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ABSTRACT 
 
The development of electric propulsion technology for spacecraft has led to reduced costs 
and longer lifespans for certain types of satellites.  Because these satellites frequently 
undergo continuous thrust, predicting their motion and performing orbit determination on 
them has introduced complications for space surveillance networks.  One way to improve 
orbit determination for these satellites is to make use of new estimation techniques.  This 
has been accomplished by applying the Backward Smoothing Extended Kalman Filter 
(BSEKF) to the problem of orbit determination.  The BSEKF outperforms other 
nonlinear filters because it treats nonlinearities in both the measurement and dynamic 
functions.  The performance of this filter is evaluated in comparison to an existing 
Extended Semianalytic Kalman Filter (ESKF).  The BSEKF was implemented in the 
R&D Goddard Trajectory Determination System (GTDS) for this thesis while the ESKF 
was implemented in 1981 and has been tested extensively since then.  Radar and optical 
satellite tracking observations were simulated using an initial truth orbit and were 
processed by the ESKF and BSEKF to estimate satellite trajectories.  The trajectory 
estimates from each filter were compared with the initial truth orbit and were evaluated 
for accuracy and convergence speed.  The BSEKF provided substantial improvements in 
accuracy and convergence over the ESKF for the simulated test cases.  Additionally, this 
study used the solutions offered by optimal thrust trajectory analysis to model the 
perturbations caused by continuous thrust.  Optimal thrust trajectory analysis makes use 
of Optimal Control Theory and numerical optimization techniques to calculate minimum 
time and minimum fuel trajectories from one orbit to another.  Because satellite operators 
are motivated to save fuel, it was assumed that optimal thrust trajectories would be useful 
to predict thrust perturbed satellite motion.  Software was developed to calculate the 
optimal trajectories and associated thrust plans.  A new force model was implemented in 
GTDS to accept externally generated thrust plans and apply them to a given satellite 
trajectory.  Test cases are presented to verify the correctness of the mathematics and 
software.  Also, test cases involving a real satellite using electric propulsion were 
executed.  These tests demonstrated that optimal thrust modeling could provide order of 
magnitude reductions in orbit determination errors for a satellite with low-thrust electric 
propulsion. 
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Chapter 1  Introduction 
 
 
1.1  Motivation 
 
  

Orbit determination has had a long, remarkable history.  Its roots lie in astronomy 

and in particular, predicting the motion of planets and comets.  Copernicus, Kepler, 

Newton, Lagrange, Gauss and others have contributed much to this science and it is upon 

their shoulders that work continues today.  Newton’s Laws of Gravity still serve as the 

starting point for modeling the motion of orbiting satellites.  Carl Friedrich Gauss 

invented and first used the method of least-squares and his method still serves as the basis 

for orbit determination.  Many impressive methods and techniques for orbit prediction 

and determination have been invented since the start of the Space Age, but these 

inventions all rely on the fundamental work done well before man-made Earth satellites 

were launched.   

 

The work presented in this thesis is based on the enormous body of work that has 

come before it.  Improvement in orbit determination in specific cases is still a research 

area that sees several advances each year.  In the experience of the author, orbit 

determination for satellites upon which unmodeled thrusting forces act remains a topic 

with unsolved problems.  These problems are relevant to the field of space surveillance in 

which populations of satellites are non-cooperatively tracked in order to maintain 

knowledge about their orbits.  Spacecraft that are undergoing orbit transfers or station-

keeping are more challenging for space surveillance because the motion cannot simply be 

modeled with known natural forces.  Additional modeling of thrusting forces must be 
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undertaken to accurately capture spacecraft motion.  Modeling such thrusting forces is 

most challenging when the spacecraft operator and the space surveillance network do not 

cooperate to share information.  For these non-cooperative space surveillance cases, 

satellite orbit determination and prediction systems with maneuver detection and 

prediction capabilities are sought to improve space situational awareness.  Such systems 

would help provide more accurate predictions of satellite motion for spacecraft with 

either chemical or electric propulsion.  Figure 1.1 depicts such a system. 

 

 

Figure 1.1  Notional System for Enhancing Space Surveillance for Thrusting 
Spacecraft 

 
 

In previous work (1), the authors presented ways in which unmodeled chemical 

thrusting satellite maneuvers can be detected.  However, improved methods for quickly 
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obtaining accurate orbital estimates after a satellite maneuvers are still sought.  In 

reference (1), a batch, Bayesian Least Squares estimator is used to obtain post-maneuver 

orbital estimates because of limitations in using an Extended Kalman Filter (EKF).  

However, improvements in sequential estimators have been made since the original EKF 

formulation.  Among these estimators is the Backwards Smoothing Extended Kalman 

Filter (BSEKF) developed by Mark Psiaki (2).  This estimator treats nonlinearities more 

accurately than does the EKF and so converges more robustly and produces more 

accurate estimates.  For this thesis, the BSEKF was implemented in the Goddard 

Trajectory Determination System (GTDS) and was evaluated in simulated observation 

test cases. 

 

In addition, an attempt has been made to improve orbit prediction for a new and 

growing collection of man-made satellites.  These satellites use low-thrust, electric 

propulsion technology.  This technology is based on ion and plasma physics.  Because of 

the constraints on electric propulsion in space, i.e. solar panels and batteries provide 

limited electrical power; such thrusters provide small accelerations compared with more 

common chemical thrusters.  Because of these small accelerations, ion-electric thrusters 

must operate continuously rather than impulsively, and this affects the modeling that 

must be done to accurately predict the motion of these satellites.  Experience has shown 

that high accuracy orbits cannot be obtained when neglecting thrust accelerations.  This 

thesis develops initial predictive models that are based on Optimal Control Theory.  A 

central assumption made regarding the operation of satellites using ion thrusters is that 

the fuel-optimal solution governs their control.  With this assumption, optimal control 
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theory yields useful control solutions that can be used to model the perturbing 

accelerations due to low, continuous thrust.  The substantial work of Jean Kechichian (3), 

(4), (5), (6), (7), (8), (9) has been leveraged for the calculation of optimal thrust 

trajectories for satellites.  Software has been developed to generate optimal thrust plans 

and to use those thrust plans to model satellite motion within the GTDS framework. 

 

1.2  Overview of Thesis 

 

The overall purpose of this thesis is to evaluate an application of the BSEKF 

algorithm for orbit estimation and to develop an orbital motion model for low-thrust 

satellites.  Specifically, the BSEKF algorithm has been implemented in the R&D GTDS 

software at MIT Lincoln Laboratory.  The BSEKF has been coupled to the Draper 

Semianalytic Satellite Theory (DSST) forming the Backward Smoothing Extended 

Semianalytic Kalman Filter (BSESKF) algorithm.  The DSST algorithm was chosen as 

the first orbit propagator to be used with the BSEKF algorithm because of its high 

computational efficiency and the linearity of the mean equinoctial orbital elements 

propagated by DSST.   

 

Chapter 2 provides background on orbit propagation.  Sections 2.1.1 and 2.1.2 

provide some background on Cowell’s propagation method and analytical propagation 

methods, respectively.  Section 2.1.3 develops some of the mathematical background for 

DSST.  Section 2.2 provides background for electric propulsion (EP) for satellites.  

Several types of EP engines are described.  In Section 2.2.2, background in optimal 
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control theory is presented and Jean Kechichian’s (5) formulation for solving constant 

thrust, fuel-optimal satellite control problems is detailed.  Background for recursive orbit 

estimation techniques including the BSEKF is provided in section 2.3. 

 

Chapter 3 outlines previous work done by Stephen Taylor (10) to couple the 

Extended Kalman Filter (EKF) to DSST and thus form the Extended Semianalytic 

Kalman Filter (ESKF).  Coupling the BSEKF to DSST was done similarly. 

 

The complete BSESKF algorithm, its implementation in GTDS, and simulation 

results are described in detail in Chapter 4.  Section 4.1 details the BSESKF algorithm.  

Section 4.2 details the software implementation of the BSESKF.  Sections 4.3 and 4.4 

describe the testing methodology and the estimation results for the BSESKF using 

simulated observations.  These results show that the BSESKF is more accurate and 

converges in less time than the ESKF. 

 

Chapter 5 documents the optimal thrust plan software and presents verification of 

the correctness of the solutions generated by the software.  Section 5.1 documents the 

standalone optimal thrust planning software.  Section 5.2 describes the software 

modifications done in GTDS to model the thrust plans created by the optimal thrust 

planning software.  These modifications allow GTDS to make orbit predictions and 

perform orbit determination using externally generated thrust plans.  Section 5.3 

describes verification testing done for the optimal thrust planning software.  Section 5.4 

records the results of real data test cases developed for the ARTEMIS satellite.  The real 
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data test cases demonstrate the usefulness of optimal thrust plans for modeling 

continuous thrust accelerations of a satellite.  In some cases, orbit determination which 

did not converge when thrust was unmodeled, converged when using optimal thrust plans 

to model thrust acceleration.  In all test cases attempted, optimal thrust plans substantially 

improved orbit determination metrics and agreement with AFSSN data.  In some cases, 

the observation residuals improved in aggregate by an order of magnitude or more. 

 

Chapter 6 summarizes the conclusions of the thesis and outlines future work to 

improve orbit determination and EP modeling capability.  Appendix A documents new 

GTDS keywords implemented for this thesis.  Appendix B documents the BL matrix and 

its partial derivatives which are used in Kechichian’s optimal thrust trajectory 

formulation and in the optimal thrust planning software implemented for this thesis.  

Appendix C describes the Euler-Hill rotating polar reference frame and how coordinates 

in that frame can be transformed to the Earth centered inertial frame.  This transformation 

was useful in applying thrust plans to acceleration modeling in GTDS.  Appendix D 

describes how to execute and operate the optimal thrust planning software.  Appendices E 

and F include the source code for the exact equation and averaged equation optimal thrust 

planning software.  
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Chapter 2  Background in Orbit Propagation, Optimal 
Thrust Trajectories, and Estimation 

 
 
2.1  Satellite Orbit Propagation 
 

 
Satellite orbit propagation is the problem of starting with initial conditions for a 

satellite orbit and calculating the satellite’s position at later times.  Typically the initial 

conditions are in the form of orbital elements of which at least six are required.  These six 

orbital parameters, plus the epoch time comprise an orbital element set which describes 

the orbital size, shape, orientation and phase of a satellite in its orbit.  The element set can 

also be thought of as a state vector describing the motion of a satellite.  The six 

parameters are most commonly the Keplerian elements, i.e. semimajor axis, eccentricity, 

inclination, right ascension of the ascending node, argument of perigee and mean 

anomaly.  Another common orbital element set is composed of Cartesian position and 

velocity vectors.  A third orbital element set is the set of equinoctial elements.  These 

elements have useful properties and are described in detail in section 2.1.3.5.   

 

A common way to calculate the satellite state at some time given the satellite state 

at some initial time involves using variational of parameter (VOP) equations which 

compute the derivatives of the orbital elements with respect to time.  The VOP equations 

are used along with a numerical integration technique such as the Runge-Kutta method or 

a finite-difference method (11) to integrate the VOP equations.  This numerical 

integration procedure produces a time history of the orbital elements from the time of the 

initial condition to the desired output time.  Because integration methods require the use 
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of an integration grid, the desired final time may be overshot by the numerical 

integration.  Interpolation can be used to produce the orbital elements at exactly the 

desired final time.  The accuracy of the satellite orbit propagation depends on how well 

the right hand sides of the VOP equations describe the actual physical motion of the 

satellite.  Many forces need to be modeled in order to accurately predict satellite motion.  

The basic Newtonian two-body force describes the circular, elliptical, or hyperbolic conic 

trajectory of a satellite around a central body such as the Earth.  Other forces arise from 

the non-spherical shape of the central body, third-body gravity, atmospheric drag, 

radiation pressure, central body tidal deformations, propulsion devices, and others.  These 

forces are generally much smaller in magnitude than the basic two-body force and so are 

modeled as perturbations to the basic equations of motion.  Perturbations are deviations 

from the undisturbed two-body motion.  There are three main ways to include the effects 

of perturbations in modeling satellite motion.  Special perturbation techniques such as 

Cowell’s method numerically integrate the equations of motion and include all 

acceleration terms that perturb the two-body motion.  The solutions obtained using 

special perturbations are specific to the initial conditions used.  Cowell’s method is 

described in section 2.1.1.  General perturbations, i.e. analytic methods, such as the 

methods introduced by Kozai and Brouwer in the late 1950s and 1960s (12), (13) employ 

analytic expressions for the satellite perturbations.  These general perturbations are very 

efficient computationally.  Some of these theories can yield high accuracy, but the most 

commonly used today, i.e. SGP4, suffers from reduced accuracy because of the term 

truncation (14).  Section 2.1.2 briefly discusses analytic theories.  Semianalytic methods 

separate the effects of perturbations causing long-period and secular deviations from the 
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two-body motion from the effects of perturbations causing short-period deviations.  This 

separation allows for speedy integration of the equations of motion that include the long-

period and secular motion.  The short-period motion is added only when high accuracy is 

required.  In this way, semianalytic methods provide accuracy and computational 

efficiency (15), (14).  One semianalytic method, the Draper Semianalytic Satellite Theory 

(DSST) developed by Paul Cefola, Wayne McClain, Leo Early, Ron Proulx, Mark 

Slutsky and others, is described in section 2.1.3.   

 

 
2.1.1  Satellite Orbit Propagation Using Cowell’s Method 
 

 
One of the most common methods for orbit propagation is Cowell’s method.  This 

method predicts satellite motion by numerically integrating the equations of motion in 

terms of Cartesian elements, i.e. rectangular, position and velocity (11).  The following 

equation describes the disturbed relative motion of two bodies (11): 

drdt
d arr

=+ 32

2 μ         (2.1) 

Here, r is the position vector of a satellite with respect to the central mass, ad is the vector 

of acceleration arising from the presence of general disturbing forces, and μ is the 

constant of gravitation associated with the central body (11).  The Cowell method has the 

virtue of being the most straightforward way to determine the position, r(t), and velocity, 

v(t).  The equations of motion used in this method are described in several references 

including (11) and (16).  While this method is widely used for its simplicity, it suffers 

from some drawbacks.  Because the disturbing forces modeled by ad are often small in 

comparison to the two-body forces, many of the significant figures used in the 
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calculations will only be used to reproduce the dominating two-body motion (16).  In 

order to maintain reasonable accuracy in the integrations of the equations of motion and 

accurately include the perturbing acceleration terms, small step-sizes are needed.  When 

using finite precision arithmetic and when integrating for long periods, truncation error 

and round off error build up as the square root of the number of calculations performed 

(16).  Because of these drawbacks, analytic and semianalytic methods have been 

developed.   

 

 
2.1.2  Analytic Satellite Theory 
 
 
 

Analytical satellite theories have been developed and used operationally for many 

years (13), (17), (18).  The SGP theory developed by C. G. Hilton and J. R. Kuhlman 

used a simplified version of Kozai’s gravitational theory (18).  A modified form of 

Brouwer’s gravitational theory was used in SGP4, the successor to SGP (19).  SGP4 is 

described in references (17) and (20).  The analytic satellite motion theories introduced 

by Brouwer use canonical transformations to separate the short period, long period and 

secular components of the motion (15), (18).  Brouwer’s method operates with what are 

known as double averaged equations of motion and is purely analytic in its formulation.  

The SGP and SGP4 analytic theories truncate many of the terms in Kozai’s and 

Brouwer’s gravitational theories, respectively, but allow the satellite motion to be 

propagated very quickly in terms of computing time.  However, the term truncation 

reduces the accuracy of SGP and SGP4 over the original formulations from which they 

were derived.  Nevertheless, the double averaged methods have proven very useful in that 
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they enable computation of all earth satellites on a daily basis to perform satellite orbit 

catalog maintenance.   

 

It should be noted that analytic theory based systems that provide higher accuracy 

than SGP and SGP4 have been developed.  The Aeronutronic Complete First-Order 

General Perturbations (AGP) theory includes first and second order secular terms.  AGP 

also includes first order long and short periodic expressions with coefficients of Earth 

gravity terms J2, J3 and J4 (18).  AGP was the antecedent of SGP theory (18).  The SGP4 

Theory was written by Cranford in 1970, but was derived as a truncated form of the 

AFGP4 Theory.  The AFGP4 Theory was developed by Lane and Cranford and included 

gravitational zonal terms through J5 (21).  A power density function was used to model 

atmospheric density for the drag calculations (19).  The ANODE analytic orbit 

determination system developed and used at MIT Lincoln Laboratory includes analytic 

lunar and solar gravitational perturbations, analytic drag perturbations and perturbations 

due to geopotential terms J2, J2
2, J3 and J4 (22) (23).  Applications requiring high accuracy 

for which SGP4 is not suitable are growing in number and include satellite maneuver 

detection, atmospheric density correction, high precision orbit catalog maintenance, long-

term orbit evolution, etc. 

 
 

 
2.1.3  Draper Semianalytic Satellite Theory 
 
 

The Draper Semianalytic Satellite Theory (DSST) developed at the Computer 

Sciences Corporation (CSC) and later at the Charles Stark Draper Laboratory (CSDL) is 
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an efficient alternative to the brute-force numerical integration techniques.  Although 

computation per dollar has drastically improved since the conception of DSST, 

computationally efficient algorithms such as DSST remain relevant.  Applications such as 

monitoring the orbital elements of all Earth satellites, performing atmospheric density 

correction, satellite maneuver detection, long-term mission studies and other applications 

requiring the prediction and orbit determination of thousands of satellite orbits in 

reasonable time frames benefit from efficient analytic or semianalytic orbit prediction 

methods.  The implementation of DSST included in the R&D version of GTDS is used 

extensively in this study.  This section serves to describe DSST in some detail. 

 

DSST was developed by Paul Cefola, Wayne McClain, Leo Early, Ron Proulx, 

Mark Slutsky and their colleagues at the Computer Sciences Corporation and the Charles 

Stark Draper Laboratory (CSDL) in the 1970s and 1980s.  In its development at the 

CSDL, DSST also benefited from numerous enhancements made by MIT graduate 

students under the direction of the CSDL staff.  DSST was developed with an emphasis 

on accuracy and computational efficiency.  To accomplish this, DSST models 

conservative perturbing forces with Lagrangian Variation of Parameters (VOP) and non-

conservative perturbing forces with Gaussian VOP.  The Generalized Method of 

Averaging is used to isolate the short periodic motion from long period and secular 

motion.  Through this method, the averaged VOP equations of motion and the short 

periodic models are obtained (15). 
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DSST differs from purely analytical methods in that it is a hybrid approach taking 

advantage of the efficiency of analytic methods and the accuracy of special perturbations 

methods.  DSST is a single averaged approach.  It uses the Generalized Method of 

Averaging to isolate the short period satellite motion, i.e. the motion on the order of one 

satellite orbital period.  The long period and the secular motion are retained in the 

equations of motion.  Integrators with relatively large time steps are used to integrate the 

secular and long-period motion (15).  DSST propagates long period and secular satellite 

motion using a set of mean equinoctial elements.  The near-linear mean elements have 

the advantage of allowing large integration time steps.  The equinoctial coordinates avoid 

singularities for small inclination and eccentricity orbits.  Because of the large time steps 

allowed, DSST is computationally efficient.  DSST also provides highly accurate orbits 

by computing short period motion when explicitly needed, i.e. when ephemeris points are 

requested or when observations are computed.  The short period motion is computed 

using Fourier series in the fast orbital element which accurately and efficiently 

reproduces the motion (10).  Specifically, the short period variations are obtained by 

evaluating the slowly-varying short periodic Fourier coefficients on the mean element 

integration grid and interpolating to the desired output time.  The short periodic variations 

are then added to the mean elements to obtain the osculating elements (24).   

 

The accuracy of DSST comes from its extensive treatment of perturbing forces.  

The theory includes third-body models and nonspherical Earth gravitational force 

models.  Included in the nonspherical gravitational model are zonal harmonics, tesseral 

harmonics, combined zonal and tesseral harmonics, resonant tesseral harmonics, and 
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second order terms such as J2
2 and J2/m-dailies (15).  Figure 2.1 taken from reference 

(25) depicts the spherical harmonic coefficients of degree 8 and orders 6-8 in terms of the 

zonal, tesseral, and sectoral deviations from a sphere.  The deviations are exaggerated to 

illustrate the shaping.  DSST is currently capable of modeling central-body spherical 

harmonics up to degree and order 50.  This capability was introduced by Dan Fonte (26). 

 

 

Figure 2.1  Illustration of Zonal, Sectoral and Tesseral Harmonics 
 

The attractions of DSST include its computational efficiency and its high accuracy.  In 

addition, the fact that single revolution, short-period oscillations are not present in the 
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mean equinoctial solve-for elements enhances the visibility of long-period and secular 

satellite motion. 

 

2.1.3.1 Perturbing Forces and Variation of Parameters 

 

In order to gain an understanding of the efficiency of the Draper Semianalytic 

Satellite Theory, it is helpful to summarize its derivation from basic principles.  This 

summary is borrowed from references (11), (15), (10), and (27).  The two-body equations 

of motion for the satellite orbiting the Earth are: 

03 =+
r
rr μ&&         (2.2) 

where r is the position vector of the satellite relative to the center of mass and μ  is the 

gravitational parameter.  The position vector solution is ),,...,,( 621 tcccfr = .  The c1,…,c6 

constants are the constants of integration for the solution.  When perturbing forces are 

introduced, the equation becomes: 

),(3 tQ
r

rr,rr &&& =+ μ        (2.3) 

where is an acceleration vector depending on the position, its derivative with 

respect to time, and time.  The constants, , are replaced by time varying 

parameters, .  Velocity is given by the time derivative of position.  

The chain rule is applied to yield: 
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The second term is equated to zero for convenience to apply the constraint known as the 

condition of osculation: 
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     (2.5) 

This constraint is also known as the Lagrange constraint.  This is not the only choice of 

constraint as the arbitrary function, ),,...,( 61 taaΦ , might not be equal to zero.  Equating 

the second term with zero is often done for convenience (28).  If one explores the gauge 

freedom of this Lagrangian constraint as is done by Efroimsky in references (28) and 

(29), the function, , is arbitrary and this arbitrariness parallels gauge 

invariance in electrodynamics.  A careful choice of 

),,...,( 61 taaΦ

),,...,( 61 taaΦ may considerably 

simplify the process of finding the solution (29).  With the constraint imposed by 

equation (2.5), the osculating orbit is the unperturbed orbit that is tangent to the perturbed 

orbit at a given time instant.  If at a particular time instant, the effects embodied in the 

time varying parameters, , cease to exercise any influence on the motion, the resulting 

orbit would be a conic and the position and velocity vectors would be exactly computable 

from the two-body formulas (11).  This requirement defines the condition for the 

osculating orbit (14) and maintains the general form of the velocity obtained in the 

unperturbed problem (29): 
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Differentiating the above expression and applying the chain rule yields (29): 
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When this equation for r is substituted into the original two-body equations of motion, 

one obtains (29): 

&&
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We recall the equation of motion for the two-body problem: 

 0
3
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r
rr μ&&         (2.9) 

When substituting equation (2.9) into equation (2.8), the perturbing acceleration vector is 

shown to be (29): 
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If using the constraint from equation (2.5), the dΦ/dt term is zero.  Equation (2.10) shows 

that the equations of motion for the perturbed system and those for the unperturbed 

system only differ by the terms containing the time dependent parameters.  This last 

result intuitively indicates that as the perturbing acceleration diminishes, the perturbed 

equations approach the equations for the unperturbed system. 

 

The variation of parameters (VOP) concept is based on the assumption that 

perturbing forces are several orders of magnitude smaller than the two-body point mass 

force.  Examples of perturbing forces are the Earth’s oblateness, third body gravitational 

attraction from the moon and sun, solar radiation pressure, and Earth atmospheric drag.  

The constants of integration produced when solving the two-body differential equations 

of motion must be made time varying.  This changes the solution vector, , to r

31 



),,...,,( 621 taaaf=r
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 where the are time varying counterpart parameters related to the 

 constants of integration.   

ka

 

In the last result, the partial derivative summation includes partial derivatives with 

respect to time in and .  There are also partial derivatives of the velocity,r , with 

respect to the time varying parameters, .  The time varying parameters, a , represent a 

specific orbital ellipse at each instant in time.  The actual perturbed orbit is represented 

by a more complex curve, but the orbital ellipse represented by the parameters is 

tangent to the more complex curve at the time instant for which it is valid.  The 

parameters or elements are thus referred to as osculating in that they are tangent or “kiss” 

the perturbed orbit at an instant of time. 

ka& &

kka

ka
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It is more convenient to use equations of motion of the form: 

i
i G

dt
da

=         (2.11) 

This is an alternative to the form used in the previously shown equation for Q which is a 

linear combination of orbital element rates.  Therefore, the time derivatives of the time 

varying parameters, ai, will be sought. 

 

2.1.3.2 Gaussian VOP Formulation 

 

 There are several ways in which to formulate the VOP equations.  Here, the 

Gaussian and Lagrange formulations will be outlined.  These formulations are taken from 
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(15).  The Gaussian form expresses orbital element rates, Gi, in terms of perturbing 

forces.  The Lagrange form expresses Gi in terms of a potential function.  The Gaussian 

form is obtained by forming dot products of equations (2.10) and (2.5) (15): 
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 The elements, aj, are mutually independent and are only functions of position and  

velocity.  This means that (2.12) reduces to our final form of the Gaussian VOP equations 

(15): 
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 The Gaussian VOP equations allow both conservative and nonconservative 

perturbations.  The Gi function from equation (2.11) can be derived using partial 

derivatives of the perturbations, Q.  This produces closed-form expressions for the 

equations of motion.  However, because Q is a function of position and velocity, these 

quantities must be calculated whenever the rates are evaluated.  This evaluation is done at 

each integration time step if the Gi functions are to be used in an ODE solver.  The 

isolation of periodic frequencies is done in the development of the Draper Semianalytic 

Satellite Theory (DSST) through the Generalized Method of Averaging (GMA).  Also, 

because many acceleration models involve functions of position and velocity instead of 

Fourier series, the isolation of particular periodic frequencies in the perturbed motion 

must be done numerically rather than by inspection.   
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2.1.3.3 Lagrangian VOP Formulation 

 

 The VOP formulation developed by Lagrange was designed specifically to deal 

with planetary orbital perturbations caused by gravitational force from other planets.  

This formulation only allows for modeling perturbations caused by conservative forces, 

i.e. the disturbing acceleration can be modeled as the gradient of a potential function (15): 
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The R function is called the disturbing function.  The Lagrangian VOP form can be 

derived through the following sequence involving partials of equations (2.10) and (2.5): 
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Introduce the Lagrange bracket which equates the expression in the parenthesis in (2.15) 

to and simplify (2.15): ],[ kj aa
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 The indices j and k both vary from 1 to 6 and so this produces 36 different 

Lagrange brackets.  However, examination of the definition of the Lagrangian bracket 

shows the following relations (15): 

         (2.18a) 0],[ =jj aa
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        (2.18b) ],[],[ jkkj aaaa −=

One can define a matrix L to be a matrix containing all the Lagrange brackets as follows: 
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Because of (2.18a) and (2.18b) the diagonal terms of L are zero and the off diagonal 

terms have only 15 distinct values.  The partials of the potential functions with respect to 

the elements can now be written as (15): 
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 From the definition of the Lagrange brackets in (2.16), it is apparent that the 

Lagrange brackets only depend on the functional relationship between the orbital 

elements and the position and velocity for the two-body problem.  Therefore, the 

Lagrange brackets only depend on the elliptical formulae describing the two-body 

problem.  A consequence of this is that the Lagrange brackets are independent of time: 
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Proof of this statement is shown in reference (15).  This time independence means that 

the Lagrange brackets can be evaluated at any time in the two-body orbit.  This is useful 

when specific, advantageous points in the orbit are calculated (15). 

 

 Another useful construct used in the DSST formulation is the inverse of the 

Lagrange bracket, i.e. the Poisson bracket.  It is defined in references (15) and (28) as: 
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The Poisson brackets also have the properties of the Lagrange brackets shown in (2.18).  

The relationship between the matrix of Lagrange brackets and the matrix of Poisson 

brackets is (15): 

         (2.23a) ILP T =

 PPL −==− T1        (2.23b) 

 

 

2.1.3.4 DSST Formulation for VOP Equations 

 

 There is an alternate derivation of the Lagrange Planetary Equations that turns out 

to be more useful, this derivation involves Poisson brackets as opposed to Lagrange 

brackets.  The following sequence from reference (15) outlines the derivation.  The 

derivation relies on the following relation from reference (30) which uses the Poisson 

bracket defined in equation (2.22). 
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 Substituting Q from equation (2.13) into the Gaussian VOP equation (2.13) yields 

the Gaussian form of the VOP equations using the potential or disturbing function (15): 
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Substituting equation (2.22) into equation (2.25) and simplifying yields: 
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This can also be expressed in matrix notation yielding the Poisson bracket representation 

of the Lagrange Planetary Equations (15): 
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The DSST development uses a modified form of the Lagrange Planetary 

Equations from (2.27).  In equation 2.28, the Gaussian VOP terms including the Q 

function have been added to allow for non-conservative forces. (15): 
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Here, n is the mean motion and is generally defined for two-body dynamics by:  

.  The semimajor axis is a and the gravitational constant isμ=32an μ .  The new 

variable, l, is defined by: 

         (2.29) 6antl +=

Here,  is the fast element in the vector of orbital elements, a.  The modification from 

equation (2.27) to equation (2.28) is used in order to prevent the subtraction of two large 

secular, i.e. non-periodic, values in the computations of the VOP equations.  The 

avoidance of the addition and subtraction of large numbers makes DSST more 

computationally stable (15). 
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2.1.3.5 Equinoctial Orbital Elements and Variational Equations 

 

The elements, , can be represented in many ways including position and 

velocity, Keplerian elements, equinoctial elements, etc.  The set of elements chosen for 

DSST is a nonsingular equinoctial set.  There are computational advantages for choosing 

the following set of equinoctial elements in that the conversion to position and velocity is 

computationally inexpensive.  Also, the partial derivatives of the equations of motion for 

these equinoctial elements are also nonsingular (31).  The elements 

ka

),,,,,( λqpkha=a  are 

shown here in terms of the Keplerian elements: 
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where is the semimajor axis, is the eccentricity, i is the inclination, a e ω is the argument 

of perigee,  is the right ascension of the ascending node, Ω M is the mean anomaly and I

is the retrograde factor.  When the retrograde factor is -1, the tanI function becomes the 

cotangent function. 

 

 The direct equinoctial reference frame is shown in Figure 2.2.  The unit vectors, 

, are aligned so that and are contained in the instantaneous orbit plane with the 

direction of f obtained through a clockwise rotation of the angle, 

wgf ˆ,ˆ,ˆ f̂ ĝ

ˆ Ω , from the direction 

of the ascending node (3).   

 

Figure 2.2  Equinoctial Orbital Element Frame (3)  
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 At this point it is sensible to show the variational equations for the osculating 

equinoctial elements.  These are taken from the GTDS Mathematical Specification (32): 
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The unit vectors are in the equinoctial reference frame, r and v are Cartesian 

coordinates in the inertial reference frame, I is the retrograde factor, and n is the mean 

motion.  The perturbing acceleration vector, , is a Cartesian vector.  The position and 

velocity in the equinoctial reference frame within the orbit plane are: 

wgf ˆ,ˆ,ˆ

da

 

 ( )[ ]kFhkFhaX −+−= sincos1 2
1 ββ     (2.32a) 

 ( )[ ]hFhkFkaY −+−= cossin1 2
1 ββ     (2.32b) 
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 [ FhFhk
r

naX sin)1(cos 2
2

1 ββ −−=& ]    (2.32c) 

[ FhkFk
r

naY sincos)1( 2
2

1 ββ −−=& ]    (2.32d) 

 

The new variable F is the eccentric longitude and can be solved using Kepler’s 

transcendental equation: 

 

 FhFkF cossin +−=λ       (2.33) 

 

The variables β and G are defined by: 

 222 1 khnaG −−=        (2.34) 

 
2211

1
kh −−+

=β        (2.35) 

 

Equations in (2.31) can be integrated forward or backward in time using an integrator in 

Matlab, for example.   Equations in (2.31) include two-body motion and accelerating 

perturbations through the vector.  Equations in (2.31) are not the final form used by 

DSST because the vector is in a general form and no specific perturbing forces have 

been introduced yet.  DSST includes several perturbing forces.  The short period and long 

period motion produced by these perturbations are separated using the Generalized 

Method of Averaging. 

da

da

41 



2.1.3.6 DSST Application of Generalized Method of Averaging 

 

 Lagrange developed and used the Lagrange Planetary Equations to investigate the 

long period and secular motion of the planets.  He expanded the disturbing function in a 

literal Fourier series (15).  Because a Fourier series was used, the terms in the equation 

associated with first-order long period and secular motion were isolated by inspection.  

These terms were then used to predict planetary motion with excellent results because the 

perturbations were small.  However, higher order solutions are needed when the 

perturbations are relatively large, or when the solution must predict motion more 

accurately for longer time spans (15).  In these cases, the Generalized Method of 

Averaging (GMA) can be applied to the VOP equations of motion. 

 

 When applying the GMA to either the Gaussian or Lagrangian VOP equations of 

motion, the short-period terms are isolated1 from the long-period and secular terms and 

one is left with averaged equations of motion in terms of time varying parameters.  The 

time varying parameters are called mean elements because the short period motion is no 

longer represented in the solution.  There are several ways to define mean elements.  The 

exact definition depends on the time interval over which the equations of motion are 

averaged (15).   

 

 

 

                                                 
1 It should be noted that the GMA operations can be done easily for the first order terms.  Higher order 
terms cannot be easily isolated in this way. 
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 In general the VOP element rates can be represented by: 

 5,...,2,1),( == ilF
dt

da
i

i aε      (2.36a) 

 ),()( 61 lFan
dt
dl aε+=        (2.36b) 

 

where a represents the vector of five mean elements and l is the fast variable.  The 

function, F, is the perturbing function which is 2π periodic in the variable l (15).  When 

applying the Generalized Method of Averaging to these VOP equations, the short period 

terms must be defined.  This definition will constrain the integration step size that can 

ultimately be used with the averaged VOP equations of motion.  DSST was developed to 

maximize the integration step size to provide an efficient, yet accurate representation of 

the satellite motion.  In DSST, the short period terms are defined as those with a period 

on the order of one orbital revolution or less of the satellite (15).  These have been 

referred to as single averaged theories.  This means that all terms dependent on multiples 

of the fast variable, l, are considered short period.  Terms introduced by the fast variables 

in third bodies such as the sun and moon as well as Greenwich Hour Angle dependent 

terms in the Earth’s spherical gravity harmonic expansion can also be considered short-

period.  The terms exclusively dependent on the other five slowly-varying orbital 

elements are considered long-period or secular terms (15). 

 

 Among the short period terms, the following summarizes some of the larger 

forces contributing perturbations to satellite motion.  Zonal harmonics are the latitude 

dependent terms in the Earth’s harmonic expansion.  This includes the largest zonal term, 
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J2, which is also much larger than all other zonal short-periodic perturbation contributions 

(15). 

 

 Tesseral harmonics model the non-spherical gravitational effects of the Earth by 

dividing the Earth’s field into intersections of the zonal and sectoral terms.  Because this 

array of roughly rectangular regions is fixed to the Earth’s surface, i.e. the tesseral terms 

are dependent on the Greenwich Hour Angle, the Earth’s rotation contributes short period 

effects to a satellite’s orbit.   

 

In addition, tesseral m-daily terms have periods on the order of one day, i.e. one 

rotation of the Earth.  Reference (33) describes motion contributions from tesseral 

resonance and from so called earth rotation terms.  These are terms that are linear 

combinations of the satellite fast variable, l, and the Greenwich Hour Angle.  In analytic 

and semianalytic formulations, the terms dependent on the earth rotation are often on the 

order of the satellite period and need to be separated from the longer period terms (32).  

Also, terms that combine the J2 and tesseral m-daily terms add short period motion to the 

equations of motion and require separation from the long period motion (15). 

 

 Third body gravitational effects also add short period motion to the equations of 

motion.  For Earth orbiting satellites, the sun and moon contribute terms with periods on 

the order of one year and 28 days, respectively.  These effects can be considered long-

period if using GMA to average over periods of approximately on satellite orbit, i.e. 

single averaging.  Although not used in DSST, some satellite motion theories use double 
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averaging.  These double averaged theories average over the satellite’s fast variable and 

also the fast variables of third bodies (15).   

 

 To develop the formulation of the Draper Semianalytic Satellite Theory (DSST), 

the near-identity transformation is introduced to express the osculating elements in terms 

of single averaged mean elements (15).  The following form for the osculating orbital 

elements is assumed: 
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where ji,η represents the short-periodic variation of order j in element ia , the ia are the 

slowly-varying mean elements, l is the mean mean longitude, and the quantity ε is the 

small parameter in the perturbation model. 

 

 The assumed form of the transform of the equations of motion for the mean 

elements in equation (2.36) is: 
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where )( ian is the mean mean motion  (14).  For this assumed transform, the rate of 

change in the mean elements only depends on the slowly-varying mean elements (15). 
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 The expressions for the short-periodic variations, ji,η , and the functions of the 

slowly varying mean elements, , are now sought.  Differentiate the osculating 

elements (2.37) to obtain expressions for the osculating element rates: 
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Substitute the mean element rates (2.38) into the osculating element rates (2.39).  This 

introduces into the osculating element equations of motion (15). jiA ,
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Rearrange the equations to obtain a single summation over ε (15): 
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Now, expand the perturbing functions in the VOP equations (2.36) about the mean 

elements using a Taylor series: 

 

ll
n

i

n

kk
ki lF

a
a

n
lF

=
=

∞

= =
∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ=
aa

aa
0

6

1

),(
!

1),(     (2.42) 

where kkk aaa −=Δ  and are defined by (2.37). 
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∂ and rearrange the equation for Fi as a power series in ε to 

obtain (15): 
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Also, expand the mean motion about the mean mean motion in a Taylor series about the 

mean semimajor axis, 1a  (15): 
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Rearrange this equation for mean mean motion as a power series in ε to obtain (15): 
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 Now, substitute the rearranged equations for the osculating element rates (2.41) 

into the left-hand side of the original equations for the osculating element rates (2.36) in 

terms of the mean elements.  Substitute equations (2.43) and (2.46) into the right hand 

side of equation (2.36).  Both sides are power series expansions in ε and therefore, terms 

with like powers of ε must be equal.  Equate such terms to obtain the jth-order 

contribution to the osculating element rates (15): 
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 These equations show the relationship between the unknown functions of the 

slowly-varying mean elements, Ai,j , and the partial derivatives of the unknown short-

periodic variations, ji,η to the known terms of the power series expansion of the 

osculating perturbing function,  (14).  Averaging over the mean fast variable, jif , l , 

eliminates the dependency on that variable.  This takes advantage of the fact that the short 

periodic variations are 2π periodic in the fast variable, l  (15).   

 

 Integrate both sides of equation (2.48) from 0 to 2π over the mean fast variable, l

.  This eliminates the partial derivatives, 
l

ji

∂

∂ ,η
.  This integration is known as the 

averaging operation and is defined as (15): 
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Because the functions are 2π periodic in l , the partial derivatives of the ji,η functions 

are also 2π periodic in l  (15). 
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Applying the averaging operation to equations (2.48) thus yields (15): 

   (2.51a) 

∂

 

    (2.51b) 

  

These equations are simplified by imposing a constraint such that the ji,η functions do not 

contain any long-period or secular terms (15): 
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 Applying the averaging operation to equation (2.39) for the osculating element 

rates, and then applying the constraint from equation (2.52), the following equivalences 

are obtained (15): 

 

5,...,2,1== i
dt
ad

dt
da i

l

i      (2.53a) 

 
dt
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 Using equations (2.50) and (2.52) has eliminated the averaged partials of .  

The mean elements are now seen to represent the long-period and secular contributions to 

the osculating elements plus a constant (15): 

ji,η

 

 jilji Cl ,, ),( =aη        (2.54) 

 

Eliminating these constants means a constraint such as the following should be imposed 

(15): 

 

         (2.55) 0, =jiC

  

Now, applying the averaging operation to the equations for the osculating elements yields 

(15): 
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 5,...,2,1== iaa ili      (2.56a) 

 

 ll l =          (2.56b) 

 

The result of the constraints (2.52) and (2.55) is that the ji,η functions contain only short-

periodic terms and terms that mix the short-periodic and long-period effects.  The 

equations for Ai,j now reduce to (15): 
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 The averaged equations of motion can now be expressed in terms of the power 

series expansion of the disturbing function.  The mean mean motion can be represented 

by the power series expansion of the osculating mean motion (15).  Substituting the 

equations for Ai,j into the original equations of motion for the mean element rates yields 

(15): 
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 Equations for fi,j and Nj, i.e. equations (2.44) and (2.47), show that for j≥1, terms 

containing the short periodic functions, ji,η , are still present.  Therefore, the averaging 

operation did not remove all dependence on the short period terms. 

 

 To determine the short period functions, ji,η , subtract equations (2.51) from (2.48) 

(15): 
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 Define the superscript, s, to be the short-periodic part of a function, which gives 

(15): 
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Now, rewrite the difference equations (2.59) as (15): 
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 The short period variation of order j, represented here by ji,η can be seen to be 

dependent on quantities of lower order than j for mean elements other than, l .  In the 

case of the fast variable, it can be seen that j,6η is dependent on j,1η through the term Nj.  

This means that the function, j,1η , must be calculated before the function, j,6η  (15). 

 

 Multiplying equations (2.60) by n1 , and integrating with respect to l yields the 

short-periodic functions to within an arbitrary function of the slowly varying mean 

elements (15): 
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where is an arbitrary function of integration, and jiC , ji,α is defined as (15): 
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Averaging equation (2.61) yields: 

 

  )(,, ajilji C=η

 

which shows that the constraints imposed earlier on equations (2.52) and (2.54) are valid 

(15).  Assuming that is zero to again apply the constraint of equation (2.55), this 

requires that the 

jiC ,

ji,η functions contain only short-periodic terms and terms that include 

both short-periodic and long-period terms (15).   

 

 A set of functions, ji,η , has been obtained that contain only short-periodic terms.  

The near-identity transformation of equations (2.37) can then be expressed as (15): 
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Determination of the jth order contribution to the mean element rates in equation 

(2.58) and the ji,η  functions is interdependent must be done on an order by order basis.  

Reference (15) illustrates this for second order terms in equation (2.58) and for the ji,η

functions.  The first order contributions of the mean element rates, Ai,1, are independent 
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of the ji,η  functions.  However, the second order computation of the mean element rates, 

Ai,2, must proceed as follows (15): 

 

 , ,               1,2, … ,6     (2.64a) 

 

, ,           1,2, … ,5     (2.64b) 

 

, , ,      (2.64c) 

 

, ∑ ,           1,2, … ,5     (2.64d) 

 

, ∑ , ,            (2.64e) 

 

This procedure can be used to extend the averaged equations of motion to higher order 

(15). 

 

 If the appropriate fast variable is used, the first order short-periodic effects can be 

formulated as closed-form expressions.  The zonal short-periodics can be formulated in 

terms of the true longitude, the tesseral m-dailies can be formulated in terms of the 

Greenwich Hour Angle, and the third body short-periodics can be formulated in terms of 

the eccentric longitude (34).  The coefficients of the periodic terms in these expressions 

are slowly-varying because they are only functions of the mean elements.  The closed-
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form short-periodic motion formulae can be used with an efficient interpolator to solve 

equations (2.63) for the second order mean element rates when needed. 

 

The McClain reference (15) includes further details which describe how to 

formulate the averaged equations of motion while including multiple perturbations for 

each element rate, modeling resonance phenomena, including nonspherical gravitational 

perturbations, and including third body effects.  There are also variants of this basic 

derivation of the VOP equations.  Green (35) extended the VOP equation derivation to 

include a second order drag theory in the averaged equations of motion.  Green also 

introduced a weak time dependence formulation to deal with disturbing functions having 

two fast variables.  One of the fast variables was the satellite’s mean motion while the 

other was small in comparison to the satellite’s mean motion.  J2/m-daily coupling has 

also been developed and incorporated into the DSST formulation.  The development of 

third body disturbing potentials for the DSST can be found in Collins’ Ph.D. Thesis (36). 
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2.2 Application of Electric Propulsion (EP) to satellites 
 
 
 

The central problem addressed in this thesis is to evaluate ways of improving 

orbit determination for satellites that use continuous thrust, electric propulsion.  

Continuous implies that the thruster typically operates for extended periods which are 

significant fractions of the orbital period.  This could include extended orbit raising 

applications or stationkeeping operations.  In this section, electric propulsion (EP), 

optimal ways of using EP to control satellite motion, and ways of modeling optimally 

controlled continuous thrust will be described.  Understanding how to optimally control 

EP satellites is important so that one can develop ways in which to improve the models of 

the motion of such satellites.  Through these models, it is hoped that the trajectory plans 

for spacecraft can be anticipated.  If these models successfully predict spacecraft 

thrusting, the improved motion models can be used to improve orbit determination and 

predictions of satellite motion for space surveillance applications. 

 
2.2.1  Electric propulsion motors 
 
 

There are several types of electric propulsion engines that have been developed 

for spacecraft.  This thesis will focus on operational electric thrusters that use relatively 

low levels of thrust, i.e. less than 1 Newton.  Electric thrusters that are modified versions 

of monopropellant or bipropellant chemical thrusters such as resistojets and arcjets are 

not discussed in this thesis.  The spacecraft of focus in this thesis use low-thrust electric 

propulsion, typically thrust continuously for long periods, and are challenging to model in 

orbit determination (OD) for space surveillance.  Because it is probable that satellite 
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operators and space surveillance networks do not cooperate or share information, OD for 

space surveillance is challenging because of the somewhat unpredictable thrusting 

undergone by active satellites.  The types of electric propulsion engines already launched 

and operating include the Hall thruster, the gridded ion engine, and the Pulsed Plasma 

Thruster (PPT) (37).  The Hall thruster electrostatically accelerates ions, but transmits the 

thrust to magnets through their magnetic interaction with electrons in a Hall current (38).  

Gridded ion engines use a charged grid to electrostatically accelerate ions (38).  The PPT 

thruster operates by creating a pulsed, high-current discharge across the exposed surface 

of a solid insulator.  This provides propellant that is ionized, heated and accelerated to 

high speed (39). 

 

Other types of electric propulsion such as arcjets, resistojets, magneto-plasma 

devices, field effect electrostatic propulsion (FEEP), and colloid thrusters either have not 

yet been launched on spacecraft or thrust in ways not unlike traditional chemical 

thrusters, i.e. short bursts of thrust that can be modeled as impulses.  These types of 

thrusters will not be described in this thesis because the scope here is limited to 

propulsion technologies that operate for long durations with relatively low levels of 

thrust, i.e. typically much less than one Newton. 

 

Hall thrusters usually consist of a cylindrical, annular chamber which is open at 

one end.  Propellant, usually Xenon, is introduced at the closed end near the anode.  This 

is shown in Figure 2.3 as the Anode/Gas Distributor.  The Xenon atoms are ionized by 

electrons flowing into the chamber from the open end of the cylinder.  The electrons 
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originate from an external cathode neutralizer also shown in Figure 2.3.  The external 

cathode neutralizer produces electrons to ionize the Xenon propellant atoms and to 

neutralize the thruster exhaust.  The external, negative cathode neutralizer also produces 

an axial electrostatic field which accelerates the ions toward the open end of the chamber.  

The Xenon ions and some of the electrons from the external cathode neutralizer leave the 

engine as the thruster exhaust.  It is important that the exhaust be electrically neutral to 

prevent charge buildup on the spacecraft.  Such a charge buildup could attract the thrust 

exhaust and cancel the thrust effects.  Magnets installed on the inner and outer edges of 

the engine cylinder opening create a radial magnetic field which forces the electrons into 

an azimuthal drift (Hall current).  The Hall current is the ExB current produced by the 

axial electric field (E) and the radial magnetic field (B).  The radial magnetic field 

strongly affects the electrons due to their magnetic charge.  The ions, however, are not 

magnetically charged and so are not strongly affected by the radial magnetic field (38).  

The Hall current thus produces an azimuthal drift for the electrons, but not the propellant 

ions (38). 
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Figure 2.3 Hall Thruster Schematic 
 

The azimuth directed electron Hall current produces a volume within which propellant 

atoms are readily ionized and are immediately accelerated by the strong cathode 

generated axial electrostatic field.  In Figure 2.3 the volume in which the Xenon atoms 

are ionized by the Hall current is in the vicinity of the arrows which show the axial 

electric field and the radial magnetic field directions.  This volume is shaped like a torus 

and correlates with the glowing ring in Figure 2.4.  The engine thrust is produced because 

the ions accelerate against the electrons circulating in the magnetically confined Hall 

current.  Because the electrons cannot freely accelerate toward the anode, they exert a 

magnetic force on the magnetic coil.  Eventually, the electrons diffuse toward the 

anode/gas distributor and are pumped using the power supply to the external cathode 

neutralizer (38).  Relatively efficient Hall thrusters have been developed and have flown 

on several Russian spacecraft.  These SPT thrusters have been flown operationally since 

the 1980s on spacecraft such as the EXPRESS and GALS spacecraft (37).  The SMART-

1 European spacecraft also used a Hall thruster for several months to reach lunar orbit 
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(40).  Hall thrusters also have applicability for geostationary satellite station keeping and 

U.S. vendors are manufacturing and testing Hall thrusters for such purposes.  Hall 

thrusters can have efficiency factors of around 50% with specific impulse around 1500 

seconds (38).  The efficiency factor is the ratio of the kinetic energy produced by the 

engine for actual thrust to the energy supplied by the fuel and electric power systems.  

Specific impulse is a ratio of the speed of the beam exhaust to the Earth’s acceleration 

due to gravity at sea level, i.e. 9.8 m/s2.   

 

 Figure 2.4 shows the Aerojet BPT-2000 Hall thruster operating in a vacuum 

chamber.  The BPT-2000 graphic is from Dr. Brad King (41) at Michigan Technological 

University. 

 

 

Figure 2.4 Aerojet BPT-2000 Hall Thruster  
(courtesy, Dr. Brad King at Michigan Technological University) 
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Gridded ion engines produce ions, typically Xenon, by pumping electrons via a 

cathode into a magnetically confined chamber.  An ion engine schematic is shown in 

Figure 2.5.   

 

 

Figure 2.5 NASA Deep Space 1 Gridded Ion Engine Illustration2  
 

The injected electrons bombard propellant atoms also introduced into the chamber and 

produce ions as a result.  After a time, electrons are collected by the anode surrounding 

the magnetically confining chamber and are ejected using an external cathode.  In Figure 

2.5, the Anode is annotated as “Anode collects electrons,” and the cathode that injects 

electrons into the chamber is annotated as “Hollow cathode emits electrons.”  The 

external cathode is not annotated, but is shown at the bottom right hand corner of Figure 

2.5.  The electron ejection by the external cathode prevents excess negative charge from 

building up in the engine.  One side of the chamber, directed opposite the desired engine 

                                                 
2 NASA Graphic obtained from http://www.nasa.gov/centers/glenn/images/content/83902main_ipsdiag.jpg 
visited Feb, 2008 
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thrust direction, is covered with two or more closely spaced grids.  These grids are 

charged with voltage that accelerates Xenon ions that wander into the sheath covering the 

inner, positively charged grid and fall through (38).  The grid spacing is on the order of 1 

mm and it is within the grid gap that the Xenon ions accelerate due to the strong 

attraction of the Xenon ions to the negatively charged outer grid.  The acceleration grids 

are designed with an ion optic geometry that reduces ion collision with the grids.  The ion 

optic geometry essentially steers the ions toward the holes in the grid rather than toward 

the grid structure.  This extends the life span of the grids.  Because of the necessary small 

gap between the grids, a space charge limitation inhibits the number of ions that can be 

accelerated at any one time.  This means that gridded ion engines must be larger in 

diameter than Hall thrusters in order to provide comparable thrust (38).  Ion engines are 

at optimum efficiency at a high specific impulse and therefore provide less thrust per unit 

power than Hall thrusters (38).  However, gridded ion engines offer more control of the 

plasma location within the structure and can offer longer life and better efficiency than 

Hall thrusters.  Gridded ion engines can have a specific impulse greater than 2500 

seconds and efficiency factors around 65% (38).  Gridded ion engines have more 

complex power supply and processing requirements and therefore the power processing 

units (PPU) must be more complex and take up more mass than the PPU for a 

comparable Hall thruster (38). 

 

 Gridded ion engines are used on the Boeing 702 spacecraft (42).  Several of these 

spacecraft have been launched and are operating currently (43).  The NASA Deep Space 

1 spacecraft flew with a 30-cm ion engine to intercept comet Wilson-Harrington (44).   
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 The Pulsed Plasma Thruster (PPT), shown in Figure 2.6, is a markedly different 

type of thruster than the gridded ion engine or the Hall thruster.  One difference is the 

propellant typically used.  Instead of gaseous Xenon, PPTs use a solid bar of Teflon®  

(38).  Another difference is that the PPT operates using short pulses on the order of 10 

microseconds.  A power supply charges the discharge capacitor and applies 1-2 kilovolts 

across the exposed Teflon face.  A spark plug initiates the discharge.  The combination of 

thermal flux, particle bombardment and surface reactions depolymerizes, evaporates, and 

mostly ionizes a small amount of material (1.5 micrograms per Joule).  The instantaneous 

current is in the tens of kilo Amps and the self-induced magnetic field creates a magnetic 

pressure that is comparable to the gas kinetic pressure in the thin ionized layer (38).  The 

combination of pressure gradients accelerates the gas to speeds in the vicinity of the 

“critical Alfven velocity.”  At this velocity, the kinetic energy is equal to the ionization 

energy (38).  The PPT can achieve a specific impulse of 1500 seconds, but an engine 

efficiency factor of only around 7% (38).  Figure 2.6 shows a diagram of a PPT.   

 

Figure 2.6 Pulsed Plasma Thruster from NASA Earth Observing 1 (EO-1)3 
                                                 
3 NASA Graphic obtained from http://eo1.gsfc.nasa.gov/miscPages/TechForumPres/25-PPT.pdf visited 
Feb, 2008 
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An advantage of the PPT is its ability to operate over a wide range of thrust by varying 

the repetition rate.  This ability allows the thruster to precisely apply thrust for spacecraft 

orbit or attitude adjustments.  This thruster has been used since the 1960s on the series of 

LES 6,7,8, and 9 (Lincoln Experimental Satellites).  These thrusters have also been used 

on the U.S. Navy’s NOVA constellation (38).   

