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Abstract

The use of Power Electronic circuits has helped to advance the technology of automotive
alternators. The use of a Switched-Mode Rectifier (SMR) allows the alternator to run at a
load-matched condition, optimizing power and efficiency over all operating speeds.
However, the use of SMR's has largely been focused on designs for 42 V alternators.

This thesis presents the design, build, and characterization of an SMR-based alternator
that provides improved power and efficiency at the present automotive standard of 14 V.
The SMR-based machine was built from commercial electronic devices and packaged
such that it could be fully integrated into the alternator housing without impacting the
physical structure or reliability.

The SMR-based alternator was characterized in a laboratory environment (25°C ambient
temperature) over the standard operating range of 1500 rpm (idle speed) to 6000 rpm
(cruising speed). The alternator operated in a load-matched condition, achieving
maximum power output up to 2400 rpm and achieved cruising speed output power of
2178 W at full field current of 4.3 A.

Thesis supervisor: David J. Perreault
Title: Professor of Electrical Engineering
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Chapter 1

1. Introduction

In this introductory chapter a motivation for the research is presented. The present
alternator architecture is briefly evaluated and the proposed benefits of the new
architecture are introduced. The goals of the thesis work are outlined and an organization
of the thesis is presented.

1.1 Motivation

Over the years the number of electrically-driven loads in vehicles has continually

increased. Manufacturers have introduced a number of new features and functions to the

modem automobile and they have sought to make many standard features electrically

driven as well. As such, the electrical power required of traditional automotive power

generators is increasing as shown in Figure 1.1.

As the trend of increasing electrical power continues to rise, limitations of the
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Figure 1.1 Installed electrical power in Volvo cars from 1945-1999111]
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present-day power generation technology available in most cars will soon be reached.

Moreover, there is a growing desire to achieve much higher efficiencies than are typically

found in conventional Lundell alternators, which are typically below 50% for many

operating conditions [1, 6]. In addition to environmental and fuel consumption concerns,

higher efficiencies are of commercial interest in truck and fleet vehicle applications

where operating costs are a significant purchasing consideration. This has resulted in a

need to develop new technologies that will improve performance and meet the growing

need for electrical power [1-5].

The push towards a more powerful alternator that can overcome the limitations of

the present system faces many practical and financial challenges. There is a substantial

research effort focused on using power electronic circuits to address the increasing power

and efficiency requirements without sacrificing much of the investments put into the

manufacturing infrastructure in place for current Lundell alternators [1-5].

1.2 Theory of Operation

1.2.1 Lundell Alternator with Full Bridge Diode Rectifier

Presently, automobiles are manufactured with a conventional Lundell alternator machine

connected to a full-bridge diode rectifier. The Lundell alternator transforms mechanical

energy into electrical energy by generating an electromotive force (EMF) that is

dependent on the regulated field current, if, and the rotational speed of the alternator

shaft, w, [1, 6] as is shown in the expression

Vs = kcoif. (1.1)

The value k is the machine constant in units of volts-seconds per ampere-radian. The 3-

phase sinusoidal voltages generated by the machine are rectified by the full bridge diode



rectifier. The rectified DC voltage then supplies power to various loads throughout the

automobile as well as supplying a constant charge to the battery, which is connected to

the output of the diode rectifier. The battery serves as a constant voltage load at about 14

V. It is used as a "stand-by" power supply to address the electrical needs of the car when

the engine is not running, and to start the automobile's engine.

A simplified electrical model of the alternator machine with constant voltage load

is shown in Figure 1.2. The electrical model shown in Figure 1.2 is analyzed in [2].

Based on the analysis in [2], an approximation of the alternator output power can be

expressed as

I2
3Vo V 2"j

out 3= (1.2)

where Vo is the output voltage, Vs is the peak amplitude of the EMF, co is the electrical

Field Current
Regulator

I I

n
Figure 1.2 Electrical model of Lundell alternator [21
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frequency of the EMF, and Ls is the armature synchronous inductance [2].

At a fixed field current, equation (1.2) can be used to generate a set of curves

mapping output power versus output voltage at different operating speeds. These curves

are shown for one particular alternator in Figure 1.3. The alternator at any speed and load

voltage can provide any power level lower than the corresponding curve, by operating at

a field current lower than the one used to generate the curve. The output power

capability is maximized at one output voltage for any speed, but is reduced to zero above

a certain output voltage [1]. For the alternator of Figure 1.3, a 14 V output is nearly

optimal at 1800 rpm. But at higher speeds, 14 volts is far below the power-optimizing

voltage. A 42 V load will draw much more power from the alternator at higher speeds

Ahternaor outpu power vs. V

0~

Figure 1.3 Output Power vs. Voltage over different alternator speeds [1]



than the 14 V load can draw at any speed. But below about 3000 RPM, the alternator is

unable to deliver any power to a 42 V load.

1.2.2 Switched-mode Rectifier with Load Matching

The concept of load-matching was introduced in [1, 7]. Consider the alternator and

switched-mode rectifier shown in Figure 1.4. In this system, a diode bridge is followed

by a "boost switch set" comprised of a controlled MOSFET switch Qx and a diode Dx.

This topology incorporates a new control capability into the traditional rectifier structure.

The new control capability allows for high frequency modulation of the controlled

switch, so that the effective output voltage of the alternator can be matched to the voltage

required for maximum power at the given alternator speed [1]. The operation of such a

circuit is analogous to a DC-DC boost converter.

The switch Qx is modulated at a fixed duty ratio d. When the switch is off, the

diode Dx conducts and the ac current is working through the rectifier into a voltage vo.

Field Current
Regulator

SMR
I-

n

Figure 1.4 Alternator with switched-mode rectifier (SMR) [1



When the switch is on, the ac current is shunted to ground. This is essentially the same as

working through a rectifier into a voltage of zero. On average, the system behaves as if it

is working into a voltage source of voltage vx, where vx is given by equation (1.3).

(V,) = 1- d , (1.3)(i)= (1-d)0i (1.4)

The corresponding output current io of the system is given by equation (1.4). This

effective voltage scaling is known as load-matching where the voltage seen by the

machine, is being scaled to match the optimal load voltage at the given operating speed.

The added control freedom made it possible to design an alternator that could operate

along the dotted line shown in Figure 1.5, optimizing the alternator's power output and

Alternator output power s. Vx

V (V

Figure 1.5 Load-matched alternator output



efficiency regardless of speed. This new topology is referred to as a Switched-mode-

rectifier or SMR.

1.3 Thesis Objective

Many challenges still exist in making the transition from a conventional to a more

powerful and efficient alternator. These challenges are due in large part to the difficulty

of incorporating the additional power electronic circuitry into the current alternator

structure without affecting the reliability of either the alternator or the circuitry. The

under-hood environment of a car poses a harsh environment [16-18] that would expose

commercial electronic devices to conditions not normally encountered.

The objective of this thesis is to design and develop an alternator capable of

addressing the manufacturing challenges mentioned above while offering improved

performance over the conventional Lundell machine. The design will focus on three

areas listed below:

1. Increasing average output power into a fixed 14 V output at the high end
operating speeds while maintaining the optimal load-matched power capabilities
at lower RPM. Previous designs (e.q [1, 5]) have focused on 42 V output designs
which have different tradeoffs in the design of the power electronics.

2. Maintaining the improved efficiency provided by the SMR over a wide range of
loads. This will be based on the "efficiency optimized control law" proposed but
not implemented in [1, 7].

3. Design for manufacturability; that is working with available off-the-shelf devices
and implementing a circuit board layout that will not alter the physical structure
or manufacturing practices of a present-day alternator design.

Using a combination of the control handles (field current, switch modulation, etc)

and working with newer, more capable power products it is possible to optimize the

output power from Equation 1.2 such that increased power (up to a fixed level

determined by device capability) at any alternator speed can be delivered to a fixed

output voltage of 14 V.



1.4 Outline of the Thesis

This design encompasses a variety of technical challenges that can be broken down into

the different tasks listed below:

* Device Selection
Select a set of commercial devices that could meet the electrical, mechanical, and
thermal criteria imposed by the design goals.

* Thermal Characterization and Modeling
Evaluate the electrical performance and operating conditions to reasonably
approximate the power dissipation in the devices. Create a model for the thermal
transfer capabilities of the devices and experimentally verify the model accuracy.

* Alternator Characterization and Modeling
Experimentally characterize a commercial alternator to identify important
performance parameters such as field current, synchronous inductance, winding
resistance, and output power capability. Use parameters to develop a
computational model that will calculate the expected performance improvements
at different winding ratios. Choose a winding ratio that will satisfy the design
goals while not overstressing the devices.

* Implementation of control strategy
Implement a basic control strategy that will allow for verification of hardware
capabilities. This will include the use of duty-cycle modulation, synchronous
rectification, zero-crossing detection, and a speed sensor for the alternator.

* Layout and packaging
Design a PCB and heat sink that will be a form-fit replacement of the diode
rectifier in the commercial alternator. All power devices and control circuitry will
be contained within the PCB. The PCB and heat sink should not alter the size or
structure of commercial alternator housing.

* Design verification
Experimentally evaluate the new alternator. Verify that the machine parameters
scale according to the winding ratio and verify that the performance of the new
machine is consistent with the computational model. Attempt to explain any
discrepancies between the computational and the experimental results.



Chapter 2

2. Device Selection

One of the major challenges of this design is embedding commercial power electronic
devices into a harsh automotive environment [16-18]. The devices must be suited to
meet the rigorous operating conditions while being able to optimize performance and
maintain reliability. In this chapter the important electrical and thermal parameters for
device selection are discussed and a set of power and auxiliary devices is chosen.
Finally, test specifications are generated to exercise the devices and validate electrical
and thermal performance.

2.1 Power Devices

For the power devices operating in the SMR, performance optimization will be based on

power handling capability and thermal transfer capabilities. The SMR will be

implemented as a 3-phase MOSFET and diode boost configuration as shown in Figure

2.1. In order to produce the intended output power it was necessary to find commercial

MOSFETs and diodes that are capable of handling the voltage and current requirements

Field Current
Regulator

I

Figure 2.1 Alternator with 3-phase SMR [1I



without being exposed to catastrophic levels of electrical or thermal stress.

2.1.1 MOSFETs

Some of the basic electrical parameters for potential MOSFETs that need to be looked at

are breakdown voltage, "on" resistance, gate charge, parasitic input capacitance, junction-

to-case thermal impedance, and maximum junction temperature. Ideally the breakdown

voltage will be 50% to 100% above the operating voltage seen in the application to

provide design margin and overhead to deal with "load dump" transient management. In

a 14 V system, the MOSFETs will see approximately 14.5V across drain-to-source under

normal operating conditions. A "load dump" transient will cause a voltage spike at the

alternator output. The alternator power electronics can be controlled to manage this

overvoltage transient with only a very limited device overvoltage of less than 40% (see

[10], for example). For this reason, the widely-available class of MOSFETs having a 30

V breakdown voltage specification are well suited for this design. The breakdown

voltage should also be limited to 30-40V as higher voltages sacrifice other parameters

such as "on" resistance.

Low "on" resistance is another electrical parameter needed to optimize

performance. In a low voltage system, any intended output power improvement is

implemented in the form of increased current which requires low conduction losses to

optimize efficiency and limit thermal stress. In the SMR implementation, the MOSFETs

will be switching high peak current (at lower engine operating speeds) as well as acting

as a synchronous rectifier throughout the operating range. In both cases, low "on"

resistance is needed to minimize conduction losses.

Low gate charge and low parasitic input capacitance are needed to minimize

switching losses, for the operating range where high-frequency PWM is used, as well as



Table 2.1: MOSFET descriptions

Manufacturer PN Vds (V) Id (A) Rdson (mQ)* Rthjc (oC/V)

IR IRF2804S 40 75 3.4 0.45

IR IRF2804S-7P 40 160 2.6 0.5

Fairchild FDB8860 30 80 3.45 0.43

Fairchild ISL9N302AS3ST 30 75 3.45 0.49

* Rd_. rating at 150 0C junction temperature

to minimize stress on the gate driver IC. Low junction-to-case thermal impedance is also

needed to minimize the junction temperature of the device. Even with high conversion

efficiency, the MOSFETs will dissipate a significant amount of power and it is necessary

to keep the junction temperature as low as possible in order to maintain reliability.

A number of MOSFETs from various suppliers were reviewed for possible use.

Low "on" resistance was considered the top priority based on previous designs where

conduction losses were the primary loss mechanism in the MOSFETs. Based on what

was available on the market when this work was initiated, the four MOSFETs in Table

2.1 were chosen for detailed evaluation. It should be noted that all of the MOSFETs in

Table 2.1 are rated for 175 0C maximum junction temperature and were de-rated to 150 0C

for all design calculations. The Rds o,, value in the table reflects this. The Fairchild PN

FDB8860 was found to be unavailable in practice at the time and was scrapped from

consideration.

2.1.2 Schottky Diodes

The second power device needed is a Schottky diode. Commercial alternators utilize pin

diodes which are very thermally robust but tend to have high forward voltage drops.

Schottky diodes have low forward voltage drops which make them ideal for high current



applications. Moreover, the reverse recovery of these devices is negligible, making them

well suited to high-frequency switching. The search for surface mount schottky diodes

was considerably more difficult than looking for MOSFETs. Only one device that would

satisfy the requirements, International Rectifier 112CNQ030A, was found to be available

at the time this work was initiated. This particular device is rated up to 110A average

current at a forward voltage drop of .39V and with a junction-to-case thermal impedance

of .25C/W. The device junction temperature is only rated up to 1500C and was de-rated

to 130 0 C for all design calculations. Despite the lower temperature rating, this is the only

commercial device that provided the necessary power handling capabilities and it was

thought that the lower thermal impedance would alleviate some of the concern of

junction temperature rise.

2.2 Auxiliary Components

2.2.1 Gate Drivers

A gate driver with low output impedance and high peak current drive capability is needed

to optimize the switching performance in the MOSFETs. Ideally a dual totem pole gate

driver would be used as it provides dual BJT and MOSFET drives that are capable of

sourcing and sinking high peak currents, driving very close to the supply rails, and having

low output impedance determined by the parallel combination of the drive transistors.

One gate driver that can handle this drive capability is the Texas Instruments

UCC27322DGN. The UCC27322DGN is rated at 9A peak drive current which was

experimentally verified according to the specification sheet. Also, the driver's peak

current capability was tested with 5 V on the output pin. This is significant in that the

driver reaches full drive capability during the "plateau" region of a MOSFETs turn-on/off

transition.



Good thermal performance is also necessary as the MOSFETs that will be tested

require a considerable gate charge to get minimal "on" resistance in the conduction

channel of the device. Also, packaging concerns in the final product may make it

necessary to eliminate a gate drive resistor meaning that the gate drive losses will be

dissipated in the gate driver. The gate drive losses are calculated by

Pgd = Q Vf (2.1)

where Q is the total gate charge, V is the drive voltage, and f is the switching frequency.

For the MOSFETs listed in Table 2.1, nominal gate charge is in the 200nC range at about

15V drive voltage. If the switching frequency is 100KHz, the power dissipation in the

gate driver is 300mW.

The UCC27322DGN is available in the MSOP-8 PowerPADTM package which

takes up very little space and has an electrically isolated case that can be connected to the

PCB ground plane for heat sinking. This device is available for operation up to 105C

and its datasheet claims a maximum power dissipation of 1.37W at 700 C ambient with a

17.1mW/°C de-rating above 700C. Nominal ambient temperature in the under-hood

environment of the alternator is 85°C which would de-rate the power dissipation

capability by about a quarter watt. This leaves plenty of margin for operation at the

expected ambient temperature.

2.2.2 Ceramic Capacitors

Capacitors with high current density are also needed for this application. In a boost

converter, the output capacitors source current to the load when the MOSFET switch is

conducting current and they sink current from the source when the MOSFET is not

conducting. Assuming that the boost inductor is large and input ripple current is



capacitorcapacitor

/p-p

t

Figure 2.2 Boost output capacitor current waveform

negligible the capacitive current in a boost converter takes the shape of the waveform in

figure 2.2.

