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ABSTRACT

A micromechanical analysis of deformation and fracture in creeping
alloys is presented based on a mechanistic approach using continuum
mechanics. The analysis was first carried out on a coarse microscopic
level in which the self-consistent theory of Hill was employed to treat
the steady state creep of heterogeneous alloys with coarse microstruc-
tures allowing for grain boundary sliding. Processes operating on a
finer scale than the grain size such as grain boundary diffusion and
surface diffusion were subsequently included in the analysis. It was
found that the high stresses required for cavity nucleation occur at
intergranular particles only in transients of grain boundary sliding,
and that two modes of cavity growth result corresponding to rate
control by each of the abovementioned diffusional processes.

Creep cavitation in 304 stainless steel in the neighborhood of
0.5 Tm was studied experimentally to test these theoretical models.
Our results suggest that a broad spectrum of interfacial energy may
exist and that microstructural changes such as those caused by twins
can alter cavitation behavior drastically. Cavities grow in most
cases by grain boundary diffusion coupled with matrix creep, somewhat
restricted by surface diffusion. However, the grain boundary sliding
can be a dominant mode of cavity growth at high stresses and for
large cavities.

Thesis Supervisor: Dr. Ali S. Argon
Title: Professor of Mechanical Engineering
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CHAPTER 1

OVERVIEW

Creep deformation and intergranular failure are of great concern

in the design of structures which operate at elevated temperatures. The

performance of engineering materials intended for high temperature

applications is often determined by their creep resistance and their

ductility. Since most structural materials contain, often by design, a

small to intermediatýevolume fraction of hard phases to improve the

performance, their behavior is extremely sensitive to microstructures and

composition. It is necessary however, for the purpose of fundamental

understanding, to seek to identify mechanisms which are common to most

materials, recognizing that the regime of temperature and stress in

which a particular mechanism dominates will differ from one material

to another.

The scope of creep deformation and intergranular failure can be best

envisioned by examination of mechanisms which operate at elevated tem-

perature. In a polycrystal, deformation of constituents is mutually

accommodated by a combination of elastic deformation, localized plastic

deformation, non-uniform creep, grain boundary sliding and diffusional

flow through the grains, along grain boundaries and free surfaces. In

heterogeneous alloys, further accommodation occurs at interfaces of

distinct phases which in general raisesthe deformation resistance both

intragranularly and intergranularly. It is also known that second phase

particles are often responsible for cavity production which leads to

intergranular failures. The initiation, ripening and development of

such cavities and macro-cracks are likely related to one or several of
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the deformation mechanisms mentioned earlier.

In this study, we proceed with a micromechanical analysis of these

problems by the continuum analysis of specific mechanisms. Guided by

the choice of plausible mechanistic models pertaining to various stages

in the deformation and fracture process, we shall conduct comprehensive

analyses using continuum mechanics. Results of such analyses are

compared with phenomenology and, whenever possible, with specific

measurements of relevant experiments.

A structural material of sufficient complexity and with broad

applications, 304 stainless steel, was chosen for experimental studies.

The main body of this thesis can be further divided into three parts.

In the first part, composed of Chapter 3 and Chapter 4, the continuum

analysis is carried out on a coarse microscopic level in which the

individual grain and the grain boundary are taken to be constituent phase

domains of a heterogeneous material. This allows us to draw an analogy

between the multiphase polycrystals with or without grain boundary

sliding and the conventional composite materials. The self-consistent

theory of Hill is then employed to treat the overall deformation of

heterogeneous materials. In Chapter 3 we study the steady state power

law creep of two-phase materials of coarse microstructure and later, in

Chapter 4, the same technique is extended to cover grain boundary sliding

and interface sliding in a power law creeping matrix.

For problems such as the determination of interfacial stresses at

elevated temperature or the nucleation and growth of intergranular cavities,

microscopic processes which operate at a scale finer than grain size

need to be taken into account. These processes include grain
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boundary diffusion and surface diffusion; their formulations and appli-

cations to the problems mentioned above form the major themes of the

second part of the thesis. In Chapter 5 the relaxation of internal

stresses in viscous solids which also undergo diffusional flow is treated

in great detail. In addition, the overall deformation of a polycrystal

with sliding grain boundaries is again examined with inclusion of

diffusional flow. The result of these studies with regard to internal

stresses is then related to the nucleation of intergranular cavities.

Subsequently, in Chapter 6, we develop a simple theoretical approach

to the general problem of cavity growth in which the intricate interplay

between surface diffusion, grain boundary diffusion and matrix creep

is taken into account. Two modes of cavity growth are predicted by

this theory which embraces most of the features of previo-us successful

models in the field and is possible to furnish a satisfactory account

of the process of cavity growth (see Eqns (6.7) and (6.8)).

The third part of the thesis, an experimental study of creep cavitation

in 304 stainless steel, is presented in Chapter 7. Emphasis of the

effort was directed toward creep cavitation near 0.5 T . Quantitative
m

measurement pertaining to nucleation and growth of cavities is used

for comparison with the analysis.•h.•ost rewarding outcomer of this study

is however the microscopic observation which sheds some light on the

nature of intergranular fracture in engineering alloys. In particular,

a shearing mode caused by grain boundary sliding was unambiguously

identified, this was found to be responsible for the growth of cavities

at high strain rates. The occurrence of this additional mode of

cavity growth is shown to be explained by the competition between
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surface diffusion and grain boundary sliding.

Although this thesis is felt to be a coherently organized unit,

the reader should feel free to read any part of the thesis separately.

Each chapter is sufficiently coherent and complete to allow its review

in isolation by readers of different interests. Indeed alternative

arrangements may offer the advantage of providing a focus on the

mechanistic aspects, by first reading Chapters 5 and 6, or on the

experimental aspects, by first reading Chapter 7. Hopefully these

suggestions will encourage every interested reader to review this study.
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CHAPTER 2

REVIEW OF CREEP AND FRACTURE IN HETEROGENEOUS
ALLOYS

2.1. Introduction

The current state of understanding of creep and fracture in hetero-

geneous alloys is reviewed in this chapter. The survey is not intended

to be comprehensive, as such expositions exist in the literature. Rather

the survey offers a general background of the field which includes a

broader perspective than what is required for our specific developments.

Specific references of particular relevance to the analysis will be

brought up later in appropriate chapters.

2.2. Response of Heterogeneous Materials

Two complementary and equally powerful approaches exist for com-

putation of the response of heterogeneous materials having coarse micro-

structures. The first one is based on the bounding theorems which state

in simple terms that for a given deformation: lower bounds are obtained

from stress distributions that satisfy equilibrium and the constitutive

laws; while upper bounds are obtained from displacement distributions

that satisfy compatibility and the constitutive laws (1). Numerous

straigtforward applications of these theorems can be found using the

uniform strain upper bound and the uniform stress lower bound, for

example, widely used the laws of mixture (2) and Taylor's polycrystal

analysis (3). Efforts of extending these techniques to creep were due

to Hill (4), Ashby et al... (5).

It should be noted that the power of bounding theorems is limited
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by our ability to construct approximate yet adequate deformation fields

that provide realistic bounds for the exact solution. Unfortunately,

there is no systematic way for constructing these approximate fields in

general and assumptions of uniform deformation usually lead to incorrect

asymptotic limits. Several useful techniques have been widely employed.

One is Hashin-Shtrikman's method (6) which amounts to, for most

applications, constructing concentric spherical shells made of the two

constituent materials (their order is permuted between the upper bound

configuration and its lower bound counterpart) for which solutions can

be obtained and bounds thereby established (7). The recent model of

yield loci for porous materials of Gurson was also of this kind (8).

Another useful technique is the finite element analysis or the finite

difference analysis for which typically a periodic array somewhat

representative of the heterogeneous material permits numerical computa-

tions. Depending on the chosen configuration, the solution can be

regarded as either a: upper bound or a lower bound. Examples of such

applications for linear constitutive properties are numerous in the

field of composite materials, but non-linear computations are far fewer.

The second approach to the determination of the response of hetero-

geneous materials invokes the concept of an effective medium and is

generally called the' self.consistent method (9).The heterogeneous

material in question is viewed as a whole as an effective medium in which

an individual phase is embedded, that locally is further divided into a

For that matter, they can be ellipsoidal shells as well.
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number of "inclusions"* having the deformation resistance of an individual

phase. For self-consistency, the overall deformation response of the

effective medium is taken to depend on the average stress and strains of

all inclusions so constructed.

As it applies to linearly elastic polycrystals and composites, the

self consistent method has been developed by Hershey (10), Kr5ner (11),

Budiansky (12) and Hill (13, 14). Hill's formulation is particularly

useful for it incorporates incremental linearity to handle non-linear

problems. This subject was further studied by Hutchinson for elastic-

plastic behavior (15) and creep of polycrystalline (16) but single phase

materials.

It is interesting to note that, as in the case of the previous

approach based on bounding theorems, the power of the self consistent

method is also limited by our ability to construct simple but adequate

solutions, in this case for inclusion problems (17,18),. on which estimation

of overall response can be made. This situation is particularly acute

in non-linear materials in which the inclusion problem depends on the

local stresses in the surroundings of the inclusion.

An attempt to include this modification was made by Huang (17) for

the plane deformation of a non-linear material with rigid circular fibers.

This work, as well as that of Hutchinson's (16), had the advantage of

dealing with essentially only one kind of constitutive relation in the

form of a power-law for all constituent phases. For the more general

The term "inclusion" is used here in a general sense to indicate
included material of different deformation resistance, see also Chapter
3.
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case, we present an approximate analysis in Chapter 3.

Finally, to make contact with the microscopic theory of work

hardening in an alloy with dispersed particles which is most comprehensive-

ly developed by Brown and Stobbs (19, 30, 21), we remark that most self

consistent models with regard to hardening, including the one we shall

present, contributes to an alternative view of the so called "image

stress" in the microscopic theory. In our development to be presented

in Chapter 3, both the non-local interactions and the local relaxations

of stress due to dislocations are omitted. Indeed, it is our aim to

examine the validity of this omission there.

2.3. Grain Boundary Sliding and Internal Stresses

For most practical purposes, Zener's simple picture of grain bound-

aries at elevated temperature remains useful and convenient (22). Grain

boundaries at elevated temperature were envisioned by many authors as a

layer of viscous fluid a few atoms thick (23, 24). Since the shearing

resistance of grain boundaries is much less than that of individual

grains themselves, at elevated temperature, shear tractions across grain

boundaries are usually fully relaxed at the steady state and their

viscous deformation gives rise to internal friction during transients.

Modern theoretical views of grain boundary structures has substantial-

ly modified this simple picture. [For a review, See Gleiter (25).] Most

importantly, it points out that significant variation in grain boundary

properties exists near certain coincident misorientations of high

angle grain boundaries. Although these properties and other microscopic

considerations must be very important in understanding processes such as
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creep cavitation, they do not yet lend themselves to computations in

most applications involving polycrystals.

Zener (22) made the first computation of the loss of modulus that

would result from grain boundaries which carry no shear stress, by

applying the theory of elasticity to find the reduction in strain energy

associated with deforming a sphere in the absence of any surface shear

stresses, but otherwise not bothering to satisfy compatibility with the

surrounding material. Its extension to nonlinear creep was first

attempted by Hart using a phenomenological spring-dashpot approach (26).

Although he correctly explained the response of polycrystals in terms of

compatible deformation of grains and the grain boundaries, his prediction

was not deterministic and relied on experimental fitting.

Crossman and Ashby (27), and more recently, Ghahremani (28), employed

finite element analysis to obtain the solution for idealized polycrystals

containing hexagons with sliding interfaces in material with a power-law

type constitutive behavior. Their results showed qualitative agreement

with Hart's model, namely that, at both high and low strain rates, the

polycrystal flows according to the power-law creep of the grains, while

the flow at low strain rates is somewhat accelerated by a grain boundary

sliding. A transition occurs at a rate where the sliding boundaries and

the deforming matrix contribute to the overall strain rate equally. Lau

and Argon (29), in a different approach based on Hutchinson's method (30),

obtained detailed expressions for stress concentrations at triple

junctions of sliding boundaries in a power-law matrix.

It should be noted that although steady state was often assumed in
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analyses and indeed achieved in these kinds of calculations this is only

an operational steady state on a macroscopic scale. Transients of grain

boundary sliding are known to occur even at steady state, presumably

due to grain boundary migration at pinning points and other semi-abrupt

microstructural alternations (31). Direct observations of this phenomen-

on have been reported by Chang and Grant in a set of classical ex-

periments (31).

In considerations of tractions across a grain boundary, it is

essential to take into account the effect of diffusional smoothing.

Indeed in steady diffusional Nabarro-Herring flow, sliding of grain

boundaries is an inevitable by-product of the mass transport across

non-deforming grains or along grain boundary channels (32), and no

additional strain is attributable to grain boundary sliding in this

context. In the past, when continuum deformation of the matrix was taken

into account, this was only for elastic response and was coupled with

diffusional flow (32). In this instance grain boundary sliding provides

additional compliance in the material. This amounts to the transient

analysis that has been adequately described by Raj (33). When power-law

creep occurs in the grain matrix additional deformations can occur at

steady state and accompanying grain boundary sliding will accelerate the

steady state creep rate. Such an analysis is given in Chapter 5.

2.4. Intergranular Cavitation in Creep

Perry (34) gave a most comprehensive review of cavitation in creep.

Phenomenologically, this process refers to the observation that most

metals which are normally ductile at their operating temperature fail by

intergranular cavitation after a limited extension when held under a
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relatively low constant stress for a prolonged period in the temperature

range of 0.3 to 0.9 of their melting temperatures. Two specific types

of intergranular damage have been reported based on light microscopy:

namely wedge cracking at grain boundary triple junctions or w-type

cavities, and rounded cavities along grain boundaries or r-type

cavities (35).

The transition between these two kinds of damages, referred to as

the Stroh-McLean transition (36), occurs over a very diffuse.. range of

temperature and stress. In general, the round hole type cavitation seems

to be favored at lower stresses and higher temperatures whereas wedge

cracking at triple-points seems to be favored by higher stresses and

lower temperatures.

Although the problem of wedge cracking has been treated by the theory

of Zener (37) and Stroh (38) based on stress concentration produced in an

elastic matrix in the presence of grain boundary sliding, the full process

of intergranular creep cavitation has never been fully understood. The

original proposal of Greenwood (39) that lattice vacancies agglomerated

together under the action of the applied stress onto grain boundaries was

later modified to allow heterogeneous nucleation (40, 41) and stress con-

centration due to grain boundary sliding (42, 43, 44).

The sites of heterogeneous nucleation and stress concentration were

thought to be either grain boundary discontinuities such as jogs (42, 43,

44) or second-phase particles (40, 45). Despite very widespread and

continued reference to this possibility, it has been shown, repeatedly

(45, 46) that such jogs or ledges cannot exist nor can they act as
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stress concentrators either due to diffusional smoothing or grain bound-

ary migration. Indeed, second phase particles were often found to be

necessary in most cases to reduce grain boundary migration and to cause

cavitation (47, 48).

It is important to point out that in considering creep cavitation,

caution has to be exercised to justify the mechanisms in light of very

effective recovery processes at elevated temperature. In general steady

state deformation is only adequately described by power law creep, while

in the vicinity of grain boundaries, short range stress concentrations are

subject to diffusional smoothing. Obviously many proposed models,

unfortunately, did not satisfy these requirements. Indeed, in Chapter 5

we come to the conclusion that only transient grain boundary sliding

offers significant stress concentrations at second phase particles that

might serve as nucleation sites for cavities.

The argument for particles as nucleation sites was put forth first by

Balluffi, Seigle and Resnick (40, 41), even though the experimentally

observed connection goes back to Grant (47). The former concluded that

homogeneous nucleation by vacancies required too high a vacancy super-

saturation for the applied stress and would be possible only at sites

such as grain boundary particles where energy balance is more favorable.