For the purposes of orbit determination, the necessary engine parameters are the 

thrust characteristics.  These characteristics include whether the thruster operates 

continuously for long periods and whether it uses variable thrust.  Also, the thrust 

magnitude and the thruster orientation with respect to the spacecraft body and attitude 

must be considered when modeling the spacecraft thrust acceleration.  For most thrusters 

that operate at low-thrust levels for continuous periods in orbit, the thrust magnitude, 

specific impulse and power have been published.  Table 2.1 includes several electric 

thrusters that have been used on operational spacecraft.  The sources of this information 

came from references (37), (45), (46), (47) and (48). 
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Table 2.1  EP Thruster Parameters for Several Launched Satellites 

Satellite/ 
Launch Date 

Thruster Type Manu-
facturer/ 
Model 

Isp 
(sec) 

Thrust 
Mag. 
(N) 

SC Mass 
(BOL4) 

(kg) 

Power 
(Watts) 

Apert. 
(cm) 

Anik F1 
11/21/2000 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.08 3015 4500 25 

Anik F2 
6/18/2004 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 3805 4500 25 

DirecTV10 
7/7/2007 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 3700 4500 25 

Galaxy IIIC 
 6/15/2002 

4 XIPS/ 
4 XIPS 

Grid. 
Ion 

Boeing 
702 

3800/ 
2568 

0.165/ 
0.08 

2873 4500/ 
500 

25/ 
13 

Galaxy XI 
12/21/1999 

8 XIPS Grid. 
Ion 

Boeing 
702 

2568 0.08 2775 500 13 

NSS-8 
1/30/2007 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 3800 4500 25 

PAS 1-R 
11/15/2000 

4 XIPS/ 
4 XIPS 

Grid. 
Ion 

Boeing 
702 

3800/ 
2568 

0.165/ 
0.08 

3059 4500/ 
500 

25/ 
13 

Spaceway 1 
4/26/2005 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800/ 
2568 

0.165/ 
0.08 

3832 4500/ 
500 

25 

Spaceway 2 
11/16/2005 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800/ 
2568 

0.165/ 
0.08 

3832 4500/ 
500 

25 

Spaceway 3 
8/14/2007 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800/ 
2568 

0.165/ 
0.08 

3832 4500/ 
500 

25 

XM-1 
3/18/2001 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 2950 4500 25 

XM-2 
5/8/2001 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 2950 4500 25 

XM-3 
1/3/2005 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 ~3000 4500 25 

XM-4 
10/30/2006 

4 XIPS Grid. 
Ion 

Boeing 
702 

3800 0.165 ~3000 4500 25 

WGS F1 
10/11/2007 

4 XIPS Grid. 
Ion 

Boeing 702 3800 0.165 3680 4500 25 

MBSAT 
3/13/2004 

SPT-100 Hall Loral/ISTI 
 

1600 0.083 3800 1350 10 

DeepSpace1  
10/24/1998 

XIPS/ 
NSTAR 

Grid. 
Ion 

Boeing/ 
NASA 

3100 0.020- 
0.092 

486 500-
2300 

30 

SMART-1 
9/27/2003 

PPS-1350 Hall ESA/ 
SNECMA 

1640 0.068 305 1190 10 

EO-1 
11/21/2000 

EO-1 PPT PPT Swales/ 
Northrup/ 
Aerojet 

650-
1400 

90-860 
μN-sec 

529 70  

ARTEMIS 
7/12/2001 

IPP/ 
Kaufman 

Grid. 
Ion 

UK (DRA) 
ESA 

3285-
3370 

0.016- 
0.018 

 570 10 

 

                                                 
4 BOL stands for beginning of life 
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2.2.2 Electric propulsion optimal orbit transfer 
 
 

Controlling satellites with electric propulsion often means that fuel usage and 

transfer time should be minimized.  In this thesis, the satellite control problem involves 

thrusting a satellite continuously to take the satellite from an initial orbit to a desired final 

orbit in minimum time.  Constant continuous thrust magnitude is assumed and therefore, 

the minimum time and minimum fuel solutions are the same.  The direction of thrust, i.e. 

pitch and yaw angles, can be optimized by formulating the problem in terms of Optimal 

Control Theory.  Several references were used for understanding this formulation.  They 

include Bryson and Ho’s Applied Optimal Control (49) and Kirk’s Optimal Control 

Theory (50).  The ultimate formulation used for this research came from Jean 

Kechichian’s series of papers (3), (4), (5), (6), (7) and (8).  These were published starting 

in the 1990’s and were devoted to deriving equinoctial element formulations to calculate 

optimal thrust plans for orbital transfers.  Kechichian’s development uses equinoctial 

elements to represent the orbital state because singularities due to zero eccentricity and 

inclination inherent to the Keplerian elements are avoided.  These singularities would 

cause problems with the numeric integration required in this optimal control problem (3).   

 

2.2.2.1 Optimal Control Theory Background 

 

Before explaining Kechichian’s development of optimal orbit transfers, it is 

useful to discuss the elements of Optimal Control Theory that are used.  This discussion 

is taken from Kirk’s Optimal Control Theory (50), from Bryson and Ho’s Applied 

Optimal Control (49) and from Professor Jonathan How’s MIT Course 16.323 notes (51). 
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The orbital system dynamics are as follows: 

)),(),(()( tttt uxax =&         (2.65a) 

The initial conditions are defined by: 

          (2.65b) 0xx =)( 0t

A performance measure, i.e. cost functional, is introduced: 

      (2.66) ∫+= ft

tff dttttgtthJ
0

)),(),(()),(()( uxxu

Here, the initial time, t0, is specified and the final time, tf, is not bounded, i.e. it is free.  

The state, x, is an n x 1 state vector and u is an m x 1 control input vector.  The function, 

h, is used to assign cost to the terminal state.  The state cost function, g, is used to assign 

cost to the path obtained using a given state history, x(t), and control history, u(t).  Our 

goal is to find an optimal control history, u*(t), that produces a time and fuel optimal state 

history, i.e. trajectory, x*(t). 

 

 We can adjoin Lagrange multipliers to augment the performance measure (50), 

(49) and (51): 

    (2.67) {[ ]dtttttttgtthJ ft

t

T
ffa ∫ −++=

0

)),(),(()),(),(()),(( xuxaλuxx &}

where the vector of n Lagrange multipliers, λ, is multiplied to a quantity that is equal to 

zero given the system dynamics equation shown earlier.  The variation of this equation 

can be taken in order to minimize the functional, Ja.  We can use the Fundamental 

Theorem of the Calculus of Variations to find the minima of the functional, Ja, given the 

variation of the functional, δJa.  Here, we assume the state time history, x(t) is 
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continuous.  The variation of the functional, Ja, vanishes on the minimum or maximum 

state time histories (50): 

         (2.68) 0),( =∗ xx δδ aJ

The variation, δ, is defined in terms of the increment.  The increment of functional J is 

defined as (50): 

 )()( xxx JJJ −+≡Δ δ         (2.69) 

The increment can also be written as (50): 

 xxxxxxx δδδδδ ⋅+=Δ ),(),(),( qJJ       (2.70) 

where * denotes a norm operation.  The linear part of the increment, ),( xx δδ J , is defined 

as the variation of the functional, J.  The functional, q, collects all higher order terms of 

the increment of J.   

 

 Now, find the variation of the functional, δJa (51):   
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Here, the subscripts of g, h, and a imply partial derivatives, i.e. 
u
aau ∂
∂

≡ .  The 

Hamiltonian is defined as follows: 
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Using the Hamiltonian, the variation of the functional, δJa, becomes (51): 
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In equation (2.73), the (tf) at the end of the second term is used to signify that tf is an 

argument for all quantities within the brackets.  Integrating the last term in the integrand 

by parts yields (51): 
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Rewrite the variation of the functional, δJa (51): 
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The  at the end of the third term in the right hand side of equation (2.75) indicates 

that all quatities inside the bracket are functions of the final time.  By using the 

Fundamental Theorem of the Calculus of Variations, the necessary conditions for the 

minimum or maximum of the functional, Ja, are met when δJa = 0.  The necessary 

conditions are also known as the Euler-Lagrange equations and are (49), (50), (51): 

)( ft

          (2.76a) ),,( tuxax =&
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=
uu
HH          (2.76c) 

Because the dimension of x and p are n x 1, the dimensions of (2.76a) and (2.76b) are 

also n x 1.  The dimension of u is m x 1 and therefore, the dimension of Hu is also m x 1.  

If our final time, tf is free, we also have the boundary condition (51): 
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We still have the fixed initial, and fixed or free final conditions (51): 

          (2.78) 00 )( xx =t

   if xf  is fixed       (2.79) 
fifi t xx =)(
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According to references (52) and (49), the Lagrange multipliers are sensitivities of 

the performance index, J,  to small changes in the initial conditions, i.e. the Lagrange 

multiplier functions, λT(t), are the partial derivatives of the performance measure, J, with 

respect to the initial conditions, x(t0).  The Lagrange multipliers are sometimes called the 

influence functions (49).   

 
 This derivation allows us to proceed with the optimal control problem for 

controlling the constant, continuous thrust of a satellite from an initial orbit to a final 

orbit while optimizing fuel usage.   

 

2.2.2.2 Minimum-Time Trajectory Optimization Problem 

 

 The optimal low-thrust control problem for initial and final orbits was initially 

solved in the 1960s by Gobetz and Edelbaum using an application of the equinoctial 

orbital elements (53), (54).  These solutions mostly dealt with circular initial and final 

orbits.  However, the more general problem of thrusting from initial and final orbits with 
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significant eccentricity and inclination was dealt with in reference (55)5.  Starting in the 

1990s, Jean Albert Kechichian further developed these methods (9) and his work is the 

basis for the optimal control problem formulation in this thesis.  Because of the robust 

convergence characteristics and the relatively simple formulation, the development from 

Kechichian’s paper (5) is followed.   

 

 The nonsingular equinoctial elements, { }Lqpkha ,,,,,=x , are used as the state 

elements in the dynamic equations.  The elements a,h,k,p,q are identical to the equinoctial 

orbit elements described in section 2.1.3.5.  These elements were developed by Broucke 

and Cefola (31), (56).  The L element is the true longitude and is defined as

.  Here,  is the true anomaly, Ω++= ∗ ωθL ∗θ ω  is the argument of perigee, and  is the 

right ascension of the ascending node.  The following variational equations define the 

time derivatives of the equinoctial elements.  These equations match the form of the 

constraint equations from the optimal control formulation, 

Ω

),,( tuxax =&  (5): 
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5 This application of the equinoctial orbital elements was significant because it was the first use of the 
equinoctial orbital elements apart from the authors who introduced the concept, Broucke and Cefola. 

73 



 ( ) hL
LL

fsqp
kchsna

khp 22
2
1

22

1
)1(2

)1(
++

++
−−

=&      (2.81d) 

 ( ) hL
LL

fcqp
kchsna

khq 22
2
1

22

1
)1(2

)1(
++

++
−−

=&      (2.81e) 

 hLL
LL

LL fpcqs
kchsna

kh

kh

kchsnL )(
)1(

)1(

)1(

)1( 2
1

22

2
1

22

2

−
++

−−
+

−−

++
=&     (2.81f) 

Equations in (2.81) are transformed versions of equations in (2.31).  The true longitude, 

L, has replaced the mean longitude, λ, as the fast variable.  Equations in (2.81) are 

formulated to use thrust acceleration in a polar frame while the equations in (2.31) are 

formulated to use the perturbing acceleration in equinoctial (f,g,w) inertial coordinates.  

The similar formulations are notable because Kechichian’s formulation follows from the 

work of Edelbaum in the 1970s (55) which used the equinoctial elements introduced by 

Broucke and Cefola (31).  In equation (2.81), the symbol, n, denotes the mean motion, 

the sL and cL variables are sin(L) and cos(L), respectively, and the control vector, u, has 

rotating polar components, .  The complete expression for the disturbing 

acceleration due to thrust is

[ T
hr uuu ,, θ ]

[ ]Thrtt uuuf ,, θ=ufm/ ==Γ f . The symbol, m, is the 

spacecraft mass, and ft is the magnitude of the thrust vector, f.  The variational equations 

can also be represented by (5): 
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where the 6 x 3 BL matrix is fully defined in Appendix B.  Other perturbations in the 

rotating Euler-Hill polar frame, [ ]Thrp ffff θ= , can be added to the perturbation 

acceleration due to thrust: 

 [ ] [ ]( ) 2

2
1

222 )1(
r

khnaffffuuuB T
hrt

T
hr

L −−
++= θθx&    (2.82b) 

 

Adding perturbations such as J2 and lunar and solar gravity is future work with 

respect to this thesis.  However, adding the J2 perturbation is shown in reference (57). 

 

 We can put this formulation into the optimal control framework by adjoining 

Lagrange multipliers to the equinoctial element time derivatives.  We can then define the 

Hamiltonian as (5):   
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2
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+= λuxλx      (2.83) 

Here, the vector of Lagrange multipliers is defined as { }λλλλλλλ ,,,,, qpkha
T =xλ .  In the 

case of , no partial derivative is implied.  The necessary conditions for the optimal 

control are then (5): 

T
xλ
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 The first of the conditions is already defined by the variational equations.  The 

second condition,
x

λ
∂

−=&
∂H , can be written as (5): 
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This adjoint equation requires the partials of the BL matrix with respect to each of the 

equinoctial elements.  These partial derivatives were derived by Kechichian (5) and are 

shown in Appendix B along with the elements of the BL matrix.  The BL matrix includes 

all terms that are required to reproduce the variational equations when multiplied by the 

perturbing thrust acceleration vector as shown in equation (2.82a).  The partials of the BL 

matrix with respect to the equinoctial orbital elements are required in order to evaluate 

the variational equations for the Lagrange multipliers as shown in equation (2.87).  These 

partial derivatives are also included in Appendix B. 

 

 The third equation in the necessary conditions, 0=∂∂ uH , can be met by 

choosing the control or thrust vector, u, such that it is always parallel to .  This 

maximizes the Hamiltonian because of how it was defined in equation (2.83) (5).  

Therefore, the optimized thrust vector, u*, is obtained from (5): 

t
LT fB )(xλ x

 
LT

TLT

B
B

x

x

λ
λu )(

=          (2.88) 

This thrust control vector produces a trajectory that is optimized for the choice of the cost 

functional in equation (2.66).  The exact choices for the h and g functions are shown 

later.  The thrust pitch and yaw angles can be calculated from the thrust vector.  The 
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thrust vector is defined in terms of rotating Euler-Hill polar coordinates defined in 

Appendix C,{ , and so the thrust pitch and yaw angles are (6): }hr uuu ,, θ

 ⎟⎟
⎠
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 Because we are assuming constant thrust, we can minimize fuel usage by 

minimizing the total transfer time.  We can choose the cost functional with 

 and 0)),(( =ff tth x 1)),(),(( =tttg ux and therefore, the cost functional to minimize is (3): 

         (2.91) ∫ −==
ft

t f ttdtJ
0

0

This is equivalent to maximizing the cost functional (3): 

         (2.92) ∫ −−=−=
ft

t f ttdtJ
0

)( 0

We then redefine our g function as 1)),(),(( −=tttg ux  so that we are again minimizing the 

cost.  With , we can specify the augmented Hamiltonian as (3): 1)),(),(( −=tttg ux

     (2.93) xλuxaλλux &)(1))(),(()(1),,( ttttH TT +−=+−=

At the final time, tf, the augmented Hamiltonian will be Hf = 0.  This comes out of the 

boundary condition at the final time (3): 

         (2.94) 0)( ==+ f
T tHg aλ

Therefore, our augmented Hamiltonian will be zero at the final time and will thus 

indicate a time-optimal trajectory if the un-augmented Hamiltonian is equal to unity, i.e. 

.  This fact can be used later in the numerical quasi-Newton search 

algorithm.  We also know that because the Hamiltonian is not an explicit function of 

1)()( =ff
T tt xλ &
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time, it will be constant throughout the time interval from t0 to tf  when the trajectory is 

optimal (49).  The constancy of the Hamiltonian is an important indicator of the 

optimality of the trajectory. 

 

2.2.2.3 Numerical Solution Method for Trajectory Optimization Problem 

 

 In order to solve the two-point boundary value problem posed by this formulation 

of the satellite optimal control problem, one needs to be able to integrate the variational 

equations for the equinoctial elements (2.81) and the variational equations for the 

associated Lagrange multipliers (2.87).  The 6 variational equations for the equinoctial 

elements are integrated from the initial conditions (2.78) at t0 to the guessed final time, tf.  

The 6 variational equations for the Lagrange multipliers are integrated from initial 

guesses at the initial time, t0, { }
00 ,,,,, λλλλλλλ qpkha

T =λ , to final values,

{ }
fqpkha

T
f λλλλλλλ ,,,,,=λ  at the final guessed time, tf.  The integrator chosen for this 

task must have sufficient accuracy because the 7-parameter unconstrained minimization 

depends on very accurate correspondence between the initial and final conditions.  

Kechichian (4) uses a 7th order Runge-Kutta-Fehlberg integrator (RK78) with 10-9 error 

tolerance for this purpose, and so that integrator is also used for the trajectory 

optimization in this thesis.  The source code for the RK78 integrator was developed at 

NASA and is available on the web at (http://www.astro.su.se/~pawel/rk78.html).   

The guesses for the initial Lagrange multipliers and final time can be refined 

through the use of a 7-parameter search.  The search tries to find the best initial guesses 

for Lagrange multipliers and final time to match the desired final equinoctial orbital 
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elements.  For this search, Kechichian chose the minimization algorithm UNCMIN (58).  

This algorithm performs an unconstrained minimization on a given real-valued function 

F(x).  The number of variables in the vector, x, is n.  This dimension, n, must match the 

number of variables to be guessed by the minimization algorithm.  The UNCMIN 

algorithm uses a quasi-Newton search which is based on the general descent method (58).  

In the Newton method, the step p is computed from the solution of a set of n linear 

equations known as the Newton equations (3): 

 )         (2.95) ()(2 xx FpF −∇=∇

The solution is updated by using (3): 

       (2.96) 
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The gradient of F(x) is denoted by )(xF∇ , and the constant matrix of second partial 

derivatives of F(x), , denotes the Hessian matrix (3).  The direction given by the 

step, p, is guaranteed to be a descent direction only if  is positive definite, i.e. 

for all  (3).  This can be shown using the Taylor expansion for F 

at x + p (58): 
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If we assume is positive definite, then as long as 12 )]([ −∇ kF x 012 >∇∇∇ − FFF T 0≠∇F .  

Therefore, If ε is small and , then 0≠∇F )() xFp(xF <+ ε and p is in a downhill 

direction.  If , then x is a critical point, and further conditions involving second 

derivatives must be checked to determine if x minimizes the function (58).   

0=∇F
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 The Newton method described above is modified in the implementation of 

UNCMIN to build an approximation to the Hessian matrix using a secant approximation 

(58).  This modified method avoids the cost of computing the 2nd derivative Hessian 

matrix explicitly.  The secant approximation works by starting with

and then using a step, p, defined by (58): )(22
kkk FFB x∇=∇≈

 )         (2.98) ( kk FpB x−∇=

This step, p, is used with the general descent method shown in equations (2.95) and 

(2.96).  After the line search obtains pkk α+=+ xx 1

)( 1+

, the approximate Hessian, Bk, is 

updated using the values of xk+1 and ∇ kF x to produce the new approximation, Bk+1 

(58).  This can be illustrated by starting with a quadratic function, F(x), which satisfies: 

      (2.99) )()())(( 11
2

kkkk FFF xxxx ∇−∇=−∇ ++

In this case, the approximation of the Hessian matrix will be chosen so that (58):  

 )()()( 111 kkkkk FFB xxxx ∇−∇=− +++       (2.100) 

The advantages of this method are that the solution converges rapidly near the solution, 

only gradient values are needed rather than second derivatives, a positive definite Bk can 

always be used so that a descent direction is always chosen, and the work per iteration 

can be reduced to O(n2) owing to the modification of Bk by a low-rank matrix (58). 

 

 The function, F(x), chosen for the trajectory optimization problem is (3): 
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Here, the relevant equinoctial elements and Lagrange multipliers at the final time are 

produced by the latest guess in the UNCMIN algorithm.  The equinoctial elements are 

contained in vector { Lqpkha }λ,,,,,=z .  The desired final orbital elements are contained 

in vector { }ffff qpkh ,,,ff a ,=z .  This function includes weighting parameters in the 

vector, w, which can be used to emphasize a combination of elements during the 

execution of the UNCMIN algorithm (4).  The Hamiltonian, H, is penalized for any 

difference from 1.  This follows from equations (2.93) and (2.94) which define the 

optimality condition involving the Hamiltonian.  The true longitude element is not 

included in the function to be minimized.  It is left out and is therefore a free parameter.  

Instead of the true longitude, the Lagrange multiplier associated with the true longitude is 

included so that the optimal arrival point for the minimum-time transfer on the final orbit 

is reached (5).   

 
 
 
2.2.2.4 Averaged Numerical Solution Method for Trajectory Optimization Problem 

  

 In order to obtain initial guesses for the Lagrange multipliers needed for the 

numerical method in 2.2.2.3, it is practical to apply the more robust, averaged variational 

equations to the problem (57).  The averaged variational equation formulation uses a 

mean longitude formulation developed by Jean Kechichian in reference (4).    The mean 

longitude formulation starts with the following equations of motion (4) in terms of the 

equinoctial elements, { }λ,,,,, qpkha=x .  This formulation is equivalent to the equinoctial 

variational equation formulation outlined in section 2.1.2.5 in equation (2.31), but is 

expressed in a form that can be conveniently partitioned into a matrix. 

81 



 

 tfa u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂

=
&

&
Ta∂         (2.102a) 

 t

T

fhh u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

&         (2.102b) 

 t

T

fkk u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

&        (2.102c) 

 t

T

fpp u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

&        (2.102d) 

 t

T

fqq u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
&

&         (2.102e) 

 t

T

fn u
r

ˆ⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
&

& λλ        (2.102f) 

The equinoctial elements are the same as those described in the section 2.2.2.2 except for 

the λ element which is the mean longitude.  The mean longitude is defined in terms of the 

mean anomaly, M, and the argument of perigee, ω, and the right ascension of the 

ascending node, Ω.   

 Ω++= ωλ M         (2.103) 

The unit thrust vector, , is in the direction of thrust and n is the orbital mean motion.  

The following equations show the partial derivatives of the equinoctial elements with 

respect to r  (4): 
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It should be noted that equation (2.104) is also compatible with the VOP equation 

derivation found in McClain (15).  The reference frame for these equations is the direct 

equinoctial frame which is also used for the true longitude formulation described in 

section 2.2.2.2.  The 6x3 M matrix is defined with these equations and is dependent on 

the elements and the eccentric longitude, F.  The position and velocity vectors are also 

given in terms of the eccentric longitude (4).  The eccentric longitude is related to the 

eccentric anomaly, E, by (4): 

        (2.105) )/(tan 1 khEF −+=

The position and velocity are given by (4): 
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The parameters are the same as those given earlier in equation (2.23) and are repeated 

here for convenience (32), (4): 

[ ]kFhkFhaX −+−= sincos)1( 2
1 ββ      (2.108)  
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Here, )1/(1 G+=β , )1( 22 khG −−= , , and )1( 22 qpK ++= )sincos1( FhFkar −−= .  

As the mean longitude λ is being integrated, it becomes necessary to solve Kepler’s 

transcendental equation by iteration, i.e. Fh cosFkF sin +−=λ  (4).  The following 

partial derivatives are needed in the equations of motion shown above (4): 
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 The averaged variational equations for the averaged equinoctial elements and the 

averaged Lagrange multipliers are now sought.  This averaging procedure is like the one 

used in the DSST development in section 2.1.2.6 in that the short period motion, i.e. 
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periodic motion on the order of one orbital revolution, is averaged out of the equations of 

motion.  The following averaging procedure is taken from references (4) and (55).  First, 

the averaged Hamiltonian is formed.  From the averaged Hamiltonian, a first-order 

approximation to the state and costate is derived by holding these quantities constant over 

the averaging interval of one orbital revolution.  Only the eccentric longitude, F, is varied 

on the orbit (4): 

 ∫∫
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The integrand in equation (2.116) is the Hamiltonian from equation (2.83).  Here,  is 

the orbital period at time t which is given by 

0T

nT ~20 π=  with 2321 ~~ −= an μ .  The symbol, 

a~ , denotes the averaged value of the semimajor axis at time t.  From Kepler’s equation, 
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Defining the variable s as follows and making a substitution into the Euler-Lagrange 

equations yields (4): 
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Here, the averaged equinoctial element vector is { }λ~,~,~,~,~,~~ qpkha=z , and the averaged 

vector containing the Lagrange multipliers is { }λλ~~
zλ λλλλλ ,~,~,~,~,~

qpkha= . 

 

The partials derivatives of s with respect to the averaged equinoctial elements are 

(4): 
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Using the previous equations, the averaged variational equations for the 

equinoctial elements and the Lagrange multipliers with constant acceleration, ft, are (4): 
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The thrust direction, , is a function of the averaged equinoctial elements, û z~ , the 

eccentric longitude, F, and the averaged Lagrange multipliers, zλ
~ .  The thrust direction is 

chosen so it is always parallel to ),~(~ FM zλ z .  This optimizes the acceleration direction 
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according to the necessary conditions derived in sections 2.2.2.1 and 2.2.2.2.  The partial 

derivatives of the M matrix with respect to the equinoctial elements are provided in 

reference (4).  The M matrix is formulated with respect to mean longitude while the BL 

matrix defined earlier in equation (2.82a) is defined with respect to true longitude.  The 

exact and averaged formulations of the mean longitude equations are presented in 

reference (4).   

 

In the averaged formulation, the averaged Hamiltonian can be obtained from the 

integrated variables (4): 

  

 λλλλλλλ λ
&&&&&& ~ ~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ +++++= qpkhaH qpkha      (2.138) 

 

When given the initial and final orbits, one can solve for the averaged Lagrange 

multipliers, zλ
~ , using the same two-point boundary value problem defined in section 

2.2.2.2 and the numerical shooting method described in section 2.2.2.3.  The major 

difference in the averaged and exact problems is that the averaged problem requires 

quadrature to produce the averaged time derivatives of the equinoctial elements and 

Lagrange multipliers.  It is perhaps possible to analytically evaluate the quadrature 

expressions in equations (2.126-2.137), but numerical quadrature was used by 

Kechichian and was used in this thesis.  The usefulness of the averaged Lagrange 

multipliers comes from the fact that, in practice, the averaged two-point boundary value 

problem is much more robust when given errors in the initial guesses for the Lagrange 

multipliers.  The solution for the Lagrange multipliers obtained using the shooting 
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method with the averaged two-point boundary value problem can be used as initial 

guesses for the exact solution which uses the non-averaged variational equations as 

defined in section 2.2.2.2.  This strategy was suggested by Jean A. Kechichian in his 

papers referenced throughout chapter 2.  In section 5, this strategy will be shown to work 

well for the test cases done for this thesis. 
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2.2.3 Electric Propulsion for Satellite Station Keeping 

 

Hundreds of telecommunications satellites in Geosynchronous Earth Orbit (GEO) 

provide services that enable television, radio, telephony, and other communication across 

most of the globe.  Arthur C. Clark popularized the concept of GEO satellites which 

maintain a nearly constant position in the sky from the perspective of an Earth-based 

observer.  GEO satellites follow circular, Earth equatorial orbits with a mean semimajor 

axis of approximately 42,164 km.  This orbit gives the satellite an orbital period equal to 

one day.  However, maintaining a true geostationary orbit requires that a satellite 

precisely counteract Earth’s nonspherical gravity, lunar and solar gravity and solar 

radiation pressure.  All of these forces, though small in comparison to the primary two-

body gravitational attraction of the Earth on the satellite, act to move the satellite from its 

ideal geostationary orbit.  These forces change the orbital semimajor axis, eccentricity 

and inclination (42).  Counteracting the small forces requires the use of thrusters.  In 

particular, inclination control for geostationary satellites requires 95% of the needed ΔV, 

i.e. change in orbital velocity (59), (43).   

 

Since the 1960s, when GEO satellites were first launched, such satellites have 

used chemical thrusters.  However, in 1997, the first commercial spacecraft to use Xenon 

ion engines for station keeping was launched (43).  This spacecraft was the 

Hughes/Boeing 601 spacecraft which used Xenon ion thrusters for orbital inclination 

control.  Later, the Hughes/Boeing 702 spacecraft introduced Xenon ion thrusters (XIPS) 

for semimajor axis, eccentricity and inclination control (43).   
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The application of Xenon ion electric propulsion (EP) to GEO satellites has 

mainly been driven by the reduced fuel mass required by Xenon over the mass required 

by chemical thruster fuel such as hydrazine for comparable mission lifetimes.  The 

savings in mass can be as much as a factor of ten.  The efficiency improvement is 

achieved in part because electric, Xenon fuel-based ion engines can provide a specific 

impulse that is ten times greater than that of chemical thrusters and the efficiency of such 

thrusters is optimal for high specific impulse (43), (38).  Specific impulse is proportional 

to the exit velocity of the engine exhaust.  Low-thrust characteristics of Xenon ion 

propulsion require longer engine burn durations.  A typical bipropellant, chemical 

thruster with a force of 22 Newtons need only be used on the order of once every several 

days to maintain acceptable semimajor axis, eccentricity and inclination control.  A 

Xenon ion engine with a force of 0.1 Newtons must be operated every day for several 

hours at specific locations in the orbit in order to efficiently maintain acceptable control 

(59), (43).  Acceptable control is defined as maintaining the semimajor axis and 

eccentricity so the satellite’s longitude stays within 0.05 degrees of its assigned slot and 

maintaining the inclination under 0.1 degrees (60). 

 

Aside from the fuel mass benefit of Xenon ion propulsion systems is the 

capability to maintain tighter control of the satellite.  Because the thrusters are operated 

during every orbit, thrusts made with ion engines to counteract perturbing forces can be 

executed more frequently and efficiently than thrusts made with chemical thrusters.  

Figure 2.7 taken from reference (43) shows the tighter inclination control that can be 

maintained with ion thrusters over chemical thrusters. 
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Figure 2.7 Inclination Control with Chemical vs. XIPS Thrusters 
 

Figure 2.8 was also taken from reference (43) and shows the tighter eccentricity and 

longitude drift control that can be maintained using ion thrusters. 

 

 

Figure 2.8 Eccentricity and Longitude Control with Chemical vs. XIPS Thrusters 
  

The advantages of tighter inclination, eccentricity and longitude control mainly 

benefit Earth-based users of the spacecraft.  Requirements and therefore costs for antenna 

pointing are reduced with tighter satellite control because the satellite will wander less 

from its fixed position relative to the Earth’s surface. 
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2.3 Recursive Orbit Estimation Techniques 
 

Satellite orbital estimation is the problem of solving for the constants associated 

with the orbital equations of motion using observations of a satellite while in its orbit.  In 

satellite orbit estimation, one typically tries to obtain an optimal estimate.  However, the 

optimal estimate is often difficult to achieve exactly due to the nonlinear characteristics 

of the orbital dynamics involved.  In order to perform optimal estimation, one requires 

knowledge of an initial satellite orbit, the orbital dynamics, the measurement dynamics 

and the associated errors for each set of dynamics.  Orbital and continuous thrust 

dynamics were discussed in sections 2.1 and 2.2, respectively.  The measurement 

dynamics are not discussed as fully in this document, but ample treatment of several 

types of observations can be found in Methods of Orbit Determination by Pedro Escobal 

(61) and in An Introduction to the Mathematics and Methods of Astrodynamics by 

Richard Battin (11).  The GTDS Mathematics Specification (32) also has a great deal of 

useful material on orbit determination.  The orbital dynamics and measurement errors are 

important for the study and scope of this thesis and so are discussed in this section as they 

relate to orbital estimate errors.  Documents that also present these issues are references 

(62) and (63). 

 

A number of estimation algorithms have been applied to the satellite orbit 

estimation problem.  Among them are various variations on the Kalman Filter.  The 

discussion in this document will focus on a few of these including the Extended Kalman 

Filter (EKF) derived from Kalman Filter introduced by R.E. Kalman (64), the Unscented 

Kalman Filter (65), (66), and the Backward Smoothing Extended Kalman Filter (BSEKF) 
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(2).  Because the equations describing satellite motion and the geometry of the 

measurements taken on satellites are nonlinear, steps are taken in the derivations of the 

aforementioned estimators to approximate the dynamics and measurement equations with 

linear equations.  Linear equations are necessary because dynamics and measurement 

equations are assumed linear in the derivations of the most popular and efficient optimal 

estimation algorithms, i.e. Kalman filters (67).  Allowing for nonlinear dynamics and 

measurement equations would mean many of the basic assumptions and techniques used 

in deriving the Kalman filter would not be valid.  Some of these assumptions and 

techniques include linear algebra and Gaussian normal distributions of errors.  A 

fundamental assumption allowing the use of linear techniques to solve estimation 

problems is that the Linear Least Squared Error (LLSE) estimator and the Bayesian Least 

Squared Error (BLSE) estimator, i.e. the Minimum Mean Square Error (MMSE) 

estimator, are equivalent when process noise and measurement noise statistics are 

independent, identically distributed (i.i.d) Gaussian distributions.  (68), (69), (70).  As 

long as the dynamic and measurement equations transform the associated errors linearly, 

the LLSE and BLSE equivalence assumption holds (69).   

 

The orbit estimation problem is a specific problem of state estimation.  There are 

two ways in which a state can be estimated.  The non-Bayesian or Fisher approach is a 

nonrandom approach which tries to estimate an unknown constant (69).  The random or 

Bayesian approach treats the state parameters as a vector of random variables, x, with a 

prior probability density function, p(x).  The Bayesian approach starts with a prior 
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probability density function (PDF) of the state vector and one can obtain the posterior 

PDF using Bayes’ formula (69): 

)()(1
)(

)()(
)( xx

xx
x pZp

cZP
pZp

Zp ==       (2.139) 

Here, c is simply a normalizing constant not dependant on x.  The result is a PDF 

describing the probability of values of x given the observations, Z.  The non-Bayesian 

approach doesn’t use the prior PDF of x.  Rather, it simply uses the likelihood function 

which is a PDF of the measurements, Z, conditioned on the parameter vector, x (69): 

 )()( xx ZpZ =Λ         (2.140) 

This function can also be used as a measure of how likely is a realization of values in x 

given the obtained observations and serves as a measure of evidence from the observed 

data (69).  However, because the likelihood function doesn’t use the full Bayesian 

formula, it is non-Bayesian.   

 

 The estimators based on these approaches are the non-Bayesian Maximum 

Likelihood Estimator (ML) and the Bayesian Maximum A Posteriori Estimator (MAP).  

The ML estimator maximizes the likelihood function as follows (69): 

)|(maxarg)(maxarg)(ˆ xxx
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The ML estimator finds the mean of the PDF.  The MAP estimator also uses a prior PDF 

of x and follows from the maximization of the posterior PDF from Bayes’ formula (69): 

     (2.142) )]()|([maxarg)|(maxarg)(ˆ xxxx
xx
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The MAP estimator finds the mode of the posterior PDF.  The ML and MAP estimators 

both depend on observations, Z, but the MAP estimator also depends on a realization of x 
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which is a random variable (69).  The non-Bayesian approach is really a degenerate case 

of the Bayesian approach.  If one looks at a prior which is a Gaussian PDF with a 

variance that approaches infinity, the PDF will approach that of a uniform distribution 

(69): 

         (2.143) xx =
∞⎯→⎯

)(lim p
σ

In this case, the MAP estimate and the ML estimate coincide because the MAP estimate 

becomes proportional to the ML estimate (69). 

 

 Another non-random estimator is the least squares estimator (LSE).  If one is 

given scalar and nonlinear measurements (69): 

 kjjwjhjz ,...,1)(),()( =+= x       (2.144) 

the LSE of the vector, x, is obtained by (69): 
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Here, if the measurement errors are Gaussian, i.e. , then the least squares 

estimator coincides with the maximum likelihood estimator (MLE) described previously 

(69).   

),0()( 2σNjw ≈

 

 For random parameters, the counterpart of the LS estimator is the minimum mean 

square error (MMSE) estimator (69): 
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This equation finds the value of the state estimate, , that minimizes the expectation or 

the square of the error in the estimate.  The solution to this estimator is the conditional 

mean of x: 

x̂

         (2.146) ∫
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Because the mean and mode of a Gaussian posterior distribution are equal, the MMSE 

and MAP estimates are equal when given a Gaussian posterior PDF.   

 

The variances of the MAP and ML estimators are not equal because the MAP 

estimate variance also includes the prior PDF.  The definition of the estimator’s variance 

is the expected value of the square of the estimation error (69): 

)ˆvar(])ˆ[( 2 xxx =−E         (2.147) 

This quantity provides a measure of the accuracy of the estimator.  Often, the estimation 

error is assumed to be Gaussian (69).  In the Kalman Filter derivation in section 2.3.1, the 

minimum variance estimator for the orbit estimation problem is derived.  The ML and 

MAP estimators described above can also be used to derive an optimal estimator for the 

orbit estimation problem.  In fact, reference (70) shows that due to the Gaussian statistics 

assumed for measurement and process noise, the ML, MAP and minimum variance 

estimators are equivalent. 

 

The estimation techniques described in section 2.3 make use of the i.i.d Gaussian 

error assumption, but also operate with the crucial flaw that the approximate linear 

dynamic and measurement models differ from the actual nonlinear physics occurring.  

97 



The Extended Kalman Filter (EKF), for example, works well for systems with a small 

degree of nonlinearity.    For systems with higher degrees of nonlinearity, smoothing and 

other methods can improve the accuracy of the estimators, but this is not guaranteed (68).  

The problem of how to ascertain the radius of convergence and to guarantee convergence 

for extended or linearized estimators has an elusive solution. 

 

2.3.1 Extended Kalman Filter 
 
 

A filter is an estimation algorithm that uses physically realizable data.  These data 

are observations that have already been taken so the interval of these observations is 

[0,tk].  The algorithm is called a filter because it is meant to filter out the noise in the 

available signals (71). 

 

The following derivations were taken verbatim from the R&D GTDS Filter 

Program Software Specification and User’s Guide by J. Dunham (72), i.e. sections 

2.3.1.1-2.3.1.5.  Comparison for accuracy was done with reference (70).  Some details 

regarding covariance properties were published online by Richard Duda (73) and the 

section on the expectation operator, 2.3.1.1.7, is from Optimal Control and Estimation by 

Robert Stengel (71). 

 

The orbit problem is one in which several conditions apply.  The equations of 

motion are nonlinear.  The equations describing the observations are nonlinear functions 

of the variables describing the satellite state.  There is a wealth of data; considerably 

more than is needed for a deterministic solution and much more than is the case in the 
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typical binary star orbit determination from celestial mechanics.  Neither the dynamics 

nor the observations can be perfectly modeled.  These characteristics determine the 

filtering requirements and algorithms needed to solve the problem. 

 

Given a set of observations and an a priori estimate of the spacecraft solve-for 

parameters; an improved knowledge of them is to be determined.  The solve-for 

parameters, X(t), are an nx1 vector which may include the position and velocity of the 

spacecraft, constants from the equations of motion, attitude parameters, and clock 

parameters.  Orbital elements or spherical coordinates may be estimated instead of the 

spacecraft position and velocity.  The solve-for parameter (state vector) differential 

equation 

),( tXFX =&          (2.148) 

 

is a set of n simultaneous equations, which are nonlinear. 

 

These parameters are not observed directly, but they can be inferred from the 

observations.  The observations, Y(ti), can be expressed as a function of the solve-for 

parameters and time, i.e. G[X(t), t].  This observation equation is, in general, nonlinear in 

the solve-for parameters. 

 

For a solution to be possible, at least as many observations are needed as there are 

solve-for parameters.  That is, for a set of l observations, l must be greater than or equal 

to n, where n is the number of parameters to be estimated. 
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2.3.1.1 Linear Unbiased Minimum Variance Batch Estimate 

 

2.3.1.1.1 The Linearized State Equation 

 

The predicted solve-for vector at time t is denoted X*(t).  If the true parameters at 

that time are X(t), then 
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where x(t) is the nx1 correction vector which needs to be estimated.  If the initial guess 

for the parameters are “close” to the true value, the correction vector x(t), is small relative 

to X(t).  Under that condition, a linear differential equation can be obtained for the 

propagation of the correction vector.  This is done by taking the differential equation for 

the solve-for vector (Equation 2.148) and expanding it in a Taylor series about X*(t) as 

follows: 
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Truncating equation (2.150) yields 
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where   Rearranging equation (2.151) yields. ).*,()(* tXFtX =&
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or, using equation (2.149) in differential form, 

)()(
*

tx
X
Ftx

X
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=&         (2.152) 

 

Equation (2.152) is a set of n linearized differential equations for the propagation of the 

correction vector.  This equation can be written as 
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where A(t) is the nxn matrix of partial derivatives evaluated along the trajectory X*(t), 

given by: 
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2.3.1.1.2  State Transition Matrix 

 

The differential equations for the propagation of the correction vector, i.e. 

equation (2.153), form a system of n homogeneous linear differential equations.  It is 

assumed that the solution has the form: 

)(),()( 0011 txtttx Φ=         (2.155) 
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where  is an nxn matrix called the state transition matrix.  The state transition 

matrix relates perturbations (x(t1)) in the state vector at time t1 to perturbations (x(t0)) at 

time t0.  At an arbitrary time t, the following results: 

),( 01 ttΦ

)(),()( 00 txtttx Φ=         (2.156) 

 

The x(t0) are constants of the integration of equation (2.153).  They are the perturbations 

in the state vector, X, at the epoch time t0. 

 

To find the differential equation for the state transition matrix, equation (2.156) is 

differentiated: 

)(),()(),()( 0000 txtttxtttx &&& Φ+Φ=       (2.157) 

 

Using equation (2.153) and the fact that 0)( 0 =tx& (since the x(t0) are constants) produces: 

)(),()()( 00 txtttxtA Φ= &        (2.158) 

 

Substituting equation (2.156) for x(t) and rearranging the result produces the following 

expression for the state transition matrix differential equation: 

),()(),( 00 tttAtt Φ=Φ&         (2.159) 

 

The initial conditions for integration of equation (2.159) can be found from considering 

the state transition matrix over a zero-length time interval.  In this case, 

)(),()( 0000 txtttx Φ=         (2.160) 
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and Φ can be assumed to be the identity matrix. ),( 00 tt

 

2.3.1.1.3  Properties of the State Transition Matrix 

 

The state transition matrix has a number of properties which can be employed to 

advantage in estimation work.  This subsection summarizes a few of them for use in later 

discussion.  The state transition matrix, ),( 0ttΦ , relates perturbations in the state vector 

at time t to perturbations at time t0.  The matrix obeys the following differential equation: 

),()(),( 00 tttAtt Φ=Φ&         (2.161) 

where A(t) is the nxn matrix of partial derivatives defined by equation (2.154) and         

(t0,t0) = I, the identity matrix.  The following properties of the state transition matrix 

can also be obtained: 
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If the quantity x(t2) is known, the property of equation (2.162) can be used to obtain x(t1).  

Since 

)(),()( 1122 txtttx Φ=         (2.165) 

then 
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or, from equation (2.162), 
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)(),()( 2211 txtttx Φ=                 (2.166b) 

 

As a practical matter, it is usually easier to integrate backwards in time to obtain 

the state transition matrix from t2 to t1 instead of integrating forward in time from t1to t2 

and then inverting the state transition matrix.  Computing involves first the 

integration from t1 to t2 and then the inversion of an nxn matrix.  If X(t1) and/or x(t1) is 

not known or if n is a large number, finding can be an expensive computation.  

The differential equation for Φ  in (2.161) can be integrated from t2 to t1 to obtain 

directly, if the initial conditions x(t2) and X*(t2) are available. 
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2.3.1.1.4 The Linearized Observation Equation 

 

The observation Y(ti) can be represented as a function of the state and time as 

follows: 

iiii ttXGtY ε+= )),(()(        (2.167) 

where iε is the error in the observation at time ti.  Equation (2.167) can be linearized in a 

similar manner as the state equation.  Substituting equation (2.149) for X(ti) and 

expanding in a Taylor series about X*(ti) gives 

i
X

iii tx
X
GttXGtY

i

ε++⎥⎦
⎤

⎢⎣
⎡
∂
∂

+= ...)()),(*()(
*

     (2.168) 

The observation residual, y(ti), is defined as 

)),(*()()( iiii ttXGtYty −=        (2.169) 
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This is the observed-minus-computed (O-C) observation residual based on the state 

estimate, X*(ti). 

 

Linearizing equation (2.168) and substituting the result into equation (2.169) yields the 

following equation for the O-C residuals: 

)()()(
)*(

ii
tX

i ttx
X
Gty

i

ε+⎥⎦
⎤

⎢⎣
⎡
∂
∂

=       (2.170) 

The matrix H(ti) is defined as 

)*(

)(
itX

i X
GtH ⎥⎦
⎤

⎢⎣
⎡
∂
∂

=         (2.171) 

 

For a single observation, H(ti) is a 1xn matrix of partial derivatives of the observation 

equation with respect to the state parameters.  Then equation (2.169) can be written as: 

)()()()( iiii ttxtHty ε+=        (2.172) 

 

 

2.3.1.1.5  Summary of Notation 

 

The following summarizes the previously developed equations and notation.  A 

set of scalar observations Y(ti) exists at times ti (i = 1,2,…,l).  (In the next subsection, the 

more general case of vector observations is considered.)  The state vector is the nx1 

vector of independent parameters to be estimated.  Thus, 

 X*(ti) = the nx1 predicted state vector at time ti 

 Y(ti)   = the observation at time ti 
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And 

)*,()(* ii tXFtX =&         (2.173) 

 

is the state differential equation of motion.  The function 

]),(*[ ii ttXG          (2.174) 

is the nonlinear expression which predicts the observation at time ti as a function of the 

predicted state vector at ti.  The matrix 

)*(

)(
itX

i X
FtA ⎥⎦
⎤

⎢⎣
⎡
∂
∂

=         (2.175) 

contains the partial derivatives of the equations of motion.  The vector 

)*(

)*,(
)(

itX

i
i X

tXG
tH ⎥⎦

⎤
⎢⎣
⎡

∂
∂

=        (2.176) 

contains the partial derivatives of the observation at time ti with respect to the 

components of the state vector at time ti (a 1xn vector). 

 

The state deviation equation, or the equation of motion for the state correction 

vector, is given by: 

)()()( txtAtx =&         (2.177) 

with the solution 

)(),()( kkii txtttx Φ=         (2.178) 

when integrated from tk to ti. 

Finally, the equation describing the O-C observation residual is 

)()()()( iiii ttxtHty ε+=        (2.179) 
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2.3.1.1.6 Reduction to a Common Epoch 

 

A correction is needed to the state at some epoch time tk.  The correction is to be 

determined from a set of l observations, Y, made at times ti (i = 1,2,…,l).  The time tk may 

be within the span t1 to tl, earlier than the span, or later. 

 

The state correction vector appearing in equation (2.179), x(ti), is related to the 

state correction vector at epoch x(tk), according to equation (2.178).  Replacing x(ti) in 

equation (2.179) yields: 

)()(),()()( ikkiii ttxtttHty       (2.180) Φ= + ε

This set of l observational equations can be written as a vector equation 

ε+= )( ktHxy         (2.181) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ly

y
y ..

1

 

is an lx1 vector of residuals 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ

Φ
=

),(
...

),( 11

kll

k

ttH

ttH
H  

is an lxn matrix, and 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

lε

ε
ε ...

1

 

 

is an lx1 vector.  The H matrix contains the partial derivatives of the observational 

equations at their observed times, ti, with respect to the n components of the state vector 

at epoch, tk. 

 

2.3.1.1.7  The Expectation Operator 

 

The average or expected value of a random variable v is defined as: 

vvyprobabilitvvE i
i

i ′== ∑
∞

=

)()(
1

      (2.182) 

E(v) is also called the first moment about the origin or the mean value of v, and it is 

denoted by v .  This is a measure of a value toward which a large number of observations 

of v tends. 

′

 

Higher moments provide measures of the variability of x, and the nth moments of 

discrete variables are defined by 

)()(
1

i
i

n
i

n vyprobabilitvvE ∑
∞

=

=        (2.183) 

Higher moments about the origin reflect not only variation about the mean but variation 

in the mean value itself.  The variation about the mean is useful if isolated which leads to 

the nth central moments for discrete variables: 
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)]()[(])[(
1

i
i

nn vyprobabilitvvvvE ∑
∞

=

′−=′−      (2.184) 

The second central moment or variance is defined when n is 2. 

])[( 22 vvE ′−=σ         (2.185) 

 

The square root of the variance is the standard deviation, σ .  The expected value of the 

product of the deviations of two random variables v1 and v2 is called the covariance, P, 

and is expressed as 

)])([( 2211 vvvvEP ′−′−=        (2.186) 

 

The covariance has several important properties: 

• If variable v1 and variable v2 tend to increase together, then P(1,2) > 0 

• If variable v1 tends to decrease when variable v2 increases then P(1,2) < 0 

• If variable v1 and variable v2 are independent, then P(1,2) = 0 

• | P(1,2) | <= σ 1σ 2, where σ i is the standard deviation of variable vi 

• P(1,1) = σ 1
2  

 

Thus, the covariance measures the dependence between variable v1 and v2.  If the 

covariance value for the two variables is 0, the variables are independent. 
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2.3.1.1.8  The Linear Unbiased Minimum Variance Estimate 

 

The linear unbiased minimum variance estimate of the state correction vector, x, 

at the epoch time, tk, is .  The best estimate of the state vector at epoch is then 

.  The estimate, , is linearly related to the vector of observation 

residuals, y, as follows: 

)(ˆ ktx

)(ˆ)(* kk txtX + )(ˆ ktx

Mytx k =)(ˆ          (2.187) 

 

The matrix M will be shown to be a combination of the observation partial 

derivatives and the observational error covariance which is selected to choose the best 

estimate.  The best estimate is one for which the expectation function that defines  

contains x explicitly and not as an argument of another function. 

)(ˆ ktx

 

The requirement that the estimate be unbiased may be stated as: 

xxE =]ˆ[          (2.188) 

Substituting equations (2.181) and (2.187) into equation (2.188) gives the following 

requirement that the estimate be unbiased: 

kk xHxME =+ )]([ ε         (2.189) 

The observation errors are treated as zero-mean variables.  Thus, the following 

assumptions are made: 

0][ =εE                   (2.190a) 

and 
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R

R
R

R

E
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Τ

...0000
.....
.....
0...000
0...000
0...000

][ 3

2

1

εε               (2.190b) 

 

where ε  is the vector of the observation error given by and )],(),...,(),([ 21 lttt εεεε =Τ

)()]()([ 2
iiii tttER σεε == Τ        (2.191) 

 

The fact that the off-diagonal elements of the matrix in equation (2.190b) are zero 

is a result of the assumption that the observational error at time ti is completely 

independent of the error at any other time.  This assumption is termed stochastic 

independence.  Since the expectation of observation errors, E[ε ], is assumed to be zero, 

equation (2.189) reduces to 

kk xMHx = or IMH =        (2.192) 

The covariance matrix, Pk, is defined as 

[ ]{ } [ ]{ }[ ]Τ−−= kkkkk xExxExEP ˆˆˆˆ       (2.193) 

The minimum variance requirement is equivalent to choosing  to minimize Pk. kx̂

 

To determine the value of which minimizes Pk, Pk must first be arranged into a 

more convenient form.  First, equations (2.187) and (2.188) are substituted into equation 

(2.193) to obtain 

kx̂

{ }{ }[ ]Τ−−= kkk xMyxMyEP        (2.194) 
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Then, substituting equation (2.181) for y yields 

{ }[ ]{ }Τ−+−+= kkkkk xHxMxHxMEP )()( εε     (2.195) 

which, when rearranged, is 

{ }{ }[ ]Τ+−+−= εε MxIMHMxIMHEP kkk )()(     (2.196) 

Thus, since MH = I from equation (2.192), 

[ ] [ ] 0)()( =−=− kk xEIMHxIMHE      (2.197) 

Then from equation (2.190b), 

[ ] [ ] ΤΤΤΤΤ === MRMMMEMMEPk εεεε      (2.198) 

The steps given below are followed to minimize Pk, subject to the constraint imposed by 

the requirement that be unbiased. kx̂

 

The quantity 

λλ )()( MHIMHI −+− ΤΤ        (2.199) 

where λ is an nxn matrix of Lagrangian multipliers, is added to the expression for Pk, 

resulting in: 

λλ )()( MHIMHIMRMPk −+−+= ΤΤΤ      (2.200) 

 

The technique of Lagrangian multipliers was developed for the purpose of finding 

the extrema of functions which are subject to constraints.  In the case above, equation 

(2.199), which is added to the function to be minimized, equation (2.198), is made a 

symmetric function by treating equation (2.199) as a matrix plus its transpose.  The 

covariance matrix is a symmetric one, and this preserves the symmetric property. 
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kPThe first variation of Pk, δ , is given by 

δλδλδλλδδ )()()()( MHIMHIMHMRHRMMPk −+−+−+−= ΤΤΤΤΤΤ  (2.201) 

For minimum variance, kPδ equals zero.  This requires that the following conditions hold: 

0=−Τ λHRM         (2.202) 

0=−MHI          (2.203) 

Solving for M and λ , 

1−ΤΤ= RHM λ                  (2.204a) 

IHRH =−ΤΤ 1λ                  (2.204b) 

11 )( −−ΤΤ = HRHλ                  (2.204c) 

Substitute in (2.204a) to get M in terms of H and R only. Τλ

111 )( −Τ−−Τ= RHHRHM        (2.205) 

Substitute M in equation (2.198) 

11

1111

111111

)(

)()()(

])[()(

−−Τ

Τ−−ΤΤ−ΤΤ−−Τ

Τ−Τ−−Τ−Τ−−Τ

Τ

=

=

=

=

HRHP

HRHRHHHRHP

RHHRHRRHHRHP

MRMP

k

k

k

k

    (2.206) 

Substitute M into equation (2.187) to yield: 

yRHHRHMyxk
111 )(ˆ −Τ−−Τ==       (2.207) 

 

Equations (2.206) and (2.207) are the covariance and the correction vector 

equations respectively, purely in terms of H, R and y.  H contains the partial derivatives 

of the observations with respect to the components of the state vector (Equation 2.171).  
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R is the diagonal matrix ( ) containing the expected value of the observation errors 

(Equation 2.190b) and y is the vector of observation residuals (Equation 2.180). 

][ ΤεεE

 

A batch least squares estimate of , given l observations, would proceed as 

follows.  Given the initial state, X*(t0), and a vector of observations, Y, from time t0 to 

time tf, the estimate of the state, , can be made by following the steps.  These steps 

can be iterated using some convergence criteria by returning to step 1 after step 4 is 

completed. 

kx̂

kX̂

 

1.  Integrate the state differential equation (Equation 2.148) and the state transition 

matrix differential equation (Equation 2.161) to the time of each observation. 

 

2. At each observation at time ti, compute the observation partial derivative from 

)*(

),(
)(~

itXX

i
i X

tXG
tH

=
⎥⎦
⎤

⎢⎣
⎡

∂
∂

=       (2.208) 

 and propagate the partial derivative to time tk using 

),(~)( kiik ttHtH Φ=        (2.209) 

 Computation of the state transition matrix, ),( ki ttΦ , may require several steps, 

depending on the value of tk relative to the interval (t0,tf) and depending on the 

number of parameters in the state, n.  In general 

),(),(),( 00 kiki tttttt ΦΦ=Φ       (2.210) 
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 where  and  can be computed by integrating Equation (2.161) 

from t0 to ti and tk to obtain 

),( 0ttiΦ ),( 0 kttΦ

),( 0ttiΦ and ),( 0 kttΦ . 

 Then, 

),(),( 0
1

0 tttt kk
−Φ=Φ  

 This could be precomputed and stored.  If tk has been chosen to be t0, then 

Itt k =Φ ),( 0  

 and the observational partial derivative matrix is 

),()(~)( 00 tttHtH ii Φ=       (2.211) 

 

3. Compute the observation G[X*(ti),ti] and the O-C residual, y(ti), from 

)()()( iii tGtYty −=  

 

4. When all observations have been processed, compute the state update and 

covariance matrix as 

yRHHRHxk
111 )(ˆ −Τ−−Τ=                (2.212a) 

11 )( −−Τ= HRHP                 (2.212b) 

 and compute the state estimate at tk from 

)(ˆ)(*)(ˆ
kkk txtXtX +=       (2.213) 
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2.3.1.2  Derivation of the Kalman Filter 

 

In this derivation, an estimate, , and a covariance matrix, Pk-1, based on 

measurements from t0 to tk-1, are considered.  Further observational information, either a 

single observation or a vector of observations, at time tk is to be added to this set, and the 

values of the estimate, , and the covariance matrix Pk, at time tk are to be found. 