The RMS current seen by the output capacitors is calculated by the following:

IRMS  p-p d- ;d = T (2.2)
T

For a boost converter chopping 100A at a 50% duty cycle, the RMS current equates to

50A and it is likely that the SMR would be chopping peak currents in excess of 100A, for

close to 50% duty cycle. What is needed is the best current density available in surface

mount capacitors. Ceramic capacitors, because of their high Q rating, are the most likely

candidate. Datasheets of ceramic capacitors from Murata were examined for voltage

rating and RMS current capability. The GRM43ER61C226K ceramic capacitor is

commercially available in a standard 1812 package and is rated at 4 Arms capability with a

10C temperature rise. For the SMR application this was the best available part that

satisfied the current density requirements.

T

L

Ti



2.2.3 Thermal Interface Material

The final component that was needed was an electrical isolation material with high

thermal conductivity. In the SMR design, the PCB will be pressed against a heatsink to

conduct heat away from the six power devices. The six devices will be operating at four

different electrical potentials so it is necessary to provide electrical isolation while

maintaining high thermal conductivity. A variety of electrical isolating materials are

available from the Bergquist Company. The materials are available in varying thickness

and varying degrees of firmness. The thinner materials are referred to as Sil-PadTM

materials. Some of these materials are available in very thin sheets and provide excellent

thermal performance with very little applied pressure. The Bergquist Sil-PadTM 1500ST

is a material that is available in 8 mil thickness and is rated as having a thermal

impedance of 1.50C/W for an area equal to a TO-220 device.

2.3 Test Board Specifications

A DC-DC boost converter test circuit, as shown in Figure 2.3, was needed to evaluate the

electrical capabilities and thermal transfer characteristics of the 3 MOSFETs and the

diode. Based on these test results, one MOSFET would be chosen for use in the three-

phase SMR. The test setup requires a DC power supply to drive the input and an output

load that could be set to a constant voltage of 14 V and is capable of handling the output

L D.U.T

Figure 2.3 Boost converter test circuit



power.

2.3.1 Switching Frequency

Previous work had been put into determining the optimal MOSFET switching frequency

for the SMR, and in previous designs [10] the switching frequency was 100 KHz. To

remain consistent with the previous effort it was decided that the boost converter would

operate at 100 KHz for the initial test run and if the power dissipation due to switching

loss was excessive then the switching frequency could be scaled back.

2.3.2 Duty Cycle

Ideally the testing would be performed over a range of duty cycles to measure the relative

effects of the switching losses versus the conduction losses. At higher duty cycles it is

expected that the conduction losses may dominate and at lower it is expected that the

switching losses may dominate. Starting at 50% would give a pretty good indication of

what this relation will be between the two and will also serve as an indicator of whether

some design changes need to be considered.

2.3.3 Output Power

In the previous design seen in [10] the output power goal of the SMR-based alternator

was 1.5 to 2 times that of a commercial alternator. Previous work from [8] had been

performed on a commercial alternator that was rated at 12V, 130A or approximately

1.56KW output power. A 1.5 times improvement over the commercial alternator puts the

total output power of the SMR at 2.34KW. For the test board we will be working with

approximately 1/3 of the capability of the SMR which would put the output power goal at

780W. The boost converter will be driving an HP6050A electronic load set to 14 V in

constant voltage operating mode.



Table 2.2: Boost converter test specifications

Parameter Description Value

Idc DC input current 60-120 A

Vo Output load set voltage 14 V
Power delivered to output

Pload load 420-840 W
MOSFET switching

fsw frequency 100 KHz
MOSFET switching duty

d cycle 50%

2.3.4 Input Power

With the output characteristics set to 14 V and 780 W, the output current would be just

under 56 A. Given that device testing will be conducted with a converter operating at

50% duty cycle, the input current must be 112 A to test at this output power level. An

HP 6011A DC power supply rated for 120 A, 1000 W was available for testing. The

input current could also be scaled down to get test data over a range of operating

conditions. To summarize, the test specifications listed in Table 2.2 were used to

exercise the devices and validate the electrical and thermal modeling.



Chapter 3

3. Thermal Characterization and Modeling

In this chapter the electrical parameters and test specifications are used to approximate
the power dissipation in the selected devices. The thermal transfer characteristics of the
devices and the PCB are used to calculate the expected temperature rise in the devices
and place a specification on the heatsink. A thermal transfer model is created to optimize
temperature rise vs. PCB space allocation needed to maintain the devices at a safe
operating temperature. The thermal model is also used to design a thermal test circuit
board. Testing is conducted with this board and sample devices to validate the accuracy
of the model.

3.1 Device Power Dissipation

3.1.1 MOSFET Conduction Loss

In a boost converter MOSFET conduction losses occur when the MOSFET is turned on

and the DC input current is shunted directly to ground. Power is dissipated as the input

current flows across a small resistance in the MOSFET's conduction channel. The total

power dissipation due to conduction loss is calculated by

= I * R = * d * R (3.1)
cond RMS DS ON DC DS ON

where RDs ON is the temperature dependent resistance in the conduction channel of the

MOSFET and d is the switching duty ratio. Each MOSFET's datasheet specifies a

maximum value of RDS ON at 250C and a normalized multiplier for RDs ON vs. junction

temperature. The calculated values of RDs ON at the maximum junction temperature of

150 0C are listed in Table 2.1 for each MOSFET under consideration. Based on these

values of RDs ON the maximum power dissipation due to conduction loss for any

MOSFET under consideration is about 25 W at 120 ADC input current.



3.1.2 MOSFET Switching Loss

Switching loss is frequency dependent power dissipation that occurs during the turn-on

and turn-off transitions of the MOSFET. Power is dissipated in the device as both current

and voltage are transitioning from one state to another. For a brief time T during these

transitions there is simultaneous current through and voltage across the device.

Analytically the power dissipation due to switching loss is calculated by

T

Pw = fW p JVJpkIdt (3.2)
0

where f, is the MOSFET switching frequency, and Vpk, Ipk are the peak voltage and

current simultaneously in the device. Although a simple analytical expression, switching

loss is difficult to accurately calculate because it is highly dependent on the parasitic

input capacitance which is a nonlinear parameter. Also the switching behavior can be

affected by unknown or poorly defined parameters such as PCB trace inductance and

parasitic lead inductance.

A MATLAB program was developed in [4] to model the switching behavior of

MOSFETs in the boost topology. The program utilizes curve fitting expressions for the

nonlinear capacitances to try and accurately calculate the turn-on and turn-off transition

time in the devices. Unknown parameters can be obtained experimentally or extracted

from PSPICE simulation models and input into the program. The MATLAB program

calculates the total switching loss at a given switching frequency. Running the program

at a couple of different operating frequencies generates a series of points which can be

added to the conduction losses and plotted to show the total power dissipation as a

function of the switching frequency. As is shown in Figure 3.1 the maximum power

dissipation approaches 50 W at 100 KHz switching frequency.
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Figure 3.1 MOSFET Power Dissipation

3.1.3 Diode Conduction Loss

In a boost converter, conduction losses occur in the diode when the MOSFET switch is

turned off and the DC input current is delivered directly to the output through the diode.

Power is dissipated in the device due to the average current through the device and the

forward voltage drop needed to carry the instantaneous forward current. The expression

for diode conduction loss averaged over a complete PWM period is

Pdiode = Vd * AVG = Vd * IDC * (1- d) (3.3)

where Vd is the forward voltage drop across the diode, IDC is the instantaneous forward

current, and d is the switching duty cycle. The specification sheet for the

112CNQ030ASL diode plots the average power loss vs. average forward current as well

as the instantaneous forward current vs. forward voltage drop. Either plot can be used to

approximate the diode power dissipation at the different DC input currents. Based on the



Table 3.1: Estimated diode power dissipation

Ide (A) Vf(V) Pdiode (W

120 0.43 26
100 0.41 20.5
80 0.4 16
60 0.4 12

data from the specification sheet, Table 3.1 was generated to be used as a guideline for

the diode power dissipation during testing.

Based on the estimated total power dissipation and the junction-to-case thermal

impedances (R,.c) of the devices, a limit is placed on the maximum case temperature of

each device. A preliminary PCB design can be generated to calculate what heatsink-to-

ambient thermal impedance is needed to maintain the devices at or below that maximum

case temperature.

3.2 PCB Thermal Design

3.2.1 Thermal Vias

The use of thermal vias is a common industry technique for limiting the temperature rise

in surface mount devices. Thermal vias lie within the dimensions of the solder pad,

directly underneath the case of surface mount devices. They electrically connect the top

layer solder pad to a bottom layer solder pad providing a thermally efficient path through

the PCB. The bottom layer solder pad can then be pressed against a heatsink to further

conduct heat away from the device.

The vias are laid out such that there is as much conduction (copper) area as

possible connecting the top and bottom solder pads below the device. The total copper

conduction area of one via is determined by the copper plating thickness Tc of the via

and the hole diameter d of the via.



Acu = rc(Tcu + d)Tcu (3.4)

Given the conduction area of the via and the thermal resistivity p of copper, the thermal

impedance of a single via can be calculated by

p*l mil-OC
Rth,via ; p 98i- (35)

AW

where 1 is the length of a via or thickness of the PCB. The PCB thickness and drill

diameter capability are parameters that were obtained directly from the PCB

manufacturer. The plating thickness was assumed to be equal to the copper trace

thickness.

3.2.2 MOSFET Layout

The MOSFET design is considered first since it has the tighter design constraints of the

two power devices. The thermal design considerations are as follows:

1. The estimated power dissipation is up to 50W
2. RtkIC,FET can be as high as .50C/W

3. T = 150 C

4. The D2-PAK surface mount package is approximately equal in size to a
standard TO-220 package hence the Sil-PadTM thermal

"C
impedance Rth,il-pad = 1.5

W

Figure 3.2 Via layout pattern

35



EagleCAD software was used to layout a pattern of vias underneath the solder pad area of

the D2-PAK. The initial pattern that was laid out is shown in Figure 3.2. This pattern

allowed for 63 vias with a hole diameter of 23 mil and a pitch of 50 mil to be drilled

within the outline of the D2-PAK.

Using equations 3.4 and 3.5 and assuming the plating thickness to be equivalent

to the trace thickness of 3oz/ft2 copper, the calculation for the MOSFET case-to-sink

thermal impedance RthCS,FET is carried out as follows

Ac = (Tc +d)TCU

AcU = Yr* (4mil + 23mil) * 4mil = 339.3mil2

p*l
th,via nAcu 63

mil-0 C
98 * 62mil

Rth via = =.284-
63*339.3mil2  W

RthCS,FET = Rth,via + Rth,sil-pad = .284 C + 1.5 C
W W

> RthCS,FET = 1.784
W

The case-to-sink thermal impedance from this layout design places the following

constraint on the heatsink

TSINK,M =TJ,M - PFET * (RthC,FET + RthCS,FET)

TSIKM = 150 C -50W * (.5 C +1.784 C
W W

TSNK,MAx = 35.8 C

TsNK,MAX - Tambient 35.8"C - 25C " C
SRth,sa  = .142

PFET + PDIODE 76W W



"C
For a test board running at 250C ambient, the Rth,sa spec of .142 - is very difficult to

W

meet with commercial off-the-shelf parts and would leave no overhead margin.

A new design that reduces the case-to-sink thermal impedance needs to be

explored. The previous calculations showed that the case-to-sink thermal impedance was

dominated by the Sil-PadTM thermal impedance and not the via layout. Therefore the

thermal via layout, while not fully optimized, will suffice.

3.2.3 Heat Spreader Design

A heat spreader is a slab of copper, surrounding the device, which conducts heat away

from the device and effectively increases the total area conducting heat down through the

board. This is an effective method of decreasing the case-to-sink thermal impedance

because it will decrease the thermal impedance through the board and, more importantly,

increase the contact area between the Sil-PadTM and the heatsink. The heat spreader is

implemented by expanding the solder pad area of the surface mount package and placing

vias all through the expanded area. Copper foil is then soldered on to the areas not

covered by the D2-PAK.

A MATLAB model is developed to approximate the behavior of the heat spreader

as a function of the length of the heat spreader for a given foil thickness. The model is

I------------ ------------

Figure 3.3 Heat spreader ladder network
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based on a resistor ladder network as shown in Figure 3.3. For the sake of simplicity it is

assumed that heat is conducted away from the device laterally and all area not

immediately lateral to the device is ignored. The center point of the ladder is the device

junction and the area enclosed by the dashed lines is the total junction-to-heatsink

thermal impedance if there was no heat spreader. The case-to-sink thermal impedance of

each ladder "rung" RthCS,RUNG is the thermal impedance through the PCB of one row of

seven vias plus the thermal impedance of Sil-PadTM area underneath that row. In this

case, each additional row of vias is approximately 1/9th the total area of the D2-PAK. The

spreading resistance Rh,spreader is the thermal impedance along the copper foil between

each "rung" in the ladder. Figure 3.3 is shown with only one "rung" per side of the

device but the idea is to continue adding rungs to the ladder until the total MOSFET case-

to-sink thermal impedance asymptotically approaches the point of diminishing returns.

Equations 3.4 and 3.5 can be manipulated to calculate the thermal impedances

needed for the model;

Acu = w* h (3.6)

where w represents the width of each rung and h represents the combined thickness of the

top layer copper trace and the copper foil. The spreading resistance is

p*l mil-°C
Rth,spread p * ; 98 -C (3.7)

Ac: W

where 1 is the pitch between rows. Assuming that each rung is seven vias or 350mil

wide and the combined thickness of the foil and trace is two 40z/ft2 pieces of copper, the

necessary parameters needed for the model can be calculated from equations 3.4-3.7.



RthCS,RUNG= Rthvia, + (9 * Rth,sil-pad)

RthCS,RUNG = + 9*1.5 ;n
nAcu W

= 7,1= 62mil

mil-"C
98 * 62mil

W °CRthCS,RUNG W +13.5-
7 * 339.3mi12  W

"C
RthCS,RUNG = 16.06

W

p*l
Rthspread = ;I = 50mil, w = 350mil, h = 10.8mil

Rthspread W- 1.

These parameters are input into the MATLAB model and used to calculate the effective

MOSFET case-to-sink thermal impedance RthCS,FET as a function of the length of the

spreader. The model produced the plot presented in Figure 3.4.

MOSFET Case-to-Sink Thermal Impedance
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Figure 3.4 MOSFET Heat spreader model results



Around the point of 16-18 total rungs or 8-9 per side of the device, the heat

spreader asymptotically approaches the point of diminishing returns where continuing to

increase the area produces little improvement. The curve can be rerun at varying foil

thickness to see if this always holds true but for the purposes of the test board this may be

sufficient to move forward. A quick recalculation of the heatsink specification yields the

following results:

TSINKMAX -TJ,MAX - PFET * (RthJC,FET+ RthCS,FET

oC "C
TSINK,MAX = 150'C- 50W * (.5- +1.06 )

W W
> TSNKMAx = 72°C
TSINK ,MAX

R = TSIN,MAX Tambient 72C - 25C = R .62 C
PFET + PDIODE 50W + 26W W

A heatsink thermal impedance ofRth,sa = .62 is a more reasonable specification and a test

board can be built to this specification and tested at 25°C ambient to verify the accuracy

of the heat spreader model.

3.2.4 Diode Layout

The thermal design for the 112CNQ030 schottky diode will have greater overhead

margin than the MOSFET because the diode is a larger device with lower junction-to-

case thermal impedance and the expected power dissipation is lower. The relevant design

considerations for the diode are

1. The estimated power dissipation is up to 26W.
"C

2. RthJC,DIODE -25

3. TMA = 130 C

4. The D61-8-ASL surface mount package is approximately twice the size of a
°C

standard TO-220 package hence the Sil-PadTM Rh,sil-pad = .75 W
w



The diode layout incorporated the same via spacing pattern as was used for the

MOSFET. In total, 119 vias of 23mil diameter were placed within the outline of the

D61-8-ASL package. Following the same design equations that were used for the

MOSFET, the diode's case-to-sink thermal impedance RthCS,DIODE is calculated from the

following:

Acu = '(Tcu +d)Tcu

AcU = rC * (4mil + 23mil) * 4mil = 339.3mil2

p*lRth,via = ;n = 119th~via nA '

mil-°C
98 * 62mil

W C
Rth,via = W =.15h 119*339.3mil2  W

RthCS,DIODE =Rth,via+ Rth,sil-pad 15 C .75 C
W W

°C
=> RthCS,DIODE .9-

W

TSINK,MAX = TJ,MX - PDIODE * (RthJC,DIODE + RhCS,DIODE)

TSINK,MAX = 130C - 26W * (.25C +.9 )
W W

= TSNK,MAx = 1 O0C

S = TSINK,MAX -Tambient 100'C - 25 C

th,sa WPFE + PD 50W + 26W

As expected the larger device and lower power dissipation allowed for sufficient copper

area to be place within the outline of the D61-8-ASL package and a heat spreader was not

needed. Also the diode allows for greater margin on the heatsink so the restrictions

imposed by the MOSFET will be used to select an appropriate heatsink for the test board.



