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Abstract

In modern global supply chains, goods travel stochastically from suppliers to their final des-
tinations through several intermediate installations such as ports and distribution facilities.
In such an environment, the supply chain must be agile to respond quickly to demand spikes.
One way to achieve this objective is by expediting outstanding orders from the intermediate
installations through premium delivery. In this research, we study the optimal expediting
and regular ordering policies of a serial supply chain with a radio frequency identification
deployment at each installation. Radio frequency identification technology allows capturing
the state of the system, i.e., the time and location of goods, at any point in time, and thus
enables to expedite outstanding orders directly to the destination, which faces stochastic
demand.

We identify systems, called sequential, that yield simple and tractable optimal policies.
For sequential systems, outstanding orders including expediting do not cross in time. For
such systems, we find that the optimal policies of expediting and regular ordering are the
base stock type policies. The directional sensitivity of the base stock levels with respect
to expediting costs is also obtained. We provide an important managerial insight on the
radio frequency identification technology: we need to actively use the additional information
from the radio frequency identification technology through new business processes such as
expediting to unveil more benefits from the supply chain. On the other hand, orders may
cross in time for systems that are not sequential, thus in such a case optimal policies are
hard to obtain. We propose a heuristic for such systems and discuss its performance and
limitation. Lastly, as an extension to the model, we study the optimal policies of expediting
and regular ordering when there is an expiry date on outstanding orders. The optimal
expediting policy identifies a number of base stock levels depending on the age of the
orders, but the structure of the optimal policy remains simple for sequential systems.

Thesis Supervisor: David Simchi-Levi
Title: Professor, Department of Civil and Environmental Engineering and the Engineering
Systems Division

Thesis Supervisor: Sanjay Sarma
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

Recent globalization has brought increased complexity in supply chains. With facilities

in supply chains spread throughout the globe, lead times are growing and becoming more

volatile. Fierce competition among global supply chains is observed. According to Lee

(2004), an important challenge for competitive advantage is to build agile, adaptable, and

aligned supply chains. Agility, adaptability, and alignment of supply chains mean the fol-

lowing:

* Agility: ability to respond quickly to short-term changes in demand or supply

* Adaptability: ability to adjust supply chain design to accommodate medium or long-

term market changes

* Alignment: ability to establish incentives for supply chain partners to improve per-

formance of the entire chain

Among these, our focus is mainly on the issue of improving the agility of today's supply

chains. Agility can be improved by promoting the flow of information between suppliers

and customers and developing collaborative relationships with suppliers. For instance,

if suppliers provide more information on shipments along with more delivery options for

different rates, then the agility of supply chains can be improved. In this research, we try to

improve the agility of a supply chain through expediting outstanding orders based on extra

information about goods in transit from the supplier. Rather than just waiting for regular



orders to be delivered, a firm may expedite partial or complete orders in transit through

premium delivery, such as by air, with extra cost, to improve agility.

To see potential benefits, let us consider an inventory system that faces stochastic lead

time and demand. Usually, the optimal operation of an inventory system can be achieved

through balancing holding and backlogging costs under certain expectations on lead time

and demand. If the realized demand is higher than expected, a backlogging cost is incurred.

On the other hand, if the demand is lower than expected, a holding cost occurs. The

same case happens with stochastic lead time: if the lead time is shorter than expected, a

backlogging cost is incurred, and otherwise, a holding cost occurs. Figure 1-1 summarizes

9 possible scenarios due to these uncertainties. Improved agility through expediting can

Backlogging cost High backlogging cost

Holding cost OK Backlogging cost

High holding cost Holding cost OK

Figure 1-1: Possible scenarios of uncertainties

directly reduce the backlogging cost due either to high demand, short lead time, or both.

If demand spikes, we may expedite outstanding orders to meet the excessive demand to

reduce the undesirable backlogging cost. Also, we may shorten the undesirably prolonged

lead time of certain orders through expediting. Not only the backlogging cost, but also

the holding cost, can be reduced by improved agility through expediting, since the supply

chain with expediting does not require as much safety stock as the one without expediting

options. Reduced safety stock generally lowers the holding cost. Therefore, the improved

agility through expediting certainly reduces unexpected costs, both holding and backlogging

costs of the supply chain.

However, the practice of expediting incurs expediting costs. Therefore, in order to

minimize the total supply chain costs, which include the expediting costs, one has to know

how to use the expediting options wisely. In this research, we study how to optimally exploit

expediting to increase agility, which is our central focus. More specifically, we address the



questions of what the optimal expediting policy is, whether the policy is practical, and what

the corresponding optimal regular ordering policy is. Additionally, we discuss the questions

of what the effects of expediting costs on the optimal policy are, what information systems

we need to support expediting, and how we can extend the model to accommodate more

real-world situations. We answer all these questions in the following chapters.

Simple but Nontrivial Illustration1

Suppose that a company in South Korea makes a high-value product such as LCD panels.

As the leading supplier, it supplies its panels to multiple TV and computer monitor man-

ufacturers spread throughout the US. It operates a distribution center in Long Beach, CA,

for operational efficiency. Because of the weight and volume of LCD panels, it usually uses

ocean shipping rather than air to transport LCD panels to the distribution center, and then

it uses ground transportation to each of the manufacturers. The lead time is stochastic,

between 2 and 6 weeks. While there are several manufacturers, our focus is on the manu-

facturer labeled M-1. To increase agility, M-1 utilizes expediting. M-1 may expedite LCD

panels from the supplier in South Korea by air to M-1, or from the distribution center in

Long Beach by air to M-1. See Figure 1-2.

Figure 1-2: An illustration with a two-installation supplier and manufacturing facilities

In this thesis, we discuss more general models than the one just illustrated. However,

it is important to remark that, even though it looks simple, this illustration contains all

the complex features of much more general models, which may have multiple installations

spread all over the world.

1 This illustration is not a real business case.



1.2 Stochastic Inventory Theory: Review

In this section, we give a brief review of stochastic inventory theory. For a broader review,

we refer to Simchi-Levi et al. (2004) and Porteus (2002).

Basic inventory model

As the simplest multi-period case, consider a periodic-review, single-item inventory problem.

The planning horizon is T time periods. This inventory faces stochastic demand, and the

demand distribution is known and independent for each time period. There is a single

supplier of the inventory with the procurement cost of c per unit, and the order lead time

is instantaneous compared with the time period. Excessive demand is backlogged at cost

b per unit per time period and fulfilled in the following time periods. On the other hand,

excessive inventory incurs the holding cost of h per unit per time period.

Let us denote the demand by D and the inventory on hand by v. The inventory manager

places an order of amount u at the beginning of a time period, which is the decision variable

for that time period. At time period T + 1, the inventory on hand can be returned to the

supplier at the per unit cost of c. For simplicity, we do not discount future costs, and do

not consider any fixed ordering costs. For convenience, let us define L(x) = E[b. (x- D)- +

h - (x - D)+], where (x)+ = max{x, 0} and (x)- = min{x, 0}.

Let us denote by Jt(v) the cost-to-go at time period t with on-hand inventory v. The

dynamic programming optimality equation reads

Jt(v) = min{cu + L(u + v) + E[Jt+i (u + v - D)]},
u>0

where JT+l (v) = -cv. It is common to introduce y = u + v. Then we have

Jt(v) = min{cy + L(y) + E[Jt+l (y - D)]} - cv,y>v

where JT+I (v) = -cv. Let us first examine JT(v). We have

JT(v) = min{cy + L(y) + E[-cy + cD]} - cv = min{L(y)} + c(E[D] - v).

Note that L(-) is a convex function since convexity is preserved under expectation. We



can find a quantity y* that minimizes L(y), or yý = argmin{L(y)}. The optimal ordering

policy at time period T is to order y - v if v _ yý, and otherwise order nothing. This policy

is called the base stock policy, and yý is the base stock level of time period T with respect to

v. Cost-to-go Jt(v) has a special structure. It is the sum of L(yý) - cv and a monotonically

nondecreasing convex function g(v), where g(v) = 0 for v < yý and g(v) = L(v) - L(yý)

for v > yý.

Now, assume J+l (v) is convex for a fixed t such that t +1 T. By the same reasoning,

cy + L(y) + E[Jt+l (y - D)] is convex and has at least one finite minimizer. Let us denote

the minimizer by yt*, or yt = argminy{cy + L(y) + E[Jt+i(y - D)]}. Then the optimal

policy is again the base stock policy with the base stock level yt. Finally, Jt(v) is again

a convex function under the base stock policy. By the inductive argument, we conclude

that the base stock policy with the base stock level yt for time period t is optimal for this

inventory problem.

Finite lead time inventory model

In certain cases, lead time cannot be considered instantaneous compared to the review pe-

riod. In such cases, we consider an inventory with a finite lead time of multiple time periods.

Lead time can be either deterministic or stochastic, and here we review the deterministic

lead time case. Since the lead time is longer than a review period, we have to keep track of

multiple order amounts that are placed within the lead time. Let us denote by v0 the on-

hand inventory and by vi the outstanding order amount that has i time periods remaining

until delivery. Let L be the lead time. Then the state variables are (vo, v, ... , VL-1). The

optimality equation reads

Jt(vo, v1, ,VL-1) = min{cu + L(vo) + E[Jt+l(vo + vi - D, v2,. * ,VL-1, U)}
u>O

where JT+l (vo, vi, .. . , VL-1) = -c(vo + vi .+ VL-1). We again use the transformation of

the optimality equation using y = u +vo + Vl +-. . + VL-1. Let xL- 1 = VO + vl+- - -.. + VL-1 be

the inventory position. The transformed optimality equation only depends on the inventory

position rather than on (vo, vi,. • , VL-1) in determining the optimal ordering quantity. The

optimal ordering policy is the base stock policy with respect to the inventory position.



Multi-echelon inventory model

The multi-echelon inventory problem is introduced in Clark and Scarf (1960). It has a

series of installations, where an installation supplies the next one, and exogenous demand

is realized at one end of the chain. Let us denote by Ij the jth installation, 0 < j < K,

where 10 faces exogenous demand, IK has infinite amount of inventory, and Ij places orders

to Ij+l. The lead time between two consecutive installations can be either zero or finite

time periods. Let the lead time be L time periods.

The notion of an echelon is important. An echelon is a certain subsystem of the entire

supply chain. More specifically, by echelon i we mean the subsystem from I0 to Ii. Therefore,

echelon 0 is just I0, echelon L is the whole system, and thus there are a total of L+1 echelons.

Echelon stock is the sum of all stock in the corresponding echelon plus outstanding orders

that are supposed to be delivered within L time periods to the echelon. Let us denote the

echelon-i stock by xi.Inventory position, which is defined above, is simply echelon-(L - 1)

stock.

The optimal policy of a multi-echelon inventory system is the base stock policy adapted

to the multi-echelon setting. Consider echelon i. Echelon i receives stock from Ii+1 up to

the availability in Ii+l. The optimal policy for ordering from Ii+1 for echelon i is the base

stock policy with respect to echelon-i stock x', but the ordering amount is limited by the

current inventory level at Ii+l. From echelon 0 to echelon L - 1, orders are made based on

the base stock policies, with different base stock levels for each echelon at each time period.

Finite shelf life inventory model

Nahmias (1975) and Fries (1975) studied a periodic review, zero lead time inventory problem

with deterministic shelf life. Here we briefly introduce the approach of Nahmias (1975). Let

us denote by xi the amount of product on hand that will perish exactly i periods into the

future. The state of the system can be represented as x = (Xm-1, Xm-2,"" ,X 1 ). For con-

venience, let us define x(i) = (xi, x_,- ,xi), i.e., x(m - 1) = x, and wi = Ej= xj. The

inventory position is x = wm-1. Demand density f is known and independent for each time

period. Decision variable y is the fresh order placed at the beginning of the current period,

which arrives instantaneously. The next time period state (smi-1 [y, x, D],-... , sl [y, x, D]),

where D is the demand in the current period, is given as



* si[y,x,D] = (xi+l - (D - wi)+)+ for 1 < i < m- 2,

* Sm-1[y,x,D] = y - (t - Wm-l) + (backlogging).

Demand Aj,n [x(j)] over j periods is the total demand over periods n, n + 1, n + 2,.., n +

j - 1 that cannot be met by allocations of supply, which would have been outdated by the

beginning of period n + j. Formally we have

* Aj,n[x(1)] = (Dn - Xl) + ,

* A2 ,n[x(2)] = (Dn+1 + (Dn - x1 )+ - x2) + = (Dn+l1 + AI,n•[(1)]- X22) +

* Am-i,n[x(m - 1)] = (Dn+m-2 + Am-2,n[x(m - 2)] - Xm-l)+.

Quantity y- Am-l,n[x(m- 1)] is the total amount of the fresh order on hand at the

start of period m + n - 1. The amount of the fresh order that perishes is R*,n = (y -

Dm+n-1- Am-,n[x(m-1)])+. To get the distribution of Rm,n, Nahmias (1975) first defines

Gj, [x(j)] = Prob(Dj+n_ + Aj-l,n(x(j - 1)) _ xj), which is the probability that there will

be outdating at the end of period n + j - 1. Then, Nahmias (1975) shows that

Gy,n[x(j)] = Gj-l,n[v + Xj-1, x(j - 2)]f(xj - v)dv,

where Gi(t) = F(xi). From the definition of Gm,n, it follows that Prob[R*,n 5 t] =

1 - Gm,n(y - t,x), for t > 0 and Prob[R*,,n < t] = 0 for t < 0. Since demand is a

nonnegative random variable, E[R*,n] = f~' Gm,n(t, x)dt. The single period cost Ln(x, y) is

given by

fX+Y 00 Y

Ln(x, y) = cy + h (x + y - t)f(t)dt + r (t - x - y)f(t)dt + 0 Gm,n(t, x)dt.
O x+y0

It can be shown that Ln(x, y) is convex in y for a fixed x. Let Cn(x) be the minimum

expected discounted cost when there are n remaining periods. Similarly, let Ln(x, y) be the

cost when there are n remaining periods. We also define

Bn(x, y) = Ln(x, y) + a O Cn-1[s(y, x, t)]f (t)dt.



There is a functional relation of Cn(x) = infyŽoBn(x,y). Let us define t - F-l [r "

Under some mild assumptions, the following holds.

* Bn (x, y) is convex in y for all x.

* If x < , then there exists a unique solution of the following equation:

8Bn(x, y)OB (X, y=yn(x) = 0.

* The optimal policy is to order Yn(x) if X < .

* Denote by y(i) differentiating with respect to i-th argument. Then -1 < yh)(x) <
y(x) y)(x) <- < yn m-1)(x) < 0. This means that if the initial stock of inven-

tory at any age level is increased by one unit, the optimal order quantity decreases, but

by less than a single unit. Furthermore, the optimal order quantity is more sensitive

with respect to the newer inventory.

* If demand is backlogged, then yn(x) = yn(O) + IXm-1 .

Nahmias (1982) states that the actual computation is impractical if m > 3.

1.3 Road Map

This thesis consists of four main topics, each of which is introduced independently in the

respective chapters. Since the problem of finding an optimal expediting policy is quite

demanding, in Chapter 2 we first restrict our attention to the problem with a deterministic

lead time. Even though the lead time is deterministic, finding an optimal policy is still

challenging, and it requires a careful treatment. The concept of sequential systems appears

first in this chapter.

In Chapter 3, we extend the model so that the lead time is stochastic. With stochastic

lead time, we have to capture the locations of outstanding orders in order to expedite

them. Radio Frequency Identification (RFID) is introduced for this purpose in this chapter.

Also, the concept of sequential systems is generalized to accommodate stochastic lead time.

The optimal policies are simple and elegant. The solution methodology is complex, but

manageable for sequential systems.



In Chapter 4, we consider systems that are not sequential, and perform a numerical

study on non-sequential systems with a proposed heuristic policy. The heuristic policy is

quite robust for the systems that are close to being sequential. We discuss its performance

and limitations.

Chapter 5 extends the model of Chapter 3 so that orders in transit can have a certain

expiry date until delivery, which is the most general model treated in the thesis. The

optimal policy for sequential systems identifies a number of parameters, but the structure

of the optimal policy remains simple.

We conclude in Chapter 6 with a detailed discussion of contributions made in this thesis

and directions for further research.



Chapter 2

Deterministic Lead Time Model

2.1 Introduction

We consider a supply chain that consists of a supplier and a manufacturing facility. Between

them, there are multiple intermediate installations such as ports and distribution centers.

The manufacturer faces stochastic demand, periodically reviews inventory on hand, and

places orders at the supplier. In regular delivery, orders pass through all installations with

a deterministic lead time. In addition to regular delivery, expedited delivery is available

with extra cost for all or part of the outstanding orders in the pipeline. The manufacturer

may expedite orders based on the current inventory status and the demand forecast. When

expedited, orders instantly arrive at the manufacturing facility and they are ready to fulfill

upcoming demand. In our setting, all decisions are made by the manufacturer, and it

is assumed that the manufacturer cannot influence inventory among installations other

than into the manufacturing facility. As a consequence, expediting from any installation is

allowed only when the destination is the manufacturing facility. This is reasonable when

the manufacturing facility is an independent company from the remaining installations and

thus cannot instantiate expediting between two other installations. Without expediting, it

is well known that the optimal regular ordering follows the base stock policy with respect

to the inventory position.

In general, the problem of finding an optimal inventory control policy with respect

to regular ordering and expediting is difficult, and it depends critically on the system

parameters such as the expediting costs. We introduce the notion of sequential systems,

where it is never optimal to expedite from an installation before expediting all outstanding



orders in the downstream installations. The optimal regular and expedited orders preserve

their sequence in time until eventual delivery, and thus they never cross in time. We show

that in sequential systems the regular ordering policy is the base stock policy with respect

to the inventory position and the expediting policy is a variant of the base stock policy that

involves multiple base stock levels with respect to echelon stocks. Sequential systems are

easy to identify since the expediting cost must be convex with respect to installations.

To summarize, there are three major contributions of this chapter. First, we find that

simple optimal policies for regular ordering and expediting can be obtained when both

regular and expedited orders do not cross in time. We identify a class of systems based

on the expediting costs that has this sequential delivery property. Second, we find that

the optimal policies for sequential systems are variants of the base stock policies with

respect to inventory position and echelon stocks. Furthermore, the structure of an optimal

expediting policy is to expedite everything up to a certain point in the pipeline, and nothing

beyond. We provide simple recursion equations to compute the base stock levels. Finally,

the modeling and proof techniques are novel. We propose an alternative optimality equation

appropriate for sequential systems, and the main results are derived from the alternative

optimality equation. Furthermore, standard inductive arguments coupled with separability

of the cost-to-go function as often done in the literature cannot be carried out in our context.

Indeed, our proof technique is based on studying the difference in the cost-to-go function

with different states as well as induction arguments.

In Section 2.2 we formally state the model together with the general optimality equa-

tion. We characterize sequential systems and derive an alternative optimality equation

appropriate for them in Section 2.3. Section 2.4 presents the optimal policies for sequential

systems.

Literature review for deterministic lead time model

Our problem has similarities with multi-supplier inventory problems. One supplier with

a much shorter lead time can be used as the expedited mode while the other one with

possibly longer lead time as the regular mode. Barankin (1961), Daniel (1963), Neuts

(1964), and Veinott (1966) have considered the inventory system with two supply modes

of instantaneous and one period lead time. Their model is a special case of our model in

this chapter, and thus both models have the same optimal policy structure. Fukuda (1964)



extends this model to the case where the lead times are k and k+1 periods. Whittemore and

Saunders (1977) generalize the two supply mode problem to arbitrary lead times, however

the optimal ordering policies are no longer simple functions if the difference in the lead

times is more than one period. They also give conditions on optimality of using a single

supplier. The stochastic lead time model of zero or one period is considered by Anupindi

and Akella (1993). While most of the literature for multiple supply modes addresses the

two supply mode case, some researchers, including Fukuda (1964), Zhang (1996), and Feng

et al. (2005), consider the three supply mode case. Their optimal policies are generally not

base stock type policies.

In the same spirit, models with emergency orders relate to our problem, since expediting

has a similar effect. The periodic review inventory model with emergency supply is con-

sidered by Chiang and Gutierrez (1996, 1998), Tagaras and Vlachos (2001), and Huggins

and Olsen (2003b). Chiang and Gutierrez (1998) allow placing multiple emergency orders

within a review period, while the others allow placing a single emergency order per cycle.

Huggins and Olsen (2003b) consider a two-stage supply chain system where shortages are

not allowed, so the shortage must be fulfilled by some form of expediting such as overtime

production. They found that the optimal regular ordering policy is the (s, S) type policy,

but the expediting policy is not a base stock type policy. Related research in this area

includes Groenevelt and Rudi (2003), where a manufacturing order can be split into fast

and slow shipping modes, and Vlachos and Tagaras (2001), where there is a capacity cap

on the size of an emergency order. Both multi-supplier and emergency order models in the

literature differ significantly from our model since the realized lead time can be any number

between 0 and the regular lead time in our model, and it varies dynamically.

The multi-echelon inventory system with expediting has been studied by Lawson and

Porteus (2000) who extend the work by Clark and Scarf (1960) by introducing expedited

delivery with zero lead time between two consecutive installations. Our model resembles

the model in Lawson and Porteus (2000) because a unit can be expedited through several

intermediate installations at the same time in both models. Also, their optimal policy is a

base stock type policy for each echelon. However, our model is substantially different from

Lawson and Porteus (2000) in that we do not allow expediting between two consecutive

intermediate installations. As we have already pointed out, in our model expediting can

only occur from an installation to the manufacturing facility. This corresponds to situations



in which the manufacturer may request expediting from an installation to the manufacturing

facility, but the manufacturer does not have any control to move inventory between any two

other installations. The model in Lawson and Porteus (2000) cannot capture the same

situation as ours, since in order to prevent prohibited expediting from an installation i to

an intermediate installation, the associated expediting per unit cost needs to be set to a high

value. However, this high cost also prevents any expediting from upstream of installation i

to downstream of installation i. Therefore, their model simply addresses different situations

from those captured by our model. Muharremoglu and Tsitsiklis (2003a) generalize Lawson

and Porteus (2000) further by allowing super modular expediting cost instead of a linear

one. However, their model is different from our model by the same reason.

2.2 Model Statement

We consider a serial supply chain that consists of L + 1 installations, numbered from 0 to

L, where installation 0 is the manufacturing facility, and installation L is the supplier. A

unit of goods can pass through all the installations from the supplier to the manufacturing

facility and stays for one period at each installation. Expedited delivery of a fraction or all

of outstanding orders is available at each installation, and the lead time is instantaneous.

Therefore the actual lead time for a unit is dynamic with the maximum of L time periods

and the minimum of 0. The per unit expediting cost from installation i at time period k is

di,k. The total planning horizon is T time periods. Figure 2-1 depicts the model.

Supplier Manufacturing
Facility

Figure 2-1: The underlying inventory system

Demand Dk for period k is a nonnegative continuous random variable. (It can also

be a discrete random variable with a finite support.) At the manufacturing facility, excess

demand is backlogged and incurs a backlogging cost, while excess inventory incurs a holding



cost. We require that the holding/backlogging cost function is convex in the amount of

inventory. Let rk(.) be any convex holding/backlogging cost function and for ease of notation

let Lk(x) = E [rk(x - Dk)]. Clearly, Lk(.) is convex. An intermediate installation may charge

per unit holding or processing cost, but at present we assume that there is no holding or

processing cost. We discuss this generalization in Section 2.5.

