limiting potential. We find that the eigenspectrum of the model closely

resembles the eigenspectrum of a prototypical two-dimensional system that exhibits

an infinite period bifurcation. However, this does not guarantee that a single, two-

variable constitutive equation exists that can elucidate the complete set of solutions

for the diffusion equation. Limited results were also obtained earlier in our group for

the full 3-D problem by using wavelet methods [80]. Although the calculations are

still in their preliminary stages it is heartening to note that the numerical results for

the full 3-D G ≪ 1 shear flow problem are consistent with what has been obtained

in this chapter.
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Chapter 6

Predicting Onset of Draw

Resonance for Isothermal

Fiber-spinning with Hybrid

Simulators

6.1 Introduction

The fiber spinning process involves drawing a molten polymer as a liquid fiber fol-

lowing extrusion from an orifice to form continuous synthetic fibers of very small

diameters, typically on the order of 100µm and smaller. The small diameters are

achieved by stretching the molten polymer before solidifying in air or in a quench

bath and wounding on a spool. In addition to forming fibers of small diameters, the

process also leads to development of morphological features that depend on the extent

and rate of drawing. This is of particular importance in the spinning of anisotropic

polymeric fluids, such as liquid crystals, that yield products with highly anisotropic

properties. As such, the events that occur in the drawing region are the most sig-

nificant in determining the ultimate properties of the fiber. For example, ultra high

molecular weight high density polyethylene fibers with high degree of orientation in
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the axial direction can have the stiffness of steel with current fiber-spinning technol-

ogy [82].

One of the major concerns during fiber spinning are the instabilities that arise

during drawing. Usually there is an upper limit to the speed of extrusion or a lower

limit on the length of the drawing region beyond which the filament breaks. More

generally, however, the rheological properties of the polymer melt in the drawing re-

gion are such that a uniform fiber cannot be drawn into the solidification process.

This phenomenon typically manifests itself as periodic fluctuations in the diameter

of the drawn fiber and an accompanying oscillation in the tension at the take-up

point. This latter instability, also known as draw resonance, has been studied exten-

sively in a number of theoretical and experimental investigations. Kase and Matsuo

[53] and Matovich and Pearson [78] were the first to derive the correct equations

for the fiber-spinning process and used them to study the onset of draw resonance

instability of inelastic fluids. They predicted a minimum ratio of the take-up and

extrusion speeds beyond which the Newtonian fluid was unstable to infinitesimal dis-

turbances. While their results were in excellent agreement with experimental data

for the isothermal spinning of low molecular weight polymers that have small relax-

ation times and viscosities independent of deformation rate, the results could not be

extended to spinning of polymer melts that exhibit high stress levels and velocity

profiles that are linear compared to those predicted by inelastic fluid analysis.

The first major publication to address these limitations was the work of Fisher

and Denn [33] who studied the mechanics of isothermal fiber-spinning with the shear-

thinning White-Metzner model. They were able to predict both the onset of draw

resonance and a second stable region at high draw ratios, which was in agreement

with the data of Ishihara and Kase [50] for PET. Following this work other consti-

tutive equations were also used to model the fiber-spinning process, most notably

the multimode Phan-Thien Tanner model [86], which has multiple relaxation times

for modeling a real polymeric liquid. Finally, Gupta et al. [47] were able to use the

one-dimensional equations for the fiber-spinning process to successfully model spin-

ning data for a dilute solution of polyisobutylene in polybutene with the Oldroyd-B
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constitutive equation. It was shown that for a given value of the draw ratio and vis-

coelasticity, as measured by the ratio of solvent viscosity to total solution viscosity,

there is a maximum for the Deborah number beyond which no solution exists.

The purpose of this chapter is to obtain the onset of draw resonance and the

transition to second region of stability at high draw ratios for the Oldroyd-B model

by using the time-stepper based approach to stability and bifurcation analysis. In

particular, the fiber-spinning process for the Oldroyd-B constitutive equation is mod-

elled as a hybrid simulation that couples the conservation of mass and momentum in

the isothermal fiber spinning model to a stochastic simulation for the Brownian con-

figuration fields of the Hookean dumbbell model from polymer kinetic theory. For the

degree of viscoelasticity used for the model, the values of Deborah number presented

in this chapter cover the possible range. This chapter is organized as follows. We

begin by developing the equations for isothermal fiber-spinning of polymeric solutions

and recast them in a form suitable for solution with a general constitutive equation.

This is followed by a presentation of the Oldroyd-B constitutive equation and the

stochastic differential equation for the Hookean dumbbell model, their numerical dis-

cretization, corresponding weak formulations for obtaining a finite element solution,

and the necessary boundary conditions. The chapter concludes with results for the

steady state solutions, comparison of the leading eigenvalues of the Oldroyd-B model

with their approximations, and bifurcation analysis as obtained from the time-stepper

approach.

6.2 Spinning Equations

A schematic diagram of the fiber spinning process is shown in Fig. 6-1, where the

origin of the cylindrical coordinate system is placed just downstream of the point of

maximum extrudate swell. This position corresponds to a point where the velocity

and stress profiles are assumed to be independent of the radial position. To further

simplify analysis, it is assumed that the fiber is isothermal and that no shear or normal

stresses act on the boundary of the fiber. To develop the spinning equations, we now
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consider a differential element of the fiber, as shown in Fig. 6-2, with local radius

R(z, t), unit outward normal vector n, and total stress tensor π. The components of

the normal vector n are given by the geometry of the fiber as

nr =
[

1 +
(∂R

∂z

)2]−1/2

(6.1)

nz = −∂R
∂z

[

1 +
(∂R

∂z

2)]−1/2

(6.2)

By neglecting the effect of the ambient fluid and surface tension, the stress boundary

condition on the surface is given by

π · n = 0 (6.3)

which in component form can be written as

0 = (π · n)r = πrrnr + πrznz (6.4)

0 = (π · n)z = πzrnr + πzznz (6.5)

Due to the fact that the fiber is being pulled in the z direction, a finite shear stress

is obtained at the free surface, given by

πrz = −nz

nr

πzz =
∂R

∂z
πzz (6.6)

This result may seem contradictory with the assumption that there is only atmo-

spheric pressure exerting a force on the free surface. However, this can be resolved

by considering that even though πrz is a shear stress, it is not a shear stress in the

free surface as it does not lie in the plane of the free surface. Instead, it is a shear

stress in the cylindrical coordinate surface shown in Fig. 6-2.

With this result, we can write the momentum balance in the axial direction

0 =
1

r

∂

∂r
(rπrz) +

∂πzz

∂z
(6.7)
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where we have neglected inertia and gravity. Since we have assumed vz = vz(z, t), we

integrate each term in Eq. 6.7 across the fiber cross-section

∫ R

0

1

r

∂

∂r
(rπrz)r dr = Rπrz

∣

∣

∣

R
= Rπzz

∂R

∂z

and
∫ R

0

∂πzz

∂z
r dr =

∂

∂z

∫ R

0

πzzr dr − πzzR
∂R

∂z
=

1

2

∂πzz

∂z
R2

to obtain

0 =
2

R

∂R

∂z
πzz +

∂πzz

∂z
(6.8)

This can be simplified further to

∂

∂z
(Aπzz) = 0 (6.9)

where A(z, t) = πR(z, t)2 is the cross-section area of the fiber. As for πrr we use

Eqs. 6.4 and 6.6 to write

πrr =
(∂R

∂z

)2

πzz at r = R(z, t) (6.10)

Since there is no significant radial flow we might expect no strong radial variation

of stress. This combined with the approximation that the radius of the fiber does

not change rapidly, that is dR
dz

≪ 0, a reasonable approximation is that πrr ≈ 0.

