
Orbit Determination Using Modern Filters/Smoothers and
Continuous Thrust Modeling

by

Zachary James Folcik

B.S. Computer Science
Michigan Technological University, 2000

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2008

© 2008 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:___

Department of Aeronautics and Astronautics
May 23, 2008

Certified by:___
Dr. Paul J. Cefola

Lecturer, Department of Aeronautics and Astronautics
Thesis Supervisor

Certified by:___

Professor Jonathan P. How
Professor, Department of Aeronautics and Astronautics

Thesis Advisor

Accepted by:___
Professor David L. Darmofal
Associate Department Head

Chair, Committee on Graduate Students

1

[This page intentionally left blank.]

2

Orbit Determination Using Modern Filters/Smoothers and Continuous
Thrust Modeling

by

Zachary James Folcik

Submitted to the Department of Aeronautics and Astronautics on May 23, 2008

in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Aeronautics and Astronautics

ABSTRACT

The development of electric propulsion technology for spacecraft has led to reduced costs
and longer lifespans for certain types of satellites. Because these satellites frequently
undergo continuous thrust, predicting their motion and performing orbit determination on
them has introduced complications for space surveillance networks. One way to improve
orbit determination for these satellites is to make use of new estimation techniques. This
has been accomplished by applying the Backward Smoothing Extended Kalman Filter
(BSEKF) to the problem of orbit determination. The BSEKF outperforms other
nonlinear filters because it treats nonlinearities in both the measurement and dynamic
functions. The performance of this filter is evaluated in comparison to an existing
Extended Semianalytic Kalman Filter (ESKF). The BSEKF was implemented in the
R&D Goddard Trajectory Determination System (GTDS) for this thesis while the ESKF
was implemented in 1981 and has been tested extensively since then. Radar and optical
satellite tracking observations were simulated using an initial truth orbit and were
processed by the ESKF and BSEKF to estimate satellite trajectories. The trajectory
estimates from each filter were compared with the initial truth orbit and were evaluated
for accuracy and convergence speed. The BSEKF provided substantial improvements in
accuracy and convergence over the ESKF for the simulated test cases. Additionally, this
study used the solutions offered by optimal thrust trajectory analysis to model the
perturbations caused by continuous thrust. Optimal thrust trajectory analysis makes use
of Optimal Control Theory and numerical optimization techniques to calculate minimum
time and minimum fuel trajectories from one orbit to another. Because satellite operators
are motivated to save fuel, it was assumed that optimal thrust trajectories would be useful
to predict thrust perturbed satellite motion. Software was developed to calculate the
optimal trajectories and associated thrust plans. A new force model was implemented in
GTDS to accept externally generated thrust plans and apply them to a given satellite
trajectory. Test cases are presented to verify the correctness of the mathematics and
software. Also, test cases involving a real satellite using electric propulsion were
executed. These tests demonstrated that optimal thrust modeling could provide order of
magnitude reductions in orbit determination errors for a satellite with low-thrust electric
propulsion.

Thesis Supervisor: Dr. Paul J. Cefola
Title: Lecturer, Department of Aeronautics and Astronautics

3

DISCLAIMERS

The views expressed in this article are those of the author and do not reflect the official
policy or position of MIT, MIT Lincoln Laboratory, the United States Air Force,
Department of Defense, or the U.S. Government.

This work is sponsored by the Air Force under Air Force Contract FA8721-05-C-002.
Opinions, interpretations, conclusions, and recommendations are those of the author and
are not necessarily endorsed by the United States Government.

4

Acknowledgements

I would first like to thank Paul Cefola for his outstanding advising, teaching and
mentoring over the past six years. I have been very lucky to have such a thoughtful and
attentive thesis advisor. Through your example, you have inspired me to always strive
for excellence in my work. I look forward to many more years of collaboration with you.

I thank David Chan, Rick Abbot, Susan Andrews, Forrest Hunsberger, Val Heinz,
and Curt von Braun for their support and guidance which allowed me to enter the Lincoln
Scholars Program. I am very grateful for the opportunity to go back to school. I also
thank Bonnie Tuohy and Deborah Simmons for their gracious help with release review.

I also thank Sid Sridharan and Kent Pollock for hiring me at MIT Lincoln
Laboratory. Kent, you have taught me so much about software programming and how to
do so in a team. Sid, I thank you for guiding my career, giving me interesting projects
and showing me how to be a creative engineer.

I thank my family, Tom and Peggy Folcik and Jeffrey Dawley, for their constant
support, encouragement and love. Your words and understanding helped me stay
grounded and secure during my foray into graduate school.

I am very grateful to the system administrators in Group 93: Susan Champigny,
Douglas Piercey, Ernest Cacciapuoti, John Duncan, and Edward Christiansen. Thank
you very much for your diligence and time in resurrecting the data I needed for this
thesis.

I thank the members of the Lincoln Scholars Committee for giving me the
opportunity to join the program and go to graduate school. I thank my academic advisor,
Prof. Jonathan How, for his guidance. I also thank Jean Kechichian at the Aerospace
Corporation for his advice in trajectory optimization. I also thank Paul Schumacher and
Jim Wright for their helpful comments at the American Astronautical Society meeting in
Galveston, TX.

I appreciate the assistance of Erick Lansard, the Director of Research at Thales
Alenia Space, Leonardo Mazzini at Thales Alenia Space, Heiner Klinkrad at the
European Space Operations Center, and Andrea Cotellessa at the European Space
Agency in being very responsive to my requests for information about the ARTEMIS
satellite and its recovery. I thank you for all of the information you provided.
I appreciate the efforts of Paul Cefola, Wayne McClain, Ron Proulx, Mark Slutsky, Leo
Early, and the many MIT students at Draper Laboratory who have made GTDS and
DSST what it is today. Your work has culminated in an orbit determination tool that is
accurate, useful, and extensible. My thesis work would have been much more difficult, if
not impossible, without standing on your shoulders.

5

[This page intentionally left blank]

6

Table of Contents

Chapter 1 Introduction... 15

1.1 Motivation ... 15
1.2 Overview of Thesis ... 18

Chapter 2 Background in Orbit Propagation, Optimal Thrust Trajectories, and
Estimation .. 21

2.1 Satellite Orbit Propagation ... 21
2.1.1 Satellite Orbit Propagation Using Cowell’s Method 23
2.1.2 Analytic Satellite Theory .. 24
2.1.3 Draper Semianalytic Satellite Theory ... 25

2.1.3.1 Perturbing Forces and Variation of Parameters 29
2.1.3.2 Gaussian VOP Formulation ... 32
2.1.3.3 Lagrangian VOP Formulation... 34
2.1.3.4 DSST Formulation for VOP Equations .. 36
2.1.3.5 Equinoctial Orbital Elements and Variational Equations 38
2.1.3.6 DSST Application of Generalized Method of Averaging 42

2.2 Application of Electric Propulsion (EP) to satellites ... 58
2.2.1 Electric propulsion motors .. 58
2.2.2 Electric propulsion optimal orbit transfer .. 68

2.2.2.1 Optimal Control Theory Background .. 68
2.2.2.2 Minimum-Time Trajectory Optimization Problem 72
2.2.2.3 Numerical Solution Method for Trajectory Optimization Problem .. 78
2.2.2.4 Averaged Numerical Solution Method for Trajectory Optimization

Problem .. 81
2.2.3 Electric Propulsion for Satellite Station Keeping 90

2.3 Recursive Orbit Estimation Techniques ... 93
2.3.1 Extended Kalman Filter .. 98

2.3.1.1 Linear Unbiased Minimum Variance Batch Estimate 100
2.3.1.1.1 The Linearized State Equation ... 100
2.3.1.1.2 State Transition Matrix ... 101
2.3.1.1.3 Properties of the State Transition Matrix 103
2.3.1.1.4 The Linearized Observation Equation .. 104
2.3.1.1.5 Summary of Notation .. 105
2.3.1.1.6 Reduction to a Common Epoch .. 107
2.3.1.1.7 The Expectation Operator .. 108
2.3.1.1.8 The Linear Unbiased Minimum Variance Estimate................... 110

2.3.1.2 Derivation of the Kalman Filter .. 116
2.3.1.3 Algorithm for the Sequential Kalman Filter 121
2.3.1.4 The Algorithm for the Extended Kalman Filter 122
2.3.1.5 Glossary of Mathematical Symbols ... 124

2.3.2 Filters/Smoothers ... 126
2.3.3 Unscented Kalman Filter .. 132
2.3.4 Backward Smoothing Extended Kalman Filter .. 139

7

Chapter 3 Extended Semianalytic Kalman Filter (ESKF) Implementation in
GTDS .. 145

3.1 Operations on the Integration Grid .. 146
3.2 Operations on the Observation Grid ... 147

Chapter 4 Backward Smoothing Extended Semianalytical Kalman Filter

(BSESKF) Design .. 153
4.1 Detailed BSESKF Algorithm Description .. 157

4.1.1 Operations on the Observation Grid .. 157
4.1.2 Operations on the Integration Grid ... 160

4.2 Incorporation of the BSESKF Software into GTDS .. 163
4.2.1 GTDS Modification Summary .. 165
4.2.2 New Subroutines .. 167
4.2.3 Modified Subroutines .. 170

4.3 Test Methodology .. 177
4.4 Simulation Test Case Results ... 180

Chapter 5 Software for Optimal Orbit Transfer Modeling 193

5.1 Standalone Trajectory Optimization Software .. 195
5.1.1 Exact Equation Trajectory Optimization Code .. 196
5.1.2 Averaged Equation Trajectory Optimization Code 200

5.2 GTDS Continuous Thrust Implementation .. 207
5.2.1 New subroutines ... 207
5.2.2 Modified subroutines ... 208
5.2.3 GTDS modification summary ... 210

5.3 Verifying Test Case Results ... 213
5.4 Real Data Test Case Results ... 224

5.4.1 ARTEMIS Satellite Background .. 224
5.4.2 ARTEMIS Satellite Data and Test Case Methodology 229
5.4.3 ARTEMIS Orbit Determination Test Cases 1 and 2 237
5.4.4 ARTEMIS Orbit Determination Case 3 .. 262

Chapter 6 Conclusions and Future Work .. 275

6.1 Summary and Conclusions .. 275
6.2 Future Work .. 278

Chapter 7 Appendices.. 283

Appendix A New GTDS Keywords .. 283
Appendix B BL Matrix and Partial Derivatives .. 287
Appendix C Thrust Plan Coordinate Systems .. 297
Appendix D Executing the Optimal Thrust Planning Software 303
Appendix E Source code for the Exact Equation Optimal Thrust Planning

Software .. 307
Appendix F Source code for the Averaged Equation Optimal Thrust Planning

Software .. 337

Chapter 8 References .. 389

8

List of Figures

Figure 1.1 Notional System for Enhancing Space Surveillance for Thrusting

Spacecraft ... 16
Figure 2.1 Illustration of Zonal, Sectoral and Tesseral Harmonics 28
Figure 2.2 Equinoctial Orbital Element Frame .. 39
Figure 2.3 Hall Thruster Schematic ... 61
Figure 2.4 Aerojet BPT-2000 Hall Thruster (courtesy, Dr. Brad King at

Michigan Technological University) .. 62
Figure 2.5 NASA Deep Space 1 Gridded Ion Engine Illustration 63
Figure 2.6 Pulsed Plasma Thruster from NASA Earth Observing 1 (EO-1) 66
Figure 2.7 Inclination Control with Chemical vs. XIPS Thrusters 92
Figure 2.8 Eccentricity and Longitude Control with Chemical vs. XIPS

Thrusters ... 92
Figure 2.7 Kalman Filter vs. Rauch-Tung-Striebel Smoothed Estimates 130
Figure 2.8 Kalman Filter vs. Rauch-Tung-Striebel Smoothed Covariance 131
Figure 2.9 The Unscented Transform for Mean and Covariance Propagation 134
Figure 2.10 Illustration of BSEKF Estimation Algorithm 140
Figure 2.11 Error History of Several Filters in Estimating Moments of Inertia ... 142
Figure 4.1 GTDS Subprogram Hierarchy ... 164
Figure 4.2 BSEKF Subprogram Subroutine Flow .. 166
Figure 4.3 LEO mean semimajor axis state variable for cases 1 and 2 184
Figure 4.4 LEO mean h state variable for cases 1 and 2 .. 185
Figure 4.5 LEO mean k state variable for cases 1 and 2 .. 185
Figure 4.6 LEO mean p state variable for cases 1 and 2 .. 186
Figure 4.7 LEO mean q state variable for cases 1 and 2 .. 186
Figure 4.8 LEO mean λ state variable for cases 1 and 2 .. 187
Figure 4.9 GEO mean semimajor axis state variable for cases 3 and 4 188
Figure 4.10 GEO mean h state variable for cases 3 and 4 .. 188
Figure 4.11 GEO mean k state variable for cases 3 and 4 .. 189
Figure 4.12 GEO mean p state variable for cases 3 and 4 .. 189
Figure 4.13 GEO mean q state variable for cases 3 and 4 .. 189
Figure 4.14 GEO mean λ state variable for cases 3 and 4 .. 190
Figure 4.15 GEO mean h equinoctial element for case 4 ... 191
Figure 5.1 Exact Equation Trajectory Optimization Program Flow 196
Figure 5.2 Averaged Equation Trajectory Optimization Program Flow 201
Figure 5.3 Cowell Program Flow for Thrust Acceleration File Input 211
Figure 5.4 DSST Program Flow for Thrust Acceleration File Input 212
Figure 5.5 Semimajor Axis and Eccentricity Transfer Time History (a) 216
Figure 5.6 Thrust Pitch and Yaw Transfer Time History (a) 217
Figure 5.7 Inclination and RAAN Time History (a) ... 217
Figure 5.8 Lagrange Multiplier for SMA in Averaged and Exact Cases (a) 220
Figure 5.9 GTDS Ephemeris Generation of Semimajor Axis History 222
Figure 5.10 GTDS Ephemeris Generation of Eccentricity History 222
Figure 5.11 GTDS Ephemeris Generation of Inclination History 223
Figure 5.12 Maneuver Strategy for ARTEMIS Salvage Mission 225

9

Figure 5.13a Ion Thruster Locations on the ARTEMIS Satellite 227
Figure 5.13b Ion Thruster Locations on the ARTEMIS Satellite 227
Figure 5.14 Spacecraft Orientation and Thrust Vector for Single Thruster

Firing ... 228
Figure 5.15 Thrust Plan Generation and Force Model Process Flow 231
Figure 5.16 ARTEMIS Semimajor axis during Ion Thrusting 234
Figure 5.17 ARTEMIS Eccentricity during Ion Thrusting 235
Figure 5.18 ARTEMIS Inclination during Ion Thrusting 235
Figure 5.19 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust

Plan Case 1 .. 244
Figure 5.20 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 1 .. 245
Figure 5.21 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 1 245
Figure 5.22 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust

Plan Case 2 .. 247
Figure 5.23 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 2 .. 247
Figure 5.24 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 2 248
Figure 5.25 Case 1 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (X-direction) ... 250
Figure 5.26 Case 1 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Y-direction) ... 250
Figure 5.27 Case 1 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Z-direction) ... 251
Figure 5.28 Range (a) and Range Rate (b) Residuals for ARTEMIS Case 1 254
Figure 5.29 Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 1 255
Figure 5.30 Right Ascension (a) and Declination (b) Residuals for ARTEMIS

Case 1 ... 256
Figure 5.31 Case 2 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (X-direction) ... 257
Figure 5.32 Case 2 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Y-direction) ... 257
Figure 5.33 Case 2 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Z-direction) ... 258
Figure 5.34 Range (a) and Range Rate (b) Residuals for ARTEMIS Case 2 260
Figure 5.35 Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 2 261
Figure 5.36 Right Ascension (a) and Declination (b) Residuals for ARTEMIS

Case 2 ... 262
Figure 5.37 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust

Plan Case 3 .. 268
Figure 5.38 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 3 .. 269
Figure 5.39 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 3 269
Figure 5.40 Case 3 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (X-direction) ... 272
Figure 5.41 Case 3 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Y-direction) ... 272
Figure 5.42 Case 3 Residuals of TLE based ECI osculating position (a) and

velocity (b) vectors (Z-direction) ... 273

10

Figure 6.1 Progress in Modeling, Prediction and Estimation Tools for
Improved Satellite Thrust Treatment .. 279

Figure C.1 Satellite Thrust Pitch and Yaw Angles ... 298
Figure D.1 Source Code Input for ARTEMIS Case #1 .. 304
Figure D.2 Source Code Weight Input for ARTEMIS Case #1 305

11

[This page intentionally left blank]

12

List of Tables

Table 2.1 EP Thruster Parameters for Several Launched Satellites 67
Table 4.1 Simulated Observation Sensor Locations ... 177
Table 4.2 LEO and GEO Mean Orbital Elements for Test Cases........................... 180
Table 4.3 Sensor Measurement Noise Standard Deviations 181
Table 4.4 LEO and GEO Perturbed minus Initial Truth Mean Orbital Elements 182
Table 4.5 LEO and GEO Diagonal Covariance Entries ... 183
Table 4.6 ESKF and BSESKF Drag Coefficient Solutions for LEO Case 1 187
Table 5.1 Standalone Tool Initial and Final Orbit Achieved 213
Table 5.2 Solved Initial Lagrange Multipliers for LEO to GEO Case 214
Table 5.3 Initial and Final Orbit Achieved by Jean Kechichian 214
Table 5.4 Kechichian’s Solved Initial Lagrange Multipliers for LEO to

GEO Case .. 215
Table 5.5 Averaged Standalone Tool Initial and Final Orbit Achieved 218
Table 5.6 Solved Initial Averaged Lagrange Multipliers for LEO to

GEO Case .. 219
Table 5.7 Kechichian’s Initial Avg. Lagrange Multipliers for LEO to

GEO Case .. 219
Table 5.8 Final Orbital Elements after all Ion Orbit Raising and Subsequent

Chemical Burns ... 229
Table 5.9 Initial and Final Orbits for ARTEMIS Case 1 ... 238
Table 5.10 Initial and Final Orbits for ARTEMIS Case 2 238
Table 5.11 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 1 ... 239
Table 5.12 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 2 ... 240
Table 5.13 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 1 242
Table 5.14 Initial Exact Lagrange Multipliers for ARTEMIS Case 2 243
Table 5.15 DC Residual Statistics for Case 1 when Thrust Plan is Ignored........... 251
Table 5.16 DC Residual Statistics for Case 1 when Modeled with Thrust Plan 252
Table 5.17 DC Residual Statistics for Case 2 when Modeled with Thrust Plan 259
Table 5.18 Initial and Final Orbits for ARTEMIS Case 3 263
Table 5.19 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 3 ... 265
Table 5.20 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 3 267

13

[This page intentionally left blank]

14

Chapter 1 Introduction

1.1 Motivation

Orbit determination has had a long, remarkable history. Its roots lie in astronomy

and in particular, predicting the motion of planets and comets. Copernicus, Kepler,

Newton, Lagrange, Gauss and others have contributed much to this science and it is upon

their shoulders that work continues today. Newton’s Laws of Gravity still serve as the

starting point for modeling the motion of orbiting satellites. Carl Friedrich Gauss

invented and first used the method of least-squares and his method still serves as the basis

for orbit determination. Many impressive methods and techniques for orbit prediction

and determination have been invented since the start of the Space Age, but these

inventions all rely on the fundamental work done well before man-made Earth satellites

were launched.

The work presented in this thesis is based on the enormous body of work that has

come before it. Improvement in orbit determination in specific cases is still a research

area that sees several advances each year. In the experience of the author, orbit

determination for satellites upon which unmodeled thrusting forces act remains a topic

with unsolved problems. These problems are relevant to the field of space surveillance in

which populations of satellites are non-cooperatively tracked in order to maintain

knowledge about their orbits. Spacecraft that are undergoing orbit transfers or station-

keeping are more challenging for space surveillance because the motion cannot simply be

modeled with known natural forces. Additional modeling of thrusting forces must be

15

undertaken to accurately capture spacecraft motion. Modeling such thrusting forces is

most challenging when the spacecraft operator and the space surveillance network do not

cooperate to share information. For these non-cooperative space surveillance cases,

satellite orbit determination and prediction systems with maneuver detection and

prediction capabilities are sought to improve space situational awareness. Such systems

would help provide more accurate predictions of satellite motion for spacecraft with

either chemical or electric propulsion. Figure 1.1 depicts such a system.

Figure 1.1 Notional System for Enhancing Space Surveillance for Thrusting
Spacecraft

In previous work (1), the authors presented ways in which unmodeled chemical

thrusting satellite maneuvers can be detected. However, improved methods for quickly

16

obtaining accurate orbital estimates after a satellite maneuvers are still sought. In

reference (1), a batch, Bayesian Least Squares estimator is used to obtain post-maneuver

orbital estimates because of limitations in using an Extended Kalman Filter (EKF).

However, improvements in sequential estimators have been made since the original EKF

formulation. Among these estimators is the Backwards Smoothing Extended Kalman

Filter (BSEKF) developed by Mark Psiaki (2). This estimator treats nonlinearities more

accurately than does the EKF and so converges more robustly and produces more

accurate estimates. For this thesis, the BSEKF was implemented in the Goddard

Trajectory Determination System (GTDS) and was evaluated in simulated observation

test cases.

In addition, an attempt has been made to improve orbit prediction for a new and

growing collection of man-made satellites. These satellites use low-thrust, electric

propulsion technology. This technology is based on ion and plasma physics. Because of

the constraints on electric propulsion in space, i.e. solar panels and batteries provide

limited electrical power; such thrusters provide small accelerations compared with more

common chemical thrusters. Because of these small accelerations, ion-electric thrusters

must operate continuously rather than impulsively, and this affects the modeling that

must be done to accurately predict the motion of these satellites. Experience has shown

that high accuracy orbits cannot be obtained when neglecting thrust accelerations. This

thesis develops initial predictive models that are based on Optimal Control Theory. A

central assumption made regarding the operation of satellites using ion thrusters is that

the fuel-optimal solution governs their control. With this assumption, optimal control

17

theory yields useful control solutions that can be used to model the perturbing

accelerations due to low, continuous thrust. The substantial work of Jean Kechichian (3),

(4), (5), (6), (7), (8), (9) has been leveraged for the calculation of optimal thrust

trajectories for satellites. Software has been developed to generate optimal thrust plans

and to use those thrust plans to model satellite motion within the GTDS framework.

1.2 Overview of Thesis

The overall purpose of this thesis is to evaluate an application of the BSEKF

algorithm for orbit estimation and to develop an orbital motion model for low-thrust

satellites. Specifically, the BSEKF algorithm has been implemented in the R&D GTDS

software at MIT Lincoln Laboratory. The BSEKF has been coupled to the Draper

Semianalytic Satellite Theory (DSST) forming the Backward Smoothing Extended

Semianalytic Kalman Filter (BSESKF) algorithm. The DSST algorithm was chosen as

the first orbit propagator to be used with the BSEKF algorithm because of its high

computational efficiency and the linearity of the mean equinoctial orbital elements

propagated by DSST.

Chapter 2 provides background on orbit propagation. Sections 2.1.1 and 2.1.2

provide some background on Cowell’s propagation method and analytical propagation

methods, respectively. Section 2.1.3 develops some of the mathematical background for

DSST. Section 2.2 provides background for electric propulsion (EP) for satellites.

Several types of EP engines are described. In Section 2.2.2, background in optimal

18

control theory is presented and Jean Kechichian’s (5) formulation for solving constant

thrust, fuel-optimal satellite control problems is detailed. Background for recursive orbit

estimation techniques including the BSEKF is provided in section 2.3.

Chapter 3 outlines previous work done by Stephen Taylor (10) to couple the

Extended Kalman Filter (EKF) to DSST and thus form the Extended Semianalytic

Kalman Filter (ESKF). Coupling the BSEKF to DSST was done similarly.

The complete BSESKF algorithm, its implementation in GTDS, and simulation

results are described in detail in Chapter 4. Section 4.1 details the BSESKF algorithm.

Section 4.2 details the software implementation of the BSESKF. Sections 4.3 and 4.4

describe the testing methodology and the estimation results for the BSESKF using

simulated observations. These results show that the BSESKF is more accurate and

converges in less time than the ESKF.

Chapter 5 documents the optimal thrust plan software and presents verification of

the correctness of the solutions generated by the software. Section 5.1 documents the

standalone optimal thrust planning software. Section 5.2 describes the software

modifications done in GTDS to model the thrust plans created by the optimal thrust

planning software. These modifications allow GTDS to make orbit predictions and

perform orbit determination using externally generated thrust plans. Section 5.3

describes verification testing done for the optimal thrust planning software. Section 5.4

records the results of real data test cases developed for the ARTEMIS satellite. The real

19

data test cases demonstrate the usefulness of optimal thrust plans for modeling

continuous thrust accelerations of a satellite. In some cases, orbit determination which

did not converge when thrust was unmodeled, converged when using optimal thrust plans

to model thrust acceleration. In all test cases attempted, optimal thrust plans substantially

improved orbit determination metrics and agreement with AFSSN data. In some cases,

the observation residuals improved in aggregate by an order of magnitude or more.

Chapter 6 summarizes the conclusions of the thesis and outlines future work to

improve orbit determination and EP modeling capability. Appendix A documents new

GTDS keywords implemented for this thesis. Appendix B documents the BL matrix and

its partial derivatives which are used in Kechichian’s optimal thrust trajectory

formulation and in the optimal thrust planning software implemented for this thesis.

Appendix C describes the Euler-Hill rotating polar reference frame and how coordinates

in that frame can be transformed to the Earth centered inertial frame. This transformation

was useful in applying thrust plans to acceleration modeling in GTDS. Appendix D

describes how to execute and operate the optimal thrust planning software. Appendices E

and F include the source code for the exact equation and averaged equation optimal thrust

planning software.

20

Chapter 2 Background in Orbit Propagation, Optimal
Thrust Trajectories, and Estimation

2.1 Satellite Orbit Propagation

Satellite orbit propagation is the problem of starting with initial conditions for a

satellite orbit and calculating the satellite’s position at later times. Typically the initial

conditions are in the form of orbital elements of which at least six are required. These six

orbital parameters, plus the epoch time comprise an orbital element set which describes

the orbital size, shape, orientation and phase of a satellite in its orbit. The element set can

also be thought of as a state vector describing the motion of a satellite. The six

parameters are most commonly the Keplerian elements, i.e. semimajor axis, eccentricity,

inclination, right ascension of the ascending node, argument of perigee and mean

anomaly. Another common orbital element set is composed of Cartesian position and

velocity vectors. A third orbital element set is the set of equinoctial elements. These

elements have useful properties and are described in detail in section 2.1.3.5.

A common way to calculate the satellite state at some time given the satellite state

at some initial time involves using variational of parameter (VOP) equations which

compute the derivatives of the orbital elements with respect to time. The VOP equations

are used along with a numerical integration technique such as the Runge-Kutta method or

a finite-difference method (11) to integrate the VOP equations. This numerical

integration procedure produces a time history of the orbital elements from the time of the

initial condition to the desired output time. Because integration methods require the use

21

of an integration grid, the desired final time may be overshot by the numerical

integration. Interpolation can be used to produce the orbital elements at exactly the

desired final time. The accuracy of the satellite orbit propagation depends on how well

the right hand sides of the VOP equations describe the actual physical motion of the

satellite. Many forces need to be modeled in order to accurately predict satellite motion.

The basic Newtonian two-body force describes the circular, elliptical, or hyperbolic conic

trajectory of a satellite around a central body such as the Earth. Other forces arise from

the non-spherical shape of the central body, third-body gravity, atmospheric drag,

radiation pressure, central body tidal deformations, propulsion devices, and others. These

forces are generally much smaller in magnitude than the basic two-body force and so are

modeled as perturbations to the basic equations of motion. Perturbations are deviations

from the undisturbed two-body motion. There are three main ways to include the effects

of perturbations in modeling satellite motion. Special perturbation techniques such as

Cowell’s method numerically integrate the equations of motion and include all

acceleration terms that perturb the two-body motion. The solutions obtained using

special perturbations are specific to the initial conditions used. Cowell’s method is

described in section 2.1.1. General perturbations, i.e. analytic methods, such as the

methods introduced by Kozai and Brouwer in the late 1950s and 1960s (12), (13) employ

analytic expressions for the satellite perturbations. These general perturbations are very

efficient computationally. Some of these theories can yield high accuracy, but the most

commonly used today, i.e. SGP4, suffers from reduced accuracy because of the term

truncation (14). Section 2.1.2 briefly discusses analytic theories. Semianalytic methods

separate the effects of perturbations causing long-period and secular deviations from the

22

two-body motion from the effects of perturbations causing short-period deviations. This

separation allows for speedy integration of the equations of motion that include the long-

period and secular motion. The short-period motion is added only when high accuracy is

required. In this way, semianalytic methods provide accuracy and computational

efficiency (15), (14). One semianalytic method, the Draper Semianalytic Satellite Theory

(DSST) developed by Paul Cefola, Wayne McClain, Leo Early, Ron Proulx, Mark

Slutsky and others, is described in section 2.1.3.

2.1.1 Satellite Orbit Propagation Using Cowell’s Method

One of the most common methods for orbit propagation is Cowell’s method. This

method predicts satellite motion by numerically integrating the equations of motion in

terms of Cartesian elements, i.e. rectangular, position and velocity (11). The following

equation describes the disturbed relative motion of two bodies (11):

drdt
d arr

=+ 32

2 μ (2.1)

Here, r is the position vector of a satellite with respect to the central mass, ad is the vector

of acceleration arising from the presence of general disturbing forces, and μ is the

constant of gravitation associated with the central body (11). The Cowell method has the

virtue of being the most straightforward way to determine the position, r(t), and velocity,

v(t). The equations of motion used in this method are described in several references

including (11) and (16). While this method is widely used for its simplicity, it suffers

from some drawbacks. Because the disturbing forces modeled by ad are often small in

comparison to the two-body forces, many of the significant figures used in the

23

calculations will only be used to reproduce the dominating two-body motion (16). In

order to maintain reasonable accuracy in the integrations of the equations of motion and

accurately include the perturbing acceleration terms, small step-sizes are needed. When

using finite precision arithmetic and when integrating for long periods, truncation error

and round off error build up as the square root of the number of calculations performed

(16). Because of these drawbacks, analytic and semianalytic methods have been

developed.

2.1.2 Analytic Satellite Theory

Analytical satellite theories have been developed and used operationally for many

years (13), (17), (18). The SGP theory developed by C. G. Hilton and J. R. Kuhlman

used a simplified version of Kozai’s gravitational theory (18). A modified form of

Brouwer’s gravitational theory was used in SGP4, the successor to SGP (19). SGP4 is

described in references (17) and (20). The analytic satellite motion theories introduced

by Brouwer use canonical transformations to separate the short period, long period and

secular components of the motion (15), (18). Brouwer’s method operates with what are

known as double averaged equations of motion and is purely analytic in its formulation.

The SGP and SGP4 analytic theories truncate many of the terms in Kozai’s and

Brouwer’s gravitational theories, respectively, but allow the satellite motion to be

propagated very quickly in terms of computing time. However, the term truncation

reduces the accuracy of SGP and SGP4 over the original formulations from which they

were derived. Nevertheless, the double averaged methods have proven very useful in that

24

they enable computation of all earth satellites on a daily basis to perform satellite orbit

catalog maintenance.

It should be noted that analytic theory based systems that provide higher accuracy

than SGP and SGP4 have been developed. The Aeronutronic Complete First-Order

General Perturbations (AGP) theory includes first and second order secular terms. AGP

also includes first order long and short periodic expressions with coefficients of Earth

gravity terms J2, J3 and J4 (18). AGP was the antecedent of SGP theory (18). The SGP4

Theory was written by Cranford in 1970, but was derived as a truncated form of the

AFGP4 Theory. The AFGP4 Theory was developed by Lane and Cranford and included

gravitational zonal terms through J5 (21). A power density function was used to model

atmospheric density for the drag calculations (19). The ANODE analytic orbit

determination system developed and used at MIT Lincoln Laboratory includes analytic

lunar and solar gravitational perturbations, analytic drag perturbations and perturbations

due to geopotential terms J2, J2
2, J3 and J4 (22) (23). Applications requiring high accuracy

for which SGP4 is not suitable are growing in number and include satellite maneuver

detection, atmospheric density correction, high precision orbit catalog maintenance, long-

term orbit evolution, etc.

2.1.3 Draper Semianalytic Satellite Theory

The Draper Semianalytic Satellite Theory (DSST) developed at the Computer

Sciences Corporation (CSC) and later at the Charles Stark Draper Laboratory (CSDL) is

25

an efficient alternative to the brute-force numerical integration techniques. Although

computation per dollar has drastically improved since the conception of DSST,

computationally efficient algorithms such as DSST remain relevant. Applications such as

monitoring the orbital elements of all Earth satellites, performing atmospheric density

correction, satellite maneuver detection, long-term mission studies and other applications

requiring the prediction and orbit determination of thousands of satellite orbits in

reasonable time frames benefit from efficient analytic or semianalytic orbit prediction

methods. The implementation of DSST included in the R&D version of GTDS is used

extensively in this study. This section serves to describe DSST in some detail.

DSST was developed by Paul Cefola, Wayne McClain, Leo Early, Ron Proulx,

Mark Slutsky and their colleagues at the Computer Sciences Corporation and the Charles

Stark Draper Laboratory (CSDL) in the 1970s and 1980s. In its development at the

CSDL, DSST also benefited from numerous enhancements made by MIT graduate

students under the direction of the CSDL staff. DSST was developed with an emphasis

on accuracy and computational efficiency. To accomplish this, DSST models

conservative perturbing forces with Lagrangian Variation of Parameters (VOP) and non-

conservative perturbing forces with Gaussian VOP. The Generalized Method of

Averaging is used to isolate the short periodic motion from long period and secular

motion. Through this method, the averaged VOP equations of motion and the short

periodic models are obtained (15).

26

DSST differs from purely analytical methods in that it is a hybrid approach taking

advantage of the efficiency of analytic methods and the accuracy of special perturbations

methods. DSST is a single averaged approach. It uses the Generalized Method of

Averaging to isolate the short period satellite motion, i.e. the motion on the order of one

satellite orbital period. The long period and the secular motion are retained in the

equations of motion. Integrators with relatively large time steps are used to integrate the

secular and long-period motion (15). DSST propagates long period and secular satellite

motion using a set of mean equinoctial elements. The near-linear mean elements have

the advantage of allowing large integration time steps. The equinoctial coordinates avoid

singularities for small inclination and eccentricity orbits. Because of the large time steps

allowed, DSST is computationally efficient. DSST also provides highly accurate orbits

by computing short period motion when explicitly needed, i.e. when ephemeris points are

requested or when observations are computed. The short period motion is computed

using Fourier series in the fast orbital element which accurately and efficiently

reproduces the motion (10). Specifically, the short period variations are obtained by

evaluating the slowly-varying short periodic Fourier coefficients on the mean element

integration grid and interpolating to the desired output time. The short periodic variations

are then added to the mean elements to obtain the osculating elements (24).

The accuracy of DSST comes from its extensive treatment of perturbing forces.

The theory includes third-body models and nonspherical Earth gravitational force

models. Included in the nonspherical gravitational model are zonal harmonics, tesseral

harmonics, combined zonal and tesseral harmonics, resonant tesseral harmonics, and

27

second order terms such as J2
2 and J2/m-dailies (15). Figure 2.1 taken from reference

(25) depicts the spherical harmonic coefficients of degree 8 and orders 6-8 in terms of the

zonal, tesseral, and sectoral deviations from a sphere. The deviations are exaggerated to

illustrate the shaping. DSST is currently capable of modeling central-body spherical

harmonics up to degree and order 50. This capability was introduced by Dan Fonte (26).

Figure 2.1 Illustration of Zonal, Sectoral and Tesseral Harmonics

The attractions of DSST include its computational efficiency and its high accuracy. In

addition, the fact that single revolution, short-period oscillations are not present in the

28

mean equinoctial solve-for elements enhances the visibility of long-period and secular

satellite motion.

2.1.3.1 Perturbing Forces and Variation of Parameters

In order to gain an understanding of the efficiency of the Draper Semianalytic

Satellite Theory, it is helpful to summarize its derivation from basic principles. This

summary is borrowed from references (11), (15), (10), and (27). The two-body equations

of motion for the satellite orbiting the Earth are:

03 =+
r
rr μ&& (2.2)

where r is the position vector of the satellite relative to the center of mass and μ is the

gravitational parameter. The position vector solution is),,...,,(621 tcccfr = . The c1,…,c6

constants are the constants of integration for the solution. When perturbing forces are

introduced, the equation becomes:

),(3 tQ
r

rr,rr &&& =+ μ (2.3)

where is an acceleration vector depending on the position, its derivative with

respect to time, and time. The constants, , are replaced by time varying

parameters, . Velocity is given by the time derivative of position.

The chain rule is applied to yield:

),(tQ rr, &

ak

621 ,...,, ccc

6,...,2,1),(== ktak

∑
= ∂

∂
+

∂
∂

=

=

6

1

621),,...,,(

j
j

j

a
at

taaa
dt
d

&

&

rr

rr
 (2.4)

29

The second term is equated to zero for convenience to apply the constraint known as the

condition of osculation:

 0),,...,(61

6

1
=Φ≡

∂
∂∑

=

taaa
aj

j
j

&
r

 (2.5)

This constraint is also known as the Lagrange constraint. This is not the only choice of

constraint as the arbitrary function,),,...,(61 taaΦ , might not be equal to zero. Equating

the second term with zero is often done for convenience (28). If one explores the gauge

freedom of this Lagrangian constraint as is done by Efroimsky in references (28) and

(29), the function, , is arbitrary and this arbitrariness parallels gauge

invariance in electrodynamics. A careful choice of

),,...,(61 taaΦ

),,...,(61 taaΦ may considerably

simplify the process of finding the solution (29). With the constraint imposed by

equation (2.5), the osculating orbit is the unperturbed orbit that is tangent to the perturbed

orbit at a given time instant. If at a particular time instant, the effects embodied in the

time varying parameters, , cease to exercise any influence on the motion, the resulting

orbit would be a conic and the position and velocity vectors would be exactly computable

from the two-body formulas (11). This requirement defines the condition for the

osculating orbit (14) and maintains the general form of the velocity obtained in the

unperturbed problem (29):

ka

),,...,,(),,...,,(621621 taaataaa
tt

Φ+=
∂
∂

=
∂
∂

= gfrr& (2.6)

Differentiating the above expression and applying the chain rule yields (29):

dt
da

atdt
da

tat k
k k

k
k k

Φ
+

∂
∂

+
∂
∂

=
Φ

+
∂∂

∂
+

∂
∂

= ∑∑
==

&
&

&&&
6

1
2

26

1

2

2

2 rrffr (2.7)

30

When this equation for r is substituted into the original two-body equations of motion,

one obtains (29):

&&

),(
3

6

1
2

2

tQ
rdt

da
at k

k k

rr,rrr
&&

&
=+

Φ
+

∂
∂

+
∂
∂ ∑

=

μ (2.8)

We recall the equation of motion for the two-body problem:

 0
3
=+

r
rr μ&& (2.9)

When substituting equation (2.9) into equation (2.8), the perturbing acceleration vector is

shown to be (29):

),(
6

1
tQ

dt
da

a k
k k

rr,r
&&

&
=

Φ
+

∂
∂∑

=

 (2.10)

If using the constraint from equation (2.5), the dΦ/dt term is zero. Equation (2.10) shows

that the equations of motion for the perturbed system and those for the unperturbed

system only differ by the terms containing the time dependent parameters. This last

result intuitively indicates that as the perturbing acceleration diminishes, the perturbed

equations approach the equations for the unperturbed system.

The variation of parameters (VOP) concept is based on the assumption that

perturbing forces are several orders of magnitude smaller than the two-body point mass

force. Examples of perturbing forces are the Earth’s oblateness, third body gravitational

attraction from the moon and sun, solar radiation pressure, and Earth atmospheric drag.

The constants of integration produced when solving the two-body differential equations

of motion must be made time varying. This changes the solution vector, , to r

31

),,...,,(621 taaaf=r

kc

r&

 where the are time varying counterpart parameters related to the

 constants of integration.

ka

In the last result, the partial derivative summation includes partial derivatives with

respect to time in and . There are also partial derivatives of the velocity,r , with

respect to the time varying parameters, . The time varying parameters, a , represent a

specific orbital ellipse at each instant in time. The actual perturbed orbit is represented

by a more complex curve, but the orbital ellipse represented by the parameters is

tangent to the more complex curve at the time instant for which it is valid. The

parameters or elements are thus referred to as osculating in that they are tangent or “kiss”

the perturbed orbit at an instant of time.

ka& &

kka

ka

ka

It is more convenient to use equations of motion of the form:

i
i G

dt
da

= (2.11)

This is an alternative to the form used in the previously shown equation for Q which is a

linear combination of orbital element rates. Therefore, the time derivatives of the time

varying parameters, ai, will be sought.

2.1.3.2 Gaussian VOP Formulation

 There are several ways in which to formulate the VOP equations. Here, the

Gaussian and Lagrange formulations will be outlined. These formulations are taken from

32

(15). The Gaussian form expresses orbital element rates, Gi, in terms of perturbing

forces. The Lagrange form expresses Gi in terms of a potential function. The Gaussian

form is obtained by forming dot products of equations (2.10) and (2.5) (15):

6,...,2,1),(
6

1

6

1

6

1

=⋅
∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

⋅
∂

∂
+

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

⋅
∂

∂

∑

∑∑

=

==

jtQ
a

a
a

a
a

a

a
a

a
a

a
a

j
k

k k

j

k

j

j
j

j

j
k

k k

j

rr,
r

r
r

r
r

r
r

r
r

&
&

&
&

&

&&
&

&
 (2.12)

 The elements, aj, are mutually independent and are only functions of position and

velocity. This means that (2.12) reduces to our final form of the Gaussian VOP equations

(15):

 ∑
=

=⋅
∂

∂
===

6

1
, 6,...,2,1),(

k

j
jjkkj jtQ

a
Gaa rr,

r
&

&
&&δ (2.13)

 The Gaussian VOP equations allow both conservative and nonconservative

perturbations. The Gi function from equation (2.11) can be derived using partial

derivatives of the perturbations, Q. This produces closed-form expressions for the

equations of motion. However, because Q is a function of position and velocity, these

quantities must be calculated whenever the rates are evaluated. This evaluation is done at

each integration time step if the Gi functions are to be used in an ODE solver. The

isolation of periodic frequencies is done in the development of the Draper Semianalytic

Satellite Theory (DSST) through the Generalized Method of Averaging (GMA). Also,

because many acceleration models involve functions of position and velocity instead of

Fourier series, the isolation of particular periodic frequencies in the perturbed motion

must be done numerically rather than by inspection.

33

2.1.3.3 Lagrangian VOP Formulation

 The VOP formulation developed by Lagrange was designed specifically to deal

with planetary orbital perturbations caused by gravitational force from other planets.

This formulation only allows for modeling perturbations caused by conservative forces,

i.e. the disturbing acceleration can be modeled as the gradient of a potential function (15):

r
rr

∂
∂

=
)()(RQ (2.14)

The R function is called the disturbing function. The Lagrangian VOP form can be

derived through the following sequence involving partials of equations (2.10) and (2.5):

6,...,2,1
6

1

6

1

6

1

=
∂
∂

⋅
∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⋅
∂
∂

−
∂
∂

⋅
∂
∂

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

⋅
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

⋅
∂
∂

∑

∑∑

=

==

j
a

Ra
aaaa

a
aa

a
aa

j
k

k kjkj

j
j

jj
k

k kj

r
r

rrrr

rrrr

&
&&

&
&

&
&

 (2.15)

Introduce the Lagrange bracket which equates the expression in the parenthesis in (2.15)

to and simplify (2.15):],[kj aa

],[kj
kjkj

aa
aaaa

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⋅
∂
∂

−
∂
∂

⋅
∂
∂ rrrr &&

 (2.16)

 6,...,2,1],[
6

1
=

∂
∂

=∑
=

j
a
Raaa

j
k

k
kj & (2.17)

 The indices j and k both vary from 1 to 6 and so this produces 36 different

Lagrange brackets. However, examination of the definition of the Lagrangian bracket

shows the following relations (15):

 (2.18a) 0],[=jj aa

34

 (2.18b)],[],[jkkj aaaa −=

One can define a matrix L to be a matrix containing all the Lagrange brackets as follows:

 (2.19)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

],[],[

],[],[

6616

6111

aaaa

aaaa

L

MOM

L

L

Because of (2.18a) and (2.18b) the diagonal terms of L are zero and the off diagonal

terms have only 15 distinct values. The partials of the potential functions with respect to

the elements can now be written as (15):

a

aL
∂
∂

=
R

& (2.20)

 From the definition of the Lagrange brackets in (2.16), it is apparent that the

Lagrange brackets only depend on the functional relationship between the orbital

elements and the position and velocity for the two-body problem. Therefore, the

Lagrange brackets only depend on the elliptical formulae describing the two-body

problem. A consequence of this is that the Lagrange brackets are independent of time:

 0
],[
=

∂
∂

t
aa kj (2.21)

Proof of this statement is shown in reference (15). This time independence means that

the Lagrange brackets can be evaluated at any time in the two-body orbit. This is useful

when specific, advantageous points in the orbit are calculated (15).

 Another useful construct used in the DSST formulation is the inverse of the

Lagrange bracket, i.e. the Poisson bracket. It is defined in references (15) and (28) as:

35

 ()
rrrr ∂

∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

= jkjk
jk

aaaaaa
&&

, (2.22)

The Poisson brackets also have the properties of the Lagrange brackets shown in (2.18).

The relationship between the matrix of Lagrange brackets and the matrix of Poisson

brackets is (15):

 (2.23a) ILP T =

 PPL −==− T1 (2.23b)

2.1.3.4 DSST Formulation for VOP Equations

 There is an alternate derivation of the Lagrange Planetary Equations that turns out

to be more useful, this derivation involves Poisson brackets as opposed to Lagrange

brackets. The following sequence from reference (15) outlines the derivation. The

derivation relies on the following relation from reference (30) which uses the Poisson

bracket defined in equation (2.22).

 ()∑
= ∂

∂
−=

∂
∂ 6

1
,

j j
jk

k

a
aaa r

r&
 (2.24)

 Substituting Q from equation (2.13) into the Gaussian VOP equation (2.13) yields

the Gaussian form of the VOP equations using the potential or disturbing function (15):

 6,...,2,1=
∂
∂
⋅

∂
∂

= kRaa k
k rr&
& (2.25)

Substituting equation (2.22) into equation (2.25) and simplifying yields:

36

 ∑∑
==

=
∂
∂

−=
∂
∂
⋅

∂
∂

−=
6

1

6

1
6,...,2,1),(),(

j j
jk

j j
jkk k

a
RaaR

a
aaa

r
r

& (2.26)

This can also be expressed in matrix notation yielding the Poisson bracket representation

of the Lagrange Planetary Equations (15):

a

Pa
∂
∂

−=
R

& (2.27)

The DSST development uses a modified form of the Lagrange Planetary

Equations from (2.27). In equation 2.28, the Gaussian VOP terms including the Q

function have been added to allow for non-conservative forces. (15):

 ()∑
=

=⋅
∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−=
6

1

5,...,2,1),(,
j

j

j
ji

i itQ
a

a
Raa

dt
da rr,

r
&

&
 (2.28a)

 ()),(,
6

1

tQ
a

a
Raln

dt
dl j

j j
j rr,

r
&

&
⋅

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−= ∑
=

 (2.28b)

Here, n is the mean motion and is generally defined for two-body dynamics by:

. The semimajor axis is a and the gravitational constant isμ=32an μ . The new

variable, l, is defined by:

 (2.29) 6antl +=

Here, is the fast element in the vector of orbital elements, a. The modification from

equation (2.27) to equation (2.28) is used in order to prevent the subtraction of two large

secular, i.e. non-periodic, values in the computations of the VOP equations. The

avoidance of the addition and subtraction of large numbers makes DSST more

computationally stable (15).

6a

37

2.1.3.5 Equinoctial Orbital Elements and Variational Equations

The elements, , can be represented in many ways including position and

velocity, Keplerian elements, equinoctial elements, etc. The set of elements chosen for

DSST is a nonsingular equinoctial set. There are computational advantages for choosing

the following set of equinoctial elements in that the conversion to position and velocity is

computationally inexpensive. Also, the partial derivatives of the equations of motion for

these equinoctial elements are also nonsingular (31). The elements

ka

),,,,,(λqpkha=a are

shown here in terms of the Keplerian elements:

Ω++=

Ω⎟
⎠
⎞

⎜
⎝
⎛=

Ω⎟
⎠
⎞

⎜
⎝
⎛=

Ω+=
Ω+=

=

IM

iq

ip

Iek
Ieh

aa

I

I

ωλ

ω
ω

)cos(
2

tan

)sin(
2

tan

)cos(
)sin(

 (2.30a)
⎩
⎨
⎧

≤<−
<≤+

=
π
π

i
i

I
01
01

()
()k
hM

q
p

k
h

q
p

qpi

khe

1

11

1

221

22

tan

tantan

tan

tan2

)(

−

−−

−

−

−=

⎟
⎠
⎞⎜

⎝
⎛−=

⎟
⎠
⎞⎜

⎝
⎛=Ω

⎟
⎠
⎞⎜

⎝
⎛ +=

+=

λ

ω

 (2.30b)

38

where is the semimajor axis, is the eccentricity, i is the inclination, a e ω is the argument

of perigee, is the right ascension of the ascending node, Ω M is the mean anomaly and I

is the retrograde factor. When the retrograde factor is -1, the tanI function becomes the

cotangent function.

 The direct equinoctial reference frame is shown in Figure 2.2. The unit vectors,

, are aligned so that and are contained in the instantaneous orbit plane with the

direction of f obtained through a clockwise rotation of the angle,

wgf ˆ,ˆ,ˆ f̂ ĝ

ˆ Ω , from the direction

of the ascending node (3).

Figure 2.2 Equinoctial Orbital Element Frame (3)

39

 At this point it is sensible to show the variational equations for the osculating

equinoctial elements. These are taken from the GTDS Mathematical Specification (32):

 dandt
da av

⋅= 2
2 (2.31a)

 [][] dwpXqIY
G
kgXXfYXYX

dt
dh a⋅

⎭
⎬
⎫

⎩
⎨
⎧

−+−−= ˆ)(ˆˆ21
11111111

&&&
μ

 (2.31b)

 [] dwpXqIY
G
hgYXYXfYY

dt
dk a⋅

⎭
⎬
⎫

⎩
⎨
⎧

−−−−−= ˆ)(ˆ)2(ˆ1
11111111

&&&
μ

 (2.31c)

 dwqp
G

Y
dt
dp a⋅

⎭
⎬
⎫

⎩
⎨
⎧ ++= ˆ)1(

2
221 (2.31d)

 dwqp
G

IX
dt
dq a⋅

⎭
⎬
⎫

⎩
⎨
⎧ ++= ˆ)1(

2
221 (2.31e)

 () dwpXqIY
na

khhk
na

n
dt
d a

vv
r ⋅

⎭
⎬
⎫

⎩
⎨
⎧

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+−= ˆ12
1123 βλ

 (2.31f)

The unit vectors are in the equinoctial reference frame, r and v are Cartesian

coordinates in the inertial reference frame, I is the retrograde factor, and n is the mean

motion. The perturbing acceleration vector, , is a Cartesian vector. The position and

velocity in the equinoctial reference frame within the orbit plane are:

wgf ˆ,ˆ,ˆ

da

 ()[]kFhkFhaX −+−= sincos1 2
1 ββ (2.32a)

 ()[]hFhkFkaY −+−= cossin1 2
1 ββ (2.32b)

40

 [FhFhk
r

naX sin)1(cos 2
2

1 ββ −−=&] (2.32c)

[FhkFk
r

naY sincos)1(2
2

1 ββ −−=&] (2.32d)

The new variable F is the eccentric longitude and can be solved using Kepler’s

transcendental equation:

 FhFkF cossin +−=λ (2.33)

The variables β and G are defined by:

 222 1 khnaG −−= (2.34)

2211

1
kh −−+

=β (2.35)

Equations in (2.31) can be integrated forward or backward in time using an integrator in

Matlab, for example. Equations in (2.31) include two-body motion and accelerating

perturbations through the vector. Equations in (2.31) are not the final form used by

DSST because the vector is in a general form and no specific perturbing forces have

been introduced yet. DSST includes several perturbing forces. The short period and long

period motion produced by these perturbations are separated using the Generalized

Method of Averaging.

da

da

41

2.1.3.6 DSST Application of Generalized Method of Averaging

 Lagrange developed and used the Lagrange Planetary Equations to investigate the

long period and secular motion of the planets. He expanded the disturbing function in a

literal Fourier series (15). Because a Fourier series was used, the terms in the equation

associated with first-order long period and secular motion were isolated by inspection.

These terms were then used to predict planetary motion with excellent results because the

perturbations were small. However, higher order solutions are needed when the

perturbations are relatively large, or when the solution must predict motion more

accurately for longer time spans (15). In these cases, the Generalized Method of

Averaging (GMA) can be applied to the VOP equations of motion.

 When applying the GMA to either the Gaussian or Lagrangian VOP equations of

motion, the short-period terms are isolated1 from the long-period and secular terms and

one is left with averaged equations of motion in terms of time varying parameters. The

time varying parameters are called mean elements because the short period motion is no

longer represented in the solution. There are several ways to define mean elements. The

exact definition depends on the time interval over which the equations of motion are

averaged (15).

1 It should be noted that the GMA operations can be done easily for the first order terms. Higher order
terms cannot be easily isolated in this way.

42

 In general the VOP element rates can be represented by:

 5,...,2,1),(== ilF
dt

da
i

i aε (2.36a)

),()(61 lFan
dt
dl aε+= (2.36b)

where a represents the vector of five mean elements and l is the fast variable. The

function, F, is the perturbing function which is 2π periodic in the variable l (15). When

applying the Generalized Method of Averaging to these VOP equations, the short period

terms must be defined. This definition will constrain the integration step size that can

ultimately be used with the averaged VOP equations of motion. DSST was developed to

maximize the integration step size to provide an efficient, yet accurate representation of

the satellite motion. In DSST, the short period terms are defined as those with a period

on the order of one orbital revolution or less of the satellite (15). These have been

referred to as single averaged theories. This means that all terms dependent on multiples

of the fast variable, l, are considered short period. Terms introduced by the fast variables

in third bodies such as the sun and moon as well as Greenwich Hour Angle dependent

terms in the Earth’s spherical gravity harmonic expansion can also be considered short-

period. The terms exclusively dependent on the other five slowly-varying orbital

elements are considered long-period or secular terms (15).

 Among the short period terms, the following summarizes some of the larger

forces contributing perturbations to satellite motion. Zonal harmonics are the latitude

dependent terms in the Earth’s harmonic expansion. This includes the largest zonal term,

43

J2, which is also much larger than all other zonal short-periodic perturbation contributions

(15).

 Tesseral harmonics model the non-spherical gravitational effects of the Earth by

dividing the Earth’s field into intersections of the zonal and sectoral terms. Because this

array of roughly rectangular regions is fixed to the Earth’s surface, i.e. the tesseral terms

are dependent on the Greenwich Hour Angle, the Earth’s rotation contributes short period

effects to a satellite’s orbit.

In addition, tesseral m-daily terms have periods on the order of one day, i.e. one

rotation of the Earth. Reference (33) describes motion contributions from tesseral

resonance and from so called earth rotation terms. These are terms that are linear

combinations of the satellite fast variable, l, and the Greenwich Hour Angle. In analytic

and semianalytic formulations, the terms dependent on the earth rotation are often on the

order of the satellite period and need to be separated from the longer period terms (32).

Also, terms that combine the J2 and tesseral m-daily terms add short period motion to the

equations of motion and require separation from the long period motion (15).

 Third body gravitational effects also add short period motion to the equations of

motion. For Earth orbiting satellites, the sun and moon contribute terms with periods on

the order of one year and 28 days, respectively. These effects can be considered long-

period if using GMA to average over periods of approximately on satellite orbit, i.e.

single averaging. Although not used in DSST, some satellite motion theories use double

44

averaging. These double averaged theories average over the satellite’s fast variable and

also the fast variables of third bodies (15).

 To develop the formulation of the Draper Semianalytic Satellite Theory (DSST),

the near-identity transformation is introduced to express the osculating elements in terms

of single averaged mean elements (15). The following form for the osculating orbital

elements is assumed:

 5,...,2,1)(),(1

1
, =++= +

=
∑ iOlaa N

N

j
ji

j
ii εηε a (2.37a)

 ∑
=

+++=
N

j

N
j

j Olll
1

1
,6)(),(εηε a (2.37b)

where ji,η represents the short-periodic variation of order j in element ia , the ia are the

slowly-varying mean elements, l is the mean mean longitude, and the quantity ε is the

small parameter in the perturbation model.

 The assumed form of the transform of the equations of motion for the mean

elements in equation (2.36) is:

 5,...,2,1)()(1

1
, =+= +

=
∑ iOA

dt
ad N

N

j
ji

ji εε a (2.38a)

 ∑
=

+++=
N

j

N
j

j
i OAan

dt
ld

1

1
,6)()()(εε a (2.38b)

where)(ian is the mean mean motion (14). For this assumed transform, the rate of

change in the mean elements only depends on the slowly-varying mean elements (15).

45

 The expressions for the short-periodic variations, ji,η , and the functions of the

slowly varying mean elements, , are now sought. Differentiate the osculating

elements (2.37) to obtain expressions for the osculating element rates:

jiA ,

 ∑ ∑
= =

+ =+
∂

∂
+=

N

j k

Nk

k

jijii iO
dt
ad

adt
ad

dt
da

1

6

1

1, 5,...,2,1)(ε
η

ε (2.39a)

 ∑ ∑
=

+

=

+
∂

∂
+=

N

j

N

k

k

k

jj O
dt
ad

adt
ld

dt
dl

1

1
6

1

,6)(ε
η

ε (2.39b)

Substitute the mean element rates (2.38) into the osculating element rates (2.39). This

introduces into the osculating element equations of motion (15). jiA ,

5,...,2,1)(

)()(

1

1 1

6

1

,
,

,
1,

=+

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂

∂
+=

+

=

−

= =
∑ ∑ ∑

iO

a
A

l
anA

dt
da

N

N

j

jN

m k k

ji
mk

mji
ji

ji

ε

η
ε

η
ε a

 (2.40a)

)(

)()(

1

1 1

6

1

,6
,

,6
,6

+

=

−

= =

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
++= ∑ ∑ ∑

N

N

j

jN

m k k

j
mk

mj
ij

j
i

O

a
A

l
anAan

dt
dl

ε

η
ε

η
ε

 (2.40b)

Rearrange the equations to obtain a single summation over ε (15):

5,...,2,1)(

)()(

1

1

6

1

1

1

,
,

,
,

=+

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂

∂
+=

+

= =

−

=

−∑ ∑∑

iO

a
A

l
anA

dt
da

N

N

j k

j

p k

pji
pk

ji
iji

ji

ε

ηη
ε a

 (2.41a)

)()()()(1

1

6

1

1

1

,6
,

,6
,61

+

= =

−

=

− +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
++= ∑ ∑∑ N

N

j k

j

p k

pj
pk

j
ij

j O
a

A
l

anAan
dt
dl ε

ηη
ε a (2.41b)

46

Now, expand the perturbing functions in the VOP equations (2.36) about the mean

elements using a Taylor series:

ll
n

i

n

kk
ki lF

a
a

n
lF

=
=

∞

= =
∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ=
aa

aa
0

6

1

),(
!

1),((2.42)

where kkk aaa −=Δ and are defined by (2.37).