The sequence of events is as follows. At the beginning of time period k, the manufacturer

first places a new regular order at the supplier at cost ck per unit, and next decides how

much to expedite from each installation. The manufacturer may also expedite from the

supplier up to the amount of the regular order just placed. After the expedited deliveries of

the outstanding orders are received, demand realizes at the manufacturing facility. Holding

or backlogging cost is accounted for at the end of time period k. After cost accounting, the

outstanding orders at installations 1 through L move to the next downstream installation

instantaneously and then the next time period begins.

The problem is to determine an optimal regular ordering quantity and optimal expedit-

ing quantities from each of the installations 1 to L at the beginning of each time period.

Let us denote by vi the amount of inventory at installation i at the beginning of a time

period before expediting for i = 0, 1, - - - , L - 1. Since the supplier has no inventory at

the beginning of a time period, (vo, vi, - --... , VL-1) is the current state of the system. Let

Jk(VO, V1, * , VL-1) be the value of the cost-to-go function at the beginning of time period

k under optimal regular ordering and expediting. For simplicity, we do not discount any

future costs. After time period T, holding and backlogging costs are assumed to be zero,

thus the terminal cost JT+I at time T + 1 is zero. The optimality equation reads

L L

Jk(VO, Vl, ,VL-1) = n, e { di,kei + Lk(VO +Eei) + ckuU'el •"" •eL
u>eL>O i=1 i=1
vi _ei 50

i=1,-..- ,L-1 (2.1)
L

+ E[Jk+ (vo Vl ei -- D, v2 -e2 , -.. , L-1 - eL-1, u - eL)]},
i=2

where u is the regular ordering quantity, and ei is the expediting quantity from installation

i. Note that after expediting ei from installation i, vi - ei units remain at installation i and

move to installation i - 1 in the next time period as shown in Figure 2-2.

For ease of exposition, we consider only stationary demand distributions and cost co-
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Figure 2-2: Expediting a partial order from installation i

efficients. All presented results hold also in the nonstationary case as discussed in Section

2.5. Therefore we drop time index k from the demand variables and the cost coefficients.

We also use L(-) for stationary systems instead of Lk(').

2.3 Sequential Systems

Optimality equation (2.1) is hard to analyze. To obtain analytical results, we have to

confine our interest to a special class of systems. In this section, we explore systems that are

analytically manageable and derive structural results for such systems. First, we formally

define sequential systems using expediting costs.

Sequential systems A system is sequential, if expediting cost coefficients di's satisfy

di - di-1 5 dj+l - di for 1 < i < L - 1, where do = 0.

For sequential systems, the expediting cost coefficients are increasing convex in instal-

lation i. Sequential systems can be found in situations similar to the following explanatory

example. Consider a supply chain system with a supplier in Portland, Oregon and a man-

ufacturing facility in Boston, Massachusetts. In between the two locations, there is an

installation in St. Louis, Missouri. The review period is one week. The regular delivery

lead times between the supplier and the intermediate installation and between the interme-

diate installation and the manufacturing facility are one week by ground. The expedited

shipment by overnight air is available from the supplier with cost d2 and the intermediate in-

stallation with cost dl. The freight air market between Portland and Boston is much weaker

than the high volume market between St. Louis (a logistics hub) and Boston. Therefore,

the economies of scale imply that the expediting cost can be much higher in Portland than

__



in St. Louis. As a result we could have d2 - dl _ dl, or equivalently d2 > 2dl.

The following is a key theorem to derive the optimal policies for regular ordering and

expediting.

Theorem 1. Sequential systems preserve the sequence of orders in time when operated

optimally.

To prove this theorem, we need the following lemma proved in Appendix.

Lemma 1. For a sequential system, di d + d i-j for all i and 1 < j < i - 1.

Proof of Theorem 1. Expediting has no lead time, thus expediting multiple units can be

decomposed to multiple decisions of expediting a unit from a certain installation, until

there is no further need of expediting. Consider two nonempty installations i and j, i > j,

and the two following actions at the current time period.

Action 1: Expediting a unit from installation i

Action 2: Expediting a unit from installation j

We show that there exists a suboptimal strategy that starts with Action 2, costs no more,

but replicates the effect of Action 1. Action 1 has an effect of raising the inventory of the

manufacturing facility by 1 unit for i time periods compared to no action. Similarly, Action

2 has an effect to raise the inventory for j time periods. Since installation i is nonempty,

there is at least a unit, and let us denote it by A. Consider a strategy that starts with

Action 2 and expedite unit A after j time periods from the current time period. After

j time periods, unit A is in installation i - j. Since Action 2 raises the inventory for j

time periods and expediting unit A raises the inventory for further i - j time periods, this

strategy raises inventory for i time periods, which replicates the effect of Action 1.

Now consider the expediting cost. Action 1 costs di while the replicating strategy costs

dj + di-j. For sequential systems, Lemma 1 indicates that Action 1 is more costly or at

least of equal cost to the replicating strategy. Therefore the replicating strategy costs no

more and is obviously suboptimal. The existence of the suboptimal strategy implies that

any strategies that start with Action 1 cannot be optimal. In other words, if expediting is

necessary in sequential systems, it is optimal to expedite from the nonempty installation

that is closest to the manufacturing facility. Therefore, orders preserve sequence in time

under an optimal expediting policy for sequential systems. This completes the proof. 0



In sequential systems, it is never optimal to expedite from installation i before expediting

all the outstanding orders at the downstream installation of installation i. Using this fact,

we formulate an alternative optimality equation equivalent to (2.1). Let x' be the sum of

the inventory from installation 0 to installation i: x' = -o0vj. Let = (0,0,... ,0)

be a vector containing i zeros. For 1 < j < L, let J(.) be the optimal cost-to-go that

can be achieved by a restricted control space, in which expediting from installations j +

1,j + 2,... , L in time period k is not allowed. The control space for JX is restricted in

time period k, but unrestricted after time period k. Note that JL(.) = k(). We utilize

J() with respect to a fictitious state (xi-l, i-,vi, , VL-1), where installation 0 has

inventory xi - 1 , and installations 1, 2, -- , i- 1 are empty. The optimality equation for

Jk( ,i- I i-1 Vi*** , VL-1) is given by

Jk(x 1  1 , vi,.. , VL1) = mn di i - xi-1) + L(yi) + C(Z - x L - 1)
i-

•Iyi•xizzx L -
1 (2.2)

+ E[Jk+(Yi - D, 6i-2, xi - Yi, Vi+l," "" ,z- xL-1),

where yi and z are decision variables: yj - xi- 1 is the expediting amount from installation

i and z - xL - 1 is the regular ordering amount.

An alternative formulation of the optimality equation for Jk of sequential systems is

given by

Jk(vo, V1, V2,. ,VL-1) min J (x° 01, V2, . . . ,VL-1

dlvl + J2 (xlO, v2, • . .1,VL-1)
j3 x2

dvl + d2v2  Jk (X2 , 0,0, V3," , VL-1) (2.3)

L-1

divi + JkL L-1 L-1)1)
i= 1

At time period k, the first term corresponds to expediting partially or fully from installation

1 and no expediting beyond, the second term captures expediting everything from instal-

lation 1, expediting partially or fully from installation 2, and no expediting beyond, and

so forth. Since the system is sequential, the eventual optimal decisions for regular ordering

and expediting are determined by the minimum term in (2.3). For example, if the j-th

term achieves the minimum in (2.3), the optimal decision for expediting is to expedite all



outstanding orders in installations 1, 2, -.. - - , j- 1 and to expedite yj - x - 1 from installation

j and nothing beyond installation j. The optimal regular ordering decision is to place a

regular order in the amount z - xL- 1 that is determined in the j-th term.

2.4 Optimal Policies for Sequential Systems

First we introduce preliminary results needed to derive optimal policies for sequential sys-

tems, and then we present main results.

Preliminaries

The following lemma from Lawson and Porteus (2000), which originates in Karush (1959),

is used frequently throughout the chapter.

Lemma 2. Let f be convex and have a finite minimizer on R. Let y* = arg min f(x).

Then, mmin f(x) = a + g(xl) + h(x 2), where a = f(y*), and penalty functions g(xl) and
zl<_X<X2

h(x 2 ) are

0 X1 <_y* f(x 2)-a x2<y*
g(xi) = f0l a < y* and h(x2)

f(xi) - a xi > y* 0 x 2 > y*

For a nondecreasing convex f, we define a = 0, g(x) = f(x), and h(x) = 0. On the other

hand, for a nonincreasing convex f, we define a = 0, g(x) = 0, and h(x) = f(x).

In Lemma 2, g is nondecreasing convex, while h is nonincreasing convex. The following

functions are required later in the derivation of the optimal policies. For 1 < i < L and

k < T, let us recursively define

fi,k(x) = dix + L(x) + E[SII,k+1(x - D)], (2.4)

Sik = ai,k +t-l,k+l,

Sk(X) gi,k(X) - dix, (2.5)

Sk(x) = hi,k(x) - L(x) + E[S2jl,k+l(x - D)],

where SOg = S0,k(') = S0,k() = 0 for all k, and So +1 S, ) ST ) = 0 for all i.
Here, ,k ik, and h,k are defined according to Lemma 2 with respect to firk. FunctionsHere, ai,k, gi,k, and hi,k are defined according to Lemma 2 with respect to fi,k. Functions



fi,k and S j k are well defined, and starting from the last time period T, they can be obtained

recursively. In particular, from (2.4) we can compute fi,T, then from (2.5) we obtain S 1'%,T

for all i. Next we compute fi,T-1 from (2.4), and in turn, ST from (2.5) for all i. We%,T-1

repeat this procedure to define all fi,k and Sk. For Sk and Sk we use a similar procedure.

We use the following lemma in deriving the optimal policies. The proof is provided in

Appendix.

Lemma 3. a. For sequential systems, fi,k(') is convex for all k and i.

b. For all k and i we have S9k+ Skx+ S () = 0.

c. Let fl be convex and b e R. We have min {fi(x) + f2()} ) al + gi(b) + min{hi(y) +
b<x<y by

f2(y)}, where al, h1 , and gi are defined as in Lemma 2 with respect to fl.

Let us denote by Y!k a minimizer of fi,k(): Yk = arg min fi,k(x). The following

theorem is an important property of fi,k(') for sequential systems. The proof can be found

in Appendix.

Theorem 2. a. For sequential systems, Yi*,k's are nonincreasing in i for a fixed k. That is,

y*k Y+1,k for all i and k.

b. For sequential systems, function gi,k(x) + S2_ ,k(x) is convex for all i and k.

Optimal Policies

The optimal policies for sequential systems are given by the following theorem.

Theorem 3. For sequential systems, the following properties hold.

a. The optimal expediting policy for expediting orders from installation i is the base stock pol-

icy with respect to echelon stock x'. The base stock level is given by Yi*,k = arg min fi,k (X)

for time period k.

b. The optimal regular ordering policy is the base stock policy with respect to inventory

position xL- 1. The base stock level is given by z* = argmin{hL,k (z) +cz+E[ S2 _ 1,k+ 1(z -

D) + Hk+1(Z - D)]} for time period k, where Hk(x) follows Hk(x) = min{hL,k(Z) + cz +
E[S -1,k+1(Z - D) + Hk+(z - D)] Sk(z>x) - cx, and HT () = 0E[Snl~kl(Z- D) ± Hk±1(z - D)]} - S•,(x) -- cx, and HT+I(') -- 0.



c. For alli and k, Jk(Xi- 1 i-1, I, ,VL-1)-Jk i iVi+1, . , VL-1) = k+Sk 1

,k (xi).

Part (a) of Theorem 2 indicates that the expediting base stock levels are nonincreasing

in i. On the other hand, echelon stock x' is nondecreasing in i, thus there exists only one i*

such that Yi*,k - xi*-1 > 0 and Yi*+l,k - xi* < 0. From part (a) of Theorem 3 we conclude

that the optimal expediting policy is to expedite everything from installations 1, -.. - - , i* - 1,

and partially from installation i*, and nothing beyond. This sequential expediting structure

agrees with Theorem 1.

Additionally, the following lemma is used in the proof of Theorem 3. This lemma is

proved concurrently with Theorem 3 in an induction step as shown below.

Lemma 4. For sequential systems,

a. Hk(x) = Jk(x, 6L-1), and

b. S2 1,k(X) + Hk(x) is convex.

Proof of Theorem 3 and Lemma 4. We prove Theorem 3 and Lemma 4 by induction. In the

base case of the induction, when k = T + 1, the optimal expediting policy and the optimal

regular ordering policy are null. We can safely set the base stock levels for expediting and

regular ordering at -oo. Also, part (c) of Theorem 3 and all the properties in Lemma 4

trivially hold when k = T + 1 because they are all zero.

Now we continue with the induction step. Let us assume that on and after time k + 1 <

T + 1, the theorem and the three properties hold. Note that we only need to show the

results at time period k.

First, we prove part (a) of Lemma 4. Consider JL(XL-1 0 L-1) in (2.3) which is the

same as Jk(x L - 1, 0 L-1). Vector (xL-1, 6L- 1) is a state in which we may expedite YL - xL - 1

only from the supplier up to the amount of the regular order z - xL-1 because there is no

outstanding order in any installation. The recursive relationship from (2.2) with i = L is

Jk(XL-, oL -1)

S in {dL(YL - xL-1) + L(yL) + c(z - xL-1) + E[Jk+1(YL - D, 6L-2 z- YL)]}

- mmin {dL(YL - xL -l) + L(yL) + c(z - xL -l)
xL- 1 +_YLZ _

+ SL 1 ,k+1 + E[SL.-l,k+I(YL - D) + SLl,k+l(Z - D) + Jk+-(z - D7 ,L1)1},



where we use part (c) of Theorem 3 for time period k + 1. Using the definition of fL,k and

part (c) of Lemma 3, we have

Jk(XL-1 ) L-1) = min {fL,k(YL) + cz + E[S2-1,k+l(z - D) + Jk+l(Z - D,0 L- 1)]}
XL- lyL•z

+ Sl-1,k+1 - dLx
L - 1 _ cx

L - 1

- min hL,k(z) + cz + E[S L-l,k+l(z - D) + Jk+l(z - D,0L 1 )]} (2.6)
xL l<z

+ SO-1,k+1 - dLxL-1 cxL - 1 + g9L,k(X L -l) + aL,k.

Rearranging the terms and using part (b) of Lemma 3 lead to Jk(x L - 1, L - 1) = mmin {hL,k(z)+
XL-l <z

cz + E[S2-1 ,k+l(z - D) + Hk+1(z - D)]} - S2,k(X L - 1) - cx L - l, which is the definition of

Hk(xL- 1). Therefore, part (a) of Lemma 4 is proved.

Next, we prove part (b) of Lemma 4. From (2.6) and part (a) of Lemma 4, we have

Sl,k(x L-1) + Hk(x L - 1) = min {hL,k(z) + cz + E[S2-l,k+l(z- D) + Hk+l(z - D)]}
xL-l<z

+ S%-1 ,k+l - dLx L - 1 - cxL-1 g9L,k (xL-1) + aL,k + SLI-1,k(xL-1).

Because gL,k(X L - 1) + S2-1,k(X L - l) is convex by part (b) of Theorem 2, and S2-l,k+l(Z -

D) + Hk+1 (z - D) is convex by the induction hypothesis, we conclude that SL2_l,k(x L - l) +

Hk(x L - l) is convex. This shows that part (b) of Lemma 4 holds.

Now we prove part (a) of Theorem 3. Let us consider (2.2). By applying part (c) of

Theorem 3 with time period k + 1 to Jk+l(yi - D, Oi-2,xi - yi, vi+l, "" , Z - XL -1l) in (2.2),

we obtain Jk+l(yDi - D, - Yi,vi+l, . ,z - XL -1 SO1,k+ + Sl-,k+(yi - D) +



S21,k+l ( i- D) + Jk+ (xi - D, Wi-1, vi+l, . , z - XL- 1 ). Applying this repeatedly, we have

Jk+ l(X - DO i- 1, Vi+1, 1 ,z - XL -1 )

L-2-_ D) +1 E2 +S X3-D

-Sil,k+l -,k i - D) + SS-1,k+ (Yi - D) + ?{Skk+ + S(,k+1(xk - D)
j=i

+ Sj,k+l xj+ - D)} + Jk+l (XL-- D, L-2 L-1

L-2__SO - D)+1> S

i- Sl,k+1 + Si-l,k+l (Yi - D) + Sl?-1,k+1(xi- D) + Z{S,k+1 + Sk+l(x - D)

j=i

" Sk+l j+' - D)} + SL-l,k+l + SL-I,k+1 (X - D)

+ SL•l-1,k+l(z - D) + Jk+l(z - D, 0L-1).

Substituting this into (2.2) yields

Jk(xi- ,i- ,vi,... , VL-1) = mmi {d yi + L(yi) + E[SiLl,k+l(yi - D)]}

+ min {cz + E[SL-1,k+l(z - D) + Jk+l(z- D,0L- 1)]} - dx i- 1 -cx L - 1

z>xL
- 1

L-2 (2.7)
+ Si-1,k+l + E[S-1,k+1 (xi - D)] + E Z{SEk+1 + SJ,k+l(x3 - D)

j=i

+ Sk+l xj+1 - D)} + Sl-1,k+1 + E[ -1,k+l (L-1 - D)].

From (2.7), the optimal expediting amount from installation i at time k is determined from

mm {diyi L(yi) + E[Sl-1,k+l(yi -D)} = mm fi,k (Yi)
xi-l<yi<x x_ z-1•ixi

By part (a) of Lemma 3, fi,k (Yi) is a convex function. Therefore, the optimal expediting

policy from installation i at time k is the base stock policy with the base stock level Yi*k =

argmin fi,k(yi). Note that we can only expedite up to what we have in installation i. This

completes the proof of part (a) of Theorem 3.

Next, we proceed to prove part (b) of Theorem 3. We consider the optimal regular

ordering policy. If the last term in (2.3) attains the minimum, then it is determined by

(2.6), or equivalently

min {hL,k(z) + cz + E[SL-l,k+l(z- D) + Jk+l(z- D, L-1)]}, (2.8)
z>xL-1



or otherwise from (2.7) it is determined by

min {cz + E[S2_l,k+l(z - D) + Jk+l(Z- D, OL-1)]}. (2.9)
z>xL

- 1

Note that hL,k(z) is nonincreasing convex and hL,k(z) = 0 for z > yk Therefore, if

z > Y*,k, then (2.8) and (2.9) lead to the same minimizer z*. If z < yik, from part (a)k-- LkkI k L,k ,

of Theorem 2, we have z* < yk for all i, which results in expediting everything in the

supply chain including the fresh regular order in the current time period. In this case, (2.8)

determines the regular ordering quantity because we are now expediting from the supplier.

As a result, (2.8) determines the optimal regular ordering in any case.

Since S~Ll,k+l(z) + Hk+1(z) is convex by part (b) of Lemma 4, and Jk+l(z, L - 1) =

Hk+1(z) by part (a) of Lemma 4, hL,k(z) + cz + E[SL_1,k+1(z - D) + Jk+l(z - D, OL- 1)] is

convex. Therefore, (2.8) indicates that the optimal regular ordering policy is the base stock

policy with the base stock level z* with respect to the inventory position xL - 1. Furthermore,

Hk is well defined since hL,k(z) + cz + E[SLi-1,k+l(z - D) + Hk+1(z - D)] is convex for all

k. The proof of part (b) of Theorem 3 is thus completed.

It remains to show part (c) of Theorem 3 in time period k. Since we know optimal policies

in time period k in an induction step, we use the optimal policies in proving this part. We

compare Jk(x I i, Vi+1, - ' , VL-1) and Jk(xi+l, Oi+1 , vi+2 , - , VL-1). If Yi+1,k • xi, then no

expediting is necessary from installation i + 1 and beyond, therefore

Ak (X i0Z Vi+l, Vi+2, " " " , VL-1)

= L(x') + mmin {c(z - xLl) + E[Jk+l(X - D, ( i - 1, vi+1 , , V-1, z - xl)Z X - -1l ' " V - , - L 1 ]z>xL_ 1l

= L(x i ) + min {c(z - XL - l) + E[Sk+l + Sik+l(x - D) + Sk+1 (X+1 - D)]
Z>_X

L - 1  kl

+ E[Jk+l ( x i + 1 - D, Oi , vi+2, • • • , VL-1, Z- XL - 1) ]} ,

where we used part (c) of Theorem 3. Since y*+1,k X i < i+ 1, no expediting is necessary,

thus we have

Jk(Xi+1, i+1, Vi+ 2 , , VL-1)

= L(x i + 1) + mmin {c(z - xL - 1) + E[Jk+l(xi+l - D,Oi,vi+2 ,... VL-1, Z - xL-1)]}.
Z>xL-1



Therefore, Jk(x i i, Vi+l, vi+2,'' , VL-1)-Jk(x i + •(i+1, Vi+2, " , VL-1) L(xi)-L(xi+1)

E[S(k+l + Sk+1 W - D) + Sk - D)].

Next, if x i < Yi*+1,k < i +1 , then expediting from installation i + 1 is necessary, but not

from upstream installations. We have

Jk(x , ,OI,Vi+l,Vi+2 ,. ,VL-1) = di+l(y*+l,k - x2) + L(y*+l,k) + mmin {c(z - x L - l)
z>xL-1

+ E[Jk+ *1(yl,k - D, - 1,i x1,k,i±2, ,z - xL-1)]}-- , -Yi+l,k, Vi+2,. .

di+1(Yil+,k - xi) + L(yi+1 ,k) + in {c(z - XL - l) + E[Sk+l + Sik+1(Yi+1,k - D)

z>xL-1

SSik+l - D)] + E[Jk+1+l - D i,vi+ 2 ,* -,VL- 1 ,Z - xL-1)]}, and

Jk(Xi+l,o i+l, Vi+2 , ,VL-1) - L(x i + l) + mmi {c(z - x L - l)
z>xL-1

+ E[Jk+l(xi + l - D, ivi+2, '  ,VL-1, Z- XL-1

Therefore, Jk(Xi , 0i , Vi+1l, Vi+ 2 , , VL-1) - Jk(X i+ 1 i+ 1 , Vi+2, ,VL-1) di+Y1*+lk

+ L(y*+lk) - di+lx i - L(x i+l) + E[SOk+l + S1k+1 (+1,k - D) + S k+l(x i + l - D)].Finall,k ifk~ y*k~ xy*+i+ 1

Finally, if y+,k > i+1 , then we expedite everything in installation i + 1. Thus the only

cost difference is d±vi+lVi di+1ix+1-di+1ix, and we obtain Jk(X, i, vi+1, vi+2 , L-1)-

Jk(Xi+l, Oi+1, Vi+ 2 , , VL-1) = di+1x i + l - di+x1 .