Direct association between cavities and particles which was first

reported by Hyam (49) is not completely unambiguous however. In most

cases, the particles in question were small ones since massive inclusions

on grain boundaries often completely inhibited grain boundary sliding and

reduced cavitation, especially in nickel based alloys (50). In general,
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no one-to-one correspondence between cavities and inclusions were found

and the association may be due to the cavities enveloping particles

during growth.

One conjecture related to second phase particles as nucleation sites

suggested that certain particles had either pre-existing (gas) pockets (51)

formed in processing or non-wetting interfaces (52, 53). Although this is

certainly possible occasionally, it is difficult to reconcile the fact

that, in most fractures under conditions other than creep, holes do not

nucleate intergranularly or even easily.

The nucleation of cavities has been found to continue with increasing

strain in all studies. In most studies, cavities were found at a fairly

early stage in creep (54, 55, 56, 57, 58). The rate of increase in their

number usually slowed down at steady state creep but never vanished.

Nevertheless there is no general agreement as to the exact functional

form of these variations.

The distribution of cavitated grain boundaries with respect to the

applied tensile stress has been found invariably to favor those boundaries

that are nearly perpendicular to the stress axis, at least in monotonic

loading (39). Some observations (59), which were more relevant to the

growth mechanisms, however, showed the distribution tend to shift to the

450 boundaries at higher strain rate, indicative of a change of growth

mechanisms.

2.5. Creep Cavitation and Cavity Growth

It is not surprising, considering the complexity and uncertainty of

the problem, that much controversy still exists with regard to cavity
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growth mechanisms. Two schools of thought are prominent, one in favor of

diffusional growth and the other deformation controlled growth. For the

former, an equilibrium shape of cavity consisting of spherical caps.was

usually assumed. However, cavities with crystallographic facets were

reported in several studies, for example in magnesium by Presland and

Hutchinson (60), in copper and iron by Taplin (61, 62). In contrast,

cavities were sometimes found to be elongated or finger-like, with one

specific orientation for all such cavities on one grain boundary (62).

This latter observation, mostly due to Taplin also, was generally made

at higher strain rates and grain boundary sliding was thought to be

responsible for its occurrence.

Aside from this occasional, microscopic evidence, arguments for both

mechanisms were centered around the stress dependence of growth processes,

Hull and Rimmer (63), noting that cavitation depends on the difference

between tensile and hydrostatic stress, proposed a diffusive growth

theory which predicted that growth of the volume of the cavities is a

linear function of the applied stress and of time. Several modification

were made to this theory, with essentially the same prediction (64, 65).

The preferential distribution of cavities with respect to the applied

stress axis that was discussed previously with reference to nucleation was

often cited as supportive evidence. Nevertheless, it is well known that

the predicted stress dependence is not valid in almost all experiments.

Despite the deficiencies in its usual description as a precise model,

grain boundary sliding has been frequently regarded as being responsible

for cavity growth, either by providing a direct displacement or by causing

enhanced diffusion (66, 67). Since grain boundary sliding is generally
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proportional to overall creep, the general correlation between steady

state strain rates and rupture time (68) is cited as evidence in support

of this mechanism. In addition, it has been found by Gittins (69) that

the largest cavities occurred on grain boundaries which slid the most,

and by Kramer and Machlin (70, 67) and several others that the cavity

area (or cavity length on a planar section) was linearly related to

creep time or creep strain. Another observation first noted by Intrater

and Machlin (71) was that the area of visible cavities was independent

of temperature.

Recently, several new models for diffusive growth have been proposed.

First, Ashby suggested that diffusive growth of crack-like cavities would

be unstable under certain circumstances and would grow into a finger-like

morphology (72). Some of the observations by Taplin and Wingrone (66, 66)

certainly were due to this effect. The crack like morphology were further

studied by Chuang and Rice focusing on the effect of surface diffusion

in relation to grain boundary diffusion and the tip advancement velocity

(73, 65). It is found, nevertheless, that the modification has only a

minor effect on the stress dependence of the growth rate. In general,

1-1.5
the solution predicted a growth rate proportional to a for cavities

ranging from equilibrium shape to crack-like shape.

Another dimension was added when Beere and Speight (74) proposed

that creep within the matrix could significantly alter the diffusional

flow near a cavity and in general can reduce the diffusion distance.

Edward and Ashby (75) elaborated on this model. Their result showed that,

despite certain improvement, this model still could not resolve all the
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differences between a diffusive growth model and the empirical deformation

controlled growth. These points will be taken up again in Chapter 6.
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CHAPTER 3

STEADY STATE POWER-LAW CREEP IN HETEROGENEOUS ALLOYS
WITH COARSE MICROSTRUCTURES

3.1. Introduction

Creep resistant engineering alloys are almost always multi-phase

substances, where individual phases have.different creep behavior. In

such alloys, a question that often arises is: if individual phases have

different creep constitutive relations, what is the creep constitutive

relation of the composite alloy?

It is observed that in power-law creep, pure metals and solid so-

lution alloys usually have stress exponents of the creep rate in the

range of 3 to 6, in comparison to about 7 or higher in engineering alloys

which are often multiphase. In plastic deformation at low temperature,

the stress exponent of the strain rate is commonly in the vicinity of

50. In view of this observation, it is interesting to explore whether

the higher values of stress exponents in creep for multiphase alloys are

merely a consequence of the mechanical restraint exerted on the matrix

deformation by the reinforcing particles, derivable from the theory of

particle-reinforced composites.

The deformation of such composites is necessarily non-linear and

inhomogeneous. The non-linearity stems from the local stress strain-rate

relation, while the inhomogeneity of deformation is a direct result of

the heterogeneous nature of the material. When the heterogeneities are

on a large enough scale in comparison with the scale of the inherently

non-uniform deformation of crystal plasticity or creep involving disloca-

tions, the mutual mechanical interactions between phases will be weak
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and the deformations may be treated by continuum mechanics. Although

the phase scale where this division occurs is never clearly definable

(76), the deformations around particles in excess of several microns in

size can usually be treated by continuum mechanics. This will be the

approach taken in this chapter, recognizing that the results will not

apply to composites with very fine particles or to alloys with fine

precipitates where such particles cause qualitatively different, very

strong interactions with the surrounding matrix.

The exact solution of the general problem of composite moduli is

quite complicated even in linear elasticity where, however, when only the

overall constitutive relations of the composite are of interest, it is

often possible to make predictions on the basis of bounding theorems

(6, 16, 77, 78, 79). Although this approach is fruitful in application

to estimation of elastic properties of composites where moduli of the

constituent phases are not very different, such bounds are very far apart

whenever the moduli of any constituent phase go to extremes. Examples are

composites containing rigid inclusions or voids, and composites with two

power-law hardening materials. In these instances, the self-consistent

method offers a much more accurate approach. This method of Hershey (16)

and Kr6ner (11) was originally proposed for aggregates of crystal grains.

In that connection it has been elaborated and reformulated by Hill (13)

to extend the theory to deal with incrementally linear behavior in non-

linear problems. For composites, a very similar formulation has also been

developed by Hill (14).

The self-consistent method for heterogeneous elastic media draws

on the familiar solution of Eshelby (18) of the problem of a uniformly
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stressed infinite continuum containing an ellipsoidal inhomogeneity (or

inclusion) . In applying this solution to the problem of the.composite

in which particulate phases are surrounded by a continuous one-phase

matrix, each particulate phase is considered to be an isolated ellipsoidal

inclusion. The properties and orientation of the particulate phase are

assigned to the inclusion, while the surrounding of the inclusions is

given the same macroscopic properties of the composite. Thus the stresses

and the strains in all particulate phases can be calculated. This in turn

leads to knowledge of the average stresses and the average strains in

the matrix phase, between them the constitutive equations of the matrix

phase need to be satisfied.. Therefore a self-consistent scheme can be

set up to solve the overall moduli of the composite.

Here we extend the self-consistent theory to deal with steady state

creep in nonlinear composites. At each increment of stress, the above

method is employed to determine the stress strain-rate relationship

assuming incrementally linear behavior for all phases. Since operational-

ly the problem involves monotonic loading we make use of the well-known

analogy (80) between a creeping material having a stress strain-rate law

a = a(c) and a strain hardening material having a similar stress strain

law a = a(e), and consider our problem as if it were a boundary value

problem in nonlinear elasticity of the deformation of a heterogeneous

incompressibe medium. In the next section we restate the system of

Eshelby calls an inclusion a region that has undergone a shear trans-
formation with or without a volume change, and an inhomogeneity a region
that has merely different elastic properties. Here we will use the word
inclusion in its engineering sense as an included region of different
properties. Hence in the context of this paper the two terms will be
synonymous and will be used interchangeably although the term inclusion
will be generally preferred.
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equations of the self-consistent theory and apply them in Section 3.3 to

the solution of the problem posed in the outset of this chapter. Finally,

the accuracy of the results together with their significance are dis-

cussed in Section IV and contrasted with results of other authors.

3.2. Self-Consistent Theory

3.2.1. Formulation

Consider a composite in which N ellipsoidal inclusions, which need

not be of the same phase or crystallographic orientation, are embedded in

a matrix. The subscript i will be used to denote the ith inclusion and

the subscript o the matrix. Since the overall composite is on a very

large scale homogeneous with apparent overall moduli, an increment of the

overall strain rate d g can be imposed which is taken to be equal to

the increment of average strain rate over the composite and is related

to the increment of the stress d a by

da = L de or de = M da (3.1)

where L is the composite creep modulus, and M, its inverse, is the

composite creep compliance. We wish to calculate the current overall

creep moduli L incrementally in terms of current individual moduli. To

do this, we treat the typical inclusion as an ellipsoid with uniform

current moduli L. embedded in an infinite matrix with current moduli L

and solve the problem as if it were an incrementally linear problem.

Here all lower case bold face symbols stand for second order tensors
while capital bold face symbols stand for fourth order tensors that re-
late second order tensors to each other. The choice of symbols is the
same as that of other authors in this field, e.g. Hutchinson (16).
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Under this approximation, Eshlby's solution provides

de. = A. dE and do. = B. do (3.2)

where de. is the increment of strain rate in the ith inclusion which is
-I

uniform by virtue of ellipsoidal geometry and A. and B. are fourth order
.1 .1

strain rate and stress concentration tensors respectively. These con-

centration tensors are functions of the aspect ratio of the elipsoid, of

L or M, and of L. or M., which are the moduli and compliances of the

inclusions given by

do. = L. dE. and dE. = M. do. (3.3)
.1 .31 .- 1 1l .1

We can formally define "average concentration factors" A and B
0O .0

in the matrix similarly as

de = A de , and do = B do (3.4)
~O 0O - .O ~O -

where dE and do are respectively the average strain rate and stress
.o ~O

tensors in the matrix. The self-consistency condition now provides the

necessary equation to solve for A and B , namely
.0 ~o

N N
E c. A. + c A = I, I c. B. + c B = I (3.5)
i=l1 . o .0 il 1 .1 o.0

where I is the unit tensor and c's are volume fractions of the inclu-

sions and the matrix. Finally, the constitutive equations of the matrix

are assumed to be satisfied, i.e.

do = L dE or de = M do
.0 0O 0O .0 .0 .O

(3.6)
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Elimination of A and B in Equations (3.4), (3.5) and (3.6) yields the
,o0 .o

following two identical equations which allow only one set of connection

tensors L, M to assure self-consistency

N N
(I - ~ c B.) L = L (I - c Ai )  (3.6a)

~ ~o ~ i ~

and
N N

(I - E c. A.) M = M (I - c. B.) (3.6b)
i=1 .i ~ ~ ~o ~ i=l i

Either Equation (3.6a) or (3.6b) can be used to solve L or M in

terms of ci, co, L. and L . In doing so, it is assumed that E. and ,
0 1 .0 .1 -0

and consequently L., L are known at the overall strain rate e. It

remains to complete the system of equations by integrating the incremental

Equations (3.1 - 4) and (3.6a, b) from the state of zero stress to the

overall stress along a path of proportional loading. The system of

equations can thus be integrated to a total form.

3.2.2. Features of the Formulation

The application of the self-consistent theory to problems in linear

elasticity, and attendant limitations of the approach have been extensive-

ly discussed recently (81. 82). We note particularly that interactions

between inclusions do not enter the calculation explicitly in this

theory, beyond the consideration that assigns to the surroundings of the

typical inclusion the average properties of the composite. Furthermore,

the use of Eshelby's solution in each linear increment in the non-linear

problem necessitates that the moduli of the surroundings of the inclusion

be "smoothed out" and taken to depend on the average strain rate of the

matrix and not on the local strain rates in the matrix (16). In the

non-linear problems considered here where the modulus decreases with
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increasing strain, such smoothing artifically inhibits strain concentra-

tions in problems involving large local strain variations. As a

consequence (see also Section 3.4) our self-consistent theory for non-

linear material overestimates the deformation resistance and the creep

modulu. A further approximation of considerably lesser consequence will

be introduced in Section 3.3.1. in connection with the incremental

constitutive behavior of the material. These features will be discussed

further in the following sections in relation to the specific examples

which we will consider.

3.3. Application to Creep of two Phase Composites with Non-sliding
Interfaces

3.3.1. Spherically Shaped Phase Domains

In this section we develop specific results for the creep moduli of

composites by the self-consistent approach. To simplify the calculation

at no important sacrifice in results, we choose a spherical particle model

for each phase.

We shall consider a two-phase composite comprised of two isotropic

incompressible phases creeping according to a power law, with constitutive

equations
m i  m 2

El = F1 l 2 = F2 2  (3.7)

where ml>m2>1 and the e, a are equivalent strain rates and equivalent

stresses, respectively. In simple tension, we shall approximate the

incremental relationship of deformation by a simple isotropic relation

dEij = ds.i/2p (3.8)

where s.. is the stress deviator given as
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1 k ij (3.9)
3 kk ii

and the creep shear moduli can be shown to be

(3.10)
do do

1 d1 1 d2 1 do
1 3 = 1 , 3d 3 de1 3 d ' 2 3 d 2  3 de

1 2

We should emphasize here that the correct incremental relationship

of deformation in conventional flow theory based on the attainment of a

critical deviatoric stress (or equivalent stress) is only transversely

isotropic in simple tension. Namely, for a given form of associated flow

rule

3
E.. = f(3 ) S.

1ij 2 1J
(3.11)

the incremental relationship is

2

dE.. = f(a) ds.. + (3 f S() ds
ij 2 1a ij kl kl

(3.12)

In simple tension, it can be easily seen from symmetry that

1
S11 = s - s_ 33 , s12 = s23 = s = 0 (3.13)

are satisfied in all phases, and the equivalent stress for these average

3
stresses is - s . Therefore, the incremental strain rate-stress rela-

2 i33

tion is transversely isotropic as follows:

d l = (a+B) (doll

dE 22= (C+B) (do 2 2

dE33 = (a+B) (do33

da +da
d 22 33 3

2 4 1 1  22

- ) - 4 (d l-do22)

do +da2

2

3 3
dE. ad (. +B) do..

ij 2 ij 2 1(J
3 doij , (i # j)2 ij

(3.14a)

(3.14b)

(3.14c)

(3.14d)
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where a = f(a), 8 = of'(o). (3.14e, f)

In the above relations, the first term in each equation is exactly

the isotropic compliance of Equation (3.10). Generally speaking, in

shear, the isotropic compliance is larger than the transverse isotropic

compliance while these compliances are roughly equal in tension if we

observe that doll =  do22 in simple tension. The consequence of this

additional approximation which overestimates the shear compliance of

the matrix is the overestimation of the composite compliance. Its sig-

nificance will be discussed further in Section 3.4.1.

