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Abstract 
 
In various fields of economic endeavor, agents enjoy the option to “try, try again.”  
Failure in a particular pursuit often brings renewed effort to finally succeed.  Many areas 
of R&D could be characterized in this fashion.  Our purpose is to define and measure the 
value of this option to try again.  The value of repeated trials is closely related to the 
extent of statistical dependence among them.  We describe the solution to this valuation 
problem, examine the behavior of the option premium, and characterize potential errors 
that are inherent in two ad hoc procedures that are often used to obtain bounds on the true 
value of the prospect.  To be concrete, the problem is framed in terms of petroleum 
exploration, but the methods we employ are general and could be applied to various 
forms of R&D and other types of risky investments. 
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The Option to Try Again: 
 

Valuing a Sequence of Dependent Trials 
 
 
1.  Introduction: 
 
 In various fields of economic endeavor, agents enjoy the option to “try, try again.”  

Failure in a particular pursuit often brings renewed or repeated efforts to finally succeed.  

Many areas of research and development could be characterized in this fashion.  Our 

purpose is to define and measure the value of this option to try again.  The value of 

repeated trials is closely related, of course, to the extent of statistical dependence among 

them.  An early failure that completely negates the chance for subsequent success would 

render the option worthless.  More interesting (and realistic) are cases which involve 

imperfect dependence among trials. 

 We describe the solution to this valuation problem, examine the behavior of the 

option premium, and characterize potential errors that are inherent in two ad hoc 

procedures that are often used to obtain bounds on the true value of the prospect.  To be 

concrete, the problem is framed in terms of petroleum exploration, but the methods we 

employ are general and could be applied to various forms of R&D and other types of 

risky investments.   

2.  Case Study:  A Petroleum Exploration Prospect 
 
 It is customary to evaluate petroleum exploration and development prospects in 

terms of three parameters:  the probability of success (p), the expected gross profit 

conditional on success (V), and the cost of the drilling trial (C).  Usually, the expected 



  Page 2 

reward associated with the trial is set against the cost of conducting that trial to obtain the 

expected economic value of the prospect:1 

  EVa = p⋅V – C. 
 
Alternatively, the evaluator may recognize the operator’s ability to follow up an 

unsuccessful trial with further attempts.  If n = 1/p independent trials were attempted, 

then the expected number of successes would be given by np = 1, which suggests an 

alternative calculation of expected economic value:2 

  EVb = V – C/p, 
 
in which the full reward for achieving a drilling success is set against the expected cost of 

a sufficient number of trials to obtain that success. 

 The correspondence between these two estimates depends entirely upon the value 

of p:  they tend to converge if the probability of success is high and to diverge otherwise.  

For example, if the probability of success is 1/3, we find that EVa  =  3EVb.  If the 

probability of success were judged to be only 1/10, which is entirely plausible for many 

exploration prospects, the two estimates of value diverge by an order of magnitude.  In 

cases where the two approaches diverge significantly, it is important to look more closely 

at the underlying assumptions of the valuation process.   

 Which of the two valuations is correct?  The answer, in most cases, is “neither.”  

Both approaches ignore the influence of dependence among trials.  By “dependence 

among trials” we mean that the conditional probability of success at later trials is reduced 

                                                 
1 This formulation appears in all the standard manuals on prospect valuation.  See, for example, Megill 
(1988, p. 163), Newendorp (1975, pp. 64-83), and Lerche and MacKay (1999, p. 18).  Kemp and Rose 
(1984), Hendricks and Kovenock (1989), Pickles and Smith (1993), and Laughton (1998) are among the 
many applications that have followed this approach. 
2 Among the major treatises on exploration economics, only Newendorp (1975, pp. 115-122) recognizes the 
option to drill again after failure, but even there the discussion and analysis is confined to a rather limited 
example from which no general conclusions are drawn.  
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by earlier failures.  We show in this paper that it is impossible to obtain an unbiased 

estimate of prospect value without accounting for the degree of dependence among trials, 

and we demonstrate that the penalty for overlooking this aspect of the valuation problem 

can be quite large.  We also show that the two formulations introduced above (EVa and 

EVb) provide lower and upper bounds, respectively, on the expected economic value of 

the prospect regardless of the degree of dependence, and that the expected value declines 

monotonically as the degree of dependence among trials increases.  Finally, we offer 

some observations on the likely strength and pattern of dependence among trials that are 

suggested by the structure of exploration and development drilling uncertainties.   