Consequently, πzz in Eq. 6.9 is replaced with πzz − πrr = τzz − τrr, which is the first

normal stress to yield the final form of the momentum balance

∂

∂z
[A(τzz − τrr)] = 0 (6.11)

In addition to the momentum balance, we can also write the mass balance for an

incompressible fluid, which reads

∂A

∂t
+

∂

∂z
(Avz) = 0 (6.12)
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In Eqs. 6.11 and 6.12, the variables z, vz, t, A, and stress have been made dimen-

sionless with respect to the length L, the initial velocity v0 at z = 0, time scale L/v0,

initial area, and η0v0/L, where η0 = ηs + ηp and ηs and ηp are the solvent and poly-

mer contributions to the zero shear rate viscosities, respectively. The formulation in

Eqs. 6.11 and 6.12 was initially proposed by Kase and Matsuo [53] and Matovich

and Pearson [78], and used subsequently by several authors to study the fiber spin-

ning process for various constitutive models. In this study, however, we will rewrite

Eq. 6.11 with the DEVSS-G formulation and focus on the Oldroyd-B constitutive

equation and its kinetic theory equivalent, the dilute solution of Hookean dumbbells.

For the DEVSS-G formulation, we introduce a new variable, G, for the velocity

gradient such that

G− ∂vz

∂z
= 0 (6.13)

and write the rr and zz components of the stress tensor as

τzz = −2
∂vz

∂z
+ 2(1 − β)G+ τp, zz (6.14)

τrr =
∂vz

∂z
− (1 − β)G+ τp, rr (6.15)

where β = ηs/η0, and τp, zz and τp, rr are the polymer contributions to the stress

components τzz and τrr, respectively. The new formulation for the problem, excluding

the constitutive equations, is then

∂A

∂t
= −vz

∂A

∂z
− A

∂vz

∂z

0 =
∂A

∂z

[

−3
∂vz

∂z
+ 3(1 − β)G+ (τp, zz − τp, rr)

]

+ A
[

−3
∂2vz

∂z2
+ 3(1 − β)

∂G

∂z
+

∂

∂z
[τp, zz − τp, rr]

]

0 = G− ∂vz

∂z

(6.16)

Before proceeding to the evolution equations for the Oldroyd-B model and its

kinetic theory equivalent, the Hookean dumbbell, it is important to mention that

while we will be able to couple the Oldroyd-B constitutive equations directly with
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the system in Eq. 6.16, the Hookean dumbbell model will be described by a stochastic

differential equation for the molecular configuration. This description when coupled

with Eq. 6.16 will result in a hybrid simulation for the fiber-spinning process. More

importantly, in order to use this hybrid simulation to obtain steady states and perform

stability and bifurcation analysis, we will need to build a coarse time-stepper for

evolution of the polymer contribution to the stress tensor.

6.2.1 Oldroyd-B model

The Oldroyd-B constitutive equation in tensor form reads as

τ + λ1τ (1) = −η0

[

γ̇ + λ2
∂γ̇

∂t

]

(6.17)

where λ1 and λ2 are the relaxation and retardation times and τ (1) is the upper

convected derivative of τ . By decomposing the stress tensor into a Newtonian solvent

contribution and polymer contribution as before, such that τ = −ηsγ̇+τ p and noting

that λ2/λ1 = ηs/η0 leads to the following equation for the polymer contribution to

the stress tensor

τ p + λ1τ p,(1) = −ηpγ̇ (6.18)

which in dimensionless form reads as

τ p + Deτ p,(1) = −(1 − β)γ̇ (6.19)

where De = λ1v0/L is the Deborah number. The zz- and rr- components of this

constitutive equation are

De
[∂τp, zz

∂t
+ vz

∂τp, zz

∂z

]

= −2(1 − β)G− τp, zz + 2DeGτp, zz (6.20)

De
[∂τp, rr

∂t
+ vz

∂τp, rr

∂z

]

= (1 − β)G− τp, rr − DeGτp, rr (6.21)

Eqs. 6.20 and 6.21 are hyperbolic, partial differential equations that must be solved

along with Eq. 6.16 and appropriate boundary conditions to obtain a transient solu-

208



tion to the fiber-spinning problem. In particular, such a simulation will constitute a

time-stepper for the Oldroyd-B model that will be called for short time-horizons to

obtain steady states and perform stability and bifurcation analysis. Details of this

will be presented in Section 6.3.1.

6.2.2 Hookean dumbbell model

The molecular configuration of the Hookean dumbbell is represented by continuous,

Eulerian fields that evolve according to the following stochastic differential equations

dQz, i =
[

−vz
∂Qz, i

∂z
+GQz, i −

1

2De
Qz, i

]

dt+

√

dt

De
dWz, i (6.22)

dQr, i =
[

−vz
∂Qr, i

∂z
− G

2
Qr, i −

1

2De
Qr, i

]

dt+

√

dt

De
dWr, i (6.23)

where the configuration variables Qz, i and Qr, i are functions of both space and time,

whereas the standard Wiener processes Wz, i and Wr, i are functions of time only. For

a given velocity field vz and corresponding velocity gradient G, Eqs. 6.22 and 6.23 can

be used to evolve an ensemble of Nf configuration fields, for i = 1, . . . , Nf , in time

over the entire computational domain. In a standard transient simulation, these fields

are initialized from the equilibrium distribution of Hookean dumbbells, with the same

value for each field over the entire computational domain. The polymer contribution

to the stress tensor is then obtained at the end of the simulation by using Kramers

expression for the stress tensor.

For the simulation carried out in this chapter, however, it is necessary to be able to

initialize the configuration fields such that they are consistent with a specified initial

macroscopic field for τp, zz and τp, rr. Such an initialization is then followed by evolution

of the configuration fields for a short time horizon, and subsequent averaging to obtain

the updated stress fields. This procedure yields a simulation cast in the form of the

coarse time-stepper, where we obtain the evolution of the macroscopic stress fields

over a short time horizon by invoking a stochastic simulation of configuration fields.

Clearly, the important step in this procedure is the lifting step for constructing an
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initial ensemble of configuration fields consistent with the macroscopic stress. This

is accomplished by assuming that all fields are equivalent, and only vary in space

to be consistent with the spatial profile of the macroscopic stress. As such, each

configuration field is given by

Qz, i =

√

1 − De

1 − β
τp, zz (6.24)

Qr, i =

√

1 − De

1 − β
τp, rr (6.25)

for i = 1, . . . , Nf . This lifting step is basically a rearrangement of the Kramers

expression by assuming that all configuration fields are identical.

An important computational issue with stochastic simulation is the reduction of

statistical error through the method of control variates [114]. This is accomplished

by calculating the evolution of an ensemble of configuration fields, Q̂z, i and Q̂r, i at

quiescent conditions that have the same initial condition and are subjected to the

same random noise as the original configuration field variables Qz, i and Qr, i. This

leads to a modification of the Kramers expression for obtaining the macroscopic stress

field at the end of each stochastic simulation and represents the restriction step in the

coarse time-stepper approach. The new expression used to obtain the macroscopic

stress field is given by

τp, zz =
1 − β

De

1

Nf

Nf
∑

i=1

(

Q̂z, iQ̂z, i −Qz, iQz, i

)

(6.26)

τp, rr =
1 − β

De

1

Nf

Nf
∑

i=1

(

Q̂r, iQ̂r, i −Qr, iQr, i

)

(6.27)

The coarse time-stepper when combined with Eq. 6.16 yields a dynamical system

for the evolution of the fiber-spinning problem. As such, the Oldroyd-B model and the

stochastic differential equation for evolution of the configuration fields are identical

in that they describe the same molecular model. However, they are analyzed by two

different approaches, namely the continuum and hybrid simulation methods. The
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only modification introduced to the hybrid simulation is to recast the evolution of

the polymer contribution to the stress tensor as a coarse time-stepper. With an

appropriate numerical discretization described in the next section, we will see that

the resulting simulation can be used to compute stationary solutions and perform

stability analysis with Newton-GMRES.