The three cases above can be summarized as

Jk(X, i, Vi+li+2 , , VL-1) - Jk(X i+, i+1, Vi+2, -* , VL1)

=ai+1,k 9+i+1,k(Xi) + hi+l,k(Xi + 1 ) -- di+lxi - L(x i + 1 ) + S i k + l + E[Sik+ l(x i+ 1 - D)]
Q9S (X

i ) 
+4 SY2 (Xi+1)

= S+l,k + Sl+1,k(x) + S 2 l,k ).

Therefore, part (c) of Lemma 4 at time period k is proved. This completes the induction

step of the entire proof.

A Numerical Example of the Policy

Consider a supply chain system with 6 installations including the supplier and the man-

ufacturing facility. Figure 2-3 illustrates the mechanism behind the base stock policy for

regular ordering and the base stock policies for expediting. Note that the echelon stock x'

is nondecreasing in i, and yk is nonincreasing in i by part (a) of Theorem 2. Therefore,



there can be at most one intersection between these two curves. At the beginning of time
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Figure 2-3: An illustration of the optimal policies

period k, we compare echelon stocks with base stock levels (Figure 2-3, A). The optimal

regular ordering quantity is z* - x4, and optimal expediting is to expedite everything from

installations 1 and 2, and yk - 2 from installation 3 (Figure 2-3, B). After the expeditedinstalatios 1 nd 2,and 3,k X

quantities arrive, demand D realizes, and pushes the echelon stock levels down by D at the

end of the period (Figure 2-3, C). At the beginning of the next period, the echelon stock

levels move forward by one step, and the next period begins (Figure 2-3, D). Table 2.1

illustrates the policy by means of a numerical example. The realized demand at time k is

40, and x5 = x4 + max(z* - x 4 , 0).

A Numerical Example of Base Stock Levels with Nonstationary Demand

Distribution

Consider a three-installation sequential supply chain with stationary cost parameters facing

a nonstationary stochastic demand. The three-installation system has all of the typical

Y3 .k



Table 2.1: A numerical example
z* y; yI Y 2y y

base stock levels at time period k 100 40 52 65 72 85
X 5  X 4  X 3  X 2  X 1  X 0

time period k, before decisions 85 72 61 55 48
time period k, after decisions 100 85 72 65 65 65

time period k, after realized demand 60 45 32 25 25 25
time period k + 1, before decisions 60 45 32 25 25

features of general length systems. Figure 2-4 shows

from Theorem 3.

CD0
03

the corresponding base stock levels

5 10 15 20 25
Time period

Figure 2-4: The Base Stock Levels with Nonstationary Demand

In Figure 2-4, the solid line is the mean of the nonstationary demand distribution at

each time period, and the line with triangles corresponds to the base stock levels without

the expediting option. Also, the line with circles corresponds to the regular ordering base

stock levels with the expediting options, the line with pluses corresponds to the base stock

levels for expediting from stage 1, and the line with crosses corresponds to the expediting

base stock levels for expediting from stage 2. The planning horizon is 26 periods.

We observe several interesting points. As it approaches the last time period, specifically

in time periods 25 and 26, the regular ordering base stock levels without the expediting

options become large negative numbers, which makes sense since new orders would never



arrive at the destination (the lead time L is 2). However, with the expediting options, the

regular ordering base stock level at time period 25 is not a large negative number (indeed,

it is positive in this example). This also makes sense since we may expedite orders placed

in time period 25.

Other than the time periods close to the end of the planning horizon, the regular ordering

base stock levels with expediting options are smaller than those without the expediting

options. This is due to the increased agility of the supply chain resulting from the expediting

options, hence decreased need for safety stock in the pipeline. Furthermore, the expediting

options effectively reduce lead times. Therefore, as the mean of the demand increases,

the increment of the regular ordering base stock levels with expediting options is not as

pronounced as that of the base stock levels without the expediting options. It implies that

the decreased realized lead times with the expediting options reduce the variability in the

regular ordering amount. As for expediting base stock levels, they follow well the mean

demand curve.

2.5 Additional Results

We first generalize our results to the case of nonzero per unit holding or processing cost

at intermediate installations. If a linear holding or processing cost is incurred at each

intermediate installation, we apply the following transformation. Let the linear holding or

processing cost be hi > 0 at installation i, and let the actual procurement cost be c'. Let

also the actual expediting cost be dý for expediting a unit from installation i.

Step 1 Let us define c = c' + h, + h2  ... + hL-1. Then c can be used as the hypothetical

per unit procurement cost in our model. It means that we pay all the holding costs

in advance when we place an order.

Step 2 We can use the hypothetical expediting cost di = d - hi - hi•-1 .. - hi. If di < 0,

then it is always better to expedite from installation i to the manufacturing facility

than to pay more expensive holding or processing costs at installations i, -- - , 1. In

this case, we never use installations i, ..., 1, which leads to shorter lead time.

This transformation is possible because a unit stays exactly one period at each installation

if it is not expedited. This is the main difference from the multi-echelon model of Clark



and Scarf (1960). In other words, this transformation works only in our setting.

We now derive additional insight in the stationary case, i.e., the demand distribution

and all the cost coefficients are stationary. We provide the proof of the following lemma in

Appendix.

Lemma 5. If the demand distribution and cost coefficients are stationary, then for 1 < i <

L and k < T - i +l 1, we have y*,k =Y,'

Lemma 5 states that the expediting levels are independent of k for k < T - L. Note

that in practice T is much larger than L. Therefore, for a stationary system the base stock

levels become constant in time for most of the time periods except a few periods at the end

of the planning horizon. This leads to a simple set of optimal parameters.

Another interesting observation can be made in a stationary system. Let z* and y* be

the base stock levels before time T - L. If z* < yi*, then we never use installations 1 to i

at least until time T - L, because all units are always expedited on and before arriving at

installation i. As a special case, if z* < yj, then we always expedite the entire regular order

directly from the supplier, and never use any of the intermediate installations at least until

time T - L.

Our last remark is about nonstationary systems. If the system parameters are nonsta-

tionary, the appropriate definition of sequential systems is the following.

Nonstationary Sequential Systems A nonstationary system is sequential, if di,k -

di-l1,k+1 • di+l,k - di,k+l, for 1 < i < L - 1 and 1 < k < T, where do,k = 0 and di,T+l = 0.

In a nonstationary setting, all theorems hold with only minor modifications in the proofs

due to the added time indices.



Chapter 3

Stochastic Lead Time Model

3.1 Introduction

Radio Frequency Identification (RFID) is a wireless sensing technology that consists of tags

called also transponders, which are tiny computer chips with limited memory, and readers

or interrogators. It is frequently referred to as the next generation bar-code. When a tagged

item comes in the read range of a reader, the reader reads the data on the tag (e.g., location,

time, a unique identifier, etc.) and passes these information to an information system. In

supply chains RFID substantially increases inventory visibility and has potentials to improve

overall efficiency of supply chains. Among many benefits, labor savings, improved forecasts,

and reduced stock-outs are often cited as direct benefits of RFID. The value of RFID may

also come indirectly in combination with new business practices that are impossible without

RFID. One such practice is expediting outstanding orders in a supply chain in presence of

stochastic lead time. In order to substantiate this indirect value opportunity with expediting

in an RFID-enabled supply chain, we perform an analytical analysis.

We consider a periodic review, single item inventory problem with a single supplier and a

manufacturer where the manufacturer periodically places regular orders at the supplier. The

stochastic demand is fulfilled by the manufacturer and excessive demand is backlogged. The

supplier's chain consists of multiple installations, and orders progress from one installation

to another until delivered to the manufacturer. The movements of outstanding orders among

installations are stochastic, hence the overall lead time is stochastic. More specifically,

multiple movement patterns of outstanding orders are captured in the model, and one of

the patterns is chosen stochastically at each time period. We assume that there exists an



exogenous random variable with a known distribution that chooses the movement pattern

that occurs at the current time period.

On top of this, we consider an option to expedite orders from installations to the man-

ufacturer for extra per unit cost according to the current demand situation. Since the

lead time is stochastic, under traditional techniques and processes the exact locations of

outstanding orders are expensive for the manufacturer to obtain; thus it can be costly to

expedite outstanding orders. Under an RFID deployment, with tags attached on units of

goods (e.g., pallets or cases) and readers installed at each installation, the real-time location

information of outstanding orders is now easily available to the manufacturer. While this

is possible with other techniques such as GPS, RFID does not pose a significant capital

investment. Tags are currently around 10 cents and reader costs range in few thousand

U.S. dollars. Therefore, expediting orders from installations under RFID is now a feasible

business proposition.

In order to asses the value of RFID, it is important to develop models capable of exploit-

ing data resulting from RFID, and to find out optimal policies of expediting and regular

ordering in such models. In the absence of optimal policies, it is hard to guarantee additional

value of RFID to the supply chain. As a result, we focus on deriving the optimal expediting

and regular ordering policies under RFID. Since the setting of our model is quite general

and the modeling scope is large, finding the optimal policies in general is difficult. They

generally depend on state variables, hence they are nonintuitive and complex. However,

analytical results can be obtained for a certain subset of serial systems. We characterize

conditions for a system to allow simple optimal policies, and call such systems sequential

since orders do not cross in time under the optimal control. The sequential delivery property

plays a key role in analyzing the optimal policies. We note that the concept of sequential

systems in the current chapter is more general than the one in Chapter 2. The key dif-

ference of the model from Chapter 2 is the stochastic lead time of regular orders, and the

concept of sequential systems here accommodates this difference. We also provide sufficient

and necessary conditions to facilitate the identification of sequential systems. Within the

sequential systems, the optimal regular ordering and expediting policies are derived. The

optimal regular ordering policy is the base stock policy with respect to the inventory posi-

tion, and the optimal expediting policy is a variant of the base stock policy with respect to

the echelon stock up to a certain installation. In addition, we find that as the expediting



cost of a certain installation increases, the underlying expediting base stock level associ-

ated with the installation is nonincreasing, which is intuitive. Interestingly enough, we also

derive that as the expediting cost for an installation increases, the expediting base stock

levels for installations beyond the installation in question are nondecreasing.

The contributions of this chapter are several. First, to the best of our knowledge, the

presented work is the first one to derive an optimal expediting policy of a stochastic lead

time model, which is a significant advancement over deterministic ones. Second, the proof

technique is novel and nontraditional even though we rely on induction. After characterizing

the sequential systems, we formulate the optimality equation suited for these systems using

the sequential delivery property, and this leads to simple optimal policies. Optimality of

these policies is proved in an induction loop by studying the difference in the cost-to-go

for different states. Third, we find interesting directional dependencies of expediting base

stock levels on expediting costs. Finally, an important managerial insight - that the value

of RFID can be elevated, if utilized actively with innovative processes such as expediting -

can be inferred from this work. Firms should look for creative business processes in order

to extract more value from RFID.

In Section 3.2, we formally state the underlying model. We delineate the class of systems

in which orders do not cross in time in Section 3.3, and discuss the scope of such sequential

systems in the same section. We derive the corresponding optimal policies for the sequential

systems in Section 3.4. In Section 3.5, we discuss additional results on the optimal policies.

Literature review for stochastic lead time model

The most related models in the literature are divided in two groups: the stochastic lead time

models and the multi supply mode models. Among the early work on the stochastic lead

time models, Kaplan (1970a), Nahmias (1979), and Ehrhardt (1984) consider stochastic

lead time that is determined by a realization of a random variable. In particular, if the age

of an order exceeds the realized value of the random variable, then the order arrives at the

destination. Song and Zipkin (1996) and Muharremoglu and Tsitsiklis (2003b) are more

recent publication on stochastic lead time models. In their models, the supply system is

Markov modulated to describe the supply condition. They also define an exogenous random

variable, which determines the lead time of an order, but their modeling of the stochastic

lead time is more comprehensive than the earlier works since the random variables determine



the progress status of outstanding orders. Our model resembles the stochastic lead time

description of Song and Zipkin (1996) and Muharremoglu and Tsitsiklis (2003b), however,

they do not consider expediting.

The multi supply mode models such as emergency ordering or expediting models with

deterministic movement transitions include Barankin (1961), Neuts (1964), Daniel (1963),

Fukuda (1964), and Veinott (1966) as the early works. They consider inventory systems

with two supply modes of instantaneous and one period lead time. Models with emergency

orders among others include Chiang and Gutierrez (1998) and Huggins and Olsen (2003a),

but their modeling of emergency orders is different from ours (emergency and expediting

have different scopes). More related recent works are Lawson and Porteus (2000) and

Muharremoglu and Tsitsiklis (2003a). Lawson and Porteus (2000) extend the multi-echelon

model by Clark and Scarf (1960) by allowing expediting between consecutive installations,

and their optimal policy is a base stock type policy. Muharremoglu and Tsitsiklis (2003a)

generalize Lawson and Porteus (2000) by allowing super modular expediting cost instead

of a linear one.

Both Lawson and Porteus (2000) and Muharremoglu and Tsitsiklis (2003a) allow expe-

diting between arbitrary two installations. However, our model does not allow this since in

our case orders can be expedited only to the manufacturer. This corresponds with the sit-

uation where the manufacturer and the supplier are independent companies, and thus it is

prohibitive for the manufacturer to manipulate inventories inside the supplier's chain. The

manufacturer may only expedite orders to its own facility based on the inventory information

from RFID at each installation. It is important to note that it is nontrivial to prevent ex-

pediting between intermediate installations using the models of Lawson and Porteus (2000)

and Muharremoglu and Tsitsiklis (2003a). Therefore, our model simply addresses a differ-

ent situation from their models. Furthermore, the stochastic lead time modeling considered

here is a fundamental leap from the deterministic cases in their models.

Gaukler et al. (2005) consider emergency ordering under RFID in a supply chain with

multiple stages, where the lead time is stochastic. RFID is used in a similar context as ours,

i.e., to gain real-time location information. However, their model is simpler than ours since

they allow at most one outstanding order at any point in time, which significantly limits the

modeling power. Furthermore, rather than dealing with optimal policies, they confine their

study to base stock policies. Therefore, the optimality is not guaranteed, and the nature



of their work is distinct from ours. For further literature review on RFID related inventory

models, we refer the reader to Lee and Ozer (2007).

3.2 Model Statement

We consider a single supplier with a single-item manufacturing facility facing random de-

mand with known distribution, and K - 1 serial intermediate installations between them.

The supplier is denoted as installation k 1 and the manufacturing facility is installation

0. The intermediate installations are numbered from 1 (next to the manufacturing facility)

to f - 1 (next to the supplier). The manufacturer periodically reviews the inventory on

hand and places a regular order at the supplier by paying per unit procurement cost c.

Unsatisfied demand is backlogged and excessive inventory at the manufacturing facility is

penalized. The planning horizon consists of T time periods. For simplicity, we assume that

the system is stationary.

A movement pattern w describes the destination installation of outstanding orders for

each installation in the next time period. We define multiple movement patterns. For ex-

ample, consider a supply chain with K = 5, which has three illustrative movement patterns:

slow, normal, and fast. In the normal pattern, orders at installation i move to installation

i - 1 for i = 1, -... - , 5. In the slow pattern, orders at installations 1, 3, and 5 fail to progress,

thus orders at these installations stay at the current location one more time period while

orders at the remaining installations move to the next downstream installation. In the fast

mode, orders in installations 2 and 3 move to installations 0 and 1 respectively while orders

in the other installations move to the next downstream installation. Let us denote by W

the set of all movement patterns, i.e., W = {wl, w2, w3, * • }. There is an exogenous random

variable W with known distribution that selects a movement pattern in W. At each time

period, W realizes, and according to the realized movement pattern w, the outstanding

orders at installation i, 1 < i < K, move to installation j = M(i, w), 0 • j < i, where M(-)

is a function that takes the origin installation i and the realized movement pattern w as

arguments. Note that orders are not allowed to go backward to the upstream installations

in this definition. We define M(0, w) = 0, and before W is realized we denote the corre-

'In Chapter 2, we denote by L the index of the last installation, which is again the lead time of regular
orders. In this chapter, we use k instead to emphasize the stochastic lead time of regular orders, and reserve
I for a random lead time function.



sponding random variable by M(i, W). The lead time of a regular order is stochastic and

determined by multiple realized movement patterns until delivery. The departure process

for outstanding orders in installation i to the downstream is geometrically distributed with

parameter Prob(M(i, W) < i), which is the departure probability.

Let vi be the amount of inventory at installation i for 0 < i < K and (vo, v1, v2, , VR)

the state vector. Without an RFID deployment at all installations, it is extremely hard

to observe the state of the system. RFID is definitely a technology that enables better

visibility at a much lower cost. Based on the current state of the system, the manufacturer

expedites outstanding orders if need be by paying per unit delivery cost di for expediting

orders from installation i.

The sequence of events in a time period is as follows. At the beginning of the time

period, the state information is given. Then the manufacturer places a regular order with

the supplier (installation K). Next, the manufacturer makes decisions on expediting for each

installation, and the expedited orders arrive at the manufacturing facility instantaneously.

After that, demand D realizes for the current time period. Inventory holding or backlogging

cost is accounted for at the manufacturing facility after demand realization. Finally, W

realizes and regular delivery occurs just before the end of the time period. Then the next

time period begins.

We need the following assumption stating that regular orders should not cross in time.

Except for certain situations in which a time period is short and the variability of the

lead time is high, this assumption is probably not a severe restriction. This assumption

is standard in the stochastic lead time literature that includes Kaplan (1970b), Nahmias

(1979), and Muharremoglu and Tsitsiklis (2003a), among many.

Assumption 1 (Orders not crossing in time). M(i, w) > M(i - 1,w) for all i and

weW.

Let us define a related movement function N(j,w) = max{i : M(i,w) < j, 0 < i < K}

for all j and w c W, and let N(j, W) be the corresponding random variable before W

is realized. Under Assumption 1, a one-to-one mapping between M and N exists as the

following example illustrates.

Example Consider an 8 installation system including the supplier and the manufacturer

(K = 7). At time t, assume that realized w of W drives the following movement.



i 0 1 2 3 4 5 6 7

M(i,w) 0 0 0 1 1 1 4 5

An equivalent information of the above movement can be expressed by N(j, w) as follows

(See Figure 3-1).

j 0 1 2 3 4 5 6 7

N(j,w) 2 5 5 5 6 7 7 7

N(2, w) = 5
- - - - - - - - - -

I
I,
I
II
I

-21
'-dl

M(5,w)=l

Figure 3-1: A regular movement driven by a realized w of W

Given installation j, we find N(j, w) by observing the farthest installation whose movement

leads to installation j or any downstream installation of j. O

Let us denote by Mn(i, W) the n-period random movement function that represents the

location (an installation) after n regular movements of the outstanding orders at installation

i. Formally, Mil(i, W) = M(i, W) and Mn(i, W) = M(Mn-1 (i, W), W). We denote the

stochastic lead time of an order at installation i by l(i, W) = min{n : Mn(i, W) = 0, n > 1}.

In particular, 1 (K, W) is the regular delivery lead time. Note that the minimum regular

delivery lead time is 1 in our model. For convenience, we define L(x) = E[r(x - D)], where

r(.) is a convex holding/backlogging cost function, and let Qi(W) denote N(M(Kf, W) -

i, W). Let the echelon stock x' be the sum of the inventory from installation 0 to installation

i: x2i = E•=o vj, and let 6( = (0, 0, - -- , 0) be a vector containing i zeros.

If there is no expediting, the state after a regular movement is a random vector (xN(o,w)

D, xN(1,W ) - xN(o,w),.. . , xQI (W ) - xQ2 (W) xQo(W) - xQ'(W) + u, oR-M(Rw)), where u is

the regular ordering amount. Let ei denote the expediting amount from installation i.

· · · · · · · · ·



Including expediting, the next state NS is

NS =(xN(OW) + ei - D, xN(1,W) - XN(O,W) -

R

E
i=N(O,W)+I

N(i,W)

xN(i,W) - xN(i - 1,W) - E ei, ,

i=N(i-1,W)+1

Q'(W)
xQl(W) - XQ 2(W) -_ ei,xQO(W) - XQ'(W) + u -

i=Q2(W)+1

Qo(W)

S , OK-M('W))
i=Q' (W)+1

Figure 3-2 illustrates the inventory at installation i after a regular movement xN(i,W) -

xN(i-1,W) - (i ,W)+ ei. The complete optimality equation of the dynamic program

reads

Jt(voV1, v- -- , v) =

k k

min { diei + L(x + Eei) + cu + E[Jt+i(NS)]},U,el," Ie/
O<eR<u+vR i=1 i=1
O<ei<v

i=1,--l,K-1

where Jt is the cost-to-go at the beginning of time period t. Also, JT+1 (vo, vi, '- , VA) can

be any convex function of xK. Solving this optimality equation directly is difficult because

of its complexity. In order to analyze (3.1), we need to introduce further assumptions.

Expediting

0

Figure 3-2: The next state transition

In the next section, we characterize a class of systems for which (3.1) has an alternative

form that leads to tractable policies.

N(1,W)

i=N(O,W)+1

(3.1)
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3.3 Sequential Systems

The following realistic assumption requires that orders almost surely reach installation 0.

Assumption 2 (Eventual delivery of regular orders). Prob[U'=l{w: M"(i,w)

0}] = 1 for every installation i.

In terms of the finite state Markov Chain theory, Assumption 2 requires that installation

0 is the only recurrent installation, and all the other installations are transient installations.

In order to analyze the system, we need the following assumption.

Assumption 3 (Nondecreasing time value of delayed expediting). di-E[dM(i,w)] >

di-1 - E[dM(i1,W)j for all i, where do = 0.

Consider a unit at installation i. If we expedite it at the current time period, it costs

di. If we defer expediting by a time period, the expected cost of expediting is E[dM(i,w)].

Therefore, di - E[dM(i,w)] is the time value of delayed expediting of a unit at installation i

by a time period. Assumption 3 implies that this time value of expediting does not decrease

as installation number i increases. Next, we define a class of systems, in which all three

assumptions hold.

Sequential systems A system is sequential if Assumptions 1, 2, and 3 hold.

If the lead time is deterministic, then the definition above reduces to the definition of

the sequential systems in Chapter 2. The following theorem shows a crucial property of

sequential systems.

Theorem 4. Under the optimal control of regular ordering and expediting, sequential sys-

tems preserve the sequence of orders in time, i.e., the no cross-over property holds.

Assumption 1 guarantees that regular orders with no expediting do not cross in time.

When expediting is introduced, in general, orders might easily cross even under Assumption

1. Theorem 4 states that this is not the case for sequential systems. To prove this, we require

the following lemma whose proof is in Appendix.

Lemma 6. In sequential systems, di-d dj E[dMn(i,w) -dMn(j,w)], for any i and j, i > j,

and n > 1.



Proof of Theorem 4. Since expediting is instantaneous, expediting multiple units at a time

period consists of multiple decisions of expediting a unit from a certain installation, until

there is no further need of expediting. Consider two nonempty installations i and j, i > j,

and let us denote a unit in installation i as ul and a unit in installation j as U2 . Now,

consider the following two actions.

Action 1: Expedite ul in the current time period.

Action 2: Expedite u2 in the current time period

Consider also the following replicating strategy.

1. Set a new index k to be j at the current time period.

2. If the realized value of M(k, W) is 0, expedite ul in the subsequent time period and

terminate the strategy.