 The current study is related to the approach introduced by Paddock, Siegel, and 

Smith (1988), who examined the option component of value inherent in petroleum 

exploration and development prospects.  Whereas they focused on the value of the option 

to delay drilling pending the arrival of updated price information (through the value of V, 

which they treated as stochastic), we focus on the value of the option to drill again 

pending the outcome of previous drilling attempts (where we treat V as non-stochastic).  

Although any given prospect potentially holds both types of option value, our results 

suggest that the two are substitutes to some degree:  prospects most likely to benefit 

substantially from the option to drill again are least likely to benefit substantially from the 

option to delay drilling, and vice versa. 

3.  Dependent Trials: 
 
 Let the sequence {p1, p2, p3, …} represent the conditional probability of success 

on the first, second, third, ... trials, given no previous success.  We will assume: 

 p1  ≥  p2  ≥  p3  ≥  … 
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and note that the case of independent trials is characterized by strict equalities 

throughout.  For completeness we define p0 = 0.  

 The strength of dependence between trials is measured, for our purposes, by the 

extent to which a failure at one trial diminishes the probability of success on the 

succeeding trial.  Thus, dt = (pt - pt+1)/pt = 1 - pt+1/pt represents the strength of 

dependence at the tth stage in the sequence.  The probability of initial success, p1, and the 

set {dt} are sufficient to describe any pattern of dependence among trials.  For the case of 

independent trials, dt = 0 for all t.3  Another useful benchmark is the case of “complete 

dependence,” by which we mean that the probability of success falls immediately to zero 

after the first failure:  d1 = 1 and dt = 0 for all t ≥ 2.4   

 Each trial is assumed to cost C, and success on any trial brings expected value V, 

which is assumed to be constant across all trials.  Therefore, the marginal expected profit 

generated by the tth trial is πt = pt V - C.  The sequence of trials is assumed to be truncated 

at the first success, or when marginal expected profit becomes negative, whichever comes 

first.  Truncation due to negative marginal profit, if it does occur, will come after trial T, 

where: 

 
pT+1 < C / V (i.e. πT+1 < 0)  while pT ≥ C / V. 

 
 
                                                 
3 If the strength of dependence remains constant throughout the sequence, probabilities evolve according to 
a geometric series: 
 

pt+1=λ pt, for all t, with 0 ≤ λ < 1; 
 
and the probability of success converges to zero.  Constant dependence is perhaps not the most likely case, 
however.  Consider, for example, a sequence whereby the probability of success conditional on the 
presence of oil in the prospect does not change from trial to trial.  We show later (see Section 6) that, in 
such cases, the degree of dependence steadily increases throughout the sequence; i.e., dt+1 > dt. 
4 Other names have been used to describe “complete dependence,” including “full dependence,” “shared 
risk,” and “common risk.”  See Wang, Kokolis, Rapp, and Litvak (2000), for example. 
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The truncation point (T) may not be finite (trials may continue indefinitely if the 

probabilities converge to a number that exceeds C / V), but if it is finite, then T must be 

unique due to the monotonic behavior of the probabilities of success.  We note that πt ≥ 0 

for all t ≤ T, and πt < 0 for all t > T.  To avoid degenerate cases, we will assume that p1 > 

C / V; i.e., the marginal value of the first trial is positive.  Otherwise the prospect should 

be discarded. 