6.3 Problem Formulation

The transient simulation of the fiber-spinning process is carried out by decoupling the

solution of the momentum equation from the update of the cross-sectional area of the

fiber and the polymer contribution to the stress tensor. In particular, given an initial

condition for A, τp, zz, and τp, rr, we first solve for vz and G, followed by an update of

A, τp, zz, and τp, rr over one time step. The process is then repeated for a specified time

horizon. While A is updated using Eq. 6.12, the polymer contribution to the stress

tensor is obtained either through Eqs. 6.20 and 6.21 for the Oldroyd-B model or a

coarse time-stepper for the Hookean dumbbell model that uses Eqs. 6.22 and 6.23 to

evolve the molecular conformation. We describe the numerical discretization of these

equations next.

6.3.1 Numerical discretization

The partial differential equations for the fiber-spinning process are solved by discretiz-

ing the computational domain z ∈ [0, 1] into N elements and time domain t ∈ [0, Tf ]

in NT steps. We then use the finite element method to discretize spatially the mass

and momentum balances and the equation for the velocity gradient G. Continuous,

quadratic basis functions φi are used for A and vz, whereas continuous linear basis

functions ψi are used for G. In contrast, the polymer contributions to the stress ten-

sor, τp, zz and τp, rr, and configuration fields, Qz, i and Qr, i, are discretized in space by

using the discontinuous Galerkin method with local linear discontinous basis functions

ψDG, l. For time-discretization all terms are treated explicitly to yield the following

algorithm
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1. Given Ak, τ k
p, zz, τ

k
p, rr, and the initial guess vk

z and Gk, update the velocity

and velocity gradient by solving the following nonlinear problem for the weak

formulation

0 =

∫ 1

0

(∂Ak

∂z

[

−3
∂vk+1

z

∂z
+ 3(1 − β)Gk+1 + (τ k

p, zz − τ k
p, rr)

]

+ Ak
[

−3
∂2vk+1

z

∂z2
+ 3(1 − β)

∂Gk+1

∂z
+

∂

∂z
[τ k

p, zz − τ k
p, rr]

])

φi dz

0 =

∫ 1

0

(

Gk+1 − ∂vk+1
z

∂z

)

ψi dz

(6.28)

2. Given the new velocity field update the area as follows

∫ 1

0

Ak+1φi dz =

∫ 1

0

Akφi dz − ∆t

∫ 1

0

(

vk+1
z

∂Ak

∂z
+ Ak ∂v

k+1
z

∂z

)

φi dz (6.29)

3. Update the polymer contributions to the stress tensor for the Oldroyd-B model

by using the following weak formulations over each element [zj, zj+1] of the

domain

∫ zj+1

zj

Deτ k+1
p, zzψDG, l dz =

∫ zj+1

zj

Deτ k
p, zzψDG, l dz

+ ∆t

∫ zj+1

zj

(

−2(1 − β)Gk+1 − τ k
p, zz + 2DeGk+1τ k

p, zz − vk+1
z

∂τ k
p, zz

∂z

)

ψDG, l dz+















vk+1
z

∣

∣

∣

zj

> 0 : ∆tDe[ψDG, lv
k+1
z (τ k,ex

p, zz − τ k,in
p, zz)]

∣

∣

∣

zj

vk+1
z

∣

∣

∣

zj+1

< 0 : −∆tDe[ψDG, lv
k+1
z (τ k,ex

p, zz − τ k,in
p, zz)]

∣

∣

∣

zj+1

(6.30)

∫ zj+1

zj

Deτ k+1
p, rrψDG, l dz =

∫ zj+1

zj

Deτ k
p, rrψDG, l dz

+ ∆t

∫ zj+1

zj

(

(1 − β)Gk+1 − τ k
p, rr − DeGk+1τ k

p, rr − vk+1
z

∂τ k
p, rr

∂z

)

ψDG, l dz+















vk+1
z

∣

∣

∣

zj

> 0 : ∆tDe[ψDG, lv
k+1
z (τ k,ex

p, rr − τ k,in
p, rr)]

∣

∣

∣

zj

vk+1
z

∣

∣

∣

zj+1

< 0 : −∆tDe[ψDG, lv
k+1
z (τ k,ex

p, rr − τ k,in
p, rr)]

∣

∣

∣

zj+1

(6.31)
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or for the Hookean dumbbell model, lift τ k
p, zz and τ k

p, rr to a consistent ensemble

of molecular configurations {Qk
z, i, Q

k
r, i} that are then evolved using the following

weak formulations

∫ zj+1

zj

Qk+1
z, i ψDG, l dz =

∫ zj+1

zj

Qk
z, iψDG, l dz

+ ∆t

∫ zj+1

zj

[

−vk+1
z

∂Qk
z, i

∂z
+Gk+1Qk

z, i −
1

2De
Qk

z, i

]

ψDG, l dz

+∆Wz, i

∫ zj+1

zj

ψDG, l dz+















vk+1
z

∣

∣

∣

zj

> 0 : ∆t[ψDG, lv
k+1
z (Qk,ex

z, i −Qk,in
z, i )]

∣

∣

∣

zj

vk+1
z

∣

∣

∣

zj+1

< 0 : −∆t[ψDG, lv
k+1
z (Qk,ex

z, i −Qk,in
z, i )]

∣

∣

∣

zj+1

(6.32)

∫ zj+1

zj

Qk+1
r, i ψDG, l dz =

∫ zj+1

zj

Qk
r, iψDG, l dz

+ ∆t

∫ zj+1

zj

[

−vk+1
z

∂Qk
r, i

∂z
− Gk+1

2
Qk

r, i −
1

2De
Qk

r, i

]

ψDG, l dz

+∆Wr, i

∫ zj+1

zj

ψDG, l dz+















vk+1
z

∣

∣

∣

zj

> 0 : ∆t[ψDG, lv
k+1
z (Qk,ex

r, i −Qk,in
r, i )]

∣

∣

∣

zj

vk+1
z

∣

∣

∣

zj+1

< 0 : −∆t[ψDG, lv
k+1
z (Qk,ex

r, i −Qk,in
r, i )]

∣

∣

∣

zj+1

(6.33)

For the Hookean dumbbell simulation, another ensemble of equilibrium configu-

rations {Q̂k
z, i, Q̂

k
r, i} are also initialized that have the same initial configuration as

{Qk
z, i, Q

k
r, i}. These are then subjected to the same Wiener process and evolved

according to a similar weak form with vk+1
z and Gk+1 equal to zero. The evolved

configurations for the flow field and quiescent state are then used to evaluate

the updated stress field, τ k+1
p, zz and τ k+1

p, rr , by using Eqs. 6.26 and 6.27.

4. Repeat steps 1–3 with Ak+1, τ k+1
p, zz , τ

k+1
p, rr , v

k+1
z , and Gk+1 until t = Tf .

In the discontinuous Galerkin method, the weak form of the advection term has

been replaced with the sum of an integral over the element [zj, zj+1] and a jump
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term that is only evaluated at inflow boundaries. Specifically, terms labelled τ k,ex
p, rr are

evaluated upstream of a given element while terms labelled τ k,in
p, rr are evaluated within

the element itself. If a boundary, zj or zj+1 is not an inflow boundary, the jump term

at that boundary is equal to zero. Also, in the weak formulation for the Hookean

dumbbell configuration, the same Wiener process (∆Wz, i or ∆Wr, i) is applied to all

points in space. In writing the weak formulation for the dumbbell configuration, the

Wiener process has been scaled by
√

∆t/De (cf. Eqs. 6.22 and 6.23).