1ˆ −kx

kx̂

First, it is necessary to predict the estimate, , forward to time tk.  The prediction of 

perturbations in the state has been previously developed (Equation 2.178) and may be 

written as 

1ˆ −kx

11 ˆ),( −−Φ= kkkk xttx         (2.214) 

 

This is an estimate of the error in the state, X*, at time tk, based on observations from t0 to 

tk-1. 

 

The predicted covariance is defined as 

[ ]Τ−−= ))(( kkkkk xxxxEP        (2.215) 

 

This is the predicted covariance at time tk, based on observations from t0 to tk-1.  Using 

Equation 2.214, Equation 2.215 can be rewritten as 

 

),(),(

)],()ˆ)(ˆ)(,([

111

111111

−
Τ

−−

−
Τ

−−−−−

ΦΦ=

Φ−−Φ=

kkkkkk

kkkkkkkkk

ttPttP

ttxxxxttEP
   (2.216) 
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The linearized observation equation at tk is 

kkkkkk xttHy +Φ= ),(                 (2.217a) ε

kkkk xHy ε+=                   (2.217b) 

where 

[ ] 0=kE ε                   (2.218a) 

and 

[ ] kkk RE =Τεε                      (2.218b) 

 

If the predicted correction is considered to be a variable which contains a random 

error, kη , then xk is the true value of the correction at time tk, i.e., 

kkk xx η+=          (2.219) 

where 

[ ] 0=jEη                   (2.220a) 

and 

[ ] kkk PE =Τηη                   (2.220b) 

This quantity contains the information from observations from t0 to tk-1. 

 

Then, the same formalism can be used for both the observation residual at time tk 

and the correction vector.  First, the following definitions are made: 

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k

y
x

y          (2.221) 
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⎥
⎦

⎤
⎢
⎣

⎡
=

kH
I

H          (2.222) 

and 

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k

R
P

R
0

0
         (2.223) 

 

The information from all observations previous to tk is contained in kx and kP .  

The problem can now be treated as though there are two “observations,” kx and yk. 

 

From Equation 2.207, the state correction estimated from all observations to tk is 

yRHHRHxk
111 )(ˆ −Τ−−Τ=        (2.224) 

Written explicitly, with the aid of Equations (2.213) through (2.216), the state correction 

becomes: 

[ ] [ ]

)()(
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0
0ˆ

11111

1
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1
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−

−
Τ

−

−

−
Τ

++=

⎥
⎦

⎤
⎢
⎣

⎡
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⎦
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⎢
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⎥
⎥
⎦

⎤

⎢
⎢
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⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

   (2.225) 

and the updated covariance matrix can be similarly expressed as 

[ ]
111

1

1

1

11

)(

0
0

)(

−−−Τ

−

−

−
Τ

−−Τ

+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
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⎡
=

=

kkkk

kk

k
k

k

PHRH

H
I

R
P

HI

HRHP

      (2.226) 

This equation can be rewritten to eliminate the inversion of an nxn matrix by using the 

Schur identity (also known as the inside-out rule).  First, the following inversion is made: 

111 −−Τ− += kkkkk PHRHP        (2.227) 
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This expression is then premultiplied by Pk and postmultiplied by kP to obtain 

kkkkkkk PPHRHPP += −Τ 1        (2.228) 

or equivalently, 

kkkkkkk PHRHPPP 1−Τ−=        (2.229) 

Postmultiplying Equation (2.228) by  and reordering the result yields 1−Τ
kk RH

111 ][ −Τ−Τ−Τ =+ kkkkkkkkkk RHPRHPHIRHP      (2.230) 

This can be written as 

111 ][ −Τ−Τ−Τ =+ kkkkkkkkkkk RHPRRHPHRHP      (2.231) 

Postmultiplying this by Rk and solving for  yields 1−Τ
kkk RHP

[ 11 −ΤΤ−Τ += kkkkkkkkk RHPHHPRHP ]       (2.232) 

Replacing this expression for  in Equation (2.229) with (2.232) results in the 

following 

1−Τ
kkk RHP

[ ] kkkkkkkkkk PHRHPHHPPP 1−ΤΤ +−=      (2.233) 

Equation (2.226) for the covariance has now been rewritten.  For a single observation at 

tk, the quantity [ ]kkkk RHPH +Τ  is a scalar, and Pk can be evaluated without inverting a 

matrix. 

 

The Kalman gain, Kk, is defined to be 

[ 1−ΤΤ +≡ kkkkkkk RHPHHPK ]       (2.234) 

Therefore, 
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[ ] kkkk PHKIP −=         (2.235) 

The original inversion of an nxn matrix is now reduced to the inversion of a scalar 

quantity for a single observation. 

 

Substituting Equation (2.235) into the equation for the estimated state correction, 

Equation (2.225) yields: 

[ ] [ ]
[ ] [ ] kkkkkkkkk

kkkkkkkkk

yRHPHKIxHKI

xPyRHPHKIx
1

11ˆ
−Τ

−−Τ

−+−=

+−=
    (2.236) 

The coefficient of yk (the second part of the above equation) can be reduced to a less 

complex form by expanding Kk according to Equation (2.234) to obtain 

[ ] 11][ −Τ−ΤΤΤΤ +−=− kkkkkkkkkkkkkkkkkk RHPHRHPHHPRHPRHPHKI   (2.237) 

This term can also be expressed as: 

11 ])([ −Τ−ΤΤ +− kkkkkkkkkk RHPHRHPHIHP      (2.238) 

The identity matrix can be written as: 

)()( 1
kkkkkkkk RHPHRHPHI ++= Τ−Τ     (2.239) 

Substituting this identity into Equation (2.238) yields the equality: 

kkkkkkk

kkkkkkkkkkkkkk

KRHPHHP

RHPHRHPHRHPHHP

=+=

−++
−ΤΤ

−ΤΤ−ΤΤ

1

11

][

][][
   (2.240) 

The estimate from Equation (2.236) can thus be written in the form: 

)(][ˆ kkkkkkkkkkk xHyKxyKxHKIx −+=+−=     (2.241) 

The covariance for the estimate equation (2.241) is given by equation (2.235). 
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2.3.1.3 Algorithm for the Sequential Kalman Filter 

 

For a Kalman sequential filter, the steps in the computation of tk, given 

information at tk-1, are the following: 

 

Given , , X*(tk-1), and an observation Y(tk): 1ˆ −kx 1−kP

1. Propagate the state and the state transition matrix from tk-1 to tk to obtain X*(tk) 

and  ),( 1−Φ kk tt

)*,()(* tXFtX =&          (X*(tk-1); initial conditions)           (2.242a) 

),()(),( 11 −− Φ=Φ kk tttAtt&    ( Itt kk =Φ −− ),( 11 ; initial conditions)     (2.242b) 

2. Predict the covariance matrix and the state correction 

),(),( 111 −
Τ

−− ΦΦ= kkkkkk ttPttP               (2.243a) 

11 ˆ),( −−Φ= kkkk xttx                 (2.243b) 

3. Compute the observation, O-C residuals, and observation partial derivatives 

)),(*( kk ttXG                  (2.244a) 

)),(*()( kkkk ttXGtYy −=                (2.244b) 

*XX
k X

GH
=

⎥⎦
⎤

⎢⎣
⎡
∂
∂

=                 (2.244c) 

4. Compute the gain and update the state correction and covariance matrix 

1][ −ΤΤ += kkkkkkk RHPHHPK                (2.245a) 
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kkkk PHKIP ][ −=                 (2.245b) 

)(ˆ kkkkkk xHyKxx −+=                (2.245c) 

5. Select the next observation at tk+1 and go back to step 1. 

 

When all observations have been processed, the computed state correction at the 

last time, , is then added to the state, X*(tl), to obtain the estimated state at tl as 

follows: 

lx̂

lll xtXtX ˆ)(*)(ˆ +=         (2.246) 

 

2.3.1.4  The Algorithm for the Extended Kalman Filter 

 

A variation of the Kalman filter is to add the correction vector, xk, to the solve-for 

vector at each observation, instead of waiting until the last observation.  In this case, X* 

is computed instead of x, since X̂ and X are treated directly.  Because the correction is 

added to the solve-for vector at each observation, the predicted correction, )(tx , at the 

observation time, tk, is equal to zero. 

 

There are several reasons for using the extended Kalman filter (EKF) instead of a 

standard Kalman filter.  The EKF will yield a new state at each observation, which is of 

value when a real-time solution is desired as the filter processes data.  By adding the 

corrections into the state at each observation, the effects of the nonlinearities in the 

equations of motion are not as severe, since the trajectory is being corrected at each 
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observation.  Also, the partials of the system dynamic function are recomputed at each 

time step given the updated state.  This allows for a more accurate state transition matrix. 

 

The extended Kalman filter algorithm is as follows: 

Given , and an observation Y(tk): 111 ,ˆ* −−− = kkk PXX

1. Propagate the state and state transition matrix from tk-1 to tk to obtain 

)(* kk tXX = and according to the following equations: ),( 1−Φ kk tt

),()( tXFtX =&         ( ; initial conditions)           (2.247a) )(ˆ
1−ktX

),()(),( 11 −− Φ=Φ kk tttAtt&    ( Itt kk =Φ −− ),( 11 ; initial conditions)     (2.247b) 

 where 

XXX
FtA

=
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=)(  

2. Predict the covariance matrix.  The predicted correction, )( ktx is not computed 

because it is zero in the EKF. 

),(),( 111 −
Τ

−− ΦΦ= kkkkkk ttPttP      (2.248) 

3. Compute the observation )),(( kk ttXG , the O-C residuals, yk, and the observation 

partial derivatives, Hk, from 

)),(()( kkkk ttXGtYy −=                (2.249a) 

)( kk tXX
k X

GH
=

⎥⎦
⎤

⎢⎣
⎡
∂
∂

=                 (2.249b) 

4. Compute the gain, , update the covariance matrix, , and the solve-for 

vector, , as follows: 

kK kP

kX̂
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1][ −ΤΤ += kkkkkkk RHPHHPK                (2.250a) 

kkkk PHKIP ][ −=                 (2.250b)

 kkkk yKXX +=ˆ                 (2.250c) 

5. Select the next observation at tk+1 and go back to step 1. 

 

If Equations (2.250a-c) are compared with the update equations in (2.245), it can 

be seen that step 4 of the EKF algorithm includes the computation of and the addition 

of to X*(tk) (which is, in this case, equal to 

kx̂

kx̂ )( ktX ), to obtain .  That is, the 

Kalman filter steps 

)k(ˆ tX

)(ˆ kkkkkk xHyKxx −+=  

and 

lll xtXtX ˆ)(*)(ˆ +=   

from Equations (2.245) and (2.246) are identical to 

kkkk yKXX +=ˆ  

from Equation (2.250) (remembering that kx = 0 for the EKF process). 

 
2.3.1.5 Glossary of Mathematical Symbols 
 
A(t)  n x n matrix of partial derivatives of the equations of motion, F 
 
F(X,t)  Vector of state differential equations 
 
G(X(t), t) Observation equation 
 
H(t)  1 x n matrix of partial derivatives of G(X(t), t) with respect to X(t) 
 
I  Identity matrix 
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K  Kalman gain 
 
l   Number of observations 
 
M  Combination of the observation partial derivatives and the covariance 
 
P   Predicted Covariance matrix 
 
P  Covariance matrix 
 
R  Matrix of observation variances 
 
t   Independent variable time 
 

)(tX   Solve-for parameter vector, i.e. the state 
 

)(tX   Predicted state vector 
 

*X   Predicted state vector, i.e. )(* kk tXX =  
 

)(ˆ tX   Estimated (a posteriori) state vector 
 
x̂   Estimated correction vector for the state 
 
x   Predicted correction vector for the state 
 
Y  Vector of observations 
 
y(t)  observed minus computed observation (residual) 
 
δ   Variational operator 
 
ε   Vector of errors in the computed observations 
 
η   Vector of errors in the predicted solve-for parameter correction vector, x(t) 
 
λ   n x n matrix of Lagrange multipliers 
 
σ   Standard deviation 
 

),( ji ttΦ  State transition matrix from tj to ti 
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2.3.2 Filters/Smoothers 
 
  
 When dealing with systems with highly nonlinear system dynamics and when 

observations can be processed in an offline sense, i.e. real-time state estimates are not 

needed, smoothing is a way to compute more accurate state estimates than the Kalman 

Filter can alone.  There are several types of smoothing to be found in the literature (74), 

(75), (76), (77).   

 

 References (74) and (77) classify smoothing problems into three categories.  

These categories are Fixed-interval smoothing, fixed-point smoothing, and fixed-lag 

smoothing.  Fixed-interval smoothing keeps the time interval of measurements fixed and 

optimal state estimates are sought for interior times within the interval.  Information from 

both past and future measurements is applied to compute optimal state estimates for these 

interior points (77).  Fixed-point smoothing is used to seek state estimates for a single 

point in time.  The measurements occurring after this single point in time are 

subsequently used to improve the estimate at that point.  An example of this would be the 

estimation of initial conditions based on later observations of a trajectory (77).  Fixed-lag 

smoothing is used to seek estimates of a state which is a fixed number of time points 

behind the current measurement time point (77).  Because the Backward Smoothing 
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Extended Kalman Filter described in section 2.3.4 incorporates fixed-interval smoothing 

in its algorithm, this type of smoothing will be the focus of this section. 

 

 Fixed-interval smoothing was introduced in the papers in references (75) and (76).  

Reference (77) refers to the algorithm as the Rauch-Tung-Striebel (RTS) algorithm and 

so that will be the usage in this section also.  Consider a fixed-length interval containing 

N + 1 measurements.  These will be indexed from z0 to zN.  We assume the estimated 

random process can be modeled in the form: 

 

         (2.251) kkkk wxx +Φ=+1

 

This is also known as the dynamic equation and is a discrete, linearized form of the 

continuous dynamic differential equation (2.148).  This is analogous to equation (2.155) 

in the EKF derivation.  Here, the dynamic equation is purely linear because is simply 

a matrix with dimensions compatible with xk.  This problem could take a form similar to 

the nonlinear form as the Extended Kalman Filter described in section 2.3.1 where the 

state transition matrix, , is a linearized approximation to the nonlinear dynamics.  The 

dynamic equation describes how a state at a later time is related to one at the current time.  

The process noise vector describes how noise is introduced into the dynamics.  It is 

assumed to be a white sequence with a known covariance.   

kΦ

kΦ

kw

 

The measurement equation for the process is given by: 
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         (2.252) kkkk H vxz +=

 

Here, the relationship between the state vector at the current time and any measurements 

taken at the current time is described.  The matrix means the relationship is linear.  

Like the state transition matrix in the dynamic equation, the matrix either represents a 

linear measurement equation or could be the result of linearization of a nonlinear 

measurement equation.  This linearization procedure is described in the Extended Kalman 

Filter section 2.3.1.  The vector is assumed to be a white sequence with known 

covariance and having zero correlation with the sequence. 

kH

kH

kv

kw

 

 Fixed-interval smoothing, i.e. the RTS algorithm, consists of a forward recursive 

filter sweep followed by a backward sweep.  The forward filter sweep is identical to the 

Extended Kalman Filter (EKF) algorithm described in section 2.3.1.  The backward 

sweep requires that the a priori and a posteriori estimates, , and associated covariance 

matrices, Pk, be saved.  The backward sweep starts with initial conditions which are the 

last state estimate and covariance computed using the forward filter sweep,  and 

 (77).  With each step of the backward sweep, the old estimate from the forward 

filter sweep is updated to yield an improved smoothed estimate.  This improved estimate 

is based on all the measurement data.  The recursive equations for the backward sweep 

are (77): 

kx̂

( NN |x̂ )

)|( NNP

 

 )]|1(ˆ)|1(ˆ)[()|(ˆ)|(ˆ kkNkkkkNk +−++= xxAxx       (2.253) 
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The notation  means the estimate of x at time k, given measurements, z0 to zN.  

The smoothing gain, , is given by (77): 

)|(ˆ Nkx

)(kA

 

       (2.254) )|1(),1()|()( kkkkkkk T ++Φ= −1PPA

 

The error covariance for the smoothed estimates is given by the recursive equation (77): 

 

    (2.255) )()]|1()|1()[()|()|( kkkNkkkkNk TAPPAPP +−++=

 

It should be noted that the smoothed error covariance matrix is not required in 

order to compute the state estimates in the backward sweep.  This is, of course, different 

than for the forward filter sweep in which the filtered error covariance is needed to 

compute the gain used in computing updated state estimates (77).   

 

 Smoothing is typically used when one desires state estimates with more accuracy 

than what is achievable with a forward Kalman filter pass alone.  This is true with linear 

and nonlinear systems [ (67), pp. 200].  The improved accuracy is obtained because the 

smoother incorporates information from future and past measurements to estimate each 

state.  The forward filter only uses past measurements to estimate each state.  Figures 2.7 

and 2.8 illustrate the improvement in state estimate accuracy and covariance obtained 

with a smoother over a forward filter sweep Kalman filter.  These figures were generated 

by writing software to implement the Kalman Filter and Smoother as described in 

reference (77).  This case uses linear system dynamic and measurement equations, but 
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improvements are also expected for nonlinear systems.  Figure 2.7 shows that the 

smoothed estimates from the fixed-interval (RTS) and fixed-lag (LAG) smoothers remain 

closer to the actual state (Truth) when observations cause the Kalman Filter (KF) to 

diverge from truth periodically.   

 

 

Figure 2.7  Kalman Filter vs. Rauch-Tung-Striebel Smoothed Estimates 
 

Figure 2.7 illustrates that the covariance for the RTS smoother is slightly better 

than that of the fixed-lag (LAG) smoother and is significantly better than that of the 

Kalman Filter (KF). 
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Figure 2.8 Kalman Filter vs. Rauch-Tung-Striebel Smoothed Covariance 
  

 It is worth noting that only those states which are controllable by the noise driving 

the system state vector are smoothable.  Constant states are not smoothable, while 

randomly time-varying states are smoothable (78).   

 

 Nonlinear smoothing differs from linear smoothing in that the nonlinear 

smoothing problem is more difficult [ (67), pp. 180].  The linear Gaussian case of the 

optimal estimate of the state for most reasonable Bayesian optimization criteria is the 

conditional mean of the state given the observations [ (67), pp. 180].  The Gaussian 

property implies that the condition mean can be computed from a unique linear operation 

on the measurement data, i.e. the Kalman filter algorithm [ (67), pp. 181].  In contrast, the 

nonlinear filtering/smoothing problem is not generally Gaussian.  Therefore, many 

Bayesian criteria lead to estimates that are different from the condition mean of the state 

given the observations [ (67), pp. 181].  Optimal estimation algorithms for nonlinear 

systems often cannot be expressed in closed form which requires methods for 
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approximating optimal nonlinear filters [ (67), pp. 181].  The Extended Kalman Filter 

(EKF) described in section 2.3.1 performs this approximation by linearizing the dynamic 

and measurement equations and then forming the minimum variance estimate from the 

linearized equations.  Reference [ (67), pp. 193-194] uses an example to show that the 

nonlinearity of the dynamic and measurement functions can have an important effect on 

the estimation accuracy.  The degree of importance depends on the degree of 

nonlinearity, the shape of the joint density function of the state and observations, and the 

strength of the measurement noise.   

 

 The fixed-interval smoother just described has a different formulation from the 

square-root information smoother (SRIS) used in section 5 with the Backward Smoothing 

Extended Kalman Filter (2).  Mark Psiaki used the SRIS from reference (79) in order to 

incorporate estimation of process noise vectors and to take advantage of the improved 

numerical stability of the SRIS form over the original Kalman filter/smoother 

formulation.  The SRIS form for section 5 is taken from (79).   

 
 
2.3.3 Unscented Kalman Filter 
 
 
 Simon Julier and Jeffrey Uhlmann introduced the Unscented Kalman Filter (UKF) 

in the 1990s and it has proved to be a useful extension to the Kalman Filter for nonlinear 

systems.  The UKF yields performance equivalent to the KF for linear systems and 

generalizes to nonlinear systems without the linearization steps required by the EKF (65), 

(66).  Analytically, and in practice, the UKF has been shown to be more accurate and 

more robust than the EKF (65), (66).  In order to obtain the optimal solution to a 

132 



nonlinear filtering problem, the condition probability density function (PDF) of the state 

given the observations must be maintained accurately in the filter (65), (66).  The EKF 

only maintains the mean and covariance of the conditional density which is passed 

through linear approximations of the dynamic and measurement functions.  The UKF 

addresses these deficiencies by applying the unscented transformation.  This 

transformation uses a set of “appropriately chosen weighted points to parameterize the 

mean and covariance of a give probability distribution” (65), (66).  Another advantage of 

the UKF is that the Jacobian matrices, i.e. the partials of the observation equations with 

respect to the state and the partials of the dynamic equations with respect to the state, 

required by the EKF are not required in the UKF.  Rather, the dynamic and measurement 

functions can be treated as “black boxes”  (65), (66). 

 

 The UKF is applied to a nonlinear discrete time system of the form (66): 

       (2.256) ]),(),(),([)1( kkkkk wuxfx =+

        (2.257) )(]),(),([)( kkkkk vuxhz +=

 

Here, x(k) is the n-dimensional state of the system at time k, u(k) is the input or control 

vector, w(k) is the q-dimensional state process noise vector due to disturbances and 

modeling errors, z(k) is the observation vector, and v(k) is the measurement noise.  It is 

assumed that the noise vectors, w(k) and v(k), are zero-mean and (66): 

 

  (2.258) jijiEijiEijiE T
ij

T
ij

T ,,0)]()([),()]()([),()]()([ ∀=== wvRwwQvv δδ
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For the EKF, the derivation is shown previously, in section 2.3.1.  In the UKF, the 

unscented transform is used to transform the statistics of random variables, i.e. the state 

variables, when undergoing a nonlinear transformation (66).  “The unscented 

transformation is based on the intuition that it is easier to approximate a probability 

distribution than it is to approximate an arbitrary nonlinear function.” (66)  This approach 

is illustrated in Figure 2.9. 

 

 

Figure 2.9  The Unscented Transform for Mean and Covariance Propagation (80) 
 

A set of points, sigma points, are chosen so the sample mean and covariance are x  and

.  The nonlinear function is applied to each point in turn to yield a new collection of 

points transformed by the nonlinear function.  The vector and matrix, 

xxP

y and , are the yyP
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mean and covariance statistics of the transformed points (66).  The method thus 

resembles a Monte-Carlo scheme.  However, in the UKF, the samples are drawn 

deterministically rather than at random (66).  Because “the problem of statistical 

convergence is not an issue here, high order information about the transformed 

distribution can be captured using only a very small number of points” (66).  

 

 The n-dimensional random variable x with mean, x , and covariance, , is 

approximated by weighted points given by (66): 

xxP

12 +n

 

 x=0χ  

 ixxi n ))(( Px κχ ++=  

 ixxni n ))(( Px κχ +−=+  

 )(0 κκ += nW         (2.259) 

 ))(2/1( κ+= nWi  

 ))(2/1( κ+=+ nW ni  

 
Here, ℜ∈κ , ixxn ))(( Pκ+ is the ith row or column of the matrix square root of 

xxP)n( κ+ , and is the weight which is associated with the ith point.  The 

transformation procedure is as follows (66): 

iW

 

1. Instantiate each point through the function to yield the set of transformed 

sigma points: 
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][ ii χγ f=         (2.260) 

2. The mean is given by the weighted average of the transformed points: 

∑
=

=
n

i
iiW

2

0
γy         (2.261) 

3. The covariance is the weighted outer product of the transformed points: 

{ }{∑
=

−−=
n

i

T
iiiyy W

2

0

yyP γγ }       (2.262) 

 The mean and covariance of x are determined by the algorithm and are precise to 

second order.  The mean and covariance of y are likewise precise to the second order 

(66).  This is notable because the mean is will be more precisely known than the mean in 

the EKF, but the covariance will be known the same as in the EKF, i.e. to second order 

(66).  “Since the distribution of x is approximated rather than f[ ], its series expansion is 

not truncated at a particular order.”  “It can be shown that the unscented algorithm is able 

to partially incorporate information from higher orders of f[ ] which allows for more 

accurate treatment of the system dynamics” (66).   

 

 The sigma points capture will capture identical mean and covariances for the 

choice of matrix square-root, therefore numerically efficient and stable methods such as 

the Cholesky decomposition can be used (66).  Because the mean and covariance are 

calculated using standard vector and matrix operations, the algorithm is suitable for any 

choice of process model.  Implementation is potentially more rapid than with the EKF 

because Jacobian matrices are not needed (66). 
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 The UKF algorithm makes use of the unscented transformation for the prediction 

steps in the Kalman Filter.  These Kalman Filter steps include prediction of the new state 

of the system, , and the associated covariance, )|1(ˆ kk +x )|1( kk +P , while accounting 

for system process noise.  Also, the KF involves prediction of the expected observation, 

, and the residual covariance, )|1(ˆ kk +z )|1( kk +ννP , which should include the effects of 

observation noise.  Lastly, the cross-correlation matrix, )|1( kkxz +P , is predicted (66).  

These steps can be accommodated by the unscented transform by restructuring the state 

vector and process and observation models.  First, the state vector is augmented with the 

process noise terms to give an dimensional vector (66): qnna +=

         (2.263) ⎥
⎦

⎤
⎢
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w
x

x

The process model is rewritten as a function of : )(kax

 ]        (2.264) ),(),([)1( kkkk a uxfx =+

The unscented transform uses  sigma points which are drawn from: 12 +an

         (2.265) ⎟⎟
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The matrices on the leading diagonal are the covariances and off-diagonal sub-blocks are 

the correlations between the state errors and the process noise.  Although this method 

requires the use of addition sigma points due to the augmented state vector, it means that 

the effects of process noise are introduced with the same order of accuracy as the 

uncertainty in the state (66).   
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 The following UKF algorithm is taken from (80).  Initialize the UKF with: 

 

        (2.267) 
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For , Calculate sigma points as in equation (2.259): { ∞∈ ,...,1k

 [ ])]1()[()1(ˆ)1(ˆ)1( −+±−−=− knkkk aaaa Pxx κχ    (2.269) 

Time update: 
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Measurement update equations: 
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          (2.277) 1−= yyxy PPK
 
       (2.278) ))(ˆ)(()(ˆ)(ˆ kkkk −− −+= yyKxx
 
        (2.279) Tkk KKPPP yy−= − )()(
 
Here, the subscripted dash, “-“, indicates a predicted quantity, , and 

 (80). 

TTTa ][ wxx =

TTTa ])()[( wx χχχ =

 
 
 
2.3.4 Backward Smoothing Extended Kalman Filter 
 
 

The Backward Smoothing Extended Kalman Filter (BSEKF) is a type of Iterated 

Extended Kalman Filter (IEKF) developed by Dr. Mark Psiaki at the Cornell University.  

Dr. Psiaki developed the filter to be used for state estimation problems in which the 

dynamic and measurement equations are highly nonlinear.  The BSEKF was developed to 

provide more reliable convergence and robustness than other types of filters such as the 

Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).  In his paper (2), 

Mark Psiaki applied the BSEKF to a “difficult spacecraft attitude estimation problem 

with sensing of fewer than three axes and dynamic model uncertainty” (2).  He was able 

to demonstrate better convergence reliability and accuracy using the BSEKF than either 

the EKF or UKF. 

 

Figure 2.10 illustrates the main features of the BSEKF estimation algorithm.  The 

BSEKF algorithm attempts to improve the approximation of both the measurement and 

dynamic equations by introducing a Gauss-Newton iteration to minimize a cost function 
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that penalizes measurement error and state estimate error.  The cost function includes 

terms for the m latest measurements and states.  In addition, the m latest estimates are 

filtered and smoothed to treat the system dynamics over that span. 

 

 

0 

N

M

Xk-m,Pk-m Xk,Pk

KK-M

X0,P0 X = Orbital State 
P = State Covariance 

time dynamic & measurement 
equations approximated 

dynamic & measurement 
equations smoothed and iterated 

Figure 2.10  Illustration of BSEKF Estimation Algorithm 
 

 The BSEKF incorporates a Gauss-Newton iteration to solve for the state vectors, 

xk, xi, and process noise vectors, wi, for i = k-m,…,k-1 which minimize the following cost 

function: 

 

           (2.280) 
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The following constraint must also be adhered to for i = k-m,…,k-1. 

),(1 iiii wxfx =+         (2.281) 
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The cost function components are the process noise vector, , the inverse process noise 

matrix, , the observation vector, , the computed observation from the observation 

equation, , and the inverse matrix of observation variance values, .    

iw

1−
iQ

h

1+iy

)( 11 ++ ii x 1
1

−
+iR

 

The quantity, , is an approximation of the 

optimal cost function, Jopt[k-m](xk-m).  This optimal cost function retains the nonlinearities 

in the latest m stages, but approximates the nonlinearities for any previous stages.  The 

quantities  and  are not the filtered a posteriori state estimate and corresponding 

error covariance matrix.  They include information from times after tk-m and are therefore 

not true filtered values, rather their purpose is to reasonably approximate Jopt[k-m](xk-m).  

The actual state and covariance are computed using linear filtering and smoothing 

techniques.  This linear filter/smoother is described in section 5.  One characteristic of the 

BSEKF is that it filters and smoothes over the last m stages, and at the latest stage k, new 

smoothed state estimates are produced for each of the last m stages.  In contrast, an EKF 

only produces an estimate for the latest stage. 

)ˆ()()ˆ(5.0 *1**
mkmkmk
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mkmk P −−
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*ˆ mk−x

 

The preceding cost function is minimized over m stages, i.e. measurements, in 

order to improve the approximations for both the measurement and dynamic equations.  

Because the measurement equation, 1111 )( ++++ += iiii νxhy , and the dynamic equation, 

, are both included in the Gauss-Newton cost minimization for not one, 

but m stages, the nonlinearities in both the measurement and dynamic equations are 

treated explicitly for those m stages.  This yields a more accurate representation of the 

),(1 iiii wxfx =+
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cost minimization problem than either the EKF or the IEKF.  The EKF implicitly uses a 

single Gauss-Newton iteration for each observation while the IEKF can use multiple 

iterations.  Neither the EKF nor IEKF capture the system dynamics over m stages as the 

BSEKF does.  In his paper, Mark Psiaki also compares the BSEKF to the Unscented 

Kalman Filter (UKF).  The UKF (81) includes second order effects for the dynamic and 

measurement equations due to its propagation of chosen sigma points through those 

dynamic and measurement equations.  Choosing appropriate sigma points can allow the 

UKF to converge more quickly and provide higher accuracy than the EKF.  Psiaki 

suggests that the BSEKF treats more than second order effects in the dynamic and 

measurement functions and can therefore outperform the UKF in terms of convergence 

reliability and estimation accuracy.  Figure 2.11 shows the performance of the BSEFK in 

comparison to the UKF and EKF for the problem of estimating moment of inertia 

parameters for attitude parameter estimation.  This comparison comes from reference (2). 

 

 

Figure 2.11  Error History of Several Filters in Estimating Moments of Inertia 
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In Figure 2.11, it is clear that the BSEKF is able to estimate moment of inertia parameters 

with higher accuracy than the EKF and the UKF with certain sigma-point tuning.  In 

another paper (82), Mark Psiaki develops and tests a filter/smoother using the unscented 

transform.  This sigma-points smoother is at best able to produce estimates that are of 

comparable accuracy to the BSEKF.  In reference (82), the BSEKF is referred to as the 

Gauss-Newton Smoother (GNS).  Because of the work done by Mark Psiaki and the 

favorable results he achieved, the BSEKF was chosen as the filter/smoother to be 

implemented for this thesis. 

 

Because of the complexities involved in computing short periodic motion and 

mean element interpolation in the DSST propagator, careful attention was paid to the 

interaction of DSST and the BSEKF algorithm.  The details of these interactions are 

discussed in chapter 5.  Also in chapter 5, the test methodology for the BSEKF will be 

described and orbit estimation test cases and results for a simulated GEO satellite and 

LEO satellite will be shown. 
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Chapter 3 Extended Semianalytic Kalman Filter (ESKF) 

Implementation in GTDS 

 

Stephen Taylor (10) designed the Extended Semianalytic Kalman Filter (ESKF) 

to couple the Extended Kalman Filter which operates on the observation time grid to the 

Draper Semianalytic Satellite Theory (DSST) which operates on an integration time grid 

using mean equinoctial element dynamics.  The idea for coupling the DSST propagator to 

the EKF was proposed in Andy Green’s thesis (35).  This coupling would take advantage 

of the efficiency of DSST from its large allowable step sizes and the near-linear time 

varying behavior of the mean equinoctial solve-for state.  For GEO satellites, the 

integration time for DSST can be large.  It is usually configured with half-day grid points.  

This large step size is attractive, but introduces the question of when the Extended 

Semianalytic Kalman Filter algorithm should update the state.  This question doesn’t 

affect Cowell or numerical orbit propagators because the step size is on the order of 

minutes.  Little time passes between receipt of an observation and the next opportunity to 

update the state at the next integration time step.  Robert Herklotz implemented a Square 

Root Information Filter (SRIF) coupled to the DSST propagator (83), but this software 

made use of the DSST Standalone software rather than the R&D GTDS software. 

 

Steve Taylor used the concept of the mean element integration grid, i.e. the time 

frame used by the integrator and the short periodic interpolators in DSST, and the 
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observation grid, i.e. the time frame defined by the observation times and thus the output 

times for the satellite state generated by the integrator. 

 

 The efficient implementation of DSST would degrade if relinearization of the 

equations of motion occurred between integration time steps.  Therefore, the nominal 

orbit state is only updated at the integration grid points.  The integrator used in DSST is 

Runge-Kutta so all integration steps are performed in the same way.  The procedures 

described below (based on reference (10)) show the previous time as t0 and the current 

time as t.  For subsequent iterations of this procedure, the previous time is tk-1 and the 

current time is tk. 

 
3.1 Operations on the Integration Grid 
 

1. At time t = t0 update the nominal state for the new integration step using the 
predicted mean equinoctial element state, )( 0tZ , and estimated filter 
correction, , from the previous step and set the initial covariance, 

. 

0
0ẐΔ

0
00 PP =

 
0
000

ˆ)()( ZtZtZ N Δ+=        (3.1) 
 

where ⎥
⎦

⎤
⎢
⎣

⎡
=

c
a

Z
~

 , a~  is the vector of mean orbital elements and c is the 

vector of dynamic solve for parameters.  The notation, , indicates the 
estimate at time tk given observations Yl.   If l<k, one can say that is a 
prediction yet to be corrected with the latest observation.  If l=k, one can 
say that is a prediction that has been corrected with the latest 
observation. 

l
kẐ

l
kẐ

l
kẐ

 
Initialize the mean element filter correction and transition matrices for 
time t = t0. 
 

0ˆ 0
0 =ΔZ         (3.2a) 
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Itt =Φ ),( 00         (3.2b) 
0),( 00 =Ψ=Ψ ttS        (3.2c) 

IttS =Φ=Φ − ),( 00
1        (3.2d) 

 

where 
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For subsequent times, , l

kẐΔ SΦ , and SΨ  will be set using the previous 
observation.  This is shown in phases 9 and 10 of the observation 
processing shown below. 
 
Compute force evaluations for the equations of motion and variational 
equations ),(),,(),,(),(~

00
1

00000 tttttttaN
−ΦΨΦ &&&& . 

 
2. Integrate the averaged mean elements until time t = t0 + Δt. 

 
Obtain ),(),,(),(~

00 tttttaN ΨΦ and invert ),( 0ttΦ to get . ),( 0
1 tt−Φ

Evaluate the corresponding rates to allow set up of the mean interpolators 
for 1,,,~ −ΦΨΦNa . 
 

3. Compute the short periodics )~(),~( NN aDaC σσ εε at time t0 and t to initialize the 
short periodic coefficient interpolators.  Cσ and Dσ are the Fourier coefficients 
in the Fourier expansion of the short periodic functions.  In DSST, the short 
periodic functions are necessary for accurate recovery of the precise 
osculating orbit at each observation time.  Fourier series expansions are used 
instead of direct integration of the osculating force model in order to avoid 
small step sizes. 

 
The operations on the observation grid are triggered by receipt of a new 

observation.  The observation grid procedure is followed in a loop-wise manner until no 

more observations are available or the next observation is later than the next integration 

time step.  In that case, the integration step procedure described above is followed to 

advance the integration by one grid point.  The observation grid procedure is as follows. 

 
3.2 Operations on the Observation Grid 

 
1. Obtain the new observations, , at time tk. )( ktY
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2. Interpolate to obtain the nominal mean elements, )(~
kN ta , the state transition 

matrix,  and the partials of the mean elements with respect to the 
dynamic parameters,

),( 0ttkΦ

),( 0ttkΨ .  Use existing from  so there is 
no need to do a matrix inversion. 

),( 0
1 ttk
−Φ SΦ

 
3. Interpolate for the short periodic coefficients and compute the short periodic 

functions.   The ε symbol formally denotes the small magnitude of these 
functions. 

 
))(~()),(~( kNkN taDtaC σσ εε       (3.3a) 
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N DCa
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σσ σλεσλεεη     (3.3b) 

 
4. Compute the transitional matrices. 

 
Skkk tttt ΦΦ=Φ − ),(),( 01       (3.4a) 

Skkkkk tttttt ΨΦ−Ψ=Ψ −− ),(),(),( 101      (3.4b) 
 

5. Obtain the estimate of the predicted mean element solve-for state vector 
corrections and the estimate of the predicted dynamic solve-for parameter 
corrections. 
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The filter correction, , is known for k=1, t0, and is known 

for subsequent k values using the filter update phase shown below. 
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6. Compute the estimate of the predicted osculating elements by summing the 

nominal mean elements known from interpolation, the estimated mean 
element corrections predicted by the state transition matrix, the small 
magnitude short periodic functions evaluated with the nominal mean 
elements, and the partials of the short periodic functions with respect to the 
nominal mean elements multiplied by the estimate of the predicted mean 
element corrections. 

 
1

1
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Transform the estimated osculating elements to cartesian elements 
))(ˆ(ˆ taXX = kk        (3.7) 

   
7. Compute the estimate of the predicted observation. 

 
),ˆ(ˆ

kkk tXhY =         (3.8) 
 
where h(X,t) is the deterministic model for transforming the state, X, into 
an observation. 
 
Compute the observation residual. 
 

kkk YYy ˆ−=         (3.9) 
 
Compute the observation partial derivatives.  Hk is computed through a 
linearization of the observation model about the nominal trajectory. 
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8. Compute the predicted covariance. 
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9. Complete the update phase of the filter. 

 
Calculate the gain:  [ ] 111 −−− += RHPHHPK T

k
k

kkk
k

kk    (3.14) 
where R is the diagonal matrix of a-priori known observation variances. 
 
Update the state estimate correction:    (3.15) kk

k
k

k
k yKZZ +Δ=Δ −1ˆˆ

 
Update the covariance:     (3.16) 1)( −−= k

kkk
k

k PHKIP
 

10. Interpolate for the transition matrix and its inverse and save for the next 
observation. 
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),( 0
1 ttkS
−Φ=Φ        (3.17) 

),( 0ttkS Ψ=Ψ        (3.18) 
 
 The ESKF continues with step 1 until all observations have been processed or the 

next integration time is encountered.  At the time of the next integration step, the 

operations on the integration time grid as outlined above are followed.  Often, 

observations recorded at the same time can be processed without execution of all of the 

above phases.  In those cases, only steps 1, 6, 7, and 9 must be executed for the 

subsequent observations at that time.   

 

The Extended Kalman Filter (EKF) algorithm and the Extended Semianalytic 

Kalman Filter (ESKF) algorithms are very similar.  However, the ESKF algorithm 

contains additional logic to handle the complexity in propagating the mean elements 

efficiently.  The EKF assumes propagation of the state is simply done through integration 

of the equations of motion and through the variations of the orbital parameters.  For non-

linear systems, this requires short step sizes.  The ESKF instead relies on the pre-

computed mean elements and pre-computed short periodic functions computed for times 

both before and after the current observation time.  The ESKF can then interpolate both 

the near-linear mean elements and the short periodic Fourier coefficients to accurately 

evaluate the orbit prediction at the observation time.  This interpolation depends on the 

Fourier coefficients having smooth variations over time.  Andy Green demonstrated this 

property in his thesis (35).  The interpolation is much more efficient than the evaluation 

of the orbital elements at frequent integration steps.  It should be noted that Leo Early 

developed many of the interpolation schemes used in GTDS using three point Hermite 

interpolators for the mean elements and state transition matrices and four point Lagrange 
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interpolators for the short periodic Fourier coefficients.  The Extended Semianalytic 

Kalman Filter (ESKF) is similar to the Extended Kalman Filter algorithm described 

above except for accommodations for DSST which are computation of short periodic 

functions and osculating equinoctial elements, computation of the osculating position and 

velocity vector and finally, computation of the resulting observations.   
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Chapter 4 Backward Smoothing Extended Semianalytical 

Kalman Filter (BSESKF) Design 

 
 
The BSESKF as it was applied for this effort closely follows the BSEKF 

algorithm described in detail in (2).  The algorithm solves for a state vector, , along 

with intermediate state vectors and process noise vectors,  and , for i=k-m,…,k-1.  

The state vector and process noise solutions are chosen so they minimize the cost 

function given by equation (2.280), and the state vectors and process noise vectors are 

related to each other by the constraint given by equation (2.281).  As indicated by 

equations (2.280) and (2.281), the cost calculation and the constraint equation are valid 

for the latest m stages previous to the latest stage, k.  For stages before k-m, the equation 

(2.280) cost is supplemented with the term, .  This 

term approximately accounts for the cost of all stages previous to k-m.  The nonlinearities 

in the dynamic equations and measurement equations over the latest m stages are treated 

through the use of the summed part of equation (2.280) and the constraint defined by 

equation (2.281).  Because an important feature of the BSEKF is the filter/smoother that 

operates over the latest m stages, choosing a value of m that could improve the 

convergence reliability and accuracy over other nonlinear filters is desirable.  However, 

because of the significant computations required for the BSEKF, it is also desirable to 

choose a value of m that provides the benefits of the BSEKF, but does not include more 

stages than necessary.  To minimize the cost function defined in equation (2.280), a 
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guarded Gauss-Newton iteration in an outer loop is combined with an execution of a 

square-root information filter (SRIF) and smoother. 

 

In the context of orbit determination, the state vector, x , is typically a vector 

containing the position and velocity of a satellite in an earth-centered, inertial coordinate 

system, { , or the set of equinoctial elements }zyxzyx &&& ,,,,, { }λ,,,, qpa , kh .  These two 

choices of orbital elements are among the most common.  This thesis focuses on 

equinoctial elements.  These elements are defined in terms of the classical Keplerian 

elements,{ }Miea ,,,,, ωΩ , as follows [ (11), pp. 490-492]: 
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       (4.1) 

 

These elements avoid singularities at zero eccentricity and zero inclination.  

Geostationary satellites typically have small eccentricity and inclination and so these 

elements are well suited. 

 

 The observations typically used for orbit estimation of satellites for space 

surveillance consist of radar observations and angular optical observations.  The radar 

observations are typically provided as True Equator, True Equinox of Date (TETE) 
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topocentric azimuth, elevation, range, and range-rate measurements of a satellite from a 

given radar location.  The optical observations are often True Equator Mean Equinox of 

Date (TEME) right ascension, declination observations measured against the star 

background.   

 

 The orbit estimation software system used in this study is the R&D Goddard 

Trajectory Determination System (GTDS).  This system includes several orbit integration 

methods, e.g. Cowell, Draper Semianalytic Satellite Theory (DSST), PPT2, SGP4, and 

several others.  The orbit integration method of focus in this thesis is the DSST method.  

This method integrates in mean equinoctial elements and only computes short-period 

deviations from the mean elements as necessary (15), i.e. at observation times when using 

DSST with an orbit estimation program.  Previously, the GTDS system was modified to 

include the Extended Semianalytic Kalman Filter (ESKF) by Stephen Taylor (10).  Elaine 

Wagner (84) later used the ESKF with GEO satellites.  In order to preserve the efficiency 

of DSST when used with an Extended Kalman Filter, Stephen Taylor introduced several 

grids to differentiate the observation times from the integration time steps.  Because of 

the long integration time steps, i.e. on the order of half a day, allowed in DSST, and the 

possibility for observations to arrive at any time, interpolators were implemented to 

provide accurate and efficient orbital state and state transition matrices between 

integrator time steps.  Also, in DSST, short periodic motion, i.e. oscillations on the order 

of one orbital revolution, is reproduced using Fourier series.  The Fourier coefficients for 

the short period Fourier series are interpolated between integration time steps also.  To 

efficiently accomplish the state estimate update that is done by the Kalman Filter at 
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observation times, the averaged orbit was designed to be updated only at integration time 

steps.  It is computationally expensive to update the averaged orbital state and its 

dependent short period Fourier coefficients, state, and transition matrix interpolators at 

each observation time.  In fact, requiring updates to the averaged orbital state, 

recalculation of Fourier coefficients, and re-initialization of state and transition matrix 

interpolators at each observation time would defeat the purpose of allowing long 

integration step sizes in DSST.  Accuracy between integrator time steps is maintained by 

storing the averaged orbit as a “nominal” trajectory and also storing a running sum of 

updates to that nominal trajectory.  Both the running sum of updates and the nominal 

trajectory are used to calculate the state prediction.  The state prediction is in turn used to 

calculate the predicted measurement, .  The running sum of updates can be 

modified by the Kalman Filter, and the orbit state prediction in the Kalman Filter 

accounts for the previous state updates by using the existing state and state transition 

matrix interpolators.   

)( 11 ++ ii xh

 

 The implementation of the BSEKF within the GTDS software framework, i.e. the 

Backward Smoothing Extended Semianalytic Kalman Filter (BSESKF), uses the DSST 

propagator to provide state dynamics and also retains much of the efficiency achieved by 

the ESKF.   The separated grids, short period Fourier series, and interpolation schemes 

were reused for the BSESKF.  Nevertheless, the most challenging aspect of the 

implementation was carefully coupling the BSESKF estimator to the system dynamics 

computed by DSST.  The following section explicitly describes the BSESKF algorithm 

implemented in GTDS. 
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4.1 Detailed BSESKF Algorithm Description 

 

4.1.1 Operations on the Observation Grid 

 

 For the following algorithm is adapted from Mark Psiaki’s BSEKF algorithm and 

uses a Square Root Information Filter (SRIF) from Bierman [ (79), pp. 69-76, 115-122, 

and 214-217].  The following notation is used: refers to a vector a at time point c for 

iteration b.  All time points are referenced from the current time, k.  Often, the time points 

are incremented from k-m to k-1 meaning that m time points are incremented.  The 

collection of m previous states, observations, covariance square roots, and process noise 

vectors is referred to in the algorithm as the m-buffer. 

b
ca

 
1) Set m=0, k=1, j=0, and assign the initial guesses for the state and process 

noise, i.e. , and .  The initial state guess is the set of 
orbital elements such that

j
mk−x j

k
j

mk
j

mk 11,...,, −+−− www
,,,,{ },λqpkha=x

]][[ 1 T
xxxx RR −−=

.  The initial guesses for are 
typically zero.  Set the initial covariance, P0, and factor it using Choleski 
decomposition: .  Rxx is the square root information matrix 
associated with the state, x, and will be used later in the SRIF.  Choose a value 
for mtarget. 

w

0P

2) Begin the observation loop.  The counter, k, is used to identify each 
observation. 

3) If mtarget observations have been processed, i.e. k≥ mtarget, the m-buffer has 
been filled and values will be replaced rather than appended.  Perform the 
following assignments: 

1+−− Δ=Δ mkmk zz  
1+−− = mkmk xx  

)1()( +−− = mkxxmkxx RR  
0,,, 1121 === −−−+−− kkkmkmk wwwww K  
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4) If mtarget observations have not yet been processed, then the m-buffer is still 

being filled, there is no need to perform the assignments in step 3).  Instead: 
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5) Compute the covariance inverse, , This is the covariance used in the 
approximation for the cost for all stages before k-m. 

1−
−

*
mkP

6) Retrieve observations, , compute and store the residuals,
 for i=k-m+1…k.  Also, determine and store the 

measurement square root information matrix, . 

1+iy

)( 1111 ++++ −= iiii xhyν

iR
7) Compute and store the observation partial derivative matrix, iiiH xh ∂∂= .  

is an nx1 vector where n is the dimension of the state vector. 
iH

8) Starting from our state guess, , compute all subsequent state guesses from 
i=k-m+1… k-1 using the system dynamics,

j
mk−x

),(1 iiii wxfx =+ .  Also compute 
and store the variational partial derivative matrix, iii f x∂∂=Φ for i=k-m…k-
1.  is a nxn matrix where n is the dimension of the state vector.  Determine 
the process noise transition matrix,

iΦ

iΓ .  In this application, it is assumed Ii =Γ

(identity).  DSST computes the state transition matrix at each integration step 
and then uses interpolation to compute the matrix at intermediate observation 
times.  Because the BSEKF examines observations in the past, this 
interpolation scheme becomes inaccurate when applied to observations more 
than about three integration steps previous to the current integrator step time.  
This interpolation limits the value of m that can be reasonably used.  See 
section 4.1.2 for details about the computation of the state transition matrix 
during the integration procedure. 

9) Begin the Square Root Information Filter (SRIF) and Smoother.  This method 
is taken from Bierman [ (79), pp. 69-76, 115-122, and 214-217].  Start with 
i=k-m and assign 

]ˆ[)()(
j

mk
*

mkmkxxix R −−− −=Δ xxz . 
10) Obtain the process noise matrix, , the measurement noise matrix, , and 

factor them to obtain the and matrices such that: 
iQ iR
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11) Perform the following QR factorization: 
The resulting  is an orthonormal matrix of dimension 2n+l by 2n+l 
where n is the dimensionality of the state and l is the dimensionality of the 
observation vector.  In the current application we have scalar observations 
and our state is of dimension 6, therefore l=1 and n=6. 

iT

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΦΓΦ−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

−−
+

1)1(

1
)(

1
)(

)(

)1(

)()(

0

0

00
0

iivv

iixxiiixx

iww

ixx

iwxiww

i

HR
RR

R
R
RR

T  

 
)(iwwR  and  are square, nonsingular, upper-triangular matrices.  

Store all left hand terms. 
)1( +ixxR
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12) Compute the vectors )(iwzΔ , )1( +Δ ixz , and )(irzΔ  by performing the following 
matrix multiplication: 
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13) If i=k-1, go to step 14, otherwise, set i=i+1 and go to step 10. 
14) Compute  and set i=k-1. )(

1
)( kxkxxk R zx Δ=Δ −

15) Compute ][ 1)()(
1

)( +
− Δ−Δ=Δ iiwxiwiwwi RR xzw . 

16) Compute . ][ 1
1

iiiii wxx ΔΓ−ΔΦ=Δ +
−

17) If i-k-m, go to step 18, otherwise set i=i-1 and go to step 15. 
18) We are now finished with the SRIF portion, now begin the Gauss-Newton 

iteration to search for the minimum arguments of the cost function in equation 
(2.280).  Set the initial trial search step size: 1=γ . 

19) Compute the candidate next guess of the smoothed solution by computing the 
state and process noise vectors with the addition of the corrections obtained in 
the SRIF in steps 14-16. 
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20) Compute the cost, , by evaluating equation (2.280).  This implies that the 
functions, , are recomputed also. 

1+jJ
)1+(1+ ii xh

21) If , then activate the guarding procedure by setting jj JJ ≥+1 γγ 5.0= and go to 
step 19.  Otherwise, go to step 22. 

22) Compute the linearized prediction of the cost and determine whether 
convergence has been reached: 
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If  whereε≤−+ j
newapprox

j
newapprox JJ 1 ε  is sufficiently small, then we have 

converged to the local cost minimum.  If this is true or if j has gotten too 
large, then assign our state estimate for time k:  obtained in step 
19.  Then go to step 3 to process the next observation and set k=k+1.  If 
we have not converged and j is not yet too large, set j=j+1 and go to step 
6. 
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4.1.2 Operations on the Integration Grid 
 
 
 

There are several special modifications that were made to the GTDS and DSST 

software in order to efficiently and accurately estimate the orbital state.  The ESKF code 

written by Stephen Taylor was never designed to compute states and transition matrices 

for past time points.  Recalculating past states in order to recalculate predicted 

observations and residuals is needed in step 6 of the BSEKF algorithm.  Calculating 

states at past observation times involved using short periodic interpolation coefficients 

calculated at the most recent integration step time.  Modifying the GTDS software to 

recalculate short periodic coefficients and re-initializing interpolators for past observation 

times would introduce significant additional complexity in the DSST-BSESKF interface.  

It was decided that for this investigation, using the current integration step short periodic 

coefficients and interpolators for past observations would suffice.  It may be the case that 

this shortcut inhibits the accuracy of the BSESKF.  A similar issue complicates the 

recalculation of the mean element state transition matrices.  One performance 

enhancement made by Stephen Taylor in writing the ESKF was to avoid recalculating the 

state transition matrix for times at which it had already been computed.  This 

enhancement eliminated recalculation when several observations were tagged with the 

same observation time.  This performance enhancement did not reduce the accuracy of 

the ESKF because it did not consider recalculation of state transition matrices for past 

observation times as the BSESKF does.  As shown in the BSEKF algorithm sequence 

described above, the state transition matrix must be recalculated and stored anew for each 

iteration even if the state transition matrix was already calculated for a given past 
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observation time.  Therefore, the interface between the BSEKF and DSST was modified 

to recalculate the mean element interpolator coefficients as necessary to calculate the 

state transition matrices at the necessary past and present observation times.  The state 

transition matrix calculation relies on mean element interpolation schemes similar to the 

short periodic coefficient interpolation used for calculating the osculating orbital 

elements.  These mean element interpolators are calculated and are therefore most 

accurate for the time span between the two latest integration steps.  Because of this and 

the complexity needed to recalculate past mean element interpolators, it was decided that 

the current version of the software should shorten the length of the m-buffer, i.e. reduce 

mtarget, when observations are too far in the past to compute accurate state and transition 

matrices for them.  The other approach involving recalculation of the mean element 

interpolators would allow a constant length m-buffer for relatively large values of mtarget, 

but would necessitate much higher software complexity.  By running several test cases, it 

became apparent that the mean element interpolators are accurate enough to allow the 

interpolators to be used for observations as long as they are not too far in the past.  For 

the cases examined for this thesis, three integration steps, each on the order of 0.5 days, 

were found to be a reasonable number of time steps during which past observations could 

be allowed in the m-buffer. 

 

The following section (again based on (10)) outlines the steps taken on the 

integration grid time scale in the BSESKF software. 

 

1. At time t = t0 update the nominal state for the new integration step using the 
predicted mean equinoctial element state, )( 0tZ , and estimated filter 
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correction, , from the previous step and set the initial covariance, 
. 
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 , a~  is the vector of mean orbital elements and c is the 

vector of dynamic solve for parameters.  The notation, , indicates the 
estimate at time tk given observations Yl.   If l<k, one can say that is a 
prediction yet to be corrected with the latest observation.  If l=k, one can 
say that is a prediction that has been corrected with the latest 
observation. 
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Initialize the mean element filter correction and transition matrices for 
time t = t0. 
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For subsequent times, , l

kẐΔ SΦ , and SΨ  will be set using the previous 
observation.   
 