Equations (3.2), (3.4) and (3.5) reduced to the following form with

the aid of Eshelby's solution

dol 5"i do2  5 2d _d (3.15a, b)
do 3p+2pI ' do 3p+22

5Il 5p2
c + c 2 1 (3.16)
1 3p+2p 2 3p+2p2

We note that it is sufficient to consider equivalent stresses here due to

symmetry and incompressibility. The hydrostatic stress, - ~, is uniform

in the composite, therefore it needs no separate consideration. From

Equation (3.16), p can be solved in terms of p1 and p2, which are in

turn only functions of 01 and 02. Hence, Equations (3.15a, b) are the

system of simultaneous differential equations for ol and 02. Equations

(3.15a and 15b) can be integrated with the initial condition of

01 = 02 = 0 at a = 0 (3.17)

From this, Equation (3.8) can be integrated to give the strains.
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In general, numerical calculation is needed to obtain solutions.

However, asymptotic solutions at a u0 and at a 21-care readily obtainable.

At these limits, the right hand sides of Equations (3.15a) and (3.15b)

reduce to constants which can be determined from Equations (3.7) and

(3.16). After integration, we obtain 0l, 02 and e. These asymptotic

solutions are:

At a " 0

2

m1
2 F 2 1 1
SF ( 5 ) c1  -) (c > 0.4) (3.18a)
S1- 5- c 1

3 2

and at a ý'

m mI

E = F (1 - 2.5 c2 ) c1(-) , (c 2 < 0.4)
• 2 1

e = F2 5 ) c 2 (--) , (c 2 > 0.4) (3.18b)
2 1- - c 2

3 1

The main conclusion derived from these calculations and asymptotic

forms is that the creep in the majority phase governs the overall creep

behavior at both the small and the large stress limits only to be

amplified or attenuated by the presence of the minority phase to a much

less important extent. Between these two extreme limits, the overall creep

goes through a transition which can be best quantified by defining an

effective creep exponent for the overall creep of the composite,

d nE
mff = dkno (3.19)eff dkna
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A specific example of the variation of meff with stress for m 10 and

m2 = 5 is shown in Fig. 3.1, where without loss of generality, we have

normalized stresses and strain rates with a and E where the two stress
c c

strain-rate curves cross over. The figure shows that the presence of

very small amounts of a second phase has little effect. The variation of

meff with stress becomes larger when the amount of second phase becomes

0.1 or larger. The figure shows also that for small volume fractions of

an entrapped reinforcing phase (cl < 0.3) the maximum change in effective

exponent, Ameff,is almost linear in the concentration. Only in a composite

comprised of roughly equal amounts by volume of phase does the behavior

with larger m dominate at small stresses. In comparison with these

results, the upper bound computation based on constant strain in all

phases predicts that phase 1 dominates composite behavior at low stress

and phase 2 at high stress regardless of volume fraction (see Appendix ).

Clearly, the behavior in Fig. 3.1, showing a transition of response

in the two limits from that of phase 2 to that of phase 1 (i.e., from

smaller m to larger m) with increasing volume fraction of phase 1 takes

place roughly when a phase inversion occurs. For a quasi-spherical phase

shape this occurs when the two volume fractions are about equal.

The maximum in meff occurs when I ••' v2 A crude estimate can be

made by simply letting a, = a2 = a. The actual maximum will shift more

towards the lower stress side (for the case when c1 < 0.4), due to the

stress concentration in phase 1. In general, the peak in meff remains

narrow as long as cl is small and mi - m2 is large. This narrowness

is due to the decrease in disparity in the stress distribution between

the two phases as a result of the decreased total load-bearing capacity
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Fig. 3.1 - The effective stress exponent meff v.s. normalized

stress a/ca for m I = 10 and m2 = 5. The volume fractions cI

are shown by the number on each curve.

. A



42.
of phase 1 when c1 is small, and to the greater variation of creep

resistance of phase 1 with stress when mi is large. Both indicate that

for conditions in ordinary engineering alloys where only a moderate.

amount of strengthening phase of.very high creep resistance is present,

the peak in meff should be rather narrow and the overall behavior very

much like that of the matrix phase. For instance, a two-fold variation

10
of stress will cause a 10 variation of P l/2 , for m i - m2 

= 35. From

the above discussion it is clear that the major strengthening effect of

hard particles in creep of real alloys is of a very different origin

than the reinforcement of the matrix by the deformation constraint of

the less deformable phase, where both act as continua, and where all non-

local effects requiring consideration of specific interactions of dis-

locations with obstacles are ignored.

To illustrate the effects of Fl, F2, ml, m2 , c1 and c2 on the

behavior of the composite, we introduce a somewhat modified notation and

write Equation (3.7) in the following form:

S1 2 a 2
S= ( ) = ( ) (3.7a)

standard yl standard ay2

where ayl , and Oy2 are creep flow stresses of material 1 and 2 respective-

ly, when tested at the standard strain rate Sstandard* We further choose

to use reduced strain rates e . and reduced stresses a . in units of

Estandard and ay2 (customarily ayl > ay2 if mi > m2)for which Equation

(3.7a) now becomes

(3.7b)Erl = Frl arl r2 = Or2
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where Frl is given by (for Fr2 = 1, by definition)

a r
F (-y2) (3.7c)
rl Oy1

Using the reduced creep constitutive Equations (3.7b) and (3.7c),

we have computed the behavior of the composite for six possible limiting

combinations of behavior of constituent phases having creep exponents

mI = 20 and m2 = 5 and consisting of:

a) (oy2/oyl) = 1, c1 = 0.1

b) (a y2/yl) 
= 0.3, cl = 0.1

c) (oy2 /oyl) = 0.1, c1 = 0.1

d) (oy2/ayl) = 1, c1 = 0.3

e) (oy2/oyl) = 0.3, c1 = 0.3

f) (oy2/oyl) = 0.1, cl = 0.3

The computed behavior is shown in Fig. 3.2 and furnishes a direct demons-

tration of the transitional behavior summarized in Fig. 3.1 and the

rather modest effect that appreciable volume fractions of a reinforcing

phase (with a higher creep resistance) produces on the overall behavior

of the composite by continuum considerations alone. In Fig. 3.2, the

5
diagonal line with unit slope represents a = E , which is the behavior

r r

of phase 2 in pure form. We note from Fig. 2 that at a constant volume

fraction of the hard phase, the transition--where this hard phase begins

to deform appreciably--shifts to larger stresses as the ratio of

oy2/ay l decreases.
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Figure 3.2 - Six different types of creep constitutive behavior

of a two phase heterogeneous alloy with three different ratios of

flow stress of individual phases at a reference strain rate and

at two levels of volume fraction of the less deformable phase.
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3.3.2. Circular Cylindrical Phase Domains in Plane Strain

A corresponding analysis for circular cylindrical phase domains in

plane strain can also be developed readily and is often useful in dis-

cussing idealized models. Following a procedure similar to that for

spherically shaped domains we obtain the following asymptotic equations

for plane strain:

at a ý0

m m

E = F 2 (1 - 2 c) c2 ) , (c < 0.5) (3.20a)
1 2 1

mi

C1S= F ) c ( a (c > 0.5)2 1
S= F (1 - 2 c 2 ) c2 (-) , (c2  < 0.5) (3.20b)

2
S= F() c (-) , (c > 0.5)

3.4. Discussion

3.4.1. Approximations in the Method

The effects of the approximations in the use of the self-consistent

method for non-linear materials by incremental steps within which the

constituents are considered linear throughout in the computation of the

steady state creep resistance need to be assessed. During each increment

of stress the "smoothing out" of the changes in the local moduli in the

surroundings of inclusions in non-linear materials of the type we have

considered overestimates the creep moduli of the composite for two reasons.
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First, any redistribution of stresses in an initially uniformly stressed

homogeneous matrix will always produce an increase in the local average

strains. Second, in a heterogeneous alloy, a stiffer inclusion in a

non-linear matrix is stressed less than in a linear matrix, while a more

compliant inclusion in a non-linear matrix is strained more than a

linear matrix. This always results in a larger compliance in the composite

for each incremental step which is not accounted for by the incrementally

linear idealization of the constituents. As a consequence, the application

of the self-consistent theory to non-linear problems by the technique dis-

cussed in this paper gives overestimates of the deformation resistance.

The neglect of the anisotropic portion of the incremental con-

stitutive relation (3.12) results in the underestimation of the creep shear

moduli of the matrix around the inclusion. This, in turn, gives an

underestimation of the overall moduli, i.e., the creep resistances.

Although this underestimation partially compensates the overestimation

resulting from the "modulus smoothing" in each linear step of the self-

consistent theory, detailed calculation has indicated that the effect of

this additional approximation due to neglect of anisotropy is usually less

than the effect of modulus smoothing. Consequently, our application of

the self-consistent theory generally overestimates the creep deformation

resistance.

3.4.2. Comparison with Other Investigators

It is interesting to compare our results with those of others for

nonlinear material behavior. Huang (17) has carried out a calculation

for the plane deformation of a power-law material with rigid transverse
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circular fibers using a self-consistent model in which Eshelby's

solutions for concentration factors are replaced by their nonlinear

equivalents obtained by a finite difference method (16). His

result. is, in our notation

m m

= F 2 (1 - cl R) c 2 ( -) (3.21)

where R, the stress concentration factor in rigid circular fibers,

varies between 2 and 1.4 as m varies between 1 to 7. This is to be

compared with the first Equation of (3.20a). From this comparison it

is clear that due to the long range response in the non-linearly hardening

matrix, a lower stress concentration is built up in the less strain rate

sensitive phase. It is to be noted that although Huang obtained improved

estimates of stress concentrations in the inclusion, he still used the

self-consistent model in which the matrix was taken to be homogeneous,

as in our case, without further consideration being given to the effect

of stress variations in the matrix. (See Section 3.4.1.) We therefore

expect that even Huang's result is an overestimation of deformation

resistance of the nonlinear material. Fortunately, this was shown to be

not serious; Huang's result agrees well with that of the finite element

calculation of Needleman (84).

In summary, the spherical-grain self-consistent model does provide a

qualitatively different and more realistic description of the overall

deformation of nonlinear composites than that of bound analysis. The

major uncertainty of this method is more likely in the use of Eshelby's

solution to estimate concentration factors in inclusions for a nonlinear

system than in the picture of replacing the surrounding of the inclusion
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by a homogeneous matrix for which only the averages of stresses and

strain rates are specified. Hence, self-consistent approaches give

qualitatively correct results which, however, lead to overestimates of

the deformation resistance.
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3.4.3. Non-local Interactions

When the dramatic increases in creep resistance, frequently achiev-

able in practice by the addition of relatively small volume fractions of

0

very small (-100 A) hard particles into ductile matrices, are compared

with the computed creep resistance of Fig. 2, the latter are found to be

very modest in comparison. This is an illustration of the non-local

nature of interaction of the very small particles with dislocations and

subgrain boundaries in a scale range where continuum concepts are in-

applicable (76). Our computations in this paper are meant to apply only

over volume elements and inclusion sizes very large in comparison with

mean dislocation spacings, and subgrain sizes.

Furthermore, inspection of Fig. 1 shows that the effect of small

volume fractions of non-creeping but only plastically deformable (large m)

reinforcing phases in a creeping matrix (small m) iS .. only a very

modest rise in meff of the alloy. Thus the relatively large creep ex-

ponents in composite alloys, in relation to the exponents of the pure ma-

trix, is also not attributable to the deformation restraint of the less

readily deformable reinforcing phase. Although the exact cause of this

so-called power-law breakdown behavior is still not clear, according to

the best current understanding, the reinforcing particles appear to

effectively inhibit normal recovery processes and retain a non-characteris-

tically fine subgrain structure in the creeping alloy.
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APPENDIX TO CHAPTER 3

UPPER AND LOWER BOUNDS FOR CREEPING NON-LINEAR COMPOSITES

Unlike in the case of linear composites, the various accurate

bounding approaches such as that of Hashin and Strickman (6) are no

longer applicable for non-linear materials (16). The only available

bounding technique which continues to apply is the uniform strain-rate

upper bound and the uniform stress lower bound. The application of these

bounds for a two-phase composite described by Equations (3.7 - 3.10)

gives the upper bound

1 1

a = C1 ()ml + c2 (E)m 2  (A.1)
1 2

and the lower bound

mi  m2

S= C F 1 6 + C2 F 2 a (A.2)

The derivations are straightforward and are omitted. In the two limits

of small stress and large stress these bounds reduce to the following

forms: the upper bound

m1

S= F (-) , (0-0) (A.3)1

m2

= F2 () , (a-*0)
2

and the lower bound

m2
E c2 F2 a (a-+O) (A.5)
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m
1

E = c 1 , (a) (A.6)

Clearly the results of the self-consistent theory given by

Equations (3.18) and (3.20) lie within these bounds. Furthermore, we

note that the upper and lower bounds do not lead to the same stress

exponents at the high and low stress limits as is physically required

and as the self-consistent theory gives.
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CHAPTER 4

GRAIN BOUNDARY AND INTERFACE BOUNDARY SLIDING IN
POWER LAW CREEP

4.1. Introduction

In the preceding chapter we studied the overall steady state creep

behavior of heterogeneous alloys with coarse microstructure. The approach

was to treat each individual phase as a continuum inclusion, and to

follow the formulation of the self-consistent theory of Hill (9).

Specific results were derived for heterogeneous alloys with coarse,

equiaxed phases which were modeled as spherical inclusions.

The problem studied in this paper is the other extreme in composites

in which inclusions are of very large aspect ratio and small volume frac-

tion. This model is applied to obtain an analytic estimate of the effec-

tive creep equation of a polycrystal creeping according to a power law

with viscous grain boundaries or incoherent phase boundaries which are

modelled as randomly distributed thin circular disks of a critical

volume concentration N that gives a high probability of contiguous

grain boundary surfaces through the material. A similar problem in

elasticity has been studied by Wu (85) and more recently by Budiansky

and O'Connell (86).

4.2. Theory

4.2.1. Grain Boundary Sliding Among Equiaxed Quasi-spherical Grains

For simplicity, the grain boundary taken as an ellipsoidal disk of

some large aspect ratio a/b where a and b are lengths of the semi-major

The notation used in this chapter is the same as that in Chapter
3. In particular e stands for strain rate.
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axes respectively, is modelled in the corresponding elastic analog as an

anisotropic medium with a low shear modulus in the plane of the disk, but

with a modulus equal to that of the matrix along the principal directions

of the disk as shown in Fig. 4.1. More precisely, for the creeping

material, we assume the following:

1. that both the matrix and the disks are incompressible,

2. that the matrix (grain interior) follows a power-law in
m

creep, i.e., e = F ,
g g g

3. that the disk (grain boundary) is isotropic in its plane with

a Newtonian viscous shear response, i.e., del3 = de31 = 1/2pgb do 3 =

1/2pgb do31,

4. that the disk is indistinguishable from the matrix in its

normal stress response along the principal axes of the disk.

As in Chapter 3, we shall approximate the incremental deformation of

the matrix to be isotropic. As discussed there, we expect that this

approximation will result in an overestimate of the overall creep moduli

for m > 1. In addition, as discussed in Chapter 3 and as will become

clearer later on in this paper, we recognize that this necessary sim-

plification leads to useful results for only small m (say m " 5). For

larger m, the interaction between neighboring boundaries becomes over-

whelming, making the self-consistent method in the sense that it is

used here an increasingly poor model.

Consider a typical disk at an inclination 8 with the tensile di-

rection 3 (Fig. 4.1). The coplanar sets of axes 1, 3, 1i, 3 are chosen

to lie in the vertical plane. The incremental loading at distant boun-
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A
3

3

A

Fig. 4.1 - Circular disk shaped grain boundary with its principal

axis 1, inclined at an angle 6 with respect to the tensile axis 3.
A ^

The coplanar sets of axes 1,3 and 1,3 lie in the vertical plane

as shown while the other major axis 2 coincides with 2 and is

perpendicular to the plane of the paper.

3
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daries is

dE^ = - 2d^^ = - 2dE^^ = dE (4.1a)
33 11 22

da^^ = d a (4.1b)
33

with all other components not present. It is possible to decompose this

deformation into planar shear components in the disc coordinates, e.g.