 Define
kaakk aa

=
∂
∂

=
∂
∂ and rearrange the equation for Fi as a power series in ε to

obtain (15):

 ∑
=

++=
N

j

N
ji

j
i OlflF

0

1
,)(),(),(εε aa (2.43)

where

),(),(0, lFlf ii aa = (2.44a)

 ∑
− ∂

∂
=

6

1
1,1,),(

k k

i
ki a

Flf ηa (2.44b)

 ∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂

+
∂
∂

=
6

1

6

1

2

1,1,2,2, 2
1),(

k l lk

i
lk

k

i
ki aa

F
a
Flf ηηηa (2.44c)

 M

47

Also, expand the mean motion about the mean mean motion in a Taylor series about the

mean semimajor axis, 1a (15):

 ∑
∞

= ∂
∂Δ

=
0 1

1 !
)(

)(
k

k

kk
k

a
n

k
a

an (2.45)

Rearrange this equation for mean mean motion as a power series in ε to obtain (15):

 ∑
∞

=

=
0

1),()(
k

k
k lNan aε (2.46)

where

 nanlN ==)(),(10 a (2.47a)

 1,1
1

1 2
3),(η

a
nlN −=a (2.47b)

 2,1
1

2
1,12

1
2 2

3
4

15),(ηη
a
n

a
nlN −=a (2.47c)

 M

48

 Now, substitute the rearranged equations for the osculating element rates (2.41)

into the left-hand side of the original equations for the osculating element rates (2.36) in

terms of the mean elements. Substitute equations (2.43) and (2.46) into the right hand

side of equation (2.36). Both sides are power series expansions in ε and therefore, terms

with like powers of ε must be equal. Equate such terms to obtain the jth-order

contribution to the osculating element rates (15):

 ∑∑
=

−

=
−

− ==
∂

∂
+

∂

∂
+

6

1

1

1
1,

,
,

,
, 5,...,2,1),()(

k

j

p
ji

k

pji
pk

ji
ji ilf

a
A

l
nA aa

ηη
 (2.48a)

 ∑∑
=

−

=
−

− +=
∂

∂
+

∂

∂
+

6

1

1

1
1,6

,6
,

,6
,6),(),()(

k
j

j

p
j

k

pj
pk

j
j lNlf

a
A

l
nA aaa

ηη
 (2.48b)

 These equations show the relationship between the unknown functions of the

slowly-varying mean elements, Ai,j , and the partial derivatives of the unknown short-

periodic variations, ji,η to the known terms of the power series expansion of the

osculating perturbing function, (14). Averaging over the mean fast variable, jif , l ,

eliminates the dependency on that variable. This takes advantage of the fact that the short

periodic variations are 2π periodic in the fast variable, l (15).

 Integrate both sides of equation (2.48) from 0 to 2π over the mean fast variable, l

. This eliminates the partial derivatives,
l

ji

∂

∂ ,η
. This integration is known as the

averaging operation and is defined as (15):

49

 ldlHlH
l

),(
2

),(
0
∫=

π
aa 1 2π

 (2.49)

Because the functions are 2π periodic in l , the partial derivatives of the ji,η functions

are also 2π periodic in l (15).

ji,η

 0, =
∂

∂

l

ji

l
n

η
 (2.50)

Applying the averaging operation to equations (2.48) thus yields (15):

 (2.51a)

∂

 (2.51b)

These equations are simplified by imposing a constraint such that the ji,η functions do not

contain any long-period or secular terms (15):

 6,...,2,1,6,...,2,10, ==≡
∂

∂ − ki
a

lk

pjiη (2.52)

∑∑
−

= =

−
− ∂

∂
++=

1

1

5

1

,6
,1 , 6,6),(), ()(

j

p k lk

pj
p6ljj j a

AlN lf A
η

aaa

∑∑
−

= =

−
− =

∂
+=

1

1

5

1

,
,1 , , 5,...,2,1) iηj

j p
iA if , l kA i()a a(j j p

kal
p k l

50

 Applying the averaging operation to equation (2.39) for the osculating element

rates, and then applying the constraint from equation (2.52), the following equivalences

are obtained (15):

5,...,2,1== i
dt
ad

dt
da i

l

i (2.53a)

dt
ld

dt
dl

l
= (2.53b)

 Using equations (2.50) and (2.52) has eliminated the averaged partials of .

The mean elements are now seen to represent the long-period and secular contributions to

the osculating elements plus a constant (15):

ji,η

 jilji Cl ,,),(=aη (2.54)

Eliminating these constants means a constraint such as the following should be imposed

(15):

 (2.55) 0, =jiC

Now, applying the averaging operation to the equations for the osculating elements yields

(15):

51

 5,...,2,1== iaa ili (2.56a)

 ll l = (2.56b)

The result of the constraints (2.52) and (2.55) is that the ji,η functions contain only short-

periodic terms and terms that mix the short-periodic and long-period effects. The

equations for Ai,j now reduce to (15):

 5,...,2,1),()(1,, == − ilfA
ljiji aa (2.57a)

ljjj lNlfA),(),()(1,6,6 aaa += − (2.57b)

 The averaged equations of motion can now be expressed in terms of the power

series expansion of the disturbing function. The mean mean motion can be represented

by the power series expansion of the osculating mean motion (15). Substituting the

equations for Ai,j into the original equations of motion for the mean element rates yields

(15):

 ∑
=

+
− =+=

N

j

N
lji

ji iOlf
dt
ad

1

1
1, 5,...,2,1)(),(εε a (2.58a)

 ∑
=

+
− +++=

N

j

N
ljj

j
i OlNlfan

dt
ld

1

1
1,6)(),(),()(εε aa (2.58b)

52

 Equations for fi,j and Nj, i.e. equations (2.44) and (2.47), show that for j≥1, terms

containing the short periodic functions, ji,η , are still present. Therefore, the averaging

operation did not remove all dependence on the short period terms.

 To determine the short period functions, ji,η , subtract equations (2.51) from (2.48)

(15):

∑∑
−

=
−−

=

−− =−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂

∂
+

∂
∂ 1

1
1,1,

6

1

,,
,

, 5,...,2,1
j

p
ljiji

k lk

pji

k

pji
pk

ji iff
aa

A
l

n
ηηη

 (2.59a)

∑∑
−

=
−−

=

−− +−+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂

∂
+

∂
∂ 1

1
1,61,6

6

1

,6,6
,

,6
j

p
ljjjj

k lk

pj

k

pj
pk

j NfNf
aa

A
l

n
ηηη

 (2.59b)

 Define the superscript, s, to be the short-periodic part of a function, which gives

(15):

ljiji

S
ji fff 1,1,1, −−− −=

Now, rewrite the difference equations (2.59) as (15):

 ∑∑
−

= =

−
− =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−=

∂

∂ 1

1

6

1

,
,1,

, 5,...,2,1
j

p k k

S
pji

pk
S
ji

ji i
a

Af
l

n
ηη

 (2.60a)

53

 ∑∑
= =

− ⎟
⎠

⎜
⎝ ∂

−+=
∂ 1 1

,1,6
p k k

pkjj a
ANf

l
n

−
− ⎟
⎞

⎜
⎛ ∂∂ 1 6

,6,6
j S

pjSSj ηη
 (2.60b)

 The short period variation of order j, represented here by ji,η can be seen to be

dependent on quantities of lower order than j for mean elements other than, l . In the

case of the fast variable, it can be seen that j,6η is dependent on j,1η through the term Nj.

This means that the function, j,1η , must be calculated before the function, j,6η (15).

 Multiplying equations (2.60) by n1 , and integrating with respect to l yields the

short-periodic functions to within an arbitrary function of the slowly varying mean

elements (15):

)(),(),(,,, aaa jijiji Cll +=αη (2.61)

where is an arbitrary function of integration, and jiC , ji,α is defined as (15):

 5,...,2,11 6

1

1

1

,
,1,, =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−= ∫ ∑∑

=

−

=

−
− ild

a
Af

n k

j

p k

S
pji

pk
S
jiji

η
α (2.62a)

 ld
a

Af
n k

j

p k

S
pj

pk
S

jj ∫ ∑∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−=

=

−

=

−
−

6

1

1

1

,6
,1,6,6

1 η
α (2.62b)

54

Averaging equation (2.61) yields:

)(,, ajilji C=η

which shows that the constraints imposed earlier on equations (2.52) and (2.54) are valid

(15). Assuming that is zero to again apply the constraint of equation (2.55), this

requires that the

jiC ,

ji,η functions contain only short-periodic terms and terms that include

both short-periodic and long-period terms (15).

 A set of functions, ji,η , has been obtained that contain only short-periodic terms.

The near-identity transformation of equations (2.37) can then be expressed as (15):

∑ ∫ ∑∑
=

+

=

−

=

−
− =+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−+=

N

j

N

k

j

p k

S
pji

pk
S
ji

j
ii iOld

a
Af

n
aa

1

1
6

1

1

1

,
,1, 5,...,2,1)(1 ε

η
ε (2.63a)

∑ ∫ ∑∑
=

+

=

−

=

−
− +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−++=

N

j

N

k

j

p k

S
pj

pk
S
j

S
j

j Old
a

ANf
n

ll
1

1
6

1

1

1

,6
,1,6)(1 ε

η
ε (2.63b)

Determination of the jth order contribution to the mean element rates in equation

(2.58) and the ji,η functions is interdependent must be done on an order by order basis.

Reference (15) illustrates this for second order terms in equation (2.58) and for the ji,η

functions. The first order contributions of the mean element rates, Ai,1, are independent

55

of the ji,η functions. However, the second order computation of the mean element rates,

Ai,2, must proceed as follows (15):

 , , 1,2, … ,6 (2.64a)

, , 1,2, … ,5 (2.64b)

, , , (2.64c)

, ∑ , 1,2, … ,5 (2.64d)

, ∑ , , (2.64e)

This procedure can be used to extend the averaged equations of motion to higher order

(15).

 If the appropriate fast variable is used, the first order short-periodic effects can be

formulated as closed-form expressions. The zonal short-periodics can be formulated in

terms of the true longitude, the tesseral m-dailies can be formulated in terms of the

Greenwich Hour Angle, and the third body short-periodics can be formulated in terms of

the eccentric longitude (34). The coefficients of the periodic terms in these expressions

are slowly-varying because they are only functions of the mean elements. The closed-

56

form short-periodic motion formulae can be used with an efficient interpolator to solve

equations (2.63) for the second order mean element rates when needed.

The McClain reference (15) includes further details which describe how to

formulate the averaged equations of motion while including multiple perturbations for

each element rate, modeling resonance phenomena, including nonspherical gravitational

perturbations, and including third body effects. There are also variants of this basic

derivation of the VOP equations. Green (35) extended the VOP equation derivation to

include a second order drag theory in the averaged equations of motion. Green also

introduced a weak time dependence formulation to deal with disturbing functions having

two fast variables. One of the fast variables was the satellite’s mean motion while the

other was small in comparison to the satellite’s mean motion. J2/m-daily coupling has

also been developed and incorporated into the DSST formulation. The development of

third body disturbing potentials for the DSST can be found in Collins’ Ph.D. Thesis (36).

57

2.2 Application of Electric Propulsion (EP) to satellites

The central problem addressed in this thesis is to evaluate ways of improving

orbit determination for satellites that use continuous thrust, electric propulsion.

Continuous implies that the thruster typically operates for extended periods which are

significant fractions of the orbital period. This could include extended orbit raising

applications or stationkeeping operations. In this section, electric propulsion (EP),

optimal ways of using EP to control satellite motion, and ways of modeling optimally

controlled continuous thrust will be described. Understanding how to optimally control

EP satellites is important so that one can develop ways in which to improve the models of

the motion of such satellites. Through these models, it is hoped that the trajectory plans

for spacecraft can be anticipated. If these models successfully predict spacecraft

thrusting, the improved motion models can be used to improve orbit determination and

predictions of satellite motion for space surveillance applications.

2.2.1 Electric propulsion motors

There are several types of electric propulsion engines that have been developed

for spacecraft. This thesis will focus on operational electric thrusters that use relatively

low levels of thrust, i.e. less than 1 Newton. Electric thrusters that are modified versions

of monopropellant or bipropellant chemical thrusters such as resistojets and arcjets are

not discussed in this thesis. The spacecraft of focus in this thesis use low-thrust electric

propulsion, typically thrust continuously for long periods, and are challenging to model in

orbit determination (OD) for space surveillance. Because it is probable that satellite

58

operators and space surveillance networks do not cooperate or share information, OD for

space surveillance is challenging because of the somewhat unpredictable thrusting

undergone by active satellites. The types of electric propulsion engines already launched

and operating include the Hall thruster, the gridded ion engine, and the Pulsed Plasma

Thruster (PPT) (37). The Hall thruster electrostatically accelerates ions, but transmits the

thrust to magnets through their magnetic interaction with electrons in a Hall current (38).

Gridded ion engines use a charged grid to electrostatically accelerate ions (38). The PPT

thruster operates by creating a pulsed, high-current discharge across the exposed surface

of a solid insulator. This provides propellant that is ionized, heated and accelerated to

high speed (39).

Other types of electric propulsion such as arcjets, resistojets, magneto-plasma

devices, field effect electrostatic propulsion (FEEP), and colloid thrusters either have not

yet been launched on spacecraft or thrust in ways not unlike traditional chemical

thrusters, i.e. short bursts of thrust that can be modeled as impulses. These types of

thrusters will not be described in this thesis because the scope here is limited to

propulsion technologies that operate for long durations with relatively low levels of

thrust, i.e. typically much less than one Newton.

Hall thrusters usually consist of a cylindrical, annular chamber which is open at

one end. Propellant, usually Xenon, is introduced at the closed end near the anode. This

is shown in Figure 2.3 as the Anode/Gas Distributor. The Xenon atoms are ionized by

electrons flowing into the chamber from the open end of the cylinder. The electrons

59

originate from an external cathode neutralizer also shown in Figure 2.3. The external

cathode neutralizer produces electrons to ionize the Xenon propellant atoms and to

neutralize the thruster exhaust. The external, negative cathode neutralizer also produces

an axial electrostatic field which accelerates the ions toward the open end of the chamber.

The Xenon ions and some of the electrons from the external cathode neutralizer leave the

engine as the thruster exhaust. It is important that the exhaust be electrically neutral to

prevent charge buildup on the spacecraft. Such a charge buildup could attract the thrust

exhaust and cancel the thrust effects. Magnets installed on the inner and outer edges of

the engine cylinder opening create a radial magnetic field which forces the electrons into

an azimuthal drift (Hall current). The Hall current is the ExB current produced by the

axial electric field (E) and the radial magnetic field (B). The radial magnetic field

strongly affects the electrons due to their magnetic charge. The ions, however, are not

magnetically charged and so are not strongly affected by the radial magnetic field (38).

The Hall current thus produces an azimuthal drift for the electrons, but not the propellant

ions (38).

60

Figure 2.3 Hall Thruster Schematic

The azimuth directed electron Hall current produces a volume within which propellant

atoms are readily ionized and are immediately accelerated by the strong cathode

generated axial electrostatic field. In Figure 2.3 the volume in which the Xenon atoms

are ionized by the Hall current is in the vicinity of the arrows which show the axial

electric field and the radial magnetic field directions. This volume is shaped like a torus

and correlates with the glowing ring in Figure 2.4. The engine thrust is produced because

the ions accelerate against the electrons circulating in the magnetically confined Hall

current. Because the electrons cannot freely accelerate toward the anode, they exert a

magnetic force on the magnetic coil. Eventually, the electrons diffuse toward the

anode/gas distributor and are pumped using the power supply to the external cathode

neutralizer (38). Relatively efficient Hall thrusters have been developed and have flown

on several Russian spacecraft. These SPT thrusters have been flown operationally since

the 1980s on spacecraft such as the EXPRESS and GALS spacecraft (37). The SMART-

1 European spacecraft also used a Hall thruster for several months to reach lunar orbit

61

(40). Hall thrusters also have applicability for geostationary satellite station keeping and

U.S. vendors are manufacturing and testing Hall thrusters for such purposes. Hall

thrusters can have efficiency factors of around 50% with specific impulse around 1500

seconds (38). The efficiency factor is the ratio of the kinetic energy produced by the

engine for actual thrust to the energy supplied by the fuel and electric power systems.

Specific impulse is a ratio of the speed of the beam exhaust to the Earth’s acceleration

due to gravity at sea level, i.e. 9.8 m/s2.

 Figure 2.4 shows the Aerojet BPT-2000 Hall thruster operating in a vacuum

chamber. The BPT-2000 graphic is from Dr. Brad King (41) at Michigan Technological

University.

Figure 2.4 Aerojet BPT-2000 Hall Thruster
(courtesy, Dr. Brad King at Michigan Technological University)

62

Gridded ion engines produce ions, typically Xenon, by pumping electrons via a

cathode into a magnetically confined chamber. An ion engine schematic is shown in

Figure 2.5.

Figure 2.5 NASA Deep Space 1 Gridded Ion Engine Illustration2

The injected electrons bombard propellant atoms also introduced into the chamber and

produce ions as a result. After a time, electrons are collected by the anode surrounding

the magnetically confining chamber and are ejected using an external cathode. In Figure

2.5, the Anode is annotated as “Anode collects electrons,” and the cathode that injects

electrons into the chamber is annotated as “Hollow cathode emits electrons.” The

external cathode is not annotated, but is shown at the bottom right hand corner of Figure

2.5. The electron ejection by the external cathode prevents excess negative charge from

building up in the engine. One side of the chamber, directed opposite the desired engine

2 NASA Graphic obtained from http://www.nasa.gov/centers/glenn/images/content/83902main_ipsdiag.jpg
visited Feb, 2008

63

http://www.nasa.gov/centers/glenn/images/content/83902main_ipsdiag.jpg

thrust direction, is covered with two or more closely spaced grids. These grids are

charged with voltage that accelerates Xenon ions that wander into the sheath covering the

inner, positively charged grid and fall through (38). The grid spacing is on the order of 1

mm and it is within the grid gap that the Xenon ions accelerate due to the strong

attraction of the Xenon ions to the negatively charged outer grid. The acceleration grids

are designed with an ion optic geometry that reduces ion collision with the grids. The ion

optic geometry essentially steers the ions toward the holes in the grid rather than toward

the grid structure. This extends the life span of the grids. Because of the necessary small

gap between the grids, a space charge limitation inhibits the number of ions that can be

accelerated at any one time. This means that gridded ion engines must be larger in

diameter than Hall thrusters in order to provide comparable thrust (38). Ion engines are

at optimum efficiency at a high specific impulse and therefore provide less thrust per unit

power than Hall thrusters (38). However, gridded ion engines offer more control of the

plasma location within the structure and can offer longer life and better efficiency than

Hall thrusters. Gridded ion engines can have a specific impulse greater than 2500

seconds and efficiency factors around 65% (38). Gridded ion engines have more

complex power supply and processing requirements and therefore the power processing

units (PPU) must be more complex and take up more mass than the PPU for a

comparable Hall thruster (38).

 Gridded ion engines are used on the Boeing 702 spacecraft (42). Several of these

spacecraft have been launched and are operating currently (43). The NASA Deep Space

1 spacecraft flew with a 30-cm ion engine to intercept comet Wilson-Harrington (44).

64

 The Pulsed Plasma Thruster (PPT), shown in Figure 2.6, is a markedly different

type of thruster than the gridded ion engine or the Hall thruster. One difference is the

propellant typically used. Instead of gaseous Xenon, PPTs use a solid bar of Teflon®

(38). Another difference is that the PPT operates using short pulses on the order of 10

microseconds. A power supply charges the discharge capacitor and applies 1-2 kilovolts

across the exposed Teflon face. A spark plug initiates the discharge. The combination of

thermal flux, particle bombardment and surface reactions depolymerizes, evaporates, and

mostly ionizes a small amount of material (1.5 micrograms per Joule). The instantaneous

current is in the tens of kilo Amps and the self-induced magnetic field creates a magnetic

pressure that is comparable to the gas kinetic pressure in the thin ionized layer (38). The

combination of pressure gradients accelerates the gas to speeds in the vicinity of the

“critical Alfven velocity.” At this velocity, the kinetic energy is equal to the ionization

energy (38). The PPT can achieve a specific impulse of 1500 seconds, but an engine

efficiency factor of only around 7% (38). Figure 2.6 shows a diagram of a PPT.

Figure 2.6 Pulsed Plasma Thruster from NASA Earth Observing 1 (EO-1)3

3 NASA Graphic obtained from http://eo1.gsfc.nasa.gov/miscPages/TechForumPres/25-PPT.pdf visited
Feb, 2008

65

http://eo1.gsfc.nasa.gov/miscPages/TechForumPres/25-PPT.pdf

An advantage of the PPT is its ability to operate over a wide range of thrust by varying

the repetition rate. This ability allows the thruster to precisely apply thrust for spacecraft

orbit or attitude adjustments. This thruster has been used since the 1960s on the series of

LES 6,7,8, and 9 (Lincoln Experimental Satellites). These thrusters have also been used

on the U.S. Navy’s NOVA constellation (38).

For the purposes of orbit determination, the necessary engine parameters are the

thrust characteristics. These characteristics include whether the thruster operates

continuously for long periods and whether it uses variable thrust. Also, the thrust

magnitude and the thruster orientation with respect to the spacecraft body and attitude

must be considered when modeling the spacecraft thrust acceleration. For most thrusters

that operate at low-thrust levels for continuous periods in orbit, the thrust magnitude,

specific impulse and power have been published. Table 2.1 includes several electric

thrusters that have been used on operational spacecraft. The sources of this information

came from references (37), (45), (46), (47) and (48).

66

Table 2.1 EP Thruster Parameters for Several Launched Satellites

Satellite/
Launch Date

Thruster Type Manu-
facturer/
Model

Isp
(sec)

Thrust
Mag.
(N)

SC Mass
(BOL4)

(kg)

Power
(Watts)

Apert.
(cm)

Anik F1
11/21/2000

4 XIPS Grid.
Ion

Boeing
702

3800 0.08 3015 4500 25

Anik F2
6/18/2004

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 3805 4500 25

DirecTV10
7/7/2007

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 3700 4500 25

Galaxy IIIC
 6/15/2002

4 XIPS/
4 XIPS

Grid.
Ion

Boeing
702

3800/
2568

0.165/
0.08

2873 4500/
500

25/
13

Galaxy XI
12/21/1999

8 XIPS Grid.
Ion

Boeing
702

2568 0.08 2775 500 13

NSS-8
1/30/2007

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 3800 4500 25

PAS 1-R
11/15/2000

4 XIPS/
4 XIPS

Grid.
Ion

Boeing
702

3800/
2568

0.165/
0.08

3059 4500/
500

25/
13

Spaceway 1
4/26/2005

4 XIPS Grid.
Ion

Boeing
702

3800/
2568

0.165/
0.08

3832 4500/
500

25

Spaceway 2
11/16/2005

4 XIPS Grid.
Ion

Boeing
702

3800/
2568

0.165/
0.08

3832 4500/
500

25

Spaceway 3
8/14/2007

4 XIPS Grid.
Ion

Boeing
702

3800/
2568

0.165/
0.08

3832 4500/
500

25

XM-1
3/18/2001

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 2950 4500 25

XM-2
5/8/2001

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 2950 4500 25

XM-3
1/3/2005

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 ~3000 4500 25

XM-4
10/30/2006

4 XIPS Grid.
Ion

Boeing
702

3800 0.165 ~3000 4500 25

WGS F1
10/11/2007

4 XIPS Grid.
Ion

Boeing 702 3800 0.165 3680 4500 25

MBSAT
3/13/2004

SPT-100 Hall Loral/ISTI

1600 0.083 3800 1350 10

DeepSpace1
10/24/1998

XIPS/
NSTAR

Grid.
Ion

Boeing/
NASA

3100 0.020-
0.092

486 500-
2300

30

SMART-1
9/27/2003

PPS-1350 Hall ESA/
SNECMA

1640 0.068 305 1190 10

EO-1
11/21/2000

EO-1 PPT PPT Swales/
Northrup/
Aerojet

650-
1400

90-860
μN-sec

529 70

ARTEMIS
7/12/2001

IPP/
Kaufman

Grid.
Ion

UK (DRA)
ESA

3285-
3370

0.016-
0.018

 570 10

4 BOL stands for beginning of life

67

2.2.2 Electric propulsion optimal orbit transfer

Controlling satellites with electric propulsion often means that fuel usage and

transfer time should be minimized. In this thesis, the satellite control problem involves

thrusting a satellite continuously to take the satellite from an initial orbit to a desired final

orbit in minimum time. Constant continuous thrust magnitude is assumed and therefore,

the minimum time and minimum fuel solutions are the same. The direction of thrust, i.e.

pitch and yaw angles, can be optimized by formulating the problem in terms of Optimal

Control Theory. Several references were used for understanding this formulation. They

include Bryson and Ho’s Applied Optimal Control (49) and Kirk’s Optimal Control

Theory (50). The ultimate formulation used for this research came from Jean

Kechichian’s series of papers (3), (4), (5), (6), (7) and (8). These were published starting

in the 1990’s and were devoted to deriving equinoctial element formulations to calculate

optimal thrust plans for orbital transfers. Kechichian’s development uses equinoctial

elements to represent the orbital state because singularities due to zero eccentricity and

inclination inherent to the Keplerian elements are avoided. These singularities would

cause problems with the numeric integration required in this optimal control problem (3).

2.2.2.1 Optimal Control Theory Background

Before explaining Kechichian’s development of optimal orbit transfers, it is

useful to discuss the elements of Optimal Control Theory that are used. This discussion

is taken from Kirk’s Optimal Control Theory (50), from Bryson and Ho’s Applied

Optimal Control (49) and from Professor Jonathan How’s MIT Course 16.323 notes (51).

68

The orbital system dynamics are as follows:

)),(),(()(tttt uxax =& (2.65a)

The initial conditions are defined by:

 (2.65b) 0xx =)(0t

A performance measure, i.e. cost functional, is introduced:

 (2.66) ∫+= ft

tff dttttgtthJ
0

)),(),(()),(()(uxxu

Here, the initial time, t0, is specified and the final time, tf, is not bounded, i.e. it is free.

The state, x, is an n x 1 state vector and u is an m x 1 control input vector. The function,

h, is used to assign cost to the terminal state. The state cost function, g, is used to assign

cost to the path obtained using a given state history, x(t), and control history, u(t). Our

goal is to find an optimal control history, u*(t), that produces a time and fuel optimal state

history, i.e. trajectory, x*(t).

 We can adjoin Lagrange multipliers to augment the performance measure (50),

(49) and (51):

 (2.67) {[]dtttttttgtthJ ft

t

T
ffa ∫ −++=

0

)),(),(()),(),(()),((xuxaλuxx &}

where the vector of n Lagrange multipliers, λ, is multiplied to a quantity that is equal to

zero given the system dynamics equation shown earlier. The variation of this equation

can be taken in order to minimize the functional, Ja. We can use the Fundamental

Theorem of the Calculus of Variations to find the minima of the functional, Ja, given the

variation of the functional, δJa. Here, we assume the state time history, x(t) is

69

continuous. The variation of the functional, Ja, vanishes on the minimum or maximum

state time histories (50):

 (2.68) 0),(=∗ xx δδ aJ

The variation, δ, is defined in terms of the increment. The increment of functional J is

defined as (50):

)()(xxx JJJ −+≡Δ δ (2.69)

The increment can also be written as (50):

 xxxxxxx δδδδδ ⋅+=Δ),(),(),(qJJ (2.70)

where * denotes a norm operation. The linear part of the increment,),(xx δδ J , is defined

as the variation of the functional, J. The functional, q, collects all higher order terms of

the increment of J.

 Now, find the variation of the functional, δJa (51):

 (2.71)
{ }[]

[] ff
T

ftf

t

t

TT
a

ttgthh

dtttggJ

f

f

δδδ

δδδδδδδ

)()(

)()()(
0

xaλx

xuaxaλλxaux

x

uxux

&

&&

−++++

−++−++= ∫

Here, the subscripts of g, h, and a imply partial derivatives, i.e.
u
aau ∂
∂

≡ . The

Hamiltonian is defined as follows:

 (2.72))),(),(()()),(),((),,,(tttttttgtH T uxaλuxpux +=

Using the Hamiltonian, the variation of the functional, δJa, becomes (51):

[]

[∫ −−+++

−+++=

f

f

t

t

TT

ff
T

tfa

dtttHH

ttghhJ

0

)()()(

)()(

xλλxaux

xaλx

ux

x

&&

&

δδδδ

δδδ

] (2.73)

70

In equation (2.73), the (tf) at the end of the second term is used to signify that tf is an

argument for all quantities within the brackets. Integrating the last term in the integrand

by parts yields (51):

∫

∫

∫

+−−=

+−=

⎟
⎠

⎜
⎝

+−=

f

f

ff

t

t

T
ffff

T

t

t

T
ff

T

t

t
t

T

dttttt

dtttt

dt
dt

0

0

00

)())()((

)()()(

xλxxλ

xλxλ

xxλ

δδδ

δδ

δδ

&&

&

∫ ∫
⎞⎛

−=−
f f

t
T

t

t

t

t

TT

td

dtdtt
0 0

)(

)()(

λ

xλxλ δδ &

 (2.74)

Rewrite the variation of the functional, δJa (51):

[]

[]∫ −++++

+−+++−=

f

f

t

t

TT

ff
TT

tff
T

a

dttHH

ttghthJ

0

)()()(

)()())((

λxauxλ

xλxaλxλ

ux

x

δδδ

δδδ

&&

&&

 (2.75)

The at the end of the third term in the right hand side of equation (2.75) indicates

that all quatities inside the bracket are functions of the final time. By using the

Fundamental Theorem of the Calculus of Variations, the necessary conditions for the

minimum or maximum of the functional, Ja, are met when δJa = 0. The necessary

conditions are also known as the Euler-Lagrange equations and are (49), (50), (51):

)(ft

 (2.76a)),,(tuxax =&

T

T HH ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=−=
x

λ x
& (2.76b)

 0=
∂
∂

=
uu
HH (2.76c)

Because the dimension of x and p are n x 1, the dimensions of (2.76a) and (2.76b) are

also n x 1. The dimension of u is m x 1 and therefore, the dimension of Hu is also m x 1.

If our final time, tf is free, we also have the boundary condition (51):

71

 (2.77) 0)(=+=++ ft
T

t tHhgh
ff

aλ

We still have the fixed initial, and fixed or free final conditions (51):

 (2.78) 00)(xx =t

 if xf is fixed (2.79)
fifi t xx =)(

)()(f
i

fi t
x
ht

∂
∂

=λ if xf is free (2.80)

According to references (52) and (49), the Lagrange multipliers are sensitivities of

the performance index, J, to small changes in the initial conditions, i.e. the Lagrange

multiplier functions, λT(t), are the partial derivatives of the performance measure, J, with

respect to the initial conditions, x(t0). The Lagrange multipliers are sometimes called the

influence functions (49).

 This derivation allows us to proceed with the optimal control problem for

controlling the constant, continuous thrust of a satellite from an initial orbit to a final

orbit while optimizing fuel usage.

2.2.2.2 Minimum-Time Trajectory Optimization Problem

 The optimal low-thrust control problem for initial and final orbits was initially

solved in the 1960s by Gobetz and Edelbaum using an application of the equinoctial

orbital elements (53), (54). These solutions mostly dealt with circular initial and final

orbits. However, the more general problem of thrusting from initial and final orbits with

72

significant eccentricity and inclination was dealt with in reference (55)5. Starting in the

1990s, Jean Albert Kechichian further developed these methods (9) and his work is the

basis for the optimal control problem formulation in this thesis. Because of the robust

convergence characteristics and the relatively simple formulation, the development from

Kechichian’s paper (5) is followed.

 The nonsingular equinoctial elements, { }Lqpkha ,,,,,=x , are used as the state

elements in the dynamic equations. The elements a,h,k,p,q are identical to the equinoctial

orbit elements described in section 2.1.3.5. These elements were developed by Broucke

and Cefola (31), (56). The L element is the true longitude and is defined as

. Here, is the true anomaly, Ω++= ∗ ωθL ∗θ ω is the argument of perigee, and is the

right ascension of the ascending node. The following variational equations define the

time derivatives of the equinoctial elements. These equations match the form of the

constraint equations from the optimal control formulation,

Ω

),,(tuxax =& (5):

 [θfkchsfhcks
khn

a LLrLL)1()(
)1(

2

2
1

22

+++−

−−

=&] (2.81a)

[]{ }hLLLLLrLLL

LL

fqspckfskchshfckchs
kchsna

khh

)()2()1(
)1(

)1(2
1

22

−−++++++−×
++

−−
=

θ

& (2.81b)

[]{ }hLLLLLrLLL

LL

fqspchfckchskfskchs
kchsna

khk

)()2()1(
)1(

)1(2
1

22

−+++++++×
++

−−
=

θ

& (2.81c)

5 This application of the equinoctial orbital elements was significant because it was the first use of the
equinoctial orbital elements apart from the authors who introduced the concept, Broucke and Cefola.

73

 () hL
LL

fsqp
kchsna

khp 22
2
1

22

1
)1(2

)1(
++

++
−−

=& (2.81d)

 () hL
LL

fcqp
kchsna

khq 22
2
1

22

1
)1(2

)1(
++

++
−−

=& (2.81e)

 hLL
LL

LL fpcqs
kchsna

kh

kh

kchsnL)(
)1(

)1(

)1(

)1(2
1

22

2
1

22

2

−
++

−−
+

−−

++
=& (2.81f)

Equations in (2.81) are transformed versions of equations in (2.31). The true longitude,

L, has replaced the mean longitude, λ, as the fast variable. Equations in (2.81) are

formulated to use thrust acceleration in a polar frame while the equations in (2.31) are

formulated to use the perturbing acceleration in equinoctial (f,g,w) inertial coordinates.

The similar formulations are notable because Kechichian’s formulation follows from the

work of Edelbaum in the 1970s (55) which used the equinoctial elements introduced by

Broucke and Cefola (31). In equation (2.81), the symbol, n, denotes the mean motion,

the sL and cL variables are sin(L) and cos(L), respectively, and the control vector, u, has

rotating polar components, . The complete expression for the disturbing

acceleration due to thrust is

[T
hr uuu ,, θ]

[]Thrtt uuuf ,, θ=ufm/ ==Γ f . The symbol, m, is the

spacecraft mass, and ft is the magnitude of the thrust vector, f. The variational equations

can also be represented by (5):

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

2

2
1

222

636261

535251

434241

333231

232221

131211

)1(

0
0
0
0
0

r
khna

f
u
u
u

BBB
BBB
BBB
BBB
BBB
BBB

L
q
p
k
h
a

t

h

r

LLL

LLL

LLL

LLL

LLL

LLL

θ

&

&

&

&

&
&

 (2.82a)

74

where the 6 x 3 BL matrix is fully defined in Appendix B. Other perturbations in the

rotating Euler-Hill polar frame, []Thrp ffff θ= , can be added to the perturbation

acceleration due to thrust:

 [] []() 2

2
1

222)1(
r

khnaffffuuuB T
hrt

T
hr

L −−
++= θθx& (2.82b)

Adding perturbations such as J2 and lunar and solar gravity is future work with

respect to this thesis. However, adding the J2 perturbation is shown in reference (57).

 We can put this formulation into the optimal control framework by adjoining

Lagrange multipliers to the equinoctial element time derivatives. We can then define the

Hamiltonian as (5):

 2

2
1

222)1()(
r

khnafBH Lt
LT −−

+= λuxλx (2.83)

Here, the vector of Lagrange multipliers is defined as { }λλλλλλλ ,,,,, qpkha
T =xλ . In the

case of , no partial derivative is implied. The necessary conditions for the optimal

control are then (5):

T
xλ

 (2.84)),,(tuxax =&

x

λ
∂
∂

−=
H& (2.85)

 0=
∂
∂

u
H (2.86)

75

 The first of the conditions is already defined by the variational equations. The

second condition,
x

λ
∂

−=&
∂H , can be written as (5):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

∂
∂

−
∂
∂

−=
∂
∂

−= 2

2
1

222)1(
r

khnafBH
Lt

L
T

x
u

x
λ

x
λ x λ& (2.87)

This adjoint equation requires the partials of the BL matrix with respect to each of the

equinoctial elements. These partial derivatives were derived by Kechichian (5) and are

shown in Appendix B along with the elements of the BL matrix. The BL matrix includes

all terms that are required to reproduce the variational equations when multiplied by the

perturbing thrust acceleration vector as shown in equation (2.82a). The partials of the BL

matrix with respect to the equinoctial orbital elements are required in order to evaluate

the variational equations for the Lagrange multipliers as shown in equation (2.87). These

partial derivatives are also included in Appendix B.

 The third equation in the necessary conditions, 0=∂∂ uH , can be met by

choosing the control or thrust vector, u, such that it is always parallel to . This

maximizes the Hamiltonian because of how it was defined in equation (2.83) (5).

Therefore, the optimized thrust vector, u*, is obtained from (5):

t
LT fB)(xλ x

LT

TLT

B
B

x

x

λ
λu)(

= (2.88)

This thrust control vector produces a trajectory that is optimized for the choice of the cost

functional in equation (2.66). The exact choices for the h and g functions are shown

later. The thrust pitch and yaw angles can be calculated from the thrust vector. The

76

thrust vector is defined in terms of rotating Euler-Hill polar coordinates defined in

Appendix C,{ , and so the thrust pitch and yaw angles are (6): }hr uuu ,, θ

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

θ

θ
u
ur

pitch
1tan (2.89)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

θ

θ
u
uh

yaw
1tan (2.90)

 Because we are assuming constant thrust, we can minimize fuel usage by

minimizing the total transfer time. We can choose the cost functional with

 and 0)),((=ff tth x 1)),(),((=tttg ux and therefore, the cost functional to minimize is (3):

 (2.91) ∫ −==
ft

t f ttdtJ
0

0

This is equivalent to maximizing the cost functional (3):

 (2.92) ∫ −−=−=
ft

t f ttdtJ
0

)(0

We then redefine our g function as 1)),(),((−=tttg ux so that we are again minimizing the

cost. With , we can specify the augmented Hamiltonian as (3): 1)),(),((−=tttg ux

 (2.93) xλuxaλλux &)(1))(),(()(1),,(ttttH TT +−=+−=

At the final time, tf, the augmented Hamiltonian will be Hf = 0. This comes out of the

boundary condition at the final time (3):

 (2.94) 0)(==+ f
T tHg aλ

Therefore, our augmented Hamiltonian will be zero at the final time and will thus

indicate a time-optimal trajectory if the un-augmented Hamiltonian is equal to unity, i.e.

. This fact can be used later in the numerical quasi-Newton search

algorithm. We also know that because the Hamiltonian is not an explicit function of

1)()(=ff
T tt xλ &

77

time, it will be constant throughout the time interval from t0 to tf when the trajectory is

optimal (49). The constancy of the Hamiltonian is an important indicator of the

optimality of the trajectory.

2.2.2.3 Numerical Solution Method for Trajectory Optimization Problem

 In order to solve the two-point boundary value problem posed by this formulation

of the satellite optimal control problem, one needs to be able to integrate the variational

equations for the equinoctial elements (2.81) and the variational equations for the

associated Lagrange multipliers (2.87). The 6 variational equations for the equinoctial

elements are integrated from the initial conditions (2.78) at t0 to the guessed final time, tf.

The 6 variational equations for the Lagrange multipliers are integrated from initial

guesses at the initial time, t0, { }
00 ,,,,, λλλλλλλ qpkha

T =λ , to final values,

{ }
fqpkha

T
f λλλλλλλ ,,,,,=λ at the final guessed time, tf. The integrator chosen for this

task must have sufficient accuracy because the 7-parameter unconstrained minimization

depends on very accurate correspondence between the initial and final conditions.

Kechichian (4) uses a 7th order Runge-Kutta-Fehlberg integrator (RK78) with 10-9 error

tolerance for this purpose, and so that integrator is also used for the trajectory

optimization in this thesis. The source code for the RK78 integrator was developed at

NASA and is available on the web at (http://www.astro.su.se/~pawel/rk78.html).

The guesses for the initial Lagrange multipliers and final time can be refined

through the use of a 7-parameter search. The search tries to find the best initial guesses

for Lagrange multipliers and final time to match the desired final equinoctial orbital

78

http://www.astro.su.se/%7Epawel/rk78.html

elements. For this search, Kechichian chose the minimization algorithm UNCMIN (58).

This algorithm performs an unconstrained minimization on a given real-valued function

F(x). The number of variables in the vector, x, is n. This dimension, n, must match the

number of variables to be guessed by the minimization algorithm. The UNCMIN

algorithm uses a quasi-Newton search which is based on the general descent method (58).

In the Newton method, the step p is computed from the solution of a set of n linear

equations known as the Newton equations (3):

) (2.95) ()(2 xx FpF −∇=∇

The solution is updated by using (3):

 (2.96)
)()]([12

1

kkk

kk

FF

p

xxx

xx

∇∇−=

+=
−

+

The gradient of F(x) is denoted by)(xF∇ , and the constant matrix of second partial

derivatives of F(x), , denotes the Hessian matrix (3). The direction given by the

step, p, is guaranteed to be a descent direction only if is positive definite, i.e.

for all (3). This can be shown using the Taylor expansion for F

at x + p (58):

)(2 xF∇

0 z

12)]([−∇ kF x

)]([12 >∇ − zxz k
T F 0≠

 (2.97)
)()(

)()()(
)()()()(

212

212

2

εε

εε

εεε

OFFFF
OFFFF

OpFFpF

T

T

T

+∇∇∇−=

+∇−∇∇+=

+∇+=+

−

−

x
x
xx

If we assume is positive definite, then as long as 12)]([−∇ kF x 012 >∇∇∇ − FFF T 0≠∇F .

Therefore, If ε is small and , then 0≠∇F)() xFp(xF <+ ε and p is in a downhill

direction. If , then x is a critical point, and further conditions involving second

derivatives must be checked to determine if x minimizes the function (58).

0=∇F

79

 The Newton method described above is modified in the implementation of

UNCMIN to build an approximation to the Hessian matrix using a secant approximation

(58). This modified method avoids the cost of computing the 2nd derivative Hessian

matrix explicitly. The secant approximation works by starting with

and then using a step, p, defined by (58):)(22
kkk FFB x∇=∇≈

) (2.98) (kk FpB x−∇=

This step, p, is used with the general descent method shown in equations (2.95) and

(2.96). After the line search obtains pkk α+=+ xx 1

)(1+

, the approximate Hessian, Bk, is

updated using the values of xk+1 and ∇ kF x to produce the new approximation, Bk+1

(58). This can be illustrated by starting with a quadratic function, F(x), which satisfies:

 (2.99))()())((11
2

kkkk FFF xxxx ∇−∇=−∇ ++

In this case, the approximation of the Hessian matrix will be chosen so that (58):

)()()(111 kkkkk FFB xxxx ∇−∇=− +++ (2.100)

The advantages of this method are that the solution converges rapidly near the solution,

only gradient values are needed rather than second derivatives, a positive definite Bk can

always be used so that a descent direction is always chosen, and the work per iteration

can be reduced to O(n2) owing to the modification of Bk by a low-rank matrix (58).

 The function, F(x), chosen for the trajectory optimization problem is (3):

 (2.101)
2

7
2

6
2

5

2
4

2
3

2
2

2
1

)1()0()(

)()()()(),,,(

−+−+−+

−+−+−+−=

Hwwqqw

ppwkkwhhwaawHF

Lf

fffff

λ

wzz

80

Here, the relevant equinoctial elements and Lagrange multipliers at the final time are

produced by the latest guess in the UNCMIN algorithm. The equinoctial elements are

contained in vector { Lqpkha }λ,,,,,=z . The desired final orbital elements are contained

in vector { }ffff qpkh ,,,ff a ,=z . This function includes weighting parameters in the

vector, w, which can be used to emphasize a combination of elements during the

execution of the UNCMIN algorithm (4). The Hamiltonian, H, is penalized for any

difference from 1. This follows from equations (2.93) and (2.94) which define the

optimality condition involving the Hamiltonian. The true longitude element is not

included in the function to be minimized. It is left out and is therefore a free parameter.

Instead of the true longitude, the Lagrange multiplier associated with the true longitude is

included so that the optimal arrival point for the minimum-time transfer on the final orbit

is reached (5).

2.2.2.4 Averaged Numerical Solution Method for Trajectory Optimization Problem

 In order to obtain initial guesses for the Lagrange multipliers needed for the

numerical method in 2.2.2.3, it is practical to apply the more robust, averaged variational

equations to the problem (57). The averaged variational equation formulation uses a

mean longitude formulation developed by Jean Kechichian in reference (4). The mean

longitude formulation starts with the following equations of motion (4) in terms of the

equinoctial elements, { }λ,,,,, qpkha=x . This formulation is equivalent to the equinoctial

variational equation formulation outlined in section 2.1.2.5 in equation (2.31), but is

expressed in a form that can be conveniently partitioned into a matrix.

81

 tfa u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂

=
&

&
Ta∂ (2.102a)

 t

T

fhh u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

& (2.102b)

 t

T

fkk u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

& (2.102c)

 t

T

fpp u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

& (2.102d)

 t

T

fqq u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

& (2.102e)

 t

T

fn u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
&

& λλ (2.102f)

The equinoctial elements are the same as those described in the section 2.2.2.2 except for

the λ element which is the mean longitude. The mean longitude is defined in terms of the

mean anomaly, M, and the argument of perigee, ω, and the right ascension of the

ascending node, Ω.

 Ω++= ωλ M (2.103)

The unit thrust vector, , is in the direction of thrust and n is the orbital mean motion.

The following equations show the partial derivatives of the equinoctial elements with

respect to r (4):

û

&

 wMgMfMgYfXnaa ˆˆˆ)ˆˆ(2 13121111
21 ++=+=

∂
∂ −− &&
&r

 (2.104a)

wMgMfM

w
Gna
pXqYkg

n
Yh

k
Yf

n
Xh

k
X

na
Gh

ˆˆˆ

ˆ)(ˆˆ

232221

2
111111

2

++=

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

=
∂
∂ &&

&
ββ

r (2.104b)

82

wMgMfM

w
Gna
pXqYhg

n
Yk

h
Yf

n
Xk

h
X

na
Gk

ˆˆˆ

ˆ)(ˆˆ

333231

2
111111

2

++=

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=
∂
∂ &&

&
ββ

r (2.104c)

 wMgMfMw
Gna

KYp ˆˆˆˆ
2

1
43424121 ++==

∂
∂
r&

 (2.104d)

 wMgMfMw
Gna

KXq ˆˆˆˆ
2

1
53525121 ++==

∂
∂
r&

 (2.104e)

wMgMfM

w
Gna
pXqY

g
k
Yk

h
YhGY

na

f
k

Xk
h

XhGX
na

ˆˆˆ

ˆ)(

ˆ21

ˆ21

636261

2
11

11
12

11
12

++=

−

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+−

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+−=
∂
∂

ββ

ββλ
r&

 (2.104f)

It should be noted that equation (2.104) is also compatible with the VOP equation

derivation found in McClain (15). The reference frame for these equations is the direct

equinoctial frame which is also used for the true longitude formulation described in

section 2.2.2.2. The 6x3 M matrix is defined with these equations and is dependent on

the elements and the eccentric longitude, F. The position and velocity vectors are also

given in terms of the eccentric longitude (4). The eccentric longitude is related to the

eccentric anomaly, E, by (4):

 (2.105))/(tan 1 khEF −+=

The position and velocity are given by (4):

 (2.106) gYfX ˆˆ
11 +=r

 (2.107) gYfX ˆˆ
11
&&& +=r

83

The parameters are the same as those given earlier in equation (2.23) and are repeated

here for convenience (32), (4):

[]kFhkFhaX −+−= sincos)1(2
1 ββ (2.108)

 []hFkFhkaY −−+= sin)1(cos 2
1 ββ (2.109)

 [FhFhk
r

naX sin)1(cos 2
2

1 ββ −−=&] (2.110)

 [FhkFk
r

naY sincos)1(2
2

1 ββ −−=&] (2.111)

Here,)1/(1 G+=β ,)1(22 khG −−= , , and)1(22 qpK ++=)sincos1(FhFkar −−= .

As the mean longitude λ is being integrated, it becomes necessary to solve Kepler’s

transcendental equation by iteration, i.e. Fh cosFkF sin +−=λ (4). The following

partial derivatives are needed in the equations of motion shown above (4):

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+−−=
∂
∂ FFh

r
ahFkFha

h
X cos)sin(

1
)sincos(

32
1 β

β
ββ (2.112)

 ⎥
⎦

⎤
⎢
⎣

⎡
−++

−
−−=

∂
∂ FhF

r
ahkFkFha

k
X sin)(sin1

1
)sincos(

3
1 β

β
β (2.113)

 ⎥
⎦

⎤
⎢
⎣

⎡
−+−

−
−=

∂
∂ FFk

r
ahkFkFha

h
Y cos)cos(1

1
)sincos(

3
1 β

β
β (2.114)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+−=
∂
∂ FkF

r
akFkFha

k
Y sin)(cos

1
)sincos(

32
1 β

β
ββ (2.115)

 The averaged variational equations for the averaged equinoctial elements and the

averaged Lagrange multipliers are now sought. This averaging procedure is like the one

used in the DSST development in section 2.1.2.6 in that the short period motion, i.e.

84

periodic motion on the order of one orbital revolution, is averaged out of the equations of

motion. The following averaging procedure is taken from references (4) and (55). First,

the averaged Hamiltonian is formed. From the averaged Hamiltonian, a first-order

approximation to the state and costate is derived by holding these quantities constant over

the averaging interval of one orbital revolution. Only the eccentric longitude, F, is varied

on the orbit (4):

 ∫∫
−

==
π

π),~(
11~

000

0

FF
dFH

T
dtH

T
H

T

z&
 (2.116)

The integrand in equation (2.116) is the Hamiltonian from equation (2.83). Here, is

the orbital period at time t which is given by

0T

nT ~20 π= with 2321 ~~ −= an μ . The symbol,

a~ , denotes the averaged value of the semimajor axis at time t. From Kepler’s equation,

, we have (4): tnFhFkF ~cos~sin~
=+−=

~λ

)sin~cos~1(

2

0 FhFkT
F

−−
=

π& (2.117)

Defining the variable s as follows and making a substitution into the Euler-Lagrange

equations yields (4):

 [FhFk
F
T

s sin~cos~1
2
1

1

0 −−=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
π&

] (2.118)

 dFFsHH
TT

),~(~~
~

~ z
λλ

z
zz

∫
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
π

π

& (2.119)

 dFsHFsHH TTT

∫
− ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
π

π
z

z
zz

λ z ~),~(~~
~~ (2.120)

85

Here, the averaged equinoctial element vector is { }λ~,~,~,~,~,~~ qpkha=z , and the averaged

vector containing the Lagrange multipliers is { }λλ~~
zλ λλλλλ ,~,~,~,~,~

qpkha= .

The partials derivatives of s with respect to the averaged equinoctial elements are

(4):

0~ =
∂
∂
a
s (2.121)

π2
sin

~
F

h
s −
=

∂
∂ (2.122)

π2
cos

~
F

k
s −
=

∂
∂ (2.123)

0~~ =
∂
∂

=
∂
∂

q
s

p
s (2.124)

)sin~cos~1(2
cos~sin~

~ FhFk
FhFks

−−
−

=
∂
∂

πλ
 (2.125)

Using the previous equations, the averaged variational equations for the

equinoctial elements and the Lagrange multipliers with constant acceleration, ft, are (4):

∫
−

−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
π

π
π

dFFhFkafa
T

t)sin~cos~1(ˆ
2
1~ u

r&
& (2.126)

∫
−

−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
π

π
π

dFFhFkhfh
T

t)sin~cos~1(ˆ
2
1~ u

r&
& (2.127)

∫
−

−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
π

π
π

dFFhFkkfk
T

t)sin~cos~1(ˆ
2
1~ u

r&
& (2.128)

86

∫
−

−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
π

π
π

dFFhFkpfp
T

t)sin~cos~1(ˆ
2
1~ u

r&
& (2.129)

∫
−

−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
π

π
π

dFFhFkqfq
T

t)sin~cos~1(ˆ
2
1~ u

r&
& (2.130)

dFFhFkn

dFFhFkf
T

t

)sin~cos~1(~
2
1

)sin~cos~1(ˆ
2
1~

∫

∫

−

−

−−

+−−⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

π

π

π

π

π

λ
π

λ u
r&

&

 (2.131)

dFFhFk
a
n

dFFhFk
a
Mf T

ta

)sin~cos~1(ˆ~
~~

2
1

)sin~cos~1(ˆ~
~

2
1~

−−⋅
∂
∂

−

+−−⋅
∂
∂

−=

∫

∫

−

−

u

uλ z

π

π
λ

π

π

λ
π

π
λ&

 (2.132)

dFFhFk
h
Mf T

th)sin~cos~1(ˆ~
~

2
1~

−−⋅
∂
∂

−= ∫
−

uλ z

π

π
π

λ& (2.133)

dFFhFk
k
Mf T

tk)sin~cos~1(ˆ~
~

2
1~

−−⋅
∂
∂

−= ∫
−

uλ z

π

π
π

λ& (2.134)

dFFhFk
p
Mf T

tp)sin~cos~1(ˆ~
~

2
1~

−−⋅
∂
∂

−= ∫
−

uλ z

π

π
π

λ& (2.135)

dFFhFk
q
Mf T

tq)sin~cos~1(ˆ~
~

2
1~

−−⋅
∂
∂

−= ∫
−

uλ z

π

π
π

λ& (2.136)

dFFhFkMf T
t)sin~cos~1(ˆ~

~
2
1~

−−⋅
∂
∂

−= ∫
−

uλ z λπ
λ

π

π
λ
& (2.137)

The thrust direction, , is a function of the averaged equinoctial elements, û z~ , the

eccentric longitude, F, and the averaged Lagrange multipliers, zλ
~ . The thrust direction is

chosen so it is always parallel to),~(~ FM zλ z . This optimizes the acceleration direction

87

according to the necessary conditions derived in sections 2.2.2.1 and 2.2.2.2. The partial

derivatives of the M matrix with respect to the equinoctial elements are provided in

reference (4). The M matrix is formulated with respect to mean longitude while the BL

matrix defined earlier in equation (2.82a) is defined with respect to true longitude. The

exact and averaged formulations of the mean longitude equations are presented in

reference (4).

In the averaged formulation, the averaged Hamiltonian can be obtained from the

integrated variables (4):

 λλλλλλλ λ
&&&&&& ~ ~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ +++++= qpkhaH qpkha (2.138)

When given the initial and final orbits, one can solve for the averaged Lagrange

multipliers, zλ
~ , using the same two-point boundary value problem defined in section

2.2.2.2 and the numerical shooting method described in section 2.2.2.3. The major

difference in the averaged and exact problems is that the averaged problem requires

quadrature to produce the averaged time derivatives of the equinoctial elements and

Lagrange multipliers. It is perhaps possible to analytically evaluate the quadrature

expressions in equations (2.126-2.137), but numerical quadrature was used by

Kechichian and was used in this thesis. The usefulness of the averaged Lagrange

multipliers comes from the fact that, in practice, the averaged two-point boundary value

problem is much more robust when given errors in the initial guesses for the Lagrange

multipliers. The solution for the Lagrange multipliers obtained using the shooting

88

method with the averaged two-point boundary value problem can be used as initial

guesses for the exact solution which uses the non-averaged variational equations as

defined in section 2.2.2.2. This strategy was suggested by Jean A. Kechichian in his

papers referenced throughout chapter 2. In section 5, this strategy will be shown to work

well for the test cases done for this thesis.

89

2.2.3 Electric Propulsion for Satellite Station Keeping

Hundreds of telecommunications satellites in Geosynchronous Earth Orbit (GEO)

provide services that enable television, radio, telephony, and other communication across

most of the globe. Arthur C. Clark popularized the concept of GEO satellites which

maintain a nearly constant position in the sky from the perspective of an Earth-based

observer. GEO satellites follow circular, Earth equatorial orbits with a mean semimajor

axis of approximately 42,164 km. This orbit gives the satellite an orbital period equal to

one day. However, maintaining a true geostationary orbit requires that a satellite

precisely counteract Earth’s nonspherical gravity, lunar and solar gravity and solar

radiation pressure. All of these forces, though small in comparison to the primary two-

body gravitational attraction of the Earth on the satellite, act to move the satellite from its

ideal geostationary orbit. These forces change the orbital semimajor axis, eccentricity

and inclination (42). Counteracting the small forces requires the use of thrusters. In

particular, inclination control for geostationary satellites requires 95% of the needed ΔV,

i.e. change in orbital velocity (59), (43).

Since the 1960s, when GEO satellites were first launched, such satellites have

used chemical thrusters. However, in 1997, the first commercial spacecraft to use Xenon

ion engines for station keeping was launched (43). This spacecraft was the

Hughes/Boeing 601 spacecraft which used Xenon ion thrusters for orbital inclination

control. Later, the Hughes/Boeing 702 spacecraft introduced Xenon ion thrusters (XIPS)

for semimajor axis, eccentricity and inclination control (43).

90

The application of Xenon ion electric propulsion (EP) to GEO satellites has

mainly been driven by the reduced fuel mass required by Xenon over the mass required

by chemical thruster fuel such as hydrazine for comparable mission lifetimes. The

savings in mass can be as much as a factor of ten. The efficiency improvement is

achieved in part because electric, Xenon fuel-based ion engines can provide a specific

impulse that is ten times greater than that of chemical thrusters and the efficiency of such

thrusters is optimal for high specific impulse (43), (38). Specific impulse is proportional

to the exit velocity of the engine exhaust. Low-thrust characteristics of Xenon ion

propulsion require longer engine burn durations. A typical bipropellant, chemical

thruster with a force of 22 Newtons need only be used on the order of once every several

days to maintain acceptable semimajor axis, eccentricity and inclination control. A

Xenon ion engine with a force of 0.1 Newtons must be operated every day for several

hours at specific locations in the orbit in order to efficiently maintain acceptable control

(59), (43). Acceptable control is defined as maintaining the semimajor axis and

eccentricity so the satellite’s longitude stays within 0.05 degrees of its assigned slot and

maintaining the inclination under 0.1 degrees (60).

Aside from the fuel mass benefit of Xenon ion propulsion systems is the

capability to maintain tighter control of the satellite. Because the thrusters are operated

during every orbit, thrusts made with ion engines to counteract perturbing forces can be

executed more frequently and efficiently than thrusts made with chemical thrusters.

Figure 2.7 taken from reference (43) shows the tighter inclination control that can be

maintained with ion thrusters over chemical thrusters.

91

Figure 2.7 Inclination Control with Chemical vs. XIPS Thrusters

Figure 2.8 was also taken from reference (43) and shows the tighter eccentricity and

longitude drift control that can be maintained using ion thrusters.

Figure 2.8 Eccentricity and Longitude Control with Chemical vs. XIPS Thrusters

The advantages of tighter inclination, eccentricity and longitude control mainly

benefit Earth-based users of the spacecraft. Requirements and therefore costs for antenna

pointing are reduced with tighter satellite control because the satellite will wander less

from its fixed position relative to the Earth’s surface.

92

2.3 Recursive Orbit Estimation Techniques

Satellite orbital estimation is the problem of solving for the constants associated

with the orbital equations of motion using observations of a satellite while in its orbit. In

satellite orbit estimation, one typically tries to obtain an optimal estimate. However, the

optimal estimate is often difficult to achieve exactly due to the nonlinear characteristics

of the orbital dynamics involved. In order to perform optimal estimation, one requires

knowledge of an initial satellite orbit, the orbital dynamics, the measurement dynamics

and the associated errors for each set of dynamics. Orbital and continuous thrust

dynamics were discussed in sections 2.1 and 2.2, respectively. The measurement

dynamics are not discussed as fully in this document, but ample treatment of several

types of observations can be found in Methods of Orbit Determination by Pedro Escobal

(61) and in An Introduction to the Mathematics and Methods of Astrodynamics by

Richard Battin (11). The GTDS Mathematics Specification (32) also has a great deal of

useful material on orbit determination. The orbital dynamics and measurement errors are

important for the study and scope of this thesis and so are discussed in this section as they

relate to orbital estimate errors. Documents that also present these issues are references

(62) and (63).

A number of estimation algorithms have been applied to the satellite orbit

estimation problem. Among them are various variations on the Kalman Filter. The

discussion in this document will focus on a few of these including the Extended Kalman

Filter (EKF) derived from Kalman Filter introduced by R.E. Kalman (64), the Unscented

Kalman Filter (65), (66), and the Backward Smoothing Extended Kalman Filter (BSEKF)

93

(2). Because the equations describing satellite motion and the geometry of the

measurements taken on satellites are nonlinear, steps are taken in the derivations of the

aforementioned estimators to approximate the dynamics and measurement equations with

linear equations. Linear equations are necessary because dynamics and measurement

equations are assumed linear in the derivations of the most popular and efficient optimal

estimation algorithms, i.e. Kalman filters (67). Allowing for nonlinear dynamics and

measurement equations would mean many of the basic assumptions and techniques used

in deriving the Kalman filter would not be valid. Some of these assumptions and

techniques include linear algebra and Gaussian normal distributions of errors. A

fundamental assumption allowing the use of linear techniques to solve estimation

problems is that the Linear Least Squared Error (LLSE) estimator and the Bayesian Least

Squared Error (BLSE) estimator, i.e. the Minimum Mean Square Error (MMSE)

estimator, are equivalent when process noise and measurement noise statistics are

independent, identically distributed (i.i.d) Gaussian distributions. (68), (69), (70). As

long as the dynamic and measurement equations transform the associated errors linearly,

the LLSE and BLSE equivalence assumption holds (69).