3.2.5 Heatsink Selection

The final aspect of the thermal design is the selection of an off-the-shelf aluminum

extrusion that satisfies the Rth,sa <.62'C/W specification. Wakefield Thermal Solutions

offers a variety of high fin density aluminum extrusions that are available in 7.4"x 12"

size which is large enough for the test PCB. Part number 510-12U is a stock extrusion

that is rated at Rth,sa = .24'C/W with a 50'C temperature rise. The lower thermal

impedance will allow for the devices to operate at less than the maximum junction

temperature providing overhead margin and more reliability.

3.3 Test Board Design Verification

3.3.1 Design Objective

The objective of the test board was to validate the electrical capabilities of the devices,

the thermal efficiency of the PCB, and the accuracy of the heat spreader model. The test

specifications that were developed in Chapter 2 are recalled in Table 3.2

There are four different operating points that will be controlled by a constant current DC

power supply. The output will be driving a constant voltage load set for 14 V. At each

operating current the circuit will run continuously until the devices reach thermal steady

state.

Table 3.2: Boost converter test specifications

Parameter Description Value

/dc DC input current 60-120 A

Vo Output load set voltage 14 V
Power delivered to output

Pload load 420-840 W
MOSFET switching

fsw frequency 100 KHz
MOSFET switching duty

d cycle 50%



3.3.2 Test Methodology

A test methodology was developed to take all measurements and calculate the necessary

Input current shunt

Boost Inductor

Output current shunt

Output pegs

Test board

rigure ,.a noost converter test ooara ana test setup



performance characteristics of the converter. A picture of the test setup is shown in

Figure 3.5. A schematic of the test circuit is available in Appendix A. 1.

1. All voltage measurements were made with a Fluke 87111 DMM.
2. A 200 A (4A/mV) current shunt is connected on the input line of the converter.

The voltage across the shunt is measured to verify DC input current.
3. The DC input voltage with respect to ground is measured directly at the input of

the boost inductor.
4. A 100 A (2A/mV) current shunt is connected on the output line of the converter.

The voltage across the shunt is measured to verify DC output current.
5. The DC output voltage with respect to ground is measured directly across the

output pegs of the test board.
6. The total input power and output power are calculated. The output power is

subtracted from the input power with the result representing total power
dissipation in the boost converter test circuit.

7. The DC voltage drop across the boost inductor is measured.
8. The boost inductor power dissipation is calculated and subtracted from the total

power dissipation with the result representing power dissipation in the two test
devices

9. The MOSFET drain voltage with respect to ground is measured while the
MOSFET switch is on. The voltage across drain-source is divided by the DC
input current to calculate RDS ON"

10. A K-type thermocouple is used to measure the case temperatures of the MOSFET
and diode and the heat sink temperature.

Based on this set of measurements all of the relevant performance characteristics of the

devices and PCB can be calculated. Step 8 calculated the device power dissipation and

efficiency for each MOSFET-diode pair. Table 3.1 estimated the total diode power

dissipation based on data provided in the specification sheet. The remaining device

power dissipation is attributed to the MOSFET. Step 9 in the test methodology

calculated the MOSFET conduction loss. The remaining MOSFET power dissipation

was attributed to switching loss. The individual device dissipation was used in

combination with the case temperature and heatsink temperature to determine the case-to-

sink thermal impedance of each device. The accuracy of the MOSFET heat spreader

model can be validated based on the calculated case-to-sink thermal impedance.



Table 3.3: ISL9N302 - 112CNQ030ASL Test Results

PMOSFET

IDC (A) Pdiode (W) Efficiency Tc,MOSFET Tc,diode TSINK RthCSdiode RthCS,MOSFET

60 11.10 12 94.91% 52.70C 53.1 0C 35.4°C 1.48 0C/W 1.56 oC/W

80 23.54 16 93.63% 67.80C 71 C 400C 1.94 oC/W 1.18 "C/W
100 35.19 20.5 93.03% 83.60C 96.50C 46.50C 2.44 oC/W 1.05 oC/W

120 Device Failure - No data recorded

Table 3.4: IRF2804S - 112CNQ030ASL Test Results

PMOSFET

IDC (A) (W) Pdiode (W) Efficiency TC,MOSFET Tc,diode TSINK RthCS,diode RthCSMOSFET

60 10.89 12 94.93% 47.050C 46.90C 34.10C 1.07 CNV/W 1.18 "C/W
80 18.02 16 94.46% 61.750C 56.250C 41.80C 0.90 oC/W 1.11 oC/W

100 27.32 20.5 93.92% 74.1oC 70.4°C 49.450C 1.02 CNV/W 0.90 °C/W
120 41.84 26 92.98% 97.350C 87.30C 55.050C 1.24 CNV/W 1.01 oC/W

Table 3.5: IRF2804S-7P - 112CNQ030ASL Test Results

PMOSFET
IDC (A) (W) Pdiode (W) Efficiency TcMOSFET Tc,diode TSINK RthCSdiode RthCS.MOSFET

60 8.81 12 95.38% 52.80C 45.40C 370C 0.7 oC/W 1.79 oC/W

80 14.08 16 95.10% 65.1oC 59.10C 470C 0.76 oC/W 1.29 oC/W

100 20.58 20.5 94.79% 76.1oC 68.70C 53.10C 0.76 oCVW 1.12 oC/W

120 31.14 26 94.11% 90.20C 80.70C 57.50C 0.89 0C/W 1.05 oC/W

3.3.3 Test Results

Each device combo was tested at least twice with the test methodology presented

in 3.3.2. The averaged results of the two test runs for the ISL9N302 - 112CNQ030ASL

combo are shown Table 3.3. To summarize the test data, the Fairchild IRSLN93N was

eliminated from consideration because it showed higher power dissipation when

operating at lower input currents and in both test runs a device failure occurred at the 120

ADC input. In the first instance the diode and MOSFET failed, so a second test board was

constructed with two new devices. In this instance the MOSFET failed again. The

reason for the failures was never fully explored as multiple failures and inefficient

operation were enough to remove the device from consideration.



Both International rectifier MOSFETs completed successful runs at all operating

points. The averaged results for the IRF2804S and IRF2804S-7P device combos are

shown in Tables 3.4 and 3.5 respectively. The IRF2804S operated with less efficiency

than the IRF2804S-7P particularly at the higher current levels. This would appear to

indicate that the lower RDS ON of the IRF2804-7P makes for a more efficient device. For

completeness, a third test run was taken for each of these devices using same board as in

the previous two runs. In this 3rd test run the IRF2804S-7P again operated successfully

but the IRF2804S failed at the 120 ADC input. Though it did not appear that the junction

temperature of the IRF2804S approached a catastrophic level during the previous two test

runs, the combination of solder reflow and high temperature operation could have caused

enough degradation in the device to cause the failure.

3.4 Single Device Testing

The test board results showed that the International Rectifier IRF2804S-7P MOSFET was

the best of the candidate devices for this application. It operated more efficiently and was

the only device not to fail during a test run. In fact, this device performed better than the

model developed in [4] had predicted so further testing was conducted. A new test board

with the selected devices was produced to run a final electrical test and to run a set of

single device thermal validation tests.

3.4.1 Final Electrical Validation

Table 3.6: IRF2804S-7P Power Dissipation Data

lDC (A) I PMOSFET (W) RDS ON (m) PCOND (W) Psw (W) Tc,MOSFET (oC) TSINK ('C) RthCS,MOSFET (oC/W)

60 9.02 1.69 3.04 5.98 53.5 36.6 1.87
80 14.55 1.82 5.81 8.74 66.3 48.4 1.23
100 21.68 1.96 9.80 11.88 75.6 52.9 1.05
120 31.27 2.16 15.52 15.75 90.1 60.4 0.95



The main focus of the final electrical validation was to derive a better estimation of the

switching losses in the IRF2804S-7P MOSFET. The new test board was run under the

same operating conditions as the previous board and the numbers were compared with

the average of the first three test runs to verify that there was no unreasonable deviation

between the two devices. Table 3.6 compiled the MOSFET dissipation numbers

including the RDs oN measurement.

Based on the numbers in Table 3.6, a plot of the switching losses vs. peak

switching current is generated and a curve fitting expression is used to accurately model

the switching loss. The generated plot with the curve fitting line is presented in Figure

3.6. The curve fitting expression is

(3.8)

This expression is used later to estimate the switching loss in the SMR as a function of

Switching Loss vs. Peak Current
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Figure 3.6 MOSFET switching loss measurement with curve fit
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Figure 3.7 Diode thermal test setup

the peak phase current.

3.4.2 Thermal Testing

The variation in thermal impedance at the different operating points prompted the desire

to perform single device thermal testing with a controlled test setup. Using the boost test

board, each device can be individually tested with a fixed DC current. The diode can be

individually tested by using the setup shown in Figure 3.7.

The MOSFET in the boost circuit is tied to ground to ensure that the gate is not

enhanced and negligible current flows through that device. The constant voltage load is

set to 1 V and the input power supply drives a fixed DC current through the diode. The

Fluke 87III DMM is used to take three measurements; the DC current through the output

shunt, the diode anode voltage, and the diode cathode voltage. A thermocouple is used to

measure the diode case temperature and the heatsink temperature. The data from this test

is shown in Table 3.7 and the relevant RthCSDIODE calculation is carried out as follows

(Tcdiode - TSINK
RthCS,DIODE -

diode

A similar test setup is developed for the MOSFET. The polarity on the input

supply is reversed and the DC current is driven into the MOSFET's body diode. A DC



Table 3.8: Diode Thermal Test Data

Ic (A) VANODE(V) VCATHODE (V) Pdiode (W) Tcdiode(C) TSINK(OC) Rthcs.diode (C/W)

30 1.621 1.274 10.41 36.7 27.9 0.845

50 1.88 1.524 17.8 47.4 32.2 0.854

70 2.03 1.671 25.13 60.3 39 0.848

supply is used to reverse bias the schottky diode to ensure that no current conducts

through that device. Figure 3.8 shows this test setup.

Again, a set of measurements is taken with a DMM and thermocouple to calculate

the power dissipation in the device and the thermal impedance through the PCB. This

data is compiled into Table 3.8. The diode test data revealed an average RthCS,DIODE of

about .850 C/W and the MOSFET test data revealed an average RthCS,FET of about

.9650 C/W. Both of these numbers are within 6% of the expected value so it stands to

reason that the PCB's thermal capability is consistent with theory.

Table 3.7: MOSFET Thermal Test Data

IDC (A) VSOURCE (V) VDRAIN (V) PMOSFET (W) Tc.MOSFET (C TNK C) RthCS.MOSFET (CW)
16 0.769 0.0573 11.3872 38.4 27.6 0.948
32 0.808 0.1014 22.6112 53.6 31.7 0.969
40 0.845 0.146 27.96 59.5 33 0.948
57 0.898 0.209 39.273 71.9 35.6 0.924
70 0.942 0.266 47.32 92.5 43.7 1.031

IDC 5 VDC

Figure 3.8 MOSFET thermal test setup
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Chapter 4

4. Alternator Characterization and Modeling

In this chapter a commercial alternator is experimentally characterized in order to
quantify the important electromechanical parameters such as full field current, machine
constant, synchronous inductance, stator winding resistance, and output power capability.
Equations for modeling the alternator are introduced and the parameter values for the
model are selected. A plot is generated to compare the analytical model with
experimental results and a best fit curve is achieved.

4.1 Alternator Characterization

4.1.1 Objective

The objective is to select a commercial alternator and run the machine in a controlled test

environment to determine its performance capabilities and quantify certain parameters

that will be used to develop a computational model of the machine. Ultimately, the stator

will be rewound with less turns in the core so as to achieve more efficient utilization of

the mechanical input power by operating in a load-matched condition and reducing the

machine's largest source of power dissipation. The rewinding ratio (or winding ratio

[12]) will be a fraction of the current number of turns selected to obtain optimal power

with minimal device stress. The following parameters were needed to develop a model to

predict the behavior of the alternator.

1. Nominal full field current
2. Output power vs. operating speed
3. Machine constant, k
4. Synchronous inductance
5. Winding resistance

The alternator purchased for characterization was a Remy part number 92319. A

specification sheet provided by the manufacturer detailed the output current of the

alternator into a 13V load over the operating range of 1600 to 6000 RPM with a 14.5V

voltage regulator set point. The specification sheet claimed a maximum output power of
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Figure 4.1 Alternator test setup

1818W and a full load capability of 159A. A test setup was implemented to verify these

measurements.

4.1.2 Test Setup

The alternator test setup, similar to those used in [1, 3, 5, 8, 10, 12], is shown in Figure

4.1. A Pacific Scientific Pactorq servomotor with a motor to alternator gear ratio of

2.14:1 is used to drive the machine. The servomotor is controlled by a Pacific Scientific

SC750 servo controller. A 200 A (4A / mV) current shunt is connected on the output line

of the alternator and the output peg is instrumented for a voltage measurement. This is

used to measure the output power characteristics. The current return line is bolted

directly on to the case of the alternator. The alternator feeds an electronic load

(Transistor Devices Dynaload model DLVP 50-300-3000A), set to constant voltage

operation at 13 V. Finally, a Hewlett-Packard HP6011A DC power supply is used to

51



back feed the voltage regulator so that the field current can be controlled (at either

constant voltage or constant current) directly by the power supply rather than the

regulator.

4.1.3 Field Current

In the manufacturer's test specification and under normal alternator operation, the field

current is controlled by the regulator circuit shown in Figure 4.2. Pin A is the regulation

point typically set at 14.4V while Pin F is held open. The regulator controls the field

excitation current by modulating the switch at some duty ratio d. When the switch is

closed, excitation current slowly energizes the field winding. When the switch opens, VF

pulls up to a diode drop above VA and the winding current commutates through the

diode.

VA-VF) d (4.1)
Rr  Rf

Full field is defined as the operating point where the duty cycle equals one and the

If
rin /-

Pin F

Figure 4.2 Voltage regulator circuit

Rf
R,



excitation current settles to a value equal to A . Because the winding resistance is
Rf

temperature dependent and because the charging time constant of the field winding is

long, it can take a long time for the field to settle at full excitation.

Connecting a DC power supply across Pins A and F bypasses the regulator switch

and allows the regulator circuit to behave as if the duty cycle were equal to one. The

power supply voltage can then be set to the nominal regulation voltage of 14.4V while

the alternator runs at idle speed. Over time, the field winding resistance will settle to a

steady state temperature and the field excitation current will reach a final value that can

be defined as full field. For this particular alternator, full field is defined as 4.3 ADC,

based on measurements under laboratory conditions (e.g. 250 C). For tests conducted at

"full field", we have subsequently used a constant field current drive of 4.3 ADC.

4.1.4 Output Power vs. Operating Speed

The next step in characterizing the alternator is to take output power measurements while

running the machine at full field (4.3 ADC) over the 1500 - 6000 alternator RPM

operating range. A thermocouple is placed on one of the stator windings to monitor when

the machine reaches thermal steady state at each operating point. Two sets of output data

were taken during characterization because the commercial machine can be run with two

different rectifier configurations; with and without 3 rd harmonic "booster" diodes.