6.3.2 Boundary and Initial Conditions

In order to evolve the fiber-spinning equations along with the constitutive descrip-

tions for the Oldroyd-B model or the Hookean dumbbell model, we need four spatial

boundary conditions. The conditions at z = 0 are not clear due to the unknown be-

havior of the upstream flow, including the die swell. In an experimental situation, the

flow rate is generally given but the initial area is unknown because of the extrudate

swell and uncertainty as to the precise location of the coordinate origin. Hence, it is

customary to specify the velocity and area at z = 0. In this work we set vz(0) = 1

and A(0) = 1, which sets the flow rate. In principle these boundary conditions should

only be valid at steady state, but following previous work [33] we assume that these

hold at all times for both transient and steady fiber-spinning.

The downstream boundary conditions are easier to specify, as the velocity at the

take-up device can be fixed. Here it is assumed that the fiber is quenched directly

onto the take-up roll at z = 1. By defining the draw ratio DR as the ratio of the

take-up velocity to the initial velocity, the boundary condition for the velocity is then

vz(1) = DR.

Finally, we need to establish boundary conditions for the polymer contributions to

the stress tensor. As such, both τp, zz and τp, rr or their difference cannot be specified

at z = 0 since that would fix the tension in the fiber. For a fixed flow rate, the

take-up velocity and force cannot both be specified; for a fixed take-up velocity we

must accept whatever tension is necessary to draw the fiber. It is therefore customary

to set the ratio τrr/τzz at z = 0. While this ratio is −0.5 over the entire filament for a
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Newtonian fluid, for a viscoelastic fluid, it depends on the tension in the fiber, which,

of course, depends on the solution. Finite element calculations of Keunings et al. [58]

have shown that this ratio monotonically goes from −0.5 to 0 at the point where the

stresses become radially uniform, as the tension in the fiber is increased. Also, it has

been shown that the fiber-spinning equations presented here are insensitive to this

stress ratio as long as it is in the range from −0.5 to 0 [24].

In this work, at z = 0 we evolve the fully developed versions of the equations for

the polymer contributions to the stress tensor for the Oldroyd-B model and stochastic

differential equations for Nf Hookean dumbbell configurations for the inlet velocity

gradient. These are given by

De
∂τ 0

p, zz

∂t
= −2(1 − β)G− τ 0

p, zz + 2DeGτ 0
p, zz (6.34)

De
∂τ 0

p, rr

∂t
= (1 − β)G− τ 0

p, rr − DeGτ 0
p, rr (6.35)

and

dQ0
z, i =

[

GQ0
z, i −

1

2De
Q0

z, i

]

dt+

√

dt

De
dWz, i (6.36)

dQ0
r, i =

[

−G
2
Q0

r, i −
1

2De
Q0

r, i

]

dt+

√

dt

De
dWr, i (6.37)

Here the ensemble {Q0
z, i} {Q0

r, i} are consistent with the polymer contributions to the

stress tensor, τ 0
p, zz and τ 0

p, rr at z = 0 and subjected to the same Wiener process as

{Qz, i} {Qr, i}. The transient state of τ 0
p, zz and τ 0

p, rr or {Q0
z, i} {Q0

r, i} is then used as

a Dirichlet boundary condition for Eqs. 6.30 and 6.31 or Eqs. 6.32 and 6.33. With

this formulation we find that the ratio τrr/τzz varies from −0.5 to 0 over the length

of the fiber, and approaches zero with increasing viscoelasticity, that is, decreasing β

or increasing De.

In addition to boundary conditions, we must also set an initial condition for a

transient simulation or an initial guess for obtaining the steady state with Newton-
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GMRES. In either case, A, v, and G are set to the Newtonian solution, that is

A(z) = e−z ln DR (6.38)

vz(z) = ez ln DR (6.39)

G(z) = ln DRe
z ln DR (6.40)

while τp, zz, and τp, rr are set to

τp, zz(z) = −2(1 − β)G(z) (6.41)

τp, rr(z) = (1 − β)G(z) (6.42)

6.3.3 Time-stepper based stability and bifurcation analysis

If we denote the finite element discretization of the field variables as a vector of

unknowns u = [A, vz, G, τp, zz, τp, rr]
T for u ∈ ℜM , then Eq. 6.16 coupled with Eqs. 6.20

and 6.21 represent a time-stepper, ΦO, Tf
(u; DR) that can evolve the vector u over

a specified time horizon Tf for a given value of the draw ratio. A similar time-

stepper ΦH, Tf
(u; DR) can also be constructed for the Hookean dumbbell model by

using Eqs. 6.22 and 6.23 and the associated lifting and restriction procedures. These

time-steppers can be thought of as black-boxes that provide the transient behavior of

the fiber-spinning process. In order to use these black-boxes to perform stability and

bifurcation analysis, we formulate the following nonlinear problems for the Oldroyd-B

and Hookean dumbbell models

F O(u; DR) = u − ΦO, Tf
(6.43)

F H(u; DR) = u − ΦH, Tf
(6.44)

that can then be solved to obtain the steady state of the fiber-spinning process, u∗,

for a specified draw ratio.

The main advantage of this approach is that the formulation for the Hookean

dumbbell model, F H is constructed without invoking closure even though a closed
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equation may be written for F O. While it is trivial to show that the Hookean dumbbell

and Oldroyd models are equivalent, the approach taken so far can be easily used to

study kinetic theory models that cannot be expressed in closed form. Additionally,

by casting the time-stepper as a nonlinear problem, we can also trace branches of the

stationary solution. This can be achieved by using a suitable continuation method,

such as arclength continuation (see Section 3.6). More importantly, the stability of

the computed steady states can also be obtained from such an analysis. In particular,

the eigenvalues (νi for i = 1, . . . ,M) of the Jacobian
∂F H

∂u

∣

∣

∣

∣

u∗

or
∂F O

∂u

∣

∣

∣

∣

u∗

are related

to the eigenvalues (σi for i = 1, . . . ,M) of the Jacobian of the closed model, which

may not be explicitly available, by

νi = 1 − eσiTf (6.45)

In the current example, we can compare the eigenvalues νi to the exact eigenvalues

σi since we have a closed equation for the Oldroyd-B model. Specifically, these can

be obtained by writing Eqs. 6.16, 6.20, and 6.21 as

M
du

dt
= F (u; DR) (6.46)

where

M =

















A 0 0 0 0

0 0 0 0 0

0 0 0 T zz 0

0 0 0 0 T rr

















(6.47)

such that A, T zz, and T rr are the finite element mass matrices for the mass balance

and the constitutive equations, respectively. Performing a linearization of Eq. 6.46

around u∗ leads to

M
d(u − u∗)

dt
= F u

∣

∣

∣

u∗

(u − u∗) (6.48)
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and the corresponding generalized eigenvalue problem

Mv = σF u

∣

∣

∣

u∗

v (6.49)

where σ is an eigenvalue of the dynamical system (Eq. 6.46) and v its correspond-

ing eigenvector. A steady state u∗ is then a stable solution if ℜ{σi} < 0. The

corresponding stability criterion for the time-stepper formulation, therefore, requires

that the eigenvalues νi must lie within a unit disc centered at (1, 0) in the complex

plane. In our simulation, the νi are never all computed, as that would be a pro-

hibitively expensive simulation requiring M + 1 function evaluations. Instead, we

use the Newton-GMRES method to solve Eqs. 6.43 and 6.44. The advantage of this

approach is that the explicit computation of the Jacobians
∂F H

∂u

∣

∣

∣

∣

u∗

and
∂F O

∂u

∣

∣

∣

∣

u∗

is

never required; only matrix-vector multiplications are needed that can be performed

at low cost by calling the time-steppers m times, where m≪M . Since the Newton-

GMRES solver uses the iterative Arnoldi procedure to converge to stationary states,

the Ritz values returned by this procedure provide good estimates to νi. In particular,

these values are very good approximations of the leading eigenvalues of the Jacobian

matrices, which are exactly the eigenvalues of interest in a stability calculation.