3. Otherwise, update k with the realized value of M(k, W), i.e., k +- M(k, W), and

proceed to the next time period. Go to step 2.

We show that the replicating strategy in combination with Action 2 costs no more, but

replicates the effect of Action 1. Let w be a realized movement pattern of W. Action 1 has

the effect of raising the inventory at the manufacturing facility by a unit for 1(i, w) time

periods compared to no action. Similarly, Action 2 raises inventory for l(j, w) time periods.

The described strategy is to expedite ul at l(j, w) time periods later than the current

time period. Thus the strategy raises the inventory for l(M1(j,w)(i,w),w) time periods,

since the location of ul is installation M(j,w) (i, w) at the moment of its expediting. From

the definition of the lead time, and due to the fact that after l(j, w) time periods there are

l(Ml(j(w)(i, w), w) time periods for ul to arrive, we have l(i, w) = l(j, w)+1l(Ml(jw)(i, w), w),

for i > j. Therefore Action 2 with the described strategy replicates the effect of Action 1.

However, for sequential systems the associated cost is different between Action 1 and

the combination of Action 2 and the replicating strategy. The cost of Action 1 is di, while

the expected cost of Action 2 with the replicating strategy is dj + E[dMI(j,w)(i,w)]. Since

Lemma 6 holds for any n > 0, the following

di - dj > E[dMl(J,w)(iw) - dMlJ,w)(jw)] = E[dM(Jw)(iw) - do] = E[dMi(j,w)(i,w)



holds. Therefore, Action 1 costs more than or equal to the combination of Action 2 and

the replicating strategy. It implies that any strategies that start with Action 1 cannot be

optimal. In other words, if expediting is necessary in sequential systems, it is optimal to

expedite from the nonempty installation that is closest to the manufacturing facility. Thus,

for sequential systems orders preserve sequence in time under an optimal expediting policy,

which completes the proof. O

For 1 < j 5 K, let Jj(-) be the optimal cost-to-go that can be achieved by a restricted

control space, in which expediting from installations j + 1, j + 2, -... , K in time period t

is not allowed. Note that the control space for Jtj is restricted only in time period t, but

unrestricted after time period t. Note also that JK (.) = Jt(-). We utilize J' (.) with respect

to a fictitious state (xi- 1 , oi-1, vi,... , vf), where installation 0 has inventory xi- 1, and

installations 1, 2,--... , i - 1 are empty. The optimality equation for Jt (xi- , o i- 1, vi, • , VR),

1 < i < K - 1, is given by

JP (xi-  i-  i, 
I vmm {dmyi + L(yi) - dix i- - cx + cz, vi, " ,v ) --Xi-1<Y,<xi,z>_xK

+ E[Jt+l(yi - D, oM(iw)-1 , xN (M (i,W ),W) _- Yi, xN(M(i,W)+1,W) - XN(M(i,W),W) (3.2)

... , xN(M(K,W)-1,W) - xN(M(k,W)-2,W), z - xN(M(K,W)-1,W), •k-M(!,w),

where yi and z are decision variables: yi - xi-1 is the expediting amount from installation

i and z - xK is the regular ordering amount. For i = K, the constraints in (3.2) become

xi-1 < yi < z, z > xK in order to allow expediting regular orders that have just been

placed. Note that the equation should be read appropriately, if M(i, w) = 0 for a realized

value w of W.

By Theorem 4, in sequential systems expediting orders from installation i is never op-

timal before expediting all the outstanding orders at the downstream installation of instal-

lation i. With this fact, an alternative optimality equation equivalent to (3.1) is given by



Jt (vo, V1, v2, . . . , vf) - min{ j (xO, Vl, V2,"", vk),

divl + J2 (x1, 0,v 2,"" ,vf),

divi + d2v2 + J(x 2, 0, O, v3," , v),

, (3.3)
K-1

S divi + k(R1,o- If
R

divi + Jt(xK, K),}.
i=1

The first term J,(.) corresponds to expediting partially or fully from only installation 1,

the second term d1vl + J2(.) captures expediting everything from installation 1, expediting

partially or fully from installation 2, and no expediting beyond, and so forth. The eventual

optimal decisions for regular ordering and expediting are determined by the minimum term

in (3.3) since the system is sequential. If the j-th term achieves the minimum in (3.3), the

optimal decision for expediting is to expedite all outstanding orders in installations 1, 2,

S.. , j - 1 and to expedite yj - x - 1 from installation j and nothing beyond installation j,

where yj - x - 1 is derived from the j-th term. The optimal regular ordering decision is to

place a regular order in the amount z - xK that is determined in the j-th term.

Characterization of Sequential Systems

In this subsection, we discuss how to identify sequential systems. We derive first a necessary

condition and then a sufficient condition for a system to be sequential. The following lemma,

whose proof is given in Appendix, is used later.

Lemma 7. Under Assumption 2, the following holds:

(a) limn-, Prob[Mn(i, W) = 0] = 1 for all i,

(b) limn•_o Prob[Mn(i, W) = k] = 0, k = 0 for all i.

The expediting costs should be nondecreasing in order for a system to be sequential as

the next proposition states.

Proposition 1. Sequential systems satisfy di > di- 1, for all i.



Proof. Using j = i - 1 in Lemma 6 results in di - di- 1 > E[dMn(i,W) - dMn(i_1,w)]. On

the other hand, E[dMn(i,w)] = Ek dkProb[Mn(i, W) = k] = Eko0 dkProb[Mn(i, W) =

k] + doProb[Mn(i, W) = 0]. By taking limn-wo and applying Lemma 7 we get

lim E[dMn(i,w)] = do = 0.
n--+oo

Therefore, di - di- 1 > 0 for all i. O

Next we identify a sufficient condition.

Proposition 2. Suppose the followings are true for all i and w E W:

* di - di- 1 > di- 1 - di- 2 , and

* E[M(i, W) - M(i - 1, W)] _ 1.

Then, the system is sequential.

Proof. Because of Assumption 1, M(i, w) - M(i - 1, w) is a nonnegative integer. Recall that

orders do not go backward, i.e., M(i, W) <5 i. The first condition in the proposition implies

dM(i,w) - dM(i-1,,w) • (M(i, w) - M(i - 1, w))(di - d- 1). Therefore, by taking expectations

on both sides, we have E[dM(i,w) - dM(i-1,w)] 5 E[(M(i, W) - M(i - 1, W))(di - di- 1 )] 5

di - di-1, which is Assumption 3. O

We call the first property in Proposition 2 convexity since it implies that the expediting

cost differences are convex. Proposition 2 gives only sufficient conditions. We provide an

example of a system that is sequential but nevertheless is not convex. In other words,

sequential systems also include systems with non-convex expediting costs.

Example Consider a 5 installation system including the manufacturer and the supplier

with four movement patterns: w1 , w2 , W3, and w4. More specifically,

* wi: normal mode with probability Pl such that M(i, wl) = i - 1 for i = 1, 2, 3, 4,

* w2: with probability P2 such that M(i, w 2) = i - 1 for i = 1, 3,4, and M(2, w2 ) = 0,

* w 3 : with probability p3 such that M(i, w 3 ) = i - 1 for i = 1, 2,4, and M(3, w 3 ) = 1,

and



* w 4 : with probability p4 such that M(i, w4) = i - 1 for i = 1, 2,3, and M(4, w 4) - 2,

as shown in Figure 3-3. The associated probability distribution is Pl = I, P2 = P3 P 3

0 0 O 0 0 0 0 0 0 O

4 3 2 1 0 4 3 2 1 0
W =w W =w

0 0 0 0 0 0 0 0 0 0

4 3 2 1 0 4 3 2 1 0
W = W3 W =w 4

Figure 3-3: The movement patterns

and p4 = . The system is clearly non-convex if the expediting costs are dl = 10, d2 =

19, d3 = 27, and d4 = 34. To check that the system is sequential, let us compute di -

E[dM(i,w)] for i = 1,2,3, and 4. We have d, - E[dM(1,w)] = di - 0 10, d2 - E[dM(2,w) =

d2 -pid -p 2do -p 3d -p 4di = 10, d3 - E[dM(3,w)] - d3 -pid 2 -p 2d2 -p 3dl -P 4d2 = 10.7,

and d4 - E[dM(4 ,w)] = d4 - pid 3 - p2 d3 - p3 d3 - p4 d2 = 11. Since di - E[dM(i,w)] >

di-1 - E[dM(i-1,w)] for all i, the system is sequential. O

3.4 Optimal Policies for Sequential Systems

In this section, we focus on identifying optimal policies for sequential systems.

3.4.1 Preliminaries

We frequently use Lemma 2, which is reintroduced as the following lemma just for conve-

mnience.

Lemma 8 (Lemma 2). Let f be convex and have a finite minimizer on R. Let y* =

argmin f (x). Then, mmin f(x) = a+g(xl)+h(x2), where a = f(y*), and penalty functions
X1 <x<_X2

g(xi) and h(x 2) are

{0 x1 ~y • f(x 2 )-a X2<y*

g(x ) - 0 xl) l y* and h(x 2 ) -=2) - 2

f (xi) - a x > y* 0 x 2 > y*



For a nondecreasing convex f, we define a = 0, g(x) = f(x), and h(x) = 0. On the other

hand, for a nonincreasing convex f, we define a = 0, g(x) = 0, and h(x) = f(x).

In Lemma 8, g is nondecreasing convex, while h is nonincreasing convex. The following

lemma is an extension of Lemma 8, and identical to Part (c) of Lemma 3.

Lemma 9. Let fi be convex and b c R. We have min {fi(x) + f2(y)} a + gi(b) +
b<x<y

min{hi(y) + f2(y)}, where a1 , h1 , and g, are defined as in Lemma 8 with respect to fl.
b<y

The following functions are required later in the derivation of the optimal policy. For

1 < i < K and t < T, let us recursively define

fi,t(Y) = diy + L(y) + E[SM(i,W),t+l(Y - D)], (3.4)
s9os

it = ai,t + E[SM(i,w),t+1],

S?(x) = git(x) - dix, (3.5)
S? s

,5t(x) = hi,t(x) - L(x) + E[SM(i,w),t+I(x - D)],

where S S() = St 0 for all t, and S = ST+1 (x) ST+1(x) = 0 for all i.
where SOO, ~~~~~~i,T+1--Sl, 1()=STI(X

Here, ai,t, gi,t, and hi,t are defined according to Lemma 8 with respect to fi,t. Starting from

the last time period T, functions fi,t and S3, can be obtained recursively. In particular,

from (3.4) we can compute fi,T, then from (3.5) we obtain S 1 for all i. Next we compute

fi,T-1 from (3.4), and in turn, S%1 from (3.5) for all i. We repeat this procedure to define

all fi,t and St. For S and S,? we use a similar procedure. It is easy to check for all i and

t that fi,t(-) is convex for sequential systems, and S.9t + Sit(x) + St(x) = 0.

Let us denote by y*<t a minimizer of fi,t(x): y*<t E arg min fi,t(x). The following theorem

is an important property of fi,t for sequential systems. The proof can be found in Appendix.

Theorem 5. For sequential systems we have yi*t > Y*+,t for all i and t.

The lemma shown below is used later in the derivation of the optimal policy. The proof

is in Appendix.

Lemma 10. For sequential systems, function gi,t(x) + SM(i,w),t(x) is convex for all i and

t, and for all w C W.



3.4.2 Optimal Policies

The optimal policy for sequential systems is highly structured and given in the following

theorem.

Theorem 6. For sequential systems, the following policy is optimal.

a. Optimal expediting is determined by a set of base stock levels. Each base stock level

corresponds to Yi*t for expediting from installation i at time t. The expediting policy

compares x i - 1 and Yi*t as follows.

* If x i - 1 < Yit, then we expedite min{x i - xi-,y t - xi- 1} from installation i.

* Otherwise, if x - 1 > y*,t, we do not expedite anything from installation i.

b. The optimal regular ordering policy is the base stock policy with respect to inventory

position xK. The base stock level for regular ordering is zt = argmin{hkt(z) + cz +

E[Ht+l (z - D) + S (k,W),t+1(z - D)] } for all i and t, where Ht(x) is convex and followsM2

the recursive equation Ht(x) min{hR,t(z) + cz + E[Ht+1 (z - D) +S(z -
Z•X

D)]} - S, t (x) -cx, and HT+ (x) = JT+l (x, OK). We place a regular order in the amount

of max(0, z4 - xK) at time period t.

To better understand the policy, we consider the following illustrative example consisting

of five installations. There are three movement patterns: w1, w2, and w 3 with probabilities

P1, P2, and 1 - pl - p2, respectively. More specifically,

* wI: M(i, wi) = i - 1 for i = 1,2,3,4,

* w2: M(i, w2 ) = i - 1 for i = 1, 3, and M(2, w2) = 0 and M(4, w2) = 2, and

* w3: M(i,w3)=i- 1 for i= 2,3, and M(1,w 3)= 1 andM(4,w 3)=4

as shown in Figure 3-4. Suppose that the regular ordering base stock level is z* = 210 and

0 0 0 0 0 0 0 0 0 0 O O O

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
W = w1  W=w, W = w3

Figure 3-4: The movement patterns

the expediting base stock levels are y* = 20, y* = 50, y=*- 85, and y = 110. In the following

table, we summarize the mechanics of the optimal policy for a certain time period.



Installation i 4 (Suppl.) 3 2 1 0 (Manuf.)

vi (xi) before decisions 60 (185) 45 (125) 50 (80) 40 (30) -10 (-10)

Regular Ordering max(z* - x4, 0) 25

Expediting max(min(yi* - xi- 1, vi), 0) 0 0 50 40

Realized demand D 65

vi (xi) after decisions and demand 85 (145) 45 (60) 0 (15) 0 (15) 15 (15)

vi if the movement pattern W = Wi 0 85 45 0 15

vi if the movement pattern W = w2 0 0 130 0 15

vi if the movement pattern W = w3 85 0 45 0 15

In order to prove Theorem 6, we need the following proposition, which is proved concur-

rently with Theorem 6 within an induction loop in the subsequent proof. For convenience,

we refer the items in the following proposition as (c) and (d).

Proposition 3. For sequential systems, the following is true

c. For every i = 1,... ,k, O < e < vi, and t > t, we have

t - 1, vi, vi+1,* ,vf) - Jt(x i-l + e, vi -e, vi+1,. , vR)
sP 11 +i-1

= it+ Si (xz1) + St(xi +e).

d. Function SM(k,w),t(x) + He(x) is convex for all t and w E W.

Because x' is nondecreasing in i and yv, is nonincreasing in i, by Theorem 5, there exists

at most one i* E {1, 2,-..- , k} such that xi*- 1 < yi*,t and xi* > Y*+l,t. Theorem 6 states

that we expedite everything up to installation i* - 1, min{xi* - xi*-1 y*,t - xi*-1} from

installation i*, and nothing beyond installation i*. If such an i* does not exist, then we do

not expedite at all, or we expedite everything up to installation K.

Proof of Theorem 6 and Proposition 3. We use induction. In the base case t = T + 1, the

optimal expediting and regular ordering policies are null. We can safely set the base stock

levels for expediting and regular ordering at negative infinity. Also, part (c) and (d) trivially

hold when t = T + 1. In the proof, we also show that He (x) = Jr (x, OK) for all t.

Now we continue with the induction step. Let us assume that on and after time t + 1 <

T + 1, all parts in the theorem and proposition hold, and Ht+1(x) = Jt+1(x, 6K), and it



is convex. Now we need to show the results for time period t. As the first step, we study

Jt(x, OK) in order to show Ht(x) = Jt(x, PK) and that it is convex. In state (x, O0), at the

beginning of time period t we place a regular order of z - x units and expedite YR - x units

out of the just placed regular order. Therefore, we have

J(x, OK) = minm {dkyk + L(yR) + cz + E[Jt+(yk - D, M(' Wkw)-, z - yR, Ok-M(RKw))]}

x:_yR•<z

- dRx - cx

= min {dRyR + L(yk) + cz + E[J+I+(z - D, OR) + S ,(R,),t+1
x<yf< <_z MKW,

+ S1M(R,w),t+1(YR - D) + S2M(R,w),t+1 (z - D)]} - dRx - cx

= {fmR,t(Y,) + cz + E[Jt+i(z - D, (K) + Su(R,W),t+l(Z - D)]}

+ E[SM(R,w),t+1] - dRx - cx.

Note that the induction hypothesis on part (c) at t + 1 is used in the above derivation. By

using Lemma 9, we have

Jt(x, 0K) = minhhk,t(z) + cz + E[Jt+i (z - D, R) + SM(R,w),t+1 (z - D)]}
z>x (3.6)

± ak,t + E[SM(Rw),t+1 + gj(x) - dRx - cx.

Note that S + S+ ,t(x) + S• (x) = 0 and Ht+i(x) = Jt+1(x, 6k) from the induction

hypothesis. We have

Jt(x, K) = min{hk,t(z) + cz + E[Ht+i (z - D) + S• W)t+(z - D)]} - SKt(x) - cx.

Since this coincides with the definition of Ht (x), we conclude that Ht (x) = Jt (x, OK).

Furthermore, from the induction hypothesis on part (d) the right-hand side of (3.6) is

convex, hence Ht(x) is convex.

Let us now prove part (d). By adding SM(R,w),t(x) to both sides of (3.6), we get

SM(R,w),t(x) + Jt(x, 0 K) = min{hk,t(z) + cz + E[Jt+1 (z - D, K) + SM(R,w),t+1(z - D)]}

+ ak,t + E (,w),t+1 + SM(kw),t(x) + g,(x) - dx - cx,



which is convex because SM(R,w),t(x) + gK,t(x) is convex by Lemma 10 and E[Jt+l(z -

D, OK) + SM(R,w),t+I (z - D)] is convex by the induction hypothesis. This completes the

proof of part (d).

To prove parts (a) and (b), we apply part (c) to

Jt+l (yi - D, OM(i, w ) - 1, xN( M (i,w),w) _ Vi, xN(M(i,w)+1,w) - xN(M(i,w),w) ' )

in (3.2) for i < K with a realized value w of W on and after time period t + 1 repeatedly

to obtain

Jt+l (Yi - D, OM(i,w)-1 xN(M(i,w),w) - Yi, XN(M(iw)+1,w) - xN(M(i,w),w)
' )

Q1 ,2 (iw)t (N(M(i,w),w) D

SSM(iw),t+ + S(iw)t+l(Yi - D) + S(i,w),t+l(xN(M(iw)w) - D)

+ Jt+ (xN(M(iw),w) - D, 0 M(i,w), xN(M(i,w)+1,w) - xN(M(i,w),w) ... )

O +(),S2 D+ (iW)t+l(XN(M(iw),w) D)
= SOM(iw),t+l + S1 (iw),t+l(Yi- D)+ SD(iw),t+l)D

M(K,w)-1
+ IS +O 1 (XN(j-I,w) Njw

,t+l SJ,t+ 1((l ) - D)+ St+i(xN( j 'w) - D)}

j=M(i,w)+l

+ Jt+ (XN(M(Kw)-1,w) - D, OM(K,w)-1 z- x N(M(K,w)-1,w) ,oK-M(Kfw))
SO +,S2 (iW'• gX(M(i,w),w) D

SM(i,w),t+l + S (iw),t+(yi - D) + SM(i,w),t+lXN(M(iw)w) - D)

M(R',w)-1
+ {St+1 + SJ,tI(xN(j - l 'w) - D) + St+(XN(j 'w) - D)}

j=M(i,w)+l

+ SM(R, w)t+1 + SM(Rw)t+1( N( M (x w )- w ) - D) + M(Kw),t+l(z - D)

+ J+l1 (z - D, OK).

Let us gather in Q all of the terms in the above equation that only contain constants and

state variables not involving any decision variables. Then we can rewrite

Jt+ (Vi - D, OM(i, w ) - 1, XN(M(i,w),w) - Yi, xN(M(iw)+1,w) - xN(M(i,w),w) ... )

SSIM(i,w),t+l (yi - D) + SM(kw),t+l (z - D) + Jt+ (z - D, ) + Q.



Substituting this into (3.2) and w for W, we obtain

JI (Xi-1 I i-1, i, " .. , vk)

= mmin {diyi + L(yi) - dix i- 1 - cxK + cz
Xi-1<y•<xi,z>xK

+ E[SM1 (,w),t+(yi - D) + (z- D) + Jt+l(z - D, Of) + Q]} (3.7)

2
= min fi,t(Yi) + cz + E[SM(R,w),t+I(z - D) + Jt+i(z - D, 0 K)]}

Xi-1 -<Yi <
x i

,
z > x K

+ E[Q] - dix i- 1 - cxK

for i < fK. When i = K, we have

JmKK vk) mmn {dRyk +L(yR) - dkx - 1 - cxK + cz
xK-

1 
•y - z z2'K

+ E[Jt+1(yR - D, OM(K',w)-, z - Y.,R-M(K,'w))}

= _ mm {dRyR + L(yR) - dRxK - 1 - cx + Cz
x

K -
1<YR<z,z>xK

+ E[Jt+l(z - D,Ok) + S•0 ,W),t++ S(R w),t+(yR - D) (3.8)

+ SM(k,w),t+(z - D)]}

= mmin _{fR,t(YR) + cz + E[Jt+l(z - D,Ok)

K-1 0y zz- K

+ SM( ,W),t+I(Z - D)]} + E[SM(R,w),t+I] - dRx - 1 - CX

By applying Lemma 9, we have

Jg(K -I K-1, V!v) = zmi {hRt(z) + cz + E[Jt+l (z - D, 6K) + SM(k,w),t+ 1(z - D)]}

+ a,t + E[SM(R,w),t+1] + g,t(xK -l) - dxK- 1 _ cx

(3.9)

We now consider part (a) of the statement. From (3.7) for i < k the optimal expediting

quantity is determined by

mmin { fi,t (yi)},
xi-1•<Yi x

i

and for i = K from (3.8) by

min {f g,t((y)}.Xg- 1 <_yR_<,maxjxf',z t* I



Because fi,t(yi) is convex for all i, this states that the base stock policy is optimal for

expediting for every i. This completes the proof of part (a).

Next, we show part (b) of the theorem using (3.3). Note that the optimal regular

ordering is determined by Jt(.), 1 < i < K or Jt(xK, OK) which corresponds to the minimum

term in (3.3). Now we show that all of these lead to the same optimal decision. From (3.6)

and (3.9), the optimal regular ordering quantity for JK(xK - l, K-1, vk) and Jt (xR , R) is

determined by

minrI{hk,t(z) + cz + E[Jt+1(z - D, KOR ) + SM(Rw),t+(z - D)}. (3.10)

On the other hand, if the minimum term is attained at i < K, the optimal regular

ordering quantity is determined from (3.7) by

min {cz + E[SM(kw),t+ (z - D) + Jt+l(z - D, K)]}. (3.11)

Note that hR,t(z) is nonincreasing convex, and hkR,t(z) = 0 for z > yRt(C arg min{fR,t(y)}).

Therefore, if z A Yt, then (3.10) and (3.11) lead to the same minimizer z4. If z* < y*,t

from Theorem 5, we have z4 < yi*t for all i, which results in expediting everything in

the supply chain including the fresh regular order at the current time period by part (a).