4.1.4.1 Output Power with Booster Diodes

Booster diodes are a 4 th set of rectifier diodes that are connected to the neutral point of

the 3-phase armature winding as shown in Figure 4.3. The booster diodes rectify 3rd

harmonic content of the EMF voltage to deliver additional current to the load. Their

effect is seen only at higher operating speeds and typically accounts for a 10% -15%
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Figure 4.3 Three-phase alternator with booster diode rectifier

increase in average current [6, 15]. The Remy 92319 alternator was equipped with

booster diodes in its off-the-shelf configuration.

The output power and winding temperature measurements of the alternator with

3rd harmonic booster diodes are compiled into Table 4.1, and used to generate Figures 4.4

and 4.5. The maximum output power at cruising speed of 6000 RPM is 1761 W with 130

ADC output current. The winding temperature measurements from Figure 4.5 are

consistent with [3] where the windings operate at their highest temperature at mid range

operating speed and cool down at higher operating speeds despite the machine generating

more RMS current.



Table 4.1: Remy 92319 Test Data with Booster Diodes

Alternator RPM Io (A) Vo (V) Po (W) T, (°C)
1600 67.2 13.237 889.53 125

2000 85.2 13.29 1132.31 159.7

2400 94.68 13.342 1263.22 172.1

2800 103.08 13.361 1377.25 178.2

3200 110.4 13.407 1480.13 178

3600 116.4 13.428 1563.02 174.7

4000 120.68 13.437 1621.58 167.7

4400 122.12 13.483 1646.54 160.6

4800 124.8 13.495 1684.18 153

5400 127.8 13.508 1726.32 147.4

6000 130.32 13.516 1761.41 141.8
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0 1000 2000 3000 4000 5000 6000

Alternator Speed (RPM)
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Winding Temperature vs. Alternator Speed
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Figure 4.5 Remy 92319 Winding temperature vs. alternator speed; with booster diodes

4.1.4.2 Output Power without Booster Diodes

The two booster diodes in the Remy alternator were identified and removed from the

rectifier circuit so that the output power measurements could be taken with a standard 3-

phase rectifier. The output power data is compiled into Table 4.2 with a corresponding

plot in Figure 4.6.

Table 4.2: Remy 92319 Test Data without Booster Diodes

Alternator RPM 1o (A) Vo (V) Po (W)
1500 62 13.41 831.42
2000 86.12 13.52 1164.34
2500 97.52 13.55 1321.40
3000 102.32 13.57 1388.48
3500 105.84 13.57 1436.25
4000 108.16 13.59 1469.89
4500 109.76 13.59 1491.64
5000 110.96 13.6 1509.06
5500 111.88 13.6 1521.57
6000 112.6 13.6 1531.36

r
Ii I



The maximum output power at cruising speed of 6000 RPM was 1531 W with

113 ADC output current. Since a standard 3-phase, 6-component rectifier was intended

for the SMR machine, the data from Table 4.2 and Figure 4.6 were used as the basis for

the computational model. No winding temperature data was taken in this configuration

because the temperature data from Figure 4.5 provided the necessary information to

appropriately size the armature winding in the SMR-based machine.

4.1.5 Machine Constant

Recall from equation 1.1, the peak line-to-neutral EMF voltage generated by the machine

is defined by

Vs = kif (4.2)

where i, is the field excitation current, w is the rotational speed of the alternator shaft,

Output Power vs. Alternator Speed
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Figure 4.6 Remy 92319 Output power vs. alternator speed; without booster diodes
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and k is the machine constant in units of volt-seconds per ampere-radian. The machine

constant is an important parameter because it is a coupling factor between the field

excitation and the number of turns in the stator winding. When the rewinding ratio of the

stator is being considered, the machine constant will scale directly with the number of

turns and determine the peak EMF generated by the machine over the operating range.

The value of the machine constant can be obtained by taking a direct

measurement of the line-to-neutral voltage with an unregulated open circuit output on the

alternator. The manner in which to do this is to disconnect the constant voltage load and

operate the machine at full field while monitoring any line-to-neutral voltage with an

oscilloscope. Differential scope probes must be used because the neutral point of the 3-

phase armature floats with respect to earth ground. Also, the dataset should be limited to

lower operating speeds to ensure the protection of the rectifier diodes. The reverse

junction of the rectifier diodes will be exposed to the peak line-to-line EMF voltage

which is equal to A5 * V,. If this value exceeds the maximum rated reverse voltage of the

diodes they will begin to avalanche which could thermally overstress the devices and

cause failure. The collected dataset is presented in Table 4.3 and uses the equations

k = V, (4.3)

Table 4.3: Machine Constant Test Data

Alternator RPM w (rad/sec) If (A) Vs (V) k (V-sec/A-rad)
1600 1005.31 4.30 14.45 0.0033
2000 1256.64 4.30 18.10 0.0033
2400 1507.96 4.30 21.65 0.0033
2800 1759.29 4.30 25.20 0.0033
3200 2010.62 4.30 28.60 0.0033
3600 2261.94 4.30 32.25 0.0033



2ff*P n n
co = 2-- = r* P (4.4)

2 60 60

where n is the rotor RPM and P is the number of poles in the machine to determine the

machine constant. This alternator is a 12-pole machine, thus the machine constant for

this particular alternator averages to .0033 volt-seconds per ampere-radians.

4.1.6 Synchronous Inductance

Figure 4.7 shows the simplified electrical model of the alternator machine that was

introduced in Chapter 1. Each of the three phases is connected to the rectifier through an

inductance L that is called the synchronous inductance. This synchronous inductance is

the effective inductance seen by one phase under the balanced three-phase condition,

ia + ib + ic = 0, of normal machine operation. It consists of three components: A

component of self-inductance due to space-fundamental air-gap flux produced by the
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Figure 4.7 Electrical model of Lundell alternator [21
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current in that phase; a component of leakage inductance due to armature leakage flux;

and a component of mutual inductance due to space-fundamental air-gap flux produced

by currents in the other two phases [9].

If the effect of rotor slots is ignored and the air gap is only attributed to the stator

core slots then the synchronous inductance of phase a, is a constant defined as

3
Lsa = - L a+ L a (4.5)

where one part of La is the self-inductance component, L,, is the leakage inductance

1
component, and a -L,, is the mutual inductance component. The 2 factor comes about

2

because the armature phases are displaced by 120'. Also, ignoring salient behavior

yields the approximation

Lsa = Lb = L,. (4.6)

A detailed derivation of (4.5) is carried out in Chapters 4 and 5 of [9] and in [14]. For

now this brief explanation is only meant to demonstrate the validity of modeling the

synchronous inductance as a function of the current in a single phase even though this is

not the case.

The complexity of the synchronous inductance components, especially when

considering the affects of rotor displacement makes it difficult to accurately measure this

value with any consistency. The course of action taken when trying to determine the

value of synchronous inductance is to plot the alternator output power vs. speed and use

an inductance value that will generate a best-fit curve at high end operating speeds where

the reactive impedance dominates. This will be explored further when the model is

developed.



4.1.7 Stator Winding Resistance

The stator winding resistance as a DC parameter at room temperature operation is a

straightforward measurement. It is the line-to-neutral resistance of the armature

windings, determined by the length of the winding, area of the conductor, and the

conductivity of copper. However, the armature windings in the alternator operate far

above room temperature and are carrying AC current. The higher temperature decreases

the conductivity of copper and AC current induces skin and proximity effects, which

effectively reduce the conduction area of the winding. Hence, the effective winding

resistance during operation will be greater than the DC value and a DC measurement is of

little help as a model parameter.

Like with synchronous inductance, the best course of action is to plot the output
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characteristics obtained in 4.1.4 and manipulate the winding resistance to find a best-fit

curve. Winding resistance will have a greater impact at the lower operating speeds where

there is very little reactive impedance. An expanded model of the alternator is shown in

Figure 4.8 with the winding resistance placed in series with the synchronous inductance

on each phase.

4.2 Alternator Output Model

4.2.1 Fundamental Equations

The fundamental equations of the alternator model are derived in [2] where the analysis

of a three-phase bridge rectifier supplied by an inductive AC source and driving a

constant-voltage load, as shown in Figures 4.9, is presented. The equations are expanded

to include series resistance and the forward voltage drop of the rectifier diodes. The

objective here is not to re-derive these equations but rather discuss how the derivations

were made and how the electromechanical parameters quantified in section 4.1 fit into

these equations.

Vsa

n
Figure 4.9 Three-phase diode bridge with constant-voltage load and ac-side reactance [2]
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Looking at Figure 4.9 there are three source currents, i, i ,ic and a balanced

three-phase set of sinusoidal voltages, Vs, Vsb, Vs,. The three source voltages are

represented as

VSa = V, sin(wcot)

Vs = Vs sin ctut - 2Y )Vsb V3sinct )

vS, = Vsin(wt+2f)

(4.7)

(4.8)

(4.9)

with magnitude V and angular frequency co. At points a, b, c there is a resultant voltage

sink, in phase with the respective source current, and corresponding to the directionality

of the current. For example, if it is assumed that the source current ia is in continuous

conduction, the voltage at point a with respect to neutral, Va, , takes the shape of the

waveform in Figure 4.10. The voltages at points b and c take the same form only they

are displaced by 2r/3 radians. The waveform in Figure 4.10 can be described by the

Fourier Series magnitude coefficients
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Vank = + Vd , fork= 1, 5, 7, 11, 13,... (4.10)

where the lowest harmonic is the 5th at a magnitude of only 20% of the fundamental. The

largest harmonic current component in this phase is also the 5th, and is only 4% of the

magnitude of the fundamental because the impedance of Ls rises linearly with frequency.

Therefore the voltages Van, Vbn , and PVn and the source currents ia, ib , and i can be

approximated by their fundamental components [2].

For phase a, this approximation would yield

Van Vn,,, = V,, sin(cot - 0) (4.11)

where Vo1 = (4/)(Vo /2 + Vd) and P is the phase angle between V and V,, . Since V

is in phase with i, , the current takes the same form, namely

ia z ia = Is] sin(cot - ) (4.12)

where Isi is the magnitude and 0 is the phase of the fundamental of the line current.

These approximations are then used to simplify Figure 4.9 by substituting the entire

bridge rectifier constant-voltage load network with equivalent line-to-neutral voltages.

Furthermore since each line-to-neutral voltage is in phase with its respective line current,

the line-to-neutral voltages can be modeled as an equivalent resistance (R) where R is

n

Figure 4.11 Three-phase rectifier model with equivalent resistance R [21



defined as

R - (4.13)
Isl

The simplified model with equivalent resistances is shown in Figure 4.11.

The network in Figure 4.11 can be analyzed to yield an expression for the

fundamental of the line current,

S16 2

V V2- Vo _ K V

I,,= 0 = (4.14)

Expanding Figure 4.11 to include series resistance complicates the expression but

provides for a more accurate model at low operating speeds. This expression is

I, (4.15)

where V, is the peak of the EMF voltage, co is the angular frequency of the alternator,

L is the synchronous inductance, RS is the winding resistance, and Vd is the forward

drop of the rectifier diodes. The average output current delivered to the constant-voltage

load can then be approximated as

(io) 3 1s,. (4.16)

Consequently, it follows that

Po = V(io) (4.17)



where Vo is the constant-voltage. Equations 4.15-4.17 are the three fundamental

equations that along with (4.2) are used to model the output power characteristics of the

alternator.

4.2.2 Electromechanical Parameters

Recall from 4.1, parameters such as field current and machine constant were

experimentally measured. The machines output characteristics were also measured and

used to generate plot of the alternator's output power vs. speed with two rectifier

configurations. The last two parameters, synchronous inductance and winding resistance,

were not obtained with a direct measurement and were to be determined by using values

that would produce a best fit curve of the alternator's output characteristics. It is

necessary that these parameters are modeled as accurately as possible as they scale with

the square of the winding ratio.
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Figure 4.12 Comparison of experimental vs. analytical data of alternator output power



Using Equations 4.2, and 4.15-4.17, a plot is developed to model an alternator

driving a 13.5 V load. This plot is then superimposed onto Figure 4.6, the measured

output data of the alternator without booster diodes. The unknown parameters, L andR,,

are varied until the plot forms a best fit curve. The rectifier diode drop is also tweaked

but the value of this parameter is unimportant as the properties of schottky diodes used in

the SMR will be different than those used in the off-the-shelf diode rectifier and are

unchanged by the rewinding ratio. Figure 4.12 shows the experimental output power vs.

alternator speed of the off-the-shelf alternator and a superimposed plot of the model

developed from Equations 4.2, 4.15-4.17.

The parameters that produced this analytical model were L, = 116.5 ,uH and R. =

30 mQ. The analytical model was compared with the measured dataset and the model

produced a mean error of less than 1%. These are the values of Ls and R, that are used for

the rewinding design which will be implemented in the following chapter.



Chapter 5

5. Alternator Magnetics Design

In this chapter the additional control capability provided by the SMR is introduced and
the use of SMR duty ratio as a control variable is presented. The analytical model
equations from the previous chapter are manipulated to include this new design variable.
The efficiency-optimized control law is briefly discussed as a means of optimizing the
new design variable. The parameters of machine operation are scaled according to the
winding ratio and the computational model is used to calculate expected performance
improvement and device thermal stress as a function of the stator winding ratio. A
winding ratio is chosen that will satisfy the design goals while not overstressing the
devices.

5.1 Objective

The objective of rewinding the stator core is to achieve more efficient utilization of the

machine's capabilities at the desired output voltage of 14 V. This is done through

operating at a load-matched condition over certain operating speeds and also by reducing

the effective impedance across the armature windings.

Given a rewinding ratio, m, that is a fraction of the number of original series-turns

in the armature, the following equations are used to determine the new electromechanical

parameters of machine operation:

Ls,m = m 2L~, (5.1)

Rs,m = m2 R~, (5.2)

km = mki (5.3)

where the subscript,m denotes the rewound value and the subscript, 1 denotes the

original value. These equations assume that wire size has been adjusted such that wire

copper area for each turn is increased by a factor of m, and that a constant copper fill

factor of the armature slots is maintained. It follows that the machine current is

proportional to the inverse of m,



I,,, oc " (5.4)
m

These relationships hold for any value of m and the objective is to specify a value of m

that will achieve the design goals with the devices from Chapter 3.

5.2 SMR Duty Ratio Control

The SMR introduces a new control variable which is the switching duty cycle d of the

MOSFETs. The duty cycle is the percentage of a MOSFET switching cycle (far shorter

than a machine electrical cycle) during which the device is conducting. The importance

of the switching duty cycle is that it provides a scaling factor for the effective output

voltage "seen" by the alternator machine [1, 7]. This scaling factor can be optimized to

produce a load-matched condition which provides the capability of maximum power

delivery from the machine to the load at a given operating speed.

The analytical equations introduced in 4.2.1 model the behavior of a standard
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three-phase rectifier but do not include the duty cycle variable. To see how this variable

affects the model, consider Figure 5.1. We focused on one boost switch set made up of a

modulated switch, Qx, and rectifier diode, Dx. Because the switching period T,, is

extremely short compared to the armature time constant, the machine reacts to the

average voltage value (over a switching cycle) at the rectifier. In particular, the important

voltage on the output of the given phase, x, is the local average value of Vx, over a

switching cycle [13, Chapter 11]. The actual voltage vx takes the shape of the waveform

in Figure 5.2. The local average value of vx is given by the expression

(v) = d'V (5.5)

where d' - 1- d . The current ix is the sinusoidal phase current with peak value I,]. The

peak value I, can then be expressed as

V 2 
)~2

Is, = (5.6)
2VoRd' 2

+ oL,) Vs2 2d) +R,2V,2

where the output voltage Vo has been replaced by the effective output voltage d'Vo and

the diode forward drop has been omitted for simplicity.
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Figure 5.2 Representative voltage waveform of Vx over a switching period T,,,.
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Figure 5.3 Representative current waveform Iwhen d= 0

Now consider Figure 5.3 which is the representative current waveform through

rectifier diode Dx under the condition that the duty cycle d was zero (i.e. d'V, = Vo ). The

averaged diode current takes the form

(5.7)(Ix) = I.

If Qx were modulating, the current waveform I'D would take the shape of Figure 5.4.