6.4 Results

6.4.1 Comparison of time-steppers

In order to test the numerical discretization, the time-steppers for the Oldroyd-B

and Hookean dumbbell models were evolved until Tf = 10.0 with ∆t = 10−4. A

one-dimensional mesh discretized into 20 elements of equal length was used; for the

Hookean dumbbell simulation, 500 configuration fields were employed. The draw ratio

was set to 20; and the Deborah number and β were set to 0.01 and 0.2, respectively.

The spatial profiles for A, vz, G, τp, zz, and τp, rr are shown in Figs. 6-3 and 6-4.

In these figures, the solid lines represent the solution obtained from the Oldroyd-B

time-stepper, whereas the circles represent the solution for the Hookean dumbbell
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time-stepper. Given the excellent agreement between the two results, subsequent

calculations to compute the stationary states and perform bifurcation analysis were

done with ∆t = 10−4 and Nf = 500.

6.4.2 Steady-state results for the Oldroyd-B and Hookean

dumbbell time-steppers

Given the good agreement between the two timesteppers, ΦO, Tf
and ΦH, Tf

, the

steady state for the fiber-spinning process was then obtained for a range of β and De

by solving Eq. 6.44 with a Newton-GMRES solver at DR = 20 and time-horizon of

Tf = 0.05. The steady-state velocity profiles thus obtained are shown in Figs. 6-5

and 6-6. A Newtonian initial guess was sufficient to converge to a solution for β = 0.8

and De = 0.03 and also for β = 0.2, and De = 0.001. The remaining solutions were

obtained by using continuation in β or De from one of these solutions.

To check consistency of these solutions, steady states were also obtained by solving

Eq. 6.43 for the Oldroyd-B time-stepper at selected values of β and De. The steady-

state profiles for area, velocity, velocity gradient G, and the polymer contribution to

the stress tensor are compared with those obtained from applying Newton-GMRES to

the Hookean dumbbell time-stepper in Figs. 6-7 to 6-14. No error bars are shown for

the comparison of the polymer contribution to the stress tensor, since the stochastic

time-stepper ΦH, Tf
is run with different initial conditions by the Newton-GMRES

solver over a short time horizon Tf that is not sufficient to compute statistical aver-

ages. Nevertheless, there is excellent agreement between the results of the Oldroyd-B

and Hookean dumbbell time-steppers. Moreover, the velocity profiles are in very good

agreement with the computational results obtained by Gupta et al. [47].

6.4.3 Comparison of exact eigenvalues and Ritz values

In order to perform stability and bifurcation analyses with the Hookean dumbbell

time-stepper, it is important to obtain good estimates for the leading eigenvalues of

the underlying dynamical system. Since we apply a Newton-GMRES solver to the
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Figure 6-3: Comparison of steady-state spatial profile of area, velocity, and veloc-
ity gradient for the Oldroyd-B and Hookean dumbbell time-steppers. The solid
lines and circles represent Oldroyd-B and Hookean dumbbell results, respectively.
{β,De,DR} = {0.2, 0.01, 20}
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Figure 6-4: Comparison of steady state spatial profiles of (a)τp, zz, and (b) τp, rr for the
Oldroyd-B and Hookean dumbbell time-steppers. The length of the error bars is equal
to two standard deviations of standard error in the stochastic simulation. The solid
lines and circles represent Oldroyd-B and Hookean dumbbell results, respectively.
{β,De,DR} = {0.2, 0.01, 20}
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Figure 6-5: Steady state velocity profile obtained from the Newton-GMRES solver
and the Hookean dumbbell time-stepper for varying De at {β,DR} = {0.2, 20}
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Figure 6-6: Steady state velocity profile obtained from the Newton-GMRES solver
and the Hookean dumbbell time-stepper for varying β at {De,DR} = {0.03, 20}
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Figure 6-7: Comparison of steady state spatial profiles of area, velocity, and veloc-
ity gradient as obtained from the Newton-GMRES solver applied to Oldroyd-B and
Hookean dumbbell time-steppers. The solid lines and circles represent Oldroyd-B and
Hookean dumbbell results, respectively. {β,De,DR} = {0.2, 0.01, 20}
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time-steppers. The solid lines and circles represent Oldroyd-B and Hookean dumbbell
results, respectively. {β,De,DR} = {0.2, 0.01, 20}
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Figure 6-9: Comparison of steady state spatial profiles of area, velocity, and velocity
gradient as obtained from the Newton-GMRES solver applied to the Oldroyd-B and
Hookean dumbbell time-steppers. The solid lines and circles represent Oldroyd-B and
Hookean dumbbell results, respectively. {β,De,DR} = {0.2, 0.02, 20}
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Figure 6-10: Comparison of steady state spatial profiles of τp, zz and τp, rr as obtained
from the Newton-GMRES solver applied to the Oldroyd-B and Hookean dumbbell
time-steppers. The solid lines and circles represent Oldroyd-B and Hookean dumbbell
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Figure 6-11: Comparison of steady state spatial profiles of area, velocity, and velocity
gradient as obtained from the Newton-GMRES solver applied to the Oldroyd-B and
Hookean dumbbell time-steppers. The solid lines and circles represent Oldroyd-B and
Hookean dumbbell results, respectively. {β,De,DR} = {0.4, 0.03, 20}
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Figure 6-12: Comparison of steady state spatial profiles of τp, zz and τp, rr as obtained
from the Newton-GMRES solver applied to the Oldroyd-B and Hookean dumbbell
time-steppers. The solid lines and circles represent Oldroyd-B and Hookean dumbbell
results, respectively. {β,De,DR} = {0.4, 0.03, 20}
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Figure 6-13: Comparison of steady state spatial profiles of area, velocity, and velocity
gradient as obtained from the Newton-GMRES solver applied to the Oldroyd-B and
Hookean dumbbell time-steppers. The solid lines and circles represent Oldroyd-B and
Hookean dumbbell results, respectively. {β,De,DR} = {0.6, 0.03, 20}
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Figure 6-14: Comparison of steady state spatial profiles of τp, zz and τp, rr as obtained
from the Newton-GMRES solver applied to the Oldroyd-B and Hookean dumbbell
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Figure 6-15: Eigenvalues of the dynamical equations for the Oldroyd-B formulation
at {β,De,DR} = {0.8, 0.001, 20}
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Figure 6-16: Comparison of eigenvalues (�) of the dynamical equations and Ritz
values (+) for the Oldroyd-B time-stepper. The Ritz values were obtained with a
time stepping horizon of Tf = 0.05 at {β,De,DR} = {0.8, 0.001, 20}
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Figure 6-17: Comparison of eigenvalues (�) of the dynamical equations and Ritz
values (+) for the Hookean dumbbell time-stepper. The Ritz values were obtained
with a time stepping horizon of Tf = 0.05 at {β,De,DR} = {0.8, 0.001, 20}
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Figure 6-18: Comparison of eigenvalues (�) of the dynamical equations and Ritz
values (+) for the Hookean dumbbell time-stepper. The Ritz values were obtained
with a time stepping horizon of Tf = 0.1 at {β,De,DR} = {0.2, 0.001, 20}

232



0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

ℑ

ℜ
(a) Tf = 0.05

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

ℑ

ℜ
(b) Tf = 0.06

Figure 6-19: Comparison of eigenvalues (�) of the dynamical equations and Ritz
values (+) for the Hookean dumbbell time-stepper at {β,De,DR} = {0.2, 0.01, 20}
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Hookean-dumbbell time-stepper for the fiber-spinning process, these leading eigenval-

ues are approximated by Ritz values that are obtained at the last Newton iteration

within a Newton-GMRES solver by computing the eigenvalues of the upper Hessen-

berg matrix generated by the Arnoldi procedure. Since this matrix is of low dimension,

much smaller than the actual dimension of the system, the Ritz values are obtained

cheaply.