Compute force evaluations for the equations of motion and variational 
equations ),(),,(),,(),(~

00
1

00000 tttttttaN
−ΦΨΦ &&&& . 

 
2. Integrate the averaged mean elements until time t = t0 + Δt. 

 
Obtain ),(),,(),(~

00 tttttaN ΨΦ and invert ),( 0ttΦ to get . ),( 0
1 tt−Φ

Evaluate the corresponding rates to allow set up of the mean interpolators 
for 1,,,~ −ΦΨΦNa . 
 

3. Compute the short periodics )~(),~( NN aDaC σσ εε at time t0 and t to initialize the 
short periodic coefficient interpolators.  Cσ and Dσ are the Fourier coefficients 
in the Fourier expansion of the short periodic functions.  In DSST, the short 
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periodic functions necessary for accurate recovery of the precise osculating 
orbit at each observation time are represented as a Fourier series.  Fourier 
series expansions are used instead of direct integration of the osculating force 
model in order to avoid small step sizes. 

 
 

 

4.2 Incorporation of the BSESKF Software into GTDS 

 

 The method of application of the BSEKF to the orbit estimation problem was to 

modify the R&D Goddard Trajectory Determination System (GTDS) to include the 

BSESKF as a subprogram.  This approach saved time and effort by making use of 

GTDS’s high precision orbital dynamic propagators, measurement processing, and 

overall software system infrastructure.  GTDS includes a special perturbations (Cowell) 

propagator and also the Draper Semianalytic Satellite Theory (DSST).  Both can be used 

to replicate the satellite orbital system dynamics; however, the DSST propagator was 

used in this estimation improvement investigation.  Once the BSESKF was implemented 

and initially tested within the GTDS framework, comparisons of the GTDS BSESKF 

performance could be made with the existing GTDS ESKF subprogram.  Within the 

common GTDS framework, the ESKF and BSESKF could be subject to the same initial 

conditions, measurements, process noise, and system dynamics. 

 

 Figure 4.1 shows the hierarchy of GTDS subprograms with the BSEKF included 

as one of these.  The BSEKF was intended to be used with both Cowell and DSST 

propagators.  When implemented in the software, it is referred to as BSEKF when 

referring to the subprogram and estimation software itself, as BSESKF when used with 
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the DSST propagator, and Cowell BSEKF when used with the Cowell propagator.  This 

is similar to the existing usage of EKF when referring to the general GTDS software and 

to ESKF when referring to the EKF when used with DSST. 

GTDS

EPHEM DATASIM DC EKF BSEKF  

 

Figure 4.1  GTDS Subprogram Hierarchy 
 

 The other subprograms in Figure 4.1 include EPHEM which generates an 

ephemeris for a satellite with a given initial state.  EPHEM can execute several 

propagators including the Cowell and DSST methods.  DATASIM is a subprogram that 

reads input from a previous Cowell EPHEM execution and produces simulated 

observations for a list of user-defined radar and optical sensors.  The DC subprogram 

reads a prior state and covariance.  It then reads real or simulated observations and finds 

the posterior Linear Least Squares (LLS) estimate of the state given the observations.  

Assuming Gaussian observation noise and linear system dynamics and measurement 

functions, this also corresponds to a posterior Bayes’ Least Squares (BLS) estimate.  The 

EKF subprogram also reads a prior state, covariance, and observations and produces 

sequential (LLS) estimates of the posterior state at each observation time given the 

observations up to the current time.  Both the DC and EKF linearize the system dynamics 

and the measurement equations.  The BSEKF subprogram was designed to accept the 

same inputs as the EKF and present similar output to the user.  Once executed, the 

BSEKF follows an independent program flow from the EKF and DC subprograms.  
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Certain aspects are reused, such as system dynamic function and measurement function 

evaluations. 

 
4.2.1 GTDS Modification Summary 
 
  

The BSEKF subprogram within GTDS includes many new subroutines and also 

reuses several subroutines from the Kalman Filter (KF) GTDS subprogram.  The program 

flow for the BSEKF subprogram is shown in Figure 4.2. 
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Figure 4.2 BSEKF Subprogram Subroutine Flow 
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4.2.2 New Subroutines 
 
 

There were several subroutines added to the GTDS source code tree to implement 

the BSEKF subprogram.  These subroutines are new to GTDS. 

 

BSEKF is the driver for the BSEKF subprogram.  It is called by the GTDS driver 

subroutine, ODSEXEC.  This subroutine implements the algorithm from Mark Psiaki's 

paper, "Backward Smoothing Extended Kalman Filter."  This subroutine calls many new 

subroutines and several subroutines that already existed as part of the KF subprogram.   

 

BSEKFIFACT computes and returns an inverse Cholesky factorization of an 

input matrix.  This factorization is important for the square root information 

filter/smoother used within the BSEKF.  This subroutine uses the LAPACK subroutines 

DTPTRI and DPPTRF to perform the Cholesky factorization. 

 

BSEKFNEXTSMTH computes the state vector and covariance matrix used to 

initialize the BSEKF algorithm when a new observation is about to be processed.  The 

state vector and covariance matrix are computed recursively using the results from the 

last observation. 

 

BSEKFEVAL predicts the state and state transition matrix at the requested 

observation time.  Also, the observation and residual are stored in the necessary buffers.   
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BSEKFCOST computes the scalar cost given the process noise vectors, the 

residuals and the predicted state and covariance. 

 

BSEKFDELZX computes a necessary information vector used in the square root 

information filter/smoother. 

 

BSEKFCOLQR collects necessary matrices and assembles them into the block 

matrix used in a later QR factorization. 

 

BSEKFQR calls the DGEQRF and DORGQR LAPACK subroutines to perform 

the QR factorization and to assemble the results required in this implementation of the 

square root information filter/smoother. 

 

BSEKFREXT extracts matrices from the block matrix result of a QR 

factorization. 

 

BSEKFCOLDELZ computes needed vectors using the result of a QR 

factorization. 

 

BSEKFDELXK computes the kth state vector change in the smoothing part of the 

square root information filter/smoother. 
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BSEKFDELW computes the process noise vector change in the smoothing part of 

the square root information filter/smoother. 

 

BSEKFDELX computes the ith state vector change in the smoothing part of the 

square root information filter/smoother. 

 

BSEKFSVSTM computes and saves the inverse state transition matrix for a given 

time into a buffer so that it can be used in later computations involving the state transition 

matrix. 

 

A few of the subroutines listed above made use of subroutines from the LAPACK 

linear algebra library package.  This package can be accessed from the netlib website at, 

http://www.netlib.org/lapack/.  This package was chosen because it is well known as a 

reliable FORTRAN linear algebra package.  The subroutines from this package that were 

used include the following. 

 

DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R. 

 

DORGQR generates an M-by-N real matrix Q with orthonormal columns, which 

is defined as the first N columns of a product of K elementary reflectors of order M, Q  =  

H(1) H(2) . . . H(k), as returned by DGEQRF. 
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DTPTRI computes the inverse of a real upper or lower triangular matrix A stored 

in packed format.  

DPPTRF computes the Cholesky factorization of a real symmetric positive 

definite matrix A stored in packed format.  The factorization has the form: A = UT * U,  if 

UPLO = 'U', or A = L  * LT,  if UPLO = 'L', where U is an upper triangular matrix and L 

is lower triangular. 

 

4.2.3 Modified Subroutines 
 
 

Several source code files were changed to add the BSEKF subprogram to GTDS.  

The following files were modified. 

 

ODSEXEC is the executable subroutine for GTDS.  It is the first subroutine called 

upon execution of GTDS.  Comments and code were changed to add the BSEKF 

subprogram to GTDS.  The variable INDRUN is set to 9 for the BSEKF subprogram after 

the SETRUN subroutine finishes and ODSEXEC then calls the BSEKF subroutine. 

 

LNDMRK computes landmark observables for a spinning satellite.  BSEKF was 

included as an estimator along with the existing KF and DC subprograms.  The variable 

IND48 is equal to 9 for the BSEKF. 

 

GVCVL generates the title array for solve-for and consider parameters.  The case 

when INDRUN equals 9 for the BSEKF subprogram is included as an estimator.  The 
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same steps that are taken for the KF and DC subprograms are now also taken for the 

BSEKF subprogram. 

 

SORREG sorts the regression arrays for the differential correction and filter 

subprograms.  The regression arrays are the arrays storing the partial derivatives of the 

observation equation with respect to the state variables at a given observation time.  Here 

also, the case when INDRUN equals 9 for the BSEKF subprogram is handled in the same 

way as for the KF and DC estimators.  Here, the number of solve for parameters is 

incremented only when running the DC.  The KF and BSEKF are handled separately. 

 

SNGSTP is a subroutine to initialize necessary arrays for the single step 

integration of the VOP equations.  When INDRUN is equal to 9 for the BSEKF, the same 

step to update the state update flag that is taken for the KF is now also taken for the 

BSEKF subprogram. 

 

SETRUN is an initialization subroutine that reads the GTDS keyword cards for 

each run.  Here, INDRUN is set to 9 for the BSEKF subprogram.  Modifications to 

include the BSEKF subprogram as a valid subprogram were made.  This includes 

allowing the ELEMENT1 - ELEMENT7, OBSINPUT, ORBTYPE, BSEKFOPT, and 

EPOCH cards, making settings for epoch advancement, creating observation working 

files, and running the SETBSEKF subroutine.  Also, comments where changed to show 

the BSEKF modifications and certain variables were set to be initialized.  The BSEKF 
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text string was added to the PROGRM array, and the BSEKFOPT string was added to the 

TRMCRD array to allow it as a valid keyword. 

 

RKINTG integrates the equations of motion and the variational equations using a 

Runge-Kutta method.  This subroutine was modified so that the same processing done for 

the KF subprogram is also done for the BSEKF subprogram.  Specifically, this includes 

interpolating for the inverse of the state transition matrix. 

 

RESINV initializes parameters needed to start another integration span beginning 

at the epoch time.  This is in conjunction with the VOP orbit integrators, namely, the 

subroutines RKINTG and ORBITV.  Here, modifications were made to treat the BSEKF 

subprogram in the same way the KF is treated. 

 

POSRES computes position residuals given actual and computed observations 

and accumulates position residual statistics.  Modifications were made to accumulate 

statistics for the BSEKF in the same way they are accumulated for the KF. 

 

ORBITV is one of the subroutines called by the main ORBIT subroutine which 

drives the GTDS orbit generators.  ORBITV drives the orbit generation for the Draper 

Semianalytic Satellite Theory (DSST) averaged VOP equations of motion.  Specifically, 

ORBITV integrates the equations of motion to obtain position and velocity of the satellite 

at a requested time.  This subroutine was modified so that the BSEKF is treated like the 

KF subprogram in calling the SKFUDT and ORBSKF subroutines. 
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ORBSKF performs computations for the Semianalytic Kalman Filter.  This 

includes predicting the state correction and calling SKFPRT to compute the state 

transition matrix.  ORBSKF was modified to call SKFPRT regardless of whether it was 

previously called for the given observation time.  One performance enhancement added 

to the Extended Semianalytic Kalman Filter (ESKF) by Stephen Taylor was to only call 

the SKFPRT subroutine when a new time point is encountered.  Because of the necessity 

of recalculating the state transition matrix in the BSEKF for past observation times, this 

performance enhancement is bypassed for the BSESKF.   

 

SKFPRT computes the partial derivative (state transition) matrices via short arc 

interpolation and the averaged interpolator.  This interpolation improves the performance 

over methods that involve recomputing the partical derivatives explicitly.  A modification 

to this subroutine was made so that the state transition matrix is computed by 

interpolation regardless of whether the time requested is earlier than the last time 

requested.  This ensures that the state transition matrix supplied to the BSESKF is as 

accurate as possible with current software.  This subroutine should be changed in the 

future to avoid interpolation for request times that are outside the valid interpolation 

range.  The interpolation range includes times between the last integration time step and 

the current integration time step.   

 

OBSTRK computes estimated observations for the differential correction (DC), 

data simulation (DATASIM), Kalman Filter (KF) and now Backward Smoothing 
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Extended Kalman Filter (BSEKF) subprograms.  This subroutine was modified to treat 

the BSEKF subprogram in the same way the KF subprogram is treated. 

 

OBSPRT retrieves the partial derivatives of the observation equations with 

respect the the state at the given time by calling the OBSP subroutine.  This subroutine 

was modified so the BSEKF subprogram is treated like the KF subprogram. 

 

OBSPCE computes position and velocity observations.  This subroutine was 

modified to treat the BSEKF like the KF. 

 

OBSPCE_ELSET computes single-averaged equinoctial element observables.  

This subroutine was modified to treat the BSEKF like the KF. 

 

INTPPT initializes parameters required for the NAVSPASUR General 

Perturbation Theory.  This subroutine was modified to treat the BSEKF like the KF and 

DC subprograms. 

 

INTOGS initializes parameters for the NORAD General Perturbation Theories.  

This subroutine was modified to treat the BSEKF like the KF subprogram. 

 

INTOGN initializes parameters for the orbit generator program (EPHEM) which 

are directly derivable from input, permanent files, or block data and which are not 
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changed after a DC iteration.  Here, the BSEKF is treated like the DC and KF 

subprograms. 

 

WFCONT creates the working files using input from permanent files and user-

supplied input files.  This subroutine was modified to treat the BSEKF in the same way 

the KF and DC subprograms are treated. 

 

SETDC processes keywords that are input as part of a DC run.  However, some 

parameters are also input for the KF and new BSEKF subprogram.  Here, the BSEKF 

subprogram is treated in the same way as the KF subprogram. 

 

PSET resets dynamic solve-for parameters and tracking station positions adjusted 

by the DC and KF subprograms.  This subroutine was modified to treat the BSEKF in the 

same way as the KF subprogram. 

 

OUTPUT is a driver for several output subroutines.  Here the BSEKF subprogram 

is now treated in the same way as the KF. 

 

OBSLMK computes landmark observations and was modified to treat the BSEKF 

subprogram in the same way as the KF. 

 

OBGPS1 computes GPS pseudo-range and delta-range observations.  It was 

modified to treat the BSEKF the same as the KF. 
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LNDPRT computes observation partial derivatives for landmark observations.  It 

was modified to treat the BSEKF in the same way as the KF. 

 

GPSSEE checks the visibility of a satellite from a GPS satellite.  It was modified 

to treat the BSEKF in the same way as the KF. 

 

GPSPR2 computes observation partial derivatives for GPS observations.  It was 

modified to treat the BSEKF in the same way as the KF. 

 

GPSPR1 also computes observation partial derivatives for GPS observations.  It 

was modified to treat the BSEKF in the same way as the KF. 

 

ESKFOUT prints out run-time status of the KF and its options.  It was modified to 

treat the BSEKF in the same way as the KF. 

 

SWITCHBD is a block-data initialization subroutine.  Its comments were changed 

to reflect the addition of the BSEKF subprogram. 

 

OUTTIC computes trajectory initial conditions and prints them.  It was modified 

to also make these computations and print them for the BSEKF. 
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4.3 Test Methodology 
 
 
 The test methodology involved writing software to run both the GTDS BSESKF 

and the GTDS ESKF programs on the same input.  The input included initial states which 

could be perturbed somewhat from truth in order to test filter convergence.  The input 

also included an initial covariance matrix reflecting the variance of the initial state values.  

Other input information included a white process noise matrix and simulated 

observations with added Gaussian noise.  The initial state was passed to a GTDS 

ephemeris generator run.  This ephemeris generator created an ephemeris which was 

passed to a GTDS data simulation run.  The data simulation created simulated 

observations.  The observations consisted of range, azimuth and elevation observations 

from the following geodetic sensor locations shown in Table 4.1. 

 
Table 4.1 Simulated Observation Sensor Locations 

Name Latitude East Longitude 
MIL 42○ 37’ 2’’ 288○ 30’ 32’’ 
HAY 42○ 37’ 23’’ 288○ 30’ 42’’ 
ATV 9○ 23’ 43’’ 167○ 28’ 45’’ 
KPT 21○ 34’ 19’’ 201○ 44’ 00’’ 
 
The actual observation timing varies by test case and is described later in the test case 

descriptions.   

 

Once the observations were generated, they were passed to the BSESKF and 

ESKF filter programs.  The filter programs were set to accept all observations, i.e. no 

outlier rejection occurred.  The initial state given to the filter programs could be 

perturbed from the initial, “truth,” state used to generate the ephemeris and the 

subsequent simulated observations.  This perturbation was included to test the relative 
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response of the filters to an initial estimate with some amount of error.  The initial 

covariance matrix given to the BSESKF and ESKF filters was also an input.  This initial 

covariance could be set to anything, but for the test cases in this thesis, the initial 

covariance matrix was a diagonal matrix in which the diagonal terms were set 

approximately to the square of the difference of the perturbed elements from the initial 

“truth” elements.  This matrix was nxn where n is the number of solve-for parameters.  In 

the cases done for this thesis, n=6 for the 6 orbital parameters or n=7 if a drag or solar 

radiation pressure parameter was also included.  The initial process noise matrix is also 

an input to both the BSESKF and ESKF filters.  This process noise matrix was a diagonal 

noise matrix for the test cases in this thesis and was the same dimension as the initial 

covariance matrix.  The input process noise matrix was constant for all test cases with 

diagonal elements, [1.0x10-18, 1.0x10-25, 1.0x10-26, 1.0x10-24, 1.0x10-19, 1.0x10-17].  These 

6 diagonal elements correspond to the 6 mean equinoctial orbital element state 

parameters, i.e. { }λ,,,,, qpkha .  If the coefficient of drag was estimated as a solve-for 

parameter, the process noise diagonal element associated with it was 1.0x10-18.  The 

BSESKF and ESKF sometimes reacted differently to the process noise values.  Many 

process noise matrices were attempted with some causing either the BSESKF or the 

ESKF to diverge.  These process noise values allowed both filters to converge for a large 

number of test cases.  The BSESKF program also required an input to specify the 

maximum size of the m-buffer.  In the evaluations for this thesis, m was typically set to 

12, 24 or 48 measurements or 4, 8 or 16 observation triplets, respectively. 
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Once the input values were passed to the BSESKF and ESKF filters, they were 

executed and the output from each filter was automatically collected.  The output 

consisted of measurement residuals, updated orbital elements and other solve-for 

parameters, and updated covariance matrices.  For this thesis, the initial primary interest 

was in the accuracy of the filters.  To quantify the accuracy of each filter, the output 

orbital elements were compared with the orbital elements from the “truth” ephemeris.  

Because the truth ephemeris was generated using a Cowell ephemeris generation, a direct 

comparison of the truth and filter output required that the truth ephemeris be transformed 

to the coordinate system of the orbital elements used in the filter programs.  To do this, 

the truth ephemeris was fit using iterative, nonlinear Bayes’ Least Squares (BLS), i.e. 

differential correction (DC). The DSST propagator was used with the DC to estimate the 

best mean equinoctial element ephemeris representative of the truth ephemeris yet 

compatible with the filter solve-for state.  Because the BLS fit had full observability of 

the position and velocity with many data points, it was able to reproduce the original 

ephemeris to a very high degree of accuracy.  This procedure is sometimes called Precise 

Conversion of Elements (PCE) (26). In order to quantify the accuracy of the BSESKF 

and ESKF relative to the truth orbital elements, plots of the output vs. time were 

generated.  In this way, comparison of the truth ephemeris and the filter output state was 

accomplished by plotting the filter results against the truth ephemeris.  Difference plots 

were also generated because the mean elements change over time and in some cases, the 

orbital element differences between the ESKF, truth, and the BSESKF were small 

relative to the magnitude of the orbital element in question.   

 
 

179 



4.4 Simulation Test Case Results 
 
 
 The test cases included LEO satellite test cases and GEO test cases.  The initial 

Keplerian orbital elements for the LEO and GEO orbits are shown in Table 4.2. 

 

Table 4.2  LEO and GEO Mean Orbital Elements for Test Cases 
 LEO Elements GEO Elements 
Epoch Jan 18, 2003 00:00:00 Mar 20, 2004 00:00:00 
Semimajor axis (km) 6643 42165.56 
Eccentricity 8.9x10-2 3.062x10-2 

Inclination (deg) 38 6.024 
RAAN (deg) 214 71.373 
Arg of Perigee (deg) 344 307.091 
Mean Anomaly (deg) 74 118.653 
Drag Coefficient 2.0 N/A 

 
As described in the test case methodology, these initial elements were used to generate 

simulated observations from the sensors in Table 4.1.  The modeling used to generate the 

truth ephemeris for the LEO test case included 30x30 geopotential terms from the 

EGM96 model, Jacchia-Roberts atmospheric drag, lunar and solar point mass gravity and 

Earth polar motion.  In the LEO test cases, observations were simulated for a span of six 

days and were generated for each sensor when the satellite was geometrically visible, 

when the elevation angle with respect to the sensor was at least 15 degrees, and when the 

satellite pass was at least 600 seconds in duration.  In the simulation, all four sensors 

observed the satellite during the six day span and the total number of observations (range-

azimuth-elevation triplets) was 777.  The modeling used to generate the GEO truth 

ephemeris included 8x8 geopotential, lunar and solar point mass gravity and solar 

radiation pressure modeling.  In the GEO test cases, observations were only simulated for 

the MIL and HAY sensors.  These sensors have very close geographic locations and so 
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present a challenging test case for both the ESKF and BSESKF.  Geometrically, 

observability improves when observing sensors are geographically distant.  The 

observations were generated once every six hours, and were generated for a total span of 

ten days.  The exact time between observations was varied somewhat so that observations 

from both sensors were not exactly the same.  The total number of observations (range-

azimuth-elevation triplets) was 255. 

 

 White, zero-mean, Gaussian measurement noise was also included in the data 

simulation.  Table 4.3 shows the standard deviation for the noise for each sensor and 

observation type.  These measurement errors were chosen to be realistic for radar sensors 

that have the capability to track GEO and LEO satellites.  For the GEO test case, only 

MIL and HAY were simulated. 

 
Table 4.3  Sensor Measurement Noise Standard Deviations 

Sensor Name Measurement Type Standard Deviation 
MIL Azimuth, Elevation 18 arc-seconds 
 Range 10 meters (LEO), 5 meters (GEO) 
HAY Azimuth, Elevation 18 arc-seconds 
 Range 10 meters (LEO), 3 meters (GEO) 
ATV Azimuth, Elevation 18 arc-seconds 
 Range 10 meters (LEO) 
KPT Azimuth, Elevation 67 arc-seconds  
 Range 23 meters (LEO) 
 
To test the accuracy and convergence characteristics of the ESKF and BSESKF for these 

test cases, the LEO and GEO initial elements were perturbed from the elements used to 

generate the truth ephemeris and simulated observations.  In the LEO and GEO test cases, 

the differences in the perturbed elements from the initial elements are shown in Table 4.4.  

The actual elements passed to the filters are the set of mean equinoctial elements rather 
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than the Keplerian elements shown.  Because most readers may be more familiar with 

Keplerian elements, the transformation using equation (2.30) was used to calculate the 

elements shown in Tables 4.2 and 4.3.  It should be noted that for most applications, the 

equation (2.30) transformation is only valid for osculating elements and is generally not 

valid for mean elements.  The equation (2.30) transformation was only used here for 

presentation purposes. 

 
Table 4.4  LEO and GEO Perturbed minus Initial Truth Mean Orbital Elements 

 LEO 
Perturbations 
(case 1) 

LEO 
Perturbations 
(case 2) 

GEO 
Perturbations 
(case 3) 

GEO 
Perturbations 
(case 4) 

Epoch Jan 18, 2003 
00:00:00 

Jan 18, 2003 
00:00:00 

Mar 20, 2004 
00:00:00 

Mar 20, 2004 
00:00:00 

Semimajor axis 
(km) 

10 10 12 65 

Eccentricity 5x10-5 5x10-5 1.5x10-7 7x10-5 

Inclination 
(deg) 

1.6 2.8 0.007 0.7 

RAAN (deg) 0.28 2.3 0.02 4.8 
Arg of Perigee 
(deg) 

11 2.5 0.04 19 

Mean Anomaly 
(deg) 

19 0.3 0.4 95 

Drag 
Coefficient 

0.0 0.0 N/A N/A 

 
The initial diagonal covariance entries used for both the BSESKF and ESKF filters are 

shown in Table 4.5.  Because the solve-for elements were equinoctial elements rather 

than Keplerian, the variances shown are the equinoctial variances. 
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Table 4.5  LEO and GEO Diagonal Covariance Entries 
 LEO Variances 

(case 1) 
LEO Variances 
(case 2) 

GEO Variances 
(case 3) 

GEO Variances 
(case 4) 

Epoch Jan 18, 2003 
00:00:00 

Jan 18, 2003 
00:00:00 

Mar 20, 2004 
00:00:00 

Mar 20, 2004 
00:00:00 

Semimajor 
axis (km) 

1.0x104 1.0x104 1.0x102 1.0x104 

h 1.0x10-7 1.0x10-4 1.0x10-12 1.0x10-5 

k 1.0x10-7 1.0x10-4 1.0x10-12 1.0x10-5 

p 1.0x10-2 1.0x10-2 1.0x10-8 1.0x10-3 

q 1.0x10-2 1.0x10-2 1.0x10-8 1.0x10-3 

λ (deg) 1.0 1.0 1.0x10-2 1.0 
Drag 
Coefficient 

1.0x10-3 1.0x10-3 N/A N/A 

 
The covariance entries shown in Table 4.5 roughly represent the accuracy of the 

perturbed initial state passed to the filters.  However, it was found that covariance 

matrices that are too optimistic about the initial state accuracy seemed to cause 

divergence first in the BSESKF and eventually in the ESKF.  Covariance matrices that 

were too pessimistic caused divergence first in the ESKF and then the BSESKF.  As with 

the process noise matrix, some experimentation was required to find covariance matrices 

like the ones in Table 4.5 that worked well with both the BSESKF and ESKF filters. 

 

 The modeling used in both the ESKF and BSESKF was identical to the modeling 

used to generate the truth orbits.  It is left for future work to test BSESKF behavior when 

used with system models that are either more or less accurate than models used to 

generate the truth orbit. 
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 Figures 4.3-4.8 show the test case results for the LEO cases.  The values of m 

tried for each case were 12, 24 and 48 with each increase in m resulting in slightly 

improved accuracy over the previous value of m.  The filter accuracy differences for 

semimajor axis shown in Figure 4.3 indicate that the BSESKF converges to within less 

than 50 meters of truth within 1.5 days while the ESKF takes about 3.5 to 4 days.   

 

 
Figure 4.3  LEO mean semimajor axis state variable for cases 1 and 2 

 

Figures 4.4 and 4.5 show the equinoctial elements h and k related to eccentricity.  For 

both of these elements, the BSESKF converged in about 2 days.  The ESKF didn’t 

converge with comparable accuracy within the 6 day span. 
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Figure 4.4 LEO mean h state variable for cases 1 and 2 
 

 
 

Figure 4.5 LEO mean k state variable for cases 1 and 2 
 
 

Figures 4.6 and 4.7 display the p and q equinoctial elements related to inclination.  The 

BSESKF seems to be more accurate in these cases and has a shorter and less dramatic 

initial transient period. 
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Figure 4.6 LEO mean p state variable for cases 1 and 2 
 

 
 

Figure 4.7 LEO mean q state variable for cases 1 and 2 
 
 

Figure 4.8 shows the mean longitude element over the 6 day span.  Again, the BSESKF 

converged more quickly and reached a more accurate steady state value than the ESKF.   
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Figure 4.8 LEO mean λ state variable for cases 1 and 2 
 

 
The coefficient of drag solution for each day is shown in Table 4.6.  Although the ESKF 

began with larger errors in the drag parameter, it eventually produced smaller errors than 

the BSESKF.  The BSESKF initially produced smaller errors, but the error remained 

relatively constant over the six day span. 

 

 
Table 4.6  ESKF and BSESKF Drag Coefficient Solutions for LEO Case 1 

Day ESKF value Diff. from truth BSESKF value Diff. from truth 
1 3.282 1.282 2.058 0.058 
2 2.314 0.314 2.056 0.056 
3 2.020 0.020 2.057 0.057 
4 1.981 0.019 2.057 0.057 
5 1.986 0.014 2.058 0.058 
6 1.994 0.006 2.058 0.058 
 
 
 Figures 4.9-4.14 show the test case results for the GEO cases.  The semimajor 

axis differences in Figure 4.9 show that the BSESKF produced smaller errors both in the 

initial transient period and throughout the ten day span.  This result was mirrored in the 

other equinoctial orbital elements shown in Figures 4.10-4.14 also.  Overall, these LEO 

and GEO cases indicated that the BSESKF with an m-buffer of 24-48 past measurements 
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was able to estimate orbital elements with higher accuracy than the ESKF.  In every case 

for each orbital element, the BSESKF exhibited equal or superior accuracy to the ESKF.  

In addition, the BSESKF was able to converge to an accurate estimate more quickly than 

the ESKF.  The BSESKF accuracy did require a higher computational cost, however.  

The additional computational cost of the square-root information filter along with the 

several iterations per observation often needed for the BSESKF to converge meant that 

the BSESKF required about ten times as much computation time as the ESKF. 

 

 

 
 

Figure 4.9  GEO mean semimajor axis state variable for cases 3 and 4 
 

 
 

Figure 4.10 GEO mean h state variable for cases 3 and 4 
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Figure 4.11 GEO mean k state variable for cases 3 and 4 
 

 
 

Figure 4.12 GEO mean p state variable for cases 3 and 4 
 

 
 

Figure 4.13 GEO mean q state variable for cases 3 and 4 
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Figure 4.14 GEO mean λ state variable for cases 3 and 4 
 

 
 The role of the m-buffer can be illustrated by showing a case in which several m-

buffer sizes were attempted.  Figure 4.15 shows an example of the BSESKF behavior in 

the mean h equinoctial element when varying the m-buffer size.  Mark Psiaki didn’t 

indicate an m-buffer upper limit beyond which accuracy degrades.  Therefore, one would 

expect that increasing the m-buffer size would always result in estimates with higher 

accuracy than smaller m-buffer sizes.  However, the BSESKF with m=48 was less 

accurate overall than the BSESKF with m=24 or m14.  In this case, it was likely that the 

inaccuracies due to interpolating state vectors and state transition matrices at past 

observation times outside the intended interpolation range was adversely affecting the 

accuracy of the BSESKF estimates.  If this was the case, the inaccuracy for large m-

buffer sizes would be due to the interface between the BSESKF and the DSST propagator 

rather than with the BSESKF or DSST alone. 
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Figure 4.15  GEO mean h equinoctial element for case 4 
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Chapter 5 Software for Optimal Orbit Transfer Modeling 

 

 There are challenges in space surveillance analysis in predicting trajectories for 

satellites influenced by continuous thrust.  A related challenge is in using orbit 

determination to refine trajectories with observations for such satellites.  Incorporating 

accurate continuous thrust models based on optimal trajectory analysis is one way to 

address these challenges.  Of course, the assumption that actual satellites use optimal 

thrust plans is perhaps not always valid, but this assumption reduces the search space for 

thrust plans.  In addition, satellite operators are strongly influenced by the need to 

conserve fuel and so a time/fuel optimal thrust plan is perhaps the most probable thrust 

plan that can be assumed.   

 Because of the assumption that satellite operators use optimal thrust plans, the 

optimization problems and solution methods described in section 2.2 have been 

implemented in software to provide tools for generating optimal thrust plans.  The 

software environment is a PC running the Linux operating system.  Versions of the 

software were initially written in Matlab® and were later written in FORTRAN to take 

advantage of its higher performance.  The Intel® FORTRAN Compiler version 9.1 was 

used to compile the FORTRAN code.  The Intel® FORTRAN compiler was chosen 

because it has been used to compile the R&D GTDS source code.  The software was 

designed to be given an initial orbit and destination orbit with either a given total transfer 

time or a given constant thrust acceleration magnitude.  If given a total transfer time, the 

necessary thrust acceleration magnitude can be solved.  If the thrust acceleration 

magnitude is known, the total transfer time can be solved.  The thrust plan generated by 
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the optimal thrust plan tool can then be used in orbit determination as an additional force 

model.  This will hopefully aid in more accurately predicting and refining orbits using 

orbit determination methods.  This second part of the task is markedly different from the 

first and so the software was written in two parts.  The first part is a standalone module 

that produces the optimal thrust plans.  The second part was implemented as a force 

model in the R&D Goddard Trajectory Determination System (R&D GTDS) because the 

tool already had the software infrastructure for orbit prediction and orbit determination 

with observations.  The original intention was to apply the thrust force model in GTDS to 

both the Cowell and DSST propagators and to ESKF, BSESKF and DC estimators.  For 

this thesis, the GTDS thrust force model was completely implemented only with the 

Cowell propagator and the DC estimator.  Future work will complete the implementation 

to allow the thrust force model to be used with the DSST propagator and the ESKF and 

BSESKF estimators. 

 The standalone tool is given the initial and final orbits.  It uses numerical 

integration of the equations of motion and the quasi-Newton gradient search described in 

sections 2.2.2.3 and 2.2.2.4 to solve for an optimal thrust plan and two-body trajectory.  

Perturbations such as J2 affect thrust plans over time spans of several days.  However, 

implementing perturbations was left as future work.  Separate modules were written for 

the averaged and exact equations of motion.  This allows crude guesses for the necessary 

Lagrange multipliers to be refined first by the averaged equation module and then solved 

precisely by the exact equation module.  The ultimate product of the exact equation 

module is a file containing time vs. acceleration vector directions and magnitude values.  

This thrust acceleration file format is described in Appendix A.   
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 The thrust acceleration file produced by the exact equation standalone 

optimization module is read by the GTDS orbit determination software within a newly 

implemented continuous thrust acceleration force model module.  This module can be 

used in either orbit prediction or in orbit determination to evaluate the accuracy of the 

produced thrust plan with real data.   

 

5.1 Standalone Trajectory Optimization Software 

 

The software written to calculate optimal thrust plans from an initial orbit to a 

final orbit was written first in Matlab™ for ease of implementation and then in 

FORTRAN to improve the performance.  The code described here is the FORTRAN 

code.  Both sets of code are very similar.  Essentially, the language is the only difference.  

Because of the difficulty in guessing initial values for the Lagrange multipliers for the 

exact equation trajectory optimization code, the averaged equation trajectory code was 

implemented because it is more robust (57).  Crude guesses for the averaged Lagrange 

multipliers can be used with the averaged equation code and the refined solution for the 

Lagrange multipliers can be used as initial guesses in subsequent executions of the exact 

equation code.  Sections 5.1.1 and 5.1.2 detail the subroutines written to implement the 

trajectory optimization algorithm described in sections 2.2.2.3 and 2.2.2.4. 
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5.1.1  Exact Equation Trajectory Optimization Code 

 
The subroutines described in this section comprise the exact two-body plus thrust 

equation of motion trajectory optimization standalone software.  The source code for 

these subroutines is listed in Appendix E.  The program flow for the exact equation 

standalone trajectory optimization code is shown in Figure 5.1. 

 

 

Figure 5.1 Exact Equation Trajectory Optimization Program Flow 
 

 

LOW_THRUST_DRIVE is the driver subroutine for the software.  It collects the 

initial and final Keplerian orbits, converts those to equinoctial orbit elements, calls the 
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UNCMND subroutine to execute the quasi-Newton iterative search to solve for the initial 

Lagrange multipliers.  Once UNCMND is complete, the RK78 subroutine is used to 

integrate the variational equations of motion and the variational equations for the solved 

initial Lagrange multipliers from the initial to the final time.  Finally, the trajectory is 

printed and the thrust plan file meant for GTDS input is written. 

 

UNCMND is the subroutine provided by reference (58).  This subroutine executes 

the quasi-Newton search described in Section 2.2.2.3.  It calls the F_FORMIN subroutine 

to compute the equinoctial elements and Lagrange multipliers at the final time given the 

elements and multipliers at the initial time. 

 

RK78 is the subroutine that executes the 7th order Runge-Kutta-Fehlberg 

integration.  This subroutine was written at NASA JPL and is documented in NASA 

Technical Report TR R-287 (85).  This subroutine is used to integrate both the 

equinoctial variational equations of motion and the variational equations for the Lagrange 

multipliers.   

 

FSUB is the subroutine that is called by the FK78 subroutine to supply the 

equinoctial element and Lagrange multiplier derivatives with respect to time, i.e. rates.  

FSUB calls the COMP_XY, COMP_B, and COMP_U subroutines to calculate the 

auxiliary quantities, the 6x3 BL matrix and the normalized thrust acceleration vector.  

FSUB then executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR 

197 



subroutines which compute the rates for the equinoctial variation equations and the rates 

for the Lagrange multipliers, respectively. 

 

TRANS_OUT in the context of the exact equation code transforms the equinoctial 

elements into Keplerian elements and calls COMP_XY, COMP_M, COMP_U and FSUB 

to compute the Hamiltonian, thrust vector, and the yaw and pitch angles.  The thrust 

vector is also transformed to inertial Cartesian coordinates to be compatible with GTDS 

for the thrust plan file.  This transformation is described in detail in Appendix C.  The 

quantities are returned to the calling subroutine in an array intended to be written as 

output. 

 

F_FORMIN computes the equinoctial elements and Lagrange multipliers at the 

final time given the elements and multipliers at the initial time.  F_FORMIN also 

computes the sum of the squares of the differences of the computed final orbital element 

conditions from the desired orbital element conditions.  F_FORMIN uses the RK78 

subroutine to perform the integration of the equinoctial orbital elements and the Lagrange 

multipliers.   

 

COMP_EQUIN_VAR computes the derivatives of the equinoctial orbital 

elements with respect to time, i.e. element rates.  This is done by multiplying the constant 

thrust acceleration magnitude by the product of the BL matrix and the normalized thrust 

acceleration vector.  This equation is shown in Section 2.2.2.2 (Equation 2.82), and the 

BL matrix is shown in Appendix B. 
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COMP_EUL_LAG_VAR computes the derivatives of the Lagrange multipliers 

with respect to time, i.e. multiplier rates.  This is done by multiplying the partial 

derivatives of the BL matrix with respect to the equinoctial elements, the normalized 

thrust acceleration vector, the thrust acceleration magnitude and the current values of the 

orbital elements.  The equations for this are shown in Section 2.2.2.2 (Equation 2.87) and 

the partials of the BL matrix are shown in Appendix B. 

 

COMP_B is the subroutine that computes the 6x3 BL matrix and its partial 

derivatives with respect to the equinoctial elements.  The equations for this subroutine 

can be found in the Appendix of reference (5).   

 

COMP_U computes the normalized thrust acceleration vector given the 6x3 BL 

matrix and the vector of current Lagrange multipliers. 

 

COMP_XY calculates auxiliary quantities based on the current equinoctial orbital 

elements. 

 

DELTIM is a GTDS subroutine that was borrowed for this tool in order to assist 

in computing the calendar date given the initial date and a time duration.  It is used along 

with the ADDTIM GTDS subroutine for this purpose. 
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ADDTIM is a GTDS subroutine borrowed for this tool in order to assist in 

computing the calendar date given the initial date and time duration.  It is used along with 

the DELTIM GTDS subroutine for this purpose. 

 

5.1.2  Averaged Equation Trajectory Optimization Code 
 
 

The subroutines in this section comprise the averaged two-body equation of 

motion trajectory optimization standalone software.  The source code for these 

subroutines is listed in Appendix F.  The program flow for the averaged equation 

trajectory optimization code is shown in Figure 5.2. 
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Figure 5.2 Averaged Equation Trajectory Optimization Program Flow 

 
LOW_THRUST_DRIVE is the driver subroutine for the software.  It collects the 

initial and final Keplerian orbits, converts those to equinoctial orbits, calls the UNCMND 

subroutine to execute the quasi-Newton search to solve for the initial Lagrange 

multipliers, and calls the RK78 subroutine to integrate the variational equations of motion 
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and the variational equations for the Lagrange multipliers from the initial to final time.  

Finally, the trajectory is printed. 

 

UNCMND is the subroutine provided by the reference (58).  This subroutine 

executes the quasi-Newton search described in Section 2.2.2.3.  It calls the F_FORMIN 

subroutine to compute the equinoctial elements and Lagrange multipliers at the final time 

given the elements and multipliers at the initial time. 

 

RK78 is the subroutine that executes the 7th order Runge-Kutta-Fehlberg 

integration.  This subroutine was written at NASA JPL and is documented in NASA 

Technical Report TR R-287.  This subroutine is used to integrate both the equinoctial 

variational equations of motion and the variational equations for the Lagrange 

multipliers.   

 

FSUB is the subroutine that is called by the FK78 subroutine to supply the 

equinoctial element and Lagrange multiplier derivatives with respect to time, i.e. rates.  

FSUB executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR subroutines 

which compute the rates for the equinoctial variation equations and the rates for the 

Lagrange multipliers, respectively. 

 

TRANS_OUT in the context of the averaged equation code transforms the 

equinoctial elements into Keplerian elements and calls COMP_XY, COMP_M, 

COMP_U and FSUB to compute the Hamiltonian, thrust vector, and the yaw and pitch 
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angles.  These quantities are returned to the calling subroutine in an array intended to be 

written as output. 

 

F_FORMIN computes the equinoctial elements and Lagrange multipliers at the 

final time given the elements and multipliers at the initial time.  F_FORMIN also 

computes the sum of the squares of the differences of the computed final orbital element 

conditions from the desired orbital element conditions.  F_FORMIN uses the RK78 

subroutine to perform the integration of the equinoctial orbital elements and the Lagrange 

multipliers.   

 

COMP_EQUIN_VAR computes the derivatives of the equinoctial orbital 

elements with respect to time, i.e. element rates.  Because the averaged equations of 

motion are used here, the DQAG subroutine is used to compute the element rates using a 

Gauss-Kronrod numerical quadrature. 

 

COMP_EUL_LAG_VAR computes the derivatives of the Lagrange multipliers 

with respect to time, i.e. multiplier rates.  The averaged equations for the multiplier rates 

are computed using the DQAG subroutine which performs numerical quadrature using 

the Gauss-Kronrod method. 

 

DQAG uses a Gauss-Kronrod method to compute the definite integrals shown in 

section 2.2.2.4.  DQAG is used in conjunction with the subroutines, RHS_ADOT, 

RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT, RHS_LDOT, 
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RHS_LAMADOT, RHS_LAMHDOT, RHS_LAMKDOT, RHS_LAMPDOT, 

RHS_LAMQDOT, and RHS_LAMLDOT.  These subroutines compute the equinoctial 

element rates and the Lagrange multiplier rates given the current equinoctial elements 

and Lagrange multiplier values.  DQAG is part of QUADPACK and was downloaded 

from http://www.netlib.org.  QUADPACK is freely available software for numerical 

integration.  DQAG was written by R. Piessens, K. U. Leuven, and E. De Doncker. 

 

COMP_M is the subroutine that computes the 6x3 M matrix and its partial 

derivatives with respect to the equinoctial elements.  The equations for this subroutine 

can be found in the Appendix of reference (3).  According to Jean Kechichian, there is 

one small error in the partials in equation (A96).  The term reading cF - h should read cF - 

k.  This correction was also made in the COMP_M subroutine code. 

 

COMP_U computes the normalized thrust acceleration vector given the 6x3 M 

matrix and the vector of current Lagrange multipliers. 

 

COMP_XY calculates auxiliary quantities based on the current equinoctial orbital 

elements. 

 

RHS_ADOT computes the semimajor axis rate of change using the current 

equinoctial elements and the COMP_M and COMP_U subroutines. 
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RHS_HDOT computes the equinoctial h element using the current equinoctial 

elements and the COMP_M and COMP_U subroutines. 

 

RHS_KDOT computes the equinoctial k element using the current equinoctial 

elements and the COMP_M and COMP_U subroutines. 

 

RHS_PDOT computes the equinoctial p element using the current equinoctial 

elements and the COMP_M and COMP_U subroutines. 

 

RHS_QDOT computes the equinoctial q element using the current equinoctial 

elements and the COMP_M and COMP_U subroutines. 

 

RHS_LDOT computes the equinoctial lambda element using the current 

equinoctial elements and the COMP_M and COMP_U subroutines. 

 

RHS_LAMADOT computes the Lagrange multiplier associated with the 

semimajor axis using the COMP_M and COMP_U subroutines. 

 

RHS_LAMHDOT computes the Lagrange multiplier associated with the 

equinoctial h element using the COMP_M and COMP_U subroutines. 

 

RHS_LAMKDOT computes the Lagrange multiplier associated with the 

equinoctial k element using the COMP_M and COMP_U subroutines. 
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RHS_LAMPDOT computes the Lagrange multiplier associated with the 

equinoctial p element using the COMP_M and COMP_U subroutines. 

 

RHS_LAMQDOT computes the Lagrange multiplier associated with the 

equinoctial q element using the COMP_M and COMP_U subroutines. 

 

RHS_LAMLDOT computes the Lagrange multiplier associated with the 

equinoctial lambda (mean longitude) element using the COMP_M and COMP_U 

subroutines. 
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5.2 GTDS Continuous Thrust Implementation 

5.2.1 New subroutines 

 
 

The following new subroutines were written and included with GTDS to 

implement the thrust plan input.   

 

THRSTTBL reads the thrust input from a file, interpolates the acceleration 

vectors and returns the thrust acceleration vector at the requested time. 

 

The THRSTTBL.CMN common block contains an on/off switch for the thrust 

plan input as well as valid input start and end dates for the thrust plan input. 

 

THRSTTBLCRD reads one thrust table input record from the FORTRAN file unit 

numbered 115.  This subroutine is called by the THRSTTBL subroutine. 

 

THR_RDNUMR reads the numeric fields on a thrust plan input record.  This 

subroutine is called by the THRSTTBLCRD subroutine. 

 

There were also some subroutines that were imported from the book, "Numerical 

Methods and Software," by Kahaner, Moler and Nash (58).  These subroutines performed 

the interpolation necessary to compute acceleration vectors that are requested for times 

that fall between records provided by the thrust plan input file. 
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PCHEZ computes derivatives needed for the PCHEV subroutine.  PCHEZ 

computes derivatives for spline or cubic Hermite interpolation. 

 

PCHEV evaluates a function and first derivative of a piecewise cubic Hermite or 

spline function at an array of points.  The function array and derivative array are provided 

as input and are assumed to be previously computed by the PCHEZ subroutine. 

 

XERROR is a subroutine for handling and/or printing diagnostic messages 

generated by numeric subroutines in the Kahaner, Moler, and Nash text (58). 

 
5.2.2 Modified subroutines 

 

The GTDS source code needed modifications to read in thrust plans and apply the 

thrust acceleration vectors necessary for such plans.  Because thrust plans could 

conceivably come from many sources, it was decided that a text file would be the mode 

of input.  This would allow the optimal thrust plans generated by any source to be used as 

input in GTDS as a thrust force model.  This text format is described in Appendix A 

which describes the GTDS input keywords introduced as part of this work.  The 

THRSTTBL GTDS input keyword introduced to instruct GTDS to read from the thrust 

plan file input is described in Appendix A also. 

 

The thrust plan input file defines the thrust acceleration vector at only the time 

points printed in the file.  However, the GTDS orbit prediction execution requires thrust 

acceleration vectors at the numerical integration time points of its choosing.  Therefore, 
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interpolators were used within the new continuous thrust module to linearly interpolate 

the thrust plan acceleration vectors at the time points requested by the orbit prediction 

software in GTDS. 

 

There were several GTDS source code files that required modification to 

implement this file-based thrust plan input.  The following subroutines were existing 

source code files in GTDS, but were modified for this task. 

 

FILESBD is a block data initialization subroutine that identifies each file used by 

GTDS during its execution.  The thrust input file was identified with unit 115. 

 

SETDAF is the subroutine that opens all files used by GTDS.  The thrust plan 

input file open statement was added to this source file. 

 

SHUTDAF is the subroutine that closes all files used by GTDS upon termination 

of the program.  The thrust plan input file was included in this closing sequence. 

 

SETOG1 interprets all orbit generator optional keywords that come after the 

"DRAG" keyword in the keyword table.  This subroutine is an extension of the SETORB 

subroutine.  SETOG1 was modified to include the THRSTTBL keyword interpretation 

code. 
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SETORB reads and interprets orbit generator (EPHEM) optional keyword cards.  

The THRSTTBL keyword text was added to the keyword array. 

 

SWITCHBD is a block data initialization subroutine that identifies many switches 

or options in GTDS.  A thrust table input on/off switch variable was added. 

 

ACCEL computes two-body and free-flight perturbative accelerations acting on a 

spacecraft at a given time and state.  A call to the new THRSTTBL subroutine was 

added.   

 

GQFUN computes the integrands of the integration for the average integration of 

the equation of motion.  A call to the new THRSTTBL subroutine was added.  GQFUN is 

used in the DSST propagator.  Modification of the GQFUN subroutine partially 

implements the thrust force model for DSST.  Further modifications to other GTDS 

DSST subroutines to complete the implementation of the thrust force model for DSST are 

left as future work. 

 
5.2.3 GTDS modification summary 

 
The program flow for GTDS differs depending on which ephemeris generator or 

propagator is chosen.  All propagator subroutines are called from the ORBIT subroutine.  

The Cowell propagator typically uses a fixed-step size integrator that integrates equations 

of motion formulated with position and velocity as the variables.  Figure 5.3 shows the 

program flow for the thrust acceleration force model starting from the ORBITC 
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subroutine.  ORBITC is called by the ORBIT subroutine if the Cowell propagator is 

chosen. 

 

 

Figure 5.3 Cowell Program Flow for Thrust Acceleration File Input 
  

 The Draper Semianalytic Satellite Theory (DSST) is also called from the ORBIT 

subroutine.  DSST integrates in mean equinoctial elements and adds short period motion 

using Fourier series.  The driver is the ORBITV subroutine.  Figure 5.4 shows the 

program flow for the thrust acceleration force model. 
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Figure 5.4 DSST Program Flow for Thrust Acceleration File Input 

 

212 



5.3 Verifying Test Case Results 
 

The test case provided by Jean Kechichian in references (3) and (4) was run 

against the standalone thrust plan tool that was implemented for this thesis.  In addition, 

the thrust plan generated by the standalone tool was used as input for the GTDS orbit 

prediction tool.  The test case was run against the standalone and GTDS force model 

software to verify the correct implementation of the two-body equations of motion, the 

quasi-Newton optimal thrust plan search algorithm, and the new GTDS continuous thrust 

force module. 

 

The test case run against the standalone module was an orbit transfer case 

between an initial LEO orbit and a final GEO orbit.  The initial and final orbits are shown 

in Table 5.1.  This shows the initial and final orbits as well as the final orbit achieved by 

the quasi-Newton search algorithm.  The achieved orbit is very close to the desired final 

orbit indicating that the quasi-Newton search algorithm is able to precisely solve the two-

point boundary value problem. 

Table 5.1 Standalone Tool Initial and Final Orbit Achieved 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 7000 0 28.5 0 0 -130.333164 

Final 42000 0.001 1 0 0 Free 

Achieved 42000.0052 0.0009987 0.99982 -0.000193 0.055 46.192579 

 

The final orbit did not include a mean anomaly.  Rather, this orbital parameter was free 

for the quasi-Newton search to determine the optimal value.  In addition, the total transfer 
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time was found to be 58089.9 seconds.  The Hamiltonian was 1.004 upon completion.  

The solved-for Lagrange multipliers are shown in Table 5.2. 

Table 5.2 Solved Initial Lagrange Multipliers for LEO to GEO Case 

Lagrange Multiplier Solution Value 

( )0L
aλ (s/km) 0.467522877173E+01 

( )0L
hλ (sec) 0.541341369629E+03 

( )0L
kλ (sec) -0.920270214844E+04 

( )
0

L
pλ (sec) 0.177801189423E+02 

( )
0

L
qλ (sec) -0.225845585937E+05 

( )0L
Lλ (rad) -0.647890140182E-08 

 

The results were reasonably close to the results achieved by Jean Kechichian in 

reference (5).  Kechichian’s results are shown in Tables 5.3 and 5.4. 

 

Table 5.3  Initial and Final Orbit Achieved by Jean Kechichian 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 7000 0 28.5 0 0 -130.333164 

Final 42000 0.001 1 0 0 Free 

Achieved 41999.9929 0.0009983 0.999797 0.000326 359.995148 46.169264 

 

Kechichian solved for a total transfer time of 58089.9 seconds.  The Lagrange multipliers 

solved by Jean Kechichian are shown in Table 5.4. 
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Table 5.4 Kechichian’s Solved Initial Lagrange Multipliers for LEO to GEO Case 

Lagrange Multiplier Solution Value 

( )0aλ
L (s/km) 0.4675229762E+01 

( )0hλ
L (sec) 0.5413413947E+03 

( )0kλ
L (sec) -0.9202702084E+04 

( )
0pλ

L (sec) 0.1778011878E+02 

( )
0qλ

L (sec) -0.2258455855E+05 

( )0Lλ
L (rad) Not shown in paper 

 

Because the results from the standalone code so closely match those of Jean Kechichian, 

it was surmised that the integrated equations of motion and the quasi-Newton algorithm 

were implemented correctly in the standalone software.   

 

Another way to check the results is to compare the orbital element and thrust 

acceleration vector histories during the transfer.  Selected element histories and the thrust 

pitch and yaw angles are shown in the following figures.  Dr. Kechichian’s results were 

taken from reference (4).  Figure 5.5 shows the semimajor axis and eccentricity element 

time histories during the transfer from the initial orbit to the final orbit.  There are small 

differences in the plots.  The eccentricity oscillation during the initial part of the transfer 

has a slightly different character in the two plots.  This is explained by the fact that the 

plots from Jean Kechichian’s paper were generated with a slight error in a partial 
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derivative expression used in the equations of motion.  This fact was learned both from 

Kechichian’s paper, reference (7), and from personal communication with Dr. 

Kechichian (86).  Figure 5.6 shows the thrust pitch and yaw angles for the optimal LEO 

to GEO thrust plan.  The large pitch and yaw angle changes near the end of the transfer 

reflect the large eccentricity and inclination changes that are undergone near the end of 

the transfer.   

 
(a) (b)

Figure 5.5 Semimajor Axis and Eccentricity Transfer Time History (a), 
Kechichian’s result (b) 

 

(a) (b)  
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Figure 5.6 Thrust Pitch and Yaw Transfer Time History (a), Kechichian’s result (b) 
Figures 5.7 (a) and (b) have the inclination history in common.  The inclination 

follows a similar trend in both figures, but the inclination from Kechichian’s paper is 

somewhat different because the abscissa is the semimajor axis and not time.  

Nevertheless, both plots show the inclination is correct at the initial and final boundary 

conditions, 28.5 and 1.0 degrees, respectively.   

 

 (a) (b)
Figure 5.7 Inclination and RAAN Time History (a), 

Kechichian’s Inclination, Semimajor Axis and Eccentricity History (b) 
 

 The implementation of the averaged equation of motion standalone trajectory 

optimization code was also tested against Kechichian’s results.  The averaged equation of 

motion tool is useful because it is more robust than the exact equation of motion code in 

its ability to use initial Lagrange multiplier values with large errors (57).  The refined 

initial Lagrange multiplier values solved by the averaged tool can then be used to 

initialize the exact code. 
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 The initial and final orbits for the averaged case were the same as for the exact 

case.  These are shown in Table 5.5 along with the final orbit achieved using the quasi-

Newton search. 