Here the sinusoidal waveform is being "chopped" such that the current through the diode

goes to zero for time dT,, when Qx is conducting and returns to its sinusoidal form during

IDx

Figure 5.4 Representatie current waveform I

Figure 5.4 Representative current waveform IDowhen d > 0

n



time d'T,, when Qx is not conducting. It should be noted that one MOSFET switching

cycle is much faster than an alternator half-EMF cycle, and Figure 5.4 is only depicted in

such a way as to emphasize the effect of switch modulation.

Based on the current waveform in Figure 5.4, the averaged value diode current ID,

can be expressed as

I(IDx d' .  (5.8)

The total averaged output current Io then becomes

(Io) 3(ID) =3 sld '  (5.9)

and the output power delivered to the constant-voltage load is then

Po = 3V d'
0, I, . (5.10)

5.2.1 Efficiency-Optimized Control Law

The SMR has introduced a new parameter d that was incorporated into the fundamental

equations of machine operation in the previous section. In [1, 7] a control law is

discussed for calculating d in the load-matched condition. The SMR duty ratio control

law for achieving load matching is

d'=l-d I o4V i }f (5.11)

which shows that the complement of the duty cycle is controlled proportional to the

angular frequency and field current. The simplest approach is to set duty ratio to zero

and use conventional field control to regulate the output voltage by increasing field



current from zero up to the amount needed to support the output. If still more power is

needed at full field current, one can increase duty ratio to provide more power, up to the

maximum duty ratio

dmax = 1- i fmax W o = 1- Cw (5.12)

where if,ma is the full field current and C is a proportionality constant between duty ratio

complement and angular frequency. Note that dmax has a minimum value of zero. This

control law allows for any power level from zero up to the maximum load-matched

power to be achieved at any given speed [1].

It should be noted that the expression for dmax in (5.12) was obtained by

maximizing the ideal output power from (1.2), which omits parameters such as stator

winding resistance and the diode forward voltage drop. A more accurate expression for

dm,, is found by maximizing the output power expression (5.10), but this is a

mathematically complex operation. The value of dm, is easily obtained by plotting

output power as a function of duty cycle over the operating range, which is ultimately

how we derived the optimal duty cycle for maximum load-matched power. We validated

maximum power operation of the alternator by testing at if, and dmax.

5.3 Thermal Considerations for Rewinding Ratio

The goal to achieve a substantial power improvement in a 14 V alternator comes at the

cost of higher absolute conduction losses, even though higher efficiency is achieved.

Thus, winding ratio is limited primarily by the thermal capabilities of the devices and of

the armature winding. The testing conducted in Chapter 3 demonstrated the efficacy of

using a copper heat spreader and vias to conduct heat away from the devices and through

the PCB. Quantitative thermal impedances were also determined for each device.



5.3.1 Device Power Dissipation

Much of the work needed to estimate the device power dissipation in the SMR has

already been done. The averaged current for the rectifier diodes was previously

determined in (5.4). Thus the power dissipation of each diode can be expressed as

Pdiode = Vd Is d' (5.13)

where Vd is the forward voltage drop. A reasonable approximation of Vd = .5 V can be

made for an instantaneous forward current of up to 200 A.

The MOSFET is more complicated but comparable waveforms have already been

presented. In the SMR the MOSFET will have two conduction cycles during any full

alternator EMF cycle. The first conduction cycle occurs during the positive current half

cycle (i.e. when ix > 0 in figure 5.1) during which the MOSFET acts as a boost converter

switch. The "chopped" current traveling through the MOSFET's conduction channel is

the difference between the sinusoidal phase current and the chopped current in figure 5.4.

This power dissipation component is expressed as

Pcond,boost = dRds o (5.14)

where d is the conducting duty cycle during a 100 KHz switching cycle.

The MOSFET also acts as a synchronous rectifier. That is, the MOSFET is

turned-on for the duration of the negative half cycle of current i, so that ground current

returning from the load is delivered back to the three-phase alternator source through the

MOSFET's conduction channel. The waveform of Figure 5.3 is analogous to the source-

to-drain current through the conduction channel during synchronous rectification. This

power dissipation component is expressed as



Pcond,boost = - Rdson (5.15)

The MOSFET will also have a switching loss component that occurs during the

positive half cycle of ix if the device is switching. An expression for the switching loss as

a function of peak switching current was determined in (3.8) for this particular MOSFET.

That expression can be halved, since the MOSFET will only switch during half of a line

cycle, and taken as a function of the peak line current I,, to determine MOSFET

switching loss in the SMR. The total power dissipation in the MOSFET is then

PFET = Pswld>0 + Pcond,boost + Pond,synch . (5.16)

These four expressions (5.13) - (5.16) can now be used to analytically estimate

device power dissipation as a function of winding ratio. A lower bound on the winding

ratio can also be established by making a quick calculation of the maximum power

dissipation of each device, under the approximation that the automotive environment

where the alternator resides typically approaches ambient temperatures of 850 C.

Working with the assumption that the alternator heatsink is ideal, Rosa = 0, the power

dissipation limit for the MOSFET is

T.max -Tambient 150" C - 850 C
PFET ,max ,max 44.5W

RthC,FET + RthCS,FET 1.46 C
W

where the heat spreader is assumed to be the same size as that used in the test board. The

same analysis is carried out for the diode producing the following,

em max -Tambient 130" C - 85 0 C
Pdiode ma= = , 41W.

m RthC,diode + RthCS,diode 1.1 _C

W



Device Power Dissipation vs. Winding Ratio @ 6000 RPM
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Figure 5.5 Device power dissipation vs. winding ratio @ 6000 alternator RPM

Figure 5.5 is generated using 40 W as an upper limit. This plot represents the

MOSFET and diode power dissipation as a function of winding ratio at 6000 alternator

RPM. The plot indicates that a stator rewound with less than half the number of series-

turns as the original machine would approach the thermal stress limits of the devices,

hence .5 will be used as a lower allowed bound for the winding ratio.

Another consideration in the rewinding design is that the MOSFET's thermal

stress limit may actually be reached at lower operating speeds when the components of

switching loss (3.8) and boost conduction (5.14) are contributing to the total loss. Figure

5.6 is a profile of the MOSFET's power dissipation as a function of alternator RPM at

winding ratios of .5, .6, and .7.

The plot in figure 5.6 indicates that the MOSFET's power dissipation limit can be

approached at lower RPM, and that lower winding ratios provide for less of a margin.



MOSFET Power Dissipation vs. Alternator Speed
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Figure 5.6 MOSFET power dissipation vs. alternator RPM at full power and three different winding ratios.

This is because the MOSFET device will be switching higher peak current for a longer

duty cycle to operate in a load-matched condition. This point is further demonstrated in

figure 5.7 where the expected output power at winding ratios of .5, .6, and .7, is

compared against the 3-phase rectifier without booster diodes at m = 1. Figure 5.7 shows

that the same output power is achieved at lower RPM for all of the winding ratios despite

the MOSFETs working harder.

Figures 5.6 and 5.7 further indicate that a winding ratio of .6 would be a more

efficient lower bound, given the expected output power improvement. A rewinding ratio

of .5 produces a 17% improvement in high speed output power at the cost of a 40%

increase in MOSFET power dissipation, when compared to a rewinding ratio of .6. By

----- m = .5
- m=.6

---- m =.7.
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Output Power vs. Alternator Speed
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Figure 5.7 Expected output power vs. alternator RPM at three different winding ratios

comparison, the output power improvement between m = .6 and m = .7 is about 15% with

only a 30% increase in MOSFET power dissipation.

Figure 5.8 was generated to show the output power improvement of a machine

rewound at a ratio of .7 versus the commercial alternator with and without booster diodes.

With m = .7, there is an expected 39% output power improvement over a basic three-

phase diode bridge rectifier and a 21% improvement over the three-phase rectifier with

3rd harmonic booster diodes. This is a 10% falloff from the original design goal of 50%

more power than the standard bridge rectifier. Together, figures 5.6-5.8 show that a

rewinding ratio of less than .6 approaches a point of diminishing returns in terms of

output power relative to device thermal stress, and a rewinding ratio of greater than .7
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Figure 5.8 Comparison of output power vs. alternator RPM at three different operating conditions

approaches a point where the design goal is falling off by over 10%. Thus, m = .6 and m

= .7 will be considered the lower and upper bound, respectively, as we move forward.

5.3.2 Mechanical Specifications

Another factor to consider in the rewinding design is the manufacturability of the

rewound stator core. Figure 5.9 shows the top view of the unwound stator core after it

was removed from the alternator that was characterized in Chapter 4. The core is

approximately 5" in diameter and is made up of 36 slots, with each phase occupying 12

slots. This particular alternator was wound in a wave pattern with two parallel 14 AWG

conductors per phase. A wave winding patterns means that a single conductor is wound

by going down through a slot, over three slots, and up through a slot as shown by the

arrows in Figure 5.9. This pattern continues clockwise around the core until the winding

traverses the circumference six times and is terminated three slots over from where it
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began. The second conductor for this phase has the same termination points and the same

polarity through each slot only it traverses the core counter-clockwise. Each slot then

carries 12 turns with the terminating slots carrying a 13th turn. Each phase winding is

wound 6 turns per slot or 72 series-turns. This is the nominal number of turns which will

be reduced by some winding ratio, m.

The rewinding ratio can be considered either as a ratio of turns per slot or as a

ratio of the total number of series-turns. Working with a ratio of turns per slot limits the

number of possible choices of m and previous work from [8] has shown that a different

winding pattern which allows for more choices of m can be used. Also because this

winding pattern was utilized in [8] the manufacturing capability has already been proven.

L U ~ ,IIUL L8I 0 I A J\,IIJ %L[JIJ aIILI
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The winding method utilized in [8] is referred to as coil winding. In this winding

method, a length of wire is taken and wound in a circular coil. The total number of

series-turns n is encompassed within a single coil. The coil is then split down the middle

and opened such that the winding can be placed into three slots. The middle slot will

consist of n/2 turns and the two outer slots will consist of n/4 turns. A second coil is

placed such that one of its outer slots overlaps with the outer slot from the previous coil

and all slots are then filled with n/2 turns. It takes six parallel coils to fill all twelve slots

for each phase. Figure 5.10 shows the coil winding pattern with two parallel coils for the

case where n = 4.

Filling each slot with n/2 turns requires a thinner gauge wire than what was used

in the original design. A wire size that fits in the slot area and has sufficient conduction

area so as to not thermally overstress the winding must be chosen. Figure 4.5 shows that

in a 25°C ambient environment the windings approach 180 0 C. A new winding ratio with

greater RMS current should at least maintain the current density of the conductors for

comparable thermal performance and therefore the copper conduction area per slot and

the copper packing factor need to be considered as design and manufacturing variables.

A B C A B C A B C A B

III III I I I
Figure 5.10 Coil winding pattern with two parallel coils
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The conduction area for one armature winding Aw in the original alternator is

defined as

Aw = 4AwG (5.17)
4

where d14AwG is the diameter of a 14 AWG conductor. Each slot is fitted with twelve

turns thus the total conduction area per slot Asto is

d2
Asto, = 12A w = 127c d 4AWG = 3r(64mil)2 _ 38604mil2 .

4

The conduction area per slot area is a measure of the slot area and can be used to

determine the maximum wire gauge for the proposed number of turns.

Figures 5.6, 5.7, and 5.8 were used to set preliminary lower and upper bounds of

m = .6 and m = .7 for the winding ratio. Given these bounds the number of series-turns

can be determined by

.6 * 72 n < .7 * 72 =: 43.2 n < 50.4

where n must be an even number integer and therefore 44 series-turns would be the lower

bound and 50 series-turns would be the upper bound. Since each slot is filled with n/2

turns the maximum wire diameter d,,ax at each turns ratio is determined by

SAst d = Admax (5.18)

where n = 44, 46, 48, and 50. It is also a sensible design practice to assume a packing

factor less than one. This can be attributed to the packing factor of thinner gauge wire

being less than that of larger gauge wire and also to an element of human error.

Commercial alternators are machine wound whereas the rewound machine will be done

by hand. The rewinding design from [8] was only able to fill each slot with about 90% of

the total copper area of the original winding.
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Table 5.1: Maximum allowable wire diameter at different turn ratios

m n/2 dmax AWG

44/72 22 44.84 17.5
46/72 23 43.86 17.5
48/72 24 42.93 17.5
50/72 25 42.07 18

Table 5.1 was generated to show the maximum wire diameter that could be used

for each value of m, given 90% of the available slot area. Given what is shown in Table

5.1 the winding ratio that would optimize efficiency is m = 48/72. This winding ratio has

the same conduction area as m = 44/72 and m = 46/72 for less RMS current. The wetted

area exposed to direct airflow from the alternators cooling fan would also be greater

given the two extra turns. Furthermore, the devices would operate with less thermal

stress. In terms of manufacturability, this is the same number of turns per slot that was

used in [8] so the capability has been proven. Finally, this winding ratio also allows for

the possible use of a wave winding pattern as it can be realized as a turns per slot winding

ratio of 4 /6th .

A quick calculation can be used to determine the increase in conduction area from

the original alternator to the new machine. In the original alternator, two parallel 14

AWG conductors carried the current in each phase, thus the conduction area Acond is

d2 d2
Acond= 2 1 4AWG = 14AwG 6434mil 2

4 2

In the new machine, six parallel 17.5 AWG conductors are carrying the current in each

phase thus the conduction area Acond is

d2 d2
Acond = 6ri 17.5AWG = 3r 17.5AWG - 8511 mil 2

4 2

and the relative increase in conduction area between machines is approximately 1.33.



Table 5.2: Expected increase in RMS phase current with rewound machine

RPM m = 1 m= 213 Increase

1600 49.76 79.16 1.59
2000 63.09 81.66 1.29
2400 70.11 84.21 1.20
2800 76.33 96.59 1.27
3200 81.75 104.42 1.28
3600 86.19 109.71 1.27
4000 89.36 113.46 1.27
4400 90.43 116.22 1.29
4800 92.41 118.31 1.28
5400 94.63 120.61 1.27
6000 96.50 122.25 1.27

Table 5.2 was generated to show the increase in RMS phase current between the

old alternator with booster diodes, denoted as m = 1, and the expected RMS line current

of the rewound alternator, denoted as m = 2/3, over the operating range. This table shows

that the expected increase in RMS current is less than 1.3 times the original RMS current

throughout much of the operating range and thus the 1.33 times increase in conduction

area should be capable of providing comparable thermal performance.

A winding ratio has now been determined based on satisfying the electrical and

mechanical requirements. A series of characterization plots can be shown to quantify the

expected output power improvement and the power dissipation profile of the new

machine. Figure 5.11 shows the measured output power over the operating range of the

original machine with and without booster diodes and the expected output power of the

rewound machine. The analytical model estimates a 45% improvement over a standard

three-phase rectifier and 26% improvement over a three-phase rectifier with 3 rd harmonic

booster diodes. Figure 5.12 shows the estimated power dissipation profile of the two

power devices over the operating range based on equations (5.13) - (5.16). The power

dissipation profile is a measure of the overall device efficiency in the SMR and will be

used to gauge the expected temperature rise of each device.
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Output Power vs. Alternator Speed
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Figure 5.11 Expected output power improvement of rewound machine over the measured power of
the original alternator with and without booster diodes
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Figure 5.12 Device power dissipation over operating range at m = 2/3
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Chapter 6

6. Heatsink Design

In this chapter the design of a custom heatsink for the SMR is presented. The alternator
thermal model developed [3] is used as a baseline of the machine's thermal transfer
capability and the device power dissipation profile from Chapter 5 is used to determine
the necessary heatsink-to-ambient thermal impedance to ensure safe device operation
over the operating range. The structural limitations imposed by the alternator housing
and the mechanical interfaces between the heatsink and housing are discussed.

6.1 Heatsink Design Specifications

The final design element needed for the rewound machine is a heatsink. The purpose of

the heatsink design is to generate a practical mechanical design that satisfies the

packaging requirements and ensures safe operation for ambient temperatures up to 85C.

To achieve this we apply the alternator thermal model from [3] and use the device power

Figure 6.1 Diode plate structure



dissipation profile from Figure 5.12.