The orbit estimation problem is a specific problem of state estimation. There are

two ways in which a state can be estimated. The non-Bayesian or Fisher approach is a

nonrandom approach which tries to estimate an unknown constant (69). The random or

Bayesian approach treats the state parameters as a vector of random variables, x, with a

prior probability density function, p(x). The Bayesian approach starts with a prior

94

probability density function (PDF) of the state vector and one can obtain the posterior

PDF using Bayes’ formula (69):

)()(1
)(

)()(
)(xx

xx
x pZp

cZP
pZp

Zp == (2.139)

Here, c is simply a normalizing constant not dependant on x. The result is a PDF

describing the probability of values of x given the observations, Z. The non-Bayesian

approach doesn’t use the prior PDF of x. Rather, it simply uses the likelihood function

which is a PDF of the measurements, Z, conditioned on the parameter vector, x (69):

)()(xx ZpZ =Λ (2.140)

This function can also be used as a measure of how likely is a realization of values in x

given the obtained observations and serves as a measure of evidence from the observed

data (69). However, because the likelihood function doesn’t use the full Bayesian

formula, it is non-Bayesian.

 The estimators based on these approaches are the non-Bayesian Maximum

Likelihood Estimator (ML) and the Bayesian Maximum A Posteriori Estimator (MAP).

The ML estimator maximizes the likelihood function as follows (69):

)|(maxarg)(maxarg)(ˆ xxx
xx

ZpZ Z
ML =Λ= (2.141)

The ML estimator finds the mean of the PDF. The MAP estimator also uses a prior PDF

of x and follows from the maximization of the posterior PDF from Bayes’ formula (69):

 (2.142))]()|([maxarg)|(maxarg)(ˆ xxxx
xx

pZpZpZMAP ==

The MAP estimator finds the mode of the posterior PDF. The ML and MAP estimators

both depend on observations, Z, but the MAP estimator also depends on a realization of x

95

which is a random variable (69). The non-Bayesian approach is really a degenerate case

of the Bayesian approach. If one looks at a prior which is a Gaussian PDF with a

variance that approaches infinity, the PDF will approach that of a uniform distribution

(69):

 (2.143) xx =
∞⎯→⎯

)(lim p
σ

In this case, the MAP estimate and the ML estimate coincide because the MAP estimate

becomes proportional to the ML estimate (69).

 Another non-random estimator is the least squares estimator (LSE). If one is

given scalar and nonlinear measurements (69):

 kjjwjhjz ,...,1)(),()(=+= x (2.144)

the LSE of the vector, x, is obtained by (69):

[]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
=

k

j

LS jhjzk
1

2),()(minarg)(ˆ xx
x

Here, if the measurement errors are Gaussian, i.e. , then the least squares

estimator coincides with the maximum likelihood estimator (MLE) described previously

(69).

),0()(2σNjw ≈

 For random parameters, the counterpart of the LS estimator is the minimum mean

square error (MMSE) estimator (69):

 (2.145)]|)ˆ[(minarg)(ˆ
ˆ

ZEZMMSE 2

x
xxx −=

96

This equation finds the value of the state estimate, , that minimizes the expectation or

the square of the error in the estimate. The solution to this estimator is the conditional

mean of x:

x̂

 (2.146) ∫
∞

∞−

≡= xxxxx dZpZEZMMSE)|(]|[)(ˆ

Because the mean and mode of a Gaussian posterior distribution are equal, the MMSE

and MAP estimates are equal when given a Gaussian posterior PDF.

The variances of the MAP and ML estimators are not equal because the MAP

estimate variance also includes the prior PDF. The definition of the estimator’s variance

is the expected value of the square of the estimation error (69):

)ˆvar(])ˆ[(2 xxx =−E (2.147)

This quantity provides a measure of the accuracy of the estimator. Often, the estimation

error is assumed to be Gaussian (69). In the Kalman Filter derivation in section 2.3.1, the

minimum variance estimator for the orbit estimation problem is derived. The ML and

MAP estimators described above can also be used to derive an optimal estimator for the

orbit estimation problem. In fact, reference (70) shows that due to the Gaussian statistics

assumed for measurement and process noise, the ML, MAP and minimum variance

estimators are equivalent.

The estimation techniques described in section 2.3 make use of the i.i.d Gaussian

error assumption, but also operate with the crucial flaw that the approximate linear

dynamic and measurement models differ from the actual nonlinear physics occurring.

97

The Extended Kalman Filter (EKF), for example, works well for systems with a small

degree of nonlinearity. For systems with higher degrees of nonlinearity, smoothing and

other methods can improve the accuracy of the estimators, but this is not guaranteed (68).

The problem of how to ascertain the radius of convergence and to guarantee convergence

for extended or linearized estimators has an elusive solution.

2.3.1 Extended Kalman Filter

A filter is an estimation algorithm that uses physically realizable data. These data

are observations that have already been taken so the interval of these observations is

[0,tk]. The algorithm is called a filter because it is meant to filter out the noise in the

available signals (71).

The following derivations were taken verbatim from the R&D GTDS Filter

Program Software Specification and User’s Guide by J. Dunham (72), i.e. sections

2.3.1.1-2.3.1.5. Comparison for accuracy was done with reference (70). Some details

regarding covariance properties were published online by Richard Duda (73) and the

section on the expectation operator, 2.3.1.1.7, is from Optimal Control and Estimation by

Robert Stengel (71).

The orbit problem is one in which several conditions apply. The equations of

motion are nonlinear. The equations describing the observations are nonlinear functions

of the variables describing the satellite state. There is a wealth of data; considerably

more than is needed for a deterministic solution and much more than is the case in the

98

typical binary star orbit determination from celestial mechanics. Neither the dynamics

nor the observations can be perfectly modeled. These characteristics determine the

filtering requirements and algorithms needed to solve the problem.

Given a set of observations and an a priori estimate of the spacecraft solve-for

parameters; an improved knowledge of them is to be determined. The solve-for

parameters, X(t), are an nx1 vector which may include the position and velocity of the

spacecraft, constants from the equations of motion, attitude parameters, and clock

parameters. Orbital elements or spherical coordinates may be estimated instead of the

spacecraft position and velocity. The solve-for parameter (state vector) differential

equation

),(tXFX =& (2.148)

is a set of n simultaneous equations, which are nonlinear.

These parameters are not observed directly, but they can be inferred from the

observations. The observations, Y(ti), can be expressed as a function of the solve-for

parameters and time, i.e. G[X(t), t]. This observation equation is, in general, nonlinear in

the solve-for parameters.

For a solution to be possible, at least as many observations are needed as there are

solve-for parameters. That is, for a set of l observations, l must be greater than or equal

to n, where n is the number of parameters to be estimated.

99

2.3.1.1 Linear Unbiased Minimum Variance Batch Estimate

2.3.1.1.1 The Linearized State Equation

The predicted solve-for vector at time t is denoted X*(t). If the true parameters at

that time are X(t), then

)()(*)(
)()(*)(

txtXtX
txtXtX

&&& +=

+=
 (2.149)

where x(t) is the nx1 correction vector which needs to be estimated. If the initial guess

for the parameters are “close” to the true value, the correction vector x(t), is small relative

to X(t). Under that condition, a linear differential equation can be obtained for the

propagation of the correction vector. This is done by taking the differential equation for

the solve-for vector (Equation 2.148) and expanding it in a Taylor series about X*(t) as

follows:

...)()),(*(

)),()(*()(

)*(

+
∂
∂

+=

+=

=

tx
X
FttXF

ttxtXFtX

tXX

&

 (2.150)

Truncating equation (2.150) yields

)()(*)(
*

tx
X
FtXtX

X
⎥⎦
⎤

⎢⎣
⎡
∂
∂

+= && (2.151)

where Rearranging equation (2.151) yields.).*,()(* tXFtX =&

100

)()(*)(
*

tx
X
FtXtX

X
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=− && (2.151)

or, using equation (2.149) in differential form,

)()(
*

tx
X
Ftx

X
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=& (2.152)

Equation (2.152) is a set of n linearized differential equations for the propagation of the

correction vector. This equation can be written as

)()()(txtAtx =& (2.153)

where A(t) is the nxn matrix of partial derivatives evaluated along the trajectory X*(t),

given by:

*

)(
XX

FtA ⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.154)

2.3.1.1.2 State Transition Matrix

The differential equations for the propagation of the correction vector, i.e.

equation (2.153), form a system of n homogeneous linear differential equations. It is

assumed that the solution has the form:

)(),()(0011 txtttx Φ= (2.155)

101

where is an nxn matrix called the state transition matrix. The state transition

matrix relates perturbations (x(t1)) in the state vector at time t1 to perturbations (x(t0)) at

time t0. At an arbitrary time t, the following results:

),(01 ttΦ

)(),()(00 txtttx Φ= (2.156)

The x(t0) are constants of the integration of equation (2.153). They are the perturbations

in the state vector, X, at the epoch time t0.

To find the differential equation for the state transition matrix, equation (2.156) is

differentiated:

)(),()(),()(0000 txtttxtttx &&& Φ+Φ= (2.157)

Using equation (2.153) and the fact that 0)(0 =tx& (since the x(t0) are constants) produces:

)(),()()(00 txtttxtA Φ= & (2.158)

Substituting equation (2.156) for x(t) and rearranging the result produces the following

expression for the state transition matrix differential equation:

),()(),(00 tttAtt Φ=Φ& (2.159)

The initial conditions for integration of equation (2.159) can be found from considering

the state transition matrix over a zero-length time interval. In this case,

)(),()(0000 txtttx Φ= (2.160)

102

and Φ can be assumed to be the identity matrix.),(00 tt

2.3.1.1.3 Properties of the State Transition Matrix

The state transition matrix has a number of properties which can be employed to

advantage in estimation work. This subsection summarizes a few of them for use in later

discussion. The state transition matrix,),(0ttΦ , relates perturbations in the state vector

at time t to perturbations at time t0. The matrix obeys the following differential equation:

),()(),(00 tttAtt Φ=Φ& (2.161)

where A(t) is the nxn matrix of partial derivatives defined by equation (2.154) and

(t0,t0) = I, the identity matrix. The following properties of the state transition matrix

can also be obtained:

Φ

),(),(10
1

01 tttt −Φ=Φ (2.162)

)(
)(),(

0

1
01 tx

txtt
∂
∂

=Φ (2.163)

),(),(),(011202 tttttt ΦΦ=Φ (2.164)

If the quantity x(t2) is known, the property of equation (2.162) can be used to obtain x(t1).

Since

)(),()(1122 txtttx Φ= (2.165)

then

)(),()(212
1

1 txtttx −Φ= (2.166a)

or, from equation (2.162),

103

)(),()(2211 txtttx Φ= (2.166b)

As a practical matter, it is usually easier to integrate backwards in time to obtain

the state transition matrix from t2 to t1 instead of integrating forward in time from t1to t2

and then inverting the state transition matrix. Computing involves first the

integration from t1 to t2 and then the inversion of an nxn matrix. If X(t1) and/or x(t1) is

not known or if n is a large number, finding can be an expensive computation.

The differential equation for Φ in (2.161) can be integrated from t2 to t1 to obtain

directly, if the initial conditions x(t2) and X*(t2) are available.

),(12
1 tt−Φ

),(12
1 tt−Φ

),(21 ttΦ

2.3.1.1.4 The Linearized Observation Equation

The observation Y(ti) can be represented as a function of the state and time as

follows:

iiii ttXGtY ε+=)),(()((2.167)

where iε is the error in the observation at time ti. Equation (2.167) can be linearized in a

similar manner as the state equation. Substituting equation (2.149) for X(ti) and

expanding in a Taylor series about X*(ti) gives

i
X

iii tx
X
GttXGtY

i

ε++⎥⎦
⎤

⎢⎣
⎡
∂
∂

+= ...)()),(*()(
*

 (2.168)

The observation residual, y(ti), is defined as

)),(*()()(iiii ttXGtYty −= (2.169)

104

This is the observed-minus-computed (O-C) observation residual based on the state

estimate, X*(ti).

Linearizing equation (2.168) and substituting the result into equation (2.169) yields the

following equation for the O-C residuals:

)()()(
)*(

ii
tX

i ttx
X
Gty

i

ε+⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.170)

The matrix H(ti) is defined as

)*(

)(
itX

i X
GtH ⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.171)

For a single observation, H(ti) is a 1xn matrix of partial derivatives of the observation

equation with respect to the state parameters. Then equation (2.169) can be written as:

)()()()(iiii ttxtHty ε+= (2.172)

2.3.1.1.5 Summary of Notation

The following summarizes the previously developed equations and notation. A

set of scalar observations Y(ti) exists at times ti (i = 1,2,…,l). (In the next subsection, the

more general case of vector observations is considered.) The state vector is the nx1

vector of independent parameters to be estimated. Thus,

 X*(ti) = the nx1 predicted state vector at time ti

 Y(ti) = the observation at time ti

105

And

)*,()(* ii tXFtX =& (2.173)

is the state differential equation of motion. The function

]),(*[ii ttXG (2.174)

is the nonlinear expression which predicts the observation at time ti as a function of the

predicted state vector at ti. The matrix

)*(

)(
itX

i X
FtA ⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.175)

contains the partial derivatives of the equations of motion. The vector

)*(

)*,(
)(

itX

i
i X

tXG
tH ⎥⎦

⎤
⎢⎣
⎡

∂
∂

= (2.176)

contains the partial derivatives of the observation at time ti with respect to the

components of the state vector at time ti (a 1xn vector).

The state deviation equation, or the equation of motion for the state correction

vector, is given by:

)()()(txtAtx =& (2.177)

with the solution

)(),()(kkii txtttx Φ= (2.178)

when integrated from tk to ti.

Finally, the equation describing the O-C observation residual is

)()()()(iiii ttxtHty ε+= (2.179)

106

2.3.1.1.6 Reduction to a Common Epoch

A correction is needed to the state at some epoch time tk. The correction is to be

determined from a set of l observations, Y, made at times ti (i = 1,2,…,l). The time tk may

be within the span t1 to tl, earlier than the span, or later.

The state correction vector appearing in equation (2.179), x(ti), is related to the

state correction vector at epoch x(tk), according to equation (2.178). Replacing x(ti) in

equation (2.179) yields:

)()(),()()(ikkiii ttxtttHty (2.180) Φ= + ε

This set of l observational equations can be written as a vector equation

ε+=)(ktHxy (2.181)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ly

y
y ..

1

is an lx1 vector of residuals

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ

Φ
=

),(
...

),(11

kll

k

ttH

ttH
H

is an lxn matrix, and

107

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

lε

ε
ε ...

1

is an lx1 vector. The H matrix contains the partial derivatives of the observational

equations at their observed times, ti, with respect to the n components of the state vector

at epoch, tk.

2.3.1.1.7 The Expectation Operator

The average or expected value of a random variable v is defined as:

vvyprobabilitvvE i
i

i ′== ∑
∞

=

)()(
1

 (2.182)

E(v) is also called the first moment about the origin or the mean value of v, and it is

denoted by v . This is a measure of a value toward which a large number of observations

of v tends.

′

Higher moments provide measures of the variability of x, and the nth moments of

discrete variables are defined by

)()(
1

i
i

n
i

n vyprobabilitvvE ∑
∞

=

= (2.183)

Higher moments about the origin reflect not only variation about the mean but variation

in the mean value itself. The variation about the mean is useful if isolated which leads to

the nth central moments for discrete variables:

108

)]()[(])[(
1

i
i

nn vyprobabilitvvvvE ∑
∞

=

′−=′− (2.184)

The second central moment or variance is defined when n is 2.

])[(22 vvE ′−=σ (2.185)

The square root of the variance is the standard deviation, σ . The expected value of the

product of the deviations of two random variables v1 and v2 is called the covariance, P,

and is expressed as

)])([(2211 vvvvEP ′−′−= (2.186)

The covariance has several important properties:

• If variable v1 and variable v2 tend to increase together, then P(1,2) > 0

• If variable v1 tends to decrease when variable v2 increases then P(1,2) < 0

• If variable v1 and variable v2 are independent, then P(1,2) = 0

• | P(1,2) | <= σ 1σ 2, where σ i is the standard deviation of variable vi

• P(1,1) = σ 1
2

Thus, the covariance measures the dependence between variable v1 and v2. If the

covariance value for the two variables is 0, the variables are independent.

109

2.3.1.1.8 The Linear Unbiased Minimum Variance Estimate

The linear unbiased minimum variance estimate of the state correction vector, x,

at the epoch time, tk, is . The best estimate of the state vector at epoch is then

. The estimate, , is linearly related to the vector of observation

residuals, y, as follows:

)(ˆ ktx

)(ˆ)(* kk txtX +)(ˆ ktx

Mytx k =)(ˆ (2.187)

The matrix M will be shown to be a combination of the observation partial

derivatives and the observational error covariance which is selected to choose the best

estimate. The best estimate is one for which the expectation function that defines

contains x explicitly and not as an argument of another function.

)(ˆ ktx

The requirement that the estimate be unbiased may be stated as:

xxE =]ˆ[(2.188)

Substituting equations (2.181) and (2.187) into equation (2.188) gives the following

requirement that the estimate be unbiased:

kk xHxME =+)]([ε (2.189)

The observation errors are treated as zero-mean variables. Thus, the following

assumptions are made:

0][=εE (2.190a)

and

110

R

R

R
R

R

E

l

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Τ

...0000
.....
.....
0...000
0...000
0...000

][3

2

1

εε (2.190b)

where ε is the vector of the observation error given by and)],(),...,(),([21 lttt εεεε =Τ

)()]()([2
iiii tttER σεε == Τ (2.191)

The fact that the off-diagonal elements of the matrix in equation (2.190b) are zero

is a result of the assumption that the observational error at time ti is completely

independent of the error at any other time. This assumption is termed stochastic

independence. Since the expectation of observation errors, E[ε], is assumed to be zero,

equation (2.189) reduces to

kk xMHx = or IMH = (2.192)

The covariance matrix, Pk, is defined as

[]{ } []{ }[]Τ−−= kkkkk xExxExEP ˆˆˆˆ (2.193)

The minimum variance requirement is equivalent to choosing to minimize Pk. kx̂

To determine the value of which minimizes Pk, Pk must first be arranged into a

more convenient form. First, equations (2.187) and (2.188) are substituted into equation

(2.193) to obtain

kx̂

{ }{ }[]Τ−−= kkk xMyxMyEP (2.194)

111

Then, substituting equation (2.181) for y yields

{ }[]{ }Τ−+−+= kkkkk xHxMxHxMEP)()(εε (2.195)

which, when rearranged, is

{ }{ }[]Τ+−+−= εε MxIMHMxIMHEP kkk)()((2.196)

Thus, since MH = I from equation (2.192),

[] [] 0)()(=−=− kk xEIMHxIMHE (2.197)

Then from equation (2.190b),

[] [] ΤΤΤΤΤ === MRMMMEMMEPk εεεε (2.198)

The steps given below are followed to minimize Pk, subject to the constraint imposed by

the requirement that be unbiased. kx̂

The quantity

λλ)()(MHIMHI −+− ΤΤ (2.199)

where λ is an nxn matrix of Lagrangian multipliers, is added to the expression for Pk,

resulting in:

λλ)()(MHIMHIMRMPk −+−+= ΤΤΤ (2.200)

The technique of Lagrangian multipliers was developed for the purpose of finding

the extrema of functions which are subject to constraints. In the case above, equation

(2.199), which is added to the function to be minimized, equation (2.198), is made a

symmetric function by treating equation (2.199) as a matrix plus its transpose. The

covariance matrix is a symmetric one, and this preserves the symmetric property.

112

kPThe first variation of Pk, δ , is given by

δλδλδλλδδ)()()()(MHIMHIMHMRHRMMPk −+−+−+−= ΤΤΤΤΤΤ (2.201)

For minimum variance, kPδ equals zero. This requires that the following conditions hold:

0=−Τ λHRM (2.202)

0=−MHI (2.203)

Solving for M and λ ,

1−ΤΤ= RHM λ (2.204a)

IHRH =−ΤΤ 1λ (2.204b)

11)(−−ΤΤ = HRHλ (2.204c)

Substitute in (2.204a) to get M in terms of H and R only. Τλ

111)(−Τ−−Τ= RHHRHM (2.205)

Substitute M in equation (2.198)

11

1111

111111

)(

)()()(

])[()(

−−Τ

Τ−−ΤΤ−ΤΤ−−Τ

Τ−Τ−−Τ−Τ−−Τ

Τ

=

=

=

=

HRHP

HRHRHHHRHP

RHHRHRRHHRHP

MRMP

k

k

k

k

 (2.206)

Substitute M into equation (2.187) to yield:

yRHHRHMyxk
111)(ˆ −Τ−−Τ== (2.207)

Equations (2.206) and (2.207) are the covariance and the correction vector

equations respectively, purely in terms of H, R and y. H contains the partial derivatives

of the observations with respect to the components of the state vector (Equation 2.171).

113

R is the diagonal matrix () containing the expected value of the observation errors

(Equation 2.190b) and y is the vector of observation residuals (Equation 2.180).

][ΤεεE

A batch least squares estimate of , given l observations, would proceed as

follows. Given the initial state, X*(t0), and a vector of observations, Y, from time t0 to

time tf, the estimate of the state, , can be made by following the steps. These steps

can be iterated using some convergence criteria by returning to step 1 after step 4 is

completed.

kx̂

kX̂

1. Integrate the state differential equation (Equation 2.148) and the state transition

matrix differential equation (Equation 2.161) to the time of each observation.

2. At each observation at time ti, compute the observation partial derivative from

)*(

),(
)(~

itXX

i
i X

tXG
tH

=
⎥⎦
⎤

⎢⎣
⎡

∂
∂

= (2.208)

 and propagate the partial derivative to time tk using

),(~)(kiik ttHtH Φ= (2.209)

 Computation of the state transition matrix,),(ki ttΦ , may require several steps,

depending on the value of tk relative to the interval (t0,tf) and depending on the

number of parameters in the state, n. In general

),(),(),(00 kiki tttttt ΦΦ=Φ (2.210)

114

 where and can be computed by integrating Equation (2.161)

from t0 to ti and tk to obtain

),(0ttiΦ),(0 kttΦ

),(0ttiΦ and),(0 kttΦ .

 Then,

),(),(0
1

0 tttt kk
−Φ=Φ

 This could be precomputed and stored. If tk has been chosen to be t0, then

Itt k =Φ),(0

 and the observational partial derivative matrix is

),()(~)(00 tttHtH ii Φ= (2.211)

3. Compute the observation G[X*(ti),ti] and the O-C residual, y(ti), from

)()()(iii tGtYty −=

4. When all observations have been processed, compute the state update and

covariance matrix as

yRHHRHxk
111)(ˆ −Τ−−Τ= (2.212a)

11)(−−Τ= HRHP (2.212b)

 and compute the state estimate at tk from

)(ˆ)(*)(ˆ
kkk txtXtX += (2.213)

115

2.3.1.2 Derivation of the Kalman Filter

In this derivation, an estimate, , and a covariance matrix, Pk-1, based on

measurements from t0 to tk-1, are considered. Further observational information, either a

single observation or a vector of observations, at time tk is to be added to this set, and the

values of the estimate, , and the covariance matrix Pk, at time tk are to be found.

1ˆ −kx

kx̂

First, it is necessary to predict the estimate, , forward to time tk. The prediction of

perturbations in the state has been previously developed (Equation 2.178) and may be

written as

1ˆ −kx

11 ˆ),(−−Φ= kkkk xttx (2.214)

This is an estimate of the error in the state, X*, at time tk, based on observations from t0 to

tk-1.

The predicted covariance is defined as

[]Τ−−=))((kkkkk xxxxEP (2.215)

This is the predicted covariance at time tk, based on observations from t0 to tk-1. Using

Equation 2.214, Equation 2.215 can be rewritten as

),(),(

)],()ˆ)(ˆ)(,([

111

111111

−
Τ

−−

−
Τ

−−−−−

ΦΦ=

Φ−−Φ=

kkkkkk

kkkkkkkkk

ttPttP

ttxxxxttEP
 (2.216)

116

The linearized observation equation at tk is

kkkkkk xttHy +Φ=),((2.217a) ε

kkkk xHy ε+= (2.217b)

where

[] 0=kE ε (2.218a)

and

[] kkk RE =Τεε (2.218b)

If the predicted correction is considered to be a variable which contains a random

error, kη , then xk is the true value of the correction at time tk, i.e.,

kkk xx η+= (2.219)

where

[] 0=jEη (2.220a)

and

[] kkk PE =Τηη (2.220b)

This quantity contains the information from observations from t0 to tk-1.

Then, the same formalism can be used for both the observation residual at time tk

and the correction vector. First, the following definitions are made:

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k

y
x

y (2.221)

117

⎥
⎦

⎤
⎢
⎣

⎡
=

kH
I

H (2.222)

and

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k

R
P

R
0

0
 (2.223)

The information from all observations previous to tk is contained in kx and kP .

The problem can now be treated as though there are two “observations,” kx and yk.

From Equation 2.207, the state correction estimated from all observations to tk is

yRHHRHxk
111)(ˆ −Τ−−Τ= (2.224)

Written explicitly, with the aid of Equations (2.213) through (2.216), the state correction

becomes:

[] []

)()(

0
0

0
0ˆ

11111

1

11

1

1

kkkkkkkkk

k

k

k

k
k

kk

k
kk

xPyRHPHRH

y
x

R
P

HI
H
I

R
P

HIx

−−Τ−−−Τ

−

−
Τ

−

−

−
Τ

++=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

 (2.225)

and the updated covariance matrix can be similarly expressed as

[]
111

1

1

1

11

)(

0
0

)(

−−−Τ

−

−

−
Τ

−−Τ

+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

=

kkkk

kk

k
k

k

PHRH

H
I

R
P

HI

HRHP

 (2.226)

This equation can be rewritten to eliminate the inversion of an nxn matrix by using the

Schur identity (also known as the inside-out rule). First, the following inversion is made:

111 −−Τ− += kkkkk PHRHP (2.227)

118

This expression is then premultiplied by Pk and postmultiplied by kP to obtain

kkkkkkk PPHRHPP += −Τ 1 (2.228)

or equivalently,

kkkkkkk PHRHPPP 1−Τ−= (2.229)

Postmultiplying Equation (2.228) by and reordering the result yields 1−Τ
kk RH

111][−Τ−Τ−Τ =+ kkkkkkkkkk RHPRHPHIRHP (2.230)

This can be written as

111][−Τ−Τ−Τ =+ kkkkkkkkkkk RHPRRHPHRHP (2.231)

Postmultiplying this by Rk and solving for yields 1−Τ
kkk RHP

[11 −ΤΤ−Τ += kkkkkkkkk RHPHHPRHP] (2.232)

Replacing this expression for in Equation (2.229) with (2.232) results in the

following

1−Τ
kkk RHP

[] kkkkkkkkkk PHRHPHHPPP 1−ΤΤ +−= (2.233)

Equation (2.226) for the covariance has now been rewritten. For a single observation at

tk, the quantity []kkkk RHPH +Τ is a scalar, and Pk can be evaluated without inverting a

matrix.

The Kalman gain, Kk, is defined to be

[1−ΤΤ +≡ kkkkkkk RHPHHPK] (2.234)

Therefore,

119

[] kkkk PHKIP −= (2.235)

The original inversion of an nxn matrix is now reduced to the inversion of a scalar

quantity for a single observation.

Substituting Equation (2.235) into the equation for the estimated state correction,

Equation (2.225) yields:

[] []
[] [] kkkkkkkkk

kkkkkkkkk

yRHPHKIxHKI

xPyRHPHKIx
1

11ˆ
−Τ

−−Τ

−+−=

+−=
 (2.236)

The coefficient of yk (the second part of the above equation) can be reduced to a less

complex form by expanding Kk according to Equation (2.234) to obtain

[] 11][−Τ−ΤΤΤΤ +−=− kkkkkkkkkkkkkkkkkk RHPHRHPHHPRHPRHPHKI (2.237)

This term can also be expressed as:

11])([−Τ−ΤΤ +− kkkkkkkkkk RHPHRHPHIHP (2.238)

The identity matrix can be written as:

)()(1
kkkkkkkk RHPHRHPHI ++= Τ−Τ (2.239)

Substituting this identity into Equation (2.238) yields the equality:

kkkkkkk

kkkkkkkkkkkkkk

KRHPHHP

RHPHRHPHRHPHHP

=+=

−++
−ΤΤ

−ΤΤ−ΤΤ

1

11

][

][][
 (2.240)

The estimate from Equation (2.236) can thus be written in the form:

)(][ˆ kkkkkkkkkkk xHyKxyKxHKIx −+=+−= (2.241)

The covariance for the estimate equation (2.241) is given by equation (2.235).

120

2.3.1.3 Algorithm for the Sequential Kalman Filter

For a Kalman sequential filter, the steps in the computation of tk, given

information at tk-1, are the following:

Given , , X*(tk-1), and an observation Y(tk): 1ˆ −kx 1−kP

1. Propagate the state and the state transition matrix from tk-1 to tk to obtain X*(tk)

and),(1−Φ kk tt

)*,()(* tXFtX =& (X*(tk-1); initial conditions) (2.242a)

),()(),(11 −− Φ=Φ kk tttAtt& (Itt kk =Φ −−),(11 ; initial conditions) (2.242b)

2. Predict the covariance matrix and the state correction

),(),(111 −
Τ

−− ΦΦ= kkkkkk ttPttP (2.243a)

11 ˆ),(−−Φ= kkkk xttx (2.243b)

3. Compute the observation, O-C residuals, and observation partial derivatives

)),(*(kk ttXG (2.244a)

)),(*()(kkkk ttXGtYy −= (2.244b)

*XX
k X

GH
=

⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.244c)

4. Compute the gain and update the state correction and covariance matrix

1][−ΤΤ += kkkkkkk RHPHHPK (2.245a)

121

kkkk PHKIP][−= (2.245b)

)(ˆ kkkkkk xHyKxx −+= (2.245c)

5. Select the next observation at tk+1 and go back to step 1.

When all observations have been processed, the computed state correction at the

last time, , is then added to the state, X*(tl), to obtain the estimated state at tl as

follows:

lx̂

lll xtXtX ˆ)(*)(ˆ += (2.246)

2.3.1.4 The Algorithm for the Extended Kalman Filter

A variation of the Kalman filter is to add the correction vector, xk, to the solve-for

vector at each observation, instead of waiting until the last observation. In this case, X*

is computed instead of x, since X̂ and X are treated directly. Because the correction is

added to the solve-for vector at each observation, the predicted correction,)(tx , at the

observation time, tk, is equal to zero.

There are several reasons for using the extended Kalman filter (EKF) instead of a

standard Kalman filter. The EKF will yield a new state at each observation, which is of

value when a real-time solution is desired as the filter processes data. By adding the

corrections into the state at each observation, the effects of the nonlinearities in the

equations of motion are not as severe, since the trajectory is being corrected at each

122

observation. Also, the partials of the system dynamic function are recomputed at each

time step given the updated state. This allows for a more accurate state transition matrix.

The extended Kalman filter algorithm is as follows:

Given , and an observation Y(tk): 111 ,ˆ* −−− = kkk PXX

1. Propagate the state and state transition matrix from tk-1 to tk to obtain

)(* kk tXX = and according to the following equations:),(1−Φ kk tt

),()(tXFtX =& (; initial conditions) (2.247a))(ˆ
1−ktX

),()(),(11 −− Φ=Φ kk tttAtt& (Itt kk =Φ −−),(11 ; initial conditions) (2.247b)

 where

XXX
FtA

=
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=)(

2. Predict the covariance matrix. The predicted correction,)(ktx is not computed

because it is zero in the EKF.

),(),(111 −
Τ

−− ΦΦ= kkkkkk ttPttP (2.248)

3. Compute the observation)),((kk ttXG , the O-C residuals, yk, and the observation

partial derivatives, Hk, from

)),(()(kkkk ttXGtYy −= (2.249a)

)(kk tXX
k X

GH
=

⎥⎦
⎤

⎢⎣
⎡
∂
∂

= (2.249b)

4. Compute the gain, , update the covariance matrix, , and the solve-for

vector, , as follows:

kK kP

kX̂

123

1][−ΤΤ += kkkkkkk RHPHHPK (2.250a)

kkkk PHKIP][−= (2.250b)

 kkkk yKXX +=ˆ (2.250c)

5. Select the next observation at tk+1 and go back to step 1.

If Equations (2.250a-c) are compared with the update equations in (2.245), it can

be seen that step 4 of the EKF algorithm includes the computation of and the addition

of to X*(tk) (which is, in this case, equal to

kx̂

kx̂)(ktX), to obtain . That is, the

Kalman filter steps

)k(ˆ tX

)(ˆ kkkkkk xHyKxx −+=

and

lll xtXtX ˆ)(*)(ˆ +=

from Equations (2.245) and (2.246) are identical to

kkkk yKXX +=ˆ

from Equation (2.250) (remembering that kx = 0 for the EKF process).

2.3.1.5 Glossary of Mathematical Symbols

A(t) n x n matrix of partial derivatives of the equations of motion, F

F(X,t) Vector of state differential equations

G(X(t), t) Observation equation

H(t) 1 x n matrix of partial derivatives of G(X(t), t) with respect to X(t)

I Identity matrix

124

K Kalman gain

l Number of observations

M Combination of the observation partial derivatives and the covariance

P Predicted Covariance matrix

P Covariance matrix

R Matrix of observation variances

t Independent variable time

)(tX Solve-for parameter vector, i.e. the state

)(tX Predicted state vector

X Predicted state vector, i.e.)(kk tXX =

)(ˆ tX Estimated (a posteriori) state vector

x̂ Estimated correction vector for the state

x Predicted correction vector for the state

Y Vector of observations

y(t) observed minus computed observation (residual)

δ Variational operator

ε Vector of errors in the computed observations

η Vector of errors in the predicted solve-for parameter correction vector, x(t)

λ n x n matrix of Lagrange multipliers

σ Standard deviation

),(ji ttΦ State transition matrix from tj to ti

125

2.3.2 Filters/Smoothers

 When dealing with systems with highly nonlinear system dynamics and when

observations can be processed in an offline sense, i.e. real-time state estimates are not

needed, smoothing is a way to compute more accurate state estimates than the Kalman

Filter can alone. There are several types of smoothing to be found in the literature (74),

(75), (76), (77).

 References (74) and (77) classify smoothing problems into three categories.

These categories are Fixed-interval smoothing, fixed-point smoothing, and fixed-lag

smoothing. Fixed-interval smoothing keeps the time interval of measurements fixed and

optimal state estimates are sought for interior times within the interval. Information from

both past and future measurements is applied to compute optimal state estimates for these

interior points (77). Fixed-point smoothing is used to seek state estimates for a single

point in time. The measurements occurring after this single point in time are

subsequently used to improve the estimate at that point. An example of this would be the

estimation of initial conditions based on later observations of a trajectory (77). Fixed-lag

smoothing is used to seek estimates of a state which is a fixed number of time points

behind the current measurement time point (77). Because the Backward Smoothing

126

Extended Kalman Filter described in section 2.3.4 incorporates fixed-interval smoothing

in its algorithm, this type of smoothing will be the focus of this section.

 Fixed-interval smoothing was introduced in the papers in references (75) and (76).

Reference (77) refers to the algorithm as the Rauch-Tung-Striebel (RTS) algorithm and

so that will be the usage in this section also. Consider a fixed-length interval containing

N + 1 measurements. These will be indexed from z0 to zN. We assume the estimated

random process can be modeled in the form:

 (2.251) kkkk wxx +Φ=+1

This is also known as the dynamic equation and is a discrete, linearized form of the

continuous dynamic differential equation (2.148). This is analogous to equation (2.155)

in the EKF derivation. Here, the dynamic equation is purely linear because is simply

a matrix with dimensions compatible with xk. This problem could take a form similar to

the nonlinear form as the Extended Kalman Filter described in section 2.3.1 where the

state transition matrix, , is a linearized approximation to the nonlinear dynamics. The

dynamic equation describes how a state at a later time is related to one at the current time.

The process noise vector describes how noise is introduced into the dynamics. It is

assumed to be a white sequence with a known covariance.

kΦ

kΦ

kw

The measurement equation for the process is given by:

127

 (2.252) kkkk H vxz +=

Here, the relationship between the state vector at the current time and any measurements

taken at the current time is described. The matrix means the relationship is linear.

Like the state transition matrix in the dynamic equation, the matrix either represents a

linear measurement equation or could be the result of linearization of a nonlinear

measurement equation. This linearization procedure is described in the Extended Kalman

Filter section 2.3.1. The vector is assumed to be a white sequence with known

covariance and having zero correlation with the sequence.

kH

kH

kv

kw

 Fixed-interval smoothing, i.e. the RTS algorithm, consists of a forward recursive

filter sweep followed by a backward sweep. The forward filter sweep is identical to the

Extended Kalman Filter (EKF) algorithm described in section 2.3.1. The backward

sweep requires that the a priori and a posteriori estimates, , and associated covariance

matrices, Pk, be saved. The backward sweep starts with initial conditions which are the

last state estimate and covariance computed using the forward filter sweep, and

 (77). With each step of the backward sweep, the old estimate from the forward

filter sweep is updated to yield an improved smoothed estimate. This improved estimate

is based on all the measurement data. The recursive equations for the backward sweep

are (77):

kx̂

(NN |x̂)

)|(NNP

)]|1(ˆ)|1(ˆ)[()|(ˆ)|(ˆ kkNkkkkNk +−++= xxAxx (2.253)

128

The notation means the estimate of x at time k, given measurements, z0 to zN.

The smoothing gain, , is given by (77):

)|(ˆ Nkx

)(kA

 (2.254))|1(),1()|()(kkkkkkk T ++Φ= −1PPA

The error covariance for the smoothed estimates is given by the recursive equation (77):

 (2.255))()]|1()|1()[()|()|(kkkNkkkkNk TAPPAPP +−++=

It should be noted that the smoothed error covariance matrix is not required in

order to compute the state estimates in the backward sweep. This is, of course, different

than for the forward filter sweep in which the filtered error covariance is needed to

compute the gain used in computing updated state estimates (77).

 Smoothing is typically used when one desires state estimates with more accuracy

than what is achievable with a forward Kalman filter pass alone. This is true with linear

and nonlinear systems [(67), pp. 200]. The improved accuracy is obtained because the

smoother incorporates information from future and past measurements to estimate each

state. The forward filter only uses past measurements to estimate each state. Figures 2.7

and 2.8 illustrate the improvement in state estimate accuracy and covariance obtained

with a smoother over a forward filter sweep Kalman filter. These figures were generated

by writing software to implement the Kalman Filter and Smoother as described in

reference (77). This case uses linear system dynamic and measurement equations, but

129

improvements are also expected for nonlinear systems. Figure 2.7 shows that the

smoothed estimates from the fixed-interval (RTS) and fixed-lag (LAG) smoothers remain

closer to the actual state (Truth) when observations cause the Kalman Filter (KF) to

diverge from truth periodically.

Figure 2.7 Kalman Filter vs. Rauch-Tung-Striebel Smoothed Estimates

Figure 2.7 illustrates that the covariance for the RTS smoother is slightly better

than that of the fixed-lag (LAG) smoother and is significantly better than that of the

Kalman Filter (KF).

130

Figure 2.8 Kalman Filter vs. Rauch-Tung-Striebel Smoothed Covariance

 It is worth noting that only those states which are controllable by the noise driving

the system state vector are smoothable. Constant states are not smoothable, while

randomly time-varying states are smoothable (78).

 Nonlinear smoothing differs from linear smoothing in that the nonlinear

smoothing problem is more difficult [(67), pp. 180]. The linear Gaussian case of the

optimal estimate of the state for most reasonable Bayesian optimization criteria is the

conditional mean of the state given the observations [(67), pp. 180]. The Gaussian

property implies that the condition mean can be computed from a unique linear operation

on the measurement data, i.e. the Kalman filter algorithm [(67), pp. 181]. In contrast, the

nonlinear filtering/smoothing problem is not generally Gaussian. Therefore, many

Bayesian criteria lead to estimates that are different from the condition mean of the state

given the observations [(67), pp. 181]. Optimal estimation algorithms for nonlinear

systems often cannot be expressed in closed form which requires methods for

131

approximating optimal nonlinear filters [(67), pp. 181]. The Extended Kalman Filter

(EKF) described in section 2.3.1 performs this approximation by linearizing the dynamic

and measurement equations and then forming the minimum variance estimate from the

linearized equations. Reference [(67), pp. 193-194] uses an example to show that the

nonlinearity of the dynamic and measurement functions can have an important effect on

the estimation accuracy. The degree of importance depends on the degree of

nonlinearity, the shape of the joint density function of the state and observations, and the

strength of the measurement noise.

 The fixed-interval smoother just described has a different formulation from the

square-root information smoother (SRIS) used in section 5 with the Backward Smoothing

Extended Kalman Filter (2). Mark Psiaki used the SRIS from reference (79) in order to

incorporate estimation of process noise vectors and to take advantage of the improved

numerical stability of the SRIS form over the original Kalman filter/smoother

formulation. The SRIS form for section 5 is taken from (79).

2.3.3 Unscented Kalman Filter

 Simon Julier and Jeffrey Uhlmann introduced the Unscented Kalman Filter (UKF)

in the 1990s and it has proved to be a useful extension to the Kalman Filter for nonlinear

systems. The UKF yields performance equivalent to the KF for linear systems and

generalizes to nonlinear systems without the linearization steps required by the EKF (65),

(66). Analytically, and in practice, the UKF has been shown to be more accurate and

more robust than the EKF (65), (66). In order to obtain the optimal solution to a

132

nonlinear filtering problem, the condition probability density function (PDF) of the state

given the observations must be maintained accurately in the filter (65), (66). The EKF

only maintains the mean and covariance of the conditional density which is passed

through linear approximations of the dynamic and measurement functions. The UKF

addresses these deficiencies by applying the unscented transformation. This

transformation uses a set of “appropriately chosen weighted points to parameterize the

mean and covariance of a give probability distribution” (65), (66). Another advantage of

the UKF is that the Jacobian matrices, i.e. the partials of the observation equations with

respect to the state and the partials of the dynamic equations with respect to the state,

required by the EKF are not required in the UKF. Rather, the dynamic and measurement

functions can be treated as “black boxes” (65), (66).

 The UKF is applied to a nonlinear discrete time system of the form (66):

 (2.256)]),(),(),([)1(kkkkk wuxfx =+

 (2.257))(]),(),([)(kkkkk vuxhz +=

Here, x(k) is the n-dimensional state of the system at time k, u(k) is the input or control

vector, w(k) is the q-dimensional state process noise vector due to disturbances and

modeling errors, z(k) is the observation vector, and v(k) is the measurement noise. It is

assumed that the noise vectors, w(k) and v(k), are zero-mean and (66):

 (2.258) jijiEijiEijiE T
ij

T
ij

T ,,0)]()([),()]()([),()]()([∀=== wvRwwQvv δδ

133

For the EKF, the derivation is shown previously, in section 2.3.1. In the UKF, the

unscented transform is used to transform the statistics of random variables, i.e. the state

variables, when undergoing a nonlinear transformation (66). “The unscented

transformation is based on the intuition that it is easier to approximate a probability

distribution than it is to approximate an arbitrary nonlinear function.” (66) This approach

is illustrated in Figure 2.9.

Figure 2.9 The Unscented Transform for Mean and Covariance Propagation (80)

A set of points, sigma points, are chosen so the sample mean and covariance are x and

. The nonlinear function is applied to each point in turn to yield a new collection of

points transformed by the nonlinear function. The vector and matrix,

xxP

y and , are the yyP

134

mean and covariance statistics of the transformed points (66). The method thus

resembles a Monte-Carlo scheme. However, in the UKF, the samples are drawn

deterministically rather than at random (66). Because “the problem of statistical

convergence is not an issue here, high order information about the transformed

distribution can be captured using only a very small number of points” (66).

 The n-dimensional random variable x with mean, x , and covariance, , is

approximated by weighted points given by (66):

xxP

12 +n

 x=0χ

 ixxi n))((Px κχ ++=

 ixxni n))((Px κχ +−=+

)(0 κκ += nW (2.259)

))(2/1(κ+= nWi

))(2/1(κ+=+ nW ni

Here, ℜ∈κ , ixxn))((Pκ+ is the ith row or column of the matrix square root of

xxP)n(κ+ , and is the weight which is associated with the ith point. The

transformation procedure is as follows (66):

iW

1. Instantiate each point through the function to yield the set of transformed

sigma points:

135

][ii χγ f= (2.260)

2. The mean is given by the weighted average of the transformed points:

∑
=

=
n

i
iiW

2

0
γy (2.261)

3. The covariance is the weighted outer product of the transformed points:

{ }{∑
=

−−=
n

i

T
iiiyy W

2

0

yyP γγ } (2.262)

 The mean and covariance of x are determined by the algorithm and are precise to

second order. The mean and covariance of y are likewise precise to the second order

(66). This is notable because the mean is will be more precisely known than the mean in

the EKF, but the covariance will be known the same as in the EKF, i.e. to second order

(66). “Since the distribution of x is approximated rather than f[], its series expansion is

not truncated at a particular order.” “It can be shown that the unscented algorithm is able

to partially incorporate information from higher orders of f[] which allows for more

accurate treatment of the system dynamics” (66).

 The sigma points capture will capture identical mean and covariances for the

choice of matrix square-root, therefore numerically efficient and stable methods such as

the Cholesky decomposition can be used (66). Because the mean and covariance are

calculated using standard vector and matrix operations, the algorithm is suitable for any

choice of process model. Implementation is potentially more rapid than with the EKF

because Jacobian matrices are not needed (66).

136

 The UKF algorithm makes use of the unscented transformation for the prediction

steps in the Kalman Filter. These Kalman Filter steps include prediction of the new state

of the system, , and the associated covariance,)|1(ˆ kk +x)|1(kk +P , while accounting

for system process noise. Also, the KF involves prediction of the expected observation,

, and the residual covariance,)|1(ˆ kk +z)|1(kk +ννP , which should include the effects of

observation noise. Lastly, the cross-correlation matrix,)|1(kkxz +P , is predicted (66).

These steps can be accommodated by the unscented transform by restructuring the state

vector and process and observation models. First, the state vector is augmented with the

process noise terms to give an dimensional vector (66): qnna +=

 (2.263) ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
k
k

ka

w
x

x

The process model is rewritten as a function of :)(kax

] (2.264)),(),([)1(kkkk a uxfx =+

The unscented transform uses sigma points which are drawn from: 12 +an

 (2.265) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
)|(ˆ

)|(ˆ
qx

a kk
kk

x
x

 (2.266) ⎥
⎦

⎤
⎢
⎣

⎡
=

)()|(
)|()|(

)|(
kkk

kkkk
kk

xw

xwa

QP
PP

P

The matrices on the leading diagonal are the covariances and off-diagonal sub-blocks are

the correlations between the state errors and the process noise. Although this method

requires the use of addition sigma points due to the augmented state vector, it means that

the effects of process noise are introduced with the same order of accuracy as the

uncertainty in the state (66).

137

 The following UKF algorithm is taken from (80). Initialize the UKF with:

 (2.267)
TTaa

T

E

E

E

]00[][ˆ
])ˆ)(ˆ[(

][ˆ

00

00000

00

xxx

xxxxP

xx

==

−−=

=

}

 (2.268) ⎥
⎦

⎤
⎢
⎣

⎡
=−−=

w

Taaaaa E
P

P
xxxxP

0
0

])ˆ)(ˆ[(0
00000

For , Calculate sigma points as in equation (2.259): { ∞∈ ,...,1k

 [])]1()[()1(ˆ)1(ˆ)1(−+±−−=− knkkk aaaa Pxx κχ (2.269)

Time update:

 (2.270)))1(),1(()1|(−−=− kkkk wxx f χχχ

 (2.271) ∑
=

− −=
an

i
ii kkWk

2

0
)1|()(ˆ xx χ

 (2.272) T
i

n

i
ii kkkkkkWk

a

)](ˆ)1|()][(ˆ)1|([)(
2

0

−

=

−− −−−−=∑ xxP xx χχ

 (2.273)))1(),1|(()1|(−−=− kkkkk vxhY χχ

 (2.274) ∑
=

− −=
an

i
ii kkWk

2

0
)1|()(ˆ Yy

Measurement update equations:

 (2.275) T
ii

n

i
iii kkkkkkW

a

)](ˆ)1|()][(ˆ)1|([
2

0

−

=

− −−−−=∑ yYyYPyy

 (2.276) T
ii

n

i
ii kkkkkkW

a

)](ˆ)1|()][(ˆ)1|([
2

0

−

=

− −−−−=∑ yYxPxy χ

138

 (2.277) 1−= yyxy PPK

 (2.278)))(ˆ)(()(ˆ)(ˆ kkkk −− −+= yyKxx

 (2.279) Tkk KKPPP yy−= −)()(

Here, the subscripted dash, “-“, indicates a predicted quantity, , and

 (80).

TTTa][wxx =

TTTa])()[(wx χχχ =

2.3.4 Backward Smoothing Extended Kalman Filter

The Backward Smoothing Extended Kalman Filter (BSEKF) is a type of Iterated

Extended Kalman Filter (IEKF) developed by Dr. Mark Psiaki at the Cornell University.

Dr. Psiaki developed the filter to be used for state estimation problems in which the

dynamic and measurement equations are highly nonlinear. The BSEKF was developed to

provide more reliable convergence and robustness than other types of filters such as the

Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). In his paper (2),

Mark Psiaki applied the BSEKF to a “difficult spacecraft attitude estimation problem

with sensing of fewer than three axes and dynamic model uncertainty” (2). He was able

to demonstrate better convergence reliability and accuracy using the BSEKF than either

the EKF or UKF.

Figure 2.10 illustrates the main features of the BSEKF estimation algorithm. The

BSEKF algorithm attempts to improve the approximation of both the measurement and

dynamic equations by introducing a Gauss-Newton iteration to minimize a cost function

139

that penalizes measurement error and state estimate error. The cost function includes

terms for the m latest measurements and states. In addition, the m latest estimates are

filtered and smoothed to treat the system dynamics over that span.

0

N

M

Xk-m,Pk-m Xk,Pk

KK-M

X0,P0 X = Orbital State
P = State Covariance

time dynamic & measurement
equations approximated

dynamic & measurement
equations smoothed and iterated

Figure 2.10 Illustration of BSEKF Estimation Algorithm

 The BSEKF incorporates a Gauss-Newton iteration to solve for the state vectors,

xk, xi, and process noise vectors, wi, for i = k-m,…,k-1 which minimize the following cost

function:

 (2.280)

[] []{ }

)ˆ()()ˆ(
2
1

)()(
2
1

*1**

1

111
1
1111

1

mkmkmk
T

mkmk

k

mki
iiii

T
iiiiii

P

RQJ

−−
−

−−−

−

−=
+++

−
++++

−

−−+

−−+= ∑

xxxx

xhyxhyww

The following constraint must also be adhered to for i = k-m,…,k-1.

),(1 iiii wxfx =+ (2.281)

140

The cost function components are the process noise vector, , the inverse process noise

matrix, , the observation vector, , the computed observation from the observation

equation, , and the inverse matrix of observation variance values, .

iw

1−
iQ

h

1+iy

)(11 ++ ii x 1
1

−
+iR

The quantity, , is an approximation of the

optimal cost function, Jopt[k-m](xk-m). This optimal cost function retains the nonlinearities

in the latest m stages, but approximates the nonlinearities for any previous stages. The

quantities and are not the filtered a posteriori state estimate and corresponding

error covariance matrix. They include information from times after tk-m and are therefore

not true filtered values, rather their purpose is to reasonably approximate Jopt[k-m](xk-m).

The actual state and covariance are computed using linear filtering and smoothing

techniques. This linear filter/smoother is described in section 5. One characteristic of the

BSEKF is that it filters and smoothes over the last m stages, and at the latest stage k, new

smoothed state estimates are produced for each of the last m stages. In contrast, an EKF

only produces an estimate for the latest stage.

)ˆ()()ˆ(5.0 *1**
mkmkmk

T
mkmk P −−

−
−−− −− xxxx

*
mkP −

*ˆ mk−x

The preceding cost function is minimized over m stages, i.e. measurements, in

order to improve the approximations for both the measurement and dynamic equations.

Because the measurement equation, 1111)(++++ += iiii νxhy , and the dynamic equation,

, are both included in the Gauss-Newton cost minimization for not one,

but m stages, the nonlinearities in both the measurement and dynamic equations are

treated explicitly for those m stages. This yields a more accurate representation of the

),(1 iiii wxfx =+

141

cost minimization problem than either the EKF or the IEKF. The EKF implicitly uses a

single Gauss-Newton iteration for each observation while the IEKF can use multiple

iterations. Neither the EKF nor IEKF capture the system dynamics over m stages as the

BSEKF does. In his paper, Mark Psiaki also compares the BSEKF to the Unscented

Kalman Filter (UKF). The UKF (81) includes second order effects for the dynamic and

measurement equations due to its propagation of chosen sigma points through those

dynamic and measurement equations. Choosing appropriate sigma points can allow the

UKF to converge more quickly and provide higher accuracy than the EKF. Psiaki

suggests that the BSEKF treats more than second order effects in the dynamic and

measurement functions and can therefore outperform the UKF in terms of convergence

reliability and estimation accuracy. Figure 2.11 shows the performance of the BSEFK in

comparison to the UKF and EKF for the problem of estimating moment of inertia

parameters for attitude parameter estimation. This comparison comes from reference (2).

Figure 2.11 Error History of Several Filters in Estimating Moments of Inertia

142

In Figure 2.11, it is clear that the BSEKF is able to estimate moment of inertia parameters

with higher accuracy than the EKF and the UKF with certain sigma-point tuning. In

another paper (82), Mark Psiaki develops and tests a filter/smoother using the unscented

transform. This sigma-points smoother is at best able to produce estimates that are of

comparable accuracy to the BSEKF. In reference (82), the BSEKF is referred to as the

Gauss-Newton Smoother (GNS). Because of the work done by Mark Psiaki and the

favorable results he achieved, the BSEKF was chosen as the filter/smoother to be

implemented for this thesis.

Because of the complexities involved in computing short periodic motion and

mean element interpolation in the DSST propagator, careful attention was paid to the

interaction of DSST and the BSEKF algorithm. The details of these interactions are

discussed in chapter 5. Also in chapter 5, the test methodology for the BSEKF will be

described and orbit estimation test cases and results for a simulated GEO satellite and

LEO satellite will be shown.

143

[This page intentionally left blank]

144

Chapter 3 Extended Semianalytic Kalman Filter (ESKF)

Implementation in GTDS

Stephen Taylor (10) designed the Extended Semianalytic Kalman Filter (ESKF)

to couple the Extended Kalman Filter which operates on the observation time grid to the

Draper Semianalytic Satellite Theory (DSST) which operates on an integration time grid

using mean equinoctial element dynamics. The idea for coupling the DSST propagator to

the EKF was proposed in Andy Green’s thesis (35). This coupling would take advantage

of the efficiency of DSST from its large allowable step sizes and the near-linear time

varying behavior of the mean equinoctial solve-for state. For GEO satellites, the

integration time for DSST can be large. It is usually configured with half-day grid points.

This large step size is attractive, but introduces the question of when the Extended

Semianalytic Kalman Filter algorithm should update the state. This question doesn’t

affect Cowell or numerical orbit propagators because the step size is on the order of

minutes. Little time passes between receipt of an observation and the next opportunity to

update the state at the next integration time step. Robert Herklotz implemented a Square

Root Information Filter (SRIF) coupled to the DSST propagator (83), but this software

made use of the DSST Standalone software rather than the R&D GTDS software.

Steve Taylor used the concept of the mean element integration grid, i.e. the time

frame used by the integrator and the short periodic interpolators in DSST, and the

145

observation grid, i.e. the time frame defined by the observation times and thus the output

times for the satellite state generated by the integrator.

 The efficient implementation of DSST would degrade if relinearization of the

equations of motion occurred between integration time steps. Therefore, the nominal

orbit state is only updated at the integration grid points. The integrator used in DSST is

Runge-Kutta so all integration steps are performed in the same way. The procedures

described below (based on reference (10)) show the previous time as t0 and the current

time as t. For subsequent iterations of this procedure, the previous time is tk-1 and the

current time is tk.

3.1 Operations on the Integration Grid

1. At time t = t0 update the nominal state for the new integration step using the
predicted mean equinoctial element state,)(0tZ , and estimated filter
correction, , from the previous step and set the initial covariance,

.

0
0ẐΔ

0
00 PP =

0
000

ˆ)()(ZtZtZ N Δ+= (3.1)

where ⎥
⎦

⎤
⎢
⎣

⎡
=

c
a

Z
~

 , a~ is the vector of mean orbital elements and c is the

vector of dynamic solve for parameters. The notation, , indicates the
estimate at time tk given observations Yl. If l<k, one can say that is a
prediction yet to be corrected with the latest observation. If l=k, one can
say that is a prediction that has been corrected with the latest
observation.

l
kẐ

l
kẐ

l
kẐ

Initialize the mean element filter correction and transition matrices for
time t = t0.

0ˆ 0
0 =ΔZ (3.2a)

146

Itt =Φ),(00 (3.2b)
0),(00 =Ψ=Ψ ttS (3.2c)

IttS =Φ=Φ −),(00
1 (3.2d)

where
)(~
)(~

),(
0

0 ta
tatt

∂
∂

=Φ and
c
tatt

∂
∂

=Ψ
)(~

),(0

For subsequent times, , l

kẐΔ SΦ , and SΨ will be set using the previous
observation. This is shown in phases 9 and 10 of the observation
processing shown below.

Compute force evaluations for the equations of motion and variational
equations),(),,(),,(),(~

00
1

00000 tttttttaN
−ΦΨΦ &&&& .

2. Integrate the averaged mean elements until time t = t0 + Δt.

Obtain),(),,(),(~

00 tttttaN ΨΦ and invert),(0ttΦ to get .),(0
1 tt−Φ

Evaluate the corresponding rates to allow set up of the mean interpolators
for 1,,,~ −ΦΨΦNa .

3. Compute the short periodics)~(),~(NN aDaC σσ εε at time t0 and t to initialize the
short periodic coefficient interpolators. Cσ and Dσ are the Fourier coefficients
in the Fourier expansion of the short periodic functions. In DSST, the short
periodic functions are necessary for accurate recovery of the precise
osculating orbit at each observation time. Fourier series expansions are used
instead of direct integration of the osculating force model in order to avoid
small step sizes.

The operations on the observation grid are triggered by receipt of a new

observation. The observation grid procedure is followed in a loop-wise manner until no

more observations are available or the next observation is later than the next integration

time step. In that case, the integration step procedure described above is followed to

advance the integration by one grid point. The observation grid procedure is as follows.

3.2 Operations on the Observation Grid

1. Obtain the new observations, , at time tk.)(ktY

147

2. Interpolate to obtain the nominal mean elements,)(~
kN ta , the state transition

matrix, and the partials of the mean elements with respect to the
dynamic parameters,

),(0ttkΦ

),(0ttkΨ . Use existing from so there is
no need to do a matrix inversion.

),(0
1 ttk
−Φ SΦ

3. Interpolate for the short periodic coefficients and compute the short periodic

functions. The ε symbol formally denotes the small magnitude of these
functions.

))(~()),(~(kNkN taDtaC σσ εε (3.3a)

∑
=

−=
N

N DCa
1

)cos()sin()~(
σ

σσ σλεσλεεη (3.3b)

4. Compute the transitional matrices.

Skkk tttt ΦΦ=Φ −),(),(01 (3.4a)

Skkkkk tttttt ΨΦ−Ψ=Ψ −−),(),(),(101 (3.4b)

5. Obtain the estimate of the predicted mean element solve-for state vector
corrections and the estimate of the predicted dynamic solve-for parameter
corrections.

1
11

1
11

1 ˆ),(~̂),(~̂ −
−−

−
−−

− ΔΨ+ΔΦ=Δ k
kkk

k
kkk

k
k cttatta (3.5a)

1
1

1 ˆˆ −
−

− Δ=Δ k
k

k
k cc (3.5b)

The filter correction, , is known for k=1, t0, and is known

for subsequent k values using the filter update phase shown below.
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ
Δ

=Δ
−
−

−
−−

− 1
1

1
11

1 ˆ

~̂
ˆ

k
k

k
kk

k c
aZ

6. Compute the estimate of the predicted osculating elements by summing the

nominal mean elements known from interpolation, the estimated mean
element corrections predicted by the state transition matrix, the small
magnitude short periodic functions evaluated with the nominal mean
elements, and the partials of the short periodic functions with respect to the
nominal mean elements multiplied by the estimate of the predicted mean
element corrections.