Table 5.5 Averaged Standalone Tool Initial and Final Orbit Achieved 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 7000 0 28.5 0 0 -130.333164 

Final 42000 0.001 1 0 0 Free 

Achieved 42000.00 0.001000 0.999999 0.0000002 0.005 -130.328514 

 

These results are close to the results achieved by Kechichian in his paper (4).  The quasi-

Newton search algorithm is able to closely match the final conditions by searching for the 

initial averaged Lagrange multipliers.  The total transfer time was found to be 56732.57 

seconds which compares closely with Jean Kechichian’s result of 56734.56 seconds.  The 

Hamiltonian was constant over the transfer span with a value of 1.000005 which shows 

that the necessary condition of optimality for the minimum time and fuel transfer was 

essentially met.  When the Hamiltonian is not an explicit function of time, it is constant 

over the trajectory transfer (49).  Jean Kechichian’s published value for the Hamiltonian 

is 1.000000007.  The averaged initial Lagrange multipliers solved by the averaged 

standalone tool are shown in Table 5.6. 
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Table 5.6 Solved Initial Averaged Lagrange Multipliers for LEO to GEO Case 

Lagrange Multiplier Solution Value 

( )0~
aλ (s/km) 0.507914542146E+01 

( )0~
hλ (sec) -0.197268742508E-02 

( )0~
kλ (sec) 0.425340801731E+02 

( )
0

~
pλ (sec) -0.463304720272E-04 

( )
0

~
qλ (sec) -0.792521641184E+05 

( )0~
λλ (rad) 0.949939541356E-03 

 

Kechichian’s results include slight errors mentioned in reference (7).  Therefore, 

Kechichian’s solution for the averaged initial Lagrange multipliers does not exactly 

match the solution from the averaged standalone trajectory optimization tool.  

Kechichian’s results are shown in Table 5.7 for comparison. 

Table 5.7 Kechichian’s Initial Avg. Lagrange Multipliers for LEO to GEO Case 

Lagrange Multiplier Solution Value 

( )0~
aλ (s/km) 0.5159779497E+01 

( )0~
hλ (sec) -0.1448979417E-06 

( )0~
kλ (sec) 0.4342792320E+02 

( )
0

~
pλ (sec) -0.1398718238E-07 

( )
0

~
qλ (sec) -0.8360354382E+05 

( )0~
λλ (rad) 0.0 
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 The averaged implementation is more robust than the exact code because the 

averaged equations of motion do not include short-period oscillatory motion which 

complicates the job of the quasi-Newton search algorithm.  The quasi-Newton search 

relies on finite differencing for computation of an approximate Jacobian matrix.  The 

Jacobian matrix is used to find the best search direction for each iteration of the search 

algorithm.  This finite differencing approximation is less robust for the exact equations of 

motion than it is for the smoother, averaged equations of motion.  The smoother behavior 

of the averaged equations of motion is illustrated in Figure 5.8 which shows the Lagrange 

multiplier associated with the semimajor axis, aλ , for both the averaged and exact 

equations of motion. 

 (a) (b) 

Figure 5.8 Lagrange Multiplier for SMA in Averaged and Exact Cases (a), 

Kechichian’s results (b) 
 

Figure 5.8 also shows the close level of agreement in the behavior of the averaged 

elements and Lagrange multipliers over time.  This agreement provides good qualitative 

evidence that the equations of motion have been implemented correctly.  The slight errors 
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in Kechichian’s original work are not large enough to significantly affect the results 

shown in Figure 5.8.  Figure 5.8.a was generated using the corrected equations of motion 

while Figure 5.8.b was generated by Jean Kechichian with the slight error. 

 

Another aspect of the testing done for this LEO to GEO case involved using the 

thrust plan file generated by the exact standalone code to perform an orbit prediction in 

the Cowell orbit propagator in GTDS.  This test exercised the new continuous thrust 

acceleration force model module in GTDS.  Figures 5.9 – 5.11 show the results of this 

test.  The orbit prediction done by GTDS used J2 gravity terms so the final orbit achieved 

by the thrust plan does not exactly match the final orbit used in generating the thrust plan.  

However, the results are close.  The thrust plan software could be modified to increase 

the optimal thrust plan accuracy by implementing J2, J3, J4, third-body gravity, and other 

force models in the optimal thrust plan standalone software.  For orbital transfers that 

take many days to execute, these perturbations significantly affect the optimal thrust plan 

required.  Therefore, implementing these perturbations is important.  However, for this 

thesis, such implementations are left as future work. 

 

Figures 5.9-5.11 show that GTDS is able to correctly interpret the thrust plans and 

is able to reproduce the LEO to GEO orbit transfer with the associated orbital plane 

change.  Also, once the thrust plan terminates, GTDS is able to continue on with just the 

natural force modeling.   
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Figure 5.9 GTDS Cowell Ephemeris Generation of Semimajor Axis History 

 

Figure 5.10 GTDS Cowell Ephemeris Generation of Eccentricity History 
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Figure 5.11 GTDS Cowell Ephemeris Generation of Inclination History 
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5.4 Real Data Test Case Results 
 
 
5.4.1 ARTEMIS Satellite Background 
 
 
 The ARTEMIS telecommunication satellite was launched from Kourou, French 

Guiana on July 12, 2001 onboard an Ariane 510 Rocket.  ARTEMIS was intended for a 

geostationary orbit.  ARTEMIS is an ESA spacecraft that includes ion propulsion 

systems intended for North/South, i.e. orbital inclination, station keeping control. 

  

During the course of the launch, the Ariane upper stage malfunctioned and 

injected ARTEMIS well short of its intended orbit.  Although the satellite was launched 

with surplus bi-propellant, this system would not allow useful operational capability after 

boosting because of the large amount of fuel needed.  The ARTEMIS team consisted of 

personnel from ESA, Alenia Spazio, and EADS.  Working from the TELESPAZIO 

center in Fucino, Italy, a plan was developed to boost the ARTEMIS satellite to a useful 

geosynchronous orbit (GEO) while still allowing for a long useful satellite life (87).  This 

plan first called for the bi-propellant thrusters to be used to raise the satellite’s orbit 

outside the Van-Allen radiation belts.  Then, the onboard ion propulsion systems would 

be used to perform a gradual orbit raising to GEO.  Figure 5.12 depicts the overall plan 

developed by the ARTEMIS team. 
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Figure 5.12 Maneuver Strategy for ARTEMIS Salvage Mission (47), (88) 
 

 The ion propulsion technology (IPP) on ARTEMIS consists of two Radio 

frequency Ion Thruster Assemblies (RITAs) and two Kaufmann ion type Electron 

Bombardment Ion Thruster Assemblies (EITAs) (47).  The RITA thrusters use radio 

frequency radiation to ionize the Xenon atoms while the EITA thrusters are very similar 

to the gridded ion engines described in section 2.2.1.  Both thrusters use grid technology 

to accelerate Xenon ions.  The level of thrust when using both EITAs is 27 mN and 21 

mN when using both RITAs.  Using all four thrusters, or for that matter, any combination 

of thrusters on both the top and bottom sides of the spacecraft at once to perform orbit 

raising was deemed inefficient.  The Isp would be reduced from greater than 3000 

seconds to about 2300 seconds.  This is because the thrusters are permanently canted with 

respect to the spacecraft North/South Z-axis.  In addition, thermal constraints dictated 

that only one thruster per platform, i.e. top or bottom thruster array, could be used for the 

orbit raising operation.  According to ARTEMIS recovery mission information obtained 
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by email from Leonardo Mazzini (88), The ion thruster orbit raising was accomplished in 

four phases.  The following list summarizes these phases. 

1. August 2001 – January 2002: Inclination control strategy using RITA1 or RITA2 

2. February 2002 – April 2002: Nominal strategy using RITA1 and RITA2 (or 

EITA2) 

3. April 2002 – July 2002: Thrust steering strategy using RITA1 and RITA2 

4. August 2002 – January 2003: Back-up strategy using RITA2 only 

 

Figure 5.13a shows the location of the IPP ion thrusters on the nominally zenith 

facing side of the ARTEMIS spacecraft.  Figure 5.13b shows the nadir facing side of the 

ARTEMIS spacecraft.  Figure 5.14 shows the spacecraft orientation during a single 

platform thruster firing.  The depiction of the spacecraft orientation in Figure 5.14 is not 

the final, intended operational attitude, but was used during the ion thrust orbit raising. 
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Figure 5.13a  Ion Thruster Locations on the ARTEMIS Satellite (47) 
 
 

 
 

Figure 5.13b  Spacecraft Axis in Orbit Reference System (88)  
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Figure 5.14 Spacecraft Orientation and Thrust Vector for Single Thruster Firing 
(87) 
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5.4.2  ARTEMIS Satellite Data and Test Case Methodology 

 

 The orbit raising operations for ARTEMIS started on April 4, 2002 and continued 

until final GEO orbit insertion on January 31st, 2003.  The orbital elements at the end of 

orbit raising operations are shown in Table 5.8.  The reference frame for these elements is 

not known.  They were obtained from reference (89). 

 

Table 5.8 Final Orbital Elements after all Ion Orbit Raising and Subsequent 
Chemical Burns 

Epoch January 31, 2003 20:00:00 

Semimajor axis (km) 42169.731266 

Eccentricity 0.000076 

Inclination (deg) 1.565893 

RAAN (deg) 112.524590 

Arg. of Perigee (deg) 160.782369 

True Anomaly (deg) 178.530958 

East Longitude (deg) 21.216887 

 

 An Air Force Space Command Form1 document has been filed for the use of 

Two-Line orbital elements (TLEs) and U.S. Air Force Space Surveillance Network 

(AFSSN) observations in this research.  A TLE is a text format that represents an orbital 

element set with an assumed orbital dynamic method, i.e. SGP4, and from which Earth 

centered inertial (ECI) vectors in the True Equator Mean Equinox of Epoch (TEME) 

reference frame can be obtained.  Reference (90) contains detailed information about 

TLEs. 
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 The TLEs were used to derive initial and final ARTEMIS satellite orbits at 

various times during the satellite’s orbit raising phase.  The time duration between the 

initial and final orbits was chosen so that the orbital states between the initial and final 

orbits appeared continuous.  It is more straightforward to test a single continuous transfer 

rather than several discontinuous ones.  Transfer spans on the order of ten days were 

chosen to allow for sufficient observations during the span because these spans would 

later serve as the basis for a least-squares orbit fit, i.e. GTDS differential correction (32).  

The estimator used for GTDS differential correction is described in section 2.3.1.1.8. 

 

 The initial and final orbits and a guess of the thrust acceleration magnitude were 

first passed to the averaged equation optimal thrust planning software.  The initial 

guesses for the Lagrange multipliers were set to unity.  Because the averaged equation 

code is robust, it was able to solve for refined values of the initial Lagrange multipliers 

and for an optimal transfer time.  The refined Lagrange multiplier values, the guess for 

the thrust acceleration magnitude, the optimal transfer time, and the initial and final orbits 

were then passed to the exact equation optimal thrust planning software.  This software 

generated an exact optimal thrust plan using two-body plus thrust orbital dynamics.  The 

resulting thrust plan was used in GTDS differential corrections (DCs) with a fitspan that 

included all TLEs or AFSSN observations with observation times between the initial and 

final orbits.  This GTDS DC was then evaluated for fit quality.  This evaluation consisted 

of checking observation residuals for expected Gaussian means and variances, counting 

the number of observations edited due to the 3σ criteria, checking the chi-squared (91) 
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statistic, and examining the covariance of the final orbit estimate.  The process flow for 

solving for the optimal continuous transfer is shown in Figure 5.15. 

 

 

Figure 5.15 Thrust Plan Generation and Force Model Process Flow 
 

 Because the force exerted by the thrusters was not exactly known, the thrust 

acceleration was adjusted while the exact equation thrust planning software was run in 
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several iterations to affect the transfer time.  These iterations continued until the transfer 

time solved by the thrust planning software was closely matched to the transfer time 

known from the epoch times of the endpoint TLEs. 

  

 Once optimal thrust plans were generated, they were used in the new GTDS file 

input thrust force model in orbit determination runs to evaluate whether the additional 

modeling yields any improvement in orbit determination accuracy.  For these test cases, 

the GTDS Cowell Differential Correction (DC) subprogram was executed with the new 

thrust force model, and the resulting GTDS output file was parsed to collect observation 

residual information and overall orbit fit statistics.  The natural forces modeled by GTDS 

during the DC included 12th degree and 12th order geopotential spherical harmonics based 

on coefficients from the JGM-2 geopotential model.  Lunar and solar point mass gravity 

was modeled as was solar radiation pressure.  The reflectivity coefficient for solar 

radiation pressure was not a solve-for parameter.  This was to avoid any aliasing that 

might occur between the reflectivity coefficient and any thrust acceleration applied.  

Earth polar motion was modeled.  Drag was not modeled because ARTEMIS was at a 

very high altitude essentially unaffected by atmospheric drag during the thrust transfer.  

Because GTDS includes an array of perturbation models while the thrust plan software 

does not currently include any perturbations, it was expected that the generated optimal 

thrust plans would not exactly reproduce the desired trajectory when modeled in GTDS.  

Including significant perturbations such as J2 and lunar and solar gravity is a desired 

future enhancement to the thrust modeling software. 
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 The observations used in some of the DC runs consisted of TLEs that were 

converted to their osculating counterparts using the SGP4 orbit propagator within GTDS.  

The SGP4 propagator was implemented in GTDS in 1988 by Darrell Herriges for work 

toward his Master’s Thesis at MIT (18).  The resulting osculating orbital elements were 

used as Cartesian position/velocity vector observations in the GTDS DC subprogram.  

This capability is sometimes referred to as Precise Conversion of Elements.     

 

 Air Force Space Surveillance Network (AFSSN) observations taken on 

ARTEMIS during its orbit raising were also used with the GTDS DC program to evaluate 

the usefulness of the thrust plans as acceleration models.  These observations consisted of 

ground-based radar and optical observations.  The radar observations consisted of 

topocentric range, azimuth, elevation and doppler measurements of the ARTEMIS 

satellite, and the optical observations consisted of right ascension and declination 

measurements of the satellite against the star background.  The observations were taken 

by several different radar and optical sensors which were all part of the AFSSN in 2002 

and 2003. 

 

 The semimajor axis, eccentricity, and inclination from the ARTEMIS TLEs are 

plotted in Figures 5.16 – 5.18.  The TLEs are double averaged elements.  Therefore the 

plots show only the secular motion of ARTEMIS from August, 2001 until May, 2003.  

These plots show how the continuous ion thrust affected the satellite orbit during its ion 

thrusting, orbit raising phase.  The thrust strategies used to operate ARTEMIS during this 

phase included the following (88): 
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1. From August 2001 to January 2002: Inclination control strategy using RITA1 or 
RITA2 

2. From February 2002 to April 002: Nominal strategy using RITA1 and RITA2 (or 
EITA2) 

3. From April 2002 to July 2002: Thrust steering strategy using RITA1 and RITA2 
4. From August 2002 to January 2003: Back-up strategy using RITA2 

 
The thrust strategies are marked and labeled in Figures 5.16 – 5.18.  The test cases used 

for this thesis are also marked and labeled as Case 1, Case 2, and Case 3 in Figures 5.16 – 

5.18. 

 

Figure 5.16 ARTEMIS Semimajor axis during Ion Thrusting 
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Figure 5.17 ARTEMIS Eccentricity during Ion Thrusting 
 

 

Figure 5.18 ARTEMIS Inclination during Ion Thrusting 
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Figure 5.16 shows the semimajor axis of ARTEMIS during the orbit raising maneuvers.  

The change to the semimajor axis is clearly linear, but some discontinuities during the 

transfer are apparent.  This confirms text in reference (87) that mentions some drifting 

periods during the orbit raising.  Some of these drifting periods lasted a few days.   

During some of the control strategies, the eccentricity history shown in Figure 5.17 is 

much noisier than the semimajor axis history.  This is not unexpected because the TLEs 

were generated with orbit prediction models that didn’t include continuous thrust force 

modeling.  The inclination trend in Figure 5.18 shows that aside from maneuvers around 

day 100 and day 250, ARTEMIS exhibits natural evolution of the orbit plane due to lunar 

and solar gravitational perturbations.  In references (87) and (88), the authors note that 

the inclination was actively controlled during the first three strategies used in the ion 

thrust orbit raising, i.e. the inclination control strategy, the nominal strategy and the 

thrust steering strategy.  During the back-up strategy the inclination was not actively 

controlled.  These comments in references (87) and (88) are reinforced by the inclination 

changes seen around days 100 and 250 in Figure 5.18.  However, these appear to be the 

only times during which the inclination was reduced.   

 

The test cases assembled for this thesis take place during the inclination control 

strategy and the back-up strategy.  Test cases 1 and 2 as marked in Figures 5.16 -5.18 fall 

within the back-up strategy while test case 3 takes place in the inclination control 

strategy.  With these three test cases, sampling of control strategies both with and without 

inclination control was accomplished.  Sections 5.4.3 and 5.4.4 describe the test cases and 

results in detail. 
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5.4.3 ARTEMIS Orbit Determination Test Cases 1 and 2 

 

 The first ARTEMIS test case included AFSSN TLEs and observations recorded 

between the dates August 4, 2002 22:03:23 and August 14, 2002 19:12:00 UTC.  These 

dates correspond with the epochs of the TLEs that bound the span.  The second 

ARTEMIS test case included AFSSN TLEs and observations recorded between the dates, 

December 27th, 2002 12:21:23.7096 and January 16th, 2003 21:36:00 UTC.  As in test 

case 1, the TLE epochs also bounded the span.  Test case 1 is about 10 days long and test 

case 2 is about 20 days.  Both test cases take place during the 4th phase of the ARTEMIS 

orbit raising.  During this back-up strategy, only the RITA2 thruster was used (88), (88). 

The August and December-January 2002 test cases were chosen because there were many 

TLEs and AFSSN observations available during this 4th phase.  It was also one of the 

longest phases of the orbit raising and so there were many multi-day time spans that 

could be used for developing test cases.  All available TLEs during these time spans were 

converted to osculating Keplerian element sets and position/velocity vectors in the Mean 

Equator, Mean Equinox (MEME) of 1950 reference frame.  The Keplerian elements were 

used to serve as inputs to the optimal thrust planning software while the position/velocity 

vectors were later used as observations in GTDS differential correction runs.  The first 

and last resulting Keplerian element sets were used as the initial and final orbits in the 

optimal thrust planning software.  These initial and final orbits are shown in Table 5.9 

and Table 5.10. 

 

  

237 



Table 5.9 Initial and Final Orbits for ARTEMIS Case 1 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 39382.9722 0.00200685 1.435685 115.95324 297.51728 211.6003815 

Final 39537.7077 0.00162154 1.435685 115.95324 297.51728 Free 

Achieved 39537.7070 0.00162154 1.435683 115.95326 297.51717 191.3186515 

 

Table 5.10 Initial and Final Orbits for ARTEMIS Case 2 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 41532.10828 0.902982 x 10-3 1.7341511 109.06473 39.263634 354.061463

Final 41840.20862 0.633538 x 10-3 1.7341511 109.06473 39.263634 Free 

Achieved 41840.20700 0.633538 x 10-3 1.7341511 109.06475 39.263634 279.485451

 

In test cases 1 and 2, the Keplerian elements for the final orbit were modified 

from the converted TLE at the final time because it was assumed that the inclination, the 

right ascension of the ascending node, and the argument of perigee were only 

experiencing drift according to natural perturbations during the back-up control strategy 

interval in the orbit raising.  These orbital parameters were not intended to be changed 

through application of the ion thrusters.  According to reference (87), the inclination was 

only affected by natural drift during the time span for these test cases.  This doesn’t 

mean, of course, that these elements didn’t change as a result of the thrusting.  However, 

to avoid calculating optimal thrust plans that duplicated natural perturbations affecting 

the inclination, RAAN and ARP, only the semimajor axis and eccentricity parameters 

were allowed to change from the initial to final orbits.  This is reflected in Tables 5.9 and 
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5.10.  As shown in Figures 5.16 and 5.17, the semimajor axis and eccentricity were 

significantly changed by the thrust application during this time span in August, 2002. 

 

Tables 5.9 and 5.10 also show the final orbits achieved by the exact equation 

thrust planning software for cases 1 and 2, respectively.  To calculate thrust plans that 

matched the final orbits this precisely, the averaged equation thrust planning software 

was first used to calculate a set of Lagrange multipliers starting from initial guesses of 

unity.  The resulting averaged Lagrange multipliers for ARTEMIS case 1 are shown in 

Table 5.11.   

Table 5.11 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 1 

Lagrange Multiplier Solution Value 

( )0~
aλ (s/km) 0.507334808835E+04 

( )0~
hλ (sec) -0.999690395153E+08 

( )0~
kλ (sec) -0.743508661166E+08 

( )
0

~
pλ (sec) 0.135424135144E+08 

( )
0

~
qλ (sec) 0.649226125343E+07 

( )0~
λλ (rad) -0.975118613527E-01 

 

The resulting averaged Lagrange multipliers for ARTEMIS case 2 are shown in Table 

5.12.   
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Table 5.12 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 2 

Lagrange Multiplier Solution Value 

( )0~
aλ (s/km) 0.570932635372E+04 

( )0~
hλ (sec) -0.344890855691E+08 

( )0~
kλ (sec) 0.559045469505E+08 

( )
0

~
pλ (sec) 0.198345266291E+02 

( )
0

~
qλ (sec) 0.287833885967E+03 

( )0~
λλ (rad) 0.764058716901E-02 

 

The averaged equation code calculated a thrust plan with a constant Hamiltonian 

value equal to 1.000042 for ARTEMIS case 1 and a value of 1.000000 for ARTEMIS 

case 2.   These Hamiltonian values are both very close to the value of exactly one, and 

this agreement indicates that the necessary conditions for optimality in ARTEMIS cases 1 

and 2 have been met.  Reference (47) indicates that the ion thrusters onboard ARTEMIS 

can produce between 21 mN and 27 mN of thrust.  With a spacecraft mass of 3100 kg 

(47), this yields a thrust acceleration of between 6.77 x 10-9 and 8.71 x 10-9 km/s2.  As a 

first guess, 7.75 x 10-9 km/s2 was chosen as the thrust acceleration for the averaged 

equation software run.  For ARTEMIS case 1, the resulting transfer time from the 

averaged equation software was 830,823.3 seconds.  This is less than the transfer time of 

853,717.0 seconds known from the initial and final TLE orbits.  However, because the 

averaged equation thrust planning software is simply intended to be used as a robust tool 

from which reasonable initial guesses for the Lagrange multipliers can be obtained, the 

difference between the known and solved values of the transfer time was deemed 
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sufficiently small.  For ARTEMIS case 2, the resulting transfer time from the averaged 

equation software was 1,767,002.2 seconds.  This is reasonably close to the known 

transfer time of 1,761,276.3 seconds.  Adjusting the constant acceleration thrust level to 

obtain agreement with the transfer time was later done using the exact equation thrust 

planning software.  It should be noted that in order to achieve the final desired orbit to a 

high degree of precision using the averaged equation thrust planning tool, adjustment of 

the weights in the cost function for the quasi-Newton search was done by hand in several 

iterations.  These weights are depicted in equation (2.101).   

 

 The exact equation thrust planning tool was initialized with the initial guesses for 

the Lagrange multipliers and transfer time solved for by the averaged equation planning 

software.  In order to produce a trajectory that closely matched the known transfer time of 

853,717.0 seconds for ARTEMIS case 1 and 1,7612,76.3 seconds for ARTEMIS case 2, 

the exact equation software was iterated while the constant thrust acceleration was 

adjusted.  As each iteration converged on a new set of values for the Lagrange multipliers 

and transfer time, the thrust acceleration was adjusted using the assumption that an 

excessively long transfer time indicated that the constant thrust acceleration was too 

small.  Conversely, a short transfer time indicated that the constant thrust acceleration 

was too large.  For ARTEMIS case 1, these iterations eventually resulted in an optimal 

thrust trajectory with a transfer time of 853,721.0 seconds.  This is too long by 4 seconds, 

but is relatively close to the desired value.  The constant value of the thrust acceleration 

used for this trajectory was 7.5628 x 10-9.  This is close to the initial guess of 7.5 x 10-9 
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and corresponds to a thrust force of 23.44468 mN for a 3100 kg spacecraft.  The solutions 

for the initial Lagrange multipliers for ARTEMIS case 1 are shown in Table 5.13. 

Table 5.13 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 1 

Lagrange Multiplier Solution Value 

( )0L
aλ (s/km) 0.326213810986E+04 

( )0L
hλ (sec) -0.671777405244E+08 

( )0L
kλ (sec) -0.478560629212E+08 

( )
0

L
pλ (sec) 0.157221510209E+05 

( )
0

L
qλ (sec) -0.128834477535E+05 

( )0L
Lλ (rad) 0.584382550521E+03 

 

The Hamiltonian for the converged solution was equal to 1.0000052.  This indicates a 

solution in which the necessary condition for optimality is met with a high degree of 

numerical precision.  The final orbit achieved is shown in Table 5.9 and also shows that 

the thrust plan matches the final desired orbit with a high degree of numerical precision.   

 

 For ARTEMIS case 2, the end result was an optimal thrust trajectory with a 

transfer time of 1,761,200.1 seconds.  This differs from the known transfer time by only 

76.1 seconds.  The known transfer time is the time difference between the epoch times of 

the initial and final orbits of the transfer.  The constant value of the thrust acceleration 

used for this trajectory was 6.5113 x 10-9.  This is less than the solution value of 7.5628 x 

10-9 obtained in ARTEMIS test case 1.  ARTEMIS test case 1 occurs near the beginning 

of the back-up control strategy while test case 2 occurs near the end.  Perhaps in the 
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several months of thrusting that occurred between the time spans of the two test cases, the 

thrust level on ARTEMIS was reduced.  From open literature sources documenting the 

ARTEMIS orbit raising, i.e. references (87) and (47), it is not clear why this occurred.  

6.5113 x 10-9 corresponds to a thrust force of 20.185 mN for a 3100 kg spacecraft.  This 

assumes that there was no mass difference in the spacecraft between case 1 and 2.  

Because Xenon fuel was being used, the mass must have decreased.  However, this does 

not account for the reduced thrust acceleration from test case 1 to test case 2.  In fact, the 

thrust acceleration due to the ion engine should increase over time as fuel is being spent 

and the spacecraft mass decreases.   

 

The solutions for the initial, exact equation Lagrange multipliers for ARTEMIS 

case 2 are shown in Table 5.14. 

Table 5.14 Initial Exact Lagrange Multipliers for ARTEMIS Case 2 

Lagrange Multiplier Solution Value 

( )0L
aλ (s/km) 0.561982107075E+04 

( )0L
hλ (sec) -0.178751941273E+08 

( )0L
kλ (sec) 0.513808871168E+08 

( )
0

L
pλ (sec) -0.154227994948E+04 

( )
0

L
qλ (sec) -0.157509957534E+04 

( )0L
Lλ (rad) 0.313251259293E+04 

 

The Hamiltonian for the converged solution for ARTEMIS case 2 was equal to 

0.9999985.  As in case 1, this Hamiltonian solution indicates that the necessary condition 
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for optimality is met with a high degree of numerical precision.  The final orbit achieved 

for case 2 is shown in Table 5.10.  The thrust plan matches the final desired orbit with a 

high degree of numerical precision.   

 

Figures 5.19-5.21 show selected orbital element histories and the pitch and yaw 

thrust plan over the transfer trajectory for ARTEMIS case 1.  The thrust plan was 

generated with the exact equation thrust planning software which uses only two-body 

motion and thrust acceleration dynamics. 

 

Figure 5.19 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan 
Case 1 
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Figure 5.20 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 1 
 

 
 

Figure 5.21 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 1 
 

Figure 5.19 shows that the semimajor axis undergoes an apparently linear increase 

from the initial boundary condition to the final boundary condition.  The eccentricity 
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follows an oscillatory path during the transfer from the initial to final boundary condition.  

From Figure 5.20, it is clear that the inclination and RAAN change over time during the 

transfer, but the change is so small that it is less than the precision shown in the ordinate 

axis.  This was the desired behavior because the inclination and RAAN were not 

supposed to change significantly as a result of thrust during this transfer.  Figue 5.21 

shows that the yaw angles used in controlling the trajectory are very small in relation to 

the pitch angles used.  This relates to the very small changes due to thrust in the orbital 

plane compared to the larger changes due to thrust in the orbit’s semimajor axis and 

eccentricity.  The oscillations in the eccentricity seem to be caused by the varying pitch 

angle during the course of the thrust plan.  Perturbations such as solar radiation pressure 

were not modeled in computing this thrust plan.  Therefore, the changes in eccentricity 

must be due to the thrust acceleration. 

 

Figures 5.22-5.24 show selected orbital element histories and thrust pitch and yaw 

directions over the transfer trajectory for ARTEMIS case 2. 
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Figure 5.22 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan 
Case 2 

 

 

Figure 5.23 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 2 
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Figure 5.24 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 2 
 

Figure 5.22 shows that in case2, as in case 1, the semimajor axis undergoes a 

roughly linear increase from the initial orbit to the final orbit.  In case 2, the eccentricity 

also follows an oscillatory path during the transfer.  Cases 1 and 2 differ in the small 

inclination and RAAN changes shown in Figures 5.20 and 5.23, respectively.  For case 1, 

the inclination and RAAN both increase while the inclination decreases over the transfer 

in case 2.  However, as expected, the inclination and RAAN change little over the time of 

the transfer.  The yaw angles used in controlling the trajectory are again very small in 

relation to the pitch angles used.  The pitch and yaw angle oscillations shown in Figure 

5.24 for case 2 are about three times less than the amplitudes of the pitch and yaw angle 

oscillations in Figure 5.21 for case 1.  It seems the optimal thrust planning software 

chooses similar plans for cases 1 and 2, but smaller amplitudes in the thrust control angle 

oscillations are required for the longer transfer. 
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As mentioned before, inertial, osculating MEME of 1950 position/velocity 

vectors converted from TLEs were used as observations in GTDS Cowell differential 

corrections (DCs).  In addition, AFSSN observations were used in a separate set of GTDS 

DCs.  Specifically, the GTDS DC program used an iterative Bayes’ Least Squares 

estimator.  The force models used with the Cowell propagator for these DCs included 

12x12 geopotential coefficients from the JGM-2 geopotential model, lunar and solar 

gravitational perturbations, solar radiation pressure and Earth polar motion.  The solve-

for vector was the Cartesian position and velocity in the MEME of 1950 reference frame.  

Starting from a reasonable a-priori orbital estimate, this nonlinear estimator should find 

the orbit that best fits a given set of observations in a least-squares sense.  The DCs, i.e. 

fits, were done in order to evaluate whether optimal thrust plans provide any modeling 

improvement for the ARTEMIS satellite orbit during the August 4-14, 2002 and the 

December 27, 2002 – January 16, 2003 test case time spans.  For both the TLE 

position/velocity vectors and the AFSSN radar and optical observations, two GTDS 

differential correction (DC) runs were executed.  The first run for each set of 

observations did not use the optimal thrust plan generated by the exact equation optimal 

thrust planning software.  The second run did use the optimal thrust plan.  These GTDS 

DC runs were then compared in terms of the TLE and AFSSN observation residual 

statistics.  The inertial, Cartesian position/velocity vector residuals, i.e. differences 

between observed and computed observations, for the TLE based observations in 

ARTEMIS case 1 are shown in Figures 5.25-5.27.  The residuals obtained when the 

optimal thrust plan is used are shown as red crosses.  The residuals obtained when no 
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thrust plan model is used are shown as blue circles.  The Cartesian (X,Y,Z) position and 

velocity residuals are closer to zero-mean and have smaller variances when the thrust 

plan is integrated with the GTDS differential corrections versus when the plan is ignored.  

The improvement in residual statistics is clear evidence that the optimal thrust plan is 

improving the accuracy of the orbit modeling for ARTEMIS test case 1. 

 

 (a) (b)

Figure 5.25 Case 1 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (X-direction) 

 

(a) (b)  

Figure 5.26 Case 1 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Y-direction) 
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 (a) (b)

Figure 5.27 Case 1 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Z-direction) 

 
 
 

The improvement in modeling accuracy is also apparent when AFSSN radar and 

optical observations are used in a differential correction (DC) with the optimal thrust 

plan.  The residual statistics when the optimal thrust plan is ignored in the DC for 

ARTEMIS case 1 are shown in Table 5.15.   

 

 

Table 5.15  DC Residual Statistics for Case 1 when Thrust Plan is Ignored 
Type DEC 

(arcs) 
RA 

(arcs) 
TDEC 
(arcs) 

TRA 
(arcs) 

Azimuth 
(arcs) 

Elevation 
(arcs) 

Range 
(m) 

Doppler
(cm/s) 

Total 
No. 

10 10 73 73 70 70 70 70 

No. 
Accepted 

0 0 6 15 20 50 0 0 

Mean 
Residual 

0.0 0.0 -1.3E5 -5.6E4 -2.9E5 2.9E4 0.0 0.0 

Std. Dev. 0.0 0.0 5.6 6.2E4 4.3E5 7.4E4 0.0 0.0 

 

The case 1 DC fit to the AFSSN observations when ignoring the thrust plan is very poor.  

Over the fitspan, 446 observations are available (Total No.), but only 91, 26%, are 
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included in the fit (No. Accepted).  The 74% of observations that were not included were 

rejected because the residuals for those observations surpassed the 3σ threshold.  Th

means that most of the residuals were more than three standard deviations away from the 

mean value.  The combined weighted RMS for all residuals was 2910.  This is also 

known as the chi-squared statistic and is a measure of goodness of fit.  If the residuals 

match the expected variances for the measurements, the weighted RMS should roug

equal 1.0.  A value of 2910 clearly indicates that the best fit achieved using the Bayes’ 

Least Squares estimator is still a poor fit of the observations.  The covariance of the 

solve-for vector can also be examined for this fit.  The standard deviation in the 

position/velocity solve-for vectors is on the order of 1.0 x 1068.  This nonsensical 

covariance indicates very large uncertainty in the solve-for vector values.  The G

Cowell DC fit results indeed show very poor agreement with the AFSSN observat

 

 If the optimal thrust plan is used in the orbit prediction during the differential 

is 

hly 

TDS 

ions. 

orrection (DC), the AFSSN residual statistics in Table 5.16 are obtained for ARTEMIS 

ase 1. 

Type DEC 
(arcs) 

RA 
(arcs) 

TDEC 
(arcs) 

TRA 
(arcs) 

Azimuth 
(arcs) 

Elevation 
(arcs) 

Range 
(m) 

Doppler
(cm/s) 

c

c

Table 5.16  DC Residual Statistics for Case 1 when Modeled with Thrust Plan 

Total 
N

10 10 73 73 70 70 70 70 
o. 

No. 
Accepted 

10 10 62 48 60 70 45 70 

Mean 
Residual 

55.6 230 38.1 48.9 -119.6 -48.6 -5.02 -4.92 

Std. Dev. 2.11 0.82 49.7 126.7 206.2 184.8 57.17 100.9 
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 Figures 5.28a and 5.28b.  These residuals were the result when the optimal thrust plan 

as inc

tistics playe  Tabl .16 sho hat sate motion ch 

ette

residual statistics are not at the level expected for the given observations.  Radar range

measurements, for example, are typically near zero-mean and can have a variance as

small as 5-20 meters.  Radar angular measurements, i.e. Azimuth and Elevation, should

have residual statistics on the order of 20-30 arcseconds.  Optical measurements, i.e. R

and DEC, should have residual statistics on the order of 10-15 arcseconds.  The larger 

than expected residual statistics indicate that the optimal thrust plan is not precisely equal

to the thrust plan actually executed by ARTEMIS.  Many more observations were 

included in this fit than in the previous fit for case 1.  Out of 446 observations, 375 or 

84% were included.  This means that the fit is including many more observations th

fit done without thrust modeling.  The combined weighted RMS of all residuals is 7.08

This is still not an ideal fit because 7.08 is much larger than 1.0.  However, this is much 

better than 2910.  The standard deviations of the Cartesian position solve-for values are 

between 0.12 and 1.2 km.  The covariance of the solve-for state in this fit indicates much

more certainty of the satellite’s position than in the fit which ignored thrust acceleration.

 

 The SSN radar range and range rate (doppler) measurement residuals are plotted 

in

w luded in the GTDS Cowell DC fit. 
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Figure 5.28  Range (a) and Range Rate (b) Residuals for ARTEMIS Case 1 

 

The mean and standard deviation of the range and range rate measurement residuals 

displayed in Figure 5.28 differ from those in Table 5.16 because the statistics in Table 

5.16 only include residuals that were accepted according to the 3σ criterion.  The 

statistics in Figure 5.28 include all measurement residuals regardless of acceptance 

according to the 3σ criterion.  The range residuals should not be much larger than about 

20 meters given the radar measurements included in the DC fit.  The larger than expected 

range residuals indicate some mismodeling in the GTDS DC fit.  The optimal thrust plan 

seems to represent the actual ARTEMIS thrust strategy with some degree of inaccuracy.  

From Figure 5.28, it appears as though range measurements near the end of the fitspan 

are not fitting as well as observations in the beginning and middle of the fitspan.  This 

could indicate that the thrust modeling is more inaccurate near the end of the fitspan.  The 

range rate measurements appear to fit reasonably well except for a number of 

measurements near the end of day 5 in the fitspan.  This could indicate an inaccurate 

radar track or inaccurate thrust modeling at that point in the fitspan. 
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 Figure 5.29 shows the radar azimuth and elevation measurement residuals for 

ARTEMIS case 1 when the optimal thrust plan is included in the GTDS Cowell DC fit. 

 

 

Figure 5.29  Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 1 

 

In Figure 5.29 as in Figure 5.28, the mean and standard deviation statistics of the 

measurement residuals differ from those in Table 5.16 because Figure 5.29 includes all 

measurement residuals regardless of whether they were included in the fit according to 

the 3σ criterion.  In Figure 5.29, azimuth and elevation residuals are much larger than the 

20 arcsecond residuals one would expect given the radar measurements used in the 

GTDS DC fit.  This indicates the optimal thrust plan used for this fit is inaccurate to some 

degree.   

 

The optical right ascension and declination measurement residuals from the 

GTDS Cowell DC fit for ARTEMIS case 1 are shown in Figure 5.30.  Here, the optimal 

thrust plan was included in the fit. 
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Figure 5.30 Right Ascension (a) and Declination (b) Residuals for ARTEMIS Case 1 

 

In Figure 5.30, as in Figures 5.28 and 5.29, all residuals are included regardless of the 3σ 

criterion used in the GTDS DC.  These residual mean and standard deviation statistics 

therefore differ from those in Table 5.16.  The right ascension and declination residuals 

are not expected to be much larger than 15 arcseconds given the sensors supplying the 

observations.  However, Figure 5.30 shows that the residuals are significantly larger than 

expected.  Both the right ascension and declination residuals increase significantly after 

day 5 in the fitspan.  This could mean that the thrust plan is more inaccurate in the latter 

half of the 10 day span than in the first half.  This was also hinted at in the range residuals 

shown in Figure 5.28.  It is clear that systematic errors in the thrust modeling prevent 

measurement residuals that exhibit only sensor measurement noise characteristics.  

Despite these noted imperfections, the lessening of the TLE derived position/velocity 

vector residuals demonstrated in Figures 5.25 – 5.27 shows that the optimal thrust plan 

does significantly improve thrust motion modeling for ARTEMIS. 
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ARTEMIS test case 2 shows improvement that is similar to the improvement 

demonstrated in case 1 when thrust acceleration is modeled with an optimal thrust plan.  

Figures 5.31-5.33 show the Cartesian, osculating position and velocity residuals when fit 

with and without optimal thrust modeling. 

 

(a) (b)  

Figure 5.31 Case 2 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (X-direction) 

 

 

 (a) (b)

Figure 5.32 Case 2 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Y-direction) 
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 (a) (b)

Figure 5.33 Case 2 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Z-direction) 

 

In Figures 5.31-5.33, the improvement in the ARTEMIS case 2 position/velocity 

residuals is more dramatic than for the case 1 residuals.  Case 2 spans roughly 20 days 

while case 1 spans about 10 days.  Therefore, attempting to fit the TLE-based 

position/velocity vectors is more difficult in case 2 because of the larger displacement of 

the orbit due to the continuous thrusting.  Results from ARTEMIS test case 2 also 

demonstrate significant improvement in modeling the satellite’s artificial motion when 

using the optimal thrust plan. 

 

When fitting AFSSN observations without thrust modeling in case 2, the GTDS 

Cowell DC software is unable to converge.  The DC rejects all observations and three 

consecutive iterations in the nonlinear estimator diverge rather than converge.  It is 

apparently very difficult to fit observations of ARTEMIS over the 20 day span when no 

thrust modeling is attempted.  When the optimal thrust plan for case 2 is applied, the 
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GTDS DC program is able to converge and produces the observation residual statistics 

shown in Table 5.17. 

 

Table 5.17  DC Residual Statistics for Case 2 when Modeled with Thrust Plan 
Type DEC 

(arcs) 
RA 

(arcs) 
TDEC 
(arcs) 

TRA 
(arcs) 

Azimuth 
(arcs) 

Elevation 
(arcs) 

Range 
(m) 

Doppler
(cm/s) 

Total 
No. 

29 29 32 32 183 183 183 180 

No. 
Accepted 

29 24 31 28 181 183 58 180 

Mean 
Residual 

68.23 -158.1 37.01 142.9 3.862 38.13 -4.74 0.318 

Std. Dev. 25.81 282.8 32.61 138.5 316.8 210.8 80.23 48.35 

 

The DC accepts most of the observations.  Out of 851 observations, 714, or 83%, are 

accepted by the 3σ criterion.  The combined weighted RMS statistic is 14.74 for the fit.  

This is significantly larger than the ideal value of 1.0.  Also, the individual measurement 

residual statistics shown in Table 5.17 are larger than expected.  Both facts point to 

remaining modeling errors for the ARTEMIS trajectory over this 20 day span.  The 

optimal thrust plans generated by the thrust plan software are not yet accurate enough to 

allow orbit fits that produce residuals that exhibit only measurement noise.  Systematic 

errors caused by the inaccurate thrust plans prevent such high precision orbit fits.  The 

covariance of the position estimate shows variances on the order of between 1.0 and 1.7 

km.  When modeling the thrust plan, the uncertainty in the satellite’s position is therefore 

only slightly higher for case 2 than it is for case 1.   

 

Figure 5.34 shows the radar range and range rate measurement residuals for 

ARTEMIS case 2 when the optimal thrust plan was included in the GTDS DC fit.  The 

259 



mean and standard deviation of the residuals shown in Figures 5.34-5.36 differ from 

those in Table 5.17 because in Table 5.17, only residuals accepted in the fit according to 

the 3σ criterion are included.  In Figures 5.34-5.36 all residual are included. 

 

 

Figure 5.34 Range (a) and Range Rate (b) Residuals for ARTEMIS Case 2 

 

As in Figure 5.30 for case 1, the range residuals are larger than expected.  The range 

residuals for the radar sensors used in the GTDS Cowell DC fit would not be much larger 

than 20 meters if the ARTEMIS motion modeling was near perfect.  As in case 1, the 

larger than expected range residuals for case 2 indicate that inaccuracies in the thrust 

modeling are indeed present.   

 

Figure 5.35 shows the radar azimuth and elevation measurements for ARTEMIS 

case 2 when optimal thrust modeling is used in the GTDS Cowell DC. 
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Figure 5.35 Azimuth (a) and Elevation (b) Residuals for ARTEMIS Case 2 

 

The expected residuals for the azimuth and elevation angle radar observations would be 

on the order of 20 arcseconds if the ARTEMIS thrust acceleration and natural motion 

modeling was near perfect.  Because the azimuth and elevation angle residuals are 

significantly larger than expected, it is likely the thrust modeling is inaccurate to some 

degree.  There is also a trend in the residuals that indicates periodic errors in the 

modeling. 

 

Figure 5.36 shows the optical right ascension and declination residuals for 

ARTEMIS case 2 when fit in a GTDS Cowell DC.  The optimal thrust plan was used in 

the fit. 
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Figure 5.36 Right Ascension (a) and Declination (b) Residuals for ARTEMIS Case 2 

 

The expected residuals would be on the order of 15 arcseconds if near perfect modeling 

of the ARTEMIS thrust was accomplished.  The right ascension and declination residuals 

shown in Figure 5.36 show that near-perfect modeling was indeed not achieved.  The 

right ascension residuals show a parabolic pattern over the 20 day span.  This indicates 

that the along-track motion of ARTEMIS is not being modeled accurately.  The 

declination residuals show a bias of around 50 arcseconds.  This indicates that the 

ARTEMIS cross-track motion is not being modeled accurately.   

 

 
5.4.4  ARTEMIS Orbit Determination Case 3 
 
 

 
The third ARTEMIS test case was chosen to coincide with the inclination control 

strategy.  The test case span was specifically chosen to coincide with the obvious change 

in inclination around day 100 as displayed in Figure 5.18.  This third test case included 

only AFSSN TLEs.  AFSSN radar and optical observations could not be obtained in time 

for this thesis.  The test case start and end times were November 9, 2001 10:20:58.513 
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UTC and November 28, 2001 03:09:02.650 UTC, respectively.  This span is about 18 

days in duration.  As in test cases 1 and 2, all available TLEs during these time spans 

were converted to osculating Keplerian element sets and position/velocity vectors in the 

Mean Equator, Mean Equinox (MEME) of 1950 reference frame.  The Keplerian 

elements were used to serve as inputs to the optimal thrust planning software while the 

position/velocity vectors were later used as observations in GTDS differential correction 

runs.  The first and last resulting Keplerian element sets were used as the initial and final 

orbits in the optimal thrust planning software.  These initial and final orbits are shown in 

Table 5.18. 

Table 5.18 Initial and Final Orbits for ARTEMIS Case 3 

Orbit a, (km) e i, (deg) Ω, (deg) ω, (deg) M, (deg) 

Initial 37303.61026 0.0007899398 1.0670144 135.6513 81.55172 238.70057 

Final 37300.27217 0.0005757628 0.9876237 135.6513 81.55172 Free 

Achieved 37300.27431 0.0005757811 0.9876415 135.6502 81.55504 88.196088 

 

In test case 3, the Keplerian elements for the final orbit were modified from the 

converted TLE at the final time because the right ascension of the ascending node, the 

argument of perigee, and the mean anomaly were not actively controlled during the 

inclination control strategy.  However, the semimajor axis, eccentricity, and inclination 

were deliberately changed according to the thrust control strategy executed by the 

ARTEMIS operators.  Figures 5.17-5.18 show that the eccentricity and inclination have a 

decreasing trend during the case 3 interval.  These trends seem to be isolated to the span 

approximately marked by the case 3 boundaries.  This implies that the case 3 interval 

approximates a time period when the ARTEMIS operators actively controlled the 
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eccentricity and inclination.  It seems as though the operators didn’t control the 

eccentricity and inclination during the times immediately surrounding the case 3 interval.  

The semimajor axis also displays a decrease of around two kilometers during the case 3 

interval, but that change is too small to be seen in Figure 5.16.   

 

Table 5.18 shows the final orbit achieved by the exact equation thrust planning 

software for cases 3.  This orbit nearly matches the desired final orbit.  However, the 

agreement is not as good as that obtained in ARTEMIS cases 1 and 2.  In ARTEMIS case 

3, the exact equation thrust planning software was not able to minimize the cost function 

to a high degree of precision.  This may be due to test case 3 having more periodicity in 

the orbital elements and Lagrange multipliers over the transfer time.  There are better 

algorithms for solving the cost minimization than the quasi-Newton unconstrained 

minimization method used in this work and exploration of these more advanced methods 

should be addressed in future work.   

 

To calculate the thrust plan that matched the final orbit with reasonable precision, 

the averaged equation thrust planning software was first used to calculate a set of 

averaged Lagrange multipliers starting from initial guesses of unity.  The resulting 

averaged Lagrange multipliers for ARTEMIS case 3 are shown in Table 5.19.   
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Table 5.19 Initial Time Averaged Lagrange Multipliers for ARTEMIS Case 3 

Lagrange Multiplier Solution Value 

( )0~
aλ (s/km) -0.772868765055E+02 

( )0~
hλ (sec) 0.227840011762E+07 

( )0~
kλ (sec) 0.311020912332E+07 

( )
0

~
pλ (sec) -0.161366219567E+10 

( )
0

~
qλ (sec) 0.168962077600E+10 

( )0~
λλ (rad) -0.489428314171E-01 

 

The averaged equation code calculated a thrust plan with a constant Hamiltonian 

value equal to 1.000000 for ARTEMIS case 3.  The Hamiltonian value is very close the 

value of exactly one, and this agreement indicates that the necessary condition for 

optimality in ARTEMIS case 3 has been met.  Reference (47) indicates that the ion 

thrusters onboard ARTEMIS can produce between 21 mN and 27 mN of thrust.  With a 

spacecraft mass of 3100 kg (47), this yields a thrust acceleration of between 6.77 x 10-9 

and 8.71 x 10-9 km/s2.  Because the inclination control strategy discussed in reference 

(88) involved about 5 hours of thrusting per day rather than continuous thrusting, a 

reduced guess for the thrust acceleration was used in this case.  By iterating the averaged 

equation thrust planning software to achieve a computed transfer time approximately 

equal to the known transfer time, a constant thrust acceleration of 4.4 km/s2 was 

converged upon.  This thrust acceleration resulted in a transfer time of 1,619,696 

seconds.  This is greater than the transfer time of 1,615,684 seconds known from the 
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initial and final TLE orbits.  However, because the averaged equation thrust planning 

software is simply intended to be used as a robust tool from which reasonable initial 

guesses for the Lagrange multipliers can be obtained, the difference between the known 

and solved values of the transfer time was deemed sufficiently small.  It should be noted 

that in order to achieve the final desired orbit to a high degree of precision using the 

averaged equation thrust planning tool, adjustment of the weights in the cost function for 

the quasi-Newton search was done by hand in several iterations.  These weights are 

depicted in equation (2.101). 

 

 The exact equation thrust planning tool was initialized with the initial guesses for 

the Lagrange multipliers, the constant thrust acceleration value, and the transfer time 

solved for by the averaged equation planning software.  In order to produce a trajectory 

that closely matched the known transfer time of 1,615,684 seconds for ARTEMIS case 3, 

the exact equation software was iterated while the constant thrust acceleration was 

adjusted.  As each iteration converged on a new set of values for the Lagrange multipliers 

and transfer time, the thrust acceleration was adjusted using the assumption that an 

excessively long transfer time indicated that the constant thrust acceleration was too 

small.  Conversely, a short transfer time indicated that the constant thrust acceleration 

was too large.  For ARTEMIS case 3, these iterations eventually resulted in an optimal 

thrust trajectory with a transfer time of 1,619,069 seconds.  This is too long by 3385 

seconds.  However, the exact equation thrust planning software had difficulty finding cost 

function minima when the thrust acceleration was adjusted.  This fact necessitated the use 

of this thrust plan even though the solved-for transfer time did not match the known 
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transfer time very precisely.  The constant value of the thrust acceleration used for this 

trajectory was 4.4 x 10-9.  This is the same value solved for by the averaged equation 

software and was reused because the iterations using the exact equation software had 

difficulty finding a cost function minimum for other values of the thrust acceleration.   

4.4 x 10-9 corresponds to a thrust force of 13.64 mN for a 3100 kg spacecraft.  The exact 

equation solutions for the initial Lagrange multipliers for ARTEMIS case 3 are shown in 

Table 5.13. 

Table 5.20 Initial Time Exact Lagrange Multipliers for ARTEMIS Case 3 

Lagrange Multiplier Solution Value 

( )0L
aλ (s/km) -0.728573542528E+02 

( )0L
hλ (sec) 0.301891114262E+07 

( )0L
kλ (sec) 0.579883263045E+07 

( )
0

L
pλ (sec) 0.105599550006E+10 

( )
0

L
qλ (sec) 0.108651386979E+10 

( )0L
Lλ (rad) 0.252160525941E+04 

 

The Hamiltonian for the converged solution was equal to 1.0000705.  This 

indicates a solution in which the necessary condition for optimality is met with a high 

degree of numerical precision.  The final orbit achieved is shown in Table 5.18. 

 

Figures 5.37-5.39 show selected orbital element histories and the pitch and yaw 

thrust plan over the transfer trajectory for ARTEMIS case 3.  As for cases 1 and 2, the 
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thrust plan for test case 3 was generated with the exact equation thrust planning software 

using only two-body motion and thrust acceleration dynamics. 

 

 

Figure 5.37 Semimajor axis and Eccentricity for ARTEMIS Optimal Thrust Plan 
Case 3 
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Figure 5.38 Inclination and RAAN for ARTEMIS Optimal Thrust Plan Case 3 
 

 
 

Figure 5.39 Pitch and Yaw Thrust Angles for Optimal Thrust Plan Case 3 
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Figure 5.37 shows that the semimajor axis decreases from the initial boundary 

condition to the final boundary condition.  This decrease is not linear as in cases 1 and 2.  

Rather it has periodic behavior caused by the thrust plan.  The eccentricity also decreases 

and follows an oscillatory path during the transfer from the initial to final boundary 

condition.  The semimajor axis and eccentricity oscillations are due to the varying pitch 

angle of thrust during the transfer.  Figure 5.38 shows the inclination and right ascension 

of the ascending node during the transfer plan. The right ascension trend is oscillatory 

while the inclination trend is linear.  Figure 5.39 shows that the pitch and yaw angles both 

vary a great deal during each day of the thrust plan.  The pitch angle rotates about 360 

degrees in relation to the spacecraft each day.  This ultimately achieves the semimajor 

axis and eccentricity changes required to get from the initial to the final orbit.  The yaw 

angle pauses for several hours at 90 degrees and -90 degrees, i.e. normal to the orbital 

plane.  This behavior is not surprising because during the inclination control strategy, a 

yaw angle of thrust that is normal to the orbit plane for several hours a day was described 

in reference (88).  This yaw angle behavior in the thrust plan produced for ARTEMIS 

case 3 differs from the behavior in the plans created for ARTEMIS cases 1 and 2 because 

inclination control was used in the test case 3 interval.  Inclination control was not 

attempted during the back-up control strategy according to reference (88). 