 Finally, we represent the probability of reaching the tth trial by qt, where: 

qt = ( )∏
−

=

−
1

0

1
t

j
jp ,   t  =  1, 2, ... 

 
and where again for completeness we define:  q0 = 1. 
 
4.  Prospect Valuation: 

 We start by formulating the expected value of the prospect; i.e., the expression 

that properly captures the impact of whatever dependence exists among successive trials: 

 EV ≡ ∑
=

T

t
tt q

0
π  (1) 

We wish to develop a simple, yet exact expression for EV, and to establish that:  (a) EVa 

and EVb (defined previously) provide bounds on EV; (b) any increase in the degree of 

dependence among trials decreases EV; and (c) the bounds established in part (a) are 

exact:  EV = EVa in the case of complete dependence and EV = EVb in the case of 

independence.  

 It will be useful to consider a measure that recognizes the dependence created by 

failures among only the first τ trials (and ignores any further dependence created by 

subsequent failures).  This measure is denoted EVτ, where for all τ ≥ 0 for which pτ+1 > 0: 
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EVτ = ( ) ( )[ ]∑
=

++++ +−+−++
τ

ττττππ
0

2
1111 111

t
tt ...ppqq  

 

 = ∑
=

++++
τ

τττππ
0

111
t

tt p/qq . (2) 

 
 
This formula deviates from equation (1) in that all pt and qt beyond t=τ+1 are held 

constant at their previous values, and no truncation of trials is presumed to occur. 

 The benchmark valuation that ignores the impact of dependence altogether, EVb, 

is obtained from equation (2) as the special case where τ = 0: 

 
  EVb = EV0 = 1111 p/CVp/q −=π . (3) 
 
 
Advancing the index in equation (2) shows the impact of dependence through τ+1 trials 

(again we assume that pτ+2 > 0): 

 

EVτ+1 = ( ) ( )[ ]∑
+

=
++++ +−+−++

1

0

2
2222 111

τ

ττττππ
t

tt ...ppqq   

 

 = ∑
+

=
++++

1

0
222

τ

τττππ
t

tt p/qq . (4) 

 
 
In comparing EVτ and EVτ+1, it is convenient to rewrite (2) by grouping the first term of 

the infinite series with the first summation, which yields the equivalent expression: 

 

  EVτ = ( ) ( )[ ]∑
+

=
++++ +−+−+

1

0

2
1111 11

τ

ττττππ
t

tt ...ppqq  

 

   = ∑
+

= +
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

1

0 1
11 11τ

τ
ττππ

t
tt p

qq  
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   = ∑
+

=
++++

1

0
121

τ

τττππ
t

tt p/qq . (5) 

 
 
Subtracting (5) from (4) then shows the incremental impact of dependence associated 

with the τ+1st trial: 

 

 EVτ+1 - EVτ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

2
2

τ
τ p

CVq   -  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

1
2

τ
τ p

CVCq  

 

   = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++
+

21
2

11

ττ
τ pp

Cq  

 

   = 
2

1
2

+

+
+−

τ

τ
τ p

d
Cq  ( 0 since0 ≥≤ +1τd ). (6) 

 
Upper Bound for Prospect Value: 
 
 The benchmark valuation EVb, as defined by equation (3), gives the expected 

value of a prospect that affords independent trials.  If trials are actually dependent, then 

this benchmark provides an estimate of value that is biased upwards by ignoring the 

impact of dependence.5  To see this, we consider first the case where truncation of trials 

would never occur; i.e., where dependence is sufficiently weak that the probability of 

success converges to a number greater than C / V.  In this case, we may write the 

expected value of the prospect as the infinite series: 

 
 EV ≡ EV0  +  (EV1-EV0)  +  (EV2-EV1)  +  (EV3-EV2)  +  … (7) 
 
 

                                                 
5 Although this result may be intuitively clear, there is some complexity to the proof owing mainly to the 
fact (cf. equation 1) that while a reduced probability of success at trial t tends to diminish the marginal 
value of any future trial (πt+1), it also tends to increase the probability of continuing on to reap those 
marginal profits (qt+1).  The proof is a formal demonstration that the former effect outweighs the latter. 
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But, by (6) we have shown each component in this series after the first to be non-positive.  