In this case, (3.10) determines the regular ordering quantity since we are expediting from

the supplier. As a result, (3.10) always determines the optimal regular ordering. Because

Ht+l (z - D) = Jt+l (z - D, OK) and Ht+l (z - D) + SM(,w),t+1(z - D) is convex for any

realization w of W by part (d), the unconstrained minimizer z* of (3.10) is well defined,

and (3.10) states that the optimal regular ordering policy, which is the base stock policy

with respect to xK. Hence part (b) is proved.

Finally, let us prove part (c). At time period t, we know that parts (a), (b), and (d)

hold. Also, from the induction hypothesis, we assume (c) holds on and after time period

t + 1. We show in Appendix that (c) holds at time period t using all these results. Once

part (c) is proved at time t with all the induction hypothesis, the induction step of the

entire proof is completed. O



3.5 Results on the Expediting Base Stock Levels of Sequen-

tial Systems

In this section, we provide an insightful result on the variation of the magnitude of the

expediting base stock levels as the expediting cost varies. As expediting cost varies, we

expect the expediting base stock levels to also vary. For example, as di increases, yf,t should

be nonincreasing to compensate for the higher cost of expediting. However, this increment

in di might increase the need for expediting from elsewhere. Indeed, we show that the

expediting base stock levels are nondecreasing for installations beyond installation i as di

increases. On the other hand, the variation in di does not effect the base stock levels of the

downstream installations.

The results in this section are applicable only when derivatives and integrals in expec-

tations are interchangeable. If the holding and backlogging cost functions have bounded

derivatives, all functions under consideration have this interchangeability property, since

all functions considered are Lipschitz. We assume in this section that this is the case. By

Lemma 3.2 in Glasserman and Tayur (1995), derivatives and integrals in expectations are

interchangeable. The main result of this section follows.

Theorem 7. For a sequential system we have

S<0 and '> 0
Odi Odj

for j <i.

The following diagram illustrates this theorem.

yi-2 no change

y*- no change

as d, 1" y*
Yil

yi+2
yS*+2

Sequential systems have monotonic base stock levels as in Figure 3-5. As di increases, y*



Base stock levels for installations Yi-2

beyond i become flatter no change
t-- • -x Yi-1/r

, no change

y+ i

di: expediting cost per
unit from installation i

Figure 3-5: Directional sensitivity of base stock levels

decreases because higher di directly discourages expediting from installation i. However,

the reduced y* results in less safety stock in the manufacturing facility, which again calls

for more expediting from beyond installation i, and hence increased yý for j > i. The fact

that yt for t < i - 1 do not change follows from their definition since in order to derive

them, di is not needed. We prove this in several steps using the following two lemmas.

Lemma 11. In sequential systems, for i > j > 1,

-1 < < 0.- d3 Oy -&dy &y

Proof. We use induction. Note that S1,T(y) = gi,T(y) - diy and fi,T(Y) = diy + L(y). In
OS~T~o 8S•,T(Y) 1,

the base case we have -1 s 0 since when y y* and j = i, - 1,
8 aSil T(Y) = d O. 

d

and otherwise -- = 0.

Assume that -1 - s + (y ) < 0 for a given i and all j such that i > j > 1. We have

afit(y) = di + + E[ S1 (iw),t+-(y - D)].
ay Oy ay(y

When y y*,t, we have S l4(y) = -diy since gi,t(y) = 0. Therefore Z -T( = 0 for

j < i, and s,(y) -1 for i. On the other hand, when y > yt, we have

j i ad --3 --- -- 1 for j = i. On the other hand, when y' > Ytwe have

v

i -4



S't(y) = fi,t(y) - diy - ai,t. For j < i, since M(i, W) < i by definition, it follows that

-1 < a Sy)-dj ay = E[•-d SM(i,W),t+l(y - D)] < 0.

Note that we interchanged integrals and derivatives on several occasions.

Lemma 12. In sequential systems, for all i we have

0 fit(y) > 0
Odi Oy

< Of -Ž0.
cdlj Oy

and for i > j > 1,

Proof. From Lemma 11 for all j < i we obtain

-1 < E[9- 09- SM(iw),t+1(y - D)] < 0.

If j = i, we have

a ofi,t(y)
adi ay S1+ E[ 1

8dj -0y M(', w), t+ 1 (

and, otherwise if j < i, we have

a aofi,(y) E[ Od SM(i,W),t+l (Y

This establishes the proof.

Proof of Theorem 7. First it is obvious that changes in di do not affect fj,t for j = 1, 2, ...i

for all t since M(k, W) < k for all k. From Lemma 12, we have - ot(y) > 0, and this

implies - _< 0 for all i. Similarly, -< 0 implies > 0, for j < i by Lemma

17, which is in Appendix. The proof is complete.

- D)] > 0,

- D)] < 0.



Chapter 4

Non-Sequential Systems

4.1 Introduction

So far we have considered sequential systems. For sequential systems, the optimal policy for

expediting and regular ordering is well structured. This is basically because of the existence

of an alternative optimality equation for sequential systems.

On the other hand, if a system is not sequential, the structure of the optimal policies

is complex, and analytical results are hard to obtain. Previous research on stochastic

lead time models, which includes Kaplan (1970b), Nahmias (1979), and Ehrhardt (1984),

assumes that the orders do not cross in time. If order crossing does occur, the resulting

policy is complex. However, we cannot avoid order crossing in time in our model, if the

expediting cost structure is not sequential. In other words, we cannot guarantee that it

is optimal to expedite the outstanding orders whose delivery time to the manufacturing

facility is shorter.

Consider the following counter intuitive example involving a supply chain system with

only two time periods. There are a supplier, an intermediate installation, and a manu-

facturing facility. For simplicity, let us assume that the demand is deterministic in both

time periods; 15 in period 1, and 25 in period 2. Let us also assume that the penalty cost

component of the holding/backlogging cost is much larger than the procurement cost and

the expediting cost. The expediting cost (di) from the intermediate installation is 2, and

from the manufacturing facility (d2) is 3. At the beginning of period 1, the initial inventory

is 10 units at the manufacturing facility, and 10 at the intermediate installation.

There are two options. The first one is to place a regular order of 20 units at time 1,



expedite 5 units from the intermediate installation at time 1, and expedite 20 units from

the intermediate installation at time 2. The second option is to place a regular order of 20

units at time 1, expedite 5 units from the supplier at time 1, and expedite 15 units from the

intermediate installation at time 2. The total cost of the first option is 5 - 2 + 20 -2 + 20c =

50 + 20c, and of the second option is 5 - 3 + 15 - 2 + 20c = 45 + 20c, where c is the per unit

procurement cost. Therefore, even though d2 > dl, it is better to use the more expensive

expediting option at time 1.

The main contribution of this chapter is that we propose a heuristic policy, the extended

heuristic, for nonsequential systems that do not allow simple optimal policies. By means of

a computational study, we find that the extended heuristic achieves a local optimum for a

much wider class of systems that includes all sequential systems. In this chapter, we follow

notations from Chapter 2 though the heuristic policy also applies to the stochastic lead

time models.

4.2 The Extended Heuristic for Nonsequential Systems

We discuss nonsequential systems through a three-installation system consisting of a sup-

plier, a manufacturing facility, and an intermediate installation between them. The lead

time of regular orders is deterministic of one time period between consecutive installations.

Two expediting options are available; one is to expedite from the intermediate installation

(installation 1) at d, per unit, and the other one is to expedite from the supplier (instal-

lation 2) at the per unit cost of d2. Though this three-installation system is simple, it is

nontrivial and shares complex features with general length nonsequential systems, hence

its analytical results are hard to obtain. After all, this three-installation system is a good

starting point to understand general length systems.

Instead of trying to derive optimal policies, which is a daunting task due to the com-

plexity and state dependency, we confine our interest to the set of all base stock policies.

We attempt to find the best base stock levels since base stock policies are particulary useful

due to their simple structure. We next propose a heuristic policy that gives base stock levels

for nonsequential systems and evaluate its performance numerically using three-installation

systems.



The Extended Heuristic The extended heuristic is to apply the base stock policies

with the base stock levels as described in Theorem 3 to nonsequential systems. Note that

the definitions of fi,k and Sk do not require systems to be sequential, hence the extended

heuristic is well defined. Also, if the system is sequential, the extended heuristic finds

an optimal control. Note that the extended heuristic is also applicable to general length

systems.

In order to evaluate the performance of the extended heuristic, we use the following

derivative method introduced in Glasserman and Tayur (1995).

The Derivative Method The derivative method is a numerical method to find the

sensitivity of the cost-to-go under the base stock policies as the base stock levels vary. The

method can be used to find locally optimal base stock levels within the set of all base stock

policies using simulation and optimization. Here we briefly explain the procedure of the

derivative method customized to our three-installation systems.

Step 1. Set the initial base stock levels: yi, y2, and z.

Step 2. Compute the derivatives of the dynamic programming optimality equation (2.1)

with respect to the base stock levels. We get recursive equations of the derivatives

of the cost-to-go with respect to each of yi, Y2, and z.

Step 3. Evaluate the cost to go at time period 1 using simulation with the given base stock

levels. Evaluate also the derivatives of the cost-to-go at time period 1 using the

recursive equations from Step 2. The derivatives give the steepest decent direction

of the cost-to-go at time period 1.

Step 4. Search linearly along the steepest decent direction for the best step size, and then

set the new base stock levels using the result of the line search.

Step 5. Evaluate the derivatives of the cost-to-go with respect to the base stock levels from

Step 4 using simulation. If the norm of the derivatives is smaller than a given

threshold a, then terminate. Otherwise, go to Step 3.

After the termination of the derivative method, we get the locally optimal base stock

levels and the corresponding cost-to-go at time period 1. Mathematically, the derivative

method only works when derivatives and integrals in expectation are interchangeable. All



systems under consideration in this thesis have this interchangeability property. In what

follows, we always start the derivative method with the base stock levels from the extended

heuristic, hence the derivative method never produces an inferior solution. When the deriva-

tive method does not improve the initial solution, we conclude that the extended heuristic

achieves a local optimum.

Numerical Data and Results

The following are the detailed data for the numerical study: the procurement cost c = 100,

the holding cost is 50 per unit, and the backlogging cost is 150 per unit. The demand

distribution is triangular with (mean, min, max) = (50, 0, 100). Expediting cost d2 varies

from 10 to 120, while d, varies so that dj/d 2 ranges from 0.4 to 2.4.

Figure 4-1 summarizes the numerical results. The horizontal axis is dj/d 2, which mea-

sures the degree how close a system is to a sequential system. The vertical axis shows the

improvement in percentage of the cost-to-go using the base stock levels from the derivative

method over the cost-to-go of the extended heuristic. When the gap is zero, it means that

the extended heuristic produces a locally optimal solution. Different trend lines in the figure

stand for different values of d2, and within a line, d, varies. The 95% confidence interval

for any data point in the figure is within 0.05% of its value.

If dl/d 2 • 0.5, then the system is sequential, thus the extended heuristic is optimal, and

the gap is 0%. Interestingly, we observe that even though the system is nonsequential for

1 < dj/d 2 > 0.5, the extended heuristic achieves a local optimum among all the base stock

policies. As dj/d 2 increase above 1, we observe a gradual departure from local optimality

of the extended heuristic.

In the figure, we see some lines that are always close to zero regardless of the value of

dj/d 2. These lines correspond to the case of d2 being too small or too large compared to

the other costs in the system. As a result, we always expedite everything or do not use

expediting at all. In these extreme cases, the extended heuristic performs well regardless of

di /d 2-.

These numerical results show that the extended heuristic performs well for a larger

set of systems (systems with d1 /d 2 5 1) than the set of sequential systems (systems with

dj/d 2 < 0.5). For systems with 2.4 > dj/d 2 > 1, the gap is always less than 4.5%, which

is encouraging and acceptable. On the downside, the gap keeps increasing with increasing
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Figure 4-1: Improvements in cost-to-go of the derivative method with respect to the ex-

tended heuristic

dj/d 2 and it seems that it can be arbitrarily large. See Figure 4-2 for a summary.

Optimal for

sequential
systems 2A

(d, > 2d)

I Or 1.6 I ý - 2.2 2.4

Gradual dedition
from local optimal

Figure 4-2: Local optimality and limitation of the extended heuristic

Clearly this result considers only the case when there are three installations in the

system. Nevertheless, we are confident that the observation in Figure 4-2 generalizes to

systems with more than three installations. Since the extended heuristic performs well

for systems with nondecreasing expediting costs in installation number i, the extended

heuristic likely works for most of practical systems. To conclude, though sequential systems

constitute a subset of all possible systems, it gives us a valuable guide on what to use as an

64
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Local Optimal for large deviations
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appropriate heuristic for operating a supply chain with expediting options.

4.3 Intractability of an Optimal Policy and a Lower Bound

In this section, we discuss the intractability of nonsequential systems, and compute a lower

bound of the cost-to-go for such systems. Also, we introduce another heuristic, the rolling

heuristic, to compare with the extended heuristic. Recall that we considers three-installation

systems.

At time k, the inventory controller first places a regular order for z - x I units, and

decides to expedite yl - x from the intermediate installation, and y2 - x1 from the supplier,

where x < Yi < xi and x 1 < Y2 _ z. Then,

Jk(x, vl) = mX {dl(yl - x) + d2 (y2 - X1 ) + L(yl + y2 - x 1)
Y:l5X

l'<Y2 !
z (4.1)

+ c(z - X1 ) + E[Jk+l(Y2 - D,z - Y2)]}.

By rearranging and setting fi(y) = dly + L(y), we have

Jk(X, VI) = m {fI (Y1 +Y2 - x')+( d2 - dl)y2 +cz
X•Y1<X•<y2•Z

+ E[Jk+1 (y2 - D,z - y2)1} - (d2 - dl + c)x - dlx.

By applying Lemma 2, we obtain

Jk (X, Vl) = min {gl (y2 - vl) + hi(y 2) + (d2 - dl)y2 + cz
x 1 Y2 <Z (4.2)

+ E[Jk+1(y2 - D,z - Y2)]} + al - (d2 - di + c)xl - dlx.

Let the optimal decisions be Y,k (, vi) and z (x, vi). From (4.2), because vi only

appears in gl (y2 - vl) and gi is nondecreasing convex, y* , 1, v) is nondecreasing in vi,

for fixed x 1. Therefore, the optimal expediting amount from the supplier does not follow the

base stock policy with respect to the echelon inventory, and the optimal decisions cannot

be simple.

An insight is that, while the total inventory x1 is fixed, we should possibly expedite more

in order to cover the increasing backlogging cost as inventory at the intermediate installation

(vi) increases and on hand inventory at the manufacturing facility (x) decreases. Another



interesting observation is that the optimal regular ordering quantity can also depend on

v1 . As an example, consider k = T. Because JT+l = 0, z4(x 1,vi) V y*,T(X,V1) =

arg minxi <Y2{gl (Y2 - vl) +h 1 (Y2) +(d 2 - dl)y2 + cy2 }. In contrast to the previous models with

expediting such as Lawson and Porteus (2000) and Muharremoglu and Tsitsiklis (2003a),

in which regular ordering from the supplier is a function of the echelon inventory only, in

our model regular ordering explicitly depends on v, as well as echelon inventory x1 .

Next we obtain a lower bound on Jk given by (4.2). We require the lower bound to be

decomposable with respect to echelon stocks, so that its computation is easy. The following

lemma can be found in Simchi-Levi et al. (2004).

Lemma 13. For a convex function u(x), Uv(x) = u(x) - u(x - v) is nondecreasing in x

for v > 0.

Let us define Rv(x) = r(x)- r(x- v), for v > 0, where r(x) is the convex hold-

ing/backlogging function. To guarantee the lower bound, we need the following assumption.

Assumption 4. Function Rv(x) is bounded by r1 v for some constant rl > 0. Formally,

Rv(x) < rlv for every x and v.

It is easy to show by using Lemma 13 that a linear holding and backlogging cost function

r(x) = r1 (x) + + r2 (-x)+ satisfies Assumption 4. The proof of the following lemma is given

in Appendix.

Lemma 14. Under Assumption 4, we have gi (y - v) > g (y) - (d -+ rl)v for v > 0.

Let us define jLB by

jLBrxVl)= min {g(Y 2 )-(r, + dl )vl +±hl(Y2 ) + (d2 -dl)y 2 -cz

J (X, V l y x 12<z 92) - dl)Y2 + CZ

+ E[JOk+ I(Y2 - D,z - Y2)]} + al- (d2 - dl + c)x 1 - d1x

min {g (y2) + hi(Y2) + (d2 - d)Y2 +czX' _<y2•<z

+E[J•+(Y2 - D,z - y2 )1} + al -(d 2 + r + x 1 + rx.

Then, we have the following proposition, whose proof can be established by induction.

Proposition 4. jL B(x, v1 ) = pO (x) + p(x 1 ) for convex functions Pk and pk



Lemma 14 implies jLf(x, v) < Jk(x, v), therefore jkLB is a lower bound of Jk, which is

decomposable by Proposition 4. We note that a better decomposable lower bound cannot

be obtained because Lemma 14 holds with equality for sufficiently large y.

A physical interpretation generating this lower bound is to expedite the outstanding

order at the intermediate installation to the manufacturing facility without charging any

expediting cost and at the same time not to charge any holding cost for the expedited order.

The Rolling Heuristic

Next we present another reasonable heuristic, which is used for the comparison with the

extended heuristic.

The rolling heuristic: This heuristic is based on decoupling of expediting and regular or-

dering. Note that it is known that the optimal regular ordering policy without expediting

is the base stock policy with respect to the inventory position and the computations of the

base stock levels are easy because of the decomposability of the cost-to-go function.

The rolling heuristic is as follows. First, place a regular order following the conventional

regular ordering base stock policy without considering expediting. Next, we make expe-

diting decisions for all installations at the current time period by assuming that there is

no expediting option in the future. This involves solving a nonlinear optimization problem

with L decision variables. This is a convex problem regardless of the expediting cost struc-

ture, therefore it is tractable. At the next time period, we repeat the same procedure. The

detailed mathematical derivation of this heuristic policy can be found in Appendix. The

rolling heuristic provides a simple but nontrivial way of enjoying the benefits of expediting.

Note that the rolling heuristic also allows order crossing in time for its outstanding orders.

Numerical result

Here, we provide a computational study of the two heuristics and the lower bound for non-

stationary systems that consist of a supplier, a manufacturing facility, and an intermediate

installation with the general expediting cost structure. The nonstationary systems have 26

time periods with the triangular demand distribution of (min, mean, max) = (0, 100, 200).

Let us define the degree of non-sequentialness as d, -= d,k +dlk+l for k < T and d d lT

If dr < 0.5, the expediting cost structure is sequential, and otherwise it is nonsequential.If dr _< 0.5, the expediting cost structure is sequential, and otherwise it is nonsequential.



As d, increases, the system becomes more nonsequential, which means that the cost for

expediting over longer distances becomes relatively cheap.

The cost parameters are randomly generated in the following way. We first generate

procurement cost Ck for time period k based on u f(50,150), a uniform random variable on

[50,150], for all k. Then, we generate the backlogging cost as r2,k = u f(1, 2) - ck and the

holding cost as r 1,k = uf(0, 0.4) -r2,k for all k. Finally, we generate dl,k = uf(0.5, 1.5) - ck
_ ___ _____dl,

for all k, and we assign d2,k = d1 ,k+dl ,k+l if k < T and d2,T = , otherwise. After2d, d,

generating all the cost components, we normalize the expediting costs in order to compare

nonstationary systems with different dr's. Let us define SC = I T 1 ck and SD =

=1 ldl k  d2,k/2). Quantity SC is the average procurement cost and SD is the

average expediting cost per unit distance. We normalize the expediting costs so that its

average is 50% of the average procurement cost. Therefore, we scale the current expediting

cost to dl,k +- 2 ed1,k and d2,k +- d2,k

Performance of the heuristics

We use simulation to measure the performance of the two heuristics as we vary dr. Let us

define JEH (0, 0) and jRH(o, 0) to be the average expected cost over the planning horizon

with respect to the extended and the rolling heuristic at time period 1, respectively. In our

numerical study, we use 30 different randomly generated nonstationary systems for a fixed

dr to measure the average performance. Each nonstationary system is again tested with

30 different simulation runs, each one with a different demand scenario, over 26 time peri-

ods. The confidence interval (both sides) of JEH(0, 0) and JH (0,0) of each nonstationary

system is on average 5.02% of its mean with the maximum of 8.79%.

Figure 4-3 summarizes the simulation results. The plot on the left shows the relative

magnitudes of JfH(o,0 ), jRH(0 ,0 ), and JILB(0, 0) as d, increases from 0.1 to 1. The

plot implies that the extended heuristic is consistently outperforming the rolling heuristic

regardless of dr because H(00) < 100% in all cases.

Note that the extended heuristic is actually optimal for dr < 0.5. Nevertheless, in this

case its gap with respect to the lower bound is approximately 140%. We conclude that the

lower bound is weak and that we can easily attribute approximately 140% of the gap to

the lower bound. If we focus now on cases with dr > 0.5, they show a gap of the extended

heuristic of slightly more than 140% and as we have just argued, we can easily attribute
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Figure 4-3: Simulation results

most of this gap to the weak lower bound. We believe it is safe to conclude that the extended

heuristic is only a few percents from the optimal value.

The plot on the right in Figure 4-3 summarizes the total relative quantity of expedited

orders from the supplier and the intermediate installation for each heuristic. We denote

by ER E H and ER!H the ratio of total expedited amount from installation i to the total

ordered amount in the extended and the rolling heuristic, respectively. In the extended

heuristic, as the system becomes more nonsequential (as dr increases), ER E H and ER E H

are getting closer to each other, and eventually they cross, which is desirable if the system

is highly nonsequential. On the other hand, in the rolling heuristic, the cross-over between

ERRH and ER RH does not happen because the expediting decisions are myopic. Based

on this numerical study, we conclude that the extended heuristic shows good performance

even under the general expediting cost structure.

Base stock levels

Base stock levels of the extended and the rolling heuristic for a nonstationary system with

dr = 0.8 are shown in Figure 4-4. Because dr > 0.5, this system is nonsequential, and

therefore the base stock levels for expediting from the supplier are higher than for expediting

from the intermediate installation for most of the time periods in this figure. This implies

that more orders are expedited from the supplier than from the intermediate installation.

Ji RH (0, 0)

-j LB(0,o0) ....

j EH (0, 0)

JLB(0, 0)

SJIEH (0, 0)

j RJR (0, 0)
4 
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Therefore, orders may cross in time.

. 2 (EH)
•ring (EH)
ring (RH)

a,

Time period

Figure 4-4: The base stock levels

Another important observation is that the base stock levels for regular ordering in EH

are lower than those in RH because of the existence of the expediting options in EH, while

the expediting decisions are separated from the regular ordering decisions in RH. To put

it differently, less safety stock is required in EH due to the increased agility in the supply

chain by the expediting options.
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Chapter 5

Raw Materials with an Expiry

Date

5.1 Introduction

In this chapter, we consider the same model as in Chapter 3 with one difference: orders

(or raw materials) have a deterministic expiry date. The lead time is stochastic and raw

materials are good only until the expiry date. If an order is not delivered within the expiry

date, the manufacturer must expedite it. Since expediting is instantaneous, it implies that

orders always arrive at the manufacturer before the expiry date. The manufacturer could

also scrap the order, however this is not considered here. When an order is expedited just

before it expires, we call this process mandatory expediting.