1

1
1 ~̂)~(~̂)(~)(ˆ −− Δ++Δ+= k

kN
k
kkNk aBaatata εη (3.6)

where
N

N

a
a

B ~
)~(1

1 ∂
∂

=
εη

148

Transform the estimated osculating elements to cartesian elements
))(ˆ(ˆ taXX = kk (3.7)

7. Compute the estimate of the predicted observation.

),ˆ(ˆ

kkk tXhY = (3.8)

where h(X,t) is the deterministic model for transforming the state, X, into
an observation.

Compute the observation residual.

kkk YYy ˆ−= (3.9)

Compute the observation partial derivatives. Hk is computed through a
linearization of the observation model about the nominal trajectory.

[41ˆ
),(

BBI
a
h

Z
tZh

H
NN

kN
k +

∂
∂

=
∂

∂
=] (3.10)

N

N

a
a

B ~
)~(1

1 ∂
∂

=
εη

 (3.11)

c
a

B N

∂
∂

=
)~(1

4
εη

 (3.12)

8. Compute the predicted covariance.

T

kkkkk
k

kkkkk
k I

tttt
P

I
tttt

P ⎥
⎦

⎤
⎢
⎣

⎡ ΨΦ
⎥
⎦

⎤
⎢
⎣

⎡ ΨΦ
= −−−

−
−−−

0
),(),(

0
),(),(111

1
111 (3.13)

9. Complete the update phase of the filter.

Calculate the gain: [] 111 −−− += RHPHHPK T

k
k

kkk
k

kk (3.14)
where R is the diagonal matrix of a-priori known observation variances.

Update the state estimate correction: (3.15) kk

k
k

k
k yKZZ +Δ=Δ −1ˆˆ

Update the covariance: (3.16) 1)(−−= k

kkk
k

k PHKIP

10. Interpolate for the transition matrix and its inverse and save for the next
observation.

149

),(0
1 ttkS
−Φ=Φ (3.17)

),(0ttkS Ψ=Ψ (3.18)

 The ESKF continues with step 1 until all observations have been processed or the

next integration time is encountered. At the time of the next integration step, the

operations on the integration time grid as outlined above are followed. Often,

observations recorded at the same time can be processed without execution of all of the

above phases. In those cases, only steps 1, 6, 7, and 9 must be executed for the

subsequent observations at that time.

The Extended Kalman Filter (EKF) algorithm and the Extended Semianalytic

Kalman Filter (ESKF) algorithms are very similar. However, the ESKF algorithm

contains additional logic to handle the complexity in propagating the mean elements

efficiently. The EKF assumes propagation of the state is simply done through integration

of the equations of motion and through the variations of the orbital parameters. For non-

linear systems, this requires short step sizes. The ESKF instead relies on the pre-

computed mean elements and pre-computed short periodic functions computed for times

both before and after the current observation time. The ESKF can then interpolate both

the near-linear mean elements and the short periodic Fourier coefficients to accurately

evaluate the orbit prediction at the observation time. This interpolation depends on the

Fourier coefficients having smooth variations over time. Andy Green demonstrated this

property in his thesis (35). The interpolation is much more efficient than the evaluation

of the orbital elements at frequent integration steps. It should be noted that Leo Early

developed many of the interpolation schemes used in GTDS using three point Hermite

interpolators for the mean elements and state transition matrices and four point Lagrange

150

interpolators for the short periodic Fourier coefficients. The Extended Semianalytic

Kalman Filter (ESKF) is similar to the Extended Kalman Filter algorithm described

above except for accommodations for DSST which are computation of short periodic

functions and osculating equinoctial elements, computation of the osculating position and

velocity vector and finally, computation of the resulting observations.

151

[This page intentionally left blank]

152

Chapter 4 Backward Smoothing Extended Semianalytical

Kalman Filter (BSESKF) Design

The BSESKF as it was applied for this effort closely follows the BSEKF

algorithm described in detail in (2). The algorithm solves for a state vector, , along

with intermediate state vectors and process noise vectors, and , for i=k-m,…,k-1.

The state vector and process noise solutions are chosen so they minimize the cost

function given by equation (2.280), and the state vectors and process noise vectors are

related to each other by the constraint given by equation (2.281). As indicated by

equations (2.280) and (2.281), the cost calculation and the constraint equation are valid

for the latest m stages previous to the latest stage, k. For stages before k-m, the equation

(2.280) cost is supplemented with the term, . This

term approximately accounts for the cost of all stages previous to k-m. The nonlinearities

in the dynamic equations and measurement equations over the latest m stages are treated

through the use of the summed part of equation (2.280) and the constraint defined by

equation (2.281). Because an important feature of the BSEKF is the filter/smoother that

operates over the latest m stages, choosing a value of m that could improve the

convergence reliability and accuracy over other nonlinear filters is desirable. However,

because of the significant computations required for the BSEKF, it is also desirable to

choose a value of m that provides the benefits of the BSEKF, but does not include more

stages than necessary. To minimize the cost function defined in equation (2.280), a

kx

ˆ *
k− x

ix

)m−

iw

)*
mk−)((ˆ(5.0 1*

mmk
T

kmk P −−
−

− − xxx

153

guarded Gauss-Newton iteration in an outer loop is combined with an execution of a

square-root information filter (SRIF) and smoother.

In the context of orbit determination, the state vector, x , is typically a vector

containing the position and velocity of a satellite in an earth-centered, inertial coordinate

system, { , or the set of equinoctial elements }zyxzyx &&& ,,,,, { }λ,,,, qpa , kh . These two

choices of orbital elements are among the most common. This thesis focuses on

equinoctial elements. These elements are defined in terms of the classical Keplerian

elements,{ }Miea ,,,,, ωΩ , as follows [(11), pp. 490-492]:

Ml

iqQ

ipQ

ekP
ehP

aa

++Ω==

Ω⎟
⎠
⎞

⎜
⎝
⎛==

Ω⎟
⎠
⎞

⎜
⎝
⎛==

+Ω==
+Ω==

=

ωλ

ω
ω

cos
2

tan

sin
2

tan

)cos(
)sin(

2

1

2

1

 (4.1)

These elements avoid singularities at zero eccentricity and zero inclination.

Geostationary satellites typically have small eccentricity and inclination and so these

elements are well suited.

 The observations typically used for orbit estimation of satellites for space

surveillance consist of radar observations and angular optical observations. The radar

observations are typically provided as True Equator, True Equinox of Date (TETE)

154

topocentric azimuth, elevation, range, and range-rate measurements of a satellite from a

given radar location. The optical observations are often True Equator Mean Equinox of

Date (TEME) right ascension, declination observations measured against the star

background.

 The orbit estimation software system used in this study is the R&D Goddard

Trajectory Determination System (GTDS). This system includes several orbit integration

methods, e.g. Cowell, Draper Semianalytic Satellite Theory (DSST), PPT2, SGP4, and

several others. The orbit integration method of focus in this thesis is the DSST method.

This method integrates in mean equinoctial elements and only computes short-period

deviations from the mean elements as necessary (15), i.e. at observation times when using

DSST with an orbit estimation program. Previously, the GTDS system was modified to

include the Extended Semianalytic Kalman Filter (ESKF) by Stephen Taylor (10). Elaine

Wagner (84) later used the ESKF with GEO satellites. In order to preserve the efficiency

of DSST when used with an Extended Kalman Filter, Stephen Taylor introduced several

grids to differentiate the observation times from the integration time steps. Because of

the long integration time steps, i.e. on the order of half a day, allowed in DSST, and the

possibility for observations to arrive at any time, interpolators were implemented to

provide accurate and efficient orbital state and state transition matrices between

integrator time steps. Also, in DSST, short periodic motion, i.e. oscillations on the order

of one orbital revolution, is reproduced using Fourier series. The Fourier coefficients for

the short period Fourier series are interpolated between integration time steps also. To

efficiently accomplish the state estimate update that is done by the Kalman Filter at

155

observation times, the averaged orbit was designed to be updated only at integration time

steps. It is computationally expensive to update the averaged orbital state and its

dependent short period Fourier coefficients, state, and transition matrix interpolators at

each observation time. In fact, requiring updates to the averaged orbital state,

recalculation of Fourier coefficients, and re-initialization of state and transition matrix

interpolators at each observation time would defeat the purpose of allowing long

integration step sizes in DSST. Accuracy between integrator time steps is maintained by

storing the averaged orbit as a “nominal” trajectory and also storing a running sum of

updates to that nominal trajectory. Both the running sum of updates and the nominal

trajectory are used to calculate the state prediction. The state prediction is in turn used to

calculate the predicted measurement, . The running sum of updates can be

modified by the Kalman Filter, and the orbit state prediction in the Kalman Filter

accounts for the previous state updates by using the existing state and state transition

matrix interpolators.

)(11 ++ ii xh

 The implementation of the BSEKF within the GTDS software framework, i.e. the

Backward Smoothing Extended Semianalytic Kalman Filter (BSESKF), uses the DSST

propagator to provide state dynamics and also retains much of the efficiency achieved by

the ESKF. The separated grids, short period Fourier series, and interpolation schemes

were reused for the BSESKF. Nevertheless, the most challenging aspect of the

implementation was carefully coupling the BSESKF estimator to the system dynamics

computed by DSST. The following section explicitly describes the BSESKF algorithm

implemented in GTDS.

156

4.1 Detailed BSESKF Algorithm Description

4.1.1 Operations on the Observation Grid

 For the following algorithm is adapted from Mark Psiaki’s BSEKF algorithm and

uses a Square Root Information Filter (SRIF) from Bierman [(79), pp. 69-76, 115-122,

and 214-217]. The following notation is used: refers to a vector a at time point c for

iteration b. All time points are referenced from the current time, k. Often, the time points

are incremented from k-m to k-1 meaning that m time points are incremented. The

collection of m previous states, observations, covariance square roots, and process noise

vectors is referred to in the algorithm as the m-buffer.

b
ca

1) Set m=0, k=1, j=0, and assign the initial guesses for the state and process

noise, i.e. , and . The initial state guess is the set of
orbital elements such that

j
mk−x j

k
j

mk
j

mk 11,...,, −+−− www
,,,,{ },λqpkha=x

]][[1 T
xxxx RR −−=

. The initial guesses for are
typically zero. Set the initial covariance, P0, and factor it using Choleski
decomposition: . Rxx is the square root information matrix
associated with the state, x, and will be used later in the SRIF. Choose a value
for mtarget.

w

0P

2) Begin the observation loop. The counter, k, is used to identify each
observation.

3) If mtarget observations have been processed, i.e. k≥ mtarget, the m-buffer has
been filled and values will be replaced rather than appended. Perform the
following assignments:

1+−− Δ=Δ mkmk zz
1+−− = mkmk xx

)1()(+−− = mkxxmkxx RR
0,,, 1121 === −−−+−− kkkmkmk wwwww K

)(
1

)(ˆ mkxmkxxmk
*

mk R −
−

−−− Δ+= zxx
]][[)(

1
)(

T
mkxxmkxx

*
mk RRP −

−
−

−− =
4) If mtarget observations have not yet been processed, then the m-buffer is still

being filled, there is no need to perform the assignments in step 3). Instead:

157

00ˆˆ xxx ==−
*

mk and . 0PP*
mk =−

5) Compute the covariance inverse, , This is the covariance used in the
approximation for the cost for all stages before k-m.

1−
−

*
mkP

6) Retrieve observations, , compute and store the residuals,
 for i=k-m+1…k. Also, determine and store the

measurement square root information matrix, .

1+iy

)(1111 ++++ −= iiii xhyν

iR
7) Compute and store the observation partial derivative matrix, iiiH xh ∂∂= .

is an nx1 vector where n is the dimension of the state vector.
iH

8) Starting from our state guess, , compute all subsequent state guesses from
i=k-m+1… k-1 using the system dynamics,

j
mk−x

),(1 iiii wxfx =+ . Also compute
and store the variational partial derivative matrix, iii f x∂∂=Φ for i=k-m…k-
1. is a nxn matrix where n is the dimension of the state vector. Determine
the process noise transition matrix,

iΦ

iΓ . In this application, it is assumed Ii =Γ

(identity). DSST computes the state transition matrix at each integration step
and then uses interpolation to compute the matrix at intermediate observation
times. Because the BSEKF examines observations in the past, this
interpolation scheme becomes inaccurate when applied to observations more
than about three integration steps previous to the current integrator step time.
This interpolation limits the value of m that can be reasonably used. See
section 4.1.2 for details about the computation of the state transition matrix
during the integration procedure.

9) Begin the Square Root Information Filter (SRIF) and Smoother. This method
is taken from Bierman [(79), pp. 69-76, 115-122, and 214-217]. Start with
i=k-m and assign

]ˆ[)()(
j

mk
*

mkmkxxix R −−− −=Δ xxz .
10) Obtain the process noise matrix, , the measurement noise matrix, , and

factor them to obtain the and matrices such that:
iQ iR

)(iwwR)(ivvR
T

iwwiwwi RRQ −−=][][)(
1

)(and T
ivvivvi RRR −−=][][)(

1
)(

11) Perform the following QR factorization:
The resulting is an orthonormal matrix of dimension 2n+l by 2n+l
where n is the dimensionality of the state and l is the dimensionality of the
observation vector. In the current application we have scalar observations
and our state is of dimension 6, therefore l=1 and n=6.

iT

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΦΓΦ−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

−−
+

1)1(

1
)(

1
)(

)(

)1(

)()(

0

0

00
0

iivv

iixxiiixx

iww

ixx

iwxiww

i

HR
RR

R
R
RR

T

)(iwwR and are square, nonsingular, upper-triangular matrices.

Store all left hand terms.
)1(+ixxR

158

12) Compute the vectors)(iwzΔ ,)1(+Δ ixz , and)(irzΔ by performing the following
matrix multiplication:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ
Δ
Δ

++

+

1)1(

)(

)(

)(

)1(

iivv

ix

j
iiww

T
i

ir

ix

w(i)

R

R
T

ν
z

w

z
z
z

13) If i=k-1, go to step 14, otherwise, set i=i+1 and go to step 10.
14) Compute and set i=k-1.)(

1
)(kxkxxk R zx Δ=Δ −

15) Compute][1)()(
1

)(+
− Δ−Δ=Δ iiwxiwiwwi RR xzw .

16) Compute .][1
1

iiiii wxx ΔΓ−ΔΦ=Δ +
−

17) If i-k-m, go to step 18, otherwise set i=i-1 and go to step 15.
18) We are now finished with the SRIF portion, now begin the Gauss-Newton

iteration to search for the minimum arguments of the cost function in equation
(2.280). Set the initial trial search step size: 1=γ .

19) Compute the candidate next guess of the smoothed solution by computing the
state and process noise vectors with the addition of the corrections obtained in
the SRIF in steps 14-16.

mk
j

mk
j

mk −−
+
− Δ+= xxx γ1

i
j
i

j
i www Δ+=+ γ1 for i=k-m,…,k-1

),(111
1

+++
+ = j

i
j
ii

j
i wxfx for i=k-m,…,k-1

20) Compute the cost, , by evaluating equation (2.280). This implies that the
functions, , are recomputed also.

1+jJ
)1+(1+ ii xh

21) If , then activate the guarding procedure by setting jj JJ ≥+1 γγ 5.0= and go to
step 19. Otherwise, go to step 22.

22) Compute the linearized prediction of the cost and determine whether
convergence has been reached:

∑
−

−=

+ ΔΔ=
1

)()(
1

2
1 k

mki
ir

T
ir

j
newapproxJ zz

If whereε≤−+ j
newapprox

j
newapprox JJ 1 ε is sufficiently small, then we have

converged to the local cost minimum. If this is true or if j has gotten too
large, then assign our state estimate for time k: obtained in step
19. Then go to step 3 to process the next observation and set k=k+1. If
we have not converged and j is not yet too large, set j=j+1 and go to step
6.

1ˆ += j
kk xx

159

4.1.2 Operations on the Integration Grid

There are several special modifications that were made to the GTDS and DSST

software in order to efficiently and accurately estimate the orbital state. The ESKF code

written by Stephen Taylor was never designed to compute states and transition matrices

for past time points. Recalculating past states in order to recalculate predicted

observations and residuals is needed in step 6 of the BSEKF algorithm. Calculating

states at past observation times involved using short periodic interpolation coefficients

calculated at the most recent integration step time. Modifying the GTDS software to

recalculate short periodic coefficients and re-initializing interpolators for past observation

times would introduce significant additional complexity in the DSST-BSESKF interface.

It was decided that for this investigation, using the current integration step short periodic

coefficients and interpolators for past observations would suffice. It may be the case that

this shortcut inhibits the accuracy of the BSESKF. A similar issue complicates the

recalculation of the mean element state transition matrices. One performance

enhancement made by Stephen Taylor in writing the ESKF was to avoid recalculating the

state transition matrix for times at which it had already been computed. This

enhancement eliminated recalculation when several observations were tagged with the

same observation time. This performance enhancement did not reduce the accuracy of

the ESKF because it did not consider recalculation of state transition matrices for past

observation times as the BSESKF does. As shown in the BSEKF algorithm sequence

described above, the state transition matrix must be recalculated and stored anew for each

iteration even if the state transition matrix was already calculated for a given past

160

observation time. Therefore, the interface between the BSEKF and DSST was modified

to recalculate the mean element interpolator coefficients as necessary to calculate the

state transition matrices at the necessary past and present observation times. The state

transition matrix calculation relies on mean element interpolation schemes similar to the

short periodic coefficient interpolation used for calculating the osculating orbital

elements. These mean element interpolators are calculated and are therefore most

accurate for the time span between the two latest integration steps. Because of this and

the complexity needed to recalculate past mean element interpolators, it was decided that

the current version of the software should shorten the length of the m-buffer, i.e. reduce

mtarget, when observations are too far in the past to compute accurate state and transition

matrices for them. The other approach involving recalculation of the mean element

interpolators would allow a constant length m-buffer for relatively large values of mtarget,

but would necessitate much higher software complexity. By running several test cases, it

became apparent that the mean element interpolators are accurate enough to allow the

interpolators to be used for observations as long as they are not too far in the past. For

the cases examined for this thesis, three integration steps, each on the order of 0.5 days,

were found to be a reasonable number of time steps during which past observations could

be allowed in the m-buffer.

The following section (again based on (10)) outlines the steps taken on the

integration grid time scale in the BSESKF software.

1. At time t = t0 update the nominal state for the new integration step using the
predicted mean equinoctial element state,)(0tZ , and estimated filter

161

correction, , from the previous step and set the initial covariance,
.

0
0ẐΔ

0
00 PP =

0
000

ˆ)() ZtZ Δ+= (4.2) (tZ N

where ⎥
⎦

⎤
⎢
⎣

⎡
=

c
a

Z
~

 , a~ is the vector of mean orbital elements and c is the

vector of dynamic solve for parameters. The notation, , indicates the
estimate at time tk given observations Yl. If l<k, one can say that is a
prediction yet to be corrected with the latest observation. If l=k, one can
say that is a prediction that has been corrected with the latest
observation.

l
kẐ

l
kẐ

l
kẐ

Initialize the mean element filter correction and transition matrices for
time t = t0.

0=ˆ 0
0ΔZ
tΦ(0

=ΨS

S =Φ

 (4.3a)
It =), 0 (4.3b)

0),(00 =Ψ tt (4.3c)
Itt =Φ−),(00

1 (4.3d)

where
)(~
)(~

),(
0

0 ta
tatt

∂
∂

=Φ and
c
tatt

∂
∂

=Ψ
)(~

),(0

For subsequent times, , l

kẐΔ SΦ , and SΨ will be set using the previous
observation.

Compute force evaluations for the equations of motion and variational
equations),(),,(),,(),(~

00
1

00000 tttttttaN
−ΦΨΦ &&&& .

2. Integrate the averaged mean elements until time t = t0 + Δt.

Obtain),(),,(),(~

00 tttttaN ΨΦ and invert),(0ttΦ to get .),(0
1 tt−Φ

Evaluate the corresponding rates to allow set up of the mean interpolators
for 1,,,~ −ΦΨΦNa .

3. Compute the short periodics)~(),~(NN aDaC σσ εε at time t0 and t to initialize the
short periodic coefficient interpolators. Cσ and Dσ are the Fourier coefficients
in the Fourier expansion of the short periodic functions. In DSST, the short

162

periodic functions necessary for accurate recovery of the precise osculating
orbit at each observation time are represented as a Fourier series. Fourier
series expansions are used instead of direct integration of the osculating force
model in order to avoid small step sizes.

4.2 Incorporation of the BSESKF Software into GTDS

 The method of application of the BSEKF to the orbit estimation problem was to

modify the R&D Goddard Trajectory Determination System (GTDS) to include the

BSESKF as a subprogram. This approach saved time and effort by making use of

GTDS’s high precision orbital dynamic propagators, measurement processing, and

overall software system infrastructure. GTDS includes a special perturbations (Cowell)

propagator and also the Draper Semianalytic Satellite Theory (DSST). Both can be used

to replicate the satellite orbital system dynamics; however, the DSST propagator was

used in this estimation improvement investigation. Once the BSESKF was implemented

and initially tested within the GTDS framework, comparisons of the GTDS BSESKF

performance could be made with the existing GTDS ESKF subprogram. Within the

common GTDS framework, the ESKF and BSESKF could be subject to the same initial

conditions, measurements, process noise, and system dynamics.

 Figure 4.1 shows the hierarchy of GTDS subprograms with the BSEKF included

as one of these. The BSEKF was intended to be used with both Cowell and DSST

propagators. When implemented in the software, it is referred to as BSEKF when

referring to the subprogram and estimation software itself, as BSESKF when used with

163

the DSST propagator, and Cowell BSEKF when used with the Cowell propagator. This

is similar to the existing usage of EKF when referring to the general GTDS software and

to ESKF when referring to the EKF when used with DSST.

GTDS

EPHEM DATASIM DC EKF BSEKF

Figure 4.1 GTDS Subprogram Hierarchy

 The other subprograms in Figure 4.1 include EPHEM which generates an

ephemeris for a satellite with a given initial state. EPHEM can execute several

propagators including the Cowell and DSST methods. DATASIM is a subprogram that

reads input from a previous Cowell EPHEM execution and produces simulated

observations for a list of user-defined radar and optical sensors. The DC subprogram

reads a prior state and covariance. It then reads real or simulated observations and finds

the posterior Linear Least Squares (LLS) estimate of the state given the observations.

Assuming Gaussian observation noise and linear system dynamics and measurement

functions, this also corresponds to a posterior Bayes’ Least Squares (BLS) estimate. The

EKF subprogram also reads a prior state, covariance, and observations and produces

sequential (LLS) estimates of the posterior state at each observation time given the

observations up to the current time. Both the DC and EKF linearize the system dynamics

and the measurement equations. The BSEKF subprogram was designed to accept the

same inputs as the EKF and present similar output to the user. Once executed, the

BSEKF follows an independent program flow from the EKF and DC subprograms.

164

Certain aspects are reused, such as system dynamic function and measurement function

evaluations.

4.2.1 GTDS Modification Summary

The BSEKF subprogram within GTDS includes many new subroutines and also

reuses several subroutines from the Kalman Filter (KF) GTDS subprogram. The program

flow for the BSEKF subprogram is shown in Figure 4.2.

165

Figure 4.2 BSEKF Subprogram Subroutine Flow

166

4.2.2 New Subroutines

There were several subroutines added to the GTDS source code tree to implement

the BSEKF subprogram. These subroutines are new to GTDS.

BSEKF is the driver for the BSEKF subprogram. It is called by the GTDS driver

subroutine, ODSEXEC. This subroutine implements the algorithm from Mark Psiaki's

paper, "Backward Smoothing Extended Kalman Filter." This subroutine calls many new

subroutines and several subroutines that already existed as part of the KF subprogram.

BSEKFIFACT computes and returns an inverse Cholesky factorization of an

input matrix. This factorization is important for the square root information

filter/smoother used within the BSEKF. This subroutine uses the LAPACK subroutines

DTPTRI and DPPTRF to perform the Cholesky factorization.

BSEKFNEXTSMTH computes the state vector and covariance matrix used to

initialize the BSEKF algorithm when a new observation is about to be processed. The

state vector and covariance matrix are computed recursively using the results from the

last observation.

BSEKFEVAL predicts the state and state transition matrix at the requested

observation time. Also, the observation and residual are stored in the necessary buffers.

167

BSEKFCOST computes the scalar cost given the process noise vectors, the

residuals and the predicted state and covariance.

BSEKFDELZX computes a necessary information vector used in the square root

information filter/smoother.

BSEKFCOLQR collects necessary matrices and assembles them into the block

matrix used in a later QR factorization.

BSEKFQR calls the DGEQRF and DORGQR LAPACK subroutines to perform

the QR factorization and to assemble the results required in this implementation of the

square root information filter/smoother.

BSEKFREXT extracts matrices from the block matrix result of a QR

factorization.

BSEKFCOLDELZ computes needed vectors using the result of a QR

factorization.

BSEKFDELXK computes the kth state vector change in the smoothing part of the

square root information filter/smoother.

168

BSEKFDELW computes the process noise vector change in the smoothing part of

the square root information filter/smoother.

BSEKFDELX computes the ith state vector change in the smoothing part of the

square root information filter/smoother.

BSEKFSVSTM computes and saves the inverse state transition matrix for a given

time into a buffer so that it can be used in later computations involving the state transition

matrix.

A few of the subroutines listed above made use of subroutines from the LAPACK

linear algebra library package. This package can be accessed from the netlib website at,

http://www.netlib.org/lapack/. This package was chosen because it is well known as a

reliable FORTRAN linear algebra package. The subroutines from this package that were

used include the following.

DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.

DORGQR generates an M-by-N real matrix Q with orthonormal columns, which

is defined as the first N columns of a product of K elementary reflectors of order M, Q =

H(1) H(2) . . . H(k), as returned by DGEQRF.

169

DTPTRI computes the inverse of a real upper or lower triangular matrix A stored

in packed format.

DPPTRF computes the Cholesky factorization of a real symmetric positive

definite matrix A stored in packed format. The factorization has the form: A = UT * U, if

UPLO = 'U', or A = L * LT, if UPLO = 'L', where U is an upper triangular matrix and L

is lower triangular.

4.2.3 Modified Subroutines

Several source code files were changed to add the BSEKF subprogram to GTDS.

The following files were modified.

ODSEXEC is the executable subroutine for GTDS. It is the first subroutine called

upon execution of GTDS. Comments and code were changed to add the BSEKF

subprogram to GTDS. The variable INDRUN is set to 9 for the BSEKF subprogram after

the SETRUN subroutine finishes and ODSEXEC then calls the BSEKF subroutine.

LNDMRK computes landmark observables for a spinning satellite. BSEKF was

included as an estimator along with the existing KF and DC subprograms. The variable

IND48 is equal to 9 for the BSEKF.

GVCVL generates the title array for solve-for and consider parameters. The case

when INDRUN equals 9 for the BSEKF subprogram is included as an estimator. The

170

same steps that are taken for the KF and DC subprograms are now also taken for the

BSEKF subprogram.

SORREG sorts the regression arrays for the differential correction and filter

subprograms. The regression arrays are the arrays storing the partial derivatives of the

observation equation with respect to the state variables at a given observation time. Here

also, the case when INDRUN equals 9 for the BSEKF subprogram is handled in the same

way as for the KF and DC estimators. Here, the number of solve for parameters is

incremented only when running the DC. The KF and BSEKF are handled separately.

SNGSTP is a subroutine to initialize necessary arrays for the single step

integration of the VOP equations. When INDRUN is equal to 9 for the BSEKF, the same

step to update the state update flag that is taken for the KF is now also taken for the

BSEKF subprogram.

SETRUN is an initialization subroutine that reads the GTDS keyword cards for

each run. Here, INDRUN is set to 9 for the BSEKF subprogram. Modifications to

include the BSEKF subprogram as a valid subprogram were made. This includes

allowing the ELEMENT1 - ELEMENT7, OBSINPUT, ORBTYPE, BSEKFOPT, and

EPOCH cards, making settings for epoch advancement, creating observation working

files, and running the SETBSEKF subroutine. Also, comments where changed to show

the BSEKF modifications and certain variables were set to be initialized. The BSEKF

171

text string was added to the PROGRM array, and the BSEKFOPT string was added to the

TRMCRD array to allow it as a valid keyword.

RKINTG integrates the equations of motion and the variational equations using a

Runge-Kutta method. This subroutine was modified so that the same processing done for

the KF subprogram is also done for the BSEKF subprogram. Specifically, this includes

interpolating for the inverse of the state transition matrix.

RESINV initializes parameters needed to start another integration span beginning

at the epoch time. This is in conjunction with the VOP orbit integrators, namely, the

subroutines RKINTG and ORBITV. Here, modifications were made to treat the BSEKF

subprogram in the same way the KF is treated.

POSRES computes position residuals given actual and computed observations

and accumulates position residual statistics. Modifications were made to accumulate

statistics for the BSEKF in the same way they are accumulated for the KF.

ORBITV is one of the subroutines called by the main ORBIT subroutine which

drives the GTDS orbit generators. ORBITV drives the orbit generation for the Draper

Semianalytic Satellite Theory (DSST) averaged VOP equations of motion. Specifically,

ORBITV integrates the equations of motion to obtain position and velocity of the satellite

at a requested time. This subroutine was modified so that the BSEKF is treated like the

KF subprogram in calling the SKFUDT and ORBSKF subroutines.

172

ORBSKF performs computations for the Semianalytic Kalman Filter. This

includes predicting the state correction and calling SKFPRT to compute the state

transition matrix. ORBSKF was modified to call SKFPRT regardless of whether it was

previously called for the given observation time. One performance enhancement added

to the Extended Semianalytic Kalman Filter (ESKF) by Stephen Taylor was to only call

the SKFPRT subroutine when a new time point is encountered. Because of the necessity

of recalculating the state transition matrix in the BSEKF for past observation times, this

performance enhancement is bypassed for the BSESKF.

SKFPRT computes the partial derivative (state transition) matrices via short arc

interpolation and the averaged interpolator. This interpolation improves the performance

over methods that involve recomputing the partical derivatives explicitly. A modification

to this subroutine was made so that the state transition matrix is computed by

interpolation regardless of whether the time requested is earlier than the last time

requested. This ensures that the state transition matrix supplied to the BSESKF is as

accurate as possible with current software. This subroutine should be changed in the

future to avoid interpolation for request times that are outside the valid interpolation

range. The interpolation range includes times between the last integration time step and

the current integration time step.

OBSTRK computes estimated observations for the differential correction (DC),

data simulation (DATASIM), Kalman Filter (KF) and now Backward Smoothing

173

Extended Kalman Filter (BSEKF) subprograms. This subroutine was modified to treat

the BSEKF subprogram in the same way the KF subprogram is treated.

OBSPRT retrieves the partial derivatives of the observation equations with

respect the the state at the given time by calling the OBSP subroutine. This subroutine

was modified so the BSEKF subprogram is treated like the KF subprogram.

OBSPCE computes position and velocity observations. This subroutine was

modified to treat the BSEKF like the KF.

OBSPCE_ELSET computes single-averaged equinoctial element observables.

This subroutine was modified to treat the BSEKF like the KF.

INTPPT initializes parameters required for the NAVSPASUR General

Perturbation Theory. This subroutine was modified to treat the BSEKF like the KF and

DC subprograms.

INTOGS initializes parameters for the NORAD General Perturbation Theories.

This subroutine was modified to treat the BSEKF like the KF subprogram.

INTOGN initializes parameters for the orbit generator program (EPHEM) which

are directly derivable from input, permanent files, or block data and which are not

174

changed after a DC iteration. Here, the BSEKF is treated like the DC and KF

subprograms.

WFCONT creates the working files using input from permanent files and user-

supplied input files. This subroutine was modified to treat the BSEKF in the same way

the KF and DC subprograms are treated.

SETDC processes keywords that are input as part of a DC run. However, some

parameters are also input for the KF and new BSEKF subprogram. Here, the BSEKF

subprogram is treated in the same way as the KF subprogram.

PSET resets dynamic solve-for parameters and tracking station positions adjusted

by the DC and KF subprograms. This subroutine was modified to treat the BSEKF in the

same way as the KF subprogram.

OUTPUT is a driver for several output subroutines. Here the BSEKF subprogram

is now treated in the same way as the KF.

OBSLMK computes landmark observations and was modified to treat the BSEKF

subprogram in the same way as the KF.

OBGPS1 computes GPS pseudo-range and delta-range observations. It was

modified to treat the BSEKF the same as the KF.

175

LNDPRT computes observation partial derivatives for landmark observations. It

was modified to treat the BSEKF in the same way as the KF.

GPSSEE checks the visibility of a satellite from a GPS satellite. It was modified

to treat the BSEKF in the same way as the KF.

GPSPR2 computes observation partial derivatives for GPS observations. It was

modified to treat the BSEKF in the same way as the KF.

GPSPR1 also computes observation partial derivatives for GPS observations. It

was modified to treat the BSEKF in the same way as the KF.

ESKFOUT prints out run-time status of the KF and its options. It was modified to

treat the BSEKF in the same way as the KF.

SWITCHBD is a block-data initialization subroutine. Its comments were changed

to reflect the addition of the BSEKF subprogram.

OUTTIC computes trajectory initial conditions and prints them. It was modified

to also make these computations and print them for the BSEKF.

176

4.3 Test Methodology

 The test methodology involved writing software to run both the GTDS BSESKF

and the GTDS ESKF programs on the same input. The input included initial states which

could be perturbed somewhat from truth in order to test filter convergence. The input

also included an initial covariance matrix reflecting the variance of the initial state values.

Other input information included a white process noise matrix and simulated

observations with added Gaussian noise. The initial state was passed to a GTDS

ephemeris generator run. This ephemeris generator created an ephemeris which was

passed to a GTDS data simulation run. The data simulation created simulated

observations. The observations consisted of range, azimuth and elevation observations

from the following geodetic sensor locations shown in Table 4.1.

Table 4.1 Simulated Observation Sensor Locations

Name Latitude East Longitude
MIL 42○ 37’ 2’’ 288○ 30’ 32’’
HAY 42○ 37’ 23’’ 288○ 30’ 42’’
ATV 9○ 23’ 43’’ 167○ 28’ 45’’
KPT 21○ 34’ 19’’ 201○ 44’ 00’’

The actual observation timing varies by test case and is described later in the test case

descriptions.

Once the observations were generated, they were passed to the BSESKF and

ESKF filter programs. The filter programs were set to accept all observations, i.e. no

outlier rejection occurred. The initial state given to the filter programs could be

perturbed from the initial, “truth,” state used to generate the ephemeris and the

subsequent simulated observations. This perturbation was included to test the relative

177

response of the filters to an initial estimate with some amount of error. The initial

covariance matrix given to the BSESKF and ESKF filters was also an input. This initial

covariance could be set to anything, but for the test cases in this thesis, the initial

covariance matrix was a diagonal matrix in which the diagonal terms were set

approximately to the square of the difference of the perturbed elements from the initial

“truth” elements. This matrix was nxn where n is the number of solve-for parameters. In

the cases done for this thesis, n=6 for the 6 orbital parameters or n=7 if a drag or solar

radiation pressure parameter was also included. The initial process noise matrix is also

an input to both the BSESKF and ESKF filters. This process noise matrix was a diagonal

noise matrix for the test cases in this thesis and was the same dimension as the initial

covariance matrix. The input process noise matrix was constant for all test cases with

diagonal elements, [1.0x10-18, 1.0x10-25, 1.0x10-26, 1.0x10-24, 1.0x10-19, 1.0x10-17]. These

6 diagonal elements correspond to the 6 mean equinoctial orbital element state

parameters, i.e. { }λ,,,,, qpkha . If the coefficient of drag was estimated as a solve-for

parameter, the process noise diagonal element associated with it was 1.0x10-18. The

BSESKF and ESKF sometimes reacted differently to the process noise values. Many

process noise matrices were attempted with some causing either the BSESKF or the

ESKF to diverge. These process noise values allowed both filters to converge for a large

number of test cases. The BSESKF program also required an input to specify the

maximum size of the m-buffer. In the evaluations for this thesis, m was typically set to

12, 24 or 48 measurements or 4, 8 or 16 observation triplets, respectively.

178

Once the input values were passed to the BSESKF and ESKF filters, they were

executed and the output from each filter was automatically collected. The output

consisted of measurement residuals, updated orbital elements and other solve-for

parameters, and updated covariance matrices. For this thesis, the initial primary interest

was in the accuracy of the filters. To quantify the accuracy of each filter, the output

orbital elements were compared with the orbital elements from the “truth” ephemeris.

Because the truth ephemeris was generated using a Cowell ephemeris generation, a direct

comparison of the truth and filter output required that the truth ephemeris be transformed

to the coordinate system of the orbital elements used in the filter programs. To do this,

the truth ephemeris was fit using iterative, nonlinear Bayes’ Least Squares (BLS), i.e.

differential correction (DC). The DSST propagator was used with the DC to estimate the

best mean equinoctial element ephemeris representative of the truth ephemeris yet

compatible with the filter solve-for state. Because the BLS fit had full observability of

the position and velocity with many data points, it was able to reproduce the original

ephemeris to a very high degree of accuracy. This procedure is sometimes called Precise

Conversion of Elements (PCE) (26). In order to quantify the accuracy of the BSESKF

and ESKF relative to the truth orbital elements, plots of the output vs. time were

generated. In this way, comparison of the truth ephemeris and the filter output state was

accomplished by plotting the filter results against the truth ephemeris. Difference plots

were also generated because the mean elements change over time and in some cases, the

orbital element differences between the ESKF, truth, and the BSESKF were small

relative to the magnitude of the orbital element in question.

179

4.4 Simulation Test Case Results

 The test cases included LEO satellite test cases and GEO test cases. The initial

Keplerian orbital elements for the LEO and GEO orbits are shown in Table 4.2.

Table 4.2 LEO and GEO Mean Orbital Elements for Test Cases
 LEO Elements GEO Elements
Epoch Jan 18, 2003 00:00:00 Mar 20, 2004 00:00:00
Semimajor axis (km) 6643 42165.56
Eccentricity 8.9x10-2 3.062x10-2

Inclination (deg) 38 6.024
RAAN (deg) 214 71.373
Arg of Perigee (deg) 344 307.091
Mean Anomaly (deg) 74 118.653
Drag Coefficient 2.0 N/A

As described in the test case methodology, these initial elements were used to generate

simulated observations from the sensors in Table 4.1. The modeling used to generate the

truth ephemeris for the LEO test case included 30x30 geopotential terms from the

EGM96 model, Jacchia-Roberts atmospheric drag, lunar and solar point mass gravity and

Earth polar motion. In the LEO test cases, observations were simulated for a span of six

days and were generated for each sensor when the satellite was geometrically visible,

when the elevation angle with respect to the sensor was at least 15 degrees, and when the

satellite pass was at least 600 seconds in duration. In the simulation, all four sensors

observed the satellite during the six day span and the total number of observations (range-

azimuth-elevation triplets) was 777. The modeling used to generate the GEO truth

ephemeris included 8x8 geopotential, lunar and solar point mass gravity and solar

radiation pressure modeling. In the GEO test cases, observations were only simulated for

the MIL and HAY sensors. These sensors have very close geographic locations and so

180

present a challenging test case for both the ESKF and BSESKF. Geometrically,

observability improves when observing sensors are geographically distant. The

observations were generated once every six hours, and were generated for a total span of

ten days. The exact time between observations was varied somewhat so that observations

from both sensors were not exactly the same. The total number of observations (range-

azimuth-elevation triplets) was 255.

 White, zero-mean, Gaussian measurement noise was also included in the data

simulation. Table 4.3 shows the standard deviation for the noise for each sensor and

observation type. These measurement errors were chosen to be realistic for radar sensors

that have the capability to track GEO and LEO satellites. For the GEO test case, only

MIL and HAY were simulated.

Table 4.3 Sensor Measurement Noise Standard Deviations

Sensor Name Measurement Type Standard Deviation
MIL Azimuth, Elevation 18 arc-seconds
 Range 10 meters (LEO), 5 meters (GEO)
HAY Azimuth, Elevation 18 arc-seconds
 Range 10 meters (LEO), 3 meters (GEO)
ATV Azimuth, Elevation 18 arc-seconds
 Range 10 meters (LEO)
KPT Azimuth, Elevation 67 arc-seconds
 Range 23 meters (LEO)

To test the accuracy and convergence characteristics of the ESKF and BSESKF for these

test cases, the LEO and GEO initial elements were perturbed from the elements used to

generate the truth ephemeris and simulated observations. In the LEO and GEO test cases,

the differences in the perturbed elements from the initial elements are shown in Table 4.4.

The actual elements passed to the filters are the set of mean equinoctial elements rather

181

than the Keplerian elements shown. Because most readers may be more familiar with

Keplerian elements, the transformation using equation (2.30) was used to calculate the

elements shown in Tables 4.2 and 4.3. It should be noted that for most applications, the

equation (2.30) transformation is only valid for osculating elements and is generally not

valid for mean elements. The equation (2.30) transformation was only used here for

presentation purposes.

Table 4.4 LEO and GEO Perturbed minus Initial Truth Mean Orbital Elements

 LEO
Perturbations
(case 1)

LEO
Perturbations
(case 2)

GEO
Perturbations
(case 3)

GEO
Perturbations
(case 4)

Epoch Jan 18, 2003
00:00:00

Jan 18, 2003
00:00:00

Mar 20, 2004
00:00:00

Mar 20, 2004
00:00:00

Semimajor axis
(km)

10 10 12 65

Eccentricity 5x10-5 5x10-5 1.5x10-7 7x10-5

Inclination
(deg)

1.6 2.8 0.007 0.7

RAAN (deg) 0.28 2.3 0.02 4.8
Arg of Perigee
(deg)

11 2.5 0.04 19

Mean Anomaly
(deg)

19 0.3 0.4 95

Drag
Coefficient

0.0 0.0 N/A N/A

The initial diagonal covariance entries used for both the BSESKF and ESKF filters are

shown in Table 4.5. Because the solve-for elements were equinoctial elements rather

than Keplerian, the variances shown are the equinoctial variances.

182

Table 4.5 LEO and GEO Diagonal Covariance Entries
 LEO Variances

(case 1)
LEO Variances
(case 2)

GEO Variances
(case 3)

GEO Variances
(case 4)

Epoch Jan 18, 2003
00:00:00

Jan 18, 2003
00:00:00

Mar 20, 2004
00:00:00

Mar 20, 2004
00:00:00

Semimajor
axis (km)

1.0x104 1.0x104 1.0x102 1.0x104

h 1.0x10-7 1.0x10-4 1.0x10-12 1.0x10-5

k 1.0x10-7 1.0x10-4 1.0x10-12 1.0x10-5

p 1.0x10-2 1.0x10-2 1.0x10-8 1.0x10-3

q 1.0x10-2 1.0x10-2 1.0x10-8 1.0x10-3

λ (deg) 1.0 1.0 1.0x10-2 1.0
Drag
Coefficient

1.0x10-3 1.0x10-3 N/A N/A

The covariance entries shown in Table 4.5 roughly represent the accuracy of the

perturbed initial state passed to the filters. However, it was found that covariance

matrices that are too optimistic about the initial state accuracy seemed to cause

divergence first in the BSESKF and eventually in the ESKF. Covariance matrices that

were too pessimistic caused divergence first in the ESKF and then the BSESKF. As with

the process noise matrix, some experimentation was required to find covariance matrices

like the ones in Table 4.5 that worked well with both the BSESKF and ESKF filters.

 The modeling used in both the ESKF and BSESKF was identical to the modeling

used to generate the truth orbits. It is left for future work to test BSESKF behavior when

used with system models that are either more or less accurate than models used to

generate the truth orbit.

183

 Figures 4.3-4.8 show the test case results for the LEO cases. The values of m

tried for each case were 12, 24 and 48 with each increase in m resulting in slightly

improved accuracy over the previous value of m. The filter accuracy differences for

semimajor axis shown in Figure 4.3 indicate that the BSESKF converges to within less

than 50 meters of truth within 1.5 days while the ESKF takes about 3.5 to 4 days.

Figure 4.3 LEO mean semimajor axis state variable for cases 1 and 2

Figures 4.4 and 4.5 show the equinoctial elements h and k related to eccentricity. For

both of these elements, the BSESKF converged in about 2 days. The ESKF didn’t

converge with comparable accuracy within the 6 day span.

184

Figure 4.4 LEO mean h state variable for cases 1 and 2

Figure 4.5 LEO mean k state variable for cases 1 and 2

Figures 4.6 and 4.7 display the p and q equinoctial elements related to inclination. The

BSESKF seems to be more accurate in these cases and has a shorter and less dramatic

initial transient period.

185

Figure 4.6 LEO mean p state variable for cases 1 and 2

Figure 4.7 LEO mean q state variable for cases 1 and 2

Figure 4.8 shows the mean longitude element over the 6 day span. Again, the BSESKF

converged more quickly and reached a more accurate steady state value than the ESKF.

186

Figure 4.8 LEO mean λ state variable for cases 1 and 2

The coefficient of drag solution for each day is shown in Table 4.6. Although the ESKF

began with larger errors in the drag parameter, it eventually produced smaller errors than

the BSESKF. The BSESKF initially produced smaller errors, but the error remained

relatively constant over the six day span.

Table 4.6 ESKF and BSESKF Drag Coefficient Solutions for LEO Case 1

Day ESKF value Diff. from truth BSESKF value Diff. from truth
1 3.282 1.282 2.058 0.058
2 2.314 0.314 2.056 0.056
3 2.020 0.020 2.057 0.057
4 1.981 0.019 2.057 0.057
5 1.986 0.014 2.058 0.058
6 1.994 0.006 2.058 0.058

 Figures 4.9-4.14 show the test case results for the GEO cases. The semimajor

axis differences in Figure 4.9 show that the BSESKF produced smaller errors both in the

initial transient period and throughout the ten day span. This result was mirrored in the

other equinoctial orbital elements shown in Figures 4.10-4.14 also. Overall, these LEO

and GEO cases indicated that the BSESKF with an m-buffer of 24-48 past measurements

187

was able to estimate orbital elements with higher accuracy than the ESKF. In every case

for each orbital element, the BSESKF exhibited equal or superior accuracy to the ESKF.

In addition, the BSESKF was able to converge to an accurate estimate more quickly than

the ESKF. The BSESKF accuracy did require a higher computational cost, however.

The additional computational cost of the square-root information filter along with the

several iterations per observation often needed for the BSESKF to converge meant that

the BSESKF required about ten times as much computation time as the ESKF.

Figure 4.9 GEO mean semimajor axis state variable for cases 3 and 4

Figure 4.10 GEO mean h state variable for cases 3 and 4

188

Figure 4.11 GEO mean k state variable for cases 3 and 4

Figure 4.12 GEO mean p state variable for cases 3 and 4

Figure 4.13 GEO mean q state variable for cases 3 and 4

189

Figure 4.14 GEO mean λ state variable for cases 3 and 4

 The role of the m-buffer can be illustrated by showing a case in which several m-

buffer sizes were attempted. Figure 4.15 shows an example of the BSESKF behavior in

the mean h equinoctial element when varying the m-buffer size. Mark Psiaki didn’t

indicate an m-buffer upper limit beyond which accuracy degrades. Therefore, one would

expect that increasing the m-buffer size would always result in estimates with higher

accuracy than smaller m-buffer sizes. However, the BSESKF with m=48 was less

accurate overall than the BSESKF with m=24 or m14. In this case, it was likely that the

inaccuracies due to interpolating state vectors and state transition matrices at past

observation times outside the intended interpolation range was adversely affecting the

accuracy of the BSESKF estimates. If this was the case, the inaccuracy for large m-

buffer sizes would be due to the interface between the BSESKF and the DSST propagator

rather than with the BSESKF or DSST alone.

190

Figure 4.15 GEO mean h equinoctial element for case 4

191

[This page intentionally left blank]

192

Chapter 5 Software for Optimal Orbit Transfer Modeling

 There are challenges in space surveillance analysis in predicting trajectories for

satellites influenced by continuous thrust. A related challenge is in using orbit

determination to refine trajectories with observations for such satellites. Incorporating

accurate continuous thrust models based on optimal trajectory analysis is one way to

address these challenges. Of course, the assumption that actual satellites use optimal

thrust plans is perhaps not always valid, but this assumption reduces the search space for

thrust plans. In addition, satellite operators are strongly influenced by the need to

conserve fuel and so a time/fuel optimal thrust plan is perhaps the most probable thrust

plan that can be assumed.

 Because of the assumption that satellite operators use optimal thrust plans, the

optimization problems and solution methods described in section 2.2 have been

implemented in software to provide tools for generating optimal thrust plans. The

software environment is a PC running the Linux operating system. Versions of the

software were initially written in Matlab® and were later written in FORTRAN to take

advantage of its higher performance. The Intel® FORTRAN Compiler version 9.1 was

used to compile the FORTRAN code. The Intel® FORTRAN compiler was chosen

because it has been used to compile the R&D GTDS source code. The software was

designed to be given an initial orbit and destination orbit with either a given total transfer

time or a given constant thrust acceleration magnitude. If given a total transfer time, the

necessary thrust acceleration magnitude can be solved. If the thrust acceleration

magnitude is known, the total transfer time can be solved. The thrust plan generated by

193

the optimal thrust plan tool can then be used in orbit determination as an additional force

model. This will hopefully aid in more accurately predicting and refining orbits using

orbit determination methods. This second part of the task is markedly different from the

first and so the software was written in two parts. The first part is a standalone module

that produces the optimal thrust plans. The second part was implemented as a force

model in the R&D Goddard Trajectory Determination System (R&D GTDS) because the

tool already had the software infrastructure for orbit prediction and orbit determination

with observations. The original intention was to apply the thrust force model in GTDS to

both the Cowell and DSST propagators and to ESKF, BSESKF and DC estimators. For

this thesis, the GTDS thrust force model was completely implemented only with the

Cowell propagator and the DC estimator. Future work will complete the implementation

to allow the thrust force model to be used with the DSST propagator and the ESKF and

BSESKF estimators.

 The standalone tool is given the initial and final orbits. It uses numerical

integration of the equations of motion and the quasi-Newton gradient search described in

sections 2.2.2.3 and 2.2.2.4 to solve for an optimal thrust plan and two-body trajectory.

Perturbations such as J2 affect thrust plans over time spans of several days. However,

implementing perturbations was left as future work. Separate modules were written for

the averaged and exact equations of motion. This allows crude guesses for the necessary

Lagrange multipliers to be refined first by the averaged equation module and then solved

precisely by the exact equation module. The ultimate product of the exact equation

module is a file containing time vs. acceleration vector directions and magnitude values.

This thrust acceleration file format is described in Appendix A.

194

 The thrust acceleration file produced by the exact equation standalone

optimization module is read by the GTDS orbit determination software within a newly

implemented continuous thrust acceleration force model module. This module can be

used in either orbit prediction or in orbit determination to evaluate the accuracy of the

produced thrust plan with real data.

5.1 Standalone Trajectory Optimization Software

The software written to calculate optimal thrust plans from an initial orbit to a

final orbit was written first in Matlab™ for ease of implementation and then in

FORTRAN to improve the performance. The code described here is the FORTRAN

code. Both sets of code are very similar. Essentially, the language is the only difference.

Because of the difficulty in guessing initial values for the Lagrange multipliers for the

exact equation trajectory optimization code, the averaged equation trajectory code was

implemented because it is more robust (57). Crude guesses for the averaged Lagrange

multipliers can be used with the averaged equation code and the refined solution for the

Lagrange multipliers can be used as initial guesses in subsequent executions of the exact

equation code. Sections 5.1.1 and 5.1.2 detail the subroutines written to implement the

trajectory optimization algorithm described in sections 2.2.2.3 and 2.2.2.4.

195

5.1.1 Exact Equation Trajectory Optimization Code

The subroutines described in this section comprise the exact two-body plus thrust

equation of motion trajectory optimization standalone software. The source code for

these subroutines is listed in Appendix E. The program flow for the exact equation

standalone trajectory optimization code is shown in Figure 5.1.

Figure 5.1 Exact Equation Trajectory Optimization Program Flow

LOW_THRUST_DRIVE is the driver subroutine for the software. It collects the

initial and final Keplerian orbits, converts those to equinoctial orbit elements, calls the

196

UNCMND subroutine to execute the quasi-Newton iterative search to solve for the initial

Lagrange multipliers. Once UNCMND is complete, the RK78 subroutine is used to

integrate the variational equations of motion and the variational equations for the solved

initial Lagrange multipliers from the initial to the final time. Finally, the trajectory is

printed and the thrust plan file meant for GTDS input is written.

UNCMND is the subroutine provided by reference (58). This subroutine executes

the quasi-Newton search described in Section 2.2.2.3. It calls the F_FORMIN subroutine

to compute the equinoctial elements and Lagrange multipliers at the final time given the

elements and multipliers at the initial time.

RK78 is the subroutine that executes the 7th order Runge-Kutta-Fehlberg

integration. This subroutine was written at NASA JPL and is documented in NASA

Technical Report TR R-287 (85). This subroutine is used to integrate both the

equinoctial variational equations of motion and the variational equations for the Lagrange

multipliers.

FSUB is the subroutine that is called by the FK78 subroutine to supply the

equinoctial element and Lagrange multiplier derivatives with respect to time, i.e. rates.

FSUB calls the COMP_XY, COMP_B, and COMP_U subroutines to calculate the

auxiliary quantities, the 6x3 BL matrix and the normalized thrust acceleration vector.

FSUB then executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR

197

subroutines which compute the rates for the equinoctial variation equations and the rates

for the Lagrange multipliers, respectively.

TRANS_OUT in the context of the exact equation code transforms the equinoctial

elements into Keplerian elements and calls COMP_XY, COMP_M, COMP_U and FSUB

to compute the Hamiltonian, thrust vector, and the yaw and pitch angles. The thrust

vector is also transformed to inertial Cartesian coordinates to be compatible with GTDS

for the thrust plan file. This transformation is described in detail in Appendix C. The

quantities are returned to the calling subroutine in an array intended to be written as

output.

F_FORMIN computes the equinoctial elements and Lagrange multipliers at the

final time given the elements and multipliers at the initial time. F_FORMIN also

computes the sum of the squares of the differences of the computed final orbital element

conditions from the desired orbital element conditions. F_FORMIN uses the RK78

subroutine to perform the integration of the equinoctial orbital elements and the Lagrange

multipliers.

COMP_EQUIN_VAR computes the derivatives of the equinoctial orbital

elements with respect to time, i.e. element rates. This is done by multiplying the constant

thrust acceleration magnitude by the product of the BL matrix and the normalized thrust

acceleration vector. This equation is shown in Section 2.2.2.2 (Equation 2.82), and the

BL matrix is shown in Appendix B.

198

COMP_EUL_LAG_VAR computes the derivatives of the Lagrange multipliers

with respect to time, i.e. multiplier rates. This is done by multiplying the partial

derivatives of the BL matrix with respect to the equinoctial elements, the normalized

thrust acceleration vector, the thrust acceleration magnitude and the current values of the

orbital elements. The equations for this are shown in Section 2.2.2.2 (Equation 2.87) and

the partials of the BL matrix are shown in Appendix B.

COMP_B is the subroutine that computes the 6x3 BL matrix and its partial

derivatives with respect to the equinoctial elements. The equations for this subroutine

can be found in the Appendix of reference (5).

COMP_U computes the normalized thrust acceleration vector given the 6x3 BL

matrix and the vector of current Lagrange multipliers.

COMP_XY calculates auxiliary quantities based on the current equinoctial orbital

elements.

DELTIM is a GTDS subroutine that was borrowed for this tool in order to assist

in computing the calendar date given the initial date and a time duration. It is used along

with the ADDTIM GTDS subroutine for this purpose.

199

ADDTIM is a GTDS subroutine borrowed for this tool in order to assist in

computing the calendar date given the initial date and time duration. It is used along with

the DELTIM GTDS subroutine for this purpose.

5.1.2 Averaged Equation Trajectory Optimization Code

The subroutines in this section comprise the averaged two-body equation of

motion trajectory optimization standalone software. The source code for these

subroutines is listed in Appendix F. The program flow for the averaged equation

trajectory optimization code is shown in Figure 5.2.

200

Figure 5.2 Averaged Equation Trajectory Optimization Program Flow

LOW_THRUST_DRIVE is the driver subroutine for the software. It collects the

initial and final Keplerian orbits, converts those to equinoctial orbits, calls the UNCMND

subroutine to execute the quasi-Newton search to solve for the initial Lagrange

multipliers, and calls the RK78 subroutine to integrate the variational equations of motion

201

and the variational equations for the Lagrange multipliers from the initial to final time.

Finally, the trajectory is printed.

UNCMND is the subroutine provided by the reference (58). This subroutine

executes the quasi-Newton search described in Section 2.2.2.3. It calls the F_FORMIN

subroutine to compute the equinoctial elements and Lagrange multipliers at the final time

given the elements and multipliers at the initial time.

RK78 is the subroutine that executes the 7th order Runge-Kutta-Fehlberg

integration. This subroutine was written at NASA JPL and is documented in NASA

Technical Report TR R-287. This subroutine is used to integrate both the equinoctial

variational equations of motion and the variational equations for the Lagrange

multipliers.

FSUB is the subroutine that is called by the FK78 subroutine to supply the

equinoctial element and Lagrange multiplier derivatives with respect to time, i.e. rates.

FSUB executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR subroutines

which compute the rates for the equinoctial variation equations and the rates for the

Lagrange multipliers, respectively.

TRANS_OUT in the context of the averaged equation code transforms the

equinoctial elements into Keplerian elements and calls COMP_XY, COMP_M,

COMP_U and FSUB to compute the Hamiltonian, thrust vector, and the yaw and pitch

202

angles. These quantities are returned to the calling subroutine in an array intended to be

written as output.

F_FORMIN computes the equinoctial elements and Lagrange multipliers at the

final time given the elements and multipliers at the initial time. F_FORMIN also

computes the sum of the squares of the differences of the computed final orbital element

conditions from the desired orbital element conditions. F_FORMIN uses the RK78

subroutine to perform the integration of the equinoctial orbital elements and the Lagrange

multipliers.

COMP_EQUIN_VAR computes the derivatives of the equinoctial orbital

elements with respect to time, i.e. element rates. Because the averaged equations of

motion are used here, the DQAG subroutine is used to compute the element rates using a

Gauss-Kronrod numerical quadrature.

COMP_EUL_LAG_VAR computes the derivatives of the Lagrange multipliers

with respect to time, i.e. multiplier rates. The averaged equations for the multiplier rates

are computed using the DQAG subroutine which performs numerical quadrature using

the Gauss-Kronrod method.

DQAG uses a Gauss-Kronrod method to compute the definite integrals shown in

section 2.2.2.4. DQAG is used in conjunction with the subroutines, RHS_ADOT,

RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT, RHS_LDOT,

203

RHS_LAMADOT, RHS_LAMHDOT, RHS_LAMKDOT, RHS_LAMPDOT,

RHS_LAMQDOT, and RHS_LAMLDOT. These subroutines compute the equinoctial

element rates and the Lagrange multiplier rates given the current equinoctial elements

and Lagrange multiplier values. DQAG is part of QUADPACK and was downloaded

from http://www.netlib.org. QUADPACK is freely available software for numerical

integration. DQAG was written by R. Piessens, K. U. Leuven, and E. De Doncker.

COMP_M is the subroutine that computes the 6x3 M matrix and its partial

derivatives with respect to the equinoctial elements. The equations for this subroutine

can be found in the Appendix of reference (3). According to Jean Kechichian, there is

one small error in the partials in equation (A96). The term reading cF - h should read cF -

k. This correction was also made in the COMP_M subroutine code.

COMP_U computes the normalized thrust acceleration vector given the 6x3 M

matrix and the vector of current Lagrange multipliers.

COMP_XY calculates auxiliary quantities based on the current equinoctial orbital

elements.

RHS_ADOT computes the semimajor axis rate of change using the current

equinoctial elements and the COMP_M and COMP_U subroutines.

204

http://www.netlib.org/

RHS_HDOT computes the equinoctial h element using the current equinoctial

elements and the COMP_M and COMP_U subroutines.

RHS_KDOT computes the equinoctial k element using the current equinoctial

elements and the COMP_M and COMP_U subroutines.

RHS_PDOT computes the equinoctial p element using the current equinoctial

elements and the COMP_M and COMP_U subroutines.

RHS_QDOT computes the equinoctial q element using the current equinoctial

elements and the COMP_M and COMP_U subroutines.

RHS_LDOT computes the equinoctial lambda element using the current

equinoctial elements and the COMP_M and COMP_U subroutines.

RHS_LAMADOT computes the Lagrange multiplier associated with the

semimajor axis using the COMP_M and COMP_U subroutines.

RHS_LAMHDOT computes the Lagrange multiplier associated with the

equinoctial h element using the COMP_M and COMP_U subroutines.

RHS_LAMKDOT computes the Lagrange multiplier associated with the

equinoctial k element using the COMP_M and COMP_U subroutines.