Thus, EV0 (the estimate that ignores dependence altogether) is an upper bound on the 

expected value of the prospect, no matter what pattern of dependence may follow.   

 Next we consider the other possibility:  that dependence is strong enough to force 

truncation after the Tth trial (if success has not already occurred by then).  In this event, 

the expected value of the prospect may be written: 

 

  EV ≡ TTTTTT

T

t
tt pqqEVq /1

0

πππ −+= −
=
∑ , (8) 

 
 
where we have used equation (2) to obtain the expression on the right.  Thus: 
 
 

  EV – EVΤ-1 = ,
p
q

T

TT 01 <− +π  (9) 

 
 
since πT ≥ 0 by definition if truncation is to occur after trial T. 
 
 Where dependence forces truncation after trial T, we can write (cf. equation 7): 

 
 
 EV = EV0 + (EV1-EV0) + (EV2-EV1) + … + (EV-EVT-1), (10) 
 
 
where all terms in this summation after the first have been shown via equations (6) and 

(9) to be non-positive.  The first term, EV0, which is the valuation that ignores 

dependence altogether, therefore serves as an upper bound for the expected value of the 

prospect in the truncated case, as well as in the non-truncated case. 
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Lower Bound for Prospect Value: 
 
 Recall from equation (1) that the expected value of the prospect, EV, may be 

written: 

 

  EV ≡ ∑
=

T

t
tt q

0
π ; 

 
 
from which we observe: 
 
 
  EV = 1π , if T = 1, (11) 
 

   = ∑
=

+
T

t
tt q

2
1 ππ ,  otherwise. 

 
 
Whether the truncation point (T) is finite or infinite, each term in the summation on the 

right is non-negative by construction, which implies: 

 
  EV ≥ π1 = p1 V - C = EVa. (12) 
 
 
 This result establishes a lower bound for the expected value of the prospect, 

regardless of the strength and pattern of dependence.  That bound, EVa, corresponds to 

the expected value of the prospect if trials are completely dependent, in which case only 

one trial is attempted regardless of the outcome.  Thus, the results so far have 

demonstrated that the benchmark cases of independence and complete dependence 

provide upper and lower bounds, respectively, for the expected value of any sequence of 

dependent trials. 
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An Exact Expression for Prospect Value: 
 
 We consider first the case without truncation.  Successive substitution from 

equation (6) into (7) yields: 

 

 EV = ...
pp

Cq
pp

CqEV +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

32
3

21
20

1111  (13) 

 
 
which becomes, after rearrangement: 
 
 

 EV = ( ) ( )
...

p
qqC

p
qqC

p
CqEV +

−
+

−
++

3

34

2

23

1

2
0  (14) 

 
 
This expression can be simplified by using the identity:  111 −−− −≡− tttt pqqq , plus the 

facts that EV0 = V – C/p1 and q2 = (1-p1), which after substitution in (14) yields: 

 

 EV = nCVqCV
t

t ⋅−=− ∑
∞

=1

, (15) 

 
 
where n  represents the expected number of trials actually attempted.  (Recall that qt 

corresponds to the probability of reaching trial t, at which point one additional well will 

be drilled).   