3
dcs = dE = - cose sine d E (4.2a)

13 31 2

and

do13 = do31 = cose sine d a (4.2b)

Since the disk is indistinguishable from the matrix for all other de-

formation modes, the composite simply creeps uniformly except for planar

shear modes.

Treating the matrix as a homogeneous continuum with effective shear

viscosity p and still obeying Eshelby's solution, we have in his own

notation (18)

S 1 ( 3 + 0 ( ) (4.3a)
1313 2 4+ a

SdEl3 = de (4.3b)
d =1 31

13 37r b1 gb3gb P gb 4(a) (a Pgb

do = Pd = da (4.3c)
13 3g g b 13 31 gb

gb pgb 4 a (- gbPgb gb

where S1313 is the only component in Eshelby's transformation matrix

which is needed to obtain the final forms given in Equations (4.3b) and

(4.3c). The total contribution of sliding which comes from the planar

The use of superposition is permissible during each linear incre-
ment within the spirit of the approximation used in deriving Equations
(4.2) and of Chapter 3.
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shear mode is obtained by averaging Equation (4.3b) over all solid angles

of inclination of the disk shaped inclusions. Thus the self-consistent

equations are, for tensile components dE33 and doa3
33 33'

2 2 dE + (1-v_) dE = de (4.4a)
33 gb 5 3 b • gb

gb 4 a gb

da = v gb do + (1-vgb) do = do (4.4b)
33 gb 15 37r b gb g

gb 4 a gb

where the first term in each equation is the contribution of boundary

4r 2
sliding in which Vb = N -- a b (N is the volume concentration of thegb 3
number of grain boundary disks), and the second term is that of the

grains.

The value of the volume concentration N of the number of grain

boundaries can be determined in reference to an analogous system in

which a volume concentration N of number of shear cracks in an elastic

matrix has reduced the overall tensile modulus to zero. Such critically

cracked solids were investigated by Budiansky and O'Connell (86) and

have very similar properties to polycrystals with continuously connected

sliding grain boundaries. Very much like the elastic solid with

contiguous planar cracked regions the polycrystal with sliding boundaries

would have come apart were it not for the fact that grain boundaries are

not allowed to deform freely normal to their plane. A similar calculation

using our self-consistent method leads to N a3 = 9/16 (i.e., v 4- 3b)
gb 4 a

for b/a<<l), which is the same result obtained by Budiansky and

O'Connell (86) using a much more complicated method in the energy des-

cription of the self-consistent theory.
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Thus, from Equations (4.4a, b) in the limit of a/b>>l and pgb/,<<l,

1 2 ( p ) ,

1 do 1 b5

3 de 3 m-1
F ma

g

where pgb' the "grain equivalent" boundary viscosity is defined by

* 4 a gb m in
1g =4 ( a , and the previously assumed form g = F a is utilized.
gb 3=7 b gb g gg

In Equation (4.5), p can be solved explicitly as a function of a.

Therefore, the constitutive equation for the polycrystal is directly

integrable. As before, we can obtain asymptotic solutions

= ý-F m at a O (4.6a)
3g

E = F at ( (4.6b)
g

which lead to the following limiting behavior

d = dE at a %O and dE = de at a " (4.7)
g 5 g

while da = da always holds.

This confirms results obtained by several others workers (26, 27),

that both in the low strain rate limit when boundaries are fully relaxed

and the stress distribution is inhomogeneous, and in the high strain

rate limit when boundaries are unrelaxed and the stress is homogeneous,

the strain rate of the polycrystal has the same stress dependence as the

grain matrix. At an intermediate but narrow range of the stress when the

grain boundaries slide effectively with equal ease as the grains deform

(i.e., p gb), the strain rate sensitivity of the flow stress goes
gu gb
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through a minimum (Crossman and Ashby (27) (*), Hart (26)).

4.2.2. Grain Boundary Sliding Among Rod Shaped Grains in Plane Strain

It is very instructive to perform a similar calculation for grain

boundary sliding in creep in a plain strain geometry which has been as-

sumed most often in the past. Equations (4.3a-c) are now:

1 2b b
S (1 + 0 (b ) (4.8a)
1313 l a a

dc1 3  = dE = dE (4.8b)
gb + 2b 13 31 gb

gb a gbb

do = gb do = do (4.8c)
13 2b d13 31 (4.8c)

gb lgb a gbgb

where

33 11 33 22

dE31 = d = 2 cosO sine dE, do = cose sine do

2 1 b
Similarly it is found that N a = (or vgb = . Therefore,

1 ( I
1 do 1 gb (49)
4 dE 4 m-l

F me
g

* a m
where agb p= gb and g = F Ogm is taken. This leads to corresponding

asymptotic solutions

4 m
S=  F , (a • 0 ) (4.10a)
3 g %

S= F o, (a yco),

(*)

In comparing our result with that of Crossman and Ashby, we note
some errors in their paper. In their Fig. 8, the apparent A ata.r \
does not agree with the value of A given in the figure caption; the same
error occurs in their Fig. 9, in their strain rate scale.
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and
dE = dE at a= 0 and de = d at a co (4.11)

g 4 g '."

As a check on our results, we find that Equation (4.6a) or (4.5)

agrees with the result of Budiansky and O'Connell for the effective moduli

for an elastic body permeated at the same volume concentration by flat

cracks that are filled with an ideal fluid, as might be expected. Fur-

thermore, the coefficient in (4.6a) is larger than that in (4.10a), as

expected from the observation that there is more grain boundary area

among equiaxed quasi-spherical grains than among rod shaped grains.

4.2.3. An Instructive Computation

Figure 4.2 demonstrates graphically the effect of grain boundary

sliding in a specific case of plane strain configuration subjected to a

shear stress T. Using a familiar creep constitutive equation

m
y = A (() ; (A = /§F (G) m) (4.12)

between shear strain rate y and shear stress T (G is shear modulus),

18 -1Equation (4.9) was integrated for the typical values of A = 10 sec-

* -1
(G/gb ) = 10 sec ,-1 and m = 5 to give the resulting behavior shown

in Fig. 2. The transition between relaxed and unrelaxed behavior occurs

at log T/G = -4.20 where the effective exponent meff reaches its minimum

value of 4.77. At the transition, the contribution of the sliding grain

boundaries to the overall strain rate equals that of the deforming grains,

i.e., where pgb = ". This occurs at the intersection of the power law

creep curve of the grain y = A(T/G)5 and the "grain equivalent" flow law

of the grain boundary ygb Ygb Vgb = r/2 Igb The position of the
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u

I-

10-5 10-4.5 10-4 10-3.5

f/G

Fig. 4.2 - Transition between relaxed to unrelaxed behavior of grain

boundaries with increasing stress in plane strain geometry, in a

polycrystal in which the grain matrix creeps according to a law
5 *

y = A(T/G) , obtained from Equation (4.9), and where G/p =
-1 108 - gb

10 sec , A = 10 sec were chosen. The transition of behavior,

where a minimum in meff = 4.77 is achieved, occurs at log T/G = -4.20.
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transition, of course, depends on grain size through the chosen volume

fraction vgb = b/a where b can be taken as the boundary half thickness

and a as the grain radius. Apart from the small change in slope of the

asymptotic lines for relaxed and unrelaxed behavior, that results from

our choice of m = 5, and the specific strain rate amplification factor

4/3 for the fully relaxed case, (Eqn. 4.11), our results are almost

indistinguishable from the results of Crossman and Ashby (27).

4.3. Interface Boundary Sliding in Heterogeneous Alloys

In many alloys, interface boundaries are largely incoherent and

permit sliding of the phases relative to each other. Similarly, grain

boundary sliding can occur in heterogeneous alloys with or without sliding

interfaces. Thus, there would be many applications where the results of

Chapter 3 on heterogeneities without sliding interfaces and the results

of this paper on sliding boundaries and interfaces need to be combined.

Clearly, dealing with the combined problem all at once would be beyond

the capacity of the self-consistent theory as used here. Instead, we

propose to deal with such problems in two stages: first the effect of

nonsliding but non-linearly deformable heterogeneities are considered by

the method of Chapter 3 to compute the constitutive behavior of the

composite for full traction transmitting boundaries followed by the

additional effect of sliding of contiguous viscous boundaries and inter-

faces plus the sliding of the interfaces of the entirely entrapped hetero-

geneities by the method presented here. In taking account of the effect

of sliding of the entrapped non-contiguous interfaces of heterogeneities

it is, of course, necessary to use the actual volume fraction of these
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sliding entrapped interfaces.

4.4. Discussion

4.4.1. Grain Boundaries as Ellipsoidal Disks

Consider an idealized hexagonal two-dimensional geometry of grains

as shown in Fig. 4.3. The volume concentration of number of grain

1 1boundaries in this equiaxed hexagonal array is N = , or
b 2/3 a

Vgb = - -a if grain boundaries are taken to be ellipses of aspect

ratio a/b. This volume concentration is 91% of that used in the self-

consistent theory of randomly distributed ellipsoidal disks. It is to

be recognized that any slightly distorted non-equiaxed hexagonal array

has a higher N and vgb, as has any other periodic array in two dimensions.

This observation indicates that the volume fraction of grain boundaries

considered in our self-consistent theory is quite realistic.

The choice of ellipsoidal geometry and the feature of uniform strain

rate inside the ellipsoid (Equations 4.8a-c) results in the rate of shear

displacement across the boundary that satisfies the following equation

at low strain rates

2 2
Au u

(an 2) +- = 1 (4.13)2ae sin 26 2
a

where Au is the rate of shear displacement and u is the coordinate along

the major axis. This result is identical to the estimate of Brunner and

Grant (87) and is supported by their experiments.

In spite of the successful features of the ellipsoidal disks as

grain boundaries in the context of the incrementally linear self-consistent
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*

Fig. 4.3 - Idealized two-dimensional hexagonal array of

grains. Grain boundary sliding and the slip lines obtained

by plasticity theory are shown in one grain.
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method, there are a number of severe shortcomings. First, grain bound-

aries form triple point junctions where the local stress concentrations

differ in character from that obtainable at the tip of an ellipsoidal

disk as has been shown by Lau and Argon (29). More importantly, however,

grain boundaries on opposite sides of a grain interact, and the shear

strain concentration between them accentuates steadily with increasing

stress exponent m as has been shown by the finite element model com-

putations of Crossman and Ashby (27). In the limit as m - w, the shear

strain across grains concentrate into a set of slip lines connecting

up the sliding boundaries on opposite sides of the grains. Such strong

interactions of grain boundaries which is a direct result of the non-

linearity in the creep law fall entirely outside the scope of the self-

consistent method as utilized here. Thus, the developments of Section

4.4 which ignore such interactions lead to quantitatively useful results

only for small m. As m becomes large, the results deteriorate both

qualitatively and quantitatively.

4.4.2. Strain Rate Enhancement and Stress Enhancement

Our result for strain rate enhancement due to sliding grain bounda-

ries can be taken to be correct for m = 1.

Instead of considering a strain rate enhancement, we may find it

more satisfactory to refer to a stress enhancement factor f that produces

the same increase in strain rate in a reference material without any

boundaries (27). This factor f is defined as

E = F (fo) m  (for a-+0) (4.14)
g
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Thus, at m = 1, our result shows f to be 4/3 in plane strain.

For the other limiting case of m -- c, as we have discussed above,

the grain interiors become an ideally plastic, non-hardening medium,

where now f can be inferred from slip line theory, where the sliding

boundaries will be linked by a series of slip line fields inside the

grains (88). Considering the hexagonal grains of Fig. 4.3 as an ordered

limiting arrangement of grain boundaries and approximating the curved

slip lines of Fig. 4.3 by straight ones, one can obtain readily a stress

enhancement factor of 1.3 in tension along the vertical or horizontal

axes of the figure. If the tension axes depart from these symmetry axes,

higher stress enhancement factors result with a maximum of 1.5 corres-

onding to simple shear along the symmetry axes. An orientation average

can be readily obtained and gives 1.43. This slip line model is an

upper bound with the actual deformation resistance of the material being

lower, and the actual stress enhancement factor being somewhat higher.

It is now interesting to note that the stress enhancement factor ranges

only from 1.33 to 1.43 as m goes from 1 to c. The stress enhancement

factor for behavior in between these limits is expected to lie on a

monotonically rising function. The behavior for a three-dimensional

arrangement of quasi-spherical grains is expected to give somewhat

higher results on the basis that f = 5/3 for m = 1 (Eqn. 4.7). These

conclusions are qualitatively in agreement with those of Crossman and

Ashby (27).

In view of this discussion we expect that the effect of sliding

boundaries is an almost constant shift, independent of m, along the
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stress axis of the log a, log e behavior between totally relaxed and

totally unrelaxed boundaries, as given in Fig. 2 for the specific case

of m = 5.

4.4.3. Comparison with Results of Earlier Investigators

Zener (22) calculated the effect of grain boundary sliding in

elasticity by modeling the grains as isolated spheres free of surface

shear traction. By superposing three appropriate sets of displacement

functions, Zener was able to satisfy this boundary condition. However,

by considering the grains in isolation, Zener failed to take the im-

portant compatibility restraints of the rest of the matrix into account.

Also the spherical grains of Zener have a lower surface to volume ratio

than any realistic three-dimensional grain configuration which is space

filling and equiaxed. A much better result in our opinion is that of

Budiansky and O'Connell (86) for elastic solids containing contiguously

connected shear cracks filled with an ideal fluid. As we have mentioned

before, their result and ours are essentially the same.

Recently, Speight (89) considered a model of cubic grains free of

surface shear traction, and having a uniform strain rate throughout the

polycrystal to satisfy compatibility. Hence, the assumed uniform shear

strain rate along the cubic surfaces must be supplied by different normal

tractions across grain boundaries for different grain orientations. As

a consequence, the stresses in the cubes, though uniform within each

cube, are different from cube to cube and an overall strain rate

enhancement (or stress enhancement) is expected. However, Speight (in

calculating the overall stresses as a function of overall strain rates)
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incorrectly assumed that <a2> averaged over all grains is equal to 02.

If instead, <o^^> averaged over all cubical grains in a cross section is

equated to a, as would be required by equilibrium. Speight's problem

would become a special case of an upper bound model, since E33 is

assumed to be uniform and equal to ~ . In that case, the stress enhance-

ment factor f would vary from 2.11 to 1.55 as m varies from 1 to o for

cubical grains in three dimensions; and from 2 to 1.57 for square

rod-shaped grains in plane strain. These values are significantly

higher than Speight's original evaluation and also those of both Crossman

and Ashby and ours. The reason for this probably lies in the over-

estimate of density of grain boundaries in a cubical grain model.

For example, in two dimension, N is 1/2 a2 for a square array of grains,

which is significantly higher than the N used in the self-consistent

theory.

4.4.4. Diffusional Creep

In diffusional creep, mass transport is always perpendicular to

the grain boundaries and grain boundary sliding is an essential and

integral part that becomes necessary to preserve continuity of the

polycrystalline aggregate (90). Hence the diffusional creep rate is

proportional to the reciprocal square of the grain size for volume

diffusion (Nabarro-Herring) and to the reciprocal cube of the grain

size for surface diffusion (Coble). The boundary sliding that is

required for compatibility and continuity does not produce any enhance-

ment of the overall strain rate in comparison with the strain rate in

a collection of isolated grains of the same size, which now must be

taken as the reference material. Without boundary sliding (or decohesion)
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material transport cannot occur between different faces of a grain and

diffusional flow would have to occur only between the external surfaces

of a body and such internal surfaces that are perpendicular to principal

stress directions across which no sliding is necessary. This would, of

course, result in very substantial increases (by several orders of

magnitude) of the length of the diffusion path and would therefore

reduce the rate of diffusional creep drastically (by the reciprocal

square or cube of the increase of the path length).
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CHAPTER 5

INTERFACIAL STRESS IN VISCOUS MATERIALS WITH DIFFUSIONAL
FLOW AND ITS APPLICATION TO NUCLEATION OF CAVITIES

5.1. Introduction

At elevated temperature where grains deform primarily by power law

creep, grain boundaries also undergo significant material transport by

diffusional flow leading to overall deformation. Generally deformation

under this condition can be labeled as "visco-diffusive". This com-

bination is of particular relevance in consideration of processes

occurring along grain boundaries such as grain boundary sliding and

intergranular cavitation. In this chapter we examine the nature of

visco-diffusive deformation and apply the result to obtain interfacial

stresses which could lead to cavitation.