Another important modeling assumption in this chapter is that we do not impose any

expiry date on delivered orders at the manufacturing facility. Once an order is delivered,

we assume that the order is processed and transformed into a nonperishable product. For

example, canned products of meats, fish, and/or produce can be applications of the model.

After canning, the expiry date becomes much longer than that of raw materials, usually

ranging up to several years. Similarly, any processed product with preservatives falls within

the application category.

Even though the model is similar, the added control constraint of mandatory expediting

brings additional complexity to the solution structure, and a careful treatment is required.

For instance, because of the expiry dates, we have to keep track of the ages of all outstanding



orders, which means many more dimensions in the state space. To cope with the increased

state space dimensionality, we have to restructure the state space. To optimally capture

control with the expiry dates, the control scheme is much more sophisticated.

Our contributions in this chapter are three-fold. First, this is the first work considering

expiry dates in a stochastic lead time setting, not to mention expediting. Second, the

optimal policy for sequential systems is obtained, and it shows a simple structure. The

optimal policy for expediting is again a variant of the base stock policy, and it identifies a

number of base stock levels. Finally, we show that if the expiry dates approach to infinity,

the optimal control policy converges to the optimal control policy with no expiry presented

in Chapter 3.

In Section 5.2, we describe the model. Sequential systems are defined in Section 5.3.

Optimal policies are derived and illustrated in Section 5.4.

Literature review for raw materials with expiry

There are two major directions of the literature that consider both the expiry dates and

the exact optimal policies. One thread considers deterministic expiry dates and the other

considers random expiry dates. Most of the random expiry models consider continuous

review, and we refer to Nahmias (1982) for a complete review. For models with deterministic

expiry dates and periodic review, there are only a few notable works. For convenience, let

us denote the expiry dates on shelf (shelf life) by m, and the lead time by 1.

The model with arbitrary deterministic m > 1 and 1 =0, where unmet demand is

backlogged, is studied by Nahmias (1975) and Fries (1975) independently. These works are

analytical, and they found that the optimal policy is complex, and depends on the initial

amount of stock at time period 1. Nahmias (1975) is reviewed in Chapter 1.

On the other hand, the model with m = 2 and arbitrary deterministic 1 > 0, where unmet

demand is lost, is studied by Williams and Patuwo (1999). Their work is computational,

and also shows that the optimal policy is complex.

All other documents consider special cases either of Nahmias (1975), Fries (1975) , or

Williams and Patuwo (1999). For approximation models, we also refer to Nahmias (1982).



5.2 Model Statement

Consider the stochastic lead time model with Assumptions 1 and 2 from Chapter 3, where

we add an additional constraint on the control space: if an order is not delivered within

R time periods, then the manufacturer must expedite it. This process is called mandatory

expediting.

Mandatory expediting happens at the end of a time period after the stochastic regular

movements occurs. Therefore, the mandatory expediting cost depends on the realization

of the regular movements at that time period. For instance, if an order about to expire

is delivered to the manufacturing facility by the regular movements, we do not have to

mandatorily expedite it. The sequence of other events in a time period is the same as in

Chapter 3, and it is shown in Figure 5-1.

Occurrence of
Arrival of regular movements Mandatory
expedited

.,, . . ..4-.;. _ expediting

S
Obse

(R

(regular/expedited)

Figure 5-1: Sequence of events

Let us call the order that has j remaining time periods until mandatory expediting as a

stage j order: stage = R-age. In an installation, there can be multiple outstanding orders

with different stages. We express the state by stage inventory level and location as

(vo,,--- , VR-1, 11, 12,7" 1 R-1

where v0 is the inventory at the manufacturing facility, vj, j > 0, is the amount of the stock

at stage j, and lj is the corresponding physical location. Note that an order at stage j can

have at most one location. If there is no order at stage j, then we assume vj = 0, 1j = 0.

Therefore, installation lj contains the order at stage j. We define 0lo = 0, lR = K, and VR as



the amount of fresh order. In Figure 5-2, we show physical installations with age bins. On

the other hand, in Figure 5-3, we show stage inventory level and location representation. For

Manufacturing
9 i• li.

R bins R-1 bins R-1 bins R-1 bins ly

Figure 5-2: Physical installations with age bins

State variables:
-drr er amount vny

0 0 0

i
-physical location li  (vo, lo) (v,, 1,) (v,, 12) (VR-1 IR-1) (VR' IR)

Figure 5-3: Stage inventory level and location representation

notational convenience, let vi = (vi, vi+1, Vi+2, ' ,VR-1) and i = (li, li+1, li+2, " ,R-1).

Then, the state can be written compactly as

(vo) V1, 11).

Note that if vi > 0 for i > 0, then li must be positive as well. Let us denote by NSi the next

state from the current state Ai = (xi - -1,6ii, 6-1, [j) for 1 < i < R- 1 under expediting

only from stage i.

5.3 Sequential Systems

Let us denote by l(lj, W) the lead time without mandatory order expediting at installation

lj. Also, let us denote by l(j, lj, W) the lead time with mandatory expediting of the order

at stage j, installation lj. Note that 1(j, lj, W) • j and 1(j, lj, W) _ 1(lj, W). The follow-

ing theorem states that expiry dates on outstanding orders work favorably with regard to

sequential systems. The added order expiry constraint puts an additional incentive to expe-

dite from the lowest nonempty installation, which is essentially the definition of sequential

systems.

Theorem 8. Sequential systems without the expiry constraint remain sequential after im-

posing expiry of any length on orders in transit.

0 0 0 3



Proof. Consider two nonempty stages i and j, i > j, which contain uniti and unitj, respec-

tively. We compare the following two strategies.

* Strategy 1: Expedite unitj from stage j, and then expedite uniti after (realized)

l(j, lj, w) time periods from the corresponding position. This strategy is feasible by

keeping track of the position of a fictitious unit in stage j, since it takes (realized)

l(j, lj, w) time periods for the fictitious unit to arrive at the manufacturing facility.

The expected cost of strategy 1 is dtij + E[dMt(,1jw)(,w)].1

* Strategy 2: Expedite uniti, and then do not do anything on unitj except mandatory

expediting.

Expected cost of strategy 2 is dj, + E[dMi,za,(jw)(w)].

In a sequential systems, we have

dj, + E[dMTu,1j,w)(IjW)] Ž dlj + E[d+Mu1,,w)( 1W)]. (5.1)

In Assumption 3 of Chapter 3, we require di - E[dM(j,w)] _ di- 1 - E[dM(_-l,w)] for all i,

where do = 0. From Lemma 6 of Chapter 3, we have di - dj > E[dMn(i,w) - dMn(j,w)], for

any i and j, i > j, and n > 1. Since M(.) is defined independently from the expiry date of

R time periods, the same result as Lemma 6 holds true. The condition (5.1) for sequential

systems is obtained by considering n = l(j, lj, w). The proof is completed. O

As a result, for 1 < j 5 R, let Jt (.) be the optimal cost-to-go that can be achieved by

a restricted control space, in which expediting from stage j + 1, j + 2,... , R in time period

t is not allowed. For a sequential system, we have

Jt (vo, V, 11) = min{ Jt'(xo l,),V

d1 vl + J (x, 0, V2, 0,12),

d11 v1 + d 2v2 j3 (x 2 2, 3 , 02 l 3), (5.2)

.. .

R-1

divi + J(xR1, 1OR )}
i=1



where

Jl (xo, 1, 11) min {di (yl -x 0 ) +c(z - xR-) + L(yi)z <,yl_<xl
z>x R - 1 (5.3)

+ E[dM(1,w)](x' - Yi) + E[Je+I(NSi)]},

and

Jt(xi-ti-1,vi, i-1, ) = min ({d(yi - x i - 1) + c(z - xRl) + L(yi)Xi- 1<_yi<_•'

z>x R- 1 (5.4)

+ E[Jt+i (NSi)]},

for i > 1.

5.4 Optimal Policies for Sequential Systems

In this section, we focus on identifying optimal policies for sequential systems with order

expiry.

5.4.1 Preliminaries

To facilitate the analysis of the system dynamics, let us define the following set of proba-

bilities:

* p(li) = prob(M(li, W) > 0), and

* p(4li, li+1) = prob(M(li, W) = 0 and M(li+I, W) > 0) for all i.

Note that p(.)'s are deterministic functions, and if li = 4i+1, then p(li, 4li+1) = 0. We first

present the following lemma.

Lemma 15. We have p(li) + p(li4, li+) = p(li+1), for all i.

Proof. By assumption, regular orders do not cross in time. Since p(li) = prob(M(li, W) >

0) = prob(M(li, W) > 0 and M(li+1 , W) > 0), we have p(l4) +p(li, li+l) = prob(M(l, W) >

0 and M(li+1 , W) > 0) + prob(M(li1, W) = 0 and M(l/+, W) > 0) = prob(M(li+l, W) > 0)

= p(li+1) for all i and any value of li. O



For ease of exposition, let M(li, W) = (M(li, W),M(li+1, W),. -. ,M(lR, W)).

The future cost in (5.4), which corresponds to the state (x i - , 0i- 1, ii, Oi-1,4) of the

current time period, is

E[Jt+1 (NSi)]= p(li)E[Jt+i(yi - D, 0i2, x - yi, fi+Iu, , i-2, M(li, W))IM(li, W) > 0]

+ p(l,1j+j)E[Jt+1(xi - D, 0i-1 i+1, u, i-1, M(4+ 1, W)) IM(14i+l1, W) > 0]

+ p(li+1, li+2)E[Jt+l (Xi+ 1 - D, i, ;Vi+ 2, u, Oi, M(i+2 , W)) I M(li+2 , W) > 0]

+ p(lR- 1,1R)E[Jt+l(x R- - D, OR-2,u, OR-2 M(R, W)) IM(lR, W) > 0]

+ (1 -p(lR))E[Jt+l(z - D, OR-1,OR-1)],

(5.5)

where u is the regular ordering amount: i.e. u = z-xR- 1. Note the conditional expectations

in (5.5). Let us define the following recursive functions:

fl,t(yi, 11) = dlsyl + L(yi) - p(l1)E[dM(h1,w)(yl - D)IM(11 , W) > 0]

= d1lyl + L(yi) - E[dM(1,,w)(yl - D)], and

fi,t(yi, li) = dlyi + L(yi) + p(lI)E[S•1 ,t+1 (yi - D, M(li, W))IM(li, W) > 0]

= d1 yi + L(yi) + E[Sl1,t+1 (yi - D,M(l1i, W))], for i > 1.

Let us also define

St(li) = p(1i)E[SL1 ,t+1 (M(li, W))IM(li, W) > 0] + aj,t(li)

= E[S_ 1 ,t+j (M(li, W))] + ai,t(li),

Sil,t(xi- 1 , li) = gi,t(x i - 1l14) - dx i - 1

S,t(x l,11) = hi,t(x',11) - L(x') + p(ll)E[dM(1l,w)1M(ll, W) > 0]x 1

= hi,t(x l , 11) - L(x1 ) + E[dM(l1 ,W)]x', and

St(, li) = hi,t(xi, li) - L(x i ) + p(14)E[S2_1,t+1 (xi - D, M(li, W)) IM(li, W) > 0]

= hi,t(xi, li) - L(x i ) + E[S_1 ,t+1 (xi - D, M(1i4, W))],



for 1 < i < R - 1, and S,t(.) = Sot(.) = St(.) = 0 for all t, and S ,  () = i, () =

Si2, () = 0 for all i. Here, ai,t, gi,t, and hi,t are defined according to Lemma 8 with respect

to fi,t. This lemma is applied for any fixed li and thus gi,t and hi,t depend on li, while ai,t

now becomes a function of li. Starting from the last time period T, functions fi,t and S?

can be obtained recursively. It is easy to check for all i and t that fi,t(yi, li) is convex in yj

for a given li if the system is sequential. Also, S9t(li) + S t(x, li) + S 2 (x, li) = 0 for every

x and li.

Let us denote by Yi,t(li) a minimizer of fi,t(yi,li) y* Yt(li) e argminy fi,t(yi, li). The

following theorem is an important property of fi,t (yi, li) for sequential systems.

Theorem 9. For sequential systems, the following holds true.

a. For any given j, yi*,t(J) is nonincreasing in i.

b. For any given i, yi*t(j) is nonincreasing in j.

Proof. In this proof, we use Lemmas 17, 18, 19, and 20 from Appendix. Let us first consider

part (a). We first rewrite

fl,t(yi,j) = djyl + L(yi) - E[dM(j,w)]yl + E[dM(j,w)D]

= (dj - E[dM(j,w)])yl + L(yi) + E[dM(j,w)D],

and

fi,t(yi,j) = djyi + L(yi) + E[SjLl,t+j(yi - D, M(j, W))]

- djyi + L(yi) + E[gi-l,t+1 (yi - D, M(j, W)) - dM(j,w)(yi - D)]

-= (dj - E[dM(j,w)])yi + L(yi) + E[gi-l,t+l (yi - D, M(j, W))]

+ E[dM(j,w)D],

for i > 1. Also,

fi+l,t(yi+l,j) = (dj - E[dM(j,w)])yi+l + L(yi+1 ) + E[gi,t+l(yi+l - D,M(j, W))]

+ E[dM(j,w)D].

We prove that &fi ,t(y,j) • Wfi+1,t(y,j) for all j. We use induction on t. The base case is



when t = T where fi,T(Y,j) = fi+1,T(Y, j) = djy + L(y) for all i. Assuming 6fi,t+1(y,j) •

Ofi+l,t+j(y,j) for a fixed t < T, we obtain 8gi,t+j(y,j) !5 gi+l,t+i(y,j). Therefore, we

have Ofi,t(y,j) _ 8fi+i,t(y,j), and y*,t(J) - yi*+i,t(J). The proof of part (a) is completed.

Next, we prove part (b) that afi,t(y,j) < Ofi,t(y, j + 1) for all i. We use induction on t.

The base case is when t = T, where fi,T(y,j) = djy+L(y). Therefore, we have Ofi,T(y,j) •

&fi,T(y,,J + 1) for all i due to dj 5 dj+l. Now assume Ofi,t±+l(y, j) < 9fi,t+l(y,j + 1) for all

i and a fixed t < T. We have

fi,t(y,j) = (dj - E[dM(j,w)])y + L(y) + E[gi-1,t+l(y - D, M(j, W))] + E[dM(j,w)D],

fi,t(y, J + 1) = (dj+l - E[dM(j+I,W)])y + L(y) + E[gi-1,t+l(y - D, M(j + 1, W))]

+ E[dM(j+I,w)D].

Because of the induction hypothesis and the definition of sequential systems, we have

Ofi,t(y,j) •5 fi,t(y,j+1) and thus Yi*,t(J) > Yi*,t(j+1). Note that M(j,w) 5 M(j+1,w) for

any realization of w of W, and the monotonicity of ogi-1,t+1 in the second variable follows

from the induction hypothesis on Ofi-l,t+j. In other words, if Ofi-1,t+l is monotone in the

second variable then &gi-l,t+1 is also monotone. The proof is completed. O

The following lemma is used later in the proof of the optimal policy.

Lemma 16. For such j and w E W that M(j, w) > 0, p(j)S_1l,t(x, M(j, w)) + gi,t(x,j) is

convex in x for all i.

Proof. We prove the convexity of

gi,'t(x, j) + p(j)S?- 1,t(x, M(j, w))

= gi,t(x,j) +p(j){hi-1,t(x,M(j, w)) - L(x) (5.6)

+ p(M(j, w))E[S- 2,t+1 (x - D, M 2 (j, W))1M 2 (j, W) > 0]},

for all w. We use induction. The base case of t = T + 1 is obvious. We assume convexity at

t + 1 as the induction hypothesis. First, we show convexity of (5.6) when x < yi*t (M(j, w))

and x > y*ý%(J).

* When x < yi*t(M(j, w)), we have hi-l,t(x,M(j, w)) = fi-l,t(x,M(j, w))-ai-l,t (M(j, w)) =

dM(j,w)x+L(x)+p(M(j, w))E[S12,t+1 (x-D, M 2 (j, W))IM 2 (j, W) > 0]-ai-1,t(M(j, w)).



By using the fact that S 1(x,j) + S 2(x,j) = -So(j), it is easy to see that gi,t (x,j) +

p(j)S2 1,t(x,M(j,w)) is convex in x for x < yjt(M(j, w)).

* When x > yi*(j), we have gi,t(x,j) = fi,t(x,j)-ai,t(j) = djx+L(x)+p(j)E[Sl, 1 ~l(x-

D,M(j,w))] - ai,t(j). Since SiL,+i(x - D,M(j,w)) = gi-i,t+i(x - D,iM(j,w)) -

dM(j,w)(x-D), and p(M(j, w))E[S2_2,t+1 (x-D, M 2 (j, W)) M 2 (j, W) > O]+gi-&,t+l (x-

D, M(j, w)) is convex by induction hypothesis, it is also easy to see convexity for
_ > Y!,()

Since y•,•(j) -yU, (M(j, w)), we consider the following two cases: y,!t(j) < yt(M(j,w)) and

yi,t(j) = yit(M(j,w)). If Yit(J) < yt(M(j,w)), then gi,t(x,j) + p(j)S_,i-t(x,M(j,w)) is

convex since it is convex for two partially overlapping intervals. Otherwise, if y* = Yi*t(J) =

yýZt(M(j, w)), then

gi,t(x,j) + p(j)SiI,.(x, M(j, w))

= gi,'t(x,j) + p(j) {-L(x) + p(M(j, w))E[S?_2,t+1 (x - D, M 2 (j, W)) M 2 (j, W) > 0]}

for x > y*, and

gi,t(x,j) + p(j)S _ -1,t(x, M(j, w))

= p(j){hi-l,t(x,M(j,w)) - L(x) +p(M(j,w))E[S2-2,t+1(x - D, M 2 (j, W)) M 2 (j, W) > 0]}

for x < y*. Given the convexity of the function for each interval and the convexity of

gi,t(x, j)+p(j)hj-1,t(x, M(j, w)), we conclude that gi,t(x, j)+p(j)S2_ ,1 (x, M(j, w)) is convex

also in this case.

5.4.2 Optimal Policies

For sequential systems we have the following theorem, which is the key result in this chapter.

Theorem 10. a. The base stock policy with respect to the corresponding echelon stock xi-1

is optimal for expediting from stage i. Also, the base stock policy with respect to the

inventory position xR - 1 is optimal for regular ordering.

b. Function p(lR)E[SR-l,t(z - D,M(lR,w))IM(IR,w) > 0] + E[Jt(z - D, R-1,0R-1)] is

convex in z.



c. For 1 < i < R- 1, we have Jt(xi- ,0i-l,i,gi-l, i) - Jk(xi, i,Vi+l,Oi,li1l) = SZt(li) +
S Zi-1 + St (xi i)

Proof. We prove parts (a), (b), and, (c) concurrently by induction on t. In the base case

t = T + 1, the optimal expediting and regular ordering policies are null. Also (b) and (c)

hold obviously when t = T + 1. Now we proceed to the induction step.

We prove that part (a) holds at time period t. First consider (5.5). By repeatedly

applying part (c) with time period t + 1, which holds by the induction hypothesis, we have

E[Jt+1 (NSi)]= p(li)E[S%_l,t+1 (M(1i, W)) + Si _
1,t +

1 (yi - D, M(1, W))

+ Si-i,t+(xi - D,iM(li, W))IM(li, W) > 0]

+ --... - terms of only state variables - --

+ p(lR)E[Jt+l (xR - 1 - D, 0 R-2,u, R-2, M(lR, W))IM(ln, W) > 0]

+ (1-p(lR))E[Jt+l(z- D, OR-1,R-1)],

where Lemma 15 is used. This is again rearranged to the following by using part (c):

E[Jt+l (NSi)] = p(li)E[SL1l,t+l (M(li, W)) + SL_,t+1 (yi - D, M(li, W))

+ S>ii1,t+1 (x' - D, M(li, W))|(liM , W) > 0]

+ - -... - terms of only state variables -..

+ p(lR)E[SR_-,t+l (M(lR, W)) + S•R_ 1 ,t+1 (x- - D, M(lR, W))

+ S2_l,,+ (z - D, M(lR, W)) jM(1R, W) > 0] + E[Jt+l (z - D, R-1, R-1)].

Let us denote by OT the terms that contain only state variables. Then,

E[Jt+l(NSi)] = p(li)E[S1_-,t+l(yi - D, M(li, W))IM(li, W) > 0]

+p(lR)E[SRl,t+l(z - D,M(1R, W))IM(lR, W) > 0] (5.7)

+ E[Jt+l (z - D, 0 R- , 6R-1)] + OT.



Plugging (5.7) into (5.3) and (5.4) yields

= mi- fi,t(Yi, li)x
i - 
1•Yi • x

+ zmin {cz + p(lR)E[S~il,t+,(z- D,M(lR, W)) M(lR, W) > 0]

> EXJR - 1 (z - D, -1, )]} + OT,÷ Z[Jt+l (z - D, +RIo-1] OT,

(5.8)

for i < R. For i = R, we have

OR - 1) = min
xR-1 <YR<2

{fR,t (YR, R) + cz

+ p(lR)E[S2_ 1,t+1(z - D, M(lR, W))IM(lR, W) > 0]

+ E[Jt+l(z - D, OR-1,OR-1)]}

+ p(lR)E[S°_1 ,t+l(M(lR, W))IM(lR, W) > 0]

-- d R - 1 _ R - 1
- d 1RXl -cx~

Note that IR = K. By applying Lemma 9 from Chapter 3, we have

JtR(xR- 0R-,0R- ) = mmin { hR,t(z, lR) + cz
xR-<1 z

+ p(lR)E[S•il,t+l (z - D, M(IR, W))IM(IR, W) > 0]

+ E[Jt+l (z - D, OR- 1, R - 1)]} + aR,t(lR)

+ p(lR)E[SR_1 ,t+l(M(1R, W)) IM(1R, W) > 0]

+ gR,t(X R - 1, lR) - dlIxR- - c R-1,

which is equal to

JtR(x R - 1, 6R-1, 6 R - 1) = mmin {hR,t(z, IR) + cz
XR-1 <z

+ p(lR)E[S2_l,t+l(z - D, M(lR, W)) M(l, W) > 0]

+ E[Jt+l(z - D, OR-1,0 R-1)]} - S2,t(xR-l,lR) - cxR- 1 .