In [3] the thermal impedance with respect to ambient was established for the

stator winding, diode plate, and alternator case. The diode plate with full bridge rectifier

is shown in Figure 6.1. The rectifier diodes are shown hard stamped into the bus bar on

the front side of the structure. The ground referenced diodes are hard stamped into the

cast aluminum structure just beyond the bus bar. This cast aluminum structure is the

diode plate. In the final design the bridge rectifier is removed and replaced with a custom

built heatsink that sits on top of this diode plate. The experimental data in [3] showed

that the thermal impedances with respect to ambient in the alternator improved at higher

operating speeds allowing for more efficient operation when the power dissipation in the

windings and diodes would be at its greatest. This is also evident in Figure 4.5 which

plotted the temperature winding over the operating range.

The thermal characterization of the diode plate is used as an initial starting point

Diode Plate Thermal Impedance vs. Alternator Speed
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Figure 6.2 Diode plate to ambient thermal impedance with curve fit expression [3]
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to determine the worst-case heatsink-to-ambient thermal impedance. Figure 6.2 plots the

experimentally-obtained diode-plate-to-ambient thermal impedance over the operating

range. A curve fit expression,

Rth = 2* exp *4.2x0-4 *1.87x-'I ( / ;r) (6.1)

where co is the rotational speed of the alternator shaft, was generated and plotted

alongside the experimentally obtained data to show relative accuracy of the expression.

This expression can be manipulated to show what level of improvement is needed to

ensure safe operation up to 850C.

Working with the assumption that the custom heatsink will have the same thermal

impedance to ambient as the diode plate, the power dissipation profile from Figure 5.12 is

used to determine the device junction temperatures over the operating range. This device

Device Thermal Profile

160

140

120

100

80

60

40

20

0
0 1000 2000 3000 4000 5000 6000

Alternator Speed (RPM)

7000

Figure 6.3 Device thermal profile at ambient of 25"C
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thermal profile is presented in Figure 6.3. The plot shows that the device junction

temperature for both the FET and the diode approach the de-rating temperature at lower

operating speeds in a 25°C ambient environment. This is not entirely unexpected

because of the MOSFET operation as a boost switch and the diode plate having higher

thermal impedances at lower operating speeds. At higher speeds the devices are within

the de-rating limits.

Based on Figure 6.3, the heatsink has to improve on the diode plate to ambient

thermal impedance in order for the devices to operate reliably in an 850C environment.

One way that this improvement can be realized while still meeting the packaging

requirements is to utilize the vertical spacing provided by the rectifier diodes in figure 6.1

and incorporate a finned heatsink into this area.

Because of the mechanical and packaging requirements, the total height

availability for the heatsink and PCB was about 850 mils. The PCB required

approximately 350 mils of clearance for the surface mount devices and thus 500 mils was

the available heatsink height. Another mechanical requirement of the heatsink was that

Figure 6.4 Labeled heatsink structure
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the fins must be spaced so that the airflow paths lie directly in the vented openings of the

alternator cover. These vented openings are approximately 160 mils wide with about 160

mils of covered space in between each opening. This dictates that the fin thicknessfth and

the fin spacingfip must be equal to 160 mils which leaves two unknown design variables;

fin heightfh and number of fins n.

The two remaining design variables were determined by calculating the effective

area increase using the approximation that the heatsink is rectangular. Consider the

heatsink shape with labeled fin characteristics in Figure 6.4. The effective heat sink area

Ahs is

(6.2)A =(n-1)fsp + 2(n - 1)fh

Heatsink Area Increase Factor
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Figure 6.5 Heatsink area improvement factor at different fin heights
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where n is the number of fins. Assuming that the diode plate structure is flat with no

extrusions, the diode plate area Adp can be expressed as

Ad, = (n -1)f, + nf h = (2n - )f,. (6.3)

A
Using (6.2) and (6.3), the ratio of heatsink area over diode plate area - can be plotted

Adp

at varying fin heights to estimate how many fins would be needed to reach a point of

diminishing returns. This plot is shown in Figure 6.5. The number of fins can then be

compared to the available space to see whether or not that design would satisfy the

packaging requirements.

The area calculations of (6.2) and (6.3) didn't account for fin inefficiency or

fringing area and thus the heatsink-to-ambient thermal impedance will not necessarily

improve at the same ratio as the area increase. Nonetheless, Figure 6.5 provides a

proportional improvement factor and an indication of the thermal capabilities of a finned

heatsink exposed to the volumetric airflow provided by the alternator cooling fans. The

packaging requirements limited the total number of fins to 20-25 and so a fin height of

400 mils was chosen in hopes of achieving somewhere close to 3x improvement in

thermal efficiency.

Figures 6.6 and 6.7 on the following pages show different views of the finished

heatsink which was fabricated from copper using wire EDM. Figure 6.6 shows the

heatink fin-side up and next to a ruler. This is done to show the fin spacing and the

approximate area taken up by the heatsink. The heatsink can essentially fit into a 4"

square box and is only 500 mils in height. This is a total volume of 8 cubic inches. It is

also worth mentioning the tapering of the fins. Both the fin thickness and the fin spacing

decrease as they approach the center. This was done to provide for easier manufacturing
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of the part and optimal space utilization. Figure 6.7 shows the heatsink bolted down

onto the diode plate. This is a good view for comparison with the original diode plate in

Figure 6.1, and shows how that space was utilized to provide for better thermal

performance.

Figure 6.6 Upside down heatsink next to ruler
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Figure 6.7 Heatsink on diode plate



Chapter 7

7. Implementation of Control Strategy

In this chapter a simple control strategy for the SMR is discussed and implemented with
the use of a microcontroller. Basic functionality of the microcontroller is introduced and
the control elements are discussed with respect to the microcontroller functions. The
control functions, which are designed solely for the purpose of validating hardware
performance, include a zero-crossing detector, speed sensor, a duty cycle modulator, and
synchronous rectification. Oscilloscope captures from the SMR test runs are included.
The microcontroller code for implementing the techniques shown here is listed in
appendix D.

7.1 Control Theory

The control theory for the SMR-based alternator with load-matching is discussed in some

detail in [1]. The design and implementation of such a control loop is demonstrated in [8,

10]. For this project the control circuitry was needed only for hardware validation.

Therefore the control design was simplified to demonstrate that the packaged hardware

could perform the essential SMR functions and deliver the expected output power. There

were four control functions needed to validate the SMR functionality:

1. A zero-crossing detector circuit.
2. A digitally-filtered speed sensor for measuring alternator operating frequency.
3. An operating-frequency-dependent duty cycle modulator.
4. A synchronous rectifier pulse width timer.

7.2 Microcontroller

Before discussing the control functions and how they were implemented, a quick

description of the microcontroller is needed to understand its capabilities and how the

control functions were incorporated. The microcontroller used for this project is a

Microchip PIC18F 1230.

7.2.1 Oscillator

The PIC18F1230 comes with an embedded oscillator, so the use of an external crystal

oscillator is not necessary. The internal oscillator was chosen because it was a simpler
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design approach that saved space, and precision timing was not a necessity. The

oscillator was set to operate at its fastest rate of 8 MHz which means that all instruction

cycles in the microcontroller are completed in 2 MHz or 500ns. This is an important

function as the resolution of the PWM switching frequency can only be realized in

increments of 500ns, and all timer functions are in 2n fractions of the instruction cycle

frequency.

7.2.2 PWM Outputs

This device was designed for use in three-phase motor control applications so it has the

capability of up to six PWM outputs (PWMO-5). The PWM outputs are primarily

commanded by 5 control registers. There are three PWM duty cycle registers (PDCO-2),

one override control register (OVDCOND), and one override state register (OVDCONS).

The three PWM duty cycle registers each control one pair of PWM outputs. For example

PDCO controls PWMO and PWM1. The PWM pairs can be set to run in either

complementary or independent mode. If the PWM pairs are set to complementary mode

then PDCO directly controls the duty cycle of PWM1 and PWMO operates with a

complementary duty cycle.

When the PWM pairs are set to independent-mode operation, the OVDCOND

register is used to determine whether a PWM output is controlled by its respective duty

cycle register or its respective bit in the override state register. The OVDCOND and

OVDCONS registers carry a bit for each of the six PWM outputs. When a PWM bit is

set in the OVDCOND register the PWM is controlled by its respective duty cycle

register. When a PWM bit is cleared in the OVDCOND register the PWM is controlled

by its respective OVDCONS bit. These functions are utilized in the SMR to control duty

cycle modulation and synchronous rectification.



7.2.3 Timer Functions

The microcontroller has two timer functions. Timer functions are basically software

registers (TMRO & TMR1) that increment every 2n instruction cycles. Timers are simple

but useful functions because they allow the processor to operate control elements at set

intervals and can be used to measure a timing period or operating frequency that is

considerably slower than the microcontroller oscillator speed. The timer registers are

linked to interrupt flags which are set when a timer register overflows. These functions

are incorporated in the SMR control system as a means of sensing the alternator angular

speed and also controlling the synchronous rectification pulse width.

7.2.4 Comparator Inputs

The microcontroller is equipped to handle up to three analog comparator inputs with an

internal software voltage reference. The comparator input pins are tied to the non-

inverting node of the comparator and the voltage reference is tied to the inverting pin

which is internal to the microchip. The comparator output pin is also internal to the

microchip and is read as a digital bit on a control register. Each of the comparator

outputs is linked to a corresponding interrupt flag which is set on any comparator change

of state. The comparator state register must be read and the flag must be cleared in

software to avoid false triggers. The three comparators are utilized in the SMR to

indicate whether each phase is in its positive or negative current half cycle.

7.2.5 Software Interrupts

For this application the most important function of the microcontroller is the software

interrupt capability. Software interrupts are subroutines that take precedence over the

primary software routine. The PIC 18 family is equipped with the ability to operate high

priority and low priority interrupts. Both interrupts take precedence over the primary



software routine and the high priority routine takes precedence over the low priority

routine. When an interrupt is triggered, a flag is set in one of the control registers. This

flag must be cleared in software to avoid successive interrupts. Interrupts can be

triggered by any number of events including the completion of a PWM switching cycle, a

timer register overflow, and a comparator change of state. When the event occurs, the

software address marker jumps to a predefined address referred to as a vector. The code

within this vector is immediately executed and must be ended with a specific return from

interrupt command. The address marker then jumps back to the line of code just prior to

the interrupt.

7.3 Control Functions

7.3.1 Zero-crossing Detector

The zero-crossing detector is implemented by using the microcontroller comparators with

a low reference voltage. It is the most important function of the control scheme because

the other three functions are triggered to respond to the comparator trip. The detector is

implemented using the circuit in Figure 7.1, where Qx and D, represent one boost switch

set of the three-phase SMR and the comparator is internal to the microcontroller as

discussed in 7.2.4. The resistors, capacitors, and zener diode are external components

designed to filter and average the voltage at node V and protect the microcontroller from

transient spikes.

Each of the three phases has the same comparator circuitry monitoring the

MOSFET drain voltage. The comparator change of state interrupt is also enabled on each

of the three comparators. When an interrupt occurs the subroutine polls the interrupt flag
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Figure 7.1 Zero-crossing detector circuit

register to see which of the three phases caused the interrupt. The interrupt routine then

digitally filters and averages the timer counts to safeguard against false triggers. Finally

the comparator output bit is read to determine whether the interrupt was caused by a

positive going or negative going comparator trip. The comparator output bit is cleared

after being read and the interrupt routine proceeds to a subsequent operation depending

on the phase polarity.

7.3.2 Speed sensor

The alternator speed sensor is implemented by using a timer function with a 1:64

prescaler. This means that the timer register, TMRO, increments one count every 64

instruction cycles or 32jts. This was the simplest approach to use as it only needed one

8-bit register with no overflow to account for the entire alternator operating range, and

provided for high resolution at low operating speeds. The low speed resolution is

important because the SMR is operating in a load-matched condition at these speeds so

the microcontroller must have the resolution and hysteresis to differentiate between

speeds in order to set the appropriate duty cycle.
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Figure 7.2 Speed sensor filter pattern

The speed sensor software routine is a high priority interrupt routine triggered off

of the comparator trip interrupt. The routine can be best understood by referencing

Figure 7.2. Figure 7.2 is a generic sinusoidal waveform with four discrete periods

referred to as [n - 2] through [n + 1]. Each period has an associated number of timer

counts referred to as T[n-k] and a subscript, Hc or Fc, to denote half-cycle or full-cycle

timer counts. Suppose that an interrupt occurred just after period [n]. The number of

timer counts THC[n] in the TMRO register at the time of the interrupt is placed in a

holding register so that the TMRO register can be cleared and begin incrementing again.

When the interrupt after period [n] occurs, information about period [n + 1] needs

to be calculated to so that the microcontroller can command the next PWM operation.

This information is obtained by filtering and averaging known data. The filtering process

chain is carried out as follows

Trc[n] = Tc[n] + Tc[n -1] . (7.1)

Next, verify that



TFc[n - 1] - 5  TF[cn] TFc[n - 1] + 5 . (7.2)

If true then

TFc[n + 1] =TFn]+T[n-] (7.3)
2

THc[n + 1]= TFc[n + 1]- THC[n]. (7.4)

The step in (7.1) determines the most recent full cycle timer counts TFc[n] based on

known data. In (7.2) this dataset is compared against the previous full cycle dataset

TFc[n -1] to make sure that the two most recent full cycles are within 5 timer counts of

each other. If this is not the case, then no PWM operation is performed. The full cycle

information for the [n + 1] period is computed in (7.3) as the average of the two most

recent full cycles which is a running average of the last 3 half cycle periods. Finally in

(7.4) the half cycle data for the [n + 1] period is computed by subtracting the known half

cycle data of period [n] from the averaged full cycle data.

After the data for period [n + 1] is calculated, the data from the period [n] holding

registers is preserved in the [n - 1] holding registers. All PWM actions in the [n+ 1]

period are commanded based on the computations made in (7.3) and (7.4). When an

interrupt occurs following the [n + 1] period, data for the [n + 2] period is computed

based on the running data from the [n + 1] and [n] periods.

The data averaging and filtering is done to ensure the integrity of the timer counts.

Timer counts that lead to a large discrepancy between the two most recent full cycles

don't result in an immediate PWM operation, and keeping a weighted average of the two

most recent full-cycles ensures that a false trigger does not dominate the expected [n+ 1]

data. If the filtered speed sensor data commands a PWM operation, then the comparator

output bit is read to determine whether the interrupt was a positive-going or negative-
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going trigger. If it is a positive-going trigger then the routine proceeds to calculate the

modulating duty cycle and if the trigger is negative-going the routine sets the

synchronous rectification pulse width.

7.3.3 Speed Dependent Duty Cycle Modulation

At lower alternator speeds the maximum power operation for the machine is achieved in

the load-matched state. To operate in this state a software routine is needed to modulate

the MOSFET switches at some predetermined duty cycle proportional to the alternator

speed. The software routine utilizes the averaged full cycle [n + 1] period data computed

by the speed sensor routine to achieve this goal.

The computational model developed in chapter 4 calculated the optimal duty

cycle at each operating speed. The duty cycle periods were then preloaded as bytes of

data into an addressed table in the software code. When the full cycle timer counts for

the [n + 1] period are computed the number of counts is used to specify an address for the

table pointer, which is the mechanism for extracting data out of the table. The table

pointer selects a specific duty cycle data byte from the addressed table and places that

byte into a holding register. As a means of rejecting incorrect data, the information in the

holding register is compared against a predefined maximum duty cycle. If the holding

register contains a duty cycle period longer than the maximum duty cycle, then the PWM

duty cycle register is left unchanged and the old duty cycle period is used to modulate the

MOSFET in the [n + 1] period. Otherwise, the new duty cycle period is placed into the

PWM duty cycle register and that value is used to modulate the MOSFET.

The maximum duty cycle limit is an important safety measure to ensure that the

alternator does not fall into a destructive operating state. If a corrupt dataset from the

speed sensor filter routine is used to calculate duty cycle, it is possible that the dataset
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could specify a table pointer address that is out of range of the table. If this occurs, an

invalid duty cycle period may be stored into the table latch and could result in excessive

power dissipation in the MOSFET. Furthermore, if the duty cycle on period were

selected greater than the MOSFET switching period (d > 1) then the alternator would

enter into an irrecoverable state and result in destruction of the MOSFET switch.