205

RHS_LAMPDOT computes the Lagrange multiplier associated with the

equinoctial p element using the COMP_M and COMP_U subroutines.

RHS_LAMQDOT computes the Lagrange multiplier associated with the

equinoctial q element using the COMP_M and COMP_U subroutines.

RHS_LAMLDOT computes the Lagrange multiplier associated with the

equinoctial lambda (mean longitude) element using the COMP_M and COMP_U

subroutines.

206

5.2 GTDS Continuous Thrust Implementation

5.2.1 New subroutines

The following new subroutines were written and included with GTDS to

implement the thrust plan input.

THRSTTBL reads the thrust input from a file, interpolates the acceleration

vectors and returns the thrust acceleration vector at the requested time.

The THRSTTBL.CMN common block contains an on/off switch for the thrust

plan input as well as valid input start and end dates for the thrust plan input.

THRSTTBLCRD reads one thrust table input record from the FORTRAN file unit

numbered 115. This subroutine is called by the THRSTTBL subroutine.

THR_RDNUMR reads the numeric fields on a thrust plan input record. This

subroutine is called by the THRSTTBLCRD subroutine.

There were also some subroutines that were imported from the book, "Numerical

Methods and Software," by Kahaner, Moler and Nash (58). These subroutines performed

the interpolation necessary to compute acceleration vectors that are requested for times

that fall between records provided by the thrust plan input file.

207

PCHEZ computes derivatives needed for the PCHEV subroutine. PCHEZ

computes derivatives for spline or cubic Hermite interpolation.

PCHEV evaluates a function and first derivative of a piecewise cubic Hermite or

spline function at an array of points. The function array and derivative array are provided

as input and are assumed to be previously computed by the PCHEZ subroutine.

XERROR is a subroutine for handling and/or printing diagnostic messages

generated by numeric subroutines in the Kahaner, Moler, and Nash text (58).

5.2.2 Modified subroutines

The GTDS source code needed modifications to read in thrust plans and apply the

thrust acceleration vectors necessary for such plans. Because thrust plans could

conceivably come from many sources, it was decided that a text file would be the mode

of input. This would allow the optimal thrust plans generated by any source to be used as

input in GTDS as a thrust force model. This text format is described in Appendix A

which describes the GTDS input keywords introduced as part of this work. The

THRSTTBL GTDS input keyword introduced to instruct GTDS to read from the thrust

plan file input is described in Appendix A also.

The thrust plan input file defines the thrust acceleration vector at only the time

points printed in the file. However, the GTDS orbit prediction execution requires thrust

acceleration vectors at the numerical integration time points of its choosing. Therefore,

208

interpolators were used within the new continuous thrust module to linearly interpolate

the thrust plan acceleration vectors at the time points requested by the orbit prediction

software in GTDS.

There were several GTDS source code files that required modification to

implement this file-based thrust plan input. The following subroutines were existing

source code files in GTDS, but were modified for this task.

FILESBD is a block data initialization subroutine that identifies each file used by

GTDS during its execution. The thrust input file was identified with unit 115.

SETDAF is the subroutine that opens all files used by GTDS. The thrust plan

input file open statement was added to this source file.

SHUTDAF is the subroutine that closes all files used by GTDS upon termination

of the program. The thrust plan input file was included in this closing sequence.

SETOG1 interprets all orbit generator optional keywords that come after the

"DRAG" keyword in the keyword table. This subroutine is an extension of the SETORB

subroutine. SETOG1 was modified to include the THRSTTBL keyword interpretation

code.

209

SETORB reads and interprets orbit generator (EPHEM) optional keyword cards.

The THRSTTBL keyword text was added to the keyword array.

SWITCHBD is a block data initialization subroutine that identifies many switches

or options in GTDS. A thrust table input on/off switch variable was added.

ACCEL computes two-body and free-flight perturbative accelerations acting on a

spacecraft at a given time and state. A call to the new THRSTTBL subroutine was

added.

GQFUN computes the integrands of the integration for the average integration of

the equation of motion. A call to the new THRSTTBL subroutine was added. GQFUN is

used in the DSST propagator. Modification of the GQFUN subroutine partially

implements the thrust force model for DSST. Further modifications to other GTDS

DSST subroutines to complete the implementation of the thrust force model for DSST are

left as future work.

5.2.3 GTDS modification summary

The program flow for GTDS differs depending on which ephemeris generator or

propagator is chosen. All propagator subroutines are called from the ORBIT subroutine.

The Cowell propagator typically uses a fixed-step size integrator that integrates equations

of motion formulated with position and velocity as the variables. Figure 5.3 shows the

program flow for the thrust acceleration force model starting from the ORBITC

210

subroutine. ORBITC is called by the ORBIT subroutine if the Cowell propagator is

chosen.

Figure 5.3 Cowell Program Flow for Thrust Acceleration File Input

 The Draper Semianalytic Satellite Theory (DSST) is also called from the ORBIT

subroutine. DSST integrates in mean equinoctial elements and adds short period motion

using Fourier series. The driver is the ORBITV subroutine. Figure 5.4 shows the

program flow for the thrust acceleration force model.

211

Figure 5.4 DSST Program Flow for Thrust Acceleration File Input

212

5.3 Verifying Test Case Results

The test case provided by Jean Kechichian in references (3) and (4) was run

against the standalone thrust plan tool that was implemented for this thesis. In addition,

the thrust plan generated by the standalone tool was used as input for the GTDS orbit

prediction tool. The test case was run against the standalone and GTDS force model

software to verify the correct implementation of the two-body equations of motion, the

quasi-Newton optimal thrust plan search algorithm, and the new GTDS continuous thrust

force module.

The test case run against the standalone module was an orbit transfer case

between an initial LEO orbit and a final GEO orbit. The initial and final orbits are shown

in Table 5.1. This shows the initial and final orbits as well as the final orbit achieved by

the quasi-Newton search algorithm. The achieved orbit is very close to the desired final

orbit indicating that the quasi-Newton search algorithm is able to precisely solve the two-

point boundary value problem.

Table 5.1 Standalone Tool Initial and Final Orbit Achieved

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 7000 0 28.5 0 0 -130.333164

Final 42000 0.001 1 0 0 Free

Achieved 42000.0052 0.0009987 0.99982 -0.000193 0.055 46.192579

The final orbit did not include a mean anomaly. Rather, this orbital parameter was free

for the quasi-Newton search to determine the optimal value. In addition, the total transfer

213

time was found to be 58089.9 seconds. The Hamiltonian was 1.004 upon completion.

The solved-for Lagrange multipliers are shown in Table 5.2.

Table 5.2 Solved Initial Lagrange Multipliers for LEO to GEO Case

Lagrange Multiplier Solution Value

()0L
aλ (s/km) 0.467522877173E+01

()0L
hλ (sec) 0.541341369629E+03

()0L
kλ (sec) -0.920270214844E+04

()
0

L
pλ (sec) 0.177801189423E+02

()
0

L
qλ (sec) -0.225845585937E+05

()0L
Lλ (rad) -0.647890140182E-08

The results were reasonably close to the results achieved by Jean Kechichian in

reference (5). Kechichian’s results are shown in Tables 5.3 and 5.4.

Table 5.3 Initial and Final Orbit Achieved by Jean Kechichian

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 7000 0 28.5 0 0 -130.333164

Final 42000 0.001 1 0 0 Free

Achieved 41999.9929 0.0009983 0.999797 0.000326 359.995148 46.169264

Kechichian solved for a total transfer time of 58089.9 seconds. The Lagrange multipliers

solved by Jean Kechichian are shown in Table 5.4.

214

Table 5.4 Kechichian’s Solved Initial Lagrange Multipliers for LEO to GEO Case

Lagrange Multiplier Solution Value

()0aλ
L (s/km) 0.4675229762E+01

()0hλ
L (sec) 0.5413413947E+03

()0kλ
L (sec) -0.9202702084E+04

()
0pλ

L (sec) 0.1778011878E+02

()
0qλ

L (sec) -0.2258455855E+05

()0Lλ
L (rad) Not shown in paper

Because the results from the standalone code so closely match those of Jean Kechichian,

it was surmised that the integrated equations of motion and the quasi-Newton algorithm

were implemented correctly in the standalone software.

Another way to check the results is to compare the orbital element and thrust

acceleration vector histories during the transfer. Selected element histories and the thrust

pitch and yaw angles are shown in the following figures. Dr. Kechichian’s results were

taken from reference (4). Figure 5.5 shows the semimajor axis and eccentricity element

time histories during the transfer from the initial orbit to the final orbit. There are small

differences in the plots. The eccentricity oscillation during the initial part of the transfer

has a slightly different character in the two plots. This is explained by the fact that the

plots from Jean Kechichian’s paper were generated with a slight error in a partial

215

derivative expression used in the equations of motion. This fact was learned both from

Kechichian’s paper, reference (7), and from personal communication with Dr.

Kechichian (86). Figure 5.6 shows the thrust pitch and yaw angles for the optimal LEO

to GEO thrust plan. The large pitch and yaw angle changes near the end of the transfer

reflect the large eccentricity and inclination changes that are undergone near the end of

the transfer.

(a) (b)

Figure 5.5 Semimajor Axis and Eccentricity Transfer Time History (a),
Kechichian’s result (b)

(a) (b)

216

Figure 5.6 Thrust Pitch and Yaw Transfer Time History (a), Kechichian’s result (b)
Figures 5.7 (a) and (b) have the inclination history in common. The inclination

follows a similar trend in both figures, but the inclination from Kechichian’s paper is

somewhat different because the abscissa is the semimajor axis and not time.

Nevertheless, both plots show the inclination is correct at the initial and final boundary

conditions, 28.5 and 1.0 degrees, respectively.

 (a) (b)
Figure 5.7 Inclination and RAAN Time History (a),

Kechichian’s Inclination, Semimajor Axis and Eccentricity History (b)

 The implementation of the averaged equation of motion standalone trajectory

optimization code was also tested against Kechichian’s results. The averaged equation of

motion tool is useful because it is more robust than the exact equation of motion code in

its ability to use initial Lagrange multiplier values with large errors (57). The refined

initial Lagrange multiplier values solved by the averaged tool can then be used to

initialize the exact code.

217

 The initial and final orbits for the averaged case were the same as for the exact

case. These are shown in Table 5.5 along with the final orbit achieved using the quasi-

Newton search.

Table 5.5 Averaged Standalone Tool Initial and Final Orbit Achieved

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 7000 0 28.5 0 0 -130.333164

Final 42000 0.001 1 0 0 Free

Achieved 42000.00 0.001000 0.999999 0.0000002 0.005 -130.328514

These results are close to the results achieved by Kechichian in his paper (4). The quasi-

Newton search algorithm is able to closely match the final conditions by searching for the

initial averaged Lagrange multipliers. The total transfer time was found to be 56732.57

seconds which compares closely with Jean Kechichian’s result of 56734.56 seconds. The

Hamiltonian was constant over the transfer span with a value of 1.000005 which shows

that the necessary condition of optimality for the minimum time and fuel transfer was

essentially met. When the Hamiltonian is not an explicit function of time, it is constant

over the trajectory transfer (49). Jean Kechichian’s published value for the Hamiltonian

is 1.000000007. The averaged initial Lagrange multipliers solved by the averaged

standalone tool are shown in Table 5.6.

218

Table 5.6 Solved Initial Averaged Lagrange Multipliers for LEO to GEO Case

Lagrange Multiplier Solution Value

()0~
aλ (s/km) 0.507914542146E+01

()0~
hλ (sec) -0.197268742508E-02

()0~
kλ (sec) 0.425340801731E+02

()
0

~
pλ (sec) -0.463304720272E-04

()
0

~
qλ (sec) -0.792521641184E+05

()0~
λλ (rad) 0.949939541356E-03

Kechichian’s results include slight errors mentioned in reference (7). Therefore,

Kechichian’s solution for the averaged initial Lagrange multipliers does not exactly

match the solution from the averaged standalone trajectory optimization tool.

Kechichian’s results are shown in Table 5.7 for comparison.

Table 5.7 Kechichian’s Initial Avg. Lagrange Multipliers for LEO to GEO Case

Lagrange Multiplier Solution Value

()0~
aλ (s/km) 0.5159779497E+01

()0~
hλ (sec) -0.1448979417E-06

()0~
kλ (sec) 0.4342792320E+02

()
0

~
pλ (sec) -0.1398718238E-07

()
0

~
qλ (sec) -0.8360354382E+05

()0~
λλ (rad) 0.0

219

 The averaged implementation is more robust than the exact code because the

averaged equations of motion do not include short-period oscillatory motion which

complicates the job of the quasi-Newton search algorithm. The quasi-Newton search

relies on finite differencing for computation of an approximate Jacobian matrix. The

Jacobian matrix is used to find the best search direction for each iteration of the search

algorithm. This finite differencing approximation is less robust for the exact equations of

motion than it is for the smoother, averaged equations of motion. The smoother behavior

of the averaged equations of motion is illustrated in Figure 5.8 which shows the Lagrange

multiplier associated with the semimajor axis, aλ , for both the averaged and exact

equations of motion.

 (a) (b)

Figure 5.8 Lagrange Multiplier for SMA in Averaged and Exact Cases (a),

Kechichian’s results (b)

Figure 5.8 also shows the close level of agreement in the behavior of the averaged

elements and Lagrange multipliers over time. This agreement provides good qualitative

evidence that the equations of motion have been implemented correctly. The slight errors

220

in Kechichian’s original work are not large enough to significantly affect the results

shown in Figure 5.8. Figure 5.8.a was generated using the corrected equations of motion

while Figure 5.8.b was generated by Jean Kechichian with the slight error.

Another aspect of the testing done for this LEO to GEO case involved using the

thrust plan file generated by the exact standalone code to perform an orbit prediction in

the Cowell orbit propagator in GTDS. This test exercised the new continuous thrust

acceleration force model module in GTDS. Figures 5.9 – 5.11 show the results of this

test. The orbit prediction done by GTDS used J2 gravity terms so the final orbit achieved

by the thrust plan does not exactly match the final orbit used in generating the thrust plan.

However, the results are close. The thrust plan software could be modified to increase

the optimal thrust plan accuracy by implementing J2, J3, J4, third-body gravity, and other

force models in the optimal thrust plan standalone software. For orbital transfers that

take many days to execute, these perturbations significantly affect the optimal thrust plan

required. Therefore, implementing these perturbations is important. However, for this

thesis, such implementations are left as future work.

Figures 5.9-5.11 show that GTDS is able to correctly interpret the thrust plans and

is able to reproduce the LEO to GEO orbit transfer with the associated orbital plane

change. Also, once the thrust plan terminates, GTDS is able to continue on with just the

natural force modeling.

221

Figure 5.9 GTDS Cowell Ephemeris Generation of Semimajor Axis History

Figure 5.10 GTDS Cowell Ephemeris Generation of Eccentricity History

222

Figure 5.11 GTDS Cowell Ephemeris Generation of Inclination History

223

5.4 Real Data Test Case Results

5.4.1 ARTEMIS Satellite Background

 The ARTEMIS telecommunication satellite was launched from Kourou, French

Guiana on July 12, 2001 onboard an Ariane 510 Rocket. ARTEMIS was intended for a

geostationary orbit. ARTEMIS is an ESA spacecraft that includes ion propulsion

systems intended for North/South, i.e. orbital inclination, station keeping control.

During the course of the launch, the Ariane upper stage malfunctioned and

injected ARTEMIS well short of its intended orbit. Although the satellite was launched

with surplus bi-propellant, this system would not allow useful operational capability after

boosting because of the large amount of fuel needed. The ARTEMIS team consisted of

personnel from ESA, Alenia Spazio, and EADS. Working from the TELESPAZIO

center in Fucino, Italy, a plan was developed to boost the ARTEMIS satellite to a useful

geosynchronous orbit (GEO) while still allowing for a long useful satellite life (87). This

plan first called for the bi-propellant thrusters to be used to raise the satellite’s orbit

outside the Van-Allen radiation belts. Then, the onboard ion propulsion systems would

be used to perform a gradual orbit raising to GEO. Figure 5.12 depicts the overall plan

developed by the ARTEMIS team.

224

Figure 5.12 Maneuver Strategy for ARTEMIS Salvage Mission (47), (88)

 The ion propulsion technology (IPP) on ARTEMIS consists of two Radio

frequency Ion Thruster Assemblies (RITAs) and two Kaufmann ion type Electron

Bombardment Ion Thruster Assemblies (EITAs) (47). The RITA thrusters use radio

frequency radiation to ionize the Xenon atoms while the EITA thrusters are very similar

to the gridded ion engines described in section 2.2.1. Both thrusters use grid technology

to accelerate Xenon ions. The level of thrust when using both EITAs is 27 mN and 21

mN when using both RITAs. Using all four thrusters, or for that matter, any combination

of thrusters on both the top and bottom sides of the spacecraft at once to perform orbit

raising was deemed inefficient. The Isp would be reduced from greater than 3000

seconds to about 2300 seconds. This is because the thrusters are permanently canted with

respect to the spacecraft North/South Z-axis. In addition, thermal constraints dictated

that only one thruster per platform, i.e. top or bottom thruster array, could be used for the

orbit raising operation. According to ARTEMIS recovery mission information obtained

225

by email from Leonardo Mazzini (88), The ion thruster orbit raising was accomplished in

four phases. The following list summarizes these phases.

1. August 2001 – January 2002: Inclination control strategy using RITA1 or RITA2

2. February 2002 – April 2002: Nominal strategy using RITA1 and RITA2 (or

EITA2)

3. April 2002 – July 2002: Thrust steering strategy using RITA1 and RITA2

4. August 2002 – January 2003: Back-up strategy using RITA2 only

Figure 5.13a shows the location of the IPP ion thrusters on the nominally zenith

facing side of the ARTEMIS spacecraft. Figure 5.13b shows the nadir facing side of the

ARTEMIS spacecraft. Figure 5.14 shows the spacecraft orientation during a single

platform thruster firing. The depiction of the spacecraft orientation in Figure 5.14 is not

the final, intended operational attitude, but was used during the ion thrust orbit raising.

226

Figure 5.13a Ion Thruster Locations on the ARTEMIS Satellite (47)

Figure 5.13b Spacecraft Axis in Orbit Reference System (88)

227

Figure 5.14 Spacecraft Orientation and Thrust Vector for Single Thruster Firing
(87)

228

5.4.2 ARTEMIS Satellite Data and Test Case Methodology

 The orbit raising operations for ARTEMIS started on April 4, 2002 and continued

until final GEO orbit insertion on January 31st, 2003. The orbital elements at the end of

orbit raising operations are shown in Table 5.8. The reference frame for these elements is

not known. They were obtained from reference (89).

Table 5.8 Final Orbital Elements after all Ion Orbit Raising and Subsequent
Chemical Burns

Epoch January 31, 2003 20:00:00

Semimajor axis (km) 42169.731266

Eccentricity 0.000076

Inclination (deg) 1.565893

RAAN (deg) 112.524590

Arg. of Perigee (deg) 160.782369

True Anomaly (deg) 178.530958

East Longitude (deg) 21.216887

 An Air Force Space Command Form1 document has been filed for the use of

Two-Line orbital elements (TLEs) and U.S. Air Force Space Surveillance Network

(AFSSN) observations in this research. A TLE is a text format that represents an orbital

element set with an assumed orbital dynamic method, i.e. SGP4, and from which Earth

centered inertial (ECI) vectors in the True Equator Mean Equinox of Epoch (TEME)

reference frame can be obtained. Reference (90) contains detailed information about

TLEs.

229

 The TLEs were used to derive initial and final ARTEMIS satellite orbits at

various times during the satellite’s orbit raising phase. The time duration between the

initial and final orbits was chosen so that the orbital states between the initial and final

orbits appeared continuous. It is more straightforward to test a single continuous transfer

rather than several discontinuous ones. Transfer spans on the order of ten days were

chosen to allow for sufficient observations during the span because these spans would

later serve as the basis for a least-squares orbit fit, i.e. GTDS differential correction (32).

The estimator used for GTDS differential correction is described in section 2.3.1.1.8.

 The initial and final orbits and a guess of the thrust acceleration magnitude were

first passed to the averaged equation optimal thrust planning software. The initial

guesses for the Lagrange multipliers were set to unity. Because the averaged equation

code is robust, it was able to solve for refined values of the initial Lagrange multipliers

and for an optimal transfer time. The refined Lagrange multiplier values, the guess for

the thrust acceleration magnitude, the optimal transfer time, and the initial and final orbits

were then passed to the exact equation optimal thrust planning software. This software

generated an exact optimal thrust plan using two-body plus thrust orbital dynamics. The

resulting thrust plan was used in GTDS differential corrections (DCs) with a fitspan that

included all TLEs or AFSSN observations with observation times between the initial and

final orbits. This GTDS DC was then evaluated for fit quality. This evaluation consisted

of checking observation residuals for expected Gaussian means and variances, counting

the number of observations edited due to the 3σ criteria, checking the chi-squared (91)

230

statistic, and examining the covariance of the final orbit estimate. The process flow for

solving for the optimal continuous transfer is shown in Figure 5.15.

Figure 5.15 Thrust Plan Generation and Force Model Process Flow

 Because the force exerted by the thrusters was not exactly known, the thrust

acceleration was adjusted while the exact equation thrust planning software was run in

231

several iterations to affect the transfer time. These iterations continued until the transfer

time solved by the thrust planning software was closely matched to the transfer time

known from the epoch times of the endpoint TLEs.

 Once optimal thrust plans were generated, they were used in the new GTDS file

input thrust force model in orbit determination runs to evaluate whether the additional

modeling yields any improvement in orbit determination accuracy. For these test cases,

the GTDS Cowell Differential Correction (DC) subprogram was executed with the new

thrust force model, and the resulting GTDS output file was parsed to collect observation

residual information and overall orbit fit statistics. The natural forces modeled by GTDS

during the DC included 12th degree and 12th order geopotential spherical harmonics based

on coefficients from the JGM-2 geopotential model. Lunar and solar point mass gravity

was modeled as was solar radiation pressure. The reflectivity coefficient for solar

radiation pressure was not a solve-for parameter. This was to avoid any aliasing that

might occur between the reflectivity coefficient and any thrust acceleration applied.

Earth polar motion was modeled. Drag was not modeled because ARTEMIS was at a

very high altitude essentially unaffected by atmospheric drag during the thrust transfer.

Because GTDS includes an array of perturbation models while the thrust plan software

does not currently include any perturbations, it was expected that the generated optimal

thrust plans would not exactly reproduce the desired trajectory when modeled in GTDS.

Including significant perturbations such as J2 and lunar and solar gravity is a desired

future enhancement to the thrust modeling software.

232

 The observations used in some of the DC runs consisted of TLEs that were

converted to their osculating counterparts using the SGP4 orbit propagator within GTDS.

The SGP4 propagator was implemented in GTDS in 1988 by Darrell Herriges for work

toward his Master’s Thesis at MIT (18). The resulting osculating orbital elements were

used as Cartesian position/velocity vector observations in the GTDS DC subprogram.

This capability is sometimes referred to as Precise Conversion of Elements.

 Air Force Space Surveillance Network (AFSSN) observations taken on

ARTEMIS during its orbit raising were also used with the GTDS DC program to evaluate

the usefulness of the thrust plans as acceleration models. These observations consisted of

ground-based radar and optical observations. The radar observations consisted of

topocentric range, azimuth, elevation and doppler measurements of the ARTEMIS

satellite, and the optical observations consisted of right ascension and declination

measurements of the satellite against the star background. The observations were taken

by several different radar and optical sensors which were all part of the AFSSN in 2002

and 2003.

 The semimajor axis, eccentricity, and inclination from the ARTEMIS TLEs are

plotted in Figures 5.16 – 5.18. The TLEs are double averaged elements. Therefore the

plots show only the secular motion of ARTEMIS from August, 2001 until May, 2003.

These plots show how the continuous ion thrust affected the satellite orbit during its ion

thrusting, orbit raising phase. The thrust strategies used to operate ARTEMIS during this

phase included the following (88):

233

1. From August 2001 to January 2002: Inclination control strategy using RITA1 or
RITA2

2. From February 2002 to April 002: Nominal strategy using RITA1 and RITA2 (or
EITA2)

3. From April 2002 to July 2002: Thrust steering strategy using RITA1 and RITA2
4. From August 2002 to January 2003: Back-up strategy using RITA2

The thrust strategies are marked and labeled in Figures 5.16 – 5.18. The test cases used

for this thesis are also marked and labeled as Case 1, Case 2, and Case 3 in Figures 5.16 –

5.18.

Figure 5.16 ARTEMIS Semimajor axis during Ion Thrusting

234

Figure 5.17 ARTEMIS Eccentricity during Ion Thrusting

Figure 5.18 ARTEMIS Inclination during Ion Thrusting

235

Figure 5.16 shows the semimajor axis of ARTEMIS during the orbit raising maneuvers.

The change to the semimajor axis is clearly linear, but some discontinuities during the

transfer are apparent. This confirms text in reference (87) that mentions some drifting

periods during the orbit raising. Some of these drifting periods lasted a few days.

During some of the control strategies, the eccentricity history shown in Figure 5.17 is

much noisier than the semimajor axis history. This is not unexpected because the TLEs

were generated with orbit prediction models that didn’t include continuous thrust force

modeling. The inclination trend in Figure 5.18 shows that aside from maneuvers around

day 100 and day 250, ARTEMIS exhibits natural evolution of the orbit plane due to lunar

and solar gravitational perturbations. In references (87) and (88), the authors note that

the inclination was actively controlled during the first three strategies used in the ion

thrust orbit raising, i.e. the inclination control strategy, the nominal strategy and the

thrust steering strategy. During the back-up strategy the inclination was not actively

controlled. These comments in references (87) and (88) are reinforced by the inclination

changes seen around days 100 and 250 in Figure 5.18. However, these appear to be the

only times during which the inclination was reduced.

The test cases assembled for this thesis take place during the inclination control

strategy and the back-up strategy. Test cases 1 and 2 as marked in Figures 5.16 -5.18 fall

within the back-up strategy while test case 3 takes place in the inclination control

strategy. With these three test cases, sampling of control strategies both with and without

inclination control was accomplished. Sections 5.4.3 and 5.4.4 describe the test cases and

results in detail.

236

5.4.3 ARTEMIS Orbit Determination Test Cases 1 and 2

 The first ARTEMIS test case included AFSSN TLEs and observations recorded

between the dates August 4, 2002 22:03:23 and August 14, 2002 19:12:00 UTC. These

dates correspond with the epochs of the TLEs that bound the span. The second

ARTEMIS test case included AFSSN TLEs and observations recorded between the dates,

December 27th, 2002 12:21:23.7096 and January 16th, 2003 21:36:00 UTC. As in test

case 1, the TLE epochs also bounded the span. Test case 1 is about 10 days long and test

case 2 is about 20 days. Both test cases take place during the 4th phase of the ARTEMIS

orbit raising. During this back-up strategy, only the RITA2 thruster was used (88), (88).

The August and December-January 2002 test cases were chosen because there were many

TLEs and AFSSN observations available during this 4th phase. It was also one of the

longest phases of the orbit raising and so there were many multi-day time spans that

could be used for developing test cases. All available TLEs during these time spans were

converted to osculating Keplerian element sets and position/velocity vectors in the Mean

Equator, Mean Equinox (MEME) of 1950 reference frame. The Keplerian elements were

used to serve as inputs to the optimal thrust planning software while the position/velocity

vectors were later used as observations in GTDS differential correction runs. The first

and last resulting Keplerian element sets were used as the initial and final orbits in the

optimal thrust planning software. These initial and final orbits are shown in Table 5.9

and Table 5.10.

237

Table 5.9 Initial and Final Orbits for ARTEMIS Case 1

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 39382.9722 0.00200685 1.435685 115.95324 297.51728 211.6003815

Final 39537.7077 0.00162154 1.435685 115.95324 297.51728 Free

Achieved 39537.7070 0.00162154 1.435683 115.95326 297.51717 191.3186515

Table 5.10 Initial and Final Orbits for ARTEMIS Case 2

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 41532.10828 0.902982 x 10-3 1.7341511 109.06473 39.263634 354.061463

Final 41840.20862 0.633538 x 10-3 1.7341511 109.06473 39.263634 Free

Achieved 41840.20700 0.633538 x 10-3 1.7341511 109.06475 39.263634 279.485451

In test cases 1 and 2, the Keplerian elements for the final orbit were modified

from the converted TLE at the final time because it was assumed that the inclination, the

right ascension of the ascending node, and the argument of perigee were only

experiencing drift according to natural perturbations during the back-up control strategy

interval in the orbit raising. These orbital parameters were not intended to be changed

through application of the ion thrusters. According to reference (87), the inclination was

only affected by natural drift during the time span for these test cases. This doesn’t

mean, of course, that these elements didn’t change as a result of the thrusting. However,

to avoid calculating optimal thrust plans that duplicated natural perturbations affecting

the inclination, RAAN and ARP, only the semimajor axis and eccentricity parameters

were allowed to change from the initial to final orbits. This is reflected in Tables 5.9 and

238

5.10. As shown in Figures 5.16 and 5.17, the semimajor axis and eccentricity were

significantly changed by the thrust application during this time span in August, 2002.

Tables 5.9 and 5.10 also show the final orbits achieved by the exact equation

thrust planning software for cases 1 and 2, respectively. To calculate thrust plans that

matched the final orbits this precisely, the averaged equation thrust planning software

was first used to calculate a set of Lagrange multipliers starting from initial guesses of

unity. The resulting averaged Lagrange multipliers for ARTEMIS case 1 are shown in

Table 5.11.

Table 5.11 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 1

Lagrange Multiplier Solution Value

()0~
aλ (s/km) 0.507334808835E+04

()0~
hλ (sec) -0.999690395153E+08

()0~
kλ (sec) -0.743508661166E+08

()
0

~
pλ (sec) 0.135424135144E+08

()
0

~
qλ (sec) 0.649226125343E+07

()0~
λλ (rad) -0.975118613527E-01

The resulting averaged Lagrange multipliers for ARTEMIS case 2 are shown in Table

5.12.

239

Table 5.12 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 2

Lagrange Multiplier Solution Value

()0~
aλ (s/km) 0.570932635372E+04

()0~
hλ (sec) -0.344890855691E+08

()0~
kλ (sec) 0.559045469505E+08

()
0

~
pλ (sec) 0.198345266291E+02

()
0

~
qλ (sec) 0.287833885967E+03

()0~
λλ (rad) 0.764058716901E-02

The averaged equation code calculated a thrust plan with a constant Hamiltonian

value equal to 1.000042 for ARTEMIS case 1 and a value of 1.000000 for ARTEMIS

case 2. These Hamiltonian values are both very close to the value of exactly one, and

this agreement indicates that the necessary conditions for optimality in ARTEMIS cases 1

and 2 have been met. Reference (47) indicates that the ion thrusters onboard ARTEMIS

can produce between 21 mN and 27 mN of thrust. With a spacecraft mass of 3100 kg

(47), this yields a thrust acceleration of between 6.77 x 10-9 and 8.71 x 10-9 km/s2. As a

first guess, 7.75 x 10-9 km/s2 was chosen as the thrust acceleration for the averaged

equation software run. For ARTEMIS case 1, the resulting transfer time from the

averaged equation software was 830,823.3 seconds. This is less than the transfer time of

853,717.0 seconds known from the initial and final TLE orbits. However, because the

averaged equation thrust planning software is simply intended to be used as a robust tool

from which reasonable initial guesses for the Lagrange multipliers can be obtained, the

difference between the known and solved values of the transfer time was deemed

240

sufficiently small. For ARTEMIS case 2, the resulting transfer time from the averaged

equation software was 1,767,002.2 seconds. This is reasonably close to the known

transfer time of 1,761,276.3 seconds. Adjusting the constant acceleration thrust level to

obtain agreement with the transfer time was later done using the exact equation thrust

planning software. It should be noted that in order to achieve the final desired orbit to a

high degree of precision using the averaged equation thrust planning tool, adjustment of

the weights in the cost function for the quasi-Newton search was done by hand in several

iterations. These weights are depicted in equation (2.101).

 The exact equation thrust planning tool was initialized with the initial guesses for

the Lagrange multipliers and transfer time solved for by the averaged equation planning

software. In order to produce a trajectory that closely matched the known transfer time of

853,717.0 seconds for ARTEMIS case 1 and 1,7612,76.3 seconds for ARTEMIS case 2,

the exact equation software was iterated while the constant thrust acceleration was

adjusted. As each iteration converged on a new set of values for the Lagrange multipliers

and transfer time, the thrust acceleration was adjusted using the assumption that an

excessively long transfer time indicated that the constant thrust acceleration was too

small. Conversely, a short transfer time indicated that the constant thrust acceleration

was too large. For ARTEMIS case 1, these iterations eventually resulted in an optimal

thrust trajectory with a transfer time of 853,721.0 seconds. This is too long by 4 seconds,

but is relatively close to the desired value. The constant value of the thrust acceleration

used for this trajectory was 7.5628 x 10-9. This is close to the initial guess of 7.5 x 10-9

241

and corresponds to a thrust force of 23.44468 mN for a 3100 kg spacecraft. The solutions

for the initial Lagrange multipliers for ARTEMIS case 1 are shown in Table 5.13.

Table 5.13 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 1

Lagrange Multiplier Solution Value

()0L
aλ (s/km) 0.326213810986E+04

()0L
hλ (sec) -0.671777405244E+08

()0L
kλ (sec) -0.478560629212E+08

()
0

L
pλ (sec) 0.157221510209E+05

()
0

L
qλ (sec) -0.128834477535E+05

()0L
Lλ (rad) 0.584382550521E+03

The Hamiltonian for the converged solution was equal to 1.0000052. This indicates a

solution in which the necessary condition for optimality is met with a high degree of

numerical precision. The final orbit achieved is shown in Table 5.9 and also shows that

the thrust plan matches the final desired orbit with a high degree of numerical precision.

 For ARTEMIS case 2, the end result was an optimal thrust trajectory with a

transfer time of 1,761,200.1 seconds. This differs from the known transfer time by only

76.1 seconds. The known transfer time is the time difference between the epoch times of

the initial and final orbits of the transfer. The constant value of the thrust acceleration

used for this trajectory was 6.5113 x 10-9. This is less than the solution value of 7.5628 x

10-9 obtained in ARTEMIS test case 1. ARTEMIS test case 1 occurs near the beginning

of the back-up control strategy while test case 2 occurs near the end. Perhaps in the

242

several months of thrusting that occurred between the time spans of the two test cases, the

thrust level on ARTEMIS was reduced. From open literature sources documenting the

ARTEMIS orbit raising, i.e. references (87) and (47), it is not clear why this occurred.

6.5113 x 10-9 corresponds to a thrust force of 20.185 mN for a 3100 kg spacecraft. This

assumes that there was no mass difference in the spacecraft between case 1 and 2.

Because Xenon fuel was being used, the mass must have decreased. However, this does

not account for the reduced thrust acceleration from test case 1 to test case 2. In fact, the

thrust acceleration due to the ion engine should increase over time as fuel is being spent

and the spacecraft mass decreases.

The solutions for the initial, exact equation Lagrange multipliers for ARTEMIS

case 2 are shown in Table 5.14.

Table 5.14 Initial Exact Lagrange Multipliers for ARTEMIS Case 2

Lagrange Multiplier Solution Value

()0L
aλ (s/km) 0.561982107075E+04

()0L
hλ (sec) -0.178751941273E+08

()0L
kλ (sec) 0.513808871168E+08

()
0

L
pλ (sec) -0.154227994948E+04

()
0

L
qλ (sec) -0.157509957534E+04

()0L
Lλ (rad) 0.313251259293E+04

The Hamiltonian for the converged solution for ARTEMIS case 2 was equal to

0.9999985. As in case 1, this Hamiltonian solution indicates that the necessary condition

243

for optimality is met with a high degree of numerical precision. The final orbit achieved

for case 2 is shown in Table 5.10. The thrust plan matches the final desired orbit with a

high degree of numerical precision.

Figures 5.19-5.21 show selected orbital element histories and the pitch and yaw

thrust plan over the transfer trajectory for ARTEMIS case 1. The thrust plan was

generated with the exact equation thrust planning software which uses only two-body

motion and thrust acceleration dynamics.

Figure 5.19 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan
Case 1

244

Figure 5.20 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 1

Figure 5.21 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 1

Figure 5.19 shows that the semimajor axis undergoes an apparently linear increase

from the initial boundary condition to the final boundary condition. The eccentricity

245

follows an oscillatory path during the transfer from the initial to final boundary condition.

From Figure 5.20, it is clear that the inclination and RAAN change over time during the

transfer, but the change is so small that it is less than the precision shown in the ordinate

axis. This was the desired behavior because the inclination and RAAN were not

supposed to change significantly as a result of thrust during this transfer. Figue 5.21

shows that the yaw angles used in controlling the trajectory are very small in relation to

the pitch angles used. This relates to the very small changes due to thrust in the orbital

plane compared to the larger changes due to thrust in the orbit’s semimajor axis and

eccentricity. The oscillations in the eccentricity seem to be caused by the varying pitch

angle during the course of the thrust plan. Perturbations such as solar radiation pressure

were not modeled in computing this thrust plan. Therefore, the changes in eccentricity

must be due to the thrust acceleration.

Figures 5.22-5.24 show selected orbital element histories and thrust pitch and yaw

directions over the transfer trajectory for ARTEMIS case 2.

246

Figure 5.22 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan
Case 2

Figure 5.23 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 2

247

Figure 5.24 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 2

Figure 5.22 shows that in case2, as in case 1, the semimajor axis undergoes a

roughly linear increase from the initial orbit to the final orbit. In case 2, the eccentricity

also follows an oscillatory path during the transfer. Cases 1 and 2 differ in the small

inclination and RAAN changes shown in Figures 5.20 and 5.23, respectively. For case 1,

the inclination and RAAN both increase while the inclination decreases over the transfer

in case 2. However, as expected, the inclination and RAAN change little over the time of

the transfer. The yaw angles used in controlling the trajectory are again very small in

relation to the pitch angles used. The pitch and yaw angle oscillations shown in Figure

5.24 for case 2 are about three times less than the amplitudes of the pitch and yaw angle

oscillations in Figure 5.21 for case 1. It seems the optimal thrust planning software

chooses similar plans for cases 1 and 2, but smaller amplitudes in the thrust control angle

oscillations are required for the longer transfer.

248

As mentioned before, inertial, osculating MEME of 1950 position/velocity

vectors converted from TLEs were used as observations in GTDS Cowell differential

corrections (DCs). In addition, AFSSN observations were used in a separate set of GTDS

DCs. Specifically, the GTDS DC program used an iterative Bayes’ Least Squares

estimator. The force models used with the Cowell propagator for these DCs included

12x12 geopotential coefficients from the JGM-2 geopotential model, lunar and solar

gravitational perturbations, solar radiation pressure and Earth polar motion. The solve-

for vector was the Cartesian position and velocity in the MEME of 1950 reference frame.

Starting from a reasonable a-priori orbital estimate, this nonlinear estimator should find

the orbit that best fits a given set of observations in a least-squares sense. The DCs, i.e.

fits, were done in order to evaluate whether optimal thrust plans provide any modeling

improvement for the ARTEMIS satellite orbit during the August 4-14, 2002 and the

December 27, 2002 – January 16, 2003 test case time spans. For both the TLE

position/velocity vectors and the AFSSN radar and optical observations, two GTDS

differential correction (DC) runs were executed. The first run for each set of

observations did not use the optimal thrust plan generated by the exact equation optimal

thrust planning software. The second run did use the optimal thrust plan. These GTDS

DC runs were then compared in terms of the TLE and AFSSN observation residual

statistics. The inertial, Cartesian position/velocity vector residuals, i.e. differences

between observed and computed observations, for the TLE based observations in

ARTEMIS case 1 are shown in Figures 5.25-5.27. The residuals obtained when the

optimal thrust plan is used are shown as red crosses. The residuals obtained when no

249

thrust plan model is used are shown as blue circles. The Cartesian (X,Y,Z) position and

velocity residuals are closer to zero-mean and have smaller variances when the thrust

plan is integrated with the GTDS differential corrections versus when the plan is ignored.

The improvement in residual statistics is clear evidence that the optimal thrust plan is

improving the accuracy of the orbit modeling for ARTEMIS test case 1.

 (a) (b)

Figure 5.25 Case 1 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (X-direction)

(a) (b)

Figure 5.26 Case 1 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Y-direction)

250

 (a) (b)

Figure 5.27 Case 1 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Z-direction)

The improvement in modeling accuracy is also apparent when AFSSN radar and

optical observations are used in a differential correction (DC) with the optimal thrust

plan. The residual statistics when the optimal thrust plan is ignored in the DC for

ARTEMIS case 1 are shown in Table 5.15.

Table 5.15 DC Residual Statistics for Case 1 when Thrust Plan is Ignored
Type DEC

(arcs)
RA

(arcs)
TDEC
(arcs)

TRA
(arcs)

Azimuth
(arcs)

Elevation
(arcs)

Range
(m)

Doppler
(cm/s)

Total
No.

10 10 73 73 70 70 70 70

No.
Accepted

0 0 6 15 20 50 0 0

Mean
Residual

0.0 0.0 -1.3E5 -5.6E4 -2.9E5 2.9E4 0.0 0.0

Std. Dev. 0.0 0.0 5.6 6.2E4 4.3E5 7.4E4 0.0 0.0

The case 1 DC fit to the AFSSN observations when ignoring the thrust plan is very poor.

Over the fitspan, 446 observations are available (Total No.), but only 91, 26%, are

251

included in the fit (No. Accepted). The 74% of observations that were not included were

rejected because the residuals for those observations surpassed the 3σ threshold. Th

means that most of the residuals were more than three standard deviations away from the

mean value. The combined weighted RMS for all residuals was 2910. This is also

known as the chi-squared statistic and is a measure of goodness of fit. If the residuals

match the expected variances for the measurements, the weighted RMS should roug

equal 1.0. A value of 2910 clearly indicates that the best fit achieved using the Bayes’

Least Squares estimator is still a poor fit of the observations. The covariance of the

solve-for vector can also be examined for this fit. The standard deviation in the

position/velocity solve-for vectors is on the order of 1.0 x 1068. This nonsensical

covariance indicates very large uncertainty in the solve-for vector values. The G

Cowell DC fit results indeed show very poor agreement with the AFSSN observat

 If the optimal thrust plan is used in the orbit prediction during the differential

is

hly

TDS

ions.

orrection (DC), the AFSSN residual statistics in Table 5.16 are obtained for ARTEMIS

ase 1.

Type DEC
(arcs)

RA
(arcs)

TDEC
(arcs)

TRA
(arcs)

Azimuth
(arcs)

Elevation
(arcs)

Range
(m)

Doppler
(cm/s)

c

c

Table 5.16 DC Residual Statistics for Case 1 when Modeled with Thrust Plan

Total
N

10 10 73 73 70 70 70 70
o.

No.
Accepted

10 10 62 48 60 70 45 70

Mean
Residual

55.6 230 38.1 48.9 -119.6 -48.6 -5.02 -4.92

Std. Dev. 2.11 0.82 49.7 126.7 206.2 184.8 57.17 100.9

252

Residual sta dis d in e 5 w t llite modeling whi

includes the optimal thrust plan results in a b r fit of the residuals. However, the

A

an the

.

 Figures 5.28a and 5.28b. These residuals were the result when the optimal thrust plan

as inc

tistics playe Tabl .16 sho hat sate motion ch

ette

residual statistics are not at the level expected for the given observations. Radar range

measurements, for example, are typically near zero-mean and can have a variance as

small as 5-20 meters. Radar angular measurements, i.e. Azimuth and Elevation, should

have residual statistics on the order of 20-30 arcseconds. Optical measurements, i.e. R

and DEC, should have residual statistics on the order of 10-15 arcseconds. The larger

than expected residual statistics indicate that the optimal thrust plan is not precisely equal

to the thrust plan actually executed by ARTEMIS. Many more observations were

included in this fit than in the previous fit for case 1. Out of 446 observations, 375 or

84% were included. This means that the fit is including many more observations th

fit done without thrust modeling. The combined weighted RMS of all residuals is 7.08

This is still not an ideal fit because 7.08 is much larger than 1.0. However, this is much

better than 2910. The standard deviations of the Cartesian position solve-for values are

between 0.12 and 1.2 km. The covariance of the solve-for state in this fit indicates much

more certainty of the satellite’s position than in the fit which ignored thrust acceleration.

 The SSN radar range and range rate (doppler) measurement residuals are plotted

in

w luded in the GTDS Cowell DC fit.

253

Figure 5.28 Range (a) and Range Rate (b) Residuals for ARTEMIS Case 1

The mean and standard deviation of the range and range rate measurement residuals

displayed in Figure 5.28 differ from those in Table 5.16 because the statistics in Table

5.16 only include residuals that were accepted according to the 3σ criterion. The

statistics in Figure 5.28 include all measurement residuals regardless of acceptance

according to the 3σ criterion. The range residuals should not be much larger than about

20 meters given the radar measurements included in the DC fit. The larger than expected

range residuals indicate some mismodeling in the GTDS DC fit. The optimal thrust plan

seems to represent the actual ARTEMIS thrust strategy with some degree of inaccuracy.

From Figure 5.28, it appears as though range measurements near the end of the fitspan

are not fitting as well as observations in the beginning and middle of the fitspan. This

could indicate that the thrust modeling is more inaccurate near the end of the fitspan. The

range rate measurements appear to fit reasonably well except for a number of

measurements near the end of day 5 in the fitspan. This could indicate an inaccurate

radar track or inaccurate thrust modeling at that point in the fitspan.

254

 Figure 5.29 shows the radar azimuth and elevation measurement residuals for

ARTEMIS case 1 when the optimal thrust plan is included in the GTDS Cowell DC fit.

Figure 5.29 Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 1

In Figure 5.29 as in Figure 5.28, the mean and standard deviation statistics of the

measurement residuals differ from those in Table 5.16 because Figure 5.29 includes all

measurement residuals regardless of whether they were included in the fit according to

the 3σ criterion. In Figure 5.29, azimuth and elevation residuals are much larger than the

20 arcsecond residuals one would expect given the radar measurements used in the

GTDS DC fit. This indicates the optimal thrust plan used for this fit is inaccurate to some

degree.

The optical right ascension and declination measurement residuals from the

GTDS Cowell DC fit for ARTEMIS case 1 are shown in Figure 5.30. Here, the optimal

thrust plan was included in the fit.

255

Figure 5.30 Right Ascension (a) and Declination (b) Residuals for ARTEMIS Case 1

In Figure 5.30, as in Figures 5.28 and 5.29, all residuals are included regardless of the 3σ

criterion used in the GTDS DC. These residual mean and standard deviation statistics

therefore differ from those in Table 5.16. The right ascension and declination residuals

are not expected to be much larger than 15 arcseconds given the sensors supplying the

observations. However, Figure 5.30 shows that the residuals are significantly larger than

expected. Both the right ascension and declination residuals increase significantly after

day 5 in the fitspan. This could mean that the thrust plan is more inaccurate in the latter

half of the 10 day span than in the first half. This was also hinted at in the range residuals

shown in Figure 5.28. It is clear that systematic errors in the thrust modeling prevent

measurement residuals that exhibit only sensor measurement noise characteristics.

Despite these noted imperfections, the lessening of the TLE derived position/velocity

vector residuals demonstrated in Figures 5.25 – 5.27 shows that the optimal thrust plan

does significantly improve thrust motion modeling for ARTEMIS.

256

ARTEMIS test case 2 shows improvement that is similar to the improvement

demonstrated in case 1 when thrust acceleration is modeled with an optimal thrust plan.

Figures 5.31-5.33 show the Cartesian, osculating position and velocity residuals when fit

with and without optimal thrust modeling.

(a) (b)

Figure 5.31 Case 2 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (X-direction)

 (a) (b)

Figure 5.32 Case 2 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Y-direction)

257

 (a) (b)

Figure 5.33 Case 2 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Z-direction)

In Figures 5.31-5.33, the improvement in the ARTEMIS case 2 position/velocity

residuals is more dramatic than for the case 1 residuals. Case 2 spans roughly 20 days

while case 1 spans about 10 days. Therefore, attempting to fit the TLE-based

position/velocity vectors is more difficult in case 2 because of the larger displacement of

the orbit due to the continuous thrusting. Results from ARTEMIS test case 2 also

demonstrate significant improvement in modeling the satellite’s artificial motion when

using the optimal thrust plan.

When fitting AFSSN observations without thrust modeling in case 2, the GTDS

Cowell DC software is unable to converge. The DC rejects all observations and three

consecutive iterations in the nonlinear estimator diverge rather than converge. It is

apparently very difficult to fit observations of ARTEMIS over the 20 day span when no

thrust modeling is attempted. When the optimal thrust plan for case 2 is applied, the

258

GTDS DC program is able to converge and produces the observation residual statistics

shown in Table 5.17.

Table 5.17 DC Residual Statistics for Case 2 when Modeled with Thrust Plan
Type DEC

(arcs)
RA

(arcs)
TDEC
(arcs)

TRA
(arcs)

Azimuth
(arcs)

Elevation
(arcs)

Range
(m)

Doppler
(cm/s)

Total
No.

29 29 32 32 183 183 183 180

No.
Accepted

29 24 31 28 181 183 58 180

Mean
Residual

68.23 -158.1 37.01 142.9 3.862 38.13 -4.74 0.318

Std. Dev. 25.81 282.8 32.61 138.5 316.8 210.8 80.23 48.35

The DC accepts most of the observations. Out of 851 observations, 714, or 83%, are

accepted by the 3σ criterion. The combined weighted RMS statistic is 14.74 for the fit.

This is significantly larger than the ideal value of 1.0. Also, the individual measurement

residual statistics shown in Table 5.17 are larger than expected. Both facts point to

remaining modeling errors for the ARTEMIS trajectory over this 20 day span. The

optimal thrust plans generated by the thrust plan software are not yet accurate enough to

allow orbit fits that produce residuals that exhibit only measurement noise. Systematic

errors caused by the inaccurate thrust plans prevent such high precision orbit fits. The

covariance of the position estimate shows variances on the order of between 1.0 and 1.7

km. When modeling the thrust plan, the uncertainty in the satellite’s position is therefore

only slightly higher for case 2 than it is for case 1.

Figure 5.34 shows the radar range and range rate measurement residuals for

ARTEMIS case 2 when the optimal thrust plan was included in the GTDS DC fit. The

259

mean and standard deviation of the residuals shown in Figures 5.34-5.36 differ from

those in Table 5.17 because in Table 5.17, only residuals accepted in the fit according to

the 3σ criterion are included. In Figures 5.34-5.36 all residual are included.

Figure 5.34 Range (a) and Range Rate (b) Residuals for ARTEMIS Case 2

As in Figure 5.30 for case 1, the range residuals are larger than expected. The range

residuals for the radar sensors used in the GTDS Cowell DC fit would not be much larger

than 20 meters if the ARTEMIS motion modeling was near perfect. As in case 1, the

larger than expected range residuals for case 2 indicate that inaccuracies in the thrust

modeling are indeed present.

Figure 5.35 shows the radar azimuth and elevation measurements for ARTEMIS

case 2 when optimal thrust modeling is used in the GTDS Cowell DC.

260

Figure 5.35 Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 2

The expected residuals for the azimuth and elevation angle radar observations would be

on the order of 20 arcseconds if the ARTEMIS thrust acceleration and natural motion

modeling was near perfect. Because the azimuth and elevation angle residuals are

significantly larger than expected, it is likely the thrust modeling is inaccurate to some

degree. There is also a trend in the residuals that indicates periodic errors in the

modeling.

Figure 5.36 shows the optical right ascension and declination residuals for

ARTEMIS case 2 when fit in a GTDS Cowell DC. The optimal thrust plan was used in

the fit.

261

Figure 5.36 Right Ascension (a) and Declination (b) Residuals for ARTEMIS Case 2

The expected residuals would be on the order of 15 arcseconds if near perfect modeling

of the ARTEMIS thrust was accomplished. The right ascension and declination residuals

shown in Figure 5.36 show that near-perfect modeling was indeed not achieved. The

right ascension residuals show a parabolic pattern over the 20 day span. This indicates

that the along-track motion of ARTEMIS is not being modeled accurately. The

declination residuals show a bias of around 50 arcseconds. This indicates that the

ARTEMIS cross-track motion is not being modeled accurately.

5.4.4 ARTEMIS Orbit Determination Case 3

The third ARTEMIS test case was chosen to coincide with the inclination control

strategy. The test case span was specifically chosen to coincide with the obvious change

in inclination around day 100 as displayed in Figure 5.18. This third test case included

only AFSSN TLEs. AFSSN radar and optical observations could not be obtained in time

for this thesis. The test case start and end times were November 9, 2001 10:20:58.513

262

UTC and November 28, 2001 03:09:02.650 UTC, respectively. This span is about 18

days in duration. As in test cases 1 and 2, all available TLEs during these time spans

were converted to osculating Keplerian element sets and position/velocity vectors in the

Mean Equator, Mean Equinox (MEME) of 1950 reference frame. The Keplerian

elements were used to serve as inputs to the optimal thrust planning software while the

position/velocity vectors were later used as observations in GTDS differential correction

runs. The first and last resulting Keplerian element sets were used as the initial and final

orbits in the optimal thrust planning software. These initial and final orbits are shown in

Table 5.18.

Table 5.18 Initial and Final Orbits for ARTEMIS Case 3

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg)

Initial 37303.61026 0.0007899398 1.0670144 135.6513 81.55172 238.70057

Final 37300.27217 0.0005757628 0.9876237 135.6513 81.55172 Free

Achieved 37300.27431 0.0005757811 0.9876415 135.6502 81.55504 88.196088

In test case 3, the Keplerian elements for the final orbit were modified from the

converted TLE at the final time because the right ascension of the ascending node, the

argument of perigee, and the mean anomaly were not actively controlled during the

inclination control strategy. However, the semimajor axis, eccentricity, and inclination

were deliberately changed according to the thrust control strategy executed by the

ARTEMIS operators. Figures 5.17-5.18 show that the eccentricity and inclination have a

decreasing trend during the case 3 interval. These trends seem to be isolated to the span

approximately marked by the case 3 boundaries. This implies that the case 3 interval

approximates a time period when the ARTEMIS operators actively controlled the

263

eccentricity and inclination. It seems as though the operators didn’t control the

eccentricity and inclination during the times immediately surrounding the case 3 interval.

The semimajor axis also displays a decrease of around two kilometers during the case 3

interval, but that change is too small to be seen in Figure 5.16.

Table 5.18 shows the final orbit achieved by the exact equation thrust planning

software for cases 3. This orbit nearly matches the desired final orbit. However, the

agreement is not as good as that obtained in ARTEMIS cases 1 and 2. In ARTEMIS case

3, the exact equation thrust planning software was not able to minimize the cost function

to a high degree of precision. This may be due to test case 3 having more periodicity in

the orbital elements and Lagrange multipliers over the transfer time. There are better

algorithms for solving the cost minimization than the quasi-Newton unconstrained

minimization method used in this work and exploration of these more advanced methods

should be addressed in future work.

To calculate the thrust plan that matched the final orbit with reasonable precision,

the averaged equation thrust planning software was first used to calculate a set of

averaged Lagrange multipliers starting from initial guesses of unity. The resulting

averaged Lagrange multipliers for ARTEMIS case 3 are shown in Table 5.19.

264

Table 5.19 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 3

Lagrange Multiplier Solution Value

()0~
aλ (s/km) -0.772868765055E+02

()0~
hλ (sec) 0.227840011762E+07

()0~
kλ (sec) 0.311020912332E+07

()
0

~
pλ (sec) -0.161366219567E+10

()
0

~
qλ (sec) 0.168962077600E+10

()0~
λλ (rad) -0.489428314171E-01

The averaged equation code calculated a thrust plan with a constant Hamiltonian

value equal to 1.000000 for ARTEMIS case 3. The Hamiltonian value is very close the

value of exactly one, and this agreement indicates that the necessary condition for

optimality in ARTEMIS case 3 has been met. Reference (47) indicates that the ion

thrusters onboard ARTEMIS can produce between 21 mN and 27 mN of thrust. With a

spacecraft mass of 3100 kg (47), this yields a thrust acceleration of between 6.77 x 10-9

and 8.71 x 10-9 km/s2. Because the inclination control strategy discussed in reference

(88) involved about 5 hours of thrusting per day rather than continuous thrusting, a

reduced guess for the thrust acceleration was used in this case. By iterating the averaged

equation thrust planning software to achieve a computed transfer time approximately

equal to the known transfer time, a constant thrust acceleration of 4.4 km/s2 was

converged upon. This thrust acceleration resulted in a transfer time of 1,619,696

seconds. This is greater than the transfer time of 1,615,684 seconds known from the

265

initial and final TLE orbits. However, because the averaged equation thrust planning

software is simply intended to be used as a robust tool from which reasonable initial

guesses for the Lagrange multipliers can be obtained, the difference between the known

and solved values of the transfer time was deemed sufficiently small. It should be noted

that in order to achieve the final desired orbit to a high degree of precision using the

averaged equation thrust planning tool, adjustment of the weights in the cost function for

the quasi-Newton search was done by hand in several iterations. These weights are

depicted in equation (2.101).

 The exact equation thrust planning tool was initialized with the initial guesses for

the Lagrange multipliers, the constant thrust acceleration value, and the transfer time

solved for by the averaged equation planning software. In order to produce a trajectory

that closely matched the known transfer time of 1,615,684 seconds for ARTEMIS case 3,

the exact equation software was iterated while the constant thrust acceleration was

adjusted. As each iteration converged on a new set of values for the Lagrange multipliers

and transfer time, the thrust acceleration was adjusted using the assumption that an

excessively long transfer time indicated that the constant thrust acceleration was too

small. Conversely, a short transfer time indicated that the constant thrust acceleration

was too large. For ARTEMIS case 3, these iterations eventually resulted in an optimal

thrust trajectory with a transfer time of 1,619,069 seconds. This is too long by 3385

seconds. However, the exact equation thrust planning software had difficulty finding cost

function minima when the thrust acceleration was adjusted. This fact necessitated the use

of this thrust plan even though the solved-for transfer time did not match the known

266

transfer time very precisely. The constant value of the thrust acceleration used for this

trajectory was 4.4 x 10-9. This is the same value solved for by the averaged equation

software and was reused because the iterations using the exact equation software had

difficulty finding a cost function minimum for other values of the thrust acceleration.

4.4 x 10-9 corresponds to a thrust force of 13.64 mN for a 3100 kg spacecraft. The exact

equation solutions for the initial Lagrange multipliers for ARTEMIS case 3 are shown in

Table 5.13.

Table 5.20 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 3

Lagrange Multiplier Solution Value

()0L
aλ (s/km) -0.728573542528E+02

()0L
hλ (sec) 0.301891114262E+07

()0L
kλ (sec) 0.579883263045E+07

()
0

L
pλ (sec) 0.105599550006E+10

()
0

L
qλ (sec) 0.108651386979E+10

()0L
Lλ (rad) 0.252160525941E+04

The Hamiltonian for the converged solution was equal to 1.0000705. This

indicates a solution in which the necessary condition for optimality is met with a high

degree of numerical precision. The final orbit achieved is shown in Table 5.18.

Figures 5.37-5.39 show selected orbital element histories and the pitch and yaw

thrust plan over the transfer trajectory for ARTEMIS case 3. As for cases 1 and 2, the

267

thrust plan for test case 3 was generated with the exact equation thrust planning software

using only two-body motion and thrust acceleration dynamics.

Figure 5.37 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan
Case 3

268

Figure 5.38 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 3

Figure 5.39 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 3

269

Figure 5.37 shows that the semimajor axis decreases from the initial boundary

condition to the final boundary condition. This decrease is not linear as in cases 1 and 2.

Rather it has periodic behavior caused by the thrust plan. The eccentricity also decreases

and follows an oscillatory path during the transfer from the initial to final boundary

condition. The semimajor axis and eccentricity oscillations are due to the varying pitch

angle of thrust during the transfer. Figure 5.38 shows the inclination and right ascension

of the ascending node during the transfer plan. The right ascension trend is oscillatory

while the inclination trend is linear. Figure 5.39 shows that the pitch and yaw angles both

vary a great deal during each day of the thrust plan. The pitch angle rotates about 360

degrees in relation to the spacecraft each day. This ultimately achieves the semimajor

axis and eccentricity changes required to get from the initial to the final orbit. The yaw

angle pauses for several hours at 90 degrees and -90 degrees, i.e. normal to the orbital

plane. This behavior is not surprising because during the inclination control strategy, a

yaw angle of thrust that is normal to the orbit plane for several hours a day was described

in reference (88). This yaw angle behavior in the thrust plan produced for ARTEMIS

case 3 differs from the behavior in the plans created for ARTEMIS cases 1 and 2 because

inclination control was used in the test case 3 interval. Inclination control was not

attempted during the back-up control strategy according to reference (88).