 Thus, in the special case of non-truncated trials, the expected value of the 

prospect is given, and not surprisingly, by the expected gross value of the item less the 

cost per trial times the expected number of trials that will conducted.  This expression 

holds generally for any pattern of dependence among trials, as long as the residual 

probability of success never falls below the economic threshold for truncation. 
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 In the other case, where the sequence would be truncated after trial T, an 

analogous expression describes the expected value of the prospect.  It is obtained by 

substituting from equations (6) and (9) into (10), which yields: 

 

 EV = 
T

TT

TT
T p

q
pp

Cq...
pp

Cq
pp

CqEV 1

132
3

21
20

111111 +

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

π , 

 
 
which, after simplification via the same procedure used above, finally reduces to: 
 
 

 EV = ( ) ( ) CnVqqCVq T

T

t
tT −−=−− +

=
+ ∑ 1

1
1 11 . (16) 

 
 
 In other words, regardless of the particular pattern and strength of dependence 

among trials, the expected value of the prospect is given by the expected gross value of 

the prospect times the probability it is discovered before giving up, less the cost per trial 

times the expected number of wells drilled before giving up. 

 Using equations (15) and (16), we can easily confirm that dependence among 

trials has a monotonic impact:  any increase in the degree of dependence must decrease 

the expected value of the prospect.  For the case of non-truncated trials, this result is 

immediately apparent.  Holding all else constant, an increase in any one of the {dt} will 

cause one or more of the {qt} in equation (15) to increase, which increases the expected 

number of trials, n , and thereby reduces the expected value. 

 Where trials would be truncated after trial T, there is something more to the 

argument.  If the increase in dependence does not alter the truncation point, then the 

situation is again quite simple; the first term in equation (16) must fall (due to the rise in 

qT+1), while the second term must rise, and the expected value of the prospect is 
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diminished.  In addition, we must allow for the possibility that the truncation point will 

itself decline, say from T to T-1.  The proof for this case can be sketched very briefly.  

Since T was the optimal point of truncation before dependence was increased, we know 

already that EV(T-1) < EV(T), where EV(t) represents the expected value of the original 

prospect (before the increase in dependence) if the sequence is to be truncated after trial t.  

But we also know (by the argument in the preceding paragraph) that EV’(T-1) < EV(T-1), 

where the EV’ notation represents the expected value of the revised prospect (based on 

the {pt} that result from the increase in dependence).  By transitivity we must then have 

EV’(T-1) < EV(T) for any increase in dependence among trials.  The same argument 

works by extension if the optimal truncation point is reduced by more than one step.   

5.  An Illustration of the Potential Option Premium: 
 
 Although expected value of the prospect varies directly with the initial probability 

of success (through its impact on the {qt}), the distance between our bounds on prospect 

value varies inversely with this parameter.  We have shown the upper bound to be EVb = 

V – C / p1; and the lower bound EVa = p1V - C = p1EVb.  Thus, the relative size of the 

interval within which the actual value must lie is:  EVb / EVa = 1 / p1.   

 If the probability of success were small, say 10%, then the upper bound would be 

an order of magnitude larger than the lower bound.  Such cases merit the most detailed 

examination of the extent of dependencies among trials simply because the potential 

penalty from ignoring that dependence is the greatest.  The economic lower limit on p1 is 

given by C / V.  If we define the inverse, V / C, as the “unrisked return” or “gross margin” 

of the project, then it follows that prospects with the highest unrisked returns (or gross 

margins) are the ones most prone to potential mis-estimation of value as a result of 
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ignoring or misstating the extent of dependencies (since those are the prospects that admit 

the lowest probabilities of success).  Prospects with relatively low unrisked returns do not 

admit low success probabilities and therefore the bounds on project value will be much 

tighter.  Consequently, detailed examination of the nature of dependencies for projects 

with low unrisked returns would have less impact on the assessment of prospect value. 

 These relations between probability of success, unrisked return, and width of the 

valuation interval are illustrated in Figures 1 and 2, below.  For convenience, the prospect 

in each figure is characterized by V = 100, but that parameter can be scaled up or down 

without changing the geometrical shape of the diagrams—only the scale on the vertical 

axis would be affected. 