 

As in ARTEMIS cases 1 and 2, inertial, osculating MEME of 1950 

position/velocity vectors converted from TLEs were used as observations in GTDS 

Cowell differential corrections (DCs).  AFSSN radar and optical observations were not 

applied in test case 3 because they were not available at the time of the writing of this 
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thesis.  The GTDS DC program used an iterative Bayes’ Least Squares estimator.  The 

force models used with the Cowell propagator for these DCs were the same as for cases 1 

and 2 and included 12x12 geopotential coefficients from the JGM-2 geopotential model, 

lunar and solar gravitational perturbations, solar radiation pressure and Earth polar 

motion.  The solve-for vector was the Cartesian position and velocity in the MEME of 

1950 reference frame.  Starting from a reasonable a-priori orbital estimate, this nonlinear 

estimator should find the orbit that best fits a given set of observations in a least-squares 

sense.  For test case 3, the DCs, i.e. fits, were done in order to evaluate whether optimal 

thrust plans provide any modeling improvement for the ARTEMIS satellite orbit during 

the time span from November 9th, 2001 to November 28th, 2001.  As in cases 1 and 2, the 

TLE position/velocity vectors were applied in two GTDS differential correction (DC) 

runs.  The first run for each set of observations did not use the optimal thrust plan 

generated by the exact equation optimal thrust planning software.  The second run did use 

the optimal thrust plan.  These GTDS DC runs were then compared in terms of the 

position/velocity residual statistics.  The inertial, Cartesian position/velocity vector 

residuals, i.e. differences between observed and computed observations, for the TLE 

based observations in ARTEMIS case 3 are shown in Figures 5.40-5.42.  The residuals 

obtained when the optimal thrust plan is used are shown as red crosses.  The residuals 

obtained when no thrust plan model is used are shown as blue circles.   
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Figure 5.40 Case 3 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (X-direction) 

 

 

 

Figure 5.41 Case 3 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Y-direction) 
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Figure 5.42 Case 3 Residuals of TLE based ECI osculating position (a) and 
velocity (b) vectors (Z-direction) 

 
 

Figure 5.42 shows that the ECI, Cartesian position/velocity residuals in the Z 

direction are closer to zero-mean and have smaller variances when the thrust plan is 

integrated with the GTDS differential corrections versus when the plan is ignored.  This 

is expected because the Z ECI directional axis most reflects satellite motion out of the 

orbital plane, and the optimal thrust plan was constructed to model the satellite’s orbital 

plane change during the thrust transfer.  The X direction and Y direction ECI residuals in 

Figures 5.40 and 5.41 show marginal improvement when applying the optimal thrust plan 

to orbit determination.  This is perhaps because the optimal thrust plan did not perform 

the transfer within the known transfer time and did not model the transfer in 

discontinuous pieces as ARTEMIS actually performed the transfer.  However, the 

improvement in residual statistics for the Z-axis clearly indicates that the optimal thrust 

plan improved the accuracy of the orbit modeling for ARTEMIS test case 3. 
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Overall, ARTEMIS test cases 1, 2 and 3 provide strong evidence that assuming an 

optimal thrust plan based on two-body dynamics can provide significant improvement in 

agreement with TLE and AFSSN observation data.  Remaining modeling errors persist, 

however.  These remaining modeling errors are apparent when examining AFSSN radar 

and optical measurement residuals.  Future work to include J2, lunar and solar gravity, 

and other significant perturbations in the optimal thrust planning software may allow for 

more accurate orbit determination.  It is probable that the ARTEMIS operators used 

thrust plans that did consider J2 and other perturbations.  If that is the case, modeling 

these perturbations in the optimal thrust planning software should provide benefits for 

orbit determination and prediction of the ARTEMIS satellite during its orbit raising.   

 

Iteration of the orbit determination and optimal thrust plan solutions should also 

be considered.  Because the initial and final orbits used as input to the optimal thrust 

planning software are based on TLEs in these ARTEMIS test cases, they contain errors 

on the order of several kilometers.  If an iteration can be executed whereby a DC orbit 

solution, i.e. initial and final orbits from the fitspan of the DC, can be used as input to the 

optimal thrust planning software, and new optimal thrust plans can be used in a 

subsequent DC, refinement of the satellite’s trajectory could be made.  This iterative 

process would essentially require an outer processing loop for the process depicted in 

Figure 5.15.  However, it is unclear that such a super-iteration of this procedure would 

result in more accurate orbit determination without implementation of perturbations in 

the optimal thrust planning software. 
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Chapter 6  Conclusions and Future Work 
 

 
6.1 Summary and Conclusions 
 

 
The goals set out for this thesis included applying a modern filter/smoother to the 

problem of orbit determination for satellites that operate with continuous, low-thrust 

propulsion.  The goal of applying modern filters and smoothers was set to determine 

whether estimation accuracy could be improved.  Specifically, this thesis work was done 

in response to previous work in detecting satellite maneuvers (1).  In this previous work, 

several detection algorithms for impulsive, chemical maneuvers were developed and 

evaluated.  In the end, reference (1) presents an algorithm that uses an adaptive Extended 

Kalman Filter to detect maneuvers.  The algorithm also attempts to verify the maneuvers 

and produce accurate post-maneuver orbital estimates using short-span differential 

corrections.  The authors found that the adaptive Extended Semianalytic Kalman Filter 

(ESKF) alone provided insufficient accuracy immediately after satellite maneuvers 

occurred, and the ESKF required much time to recover accurate orbital state estimates.   

 

For this thesis, a modern filter/smoother, the Backward Smoothing Extended 

Kalman Filter (BSEKF) (2), was chosen to attempt to remedy the accuracy issues found 

in reference (1) with the ESKF.  The BSESKF was implemented in the Goddard 

Trajectory Determination System (GTDS) and coupled to the Draper Semianalytic 

Satellite Theory (DSST) to provide system dynamics.  The BSESKF was tested with 

simulated observations generated from a nominal orbit for LEO and GEO test cases.  For 

the LEO and GEO cases tested, the BSESKF provided more accurate orbital state 
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estimates than an existing ESKF implementation, and it required less time and fewer 

observations to obtain the accurate orbital state estimates.  Increasing the number of 

observations over which the BSESKF filters and smoothes, i.e. the m-buffer, usually 

improved the accuracy and convergence of the BSESKF estimates.  However, in some 

cases, increasing the m-buffer to sizes that include observations more than three 

integration time steps from the latest observation time reduced the accuracy of the 

BSESKF estimates.  Preliminary testing indicates that with large m-buffer sizes, there is 

the potential to use interpolators outside of their valid ranges.  Further software 

modifications could allow the interpolators to be reinitialized for past observations.  

Despite this software issue, the BSESKF estimates are a significant improvement over 

the ESKF estimates in the cases exercised. 

 

Modeling continuous, low-thrust orbit transfers was also a goal for this thesis and 

significant progress has been made.  Software tools to generate optimal thrust plans have 

been written and these plans have been used in GTDS for both orbit prediction and 

determination.  The work of Jean Kechichian was particularly useful in developing these 

thrust planning tools.  The ARTEMIS satellite orbit raising was used as a test case for 

determining how well orbit determination could be improved when optimal thrust plans 

were used to model continuous thrust orbit transfers.  For the ARTEMIS case, optimal 

thrust plans were generated for three different time spans during the orbit raising.  Orbit 

determination using GTDS was then performed for those spans.  When the optimal thrust 

plan for the transfer was used to model the thrust acceleration, the orbit determination 

observation residuals varied much less than when the thrust acceleration was not 
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modeled.  In some cases, this variance improved by an order of magnitude.  The mean 

errors in the residuals were also much closer to zero when modeling spacecraft thrust 

with optimal thrust plans vs. no thrust plans.  Particularly when using Air Force Space 

Surveillance Network (AFSSN) observations, neglecting spacecraft thrust didn’t allow 

non-linear least squares differential orbit corrections to converge.  When differential 

corrections included optimal thrust plan modeling, convergence was achieved.  Results 

demonstrated in this thesis were achieved using position/velocity observations derived 

from Two Line Elements (TLEs) and using radar and optical observations from the 

AFSSN.   

 

Although the observation residual behavior was significantly improved when 

using optimal thrust plans, the measurement residuals associated with AFSSN 

observations were still characterized by larger means and variances than were expected 

given the sensors and observation types used.  This indicates that systematic orbit 

modeling errors were being projected into the observation residual space.  These 

systematic errors are likely from a combination of sources.  These error sources include: 

inaccuracy in the initial and final ARTEMIS orbital elements used to generate the 

optimal thrust plans, neglect of perturbative forces such as J2 when calculating the 

optimal thrust plans, and the assumption that the ARTEMIS actually used an optimal 

thrust plan when executing its orbit raising.  There also may have been times within the 

modeled spans during which the ARTEMIS thrusters were turned off.  Such 

discontinuities would not have been modeled in the optimal, constant thrust plans 

generated with the thrust planning software.   
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6.2 Future Work 

 

Because of the favorable results obtained in testing the BSESKF with simulated 

observations, future work should examine the behavior of the BSESKF when given real 

observations.  This might first include applying it to real observation cases in which very 

accurate truth orbits could be used such as in the cases of satellites tracked by laser 

ranging stations or GPS satellites.  If these tests prove successful, the BSEKF could be 

tested with sparser data or data from the Air Force Space Surveillance Network 

(AFSSN).  Ultimately, the BSEKF could prove useful enough to replace the ESKF used 

for maneuver detection at MIT Lincoln Laboratory (1).  This system uses the ESKF to 

detect off-nominal observation residuals and uses a series of subsequent tests to detect 

maneuvers in GEO satellites.  It currently has to use short-span differential correction 

(DC) after maneuvers to provide accurate post-maneuver orbital estimates.  Perhaps the 

BSESKF can replace the clumsier ESKF and DC approach.   

 

Another application of the BSESKF could be estimating atmospheric density 

corrections.  Others have worked on this problem and have applied other filter/smoothers 

to orbit determination and density correction estimation (92), (93).  These references 

develop a Colored Noise Algorithm and an SVD decomposition estimation algorithm, 

respectively.  It would be useful to compare the BSESKF to these estimators.  It may also 

be worthwhile to use concepts from these estimators to improve convergence properties 

and treatments of measurement and process noise in the BSESKF.  The sigma points 

smoother developed by Mark Psiaki (82) is an alternative to the BSEKF.  It uses a 
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version of the UKF with a smoother and compares well with the BSEKF while being 

more computationally efficient (82). 

 

The capabilities of the maneuver detection and modeling system depicted in 

Figure 1.1 are not yet fully realized with the tools that have developed for this thesis.  

Figure 6.1 shows helpful existing software, software developed for this thesis, and 

notional future software that would be useful in developing such a system. 

 

 

Figure 6.1  Progress in Modeling, Prediction and Estimation Tools for Improved 
Satellite Thrust Treatment 

 

Although the thrust acceleration force model that has been implemented in GTDS 

has been successfully used with the Cowell orbit propagator, further software work must 

be done to use thrust plans with the DSST propagator.  Some testing toward this end has 

been done, but further software issues remain.  This implementation gap is depicted in 

Figure 6.1. 
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Although the BSEKF has also been coupled to the Cowell propagator in GTDS, 

testing currently indicates poorer convergence than with the existing GTDS EKF.  The 

Cowell BSEKF also shows much poorer estimation performance than the DSST 

BSESKF.  The software interface between the Cowell propagator and the BSEKF 

estimator requires more analysis and development for this capability to be realized.  This 

gap in implentation is shown in Figure 6.1.  Also, as discussed in section 4.4 of Chapter 

4, allowing interpolator reinitialization in the BSESKF-DSST interface should improve 

BSESKF estimate accuracy with large m-buffer sizes. 

 

The optimal thrust planning software would be made more useful with some 

enhancements.  Modeling for Earth’s J2, J3 and J4 zonal harmonics should be included.  

Lunar and solar gravitational perturbations should also be included.  References (7) and 

(8) would be good starting points for this effort.  Perturbations such as these non-

spherical harmonics and third-body effects alter long-duration thrust transfers 

significantly.  Other useful enhancements could allow for bounded, variable thrust or 

bounded variable specific impulse.  These enhancements might benefit efforts to model 

GEO satellite station keeping.  The current thrust modeling software does a poor job of 

this because it assumes constant continuous thrust, whereas GEO satellites with EP 

operate thrusters discontinuously throughout each orbit.  Capability to model station-

keeping is future work as indicated in Figure 6.1. 
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In order to model thrust transfers that pass through critical inclination orbits, it 

would be important to include modeling for the odd zonal harmonics such as J5, J7 and J9.  

Several satellite constellations that make use of critical inclination orbits are in use or 

have been proposed.  It is probably only a matter of time before low-thrust EP satellites 

will occupy such orbits.  Modeling optimal thrust trajectories for these satellites is likely 

to be worthwhile. 

 

As more satellites with low-thrust EP are launched, the bookkeeping aspect of 

recording and retrieving the types of thrust trajectories these satellites use will become 

more important.  It would be helpful to maintain a database of satellites with EP and 

thrust plans they have used.  This is similar to the launch folder concept already used in 

space surveillance. 

 

Another way to enhance the optimal thrust planning software would be to use a 

more robust minimization algorithm.  Currently, the UNCMIN (58) quasi-Newton search 

algorithm used in the thrust planning software requires manual adjustment of weighting 

factors in the cost function.  This adjustment requires a “human-in-the-loop.”  In 

communications with Jean Kechichian, it is clear that more convenient and robust 

minimization algorithms exist (94).  One such algorithm is the DONLP2 algorithm 

written by Peter Spellucci (95).  This algorithm performs constrained minimization and 

may be suitable for the trajectory optimization problems presented in this thesis.   
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In the process of implementing the exact and averaged optimal thrust planning 

software, a 7th order Runge-Kutta-Fehlberg (RKF) integrator was found to provide the 

required accuracy while a 4th order RKF integrator did not.  Because a 4th order RKF 

integrator is used in the GTDS DSST implementation, it is worth investigating whether a 

7th order RKF integrator would improve DSST predication accuracy. 
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Chapter 7   Appendices 
 
Appendix A  New GTDS Keywords 
 

BSEKFSET Keyword 
 

• Card Format (A8,3I3,3G21.14) 
• Applicable programs: BSEKF subdeck BSEKFOPT 
• Detailed Format: 

 
Columns Format  Description 
1-8  A8  BSEKFSET – keyword to set options for running the  
 BSEKF 
9-11                 I3  1 – Use the value in columns 18-38 as the m-buffer6 size 
 0 – Use the default value for the m-buffer (24) 
12-14               I3 1 – Use the value in columns 39-59 as the iteration 

tolerance7 

 0 – Use the default value for the iteration tolerance (1x10-9) 
15 – 17            I3                     1 – Use the value in columns 60-80 to set the number of 

iterations allowed by the Gauss-Newton iteration8 
    0 – Use the default value for maximum iterations (20) 
18-38              G21.14             If 1I3 is 1, this is the number of measurements to store in 

the m-buffer 
39-59              G21.14             If 2I3 is 1, the iteration tolerance 
60-80              G 12.14        If 3I3 is 1, the maximum number of iterations per 

measurement that are allowed. 
 

                                                 
6 The m-buffer is the memory structure containing all measurements before the current one.  The m-buffer 
is filtered and smoothed according to the BSEKF algorithm developed by Dr. Mark Psiaki at Cornell and 
implemented in GTDS.  The m-buffer should be set large enough so that filtering/smoothing over the 
interval will allow nonlinear aspects in the system dynamics to be seen.  A rule of thumb is to set the m-
buffer to as many observations as it takes for an Extended Kalman Filter to converge. 
7 The iteration tolerance is the maximum difference between the previously calculated linearized cost 
function value and the current cost function value in order to determine convergence of the Gauss-Newton 
iterations within the BSEKF algorithm. 
8 The max number of iterations is set to prevent unnecessary iterations that result in insignificant gains in 
accuracy.  These unnecessary iterations can significantly degrade performance of the BSEKF if this value 
is set too large.  The default value is usually best. 
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9GTDS  THRSTTBL Keyword 
 

• Card Format (A8,3I3,2G21.14) 
• Use with thrust acceleration vector input file 
• Use in the OGOPT subdeck 
• Detailed Format: 

 
Columns Format  Description 
1-8  A8  THRSTTBL 
9-11  I3  on/off switch 
    0 – Off 
    1 – On 
12-17  n/a  blank (not used) 
18-38 G21.14 Thrust vector start time (UTC)  
  (YYYMMDDHHMISS.ssss) 
    YYY – years from 1900 
    MM – month 
    DD – day of month 
    HH – hour 
    MI – minute 
    SS – second (integer part) 
    .ssss – seconds (fractional part) 
39-59 G21.14 Thrust vector stop time (UTC)  
  (YYYMMDDHHMISS.ssss) 
    YYY – years from 1900 
    MM – month 
    DD – day of month 
    HH – hour 
    MI – minute 
    SS – second (integer part) 
    .ssss – seconds (fractional part) 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
9 This card activates the thrust acceleration vector file input.  It can be used to turn the feature on or off and 
it can be used to limit the times during which the thrust vector file is used.  The first and second real fields 
specify the start and end times during which attempts to read the thrust acceleration file will be made. 
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10GTDS  Thrust Acceleration Vector Input File (UNIT 116) 
 

• Card Format (A8,3I3,5G21.14) 
• Use with THRSTTBL keyword  
• Detailed Format: 

 
Columns Format  Description 
1-8  A8  Blank characters (not used) 
9-11  I3  Coordinate frame 
    1 – Inertial Cartesian reference frame 
    2 – Body-fixed Cartesian ref. frame (not implemented) 
12-17  n/a  blank (not used) 
18-38  G21.14  Thrust vector time (UTC) (YYYMMDDHHMISS.ssss) 
    YYY – years from 1900 
    MM – month 
    DD – day of month 
    HH – hour 
    MI – minute 
    SS – second (integer part) 
    .ssss – seconds (fractional part) 
39-59  G21.14  unit acceleration vector in X direction 
60-80  G21.14  unit acceleration vector in Y direction 
81-101  G21.14  unit acceleration vector in Z direction 
102-122 G21.14  magnitude of acceleration vector in km/s2 

 
 
  

                                                 
10 The first line of the file must read “THRCARD” and the last line of the file must read “END” 
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Appendix B  BL Matrix and Partial Derivatives 
 
 

The BL matrix is used in equation (2.82) in section 2.2.2.2.  It contains the 

elements that are multiplied by the thrust vector to calculate the partials of the equinoctial 

elements with respect to time.  In addition, the partials of the BL matrix with respect to 

the equinoctial elements are required to form the adjoint equations that are used to 

calculate the partials of the Lagrange multipliers with respect to time.  Both sets of time 

derivatives are needed to integrate the satellite motion when it is taking an optimal thrust 

trajectory.   

 

The BL matrix is derived starting from the Gaussian VOP equations in Keplerian 

elements, , , , , , .  The VOP equations are then transformed to a set of equations 

in the equinoctial elements with the true longitude as the fast variable, , , , , , .  

To illustrate one of these transformations, a derivation of the variational equation for the 

semimajor axis is shown using equations (B1) through (B8).  To begin, start with the 

Gaussian form of the semimajor axis VOP equation for two-body motion plus a 

perturbing force in terms of the Keplerian elements (11), (5): 

 

sin ́      (B1) 

 

The  and  directional indicators are the acceleration magnitude, , times the 

perturbing force unit vector, , in the r and θ directions, i.e.  and .  
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The angular momentum magnitude, the orbital parameter, and the true anomaly are given 

by the following identities, respectively (5): 

 

1 1       (B2)  

 

́ 1         (B3) 

 

        (B4) 

 

The variable L is the true longitude,  is the argument of perigee, and  is the right 

ascension of the ascending node.  The following identities for the radial distance from the 

central body to the orbiting body, , the sine of the true anomaly, , and the quantity, 

⁄ , are used to write the variational equation for semimajor axis in terms of the 

equinoctial elements and true longitude (5): 

 

 
    

        (B5) 

 

 sin         (B6) 

 

́ 1 sin cos         (B7) 
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The variational equation of the semimajor axis can be ultimately written by substituting 

equations (B2), (B5), (B6), and (B7) into equation (B1) to obtain (5):  

 

sin cos 1 sin cos  (B8) 

 

Using equation (2.82a), the equation for r in equation (B5), and the definition for G in 

equation (B9), one can see that )Lc   and   B L
12 = .  The 

partials of BL with respect to the equinoctial elements , , , , ,  can then be derived 

in a straightforward manner.  For more complete details, reference (5) provides all of the 

identities required. 

(2 11
11 L
L hksGnB −= −− Garn 112 −−

 

The complete set of BL matrix elements and partial derivatives are all taken from 

reference (5).  In personal communication with Jean Kechichian (86), some typos were 

corrected and the corrections are reflected in this appendix.  Specifically, equations (B81) 

and (B90) reflect these corrections. 
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 This concludes the listing of the BL matrix and its partials with respect to the 

equinoctial orbital elements.  The following equations are the partials of the last term in 

equation (2.82a) with respect to the equinoctial orbital elements. 
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Appendix C  Thrust Plan Coordinate Systems 
 
 
  
 When defining the thrust acceleration plan file, it was necessary to evaluate which 

reference frame would be appropriate.  The GTDS force model framework provides the 

satellite position and velocity in Cartesian coordinates.  The reference frame of the 

coordinates is also the reference frame in which GTDS integrates and can be one of 

several user-selected reference frames.  These reference frames include MEME J2000, 

MEME B1950, and TETE True of Date.  Because, for now, the thrust plan file only 

represents an optimal trajectory from the perspective of two-body motion, subtleties in 

the reference frame do not come into play when applying a two-body thrust plan to orbit 

prediction within the GTDS framework.  However, if Earth J2 and third-body modeling 

are incorporated into the optimal thrust plan standalone code, the thrust plan file will 

have to be carefully synchronized with the reference frame used in GTDS for subsequent 

application of the thrust plan for orbit prediction and orbit determination.   

 

 The coordinate system of the thrust acceleration vectors produced by the 

trajectory optimization code in Section 2.2.2.2, i.e. { }hr uuu ,,ˆ θ=u , is the rotating Euler-

Hill polar frame.  Because of the relative ease of transforming thrust acceleration vectors 

represented in Euler-Hill rotating polar coordinates (6) to Cartesian position and velocity 

coordinates in an inertial frame, it was decided that the exact equation standalone 

trajectory optimization code should transform its thrust vector from rotating polar 

coordinates to an inertial frame compatible with the GTDS force model framework.   
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 The Euler-Hill rotating polar coordinate frame is defined in terms of the r, θ, and 

h axes.  The r-axis is a unit vector in the direction of the central body to the satellite.  The 

θ axis is a unit vector perpendicular to the r-axis and in the orbit plane.  The h-axis is 

formed by taking the cross product of the r and θ axes and so maintains an orthogonal 

right handed coordinate system.  The h-axis is also coincident with the satellite’s orbital 

angular momentum vector.  The yaw and pitch angles used in attitude dynamics can be 

easily computed from the unit thrust vector in terms of these polar coordinates (6).   
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Figure C.1 depicts the pitch (C1) and yaw (C2) angles with respect to the satellite. 

 

Figure C.1 Satellite Thrust Pitch and Yaw Angles (96) 
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 Transforming the rotating polar coordinates to the equinoctial frame involves the 

following transformation matrix in terms of the equinoctial  f, g, w and polar r, θ, h unit 

vectors (6): 
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This transformation matrix will convert a vector represented in the Euler-Hill rotating 

polar frame to a vector in the equinoctial coordinate frame.  The quantity r is the scalar 

distance from the central body to the satellite and the X1 and Y1 scalar quantities are 

defined by (6): 

 

         (C4) gYfX ˆˆ
11 +=r

 [ ]kFhkFhaLrX −+−== sincos)1(cos 2
1 ββ      (C5) 

 [ ]hFkFhkaLrY −−+== sin)1(cossin 2
1 ββ      (C6) 

 

Here, L is the true longitude, and F is the eccentric longitude.  The eccentric longitude 

can be found using the mean longitude, λ, from the satellite’s equinoctial element set, 

{ }λ,,,,, qpkha=z .   Using Kepler’s equation written in terms of eccentric longitude, F, 

we have (6): 
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 FhFkF cossin +−=λ        (C7) 

 

Equation (C7) can be iterated with a starting guess of F to solve for F accurately. 

The β quantity in equations (C5) and (C6) is also defined in terms of the equinoctial 

elements (6): 

 

 
)1(1

1
22 kh −−+

=β         (C8) 

 

With the thrust vector now transformed to the equinoctial frame, i.e. 

{ }wgf uuu ,,ˆ =u , one can use a well known transformation to transform the thrust vector to 

the inertial, Cartesian, x, y, z, frame.  First, compute the inclination, I, and right ascension 

of the ascending node, Ω, from the known equinoctial elements: 
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The following transformation then takes a vector in the equinoctial frame to one 

in the inertial, Cartesian frame (14): 
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This transformation is used in the TRANS_OUT subroutine in the exact equation 

trajectory optimization software to transform the thrust acceleration vector before writing 

it to the thrust plan file for GTDS. 
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Appendix D  Executing the Optimal Thrust Planning Software 
 

 
Executing both the averaged equation and exact equation optimal thrust planning 

software requires a FORTRAN compiler.  For this thesis, the Intel FORTRAN compiler® 

version 9.1 was used.  The thrust planning software does not yet allow for runtime input.  

Instead, the initial orbit, final orbit, thrust acceleration magnitude and the guesses for the 

final time and for the initial 6x1 vector of Lagrange multipliers are hard-coded in the 

low_thrust_drive.for file.  Any modification of the input parameters requires changing 

the low_thrust_drive.for file and recompiling the source code to obtain a new executable 

file.  Eventually, it is the intent of the author to incorporate the thrust planning software 

within the GTDS framework as a subprogram.  In this way, the GTDS input keyword 

processor can be used to provide input values to the optimal thrust planning algorithm.  

Figure D.1 shows the lines of source code in the low_thrust_drive.for source code file 

that can be modified to calculate thrust plans for alternative cases.  The exact equation 

and averaged equation thrust planning software each include a separate version of 

low_thrust_drive.for.  The set of input in Figure D.1 was used to execute ARTEMIS case 

#1. 

 

C 
C     Guess for the final time (seconds) 
C 
      tf0 = 853716.998592 
C 
C     Set the constant acceleration (km/s^2) 
C 
      ft = 7.5628E-9 
C 
C     Set the initial Keplerian elements 
C 
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      sma0 = 39382.97217 
      ecc0 = 0.2006846493E-2 
      inc0 = 1.43568 * pi/180.0 
      ran0 = 115.95324 * pi/180.0 
      arp0 = 297.5172826 * pi/180.0 
      mea0 = 211.6003815 * pi/180.0 
C 
C     Set the final Keplerian elements 
C 
      smaF = 39537.70766 
      eccF = 0.1621537776E-2 
      incF = 1.43568 * pi/180 
      ranF = 115.95324 * pi/180 
      arpF = 297.5172826 * pi/180 
      meaF = 212.7786305 * pi/180 
C 
C     Set the initial guesses for the Lagrange multipliers 
C 
      lam_vect(1) = 0.326239885662E+04 
      lam_vect(2) = -0.671795199693E+08 
      lam_vect(3) = -0.478598052526E+08 
      lam_vect(4) = 0.158973787328E+05 
      lam_vect(5) = -0.129598180966E+05 
      lam_vect(6) = 0.583925385401E+03 
 

Figure D.1  Source Code Input for ARTEMIS Case #1 
 

 

The following initialization in Figure D.2 shows how the weights array was set 

for the ARTEMIS case #1.  Often, changing the weights is necessary in order for the 

UNCMND algorithm to obtain a solution that closely matches the final orbit conditions. 

 

C 
C     Set the weights for each outer loop optimization  
C     iteration 
C 
      weights(1,1) = 1.0E3 
      weights(2,1) = 1.0E12 
      weights(3,1) = 1.0E12 
      weights(4,1) = 1.0E11 
      weights(5,1) = 1.0E11 
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      weights(6,1) = 1.0 
      weights(7,1) = 1.0E6 
 
      weights(1,2) = 1.0E4 
      weights(2,2) = 1.0E13 
      weights(3,2) = 1.0E13 
      weights(4,2) = 1.0E12 
      weights(5,2) = 1.0E12 
      weights(6,2) = 1.0 
      weights(7,2) = 1.0E6 
 
      weights(1,3) = 1.0E3 
      weights(2,3) = 1.0E12 
      weights(3,3) = 1.0E12 
      weights(4,3) = 1.0E13 
      weights(5,3) = 1.0E13 
      weights(6,3) = 1.0 
      weights(7,3) = 1.0E6 
 
      weights(1,4) = 1.0E4 
      weights(2,4) = 1.0E13 
      weights(3,4) = 1.0E13 
      weights(4,4) = 1.0E14 
      weights(5,4) = 1.0E14 
      weights(6,4) = 1.0 
      weights(7,4) = 1.0E6 
 
      weights(1,5) = 1.0E4 
      weights(2,5) = 1.0E12 
      weights(3,5) = 1.0E12 
      weights(4,5) = 1.0E14 
      weights(5,5) = 1.0E14 
      weights(6,5) = 1.0 
      weights(7,5) = 1.0E6 
 

Figure D.2  Source Code Weight Input for ARTEMIS Case #1 
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Appendix E    Source code for the Exact Equation Optimal   

Thrust Planning Software 

 
The exact equation optimal thrust planning software is described in Chapter 5 

section 5.1.1.  This appendix contains the source code corresponding to section 5.1.1.  

Only the source code written by the author is included.  Other open source subroutines 

such as the UNCMND, DQAG, and RK78 subroutines are not included.  Sources for 

those subroutines can be found in the References section or by contacting the author.  

Some of the subroutines in this appendix have the same names as subroutines in appendix 

F.  The subroutines with identical names are different for the exact equation code than 

they are for the averaged equation code.  Each set of software is in a separate directory 

space. 

C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: low_thrust_drive.for  (for exact equation software) 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C                                                                        
C....................................................................... 
C. ROUTINE: LOW_THRUST_DRIVE                                              
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: this the driver subroutine for the exact eq. software.   
C.    It collects the initial and final Keplerian orbits,  
C.    converts those to equinoctial orbits,  
C.    calls the UNCMND subroutine to execute the quasi-Newton  
C.    search to solve for the initial  
C.    Lagrange multipliers.  Once UNCMND  
C.    is complete, the RK78 subroutine is used to integrate the  
C.    variational equations of motion and  
C.    the variational equations for the solved initial Lagrange  
C.    multipliers from the initial to the  
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C.    final time.  Finally, the trajectory is printed and the  
C.    thrust plan file meant for GTDS input is written. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C.          This is a main program and has no calling parameters.  However, 
C.          Several of the initial variable values can be modified to solve 
C.          optimal thrust trajectory problems.  Among these are: 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          tf0     I    the guess for the final time in seconds. 
C.          ft      I    the constrant thrust acceleration km/second squared 
C.          sma0    I    the semimajor axis for the initial orbit 
C.          ecc0    I    the eccentricity of the initial orbit 
C.          inc0    I    the inclination of the initial orbit 
C.          ran0    I    the RAAN of the initial orbit 
C.          arp0    I    the arg. of perigee of the initial orbit 
C.          mea0    I    the mean anomaly of the initial orbit 
C.          smaF    I    the semimajor axis for the final orbit 
C.          eccF    I    the eccentricity of the final orbit 
C.          incF    I    the inclination of the final orbit 
C.          ranF    I    the RAAN of the final orbit 
C.          arpF    I    the arg. of perigee of the final orbit 
C.          meaF    I    the mean anomaly of the final orbit 
C.          lam_vect I   the 6x1 vector of initial Lagrange multipliers                               
C.                                                                     
C.                                                                   
C. ROUTINES REQUIRED: UNCMND, RK78, TRANS_OUT, DELTIM, ADDTIM                                      
C.           
C....................................................................... 
C                                                                        
C.                                                                       
C 
C                                                                        
C***************** DECLARATIONS **************************************** 
C  
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      PARAMETER (N_INT=12, N_MIN=7, 
     *           LWORK=N_MIN*(N_MIN+10)) 
      DOUBLE PRECISION  Y(N_INT), TOL 
      DOUBLE PRECISION  T, DT, TDIFF 
 
      DOUBLE PRECISION mu, ft, pi 
      DOUBLE PRECISION sma0, ecc0, inc0, ran0, arp0, mea0 
      DOUBLE PRECISION tf0, tf 
      DOUBLE PRECISION smaF, eccF, incF, ranF, arpF, meaF 
      DOUBLE PRECISION z0_vect(6), zF_vect(6), lam_vect(7) 
      DOUBLE PRECISION z0, weights(7,20) 
      DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT) 
      DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT) 
      DOUBLE PRECISION Y_OUT(13), Y_FIN_DIFF(6) 
      DOUBLE PRECISION x(N_MIN), x0(N_MIN) 
      DOUBLE PRECISION WORK(LWORK), F, EXTDAT, WEIGHT 
      DOUBLE PRECISION eccA0, L0, t0_sec, DT_SEC, DT_HMS, DT_YMD 
      DOUBLE PRECISION DELTA_T, t0_JUL, SECJUL, DAYJUL 
      DOUBLE PRECISION Beta0, F0, sF0, cF0, r0, cL0, sL0 
      DOUBLE PRECISION BetaF, FF, sFF, cFF, rF, cLF, sLF 
 
      INTEGER   I, J 
      INTEGER   MAX_ITER, N_INT, N_MIN, LWORK 
      INTEGER   IERROR, iter 
      INTEGER   t0_year, t0_month, t0_day, t0_hour, t0_min 
      INTEGER   IT_YMD, IT_HM, It0_JUL 
 
      EXTERNAL  FSUB,F_FORMIN 
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      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /WEIGHT/ weights, iter 
C 
C     Set PI 
C 
      pi = 3.141592653589793 
C 
C     Set the integration error tolerance 
C 
      TOL = 1.0E-10 
C 
C     Set the date for the initial time 
C 
      t0_year  = 2002 
      t0_month = 8 
      t0_day   = 4 
 
      t0_hour  = 22 
      t0_min   = 3 
      t0_sec   = 23 
C 
C     Guess for the final time (seconds) 
C 
      tf0 = 853716.998592 
C 
C     Set the Earth gravity constant (km^3/s^2) 
C 
      mu = 3.986004418E5 
C 
C     Set the constant acceleration (km/s^2) 
C 
      ft = 7.5628E-9 
C 
C     Set the maximum iterations for the outer optimization loop 
C 
      MAX_ITER = 5 
C 
C     Set the initial Keplerian elements 
C 
      sma0 = 39382.97217 
      ecc0 = 0.2006846493E-2 
      inc0 = 1.43568 * pi/180.0 
      ran0 = 115.95324 * pi/180.0 
      arp0 = 297.5172826 * pi/180.0 
      mea0 = 211.6003815 * pi/180.0 
C 
C     Set the final Keplerian elements 
C 
      smaF = 39537.70766 
      eccF = 0.1621537776E-2 
      incF = 1.43568 * pi/180 
      ranF = 115.95324 * pi/180 
      arpF = 297.5172826 * pi/180 
      meaF = 212.7786305 * pi/180 
C 
C     Compute the initial and final eccentric anomaly 
C 
      eccA0 = SOLVE_ECC_ANOMALY(mea0,ecc0) 
      eccAF = SOLVE_ECC_ANOMALY(meaF,eccF) 
C 
C     Compute the initial equinoctial elements 
C 
      z0_vect(1) = sma0 
      z0_vect(2) = ecc0 * DSIN(arp0 + ran0) 
      z0_vect(3) = ecc0 * DCOS(arp0 + ran0) 
      z0_vect(4) = DTAN(inc0/2)*DSIN(ran0) 
      z0_vect(5) = DTAN(inc0/2)*DCOS(ran0) 
C 
C     Compute the initial true longitude. 
C 
      Beta0 = 1.0/(1.0 + DSQRT(1.0-(z0_vect(2)**2.0)-(z0_vect(3))**2.0)) 
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      F0 = eccA0 + ran0 + arp0 
 
      sF0 = DSIN(F0) 
      cF0 = DCOS(F0) 
 
      r0 = sma0*(1.0 - z0_vect(3)*cF0 - z0_vect(2)*sF0) 
 
      cL0 = (sma0/r0)*((1.0-Beta0*(z0_vect(2)**2.0))*cF0 +  
     &      z0_vect(2)*z0_vect(3)*Beta0*sF0 - z0_vect(3)) 
 
      sL0 = (sma0/r0)*(z0_vect(2)*z0_vect(3)*Beta0*cF0 +  
     &      (1.0-Beta0*(z0_vect(3)**2.0))*sF0 - z0_vect(2)) 
 
      L0 = DATAN2(sL0,cL0) 
 
      z0_vect(6) = L0 
C 
C     Compute the final equinoctial elements 
C 
      zF_vect(1) = smaF 
      zF_vect(2) = eccF * DSIN(arpF + ranF) 
      zF_vect(3) = eccF * DCOS(arpF + ranF) 
      zF_vect(4) = DTAN(incF/2)*DSIN(ranF) 
      zF_vect(5) = DTAN(incF/2)*DCOS(ranF) 
C 
C     Compute the final true longitude 
C 
      BetaF = 1.0/(1.0 + DSQRT(1.0-(z0_vect(2)**2.0)-(z0_vect(3))**2.0)) 
      FF = eccAF + ranF + arpF 
 
      sFF = DSIN(FF) 
      cFF = DCOS(FF) 
 
      rF = smaF*(1.0 - zF_vect(3)*cFF - zF_vect(2)*sFF) 
 
      cLF = (smaF/rF)*((1.0-BetaF*(zF_vect(2)**2.0))*cFF +  
     &      zF_vect(2)*zF_vect(3)*BetaF*sFF - zF_vect(3)) 
 
      sLF = (smaF/rF)*(zF_vect(2)*zF_vect(3)*BetaF*cFF +  
     &      (1.0-BetaF*(zF_vect(3)**2.0))*sFF - zF_vect(2)) 
 
      LF = DATAN2(sLF,cLF) 
 
      zF_vect(6) = LF 
C 
C     Set the initial guesses for the Lagrange multipliers 
C 
      lam_vect(1) = 0.326239885662E+04 
      lam_vect(2) = -0.671795199693E+08 
      lam_vect(3) = -0.478598052526E+08 
      lam_vect(4) = 0.158973787328E+05 
      lam_vect(5) = -0.129598180966E+05 
      lam_vect(6) = 0.583925385401E+03 
 
      lam_vect(7) = tf0 
 
      DO J=1,7 
         x0(J) = lam_vect(J) 
      END DO 
C 
C     Combine all initial conditions into Y array 
C 
      DO I=1,6 
         Y(I) = z0_vect(I) 
      END DO 
      DO I=1,6 
         Y(I+6) = lam_vect(I) 
      END DO 
C 
C     Set initial time point 
C      
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      T = 0.0 
      DT = 600.0 
C 
C     Set the weights for each outer loop optimization iteration 
C 
      weights(1,1) = 1.0E3 
      weights(2,1) = 1.0E12 
      weights(3,1) = 1.0E12 
      weights(4,1) = 1.0E11 
      weights(5,1) = 1.0E11 
      weights(6,1) = 1.0 
      weights(7,1) = 1.0E6 
 
      weights(1,2) = 1.0E4 
      weights(2,2) = 1.0E13 
      weights(3,2) = 1.0E13 
      weights(4,2) = 1.0E12 
      weights(5,2) = 1.0E12 
      weights(6,2) = 1.0 
      weights(7,2) = 1.0E6 
 
      weights(1,3) = 1.0E3 
      weights(2,3) = 1.0E12 
      weights(3,3) = 1.0E12 
      weights(4,3) = 1.0E13 
      weights(5,3) = 1.0E13 
      weights(6,3) = 1.0 
      weights(7,3) = 1.0E6 
 
      weights(1,4) = 1.0E4 
      weights(2,4) = 1.0E13 
      weights(3,4) = 1.0E13 
      weights(4,4) = 1.0E14 
      weights(5,4) = 1.0E14 
      weights(6,4) = 1.0 
      weights(7,4) = 1.0E6 
 
      weights(1,5) = 1.0E4 
      weights(2,5) = 1.0E12 
      weights(3,5) = 1.0E12 
      weights(4,5) = 1.0E14 
      weights(5,5) = 1.0E14 
      weights(6,5) = 1.0 
      weights(7,5) = 1.0E6 
C 
C     If we are not using the optimizer, assign x 
C 
      DO I=1,7 
         x(I) = x0(I) 
      END DO 
C 
C     Set up the outer optimization loop 
C 
      DO iter=1,MAX_ITER 
C 
C        Call the unconstrained minimization subroutine 
C 
         CALL UNCMND (N_MIN, x0, F_FORMIN, x, F, IERROR, WORK, LWORK) 
C 
C        Print out the results of the minimization (the Lagrange multipliers and final 
time) 
C 
         WRITE (*,*) 'Results of opt: Lagrange mult and final time' 
         WRITE (*,'(7E24.12)') (x(I), I=1,7) 
C 
C        Copy the output back to the input. 
C 
         DO J=1,7 
            x0(J) = x(J) 
         END DO 
      END DO 
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C 
C     Open the file needed to store the output meant for GTDS 
C 
      OPEN (UNIT = 115, FORM = 'FORMATTED', ACCESS = 'SEQUENTIAL', 
     1      FILE = 'optimal_traj.thr', 
     2      STATUS = 'UNKNOWN') 
 
      WRITE(115,1001) 'THRCARD ' 
C 
C     Assign results of optimization to input for integration 
C     and printout of the final trajectory 
C 
      DO I=1,6 
         Y(I) = z0_vect(I) 
      END DO 
      Y(7)  = x(1) 
      Y(8)  = x(2) 
      Y(9)  = x(3) 
      Y(10) = x(4) 
      Y(11) = x(5) 
      Y(12) = x(6) 
      tf    = x(7) 
C 
C     Print out the results of the minimization (the Lagrange multipliers and final time) 
C 
      WRITE (*,*) 'Results of optimization Lagrange mult and final time' 
      WRITE (*,'(7E24.12)') (x(I), I=1,7) 
C 
C     Output the final trajectory result of the optimization 
C 
      DO WHILE (T .LE. tf) 
C 
C        Integrate. 
C 
         CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL, 
     &              XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB) 
C 
C        Are we finished?  If so, exit the loop. 
C 
         IF (T .EQ. tf) THEN 
C 
C           Write the output at this time step. 
C 
            CALL TRANS_OUT(Y, Y_OUT, ft, mu) 
C 
C           Compare the desired elements with the final elements achieved. 
C 
            Y_FIN_DIFF(1) = Y_OUT(1) - smaF 
            Y_FIN_DIFF(2) = Y_OUT(2) - eccF 
            Y_FIN_DIFF(3) = (Y_OUT(3) - incF)*180.0/pi 
            Y_FIN_DIFF(4) = (Y_OUT(4) - ranF)*180.0/pi 
            Y_FIN_DIFF(5) = (Y_OUT(5) - arpF)*180.0/pi 
            Y_FIN_DIFF(6) = (Y_OUT(6) - meaF)*180.0/pi 
 
            WRITE (*,*) 'Final element differences' 
            WRITE (*,'(6E24.12)') Y_FIN_DIFF(1),Y_FIN_DIFF(2), 
     &          Y_FIN_DIFF(3),Y_FIN_DIFF(4),Y_FIN_DIFF(5),Y_FIN_DIFF(6) 
 
            WRITE (*,*) 'Final elements' 
            WRITE (*,'(6E24.12)') Y_OUT(1),Y_OUT(2), 
     &          Y_OUT(3),Y_OUT(4),Y_OUT(5),Y_OUT(6) 
C 
C 
C        We are not yet finished, find the time yet to integrate. 
C        If that time is less than the next time step, reduce the 
C        next time step to equal the time left to integrate. 
C 
         ELSE 
            TDIFF = tf - T 
            IF (TDIFF .LT. DT) THEN 
               DT = TDIFF 
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            END IF 
         END IF 
C 
C        Write the output at this time step. 
C 
         CALL TRANS_OUT(Y, Y_OUT, ft, mu) 
 
         WRITE (*,'(I9,11E24.12)') 111111111, 
     *           T,Y_OUT(1),Y_OUT(2),Y_OUT(3),Y_OUT(4),Y_OUT(5), 
     *             Y_OUT(6),Y_OUT(7),Y_OUT(12),Y_OUT(13) 
C 
C        Convert the time in seconds to YYYMMDDHHMMSS.sss format. 
C 
C        First, convert the initial t0 date to a Julian date 
C             
         DT_YMD = (t0_year - 1900)*1E4 + t0_month*1E2 + t0_day 
         DT_HMS = (t0_hour)*1E4 + t0_min*1E2 + t0_sec 
 
         CALL DELTIM(1,DT_YMD,DT_HMS,t0_JUL,t0_JUL,DELTA_T) 
C 
C        Add 2430000 to get the Julian Date from the Modified Julian Date 
C 
         t0_JUL = t0_JUL + 2430000 
C 
C        Now, find the Julian and Gregorian date of the final time 
C 
         DAYJUL  = DINT(t0_JUL) 
         SECJUL  = (t0_JUL - DAYJUL)*86400.0 
 
         CALL ADDTIM(DT_YMD,DT_HMS,DAYJUL,SECJUL,T,0.0001) 
 
         IT_YMD = DT_YMD 
         IT_HM  = DT_HMS/100.0 
         DT_SEC = DMOD(DT_HMS,100.0) 
C 
C        Write the output to the obs file intended for GTDS 
C             
         IF (DT_SEC .LT. 10.0) THEN 
            WRITE(115,1004) '        ',1,0,0, 
     &                       IT_YMD,IT_HM,0,DT_SEC,Y_OUT(8),Y_OUT(9), 
     &                       Y_OUT(10),ft 
         ELSE 
            WRITE(115,1003) '        ',1,0,0, 
     &                         IT_YMD,IT_HM,DT_SEC,Y_OUT(8),Y_OUT(9), 
     &                         Y_OUT(10),ft 
         END IF 
C 
C        We have finished, exit the loop 
C 
         IF (T .EQ. tf) THEN 
            EXIT 
         END IF 
          
      END DO 
C 
C     Finish writing to the GTDS thrust file and close it. 
C 
      WRITE(115,1002) 'END     ' 
      CLOSE(UNIT=115,STATUS='KEEP') 
 
 1001 FORMAT(1A8) 
 1002 FORMAT(1A3) 
 1003 FORMAT(1A8,3I3,3X,1I7.7,1I4.4,1F7.4,4F21.14) 
 1004 FORMAT(1A8,3I3,3X,1I7.7,1I4.4,1I1.1,1F6.4,4F21.14) 
      END  
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: fsub.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE FSUB (T,Y,YDOT)         
C                                                                
C....................................................................... 
C. ROUTINE: FSUB                                              
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: This the subroutine that is called by the FK78 subroutine to supply  
C.    the equinoctial element and Lagrange multiplier derivatives with respect to  
C.    time, i.e. rates.  FSUB calls the COMP_XY, COMP_B, and COMP_U subroutines to  
C.    calculate the auxiliary quantities, the 6x3 BL matrix and the normalized thrust  
C.    acceleration vector.  FSUB then executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR  
C.    subroutines which compute the rates for the equinoctial variation equations and  
C.    the rates for the Lagrange multipliers, respectively. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C.          FSUB(T,Y,YDOT) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          T       I    The current time in seconds from time zero 
C.          Y       I    The input vector of current equinoctial orbital 
C.                       elements in elements 1-6 and the vector of 
C.                       current lagrange multipliers in elements 7-12. 
C.          YDOT    O    The output vector of equinoctial element rates in  
C.                       elements 1-6 and the output vector of lagrange 
C.                       multipliers in elements 7-12.                                                       
C.                                                                   
C. ROUTINES REQUIRED: COMP_XY, COMP_U, COMP_B, COMP_EQUIN_VAR, 
C.                    COMP_EUL_LAG_VAR                                 
C.           
C....................................................................... 
C                                                                        
C.                                                                       
C 
C                                                                        
C***************** DECLARATIONS **************************************** 
C  
C 
C 
C       Routine for evaluating right hand sides of equations. 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER N 
 
      DOUBLE PRECISION T, Y(*), YDOT(*) 
      DOUBLE PRECISION mu, ft, u_mag 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION z0_vect(6), zF_vect(6), EXTDAT 
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      DOUBLE PRECISION nm, cL, sL, G, r, K1 
      DOUBLE PRECISION B(6,3), dBda(6,3), dBdh(6,3), dBdk(6,3)  
      DOUBLE PRECISION dBdp(6,3), dBdq(6,3), dBdL(6,3) 
      DOUBLE PRECISION u(3), dadt, dhdt, dkdt, dpdt, dqdt, dLdt 
      DOUBLE PRECISION dlamadt, dlamhdt, dlamkdt  
      DOUBLE PRECISION dlampdt, dlamqdt, dlamLdt 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
C 
C     Assign the input arrays 
C 
      z_vect(1) = Y(1) 
      z_vect(2) = Y(2) 
      z_vect(3) = Y(3) 
      z_vect(4) = Y(4) 
      z_vect(5) = Y(5) 
      z_vect(6) = Y(6) 
 
      lam_vect(1) = Y(7) 
      lam_vect(2) = Y(8) 
      lam_vect(3) = Y(9) 
      lam_vect(4) = Y(10) 
      lam_vect(5) = Y(11) 
      lam_vect(6) = Y(12) 
C 
C     Compute some parameters needed later 
C 
      CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1) 
C 
C     Compute the B matrix of equinoctial partials wrt rdot, 
C     the partials of B wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_B(z_vect,nm,cL,sL,G,r,K1, 
     &            B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,B,u,u_mag) 
C 
C     Compute the right hand side of the equinoctial element variational equations 
C 
      CALL COMP_EQUIN_VAR(B,u,ft,nm,z_vect(1),z_vect(2),z_vect(3),r, 
     &                    dadt,dhdt,dkdt,dpdt,dqdt,dLdt) 
C 
C     Compute the right hand side of the Lagrange multiplier variational equations 
C 
      CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,u,nm,ft,G,r, 
     &                      dBda,dBdh,dBdk,dBdp,dBdq,dBdL, 
     &                      dlamadt,dlamhdt,dlamkdt,dlampdt, 
     &                      dlamqdt,dlamLdt) 
C 
C     Assign the output rates 
C 
      YDOT(1) = dadt 
      YDOT(2) = dhdt 
      YDOT(3) = dkdt 
      YDOT(4) = dpdt 
      YDOT(5) = dqdt 
      YDOT(6) = dLdt 
      YDOT(7) = dlamadt 
      YDOT(8) = dlamhdt 
      YDOT(9) = dlamkdt 
      YDOT(10) = dlampdt 
      YDOT(11) = dlamqdt 
      YDOT(12) = dlamLdt 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: F_FORMIN.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE F_FORMIN(N, X, F) 
C                                                                
C....................................................................... 
C. ROUTINE: F_FORMIN                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial elements and Lagrange multipliers  
C.    at the final time given the elements and multipliers at the initial  
C.    time.  F_FORMIN also computes the sum of the squares of the differences  
C.    of the computed final orbital element conditions from the desired orbital  
C.    element conditions.  F_FORMIN uses the RK78 subroutine to perform the  
C.    integration of the equinoctial orbital elements and the Lagrange multipliers. 
C.    F_FORMIN is called by UNCMND to perform unconstrained minimization of the 
C.    F cost function defined in F_FORMIN. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL F_FORMIN(N, X, F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          N          I    Number of parameters to vary in search 
C.                          for minimum.  In this case it is the 6  
C.                          Lagrange multipliers plus the final time 
C.                          for a total of 7. 
C.          X          I    vector of lagrange multipliers and tf 
C.          F          O    The value of the cost function given X 
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  RK78, COMP_XY, COMP_B, COMP_U    
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      PARAMETER(N_INT=12,N_MIN=7) 
      INTEGER N_MIN, I, N_INT, IFLAG 
      INTEGER MS, NROOT, MINT, LW, IW, LIW, iter 
      DOUBLE PRECISION X(N_MIN), F, pi 
      DOUBLE PRECISION mu,ft,aF,hF,kF,pF,qF,LF,ecc,inc 
      DOUBLE PRECISION z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION a,h,k,p,q,L,lam(6),z_vect(6) 
      DOUBLE PRECISION nm,cL,sL,G,r,K1 
      DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3),dBdk(6,3) 
      DOUBLE PRECISION dBdp(6,3),dBdq(6,3),dBdL(6,3) 
      DOUBLE PRECISION B_u(6), lam_B_u, u(3), u_mag 
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      DOUBLE PRECISION wgt(7) 
      DOUBLE PRECISION tf, Y(N_INT+3) 
      DOUBLE PRECISION T, DT, TOL, TDIFF 
      DOUBLE PRECISION weights(7,20) 
      DOUBLE PRECISION EXTDAT, WEIGHT 
      DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT) 
      DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT) 
 
      EXTERNAL  FSUB,GFUN 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /WEIGHT/ weights, iter 
C 
C     Set PI 
C 
      pi = 3.141592653589793 
C 
C     Initialize values needed by the integrator 
C 
C 
C     Set the integration error tolerance 
C 
      TOL = 1.0E-10 
C 
C     Set initial time point 
C      
      T = 0.0 
C       
C     Copy the final time guess. 
C 
      tf = X(7) 
C 
C     Set the initial guess for integration. 
C 
      Y(1) = z0_vect(1) 
      Y(2) = z0_vect(2) 
      Y(3) = z0_vect(3) 
      Y(4) = z0_vect(4) 
      Y(5) = z0_vect(5) 
      Y(6) = z0_vect(6) 
      Y(7) = X(1) 
      Y(8) = X(2) 
      Y(9) = X(3) 
      Y(10) = X(4) 
      Y(11) = X(5) 
      Y(12) = X(6) 
C 
C     Copy the final elements 
C 
      aF = zF_vect(1) 
      hF = zF_vect(2) 
      kF = zF_vect(3) 
      pF = zF_vect(4) 
      qF = zF_vect(5) 
      LF = zF_vect(6) 
C 
C     We want the orbital and Lagrange multiplier  
C     values only at the final time 
C 
      DT = 600.0 
C 
C     Start the integration loop 
C 
      DO WHILE (T .LE. tf) 
C 
C        Integrate. 
C 
         CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL, 
     &              XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)    
C 
C        Are we finished?  If so, exit the loop. 
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C 
         IF (T .EQ. tf) THEN 
            EXIT 
C 
C        We are not yet finished, find the time yet to integrate. 
C        If that time is less than the next time step, reduce the 
C        next time step to equal the time left to integrate. 
C 
         ELSE 
            TDIFF = tf - T 
            IF (TDIFF .LT. DT) THEN 
               DT = TDIFF 
            END IF 
         END IF 
 
      END DO 
C 
C     If the integrator was happy, compute the function value 
C 
      IF (T .EQ. tf) THEN 
 
         a = Y(1) 
         h = Y(2) 
         k = Y(3) 
         p = Y(4) 
         q = Y(5) 
         L = Y(6) 
 
         lam(1) = Y(7) 
         lam(2) = Y(8) 
         lam(3) = Y(9) 
         lam(4) = Y(10) 
         lam(5) = Y(11) 
         lam(6) = Y(12) 
C 
C        Compute the Hamiltonion at the final time 
C 
         z_vect(1) = a 
         z_vect(2) = h 
         z_vect(3) = k 
         z_vect(4) = p 
         z_vect(5) = q 
         z_vect(6) = L 
C 
C        Compute some parameters needed later 
C 
         CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1) 
C 
C        Compute the B matrix of equinoctial partials wrt rdot, 
C        the partials of B wrt the equinoctial elements, and 
C        auxiliary partial derivatives. 
C 
         CALL COMP_B(z_vect,nm,cL,sL,G,r,K1, 
     &               B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL) 
C 
C        Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
         CALL COMP_U(lam,B,u,u_mag) 
C 
C        Calculate the Hamiltonian 
C 
         B_u(1) = B(1,1)*u(1)+B(1,2)*u(2)+B(1,3)*u(3) 
         B_u(2) = B(2,1)*u(1)+B(2,2)*u(2)+B(2,3)*u(3) 
         B_u(3) = B(3,1)*u(1)+B(3,2)*u(2)+B(3,3)*u(3) 
         B_u(4) = B(4,1)*u(1)+B(4,2)*u(2)+B(4,3)*u(3) 
         B_u(5) = B(5,1)*u(1)+B(5,2)*u(2)+B(5,3)*u(3) 
         B_u(6) = B(6,1)*u(1)+B(6,2)*u(2)+B(6,3)*u(3) 
 
         lam_B_u = lam(1)*B_u(1)+lam(2)*B_u(2)+lam(3)*B_u(3)+ 
     &             lam(4)*B_u(4)+lam(5)*B_u(5)+lam(6)*B_u(6) 
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         Ham = ft*lam_B_u + lam(6)*(a**2.0)*nm* 
     &         ((1.0-h**2.0-k**2.0)**(1.0/2.0))/(r**2.0) 
C 
C        Assign the weights 
C 
         DO I=1,7 
            wgt(I) = weights(I,iter) 
         END DO 
C 
C        This cost function is for Kechichian's LEO to GEO case 
C 
         F = wgt(1)*(a - aF)**2.0 + wgt(2)*(h - hF)**2.0 +  
     &       wgt(3)*(k - kF)**2.0 + wgt(4)*(p - pF)**2.0 +  
     &       wgt(5)*(q - qF)**2.0 + wgt(6)*(lam(6) - 0.0)**2.0 + 
     &       wgt(7)*(Ham - 1.0)**2.0 
 
         ecc = (h**2.0 + k**2.0)**(1.0/2.0) 
         inc = 2.0*DATAN2(DSQRT(p**2.0 + q**2.0),1.0)*180.0/pi 
 
         WRITE (*,*) 'F_FORMIN output' 
 
         WRITE (*,'(I3,6E16.7)')  
     &         iter,F,Ham,tf,a,ecc,inc 
         WRITE (*,'(I3,7E14.5)') 
     &         iter, 
     &         wgt(1)*((a - aF)**2.0),  
     &         wgt(2)*((h - hF)**2.0),  
     &         wgt(3)*((k - kF)**2.0),  
     &         wgt(4)*((p - pF)**2.0),  
     &         wgt(5)*((q - qF)**2.0), 
     &         wgt(6)*((lam(6) - 0.0)**2.0), 
     &         wgt(7)*((Ham - 1.0)**2.0) 
 
C 
C     If the integrator was unhappy, print a message and return 
C 
      ELSE 
         WRITE (*,*) 'Error in integrating from initial to final time.' 
         F = 0.0 
         RETURN 
      END IF 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_B.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_B(z_vect,n,cL,sL,G,r,K1, 
     &                  B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_B                                              
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the 6x3 BL matrix and its partial derivatives  
C.     with respect to the equinoctial elements.  The equations for  
C.     this subroutine can be found in the Appendix of [Kechichian, J. A.,  
C.     Trajectory Optimization Using Nonsingular Orbital Elements and True  
C.     Longitude.  Journal of Guidance, Control and DYnamics.  Vol. 20, No. 5,  
C.     Sept-Oct. 1997]. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          COMP_B(z_vect,n,cL,sL,G,r,K1,B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          z_vect  I    The input equinoctial elements 
C.          n       I    The mean motion 
C.          cL      I    The cosine of the true longitude 
C.          sL      I    The sine of the true longitude 
C.          G       I    An auxiliary parameter dependent on h and k 
C.                       equinoctial elements 
C.          r       I    The current radial distance from the center of 
C.                       the central body to the satellite 
C.          K1      I    An auxiliary orbital parameter based on p and q 
C.          B       O    The 6x3 output matrix containing the partial 
C.                       derivatives of the equinoctial elements wrt rdot. 
C.          dBda    O    The 6x3 output matrix of partials of B wrt a 
C.          dBdh    O    The 6x3 output matrix of partials of B wrt h 
C.          dBdk    O    The 6x3 output matrix of partials of B wrt k 
C.          dBdp    O    The 6x3 output matrix of partials of B wrt p 
C.          dBdq    O    The 6x3 output matrix of partials of B wrt q 
C.          dBdL    O    The 6x3 output matrix of partials of B wrt true long.                        
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION z_vect(6),n,cL,sL,G,r,K1 
      DOUBLE PRECISION a,h,k,p,q,L 
      DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3),dBdk(6,3) 
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      DOUBLE PRECISION dBdp(6,3),dBdq(6,3),dBdL(6,3) 
      DOUBLE PRECISION drda,drdh,drdk,drdL,dnda 
C 
C     These partial derivatives taken from Kechichian: 
C        "Trajectory Optimization Using Nonsingular 
C         Orbital Elements and True Longitude." 
  