As in ARTEMIS cases 1 and 2, inertial, osculating MEME of 1950

position/velocity vectors converted from TLEs were used as observations in GTDS

Cowell differential corrections (DCs). AFSSN radar and optical observations were not

applied in test case 3 because they were not available at the time of the writing of this

270

thesis. The GTDS DC program used an iterative Bayes’ Least Squares estimator. The

force models used with the Cowell propagator for these DCs were the same as for cases 1

and 2 and included 12x12 geopotential coefficients from the JGM-2 geopotential model,

lunar and solar gravitational perturbations, solar radiation pressure and Earth polar

motion. The solve-for vector was the Cartesian position and velocity in the MEME of

1950 reference frame. Starting from a reasonable a-priori orbital estimate, this nonlinear

estimator should find the orbit that best fits a given set of observations in a least-squares

sense. For test case 3, the DCs, i.e. fits, were done in order to evaluate whether optimal

thrust plans provide any modeling improvement for the ARTEMIS satellite orbit during

the time span from November 9th, 2001 to November 28th, 2001. As in cases 1 and 2, the

TLE position/velocity vectors were applied in two GTDS differential correction (DC)

runs. The first run for each set of observations did not use the optimal thrust plan

generated by the exact equation optimal thrust planning software. The second run did use

the optimal thrust plan. These GTDS DC runs were then compared in terms of the

position/velocity residual statistics. The inertial, Cartesian position/velocity vector

residuals, i.e. differences between observed and computed observations, for the TLE

based observations in ARTEMIS case 3 are shown in Figures 5.40-5.42. The residuals

obtained when the optimal thrust plan is used are shown as red crosses. The residuals

obtained when no thrust plan model is used are shown as blue circles.

271

Figure 5.40 Case 3 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (X-direction)

Figure 5.41 Case 3 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Y-direction)

272

Figure 5.42 Case 3 Residuals of TLE based ECI osculating position (a) and
velocity (b) vectors (Z-direction)

Figure 5.42 shows that the ECI, Cartesian position/velocity residuals in the Z

direction are closer to zero-mean and have smaller variances when the thrust plan is

integrated with the GTDS differential corrections versus when the plan is ignored. This

is expected because the Z ECI directional axis most reflects satellite motion out of the

orbital plane, and the optimal thrust plan was constructed to model the satellite’s orbital

plane change during the thrust transfer. The X direction and Y direction ECI residuals in

Figures 5.40 and 5.41 show marginal improvement when applying the optimal thrust plan

to orbit determination. This is perhaps because the optimal thrust plan did not perform

the transfer within the known transfer time and did not model the transfer in

discontinuous pieces as ARTEMIS actually performed the transfer. However, the

improvement in residual statistics for the Z-axis clearly indicates that the optimal thrust

plan improved the accuracy of the orbit modeling for ARTEMIS test case 3.

273

Overall, ARTEMIS test cases 1, 2 and 3 provide strong evidence that assuming an

optimal thrust plan based on two-body dynamics can provide significant improvement in

agreement with TLE and AFSSN observation data. Remaining modeling errors persist,

however. These remaining modeling errors are apparent when examining AFSSN radar

and optical measurement residuals. Future work to include J2, lunar and solar gravity,

and other significant perturbations in the optimal thrust planning software may allow for

more accurate orbit determination. It is probable that the ARTEMIS operators used

thrust plans that did consider J2 and other perturbations. If that is the case, modeling

these perturbations in the optimal thrust planning software should provide benefits for

orbit determination and prediction of the ARTEMIS satellite during its orbit raising.

Iteration of the orbit determination and optimal thrust plan solutions should also

be considered. Because the initial and final orbits used as input to the optimal thrust

planning software are based on TLEs in these ARTEMIS test cases, they contain errors

on the order of several kilometers. If an iteration can be executed whereby a DC orbit

solution, i.e. initial and final orbits from the fitspan of the DC, can be used as input to the

optimal thrust planning software, and new optimal thrust plans can be used in a

subsequent DC, refinement of the satellite’s trajectory could be made. This iterative

process would essentially require an outer processing loop for the process depicted in

Figure 5.15. However, it is unclear that such a super-iteration of this procedure would

result in more accurate orbit determination without implementation of perturbations in

the optimal thrust planning software.

274

Chapter 6 Conclusions and Future Work

6.1 Summary and Conclusions

The goals set out for this thesis included applying a modern filter/smoother to the

problem of orbit determination for satellites that operate with continuous, low-thrust

propulsion. The goal of applying modern filters and smoothers was set to determine

whether estimation accuracy could be improved. Specifically, this thesis work was done

in response to previous work in detecting satellite maneuvers (1). In this previous work,

several detection algorithms for impulsive, chemical maneuvers were developed and

evaluated. In the end, reference (1) presents an algorithm that uses an adaptive Extended

Kalman Filter to detect maneuvers. The algorithm also attempts to verify the maneuvers

and produce accurate post-maneuver orbital estimates using short-span differential

corrections. The authors found that the adaptive Extended Semianalytic Kalman Filter

(ESKF) alone provided insufficient accuracy immediately after satellite maneuvers

occurred, and the ESKF required much time to recover accurate orbital state estimates.

For this thesis, a modern filter/smoother, the Backward Smoothing Extended

Kalman Filter (BSEKF) (2), was chosen to attempt to remedy the accuracy issues found

in reference (1) with the ESKF. The BSESKF was implemented in the Goddard

Trajectory Determination System (GTDS) and coupled to the Draper Semianalytic

Satellite Theory (DSST) to provide system dynamics. The BSESKF was tested with

simulated observations generated from a nominal orbit for LEO and GEO test cases. For

the LEO and GEO cases tested, the BSESKF provided more accurate orbital state

275

estimates than an existing ESKF implementation, and it required less time and fewer

observations to obtain the accurate orbital state estimates. Increasing the number of

observations over which the BSESKF filters and smoothes, i.e. the m-buffer, usually

improved the accuracy and convergence of the BSESKF estimates. However, in some

cases, increasing the m-buffer to sizes that include observations more than three

integration time steps from the latest observation time reduced the accuracy of the

BSESKF estimates. Preliminary testing indicates that with large m-buffer sizes, there is

the potential to use interpolators outside of their valid ranges. Further software

modifications could allow the interpolators to be reinitialized for past observations.

Despite this software issue, the BSESKF estimates are a significant improvement over

the ESKF estimates in the cases exercised.

Modeling continuous, low-thrust orbit transfers was also a goal for this thesis and

significant progress has been made. Software tools to generate optimal thrust plans have

been written and these plans have been used in GTDS for both orbit prediction and

determination. The work of Jean Kechichian was particularly useful in developing these

thrust planning tools. The ARTEMIS satellite orbit raising was used as a test case for

determining how well orbit determination could be improved when optimal thrust plans

were used to model continuous thrust orbit transfers. For the ARTEMIS case, optimal

thrust plans were generated for three different time spans during the orbit raising. Orbit

determination using GTDS was then performed for those spans. When the optimal thrust

plan for the transfer was used to model the thrust acceleration, the orbit determination

observation residuals varied much less than when the thrust acceleration was not

276

modeled. In some cases, this variance improved by an order of magnitude. The mean

errors in the residuals were also much closer to zero when modeling spacecraft thrust

with optimal thrust plans vs. no thrust plans. Particularly when using Air Force Space

Surveillance Network (AFSSN) observations, neglecting spacecraft thrust didn’t allow

non-linear least squares differential orbit corrections to converge. When differential

corrections included optimal thrust plan modeling, convergence was achieved. Results

demonstrated in this thesis were achieved using position/velocity observations derived

from Two Line Elements (TLEs) and using radar and optical observations from the

AFSSN.

Although the observation residual behavior was significantly improved when

using optimal thrust plans, the measurement residuals associated with AFSSN

observations were still characterized by larger means and variances than were expected

given the sensors and observation types used. This indicates that systematic orbit

modeling errors were being projected into the observation residual space. These

systematic errors are likely from a combination of sources. These error sources include:

inaccuracy in the initial and final ARTEMIS orbital elements used to generate the

optimal thrust plans, neglect of perturbative forces such as J2 when calculating the

optimal thrust plans, and the assumption that the ARTEMIS actually used an optimal

thrust plan when executing its orbit raising. There also may have been times within the

modeled spans during which the ARTEMIS thrusters were turned off. Such

discontinuities would not have been modeled in the optimal, constant thrust plans

generated with the thrust planning software.

277

6.2 Future Work

Because of the favorable results obtained in testing the BSESKF with simulated

observations, future work should examine the behavior of the BSESKF when given real

observations. This might first include applying it to real observation cases in which very

accurate truth orbits could be used such as in the cases of satellites tracked by laser

ranging stations or GPS satellites. If these tests prove successful, the BSEKF could be

tested with sparser data or data from the Air Force Space Surveillance Network

(AFSSN). Ultimately, the BSEKF could prove useful enough to replace the ESKF used

for maneuver detection at MIT Lincoln Laboratory (1). This system uses the ESKF to

detect off-nominal observation residuals and uses a series of subsequent tests to detect

maneuvers in GEO satellites. It currently has to use short-span differential correction

(DC) after maneuvers to provide accurate post-maneuver orbital estimates. Perhaps the

BSESKF can replace the clumsier ESKF and DC approach.

Another application of the BSESKF could be estimating atmospheric density

corrections. Others have worked on this problem and have applied other filter/smoothers

to orbit determination and density correction estimation (92), (93). These references

develop a Colored Noise Algorithm and an SVD decomposition estimation algorithm,

respectively. It would be useful to compare the BSESKF to these estimators. It may also

be worthwhile to use concepts from these estimators to improve convergence properties

and treatments of measurement and process noise in the BSESKF. The sigma points

smoother developed by Mark Psiaki (82) is an alternative to the BSEKF. It uses a

278

version of the UKF with a smoother and compares well with the BSEKF while being

more computationally efficient (82).

The capabilities of the maneuver detection and modeling system depicted in

Figure 1.1 are not yet fully realized with the tools that have developed for this thesis.

Figure 6.1 shows helpful existing software, software developed for this thesis, and

notional future software that would be useful in developing such a system.

Figure 6.1 Progress in Modeling, Prediction and Estimation Tools for Improved
Satellite Thrust Treatment

Although the thrust acceleration force model that has been implemented in GTDS

has been successfully used with the Cowell orbit propagator, further software work must

be done to use thrust plans with the DSST propagator. Some testing toward this end has

been done, but further software issues remain. This implementation gap is depicted in

Figure 6.1.

279

Although the BSEKF has also been coupled to the Cowell propagator in GTDS,

testing currently indicates poorer convergence than with the existing GTDS EKF. The

Cowell BSEKF also shows much poorer estimation performance than the DSST

BSESKF. The software interface between the Cowell propagator and the BSEKF

estimator requires more analysis and development for this capability to be realized. This

gap in implentation is shown in Figure 6.1. Also, as discussed in section 4.4 of Chapter

4, allowing interpolator reinitialization in the BSESKF-DSST interface should improve

BSESKF estimate accuracy with large m-buffer sizes.

The optimal thrust planning software would be made more useful with some

enhancements. Modeling for Earth’s J2, J3 and J4 zonal harmonics should be included.

Lunar and solar gravitational perturbations should also be included. References (7) and

(8) would be good starting points for this effort. Perturbations such as these non-

spherical harmonics and third-body effects alter long-duration thrust transfers

significantly. Other useful enhancements could allow for bounded, variable thrust or

bounded variable specific impulse. These enhancements might benefit efforts to model

GEO satellite station keeping. The current thrust modeling software does a poor job of

this because it assumes constant continuous thrust, whereas GEO satellites with EP

operate thrusters discontinuously throughout each orbit. Capability to model station-

keeping is future work as indicated in Figure 6.1.

280

In order to model thrust transfers that pass through critical inclination orbits, it

would be important to include modeling for the odd zonal harmonics such as J5, J7 and J9.

Several satellite constellations that make use of critical inclination orbits are in use or

have been proposed. It is probably only a matter of time before low-thrust EP satellites

will occupy such orbits. Modeling optimal thrust trajectories for these satellites is likely

to be worthwhile.

As more satellites with low-thrust EP are launched, the bookkeeping aspect of

recording and retrieving the types of thrust trajectories these satellites use will become

more important. It would be helpful to maintain a database of satellites with EP and

thrust plans they have used. This is similar to the launch folder concept already used in

space surveillance.

Another way to enhance the optimal thrust planning software would be to use a

more robust minimization algorithm. Currently, the UNCMIN (58) quasi-Newton search

algorithm used in the thrust planning software requires manual adjustment of weighting

factors in the cost function. This adjustment requires a “human-in-the-loop.” In

communications with Jean Kechichian, it is clear that more convenient and robust

minimization algorithms exist (94). One such algorithm is the DONLP2 algorithm

written by Peter Spellucci (95). This algorithm performs constrained minimization and

may be suitable for the trajectory optimization problems presented in this thesis.

281

In the process of implementing the exact and averaged optimal thrust planning

software, a 7th order Runge-Kutta-Fehlberg (RKF) integrator was found to provide the

required accuracy while a 4th order RKF integrator did not. Because a 4th order RKF

integrator is used in the GTDS DSST implementation, it is worth investigating whether a

7th order RKF integrator would improve DSST predication accuracy.

282

Chapter 7 Appendices

Appendix A New GTDS Keywords

BSEKFSET Keyword

• Card Format (A8,3I3,3G21.14)
• Applicable programs: BSEKF subdeck BSEKFOPT
• Detailed Format:

Columns Format Description
1-8 A8 BSEKFSET – keyword to set options for running the
 BSEKF
9-11 I3 1 – Use the value in columns 18-38 as the m-buffer6 size
 0 – Use the default value for the m-buffer (24)
12-14 I3 1 – Use the value in columns 39-59 as the iteration

tolerance7

 0 – Use the default value for the iteration tolerance (1x10-9)
15 – 17 I3 1 – Use the value in columns 60-80 to set the number of

iterations allowed by the Gauss-Newton iteration8
 0 – Use the default value for maximum iterations (20)
18-38 G21.14 If 1I3 is 1, this is the number of measurements to store in

the m-buffer
39-59 G21.14 If 2I3 is 1, the iteration tolerance
60-80 G 12.14 If 3I3 is 1, the maximum number of iterations per

measurement that are allowed.

6 The m-buffer is the memory structure containing all measurements before the current one. The m-buffer
is filtered and smoothed according to the BSEKF algorithm developed by Dr. Mark Psiaki at Cornell and
implemented in GTDS. The m-buffer should be set large enough so that filtering/smoothing over the
interval will allow nonlinear aspects in the system dynamics to be seen. A rule of thumb is to set the m-
buffer to as many observations as it takes for an Extended Kalman Filter to converge.
7 The iteration tolerance is the maximum difference between the previously calculated linearized cost
function value and the current cost function value in order to determine convergence of the Gauss-Newton
iterations within the BSEKF algorithm.
8 The max number of iterations is set to prevent unnecessary iterations that result in insignificant gains in
accuracy. These unnecessary iterations can significantly degrade performance of the BSEKF if this value
is set too large. The default value is usually best.

283

9GTDS THRSTTBL Keyword

• Card Format (A8,3I3,2G21.14)
• Use with thrust acceleration vector input file
• Use in the OGOPT subdeck
• Detailed Format:

Columns Format Description
1-8 A8 THRSTTBL
9-11 I3 on/off switch
 0 – Off
 1 – On
12-17 n/a blank (not used)
18-38 G21.14 Thrust vector start time (UTC)
 (YYYMMDDHHMISS.ssss)
 YYY – years from 1900
 MM – month
 DD – day of month
 HH – hour
 MI – minute
 SS – second (integer part)
 .ssss – seconds (fractional part)
39-59 G21.14 Thrust vector stop time (UTC)
 (YYYMMDDHHMISS.ssss)
 YYY – years from 1900
 MM – month
 DD – day of month
 HH – hour
 MI – minute
 SS – second (integer part)
 .ssss – seconds (fractional part)

9 This card activates the thrust acceleration vector file input. It can be used to turn the feature on or off and
it can be used to limit the times during which the thrust vector file is used. The first and second real fields
specify the start and end times during which attempts to read the thrust acceleration file will be made.

284

10GTDS Thrust Acceleration Vector Input File (UNIT 116)

• Card Format (A8,3I3,5G21.14)
• Use with THRSTTBL keyword
• Detailed Format:

Columns Format Description
1-8 A8 Blank characters (not used)
9-11 I3 Coordinate frame
 1 – Inertial Cartesian reference frame
 2 – Body-fixed Cartesian ref. frame (not implemented)
12-17 n/a blank (not used)
18-38 G21.14 Thrust vector time (UTC) (YYYMMDDHHMISS.ssss)
 YYY – years from 1900
 MM – month
 DD – day of month
 HH – hour
 MI – minute
 SS – second (integer part)
 .ssss – seconds (fractional part)
39-59 G21.14 unit acceleration vector in X direction
60-80 G21.14 unit acceleration vector in Y direction
81-101 G21.14 unit acceleration vector in Z direction
102-122 G21.14 magnitude of acceleration vector in km/s2

10 The first line of the file must read “THRCARD” and the last line of the file must read “END”

285

[This page intentionally left blank]

286

Appendix B BL Matrix and Partial Derivatives

The BL matrix is used in equation (2.82) in section 2.2.2.2. It contains the

elements that are multiplied by the thrust vector to calculate the partials of the equinoctial

elements with respect to time. In addition, the partials of the BL matrix with respect to

the equinoctial elements are required to form the adjoint equations that are used to

calculate the partials of the Lagrange multipliers with respect to time. Both sets of time

derivatives are needed to integrate the satellite motion when it is taking an optimal thrust

trajectory.

The BL matrix is derived starting from the Gaussian VOP equations in Keplerian

elements, , , , , , . The VOP equations are then transformed to a set of equations

in the equinoctial elements with the true longitude as the fast variable, , , , , , .

To illustrate one of these transformations, a derivation of the variational equation for the

semimajor axis is shown using equations (B1) through (B8). To begin, start with the

Gaussian form of the semimajor axis VOP equation for two-body motion plus a

perturbing force in terms of the Keplerian elements (11), (5):

sin ́ (B1)

The and directional indicators are the acceleration magnitude, , times the

perturbing force unit vector, , in the r and θ directions, i.e. and .

287

The angular momentum magnitude, the orbital parameter, and the true anomaly are given

by the following identities, respectively (5):

1 1 (B2)

́ 1 (B3)

 (B4)

The variable L is the true longitude, is the argument of perigee, and is the right

ascension of the ascending node. The following identities for the radial distance from the

central body to the orbiting body, , the sine of the true anomaly, , and the quantity,

⁄ , are used to write the variational equation for semimajor axis in terms of the

equinoctial elements and true longitude (5):

 (B5)

 sin (B6)

́ 1 sin cos (B7)

288

The variational equation of the semimajor axis can be ultimately written by substituting

equations (B2), (B5), (B6), and (B7) into equation (B1) to obtain (5):

sin cos 1 sin cos (B8)

Using equation (2.82a), the equation for r in equation (B5), and the definition for G in

equation (B9), one can see that)Lc and B L
12 = . The

partials of BL with respect to the equinoctial elements , , , , , can then be derived

in a straightforward manner. For more complete details, reference (5) provides all of the

identities required.

(2 11
11 L
L hksGnB −= −− Garn 112 −−

The complete set of BL matrix elements and partial derivatives are all taken from

reference (5). In personal communication with Jean Kechichian (86), some typos were

corrected and the corrections are reflected in this appendix. Specifically, equations (B81)

and (B90) reflect these corrections.

221 khG −−= (B9)

221 qpK ++= (B10)

a
n

a
n

2
3−

=
∂
∂ (B11)

a
r

a
r
=

∂
∂ (B12)

)2(
)1(22 Lrsah

kha
r

h
r

+
−−

−=
∂
∂ (B13)

289

())2(
1 22 Lrcah

kha
r

k
r

+
−−

−=
∂
∂ (B14)

)1(
)(

22

2

kha
kshcr

L
r LL

−−
−

−=
∂
∂

 (B15)

)(2 11

11 LL
L hcksGnB −= −− (B16)

)(2 1211
LL

L

hcksG
a
nn

a
B

−
∂
∂

−=
∂
∂ −− (B17)

LLL

L

cGnhckshGn
h

B 113111 2)(2 −−−− −−=
∂
∂ (B18)

LLL

L

sGnhckskGn
k

B 113111 2)(2 −−−− +−=
∂
∂ (B19)

01111 =
∂
∂

=
∂
∂

q
B

p
B LL

 (B20)

)(2 1111
LL

L

hskcGn
L

B
+=

∂
∂ −− (B21)

GarnB L 11

12 2 −−= (B22)

G
a
narn

a
B L

∂
∂

−=
∂
∂ −− 1212 2 (B23)

1112112 22 −−−−− −

∂
∂

−=
∂
∂ hGarnG

h
rarn

h
B L

 (B24)

1112112 22 −−−−− −

∂
∂

−=
∂
∂ kGarnG

k
rarn

k
B L

 (B25)

01212 =
∂
∂

=
∂
∂

q
B

p
B LL

 (B26)

L
rGarn

L
B L

∂
∂

−=
∂
∂ −− 2112 2 (B27)

290

0131313131313
13 =

∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
L

B
q

B
p

B
k

B
h

B
a

B
B

LLLLLL
L (B28)

L

L GcanB 11
21

−−−= (B29)

L

L

Gcan
a

B 21121 2 −−−−=
∂
∂ (B30)

L

L

chGan
h

B 11121 −−−=
∂
∂ (B31)

L

L

ckGan
k

B 11121 −−−=
∂
∂ (B32)

02121 =
∂
∂

=
∂
∂

q
B

p
B LL

 (B33)

L

L

Gsan
L

B 1121 −−=
∂
∂ (B34)

LL

L GsanshrGanB 11121
22)(−−−−− ++= (B35)

LL

L

GsanshrGan
a

B 211131122 2)(2 −−−−−−− ++=
∂
∂ (B36)

111121212122)(−−−−−−−−−− −+⎟

⎠
⎞

⎜
⎝
⎛ +
∂
∂

+=
∂
∂ GhsanrGanrhG

h
rshGan

h
B

LL

L

 (B37)

111212122)(−−−−−−− −⎟

⎠
⎞

⎜
⎝
⎛ +
∂
∂

+=
∂
∂ GksanrkG

k
rshGan

k
B

LL

L

 (B38)

02222 =
∂

=
∂ q

B
p

B LL

 (B39)

GcanGrcan
L
rGshan

L
B

LLL

L
1112112122)(−−−−−−−− ++

∂
∂

+=
∂

)(121
23 LL
L qspckrGanB −−= −−−

 (B40)

 (B41)

291

)(2 131123
LL

L

qspckrGan
a

B
−−=

∂
∂ −−−− (B42)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−−=
∂
∂ −−−− 212123)(hrG

h
rqspckGan

h
B

LL

L

 (B43)

)()(121212123
LLLL

L

qspcrGankrG
k
rqspckGan

k
B

−−⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−−=
∂
∂ −−−−−−− (B44)

L

L

kcrGan
p

B 12123 −−−−=
∂
∂

 (B45)

L

L

ksrGan
q

B 12123 −−−=
∂
∂

 (B46)

)()(12112123
LLLL

L

qcpskrGan
L
rqspckGan

L
B

++
∂
∂

−−=
∂
∂ −−−−−− (B47)

L

L GsanB 11
31

−−= (B48)

L

L

Gsan
a

B 21131 2 −−−=
∂
∂ (B49)

L

L

hsGan
h

B 11131 −−−−=
∂
∂ (B50)

L

L

ksGan
k

B 11131 −−−−=
∂
∂ (B51)

03131 =
∂

=
∂ q

B
p

B LL

 (B52)

L

L

Gcan
L

B 1131 −−=
∂
∂

LL
L GcanckrGanB 11121
32)(−−−−− ++=

 (B53)

 (B54)

LL

L

GcanckrGan
a

B 211131132 2)(2 −−−−−−− ++=
∂
∂ (B55)

292

LL

L

chGanhrG
h
rckGan

h
B 111212132)(−−−−−−− −⎟

⎠
⎞

⎜
⎝
⎛ +
∂
∂

+=
∂
∂

 (B56)

121111212132)(−−−−−−−−−− +−⎟

⎠
⎞

⎜
⎝
⎛ +
∂
∂

+=
∂
∂

rGanckGankrG
k
rckGan

k
B

LL

L

 (B57)

03232 =
∂
∂

=
∂
∂

q
B

p
B LL

 (B58)

LLL

L

GsansrGan
L
rckGan

L
B 1112112132)(−−−−−−−− −−

∂
∂

+=
∂
∂ (B59)

)(121

33 LL
L qspchrGanB −= −−− (B60)

)(2 131133
LL

L

qspchrGan
a

B
−=

∂
∂ −−−− (B61)

)()(121212133
LLLL

L

qspcrGanhrG
h
rqspchGan

h
B

−+⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−=
∂
∂ −−−−−−− (B62)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−=
∂
∂ −−−− 212133)(krG

k
rqspchGan

k
B

LL

L

 (B63)

L

L

hcrGan
p

B 12133 −−−=
∂
∂

 (B64)

L

L

hsrGan
q

B 12133 −−−−=
∂
∂

 (B65)

)()(12112133
LLLL

L

qcpshrGan
L
rqspchGan

L
B

−−
∂
∂

−=
∂
∂ −−−−−−

L
L KsrGanB 1211
43 2 −−−−=

 (B66)

 (B67)

L

L

KsrGan
a

B 131143 4 −−−−=
∂
∂ (B68)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

=
∂
∂ −−−−− 2121143 2 hrG

h
rKsGan

h
B

L

L

 (B69)

293

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

=
∂
∂ −−−−− 2121143 2 krG

k
rKsGan

k
B

L

L

 (B70)

L

L

psrGan
p

B 12143 −−−=
∂
∂

 (B71)

L

L

qsrGan
q

B 12143 −−−=
∂
∂

 (B72)

LL

L

KcrGan
L
rKsGan

L
B 1211121143 22 −−−−−−−− +

∂
∂

=
∂
∂ (B73)

L

L KcrGanB 1211
53 2 −−−−= (B74)

L

L

KcrGan
a

B 131153 4 −−−−=
∂
∂ (B75)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

=
∂
∂ −−−−− 2121153 2 hrG

h
rKcGan

h
B

L

L

 (B76)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

=
∂
∂ −−−−− 2121153 2 krG

k
rKcGan

k
B

L

L

 (B77)

L

L

pcrGan
p

B 12153 −−−=
∂
∂

 (B78)

L

L

qcrGan
q

B 12153 −−−=
∂
∂

 (B79)

LL

L

KsrGan
L
rKcGan

L
B 1211121153 22 −−−−−−−− −

∂
∂

=
∂
∂

)(121
63 LL
L pcqsrGanB −= −−−

 (B80)

 (B81)

)(2 131163
LL

L

pcqsrGan
a

B
−=

∂
∂ −−−− (B82)

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−=
∂
∂ −−−− 212163)(rhG

h
rGpcqsan

h
B

LL

L

 (B83)

294

⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

−=
∂
∂ −−−− 212163)(rkG

k
rGpcqsan

k
B

LL

L

 (B84)

L

L

crGan
p

B 12163 −−−−=
∂
∂

 (B85)

L

L

srGan
p

B 12163 −−−=
∂
∂

 (B86)

12112163)()(−−−−−− ++

∂
∂

−=
∂
∂

Gpsqcran
L
rGpcqsan

L
B

LLLL

L

 (B87)

 This concludes the listing of the BL matrix and its partials with respect to the

equinoctial orbital elements. The following equations are the partials of the last term in

equation (2.82a) with respect to the equinoctial orbital elements.

Gnar
r

khna
a

2
2

2
1

222

2
3)1(−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

∂
∂ (B88)

12232
2

2
1

222

2)1(−−− −
∂
∂

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

∂
∂ hGrna

h
rGrna

r
khna

h
 (B89)

12232
2

2
1

222

2)1(−−− −
∂
∂

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

∂
∂ kGrna

k
rGrna

r
khna

k
 (B90)

L
rGrna

r
khna

L ∂
∂

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

∂
∂ −32

2

2
1

222

2)1((B91)

295

[This page intentionally left blank]

296

Appendix C Thrust Plan Coordinate Systems

 When defining the thrust acceleration plan file, it was necessary to evaluate which

reference frame would be appropriate. The GTDS force model framework provides the

satellite position and velocity in Cartesian coordinates. The reference frame of the

coordinates is also the reference frame in which GTDS integrates and can be one of

several user-selected reference frames. These reference frames include MEME J2000,

MEME B1950, and TETE True of Date. Because, for now, the thrust plan file only

represents an optimal trajectory from the perspective of two-body motion, subtleties in

the reference frame do not come into play when applying a two-body thrust plan to orbit

prediction within the GTDS framework. However, if Earth J2 and third-body modeling

are incorporated into the optimal thrust plan standalone code, the thrust plan file will

have to be carefully synchronized with the reference frame used in GTDS for subsequent

application of the thrust plan for orbit prediction and orbit determination.

 The coordinate system of the thrust acceleration vectors produced by the

trajectory optimization code in Section 2.2.2.2, i.e. { }hr uuu ,,ˆ θ=u , is the rotating Euler-

Hill polar frame. Because of the relative ease of transforming thrust acceleration vectors

represented in Euler-Hill rotating polar coordinates (6) to Cartesian position and velocity

coordinates in an inertial frame, it was decided that the exact equation standalone

trajectory optimization code should transform its thrust vector from rotating polar

coordinates to an inertial frame compatible with the GTDS force model framework.

297

 The Euler-Hill rotating polar coordinate frame is defined in terms of the r, θ, and

h axes. The r-axis is a unit vector in the direction of the central body to the satellite. The

θ axis is a unit vector perpendicular to the r-axis and in the orbit plane. The h-axis is

formed by taking the cross product of the r and θ axes and so maintains an orthogonal

right handed coordinate system. The h-axis is also coincident with the satellite’s orbital

angular momentum vector. The yaw and pitch angles used in attitude dynamics can be

easily computed from the unit thrust vector in terms of these polar coordinates (6).

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

θ

θ
u
ur

pitch
1tan (C1)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

θ
θ

u
uh

yaw
1tan (C2)

Figure C.1 depicts the pitch (C1) and yaw (C2) angles with respect to the satellite.

Figure C.1 Satellite Thrust Pitch and Yaw Angles (96)

298

 Transforming the rotating polar coordinates to the equinoctial frame involves the

following transformation matrix in terms of the equinoctial f, g, w and polar r, θ, h unit

vectors (6):

 (C3)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

h

r
rXrY
rYrX

w
g
f

ˆ
ˆ
ˆ

100
0
0

ˆ
ˆ

ˆ

11

11

θ

This transformation matrix will convert a vector represented in the Euler-Hill rotating

polar frame to a vector in the equinoctial coordinate frame. The quantity r is the scalar

distance from the central body to the satellite and the X1 and Y1 scalar quantities are

defined by (6):

 (C4) gYfX ˆˆ
11 +=r

 []kFhkFhaLrX −+−== sincos)1(cos 2
1 ββ (C5)

 []hFkFhkaLrY −−+== sin)1(cossin 2
1 ββ (C6)

Here, L is the true longitude, and F is the eccentric longitude. The eccentric longitude

can be found using the mean longitude, λ, from the satellite’s equinoctial element set,

{ }λ,,,,, qpkha=z . Using Kepler’s equation written in terms of eccentric longitude, F,

we have (6):

299

 FhFkF cossin +−=λ (C7)

Equation (C7) can be iterated with a starting guess of F to solve for F accurately.

The β quantity in equations (C5) and (C6) is also defined in terms of the equinoctial

elements (6):

)1(1

1
22 kh −−+

=β (C8)

With the thrust vector now transformed to the equinoctial frame, i.e.

{ }wgf uuu ,,ˆ =u , one can use a well known transformation to transform the thrust vector to

the inertial, Cartesian, x, y, z, frame. First, compute the inclination, I, and right ascension

of the ascending node, Ω, from the known equinoctial elements:

⎟
⎠
⎞⎜

⎝
⎛ += − 221tan2 qpi (C9)

⎟
⎠
⎞⎜

⎝
⎛=Ω −

q
p1tan (C10)

The following transformation then takes a vector in the equinoctial frame to one

in the inertial, Cartesian frame (14):

() () () () () (){ } () ()
() () (){ } () () () () ()

() () () () () ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ΩΩ
Ω−Ω+Ω−−Ω−Ω
Ω−−Ω−ΩΩ+Ω

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

w
g
f

iii
iiIiII
iIiIiI

z
y
x

ˆ
ˆ

ˆ

coscossinsinsin
cossincoscossincos1sincos
sinsincos1sincossincoscos

ˆ
ˆ
ˆ

22

22

 (C11)

300

This transformation is used in the TRANS_OUT subroutine in the exact equation

trajectory optimization software to transform the thrust acceleration vector before writing

it to the thrust plan file for GTDS.

301

[This page intentionally left blank]

302

Appendix D Executing the Optimal Thrust Planning Software

Executing both the averaged equation and exact equation optimal thrust planning

software requires a FORTRAN compiler. For this thesis, the Intel FORTRAN compiler®

version 9.1 was used. The thrust planning software does not yet allow for runtime input.

Instead, the initial orbit, final orbit, thrust acceleration magnitude and the guesses for the

final time and for the initial 6x1 vector of Lagrange multipliers are hard-coded in the

low_thrust_drive.for file. Any modification of the input parameters requires changing

the low_thrust_drive.for file and recompiling the source code to obtain a new executable

file. Eventually, it is the intent of the author to incorporate the thrust planning software

within the GTDS framework as a subprogram. In this way, the GTDS input keyword

processor can be used to provide input values to the optimal thrust planning algorithm.

Figure D.1 shows the lines of source code in the low_thrust_drive.for source code file

that can be modified to calculate thrust plans for alternative cases. The exact equation

and averaged equation thrust planning software each include a separate version of

low_thrust_drive.for. The set of input in Figure D.1 was used to execute ARTEMIS case

#1.

C
C Guess for the final time (seconds)
C
 tf0 = 853716.998592
C
C Set the constant acceleration (km/s^2)
C
 ft = 7.5628E-9
C
C Set the initial Keplerian elements
C

303

 sma0 = 39382.97217
 ecc0 = 0.2006846493E-2
 inc0 = 1.43568 * pi/180.0
 ran0 = 115.95324 * pi/180.0
 arp0 = 297.5172826 * pi/180.0
 mea0 = 211.6003815 * pi/180.0
C
C Set the final Keplerian elements
C
 smaF = 39537.70766
 eccF = 0.1621537776E-2
 incF = 1.43568 * pi/180
 ranF = 115.95324 * pi/180
 arpF = 297.5172826 * pi/180
 meaF = 212.7786305 * pi/180
C
C Set the initial guesses for the Lagrange multipliers
C
 lam_vect(1) = 0.326239885662E+04
 lam_vect(2) = -0.671795199693E+08
 lam_vect(3) = -0.478598052526E+08
 lam_vect(4) = 0.158973787328E+05
 lam_vect(5) = -0.129598180966E+05
 lam_vect(6) = 0.583925385401E+03

Figure D.1 Source Code Input for ARTEMIS Case #1

The following initialization in Figure D.2 shows how the weights array was set

for the ARTEMIS case #1. Often, changing the weights is necessary in order for the

UNCMND algorithm to obtain a solution that closely matches the final orbit conditions.

C
C Set the weights for each outer loop optimization
C iteration
C
 weights(1,1) = 1.0E3
 weights(2,1) = 1.0E12
 weights(3,1) = 1.0E12
 weights(4,1) = 1.0E11
 weights(5,1) = 1.0E11

304

 weights(6,1) = 1.0
 weights(7,1) = 1.0E6

 weights(1,2) = 1.0E4
 weights(2,2) = 1.0E13
 weights(3,2) = 1.0E13
 weights(4,2) = 1.0E12
 weights(5,2) = 1.0E12
 weights(6,2) = 1.0
 weights(7,2) = 1.0E6

 weights(1,3) = 1.0E3
 weights(2,3) = 1.0E12
 weights(3,3) = 1.0E12
 weights(4,3) = 1.0E13
 weights(5,3) = 1.0E13
 weights(6,3) = 1.0
 weights(7,3) = 1.0E6

 weights(1,4) = 1.0E4
 weights(2,4) = 1.0E13
 weights(3,4) = 1.0E13
 weights(4,4) = 1.0E14
 weights(5,4) = 1.0E14
 weights(6,4) = 1.0
 weights(7,4) = 1.0E6

 weights(1,5) = 1.0E4
 weights(2,5) = 1.0E12
 weights(3,5) = 1.0E12
 weights(4,5) = 1.0E14
 weights(5,5) = 1.0E14
 weights(6,5) = 1.0
 weights(7,5) = 1.0E6

Figure D.2 Source Code Weight Input for ARTEMIS Case #1

305

[This page intentionally left blank]

306

Appendix E Source code for the Exact Equation Optimal

Thrust Planning Software

The exact equation optimal thrust planning software is described in Chapter 5

section 5.1.1. This appendix contains the source code corresponding to section 5.1.1.

Only the source code written by the author is included. Other open source subroutines

such as the UNCMND, DQAG, and RK78 subroutines are not included. Sources for

those subroutines can be found in the References section or by contacting the author.

Some of the subroutines in this appendix have the same names as subroutines in appendix

F. The subroutines with identical names are different for the exact equation code than

they are for the averaged equation code. Each set of software is in a separate directory

space.

C --
C
C FILE NAME: low_thrust_drive.for (for exact equation software)
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
C...
C. ROUTINE: LOW_THRUST_DRIVE
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: this the driver subroutine for the exact eq. software.
C. It collects the initial and final Keplerian orbits,
C. converts those to equinoctial orbits,
C. calls the UNCMND subroutine to execute the quasi-Newton
C. search to solve for the initial
C. Lagrange multipliers. Once UNCMND
C. is complete, the RK78 subroutine is used to integrate the
C. variational equations of motion and
C. the variational equations for the solved initial Lagrange
C. multipliers from the initial to the

307

C. final time. Finally, the trajectory is printed and the
C. thrust plan file meant for GTDS input is written.
C.
C.
C. CALLING SEQUENCE:
C. This is a main program and has no calling parameters. However,
C. Several of the initial variable values can be modified to solve
C. optimal thrust trajectory problems. Among these are:
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. tf0 I the guess for the final time in seconds.
C. ft I the constrant thrust acceleration km/second squared
C. sma0 I the semimajor axis for the initial orbit
C. ecc0 I the eccentricity of the initial orbit
C. inc0 I the inclination of the initial orbit
C. ran0 I the RAAN of the initial orbit
C. arp0 I the arg. of perigee of the initial orbit
C. mea0 I the mean anomaly of the initial orbit
C. smaF I the semimajor axis for the final orbit
C. eccF I the eccentricity of the final orbit
C. incF I the inclination of the final orbit
C. ranF I the RAAN of the final orbit
C. arpF I the arg. of perigee of the final orbit
C. meaF I the mean anomaly of the final orbit
C. lam_vect I the 6x1 vector of initial Lagrange multipliers
C.
C.
C. ROUTINES REQUIRED: UNCMND, RK78, TRANS_OUT, DELTIM, ADDTIM
C.
C...
C
C.
C
C
C***************** DECLARATIONS **
C
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (N_INT=12, N_MIN=7,
 * LWORK=N_MIN*(N_MIN+10))
 DOUBLE PRECISION Y(N_INT), TOL
 DOUBLE PRECISION T, DT, TDIFF

 DOUBLE PRECISION mu, ft, pi
 DOUBLE PRECISION sma0, ecc0, inc0, ran0, arp0, mea0
 DOUBLE PRECISION tf0, tf
 DOUBLE PRECISION smaF, eccF, incF, ranF, arpF, meaF
 DOUBLE PRECISION z0_vect(6), zF_vect(6), lam_vect(7)
 DOUBLE PRECISION z0, weights(7,20)
 DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT)
 DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT)
 DOUBLE PRECISION Y_OUT(13), Y_FIN_DIFF(6)
 DOUBLE PRECISION x(N_MIN), x0(N_MIN)
 DOUBLE PRECISION WORK(LWORK), F, EXTDAT, WEIGHT
 DOUBLE PRECISION eccA0, L0, t0_sec, DT_SEC, DT_HMS, DT_YMD
 DOUBLE PRECISION DELTA_T, t0_JUL, SECJUL, DAYJUL
 DOUBLE PRECISION Beta0, F0, sF0, cF0, r0, cL0, sL0
 DOUBLE PRECISION BetaF, FF, sFF, cFF, rF, cLF, sLF

 INTEGER I, J
 INTEGER MAX_ITER, N_INT, N_MIN, LWORK
 INTEGER IERROR, iter
 INTEGER t0_year, t0_month, t0_day, t0_hour, t0_min
 INTEGER IT_YMD, IT_HM, It0_JUL

 EXTERNAL FSUB,F_FORMIN

308

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /WEIGHT/ weights, iter
C
C Set PI
C
 pi = 3.141592653589793
C
C Set the integration error tolerance
C
 TOL = 1.0E-10
C
C Set the date for the initial time
C
 t0_year = 2002
 t0_month = 8
 t0_day = 4

 t0_hour = 22
 t0_min = 3
 t0_sec = 23
C
C Guess for the final time (seconds)
C
 tf0 = 853716.998592
C
C Set the Earth gravity constant (km^3/s^2)
C
 mu = 3.986004418E5
C
C Set the constant acceleration (km/s^2)
C
 ft = 7.5628E-9
C
C Set the maximum iterations for the outer optimization loop
C
 MAX_ITER = 5
C
C Set the initial Keplerian elements
C
 sma0 = 39382.97217
 ecc0 = 0.2006846493E-2
 inc0 = 1.43568 * pi/180.0
 ran0 = 115.95324 * pi/180.0
 arp0 = 297.5172826 * pi/180.0
 mea0 = 211.6003815 * pi/180.0
C
C Set the final Keplerian elements
C
 smaF = 39537.70766
 eccF = 0.1621537776E-2
 incF = 1.43568 * pi/180
 ranF = 115.95324 * pi/180
 arpF = 297.5172826 * pi/180
 meaF = 212.7786305 * pi/180
C
C Compute the initial and final eccentric anomaly
C
 eccA0 = SOLVE_ECC_ANOMALY(mea0,ecc0)
 eccAF = SOLVE_ECC_ANOMALY(meaF,eccF)
C
C Compute the initial equinoctial elements
C
 z0_vect(1) = sma0
 z0_vect(2) = ecc0 * DSIN(arp0 + ran0)
 z0_vect(3) = ecc0 * DCOS(arp0 + ran0)
 z0_vect(4) = DTAN(inc0/2)*DSIN(ran0)
 z0_vect(5) = DTAN(inc0/2)*DCOS(ran0)
C
C Compute the initial true longitude.
C
 Beta0 = 1.0/(1.0 + DSQRT(1.0-(z0_vect(2)**2.0)-(z0_vect(3))**2.0))

309

 F0 = eccA0 + ran0 + arp0

 sF0 = DSIN(F0)
 cF0 = DCOS(F0)

 r0 = sma0*(1.0 - z0_vect(3)*cF0 - z0_vect(2)*sF0)

 cL0 = (sma0/r0)*((1.0-Beta0*(z0_vect(2)**2.0))*cF0 +
 & z0_vect(2)*z0_vect(3)*Beta0*sF0 - z0_vect(3))

 sL0 = (sma0/r0)*(z0_vect(2)*z0_vect(3)*Beta0*cF0 +
 & (1.0-Beta0*(z0_vect(3)**2.0))*sF0 - z0_vect(2))

 L0 = DATAN2(sL0,cL0)

 z0_vect(6) = L0
C
C Compute the final equinoctial elements
C
 zF_vect(1) = smaF
 zF_vect(2) = eccF * DSIN(arpF + ranF)
 zF_vect(3) = eccF * DCOS(arpF + ranF)
 zF_vect(4) = DTAN(incF/2)*DSIN(ranF)
 zF_vect(5) = DTAN(incF/2)*DCOS(ranF)
C
C Compute the final true longitude
C
 BetaF = 1.0/(1.0 + DSQRT(1.0-(z0_vect(2)**2.0)-(z0_vect(3))**2.0))
 FF = eccAF + ranF + arpF

 sFF = DSIN(FF)
 cFF = DCOS(FF)

 rF = smaF*(1.0 - zF_vect(3)*cFF - zF_vect(2)*sFF)

 cLF = (smaF/rF)*((1.0-BetaF*(zF_vect(2)**2.0))*cFF +
 & zF_vect(2)*zF_vect(3)*BetaF*sFF - zF_vect(3))

 sLF = (smaF/rF)*(zF_vect(2)*zF_vect(3)*BetaF*cFF +
 & (1.0-BetaF*(zF_vect(3)**2.0))*sFF - zF_vect(2))

 LF = DATAN2(sLF,cLF)

 zF_vect(6) = LF
C
C Set the initial guesses for the Lagrange multipliers
C
 lam_vect(1) = 0.326239885662E+04
 lam_vect(2) = -0.671795199693E+08
 lam_vect(3) = -0.478598052526E+08
 lam_vect(4) = 0.158973787328E+05
 lam_vect(5) = -0.129598180966E+05
 lam_vect(6) = 0.583925385401E+03

 lam_vect(7) = tf0

 DO J=1,7
 x0(J) = lam_vect(J)
 END DO
C
C Combine all initial conditions into Y array
C
 DO I=1,6
 Y(I) = z0_vect(I)
 END DO
 DO I=1,6
 Y(I+6) = lam_vect(I)
 END DO
C
C Set initial time point
C

310

 T = 0.0
 DT = 600.0
C
C Set the weights for each outer loop optimization iteration
C
 weights(1,1) = 1.0E3
 weights(2,1) = 1.0E12
 weights(3,1) = 1.0E12
 weights(4,1) = 1.0E11
 weights(5,1) = 1.0E11
 weights(6,1) = 1.0
 weights(7,1) = 1.0E6

 weights(1,2) = 1.0E4
 weights(2,2) = 1.0E13
 weights(3,2) = 1.0E13
 weights(4,2) = 1.0E12
 weights(5,2) = 1.0E12
 weights(6,2) = 1.0
 weights(7,2) = 1.0E6

 weights(1,3) = 1.0E3
 weights(2,3) = 1.0E12
 weights(3,3) = 1.0E12
 weights(4,3) = 1.0E13
 weights(5,3) = 1.0E13
 weights(6,3) = 1.0
 weights(7,3) = 1.0E6

 weights(1,4) = 1.0E4
 weights(2,4) = 1.0E13
 weights(3,4) = 1.0E13
 weights(4,4) = 1.0E14
 weights(5,4) = 1.0E14
 weights(6,4) = 1.0
 weights(7,4) = 1.0E6

 weights(1,5) = 1.0E4
 weights(2,5) = 1.0E12
 weights(3,5) = 1.0E12
 weights(4,5) = 1.0E14
 weights(5,5) = 1.0E14
 weights(6,5) = 1.0
 weights(7,5) = 1.0E6
C
C If we are not using the optimizer, assign x
C
 DO I=1,7
 x(I) = x0(I)
 END DO
C
C Set up the outer optimization loop
C
 DO iter=1,MAX_ITER
C
C Call the unconstrained minimization subroutine
C
 CALL UNCMND (N_MIN, x0, F_FORMIN, x, F, IERROR, WORK, LWORK)
C
C Print out the results of the minimization (the Lagrange multipliers and final
time)
C
 WRITE (*,*) 'Results of opt: Lagrange mult and final time'
 WRITE (*,'(7E24.12)') (x(I), I=1,7)
C
C Copy the output back to the input.
C
 DO J=1,7
 x0(J) = x(J)
 END DO
 END DO

311

C
C Open the file needed to store the output meant for GTDS
C
 OPEN (UNIT = 115, FORM = 'FORMATTED', ACCESS = 'SEQUENTIAL',
 1 FILE = 'optimal_traj.thr',
 2 STATUS = 'UNKNOWN')

 WRITE(115,1001) 'THRCARD '
C
C Assign results of optimization to input for integration
C and printout of the final trajectory
C
 DO I=1,6
 Y(I) = z0_vect(I)
 END DO
 Y(7) = x(1)
 Y(8) = x(2)
 Y(9) = x(3)
 Y(10) = x(4)
 Y(11) = x(5)
 Y(12) = x(6)
 tf = x(7)
C
C Print out the results of the minimization (the Lagrange multipliers and final time)
C
 WRITE (*,*) 'Results of optimization Lagrange mult and final time'
 WRITE (*,'(7E24.12)') (x(I), I=1,7)
C
C Output the final trajectory result of the optimization
C
 DO WHILE (T .LE. tf)
C
C Integrate.
C
 CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL,
 & XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)
C
C Are we finished? If so, exit the loop.
C
 IF (T .EQ. tf) THEN
C
C Write the output at this time step.
C
 CALL TRANS_OUT(Y, Y_OUT, ft, mu)
C
C Compare the desired elements with the final elements achieved.
C
 Y_FIN_DIFF(1) = Y_OUT(1) - smaF
 Y_FIN_DIFF(2) = Y_OUT(2) - eccF
 Y_FIN_DIFF(3) = (Y_OUT(3) - incF)*180.0/pi
 Y_FIN_DIFF(4) = (Y_OUT(4) - ranF)*180.0/pi
 Y_FIN_DIFF(5) = (Y_OUT(5) - arpF)*180.0/pi
 Y_FIN_DIFF(6) = (Y_OUT(6) - meaF)*180.0/pi

 WRITE (*,*) 'Final element differences'
 WRITE (*,'(6E24.12)') Y_FIN_DIFF(1),Y_FIN_DIFF(2),
 & Y_FIN_DIFF(3),Y_FIN_DIFF(4),Y_FIN_DIFF(5),Y_FIN_DIFF(6)

 WRITE (*,*) 'Final elements'
 WRITE (*,'(6E24.12)') Y_OUT(1),Y_OUT(2),
 & Y_OUT(3),Y_OUT(4),Y_OUT(5),Y_OUT(6)
C
C
C We are not yet finished, find the time yet to integrate.
C If that time is less than the next time step, reduce the
C next time step to equal the time left to integrate.
C
 ELSE
 TDIFF = tf - T
 IF (TDIFF .LT. DT) THEN
 DT = TDIFF

312

 END IF
 END IF
C
C Write the output at this time step.
C
 CALL TRANS_OUT(Y, Y_OUT, ft, mu)

 WRITE (*,'(I9,11E24.12)') 111111111,
 * T,Y_OUT(1),Y_OUT(2),Y_OUT(3),Y_OUT(4),Y_OUT(5),
 * Y_OUT(6),Y_OUT(7),Y_OUT(12),Y_OUT(13)
C
C Convert the time in seconds to YYYMMDDHHMMSS.sss format.
C
C First, convert the initial t0 date to a Julian date
C
 DT_YMD = (t0_year - 1900)*1E4 + t0_month*1E2 + t0_day
 DT_HMS = (t0_hour)*1E4 + t0_min*1E2 + t0_sec

 CALL DELTIM(1,DT_YMD,DT_HMS,t0_JUL,t0_JUL,DELTA_T)
C
C Add 2430000 to get the Julian Date from the Modified Julian Date
C
 t0_JUL = t0_JUL + 2430000
C
C Now, find the Julian and Gregorian date of the final time
C
 DAYJUL = DINT(t0_JUL)
 SECJUL = (t0_JUL - DAYJUL)*86400.0

 CALL ADDTIM(DT_YMD,DT_HMS,DAYJUL,SECJUL,T,0.0001)

 IT_YMD = DT_YMD
 IT_HM = DT_HMS/100.0
 DT_SEC = DMOD(DT_HMS,100.0)
C
C Write the output to the obs file intended for GTDS
C
 IF (DT_SEC .LT. 10.0) THEN
 WRITE(115,1004) ' ',1,0,0,
 & IT_YMD,IT_HM,0,DT_SEC,Y_OUT(8),Y_OUT(9),
 & Y_OUT(10),ft
 ELSE
 WRITE(115,1003) ' ',1,0,0,
 & IT_YMD,IT_HM,DT_SEC,Y_OUT(8),Y_OUT(9),
 & Y_OUT(10),ft
 END IF
C
C We have finished, exit the loop
C
 IF (T .EQ. tf) THEN
 EXIT
 END IF

 END DO
C
C Finish writing to the GTDS thrust file and close it.
C
 WRITE(115,1002) 'END '
 CLOSE(UNIT=115,STATUS='KEEP')

 1001 FORMAT(1A8)
 1002 FORMAT(1A3)
 1003 FORMAT(1A8,3I3,3X,1I7.7,1I4.4,1F7.4,4F21.14)
 1004 FORMAT(1A8,3I3,3X,1I7.7,1I4.4,1I1.1,1F6.4,4F21.14)
 END

313

C --
C
C FILE NAME: fsub.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE FSUB (T,Y,YDOT)
C
C...
C. ROUTINE: FSUB
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: This the subroutine that is called by the FK78 subroutine to supply
C. the equinoctial element and Lagrange multiplier derivatives with respect to
C. time, i.e. rates. FSUB calls the COMP_XY, COMP_B, and COMP_U subroutines to
C. calculate the auxiliary quantities, the 6x3 BL matrix and the normalized thrust
C. acceleration vector. FSUB then executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR
C. subroutines which compute the rates for the equinoctial variation equations and
C. the rates for the Lagrange multipliers, respectively.
C.
C.
C. CALLING SEQUENCE:
C. FSUB(T,Y,YDOT)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. T I The current time in seconds from time zero
C. Y I The input vector of current equinoctial orbital
C. elements in elements 1-6 and the vector of
C. current lagrange multipliers in elements 7-12.
C. YDOT O The output vector of equinoctial element rates in
C. elements 1-6 and the output vector of lagrange
C. multipliers in elements 7-12.
C.
C. ROUTINES REQUIRED: COMP_XY, COMP_U, COMP_B, COMP_EQUIN_VAR,
C. COMP_EUL_LAG_VAR
C.
C...
C
C.
C
C
C***************** DECLARATIONS **
C
C
C
C Routine for evaluating right hand sides of equations.
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 INTEGER N

 DOUBLE PRECISION T, Y(*), YDOT(*)
 DOUBLE PRECISION mu, ft, u_mag
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION z0_vect(6), zF_vect(6), EXTDAT

314

 DOUBLE PRECISION nm, cL, sL, G, r, K1
 DOUBLE PRECISION B(6,3), dBda(6,3), dBdh(6,3), dBdk(6,3)
 DOUBLE PRECISION dBdp(6,3), dBdq(6,3), dBdL(6,3)
 DOUBLE PRECISION u(3), dadt, dhdt, dkdt, dpdt, dqdt, dLdt
 DOUBLE PRECISION dlamadt, dlamhdt, dlamkdt
 DOUBLE PRECISION dlampdt, dlamqdt, dlamLdt

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
C
C Assign the input arrays
C
 z_vect(1) = Y(1)
 z_vect(2) = Y(2)
 z_vect(3) = Y(3)
 z_vect(4) = Y(4)
 z_vect(5) = Y(5)
 z_vect(6) = Y(6)

 lam_vect(1) = Y(7)
 lam_vect(2) = Y(8)
 lam_vect(3) = Y(9)
 lam_vect(4) = Y(10)
 lam_vect(5) = Y(11)
 lam_vect(6) = Y(12)
C
C Compute some parameters needed later
C
 CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1)
C
C Compute the B matrix of equinoctial partials wrt rdot,
C the partials of B wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_B(z_vect,nm,cL,sL,G,r,K1,
 & B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,B,u,u_mag)
C
C Compute the right hand side of the equinoctial element variational equations
C
 CALL COMP_EQUIN_VAR(B,u,ft,nm,z_vect(1),z_vect(2),z_vect(3),r,
 & dadt,dhdt,dkdt,dpdt,dqdt,dLdt)
C
C Compute the right hand side of the Lagrange multiplier variational equations
C
 CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,u,nm,ft,G,r,
 & dBda,dBdh,dBdk,dBdp,dBdq,dBdL,
 & dlamadt,dlamhdt,dlamkdt,dlampdt,
 & dlamqdt,dlamLdt)
C
C Assign the output rates
C
 YDOT(1) = dadt
 YDOT(2) = dhdt
 YDOT(3) = dkdt
 YDOT(4) = dpdt
 YDOT(5) = dqdt
 YDOT(6) = dLdt
 YDOT(7) = dlamadt
 YDOT(8) = dlamhdt
 YDOT(9) = dlamkdt
 YDOT(10) = dlampdt
 YDOT(11) = dlamqdt
 YDOT(12) = dlamLdt
 RETURN
 END

315

C --
C
C FILE NAME: F_FORMIN.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE F_FORMIN(N, X, F)
C
C...
C. ROUTINE: F_FORMIN
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial elements and Lagrange multipliers
C. at the final time given the elements and multipliers at the initial
C. time. F_FORMIN also computes the sum of the squares of the differences
C. of the computed final orbital element conditions from the desired orbital
C. element conditions. F_FORMIN uses the RK78 subroutine to perform the
C. integration of the equinoctial orbital elements and the Lagrange multipliers.
C. F_FORMIN is called by UNCMND to perform unconstrained minimization of the
C. F cost function defined in F_FORMIN.
C.
C.
C. CALLING SEQUENCE:
C CALL F_FORMIN(N, X, F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. N I Number of parameters to vary in search
C. for minimum. In this case it is the 6
C. Lagrange multipliers plus the final time
C. for a total of 7.
C. X I vector of lagrange multipliers and tf
C. F O The value of the cost function given X
C.
C.
C. ROUTINES REQUIRED: RK78, COMP_XY, COMP_B, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER(N_INT=12,N_MIN=7)
 INTEGER N_MIN, I, N_INT, IFLAG
 INTEGER MS, NROOT, MINT, LW, IW, LIW, iter
 DOUBLE PRECISION X(N_MIN), F, pi
 DOUBLE PRECISION mu,ft,aF,hF,kF,pF,qF,LF,ecc,inc
 DOUBLE PRECISION z0_vect(6), zF_vect(6)
 DOUBLE PRECISION a,h,k,p,q,L,lam(6),z_vect(6)
 DOUBLE PRECISION nm,cL,sL,G,r,K1
 DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3),dBdk(6,3)
 DOUBLE PRECISION dBdp(6,3),dBdq(6,3),dBdL(6,3)
 DOUBLE PRECISION B_u(6), lam_B_u, u(3), u_mag

316

 DOUBLE PRECISION wgt(7)
 DOUBLE PRECISION tf, Y(N_INT+3)
 DOUBLE PRECISION T, DT, TOL, TDIFF
 DOUBLE PRECISION weights(7,20)
 DOUBLE PRECISION EXTDAT, WEIGHT
 DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT)
 DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT)

 EXTERNAL FSUB,GFUN

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /WEIGHT/ weights, iter
C
C Set PI
C
 pi = 3.141592653589793
C
C Initialize values needed by the integrator
C
C
C Set the integration error tolerance
C
 TOL = 1.0E-10
C
C Set initial time point
C
 T = 0.0
C
C Copy the final time guess.
C
 tf = X(7)
C
C Set the initial guess for integration.
C
 Y(1) = z0_vect(1)
 Y(2) = z0_vect(2)
 Y(3) = z0_vect(3)
 Y(4) = z0_vect(4)
 Y(5) = z0_vect(5)
 Y(6) = z0_vect(6)
 Y(7) = X(1)
 Y(8) = X(2)
 Y(9) = X(3)
 Y(10) = X(4)
 Y(11) = X(5)
 Y(12) = X(6)
C
C Copy the final elements
C
 aF = zF_vect(1)
 hF = zF_vect(2)
 kF = zF_vect(3)
 pF = zF_vect(4)
 qF = zF_vect(5)
 LF = zF_vect(6)
C
C We want the orbital and Lagrange multiplier
C values only at the final time
C
 DT = 600.0
C
C Start the integration loop
C
 DO WHILE (T .LE. tf)
C
C Integrate.
C
 CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL,
 & XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)
C
C Are we finished? If so, exit the loop.