We first solve the steady-state version of the dynamic formulation for the Oldroyd-

B model given in Eq. 6.46. The steady state thus obtained is used to solve the general-

ized eigenvalue problem Eq. 6.49, which yields the eigenspectrum shown in Fig. 6-15.

Since all eigenvalues lie in the left half of the complex plane, the fiber-spinning process

is stable to infinitesimal perturbations at {β,De,DR} = {0.8, 0.001, 20}.

In order to facilitate comparison with the approximate Ritz values obtained from

the Arnoldi procedure within the Newton-GMRES solver, the eigenvalues for the

dynamic formulation are then mapped to within a unit circle centered at (1, 0) in the

complex plane by using Eq. 6.45. The resulting eigenspectrum and the Ritz values are

plotted in Figs. 6-16 and 6-17 for the Oldroyd-B and Hookean dumbbell time-steppers.

In obtaining the Ritz values, the time-horizon for the Oldroyd-B and Hookean time-

steppers was set to Tf = 0.05. It can be observed that there is very good agreement

between the Ritz values and the leading transformed eigenvalues, which are exactly

the eigenvalues of interest in a stability calculation. Since the Ritz values lie within

the unit circle, the time-stepper formulation returns the correct stability information

for the fiber-spinning process.

The effect of increasing the time-horizon to Tf = 0.1 on the eigenspectrum for the

Hookean dumbbell time-stepper is shown next in Fig. 6-18. Increasing the time hori-

zon results in increased clustering of the eigenvalues, which is beneficial for GMRES

iterations. Once again, the agreement is excellent between the leading transformed

eigenvalues and Ritz values. The benefit of increased clustering should be weighed

against the cost of running the time-stepper over a longer time-horizon. For example,

with the Hookean dumbbell time-stepper, increasing the time-horizon to Tf = 0.1

reduces the number of calls to the time-stepper by 10% when compared with the
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number of calls to the time-stepper for Tf = 0.05. The doubling of the time-stepping

horizon is, therefore, not justified for the modest descrease in number of time-stepper

calls, since the agreement between the Ritz values and the leading eigenvalues is

equally good for Tf = 0.05.

Finally, the transformed eigenvalues and the Ritz values for the Hookean dumbbell

time-stepper are shown in Fig. 6-19(a) for {β,De,DR} = {0.2, 0.01, 20} with a time-

horizon of Tf = 0.05. This case represents increased viscoelasticity and we see that

once again there is good agreement between the leading eigenvalues and Ritz values,

although not as good as in previous cases. However, in this particular case, increasing

the time-horizon to Tf = 0.06 results in better agreement as shown in Fig. 6-19(b).

We, therefore, use this time-horizon when obtaining bifurcation diagrams for the

fiber-spinning process at these conditions.

6.4.4 Continuation in draw ratio for Hookean dumbbell time-

stepper

We obtain bifurcation diagrams for the fiber-spinning process by choosing the draw

ratio as the bifurcating parameter and augmenting Eq. 6.44 with the equation for

arclength continuation. Here, we aim to show that we can use the time-stepper for

the Hookean dumbbell model to capture draw resonance as a transition in stability of

the the steady state solutions by continuing in the draw ratio. In particular, we set

β = 0.2 and obtain the bifurcation diagrams at 3 different values of De to compare

with previous studies.

The computed bifurcation diagrams are shown in Fig. 6-20 for De = 0.001, De =

0.01, and De = 0.011, where we plot the average velocity as a function of draw ratio.

It can be observed that at the three conditions shown in Fig. 6-20, the transition

from stable to unstable steady states occurs through a Hopf bifurcation, where a pair

of complex conjugate eigenvalues with nonzero imaginary part cross the imaginary

axis for the dynamical problem. In the case of the time-stepper formulation, this

corresponds to a pair of complex conjugate eigenvalues leaving the unit circle.
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Figure 6-20: Bifurcation diagrams for the fiber-spinning process at β = 0.2, where
the draw ratio has been used as the continuation parameter. The solid and dotted
curves represent stable and unstable steady states, respectively. The solid squares
mark Hopf bifurcations.
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As De is increased from 0.001 to 0.011, the transition from stable to unstable

steady states occurs at increasing value of the draw ratio. This is in agreement

with previous studies with the Maxwell model [24], which corresponds to β = 0.

Additionally, the critical draw ratio at De = 0.001 is greater than the Newtonian fluid

critical draw ratio of 20.21, which is also in agreement with the linear stability analysis

for a Maxwell fluid. Most importantly, however, we find that at De = 0.011 and a

high draw ratio of 59.17 the fiber-spinning process regains stability to infinitesimal

disturbances. Similar results were obtained by Fisher and Denn [33] in their analysis

of the draw resonance with the White-Metzner fluid. In particular, the critical draw

ratios of 25.81 and 59.17 are in very good agreement with Fig. 5 in [33].

6.5 Conclusions

In this chapter we apply the time-stepper based approach for stability and bifurcation

analysis to the industrially relevant fiber-spinning process. While this process has

been studied extensively in the past, here we obtain well known results by constructing

a hybrid simulation for the fiber-spinning process that couples the conservation of

mass and momentum to the evolution of stochastic Brownian configuration fields

for a model from polymer kinetic theory, and use it to compute stationary states,

perform continuation in a chosen parameter, and obtain stability information. This

analysis is made possible by combining Newton’s method with iterative methods

from numerical linear algebra that take advantage of a compact eigenspectrum for

the Jacobian matrix of a nonlinear problem, which is constructed by posing a fixed

point mapping for the hybrid simulation. The idea is extremely simple as it treats the

hybrid simulation as a black-box routine, which is called from appropriately perturbed

initial conditions for relatively short time horizons. The leading eigenvalues of the

nonlinear problem are also approximated as a by-product of this procedure, allowing

one to perform stability and bifurcation analysis.

The results in this chapter were obtained for a kinetic theory model for which

one can write a closed constitutive equation. This closed description was important
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for demonstrating the accuracy of the method; however, in building the hybrid sim-

ulation the existence of a closed form was never invoked. All the ingredients of a

state-of-the-art hybrid simulation were employed in this chapter, albeit in one spatial

dimension, and for the simplest kinetic theory model. When the results obtained

here are combined with the results presented in previous chapters, it is clear that

the approach can be easily extended to hybrid simulations of polymer kinetic theory

in higher spatial dimensions and with higher number of configurational degrees of

freedom.
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Chapter 7

Conclusions

7.1 Summary

The area of viscoelastic flow modeling has matured considerably since its inception

three decades ago, when researchers struggled to compute kinematics with simple

models, such as second-order fluids and the upper-convected Maxwell model. Today,

we are beginning to model three-dimensional flows and study rheological descriptions

that originate from polymer kinetic theory. As such, a great deal of effort is being

devoted to develop robust numerical methods for three-dimensional continuum and

hybrid simulations and apply to existing numerical methods to gain further insight

into rheological behavior of real materials. In particular, very detailed molecular

dynamics simulations [52, 51] have now become feasible that can be used to con-

struct more sophisticated molecular models. The models developed by theoretical

rheologists can then, in principle, be implemented numerically.

An overarching goal of viscoelastic flow modeling has been the prediction of flow

instabilities that occur in polymer processing operations. The standard approach

for this has been to solve the finite element discretization of the conservation and

constitutive equations with Newton’s method or integrate the full set of nonlinear

equations to steady state. The former approach, while simple in principle, can be

difficult to implement for complicated constitutive descriptions, such as the adaptive

length scale model of Ghosh et al. [41], and suffers from various mathematical closure
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approximations that must be introduced to obtain closed-form constitutive equations

from kinetic theory. The latter approach, however, overcomes these difficulties by

employing appropriate time-discretization methods for the constitutive descriptions

that decouple the flow kinematics from the terms in the constitutive equation. In

particular, this approach can be easily extended to evolve models from polymer kinetic

theory, with the appropriate physics, in order to obtain the steady state solution.