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      L = z_vect(6) 
C 
C     Auxiliary partials 
C 
      drda = r/a 
      drdh = -r*(2.0*a*h + r*sL)/(a*(1.0 - h**2.0 - k**2.0)) 
      drdk = -r*(2.0*a*k + r*cL)/(a*(1.0 - h**2.0 - k**2.0)) 
      drdL = -(r**2.0*(h*cL - k*sL))/(a*(1.0 - h**2.0 - k**2.0)) 
      dnda = -3.0*n/(2.0*a) 
C 
C     Partials of a wrt rdot 
C 
      B(1,1) = 2.0*(n**-1.0)*(G**-1.0)*(k*sL - h*cL) 
      B(1,2) = 2.0*(n**-1.0)*a*(r**-1.0)*G 
      B(1,3) = 0 
C 
C     Partials of h wrt rdot 
C 
      B(2,1) = -(n**-1.0)*(a**-1.0)*G*cL 
      B(2,2) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(h + sL) +  
     &         (n**-1.0)*(a**-1.0)*G*sL 
      B(2,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*(p*cL - q*sL) 
C 
C     Partials of k wrt rdot 
C 
      B(3,1) = (n**-1)*(a**-1.0)*G*sL 
      B(3,2) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(k + cL) +  
     &         (n**-1.0)*(a**-1.0)*G*cL 
      B(3,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*(p*cL - q*sL) 
C 
C     Partials of p wrt rdot 
C 
      B(4,1) = 0 
      B(4,2) = 0 
      B(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*sL 
C 
C     Partials of q wrt rdot 
C 
      B(5,1) = 0 
      B(5,2) = 0 
      B(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*cL 
C 
C     Partials of L wrt rdot 
C 
      B(6,1) = 0 
      B(6,2) = 0 
      B(6,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(q*sL - p*cL) 
C       
C     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C     These next partials are partials of the M matrix wrt elements 
C       
C     Partials of B wrt h 
C 
      dBdh(1,1) = 2.0*(n**-1.0)*h*(G**-3.0)*(k*sL - h*cL) -  
     &            2.0*(n**-1.0)*(G**-1.0)*cL 
      dBdh(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*drdh*G -  
     &            2.0*(1.0/n)*a*(1.0/r)*h*(1.0/G) 
      dBdh(1,3) = 0.0 
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      dBdh(2,1) = (n**-1.0)*(a**-1.0)*h*(G**-1.0)*cL 
       
      dBdh(2,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(h + sL)* 
     &            (drdh + r*h*(G**-2.0)) +  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0) -  
     &            (n**-1.0)*(a**-1.0)*h*sL*(G**-1.0) 
       
      dBdh(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL - q*sL)*(drdh +  
     &            h*r*(G**-2.0)) 
       
      dBdh(3,1) = -(n**-1.0)*(a**-1.0)*(G**-1.0)*h*sL 
 
      dBdh(3,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(k + cL)*(drdh +  
     &            h*r*(G**-2.0)) -  
     &            (n**-1.0)*(a**-1.0)*h*(G**-1.0)*cL 
 
      dBdh(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*(drdh +  
     &            h*r*(G**-2.0)) +  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(p*cL - q*sL) 
 
      dBdh(4,1) = 0.0 
      dBdh(4,2) = 0.0 
 
      dBdh(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*(drdh+  
     &            h*r*(G**-2.0)) 
 
      dBdh(5,1) = 0.0 
      dBdh(5,2) = 0.0 
 
      dBdh(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*(drdh+  
     &            h*r*(G**-2.0)) 
 
      dBdh(6,1) = 0.0 
       
      dBdh(6,2) = 0.0 
 
      dBdh(6,3) = (n**-1.0)*(a**-2.0)*(q*sL - p*cL)*(G**-1.0)*(drdh +  
     &            r*h*(G**-2.0)) 
C 
C     The partials of B wrt k 
C 
      dBdk(1,1) = 2.0*(n**-1.0)*k*(G**-3.0)*(k*sL - h*cL) +  
     &            2.0*(n**-1.0)*(G**-1.0)*sL 
 
      dBdk(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*G*drdk -  
     &            2.0*(1.0/n)*a*(1.0/r)*k*(1.0/G) 
 
      dBdk(1,3) = 0.0 
 
      dBdk(2,1) = (n**-1.0)*(a**-1.0)*k*(G**-1.0)*cL 
 
      dBdk(2,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(h + sL)* 
     &            (drdk + r*k*(G**-2.0)) -  
     &            (n**-1.0)*(a**-1.0)*k*sL*(G**-1.0) 
 
      dBdk(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL-q*sL)* 
     &            (drdk+k*r*(G**-2.0)) -  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0)*(p*cL - q*sL) 
 
      dBdk(3,1) = -(n**-1.0)*(a**-1.0)*(G**-1.0)*k*sL 
 
      dBdk(3,2) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(k + cL)* 
     &            (drdk+k*r*(G**-2.0)) -  
     &            (n**-1.0)*(a**-1.0)*k*(G**-1.0)*cL +  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0) 
 
      dBdk(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*(drdk +  
     &            k*r*(G**-2.0)) 
 
      dBdk(4,1) = 0.0 
      dBdk(4,2) = 0.0 
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      dBdk(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*(drdk+  
     &            k*r*(G**-2.0)) 
 
      dBdk(5,1) = 0.0 
      dBdk(5,2) = 0.0 
 
      dBdk(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*(drdk+  
     &            k*r*(G**-2.0)) 
 
      dBdk(6,1) = 0.0 
      dBdk(6,2) = 0.0 
 
      dBdk(6,3) = (n**-1.0)*(a**-2.0)*(q*sL - p*cL)*(G**-1.0)*(drdk +  
     &            r*k*(G**-2.0)) 
C 
C     The partials of B wrt p 
C 
      dBdp(1,1) = 0.0 
      dBdp(1,2) = 0.0 
      dBdp(1,3) = 0.0 
 
      dBdp(2,1) = 0.0 
      dBdp(2,2) = 0.0 
      dBdp(2,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*cL 
       
      dBdp(3,1) = 0.0 
      dBdp(3,2) = 0.0 
      dBdp(3,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*cL 
 
      dBdp(4,1) = 0.0 
      dBdp(4,2) = 0.0 
      dBdp(4,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*p*sL 
 
      dBdp(5,1) = 0.0 
      dBdp(5,2) = 0.0 
      dBdp(5,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*p*cL 
   
      dBdp(6,1) = 0.0 
      dBdp(6,2) = 0.0 
      dBdp(6,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*cL 
C 
C     Partials of B wrt q 
C 
      dBdq(1,1) = 0.0 
      dBdq(1,2) = 0.0 
      dBdq(1,3) = 0.0 
 
      dBdq(2,1) = 0.0 
      dBdq(2,2) = 0.0 
      dBdq(2,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*sL 
 
      dBdq(3,1) = 0.0 
      dBdq(3,2) = 0.0 
      dBdq(3,3) = -(n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*sL 
 
      dBdq(4,1) = 0.0 
      dBdq(4,2) = 0.0 
      dBdq(4,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*q*sL 
 
      dBdq(5,1) = 0.0 
      dBdq(5,2) = 0.0 
      dBdq(5,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*q*cL 
   
      dBdq(6,1) = 0.0 
      dBdq(6,2) = 0.0 
      dBdq(6,3) = (n**-1.0)*(a**-2.0)*r*(G**-1.0)*sL 
C 
C     The partials of B wrt a 
C 
      dBda(1,1) = -2.0*(n**-2.0)*dnda*(G**-1.0)*(k*sL - h*cL) 
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      dBda(1,2) = -2.0*(n**-2.0)*a*(r**-1.0)*dnda*G 
      dBda(1,3) = 0.0 
 
      dBda(2,1) = -(2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*cL 
 
      dBda(2,2) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(h + sL) +  
     &            (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*sL 
       
      dBda(2,3) = -(2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*k*(p*cL -  
     &            q*sL) 
 
      dBda(3,1) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*sL 
 
      dBda(3,2) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(k + cL) +  
     &            (2.0**-1.0)*(n**-1.0)*(a**-2.0)*G*cL 
 
      dBda(3,3) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*h*(p*cL -  
     &            q*sL) 
 
      dBda(4,1) = 0.0 
      dBda(4,2) = 0.0 
      dBda(4,3) = (4.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*K1*sL 
       
      dBda(5,1) = 0.0 
      dBda(5,2) = 0.0 
      dBda(5,3) = (4.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*K1*cL 
 
      dBda(6,1) = 0.0 
      dBda(6,2) = 0.0 
      dBda(6,3) = (2.0**-1.0)*(n**-1.0)*(a**-3.0)*r*(G**-1.0)*(q*sL -  
     &            p*cL) 
C 
C     Partials of B wrt L 
C 
      dBdL(1,1) = 2.0*(n**-1.0)*(G**-1.0)*(k*cL + h*sL) 
      dBdL(1,2) = -2.0*(1.0/n)*a*(1.0/(r**2.0))*G*drdL 
      dBdL(1,3) = 0.0 
 
      dBdL(2,1) = (1.0/n)*(1.0/a)*G*sL 
      dBdL(2,2) = (1.0/n)*(1.0/(a**2.0))*(h + sL)*(1.0/G)*drdL +  
     &            (1.0/n)*(1.0/(a**2.0))*r*cL*(1.0/G) +  
     &            (1.0/n)*(1.0/a)*cL*G 
      dBdL(2,3) = -(n**-1.0)*(a**-2.0)*(G**-1.0)*k*(p*cL - q*sL)*drdL +  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0)*k*(p*sL + q*cL) 
 
      dBdL(3,1) = (1.0/n)*(1.0/a)*G*cL 
      dBdL(3,2) = (1.0/n)*(1.0/(a**2.0))*(1.0/G)*(k + cL)*drdL -  
     &            (1.0/n)*(1.0/(a**2.0))*r*(1.0/G)*sL -  
     &            (1.0/n)*(1.0/a)*G*sL 
      dBdL(3,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*h*(p*cL - q*sL)*drdL -  
     &            (n**-1.0)*(a**-2.0)*r*(G**-1.0)*h*(p*sL + q*cL) 
 
      dBdL(4,1) = 0.0 
      dBdL(4,2) = 0.0 
      dBdL(4,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*sL*drdL +  
     &            (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*cL 
  
      dBdL(5,1) = 0.0 
      dBdL(5,2) = 0.0 
      dBdL(5,3) = (2.0**-1.0)*(n**-1.0)*(a**-2.0)*(G**-1.0)*K1*cL*drdL -  
     &            (2.0**-1.0)*(n**-1.0)*(a**-2.0)*r*(G**-1.0)*K1*sL 
 
      dBdL(6,1) = 0.0 
      dBdL(6,2) = 0.0 
      dBdL(6,3) = (1.0/n)*(1.0/(a**2.0))*(q*sL - p*cL)*(1.0/G)*drdL +  
     &            (1.0/n)*(1.0/(a**2.0))*r*(q*cL + p*sL)*(1.0/G) 
 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_EQUIN_VAR.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_EQUIN_VAR(B,u,ft,n,a,h,k,r, 
     &                          dadt,dhdt,dkdt,dpdt,dqdt,dLdt) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_EQUIN_VAR                                             
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the derivatives of the equinoctial orbital elements  
C.       with respect to time, i.e. element rates.  This is done by multiplying  
C.       the constant thrust acceleration magnitude by the product of the BL  
C.       matrix and the normalized thrust acceleration vector.   
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          COMP_EQUIN_VAR(B,u,ft,n,a,h,k,r,dadt,dhdt,dkdt,dpdt,dqdt,dLdt) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          B       I    The 6x3 partial derivative matrix 
C.          u       I    The 3x1 thrust vector 
C.          ft      I    The thrust acceleration magnitude 
C.          n       I    The mean motion 
C.          a       I    The semimajor axis 
C.          h       I    The h equinoctial element 
C.          k       I    The k equinoctial element 
C.          r       I    The radial distance between the central 
C.                       body center and the satellite 
C.          dadt    O    The output time derivative of the semimajor axis 
C.          dhdt    O    The output time derivative of h      
C.          dkdt    O    The output time derivative of k 
C.          dpdt    O    The output time derivative of p 
C.          dqdt    O    The output time derivative of q 
C.          dLdt    O    The output time derivative of true long.                
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION B(6,3),u(3),ft,n,a,h,k,r 
      DOUBLE PRECISION dadt,dhdt,dkdt,dpdt,dqdt,dLdt 
 
      dadt = ft*(B(1,1)*u(1) + B(1,2)*u(2) + B(1,3)*u(3)) 
 
      dhdt = ft*(B(2,1)*u(1) + B(2,2)*u(2) + B(2,3)*u(3)) 
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      dkdt = ft*(B(3,1)*u(1) + B(3,2)*u(2) + B(3,3)*u(3)) 
 
      dpdt = ft*(B(4,1)*u(1) + B(4,2)*u(2) + B(4,3)*u(3)) 
 
      dqdt = ft*(B(5,1)*u(1) + B(5,2)*u(2) + B(5,3)*u(3)) 
 
      dLdt = ft*(B(6,1)*u(1) + B(6,2)*u(2) + B(6,3)*u(3)) + 
     &       (n*a**2.0*((1.0-h**2.0-k**2.0)**(1.0/2.0))/r**2.0) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_EUL_LAG_VAR.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_EUL_LAG_VAR(z_vect,lam_vect,u,n,ft,G,r, 
     &                        dBda,dBdh,dBdk,dBdp,dBdq,dBdL, 
     &                        dlamadt,dlamhdt,dlamkdt,dlampdt, 
     &                        dlamqdt,dlamLdt) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_EUL_LAG_VAR                                            
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the derivatives of the Lagrange multipliers 
C       with respect to time, i.e. multiplier rates.  This is done  
C       by multiplying the partial derivatives of the BL matrix with  
C       respect to the equinoctial elements, the normalized thrust  
C       acceleration vector, the thrust acceleration magnitude and  
C       the current values of the orbital elements. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_EUL_LAG_VAR(z_vect,lam_vect,u,n,ft,G,r, 
C                                dBda,dBdh,dBdk,dBdp,dBdq,dBdL, 
C                                dlamadt,dlamhdt,dlamkdt,dlampdt, 
C                                dlamqdt,dlamLdt 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          z_vect   I   the 6x1 vector of equinoctial elements 
C.          lam_vect I   the 6x1 vector of lagrange multipliers 
C.          u        I   the 3x1 thrust vector 
C.          n        I   mean motion 
C.          ft       I   thrust acceleration magnitude 
C.          G        I   auxiliary orbital element 
C.          r        I   radial distance from central body to sat 
C.          dBda     I   partials of B matrix wrt a 
C.          dBdh     I   partials of B matrix wrt h 
C.          dBdk     I   partials of B matrix wrt k 
C.          dBdp     I   partials of B matrix wrt p 
C.          dBdq     I   partials of B matrix wrt q 
C.          dBdL     I   partials of B matrix wrt true long. 
C.          dlamadt  O   partials of Lagrange mult for a wrt time 
C.          dlamhdt  O   partials of Lagrange mult for h wrt time  
C.          dlamkdt  O   partials of Lagrange mult for k wrt time     
C.          dlampdt  O   partials of Lagrange mult for p wrt time 
C.          dlamqdt  O   partials of Lagrange mult for q wrt time 
C.          dlamLdt  O   partials of Lagrange mult for L wrt time  
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
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C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION z_vect(6),lam_vect(6),u(3),n,ft,G,r 
      DOUBLE PRECISION dBda(6,3),dBdh(6,3),dBdk(6,3),dBdp(6,3) 
      DOUBLE PRECISION dBdq(6,3),dBdL(6,3) 
      DOUBLE PRECISION dlamadt,dlamhdt,dlamkdt,dlampdt 
      DOUBLE PRECISION dlamqdt,dlamLdt 
      DOUBLE PRECISION cL,sL,a,h,k,L,drdh,drdk,drdL 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,lamL 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      L = z_vect(6) 
 
      cL = cos(L) 
      sL = sin(L) 
 
      drdh = -r*(2.0*a*h + r*sL)/(a*(1.0 - h**2.0 - k**2.0)) 
      drdk = -r*(2.0*a*k + r*cL)/(a*(1.0 - h**2.0 - k**2.0)) 
      drdL = -((r**2.0)*(h*cL - k*sL))/(a*(1.0 - h**2.0 - k**2.0)) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      lamL = lam_vect(6) 
 
      dlamadt = ft*(-lama*(dBda(1,1)*u(1)+dBda(1,2)*u(2)+dBda(1,3)*u(3)) 
     &       + -lamh*(dBda(2,1)*u(1)+dBda(2,2)*u(2)+dBda(2,3)*u(3)) 
     &       + -lamk*(dBda(3,1)*u(1)+dBda(3,2)*u(2)+dBda(3,3)*u(3)) 
     &       + -lamp*(dBda(4,1)*u(1)+dBda(4,2)*u(2)+dBda(4,3)*u(3)) 
     &       + -lamq*(dBda(5,1)*u(1)+dBda(5,2)*u(2)+dBda(5,3)*u(3)) 
     &       + -lamL*(dBda(6,1)*u(1)+dBda(6,2)*u(2)+dBda(6,3)*u(3))) 
     &       - lamL*(-(3.0/2.0)*n*a*(r**-2.0)*G) 
 
      dlamhdt = ft*(-lama*(dBdh(1,1)*u(1)+dBdh(1,2)*u(2)+dBdh(1,3)*u(3)) 
     &       + -lamh*(dBdh(2,1)*u(1)+dBdh(2,2)*u(2)+dBdh(2,3)*u(3)) 
     &       + -lamk*(dBdh(3,1)*u(1)+dBdh(3,2)*u(2)+dBdh(3,3)*u(3)) 
     &       + -lamp*(dBdh(4,1)*u(1)+dBdh(4,2)*u(2)+dBdh(4,3)*u(3)) 
     &       + -lamq*(dBdh(5,1)*u(1)+dBdh(5,2)*u(2)+dBdh(5,3)*u(3)) 
     &       + -lamL*(dBdh(6,1)*u(1)+dBdh(6,2)*u(2)+dBdh(6,3)*u(3))) 
     &       - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdh -  
     &               n*(a**2.0)*(r**-2.0)*h*(G**-1.0)) 
 
      dlamkdt = ft*(-lama*(dBdk(1,1)*u(1)+dBdk(1,2)*u(2)+dBdk(1,3)*u(3)) 
     &       + -lamh*(dBdk(2,1)*u(1)+dBdk(2,2)*u(2)+dBdk(2,3)*u(3)) 
     &       + -lamk*(dBdk(3,1)*u(1)+dBdk(3,2)*u(2)+dBdk(3,3)*u(3)) 
     &       + -lamp*(dBdk(4,1)*u(1)+dBdk(4,2)*u(2)+dBdk(4,3)*u(3)) 
     &       + -lamq*(dBdk(5,1)*u(1)+dBdk(5,2)*u(2)+dBdk(5,3)*u(3)) 
     &       + -lamL*(dBdk(6,1)*u(1)+dBdk(6,2)*u(2)+dBdk(6,3)*u(3))) 
     &       - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdk -  
     &               n*(a**2.0)*(r**-2.0)*k*(G**-1.0)) 
 
      dlampdt = ft*(-lama*(dBdp(1,1)*u(1)+dBdp(1,2)*u(2)+dBdp(1,3)*u(3)) 
     &       + -lamh*(dBdp(2,1)*u(1)+dBdp(2,2)*u(2)+dBdp(2,3)*u(3)) 
     &       + -lamk*(dBdp(3,1)*u(1)+dBdp(3,2)*u(2)+dBdp(3,3)*u(3)) 
     &       + -lamp*(dBdp(4,1)*u(1)+dBdp(4,2)*u(2)+dBdp(4,3)*u(3)) 
     &       + -lamq*(dBdp(5,1)*u(1)+dBdp(5,2)*u(2)+dBdp(5,3)*u(3)) 
     &       + -lamL*(dBdp(6,1)*u(1)+dBdp(6,2)*u(2)+dBdp(6,3)*u(3))) 
 
      dlamqdt = ft*(-lama*(dBdq(1,1)*u(1)+dBdq(1,2)*u(2)+dBdq(1,3)*u(3)) 
     &       + -lamh*(dBdq(2,1)*u(1)+dBdq(2,2)*u(2)+dBdq(2,3)*u(3)) 
     &       + -lamk*(dBdq(3,1)*u(1)+dBdq(3,2)*u(2)+dBdq(3,3)*u(3)) 
     &       + -lamp*(dBdq(4,1)*u(1)+dBdq(4,2)*u(2)+dBdq(4,3)*u(3)) 
     &       + -lamq*(dBdq(5,1)*u(1)+dBdq(5,2)*u(2)+dBdq(5,3)*u(3)) 
     &       + -lamL*(dBdq(6,1)*u(1)+dBdq(6,2)*u(2)+dBdq(6,3)*u(3))) 
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      dlamLdt = ft*(-lama*(dBdL(1,1)*u(1)+dBdL(1,2)*u(2)+dBdL(1,3)*u(3)) 
     &       + -lamh*(dBdL(2,1)*u(1)+dBdL(2,2)*u(2)+dBdL(2,3)*u(3)) 
     &       + -lamk*(dBdL(3,1)*u(1)+dBdL(3,2)*u(2)+dBdL(3,3)*u(3)) 
     &       + -lamp*(dBdL(4,1)*u(1)+dBdL(4,2)*u(2)+dBdL(4,3)*u(3)) 
     &       + -lamq*(dBdL(5,1)*u(1)+dBdL(5,2)*u(2)+dBdL(5,3)*u(3)) 
     &       + -lamL*(dBdL(6,1)*u(1)+dBdL(6,2)*u(2)+dBdL(6,3)*u(3))) 
     &       - lamL*(-2.0*n*(a**2.0)*(r**-3.0)*G*drdL) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_U.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_U(lam_vect,B,u,u_norm) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_U                                            
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: computes the normalized thrust acceleration vector  
C.     given the 6x3 BL matrix and the vector of current Lagrange multipliers. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_U(lam_vect,B,u,u_norm) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER     I/O                   DESCRIPTION                   
C.          --------  ---  ---------------------------------------------- 
C.          lam_vect  I    6x1 input vector of lagrange multipliers 
C.          B         I    6x3 input matrix of partial derivatives 
C.          u         O    3x1 normalized output thrust vector 
C.          u_norm    O    scalar magnitude of thrust acceleration 
C.                                                                                                     
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION lam_vect(6), B(6,3), u(3) 
      DOUBLE PRECISION u_unnorm(3), u_norm 
 
      u_unnorm(1) = lam_vect(1)*B(1,1) + 
     &              lam_vect(2)*B(2,1) + 
     &              lam_vect(3)*B(3,1) + 
     &              lam_vect(4)*B(4,1) + 
     &              lam_vect(5)*B(5,1) + 
     &              lam_vect(6)*B(6,1) 
 
      u_unnorm(2) = lam_vect(1)*B(1,2) + 
     &              lam_vect(2)*B(2,2) + 
     &              lam_vect(3)*B(3,2) + 
     &              lam_vect(4)*B(4,2) + 
     &              lam_vect(5)*B(5,2) + 
     &              lam_vect(6)*B(6,2) 
 
      u_unnorm(3) = lam_vect(1)*B(1,3) + 
     &              lam_vect(2)*B(2,3) + 
     &              lam_vect(3)*B(3,3) + 
     &              lam_vect(4)*B(4,3) + 
     &              lam_vect(5)*B(5,3) + 

330 



     &              lam_vect(6)*B(6,3) 
 
      u_norm = DSQRT(u_unnorm(1)**2.0 + 
     &               u_unnorm(2)**2.0 + 
     &               u_unnorm(3)**2.0) 
 
      u(1) = (1.0/u_norm)*u_unnorm(1) 
      u(2) = (1.0/u_norm)*u_unnorm(2) 
      u(3) = (1.0/u_norm)*u_unnorm(3)              
 
      RETURN  
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_XY.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_XY(z_vect,mu,n,cL,sL,G,r,K1) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_XY                                            
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Calculates auxiliary quantities based on  
C.    the current equinoctial orbital elements. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_XY(z_vect,mu,n,cL,sL,G,r,K1) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER     I/O                   DESCRIPTION                   
C.          --------  ---  ---------------------------------------------- 
C.          z_vect    I    the 6x1 vector of equinoctial elements 
C.          mu        I    the central body gravitational constant 
C.          n         O    mean motion 
C.          cL        O    cosine of the true longitude 
C.          sL        O    sine of the true longitude 
C.          G         O    auxiliary parameter based on h,k 
C.          K1        O    auxiliary parameter based on p,q 
C.                                                                    
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION z_vect(6), mu, n, cL, sL 
      DOUBLE PRECISION a,h,k,p,q,L,G,r,K1,Beta 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      L = z_vect(6) 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0 + G) 
      cL = DCOS(L) 
      sL = DSIN(L) 
      n = DSQRT(mu)*(a**(-3.0/2.0)) 
      r = a*(1 - h**2.0 - k**2.0)/(1.0 + h*sL + k*cL) 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: TRANS_OUT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE TRANS_OUT(Y_IN, Y_OUT, ft, mu) 
C                                                                
C....................................................................... 
C. ROUTINE: TRANS_OUT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Transforms the equinoctial elements into Keplerian  
C.     elements and calls COMP_XY, COMP_M, COMP_U and FSUB to compute  
C.     the Hamiltonian, thrust vector, and the yaw and pitch angles.   
C.     These quantities are returned to the calling subroutine in an  
C.     array intended to be written as output. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL TRANS_OUT(Y_IN, Y_OUT, ft, mu) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          Y_IN       I    12x1 vector of equinoctial elements and 
C.                          lagrange multipliers 
C.          Y_OUT      O    13x1 vector of desired output quantities 
C.          ft         I    thrust acceleration magnitude 
C.          mu         I    central body gravitational constant 
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  COMP_XY, COMP_U, COMP_B                           
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION Y_IN(12), Y_OUT(13), ft, mu 
      DOUBLE PRECISION a,h,k,p,q,L,lam(6),z_vect(6) 
      DOUBLE PRECISION ecc,inc,ran,arp,mea 
      DOUBLE PRECISION u(3),Ham,u_r,u_t,u_h 
      DOUBLE PRECISION B(6,3),dBda(6,3),dBdh(6,3) 
      DOUBLE PRECISION dBdk(6,3),dBdp(6,3),dBdq(6,3) 
      DOUBLE PRECISION dBdL(6,3), B_u(6), lam_B_u, u_mag 
      DOUBLE PRECISION nm,cL,sL,G,r,K1,theta_t,theta_h 
      DOUBLE PRECISION u_eci(3), ROTL(3,3), ROTRI(3,3), FGW(3) 
 
      a = Y_IN(1) 
      h = Y_IN(2) 
      k = Y_IN(3) 
      p = Y_IN(4) 
      q = Y_IN(5) 
      L = Y_IN(6) 
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      z_vect(1) = Y_IN(1) 
      z_vect(2) = Y_IN(2) 
      z_vect(3) = Y_IN(3) 
      z_vect(4) = Y_IN(4) 
      z_vect(5) = Y_IN(5) 
      z_vect(6) = Y_IN(6) 
 
      lam(1) = Y_IN(7) 
      lam(2) = Y_IN(8) 
      lam(3) = Y_IN(9) 
      lam(4) = Y_IN(10) 
      lam(5) = Y_IN(11) 
      lam(6) = Y_IN(12) 
 
      ecc = (h**2.0 + k**2.0)**(1.0/2.0) 
      inc = 2.0*DATAN2((p**2.0 + q**2.0)**(1.0/2.0),1.0) 
      ran = DATAN2(p,q) 
      arp = DATAN2(h,k) - DATAN2(p,q) 
      mea = L - DATAN2(h,k) 
 
      CALL COMP_XY(z_vect,mu,nm,cL,sL,G,r,K1) 
 
      CALL COMP_B(z_vect,nm,cL,sL,G,r,K1, 
     &            B,dBda,dBdh,dBdk,dBdp,dBdq,dBdL) 
 
      CALL COMP_U(lam,B,u,u_mag) 
 
      B_u(1) = B(1,1)*u(1)+B(1,2)*u(2)+B(1,3)*u(3) 
      B_u(2) = B(2,1)*u(1)+B(2,2)*u(2)+B(2,3)*u(3) 
      B_u(3) = B(3,1)*u(1)+B(3,2)*u(2)+B(3,3)*u(3) 
      B_u(4) = B(4,1)*u(1)+B(4,2)*u(2)+B(4,3)*u(3) 
      B_u(5) = B(5,1)*u(1)+B(5,2)*u(2)+B(5,3)*u(3) 
      B_u(6) = B(6,1)*u(1)+B(6,2)*u(2)+B(6,3)*u(3) 
 
      lam_B_u = lam(1)*B_u(1)+lam(2)*B_u(2)+lam(3)*B_u(3)+ 
     &          lam(4)*B_u(4)+lam(5)*B_u(5)+lam(6)*B_u(6) 
 
      Ham = ft*lam_B_u + lam(6)*(a**2.0)*nm* 
     &      ((1.0-h**2.0-k**2.0)**(1.0/2.0))/(r**2.0) 
 
      u_r = u(1) 
      u_t = u(2) 
      u_h = u(3) 
C 
C     Compute the pitch and yaw angles 
C 
      theta_t = DATAN2(u_r,u_t) 
      theta_h = DATAN2(u_h,u_t) 
C 
C     Rotate the acceleration into the equinoctial frame 
C 
      ROTL(1,1) = cL 
      ROTL(1,2) = -sL 
      ROTL(1,3) = 0.0 
      ROTL(2,1) = sL 
      ROTL(2,2) = cL 
      ROTL(2,3) = 0.0 
      ROTL(3,1) = 0.0 
      ROTL(3,2) = 0.0 
      ROTL(3,3) = 1.0 
 
      FGW(1) = ROTL(1,1)*u_r+ROTL(1,2)*u_t+ROTL(1,3)*u_h 
      FGW(2) = ROTL(2,1)*u_r+ROTL(2,2)*u_t+ROTL(2,3)*u_h 
      FGW(3) = ROTL(3,1)*u_r+ROTL(3,2)*u_t+ROTL(3,3)*u_h 
C 
C     Now rotate the equinoctial acceleration to the inertial cartesian frame 
C 
      ROTRI(1,1) = (DCOS(-ran))**2.0 + DCOS(-inc)*((DSIN(-ran))**2.0) 
      ROTRI(1,2) = DCOS(-ran)*DSIN(-ran)*(1-DCOS(-inc)) 
      ROTRI(1,3) = -DSIN(-inc)*DSIN(-ran) 
      ROTRI(2,1) = DCOS(-ran)*DSIN(-ran)*(1-DCOS(-inc)) 
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      ROTRI(2,2) = (DSIN(-ran))**2.0 + DCOS(-inc)*((DCOS(-ran))**2.0) 
      ROTRI(2,3) = DSIN(-inc)*DCOS(-ran) 
      ROTRI(3,1) = DSIN(-inc)*DSIN(-ran) 
      ROTRI(3,2) = -DSIN(-inc)*DCOS(-ran) 
      ROTRI(3,3) = DCOS(-inc) 
C 
C     Multiply the rotation matrix by the equinoctial  
C     vector to get the ECI vector 
C 
      u_eci(1) = ROTRI(1,1)*FGW(1)+ROTRI(1,2)*FGW(2)+ROTRI(1,3)*FGW(3) 
      u_eci(2) = ROTRI(2,1)*FGW(1)+ROTRI(2,2)*FGW(2)+ROTRI(2,3)*FGW(3) 
      u_eci(3) = ROTRI(3,1)*FGW(1)+ROTRI(3,2)*FGW(2)+ROTRI(3,3)*FGW(3) 
C 
C     Assemble the output 
C 
      Y_OUT(1) = a 
      Y_OUT(2) = ecc 
      Y_OUT(3) = inc 
      Y_OUT(4) = ran 
      Y_OUT(5) = arp 
      Y_OUT(6) = mea 
      Y_OUT(7) = Ham 
      Y_OUT(8) = u_eci(1) 
      Y_OUT(9) = u_eci(2) 
      Y_OUT(10) = u_eci(3) 
      Y_OUT(11) = u_mag 
      Y_OUT(12) = theta_t 
      Y_OUT(13) = theta_h 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: SOLVE_ECC_ANOMALY.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION SOLVE_ECC_ANOMALY 
     &                            (mean_anomaly_in, ecc_in) 
C                                                                
C....................................................................... 
C. ROUTINE: SOLVE_ECC_ANOMALY                                           
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Calculates the eccentric anomaly based on the mean anomaly and 
C.          eccentricity. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          ECC_ANOM = SOLVE_ECC_ANOMALY(mean_anomaly_in, ecc_in) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER            I/O                   DESCRIPTION                   
C.          ---------------  ---  ------------------------------------- 
C.          mean_anomaly_in  I    mean anomaly (radians) 
C.          ecc_in           I    eccentricity  
C.                                                                                                           
C.                                                                      
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      IMPLICIT NONE 
      INTEGER max_iter, iter 
      DOUBLE PRECISION mean_anomaly_in, ecc_in, epsilon 
      DOUBLE PRECISION ecc_anomaly, ecc_anomaly_new 
      DOUBLE PRECISION ecc_anomaly_diff 
      epsilon = 1.0E-20 
      max_iter = 50 
      ecc_anomaly = epsilon + 1.0 
      ecc_anomaly_new = 0.0 
      iter = 0 
      DO WHILE (DABS(ecc_anomaly - ecc_anomaly_new) .GT.  
     &          epsilon .AND. iter .LE. max_iter) 
 
         ecc_anomaly = ecc_anomaly_new 
         ecc_anomaly_new = mean_anomaly_in + ecc_in * DSIN(ecc_anomaly) 
         iter = iter+1 
 
      END DO 
      ecc_anomaly_diff = DABS(ecc_anomaly - ecc_anomaly_new) 
      SOLVE_ECC_ANOMALY = ecc_anomaly_new 
      RETURN  
      END  
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Appendix F   Source code for the Averaged Equation Optimal 
Thrust Planning Software 

 
The exact equation optimal thrust planning software is described in Chapter 5 

section 5.1.2.  This appendix contains the source code corresponding to section 5.1.2.  

Only the source code written by the author is included.  Other open source subroutines 

such as the UNCMND, DQAG, and RK78 subroutines are not included.  Sources for 

those subroutines can be found in the References section or by contacting the author. 

 
C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: low_thrust_drive.for   (for averaged equation software) 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C                                                                        
C....................................................................... 
C. ROUTINE: LOW_THRUST_DRIVE                                              
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE:  
C.                                                                     
C.    This the driver subroutine for the averaged eq. software.   
C.    It collects the initial and final Keplerian orbits, converts  
C.    those to equinoctial orbits, calls the UNCMND subroutine to  
C.    execute the quasi-Newton search to solve for the initial Lagrange  
C.    multipliers, and calls the RK78 subroutine to integrate the  
C.    variational equations of motion and the variational equations  
C.    for the Lagrange multipliers from the initial to final time.   
C.    Finally, the trajectory is printed.                
C.                                                     
C. CALLING SEQUENCE:                                                   
C.          This is a main program and has no calling parameters.  However, 
C.          Several of the initial variable values can be modified to solve 
C.          averaged optimal thrust trajectory problems.  Among these are: 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          tf0     I    the guess for the final time in seconds. 
C.          ft      I    the constrant thrust acceleration km/second squared 
C.          sma0    I    the semimajor axis for the initial orbit 
C.          ecc0    I    the eccentricity of the initial orbit 
C.          inc0    I    the inclination of the initial orbit 
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C.          ran0    I    the RAAN of the initial orbit 
C.          arp0    I    the arg. of perigee of the initial orbit 
C.          mea0    I    the mean anomaly of the initial orbit 
C.          smaF    I    the semimajor axis for the final orbit 
C.          eccF    I    the eccentricity of the final orbit 
C.          incF    I    the inclination of the final orbit 
C.          ranF    I    the RAAN of the final orbit 
C.          arpF    I    the arg. of perigee of the final orbit 
C.          meaF    I    the mean anomaly of the final orbit       
C.          lam_vect I   the 6x1 vector of initial Lagrange multipliers                            
C.                                                                     
C.                                                                 
C. ROUTINES REQUIRED: UNCMND, RK78, TRANS_OUT, DELTIM, ADDTIM                                      
C.           
C....................................................................... 
C                                                                        
C                                                                        
C***************** DECLARATIONS **************************************** 
C  
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      PARAMETER (N_INT=12, N_MIN=7, 
     *           LWORK=N_MIN*(N_MIN+10)) 
      DOUBLE PRECISION  Y(N_INT), TOL 
      DOUBLE PRECISION  T, DT, TDIFF 
 
      DOUBLE PRECISION mu, ft, pi 
      DOUBLE PRECISION sma0, ecc0, inc0, ran0, arp0, mea0 
      DOUBLE PRECISION tf0, tf, LAST_PRINT 
      DOUBLE PRECISION smaF, eccF, incF, ranF, arpF, meaF 
      DOUBLE PRECISION z0_vect(6), zF_vect(6), lam_vect(7) 
      DOUBLE PRECISION z0, weights(7,20) 
      DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT) 
      DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT) 
      DOUBLE PRECISION Y_OUT(10), Y_FIN_DIFF(6) 
      DOUBLE PRECISION x(N_MIN), x0(N_MIN) 
      DOUBLE PRECISION WORK(LWORK), F, EXTDAT, WEIGHT 
 
      INTEGER   I, J, IFLAG 
      INTEGER   MAX_ITER, N_INT, N_MIN, LWORK 
      INTEGER   IERROR, iter 
      EXTERNAL  FSUB,F_FORMIN 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /WEIGHT/ weights, iter 
C 
C     Set PI 
C 
      pi = 3.141592653589793 
C 
C     Set the integration error tolerance 
C 
      TOL = 1.0E6 
C 
C     Guess for the final time  
C 
C     tf0 = 1761276.2904 
C 
      tf0 = 1761276.2904 
C 
C     Set the Earth gravity constant (km^3/days^2) 
C 
      mu = 398600.4418 
C 
C     Set the constant acceleration (km/days^2) 
C 
      ft = 6.5E-9 
C 
C     Set the maximum iterations for the outer optimization loop 
C 
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      MAX_ITER = 5 
C 
C     Set the initial Keplerian elements 
C 
      sma0 = 41532.10828 
      ecc0 = 0.9029821557E-3 
      inc0 = 1.734151104 * pi/180.0 
      ran0 = 109.0647352 * pi/180.0 
      arp0 = 39.26363404 * pi/180.0 
      mea0 = 354.0614630 * pi/180.0 
C 
C     Set the final Keplerian elements 
C 
      smaF = 41840.20862 
      eccF = 0.6335377066E-3 
      incF = 1.734151104 * pi/180 
      ranF = 109.0647352 * pi/180 
      arpF = 39.26363404 * pi/180 
      meaF = 217.6227012 * pi/180 
C 
C     Compute the initial equinoctial elements 
C 
      z0_vect(1) = sma0 
      z0_vect(2) = ecc0 * sin(arp0 + ran0) 
      z0_vect(3) = ecc0 * cos(arp0 + ran0) 
      z0_vect(4) = tan(inc0/2)*sin(ran0) 
      z0_vect(5) = tan(inc0/2)*cos(ran0) 
      z0_vect(6) = mea0 + arp0 + ran0 
C 
C     Compute the final equinoctial elements 
C 
      zF_vect(1) = smaF 
      zF_vect(2) = eccF * sin(arpF + ranF) 
      zF_vect(3) = eccF * cos(arpF + ranF) 
      zF_vect(4) = tan(incF/2)*sin(ranF) 
      zF_vect(5) = tan(incF/2)*cos(ranF) 
      zF_vect(6) = meaF + arpF + ranF 
C 
C     Initial guesses for the Lagrange multipliers 
C 
      lam_vect(1) = 0.570932641360E+04 
      lam_vect(2) = -0.344890990023E+08 
      lam_vect(3) = 0.559045506405E+08 
      lam_vect(4) = 0.198345700960E+02 
      lam_vect(5) = 0.287829595367E+03 
      lam_vect(6) = 0.764058554639E-02 
 
      lam_vect(7) = tf0 
 
      DO J=1,7 
         x0(J) = lam_vect(J) 
      END DO 
C 
C     Combine all initial conditions into Y array 
C 
      DO I=1,6 
         Y(I) = z0_vect(I) 
      END DO 
      DO I=1,6 
         Y(I+6) = lam_vect(I) 
      END DO 
C 
C     Set initial eccentric longitude 
C      
      T = 0.0 
      DT = 0.1 
      LAST_PRINT = T 
C 
C     Set the weights for each outer loop optimization iteration 
C 
      weights(1,1) = 1.0 
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      weights(2,1) = 1.0E12 
      weights(3,1) = 1.0E12 
      weights(4,1) = 1.0E9 
      weights(5,1) = 1.0E9 
      weights(6,1) = 1.0 
      weights(7,1) = 1.0E6 
 
      weights(1,2) = 1.0/10.0 
      weights(2,2) = 1.0E11 
      weights(3,2) = 1.0E11 
      weights(4,2) = 1.0E10 
      weights(5,2) = 1.0E10 
      weights(6,2) = 1.0 
      weights(7,2) = 1.0E6 
 
      weights(1,3) = 1.0 
      weights(2,3) = 1.0E12 
      weights(3,3) = 1.0E12 
      weights(4,3) = 1.0E11 
      weights(5,3) = 1.0E11 
      weights(6,3) = 1.0 
      weights(7,3) = 1.0E6 
 
      weights(1,4) = 1.0E1 
      weights(2,4) = 1.0E13 
      weights(3,4) = 1.0E13 
      weights(4,4) = 1.0E12 
      weights(5,4) = 1.0E11 
      weights(6,4) = 1.0 
      weights(7,4) = 1.0E6 
 
      weights(1,5) = 1.0E2 
      weights(2,5) = 1.0E12 
      weights(3,5) = 1.0E12 
      weights(4,5) = 1.0E11 
      weights(5,5) = 1.0E11 
      weights(6,5) = 1.0 
      weights(7,5) = 1.0E6 
C 
C     Save the initial values in x in case we are skipping the UNCMND 
C 
      DO I=1,7 
         x(I) = lam_vect(I) 
      END DO 
C 
C     Set up the outer optimization loop 
C 
      DO iter=1,MAX_ITER 
C 
C        Call the unconstrained minimization subroutine 
C 
         CALL UNCMND (N_MIN, x0, F_FORMIN, x, F, IERROR, WORK, LWORK) 
C 
C        Print out the results of the minimization (the Lagrange multipliers and final 
time) 
C 
         WRITE (*,*) 'Results of opt: Lagrange mult and final time' 
         WRITE (*,'(7E24.12)') (x(I), I=1,7) 
C 
C        Copy the the output back to the input 
C 
         DO J=1,7 
            x0(J) = x(J) 
         END DO 
      END DO 
C 
C     Assign results of optimization to input for integration 
C     and printout of the final trajectory 
C 
      DO I=1,6 
         Y(I) = z0_vect(I) 

340 



      END DO 
      Y(7)  = x(1) 
      Y(8)  = x(2) 
      Y(9)  = x(3) 
      Y(10) = x(4) 
      Y(11) = x(5) 
      Y(12) = x(6) 
      tf    = x(7) 
C 
C     Print out the results of the minimization (the Lagrange multipliers and final time) 
C 
      WRITE (*,*) 'Results of optimization Lagrange mult and final time' 
      WRITE (*,'(7E24.12)') (x(I), I=1,7) 
C 
C     Output the final trajectory result of the optimization 
C 
      DO WHILE (T .LE. tf) 
C 
C        Integrate. 
C 
         CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL, 
     &              XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB) 
C 
C        Are we finished?  If so, exit the loop. 
C 
         IF (T .EQ. tf) THEN 
C 
C           Write the output at this time step. 
C 
            CALL TRANS_OUT(Y, Y_OUT, ft, mu) 
C 
C           Compare the desired elements with the final elements achieved. 
C 
            Y_FIN_DIFF(1) = Y_OUT(1) - smaF 
            Y_FIN_DIFF(2) = Y_OUT(2) - eccF 
            Y_FIN_DIFF(3) = (Y_OUT(3) - incF)*180.0/pi 
            Y_FIN_DIFF(4) = (Y_OUT(4) - ranF)*180.0/pi 
            Y_FIN_DIFF(5) = (Y_OUT(5) - arpF)*180.0/pi 
            Y_FIN_DIFF(6) = (Y_OUT(6) - meaF)*180.0/pi 
 
            WRITE (*,*) 'Final element differences' 
            WRITE (*,'(6E24.12)') Y_FIN_DIFF(1),Y_FIN_DIFF(2), 
     &          Y_FIN_DIFF(3),Y_FIN_DIFF(4),Y_FIN_DIFF(5),Y_FIN_DIFF(6) 
C 
C 
C        We are not yet finished, find the time yet to integrate. 
C        If that time is less than the next time step, reduce the 
C        next time step to equal the time left to integrate. 
C 
         ELSE 
            TDIFF = tf - T 
            IF (TDIFF .LT. DT) THEN 
               DT = TDIFF 
            END IF 
         END IF 
C 
C        Write the output at this time step if enough time has passed. 
C 
         IF (T - LAST_PRINT .GE. 1.0E-20) THEN 
 
            CALL TRANS_OUT(Y, Y_OUT, ft, mu) 
 
            WRITE (*,'(I9,12E24.12)') 111111111, 
     *             T,Y_OUT(1),Y_OUT(2),Y_OUT(3),Y_OUT(4),Y_OUT(5), 
     *               Y_OUT(6),Y_OUT(7),Y_OUT(8),Y_OUT(9),Y_OUT(10) 
 
            LAST_PRINT = T 
         END IF 
 
         IF (T .EQ. tf) THEN 
            EXIT 
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         END IF 
 
      END DO 
 
      END  
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: fsub.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE FSUB (T,Y,YDOT) 
C                                                                
C....................................................................... 
C. ROUTINE: FSUB                                              
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: FSUB is the subroutine that is called by  
C.   the FK78 subroutine to supply the equinoctial element and  
C.   Lagrange multiplier derivatives with respect to time, i.e. rates.   
C.   FSUB executes the COMP_EQUIN_VAR and COMP_EUL_LAG_VAR subroutines  
C.   which compute the rates for the equinoctial variation equations and the  
C.   rates for the Lagrange multipliers, respectively. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C.          FSUB(T,Y,YDOT) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER   I/O                   DESCRIPTION                   
C.          ------  ---  ---------------------------------------------- 
C.          T       I    The current time in seconds from time zero 
C.          Y       I    The input vector of current equinoctial orbital 
C.                       elements in elements 1-6 and the vector of 
C.                       current lagrange multipliers in elements 7-12. 
C.          YDOT    O    The output vector of equinoctial element rates in  
C.                       elements 1-6 and the output vector of lagrange 
C.                       multipliers in elements 7-12.                                                       
C.                                                                    
C. ROUTINES REQUIRED: COMP_EQUIN_VAR, 
C.                    COMP_EUL_LAG_VAR                                 
C.           
C....................................................................... 
C                                                                        
C.                                                                       
C 
C                                                                        
C***************** DECLARATIONS **************************************** 
C  
C 
C       Routine for evaluating right hand sides of equations. 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER N 
 
      DOUBLE PRECISION T, Y(*), YDOT(*) 
      DOUBLE PRECISION mu, ft 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION z0_vect(6), zF_vect(6), EXTDAT 
      DOUBLE PRECISION nm, cF, sF, G, r, K1, X1, Xdot1 
      DOUBLE PRECISION Y1, Ydot1 

343 



      DOUBLE PRECISION M(6,3), dMda(6,3), dMdh(6,3), dMdk(6,3)  
      DOUBLE PRECISION dMdp(6,3), dMdq(6,3), dMdl(6,3) 
      DOUBLE PRECISION u(3), dadt, dhdt, dkdt, dpdt, dqdt, dldt 
      DOUBLE PRECISION dlamadt, dlamhdt, dlamkdt  
      DOUBLE PRECISION dlampdt, dlamqdt, dlamldt 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
C 
C     Assign the input arrays 
C 
      z_vect(1) = Y(1) 
      z_vect(2) = Y(2) 
      z_vect(3) = Y(3) 
      z_vect(4) = Y(4) 
      z_vect(5) = Y(5) 
      z_vect(6) = Y(6) 
 
      lam_vect(1) = Y(7) 
      lam_vect(2) = Y(8) 
      lam_vect(3) = Y(9) 
      lam_vect(4) = Y(10) 
      lam_vect(5) = Y(11) 
      lam_vect(6) = Y(12) 
C 
C     Compute the right hand side of the equinoctial element variational equations 
C 
      CALL COMP_EQUIN_VAR(z_vect,lam_vect, 
     &                    dadt,dhdt,dkdt,dpdt,dqdt,dldt) 
C 
C     Compute the right hand side of the Lagrange multiplier variational equations 
C 
      CALL COMP_EUL_LAG_VAR(z_vect,lam_vect, 
     &                      dlamadt,dlamhdt,dlamkdt,dlampdt, 
     &                      dlamqdt,dlamldt) 
C 
C     Assign the output rates 
C 
      YDOT(1) = dadt 
      YDOT(2) = dhdt 
      YDOT(3) = dkdt 
      YDOT(4) = dpdt 
      YDOT(5) = dqdt 
      YDOT(6) = dldt 
      YDOT(7) = dlamadt 
      YDOT(8) = dlamhdt 
      YDOT(9) = dlamkdt 
      YDOT(10) = dlampdt 
      YDOT(11) = dlamqdt 
      YDOT(12) = dlamldt 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: F_FORMIN.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE F_FORMIN(N, X, F_OUT) 
C                                                                
C....................................................................... 
C. ROUTINE: F_FORMIN                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial elements and Lagrange multipliers  
C.    at the final time given the elements and multipliers at the initial  
C.    time.  F_FORMIN also computes the sum of the squares of the differences  
C.    of the computed final orbital element conditions from the desired orbital  
C.    element conditions.  F_FORMIN uses the RK78 subroutine to perform the  
C.    integration of the equinoctial orbital elements and the Lagrange multipliers. 
C.    F_FORMIN is called by UNCMND to perform unconstrained minimization of the 
C.    F cost function defined in F_FORMIN. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL F_FORMIN(N, X, F_OUT) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          N          I    Number of parameters to vary in search 
C.                          for minimum.  In this case it is the 6  
C.                          Lagrange multipliers plus the final time 
C.                          for a total of 7. 
C.          X          I    vector of lagrange multipliers and tf 
C.          F_OUT      O    The value of the cost function given X 
C.                                                                     
C. ROUTINES REQUIRED:  RK78, FSUB   
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      PARAMETER(N_INT=12,N_MIN=7) 
      INTEGER N_MIN, I, N_INT, IFLAG 
      INTEGER MS, NROOT, MINT, LW, IW, LIW, iter 
      DOUBLE PRECISION X(N_MIN), F_OUT 
      DOUBLE PRECISION mu,ft,aF,hF,kF,pF,qF,lF,ecc,inc 
      DOUBLE PRECISION z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION a,h,k,p,q,l,lam(6) 
      DOUBLE PRECISION nm,cF,sF,G,r,K1 
      DOUBLE PRECISION M(6,3),dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION u(3) 
      DOUBLE PRECISION wgt(7) 
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      DOUBLE PRECISION tf, Y(N_INT+3) 
      DOUBLE PRECISION T, DT, TOL, TDIFF 
      DOUBLE PRECISION weights(7,20) 
      DOUBLE PRECISION EXTDAT, WEIGHT 
      DOUBLE PRECISION XDUM(N_INT), F1(N_INT), F2(N_INT), F3(N_INT) 
      DOUBLE PRECISION F4(N_INT), F5(N_INT), F6(N_INT), F7(N_INT) 
      DOUBLE PRECISION YDOT(12) 
 
      EXTERNAL  FSUB,GFUN 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /WEIGHT/ weights, iter 
C 
C     Initialize values needed by the integrator 
C 
C 
C     Set the integration error tolerance 
C 
      TOL = 1.0E6 
C 
C     Set initial time point 
C      
      T = 0.0 
C       
C     Copy the final time guess. 
C 
      tf = X(7) 
C 
C     Set the initial guess for integration. 
C 
      Y(1) = z0_vect(1) 
      Y(2) = z0_vect(2) 
      Y(3) = z0_vect(3) 
      Y(4) = z0_vect(4) 
      Y(5) = z0_vect(5) 
      Y(6) = z0_vect(6) 
      Y(7) = X(1) 
      Y(8) = X(2) 
      Y(9) = X(3) 
      Y(10) = X(4) 
      Y(11) = X(5) 
      Y(12) = X(6) 
C 
C     Copy the final elements 
C 
      aF = zF_vect(1) 
      hF = zF_vect(2) 
      kF = zF_vect(3) 
      pF = zF_vect(4) 
      qF = zF_vect(5) 
      lF = zF_vect(6) 
C 
C     We want the orbital and Lagrange multiplier  
C     values only at the final time 
C 
      DT = 600.0 
C 
C     Return a large value for F_OUT if the time is out of bounds 
C 
      IF (tf .LE. 0.0) THEN 
         F_OUT = 1.0E20 
         RETURN 
      END IF 
C 
C     Start the integration loop 
C 
      DO WHILE (T .LE. tf) 
C 
C        Integrate. 
C 
         CALL RK78 (IFLAG,N_INT,T,DT,Y,TOL, 
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     &              XDUM,F1,F2,F3,F4,F5,F6,F7,FSUB)    
C 
C        Are we finished?  If so, exit the loop. 
C 
         IF (T .EQ. tf) THEN 
            EXIT 
C 
C        We are not yet finished, find the time yet to integrate. 
C        If that time is less than the next time step, reduce the 
C        next time step to equal the time left to integrate. 
C 
         ELSE 
            TDIFF = tf - T 
            IF (TDIFF .LT. DT) THEN 
               DT = TDIFF 
            END IF 
         END IF 
 
      END DO 
C 
C     If the integrator was happy, compute the function value 
C 
      IF (T .EQ. tf) THEN 
 
         a = Y(1) 
         h = Y(2) 
         k = Y(3) 
         p = Y(4) 
         q = Y(5) 
         l = Y(6) 
 
         lam(1) = Y(7) 
         lam(2) = Y(8) 
         lam(3) = Y(9) 
         lam(4) = Y(10) 
         lam(5) = Y(11) 
         lam(6) = Y(12) 
C 
C        Calculate the Hamiltonian 
C 
         CALL FSUB(T,Y,YDOT) 
       
         Ham = lam(1)*YDOT(1)+lam(2)*YDOT(2)+lam(3)*YDOT(3)+ 
     &         lam(4)*YDOT(4)+lam(5)*YDOT(5)+lam(6)*YDOT(6) 
C 
C        Assign the weights 
C 
         DO I=1,7 
            wgt(I) = weights(I,iter) 
         END DO 
C 
C        This cost function is for Kechichian's LEO to GEO case 
C 
         F_OUT = wgt(1)*(a - aF)**2.0 + wgt(2)*(h - hF)**2.0 +  
     &           wgt(3)*(k - kF)**2.0 + wgt(4)*(p - pF)**2.0 +  
     &           wgt(5)*(q - qF)**2.0 +  
     &           wgt(6)*(lam(6) - 0.0)**2.0 + 
     &           wgt(7)*(Ham - 1.0)**2.0 
 
         ecc = (h**2.0 + k**2.0)**(1.0/2.0) 
         inc = 2.0*DATAN2((p**2.0 + q**2.0)**(1.0/2.0),1.0) 
 
         WRITE (*,*) 'F_FORMIN output' 
 
         WRITE (*,'(I3,6E16.7)')  
     &         iter,F_OUT,Ham,tf,a,ecc,inc 
         WRITE (*,'(I3,7E14.5)') 
     &         iter, 
     &         wgt(1)*((a - aF)**2.0),  
     &         wgt(2)*((h - hF)**2.0),  
     &         wgt(3)*((k - kF)**2.0),  
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     &         wgt(4)*((p - pF)**2.0),  
     &         wgt(5)*((q - qF)**2.0), 
     &         wgt(6)*((lam(6)- 0.0)**2.0), 
     &         wgt(7)*((Ham - 1.0)**2.0) 
 
C 
C     If the integrator was unhappy, print a message and return 
C 
      ELSE 
         WRITE (*,*) 'Error in integrating from initial to final time.' 
         WRITE (*,*) 'integrated', T, 'seconds.' 
         F_OUT = 0.0 
         RETURN 
      END IF 
 
      RETURN 
      END 
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C 
C   FILE NAME: COMP_M.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,n,cF,sF,G,Beta,r,K1, 
     &                  M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_M                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the 6x3 M matrix and its partial  
C.   derivatives with respect to the equinoctial elements.   
C.   The equations for this subroutine can be found in the  
C.   Appendix of [Kechichian, J. A., Optimal Low-Thrust Rendezvous  
C.   Using Equinoctial Orbit Elements.  ACTA Astronautica. Vol. 38,  
C.   No. 1, pp. 1-14, 1996].  According to Jean Kechichian, there is  
C.   one small error in the partials in equation (A96).   
C.   The term reading cF - h should read cF - k. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,n,cF,sF,G,Beta,r,K1, 
C                      M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          z_vect     I    The 6x1 vector of equinoctial elements 
C.          X1         I    Cartesian X position magnitude 
C.          Xdot1      I    Cartesian X velocity magnitude 
C.          Y1         I    Cartesian Y position magnitude 
C.          Ydot1      I    Cartesian Y velocity magnitude 
C.          n          I    mean motion 
C.          cF         I    cosine of eccentric longitude 
C.          sF         I    sine of eccentric longitude 
C.          G          I    auxiliary value based on h,k 
C.          Beta       I    auxiliary value also based on h,k 
C.          r          I    radial distance between sat & central body 
C.          K1         I    auxiliary value based on p,q 
C.          M          O    6x3 partial derivative matrix of equinoctial 
C.                          elements wrt rdot 
C.          dMda       O    6x3 partial derivative matrix of M wrt a 
C.          dMdh       O    6x3 partial derivative matrix of M wrt h 
C.          dMdk       O    6x3 partial derivative matrix of M wrt k 
C.          dMdp       O    6x3 partial derivative matrix of M wrt p 
C.          dMdq       O    6x3 partial derivative matrix of M wrt q 
C.          dMdl       O    6x3 partial derivative matrix of M wrt mean long. 
C.                                                                  
C. ROUTINES REQUIRED:  NONE 
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
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C 
      IMPLICIT NONE 
 
      DOUBLE PRECISION z_vect(6),n,cF,sF,G,r,K1 
      DOUBLE PRECISION a,h,k,p,q,l,X1,Xdot1,Y1,Ydot1,Beta 
      DOUBLE PRECISION M(6,3),dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION drda,drdh,drdk,drdl,dnda 
      DOUBLE PRECISION dX1dh,dX1dk,dY1dh,dY1dk 
      DOUBLE PRECISION dXdot1dh,dXdot1dk,dYdot1dh,dYdot1dk 
      DOUBLE PRECISION d2X1dhh,d2X1dkk,d2X1dhdk,d2X1dkdh 
      DOUBLE PRECISION d2Y1dhh,d2Y1dkk,d2Y1dhdk,d2Y1dkdh 
      DOUBLE PRECISION d2X1dadk,d2X1dadh,d2Y1dadk,d2Y1dadh 
      DOUBLE PRECISION dX1dF,dY1dF,dXdot1dF,dYdot1dF,d2X1dFdh 
      DOUBLE PRECISION d2X1dFdk,d2Y1dFdh,d2Y1dFdk,dXdot1da,dYdot1da 
      DOUBLE PRECISION dX1da,dY1da 
C 
C     These partial derivatives taken from Kechichian: 
C        "Trajectory Optimization Using Nonsingular 
C         Orbital Elements and True Longitude." 
  