317

C
 IF (T .EQ. tf) THEN
 EXIT
C
C We are not yet finished, find the time yet to integrate.
C If that time is less than the next time step, reduce the
C next time step to equal the time left to integrate.
C
 ELSE
 TDIFF = tf - T
 IF (TDIFF .LT. DT) THEN
 DT = TDIFF
 END IF
 END IF

 END DO
C
C If the integrator was happy, compute the function value
C
 IF (T .EQ. tf) THEN

 a = Y(1)
 h = Y(2)
 k = Y(3)
 p = Y(4)
 q = Y(5)
 L = Y(6)

 lam(1) = Y(7)
 lam(2) = Y(8)
 lam(3) = Y(9)
 lam(4) = Y(10)
 lam(5) = Y(11)
 lam(6) = Y(12)
C
C Compute the Hamiltonion at the final time
C
 z_vect(1) = a
 z_vect(2) = h
 z_vect(3) = k
 z_vect(4) = p
 z_vect(5) = q
 z_vect(6) = L
C
C Compute some parameters needed later
C
 CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1)
C
C Compute the B matrix of equinoctial partials wrt rdot,
C the partials of B wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_B(z_vect,nm,cL,sL,G,r,K1,
 & B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam,B,u,u_mag)
C
C Calculate the Hamiltonian
C
 B_u(1) = B(1,1)*u(1)+B(1,2)*u(2)+B(1,3)*u(3)
 B_u(2) = B(2,1)*u(1)+B(2,2)*u(2)+B(2,3)*u(3)
 B_u(3) = B(3,1)*u(1)+B(3,2)*u(2)+B(3,3)*u(3)
 B_u(4) = B(4,1)*u(1)+B(4,2)*u(2)+B(4,3)*u(3)
 B_u(5) = B(5,1)*u(1)+B(5,2)*u(2)+B(5,3)*u(3)
 B_u(6) = B(6,1)*u(1)+B(6,2)*u(2)+B(6,3)*u(3)

 lam_B_u = lam(1)*B_u(1)+lam(2)*B_u(2)+lam(3)*B_u(3)+
 & lam(4)*B_u(4)+lam(5)*B_u(5)+lam(6)*B_u(6)

318

 Ham = ft*lam_B_u + lam(6)*(a**2.0)*nm*
 & ((1.0-h**2.0-k**2.0)**(1.0/2.0))/(r**2.0)
C
C Assign the weights
C
 DO I=1,7
 wgt(I) = weights(I,iter)
 END DO
C
C This cost function is for Kechichian's LEO to GEO case
C
 F = wgt(1)*(a - aF)**2.0 + wgt(2)*(h - hF)**2.0 +
 & wgt(3)*(k - kF)**2.0 + wgt(4)*(p - pF)**2.0 +
 & wgt(5)*(q - qF)**2.0 + wgt(6)*(lam(6) - 0.0)**2.0 +
 & wgt(7)*(Ham - 1.0)**2.0

 ecc = (h**2.0 + k**2.0)**(1.0/2.0)
 inc = 2.0*DATAN2(DSQRT(p**2.0 + q**2.0),1.0)*180.0/pi

 WRITE (*,*) 'F_FORMIN output'

 WRITE (*,'(I3,6E16.7)')
 & iter,F,Ham,tf,a,ecc,inc
 WRITE (*,'(I3,7E14.5)')
 & iter,
 & wgt(1)*((a - aF)**2.0),
 & wgt(2)*((h - hF)**2.0),
 & wgt(3)*((k - kF)**2.0),
 & wgt(4)*((p - pF)**2.0),
 & wgt(5)*((q - qF)**2.0),
 & wgt(6)*((lam(6) - 0.0)**2.0),
 & wgt(7)*((Ham - 1.0)**2.0)

C
C If the integrator was unhappy, print a message and return
C
 ELSE
 WRITE (*,*) 'Error in integrating from initial to final time.'
 F = 0.0
 RETURN
 END IF

 RETURN
 END

319

C --
C
C FILE NAME: COMP_B.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_B(z_vect,n,cL,sL,G,r,K1,
 & B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL)
C
C...
C. ROUTINE: COMP_B
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the 6x3 BL matrix and its partial derivatives
C. with respect to the equinoctial elements. The equations for
C. this subroutine can be found in the Appendix of [Kechichian, J. A.,
C. Trajectory Optimization Using Nonsingular Orbital Elements and True
C. Longitude. Journal of Guidance, Control and DYnamics. Vol. 20, No. 5,
C. Sept-Oct. 1997].
C.
C.
C. CALLING SEQUENCE:
C COMP_B(z_vect,n,cL,sL,G,r,K1,B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. z_vect I The input equinoctial elements
C. n I The mean motion
C. cL I The cosine of the true longitude
C. sL I The sine of the true longitude
C. G I An auxiliary parameter dependent on h and k
C. equinoctial elements
C. r I The current radial distance from the center of
C. the central body to the satellite
C. K1 I An auxiliary orbital parameter based on p and q
C. B O The 6x3 output matrix containing the partial
C. derivatives of the equinoctial elements wrt rdot.
C. dBda O The 6x3 output matrix of partials of B wrt a
C. dBdh O The 6x3 output matrix of partials of B wrt h
C. dBdk O The 6x3 output matrix of partials of B wrt k
C. dBdp O The 6x3 output matrix of partials of B wrt p
C. dBdq O The 6x3 output matrix of partials of B wrt q
C. dBdL O The 6x3 output matrix of partials of B wrt true long.
C.
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION z_vect(6),n,cL,sL,G,r,K1
 DOUBLE PRECISION a,h,k,p,q,L
 DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3),dBdk(6,3)

320

 DOUBLE PRECISION dBdp(6,3),dBdq(6,3),dBdL(6,3)
 DOUBLE PRECISION drda,drdh,drdk,drdL,dnda
C
C These partial derivatives taken from Kechichian:
C "Trajectory Optimization Using Nonsingular
C Orbital Elements and True Longitude."

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 L = z_vect(6)
C
C Auxiliary partials
C
 drda = r/a
 drdh = -r*(2.0*a*h + r*sL)/(a*(1.0 - h**2.0 - k**2.0))
 drdk = -r*(2.0*a*k + r*cL)/(a*(1.0 - h**2.0 - k**2.0))
 drdL = -(r**2.0*(h*cL - k*sL))/(a*(1.0 - h**2.0 - k**2.0))
 dnda = -3.0*n/(2.0*a)
C
C Partials of a wrt rdot
C
 B(1,1) = 2.0*(n**-1.0)*(G**-1.0)*(k*sL - h*cL)
 B(1,2) = 2.0*(n**-1.0)*a*(r**-1.0)*G
 B(1,3) = 0
C
C Partials of h wrt rdot
C
 B(2,1) = -(n**-1.0)*(a**-1.0)*G*cL
 B(2,2) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(h + sL) +
 & (n**-1.0)*(a**-1.0)*G*sL
 B(2,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*(p*cL - q*sL)
C
C Partials of k wrt rdot
C
 B(3,1) = (n**-1)*(a**-1.0)*G*sL
 B(3,2) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(k + cL) +
 & (n**-1.0)*(a**-1.0)*G*cL
 B(3,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*(p*cL - q*sL)
C
C Partials of p wrt rdot
C
 B(4,1) = 0
 B(4,2) = 0
 B(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*sL
C
C Partials of q wrt rdot
C
 B(5,1) = 0
 B(5,2) = 0
 B(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*cL
C
C Partials of L wrt rdot
C
 B(6,1) = 0
 B(6,2) = 0
 B(6,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(q*sL - p*cL)
C
C %%%
C These next partials are partials of the M matrix wrt elements
C
C Partials of B wrt h
C
 dBdh(1,1) = 2.0*(n**-1.0)*h*(G**-3.0)*(k*sL - h*cL) -
 & 2.0*(n**-1.0)*(G**-1.0)*cL
 dBdh(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*drdh*G -
 & 2.0*(1.0/n)*a*(1.0/r)*h*(1.0/G)
 dBdh(1,3) = 0.0

321

 dBdh(2,1) = (n**-1.0)*(a**-1.0)*h*(G**-1.0)*cL

 dBdh(2,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(h + sL)*
 & (drdh + r*h*(G**-2.0)) +
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0) -
 & (n**-1.0)*(a**-1.0)*h*sL*(G**-1.0)

 dBdh(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL - q*sL)*(drdh +
 & h*r*(G**-2.0))

 dBdh(3,1) = -(n**-1.0)*(a**-1.0)*(G**-1.0)*h*sL

 dBdh(3,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(k + cL)*(drdh +
 & h*r*(G**-2.0)) -
 & (n**-1.0)*(a**-1.0)*h*(G**-1.0)*cL

 dBdh(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*(drdh +
 & h*r*(G**-2.0)) +
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(p*cL - q*sL)

 dBdh(4,1) = 0.0
 dBdh(4,2) = 0.0

 dBdh(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*(drdh+
 & h*r*(G**-2.0))

 dBdh(5,1) = 0.0
 dBdh(5,2) = 0.0

 dBdh(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*(drdh+
 & h*r*(G**-2.0))

 dBdh(6,1) = 0.0

 dBdh(6,2) = 0.0

 dBdh(6,3) = (n**-1.0)*(a**-2.0)*(q*sL - p*cL)*(G**-1.0)*(drdh +
 & r*h*(G**-2.0))
C
C The partials of B wrt k
C
 dBdk(1,1) = 2.0*(n**-1.0)*k*(G**-3.0)*(k*sL - h*cL) +
 & 2.0*(n**-1.0)*(G**-1.0)*sL

 dBdk(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*G*drdk -
 & 2.0*(1.0/n)*a*(1.0/r)*k*(1.0/G)

 dBdk(1,3) = 0.0

 dBdk(2,1) = (n**-1.0)*(a**-1.0)*k*(G**-1.0)*cL

 dBdk(2,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(h + sL)*
 & (drdk + r*k*(G**-2.0)) -
 & (n**-1.0)*(a**-1.0)*k*sL*(G**-1.0)

 dBdk(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL-q*sL)*
 & (drdk+k*r*(G**-2.0)) -
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(p*cL - q*sL)

 dBdk(3,1) = -(n**-1.0)*(a**-1.0)*(G**-1.0)*k*sL

 dBdk(3,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(k + cL)*
 & (drdk+k*r*(G**-2.0)) -
 & (n**-1.0)*(a**-1.0)*k*(G**-1.0)*cL +
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0)

 dBdk(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*(drdk +
 & k*r*(G**-2.0))

 dBdk(4,1) = 0.0
 dBdk(4,2) = 0.0

322

 dBdk(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*(drdk+
 & k*r*(G**-2.0))

 dBdk(5,1) = 0.0
 dBdk(5,2) = 0.0

 dBdk(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*(drdk+
 & k*r*(G**-2.0))

 dBdk(6,1) = 0.0
 dBdk(6,2) = 0.0

 dBdk(6,3) = (n**-1.0)*(a**-2.0)*(q*sL - p*cL)*(G**-1.0)*(drdk +
 & r*k*(G**-2.0))
C
C The partials of B wrt p
C
 dBdp(1,1) = 0.0
 dBdp(1,2) = 0.0
 dBdp(1,3) = 0.0

 dBdp(2,1) = 0.0
 dBdp(2,2) = 0.0
 dBdp(2,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*cL

 dBdp(3,1) = 0.0
 dBdp(3,2) = 0.0
 dBdp(3,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*cL

 dBdp(4,1) = 0.0
 dBdp(4,2) = 0.0
 dBdp(4,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*p*sL

 dBdp(5,1) = 0.0
 dBdp(5,2) = 0.0
 dBdp(5,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*p*cL

 dBdp(6,1) = 0.0
 dBdp(6,2) = 0.0
 dBdp(6,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*cL
C
C Partials of B wrt q
C
 dBdq(1,1) = 0.0
 dBdq(1,2) = 0.0
 dBdq(1,3) = 0.0

 dBdq(2,1) = 0.0
 dBdq(2,2) = 0.0
 dBdq(2,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*sL

 dBdq(3,1) = 0.0
 dBdq(3,2) = 0.0
 dBdq(3,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*sL

 dBdq(4,1) = 0.0
 dBdq(4,2) = 0.0
 dBdq(4,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*q*sL

 dBdq(5,1) = 0.0
 dBdq(5,2) = 0.0
 dBdq(5,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*q*cL

 dBdq(6,1) = 0.0
 dBdq(6,2) = 0.0
 dBdq(6,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*sL
C
C The partials of B wrt a
C
 dBda(1,1) = -2.0*(n**-2.0)*dnda*(G**-1.0)*(k*sL - h*cL)

323

 dBda(1,2) = -2.0*(n**-2.0)*a*(r**-1.0)*dnda*G
 dBda(1,3) = 0.0

 dBda(2,1) = -(2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*cL

 dBda(2,2) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(h + sL) +
 & (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*sL

 dBda(2,3) = -(2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*k*(p*cL -
 & q*sL)

 dBda(3,1) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*sL

 dBda(3,2) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(k + cL) +
 & (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*cL

 dBda(3,3) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*h*(p*cL -
 & q*sL)

 dBda(4,1) = 0.0
 dBda(4,2) = 0.0
 dBda(4,3) = (4.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*K1*sL

 dBda(5,1) = 0.0
 dBda(5,2) = 0.0
 dBda(5,3) = (4.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*K1*cL

 dBda(6,1) = 0.0
 dBda(6,2) = 0.0
 dBda(6,3) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(q*sL -
 & p*cL)
C
C Partials of B wrt L
C
 dBdL(1,1) = 2.0*(n**-1.0)*(G**-1.0)*(k*cL + h*sL)
 dBdL(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*G*drdL
 dBdL(1,3) = 0.0

 dBdL(2,1) = (1.0/n)*(1.0/a)*G*sL
 dBdL(2,2) = (1.0/n)*(1.0/(a**2.0))*(h + sL)*(1.0/G)*drdL +
 & (1.0/n)*(1.0/(a**2.0))*r*cL*(1.0/G) +
 & (1.0/n)*(1.0/a)*cL*G
 dBdL(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL - q*sL)*drdL +
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*(p*sL + q*cL)

 dBdL(3,1) = (1.0/n)*(1.0/a)*G*cL
 dBdL(3,2) = (1.0/n)*(1.0/(a**2.0))*(1.0/G)*(k + cL)*drdL -
 & (1.0/n)*(1.0/(a**2.0))*r*(1.0/G)*sL -
 & (1.0/n)*(1.0/a)*G*sL
 dBdL(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*drdL -
 & (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*(p*sL + q*cL)

 dBdL(4,1) = 0.0
 dBdL(4,2) = 0.0
 dBdL(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*drdL +
 & (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*cL

 dBdL(5,1) = 0.0
 dBdL(5,2) = 0.0
 dBdL(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*drdL -
 & (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*sL

 dBdL(6,1) = 0.0
 dBdL(6,2) = 0.0
 dBdL(6,3) = (1.0/n)*(1.0/(a**2.0))*(q*sL - p*cL)*(1.0/G)*drdL +
 & (1.0/n)*(1.0/(a**2.0))*r*(q*cL + p*sL)*(1.0/G)

 RETURN
 END

324

C --
C
C FILE NAME: COMP_EQUIN_VAR.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_EQUIN_VAR(B,u,ft,n,a,h,k,r,
 & dadt,dhdt,dkdt,dpdt,dqdt,dLdt)
C
C...
C. ROUTINE: COMP_EQUIN_VAR
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the derivatives of the equinoctial orbital elements
C. with respect to time, i.e. element rates. This is done by multiplying
C. the constant thrust acceleration magnitude by the product of the BL
C. matrix and the normalized thrust acceleration vector.
C.
C.
C. CALLING SEQUENCE:
C COMP_EQUIN_VAR(B,u,ft,n,a,h,k,r,dadt,dhdt,dkdt,dpdt,dqdt,dLdt)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. B I The 6x3 partial derivative matrix
C. u I The 3x1 thrust vector
C. ft I The thrust acceleration magnitude
C. n I The mean motion
C. a I The semimajor axis
C. h I The h equinoctial element
C. k I The k equinoctial element
C. r I The radial distance between the central
C. body center and the satellite
C. dadt O The output time derivative of the semimajor axis
C. dhdt O The output time derivative of h
C. dkdt O The output time derivative of k
C. dpdt O The output time derivative of p
C. dqdt O The output time derivative of q
C. dLdt O The output time derivative of true long.
C.
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION B(6,3),u(3),ft,n,a,h,k,r
 DOUBLE PRECISION dadt,dhdt,dkdt,dpdt,dqdt,dLdt

 dadt = ft*(B(1,1)*u(1) + B(1,2)*u(2) + B(1,3)*u(3))

 dhdt = ft*(B(2,1)*u(1) + B(2,2)*u(2) + B(2,3)*u(3))

325

 dkdt = ft*(B(3,1)*u(1) + B(3,2)*u(2) + B(3,3)*u(3))

 dpdt = ft*(B(4,1)*u(1) + B(4,2)*u(2) + B(4,3)*u(3))

 dqdt = ft*(B(5,1)*u(1) + B(5,2)*u(2) + B(5,3)*u(3))

 dLdt = ft*(B(6,1)*u(1) + B(6,2)*u(2) + B(6,3)*u(3)) +
 & (n*a**2.0*((1.0-h**2.0-k**2.0)**(1.0/2.0))/r**2.0)

 RETURN
 END

326

C --
C
C FILE NAME: COMP_EUL_LAG_VAR.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_EUL_LAG_VAR(z_vect,lam_vect,u,n,ft,G,r,
 & dBda,dBdh,dBdk,dBdp,dBdq,dBdL,
 & dlamadt,dlamhdt,dlamkdt,dlampdt,
 & dlamqdt,dlamLdt)
C
C...
C. ROUTINE: COMP_EUL_LAG_VAR
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the derivatives of the Lagrange multipliers
C with respect to time, i.e. multiplier rates. This is done
C by multiplying the partial derivatives of the BL matrix with
C respect to the equinoctial elements, the normalized thrust
C acceleration vector, the thrust acceleration magnitude and
C the current values of the orbital elements.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,u,n,ft,G,r,
C dBda,dBdh,dBdk,dBdp,dBdq,dBdL,
C dlamadt,dlamhdt,dlamkdt,dlampdt,
C dlamqdt,dlamLdt
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. z_vect I the 6x1 vector of equinoctial elements
C. lam_vect I the 6x1 vector of lagrange multipliers
C. u I the 3x1 thrust vector
C. n I mean motion
C. ft I thrust acceleration magnitude
C. G I auxiliary orbital element
C. r I radial distance from central body to sat
C. dBda I partials of B matrix wrt a
C. dBdh I partials of B matrix wrt h
C. dBdk I partials of B matrix wrt k
C. dBdp I partials of B matrix wrt p
C. dBdq I partials of B matrix wrt q
C. dBdL I partials of B matrix wrt true long.
C. dlamadt O partials of Lagrange mult for a wrt time
C. dlamhdt O partials of Lagrange mult for h wrt time
C. dlamkdt O partials of Lagrange mult for k wrt time
C. dlampdt O partials of Lagrange mult for p wrt time
C. dlamqdt O partials of Lagrange mult for q wrt time
C. dlamLdt O partials of Lagrange mult for L wrt time
C.
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C

327

C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION z_vect(6),lam_vect(6),u(3),n,ft,G,r
 DOUBLE PRECISION dBda(6,3),dBdh(6,3),dBdk(6,3),dBdp(6,3)
 DOUBLE PRECISION dBdq(6,3),dBdL(6,3)
 DOUBLE PRECISION dlamadt,dlamhdt,dlamkdt,dlampdt
 DOUBLE PRECISION dlamqdt,dlamLdt
 DOUBLE PRECISION cL,sL,a,h,k,L,drdh,drdk,drdL
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,lamL

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 L = z_vect(6)

 cL = cos(L)
 sL = sin(L)

 drdh = -r*(2.0*a*h + r*sL)/(a*(1.0 - h**2.0 - k**2.0))
 drdk = -r*(2.0*a*k + r*cL)/(a*(1.0 - h**2.0 - k**2.0))
 drdL = -((r**2.0)*(h*cL - k*sL))/(a*(1.0 - h**2.0 - k**2.0))

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 lamL = lam_vect(6)

 dlamadt = ft*(-lama*(dBda(1,1)*u(1)+dBda(1,2)*u(2)+dBda(1,3)*u(3))
 & + -lamh*(dBda(2,1)*u(1)+dBda(2,2)*u(2)+dBda(2,3)*u(3))
 & + -lamk*(dBda(3,1)*u(1)+dBda(3,2)*u(2)+dBda(3,3)*u(3))
 & + -lamp*(dBda(4,1)*u(1)+dBda(4,2)*u(2)+dBda(4,3)*u(3))
 & + -lamq*(dBda(5,1)*u(1)+dBda(5,2)*u(2)+dBda(5,3)*u(3))
 & + -lamL*(dBda(6,1)*u(1)+dBda(6,2)*u(2)+dBda(6,3)*u(3)))
 & - lamL*(-(3.0/2.0)*n*a*(r**-2.0)*G)

 dlamhdt = ft*(-lama*(dBdh(1,1)*u(1)+dBdh(1,2)*u(2)+dBdh(1,3)*u(3))
 & + -lamh*(dBdh(2,1)*u(1)+dBdh(2,2)*u(2)+dBdh(2,3)*u(3))
 & + -lamk*(dBdh(3,1)*u(1)+dBdh(3,2)*u(2)+dBdh(3,3)*u(3))
 & + -lamp*(dBdh(4,1)*u(1)+dBdh(4,2)*u(2)+dBdh(4,3)*u(3))
 & + -lamq*(dBdh(5,1)*u(1)+dBdh(5,2)*u(2)+dBdh(5,3)*u(3))
 & + -lamL*(dBdh(6,1)*u(1)+dBdh(6,2)*u(2)+dBdh(6,3)*u(3)))
 & - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdh -
 & n*(a**2.0)*(r**-2.0)*h*(G**-1.0))

 dlamkdt = ft*(-lama*(dBdk(1,1)*u(1)+dBdk(1,2)*u(2)+dBdk(1,3)*u(3))
 & + -lamh*(dBdk(2,1)*u(1)+dBdk(2,2)*u(2)+dBdk(2,3)*u(3))
 & + -lamk*(dBdk(3,1)*u(1)+dBdk(3,2)*u(2)+dBdk(3,3)*u(3))
 & + -lamp*(dBdk(4,1)*u(1)+dBdk(4,2)*u(2)+dBdk(4,3)*u(3))
 & + -lamq*(dBdk(5,1)*u(1)+dBdk(5,2)*u(2)+dBdk(5,3)*u(3))
 & + -lamL*(dBdk(6,1)*u(1)+dBdk(6,2)*u(2)+dBdk(6,3)*u(3)))
 & - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdk -
 & n*(a**2.0)*(r**-2.0)*k*(G**-1.0))

 dlampdt = ft*(-lama*(dBdp(1,1)*u(1)+dBdp(1,2)*u(2)+dBdp(1,3)*u(3))
 & + -lamh*(dBdp(2,1)*u(1)+dBdp(2,2)*u(2)+dBdp(2,3)*u(3))
 & + -lamk*(dBdp(3,1)*u(1)+dBdp(3,2)*u(2)+dBdp(3,3)*u(3))
 & + -lamp*(dBdp(4,1)*u(1)+dBdp(4,2)*u(2)+dBdp(4,3)*u(3))
 & + -lamq*(dBdp(5,1)*u(1)+dBdp(5,2)*u(2)+dBdp(5,3)*u(3))
 & + -lamL*(dBdp(6,1)*u(1)+dBdp(6,2)*u(2)+dBdp(6,3)*u(3)))

 dlamqdt = ft*(-lama*(dBdq(1,1)*u(1)+dBdq(1,2)*u(2)+dBdq(1,3)*u(3))
 & + -lamh*(dBdq(2,1)*u(1)+dBdq(2,2)*u(2)+dBdq(2,3)*u(3))
 & + -lamk*(dBdq(3,1)*u(1)+dBdq(3,2)*u(2)+dBdq(3,3)*u(3))
 & + -lamp*(dBdq(4,1)*u(1)+dBdq(4,2)*u(2)+dBdq(4,3)*u(3))
 & + -lamq*(dBdq(5,1)*u(1)+dBdq(5,2)*u(2)+dBdq(5,3)*u(3))
 & + -lamL*(dBdq(6,1)*u(1)+dBdq(6,2)*u(2)+dBdq(6,3)*u(3)))

328

 dlamLdt = ft*(-lama*(dBdL(1,1)*u(1)+dBdL(1,2)*u(2)+dBdL(1,3)*u(3))
 & + -lamh*(dBdL(2,1)*u(1)+dBdL(2,2)*u(2)+dBdL(2,3)*u(3))
 & + -lamk*(dBdL(3,1)*u(1)+dBdL(3,2)*u(2)+dBdL(3,3)*u(3))
 & + -lamp*(dBdL(4,1)*u(1)+dBdL(4,2)*u(2)+dBdL(4,3)*u(3))
 & + -lamq*(dBdL(5,1)*u(1)+dBdL(5,2)*u(2)+dBdL(5,3)*u(3))
 & + -lamL*(dBdL(6,1)*u(1)+dBdL(6,2)*u(2)+dBdL(6,3)*u(3)))
 & - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdL)

 RETURN
 END

329

C --
C
C FILE NAME: COMP_U.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_U(lam_vect,B,u,u_norm)
C
C...
C. ROUTINE: COMP_U
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: computes the normalized thrust acceleration vector
C. given the 6x3 BL matrix and the vector of current Lagrange multipliers.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_U(lam_vect,B,u,u_norm)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. -------- --- --
C. lam_vect I 6x1 input vector of lagrange multipliers
C. B I 6x3 input matrix of partial derivatives
C. u O 3x1 normalized output thrust vector
C. u_norm O scalar magnitude of thrust acceleration
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION lam_vect(6), B(6,3), u(3)
 DOUBLE PRECISION u_unnorm(3), u_norm

 u_unnorm(1) = lam_vect(1)*B(1,1) +
 & lam_vect(2)*B(2,1) +
 & lam_vect(3)*B(3,1) +
 & lam_vect(4)*B(4,1) +
 & lam_vect(5)*B(5,1) +
 & lam_vect(6)*B(6,1)

 u_unnorm(2) = lam_vect(1)*B(1,2) +
 & lam_vect(2)*B(2,2) +
 & lam_vect(3)*B(3,2) +
 & lam_vect(4)*B(4,2) +
 & lam_vect(5)*B(5,2) +
 & lam_vect(6)*B(6,2)

 u_unnorm(3) = lam_vect(1)*B(1,3) +
 & lam_vect(2)*B(2,3) +
 & lam_vect(3)*B(3,3) +
 & lam_vect(4)*B(4,3) +
 & lam_vect(5)*B(5,3) +

330

 & lam_vect(6)*B(6,3)

 u_norm = DSQRT(u_unnorm(1)**2.0 +
 & u_unnorm(2)**2.0 +
 & u_unnorm(3)**2.0)

 u(1) = (1.0/u_norm)*u_unnorm(1)
 u(2) = (1.0/u_norm)*u_unnorm(2)
 u(3) = (1.0/u_norm)*u_unnorm(3)

 RETURN
 END

331

C --
C
C FILE NAME: COMP_XY.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_XY(z_vect,mu,n,cL,sL,G,r,K1)
C
C...
C. ROUTINE: COMP_XY
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Calculates auxiliary quantities based on
C. the current equinoctial orbital elements.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_XY(z_vect,mu,n,cL,sL,G,r,K1)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. -------- --- --
C. z_vect I the 6x1 vector of equinoctial elements
C. mu I the central body gravitational constant
C. n O mean motion
C. cL O cosine of the true longitude
C. sL O sine of the true longitude
C. G O auxiliary parameter based on h,k
C. K1 O auxiliary parameter based on p,q
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION z_vect(6), mu, n, cL, sL
 DOUBLE PRECISION a,h,k,p,q,L,G,r,K1,Beta

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 L = z_vect(6)
 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0 + G)
 cL = DCOS(L)
 sL = DSIN(L)
 n = DSQRT(mu)*(a**(-3.0/2.0))
 r = a*(1 - h**2.0 - k**2.0)/(1.0 + h*sL + k*cL)
 K1 = 1.0 + p**2.0 + q**2.0

 RETURN
 END

332

C --
C
C FILE NAME: TRANS_OUT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE TRANS_OUT(Y_IN, Y_OUT, ft, mu)
C
C...
C. ROUTINE: TRANS_OUT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Transforms the equinoctial elements into Keplerian
C. elements and calls COMP_XY, COMP_M, COMP_U and FSUB to compute
C. the Hamiltonian, thrust vector, and the yaw and pitch angles.
C. These quantities are returned to the calling subroutine in an
C. array intended to be written as output.
C.
C.
C. CALLING SEQUENCE:
C CALL TRANS_OUT(Y_IN, Y_OUT, ft, mu)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. Y_IN I 12x1 vector of equinoctial elements and
C. lagrange multipliers
C. Y_OUT O 13x1 vector of desired output quantities
C. ft I thrust acceleration magnitude
C. mu I central body gravitational constant
C.
C.
C. ROUTINES REQUIRED: COMP_XY, COMP_U, COMP_B
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION Y_IN(12), Y_OUT(13), ft, mu
 DOUBLE PRECISION a,h,k,p,q,L,lam(6),z_vect(6)
 DOUBLE PRECISION ecc,inc,ran,arp,mea
 DOUBLE PRECISION u(3),Ham,u_r,u_t,u_h
 DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3)
 DOUBLE PRECISION dBdk(6,3),dBdp(6,3),dBdq(6,3)
 DOUBLE PRECISION dBdL(6,3), B_u(6), lam_B_u, u_mag
 DOUBLE PRECISION nm,cL,sL,G,r,K1,theta_t,theta_h
 DOUBLE PRECISION u_eci(3), ROTL(3,3), ROTRI(3,3), FGW(3)

 a = Y_IN(1)
 h = Y_IN(2)
 k = Y_IN(3)
 p = Y_IN(4)
 q = Y_IN(5)
 L = Y_IN(6)

333

 z_vect(1) = Y_IN(1)
 z_vect(2) = Y_IN(2)
 z_vect(3) = Y_IN(3)
 z_vect(4) = Y_IN(4)
 z_vect(5) = Y_IN(5)
 z_vect(6) = Y_IN(6)

 lam(1) = Y_IN(7)
 lam(2) = Y_IN(8)
 lam(3) = Y_IN(9)
 lam(4) = Y_IN(10)
 lam(5) = Y_IN(11)
 lam(6) = Y_IN(12)

 ecc = (h**2.0 + k**2.0)**(1.0/2.0)
 inc = 2.0*DATAN2((p**2.0 + q**2.0)**(1.0/2.0),1.0)
 ran = DATAN2(p,q)
 arp = DATAN2(h,k) - DATAN2(p,q)
 mea = L - DATAN2(h,k)

 CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1)

 CALL COMP_B(z_vect,nm,cL,sL,G,r,K1,
 & B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL)

 CALL COMP_U(lam,B,u,u_mag)

 B_u(1) = B(1,1)*u(1)+B(1,2)*u(2)+B(1,3)*u(3)
 B_u(2) = B(2,1)*u(1)+B(2,2)*u(2)+B(2,3)*u(3)
 B_u(3) = B(3,1)*u(1)+B(3,2)*u(2)+B(3,3)*u(3)
 B_u(4) = B(4,1)*u(1)+B(4,2)*u(2)+B(4,3)*u(3)
 B_u(5) = B(5,1)*u(1)+B(5,2)*u(2)+B(5,3)*u(3)
 B_u(6) = B(6,1)*u(1)+B(6,2)*u(2)+B(6,3)*u(3)

 lam_B_u = lam(1)*B_u(1)+lam(2)*B_u(2)+lam(3)*B_u(3)+
 & lam(4)*B_u(4)+lam(5)*B_u(5)+lam(6)*B_u(6)

 Ham = ft*lam_B_u + lam(6)*(a**2.0)*nm*
 & ((1.0-h**2.0-k**2.0)**(1.0/2.0))/(r**2.0)

 u_r = u(1)
 u_t = u(2)
 u_h = u(3)
C
C Compute the pitch and yaw angles
C
 theta_t = DATAN2(u_r,u_t)
 theta_h = DATAN2(u_h,u_t)
C
C Rotate the acceleration into the equinoctial frame
C
 ROTL(1,1) = cL
 ROTL(1,2) = -sL
 ROTL(1,3) = 0.0
 ROTL(2,1) = sL
 ROTL(2,2) = cL
 ROTL(2,3) = 0.0
 ROTL(3,1) = 0.0
 ROTL(3,2) = 0.0
 ROTL(3,3) = 1.0

 FGW(1) = ROTL(1,1)*u_r+ROTL(1,2)*u_t+ROTL(1,3)*u_h
 FGW(2) = ROTL(2,1)*u_r+ROTL(2,2)*u_t+ROTL(2,3)*u_h
 FGW(3) = ROTL(3,1)*u_r+ROTL(3,2)*u_t+ROTL(3,3)*u_h
C
C Now rotate the equinoctial acceleration to the inertial cartesian frame
C
 ROTRI(1,1) = (DCOS(-ran))**2.0 + DCOS(-inc)*((DSIN(-ran))**2.0)
 ROTRI(1,2) = DCOS(-ran)*DSIN(-ran)*(1-DCOS(-inc))
 ROTRI(1,3) = -DSIN(-inc)*DSIN(-ran)
 ROTRI(2,1) = DCOS(-ran)*DSIN(-ran)*(1-DCOS(-inc))

334

 ROTRI(2,2) = (DSIN(-ran))**2.0 + DCOS(-inc)*((DCOS(-ran))**2.0)
 ROTRI(2,3) = DSIN(-inc)*DCOS(-ran)
 ROTRI(3,1) = DSIN(-inc)*DSIN(-ran)
 ROTRI(3,2) = -DSIN(-inc)*DCOS(-ran)
 ROTRI(3,3) = DCOS(-inc)
C
C Multiply the rotation matrix by the equinoctial
C vector to get the ECI vector
C
 u_eci(1) = ROTRI(1,1)*FGW(1)+ROTRI(1,2)*FGW(2)+ROTRI(1,3)*FGW(3)
 u_eci(2) = ROTRI(2,1)*FGW(1)+ROTRI(2,2)*FGW(2)+ROTRI(2,3)*FGW(3)
 u_eci(3) = ROTRI(3,1)*FGW(1)+ROTRI(3,2)*FGW(2)+ROTRI(3,3)*FGW(3)
C
C Assemble the output
C
 Y_OUT(1) = a
 Y_OUT(2) = ecc
 Y_OUT(3) = inc
 Y_OUT(4) = ran
 Y_OUT(5) = arp
 Y_OUT(6) = mea
 Y_OUT(7) = Ham
 Y_OUT(8) = u_eci(1)
 Y_OUT(9) = u_eci(2)
 Y_OUT(10) = u_eci(3)
 Y_OUT(11) = u_mag
 Y_OUT(12) = theta_t
 Y_OUT(13) = theta_h

 RETURN
 END

335

C --
C
C FILE NAME: SOLVE_ECC_ANOMALY.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION SOLVE_ECC_ANOMALY
 & (mean_anomaly_in, ecc_in)
C
C...
C. ROUTINE: SOLVE_ECC_ANOMALY
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Calculates the eccentric anomaly based on the mean anomaly and
C. eccentricity.
C.
C.
C. CALLING SEQUENCE:
C ECC_ANOM = SOLVE_ECC_ANOMALY(mean_anomaly_in, ecc_in)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------------- --- -------------------------------------
C. mean_anomaly_in I mean anomaly (radians)
C. ecc_in I eccentricity
C.
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 IMPLICIT NONE
 INTEGER max_iter, iter
 DOUBLE PRECISION mean_anomaly_in, ecc_in, epsilon
 DOUBLE PRECISION ecc_anomaly, ecc_anomaly_new
 DOUBLE PRECISION ecc_anomaly_diff
 epsilon = 1.0E-20
 max_iter = 50
 ecc_anomaly = epsilon + 1.0
 ecc_anomaly_new = 0.0
 iter = 0
 DO WHILE (DABS(ecc_anomaly - ecc_anomaly_new) .GT.
 & epsilon .AND. iter .LE. max_iter)

 ecc_anomaly = ecc_anomaly_new
 ecc_anomaly_new = mean_anomaly_in + ecc_in * DSIN(ecc_anomaly)
 iter = iter+1

 END DO
 ecc_anomaly_diff = DABS(ecc_anomaly - ecc_anomaly_new)
 SOLVE_ECC_ANOMALY = ecc_anomaly_new
 RETURN
 END

336

Appendix F Source code for the Averaged Equation Optimal
Thrust Planning Software

The exact equation optimal thrust planning software is described in Chapter 5

section 5.1.2. This appendix contains the source code corresponding to section 5.1.2.

Only the source code written by the author is included. Other open source subroutines

such as the UNCMND, DQAG, and RK78 subroutines are not included. Sources for

those subroutines can be found in the References section or by contacting the author.

C --
C
C FILE NAME: low_thrust_drive.for (for averaged equation software)
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
C...
C. ROUTINE: LOW_THRUST_DRIVE
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE:
C.
C. This the driver subroutine for the averaged eq. software.
C. It collects the initial and final Keplerian orbits, converts
C. those to equinoctial orbits, calls the UNCMND subroutine to
C. execute the quasi-Newton search to solve for the initial Lagrange
C. multipliers, and calls the RK78 subroutine to integrate the
C. variational equations of motion and the variational equations
C. for the Lagrange multipliers from the initial to final time.
C. Finally, the trajectory is printed.
C.
C. CALLING SEQUENCE:
C. This is a main program and has no calling parameters. However,
C. Several of the initial variable values can be modified to solve
C. averaged optimal thrust trajectory problems. Among these are:
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. tf0 I the guess for the final time in seconds.
C. ft I the constrant thrust acceleration km/second squared
C. sma0 I the semimajor axis for the initial orbit
C. ecc0 I the eccentricity of the initial orbit
C. inc0 I the inclination of the initial orbit

337

C. ran0 I the RAAN of the initial orbit
C. arp0 I the arg. of perigee of the initial orbit
C. mea0 I the mean anomaly of the initial orbit
C. smaF I the semimajor axis for the final orbit
C. eccF I the eccentricity of the final orbit
C. incF I the inclination of the final orbit
C. ranF I the RAAN of the final orbit
C. arpF I the arg. of perigee of the final orbit
C. meaF I the mean anomaly of the final orbit
C. lam_vect I the 6x1 vector of initial Lagrange multipliers
C.
C.
C. ROUTINES REQUIRED: UNCMND, RK78, TRANS_OUT, DELTIM, ADDTIM
C.
C...
C
C
C***************** DECLARATIONS **
C
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (N_INT=12, N_MIN=7,
 * LWORK=N_MIN*(N_MIN+10))
 DOUBLE PRECISION Y(N_INT), TOL
 DOUBLE PRECISION T, DT, TDIFF

 DOUBLE PRECISION mu, ft, pi
 DOUBLE PRECISION sma0, ecc0, inc0, ran0, arp0, mea0
 DOUBLE PRECISION tf0, tf, LAST_PRINT
 DOUBLE PRECISION smaF, eccF, incF, ranF, arpF, meaF
 DOUBLE PRECISION z0_vect(6), zF_vect(6), lam_vect(7)
 DOUBLE PRECISION z0, weights(7,20)
 DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT)
 DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT)
 DOUBLE PRECISION Y_OUT(10), Y_FIN_DIFF(6)
 DOUBLE PRECISION x(N_MIN), x0(N_MIN)
 DOUBLE PRECISION WORK(LWORK), F, EXTDAT, WEIGHT

 INTEGER I, J, IFLAG
 INTEGER MAX_ITER, N_INT, N_MIN, LWORK
 INTEGER IERROR, iter
 EXTERNAL FSUB,F_FORMIN

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /WEIGHT/ weights, iter
C
C Set PI
C
 pi = 3.141592653589793
C
C Set the integration error tolerance
C
 TOL = 1.0E6
C
C Guess for the final time
C
C tf0 = 1761276.2904
C
 tf0 = 1761276.2904
C
C Set the Earth gravity constant (km^3/days^2)
C
 mu = 398600.4418
C
C Set the constant acceleration (km/days^2)
C
 ft = 6.5E-9
C
C Set the maximum iterations for the outer optimization loop
C

338

 MAX_ITER = 5
C
C Set the initial Keplerian elements
C
 sma0 = 41532.10828
 ecc0 = 0.9029821557E-3
 inc0 = 1.734151104 * pi/180.0
 ran0 = 109.0647352 * pi/180.0
 arp0 = 39.26363404 * pi/180.0
 mea0 = 354.0614630 * pi/180.0
C
C Set the final Keplerian elements
C
 smaF = 41840.20862
 eccF = 0.6335377066E-3
 incF = 1.734151104 * pi/180
 ranF = 109.0647352 * pi/180
 arpF = 39.26363404 * pi/180
 meaF = 217.6227012 * pi/180
C
C Compute the initial equinoctial elements
C
 z0_vect(1) = sma0
 z0_vect(2) = ecc0 * sin(arp0 + ran0)
 z0_vect(3) = ecc0 * cos(arp0 + ran0)
 z0_vect(4) = tan(inc0/2)*sin(ran0)
 z0_vect(5) = tan(inc0/2)*cos(ran0)
 z0_vect(6) = mea0 + arp0 + ran0
C
C Compute the final equinoctial elements
C
 zF_vect(1) = smaF
 zF_vect(2) = eccF * sin(arpF + ranF)
 zF_vect(3) = eccF * cos(arpF + ranF)
 zF_vect(4) = tan(incF/2)*sin(ranF)
 zF_vect(5) = tan(incF/2)*cos(ranF)
 zF_vect(6) = meaF + arpF + ranF
C
C Initial guesses for the Lagrange multipliers
C
 lam_vect(1) = 0.570932641360E+04
 lam_vect(2) = -0.344890990023E+08
 lam_vect(3) = 0.559045506405E+08
 lam_vect(4) = 0.198345700960E+02
 lam_vect(5) = 0.287829595367E+03
 lam_vect(6) = 0.764058554639E-02

 lam_vect(7) = tf0

 DO J=1,7
 x0(J) = lam_vect(J)
 END DO
C
C Combine all initial conditions into Y array
C
 DO I=1,6
 Y(I) = z0_vect(I)
 END DO
 DO I=1,6
 Y(I+6) = lam_vect(I)
 END DO
C
C Set initial eccentric longitude
C
 T = 0.0
 DT = 0.1
 LAST_PRINT = T
C
C Set the weights for each outer loop optimization iteration
C
 weights(1,1) = 1.0

339

 weights(2,1) = 1.0E12
 weights(3,1) = 1.0E12
 weights(4,1) = 1.0E9
 weights(5,1) = 1.0E9
 weights(6,1) = 1.0
 weights(7,1) = 1.0E6

 weights(1,2) = 1.0/10.0
 weights(2,2) = 1.0E11
 weights(3,2) = 1.0E11
 weights(4,2) = 1.0E10
 weights(5,2) = 1.0E10
 weights(6,2) = 1.0
 weights(7,2) = 1.0E6

 weights(1,3) = 1.0
 weights(2,3) = 1.0E12
 weights(3,3) = 1.0E12
 weights(4,3) = 1.0E11
 weights(5,3) = 1.0E11
 weights(6,3) = 1.0
 weights(7,3) = 1.0E6

 weights(1,4) = 1.0E1
 weights(2,4) = 1.0E13
 weights(3,4) = 1.0E13
 weights(4,4) = 1.0E12
 weights(5,4) = 1.0E11
 weights(6,4) = 1.0
 weights(7,4) = 1.0E6

 weights(1,5) = 1.0E2
 weights(2,5) = 1.0E12
 weights(3,5) = 1.0E12
 weights(4,5) = 1.0E11
 weights(5,5) = 1.0E11
 weights(6,5) = 1.0
 weights(7,5) = 1.0E6
C
C Save the initial values in x in case we are skipping the UNCMND
C
 DO I=1,7
 x(I) = lam_vect(I)
 END DO
C
C Set up the outer optimization loop
C
 DO iter=1,MAX_ITER
C
C Call the unconstrained minimization subroutine
C
 CALL UNCMND (N_MIN, x0, F_FORMIN, x, F, IERROR, WORK, LWORK)
C
C Print out the results of the minimization (the Lagrange multipliers and final
time)
C
 WRITE (*,*) 'Results of opt: Lagrange mult and final time'
 WRITE (*,'(7E24.12)') (x(I), I=1,7)
C
C Copy the the output back to the input
C
 DO J=1,7
 x0(J) = x(J)
 END DO
 END DO
C
C Assign results of optimization to input for integration
C and printout of the final trajectory
C
 DO I=1,6
 Y(I) = z0_vect(I)

340

 END DO
 Y(7) = x(1)
 Y(8) = x(2)
 Y(9) = x(3)
 Y(10) = x(4)
 Y(11) = x(5)
 Y(12) = x(6)
 tf = x(7)
C
C Print out the results of the minimization (the Lagrange multipliers and final time)
C
 WRITE (*,*) 'Results of optimization Lagrange mult and final time'
 WRITE (*,'(7E24.12)') (x(I), I=1,7)
C
C Output the final trajectory result of the optimization
C
 DO WHILE (T .LE. tf)
C
C Integrate.
C
 CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL,
 & XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)
C
C Are we finished? If so, exit the loop.
C
 IF (T .EQ. tf) THEN
C
C Write the output at this time step.
C
 CALL TRANS_OUT(Y, Y_OUT, ft, mu)
C
C Compare the desired elements with the final elements achieved.
C
 Y_FIN_DIFF(1) = Y_OUT(1) - smaF
 Y_FIN_DIFF(2) = Y_OUT(2) - eccF
 Y_FIN_DIFF(3) = (Y_OUT(3) - incF)*180.0/pi
 Y_FIN_DIFF(4) = (Y_OUT(4) - ranF)*180.0/pi
 Y_FIN_DIFF(5) = (Y_OUT(5) - arpF)*180.0/pi
 Y_FIN_DIFF(6) = (Y_OUT(6) - meaF)*180.0/pi

 WRITE (*,*) 'Final element differences'
 WRITE (*,'(6E24.12)') Y_FIN_DIFF(1),Y_FIN_DIFF(2),
 & Y_FIN_DIFF(3),Y_FIN_DIFF(4),Y_FIN_DIFF(5),Y_FIN_DIFF(6)
C
C
C We are not yet finished, find the time yet to integrate.
C If that time is less than the next time step, reduce the
C next time step to equal the time left to integrate.
C
 ELSE
 TDIFF = tf - T
 IF (TDIFF .LT. DT) THEN
 DT = TDIFF
 END IF
 END IF
C
C Write the output at this time step if enough time has passed.
C
 IF (T - LAST_PRINT .GE. 1.0E-20) THEN

 CALL TRANS_OUT(Y, Y_OUT, ft, mu)

 WRITE (*,'(I9,12E24.12)') 111111111,
 * T,Y_OUT(1),Y_OUT(2),Y_OUT(3),Y_OUT(4),Y_OUT(5),
 * Y_OUT(6),Y_OUT(7),Y_OUT(8),Y_OUT(9),Y_OUT(10)

 LAST_PRINT = T
 END IF

 IF (T .EQ. tf) THEN
 EXIT

341

 END IF

 END DO

 END

342

C --
C
C FILE NAME: fsub.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE FSUB (T,Y,YDOT)
C
C...
C. ROUTINE: FSUB
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: FSUB is the subroutine that is called by
C. the FK78 subroutine to supply the equinoctial element and
C. Lagrange multiplier derivatives with respect to time, i.e. rates.
C. FSUB executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR subroutines
C. which compute the rates for the equinoctial variation equations and the
C. rates for the Lagrange multipliers, respectively.
C.
C.
C. CALLING SEQUENCE:
C. FSUB(T,Y,YDOT)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. ------ --- --
C. T I The current time in seconds from time zero
C. Y I The input vector of current equinoctial orbital
C. elements in elements 1-6 and the vector of
C. current lagrange multipliers in elements 7-12.
C. YDOT O The output vector of equinoctial element rates in
C. elements 1-6 and the output vector of lagrange
C. multipliers in elements 7-12.
C.
C. ROUTINES REQUIRED: COMP_EQUIN_VAR,
C. COMP_EUL_LAG_VAR
C.
C...
C
C.
C
C
C***************** DECLARATIONS **
C
C
C Routine for evaluating right hand sides of equations.
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 INTEGER N

 DOUBLE PRECISION T, Y(*), YDOT(*)
 DOUBLE PRECISION mu, ft
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION z0_vect(6), zF_vect(6), EXTDAT
 DOUBLE PRECISION nm, cF, sF, G, r, K1, X1, Xdot1
 DOUBLE PRECISION Y1, Ydot1

343

 DOUBLE PRECISION M(6,3), dMda(6,3), dMdh(6,3), dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3), dMdq(6,3), dMdl(6,3)
 DOUBLE PRECISION u(3), dadt, dhdt, dkdt, dpdt, dqdt, dldt
 DOUBLE PRECISION dlamadt, dlamhdt, dlamkdt
 DOUBLE PRECISION dlampdt, dlamqdt, dlamldt

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
C
C Assign the input arrays
C
 z_vect(1) = Y(1)
 z_vect(2) = Y(2)
 z_vect(3) = Y(3)
 z_vect(4) = Y(4)
 z_vect(5) = Y(5)
 z_vect(6) = Y(6)

 lam_vect(1) = Y(7)
 lam_vect(2) = Y(8)
 lam_vect(3) = Y(9)
 lam_vect(4) = Y(10)
 lam_vect(5) = Y(11)
 lam_vect(6) = Y(12)
C
C Compute the right hand side of the equinoctial element variational equations
C
 CALL COMP_EQUIN_VAR(z_vect,lam_vect,
 & dadt,dhdt,dkdt,dpdt,dqdt,dldt)
C
C Compute the right hand side of the Lagrange multiplier variational equations
C
 CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,
 & dlamadt,dlamhdt,dlamkdt,dlampdt,
 & dlamqdt,dlamldt)
C
C Assign the output rates
C
 YDOT(1) = dadt
 YDOT(2) = dhdt
 YDOT(3) = dkdt
 YDOT(4) = dpdt
 YDOT(5) = dqdt
 YDOT(6) = dldt
 YDOT(7) = dlamadt
 YDOT(8) = dlamhdt
 YDOT(9) = dlamkdt
 YDOT(10) = dlampdt
 YDOT(11) = dlamqdt
 YDOT(12) = dlamldt
 RETURN
 END

344

C ---
C
C FILE NAME: F_FORMIN.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE F_FORMIN(N, X, F_OUT)
C
C...
C. ROUTINE: F_FORMIN
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial elements and Lagrange multipliers
C. at the final time given the elements and multipliers at the initial
C. time. F_FORMIN also computes the sum of the squares of the differences
C. of the computed final orbital element conditions from the desired orbital
C. element conditions. F_FORMIN uses the RK78 subroutine to perform the
C. integration of the equinoctial orbital elements and the Lagrange multipliers.
C. F_FORMIN is called by UNCMND to perform unconstrained minimization of the
C. F cost function defined in F_FORMIN.
C.
C.
C. CALLING SEQUENCE:
C CALL F_FORMIN(N, X, F_OUT)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. N I Number of parameters to vary in search
C. for minimum. In this case it is the 6
C. Lagrange multipliers plus the final time
C. for a total of 7.
C. X I vector of lagrange multipliers and tf
C. F_OUT O The value of the cost function given X
C.
C. ROUTINES REQUIRED: RK78, FSUB
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER(N_INT=12,N_MIN=7)
 INTEGER N_MIN, I, N_INT, IFLAG
 INTEGER MS, NROOT, MINT, LW, IW, LIW, iter
 DOUBLE PRECISION X(N_MIN), F_OUT
 DOUBLE PRECISION mu,ft,aF,hF,kF,pF,qF,lF,ecc,inc
 DOUBLE PRECISION z0_vect(6), zF_vect(6)
 DOUBLE PRECISION a,h,k,p,q,l,lam(6)
 DOUBLE PRECISION nm,cF,sF,G,r,K1
 DOUBLE PRECISION M(6,3),dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION u(3)
 DOUBLE PRECISION wgt(7)

345

 DOUBLE PRECISION tf, Y(N_INT+3)
 DOUBLE PRECISION T, DT, TOL, TDIFF
 DOUBLE PRECISION weights(7,20)
 DOUBLE PRECISION EXTDAT, WEIGHT
 DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT)
 DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT)
 DOUBLE PRECISION YDOT(12)

 EXTERNAL FSUB,GFUN

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /WEIGHT/ weights, iter
C
C Initialize values needed by the integrator
C
C
C Set the integration error tolerance
C
 TOL = 1.0E6
C
C Set initial time point
C
 T = 0.0
C
C Copy the final time guess.
C
 tf = X(7)
C
C Set the initial guess for integration.
C
 Y(1) = z0_vect(1)
 Y(2) = z0_vect(2)
 Y(3) = z0_vect(3)
 Y(4) = z0_vect(4)
 Y(5) = z0_vect(5)
 Y(6) = z0_vect(6)
 Y(7) = X(1)
 Y(8) = X(2)
 Y(9) = X(3)
 Y(10) = X(4)
 Y(11) = X(5)
 Y(12) = X(6)
C
C Copy the final elements
C
 aF = zF_vect(1)
 hF = zF_vect(2)
 kF = zF_vect(3)
 pF = zF_vect(4)
 qF = zF_vect(5)
 lF = zF_vect(6)
C
C We want the orbital and Lagrange multiplier
C values only at the final time
C
 DT = 600.0
C
C Return a large value for F_OUT if the time is out of bounds
C
 IF (tf .LE. 0.0) THEN
 F_OUT = 1.0E20
 RETURN
 END IF
C
C Start the integration loop
C
 DO WHILE (T .LE. tf)
C
C Integrate.
C
 CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL,

346

 & XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)
C
C Are we finished? If so, exit the loop.
C
 IF (T .EQ. tf) THEN
 EXIT
C
C We are not yet finished, find the time yet to integrate.
C If that time is less than the next time step, reduce the
C next time step to equal the time left to integrate.
C
 ELSE
 TDIFF = tf - T
 IF (TDIFF .LT. DT) THEN
 DT = TDIFF
 END IF
 END IF

 END DO
C
C If the integrator was happy, compute the function value
C
 IF (T .EQ. tf) THEN

 a = Y(1)
 h = Y(2)
 k = Y(3)
 p = Y(4)
 q = Y(5)
 l = Y(6)

 lam(1) = Y(7)
 lam(2) = Y(8)
 lam(3) = Y(9)
 lam(4) = Y(10)
 lam(5) = Y(11)
 lam(6) = Y(12)
C
C Calculate the Hamiltonian
C
 CALL FSUB(T,Y,YDOT)

 Ham = lam(1)*YDOT(1)+lam(2)*YDOT(2)+lam(3)*YDOT(3)+
 & lam(4)*YDOT(4)+lam(5)*YDOT(5)+lam(6)*YDOT(6)
C
C Assign the weights
C
 DO I=1,7
 wgt(I) = weights(I,iter)
 END DO
C
C This cost function is for Kechichian's LEO to GEO case
C
 F_OUT = wgt(1)*(a - aF)**2.0 + wgt(2)*(h - hF)**2.0 +
 & wgt(3)*(k - kF)**2.0 + wgt(4)*(p - pF)**2.0 +
 & wgt(5)*(q - qF)**2.0 +
 & wgt(6)*(lam(6) - 0.0)**2.0 +
 & wgt(7)*(Ham - 1.0)**2.0

 ecc = (h**2.0 + k**2.0)**(1.0/2.0)
 inc = 2.0*DATAN2((p**2.0 + q**2.0)**(1.0/2.0),1.0)

 WRITE (*,*) 'F_FORMIN output'

 WRITE (*,'(I3,6E16.7)')
 & iter,F_OUT,Ham,tf,a,ecc,inc
 WRITE (*,'(I3,7E14.5)')
 & iter,
 & wgt(1)*((a - aF)**2.0),
 & wgt(2)*((h - hF)**2.0),
 & wgt(3)*((k - kF)**2.0),

347

 & wgt(4)*((p - pF)**2.0),
 & wgt(5)*((q - qF)**2.0),
 & wgt(6)*((lam(6)- 0.0)**2.0),
 & wgt(7)*((Ham - 1.0)**2.0)

C
C If the integrator was unhappy, print a message and return
C
 ELSE
 WRITE (*,*) 'Error in integrating from initial to final time.'
 WRITE (*,*) 'integrated', T, 'seconds.'
 F_OUT = 0.0
 RETURN
 END IF

 RETURN
 END

348

C
C FILE NAME: COMP_M.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,n,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C...
C. ROUTINE: COMP_M
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the 6x3 M matrix and its partial
C. derivatives with respect to the equinoctial elements.
C. The equations for this subroutine can be found in the
C. Appendix of [Kechichian, J. A., Optimal Low-Thrust Rendezvous
C. Using Equinoctial Orbit Elements. ACTA Astronautica. Vol. 38,
C. No. 1, pp. 1-14, 1996]. According to Jean Kechichian, there is
C. one small error in the partials in equation (A96).
C. The term reading cF - h should read cF - k.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,n,cF,sF,G,Beta,r,K1,
C M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. z_vect I The 6x1 vector of equinoctial elements
C. X1 I Cartesian X position magnitude
C. Xdot1 I Cartesian X velocity magnitude
C. Y1 I Cartesian Y position magnitude
C. Ydot1 I Cartesian Y velocity magnitude
C. n I mean motion
C. cF I cosine of eccentric longitude
C. sF I sine of eccentric longitude
C. G I auxiliary value based on h,k
C. Beta I auxiliary value also based on h,k
C. r I radial distance between sat & central body
C. K1 I auxiliary value based on p,q
C. M O 6x3 partial derivative matrix of equinoctial
C. elements wrt rdot
C. dMda O 6x3 partial derivative matrix of M wrt a
C. dMdh O 6x3 partial derivative matrix of M wrt h
C. dMdk O 6x3 partial derivative matrix of M wrt k
C. dMdp O 6x3 partial derivative matrix of M wrt p
C. dMdq O 6x3 partial derivative matrix of M wrt q
C. dMdl O 6x3 partial derivative matrix of M wrt mean long.
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C

349

C
 IMPLICIT NONE

 DOUBLE PRECISION z_vect(6),n,cF,sF,G,r,K1
 DOUBLE PRECISION a,h,k,p,q,l,X1,Xdot1,Y1,Ydot1,Beta
 DOUBLE PRECISION M(6,3),dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION drda,drdh,drdk,drdl,dnda
 DOUBLE PRECISION dX1dh,dX1dk,dY1dh,dY1dk
 DOUBLE PRECISION dXdot1dh,dXdot1dk,dYdot1dh,dYdot1dk
 DOUBLE PRECISION d2X1dhh,d2X1dkk,d2X1dhdk,d2X1dkdh
 DOUBLE PRECISION d2Y1dhh,d2Y1dkk,d2Y1dhdk,d2Y1dkdh
 DOUBLE PRECISION d2X1dadk,d2X1dadh,d2Y1dadk,d2Y1dadh
 DOUBLE PRECISION dX1dF,dY1dF,dXdot1dF,dYdot1dF,d2X1dFdh
 DOUBLE PRECISION d2X1dFdk,d2Y1dFdh,d2Y1dFdk,dXdot1da,dYdot1da
 DOUBLE PRECISION dX1da,dY1da
C
C These partial derivatives taken from Kechichian:
C "Trajectory Optimization Using Nonsingular
C Orbital Elements and True Longitude."