The standard approach to studying viscoelastic flow instabilities with these simu-

lations then involves computing the steady state base flow followed by determination

of the linear stability by solving the generalized eigenvalue problem that results from

examining the evolution of small normal mode perturbations applied to the base flow.

This method has been used to study both closed-form constitutive equations for the

polymer contribution to stress tensor [100, 101] and stochastic descriptions from ki-

netic theory [102, 103]. Since closed-form constitutive equations are known to give

results of doubtful validity, the work with stochastic descriptions presents a consid-

erable improvement. Nevertheless, this approach is limited in several respects. First,

the base flow stochastic simulation for polymer configuration is evolved in time with

subsequent updates to the base flow stresses and the velocities at every time step even

after starting the linear stability calculations. This means that the base flow vari-

ables continue to fluctuate because of the fluctuating random forces experienced by

the microstructural model. This is a marked difference from traditional linear stabil-

ity analysis where the base flow solution is stationary. Second, this approach requires

derivation of linearized stochastic differential equations for the perturbed conforma-

tion of the microstructural model, which are evolved along with the base flow. This

adds considerable analytical effort for every new microstructural model that is being

studied with this approach. Finally, this approach is only suitable for testing constitu-

tive equations by comparison with experiments at well defined operating conditions,

and does not address the need of the polymer engineer who wishes to predict flow

transitions and analyze instabilities in real polymer processing operations.

The work presented in this thesis addresses this primary need by enabling models

from polymer kinetic theory to deliver stationary states of viscoelastic flows, report
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their stability, and perform bifurcation analysis. This is made possible by constructing

a fixed point problem for the hybrid simulations and applying Newton’s method along

with iterative methods, like GMRES [113], from numerical linear algebra to converge

to steady states. In doing so, the hybrid simulations are treated as black-boxes that

are called from appropriately perturbed initial conditions for relatively short time

horizons compared to the macroscopic time horizon to achieve steady state instead of

direct integration. Calling the time-steppers for short time horizon leads to a compact

spectrum of eigenvalues for the Jacobian of the fixed-point problem, which is exploited

by iterative methods to obtain an approximation to the Newton step within Newton’s

method. The approach is novel in the sense that it combines the traditional Newton’s

method approach to linear stability analysis with time integration schemes for hybrid

simulations. The stability of the computed steady state is readily determined from

the cheaply available estimates for the leading eigenvalues of the original dynamical

problem, since these are produced as by-product of the Arnoldi [95] procedure within

the GMRES algorithm. Standard methods for performing bifurcation analysis, such

as arclength continuation, can then be applied directly to this approach to obtain

critical points of the hybrid simulation.

This thesis has further demonstrated this approach on several problems ranging

from kinetic theory models in homogeneous flows that represent rheological experi-

ments, to benchmark and industrial flows of polymeric solutions. Chapter 3 presents

steady–state results for two kinetic theory models: (1) the non-interacting rigid dumb-

bell in steady shear flow, and (2) the free-draining bead-spring chain in steady shear

and uniaxial elongation flows. The results for the rigid dumbbell are in excellent

agreement with previous studies [105], where it is shown that one can apply the

method to both a time-stepper for the kinetic theory model of the rigid dumbbell

and an equivalent time-stepper constructed for a set of coarse variables. This time-

stepper, also referred to as the “coarse time-stepper” [111], provides steady–state

results in better agreement with unclosed descriptions than the results of standard

closure approximations for this model. In addition to computing the steady state, we

also obtain the approximate eigenvalues for the problem, which are in excellent agree-
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ment with the exact eigenvalues. When these eigenvalues are not in good agreement,

as is the case for high Deborah number, a stricter tolerance on the Arnoldi procedure

improves the agreement with few additional calls to the time-stepper.

The free draining bead-spring chain, on the other hand, is modeled through a

stochastic differential equation for the conformation of the molecular model, which

does not have a true steady state due to Brownian forces acting on the beads of the

molecule. However, since a macroscopic steady state can be measured in a laboratory

experiment, the evolution of the molecular conformation can be cast in the form of

a coarse time-stepper for the macroscopic shear stresses and normal stresses, which

is then used to obtain the corresponding steady state. It is shown that the steady

state thus obtained is in excellent agreement with the steady state of the macroscopic

stress that is obtained by directly integrating the stochastic differential equation.

Results are also presented in Chapter 4 for the bifurcation analysis of the Doi

model at equilibrium with excluded volume interactions given by the highly nonlinear

Onsager potential. The kinetic theory description for this model is discretized with

a spherical harmonic Galerkin approximation that is then wrapped within the time-

stepper framework to compute steady states, to compute their stability as given

by the approximate eigenvalues, and to perform continuation in the dimensionless

potential intensity. The stable and unstable stationary solution branches produced

by this approach are in excellent agreement with other studies that either use spot

calculations [42] or thermodynamic arguments [44].

With these encouraging results, the method is then used to obtain the steady

states for the pressure-driven flow of a dilute solution of non-interacting rigid dumb-

bells in a planar channel and in a planar channel with a linear array of equally spaced

cylinders. The flow problem is cast in the form of a hybrid simulation that couples a

DEVSS-G formulation of the conservation of mass and momentum with a spherical

harmonic-Galerkin/discontinuous-Galerkin discretization of the diffusion equation for

dumbbell configuration in conformation/physical space. The steady state computed

from a Newton-GMRES solver applied to this hybrid simulation is in excellent agree-

ment with that obtained by directly integrating the hybrid simulation to steady state.
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For the parameter values studied, an isotropic initial guess for the distribution of rigid

dumbbells conformations was sufficient to compute the steady state for the flow. More

importantly, however, there is very good qualitative agreement with previous studies

of Liu et al. [70] for the stress profile. Specifically, for the inter–cylinder spacing

chosen in our work, the flow is characterized by the development of a recirculation re-

gion between adjacent cylinders with small fluid velocity and velocity gradient. This

results in stresses that are near equilibrium, in contrast with a larger inter–cylinder

spacing for which the polymer molecules along the centerline of the geometry are far

from equilibrium. Second, the largest stresses exist at the solid boundaries in the

gap between the cylinder and the channel wall where the flow is shear dominated

with the extrema occurring up- and down-stream of cylinder midplane. Finally, these

simulations show that the time-stepper based approach to steady state computation

can be successfully applied to non-homogeneous flows of polymeric liquids in one and

two spatial dimensions. Although the focus of this study was to converge to stable

stationary states in order to facilitate comparison with the corresponding dynamic

simulations, the results are very encouraging both for incorporation of higher num-

bers of configurational degrees of the freedom for the kinetic theory models and for

performing stability and bifurcation analyses with hybrid simulations of benchmark

flows.

Chapter 5 investigates the flow induced transitions from steady aligned states

to periodic, tumbling states in a linear, weak shear flow for the Doi model with the

Maier-Saupe excluded volume interaction potential. The analysis is slightly simplified

by considering the model in two spatial dimensions. While the bifurcation analysis for

the unapproximated Doi model has been carried out previously [73], the presentation

in Chapter 5 focuses on the behavior in the weak shear limit. Specifically, numerical

results from time-steppers, continuation methods, and local asymptotic analysis are

combined to determine the effect of weak shearing, characterized by the dimensionless

shear rate, on the equilibrium bifurcation diagram. It is found that the imposition

of a weak shear flow has two main ramifications. First, the shear flow unravels the

pitchfork bifurcation at equilibrium and results in two steady branches, one stable and
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the other unstable. Second, imposition of shearing results in the loss of steady aligned

solutions beyond a critical value of the dimensionless potential, the value of which

depends on the dimensionless shear rate and a parameter p ≡ (a2−1)/(a2 +1), where

a is the aspect ratio of the rods. Periodic, tumbling orbits with fluctuating structure

parameter values characterized by an O(1) mean amplitude and fluctuations of the

order of the dimensionless shear rate are born at these critical points. In the weak

shear flow limit, the period of these orbits scales as G−1(U − UL)−1/2 in the vicinity

of the limit point, where G is the dimensionless shear rate, U the potential intensity,

and UL is the critical dimensionless potential. The computations also indicate that for

fixed G, decreasing the aspect ratio monotonically decreases the value of the critical

potential. For rods with infinite aspect ratio, the critical point approaches a threshold

of 2.4114 as the shear rate approaches zero, whereas the critical point approaches the

isotropic-nematic transition point for p→ 0. Analysis of numerical solutions obtained

via continuation and spot calculations strongly suggests the birth of periodic orbits

at the critical potential via an infinite period bifurcation. This is supported by a

study of the eigenspectrum of the stationary solutions near the limiting potential.