Therefore, optimal expediting follows the base stock policy from (5.9) with the base stock

level given by

mmin fit(yi, i).
X --1 •__Yi <_

x

(5.9)

(5.10)

(5.11)

Jiti (xi-, Wi-1, )i, Oi-i, ii)

JtR(xR-I, 6
R - 1,



The optimal regular ordering policy is the base stock policy with the base stock level z*

determined from (5.11) by

min {hR,t(z, lR) + cz + p(lR)E[Sl,t+,l(z - D,M(lR, W))IM(lR, W) > 0]
z>xR

- 1

+ E[Jt+l(z- D, OR-1-R-1)]}

for any i. Since p(lR)E[S-l,t+l (z-D, M(lR, W))IM(IR, W) > 0]+E[Jt+ (z-D, 0 R-1, OR-1)]

is convex by the induction hypothesis of part (b), the optimal regular ordering policy is well

defined. Note that we use (5.11) instead of (5.8) in determining the optimal regular ordering

quantity by the same reason as in Chapter 3. This completes the induction step of part (a).

Next, we prove that part (b) holds at time period t. Adding

p(lR)E[SR_I,t(xR-1, M(lR, W))|M(IR, W)) > 0]

to both sides of (5.10), we have

p(lR)E[SI,t(xR-1, M(1R, W))IM(1R, W)) > 0] + JtR(XR-I, 0 R-1, OR-1)

= min {hR,t(z, lR) + cz + p(lR)E[S2_l,t+l( - D,M(lR, W))IM(lR, W) > 0]
xR-I<z

+ Jt+l (z - D, 0 R-1, OR-)]} + p(lR)E[SRI,t+ (M(lR, W))IM(IR, W) > 0]

+ 9R,t(x R - 1, In) + p(lR)E[S•_,t(x R - 1 , M(lR, W))IM(lR, W)) > 0]

+ aR,t(lR) - dlRx - cxR- .

By the induction hypothesis, p(ln)E[S~ -,t+ 1 (z - D, M(lR, w)) IM(R, w) > 0] + E[Jt+l (z -

D, 0 R-1, 0 R-1)] is convex in z. Therefore,

min {hRt(z,lR) + cz + p(lR)E[S2_l,t+l(z- D,M(lR,W))IM(lR,W) > 0]
XR-I<z

+ Jt+I(z - D, OR-1,OR-1)]}

is convex in xR - 1 . Also, gR,t(XR--I, IR) + p(lR)E[S2_i,t(xR-1, M(lR,W))IM(lIR,W)) > 0]

is convex in xR- 1 by Lemma 16. All the other terms are either constant or linear in xR - 1.



Therefore,

p(lR)E[SR 1_,t+l (XR-1, M(lR, W))IM(lR, W)) > 0] + JtR (xR-, 0 R-1, oR-1)

is convex in x R - l, and the proof of part (b) is completed.

It remains to prove part (c). Consider the following two states: Ai = (x i- l, i- 1, , 6i - 1 T)
and Ai+1 = (x i i, V,;i+1, 0, 6 j+1). Because of the sequential property of the system, we have

to first expedite from stage i according to the base stock policy of part (a).

We now examine the following three cases for i = 1. Note that NS1 and NS 2 are the

same when we only expedite from stage 1, because of mandatory expediting.

Case 1. Let first yr(lI) < xA. In this case, no expediting is necessary for both A1 and A 2.

Because of mandatory expediting with probability p(11), we have

Jt(Ai) = L(xo) + p(l)E[dM(tl,w)IM(11, W) > 0](x' - xO)

+ min {c(z - x xR- ) + E[Jt+I(NSI)]}
z>xR-1

and

Jt(A2) = L(x') + mmin {c(z - xR- l) + E[Jt+I(NS2)]}.
z>X

R - 1

Thus, Jt(At) - Jt(A2 ) = L(xo) + p(ll)E[dM(li,w)IM(ll, W) > 0](x t - xo) - L(xl).

Case 2. If xo < y*(11) < x 1, we have

Jt(Al) = di,(y*(11) - xo) + L(y*(li)) + p(1l)E[dM(1,,w)jM(l1, W) > 0](x 1 -Y•(1))

+ min {c(z - xRl ) + E[Jt+I(NSi)]}
z>X

R - 1

and

Jt(A 2 ) = L(x') + mmin {c(z - xR - l) + E[Jt+1 (NS 2 )]}.
z>x

R - 1

Thus,

Jd(A,) - Jt(A2 ) dil(y (1•I) - xO) + L(yr(ll))

+ p(l1)E[dM(,,w)|IM(l1, W) > 0](x' - y (l1)) - L(x').



Case 3. Finally, let y*(11) Ž x1. In this case, we have to expedite everything in stage 1,

thus Je(Ai) - Jt(A 2) = dl (x1 - x0).

The three cases can be summarized as

Jt(A1) - Jt(A2 ) = al,t(l1) + gi,t(x0 ,li) + hl,t(x ,l1)

- d11xo + p(ll)E[dM(lW) IM(ll, W) > 0]x 1 - L(x')

= S,t(11) + SI,t (xo, 11) + S,t(x ,11).

Next, consider the following three cases for i > 1.

Case 1. Let yi (1i) < xi- 1, and thus no expediting is necessary for both Ai and Aj+1 . There-

fore Jt(A) -= L(x i - 1 ) + minz>R-1{c(z - xRl) + E[Jt+I(NSi)]} and Jt(A~+1) =

L(xi)+minz>xR-1 {c(z-xR-1)+E[Jt+l (NSi+ )]}. Let us examine NSi by replacing

yj with x i- 1 in (5.5). We obtain

E[Jt+I (NSi)]

= p(l)E[S _1,t+1(M(li, W)) + S~l 1,t+l+(x' 1 - D, M(li, W))

+ S~L1 ,t+1(x' - D, M(li, W))IM(li, W) > 0]

+ (p(li) + p(li, li+l))E[Jt+1 (xZ - D, 7 i - 1, Vi+l, u, Oi-1, IM(i+1 , W)) IM(li+l, W) > 0]

+ p(li+1, li+2)E[Jt+l(xi+l - D, i, i+2, u, 0i, M(i+2, W))M(li+2, W) > 0]

+ (1 - p(1R))E[Jt+l (z - D, R-1 7OR-1)]

p(li)E[S°_,,t+l(M(li, W)) + S,_l,t+l(xi-1 - D, M(li, W))

+ S2
1,t+ l1 (x - D,M(li, W))IM(li, W) > 0]

+ p(li+l)E[Jt+l (xi - D, 5Oi-1, ij+1 ,, i7Wi- 1 , M(i+i , W))IM(li+1, W) > 0]

+ p(li+l, li+2)E[Jt+1 (xi+1 - D, 6i, vi+2, u, Oi , M(4+ 2 , W))IM(li+2, W) > 0]

+ (1 - p(lR))E[Jt+l (z - D, OR - 1, 
0 R-1)],

where we applied Lemma 15.



Therefore, we have

E[Jt+l (NSi)] - E[Jt+1 (NSi 1)] = p(1)E[S• 1it+ 1 (M(li, W))

+ Si-Lt+ (x- 1 - D, IM(l, W4)) + Si 1 l,t+1 (x' - D, M(li, W))|M(li, W) > 0].

Thus,

Jt(Ai) - Jt(Ai+1) L(x i - 1) - L(x i ) + p(li)E[S°-1 ,t+l(M(li, W))

+ Si1,t+l (x- 1 - D, M(1, W)) + Si l,t+l(xi - D, M(14, W))I M(li, W) > 0].

Case 2. If x i- 1 < y*(14) < xi, we obtain

Jt(Ai) = d (y(i) - x i - 1) + L(y*(li)) + min {c(z - x R - l) + E[Jt+I(NSi)]}
z>xR-1

and

Jt(Ai+l) = L(x2 ) + min {c(z - x R- l) + E[Jt+I(NSi+)]}.
z>xR-1

Similarly to the previous case, we have

E[Jt+1 (NSi)] - E[Jt+I(NSi+)] = p(li)E[S°_,t+l(M(li, W))

+ Sl-,t+l(Yi(li)- D,M(li, W)) + Sil,t+(x i - D, M(li4, W)) M(li, W) > 0].

Therefore,

Jt(A 1) - Jr(A 2 ) = dl (yi (l) - x i - 1) + L(y[ (li)) - L(x i ) + p(li)E[S°_ 1,t+1 (M(li, W))

+ SL1,t+ 1 (yi(1) - D, M(1, W)) + S2l1,t+ (x' - D, M(li, W))IM(1i, W) > 0].

Case 3. If y (l1) > x', then we simply have Jr(A1) - Jr(A 2 ) = dl,(x - xi-1).



The three cases can be summarized as

Jt(Ai) - Jt(Ai+=) = ai,t(li) + gi,t(xi-l,iI) + hi,t(xi, 1i) - djx i - 1 - L(x i )

+ p(li)E[S°-1,t+1(M(li, W))

" SiL,t+i (x i - D, M(l1, W))IM(li, W) > 0]

= St(li) + S,1t (xi-1i 1i) + S li)

The proof of part (c) is thus completed. O

5.4.3 Illustration of the Optimal Policy

Part (a) of Theorem 10 says that the optimal regular ordering policy follows the base

stock policy with respect to the inventory position. Compared to the result in Chapter

3, though the base stock level is different, the optimal regular ordering policy remains the

same regardless of mandatory expediting. However, the optimal expediting policy is quite

different with the introduction of mandatory expediting. We explain the optimal expediting

policy described in Theorems 9 and 10 through the following illustration.

Part (a) of Theorem 9 states that there is monotonicity of expediting base stock levels

across installations for the same age bins; see Figure 5-4.
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Figure 5-4: Monotonicity across installations of the same age

On the other hand, part (b) of Theorem 9 states that there is monotonicity of expediting

base stock levels across all age bins in an installation; see Figure 5-5.

Considering both parts of Theorem 9, we do not have overall monotonic base stock

levels for expediting as shown in Figure 5-6. At first, it appears that this nonmonotonicity
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Figure 5-5: Monotonicity within an installation

contradicts the definition of sequential systems or Theorem 8, since order crossing in time

might happen for expedited orders. However, if we consider only the expediting base stock

(R-1)T++1 Base Stock Levels:

*

, S U .9

Manufacturing facility

Figure 5-6: Non-monotonicity considering all age bins in all installations

levels for nonempty age bins in all installations, then it becomes obvious that order crossing

does not happen for sequential systems, and hence there is no contradiction. The reason is

the following. Since Assumption 1 guarantees that regular movements do not cross in time,

an order that is placed earlier should be closer to the manufacturing facility. Therefore, parts

(a) and (b) of Theorem 9 combined indicate that there is monotonicity of the expediting

base stock levels for nonempty age bins at any moment, as shown in Figure 5-7.

Finally, monotonicity of the base stock levels for nonempty age bins and part (a) of

Theorem 10 reveal the simple structure of the optimal expediting policy for sequential

systems as follows. The echelon stock is nondecreasing as the age bin gets farther away

from the manufacturing facility, since it is the sum of nonnegative numbers. At the same

time we have monotonicity of the expediting base stock levels. Therefore, there can be at

most one intersection point between the echelon stock and the base stock level profiles. Part

(a) of Theorem 10 implies to expedite everything up to this intersection; see Figure 5-8.
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Figure 5-7: Monotonicity of nonempty age bins in all installations
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Figure 5-8: The simple structure of the optimal expediting policy

As the expiry date increases to infinity, the optimal expediting policy just illustrated

converges to the optimal expediting policy in Chapter 3. This is due to the fact that the

expediting base stock levels are getting closer to each other as the expiry date increases, and

they eventually converge to a single value for each installation. After all, we have only the

same number of unique expediting base stock levels as the number of installations. Since

they are monotonic, we have the optimal expediting policy as described in Chapter 3. In

this sense, the model with expiry dates is the most general model among those discussed in

this thesis.
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Chapter 6

Conclusion

In order to have competitive advantage, a supply chain must be agile in responding to

short-term changes in demand or supply. In this research, we focus at an operational

process to increase the agility of complex supply chains. In particular, we utilize a premium

transportation method, i.e. by air, in addition to a normal transportation method, i.e. by

ground. When high uncertainties in lead time and demand occur, expediting outstanding

orders by air can be a viable option for many companies. Through expediting, a firm can

reduce excessive backlogging costs as well as excessive holding costs in facing uncertainties

associated with demand and lead time. However, a lower operational cost can be achieved

only by wisely utilizing the expediting option. Thus the main goal of this research is to find

the optimal policy of expediting and regular ordering.

Deterministic Lead Time Model

In Chapter 2, we study the optimal regular ordering and expediting policy for a single-

item, periodic-review inventory system with a deterministic lead time. We consider the

deterministic lead time model since it forms a good starting point to study the stochastic

lead time model presented in later chapters. We introduce the concept of sequential systems,

and find an optimal policy of expediting and regular ordering for such systems. The analysis

is possible since sequential systems do not allow order crossing in time under optimal control.

Sequential systems are easily identifiable using the expediting costs.

The optimal regular ordering policy for sequential systems is the base stock policy with

respect to the echelon inventory xL - l, and the structure of the optimal expediting policy



is to expedite everything up to a certain installation, partially from the next installation

according to the corresponding base stock level, and nothing beyond. This optimal policy

is simple and thus easy to implement. The corresponding base stock levels are defined

recursively and are easily computable. Our mathematical approach is novel, and it shows

decomposability of the optimal cost-to-go.

Stochastic Lead Time Model

We extend the deterministic lead time model in Chapter 3. In particular, we derive the opti-

mal policy for expediting and regular ordering of a stochastic lead time model with multiple

intermediate installations. Since in general the model exhibits complex and nonintuitive

policies, we again confine our interest to a class of sequential systems defined by conditions

on expediting costs and movement patterns of regular orders. In sequential systems, regular

as well as expedited orders do not cross in time. The concept of sequential systems is more

general than the corresponding concept in Chapter 2. For sequential systems, the optimal

policy for regular ordering is the base stock policy with respect to the inventory position,

and the optimal policy for expediting from an installation is the base stock policy with

respect to the echelon stock of the downstream installations.

Song and Zipkin (1996) find that the optimal regular ordering policy does not require

any state variable information, and that the only relevant information is inventory position

and the lead time distribution. Our results indicate that the optimal regular ordering policy

as well as expediting requires the state information, since expediting and regular ordering

have to be considered concurrently. In other words, the stochastic movement of regular

orders in our model requires new information systems to capture the state information to

enable optimal expediting decision making. RFID due to its relatively low deployment and

maintenance cost can be used for this purpose. Without expediting, RFID, according to

the result by Song and Zipkin (1996), does not bring additional value to inventory control.

This is a clear confirmation that the value of RFID (or information in a broader sense)

comes with new processes such as expediting. We need to actively use new information to

unveil additional benefits, and this should be done through quantitative analysis as Lee and

Ozer (2007) also assert.



Non-Sequential Systems

The optimal policy of expediting and regular ordering are derived in Chapters 2 and 3 for

sequential systems. However, in practice there are many supply chains that are not sequen-

tial. In Chapter 4, we study how to operate such nonsequential systems. For nonsequential

system, we argue that the optimal policy is complex even for a simple system with lead time

of two. The optimal regular ordering quantity as well as the optimal expediting quantity

are functions of the state variables.

In view of this, we propose the extended heuristic, which is a natural extension of the

optimal policy of sequential systems to nonsequential systems. The numerical study using

the derivative method for three-installation systems reveals that this heuristic exhibits good

performance for a much wider class of systems than the set of all sequential systems. More

specifically, the extended heuristic achieves a local optimum for systems with nondecreas-

ing expediting costs, which includes several practical systems. At the least, the extended

heuristic gives us a valuable guide on operating a nonsequential supply chain with expediting

options.

Raw Materials with an Expiry date

An extension to the stochastic lead time model is presented in Chapter 5. We again study

supply chains with a supplier and a manufacturing facility. However, the outstanding

orders are perishable and thus have to be expedited within finite time periods. In order

words, the outstanding orders have deterministic expiry dates. The introduction of expiry

dates imposes an additional constraint, mandatory expediting, on the control space that the

outstanding orders close to the expiry date have to be expedited in order to avoid scrapping,

i.e., spoilage.

We derive the optimal policy for expediting and regular ordering for sequential systems.

The mandatory expediting brings several changes to the optimal expediting policy, while

the optimal regular ordering policy remains similar. The optimal expediting policy identifies

a number of expediting base stock levels, which are monotonic only for nonempty age bins

across all installations. Because of this monotonicity, the optimal expediting policy is again

simple and well-structured. We note that the optimal expediting policy with mandatory

expediting converges to the optimal expediting policy without mandatory expediting as the



expiry date increases to infinity.

Future Research

An important but unaddressed situation in our research is the expiry constraint within the

manufacturing facility. In the literature, this is also called shelf life. There is literature on

the shelf life of various models that have deterministic lead times. Our research focuses on

the stochastic lead time, and thus it is note overlapped with any previous work. We suggest

that one of the most important tasks in the future is to extend our results to include the

shelf life of the delivered orders in the manufacturing facility. Figure 6-1 summarized the

previous research and our future direction.

Shelf Ufe
Expiry on Delivery At most 2 Multiple

time periods time periods

Stochastic
Lead Time

Nonzero

Deterministic
Lead lime

Zero

Figure 6-1: Future research

We do not think that this extension will be immediate, since the previous literature on

the shelf life suggests the complexity of the optimal policy. However, we believe that we

can have theoretical or practical solutions for this extension with the advancement of our

understanding in complex supply chain systems.



Appendix A

Proofs and Additional Lemmas

Proof of Lemma 1. By adding

di - di- 1 > di- 1 - di-2

di-1 - di- 2 > di- 2 - di-3

di-j+l - di-j > di-j - di-j-1

we get di-di-j > di- 1 -di-j- 1. In turn, we obtain di-di-j > di- 1-di-j-1 > di- 2 -di-j-2 >

•.. Ž dj - do. Therefore di - di-j > dj, because do = 0. E

Proof of Lemma 3. Part (a): We prove this by induction on i. fl,k(x) is convex for all k,

so is S1Ik(x). Assume now that fi,k(x) and Sk(x) are convex for a fixed i and all k. Then

fi+l1,k(x) and Sl+l,k(x) are convex for all k because each one of them is a sum of convex

functions.

Part (b): The proof is by induction on i. We have So ,k + SOl,k (x) + S0,k(x) = 0 for all k

by definition. Assume for a fixed i > 1 and for all k that S-1,k + SL-lk(X) + S1,k(X) = 0.

Then, by definitions

Si k + S, (x) + S k(x) = ai,k + Si-1,k+l + gi,k(x) - dix + hi,k(X) - L(x) + E[Szil,k+l(x - D)]

fi,k(x) - dix - L(x) + Si-1,k+l + E[Sl-_,k+I(x - D)] (A.1)

SE[S°_1,k+l + Sl-,k+l(x - D) + S-1,k+l(X - D)] = 0.



In (A.1), we use ai,k + gi,k(x) + hi,k(x) = mmin fi,k(Y) = fi,k(x). This completes the proof

of this part.

Part (c): We first fix y and minimize over x as a function of y, then minimize over y.

We obtain

mmin {fi(x) + f2(y)} = min{{ mmin fi(x)} + f 2 (Y)}
b<x<y b<y b<x<y

= min{a1 + gi(b) + hi(y) + f2(y)} (A.2)
b<y

-= a, + gi (b) + miln{hi (y) + f2(y)},
bsy

where, in (A.2), we use Lemma 2. O

To prove Theorem 2, we first provide the following preliminary results. For a convex

function f : R --+ R, let Of(x) be its subdifferential at x, which is a set. For two sets S1 and

S2, we denote Si < S2 if there exists S2 e S2 such that si < S2 for any s C Si1, and there

exists si C S1 such that S, < s2 for any S2 C S2 . The following lemmas can be proved by

using elementary techniques.

Lemma 17. Let fi and f2 be convex functions. If Of (x) • of 2 (x) for all x c R, then

argmin f (x) > argmin f2 (x).
x x

Lemma 18. Let fi and f2 be convex functions, and let gi and g2 be their penalty functions

as in Lemma 2. If Ofi (x) < Of 2 (x), then Ogi (x) < Og2(x). -

Lemma 19. Let fl, f2, fl, and f2 be convex functions. If Ofl(x) < Of 2 (x) and Ofl(x) <

Of2(x), then O{f + f2}(x) < O{f2 + f2 }(x).

Lemma 20. Let fi and f2 be convex functions, and let Fi (x) = E[fil(x - D)] and F2 (x)

E[f2(x - D)]. If Ofi(x) • Of2 (x), then OFI(x) < aF2 (x).

Proof of Theorem 2. We prove part (a) of Theorem 2 by induction on k. We need to show

Ofi,k(Y) _ Ofi+1,k(y) for every y and i. Then the statement follows from the definition of

y,k and Lemma 17. Note that from part (a) of Lemma 3, we know that fi,k is convex. For

the base case (k = T), we have Ofi,T(y) < Ofi+l1,T(y) for all i, because fi,T(Y) = diy + L(y),

and di is increasing in i by Lemma 1. In the induction step, for a fixed k + 1 < T, assume



that Ofi-1,k+1(Y) • Ofi,k+l(Y) for all i and y. We have

fi,k(Y) = diy + L(y) + E[Sl-1,k+l(y - D)]

= diy + L(y) + E[gi-l1,k+1(y - D) - di-l(y - D)]

= (di - di- 1)y + L(y) + E[gi-1,k+1(y - D)] + di- 1 E[D],

and fi+l,k(Y) = (d+1 - di)y + L(y) + E[gi,k+1(y - D)] + diE[D].

Let us define M2 (y) = (dj+l - di)y + L(y) and Gi,k(y) = E[gi,k(y - D)]. Then fi,k(Y)

Mi-(y) + Gi-1,k+1(Y) + di-E[D] and fi+l,k(Y) = Mi(y) + Gi,k+l(y) + diE[D]. From the

definition of sequential systems, Lemma 18, and Lemma 20, we obtain 8Mi- 1 (y) < OM (y),
and Gi-1,k+l(y) • iG,k+1(y) for all i. Therefore, from Lemma 19, we get &fi,k(y) •

&fi+1,k(y) for all i. This completes the proof of part (a).

Now let us proceed to prove part (b) of Theorem 2. We prove by induction on i. When

i = 1, gl,k(x) + S 2,k(x) = g91,k(x) is convex for all k, which corresponds to the base case.

Assume now that for a fixed i > 2, gi-l,k(x) + S2_2,k(x) is convex for all k. Note that

y*k <- ,k by part (a), and<~ -- Y 1-,k

gi,k(x) + Sil-,k(X) -= gi,k(X) hi-1,k(x) - L(x) + E[Si_2,k+1(x - D)].

Recall that if x < Y*k, then gi,k(x) = 0, and if x > Y*l,k, then hi-l,k(x) = 0. If x < Y*l,k,

then hi-1,k(x) = f-1,k(x)- ai-1,k, thus

hi-1,k(X) - L(x) + E[S_ 2,k+1 (x - D)]

= di- 1x + E[Sl 2,k+l(x - D)] - ai-1,k + E[Si2_,k+l(x - D)] (A.3)(A.3)
Sdi-lx ail-1,k + E[Sl 2 ,k+l(x - D) + SL 2 ,k+1(x - D)]

di-lx - ai-1,k - S•-2,k+1,

which is clearly a convex function. On the other hand, if x > Y*,k, then gi,k(X) = fi,k(x)--ai,k.