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)
C
C Compute partials of X1, Y1, Xdot1, Ydot1 wrt h and k
C
 dX1dh = a*(-(h*cF-k*sF)*(Beta+((h**2.0)*(Beta**3.0))/(1.0-Beta))-
 & (a/r)*cF*(h*Beta-sF))
 dX1dk = -a*((h*cF-k*sF)*(h*k*(Beta**3.0))/(1.0-Beta) +
 & 1.0 + (a/r)*sF*(sF-h*Beta))
 dY1dh = a*((h*cF-k*sF)*(h*k*(Beta**3.0))/(1.0-Beta) -
 & 1.0 + (a/r)*cF*(k*Beta-cF))
 dY1dk = a*((h*cF-k*sF)*(Beta+((k**2.0)*(Beta**3.0))/(1.0-Beta)) +
 & (a/r)*sF*(cF-k*Beta))

 dXdot1dh = (a/r)*Xdot1*(sF+(a/r)*cF*(k*sF - h*cF)) +
 & ((n*(a**2.0))/r)*(h*Beta*sF + (k*cF + h*sF)*(Beta +
 & ((h**2.0)*((Beta**3.0)))/(1-Beta)) +
 & (a/r)*cF*(h*k*Beta*sF + (1-Beta*(h**2.0))*cF))

 dXdot1dk = -(a/r)*Xdot1*(-cF + (a/r)*sF*(k*sF - h*cF)) +
 & ((n*(a**2.0))/r)*(((h*k*(Beta**3.0))/(1.0-Beta))*
 & (k*cF+h*sF) + h*Beta*cF -
 & (a/r)*sF*(h*k*Beta*sF + (1.0-Beta*(h**2.0))*cF))

 dYdot1dh = -(a/r)*Ydot1*(-sF - (a/r)*cF*(k*sF-h*cF)) +
 & ((n*(a**2.0))/r)*(-((h*k*(Beta**3.0))/(1.0-Beta))*
 & (k*cF+h*sF) - k*Beta*sF +
 & (a/r)*cF*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF))

 dYdot1dk = -(a/r)*Ydot1*(-cF + (a/r)*sF*(k*sF - h*cF)) +
 & ((n*(a**2.0))/r)*(-(Beta + ((k**2.0)*(Beta**3.0))/
 & (1.0-Beta))*(k*cF+h*sF) - k*Beta*cF -
 & (a/r)*sF*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF))

 d2X1dhh = a*(-(2.0*a/r)*cF*(Beta+((h**2.0)*(Beta**3.0))/
 & (1-Beta)) -
 & ((h*(Beta**3.0))/(1.0-Beta))*(h*cF-k*sF)*(3.0+(h**2.0)*
 & (Beta**2.0)*(3.0-2.0*Beta)/((1.0-Beta)**2.0)) +
 & (((a**2.0))/((r**2.0)))*cF*(h*Beta-sF)*(-sF +
 & (a/r)*(h-sF)) - (((a**2.0))/((r**2.0)))*(cF**3.0))

 d2X1dkk = -a*(-(2.0*a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta) +
 & (h*cF-k*sF)*(1.0+(((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/
 & ((1.0-Beta)**2.0)))*(h*(Beta**3.0))/(1.0-Beta) +
 & ((a**2.0)/(r**2.0))*sF*(h*Beta-sF)*(-cF +
 & (a/r)*(k-cF))+((a**2.0)/(r**2.0))*cF*(sF**2.0))

350

 d2X1dhdk = -a*((a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +
 & (h*cF - k*sF)*(1.0+(h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/
 & ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +
 & (sF - h*Beta)*((a/r)*(sF**2.0 - h*sF) -
 & cF**2.0)*((a**2.0)/(r**2.0)) -
 & ((a**2.0)/(r**2.0))*sF*(cF**2.0) - (a/r)*sF*(Beta +
 & (h**2.0)*(Beta**3.0)/(1.0-Beta)))

 d2X1dkdh = a*((a/r)*sF*(Beta+((h**2.0)*(Beta**3.0))/(1.0-Beta))-
 & (h*cF-k*sF)*(1.0+(h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/
 & ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +
 & ((a**2.0)/(r**2.0))*((a/r)*(k*cF - cF**2.0) +
 & sF**2.0)*(h*Beta - sF) -
 & (a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +
 & ((a**2.0)/(r**2.0))*(cF**2.0)*sF)

 d2Y1dhh = a*((2.0*a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +
 & (h*cF-k*sF)*((k*(Beta**3.0))/(1.0-Beta))*(1.0 +
 & (h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/((1.0-Beta)**2.0)) +
 & ((a**2.0)/(r**2.0))*cF*(-(a/r)*(h-sF)+sF)*(k*Beta - cF)-
 & ((a**2.0)/(r**2.0))*sF*(cF**2.0))

 d2Y1dkk = a*(-(2.0*a/r)*sF*(Beta+((k**2.0)*(Beta**3.0))/
 & (1.0-Beta))+
 & (h*cF - k*sF)*(3.0+((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/
 & ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +
 & ((a**2.0)/(r**2.0))*sF*(-(a/r)*(k-cF) + cF)*(cF - k*Beta)
 & - ((a**2.0)/(r**2.0))*(sF**3.0))

 d2Y1dhdk = a*((a/r)*cF*(Beta+((k**2.0)*(Beta**3.0))/(1.0-Beta))+
 & (h*cF-k*sF)*((h*(Beta**3.0))/(1.0-Beta))*
 & (1.0 + ((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/
 & ((1.0-Beta)**2.0)) -
 & ((a**2.0)/(r**2.0))*((a/r)*sF*(h-sF) +
 & cF**2.0)*(cF - k*Beta) +
 & ((a**2.0)/(r**2.0))*cF*(sF**2.0) -
 & (a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta))

 d2Y1dkdh = a*(-(a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta) +
 & (h*cF-k*sF)*((h*(Beta**3.0))/(1.0-Beta))*
 & (1.0+((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/
 & ((1.0-Beta)**2.0))-
 & ((a**2.0)/(r**2.0))*((a/r)*cF*(k-cF) + sF**2.0)*
 & (k*Beta - cF) +
 & (a/r)*cF*(Beta + ((k**2.0)*(Beta**3.0))/(1.0-Beta)) +
 & ((a**2.0)/(r**2.0))*cF*(sF**2.0))

 d2X1dadk = (1.0/a)*dX1dk
 d2X1dadh = (1.0/a)*dX1dh
 d2Y1dadk = (1.0/a)*dY1dk
 d2Y1dadh = (1.0/a)*dY1dh
C
C Auxiliary partials
C
 dX1dF = a*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 dY1dF = a*(-h*k*Beta*sF + (1.0-Beta*(k**2.0))*cF)

 dXdot1dF = -(a/r)*(k*sF - h*cF)*Xdot1 + (n*(a**2.0)/r)*
 & (-h*k*Beta*sF - (1.0-Beta*(h**2.0))*cF)

 dYdot1dF = -(a/r)*(k*sF - h*cF)*Ydot1 + (n*(a**2.0)/r)*
 & (-h*k*Beta*cF - (1.0-Beta*(k**2.0))*sF)

 d2X1dFdh = a*((h*sF+k*cF)*(Beta+((h**2.0)*(Beta**3.0))/
 & (1.0-Beta))+
 & ((a**2.0)/(r**2.0))*(h*Beta-sF)*(sF-h)+(a/r)*(cF**2.0))

 d2X1dFdk = -a*(-(h*sF + k*cF)*h*k*(Beta**3.0)/(1.0-Beta) +
 & ((a**2.0)/(r**2.0))*(sF-h*Beta)*(cF-k)+(a/r)*sF*cF)

351

 d2Y1dFdh = a*(-(h*sF + k*cF)*h*k*(Beta**3.0)/(1.0-Beta) -
 & ((a**2.0)/(r**2.0))*(k*Beta-cF)*(sF-h)+(a/r)*sF*cF)

 d2Y1dFdk = a*(-(h*sF+k*cF)*(Beta+(k**2.0)*(Beta**3.0)/(1.0-Beta))+
 & ((a**2.0)/(r**2.0))*(cF-k*Beta)*(cF-k)-(a/r)*(sF**2.0))

 dXdot1da = -(n*a/(2.0*r))*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 dYdot1da = (n*a/(2.0*r))*(h*k*Beta*sF - (1.0-Beta*(k**2.0))*cF)

 dX1da = X1/a
 dY1da = Y1/a
C
C Partials of a wrt rdot
C
 M(1,1) = 2.0*(a**-1.0)*(n**-2.0)*Xdot1
 M(1,2) = 2.0*(a**-1.0)*(n**-2.0)*Ydot1
 M(1,3) = 0.0
C
C Partials of h wrt rdot
C
 M(2,1) = G*(n**-1.0)*(a**-2.0)*(dX1dk-h*Beta*Xdot1/n)
 M(2,2) = G*(n**-1.0)*(a**-2.0)*(dY1dk-h*Beta*Ydot1/n)
 M(2,3) = k*(q*Y1 - p*X1)*(n**-1.0)*(a**-2.0)*(G**-1.0)
C
C Partials of k wrt rdot
C
 M(3,1) = -G*(n**-1.0)*(a**-2.0)*(dX1dh + k*Beta*Xdot1/n)
 M(3,2) = -G*(n**-1.0)*(a**-2.0)*(dY1dh + k*Beta*Ydot1/n)
 M(3,3) = -h*(q*Y1 - p*X1)*(n**-1.0)*(a**-2.0)*(G**-1.0)
C
C Partials of p wrt rdot
C
 M(4,1) = 0.0
 M(4,2) = 0.0
 M(4,3) = K1*Y1*((n**-1.0)*(a**-2.0)*(G**-1.0))/2.0
C
C Partials of q wrt rdot
C
 M(5,1) = 0.0
 M(5,2) = 0.0
 M(5,3) = K1*X1*((n**-1.0)*(a**-2.0)*(G**-1.0))/2.0
C
C Partials of l wrt rdot
C
 M(6,1) = (n**-1.0)*(a**-2.0)*(-2.0*X1 +
 & G*(h*Beta*dX1dh + k*Beta*dX1dk))
 M(6,2) = (n**-1.0)*(a**-2.0)*(-2.0*Y1 +
 & G*(h*Beta*dY1dh + k*Beta*dY1dk))
 M(6,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(q*Y1 - p*X1)
C
C %%%
C % These next partials are partials of the M matrix wrt elements
C
C Partials of M wrt h
C
 dMdh(1,1) = (2.0/(a*(n**2.0)))*dXdot1dh
 dMdh(1,2) = (2.0/(a*(n**2.0)))*dYdot1dh
 dMdh(1,3) = 0.0

 dMdh(2,1) = (-h/(G*n*(a**2.0)))*(dX1dk - (1.0/n)*h*Beta*Xdot1) +
 & (G/(n*(a**2.0)))*(d2X1dhdk - (Xdot1/n)*(Beta +
 & (h**2.0)*(Beta**3.0)/(1.0-Beta)) -
 & h*Beta*dXdot1dh/n)

 dMdh(2,2) = (-h/(G*n*(a**2.0)))*(dY1dk - (1.0/n)*h*Beta*Ydot1) +
 & (G/(n*(a**2.0)))*(d2Y1dhdk - (Ydot1/n)*(Beta +
 & (h**2.0)*(Beta**3.0)/(1.0-Beta)) -
 & h*Beta*dYdot1dh/n)

 dMdh(2,3) = ((1.0/(n*(a**2.0)))*h*k*(G**-3.0))*(q*Y1 - p*X1) +
 & k*(q*dY1dh - p*dX1dh)/(n*(a**2.0)*G)

352

 dMdh(3,1) = (h/(n*(a**2.0)*G))*(dX1dh + k*Beta*Xdot1/n) -
 & (G/(n*(a**2.0)))*(d2X1dhh + h*k*(Beta**3.0)*
 & Xdot1/(n*(1.0-Beta)) +
 & k*Beta*dXdot1dh/n)

 dMdh(3,2) = (h/(n*(a**2.0)*G))*(dY1dh + k*Beta*Ydot1/n) -
 & (G/(n*(a**2.0)))*(d2Y1dhh + h*k*(Beta**3.0)*
 & Ydot1/(n*(1.0-Beta)) +
 & k*Beta*dYdot1dh/n)

 dMdh(3,3) = (-1.0/(n*(a**2.0)*G))*((q*Y1 - p*X1) +
 & h*(q*dY1dh - p*dX1dh)) - ((h**2.0)*(q*Y1 - p*X1))/
 & (n*(a**2.0)*(G**3.0))

 dMdh(4,1) = 0.0
 dMdh(4,2) = 0.0

 dMdh(4,3) = (K1/(2.0*n*(a**2.0)*G))*(dY1dh + h*Y1/(G**2.0))

 dMdh(5,1) = 0.0
 dMdh(5,2) = 0.0

 dMdh(5,3) = (K1/(2.0*n*(a**2.0)*G))*(dX1dh + h*X1/(G**2.0))

 dMdh(6,1) = (1.0/(n*(a**2.0)))*(-2.0*dX1dh - (h*Beta*(G**-1.0))*
 & (h*dX1dh + k*dX1dk) +
 & G*((Beta + (h**2.0)*(Beta**3.0)/(1.0-Beta))*dX1dh +
 & h*k*(Beta**3.0)*dX1dk/(1.0-Beta) +
 & Beta*(h*d2X1dhh + k*d2X1dhdk)))

 dMdh(6,2) = (1.0/(n*(a**2.0)))*(-2.0*dY1dh - (h*Beta*(G**-1.0))*
 & (h*dY1dh + k*dY1dk) +
 & G*((Beta + (h**2.0)*(Beta**3.0)/(1.0-Beta))*dY1dh +
 & h*k*(Beta**3.0)*dY1dk/(1.0-Beta) +
 & Beta*(h*d2Y1dhh + k*d2Y1dhdk)))

 dMdh(6,3) = ((G**-1.0)/(n*(a**2.0)))*((q*dY1dh - p*dX1dh) +
 & h*(q*Y1 - p*X1)*(G**-2.0))
C
C The partials of M wrt k
C
 dMdk(1,1) = (2.0/(a*(n**2.0)))*dXdot1dk

 dMdk(1,2) = (2.0/(a*(n**2.0)))*dYdot1dk

 dMdk(1,3) = 0.0

 dMdk(2,1) = (-k/(n*(a**2.0)*G))*(dX1dk - h*Beta*Xdot1/n) +
 & (G/(n*(a**2.0)))*(d2X1dkk - h*k*(Beta**3.0)*Xdot1/
 & (n*(1.0-Beta)) -
 & h*Beta*dXdot1dk/n)

 dMdk(2,2) = (-k/(n*(a**2.0)*G))*(dY1dk - h*Beta*Ydot1/n) +
 & (G/(n*(a**2.0)))*(d2Y1dkk - h*k*(Beta**3.0)*Ydot1/
 & (n*(1.0-Beta)) -
 & h*Beta*dYdot1dk/n)

 dMdk(2,3) = (q*Y1 - p*X1)/(n*(a**2.0)*G) +
 & (1.0/(n*(a**2.0)*G))*(k*(q*dY1dk - p*dX1dk) +
 & (k**2.0)*(q*Y1 - p*X1)/(G**2.0))

 dMdk(3,1) = (k/(n*(a**2.0)*G))*(dX1dh + k*Beta*Xdot1/n) -
 & (G/(n*(a**2.0)))*(d2X1dkdh + (Beta + (k**2.0)*
 & (Beta**3.0)/(1.0-Beta))*Xdot1/n +
 & k*Beta*dXdot1dk/n)

 dMdk(3,2) = (k/(n*(a**2.0)*G))*(dY1dh + k*Beta*Ydot1/n) -
 & (G/(n*(a**2.0)))*(d2Y1dkdh + (Beta + (k**2.0)*
 & (Beta**3.0)/(1.0-Beta))*Ydot1/n +
 & k*Beta*dYdot1dk/n)

353

 dMdk(3,3) = (-h/(n*(a**2.0)*G))*(q*dY1dk - p*dX1dk) -
 & (h*k*(q*Y1 - p*X1)/(n*(a**2.0)*(G**3.0)))

 dMdk(4,1) = 0.0
 dMdk(4,2) = 0.0

 dMdk(4,3) = K1*dY1dk/(2.0*n*(a**2.0)*G) +
 & k*K1*Y1/(2.0*n*(a**2.0)*(G**3.0))

 dMdk(5,1) = 0.0
 dMdk(5,2) = 0.0

 dMdk(5,3) = K1*dX1dk/(2*n*(a**2.0)*G) +
 & k*K1*X1/(2*n*(a**2.0)*(G**3.0))

 dMdk(6,1) = (1.0/(n*(a**2.0)))*(-2.0*dX1dk - (k*Beta*(G**-1.0))*
 & (h*dX1dh + k*dX1dk) +
 & G*((Beta + (k**2.0)*(Beta**3.0)/(1.0-Beta))*dX1dk +
 & h*k*(Beta**3.0)*dX1dh/(1.0-Beta) +
 & Beta*(h*d2X1dkdh + k*d2X1dkk)))

 dMdk(6,2) = (1.0/(n*(a**2.0)))*(-2.0*dY1dk - (k*Beta*(G**-1.0))*
 & (h*dY1dh + k*dY1dk) +
 & G*((Beta + (k**2.0)*(Beta**3.0)/(1.0-Beta))*dY1dk +
 & h*k*(Beta**3.0)*dY1dh/(1.0-Beta) +
 & Beta*(h*d2Y1dkdh + k*d2Y1dkk)))

 dMdk(6,3) = ((G**-1.0)/(n*(a**2.0)))*((q*dY1dk - p*dX1dk) +
 & k*(q*Y1-p*X1)*(G**-2.0))
C
C The partials of M wrt p
C
 dMdp(2,3) = -k*X1/(n*(a**2.0)*G)
 dMdp(1,1) = 0.0
 dMdp(1,2) = 0.0
 dMdp(1,3) = 0.0

 dMdp(2,1) = 0.0
 dMdp(2,2) = 0.0

 dMdp(3,1) = 0.0
 dMdp(3,2) = 0.0
 dMdp(3,3) = h*X1/(n*(a**2.0)*G)

 dMdp(4,1) = 0.0
 dMdp(4,2) = 0.0
 dMdp(4,3) = p*Y1/(n*(a**2.0)*G)

 dMdp(5,1) = 0.0
 dMdp(5,2) = 0.0
 dMdp(5,3) = p*X1/(n*(a**2.0)*G)

 dMdp(6,1) = 0.0
 dMdp(6,2) = 0.0
 dMdp(6,3) = -X1/(n*(a**2.0)*G)
C
C Partials of M wrt q
C
 dMdq(2,3) = k*Y1/(n*(a**2.0)*G)
 dMdq(1,1) = 0.0
 dMdq(1,2) = 0.0
 dMdq(1,3) = 0.0

 dMdq(2,1) = 0.0
 dMdq(2,2) = 0.0

 dMdq(3,1) = 0.0
 dMdq(3,2) = 0.0
 dMdq(3,3) = -h*Y1/(n*(a**2.0)*G)

354

 dMdq(4,1) = 0.0
 dMdq(4,2) = 0.0
 dMdq(4,3) = q*Y1/(n*(a**2.0)*G)

 dMdq(5,1) = 0.0
 dMdq(5,2) = 0.0
 dMdq(5,3) = q*X1/(n*(a**2.0)*G)

 dMdq(6,1) = 0.0
 dMdq(6,2) = 0.0
 dMdq(6,3) = Y1/(n*(a**2.0)*G)
C
C The partials of M wrt a
C
 dMda(1,1) = 4.0*Xdot1/((n**2.0)*(a**2.0)) +
 & 2.0*dXdot1da/(a*(n**2.0))

 dMda(1,2) = 4.0*Ydot1/((n**2.0)*(a**2.0)) +
 & 2.0*dYdot1da/(a*(n**2.0))

 dMda(1,3) = 0.0

 dMda(2,1) = (G/(n*(a**2.0)))*(-dX1dk/(2.0*a) +
 & d2X1dadk - h*Beta*Xdot1/(n*a) - h*Beta*dXdot1da/n)

 dMda(2,2) = (G/(n*(a**2.0)))*(-dY1dk/(2.0*a) +
 & d2Y1dadk - h*Beta*Ydot1/(n*a) - h*Beta*dYdot1da/n)

 dMda(2,3) = (k/(n*(a**2.0)*G))*(-(1.0/(2.0*a))*(q*Y1 - p*X1) +
 & q*dY1da - p*dX1da)

 dMda(3,1) = (-G/(n*(a**2.0)))*(-dX1dh/(2.0*a) + d2X1dadh +
 & k*Beta*Xdot1/(n*a) + k*Beta*dXdot1da/n)

 dMda(3,2) = (-G/(n*(a**2.0)))*(-dY1dh/(2.0*a) + d2Y1dadh +
 & k*Beta*Ydot1/(n*a) + k*Beta*dYdot1da/n)

 dMda(3,3) = (-h/(n*(a**2.0)*G))*(-(1.0/(2.0*a))*(q*Y1 - p*X1) +
 & q*dY1da - p*dX1da)

 dMda(4,1) = 0.0
 dMda(4,2) = 0.0
 dMda(4,3) = (K1/(2.0*n*(a**2.0)*G))*(-(1.0/(2.0*a))*Y1 + dY1da)

 dMda(5,1) = 0.0
 dMda(5,2) = 0.0
 dMda(5,3) = (K1/(2.0*n*(a**2.0)*G))*(-(1.0/(2.0*a))*X1 + dX1da)

 dMda(6,1) = -M(6,1)/(2.0*a) + (1.0/(n*(a**2.0)))*
 & (-2.0*dX1da + G*(h*Beta*d2X1dadh + k*Beta*d2X1dadk))

 dMda(6,2) = -M(6,2)/(2.0*a) + (1.0/(n*(a**2.0)))*
 & (-2.0*dY1da + G*(h*Beta*d2Y1dadh + k*Beta*d2Y1dadk))

 dMda(6,3) = -M(6,3)/(2.0*a) + (1.0/(n*(a**2.0)))*
 & (q*dY1da - p*dX1da)*(G**-1.0)
C
C Partials of M wrt l
C
 dMdl(1,1) = (2.0/((n**2.0)*r))*dXdot1dF
 dMdl(1,2) = (2.0/((n**2.0)*r))*dYdot1dF
 dMdl(1,3) = 0.0

 dMdl(2,1) = (G/(n*a*r))*(d2X1dFdk - h*Beta*dXdot1dF/n)
 dMdl(2,2) = (G/(n*a*r))*(d2Y1dFdk - h*Beta*dYdot1dF/n)
 dMdl(2,3) = (1.0/(n*a*r*G))*(k*(q*dY1dF - p*dX1dF))

 dMdl(3,1) = -(G/(n*a*r))*(d2X1dFdh + k*Beta*dXdot1dF/n)
 dMdl(3,2) = -(G/(n*a*r))*(d2Y1dFdh + k*Beta*dYdot1dF/n)
 dMdl(3,3) = (1.0/(n*a*r*G))*(-h*(q*dY1dF - p*dX1dF))

355

 dMdl(4,1) = 0.0
 dMdl(4,2) = 0.0
 dMdl(4,3) = K1*dY1dF/(2.0*n*a*r*G)

 dMdl(5,1) = 0.0
 dMdl(5,2) = 0.0
 dMdl(5,3) = K1*dX1dF/(2.0*n*a*r*G)

 dMdl(6,1) = (1.0/(n*a*r))*(-2.0*dX1dF + G*(h*Beta*d2X1dFdh +
 & k*Beta*d2X1dFdk))

 dMdl(6,2) = (1.0/(n*a*r))*(-2.0*dY1dF + G*(h*Beta*d2Y1dFdh +
 & k*Beta*d2Y1dFdk))

 dMdl(6,3) = (1.0/(n*a*r*G))*(q*dY1dF - p*dX1dF)

 RETURN
 END

356

C --
C
C FILE NAME: COMP_U.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_U(lam_vect,B,u)
C
C...
C. ROUTINE: COMP_U
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: computes the normalized thrust acceleration vector
C. given the 6x3 M matrix and the vector of current Lagrange multipliers.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_U(lam_vect,B,u,u_norm)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. -------- --- --
C. lam_vect I 6x1 input vector of lagrange multipliers
C. B I 6x3 input matrix of partial derivatives
C. u O 3x1 normalized output thrust vector
C. u_norm O scalar magnitude of thrust acceleration
C.
C. ROUTINES REQUIRED: NONE
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 DOUBLE PRECISION lam_vect(6), B(6,3), u(3)
 DOUBLE PRECISION u_unnorm(3), u_norm

 u_unnorm(1) = lam_vect(1)*B(1,1) +
 & lam_vect(2)*B(2,1) +
 & lam_vect(3)*B(3,1) +
 & lam_vect(4)*B(4,1) +
 & lam_vect(5)*B(5,1) +
 & lam_vect(6)*B(6,1)

 u_unnorm(2) = lam_vect(1)*B(1,2) +
 & lam_vect(2)*B(2,2) +
 & lam_vect(3)*B(3,2) +
 & lam_vect(4)*B(4,2) +
 & lam_vect(5)*B(5,2) +
 & lam_vect(6)*B(6,2)

 u_unnorm(3) = lam_vect(1)*B(1,3) +
 & lam_vect(2)*B(2,3) +
 & lam_vect(3)*B(3,3) +
 & lam_vect(4)*B(4,3) +
 & lam_vect(5)*B(5,3) +

357

 & lam_vect(6)*B(6,3)

 u_norm = DSQRT(u_unnorm(1)**2.0 +
 & u_unnorm(2)**2.0 +
 & u_unnorm(3)**2.0)

 u(1) = (1.0/u_norm)*u_unnorm(1)
 u(2) = (1.0/u_norm)*u_unnorm(2)
 u(3) = (1.0/u_norm)*u_unnorm(3)

 RETURN
 END

358

C --
C
C FILE NAME: COMP_XY.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_XY(z_vect,mu,X1,Xdot1,Y1,Ydot1,nm,
 & cF,sF,G,Beta,r,K1)
C
C...
C. ROUTINE: COMP_XY
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Calculates auxiliary quantities based on
C. the current equinoctial orbital elements.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_XY(z_vect,mu,X1,Xdot1,Y1,Ydot1,nm,
C cF,sF,G,Beta,r,K1)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. -------- --- --
C. z_vect I the 6x1 vector of equinoctial elements
C. mu I the central body gravitational constant
C. X1 O Cartesian X position magnitude
C. Xdot1 O Cartesian X velocity magnitude
C. Y1 O Cartesian Y position magnitude
C. Ydot1 O Cartesian Y velocity magnitude
C. nm O mean motion
C. cF O cosine of the eccentric longitude
C. sF O sine of the eccentric longitude
C. G O auxiliary parameter based on h,k
C. Beta O auxiliary parameter based on h,k
C. r O radial distance from center of primary mass
C. and satellite
C. K1 O auxiliary parameter based on p,q
C.
C. ROUTINES REQUIRED: SOLVE_ECC_ANOMALY
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 IMPLICIT NONE

 DOUBLE PRECISION z_vect(6), mu, nm, cF, sF
 DOUBLE PRECISION a,h,k,p,q,l,G,r,K1,Beta
 DOUBLE PRECISION X1,Xdot1,Y1,Ydot1
 DOUBLE PRECISION arp, ran, E, F
 DOUBLE PRECISION SOLVE_ECC_ANOMALY

 a = z_vect(1)
 h = z_vect(2)

359

 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 arp = DATAN2(h,k)-DATAN2(p,q)
 ran = DATAN2(p,q)

 E = SOLVE_ECC_ANOMALY(l-ran-arp,DSQRT(h**2.0+k**2.0))

 F = E + DATAN2(h,k)

 cF = DCOS(F)
 sF = DSIN(F)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1-Beta*(k**2.0))*cF - h*k*Beta*sF)

 RETURN
 END

360

C
C FILE NAME: COMP_EQUIN_VAR.for (averaged equation software)
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_EQUIN_VAR(z_vect,lam_vect,
 & dadt,dhdt,dkdt,dpdt,dqdt,dldt)
C
C...
C. ROUTINE: COMP_EQUIN_VAR
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the derivatives of the equinoctial
C. orbital elements with respect to time, i.e. element
C. rates. Because the averaged equations of motion are
C. used here, the DQAG subroutine is used to compute the
C. element rates using a Gauss-Kronrod numerical quadrature.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_EQUIN_VAR(z_vect,lam_vect,
C dadt,dhdt,dkdt,dpdt,dqdt,dldt)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. z_vect I 6x1 vector of equinoctial elements
C. lam_vect I 6x1 vector of lagrange multipliers
C. dadt O derivative of a wrt time
C. dhdt O derivative of h wrt time
C. dkdt O derivative of k wrt time
C. dpdt O derivative of p wrt time
C. dqdt O derivative of q wrt time
C. dldt O derivative of mean long. wrt time
C.
C. ROUTINES REQUIRED: DQAG
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 PARAMETER (limit = 50,lenw=limit*4)

 INTEGER key, neval, ier, limit, lenw, last
 INTEGER iwork(limit), I

 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION dadt,dhdt,dkdt,dpdt,dqdt,dldt,pi
 DOUBLE PRECISION a, b, epsabs, epsrel, result, abserr
 DOUBLE PRECISION work(lenw), FQUAD
 DOUBLE PRECISION RHS_ADOT, RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT
 DOUBLE PRECISION RHS_LDOT

 EXTERNAL RHS_ADOT, RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT

361

 EXTERNAL RHS_LDOT

 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect

 key = 3
 epsabs = 1.0E-6
 epsrel = 1.0E-6

 pi = 3.141592653589793

 DO I=1,6
 fquad_z_vect(I) = z_vect(I)
 fquad_lam_vect(I) = lam_vect(I)
 END DO

 CALL DQAG(RHS_ADOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dadt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_HDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dhdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_KDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dkdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_PDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dpdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_QDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dqdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dldt = (1.0/(2.0*pi))*result

 RETURN
 END

362

C
C FILE NAME: COMP_EUL_LAG_VAR.for (averaged equation software)
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 SUBROUTINE COMP_EUL_LAG_VAR(z_vect,lam_vect,
 & dlamadt,dlamhdt,dlamkdt,dlampdt,
 & dlamqdt,dlamldt)
C
C...
C. ROUTINE: COMP_EUL_LAG_VAR
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the derivatives of the Lagrange
C. multipliers with respect to time, i.e. multiplier
C. rates. The averaged equations for the multiplier
C. rates are computed using the DQAG subroutine which
C. performs numerical quadrature using the Gauss-Kronrod method.
C.
C.
C. CALLING SEQUENCE:
C CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,
C dlamadt,dlamhdt,dlamkdt,dlampdt,
C dlamqdt,dlamldt)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. z_vect I 6x1 vector of equinoctial elements
C. lam_vect I 6x1 vector of lagrange mulipliers
C. dlamadt O derivative of lagrange mult. for a wrt time
C. dlamhdt O derivative of lagrange mult. for h wrt time
C. dlamkdt O derivative of lagrange mult. for k wrt time
C. dlampdt O derivative of lagrange mult. for p wrt time
C. dlamqdt O derivative of lagrange mult. for q wrt time
C. dlamldt O derivative of lagrange mult. for mean long. wrt time
C.
C. ROUTINES REQUIRED: DQAG
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 PARAMETER (limit = 50,lenw=limit*4)

 INTEGER key, neval, ier, limit, lenw, last
 INTEGER iwork(limit), I

 DOUBLE PRECISION z_vect(6),lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION dlamadt,dlamhdt,dlamkdt,dlampdt
 DOUBLE PRECISION dlamqdt,dlamldt,pi
 DOUBLE PRECISION a, b, epsabs, epsrel, result, abserr
 DOUBLE PRECISION work(lenw), FQUAD

363

 EXTERNAL RHS_LAMADOT, RHS_LAMHDOT, RHS_LAMKDOT
 EXTERNAL RHS_LAMPDOT, RHS_LAMQDOT, RHS_LAMLDOT

 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect

 key = 3
 epsabs = 1.0E-6
 epsrel = 1.0E-6

 pi = 3.141592653589793

 DO I=1,6
 fquad_z_vect(I) = z_vect(I)
 fquad_lam_vect(I) = lam_vect(I)
 END DO

 CALL DQAG(RHS_LAMADOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlamadt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LAMHDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlamhdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LAMKDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlamkdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LAMPDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlampdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LAMQDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlamqdt = (1.0/(2.0*pi))*result

 CALL DQAG(RHS_LAMLDOT,-pi,pi,epsabs,epsrel,key,result,abserr,
 & neval,ier,limit,lenw,last,iwork,work)

 dlamldt = (1.0/(2.0*pi))*result

 RETURN
 END

364

C ---
C
C FILE NAME: RHS_ADOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_ADOT(F)
C
C...
C. ROUTINE: RHS_ADOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the semimajor axis rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C ADOT = RHS_ADOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

365

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_ADOT = ft*(M(1,1)*u(1) + M(1,2)*u(2) + M(1,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

366

C ---
C
C FILE NAME: RHS_HDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_HDOT(F)
C
C...
C. ROUTINE: RHS_HDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial h element rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C HDOT = RHS_HDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

367

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_HDOT = ft*(M(2,1)*u(1) + M(2,2)*u(2) + M(2,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

368

C ---
C
C FILE NAME: RHS_KDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_KDOT(F)
C
C...
C. ROUTINE: RHS_KDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial k element rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C KDOT = RHS_KDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

369

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_KDOT = ft*(M(3,1)*u(1) + M(3,2)*u(2) + M(3,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

370

C ---
C
C FILE NAME: RHS_PDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_PDOT(F)
C
C...
C. ROUTINE: RHS_PDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial p element rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C PDOT = RHS_PDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

371

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_PDOT = ft*(M(4,1)*u(1) + M(4,2)*u(2) + M(4,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

372

C ---
C
C FILE NAME: RHS_QDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_QDOT(F)
C
C...
C. ROUTINE: RHS_QDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the equinoctial q element rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C QDOT = RHS_QDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

373

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_QDOT = ft*(M(5,1)*u(1) + M(5,2)*u(2) + M(5,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

374

C ---
C
C FILE NAME: RHS_LDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LDOT(F)
C
C...
C. ROUTINE: RHS_LDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the mean longitude element rate of change using
C. the current equinoctial elements and the COMP_M
C. and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C LDOT = RHS_LDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)
 END DO

375

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)
C
C Compute the result
C
 RHS_LDOT = ft*(M(6,1)*u(1) + M(6,2)*u(2) + M(6,3)*u(3))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

376

C ---
C
C FILE NAME: RHS_LAMADOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMADOT(F)
C
C...
C. ROUTINE: RHS_LAMADOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the semimajor axis using the COMP_M and COMP_U subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMADOT = RHS_LAMADOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)

377

 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMADOT =
 & ft*(-lama*(dMda(1,1)*u(1) + dMda(1,2)*u(2) + dMda(1,3)*u(3)) +
 & -lamh*(dMda(2,1)*u(1) + dMda(2,2)*u(2) + dMda(2,3)*u(3)) +
 & -lamk*(dMda(3,1)*u(1) + dMda(3,2)*u(2) + dMda(3,3)*u(3)) +
 & -lamp*(dMda(4,1)*u(1) + dMda(4,2)*u(2) + dMda(4,3)*u(3)) +
 & -lamq*(dMda(5,1)*u(1) + dMda(5,2)*u(2) + dMda(5,3)*u(3)) +
 & -laml*(dMda(6,1)*u(1) + dMda(6,2)*u(2) + dMda(6,3)*u(3)))*
 & (1.0-k*cF-h*sF) +
 & -laml*dnda*(1.0-k*cF-h*sF)

 RETURN
 END

378

C ---
C
C FILE NAME: RHS_LAMHDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMHDOT(F)
C
C...
C. ROUTINE: RHS_LAMHDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the h equinoctial element using the COMP_M and COMP_U
C. subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMHDOT = RHS_LAMHDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect,fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)

379

 lam_vect(I) = fquad_lam_vect(I)
 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMHDOT =
 & ft*(-lama*(dMdh(1,1)*u(1) + dMdh(1,2)*u(2) + dMdh(1,3)*u(3)) +
 & -lamh*(dMdh(2,1)*u(1) + dMdh(2,2)*u(2) + dMdh(2,3)*u(3)) +
 & -lamk*(dMdh(3,1)*u(1) + dMdh(3,2)*u(2) + dMdh(3,3)*u(3)) +
 & -lamp*(dMdh(4,1)*u(1) + dMdh(4,2)*u(2) + dMdh(4,3)*u(3)) +
 & -lamq*(dMdh(5,1)*u(1) + dMdh(5,2)*u(2) + dMdh(5,3)*u(3)) +
 & -laml*(dMdh(6,1)*u(1) + dMdh(6,2)*u(2) + dMdh(6,3)*u(3)))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

380

C ---
C
C FILE NAME: RHS_LAMKDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMKDOT(F)
C
C...
C. ROUTINE: RHS_LAMKDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the k equinoctial element using the COMP_M and COMP_U
C. subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMKDOT = RHS_LAMKDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect,fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)

381

 lam_vect(I) = fquad_lam_vect(I)
 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMKDOT =
 & ft*(-lama*(dMdk(1,1)*u(1) + dMdk(1,2)*u(2) + dMdk(1,3)*u(3)) +
 & -lamh*(dMdk(2,1)*u(1) + dMdk(2,2)*u(2) + dMdk(2,3)*u(3)) +
 & -lamk*(dMdk(3,1)*u(1) + dMdk(3,2)*u(2) + dMdk(3,3)*u(3)) +
 & -lamp*(dMdk(4,1)*u(1) + dMdk(4,2)*u(2) + dMdk(4,3)*u(3)) +
 & -lamq*(dMdk(5,1)*u(1) + dMdk(5,2)*u(2) + dMdk(5,3)*u(3)) +
 & -laml*(dMdk(6,1)*u(1) + dMdk(6,2)*u(2) + dMdk(6,3)*u(3)))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

382

C ---
C
C FILE NAME: RHS_LAMPDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMPDOT(F)
C
C...
C. ROUTINE: RHS_LAMPDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the p equinoctial element using the COMP_M and COMP_U
C. subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMPDOT = RHS_LAMPDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect,fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)

383

 lam_vect(I) = fquad_lam_vect(I)
 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMPDOT =
 & ft*(-lama*(dMdp(1,1)*u(1) + dMdp(1,2)*u(2) + dMdp(1,3)*u(3)) +
 & -lamh*(dMdp(2,1)*u(1) + dMdp(2,2)*u(2) + dMdp(2,3)*u(3)) +
 & -lamk*(dMdp(3,1)*u(1) + dMdp(3,2)*u(2) + dMdp(3,3)*u(3)) +
 & -lamp*(dMdp(4,1)*u(1) + dMdp(4,2)*u(2) + dMdp(4,3)*u(3)) +
 & -lamq*(dMdp(5,1)*u(1) + dMdp(5,2)*u(2) + dMdp(5,3)*u(3)) +
 & -laml*(dMdp(6,1)*u(1) + dMdp(6,2)*u(2) + dMdp(6,3)*u(3)))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

384

C ---
C
C FILE NAME: RHS_LAMQDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMQDOT(F)
C
C...
C. ROUTINE: RHS_LAMQDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the q equinoctial element using the COMP_M and COMP_U
C. subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMQDOT = RHS_LAMQDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect,fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)

385

 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMQDOT =
 & ft*(-lama*(dMdq(1,1)*u(1) + dMdq(1,2)*u(2) + dMdq(1,3)*u(3)) +
 & -lamh*(dMdq(2,1)*u(1) + dMdq(2,2)*u(2) + dMdq(2,3)*u(3)) +
 & -lamk*(dMdq(3,1)*u(1) + dMdq(3,2)*u(2) + dMdq(3,3)*u(3)) +
 & -lamp*(dMdq(4,1)*u(1) + dMdq(4,2)*u(2) + dMdq(4,3)*u(3)) +
 & -lamq*(dMdq(5,1)*u(1) + dMdq(5,2)*u(2) + dMdq(5,3)*u(3)) +
 & -laml*(dMdq(6,1)*u(1) + dMdq(6,2)*u(2) + dMdq(6,3)*u(3)))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

386

C ---
C
C FILE NAME: RHS_LAMLDOT.for
C
C VERSION: 1.0
C
C CREATED: 10/13/2007
C
C Copyright Massachusetts Institute of Technology. All rights reserved.
C
C --
C
 DOUBLE PRECISION FUNCTION RHS_LAMLDOT(F)
C
C...
C. ROUTINE: RHS_LAMLDOT
C.
C.
C. VERSION: 1.0
C.
C.
C. PROGRAMMED BY:
C. Z J. FOLCIK
C.
C.
C. PURPOSE: Computes the Lagrange multiplier rate associated with
C. the mean longitude using the COMP_M and COMP_U
C. subroutines.
C.
C.
C. CALLING SEQUENCE:
C LAMLDOT = RHS_LAMLDOT(F)
C.
C. PARAMETER DESCRIPTION:
C. PARAM- 1
C. ETER I/O DESCRIPTION
C. --------- --- -------------------------------------
C. F I Input value of eccentric longitude
C.
C. ROUTINES REQUIRED: COMP_M, COMP_U
C.
C...
C
C***************** DECLARATIONS **
C
C
 INTEGER I

 DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1
 DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3)
 DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3)
 DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3)
 DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6)
 DOUBLE PRECISION z_vect(6), lam_vect(6)
 DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6)
 DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml
 DOUBLE PRECISION dnda
 DOUBLE PRECISION EXTDAT, FQUAD

 COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect
 COMMON /FQUAD/ fquad_z_vect,fquad_lam_vect
C
C Replace the sF and cF because we are calculating the quadrature
C from F = -pi to pi.
C
 sF = DSIN(F)
 cF = DCOS(F)

 DO I=1,6
 z_vect(I) = fquad_z_vect(I)
 lam_vect(I) = fquad_lam_vect(I)

387

 END DO

 a = z_vect(1)
 h = z_vect(2)
 k = z_vect(3)
 p = z_vect(4)
 q = z_vect(5)
 l = z_vect(6)

 lama = lam_vect(1)
 lamh = lam_vect(2)
 lamk = lam_vect(3)
 lamp = lam_vect(4)
 lamq = lam_vect(5)
 laml = lam_vect(6)

 G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0)
 Beta = 1.0/(1.0+G)

 nm = DSQRT(mu)*(a**(-3.0/2.0))

 r = a*(1.0 - k*cF - h*sF)

 K1 = 1.0 + p**2.0 + q**2.0

 X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k)
 Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h)

 Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)
 Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF)
C
C Compute the M matrix of equinoctial partials wrt rdot,
C the partials of M wrt the equinoctial elements, and
C auxiliary partial derivatives.
C
 CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1,
 & M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl)
C
C Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector.
C
 CALL COMP_U(lam_vect,M,u)

 dnda = -3.0*nm/(2.0*a);

 RHS_LAMLDOT =
 & ft*(-lama*(dMdl(1,1)*u(1) + dMdl(1,2)*u(2) + dMdl(1,3)*u(3)) +
 & -lamh*(dMdl(2,1)*u(1) + dMdl(2,2)*u(2) + dMdl(2,3)*u(3)) +
 & -lamk*(dMdl(3,1)*u(1) + dMdl(3,2)*u(2) + dMdl(3,3)*u(3)) +
 & -lamp*(dMdl(4,1)*u(1) + dMdl(4,2)*u(2) + dMdl(4,3)*u(3)) +
 & -lamq*(dMdl(5,1)*u(1) + dMdl(5,2)*u(2) + dMdl(5,3)*u(3)) +
 & -laml*(dMdl(6,1)*u(1) + dMdl(6,2)*u(2) + dMdl(6,3)*u(3)))*
 & (1.0-k*cF-h*sF)

 RETURN
 END

388

Chapter 8 References

1. GEO Maneuver Detection for Space Situational Awareness AAS 07-285. Folcik, Z.,

Cefola, P. J., Abbot, R.,. Mackinac Island, MI : AAS/AIAA, August 19-23, 2007.
Astrodynamics 2007, Advances in the Astronautical Sciences Volumn 129.

2. Backward Smoothing Extended Kalman Filter. Psiaki, M. 5, s.l. : Journal of Guidance,
Control and Dynamics, Sept-Oct 2005, Vol. 28.

3. Optimal Low-Thrust Rendezvous Using Equinoctial Orbit Elements. Kechichian, J. A.
1, pp. 1-14, s.l. : Acta Astronautica, 1996, Vol. 38.

4. Optimal Low-Earth-Orbit-Geostationary-Earth-Orbit Intermediate Acceleration Orbit
Transfer. Kechichian, J. A.,. 4, s.l. : Journal of Guidance, Control and Dynamics,
July-Aug, 1997, Vol. 20.

5. Trajectory Optimization Using Nonsingular Orbital Elements and True Longitude.
Kechichian, J. A. 5, s.l. : Journal of Guidance, Control and Dynamics, Sept-Oct,
1997, Vol. 20.

6. Mechanics of Trajectory Optimization Using Nonsingular Variational Equations in
Polar Coordinates. Kechichian, J. A. 4, s.l. : Journal of Guidance, Control and
Dynamics, July-Aug 1997, Vol. 20.

7. Minimum-Time Constant Acceleration Orbit Transfer with First-Order Oblateness
Effect. Kechichian, J. A. 4, s.l. : Journal of Guidance, Control and Dynamics, July-
Aug 2000, Vol. 23.

8. The Inclusion of the Higher Order J3 and J4 Zonal Harmonics in the Modeling of
Optimal Low-Thrust Orbit Transfers. Kechichian, J. A. Galveston, TX : Paper No.
08-198, Proceedings of the 2008 AAS/AIAA Space Flight Mechanics Meeting, Jan
27-31, 2008.

9. Kechichian, J. A. Optimal Low-Thrust Orbit Transfer (Chapter 14). [book auth.] V.
A. Chobotov. Orbital Mechanics, 2nd Ed. Reston, VA : AIAA Education Series,
1996.

10. Taylor, S. P. Semianalytical Satellite Theory and Sequential Estimation. Master's
Thesis at the Massachusetts Institute of Technology. Cambridge, MA : s.n., 1981.

11. Battin, R. An Introduction to the Mathematics and Methods of Astrodynamics,
Revised Edition. Reston, VA : AIAA Education Series, 1999.

12. The Motion of a Close Earth Satellite. Kozai, Y. 1274 pp.367-377, s.l. : Astronomical
Journal, 1959, Vol. 64.

13. Solutions of the Problem of Artificial Satellite Theory without Drag. Brouwer, D.
1274 pp. 378-397, s.l. : Astronomical Journal, 1959, Vol. 64.

14. Vallado, D. Fundamentals of Astrodynamics and Applications, Second Edition. El
Segundo, CA and Dordrecht, the Netherlands : Microcosm Press, Kluwer Academic
Publishers, 2001.

15. McClain, W. D. A Semianalytic Artificial Satellite Theory - Volume 1. s.l. :
Copyright Waine D. McClain, 1992.

16. Wiesel, W. Modern Astrodynamics. Beavercreek, OH : Aphelion Press, 2003.
17. Hoots, F. R., Roehrich, R. I.,. Models for Propagation of NORAD Element Sets -

Spacetrack Report No. 3. s.l. : Aerospace Defense Command, United States Air
Force, 1980.

389

18. Herriges, D. L. NORAD General Perturbation Theories: An Independent Analysis.
Master's Thesis at the Massachusetts Institute of Technology. Cambridge, MA :
s.n., 1988.

19. A Short Efficient Analytic Satellite Theory. Hoots, F. R.,. Danvers, MA : Journal of
Guidance paper No. AIAA 80-1659R, AIAA/AAS Astrodynamics Conference, Aug
11-13, 1980.

20. Revisiting Space Track Report #3. Vallado, D.A., Crawford, P., Hujsak, R., Kelso,
T.S. AIAA/AAS Astrodynamics Specialist Conference Keystone, CO : AIAA
2006-6753, Aug 21-24, 2006.

21. Lane, M., Hoots, F. General Perturbations Theories Derived froum the 1965 Lane
Drag Theory - Spacetrack Report No. 2. s.l. : Aerospace Defense Command, United
States Air Force, 1979.

22. Sridharan, R., Seniw, W. ANODE: An Analytic Orbit Determination System. s.l. :
Lincoln Laboratory Archives, Technical Note ESD-TR-80-75, June 24, 1980.

23. Extension of the Naval Space Command Satellite Theory PPT2 to Include a General
Tesseral M-Daily Model. Cefola, P. J., Fonte, D. J. AIAA/AAS Astrodynamics
Conference, San Diego, CA : AIAA Paper No. AIAA–96–3606–CP, July 29-31,
1996.

24. A Portable Orbit Generator Using Semianalytic Satellite Theory. Early, L. W.
Williamsburg, VA : AIAA/AAS Astrodynamics Conference Paper No. 86-2164-
CP, Aug 1986.

25. King-Hele, Desmond. A Tapestry of Orbits. Cambridge, UK and New York, NY,
USA : Cambridge University Press, 1992.

26. Fonte, D. J. Implementing a 50x50 Gravity Field Model in an Orbit Determination
System. Master's Thesis at the Massachusetts Institute of Technology. Cambridge,
MA : s.n., 1993.

27. Lyon, R. H. Geosynchronous Orbit Determination Using Space Surveillance
Network Observations and Improved Radiative Force Modeling. Master's Thesis at
the Massachusetts Institute of Technology. Cambridge, MA : s.n., June 2004.

28. Efroimsky, M. Implicit Gauge Symmetry Emerging in the N-Body Problem of
Celestial Mechanics. s.l. : http://arxiv.org/abs/astro-ph/0212245v9 visited March,
2008, revised July 8, 2003.

29. Gurfil, Pini. Editor. Modern Astrodynamics. Oxford, UK : Elsevier Academic Press,
2006.

30. On the Matrizant of the Two-Body Problem. Broucke, R. A. pp. 173-182, s.l. :
Astronomy and Astrophysics, 1970, Vol. 6.

31. On the Equinoctial Orbit Elements. Broucke, R.A., Cefola, P. J. 3, pp. 303-310, s.l. :
Celestial Mechanics and Dynamical Astronomy, 1972, Vol. 5.

32. Goddard Trajectory Determination System (GTDS) Mathematical Theory - NASA's
Operational GTDS Mathematical Specification Revision 1 - Contract NAS 5.31500.
Task 213. s.l. : Edited by Computer Sciences Corporation and NASA Goddard
Spaceflight Center, July 1989.

33. Problems Concerning the Perturbation Due to the Tesseral Harmonic Terms in the
Nonspherical Gravitational Potential of the Earth. Ma Jian-bo, Liu Lin, Wang
Xin. pp. 235-244, s.l. : Chinese Astronomy and Astrophysics, 2002, Vol. 26.

390

34. A Recursive Formulation of the Short-Periodic Perturbations in Equinoctial
Variables. Cefola, P. J., McClain, W. D. Palo Alto, CA : Pre-print 78-1383 at the
AIAA/AAS Astrodynamics Conference, August, 1978.

35. Green, A. J. Orbit Determination and Prediction Processes for Low Altitude
Satellites. Ph.D. Thesis at the Massachusetts Institute of Technology. Cambridge,
MA : s.n., 1980.

36. Collins, S. K. Long Term Prediction of High Altitude Orbits. Ph.D. Dissertation,
Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, CSDL-T-739. March, 1981.

37. Recent Advances in Satellite Propulsion and Associated Mission Benefits - AIAA
Paper No. 2006-5306. Wilson, F. San Diego, CA : AIAA International
Communications Satellite System Conference, June 2006.

38. Spacecraft Electric Propulsion - An Overview. Martinez-Sanchez, M., Pollard, J. E.
5, pp. 688-699, s.l. : AIAA Journal of Propulsion and Power, 1998, Vol. 14.

39. Pulsed Plasma Thruster. Burton, R. L., Turchi, P. J. 5, s.l. : AIAA Journal of
Propulsion and Power, 1998, Vol. 14.

40. SMART-1 Mission Description and Development Status. Racca, G. D., et. al. 14-15,
pp. 1323-1337, s.l. : Planetary and Space Science, December 2002, Vol. 50.

41. King, Brad. Personal communication through email. Feb 25,2008.
42. Controlling a Stationary Orbit Using Electric Propulsion. Anzel, B. Garnisch-

Partenkirchen, Federal Republic of Germany : 20th International Electric
Propulsion Conference, October 1988.

43. Douglas, T., Kelly, C., Grise, A. On-Orbit Stationkeeping with Ion Thrusters -
Telesat Canada's BSS-702 Experience. Ottawa, Ontario, K1B 5P4 : Telesat Canada,
2006.

44. In-Flight Performance of the NSTAR Ion Propulsion System on the Deep Space One
Mission. Polk, J. E., Kakuda, R. Y., Anderson, J. R., Brophy, J. R. Big Sky,
Montana : IEEE Aerospace Conference, March 2000.

45. Integrated Defense Systems. Boeing Web site. [Online] :
http://www.boeing.com/defense-space/space/bss/factsheets/702/702fleet.html.

46. SPT-100 Subsystem Qualification Status. Day, M., Maslennikov, N., Randolph, T.,
Rogers, W. Lake Buena Vista, FL : 32nd AIAA, ASME, SAE, ASEE Joint
Propulsion Conference, 1996.

47. Orbit Raising with Ion Propulsion on ESA's ARTEMIS Satellite - Paper No. AIAA
2002-3672. Killinger, R., Kukies, R., Surauer, M., van Holtz, L., Tomasetto, A.
Indianapolis, IN : AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 7-
10, 2002.

48. Ion Propulsion Development in the United Kingdom. Fearn, D. G., Martin, A. R.,
Smith, P. Monterey, CA : 29th AIAA, SAE, ASME, ASEE Joint Propulsion
Conference and Exhibit, June 28-30, 1993.

49. Bryson, A. E., Ho, Y. Applied Optimal Control : Optimization, Estimation and
Control Revised Printing. New York, NY : Hemisphere Publishing Corp., Halsted
Press, 1975.

50. Kirk, D. E.,. Optimal Control Theory : An Introduction. Englewood Cliffs, NJ :
Prentice-Hall, 1970.

391

51. How, J. Principles of Optimal Control. MIT Course 16.323 accessible with MIT Open
Courseware at http://ocw.mit.edu. 2007.

52. Kechichian, J. A. Personal communication through email. April 1, 2008.
53. A Linear Theory of Optimum Low-Thrust Rendezvous Trajectories. Gobetz, F. W. 3,

pp. 69-76, s.l. : Journal of the Astronautical Sciences, 1965, Vol. 12.
54. Optimum Low-Thrust Rendezvous and Station Keeping. Edelbaum, T. N. 7, pp.

1196-1201, s.l. : AIAA Journal, 1964, Vol. 2.
55. Optimal Low Thrust Geocentric Transfer - Paper No. 73-1074. Edelbaum, T. N.,

Sackett, L. L., Malchow, H. L. s.l. : AIAA Journal , Nov. 1973.
56. Equinoctial Orbit Elements : Application to Artificial Satellite Orbits - AIAA Paper

No. 72-937. Cefola, P. J. Oct. 1973.
57. The Treatment of the Earth Oblateness Effect in Trajectory Optimization in

Equinoctial Coordinates. Kechichian, J. A. 1, pp. 69-82, s.l. : Acta Astronautica,
1997, Vol. 40.

58. Kahaner, D., Moler, C., Nash, S. Numerical Methods and Software. Englewood
Cliffs, NJ : Prentice-Hall, 1989.

59. Stationkeeping the Hughes HS 702 Satellite with a Xenon Ion Propulsion System -
Paper No. IAF-98-A.1.09. Anzel, B. Melbourne, Australia : 49th International
Astronautical Congress, 1998.

60. Radiocommunication Sector (ITU-R). ITU website. [Online] ITU, Place des Nations,
CH-1211 Geneva Switzerland. http://www.itu.int/ITU-R.

61. Escobal, P. R. Methods of Orbit Determination - Krieger Reprint Edition. New York,
NY : John Wiley, 1985.

62. Yurasov, V. S., Nazarenko, A. I. Atmosphere Density Tracking, Density Corrections
over the Last Three Years - Stage 2 Report prepared for Texas A&M University.
College Station, TX : s.n., Nov. 2007.

63. Dynamic Orbit Determination using GPS Measurements from TOPEX/POSEIDON.
Shutz, B. E., Tapley, B. D., Abusali, P. A. M., Rim, H. J. 19, pp. 2179-2182, s.l. :
American Geophysical Union, Geophysical Research Letters, 1994, Vol. 21.

64. A New Approach to Linear Filtering and Predication Problems. Kalman, R. E. pp.
35-45, s.l. : Transactions of the ASME - Journal of Basic Engineering, 1960, Vol.
82.

65. A New Approach for Filtering Nonlinear Systems. Julier, S. J., Uhlmann, J. K.
Seattle, WA : Proceedings of the American Control Conference, 1995.

66. A New Extension of the Kalman Filter to Nonlinear Systems. Julier, S. J., Uhlmann,
J. K. s.l. : International Symposium Aerospace/Defense Sensing, Simulation and
Controls, 1997.

67. Gelb, A. Editor. Applied Optimal Estimation. Cambridge, MA : MIT Press, 1974.
68. Wornell, G. Algorithms for Estimation and Inference. MIT Course 6.438 accessible

through MIT Open Courseware http://ocw.mit.edu. 2007-2008.
69. Bar-Shalom, Li, Kirubarajan. Estimation with Applications to Tracking and

Navigation. New York, NY : John Wiley & Sons, Inc., 2001.
70. Tapley, Shutz, Born. Statistical Orbit Determination. s.l. : Elsevier Academic Press,

2004.
71. Stengal, R. F. Optimal Control and Estimation. New York, NY : Dover Publications,

1994.

392

72. Dunham, J. B. R&D GTDS Filter Program Software Specifications and User's
Guide. s.l. : Computer Sciences Corporation report CSC/SD-79/6032, January
1980.

73. Duda, R. O. Pattern Recognition for HCI. [Online] 2001.
http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_home.htm.

74. Meditch, S. Stochastic Optimal Linear Estimation and Control. New York, NY :
McGraw-Hill, 1969.

75. Solutions to the Linear Smoothing Problem. Rauch, H. E. s.l. : IEEE Trans. Auto.
Control, AC-8:371, 1963.

76. Maximum Likelihood Estimates of Linear Dynamic Systems. Rauch, H. E., Tung, F.,
Striebel, C. T. pp. 1445-1450, No. 8, s.l. : AIAA Journal, 1965, Vol. 3.

77. Brown, R. G., Hwang, P. Y. C. Introduction to Random Signals and Applied
Kalman Filtering. New York, NY : John Wiley & Sons, Inc., 1997.

78. A Survey of Discrete Kalman-Bucy Filtering with Unknown Noise Covariances -
Paper No. 70-955. Weiss, I. M. Santa Barbara, CA : AIAA Guidance, Control and
Flight Mechanics Conference, Aug. 1970.

79. Bierman, G. J. Factorization Methods for Discrete Sequential Estimation. New
York, NY : Academic Press, pp. 69-76, 115-122, and 214-217. 1977.

80. The Unscented Kalman Filter for Nonlinear Estimation. Wan, E., van der Merwe,
R. s.l. : IEEE Adaptive Systems for Signal Processing, Communications, and
Control Symposium AS-SPCC, 2000.

81. A New Method for the Nonlinear Transformation of Means and Covariances in
Filters and Estimators. Julier, S., Uhlmann, J., Durrant-Whyte, H. F. 3, pp. 477-
482, s.l. : IEEE Transactions on Automatic Control, 2000, Vols. AC-45.

82. Derivation and Simulation Testing of a Sigma-Points Smoother. Psiaki, M. 1, s.l. :
Journal of Guidance, Control and Dynamics, Jan-Feb. 2007, Vol. 30.

83. Herklotz, R. L. Incorporation of Cross-Link Range Measurements in the Orbit
Determination Process to Increase Satellite Constellation Autonomy. Ph.D. Thesis
at the Massachusetts Institute of Technology. Cambridge, MA : s.n., 1987.

84. Wagner, E. Application of the Extended Semianalytic Kalman Filter to Synchronous
Orbits. Master's Thesis at the Massachusetts Institute of Technology. Cambridge,
MA : s.n., June 1983.

85. Fehlberg, E. Technical Report TR R-287. Huntsville, AL : NASA Marshall Space
Flight Center, 1968.

86. A., Kechichian. J. Personal communication through email. Jan 21, 2008.
87. Final Report on the ARTEMIS Salvage Mission using Electric Propulsion - Paper No.

AIAA 2003-4546. Killinger, R., Kukies, R., Surauer, M., Saccoccia, G., Gray, H.
Huntsville, AL : 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, July 20-23, 2003.

88. Mazzini, Leonardo. Personal communication through email. March 31, 2008.
89. Final Stage of ARTEMIS Orbit Raising. Notarantonio, A., Cambriles, A. P.,

Amorosi, L. San Diego, CA : 2nd AIAA Unmanned Unlimited Systems,
Technologies, and Operations - AIAA 2003-6602, 15-18 Sept. 2003.

90. Kelso, T. S. Celestrak. [Online] [Cited: April 1, 2008.] http://www.celestrak.com.
91. Mann, P. S. Introductory Statistics 6th Edition. Hoboken, NJ : John Wiley & Sons,

2007.

393

394

92. Optimal Measurement Filtering and Motion Prediction Taking into Account the
Atmospheric Perturbations. Nazarenko, A. I., Yurasov, V. S., Alfriend, K. T.,
Cefola, P. J. Mackinac Island, MI : Astrodynamics 2007 - Advances in the
Astronautical Sciences Volume 129 - Proceedings of the AAS/AIAA
Astrodynamics Specialist Conference, Aug. 19-23, 2007.

93. Singular Value Decomposition and Least Squares Orbit Determination. Boikov, V.,
Khutorovsky, Z. N., Alfriend, K. T. Mackinac Island, MI : Astrodynamics 2007 -
Advances in the Astronautical Sciences Volumn 129 - Proceedings of the
AAS/AIAA Astrodynamics Specialist Conference, August 19-23, 2007.

94. Kechichian, J. A. Personal communication through email. Jan 21, 2008.
95. Spellucci, P. Nonlinear (local) Optimization State of the Art. Accessible on the web

at http://www.mathematik.tu-
darmstadt.de:8080/ags/ag8/Mitglieder/spellucci/docs/stateoftheartnlo.ps.gz. March,
2008.

96. Thaiprayoon, R., Homsup, N. Study on Effects of Yaw and Co-Location on Cross-
Polarized Signal Variation. [Online] April 7, 2008. [Cited: April 7, 2008.]
https://pindex.ku.ac.th/file_research/EE53.doc.