It is found that the eigenspectrum of the model closely resembles the eigenspectrum

of a prototypical two-dimensional system that exhibits an infinite period bifurcation.

However, this does not guarantee that a single, two-variable constitutive equation

exists that can elucidate the complete set of solutions for the Doi model.

Finally, Chapter 6 presents results for the onset of draw resonance and recovery of

stability at high draw ratios for the isothermal fiber-spinning process. These results

are obtained by constructing a hybrid simulation for the fiber-spinning process that

includes a stochastic description of Hookean dumbbell configuration fields, discretized

with the discontinuous Galerkin method, and the fiber-spinning model equations, dis-

cretized with the Galerkin finite element method. The resulting hybrid simulation

is then wrapped in a Newton-GMRES solver to obtain steady states, compute ap-

proximate eigenvalues, and perform bifurcation analysis via arclength continuation.

The steady state profiles for the fiber area, velocity, and polymer contribution to

the stress tensor are in excellent agreement with previous work with the Oldroyd-B
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model [47]. The approximate eigenvalues are also found to be in good agreement with

the corresponding eigenvalues for the Oldroyd-B model, which allows for performing

bifurcation analysis with the hybrid time-stepper. The analysis provides a critical

draw ratio for transition from stable to unstable stationary solutions that increases

with increasing viscoelasticity. The change of stability occurs via a Hopf bifurcation

and is regained at high draw ratio, a well-known phenomenon in fiber-spinning of

polymeric liquids.

7.2 Future Work

In this thesis, state-of-the-art numerical techniques were employed to discretize the

conservation equations and molecular models from kinetic theory to build viscoelastic

flow time-steppers. The results presented were then obtained by enabling these time-

steppers to compute steady states and perform stability and bifurcation analysis,

rather than improve on the numerical techniques. Hence, if a specific numerical

technique is unstable or does not converge for a given flow or kinetic theory model,

time-stepper based analysis cannot be expected to yield better results. Consequently,

developing improved temporal schemes for the solution of the discretized equations

in a viscoelastic flow model will increase the robustness of time-steppers to perform

stability and bifurcation analysis and trace nonlinear qualitative behavior.

This thesis makes use of a customized parallel algorithm to solve the complex flow

of the rigid dumbbell model, an inevitability in any investigation involving a hybrid

simulation. While efficient use of massively parallel computers is becoming the norm,

time-stepper based analysis can be exceedingly useful if implemented in parallel. The

Newton-GMRES solver applied to the parallel time-stepper for the complex flow of

rigid dumbbells was provided by the PETSc package [5], which includes a parallel

implementation. Consequently, in order to incorporate viscoelastic flow models from

kinetic theory into control algorithms that can aid the process engineer, it is im-

perative that time-stepper analysis and any algorithm using it be implemented in

parallel.
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In addition to developing more robust time-steppers and parallel algorithms, a

natural extension of the work carried out in this thesis is to study the stability of

two-dimensional benchmark flows with larger numbers of degree of freedom for the

kinetic theory model. As a first step, one can consider the flow of FENE chains with

up to 6 beads. It was shown by Ghosh [40] and Burmenko [14] that in rheometric

flows the results for this model are in remarkable agreement with the Kramers chain.

Transient simulations with this model were recently carried out by Koppol et al. [61]

for the 4:1:4 axisymmetric contraction–expansion flow. Given that such a hybrid

simulation is clearly feasible, it will be interesting to use the methods of this thesis

to perform stability and bifurcation analysis of this complex flow. Moreover, results

have been also been published recently for a three-dimensional flow calculation in a

4:1:4 planar contraction with a stochastic description for Hookean dumbbells [89].

While it may be computationally prohibitive to consider the flow of a bead-spring

chain in a three-dimensional flow, publication of these results suggests that it will

be interesting to test time-steppers based computation of the steady state for this

geometry with the FENE dumbbell model.

In addition to solving complex flows, this thesis has shown that time-stepper based

analysis is also effective for studying kinetic theory models in rheometric flows. This

suggests that one may use time-stepper based stability and bifurcation analysis to test

kinetic theory models that incorporate additional physics for polymer interactions and

microstructure. Since the approach does not require closed equations, one only needs

to build accurate black-box codes that describe the necessary physics in order to

explore the qualitative behavior of the improved model.

Finally, the bifurcation analysis carried out in this thesis was limited to comput-

ing stationary solutions and detection of stability transitions through approximate

eigenvalues. It may, therefore, be useful to improve upon this and develop algorithms

for branch switching, tracing of periodic solutions, etc. This may simply require im-

plementing standard algorithms for bifurcation analysis [98] in parallel to work with

viscoelastic flow time-steppers. However, one must be careful to ensure that the num-

ber of function calls to the time-stepper or time-horizon is not increased considerably.
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For the calculations performed in this thesis with standard arclength continuation,

typically one or two additional function evaluations of the time-stepper were needed

when compared with the calculation of the same steady state without the arclength

equation. This may not be true for other algorithms of bifurcation analysis. One

particular problem could arise when trying to trace branches of periodic solutions

that emanate from a infinite period bifurcation point. Since computation of a peri-

odic solution requires adding a phase constraint to the original nonlinear system in

order to find the unknown period, this may lead to evolving the time-stepper over

a prohibitively expensive time-horizon. As such, it may not be possible to continue

on such a solution branch other than to initialize the time-stepper near the infinite

period bifurcation point and simply observe the dynamic behavior of the viscoelastic

flow.
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[84] Öttinger, H. C. and Laso, M. (1992). In “Theoretical and Applied Rhe-

ology : Proceedings of the XIth International Congress on Rheology, Brussels,

Belguim, August 17-21, 1992,” Elsevier, Amsterdam, Netherlands ; New York.

[85] Owens, R. G. and Phillips, T. N. (2002). Computational rheology. Imperial

College Press, London.

[86] Phan-Thien, N. (1978). “Non-Linear Network Viscoelastic Model.” Journal

of Rheology, 22(3): 259–283.

[87] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

(1992). NUMERICAL RECIPES in FORTRAN 77: The Art of Scientific

Computing. Cambridge University Press.

[88] Rajagopalan, D., Armstrong, R. C., and Brown, R. A. (1990). “Finite

element methods for calculation of steady, viscoelastic flow using constitutive

equations with a Newtonian viscosity.” Journal of Non-Newtonian Fluid Me-

chanics, 36: 159–192.

[89] Ramı́rez, J. and Laso, M. (2004). “Micro-macro simulations of three dimen-

sional plane contraction flow.” Modelling Simul. Mater. Sci. Eng., 12: 1293–

1306.

[90] Reddy, J. N. (1984). An Introduction to the Finite Element Method. McGraw-

Hill.

[91] Reed, W. H. and Hill, T. R. (1973). “Triangular mesh methods for the

neutron transport equation.” Technical Report LA-UR-73-479, Los Alamos

Scientific Laboratory.

[92] Rhodes, C., Morari, M., and Wiggins, S. (1999). “Identification of lower

order manifolds: Validating the algorithm of Maas and Pope.” Chaos, 9(1):

108–123.

258
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