Thus,

gi,k(x) - L(x) + E[SiL2,k+1(x - D)]

= dix + E[S-1,k+l(x - D)] - ai,k + E[SL 2,k+1(X - D)] (A.4)

-= dix - ai,k + E[Sil1,k+l(x - D) + St 2 ,k+l(x - D)]



is convex, because S1,k+l(x) +- Si- 2 ,k+(X) = gi-1,k+1(X) - d,-1 S 2 k+l(x) is convex

by the induction hypothesis.

To summarize, if x < Yi*-l,k, then gik(x) + S i,k(X) + h1,k(x) - L(x) +

E[S-2,k+1(X - D)]} is convex (see (A.3)). On the other hand, if x > Yi*k, then gi,k(x)+

Silk(x) = h-1,k() + {g,k(x) - L(x) + E[Si2-2,k+l(x - D)]} is convex (see (A.4)). If

YU,k < Yi*-1,k, then gi,k(x) + Sl-,k(x) is globally convex because it is convex for two partially

overlapping intervals, which are x < y*-1,k and x > y*k

It remains to prove convexity when y*i,k Yi-1,k" In this case, again from (A.3) and

(A.4), we get

9i 2 hi-l,k(x) - L(x) + E[Si-2,k+l(X - D)] x < Yi*-1l,k Yi*,k
9i,k (x) + S?-1,k

Sgi,k(x) - L(x) + E[S2-2,k+I(x - D)] x > Y*-1,k - Yk

We already know that gi,k(x) + Si2l,k(x) is convex on [-o00, y,k] and [yk, 00o]. Since

gi,k is nondecreasing at Yi,k, and hi-1,k is nonincreasing at y*1,k Yik, it follows that

ohi-1,k(Y*,k) • g9i,k(Yk). In turn we get 0{hi-l,k(-) - L(-) + E[S_2,k+ 1( - D)]}(y'k) •
{gi,k(') - L(') + E[S_2,k+(. - D)]}(yk), which means global convexity. This completes

the proof. O

Proof of Lemma 5. Because y*k = arg min fi,k(y), we instead prove that fi,k(y) and Slk(x)

are all equal for 1 < i < L and k < T - i + 1. We use induction on i. For the base case

i = 1, fl,k(y) and SIk (x) are independent of k by definition.

Now assume for a fixed i > 1, that fi,k(Y) and Sý,k(x) are independent of k for k <

T - i + 1. Therefore Si,k+l(x) is independent of k for k + 1 < T - i + 1. Then fi±+l,k(Y) =

di+ly + L(yi+) + E[S,k+ 1 (y-D)] is independent of k for k +1 < T-i+1 = T- (i+ 1) + 2.

In other words, fi±+l,k(y) is independent of k for k < T - (i + 1) + 1. O

Proof of Lemma 6. The statement clearly holds when i = j. By Assumption 3, for i > j



we have

di - di- 1 >

di-1 - di-2 >-

E[dM(i,w) - dM(il,w)]

E[dM(i-1,W) - dM(i-2,W) ]

d+1 - d3 > E[dM(j+I,W) - dM(j,w)1.

By summing the above inequalities we obtain di - dj > E[dM(i,w) - dM(j,w)]. Assumption

1 ensures M(i, W) > M(j, W) for i > j, thus setting i = M(i, W) and j = M(j, W) and

taking expectation results in

E[dM(i,w) - dM(j,w) ] > E[dM(M(i,w)) - dM(M(j,w))] = E[dM2(i,w) - dM2(j,W)].

Therefore,

di - dj > E[dM(i,w) - dM(j,w)] > E[dM2(i,W) - dM2(j,w)].

Note that Mn(i, W) Ž Mn(j, W) for every n, which follows from Assumption 1 and the

definition of M n . By applying the above relation repeatedly, we obtain

di - dj > E[dMn(i,w) - dMn(j,w)],

which completes the proof. E

Proof of Lemma 7. Part (a): We have {w : Mn(i,w) - 0} C {w : Mn+1(i,w) = 0} since

an order can stay at installation 0 for one time period. From Assumption 2 it follows

1 = Prob[U= {w : Mn(i, w) = 0}] = lim Prob[Mn(i, W) = 0].
n-+oo

Part (b): Clearly Ekk Prob[Mn(i, W) = k] = 1 and by taking the limit we get

lim Prob[Mn(i, W) = k] = 1,
n-k

k



or equivalently

1 = lirm Prob[M(i, W) = k] + lim Prob[M'(i, W) = 0].
n-oo n--+oo

k#0

Since limnoo Prob[Mn(i, W) = 0] = 1 by part (a), we conclude that we have

Ek• O limn-oo Prob[Mn(i, W) = k] = 0. El

Proof of Theorem 5. First, note Lemmas 17, 18, 19, and 20. We prove by induction on t

that Ofi,t(y) < ofi+l,t(y) for every y and i. For the base case (t = T), we have Ofi,T(y) <

Ofi+1,T(Y) for all i because fi,T(Y) diy + L(y) and di is nondecreasing in i by Proposition

1. In the induction step, for a fixed t + 1 < T, we assume that Ofi,t+l(y) < &fi+l,t+l (y) for

all i and y. We have

fi,t(Y) = diy + L(y) + E[SM(,w),t+l(y - D)]

= diy + L(y) + E[gM(i,w),t+1(y - D) -dM(i,w)(y- D)]

= (di - E[dM(i,w)])Y + L(y) + E[gM(i,w),t+1(Y - D)] + E[dM(i,w)] E[D], and

fi+l,t(Y) = (di+1 - E[dM(i+1,W)])Y + L(y) + E[9M(i+1,w),t+1(Y - D)] + E[dM(i+1,w)] E[D].

Note that &[(di - E[dM(i,w)])y] < 0[(di+ 1 - E[dM(±i+,w)])y] by Assumption 3, and

0 E[gM(i,w),t+ 1(Y - D)] < E[gM(i+1,w),t+ 1(Y - D)]

for all i since the induction assumption ofM(i,W),t+1 (y - D) : &9fM(i+1,W),t+1 (y - D) is

equivalent to OgM(,W),t+l(y - D) < gM(i+1,w),t+1(y - D). Therefore we get &fi,k(Y) <

afi+1,k(y) for all i. The proof is thus completed. O

Proof of Lemma 10. The proof is by induction on t. In the base case t = T we have

9i,T(X) + SM(i,w),T(X) = gi,T(X) + hM(j,w),T(x) - L(x). Consider the following two cases.

(Case 1) If x < YM (i,w),T, then gM(i,w),T(x) = 0, thus gi,T(x) + hM(i,w),T(x) - L(x) =

gi,T(X) + fM(i,w),T(x) - aM(j,w),T - L(x) = gi,T(X) + dM(,w)x - aM(i,w),T is convex.

(Case 2) If x > Y*T, then h2 ,T(x) = 0, thus gi,T(x) + hM(4,w),T(x) - L(x) = f,T(x) - ai,T +

hM(j,w),T(x) - L(x) = dex - ai,T + hM(i,w),T(x) is convex.



From Theorem 5 it follows Y*T < YM*(i,w),T since i > M(i, w). If y <  M, , then

gi,T(X) + S2(iw),T(x) is globally convex because it is convex on two partially overlapping
X ~jiw)Tand x > Y*T'T When y hnb

intervals, which are x < y- it, and x > yhenT When by = * = *

Proposition 1, we have

{g9i,T(Y*) + dM(i,w)y* - aM(i,w),T} < O{diy* - ai,T + hM(i,w),T(Y*)}.

Since gi,T(X) is nondecreasingand hM(i,w),T(x) is nonincreasing, we obtain OhM(i,w),T(X) <

Ogi,T(X), hence global convexity. This completes the base case.

Now let us assume that gt+1(x) + Sý(iw),t+(X) is convex for all w c W and all i, and

for some t + 1 < T. We need to prove that gi,t(x) + S 2 (w)t it + hM(,),t(x) -

L(x) + E[S 2 (iW),t+l(x - D)] is convex for any w C W and for all i. Again consider the

following two cases.

(Case 1) If x < Y*(i,jw),t, then gM(i,w),t(x) = 0. Thus

gi,t(x) + hM(i,w),t(x) - L(x) + E[SM2(,w),t+l(x - D)]
- EQ2

= gi,t(x) + fM(j,w),t(x) - aM(iw),t - L(x) + E[SM2(i,w),t+l(x - D)]

= gi,t(x) + dM(i,w)x - aM(i,w),t + E[SM2(iw),t+ 1(x - D)]

+E[SM2 ( w)t+I(x - D)]

= gi,t(x) + dM(iw)x - aM(i,w),t - SM2(iW)t+ 1

is convex.

(Case 2) If x > Yi*t, then hi,t(x) = 0. Thus

gi,t(x) + hM(1,w),t(x) - L(x) + E[S M 2(w)t+l(x- D)]

= fi,t(x) - ai,t + hM(i,w),t(x) - L(x) + E[SM2(w),t+l(x - D)]

= dix - ait + hM(i,w),t(x) + E[SM(i,w),t+l (x - D)] + E[S 2 (i,w),t+1 (x - D)]

= dix - ai,t + hM(i,w),t(x) + E[gM(i,w),t+l (x - D) - dM(i,w)(x - D)

+ SM2(,W),t+ (x- D)]

tis convex since gMg ±(x - D) + S (i)t(x - D) is convex by the induction
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hypothesis.

Now we apply a similar logic as in the base case. From Theorem 5 we obtain Yi*,t

YM(i,w),t since i > M(i, w). If Yi*t < YM(iw)t, then gi,t(x) + SM(iw),t() is globally convex

because it is convex for two partially overlapping intervals, which are x < Y*M(i,),t and

x> y < If y?,t = y(i,w),t = y*, then

it(x) + = hM(i,w),t(x) - L(x) + E[S2 (x - D)] x < y*
Sgi,t(x) - L(x) + E[S 2( 2t+(x - D)] x > y*.

Since gi,t(x) is nondecreasing and hM(j,w),t(x) is nonincreasing, we have OhM(i,w),t(x) •

&gi,t(x), which means global convexity of gi,t(x) + SM(i,w),t(x) when Yi,t = YM(i,w),t. This

completes the proof. O

The remainder of the proof of Theorem 6 and Proposition 3. We show part (c) at time pe-

riod t by assuming parts (a), (b), and (d) hold on and after time period t and part (c)

holds on and after time period t + 1. We compare two states (xi - 1, Oi-1, vi, vi+1,... ,Vk)

and (x i - 1 + e, i-l, vi - e, vi+ ,... , vk).

For convenience in the remainder of the proof, let A denote (xi - 1, i-1, vi, vi+1, , K)

and let B denote (xi-l + e, i-1, vi -e, vi+1,... -- , v). Also, let A+ and B+ denote the next

states of A and B under the respective optimal control (they depend on the underlying

realization but we do not show this dependency). Let w be the realized value of W at the

current time period and let j denote M(i, w). Finally, let At and Bt denote the next

states of A and B under respective optimal control given w at the beginning of the next

time period. We consider three cases.

Case 1 If Y,'t • Xi-1, then no expediting is necessary. If j > 0, then the two states

in the next time period t + 1 are A+ = (x-1 - D, j-1 , XN(j,w) - xN(j -1), xN(i+1,w) -

xN(J'), ... , xN(M(Rk,w),w) _ xN(M(R,w)- 1,w) + u, kR - M(Rkw)) and B+ = (xi'- + e - D, ij - 1,

XN(jw) - xN(j - 1,w) - e , XN(j+1,w) - xN(jw) ,
... XN(M(Rw),w) xN(M(R w ) - 1,w)± -u , 6R-M(Rkw)),

where u is the regular ordering quantity, which is the same for both states. For j > 0, the

induction hypothesis implies

Jt+l1(At) - Jt+l(Bt ) = St+ S+ (x-1 - D) + St+ (xi- + e - D). (A.5)
S3,3 +1 + "t +1W - D)+S,31

101



On the other hand, if j = 0, then the two states at time period t + 1 are the same and

they are A+ = B+ = (xN(ow) - D, xN(lw) - xN(o,w) ... , xN(M(K, w )- 1,w) xN(M(K, w )- 2 ,w)

xN(M(K,'w),w)- xN(M('Kw)-1,w) , OK-M('w)). Since5 0 -s S 1,t l (xi-I-D) S , (x i - 1 +

e - D) = 0 by definition, (A.5) still holds. Using (A.5) we get

E[Jt+1 (A+ ) - Jt+l(B+)]

= E[E Prob[M(i, W) = j]{Jt+l(A + ) - Jt+1 (B+)|M(i, W) = j}]
j

= E[Z Prob[M(i, W) = j]{Jt+1(A + ) - Jt+l(B ) }]
J

SE[ Prob[M(i, W) j]{S 1 + - D) + S,?,t1(x- + e - D)}]
J

- E[SM(iW)t+I M(,W),t+(x-1 - D) + SM(iW),t+(x-1 + e - D)].

No expediting implies Jt(A) = L(x i- 1 ) + mmin {c(z - xK) + E[Jt+I(A+)]}, and Jt(B) =
z>xK

L(x i - l +e) + min {c(z-xK)+E[Jt+i(B+)]}. Since the minimizations in the above equations
z>xK

have the same optimal control with respect to regular ordering, Jt(A) - Jt(B) = L(x i - 1) -
oS •1 ii-1 -D) + SM2 {W'tjxi-1 +e-D]

L(x i - 1 + e) + E[SM (iW),t+1 + M(iW),t+ -- D) + M(iW),t+ + e - D)].

Because Yýt < xi- 1, we have hi,t(x i- 1) = 0 and hi,t(x i- 1 + e) = 0. Therefore,

0 soX - 1 D

L(x i - 1 ) - L(x i - 1 + e) + E[SM(iW),t+ + S (iW),t+,(xI- - D)

+ SM(iW),t+j(-1 + e - D)]

dix i - 1 + L(x i - 1 ) + E[SM(iw),t+(x- - D)] - dix - - L(x- 1 + e)
E[SM(i,W),t+1 + SM(iW),t+J -1+e- D)]

+ + ± e - D)]
fi,t(x i - l ) - i i - 1 - i - 1 ÷)÷ [M(i,w),t+I + S2M(i,w),t+l X-1 + e - D)]
-- dx - A-x e) +- A-+ S-D)

= ai,t gi,t (xi - 1 ) hit-(x - ) - di i - 1 - L(x i - 1 - e)

SE[SM(i,W),t+ + S(i,w),t+l(xI 1  e - D)]

= ai,t + gi,t(x i - 1 ) + hi,t(x i - 1 + e) - dix i - 1 - L(x i - 1  e)

SE[SM(i,W),t+ + S (i,W),t+I e - D)].
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Case 2 If xi- 1 < y ,t < x i - 1 + e, then expediting Yýt - x i - 1 from installation i is optimal

in state A and no expediting is optimal in state B. We have

.At =-(Yit- D, OJ-
1

,XN(
j

w) - Y*t, xN(j -l
w) xN (jw),

" "

XN(M(K,w),w) _- N(M(K,w)
- 1,w) + U, OK-M(K,w)),

B = (x i - 1 + e - D, 0 j-1, xN(j,w) - xN(j-1,w) - e, X (j + l w )
- xN(,w)...

XN(M(K,w),w) _- XN(M(K,w)-1,w) + ,•IK0 -M(K,w))

for j > 0, and

A+ = B+ = (xN(O,w) - D, x N(1,w) - xN(O,w), . ,N(M(K,w)-1,w) _ xN(M(K,w)-2,w)

XN(M(K,w),w) _- XN(M(K,w)-1,w) + U, IK-M(K,w))

for j= 0. From the induction hypothesis, Jt+l (At) - Jt+l (BF) = Sot+ 1 + Sý ,t+1 (Yt - D) +

S?,t+({i- + e - D) for j > 0, and therefore

E[Jt+i(A+ ) - Jt+l(B+)]

= E[ Prob[M(i, W) = j]{Jt+l(A+) - Jt+l (B+)IM(i, W) = j}]
3

= E[E Prob[M(i, W) = j]{Jt+l(At) - Jt+l(B+)}]
J

SE[E Prob[M(i, W) = j]{S 1 + S ,t(?t - D) + S (x i - 1 + e - D)}]: 3]{ ~j 't+ l 1 j ,t+ l( i, t D ) - - t+ l -4- + e - D-

SE[SM(i,w),t+1 + SMi(i,w),t+1(yt - D) + S2(,,wt+l(x 1 + e - D)].

We have Jt(A) = diy%*t + L(y*,t) - dix i - ' + min {c(z - xK) + E[Jt+I(A+)]}, and Jt(B) =
z>xK

L(x i- 1 + e) + min {c(z - x•K) + E[Jt+i(B+)]}. Therefore, Jt(A) - Je(B) = diyit + L(yi*t)-
z>xK

di x i - 1 - L(x i - 1 + e) + E[S (i,),t+ SM(iw),t+ (Yit - D) + S(i,w),t+l (xi- 1 + e - D)].
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Because x - 1 < < xi - 1 + e, we have git(X-1) = 0 and hi,t(x- 1 + e) 0, and

diyft + L(yi*t) - di i - 1 - L( x i- 1 + e)
0) 1 *2 xi-1 + D]

+ E[SM(i,W),t+l + SM(iW),t+1(Yi - D) + SM(i,w),t+ 1 + e - D)].
, I i1MiW tl+S2 (iW ,+(xi-1

- fit(Yit) - dix i - 1 - L( x i - 1 + e) + E[S(iW),t+ SM(iw),t+ e - D)]0i' 2Y - xi-1 -D)

-= ai,t - dix i - 1 - L(x i - 1 + e) + E[S (i,w),t+1 + SM(i,w),t+l(x + e - D)]

= ait + gi,t(xi-) + hi,T(Xi - 1 + e) - dix i - 1 - L(xi- 1 + e)
2 '2 i-1

+ E[SM(i,W),t+ SM(i,w),t+1I + e - D)].

Case 3 If y,t > xi- 1 + e, then we expedite min(vi, Yit - xi-1) from installation i in state

A and min(vi, Y*,t - x i - 1 - e) from installation i in state B. Therefore, in the next time

period, states A+ and B + are the same and the only cost difference between Jt(A) and

Jr(B) is die = di(x i - 1 + e) - dix - 1. Thus, Jt(A) - Jt(B) = di(x i - 1 + e) - dx i - 1.

Because Y*,t > x i - 1 + e, we have gi,t(x i - 1 ) = 0 and gi,t(x i - 1 + e) = 0. Note that

S + S1( S t+(x) = 0, or St+(x) -St+1  (x) We conclude that
S•0t+l ÷ S,t+l1(X) + Sý,t~lX 3 , ort+ Sjt~(t +-

di (x i - 1 + e) - di x - 1

= ai,t - ai,t + gi,t(Xi- 1 ) - gi,t(Xi-1 + e) + hi,t(xi- + e) - hi,t (xi- 1 + e)

+ di(x i - 1 + e) - dix i - 1

= ai,t + gi,t(x i - l ) + hi,t(x i - 1  e) - fit( i - 1  e) di(x i - 1  e) - dix i - 1

= ai,t + gi,t(x i - 1) + hi,t(x i - 1 + e) - di(x i - 1 + e) - L(x i - 1 + e)

- E[SM(i,w),t+1(xi-1 + e - D)] + di (Xi - 1 + e) - dix i - 1

= ai,t + gi,t(x i - 1 ) + hi,t(x i - 1 + e) - dix i - 1 - L(x i - 1  e)

- E[SM(i,w),t+(Xi- 1 + e - D)]

= ai,t + gi,t(xi 1 ) hi,t(x i - 1  e) - dix i - 1 - L(x i - 1 + e)

+ E[SM(iW),t+1 + SM(i,w),t+l(x -X + e - D)].
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Finally, Cases 1, 2, and 3 can be summarized as

Jt (Xi-1 Oi-1, Vi, vi+, - *" , VK) - Jt(xi - 1 + e Oi-1, vi - e, Vi+l,.. , VK)

= ai,t + gi,t(x i - 1) + hi,t(x i - 1 + e) - dix i - 1 - L(x i - 1 + e)

+ E[SM(i,W),t+ + SM(i,w),t+l (xi- 1 + e - D)]
__ SP + - e).

SSt + S,(xzi- 1 ) + S +t(x1  e

Therefore, part (c) is proved, and this completes the induction step of the entire proof. E

The Rolling Heuristic

This heuristic uses rolling at each time period. The steps in this heuristic are the following:

1. Determine optimal regular ordering quantity by assuming no expediting now and in

the future.

2. Determine optimal expediting quantities from intermediate installations by assuming

no expediting options in the future.

3. In the next time period, repeat.

We actually expedite orders at all time periods, although the optimal expediting decisions

assume no future expediting.

Formal Derivations

Let us denote by u the regular ordering quantity, and by ei the expediting quantity from

installation i. Then the optimality equation reads

Jk(X, Vl, *. , VL-1) -

L L

m { diei + L(x + e Y ) + cu
u,el,-* ,eL
uŽeLŽO i=1 i=1
viý!ei20

i=1,... ,L-1

L

+ E[Jk+1(x + v + ei - D, v2 - e2,--, vL-1 - eL-1, U -eL)]}.
i=2
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Let Ik is the cost-to-go without any expediting now and in the future at time period k.

Then the optimality equation for the heuristic regular ordering quantity u* is

Ik(x, v1, " " , VL-1) = min{cu* + L(x) + E[Ik+l (x1 - D, v27 " " ,VL-1, U*)]}.-

It is easy to show that for convex functions p, we have

It is easy to show that for convex functions 231, we have

pL(L-1).
Ik(x, v1,"" ,VL-1) - p Pk 1k

Furthermore, by defining qk(x) = Etp (x - D)], we have

pk(x) = L(x)

Pk2(Xl) = qkl+l(Xl)

L-1(xL-2) L-2 L2
pk qk+l (xL 2)

S(XL - ) = i{cx L + qL
xL>xLL-

L)} - CL-1 L1 1 L-l

(xL}- cxL- + qk+l (,x

The heuristic is based on substituting u* from Ik for u and Ik+l for Jk+1. Therefore, the

current cost to go J4 is

J(x, vi, ... , VL1) min
el,.'" ,eL
u*>eL>O
i=1,-e,- 1O

L L

{ diei + L(x± + ei) + ±cu*
i=1 i=1

+ E[Ik+1(x + vl + vl ei
i=2

- D, v2 - e2, ** , VL-1 - eL-1, U - eL)]}.
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In order to obtain the heuristic decisions on expediting, we need to solve the following

problem.

L L

J(x, vi,... ,vL-1) = emi diei + L(x + e•± ) + cu*A X 1 L el ,... ,eL

u*>eL>O i=1 i=1
vi>ei>O

i=1---, ,L-1

L

+qkl(x+vi + Z ei)
i=2

L
2 Zi

+ qk+ 1 (x + vl + V2 + ei)
i=3

L-1 t L-1

+ qk+l(x + eL)

+ qL+ 1(xL-1 U*)}.

The rolling heuristic is easy to understand because it is myopic. Also, this heuristic al-

lows order crossing in time in principle for nondecreasing expediting costs. Therefore, this

heuristic also works well for the systems with very high expediting costs at intermediate in-

stallations. However, because we do not consider future expediting, the optimal expediting

pattern prefers expediting from locations with smaller expediting costs.
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