 It is evident from the figures that the value of the option to drill again, which 

accounts for the spread between the two curves, is of greater potential significance for 

high-margin prospects than for low-margin prospects.  In contrast, the opposite 

relationship holds with regard to the option to delay drilling, as demonstrated previously 

by Paddock, Siegel, and Smith (1988, pp. 504-505).  That is, prospects for which the 

reward exceeds the cost by a sufficiently wide margin should be drilled immediately 

because the potential gain from favorable future price developments is outweighed by the 

fact that undeveloped oil reserves appreciate more slowly than money in the bank.  The 

implication is that petroleum prospects are likely to benefit significantly from one or the 

other option component, but rarely from both.  In light of the fact that exploration wells, 

especially in frontier areas or immature plays, are particularly high-risk gambles with 

large rewards (relative to costs) if successful, exploration prospects would as a general 

rule be more likely to benefit from the option to drill again.  Development wells, which 
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are drilled into known formations that carry less risk, are more likely to benefit from the 

option to delay.  Each prospect is unique, however, so there could be many individual 

exceptions to this general pattern. 

6.  Trials With Increasing Dependence 
 
 In this section we investigate the implications for dependence and prospect value 

of a plausible structure of geological uncertainty and its resolution.  We begin with the 

postulate that the conditional probability of success (St) at trial t, given the presence of an 

oil-bearing structure (O) in the prospect, is independent of t: 

 
( )OSP t |  = α > 0  for t = 1, 2, … 

 
 
We also assume that the probability of success at any trial, conditional on the absence of 

an oil-bearing structure, is zero: 

 
( )OSP t |  = 0  for t = 1, 2, … 

 
 
Finally, we take the a priori probability of an oil-bearing structure to be P(O) = β, where 

0 < β < 1. 

 We may then write the probability of success at the first trial, p1, in the following 

manner: 

 
  p1 = ( )1SP      = ( ) ( ) ( ) ( )OPOSPOPOSP || 11 +  
 
 
   = ( ) ( ) αβ=⋅ OPOSP |1 . 
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Moreover, we can write the conditional probability of success on the second trial, given 

failure on the first, as: 

 
  p2 = ( ) ( ) ( )1212 ||| SOPOSPSSP ⋅= . 
 
 
In general, the conditional probabilities at each stage in the sequence take the form: 
 
 
 pt = ( ) ( ) ( )1111 ...||...| −− ∩⋅=∩∩ tttt SSOPOSPSSSP . (17) 
 
 
The last term in (17) can be written equivalently, per Bayes Rule, as: 
 
 

  ( ) ( ) ( )
( )11

11
11 ...

|...
...|

−

−
− ∩∩

⋅∩∩
=∩∩

t

t
t SSP

OPOSSP
SSOP . 

 
 
The numerator in this last expression equals (1-α)tβ.  The denominator is evaluated by 

rewriting in the form: 

 
( )11 ... −∩∩ tSSP  = ( ) ( ) )(|...)(|... 1111 OPOSSPOPOSSP tt ⋅∩∩+⋅∩∩ −−  

 
 
  = ( ) ( )ββα −+− − 11 1t . 
 
 
Substituting these results back into (17) yields: 
 
 

 pt = ( )
( ) ( )ββα

βαα
−+−

−
−

−

11
1

1

1

t

t

. (18) 

 
 
 The degree of dependence at trial t is then determined from (18) by the ratio 

pt+1/pt, = 1 - dt = λt, which after simplification can be expressed as (cf. footnote 3): 
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 λt = ( ) ( )( )
( ) ( )

1
11

111
<

−+−
−−+−
ββα

βαβα
t

t

 for all t. (19) 

 
 
 The fact that λt < 1 signifies that trials are dependent.  That fact that dependence 

is increasing as trials continue follows from the fact that λt/λt-1 < 1, a result which can be 

confirmed by using (19) to evaluate the ratio:  λt/λt-1: 

 

 
1−t

t

λ
λ  = ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )22222

21222

111111
11121

βαββαββαβ
βαββαβ

−+−−+−−+−
−+−−+−

−−

−−

ttt

tt

 

 

 = ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )211222

21222

111111
11121

βαααββαβ
βαββαβ

−+−+−−−+−
−+−−+−

−−−

−−

][tt

tt

. 