When a load or a displacement rate is applied to a visco-diffusive

body the initial response is elastic deformation. Subsequently dis-

location creep and grain boundary diffusion will over the time smooth

the stress field which, at steady state eventually, becomes independent

of the initial elasticity. Examination of the steady state field

frequently finds, near each geometric asperity or similar perturbation

along the grain boundary, a diffusion zone within which diffusion

dominates. It is thus convenient, as a first step, to determine the time

and the length over which the elastic stress relaxes and diffusion domi-

nates. On this basis, furthermore, the problem of a visco-diffusive

deformation can be divided into separate regimes within each of which

there is only one dominant process. Meanwhile the global analysis is

completed after coupling these regimes together.
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The rigorous implementation of this procedure is made difficult by

the nonlinear nature of power law creep. Often the problem is only

tractable by numerical analysis which deals with the coupling inter-

actively. Much insight can be gained, however, if we first obtain the

nondimensional form of the governing equations in which the scaling is

built in. Further insight is also possible when strategically chosen

simple samples are solved. The most useful application of this method,

confirmed fully by exact numerical analysis, is presented in the next

chapter on cavity growth.

The method is applied here to obtain interfacial stresses at an

inclusion on a grain boundary. With a review of classical nucleation

theory of cavitation, it is concluded that such stresses, enhanced in

their magnitude by stress concentration due to grain boundary sliding,

are responsible for cavitation at elevated temperature in engineering

alloys.

The symbols used in this chapter have been listed at the beginning

of this thesis.

5.2. Nondimensional form of Governing Equations in Visco-Diffusive
Materials

We consider the following field equations, in the symbolic notation

of Lure (91) in which V x Ax V stands for e npj em a Am/ax ax
p 1

V oa = O (Equilibrium equation) (5.1)

and

V x E x V = 0 (Compatibility equation) (5.2)
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In a visco-diffusive material the constitutive law can be written, again

in a symbolic notation, as

* -1* m Db b 2 on
=L + Aam - kT 2 A (r - s - s) (5.3)

kT 2 o
as

The first and the second term of RHS are the familiar elastic and

power-law creep components. The strain rates due to the grain boundary

diffusion, which adds additional normal displacements at grain boundaries,

is introduced in the last term using the abbreviated form of tensor A

which in the full form contains delta-functions, 6(r - so - s), in its

components. The origin of boundary coordinate, s, is displaced by so

from the origin of the space coordinate. Equation (5.2) now appears as

-1. m Db b a 2on 4
V x (L + A kT A(r - s - s))x V = 0 (5.4)as 2 0

The nondimensional form of governing Equations (5.1), (5.2) are,

after substitution of a by a o, t by to t, and r, s by o r, Z s, with
0o o

corresponding substitution of (*) by 1/t ( ) and V by 1/t V,
O O

V * o = 0 (5.5)

and
x ( -1 m Db6 b b,-652 ~ ~

V x((L ) ~ + (A m) - A (r-s -s)}x V = 0 (5.6)o kT0 as

Under a stress boundary condition with some representative measure

of the nominal stress aN, we can let a = aN and choose t and X

according to (recognizing that L, the stiffness matrix, is of the same

order as E, the Young's modulus)
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y D 6 b a
o m obb o

= A = (5.7)
Et o kT 3

o
o

This operation, or any other similar ones which obey Equation (5.7) in

the choice of scaling dimensions, renders all the coefficients in

Equation (5.6) the same value which can be factored out. Thus, we

are left with a compatibility equation in the simple form

* -m .2 ~ ~ ~

V x {o + o - a2  (r-s -s)} x V = 0 (5.8)+2 o
3s

in which all the material constants are left out. The normalization

procedure is now completed.

It is now obvious that the solution of the stress field in a

visco-diffusive material obtained for a given stress boundary condition

with the representative measure of the nominal stress ON, can be used

to deduce the solution of the stress field in the same material for the

same boundary condition but with a different representative measure of

the nominal stress caN, simply by following the above normalization

procedure and let a = oN while choosing t and k accordingly.
o o o

We conclude this section by rewriting Equation (5.7), by assigning

o = a N and EN,, = AN m' in the following form

1/3
Db 6b a N

_ = ) (5.9)
o kT &N,creep

and

t = (5.10)
EN, creep
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5.3. Stress Relaxation

5.3.1. Elastic stress

Stress relaxation in visco-diffusive materials can be best envisioned

by inspection of Eqn. (5.8). For a given regime of space and time the

magnitude of each term in the equation can often be estimated easily for

useful inference. For example, during a fast transient the elastic

response (a) will dominate, it being smoothed out locally by diffusion

(a2a/D2 A(r-r -s)) and elsewhere by power-law creep (am). The latter

might take considerable time, depending on the rate of transient loading.

Quantitative evaluation becomes feasible if one of the three terms

in Equation (5.8) is negligible. For relaxation of the elastic stress,

the short range smoothing can be calculated considering only diffusion.

The characteristic relaxation time of the simplified equation obtained

by Raj (33) and Chuang et al. (65) using Fourier analysis, is

Tb -DbkTE ()3 (5.11)

where Z is the range of the elastic stress concentration. The effect

of creep smoothing has also been studied recently analytically by Riedel

(92) and numerically by Bassani (93) and Lau (88). Generally speaking,

a creep zone associated with an elastic stress singularity will

gradually expand, and a self similar solution can sometimes be found

in the limit of "small scale yielding". The characteristic time for

this kind of relaxation can be defined as the time taken for the creep

zone to cover the entire space (or an entire grain in the triple point
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problem).

We note, in passing, that the transient analysis for relaxation of

elastic stresses by diffusive flow invariably yields a very short

transient for submicron asperities above roughly 0.45 Tm (33). For this

reason a grain boundary without significant asperities or any portion

between major asperities can be regarded as relaxed and free of shear

tractions. This view is in agreement with a large body of measurement

of relaxation time using the internal friction technique at elevated

temperature (25).

5.3.2. Creep field

Following a transient of loading: or a perturbation (e.g., nucleation

of a cavity), the steady state field of visco-diffusive deformation

prevails. Hence the term a can be dropped in Equation (5.8) for a

steady state solution. Consideration of this problem has received little

attention and only recently. For cavity growth and crack growth problems,

both approximate (74, 75) and more exact solutions (94) were developed.

Also of relevance to the nucleation of cavities is the development of

interfacial stress at an inclusion on a grain boundary. It might be

possible that, given a grain boundary free of shear traction, the load

transfer to the inclusions could result in considerable stress concen-

tration even with diffusional smoothing at the steady state.

Choosing a and k as before, a's in Equation (5.8) are of theO 0

order of unity. Let s = 0 be the origin of a stress concentration,

diffusion is important only within a distance s < 1, namely s < ko0
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Indeed if s << 1, the normal stress should exhibit a variation charac-

teristic of that of a diffusion field, e.g., parabolic if the dis-

placement rate is a constant. As for s >> 1i, diffusion should hardly

affect the distant field that is governed by power-law creep. In either

case, Equation (5.8) reduces to one in which only the dominant process

is responsible for the asymptotic solution, although the amplitude of

the asymptotic solution could be affected by the coupling between the

two modes of deformation as well as by the boundary conditions.

At this time, it is worthwhile to re-examine Equation (5.9) to

explore its physical meaning. After rearrangement it becomes

DbdbG a NS= kT (5.12)N kT Z 3
o

(We dropped the subscript "creep" since elastic strain rate does not

exist at steady state.) We recall that Xo is the length of the diffusion

zone. Equation (5.12) suggests further that the width of the zone should

be of the same order as its length, and that the effective strain rate

resulting from diffusion under the nominal stress aN be EN within the

zone.

The specific calculation in the next section and that for hole

growth (Chapter 6) verify that Equation (5.12) furnishes an excellent

correlation. This is further established by numerical calculation that

demonstrates that a simple substitution of the diffusion zone radius into

To emphasize the association of to with diffusion in visco-diffusive
deformation, k as defined by Eqn. (5.9) shall be denoted as D hereafter.o D
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a rigid-grain model (i.e., only diffusion operating) yields ko in Equation

(5.12). This is astonishing considering the complexity of the creep

field surrounding the cavity in Needleman's numerical solution (94).

5.4. Linear Visco-Diffusive Deformation

5.4.1. General Solution

Equation (5.8) at steady state (0 = 0) for linear visco-diffusive

material can be readily solved by the integral equation technique for

which the influence functions are well known from the theory of elas-

ticity. Let a be the stress distribution in the absence of diffusion,
v

then Eqn. (5'.4) of diffusional smoothing becomes

Db6~b1 a2a
a = a + b G(s,s') 2 ds' (5.13)v 4r(l-v2 ) kT as'

Here n is a viscosity defined by E = a/n and G is the influence function

for the normal "misfit" stress at s exerted by a unit increment of

iKs"edge dislocation" rate at s'. Choosing av = vKe as a Fourier

component for obtaining any arbitrary stress distribution by super-

position, and considering a straight grain boundary in plane strain, we

find from Timoshenko's theory of elasticity (95)

avK O~sa = e (5.14)
1 + IKIK2/K3

where

Db b 2n -1/3

KD 2 ) (5.15)
4(1-v ) kT

This Fourier transformation operation demonstrates that the characteris-

-1
tic length of diffusion is rr/2 K which is (v = 1/2) .of the same orderD
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of a . For smaller K, corresponding to the distant stress, reduces
0o

to a
v

We shall apply this method to grain boundary sliding. Following .Raj

and Ashby (32), the grain boundary is modeled by a non-planar surface

described by a cosine series (Fig. 5.1) y = E h cos K x for which
1 n n

.8 = 2h/X<<l and K = 27rn/X. Sliding of magnitude uGB creates a normal
n

displacement rate

u =* GB Eu = K h sin K x
2 1 nn n

which can be incorporated in Eqn. (5.4), again using the method of

Timoshenko's (95) to result in a normal stress

nuGB hK2
S n sin K x (5.16)

3 1 + (K/K3 n

Numerical evaluation of this series was performed and the results are

22 2
shown in Fig. (5.1) for h /h = 4/n2 2 sin nw/2 corresponding to a saw-n

tooth profile of a grain boundary shown in the same figure. We find

the maxima of a at locations 0.9 X/4 (Kl/KD)3, which are in agreement

with Xo within 1%. The average shear stress which equals the applied

stress is
4 33 n

nu 2 -n 7r (-)
GB h c 3 h(5TaX n=l K 3 (5.17)

1 + ( )
KD

or for Kl/KD < 1,
* 2 2 3
uGB 2 n2h K

Ta = -7 h n n (- ) (5.18)

where n2 2h /h is a constant independent of n or h.n
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The stress at x > ZD varies as l/r, as expected from visualizing

the configuration as one involving a co-linear array of edge dislocations

of alternating signs. This feature is merely artificial and is a result

of modeling the sliding grain boundary by normal displacement of

alternating sign along a planar boundary. This artifact also makes the

short wavelength contributions as a whole felt even at large distances

from the origin, a feature not likely to occur in a more realistic

treatment. Despite this, the far field has the variation of 1/r in all

cases as expected from the Fourier analysis in the beginning of this

section.

5.4.2. Interfacial Stresses at Grain Boundary Particles

The result of Section 5.4.1 can be applied to other problems. We

now consider the general case of a sliding boundary containing steps

of the kind described in Section 5.4.1 but only at a small area fraction

fA(fA = P/X in Figure 5.2). It can be shown that the results of

Section 5.4.1 are applicable, namely the interfacial stress has spikes

with maxima at a distance XD away from the apex of each asperity. The

magnitude of the stress remains the same for a given uGB but the average

shear stress at steady state is smaller by a factor fA*

If these steps are interpreted as grain boundary particles, typical-

ly of submicron or micron size, kD can often exceed the particle size.

-21 3 -29 3 . 8For example, for 6bDb = 10-21 /sec, T = 973 0K, 0 = 10 m , /al = 10 MPA-

sec, as typical conditions for fast creep in stainless steel, we find

ZD = 4 pm. This means that any particle up to 4 pm size will be in

the diffusion zone and the stress on interface is low and varies smoothly
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around the particle. The magnitude of the stress can be estimated

approximately from Equation (5.17) by choosing X " /v2h, aD > h for

the purpose of estimation. The major term in Eqn. (5.17) gives a

stress of the order of

UGB (5.19)2
GB Particle = 0.1 (' T ( (5.19)

which invariably is much smaller than the applied stress.

It is evident that relatively fast rates of sliding are required

for substantial stress at inclusions. In steady state creep, the

average rate of sliding simply is too small for that. Furthermore,

the average shear traction along grain boundary at steady state is

smaller than the inclusion stress by a factor p/X , the area fraction

of particles on grain boundary.

There is another possibility which could result in substantial

interfacial stresses at inclusions. During a transient, the stress

along a grain boundary relaxes much faster than the stresses at

inclusions. In the limit, shear traction on a grain boundary which

is still of the order of the applied traction, is only supported

by inclusions. Very high stresses can exist in such case, and they

seem to be the only source of high interfacial stresses in a creeping

solid at elevated temperature.
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5.5. Linear Visco-Diffusive Creep in a Polycrystal Containing Hexagonal
Grains

Linear visco-diffusive creep in an "ideal" polycrystal containing

a periodic array of hexagonal grains with sliding interfaces is con-

sidered here (Fig. 5.3). The technique employs series expansion using

nonorthogonal functions (95, 100). In this technique, the stress

function p is written as (100)

= E cos n x [B cosh Bny + Cn B y sinh B y]

+ cos aky [Fk cosh akx + Gkak x sinh ak x] (5.20)

and in-plane stresses are, as usual

xx 2 ' yy 2 ' xy 23xy
x y Y x

The displacement rates are integrated from strain rates

a -a
S xx yy

xx yy

where n' = 4/3 n corresponds to the in-plane viscosity of a linear

viscous material (a=nE) under plain strain condition. The origin is

chosen as fixed in the integration.
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6n antisymmetric w.r.t. D
O'n symmetric w.r.t. D

Fig. 5.3 - "Ideal" polycrystal containing hexagonal grains

with sliding boundaries under symmetric loading where <a >=0
xy
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Boundary conditions of symmetric loading are obtained by inspection.

First, a = u = 0 on OA and a := u =.0 on.OC are explicitly satisfied in
xy y xy x

the choice of the form of b. Second, ux - D b b/kT a2 x /ay2

<e >AB = constant and a = 0 are demanded on AB. Lastly, u - Db 6 /x xy n bb

kT 32a /3t 2 is anti-symmetric with respect to D on BC, where at Dn

the normal displacement rate is one half of that along AB with its

direction reversed. Also, shear stress vanishes along BC but normal

stress is symmetric with respect to D.

These conditions are sufficient to determine ý within an

arbitrarily constant hydrostatic stress. For this, we have chosen

xx = 0 at B. Due to grain boundary sliding, this also implies
xx

a = a = 0. This choice is also explicitly satisfied through the
yy xy

choice of the form of P.

Boundary collocation technique with least square criterion was

used to find coefficients in the series expansion of# (100). From

which stress and displacement were obtained according to the relations

previously listed.

The results are plotted in Fig. 5.4, where

Db6b n 4 ZD 3

- kT 3 3 AB(AB)

covers a wide range of conditions of practial interest (E = 0.1 - 0.001).