7.3.4 Synchronous Rectification Pulse Width Timer

The final control element needed to validate the SMR hardware is a synchronous

rectification pulse width timer. Synchronous rectification works by turning the MOSFET

on when the phase current is in its negative half cycle so that the phase current can return

from the battery negative terminal to the phase through the MOSFET's conduction

channel (see figure 7.1). This is more efficient than using the MOSFET's body diode or

a schottky diode as a return path.

Considering figure 7.1, when the phase current iphase,x first enters its negative half

cycle it will return to the source through the MOSFET body diode, and the voltage V,

will go negative with respect to the ground potential. This initiates a negative-going

comparator trip interrupt and subsequent speed sensor routine. During the speed sensor

routine, the value of Tc[n+ 1] is computed as shown in (7.4). The THc[n+ 1] data in

combination with the second timer function and the PWM override capability is used to

control the synchronous rectification pulse width.

The half cycle timer counts are placed in a holding register and the bits are right-

shifted three times. This effectively divides the total number of timer counts by eight.

The synchronous rectification pulse width TRTN is then set with this computation:

TC [n + 1]
TRTN =THC[n + 1]- - Ox02. (7.5)

8
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where Ox02 is two timer counts. The purpose of setting the pulse width in this manner is

to allow for more precise comparator interrupts and to prevent the possibility of the

alternator entering a self-destructive state. Leaving the MOSFET on for the duration of

the negative half cycle prevents the MOSFET drain voltage from ever going above the

comparator trip point and thus prevents a positive trip interrupt. The computation in (7.5)

allows the PWM to enter back into a modulating or turned-off state prior to the line

current crossing back into its positive half cycle. The comparator interrupt then has a

more immediate response to the positive going interrupt which allows for more precise

timing and ensures that an interrupt occurs.

The PWM override and second timer function are also used in the synchronous

rectification routine. The PWM OVDCOND register overrides the PWM duty cycle

register so that the PWM output can be controlled by the OVDCONS register which is

preset to an "all-on" condition. This method allows the MOSFET to be turned on for the

duration of T without having to alter the data stored in the duty cycle register.

The second timer function is set to trigger a low priority interrupt whenever its

register overflows and is set to increment 1:1 with the instruction cycle frequency. The

TMR1 register is preset so that an interrupt occurs every time the TMRO timer increments

one count. The low priority interrupt routine then decrements the value of TRm until the

value of that register becomes zero. When the value of that register equals zero, the

PWM OVDCOND register is cleared and the PWM returns to nominal duty cycle

control.

7.4 Oscilloscope Waveforms of Control Functions

Oscilloscope captures from the SMR are presented here to demonstrate the control

functions described above. These waveforms will reference Figure 7.1, particularly the
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gate drive voltage Vgdrv, the comparator input voltage Vxsen, and the comparator output

voltage Vcmp. One important thing to note regarding the waveform

captures is that the comparator output is internal to the microcontroller and not directly

accessible through hardware. The method to capture this waveform was to mirror the

output bit in the software register to an unused digital output pin on the microcontroller.

The first capture in Figure 7.3 is an overview of the gate drive voltage,

comparator output, and synchronous rectification at 1500 alternator RPM. This is a good

capture as an overview because it shows all of the essential functions. The comparator

output, Vc,,,mp, is initially high (indicating positive phase current) so the PWM output is

modulating. The duty cycle is not distinguishable at this point because the MOSFET

switching frequency is so much faster than the alternator operating speed. When the

C3 +Duty
40.88 %

C3 Freq
151.515 Hz

C2 Freq
3. 125000kHz
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amplitu ide
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Ch3 5.00 V % I i 0 12:23:47

Figure 7.3 Waveform capture of gate drive voltage (Ch. 3, 5 V/div) and comparator output (Ch. 4,
1 V/div) at 1500 RPM.
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comparator output voltage drives low (indicating negative phase current), the MOSFET

gate drive, Vgdrv, turns on almost instantaneously and stays high. The MOSFET then

returns to duty cycle modulation, marking the end of the synchronous pulse width, prior

to the comparator output going high again.

The next capture in figure 7.4 shows the comparator input and the comparator

output at 1500 alternator RPM. The comparator input shows the averaged voltage at the

Vxsen node of figure 7.1 and the comparator output shows how the comparator responds to

the input. This is intended to show that the comparator output is behaving accordingly by

following the non-inverting input terminal.

Figure 7.5 is a view of the comparator input,

Tek 25.0kS/s 27 Acqs

3t

Ch3 5.00 V 
M2.0OmS

comparator output an d the gate drive
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Figure 7.4 Waveform capture of comparator input (Ch. 1, 500 mV/div) and comparator output (Ch. 4,
1 V/div) at 1500 RPM.
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voltage. This picture is intended to demonstrate the efficiency gain when the SMR is

operating with a synchronous rectification pulse as opposed to using the MOSFET body

diode to return current to the source. This picture was taken at around 2450 alternator

RPM, just after the SMR left load-matched operation and the MOSFET is no longer

modulating.

The relative power dissipation in the MOSFET is seen in this scope capture because the

sense voltage, which is the filtered voltage of the MOSFET drain, is shown to increase

considerably in magnitude when the MOSFET gate drive goes low and the phase current

returns to the source through the body diode.

The final capture, figure 7.6, is an expanded view of the comparator input,

I
A: 2.79ms
@: 601As

C3 +Duty
40.92 %

C3 Freq
245.510 Hz

3 Oct 2007
1 sA41 *l

Figure 7.5 Waveform capture of comparator input (Ch.1, 250 mV/div), comparator output (Ch. 4,
1 V/div), and gate drive (Ch. 3, 5 V/div) at 2450 RPM
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Figure 7.6 Waveform capture of comparator input (Ch. 1, 1
V/div), and gate drive (Ch. 3, 5 V/div) at 4800 RPM
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V/div), comparator output (Ch. 4, 1

comparator output, and gate drive voltage during high speed operation. This capture

shows the same characteristics as figure 7.5 only at higher speed operation (4800

alternator RPM). Again, the comparator output is operating accordingly as it is following

the comparator input. The system is not in load-matched operation and there is no high-

frequency PWM, but the MOSFET is still operating as a synchronous rectifier, turning on

to return phase current. The comparator input again shows an increase in voltage when

the synchronous rectification pulse ends and the MOSFET is off.
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Chapter 8

8. Packaging and Assembly

In this chapter the packaging of the rewound machine and embedded SMR circuitry is
presented to demonstrate that the new alternator hardware can be fitted within the same

housing as the original machine. Photographs of the mechanics and details of the

rewound armature, heatsink, and PCB are shown as is a side-by-side view of the fully
constructed SMR machine with a commercial alternator.

8.1 Objective

The mechanical layout of the SMR circuit board and its integration into the alternator

housing is a complex task encompassing a variety of undertakings. The foremost

requirement is that no components are overstressed mechanically, electrically, or

thermally. But for the alternator, we adopted an additional goal: We chose to package

the entire circuit in the space made available by the removal of the alternator's original

diode rectifier, and to use the existing alternator cooling air to cool the SMR circuit.

Every previous implementation (e.g. [8, 10]) of an SMR alternator has, to some

extent, required space for the rectifier which was larger than that occupied by the diode

rectifier. This complicated the process of before and after comparisons, and left the value

of the work vulnerable to the claim that if space limitations are to be relaxed, better

alternators can be made without the SMR. By packaging our circuit in the original

housing, we can rigorously argue that any improvement is due to the new rectifier, and

not the ability to occupy more volume

There are three elements of the SMR-based alternator design that are constrained

by the structural limitations of the alternator housing. They are the rewound armature,

the custom heatsink, and the printed circuit board (PCB). These three designs will be

discussed in some detail with respect to their mechanical constraints.
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8.2 Rewound Armature

The packaging constraints for an armature winding are placed primarily on the end-turns

which are the segments of the conductor that exit and carry over between the stator slots.

There is a height constraint imposed by the diode plate that limits how far axially the end

turns can extend beyond the core and there is an area constraint imposed

by the housing that limits the thickness of the end-turns. A machine wound stator core

from a commercial alternator is shown in Figure 8.1 with the end-turns and termination

points labeled. This armature is wave-wound with two parallel conductors per phase as

described in Chapter 5. The conductor endpoints in each phase are soldered together

resulting in six wire terminations for the three-phase system. All six wire leads are

brought up to and terminated directly on the bridge rectifier. The wave winding pattern is

advantageous in terms of packaging because the end-turns of parallel conductors lie on

igure 8.1 commercial, macnine wound stator core
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opposite ends of the stator and because there is a limited number of wire terminations, all

concentrated in the same area of the core, resulting in limited soldering. The coil-wound

armature used for the SMR-based alternator does not have these characteristics.

When the armature was rewound, the coil winding pattern resulted in multiple

parallel terminations that needed to be bussed together into three phase leads and a

number of neutrals. Each phase consisted of six parallel conductors or twelve

terminations. The six conductors are occupying slots around the entire core

circumference meaning that the termination points are not concentrated in one area as in

the wave-wound core. A pattern was developed to bus the six parallel leads from each

rigure a. Ktewouna stator core witn 12 AWU; bus
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phase around the core with one 12 AWG conductor that traversed about 2700 of the core

circumference. The 12 AWG conductor was secured on to the top of the end-turns with

tie wraps. The neutral terminations were soldered together in groups of three (one per

phase), leaving 6 neutral point connections. These 6 points were not bussed together.

The rewound armature used in the SMR-based alternator is shown in Figure 8.2. The

figure shows the three phase terminations, each of which is constructed by a 12 AWG bus

conductor. One of the bus conductors is labeled at two different points along the

circumference of the core to show how the six parallel windings are spread along the

circumference.

8.3 Heatsink Packaging

The heatsink design with respect to the thermal efficiency specification was discussed in

detail in Chapter 6. The spatial constraints in terms of height allocation and fin spacing

were taken into consideration when trying to optimize the thermal transfer characteristics.

However packaging the heatsink into the alternator also involved providing a durable

ground plane connection between the cast aluminum housing and the PCB, and providing

clearance for the three phase connections to extend from the armature and connect to the

PCB.

The off-the-shelf alternator that was characterized in Chapter 4 utilized the

aluminum housing as a ground conductor to return current from the load to the source.

The ground peg where the battery connects to the alternator is a threaded insert on the top

cover of the housing. In order to not alter the housing, the same ground peg would be

used for the SMR-based alternator. But unlike the commercial alternator, the ground-

referenced devices in the SMR are not press-fitted into the housing structure. There

needed to be a reliable conductive path between the housing structure and the ground

111



Heatsink to PCB interface

mounted to housing with labeled ground con

plane in the PCB. This path required two interfaces, one between the housing and the

heatsink, and another between the heatsink and PCB ground plane.

Each of these interfaces was realized with the use of brass screws. The heatsink

was designed so that two 4-40 brass screws bolted the copper down onto the diode plate

through threaded inserts. The copper heatsink was then threaded at three points, one at

each of the three returns on the rectifier. Again, brass 4-40 screws were used as

conductors between the heatsink and the PCB ground plane. Figure 8.3 is a back view of

the PCB and heatsink mounted on to the diode plate. This figure shows both interfaces

and the screws used to provide the return conduction path from the load.
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Figure 8.4 Aligned PCB and heatsink on diode plate with labeled cutouts for phase conductors

Figure 8.3 also shows the three phase leads coming up from the armature. What

isn't noticeable from this view is that both the heatsink and the PCB were designed with

aligned cutouts so that the 12 AWG conductors could be brought up to the PCB without

having to extend radially beyond the heatsink surface. Figure 8.4 shows the heatsink and

PCB on top of the diode plate from a front view. In this setup the PCB isn't secured into

the heatsink but the two are aligned to show the cutout area where the three phase leads

come up and solder onto the MOSFET heat spreader. This picture also shows an area

where the heatsink fins are recessed back from the end of the heatsink. This is an area

where the top cover of the housing is not vented and the recessed fins were meant to

provide a low impedance air flow path from nearby venting.

8.4 PCB Design

In addition to the cutouts for the three phase leads and the ground plane interfaces

mentioned in the previous section, there were some packaging constraints placed on the

113



PCB. The primary concerns dealt with the space allocation for all of the necessary

devices and the available copper area given the high current application. A top view of

an unpopulated PCB is shown in Figure 8.5. This a good view of the board for

explaining how the board space was allocated for the power devices and also for showing

the thermal via layout that was described in Chapter 3. What is evident in this figure is

that the power devices, particularly the MOSFETs and their heat spreaders, take up about

50% of the total board area and are concentrated along the outer edge of the board. The

positioning of the devices was done to coincide with the area closest to the vented

openings in the top cover. The vented area only traverses about 1800 of the diode plate

circumference and provides for the most efficient heat exchange.

The control section of the board in the upper right lies in a closed area where there

Power device land area

Figure 8.5 Unpopulated SMR PCB
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is no direct airflow as these components do not require heatsinking. Also, if close

attention is paid to Figure 8.3, one can see that the board overlaps the heatsink, which is

cut away directly underneath the control section. This provided for use of the bottom

side of the board to mount additional control components such as a field control

MOSFET and diode. Although this control application was not implemented with the

microcontroller the capability was designed into the board. A bottom view of the PCB is

shown in figure 8.6. This view shows the additional field control components on the

reverse side of the PCB and also shows the electrically isolating Sil-PadTM material which

was discussed in the thermal design.

Referring back to Figure 8.5, there is another detail about the PCB that is worth

Figure 8.6 Bottom view of PCB with Sil-PadTM material
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mentioning. Because there was a limit on the available copper area internal to the PCB, a

bus bar was considered for the output conductor. Placed next to the land area for the

Schottky diodes were land areas for copper standoffs onto which a bus bar could be

mounted. The intention was to be in close proximity to the cathode of the diode and

place a small cube of copper that would make direct contact with the device. This limited

the current carried through the internal copper traces. Depending on the thickness of the

cube, it also provided enough clearance so that the bus bar could run directly over other

surface mount devices. This is shown in Figure 8.7 which is a top view of the fully

populated PCB. The bus bar is constructed with two 10 AWG conductors soldered onto

the copper standoff at four different points and in position to make direct contact with the
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brass output peg. The copper standoffs are thick enough that the bus bar can lie over

some of the output capacitors and gate drive circuitry with no risk of shorting or arcing.

8.5 Alternator Assembly

Once the design of the various elements had been completed, the final step was to

assemble the machine for testing. Most of the figures in this chapter have already shown

the machine in various states of assembly but a brief description of how the machine is

assembled is worth mentioning. Figure 8.8, which shows the housing, the inside of the

top cover, and the PCB, can be used as a reference.

The rewound stator from figure 8.2 is aligned and placed into the housing.

Figure 8.8 shows that the central housing is marked to indicate the proper alignment for

Figure 8.8 Disassembled SMR machine
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Figure 8.9 SMR machine next to commercial machine

the phase leads. The heatsink is bolted down onto the diode plate which is then aligned

and placed on the central housing. The next step is to mount the PCB onto the heatsink

using the threaded inserts. This brings the machine to the state it is shown in figure 8.3.

The phase leads should then be soldered down onto the MOSFET heat spreader to

connect the machine armature to the SMR. Finally, the end cover is installed and bolted

into the central housing and the machine is fully assembled. Figure 8.8 shows the inside

of the end cover which is lined with a gap-filling pad. When the end cover is bolted into

the central housing, the gap-filling material compresses the PCB into the heatsink,

providing a good thermal contact. This also ensures that the PCB is mechanically

secured should a mounting screw back out. Figure 8.9 shows the fully assembled SMR-

based alternator (minus the end cover) side-by-side with the commercial alternator, in an

analogous state of disassembly.

118



Chapter 9

9. SMR Performance Characterization

In this chapter the assembled SMR-based alternator is run through a series of tests to
characterize machine performance. The series of tests included measuring the winding
resistance to validate the turns ratio and testing the machine output power capability at
three field current levels. The experimental results are compared against the expected
performance from the analytical models.

9.1 Objective

A series of three design goals were presented in the introductory chapter to outline what

was expected of this design effort. Those goals were:

1. Increasing average output power into a fixed 14 V output at the high end
operating speeds while maintaining the optimal load-matched power capabilities
at lower RPM.