 
 
Only the middle term differs between numerator and denominator of the last expression.  

Thus: 

 

( ) ( ) ( )0,1 allfor   trueiswhich 21-1:ifonly  and if    1 1

1

∈>−+< −

−

ααα
λ
λ

,
t

t . 

 
 In summary, under the maintained hypothesis that the conditional probability of 

success is constant given the presence of an oil-bearing structure, it follows that 

successive failures have increasing negative impacts on the relative probability of 

success. 

 The evolution of success probabilities over successive trials, and the associated 

decline in λt, are illustrated below in Figures 3 and 4, respectively.  We present two 

cases:  Case 1 has α = 30% and β = 90% (a strong a priori probability of an oil-bearing 

structure but a relatively weak test), whereas Case 2 has α = 70% and β = 50% (a weaker 
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prior accompanied by a more powerful test).  Clearly, the evolution of success 

probabilities varies significantly as these parameters are changed.  What we have 

established in this section is that, subject to the structure of uncertainty described above, 

all such curves are monotonically decreasing. 

 The figures illustrate a further, rather intuitive lesson about the option to drill 

again.  If there is a strong a priori belief in the presence of oil but the power of the 

drilling trial to confirm that belief is low, then the degree of dependence among trials is 

reduced.  In the extreme, this situation would approximate the case of independent trials, 

wherein drilling continues until the original presumption of a deposit is proven correct.  

On the other hand, if the a priori probability of a deposit is low and the power of the 

drilling trial to detect that deposit is high, the situation would approximate the case of 

completely dependent trials in which the first well tells the whole story, and the value of 

the option to drill again would diminish. 

7.  Conclusion: 
 
 We have demonstrated that the value of the option to try again can be 

significant—in some cases greatly exceeding the expected value of the initial trial 

considered in isolation.  The value of this option is diminished, however, by the influence 

of dependence among trials.  Dependence essentially reduces the volatility of outcomes, 

and therefore also reduces option value, by reducing the upside potential of successive 

trials.  We have provided exact formulas by which the expected value of any such 

prospect can be computed.  We have also demonstrated that the impact of dependence is 

monotonic:  any increase in the degree of dependence among trials must further reduce 

the expected value of the prospect. 
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 Two relatively simple and familiar estimation procedures provide bounds on the 

actual value of the prospect.  The most common estimation approach, here designated 

EVa, errs by ignoring the option component completely.  The other approach, EVb, 

recognizes the option component but ignores the impact of dependence among trials.  The 

gap between these two approaches is potentially very wide if the initial probability of 

success is not high.   

 We have also demonstrated that the option to try again tends to act as a substitute 

for the option to delay trials.  Generally speaking, prospects that are “deep in the money” 

are most likely to benefit significantly from the option to try again, but least likely to 

benefit from the option to delay trials; the converse applies to prospects that are “even 

money” or below. 

 Our conclusions regarding the negative impact of dependence are specific to the 

particular problem at hand:  valuation of a single prospect that may or may not yield its 

reward upon repeated testing.  It is not correct to assume that dependence plays a similar 

role in all valuation problems.  The expected value of a portfolio of multiple prospects, 

for example, is actually enhanced by dependence among prospects, owing to the different 

mechanism by which dependence augments the volatility of potential portfolio returns—

but that is a more complicated problem that goes beyond the scope of the present paper.   
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Figure 1: Bounds on Prospect Value
(High Margin: C/V = 10%)
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Figure 2: Bounds on Prospect Value
(Low Margin: C/V = 50%)
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Figure 3:  Success Probability Declines at Each Trial
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Figure 4:  Lambda Declines (Dependence Increases)
at Each Trial
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