Note that the stress concentrations at triple points B and C are

substantially reduced by diffusion. Boundary tractions rapidly relax

as ý becomes larger and have possessed much of the parabolic feature of

diffusion governed stresses before E = 0.1. It is also noted that in
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the matrix along the extension of the grain boundary AB, a region of

compression exists and the overall profile of stress along OC remains

the same for all E's.

The average stress <a > - <a > = <a> necessary for the deformation
xx yy

was also evaluated. For 5 = 0.1, 0.01 and 0.001, it is respectively

<o>h' x /OA)= 0.62, 0.74 and 0.80. These results can be compared with

that computed by Ghahremani (28) using the same configuration but

neglecting diffusion (<a>/(h' u /OA)= 0.86) and our estimation, also

neglecting diffusion, for a random but contiguous array of grain

boundaries (o/('u /OA) = 0.75) of Chapter 4.

Although this calculation is applicable only to linear viscous

deformation, it is generally regarded that the stress concentrations in

the nonlinear material are somewhat less pronounced than those in the

linear material. For this reason, we might conclude that in slow creep

at elevated temperature, interfacial stresses at most favorably oriented

triple junctions are typically twice the applied stress or less. It is

not likely that such modest stress concentrations can cause triple-point

cracking as was previously thought by McLean (36) and Zener (37) who made

their observation based on elastic stress concentration ignoring creep

relaxation. Nevertheless, the possibility of more substantial stress

concentrations at triple points may still exist as in the cases of

very fast creep (small kD) , elastic stress transient (Section 4.3.1) or

in coarse grain materials (large AB).
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5.6. Nucleation of Cavities on Grain Boundaries

Recently Argon (97) proposed a modified classical nucleation theory

of cavitation which was originally due to Raj and Ashby (98, 53). In

calculating the nucleation barrier, the driving force for the con-

densation of vacancies is taken as oa , where on is the normal component

of the local stress on the grain boundary. Obviously the local stress

must be evaluated with the effect of grain boundary sliding and

diffusional flow . . taken into consideration. This point has been

adequately covered in the precedin.g. section.

The reciprocal time for nucleation of a cavity at a site is,

according to this theory

2 br Db AG
= 4/3 exp (- -T-) (5.21)

* * 3
where r = 2y s/a n is the critical radius and AG = 4X F /a 2 is the

s n v n

activation energy. In these relations, F is a geometric factor related

to the cavity and X is related to the surface energy in which a

correlation is made due to the recovery of interface energy during a

nucleation process. The reader is referred to Argon and Raj and Ashby

for details. For most materials and testing conditions, the pre-

10 -1
exponential factor is roughly 10 sec . Thus at temperature between

6000 C and 7000 C, 5 is practically zero if AG is greater than 2 e.v.

(3.2 x 10-12 erg)

-21 3 * -9 -29 3
Db6b =10 m /sec, r = 3 x 10 m, =10 m
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The magnitude of local stress necessary for appreciable nucleation

can now be estimated. Taking X = 300 erg/cm2 and F = 0.5, a is foundv n

to be 410 MPA. This is within reach- in our experiments using the

estimate for local stress at grain boundary particles given previously.

The choice of values for X and F needs some discussion. Raj (53),

arguing that a varying degree of "non-wettingness" may be responsible

for cavity nucleation, treated F as an adjustable parameter that wasv

made to vary 5 orders of magnitude in his theory. Since Z is extremely
sensitive to AG , this choice apparently is too liberal. We cannot find

any direct evidence to support this argument in our experiments where

grain boundary carbides were always well adhered to the matrix. Instead

we fix the value of F as 0.5 that should be typically met in most good

quality structural alloys at particle-grain boundary interfaces.

Secondly, the magnitude of x is chosen to be 0.5 ys, where ys, the

surface energy, is drawn from the recent data of Mortimer and Nicholas

for 316 stainless steel (99). These authors also noted in their study

that grain boundary energies can be of the same magnitude, or even

slightly higher, as the surface energy. Although Ys at 600 ergs/cm2

reported by Mortimer and Nicholas is somewhat lower than the surface

energy for pure austenitic iron and nickel, it is nevertheless possible

that solute segregation (such as B reported by Mortimer et al.) may be

responsible for a reduced surface.energy at nucleation sites.

At any rate, it is reasonable to expect that nucleation of cavities

by vacancy condensation can occur under an enhanced local stress. Thus

there is no need to postulate the existence of nearly nonwetting
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particles, although such problems can indeed occur in low quality alloys.

Grain boundary sliding can result in local stresses substantially higher

than the applied stress even at the macroscopic steady state in the

presence of diffusional smoothing, since even then transients of grain

boundary sliding are known to exist. Yet nucleation no doubt will still

be heterogeneous and take place preferentially at sites where surface

energy is lowered or energy balance involving other interfaces is most

favorable.
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CHAPTER 6

DIFFUSIVE GROWTH OF GRAIN-BOUNDARY CAVITIES

6.1. Introduction

Diffusive growth of grain-boundary cavities has been studied

extensively (for a review see Perry) (34). Existing models (63, 64)

for the diffusive growth of cavities are for the most part based on

the quasi-equilibrium assumption that surface diffusion is so rapid

that the cavity has a rounded, equilibrium shape. Hence in such models

cavity growth is rate-limited only by grain boundary diffusion.

However, the assumption that the cavity has an equilibrium shape

may not always be satisfied. Very often flat, disk shaped cavities

are observed. In a recent study of cavitation Cane and Greenwood (101)

reported that the height of cavities that grew in the early stage

stayed unchanged later in their evolution. This is clearly an

indication of the transition of the growth mode from a quasi-equilibrium

shape to a non-equilibrium one.

Several treatments have now been developed that avoid the above

assumption. These models of Chuang et al. (65, 73) and more recently

of Pharr and Nix (102) in turn are based on other restrictive assump-

tions. Commonly, the rigid grain approximation is used so that no

attention is paid to creep deformation in the surrounding. In addition,

in one model that claimed best agreement with experiments (102, 103),

the authors postulated Db/Ds to be much greater than one, even though

there is practically no metallic system that falls into this category

as noted by Gjostein (104).
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More often, diffusion along a grain boundary tends to restrict the

flow of matter from the cavity and affects the geometry accordingly.

Moreover diffusional flow along grain boundaries is coupled to matrix

creep which is usually appreciable. The coupling process, which has

been examined recently by Beere and Speight (74) and most recently by

Edward and Ashby (75), serves to shorten the grain boundary diffusion

distance. Thereby it gives rise to faster growth of cavities.

Thus the problem in its entirety involves three processes: surface

diffusion, grain boundary diffusion, and matrix creep. They are to be

coupled together sequentially in order to satisfy conservation of mass

and continuity or compatibility of displacement. In this paper we treat

these coupling relations first separately, taking advantage of the known

relation between cavity shape and total flux derived by Chuang and

Rice (65, 73) and the nature of diffusional smoothing discussed in

Chapter 5. A solution is then presented in closed form for a general

model of diffusional growth of grain boundary cavities of non-equilibrium

shape under creep conditions.

The symbols used in this chapter are listed in the beginning of

the thesis.

6.2. Theory

6.2.1. Surface Diffusion and Cavity Shape

We start the analysis with an idealized configuration (Fig. 6.1)

in which an axi-symmetric cavity located on the grain boundary is

bounded by a perimeter on which periodic boundary conditions appropriate

for an array of similar cavities are imposed. The entire space is
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subject to creep under a tensile stress in the distant field. The

cavity shape is not known ' priori and is to be determined as part

of the analysis.

Varying curvature along the profile of the cavity gives rise to

gradients of chemical potential which in turn producesa flow of matter

along the cavity surface. The flow from both surfaces of the cavity

eventually meets at the cavity tip and continues along the grain

boundary. The following equation results from conservation of mass

dv= 47aRJ (6.1)
dt s(tip)

It has been shown that (65, 73), for a given geometry of void tip,

the surface flux is only related to a and da/dt, provided the growth

is at a quasi-steady state. Corresponding to the two extreme cases,

i.e., a quasi-equilibrium, spherical cap shape, and a non-equilibrium,

crack-like disk shape, the surface flux is

J= h() da (quasi-equilibrium) (6.2)
s(tip) 0 dt'

and T da 2/3

J = 2sin ( D ) ( ss dt ) (crack-like) (6.3)
s(tip) 2 kT D

ss snYs
where

h() = [i/(l+cosp) - (cosi)/2]/sin*
4-a
3

Using similarity solutions, the intermediate case between these extremes

can also be represented (65). It is known that the intermediate case

is closely approximated by an envelope which is the interpolation of

the extreme solutions.
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6.2.2. Grain Boundary Diffusion Coupled to Matrix Creep

Along the grain boundary, diffusion is coupled to matrix creep

as described in the preceding chapter. Specifically, displacement

rates at a distance on both sides of the grain boundary contain con-

tributions from the creep accommodation throughout the region. A

comprehensive numerical solution of this problem has been obtained by

S 5
Needleman (94), for the special case of a/b = 0.1, = A and

o

S= 700 for a quasi-equilibrium cavity.

In the absence of matrix creep, the solution of this problem

considering diffusion alone is well-known. Originally due to Hull and

Rimmer (63), its revised form according to Speight and Harris (64) is

(a 3s) - 1 dv/dt = 2 ( D/a) 3 [in(bo/a) + (a/bo)2

1 2 -(

( - (a/b))- 3/4] (6.4)

where

aD = (Db 6bn a/kTc)/3

which was already used extensively in the discussion of visco-diffusive

deformation in Chapter 5. We try, guided by the reasoning in the

preceding chapter, an approximate solution by designating a diffusion

zone of size £D. Thus we obtain, substituting a+ eD for bo in Eqn.

(6.4) whenever a+,D < bo'
a+£ 2

(a3 )-  dv/dt = 2T(kD/a)3 [an( + a (1- 1 a 2)

D D
-1

-4 (6.5)
The result is plotted in Fig. 6.2. As can be seen the agreement

with Needleman's result (94) is excellent. Also in Fig.-6.2 are shown

* In Eqn. (6.5) Z +a= b is understood in the second bracket if Z +a>b
w ere usion zones imp r.

D .o , L L^
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the rigid grain solutions (64) that supercede the above one: at

z D + a = b as well as the limiting condition when the growth is by
D o

matrix creep alone.

We note that nothing in the analysis that leads to Eqn. (6.5)

explicitly hinges on the geometry of the axi-symmetric cavity. In

view of its agreement with exact solutions and the useful feature just

mentioned, Eqn. (6.5) will be used in later developments to treat

cavities of other geometries.

6.2.3. Growth Rate

From conservation of mass Eqn. (6.1) and cavity expansion rate

dv/dt, resulting from grain boundary diffusion coupled to matrix creep

and given by Eqn. (6.5), we obtain

-1
* 3 a+D a 1 a 3

ragJ p E a [=n(--)+a(a--a ) (i ( ) )- 3]
s(tip) a a4 a+D4 4

(6.6)

The left hand side of the equation contains all the information about

cavity shape and da/dt at a given a. Indeed since the flux for the

general shape can be closely enveloped by the corresponding expressions

for the extreme cases, described by Eqns. (6.2) and (6.3), it should

be adequate to solve Eqn. (6.6) only for the extreme cases. Substitu-

ting J from Eqns. (6.2) and (6.3), the growth rate of a cavitys(tip)

of either a quasi-equilibrium shape or a crack-like shape is,

respectively,
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2 3 a+i 2
47h (4) da D D a

a dt a a+)
quasi-equilibrium D

2 -1
1 a 3

(1 - (- ) - 1 (6.7)

d 5/2 a+Z 2 2 -3/24rh()) da D D a 1 a 3a(-) [tn( ) +( (1 -]C a dt a a+X 4 a+2 4
crack-like D D

(6.8)

where

Db 6 Da D 6 o D  1/2 (6.9)
b b &D 11h )(bb )D

( D y 3/2 D 6 Y
ss s [4sin(4/2)] ss s

prescribes the ratio of effective boundary flow to the surface flow.

Obviously the shape that gives the faster growth rate is favored and

the actual shape of the cavity and its growth rate should resemble

those in the corresponding extreme case.

The results are plotted in Fig. 6.3 for several values of a. If

a = 0, only the solution for quasi-equilibrium shape applies (Eqn. (6.7)

or Eqn. (6.5)).

6.3. Application

6.3.1. Transition from quasi-equilibrium mode to crack like mode

The coefficient a in Eqn. (6.9) serves as a useful indicator of

the relative importance of non-equilibrium shape in the cavitation

process. As a approaches 0, cavities are of quasi-equilibrium shape

and their growth is accurately described by Eqn. (6.7) (same as

Needleman's solution). As a increases, the effect of non-equilibrium

shape becomes more important until finally the growth and the geometry
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are characteristic of that of a crack-like cavity. The transition from

a quasi-equilibrium mode to a crack-like growth mode is plotted in

Fig. 6.4 as the locus of a/ZD v.s. a , where a/RD are those points in

Fig. 6.3 where the two branches given by Eqns. (6.7) and (6.8) intersect.

Alternatively, by equating Eqns. (6.7) and (6.8), we define the

transition by an equation

D 6 ac 1/2 a+i 2
rh($) bb =.n D a

' [ )(- ) ]  = 27n[_n ( D)+ (a--)
3/2 D 6 a+Z

(4sin(9/2)) s s s D

2 1/2
(1 - (- ) ) - ] (6.10)

4 a+D 4

which is also plotted in Fig. 6.4. The prominent constants affecting

the transition are, obviously, Db6b/Ds6s , the ratio of grain boundary

diffusion to surface diffusion, aoa/Ys, the ratio of applied stress to

"nominal" capilary force, and a/I2D, the ratio of cavity radius to

diffusion distance. As these ratios, which we will call normalized

grain boundary diffusion, normalized stress, and normalized cavity

radius increase, the transition from the quasi-equilibrium mode to the

crack-like mode eventually takes place.

A typical value of a lies between 30 and 1 while a' lies between

5 and 0.1. Since kD (see Chapter 5) is a few microns for rapid creep

at 0.55 T and observable cavities also fall into the same range ofm

sizes, it is very common in experiments to observe non-equilibrium

cavities reported as flat disk-like voids in the literature. This

situation is particularly so at lower temperatures (AGb>AGs )

higher stresses (higher a a/ys and lower D ), and in the later stage

of cavitation (larger a).
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In the following, limiting cases of the solutions will be examined

and compared with the predications of some of the more restrictive

models.

6.3.2. Quasi-Equilibrium Cavities

In this case Eqn. (6.7) reduces to Eqn. (6.5). For a/D <a/b we

recover the well-known solution of Eqn. (6.4) of the rigid grain model.

Since diffusion zones of neighboring cavities impinge each other,

creep is insignificant in a slab containing cavities and the entire

grain boundary. The rigid grain model is satisfactory under these con-

ditions.

For al/D>>1,

dv 37 3
dt - a s (6.11)

which corresponds to hole growth by matrix creep.

Of some practical interest is the intermediate range of a/£D which

constitutes the bulk of creep life. Between 0.l<a/RD<1 the solution

can be approximated by

L 2
4rh() = 1da O Z a-- ) 2  

(6.12)
a dt a

or

d (2 5 D2 2
d-t (ra ) = 5 2(6.13)dt h( ) D cc

A relation of this type, exhibiting a linear increase of cavity area

with time, has been frequently reported (67, 70).
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6.3.3. Crack-like Cavities

In this case, the solution is given by Eqn. (6.8). As a>>1 and

a/2D<a/bo, we can compare our solution with the rigid grain model for

a crack-like cavity. Substituting bo for a+2D in the second bracket

on RHS of Eqn. (6.8), we have

da D6 Y2 D b6 3/2 a bo  3/2 b 3/2 b
s s s b) ( b ) (---) [Ln (--) +dt kTb 3 s Yssin(*/2) a a

2 2 3/2
(1 - a( 4 (6.14)

0 0

This form is identical to the result of Chuang et al. (their equation

(73) and (88)) (65) except for a trivial factor (1 - (-) ) 3/2which
0

results from a common error of most authors in this field in implementing

the rigid grain approximation. (For a discussion, see Harris (105)).