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
C 
C     Compute partials of X1, Y1, Xdot1, Ydot1 wrt h and k 
C 
      dX1dh = a*(-(h*cF-k*sF)*(Beta+((h**2.0)*(Beta**3.0))/(1.0-Beta))-  
     &        (a/r)*cF*(h*Beta-sF)) 
      dX1dk = -a*((h*cF-k*sF)*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &        1.0 + (a/r)*sF*(sF-h*Beta)) 
      dY1dh = a*((h*cF-k*sF)*(h*k*(Beta**3.0))/(1.0-Beta) -  
     &        1.0 + (a/r)*cF*(k*Beta-cF)) 
      dY1dk = a*((h*cF-k*sF)*(Beta+((k**2.0)*(Beta**3.0))/(1.0-Beta)) +  
     &        (a/r)*sF*(cF-k*Beta)) 
 
      dXdot1dh = (a/r)*Xdot1*(sF+(a/r)*cF*(k*sF - h*cF)) +  
     &           ((n*(a**2.0))/r)*(h*Beta*sF + (k*cF + h*sF)*(Beta +  
     &           ((h**2.0)*((Beta**3.0)))/(1-Beta)) +  
     &           (a/r)*cF*(h*k*Beta*sF + (1-Beta*(h**2.0))*cF)) 
 
      dXdot1dk = -(a/r)*Xdot1*(-cF + (a/r)*sF*(k*sF - h*cF)) +  
     &           ((n*(a**2.0))/r)*(((h*k*(Beta**3.0))/(1.0-Beta))* 
     &           (k*cF+h*sF) + h*Beta*cF -  
     &           (a/r)*sF*(h*k*Beta*sF + (1.0-Beta*(h**2.0))*cF)) 
 
      dYdot1dh = -(a/r)*Ydot1*(-sF - (a/r)*cF*(k*sF-h*cF)) +  
     &           ((n*(a**2.0))/r)*(-((h*k*(Beta**3.0))/(1.0-Beta))* 
     &           (k*cF+h*sF) - k*Beta*sF +  
     &           (a/r)*cF*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF))  
 
      dYdot1dk = -(a/r)*Ydot1*(-cF + (a/r)*sF*(k*sF - h*cF)) +  
     &          ((n*(a**2.0))/r)*(-(Beta + ((k**2.0)*(Beta**3.0))/ 
     &          (1.0-Beta))*(k*cF+h*sF) - k*Beta*cF -  
     &          (a/r)*sF*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF))  
 
      d2X1dhh = a*(-(2.0*a/r)*cF*(Beta+((h**2.0)*(Beta**3.0))/ 
     &          (1-Beta)) -  
     &          ((h*(Beta**3.0))/(1.0-Beta))*(h*cF-k*sF)*(3.0+(h**2.0)* 
     &          (Beta**2.0)*(3.0-2.0*Beta)/((1.0-Beta)**2.0)) +  
     &          (((a**2.0))/((r**2.0)))*cF*(h*Beta-sF)*(-sF +  
     &          (a/r)*(h-sF)) - (((a**2.0))/((r**2.0)))*(cF**3.0)) 
 
      d2X1dkk = -a*(-(2.0*a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &          (h*cF-k*sF)*(1.0+(((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/ 
     &          ((1.0-Beta)**2.0)))*(h*(Beta**3.0))/(1.0-Beta) +  
     &          ((a**2.0)/(r**2.0))*sF*(h*Beta-sF)*(-cF +  
     &          (a/r)*(k-cF))+((a**2.0)/(r**2.0))*cF*(sF**2.0))  
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      d2X1dhdk = -a*((a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &          (h*cF - k*sF)*(1.0+(h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/ 
     &          ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +  
     &          (sF - h*Beta)*((a/r)*(sF**2.0 - h*sF) -  
     &          cF**2.0)*((a**2.0)/(r**2.0)) -  
     &          ((a**2.0)/(r**2.0))*sF*(cF**2.0) - (a/r)*sF*(Beta +  
     &          (h**2.0)*(Beta**3.0)/(1.0-Beta)))  
 
      d2X1dkdh = a*((a/r)*sF*(Beta+((h**2.0)*(Beta**3.0))/(1.0-Beta))-  
     &          (h*cF-k*sF)*(1.0+(h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/ 
     &          ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +  
     &          ((a**2.0)/(r**2.0))*((a/r)*(k*cF - cF**2.0) +  
     &          sF**2.0)*(h*Beta - sF) -  
     &          (a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &          ((a**2.0)/(r**2.0))*(cF**2.0)*sF)  
   
      d2Y1dhh = a*((2.0*a/r)*cF*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &         (h*cF-k*sF)*((k*(Beta**3.0))/(1.0-Beta))*(1.0 +  
     &         (h**2.0)*(Beta**2.0)*(3.0-2.0*Beta)/((1.0-Beta)**2.0)) +  
     &         ((a**2.0)/(r**2.0))*cF*(-(a/r)*(h-sF)+sF)*(k*Beta - cF)-  
     &         ((a**2.0)/(r**2.0))*sF*(cF**2.0)) 
 
      d2Y1dkk = a*(-(2.0*a/r)*sF*(Beta+((k**2.0)*(Beta**3.0))/ 
     &         (1.0-Beta))+  
     &         (h*cF - k*sF)*(3.0+((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/ 
     &         ((1.0-Beta)**2.0))*(k*(Beta**3.0))/(1.0-Beta) +  
     &         ((a**2.0)/(r**2.0))*sF*(-(a/r)*(k-cF) + cF)*(cF - k*Beta)  
     &         - ((a**2.0)/(r**2.0))*(sF**3.0)) 
 
      d2Y1dhdk = a*((a/r)*cF*(Beta+((k**2.0)*(Beta**3.0))/(1.0-Beta))+  
     &          (h*cF-k*sF)*((h*(Beta**3.0))/(1.0-Beta))* 
     &          (1.0 + ((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/ 
     &          ((1.0-Beta)**2.0)) -  
     &          ((a**2.0)/(r**2.0))*((a/r)*sF*(h-sF) +  
     &          cF**2.0)*(cF - k*Beta) +  
     &          ((a**2.0)/(r**2.0))*cF*(sF**2.0) -  
     &          (a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta))  
 
      d2Y1dkdh = a*(-(a/r)*sF*(h*k*(Beta**3.0))/(1.0-Beta) +  
     &          (h*cF-k*sF)*((h*(Beta**3.0))/(1.0-Beta))* 
     &          (1.0+((k**2.0)*(Beta**2.0)*(3.0-2.0*Beta))/ 
     &          ((1.0-Beta)**2.0))-  
     &          ((a**2.0)/(r**2.0))*((a/r)*cF*(k-cF) + sF**2.0)* 
     &          (k*Beta - cF) +  
     &          (a/r)*cF*(Beta + ((k**2.0)*(Beta**3.0))/(1.0-Beta)) +  
     &          ((a**2.0)/(r**2.0))*cF*(sF**2.0))  
 
      d2X1dadk = (1.0/a)*dX1dk  
      d2X1dadh = (1.0/a)*dX1dh  
      d2Y1dadk = (1.0/a)*dY1dk  
      d2Y1dadh = (1.0/a)*dY1dh  
C 
C     Auxiliary partials 
C   
      dX1dF = a*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)  
      dY1dF = a*(-h*k*Beta*sF + (1.0-Beta*(k**2.0))*cF)  
 
      dXdot1dF = -(a/r)*(k*sF - h*cF)*Xdot1 + (n*(a**2.0)/r)* 
     &           (-h*k*Beta*sF - (1.0-Beta*(h**2.0))*cF)  
 
      dYdot1dF = -(a/r)*(k*sF - h*cF)*Ydot1 + (n*(a**2.0)/r)* 
     &           (-h*k*Beta*cF - (1.0-Beta*(k**2.0))*sF)  
 
      d2X1dFdh = a*((h*sF+k*cF)*(Beta+((h**2.0)*(Beta**3.0))/ 
     &           (1.0-Beta))+  
     &           ((a**2.0)/(r**2.0))*(h*Beta-sF)*(sF-h)+(a/r)*(cF**2.0)) 
 
      d2X1dFdk = -a*(-(h*sF + k*cF)*h*k*(Beta**3.0)/(1.0-Beta) +  
     &           ((a**2.0)/(r**2.0))*(sF-h*Beta)*(cF-k)+(a/r)*sF*cF) 
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      d2Y1dFdh = a*(-(h*sF + k*cF)*h*k*(Beta**3.0)/(1.0-Beta) -  
     &           ((a**2.0)/(r**2.0))*(k*Beta-cF)*(sF-h)+(a/r)*sF*cF)  
 
      d2Y1dFdk = a*(-(h*sF+k*cF)*(Beta+(k**2.0)*(Beta**3.0)/(1.0-Beta))+  
     &           ((a**2.0)/(r**2.0))*(cF-k*Beta)*(cF-k)-(a/r)*(sF**2.0)) 
 
      dXdot1da = -(n*a/(2.0*r))*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF)  
      dYdot1da =  (n*a/(2.0*r))*(h*k*Beta*sF - (1.0-Beta*(k**2.0))*cF)  
 
      dX1da = X1/a  
      dY1da = Y1/a  
C 
C     Partials of a wrt rdot 
C 
      M(1,1) = 2.0*(a**-1.0)*(n**-2.0)*Xdot1  
      M(1,2) = 2.0*(a**-1.0)*(n**-2.0)*Ydot1  
      M(1,3) = 0.0 
C 
C     Partials of h wrt rdot 
C 
      M(2,1) = G*(n**-1.0)*(a**-2.0)*(dX1dk-h*Beta*Xdot1/n)  
      M(2,2) = G*(n**-1.0)*(a**-2.0)*(dY1dk-h*Beta*Ydot1/n)  
      M(2,3) = k*(q*Y1 - p*X1)*(n**-1.0)*(a**-2.0)*(G**-1.0)  
C 
C     Partials of k wrt rdot 
C 
      M(3,1) = -G*(n**-1.0)*(a**-2.0)*(dX1dh + k*Beta*Xdot1/n)  
      M(3,2) = -G*(n**-1.0)*(a**-2.0)*(dY1dh + k*Beta*Ydot1/n)  
      M(3,3) = -h*(q*Y1 - p*X1)*(n**-1.0)*(a**-2.0)*(G**-1.0)  
C      
C     Partials of p wrt rdot 
C 
      M(4,1) = 0.0 
      M(4,2) = 0.0 
      M(4,3) = K1*Y1*((n**-1.0)*(a**-2.0)*(G**-1.0))/2.0  
C 
C     Partials of q wrt rdot 
C 
      M(5,1) = 0.0 
      M(5,2) = 0.0 
      M(5,3) = K1*X1*((n**-1.0)*(a**-2.0)*(G**-1.0))/2.0  
C 
C     Partials of l wrt rdot 
C 
      M(6,1) = (n**-1.0)*(a**-2.0)*(-2.0*X1 +  
     &         G*(h*Beta*dX1dh + k*Beta*dX1dk))  
      M(6,2) = (n**-1.0)*(a**-2.0)*(-2.0*Y1 +  
     &         G*(h*Beta*dY1dh + k*Beta*dY1dk))  
      M(6,3) = (n**-1.0)*(a**-2.0)*(G**-1.0)*(q*Y1 - p*X1)  
C   
C     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C     % These next partials are partials of the M matrix wrt elements 
C 
C     Partials of M wrt h 
C 
      dMdh(1,1) = (2.0/(a*(n**2.0)))*dXdot1dh  
      dMdh(1,2) = (2.0/(a*(n**2.0)))*dYdot1dh  
      dMdh(1,3) = 0.0 
 
      dMdh(2,1) = (-h/(G*n*(a**2.0)))*(dX1dk - (1.0/n)*h*Beta*Xdot1) +  
     &            (G/(n*(a**2.0)))*(d2X1dhdk - (Xdot1/n)*(Beta +  
     &            (h**2.0)*(Beta**3.0)/(1.0-Beta)) -  
     &            h*Beta*dXdot1dh/n)  
 
      dMdh(2,2) = (-h/(G*n*(a**2.0)))*(dY1dk - (1.0/n)*h*Beta*Ydot1) +  
     &            (G/(n*(a**2.0)))*(d2Y1dhdk - (Ydot1/n)*(Beta +  
     &            (h**2.0)*(Beta**3.0)/(1.0-Beta)) -  
     &            h*Beta*dYdot1dh/n) 
 
      dMdh(2,3) = ((1.0/(n*(a**2.0)))*h*k*(G**-3.0))*(q*Y1 - p*X1) +  
     &            k*(q*dY1dh - p*dX1dh)/(n*(a**2.0)*G) 
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      dMdh(3,1) = (h/(n*(a**2.0)*G))*(dX1dh + k*Beta*Xdot1/n) -  
     &            (G/(n*(a**2.0)))*(d2X1dhh + h*k*(Beta**3.0)* 
     &            Xdot1/(n*(1.0-Beta)) +  
     &            k*Beta*dXdot1dh/n) 
 
      dMdh(3,2) = (h/(n*(a**2.0)*G))*(dY1dh + k*Beta*Ydot1/n) -  
     &            (G/(n*(a**2.0)))*(d2Y1dhh + h*k*(Beta**3.0)* 
     &            Ydot1/(n*(1.0-Beta)) +  
     &            k*Beta*dYdot1dh/n) 
 
      dMdh(3,3) = (-1.0/(n*(a**2.0)*G))*((q*Y1 - p*X1) +  
     &            h*(q*dY1dh - p*dX1dh)) - ((h**2.0)*(q*Y1 - p*X1))/ 
     &            (n*(a**2.0)*(G**3.0)) 
 
      dMdh(4,1) = 0.0  
      dMdh(4,2) = 0.0 
 
      dMdh(4,3) = (K1/(2.0*n*(a**2.0)*G))*(dY1dh + h*Y1/(G**2.0))  
 
      dMdh(5,1) = 0.0 
      dMdh(5,2) = 0.0 
 
      dMdh(5,3) = (K1/(2.0*n*(a**2.0)*G))*(dX1dh + h*X1/(G**2.0)) 
 
      dMdh(6,1) = (1.0/(n*(a**2.0)))*(-2.0*dX1dh - (h*Beta*(G**-1.0))* 
     &            (h*dX1dh + k*dX1dk) +  
     &            G*((Beta + (h**2.0)*(Beta**3.0)/(1.0-Beta))*dX1dh +  
     &            h*k*(Beta**3.0)*dX1dk/(1.0-Beta) +  
     &            Beta*(h*d2X1dhh + k*d2X1dhdk)))  
 
      dMdh(6,2) = (1.0/(n*(a**2.0)))*(-2.0*dY1dh - (h*Beta*(G**-1.0))* 
     &            (h*dY1dh + k*dY1dk) +  
     &            G*((Beta + (h**2.0)*(Beta**3.0)/(1.0-Beta))*dY1dh +  
     &            h*k*(Beta**3.0)*dY1dk/(1.0-Beta) +  
     &            Beta*(h*d2Y1dhh + k*d2Y1dhdk)))  
 
      dMdh(6,3) = ((G**-1.0)/(n*(a**2.0)))*((q*dY1dh - p*dX1dh) +  
     &            h*(q*Y1 - p*X1)*(G**-2.0))  
C 
C     The partials of M wrt k 
C 
      dMdk(1,1) = (2.0/(a*(n**2.0)))*dXdot1dk  
 
      dMdk(1,2) = (2.0/(a*(n**2.0)))*dYdot1dk  
 
      dMdk(1,3) = 0.0  
 
      dMdk(2,1) = (-k/(n*(a**2.0)*G))*(dX1dk - h*Beta*Xdot1/n) +  
     &            (G/(n*(a**2.0)))*(d2X1dkk - h*k*(Beta**3.0)*Xdot1/ 
     &            (n*(1.0-Beta)) -  
     &            h*Beta*dXdot1dk/n) 
 
      dMdk(2,2) = (-k/(n*(a**2.0)*G))*(dY1dk - h*Beta*Ydot1/n) +  
     &            (G/(n*(a**2.0)))*(d2Y1dkk - h*k*(Beta**3.0)*Ydot1/ 
     &            (n*(1.0-Beta)) -  
     &            h*Beta*dYdot1dk/n) 
 
      dMdk(2,3) = (q*Y1 - p*X1)/(n*(a**2.0)*G) +  
     &            (1.0/(n*(a**2.0)*G))*(k*(q*dY1dk - p*dX1dk) +  
     &            (k**2.0)*(q*Y1 - p*X1)/(G**2.0)) 
 
      dMdk(3,1) = (k/(n*(a**2.0)*G))*(dX1dh + k*Beta*Xdot1/n) -  
     &            (G/(n*(a**2.0)))*(d2X1dkdh + (Beta + (k**2.0)* 
     &            (Beta**3.0)/(1.0-Beta))*Xdot1/n +  
     &            k*Beta*dXdot1dk/n)  
 
      dMdk(3,2) = (k/(n*(a**2.0)*G))*(dY1dh + k*Beta*Ydot1/n) -  
     &            (G/(n*(a**2.0)))*(d2Y1dkdh + (Beta + (k**2.0)* 
     &            (Beta**3.0)/(1.0-Beta))*Ydot1/n +  
     &            k*Beta*dYdot1dk/n) 
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      dMdk(3,3) = (-h/(n*(a**2.0)*G))*(q*dY1dk - p*dX1dk) -  
     &            (h*k*(q*Y1 - p*X1)/(n*(a**2.0)*(G**3.0)))  
 
      dMdk(4,1) = 0.0 
      dMdk(4,2) = 0.0 
 
      dMdk(4,3) = K1*dY1dk/(2.0*n*(a**2.0)*G) +  
     &            k*K1*Y1/(2.0*n*(a**2.0)*(G**3.0))  
 
      dMdk(5,1) = 0.0 
      dMdk(5,2) = 0.0 
 
      dMdk(5,3) = K1*dX1dk/(2*n*(a**2.0)*G) +  
     &            k*K1*X1/(2*n*(a**2.0)*(G**3.0)) 
 
      dMdk(6,1) = (1.0/(n*(a**2.0)))*(-2.0*dX1dk - (k*Beta*(G**-1.0))* 
     &            (h*dX1dh + k*dX1dk) +  
     &            G*((Beta + (k**2.0)*(Beta**3.0)/(1.0-Beta))*dX1dk +  
     &            h*k*(Beta**3.0)*dX1dh/(1.0-Beta) +  
     &            Beta*(h*d2X1dkdh + k*d2X1dkk)))  
 
      dMdk(6,2) = (1.0/(n*(a**2.0)))*(-2.0*dY1dk - (k*Beta*(G**-1.0))* 
     &            (h*dY1dh + k*dY1dk) +  
     &            G*((Beta + (k**2.0)*(Beta**3.0)/(1.0-Beta))*dY1dk +  
     &            h*k*(Beta**3.0)*dY1dh/(1.0-Beta) +  
     &            Beta*(h*d2Y1dkdh + k*d2Y1dkk))) 
 
      dMdk(6,3) = ((G**-1.0)/(n*(a**2.0)))*((q*dY1dk - p*dX1dk) +  
     &            k*(q*Y1-p*X1)*(G**-2.0))  
C 
C     The partials of M wrt p 
C 
      dMdp(2,3) = -k*X1/(n*(a**2.0)*G)  
      dMdp(1,1) = 0.0 
      dMdp(1,2) = 0.0 
      dMdp(1,3) = 0.0 
 
      dMdp(2,1) = 0.0 
      dMdp(2,2) = 0.0 
 
      dMdp(3,1) = 0.0 
      dMdp(3,2) = 0.0 
      dMdp(3,3) = h*X1/(n*(a**2.0)*G)  
 
      dMdp(4,1) = 0.0 
      dMdp(4,2) = 0.0 
      dMdp(4,3) = p*Y1/(n*(a**2.0)*G)  
 
      dMdp(5,1) = 0.0 
      dMdp(5,2) = 0.0 
      dMdp(5,3) = p*X1/(n*(a**2.0)*G)  
   
      dMdp(6,1) = 0.0 
      dMdp(6,2) = 0.0 
      dMdp(6,3) = -X1/(n*(a**2.0)*G)  
C 
C     Partials of M wrt q 
C 
      dMdq(2,3) = k*Y1/(n*(a**2.0)*G)  
      dMdq(1,1) = 0.0 
      dMdq(1,2) = 0.0 
      dMdq(1,3) = 0.0 
 
      dMdq(2,1) = 0.0 
      dMdq(2,2) = 0.0  
 
      dMdq(3,1) = 0.0 
      dMdq(3,2) = 0.0 
      dMdq(3,3) = -h*Y1/(n*(a**2.0)*G)  
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      dMdq(4,1) = 0.0 
      dMdq(4,2) = 0.0 
      dMdq(4,3) = q*Y1/(n*(a**2.0)*G)  
 
      dMdq(5,1) = 0.0 
      dMdq(5,2) = 0.0 
      dMdq(5,3) = q*X1/(n*(a**2.0)*G)  
   
      dMdq(6,1) = 0.0 
      dMdq(6,2) = 0.0 
      dMdq(6,3) = Y1/(n*(a**2.0)*G)  
C 
C     The partials of M wrt a 
C 
      dMda(1,1) = 4.0*Xdot1/((n**2.0)*(a**2.0)) +  
     &            2.0*dXdot1da/(a*(n**2.0))  
       
      dMda(1,2) = 4.0*Ydot1/((n**2.0)*(a**2.0)) +  
     &            2.0*dYdot1da/(a*(n**2.0))  
 
      dMda(1,3) = 0.0  
 
      dMda(2,1) = (G/(n*(a**2.0)))*(-dX1dk/(2.0*a) +  
     &            d2X1dadk - h*Beta*Xdot1/(n*a) - h*Beta*dXdot1da/n)  
 
      dMda(2,2) = (G/(n*(a**2.0)))*(-dY1dk/(2.0*a) +  
     &            d2Y1dadk - h*Beta*Ydot1/(n*a) - h*Beta*dYdot1da/n)  
 
      dMda(2,3) = (k/(n*(a**2.0)*G))*(-(1.0/(2.0*a))*(q*Y1 - p*X1) +  
     &            q*dY1da - p*dX1da) 
 
      dMda(3,1) = (-G/(n*(a**2.0)))*(-dX1dh/(2.0*a) + d2X1dadh +  
     &            k*Beta*Xdot1/(n*a) + k*Beta*dXdot1da/n) 
 
      dMda(3,2) = (-G/(n*(a**2.0)))*(-dY1dh/(2.0*a) + d2Y1dadh +  
     &            k*Beta*Ydot1/(n*a) + k*Beta*dYdot1da/n)  
 
      dMda(3,3) = (-h/(n*(a**2.0)*G))*(-(1.0/(2.0*a))*(q*Y1 - p*X1) +  
     &            q*dY1da - p*dX1da)  
 
      dMda(4,1) = 0.0 
      dMda(4,2) = 0.0 
      dMda(4,3) = (K1/(2.0*n*(a**2.0)*G))*(-(1.0/(2.0*a))*Y1 + dY1da)  
  
      dMda(5,1) = 0.0 
      dMda(5,2) = 0.0 
      dMda(5,3) = (K1/(2.0*n*(a**2.0)*G))*(-(1.0/(2.0*a))*X1 + dX1da) 
 
      dMda(6,1) = -M(6,1)/(2.0*a) + (1.0/(n*(a**2.0)))* 
     &            (-2.0*dX1da + G*(h*Beta*d2X1dadh + k*Beta*d2X1dadk)) 
 
      dMda(6,2) = -M(6,2)/(2.0*a) + (1.0/(n*(a**2.0)))* 
     &            (-2.0*dY1da + G*(h*Beta*d2Y1dadh + k*Beta*d2Y1dadk)) 
 
      dMda(6,3) = -M(6,3)/(2.0*a) + (1.0/(n*(a**2.0)))* 
     &            (q*dY1da - p*dX1da)*(G**-1.0)  
C 
C     Partials of M wrt l 
C 
      dMdl(1,1) = (2.0/((n**2.0)*r))*dXdot1dF  
      dMdl(1,2) = (2.0/((n**2.0)*r))*dYdot1dF  
      dMdl(1,3) = 0.0 
 
      dMdl(2,1) = (G/(n*a*r))*(d2X1dFdk - h*Beta*dXdot1dF/n)  
      dMdl(2,2) = (G/(n*a*r))*(d2Y1dFdk - h*Beta*dYdot1dF/n)  
      dMdl(2,3) = (1.0/(n*a*r*G))*(k*(q*dY1dF - p*dX1dF))  
 
      dMdl(3,1) = -(G/(n*a*r))*(d2X1dFdh + k*Beta*dXdot1dF/n)  
      dMdl(3,2) = -(G/(n*a*r))*(d2Y1dFdh + k*Beta*dYdot1dF/n)  
      dMdl(3,3) = (1.0/(n*a*r*G))*(-h*(q*dY1dF - p*dX1dF))  
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      dMdl(4,1) = 0.0 
      dMdl(4,2) = 0.0 
      dMdl(4,3) = K1*dY1dF/(2.0*n*a*r*G)  
   
      dMdl(5,1) = 0.0 
      dMdl(5,2) = 0.0 
      dMdl(5,3) = K1*dX1dF/(2.0*n*a*r*G)  
 
      dMdl(6,1) = (1.0/(n*a*r))*(-2.0*dX1dF + G*(h*Beta*d2X1dFdh +  
     &            k*Beta*d2X1dFdk)) 
 
      dMdl(6,2) = (1.0/(n*a*r))*(-2.0*dY1dF + G*(h*Beta*d2Y1dFdh +  
     &            k*Beta*d2Y1dFdk)) 
 
      dMdl(6,3) = (1.0/(n*a*r*G))*(q*dY1dF - p*dX1dF)  
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_U.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_U(lam_vect,B,u) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_U                                            
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: computes the normalized thrust acceleration vector  
C.     given the 6x3 M matrix and the vector of current Lagrange multipliers. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_U(lam_vect,B,u,u_norm) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER     I/O                   DESCRIPTION                   
C.          --------  ---  ---------------------------------------------- 
C.          lam_vect  I    6x1 input vector of lagrange multipliers 
C.          B         I    6x3 input matrix of partial derivatives 
C.          u         O    3x1 normalized output thrust vector 
C.          u_norm    O    scalar magnitude of thrust acceleration 
C.                                                                    
C. ROUTINES REQUIRED:  NONE                              
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      DOUBLE PRECISION lam_vect(6), B(6,3), u(3) 
      DOUBLE PRECISION u_unnorm(3), u_norm 
 
      u_unnorm(1) = lam_vect(1)*B(1,1) + 
     &              lam_vect(2)*B(2,1) + 
     &              lam_vect(3)*B(3,1) + 
     &              lam_vect(4)*B(4,1) + 
     &              lam_vect(5)*B(5,1) + 
     &              lam_vect(6)*B(6,1) 
 
      u_unnorm(2) = lam_vect(1)*B(1,2) + 
     &              lam_vect(2)*B(2,2) + 
     &              lam_vect(3)*B(3,2) + 
     &              lam_vect(4)*B(4,2) + 
     &              lam_vect(5)*B(5,2) + 
     &              lam_vect(6)*B(6,2) 
 
      u_unnorm(3) = lam_vect(1)*B(1,3) + 
     &              lam_vect(2)*B(2,3) + 
     &              lam_vect(3)*B(3,3) + 
     &              lam_vect(4)*B(4,3) + 
     &              lam_vect(5)*B(5,3) + 
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     &              lam_vect(6)*B(6,3) 
 
      u_norm = DSQRT(u_unnorm(1)**2.0 + 
     &               u_unnorm(2)**2.0 + 
     &               u_unnorm(3)**2.0) 
 
      u(1) = (1.0/u_norm)*u_unnorm(1) 
      u(2) = (1.0/u_norm)*u_unnorm(2) 
      u(3) = (1.0/u_norm)*u_unnorm(3)              
 
      RETURN  
      END 
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C ------------------------------------------------------------------------------ 
C 
C   FILE NAME: COMP_XY.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_XY(z_vect,mu,X1,Xdot1,Y1,Ydot1,nm, 
     &                   cF,sF,G,Beta,r,K1) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_XY                                            
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Calculates auxiliary quantities based on  
C.    the current equinoctial orbital elements. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_XY(z_vect,mu,X1,Xdot1,Y1,Ydot1,nm, 
C                       cF,sF,G,Beta,r,K1) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER     I/O                   DESCRIPTION                   
C.          --------  ---  ---------------------------------------------- 
C.          z_vect    I    the 6x1 vector of equinoctial elements 
C.          mu        I    the central body gravitational constant 
C.          X1        O    Cartesian X position magnitude 
C.          Xdot1     O    Cartesian X velocity magnitude 
C.          Y1        O    Cartesian Y position magnitude 
C.          Ydot1     O    Cartesian Y velocity magnitude 
C.          nm        O    mean motion 
C.          cF        O    cosine of the eccentric longitude 
C.          sF        O    sine of the eccentric longitude 
C.          G         O    auxiliary parameter based on h,k 
C.          Beta      O    auxiliary parameter based on h,k 
C.          r         O    radial distance from center of primary mass 
C.                         and satellite 
C.          K1        O    auxiliary parameter based on p,q 
C.                                                                     
C. ROUTINES REQUIRED:  SOLVE_ECC_ANOMALY                            
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      IMPLICIT NONE 
 
      DOUBLE PRECISION z_vect(6), mu, nm, cF, sF 
      DOUBLE PRECISION a,h,k,p,q,l,G,r,K1,Beta 
      DOUBLE PRECISION X1,Xdot1,Y1,Ydot1 
      DOUBLE PRECISION arp, ran, E, F 
      DOUBLE PRECISION SOLVE_ECC_ANOMALY 
 
      a = z_vect(1) 
      h = z_vect(2) 
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      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      arp = DATAN2(h,k)-DATAN2(p,q) 
      ran = DATAN2(p,q) 
 
      E = SOLVE_ECC_ANOMALY(l-ran-arp,DSQRT(h**2.0+k**2.0)) 
 
      F = E + DATAN2(h,k) 
 
      cF = DCOS(F) 
      sF = DSIN(F) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1-Beta*(k**2.0))*cF - h*k*Beta*sF) 
 
      RETURN 
      END 
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C 
C   FILE NAME: COMP_EQUIN_VAR.for  (averaged equation software) 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_EQUIN_VAR(z_vect,lam_vect, 
     &                          dadt,dhdt,dkdt,dpdt,dqdt,dldt) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_EQUIN_VAR                                         
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the derivatives of the equinoctial  
C.     orbital elements with respect to time, i.e. element  
C.     rates.  Because the averaged equations of motion are  
C.     used here, the DQAG subroutine is used to compute the  
C.     element rates using a Gauss-Kronrod numerical quadrature. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_EQUIN_VAR(z_vect,lam_vect, 
C                              dadt,dhdt,dkdt,dpdt,dqdt,dldt) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          z_vect     I    6x1 vector of equinoctial elements 
C.          lam_vect   I    6x1 vector of lagrange multipliers 
C.          dadt       O    derivative of a wrt time 
C.          dhdt       O    derivative of h wrt time 
C.          dkdt       O    derivative of k wrt time 
C.          dpdt       O    derivative of p wrt time 
C.          dqdt       O    derivative of q wrt time 
C.          dldt       O    derivative of mean long. wrt time 
C.                                                                  
C. ROUTINES REQUIRED:  DQAG 
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      PARAMETER (limit = 50,lenw=limit*4) 
 
      INTEGER key, neval, ier, limit, lenw, last 
      INTEGER iwork(limit), I 
 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION dadt,dhdt,dkdt,dpdt,dqdt,dldt,pi 
      DOUBLE PRECISION a, b, epsabs, epsrel, result, abserr 
      DOUBLE PRECISION work(lenw), FQUAD 
      DOUBLE PRECISION RHS_ADOT, RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT 
      DOUBLE PRECISION RHS_LDOT 
 
      EXTERNAL RHS_ADOT, RHS_HDOT, RHS_KDOT, RHS_PDOT, RHS_QDOT 
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      EXTERNAL RHS_LDOT 
 
      COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect 
 
      key = 3 
      epsabs = 1.0E-6 
      epsrel = 1.0E-6 
 
      pi = 3.141592653589793 
       
      DO I=1,6 
         fquad_z_vect(I) = z_vect(I) 
         fquad_lam_vect(I) = lam_vect(I) 
      END DO 
 
      CALL DQAG(RHS_ADOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dadt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_HDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dhdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_KDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dkdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_PDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dpdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_QDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dqdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_LDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dldt = (1.0/(2.0*pi))*result 
 
      RETURN 
      END 
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C 
C   FILE NAME: COMP_EUL_LAG_VAR.for  (averaged equation software) 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      SUBROUTINE COMP_EUL_LAG_VAR(z_vect,lam_vect, 
     &                            dlamadt,dlamhdt,dlamkdt,dlampdt, 
     &                            dlamqdt,dlamldt) 
C                                                                
C....................................................................... 
C. ROUTINE: COMP_EUL_LAG_VAR                                         
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the derivatives of the Lagrange  
C.     multipliers with respect to time, i.e. multiplier  
C.     rates.  The averaged equations for the multiplier  
C.     rates are computed using the DQAG subroutine which  
C.     performs numerical quadrature using the Gauss-Kronrod method. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          CALL COMP_EUL_LAG_VAR(z_vect,lam_vect, 
C                                dlamadt,dlamhdt,dlamkdt,dlampdt, 
C                                dlamqdt,dlamldt) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          z_vect     I    6x1 vector of equinoctial elements 
C.          lam_vect   I    6x1 vector of lagrange mulipliers 
C.          dlamadt    O    derivative of lagrange mult. for a wrt time 
C.          dlamhdt    O    derivative of lagrange mult. for h wrt time 
C.          dlamkdt    O    derivative of lagrange mult. for k wrt time 
C.          dlampdt    O    derivative of lagrange mult. for p wrt time 
C.          dlamqdt    O    derivative of lagrange mult. for q wrt time 
C.          dlamldt    O    derivative of lagrange mult. for mean long. wrt time 
C.                                                                  
C. ROUTINES REQUIRED:  DQAG 
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      PARAMETER (limit = 50,lenw=limit*4) 
 
      INTEGER key, neval, ier, limit, lenw, last 
      INTEGER iwork(limit), I 
 
      DOUBLE PRECISION z_vect(6),lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION dlamadt,dlamhdt,dlamkdt,dlampdt 
      DOUBLE PRECISION dlamqdt,dlamldt,pi 
      DOUBLE PRECISION a, b, epsabs, epsrel, result, abserr 
      DOUBLE PRECISION work(lenw), FQUAD 
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      EXTERNAL RHS_LAMADOT, RHS_LAMHDOT, RHS_LAMKDOT 
      EXTERNAL RHS_LAMPDOT, RHS_LAMQDOT, RHS_LAMLDOT 
 
      COMMON /FQUAD/ fquad_z_vect, fquad_lam_vect 
 
      key = 3 
      epsabs = 1.0E-6 
      epsrel = 1.0E-6 
 
      pi = 3.141592653589793 
 
      DO I=1,6 
         fquad_z_vect(I) = z_vect(I) 
         fquad_lam_vect(I) = lam_vect(I) 
      END DO 
 
      CALL DQAG(RHS_LAMADOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlamadt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_LAMHDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlamhdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_LAMKDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlamkdt = (1.0/(2.0*pi))*result 
       
      CALL DQAG(RHS_LAMPDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlampdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_LAMQDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlamqdt = (1.0/(2.0*pi))*result 
 
      CALL DQAG(RHS_LAMLDOT,-pi,pi,epsabs,epsrel,key,result,abserr, 
     &          neval,ier,limit,lenw,last,iwork,work) 
 
      dlamldt = (1.0/(2.0*pi))*result 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_ADOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_ADOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_ADOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the semimajor axis rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          ADOT = RHS_ADOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
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      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_ADOT = ft*(M(1,1)*u(1) + M(1,2)*u(2) + M(1,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_HDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_HDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_HDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial h element rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          HDOT = RHS_HDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
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      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_HDOT = ft*(M(2,1)*u(1) + M(2,2)*u(2) + M(2,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_KDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_KDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_KDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial k element rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          KDOT = RHS_KDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
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      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_KDOT = ft*(M(3,1)*u(1) + M(3,2)*u(2) + M(3,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_PDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_PDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_PDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial p element rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          PDOT = RHS_PDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
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      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_PDOT = ft*(M(4,1)*u(1) + M(4,2)*u(2) + M(4,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_QDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_QDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_QDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the equinoctial q element rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          QDOT = RHS_QDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
       
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
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      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_QDOT = ft*(M(5,1)*u(1) + M(5,2)*u(2) + M(5,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the mean longitude element rate of change using  
C.          the current equinoctial elements and the COMP_M  
C.          and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LDOT = RHS_LDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
      END DO 

375 



 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u) 
C 
C     Compute the result 
C   
      RHS_LDOT = ft*(M(6,1)*u(1) + M(6,2)*u(2) + M(6,3)*u(3))* 
     &           (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMADOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMADOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMADOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the semimajor axis using the COMP_M and COMP_U subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMADOT = RHS_LAMADOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect, fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
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      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMADOT =  
     &  ft*(-lama*(dMda(1,1)*u(1) + dMda(1,2)*u(2) + dMda(1,3)*u(3)) + 
     &      -lamh*(dMda(2,1)*u(1) + dMda(2,2)*u(2) + dMda(2,3)*u(3)) + 
     &      -lamk*(dMda(3,1)*u(1) + dMda(3,2)*u(2) + dMda(3,3)*u(3)) + 
     &      -lamp*(dMda(4,1)*u(1) + dMda(4,2)*u(2) + dMda(4,3)*u(3)) + 
     &      -lamq*(dMda(5,1)*u(1) + dMda(5,2)*u(2) + dMda(5,3)*u(3)) + 
     &      -laml*(dMda(6,1)*u(1) + dMda(6,2)*u(2) + dMda(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) + 
     &  -laml*dnda*(1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMHDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMHDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMHDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the h equinoctial element using the COMP_M and COMP_U  
C.          subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMHDOT = RHS_LAMHDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect,fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
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         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMHDOT =  
     &  ft*(-lama*(dMdh(1,1)*u(1) + dMdh(1,2)*u(2) + dMdh(1,3)*u(3)) + 
     &      -lamh*(dMdh(2,1)*u(1) + dMdh(2,2)*u(2) + dMdh(2,3)*u(3)) + 
     &      -lamk*(dMdh(3,1)*u(1) + dMdh(3,2)*u(2) + dMdh(3,3)*u(3)) + 
     &      -lamp*(dMdh(4,1)*u(1) + dMdh(4,2)*u(2) + dMdh(4,3)*u(3)) + 
     &      -lamq*(dMdh(5,1)*u(1) + dMdh(5,2)*u(2) + dMdh(5,3)*u(3)) + 
     &      -laml*(dMdh(6,1)*u(1) + dMdh(6,2)*u(2) + dMdh(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMKDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMKDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMKDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the k equinoctial element using the COMP_M and COMP_U  
C.          subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMKDOT = RHS_LAMKDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect,fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
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         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMKDOT =  
     &  ft*(-lama*(dMdk(1,1)*u(1) + dMdk(1,2)*u(2) + dMdk(1,3)*u(3)) + 
     &      -lamh*(dMdk(2,1)*u(1) + dMdk(2,2)*u(2) + dMdk(2,3)*u(3)) + 
     &      -lamk*(dMdk(3,1)*u(1) + dMdk(3,2)*u(2) + dMdk(3,3)*u(3)) + 
     &      -lamp*(dMdk(4,1)*u(1) + dMdk(4,2)*u(2) + dMdk(4,3)*u(3)) + 
     &      -lamq*(dMdk(5,1)*u(1) + dMdk(5,2)*u(2) + dMdk(5,3)*u(3)) + 
     &      -laml*(dMdk(6,1)*u(1) + dMdk(6,2)*u(2) + dMdk(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMPDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMPDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMPDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the p equinoctial element using the COMP_M and COMP_U  
C.          subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMPDOT = RHS_LAMPDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect,fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
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         lam_vect(I) = fquad_lam_vect(I) 
      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMPDOT =  
     &  ft*(-lama*(dMdp(1,1)*u(1) + dMdp(1,2)*u(2) + dMdp(1,3)*u(3)) + 
     &      -lamh*(dMdp(2,1)*u(1) + dMdp(2,2)*u(2) + dMdp(2,3)*u(3)) + 
     &      -lamk*(dMdp(3,1)*u(1) + dMdp(3,2)*u(2) + dMdp(3,3)*u(3)) + 
     &      -lamp*(dMdp(4,1)*u(1) + dMdp(4,2)*u(2) + dMdp(4,3)*u(3)) + 
     &      -lamq*(dMdp(5,1)*u(1) + dMdp(5,2)*u(2) + dMdp(5,3)*u(3)) + 
     &      -laml*(dMdp(6,1)*u(1) + dMdp(6,2)*u(2) + dMdp(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMQDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMQDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMQDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the q equinoctial element using the COMP_M and COMP_U  
C.          subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMQDOT = RHS_LAMQDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect,fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
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      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMQDOT =  
     &  ft*(-lama*(dMdq(1,1)*u(1) + dMdq(1,2)*u(2) + dMdq(1,3)*u(3)) + 
     &      -lamh*(dMdq(2,1)*u(1) + dMdq(2,2)*u(2) + dMdq(2,3)*u(3)) + 
     &      -lamk*(dMdq(3,1)*u(1) + dMdq(3,2)*u(2) + dMdq(3,3)*u(3)) + 
     &      -lamp*(dMdq(4,1)*u(1) + dMdq(4,2)*u(2) + dMdq(4,3)*u(3)) + 
     &      -lamq*(dMdq(5,1)*u(1) + dMdq(5,2)*u(2) + dMdq(5,3)*u(3)) + 
     &      -laml*(dMdq(6,1)*u(1) + dMdq(6,2)*u(2) + dMdq(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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C ------------------------------------------------------------------------------- 
C 
C   FILE NAME: RHS_LAMLDOT.for 
C  
C     VERSION: 1.0 
C 
C     CREATED: 10/13/2007 
C 
C     Copyright Massachusetts Institute of Technology.  All rights reserved. 
C 
C ------------------------------------------------------------------------------ 
C 
      DOUBLE PRECISION FUNCTION RHS_LAMLDOT(F) 
C                                                                
C....................................................................... 
C. ROUTINE: RHS_LAMLDOT                                          
C.                                                                      
C.                                                                     
C. VERSION: 1.0                                                        
C.                                                                    
C.                                                                     
C. PROGRAMMED BY:                                                      
C.          Z J. FOLCIK                                                 
C.                                                                      
C.                                                                     
C. PURPOSE: Computes the Lagrange multiplier rate associated with  
C.          the mean longitude using the COMP_M and COMP_U  
C.          subroutines. 
C.                                                                     
C.                                                                    
C. CALLING SEQUENCE:                                                   
C          LAMLDOT = RHS_LAMLDOT(F) 
C. 
C. PARAMETER DESCRIPTION:                                               
C.          PARAM-     1                                                
C.           ETER      I/O                   DESCRIPTION                   
C.          ---------  ---  ------------------------------------- 
C.          F          I    Input value of eccentric longitude 
C.                                                                     
C. ROUTINES REQUIRED:  COMP_M, COMP_U  
C.           
C....................................................................... 
C                                                               
C***************** DECLARATIONS **************************************** 
C  
C 
      INTEGER I 
 
      DOUBLE PRECISION F,sF,cF,a,h,k,p,q,l,G,Beta,nm,r,K1,X1,Y1 
      DOUBLE PRECISION Ydot1,Xdot1,M(6,3),u(3) 
      DOUBLE PRECISION dMda(6,3),dMdh(6,3),dMdk(6,3) 
      DOUBLE PRECISION dMdp(6,3),dMdq(6,3),dMdl(6,3) 
      DOUBLE PRECISION ft, mu, z0_vect(6), zF_vect(6) 
      DOUBLE PRECISION z_vect(6), lam_vect(6) 
      DOUBLE PRECISION fquad_z_vect(6), fquad_lam_vect(6) 
      DOUBLE PRECISION lama,lamh,lamk,lamp,lamq,laml 
      DOUBLE PRECISION dnda 
      DOUBLE PRECISION EXTDAT, FQUAD 
 
      COMMON /EXTDAT/ ft,mu,z0_vect,zF_vect 
      COMMON /FQUAD/  fquad_z_vect,fquad_lam_vect 
C 
C     Replace the sF and cF because we are calculating the quadrature 
C     from F = -pi to pi. 
C 
      sF = DSIN(F) 
      cF = DCOS(F) 
 
      DO I=1,6 
         z_vect(I) = fquad_z_vect(I) 
         lam_vect(I) = fquad_lam_vect(I) 
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      END DO 
 
      a = z_vect(1) 
      h = z_vect(2) 
      k = z_vect(3) 
      p = z_vect(4) 
      q = z_vect(5) 
      l = z_vect(6) 
 
      lama = lam_vect(1) 
      lamh = lam_vect(2) 
      lamk = lam_vect(3) 
      lamp = lam_vect(4) 
      lamq = lam_vect(5) 
      laml = lam_vect(6) 
 
      G = (1.0 - h**2.0 - k**2.0)**(1.0/2.0) 
      Beta = 1.0/(1.0+G) 
 
      nm = DSQRT(mu)*(a**(-3.0/2.0)) 
 
      r = a*(1.0 - k*cF - h*sF) 
 
      K1 = 1.0 + p**2.0 + q**2.0 
 
      X1 = a*((1.0-Beta*(h**2.0))*cF + h*k*Beta*sF - k) 
      Y1 = a*(h*k*Beta*cF + (1.0-Beta*(k**2.0))*sF - h) 
 
      Xdot1 = (a**2.0)*nm*(1.0/r)*(h*k*Beta*cF - (1.0-Beta*(h**2.0))*sF) 
      Ydot1 = (a**2.0)*nm*(1.0/r)*((1.0-Beta*(k**2.0))*cF - h*k*Beta*sF) 
C     
C     Compute the M matrix of equinoctial partials wrt rdot,  
C     the partials of M wrt the equinoctial elements, and 
C     auxiliary partial derivatives. 
C 
      CALL COMP_M(z_vect,X1,Xdot1,Y1,Ydot1,nm,cF,sF,G,Beta,r,K1, 
     &            M,dMda,dMdh,dMdk,dMdp,dMdq,dMdl) 
C 
C     Compute the unit vector u, i.e. the components of the equinoctial f,g,w vector. 
C 
      CALL COMP_U(lam_vect,M,u)     
     
      dnda = -3.0*nm/(2.0*a); 
     
      RHS_LAMLDOT =  
     &  ft*(-lama*(dMdl(1,1)*u(1) + dMdl(1,2)*u(2) + dMdl(1,3)*u(3)) + 
     &      -lamh*(dMdl(2,1)*u(1) + dMdl(2,2)*u(2) + dMdl(2,3)*u(3)) + 
     &      -lamk*(dMdl(3,1)*u(1) + dMdl(3,2)*u(2) + dMdl(3,3)*u(3)) + 
     &      -lamp*(dMdl(4,1)*u(1) + dMdl(4,2)*u(2) + dMdl(4,3)*u(3)) + 
     &      -lamq*(dMdl(5,1)*u(1) + dMdl(5,2)*u(2) + dMdl(5,3)*u(3)) + 
     &      -laml*(dMdl(6,1)*u(1) + dMdl(6,2)*u(2) + dMdl(6,3)*u(3)))* 
     &     (1.0-k*cF-h*sF) 
 
      RETURN 
      END 
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