In this limit the cavity growth rate varies with the applied stress
3/2

as a

6.4. Discussion

6.4.1. Rupture Time and Rupture Strain

A relation between rupture time and steady state creep rate has

been observed by a number of authors. According to Monkman and

Grant (68) a so-called Monkman-Grant relationship Este t =

constant, holds for many materials. This relationship and several of its

variations all point to a failure strain that lies between 0.05 and

0.5, depending on the material, but is otherwise insensitive to strain

rate. It has been difficult to find how this relationship can be

compatible with any of the models for diffusive growth of cavities
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in the past.

Let F(a/RD) stand for the RHS of Eqns. (6.7)(6.8), then we can

integrate these equations to the following form

tf n(af/ZD)f dt 4 dkn(a/£D) (6.15)
t. an(ai/ P )  F(a/ D )  D

which gives an estimate of the rupture strain. Note that F(a/ZD) can

be read directly from the abSCissa of Fig. 6.3. Since the most important

contribution to the integral will come from the portion of a/£D where

F(a/2D) takes on the lowest values, the rupture strain must be con-

trolled by the lowest F(a/ZD) during growth.

If cavities always grow in the quasi-equilibrium mode, F(a/RD)

is a monotonically decreasing function as shown in Fig. 6.2. Since the

final size of cavities does not vary greatly and is typically 0.25 b ,

a f/ D will move to the right as strain rate increases. Thus crupture

as estimated by Eqn. (6.15) also increases quickly as strain rate

increases. This result of at = constant in the rigid grain approxi-

mation, is inconsistent with the Monkman-Grant relationship. Likewise,

cavities that always grow in the crack-like mode or by plasticity

alone are not acceptable. The difficulty in that case is either an

incorrect stress dependence or a:. unrealistic rupture strain.

In contrast, our model of cavity growth which starts in quasi-

equilibrium and ends in a crack-like mode appears capable of resolving

the difficulty. Typically a/2 D lies between 10-0 .5 and 100.5 which

coincides with the range where F(a/ZD ) has a minimum. Thus neither

F(a/£D) nor the rupture strain should be very sensitive to the strain
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rate or stress. It is also important that this minimum of F(a /ZD) lies

between 102.5 and 101.5 for a typical value of a between 30 and 1, thus

predicting a rupture strain between 0.05 and 0.5 (for an estimate,
af

h(p) = 0.75, Pn(--) = 2.) All of this is consistent with the experi-

ments.

Although this explanation is encouraging, we should point out in

caution that it is not the only explanation for the Monkman-Grant

relationship. It is likely that continuous nucleation would alter the

picture considerably. This point is not pursued further in this chapter.

In the end of this chapter, an example is cited in which cavities

were implanted prior to test. A maximum of rupture strain is found

(103) in agreement with our theory.

6.4.2. Variation of Growth Rate with Orientation

Reconsideration of the model, in the context of grain boundaries

that transmit only normal stress and inclined at an angle # between the

normal of the boundary and the tensile axis provides some insight into

the cavitation process in a polycrystal. Since only normal displace-

ment results from grain boundary diffusion, it might be assumed that

the coupling between creep and diffusion involves only the normal

component of the creep field. We might expect further that ZD in such
coupling = (D /kT)(os 2  * 2 1/3

coupling (ZD = [ (Dbba b /kT)(acos / ccos 2)] ) not to be affected

* 2by #.,while the growth rate 1/a da/dt varies as Ecos 2 (Eqn. (6.7) and

(6.8)). This is what our experimental observation indicates as will

be discussed in Chapter 7.
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6.4.3. Limitation of the Theory

The major limitation of the theoretical model occurs for a/RD >>1.

Since the growth by creep alone, whether the cavity is quasi-equilibrium

or crack-like, is very sensitive to the boundary condition especially if

m (in s = Aom ) becomes large, we should not expect much accuracy for

a/IRD>>l. Fortunately this is not a major problem in applications,

as a/ZD in a realistic case does not exceed 5.

Although the variation of growth rate with orientation was dis-

cussed previously, it is possible that grain boundary sliding of the

inclined boundary can cause some modification of the theory. At the

extreme case when grain boundary sliding is very rapid, cavity growth

by shearing has been observed in 304 stainless steel (Chapter 7).

Lastly, we shall comment on the capillary force at the tip of a

non-equilibrium cavity. To include it in the theory, an extra term

(1 - ocapillary/ ) should multiply the RHS of Eqns. (6.4), (6.5), (6.6).

For non-equilibrium cavities, acapillary varies with the rate of

advancement of the cavity tip, da/dt, namely (65), (73)

kT da--- 1/3
acaplary 2y s sin( dt (crack-like) (6.16)

D S6 2y
y sinss

Scapillary a (quasi-equilibrium) (6.17)

These expressions can be incorporated, along with the modification of

Eqn. (6.6), to derive a full solution corresponding to Eqns. (6.7)

(6.8).
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As noted by Chuang (65), it is rarely, if ever,that a modification

due to capillary force is important since. it requires roughly that

D 6 /D s .~xceeds 200 when a = 20 MPA or 1000 when a = 100 MPA. For

this reason, our omission of this contribution is justified. It is an

easy matter to check however that the modification to our theory does

lead to the same growth rate proportional to a 3 when Db b/D 6 is

much greater than unity, as predicted by Chuang's and Pharr's theory

(65, 102).

6.5. Comparison of Theory of Diffusive Growth of Cavities with
Experiment

It is generally difficult to compare rate equations of cavity

growth in creep with experiments. One of the main reasons for the

difficulty is the uncertainty introduced by continuous nucleation

throughout the test. Two experimental studies in the literature

appeared to :have avoided. this problem. .We shall deal. with each

individually in the following.

(A) Cane and Greenwood on. a-Iron

Cane and Greenwood studied cavitation of aFe at 7000C (58, 101).

Cavities at various stages of creep were observed by means of inter-

granular fracture at low temperature after the creep test. The

measurement of the maximum cavity size provided a rather reliable

guide to the study of cavity growth, for those cavities of maximum

size could be assumed to have nucleated in the beginning of the test.

1.5 0.5
Their results show a. = C.o5 t ' where indices i stand for

1 1

the three major dimensions of a given cavity respectively. The constants

-8 1.5 0.5 x 10-8 m/(MPA) 1.5 0.5
C. are 6.5 x 10 8 m/(MPA) (hr) , 3.5 x 10 m/(MPA) (hr)
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-8 1.5 0.5
and 2.1 x 10 m/(MPA) (hr) 5 . These results can be reduced to the

following which bears the same form of Eqn. (5.12),

1 hi(pi ) dai chi.(4 ) kT 2/3 2

a. dt 1/3 D-•b S a
E 1 2A ib

where A is the coefficient in the creep law s = 1.77 x 10 (-) sec
MPA

which was obtained by their results. Finally, coefficient in the above

representation is estimated by Substituting materials constants with

appropriate values , to give

hi.(4) da D 2
1 1 1i + 0.66 D

= 55 x 10- (a. dt a.

where the geometric mean of C. was used for estimation. Hence the
1

observed growth rate, interpreted in terms of growth of quasi-

equilibrium cavities, is 104/3 to 102/3 time faster than predicted by

the theory. Although the stress and time dependence are exactly the

same as predicted.

(B) Goods and Nix on Silver with Implanted Water Bubbles

Goods and Nix used silver with prior implanted water bubbles in

their study of cavity growth (103). Rupture time and rupture strain

were recorded for each test at several temperatures between 2000 C and

(65,104,106,107 ,108)
-21 +1 3 -6 3

Db6b = 10 -21 m /sec , h(4) = 0.75 (65), 0 = 7.1 x 10 m /mole

RT = 6.02 x 1023 x KT = 8.1 x 10-3MPA/mole
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and 550 0C and a correlation t -3.7 exp (85.5/RT KJ/mole) was
r

reported. These results were discussed by their authors in terms of

surface diffusion controlled growth using Chuang's model (65) in the

limit of D 6s/Db b<<l1 a condition which obviously was not satisfied

in all testing conditions (104).

To apply our theory to this study, we find it convenient to express

the average growth <4rh(i)/ea da/dt> in terms of failure strain. This

procedure is appropriate since, for such short testing time as was

employed in this study, a f/ai = 1.40 . For <e>, we use e /t , for the

steady rate in creep were not reached in these experiments. (r /t is
r r

several orders of magnitude higher than the steady state creep rate.)

Since <4rh(4)/Ea da/dt> = 4Wh(M)2n(af/a.)/E:, we can plot

47h(~)kn(af/ai)/Er vs. ai/kD in Fig. 6.5. The two branches which bracket

these results were from the theory, Eqn. (5.8), with a chosen as shown.

The value for a is reasonable for the experimental conditions.

To obtain this estimation, we used af = b /4 = 1.1 pm and a. =

0.785 pm. The values of these quantities were first reported by Goods

and Nix (103) but were later corrected by Pharr and Nix (102) from which

these values were drawn. In addition, Db6 b = 6.0 x 1015 + 1/2 exp

(- 90.3/RT KJ/mole) m 3/sec, (65, 104,109,110); 1 = 10.3 x 10- 6 m 3/mole,
R3- 4  3/RT = i.5 x 104 x T(K) MPA m /mole, h(4) = 0.61 (65), ys = 1.14 J/m2

(65).

**D for silver is not known for certainty, we found

D = 2.5x10 -6 exp (- 84.5/RT KJ/mole) m 2/sec (102,103,111)

D = 4 .5xlO- 6 exp (- 49.1/RT KJ/mole) m 2/sec (65)

and D = 1. 4 xlO- 6 exp (- 67.4/RT KJ/mole) m 2/sec (104).
S
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It is interesting to note that under the condition of fixed

number of cavities, the rupture strain. has a maximum, rather than a

minimum, as stress is increased. This is in qualitative agreement with

our theory.
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CHAPTER 7

EXPERIMENTAL STUDIES OF INTERGRANULAR CAVITATION IN
304 STAINLESS STEEL

7.1. Introduction

Intergranular cavitation in creep has been thoroughly analyzed

from the theoretical point of views in the preceding chapters. The

assessment of the analysis should be made through extensive experimental

studies. Despite much effort and continuing interest in this field over

the past years, many fundamental questions regarding the dominant mode

of cavity nucleation and growth remain mostly unanswered (34). This

situation stems not only from the complicated nature of the kinetics of

cavitation, in which both nucleation and growth are generally time

dependent, but also from the difficulty in obtaining unambiguous measure-

ments of the cavitation process. Moreover, creep deformation is highly

inhomogeneous in nature and particularly so near the grain boundary,

while cavitation is inevitably related to deformation of such nature.

The lack of diffusion data, or the uncertainty in those available,further

discourages attempts of making quantitative comparisons between theories

and experiments.

Recently, a fractographic technique (101, 49, 62) was developed to

facilitate direct observations of intergranular cavities at all stages

of deformation. Another technique of superficial observation of inter-

granular cavities on sectioned or polished surface, in which etching

is avoided, has been developed in this study. Experiments using these

techniques are described in this chapter and their results are evaluated

in the light of the analysis presented in the preceding chapters.
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7.2. Materials and Testing

7.2.1. Materials

Two batches, I and II, of commercial 304 stainless steel were used

in this study. Batch I originally came in the form of hot rolled

annealed bars of 63.5 mm x 19.6 mm and was previously crept in bending

at 7500 C for 24 hours.by Gertner (112). The grain size was determined

by conventional techniques to be 0.1 mm. Six charpy bars, numbered

cpl-cp6, were machined from this material with notches cut perpendicular

to the principal strain direction in prior bending. The location of

these specimens in relation to the pre-bending is shown in Fig. 7.1.

The initial creep strain was determined from measurements of deformed

circles engraved on the side surfaces of the bar prior to bending. The

results are shown in Fig. 7.1.

Batch II came in the form of 7.9 mm dia. rods. This material was

re-annealed at 10500 C for 0.5 hour followed by water quenching. Hour

glass specimens, of 2.54 mm gauge dia. and 3.59 mm shoulder dia. with

a 32.8 mm profile contour radius were machined from this material.

Tensile bars of 16.5 mm gauge length and 3.59 mm dia. were also machined

from the same batch.

In order to stabilize the distribution of carbides in the grain

boundaries, some specimens were aged at 775*C for 40 hours. The grain

size of material treated in this way was determined to be 40 pm. The

distribution of carbides size (p), the ratio of coverage (fL along

grain boundaries, and the volume fraction (vf) are given in Fig. 7.2.
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The carbide size p was measured by scanning electron microscopy on a

polished section of the aged material which was "shock-etched" electro-

lytically in 10% H20 solution of oxalic acid at room temperature. The

volume fraction of carbides inferred from.this measurement comparesiwell

with a theoretical estimate for that of M23C 6 carbides in steels of

0.05% tarbon content.

The size distribution of carbides showsa second peak at a size

substantially larger than the more pronounced first peak. This second

peak is associated with carbides which grow preferentially at inter-

section of grain boundaries or twin boundaries. It was also found that

statistically significant variation of sizes exists among grain bound-

aries. In general, no simple description based on a single morphology

seems appropriate .for grain boundary carbides. Detailed study of this

subject by Wilson et al. found a variety of carbides shaped as

dendritic rods, lace-like sheets, or coarsened spheroids among others

which all coexist in the same material (113, 114, 115, 116). These

morphologies were also observed in the present study.

7.2.2. Testing

Specimens were loaded uniaxially in tension in vacuum in a special

creep apparatus shown in Fig. 7.3. It consists of a lever loading set-

up which maintains fixed lines of actions tangential to twoconcentric

circular pieces at two ends of the lever respectively. This feature

is important to the accurate alignment of the specimen as well as to

the implementation of a constant stress device attached to the loading

pan. This device was made of a spring, whose spring constant was
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Fig. 7.3 Creep apparatus with a constant stress atta h
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adjusted by varying its length. The spring'. relaxes as the specimen

elongates in the right amount to keep the stress constant. The device

is capable of maintaining a constant stress within 1% up to 10% true

strain and was used for cavity growth experiments. The specimen was

engaged to a set of slotted grips into which the specimens were in-

serted, to be loaded at their rectangular shoulders. The vacuum during

-6
the test w&s better than 5 x 10-6 torr. Indeed, after an initial

-7
heating and pump out period, the vacuum was typically 5 x 10-7 torr.

Strains were measured by several methods. The total elongation

between pull rods was measured using a cathetometer located outside

the chamber. The measurement was compared with actual elongation of the

gauge section measured optically during and after the test for calibra-

tion. Diametric contraction was also monitored optically during the

test and calibrated by measurement after the test. Accurate and direct

measurement however was hindered by the low magnificationoi the telescope

due to the long working distance between the objective and the specimen

surface.

7.2.3. Observation of Cavities

A. Two-Stage Creep Technique

Since etching is known to round off cavities and to attack carbides

preferentially, a new technique was developed for this study which

avoids etching completely. After each test, a layer of about 50 pm

thickness was removed from surface by polishing using SiC paper and

diamond paste. Subsequently the polished specimen was subject to a

short additional increment of creep under identical conditions of the
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previous test. Without exception the re-creep strain increment was less

than 10% of the prior creep strain. This procedure produced a small

increment of grain boundary sliding that delineated grain boundaries

and revealed intergranular cavities on a generally smooth surface.

Using the technique, it was possible to detect cavities as small as

0.2 pm, as is shown in Fig. 7.4. It is to be emphasized here that

cavities detected by this technique were used only for number counts,

and no importance was associated to their size and shape.

B. Cryogenic Fracture Technique

Charpy bars from batch I and tensile specimens from batch II, having

been held for more than 24 hours at temperature between 6000 C and 775 0C

in aging or creep, fractured intergranularly at 770 C under impact (117).

Cavities as small as 0.5 im dia. were readily identified by this tech-

nique. In addition, examination of the mating pieces provided a powerful

tool to study fine features of cavities and to ascertain that no holes

accidentally introduced at particle-matrix interfaces in the inter-

granular cracking after the creep experiment was over were mistaken for

creep cavities.

Considerable details of grain boundary structures were seen on

these fracture surfaces. Significant variation of these appearances

exists among grain boundaries. Energy-Dispersive-X-ray Fluorescence

technique failed to identify unambiguously these structures as carbides,

It is possible that some of the separations between particles
and matrix were indeed nucleated by very small creep cavities beyond
our resolution.
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Fig. 7.4Cavities on inclined sliding boundaries,
Vertical direction is the tension direction.
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presumably owing to the inadequate resolution and a nearly complete

carbide coverage on grain boundaries anyway (118). The presence of such

structures, typically of a wavelength of 0.3 pm or smaller, also hinders

direct identification of small cavities below this size.

7.3. Results of Quantitative Studies

7.3.1. Number Densities of Cavities Measured by the two Stage Creep
Technique

Results of experiments (No. 13-18) on number densities of cavities

are summarized in Figs. 7.5-12. These results are from experiments

conducted under constant load at 6000 C and 7000 C using hour-glass

specimen made of aged and annealed 304 stainless steel in batch II.

Major features about cavity numbers in creep can be stated as follows:

(A) Number densities of cavities increase, roughly linearly with

creep time in the annealed material, while a slightly downward curvature

in association with the rising curve in the aged material (Figs. 7.5,

7.7, 7.9). The magnitude of number densities of cavities in both

materials are comparable at any given stress and time, although creep

is much faster in the aged material.

(B) The dependence of the number density of cavities on the applied

stress (Figs. 7.6, 7.8, 7.10) is far too weak to be characteristic of

that of the threshold stress, Z= exp (-4X F /kT a 2), predicted by the
n

classical nucleation theory (53, 97, 98).

(c) Number densities of cavities were generally enhanced on grain

boundaries oriented . normal to the applied stress (Figs. 7.11-12).

Indeed in aged material, the correlation between the normal component

of the applied stress on the inclined boundary and the number of cavities
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appears to be very satisfactory.

7.3.2. Growth Kinetics Measured by the Cryogenic Fracture Technique

Growth kinetics measured by the cryogenic fracture technique from

experiment (34-37) is summarized in Figs. 7.13-18. These results are

from experiments conducted under constant stress (63.1 MPA) at 7000 C

using aged 304 stainless steel in batch II. The creep curve, together

with the strain and creep duration for each specimen is plotted in

Fig. 7.13. Major features about cavity growth can be stated as follows:

(A) The distributions of cavity sizes, similar throughout the

creep life, is skewed toward small size cavities and has a long tail on

the side of larger sizes as shown in Fig. 7.14. The peak gradually

shifts toward larger sizes as creep strain increases. However, a

significant increase of numbers of cavities of smaller sizes at a later

stage shifts the peak backward.

(B) There are substantial variations of cavity size distribution

among different grain boundaries. For example, Fig. 7.15 shows the

distributions of cavities on three grain boundaries. Each of the

three distributions is distinctly different from the overall distribution.

Such variation and the diffuse distribution of cavities of larger sizes

makes it difficult to associate the maximum cavity size with those

cavities that nucleated at the very early stage as was done by Cane (101).

(C) Number densities, for each size group and as a whole, increase

as creep time increases (Fig. 7.16).

(D) Accumulated damage, represented by the total cavitated area

fraction on the grain boundary, given by FA = T/4 E N idi2, increasesA 1 Ai i
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STABILIZED 304 (7750 C/40hr) TESTED AT 63 MPA
AT 7000C IN VACUUM
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Fig. 7.15 - Overall size distribution of cavities over many

GB versus size distribution of cavities on individual GB
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Fig. 7.16 - Variation of cavity concentration with cavity

diameter and creep time
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as is shown in Fig. 7.17. It is interesting to note that while FA

increases linearly with strain (Fig. 7.18), it has a downward curvature

in the variation with creep time. The latter feature is also noted in

the results previously described (Figs. 7.5, 7.7)

7.4. Cavity Morphology and Distribution

In general, cavities revealed by the cryogenic fracture technique

displayed the circular-disk like morphology in all specimens except

at very high stresses as shown in Figs. 7.19-22:. Frequently cavities

were decorated with a thin film of carbide along the revealed interface

which extended from the edge into the enclosed open space as shown in

Fig. 7.20. In some cavities, crystallographic profiles with well-

defined facets could be seen as in region A in Fig. 7.21 while for others

the disk shaped profiles with shallow depth as in region B in Fig. 7.21

were entirely representative. Cavities were distributed heterogeneously

throughout the grain boundaries as a typical region in Figs. 7.19, 7.21

indicates. Both the observed number and size of cavities were generally

enhanced in the region of grain corners, where extensive cavity

clustering and coalescence were frequently found as shown in region C

of Fig. 7.21.

In general, cavities observed by the two stage creep technique are
more numerous in number but much smaller in size. Presumably this is
due to the inability to identify small cavities by the cryogenic
fracture technique. It is also possible that cavities of shallow,
irregular shape, which are frequently decorated with carbides or matrix
debris, may appear to be several smaller cavities on the sectioned
surface.
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A comparison of number of cavities on grain boundaries of 900 and

450 inclination in relation to the applied stress direction was made

for a specimen (Cp3) from batch I at 4% strain. The ratio of the

number of cavities is roughly 2 in favor of the boundaries oriented

normal to the applied stress.

Various stages of cavity coalescence were observed as is shown in

Fig. 7.22. Neighboring cavities, frequently clustering, become impinge

on each other and emerge as a sizable single cavity, or rather a micro-

crack. A smoothed surface at the bottom of the cavity was frequently

seen in such case indicating considerable surface smoothing that has

occurred in time. Occasionally a dendritic structure was "deposited" on

the sequence. It appears clear that all microcracks at grain corners

were formed via coalescence of many smaller cavities. Indeed, this

sequenceof events was also observed on the surface of the specimen using

the two stage creep technique and is shown in Fig. 7.23. There the

coalescence of small cavities gave rise to a "wedge crack" at the triple

point.

By far the most triking feature of cavitation in this material is

its drastic variation with minor perturbations of the grain boundary

structure. Intersection of twins with grain boundaries produces

dramatic enhancement or suppression of cavitation depending on orientation

and boundary structure as shown in Fig. 7.24. This was observed in every

specimen tested. It was also noted that significant variation of

cavitation also exists among different grain boundaries. It seems

reasonable to suspect that all these variations have the same origin
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Fig. 23 Development of a wedge crack by the linkage of
davities.
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which is likely related to the misorientation between the grains which

prescribed the specific boundary structure.

At high stresses and fast creep rates, another interesting feature

of cavities was observed. It was found that a considerable number of

cavities in the material tested at 128 MPA (#32) at 7000C displayed

elongated profiles as shown in the paired cryogenic fracture surfaces

of Fig. 7.25. Moreover the elongation of cavities on a grain boundary

appeared well aligned and well correlated. Closer examination of the

two mating pieces of the fractured specimen revealed that some cavities

were made of two halves which apparently were sheared apart by grain

boundary sliding as those labelled as A in Fig. 7.25. The transition

from the circular disk shape to the elongated disk shape took place

at a stress somewhat below 128 MPA, since the elongated profile was not

observed in a test at 90 MPA (#33).

7.5. Discussion

7.5.1. Nucleation of Cavities

The very weak dependence of number densities of cavities on the

applied stress is not compatible with any nucleation model based on the

classical nucleation theory (53, 97, 98) outlined in a previous chapter.

This, however, should not be a great cause for concern since cavities

of the size of 0.2 pm and larger are well past the stage of nucleation.

Typically a critical size nucleus is of the order of 50 A or smaller

and is nearly two orders of magnitude below the resolution of our two

stage creep technique as well as that of any other currently available

technique used in this field. An inevitable conclusion is then that
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growth has already played a major role affecting the cavity size and

distribution in our measurements. Indeed the excellent correlation

between the number densities of cavities and the normal component of

the applied stress across boundaries lends further support to this

interpretation. We recall that both the classical theory of Hull and

Rimmer (63) and our general theory of cavity growth predict such a

correlation.

Nevertheless the sensitive dependence of cavitation on grain

boundary structures could be taken as evidence that nucleation has a

profound influence on later cavitation. As noted earlier, the hetero-

geneous and selective cavitation on certain portions of boundaries is

likely related to the misorientation of the two grains bordered by the

grain boundary in question. The misorientation can be altered by a

twin which intersects the grain boundary. Although many physical

properties are dependent on the misorientation, the most critical one

for which a drastic difference in cavitation can be caused by a small

change of the magnitude of the property is the interfacial energy

X(Zeexp - 4X3/h 2kT)). It is possible that variation of interfacial

energy, in addition to the extreme cases such as the ones caused by twin

intersections, is very common and widespread throughout grain boundaries.

A broad spectrum would then be possible for X3 which would correspond

to a gradual dependence of number of cavities on stress.

It was also pointed out earlier that substantial interfacial

stresses only exist during intermediate transients in which relaxation

along grain boundary is complete while that around inclusions is not

yet accomplished. It is possible that similar events can recur in the
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course of the later history of the sample even at the steady state which

after all for polycrystals can be defined only in a macroscopic sense

and involves repeated acceleration and deceleration of boundary sliding.

Such behavior could explain the phenomenon of continuous nucleation and

furnishes an additional possibility for the observed weak dependence of

nucleation rates on applied stress.

In summary, cavities observed in this study or in most others are

well past the nucleation stage. Their distribution in relation to the

applied stress reflects more strongly the effect of the features of

cavity growth rather than that of nucleation. On the other hand,

cavitation is influenced by the interfacial energy which affects

nucleation drastically by prescribing the presence or absence of sites

for particles that are responsible for the cavities. In general, a broad

spectrum of nucleation barrier seems plausible, although the activation

of even the preferable nucleation site is only possible during transients

of grain boundary sliding. Recurrence of these transients even at a

macroscopically steady state can be responsible for continuous increase

of number of cavities during creep.

7.5.2. Growth of Cavities

Diffusion distance kD and coupling coefficient a have been shown

to be important parameters in the characterization of cavity growth.

Choosing the constants as in the footnote, we find k to be 5.5 pm
D

at 63 MPA and 1.5 pm at 128 MPA, while a to be 26 and. 19 res-

-21 3 -20 3Db6 b = 10 m 3/sec (104), Ds 6s = 10 m /sec (99, 104), P =1.37 (65),

2 -6 3 -7 -1
Ys= 2.5 J/m (65), Q = 7.0 x 10 m /mole, dG = 40 um, s.s=3.2 x 10 sec

-6 -1 -5 -1at 63MPA, 4.1 x 10 sec at 90 MPA, and 3.5 x 10 sec at 128 MPA.
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pectively. The transition from the quasi-equilibrium mode to the crack-

like growth mode should occur at a = 0.54 vim at 63 MPA and a = 0.22 Im

at 128 MPA. This is consistent with the morphology of cavities at 63

MPA where they are either disc-like or slightly faceted. The growth

-5 -1
rate predicted by the theory, 4 x 10 sec at 63 MPA is also consistent

with the observed growth rate, although a detailed comparison is not

possible due to the distribution of cavity sizes.

The interesting feature of cavities grown by grain boundary

sliding is also examined. It can be shown that the diffusion time for

a cavity of diameter d sheared apart by sliding to recover the equili-

brium shape is

kT d
s D s sos (2 ) 4

using simple analysis such as that given by Rice (65) and Harris (45).

Thus the additional growth due to grain boundary sliding and sintering

is, at a sliding rate UGB,

6d d
(-d) =u u)6t S = uGB Ts

GBS s

Since uGB can be estimated from creep rate and grain size (35), namely,

UGB = aGB EGB dG' where aGB is roughly 0.3, we find, for d 
= 5 pm

d -10--= 2.8 x 10 m/sec and
s

* -10
UGB = 4.2 x 10 m/sec at 128 MPA

-11
= 4.9 x 10 m/sec at 90 MPA

-12= 3.8 x 10 m/sec at 63 MPA respectively.
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These values are in good agreement with the observation that only at

128 MPA cavity growth was affected by grain boundary sliding. Note that

for smaller sized cavities, recovery due to surface diffusion will

suppress any shearing caused by grain boundary sliding and the growth

rate should be governed by the two limiting modes discussed earlier.

In summary, cavity growth in most circumstances in this study is

controlled by grain boundary diffusion which is coupled to surface

diffusion and power law creep in the way described in the preceding

chapter. At 63 MPA, most cavities looked like amorphous disks and

with facets occasionally. They had just past the transition from the

quasi-equilibrium mode and were more characteristic of the crack-like

mode . At very high stress and creep rate (128 MPA and 3.5 x 10-5 sec

shearing caused by grain boundary sliding becomes the fastest mode of

growth. The transition can be satisfactorily explained by the competition

between surface diffusion and grain boundary sliding spreading out the

cavities.
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CHAPTER 8

CONCLUSIONS

A micromechanical analysis of deformation and fracture in creeping

alloys is presented based on a mechanistic approach utilizing continuum

mechanics. It is shown that the effect of small volume fractions of

included equiaxed phases with large deformation resistance in a creeping

matrix will produce only a very modest rise in overall creep resistance

provided the alloys have coarse microstructure. Thus the relatively

large creep exponents in microcomposite alloys having superior creep

resistance in comparison with the constituent pure matrix phases, is

only attributable to the deformation restraint due to non-local processes

initiated by the less deformable phases where dislocation-obstacle

interactions play an essential role. In spite of this, analysis of

interfacial stress on grain boundary particles under certain conditions

can still -rely on continuum mechanics provided diffusional flow is

incorporated in the formulation. Such continuum approaches are useful

as a smoothed-out representation of statistical "dislocation flow"

processes around particles which otherwise become intractable. Further-

more, the important presence of diffusional flow that can occur in atomic

size volume elements serves to justify further the use of continuum

field approaches around particles on sliding grain boundaries. These

local mechanistic approaches based on continuum mechanics lead us to

conclude that along interfaces of relatively large particles on sliding

grain boundaries high interfacial stresses that are instrumental in

cavity nucleation can occur only in transients of grain boundary

sliding. Such transients can take place even under conditions of
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macroscopic steady state which, as is well known, involves random

accelerations and decelerations of boundary sliding that must be related

to microstructural evolution and spurts of grain boundary migration.

In Chapters 5 and 6, we introduce general concepts, such as charac-

teristic diffusion time and characteristic diffusion distance which

serve as important scaling parameters in visco-diffusive deformation of

materials. A simple theoretical approach based on dimensional analysis

to the general problem of cavity growth where surface diffusion, grain

boundary diffusion and power-law creep are coupled together was developed.

This analysis embraces most of the features of previous successful models

in the field and makes it possible to furnish a satisfactory account of

the process of microscopical damage production.

An experimental study of creep cavitation in 304 stainless steel

at around 0.5 T was conducted to test the theoretical models. Cavitiesm

were found to nucleate heterogeneously throughout the creep history.

Comparison of these observations with a proper rendering of the classical

nucleation theory, developed specifically for cavity nucleation at

stressed interfaces, suggests that a broad spectrum of interfacial

energy may exist, and that microstructural changes during the creep

process can alter cavitation drastically. In particular, it was found

that some portions of boundaries, where twins impinged on grain

boundaries, are sufficiently different from their surroundings to

suggest that changes in the. microstructure result. from changes

in misorientation between bordering grains and that this can be a key

factor in the consideration of cavity nucleation. Cavities grow in

most cases by coupled diffusion and matrix creep, somewhat restricted
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by surface diffusion across the cavity which becomes increasingly

important at an intermediate stage of growth. Experiments demonstrate,

however, that grain boundary sliding can be a dominant mode of cavity

growth at high stresses and for large cavities. This last mechanism

may play a more important role near the tip of a macroscopic crack and

possibly in non-steady loading.
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