2. Maintaining the improved efficiency provided by the SMR over a wide range of
loads.

3. Design for manufacturability; that is working with available off-the-shelf devices
and implementing a circuit board layout that will not alter the physical structure
or manufacturing practices of a present-day alternator design.

It has been shown throughout this thesis that the third design goal was being met.

Commercial off-the-shelf components were selected and characterized in Chapters 2 and

3. Chapter 8 presented pictures of the new alternator verifying that the SMR-based

machine is a form-fit replacement of the commercial alternator.

The first two goals have been analytically verified by putting forth electrical,

thermal, and mechanical theory as the basis for the design choices of the SMR and the

rewound machine armature. But quantitative data is still needed to establish that machine

operation is consistent with theory and confirm that these two design goals are being met.

Testing similar to the characterization of the commercial machine performed in Chapter 4

should be sufficient to gather the data and verify machine performance.
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9.2 Stator Winding Resistance Measurement

Prior to measuring the output power characteristics of the alternator, a winding resistance

measurement can be made to verify the accuracy of the turns ratio. Equation (5.2) stated

that if both machines achieved the same copper area per turn then the resistance would

scale as Rs,, = m2R, 1 where m = 2/3. Accordingly, the new machine armature should

have 4 /9th the winding resistance of the commercial machine if the desired winding is

achieved. Using the two machines in figure 8.9, the line-to-line winding resistance at

different frequencies was measured for each machine with an impedance analyzer. The

results are plotted in figure 9.1. The third curve is the m = 1 curve multiplied by 4/9.

This is the ideal value of the rewound armature if the only difference between the two

Winding Resistance vs. Frequency
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Figure 9.1 Comparison of winding resistance vs. frequency for m = 1 and m = 2/3
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machines was the turns-ratio.

The plot in figure 9.1 shows that the winding resistance of the rewound machine

is slightly larger than its ideal value but the error over the alternator's operating range is

minimal. This small error can be attributed to the fact that the same copper packing

factor was not achieved in the rewound machine and the hand winding resulted in a

slightly longer winding. Nonetheless the numbers are accurate enough to validate that

the correct winding ratio was achieved.

9.3 Output Power Measurements

The first design goal was to achieve increased output power at the high end operating

speeds while maintaining optimal load-matched operation at low RPM. The analytical

model from figure 5.11 predicted that at full (4.3 A) field current the SMR machine

would average about 2229 W output power at 6000 RPM. This equates to a 26.5%

improvement over the commercial alternator with third harmonic booster diodes and

45.5% improvement over the commercial alternator with a standard six diode rectifier.

Note that the commercial alternator does use booster diodes.

The SMR-based alternator machine was mounted into the motor control test

station shown in Figure 4.1 and tested under the same conditions (4.3 A field current,

250 C ambient) as the original Remy machine. The quantitative data collected during the

test runs was compiled into a series of plots to graphically demonstrate SMR

performance. The first plot shown in Figure 9.2 compares the analytical results with the

experimental results to confirm that the machine behavior is consistent with theory. The

analytical results were computed using the model and electromechanical parameters from

Chapters 4 and 5. The experimental data is very accurate throughout the entire operating

range with some deviation at the high end. The average error between the analytical and
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SMR Output Power vs. Alternator Speed
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Figure 9.2 Output power comparison of analytical results versus experimental results for SMR.

experimental results is 1.24% over the operating range with a maximum deviation of

2.35% at 6000 RPM. This shows that the SMR achieved 2178 W or 97.7% of its

expected output power at 6000 RPM.

The next plot, Figure 9.3, shows the experimentally measured output power

improvement of the SMR machine versus the original Remy machine, with and without

booster diodes. This plot validates that the number one design goal was met. There is

substantial output power improvement at the high end operating speeds and load-matched

operation maintaining the output power capabilities at lower RPM. Quantitatively, the

SMR produced 2178 W at 6000 RPM. This equates to 42.2% output power improvement

over the Remy alternator with a standard six diode rectifier and a 23.6% improvement

over the Remy machine with a booster diode configuration.
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Output Power vs. Alternator Speed
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Figure 9.3 Output power comparison of SMR versus Remy with and without booster diodes

The final plot, figure 9.4, shows the output power profile of the SMR at three

different field current levels. The top profile is at maximum field current of 4.3 A, the

second at 3.6 A or just below 85% of maximum field, and the bottom profile at 3 A or

70% of maximum field. This plot is meant to show that the machine also demonstrates

improved output power capability at less than full field, particularly at the high end

operating speeds when the machine is no longer load-matched. For example, consider

that the original Remy alternator with a standard six diode rectifier achieved 1531 W

output atfullfield current whereas the SMR machine is capable of achieving

approximately 1550 W output at only 70% of full field. Furthermore, the Remy

alternator with additional booster diodes maxed out at 1761 W at full field whereas the

SMR machine achieves over 1800 W at just under 85% of full field.
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SMR Output Power vs. Alternator Speed
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Figure 9.4 Output power comparison of SMR at 3 A, 3.6 A, and 4.3 A field current.

9.4 Temperature Measurements

The final dataset needed to fully characterize the SMR machine's performance is the

operating temperature of the windings and power components. The winding temperature

of the original Remy alternator with booster diodes was presented in Figure 4.5. The

armature winding for the SMR-based alternator, according to the analysis presented in

Chapter 5, should operate at a comparable temperature as there was a sufficient increase

in copper area relative to the increase in RMS phase current.

Table 9.1: SMR Temperature Data

Alternator RPM TFET Tdiode Twinding

1500 107.2 89.5 135.7
2000 116.7 108.4 157.2
2500 109.1 114.7 165.6
3000 121.9 126.6 185.1
3500 129.2 133.5 179.6
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During the various test runs, attempts were made to capture the operating

temperature of the windings and components but the instrumentation failed to provide a

reliable readout of the data throughout the operating range. The winding temperature and

case temperatures were recorded up to 3500 alternator RPM. That data is presented in

Table 9.1. All temperatures are in 'C.

Based on the thermal characterization performed in [3], it stands to reason that the

winding temperature of the SMR-based alternator would behave very similar to that of a

commercial alternator. A plot of the winding temperature up to 3500 alternator RPM is

presented in figure 9.5. Included in that plot is the expected temperature performance of

the winding throughout the operating range.

Winding Temperature vs. Alternator Speed
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Figure 9.5 SMR winding temperature vs. Remy winding temperature over operating range. Solid line
is measured temperature and dashed line represents expected temperature of SMR
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Chapter 10

10. Conclusions and Future Work

In this chapter the material presented in the thesis is summarized and the major
conclusions are highlighted. Recommendations for future work needed to make the SMR
a fully integrated commercial product are discussed.

10.1 Thesis Summary and Conclusions

Chapter 1 presented the motivation for the design and constructions of a 14 V SMR-

based alternator. Research has shown that the growing number of electrical loads in

modem automobiles is approaching the output power limits of the traditional diode

rectifier based alternator. In this thesis project we sought to develop a new alternator

machine with increased output power capability that could be packaged into the same

housing as a commercial alternator and could rely on the same manufacturing

infrastructure and practices already in place. The SMR was introduced and analyzed as a

theoretical basis for the new machine. The load matching concept was introduced and

the design goals for the SMR were outlined.

Chapter 2 outlined the important electrical and thermal parameters for the

selection of components that could be used in a 14 V SMR alternator. Based on these

parameters a set of power devices and auxiliary components were selected for evaluation

in a boost circuit test board. Test board specifications were generated to exercise the

devices and validate their thermal and electrical capabilities.

Chapter 3 analyzed the electrical parameters and test board specifications to

approximate the power dissipation in the devices. The thermal characteristics of the

devices and PCB were then used to estimate the temperature rise in the devices. It was

concluded that a heat spreader would be needed to conduct heat away from the MOSFET
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in order to maintain the device at a safe operating temperature. A thermal transfer model

was created to optimize the device temperature rise versus PCB space allocation. The

devices were tested according to the test board specifications and one MOSFET-diode

combination was selected to be used in the three-phase SMR alternator.

Chapter 4 investigated the performance of a Remy 92319 commercial alternator.

The nominal full field current was measured at 4.3 A under laboratory conditions and

used as a constant field current drive for subsequent testing. The output power capability

was measured over a 1500 to 6000 alternator RPM operating range and a dataset was

collected with the machine operating as a basic 6 diode rectifier and with the machine

using additional third harmonic "booster" diodes. The machine constant, k, was also

measured under laboratory conditions. The experimentally-obtained data was used to

develop an analytical model that computed the output power capability as a function of

the number of series-turns in the armature winding. A best fit curve for the analytical

model was obtained by adjusting the parameter values for machine synchronous

inductance and winding resistance.

Chapter 5 utilized the analytical model developed in Chapter 4 to obtain a

winding ratio m that would produce an output power improvement which satisfied the

design goals and didn't thermally overstress the SMR devices. It was decided to use a

winding pattern consistent with the previous SMR design in [8,10]. The copper packing

factor, per-turn copper area, and estimated device temperature rise were calculated at

different ratios m. It was concluded that a value of m = 2/3 would satisfy the design goals

with minimal thermal stress to the devices and the copper windings.

Chapter 6 detailed the design of a custom heatsink that would replace the rectifier

structure and effectively increase the area of the diode plate in the commercial alternator
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in order to provide for improved thermal performance. The structural limitations

imposed by the housing and the combined height restriction of the heatsink and PCB

dictated the fin characteristics of the heatsink. A CAD drawing was generated and the

part was fabricated from copper using wire EDM. Pictures of the custom part are

provided as well.

Chapter 7 discussed the control strategy used to verify the hardware functionality

in the SMR. A PIC 18F1230 microcontroller was used to implement the control strategy.

The microcontroller utilized embedded comparators, timer functions, PWMs, and

software interrupt capabilities to gate the MOSFETs on and off according to the polarity

of the phase current and operating speed of the alternator. Oscilloscope captures from the

final test runs were provided to demonstrate the functionality of control techniques

implemented with the microcontroller.

Chapter 8 presented pictures of the SMR-based alternator which detailed the

packaging and assembly of the new machine. The pictures focused on the sections of the

machine that were replaced or redesigned: the armature winding, the heatsink, and the

PCB. The photographs were used as verification that the hardware for the new machine

can be packaged into an unaltered commercial alternator housing. The pictures are also

used to detail the mechanical interfaces and subtleties of the new machine.

Chapter 9 provided experimental verification of the SMR-based alternator's

performance capabilities. The SMR-based alternator was run through the same test

methodology used in characterizing the commercial alternator. Datasets of the output

power capability were recorded at 4.3 A field current and also at lower field current

levels. The output data was plotted against the predicted data from the analytical model

and also against the measured data from the original machine. It was verified that the
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SMR machine achieved a 42.2% output power improvement over the original machine

with a 6-diode rectifier and a 23.6% output power improvement over the original

machine with a 6-diode rectifier plus two booster diodes. The SMR machine also

achieved 97.7% of its expected output power improvement at m = 2/3.

10.2 Future Work

The purpose of this thesis has been to design an improved performance 14 V SMR-based

alternator that can be fitted into the same mechanical housing as an off-the-shelf

commercial alternator. The experimental testing conducted in Chapter 9 demonstrated

that the SMR-based alternator has achieved the design goals outlined in the introductory

chapter and has validated the accuracy of the analytical model developed in Chapters 4

and 5. The pictures shown in Chapter 8 have provided visual proof that the hardware

needed for the new machine can be embedded into a commercial alternator housing. The

next step in the alternator's development is to realize the control features implemented in

the 42 V SMR alternator from [8, 10]. The machine discussed in [8, 10] featured a field

current regulator, a closed loop compensator, and a load dump transient protection.

The components for the field current regulator have already been selected and the

PCB layout provided the land area for the components. However, the microcontroller has

not been programmed to sense the SMR output or regulate the field current by

modulating the field control MOSFET. The embedded A/D converter in the

microcontroller can be used to read the SMR output and provide a proportional integrator

compensator. The PWM override function described in Chapter 7 can be utilized to

modulate the field control MOSFET and regulate the field current by setting the duty

cycle according to (4.1).
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A load dump transient occurs when a heavy current load is instantaneously

removed or applied to the alternator output causing the output voltage to rise or fall,

respectively. In the situation where the voltage rises, it can rise to more than double the

regulation set point which could cause component degradation and ultimately lead to

failure. A method for handling such a transient was developed in [8, 10] where the three

power MOSFETs were shorted when the output voltage went above a certain level. This

is another capability that can be programmed into the microcontroller in the future.

The SMR alternator in this thesis achieved about 2178 W, 160 A output.

Ultimately this may not be enough to satisfy the electrical demands of future automobiles

and another design effort with newer and presumably better power components can be

undertaken. The analytical and thermal models which were developed in this thesis and

proven to be very accurate in predicting the performance of the SMR and its components

can be used as the basis for future design work of SMR-based alternators.
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Appendix A

A. Circuit Schematics

A.1. Test Board Schematic
This appendix provides a schematic diagram of the boost converter test circuit used to
evaluate the components selected in Chapter 2. The schematic includes the MOSFET
switch, Schottky diode, gate driver, ceramic capacitors, and a UC3823A PWM chip
operating as an oscillator to provide 50% duty cycle at 100 KHz switching frequency.

14 Vdc

Figure A.1 Test board schematic
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A.2 SMR Circuit Schematic

This appendix provides the schematic for the SMR circuit. Page 1 contains the 3-phase
boost switch sets, gate drive circuits, ceramic output capacitors, and output voltage sense
circuitry. Page 2 contains the zero-crossing detection circuitry and field control
components. Page 3 contains the linear regulator circuitry for the three gate drivers and
the microcontroller circuit.

VBAT

fBATSEN

lo0p

C41

Figure A.2 SMR schematic, page 1

132



PHA

R1
100k

R10

PHASEN R PHA CMP

100 2
R4 lop VR1

470p T C35 C38 47
S0k - 4.7V

PHB

100k

PHBSEN M, PHBCMP

100 2
R5 10p I VR2

470p C36 C39
50k 4.7V

_i_

FC 
I
RLR7821

5VFC

23 -

Figure A.3 SMR schematic, page 2

V /PHB VI

U10

PHCCMP 1 CMPO CMP1
VBA~_bLN 2CP CP
VBAT SEN 2

N ANI CMP2

DD 3 AN2 FLTA

Vpp CLKO

5 VSS VDD

- RA2 PWM5

RA3 PWM4

a PWM0 PWM3

PWMC 9
PWM1 PWM2

18 PH .

17 PH

16

15-0

14

13 PWM

12 PGC

11 PWM,

jk-X

PIC18F1230

Control Table

PHC -- > CMPO -- > PDCO -- > PWM1 -- > PWMC

PHA -- > CMP1 -- > PDCI -- > PWM3 -- > PWMA

PHB -- > CMP2 -- > PDC2 -- > PWM5 -- > PWMB

Figure A.4 SMR schematic, page 3

ACMP

BCMP R9

5VDD J 1 ik

6VDD NC
U8-12 2 4 vpp

C34 PGC Vpp

T .lu US-13 I PGD GND

J1 Pinout Diagram

3 6

2 5

1 4

133

R12
PHCCMP

VI LSM845

VI PHA 2VPHC

29

u

PHCP 
MP



Appendix B

B. SMR PCB Layout

This appendix provides images of the PCB layout for the SMR prototype. The SMR
prototype is a 4-layer PCB with 4o0z/ft2 outer layers and 3oz/ft2 inner layers. The PCB
layout was made using EAGLETM Layout Editor from Cadsoft Computer, Inc. Note that
images are not to scale.

Figure B.1 Top copper layer
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Figure B.2 Second layer
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Figure B.3 Third layer
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2

Figure B.4 Bottom layer
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Figure B.5 PCB outline and vias
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Appendix C

C. Heatsink CAD Drawings

This appendix provides 3D images of the custom heatsink designed for the SMR-based

alternator. The drawings were developed with SolidWorksTM CAD software. The first

drawing is a bottom view displaying the spacing and tapering of the fins. The second

drawing is a top view.

Figure C.1 Bottom view of custom heatsink
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Figure C.2 Top view of custom heatsink
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Appendix D

D. Alternator Computational Model

This appendix provides the MATLAB code for the alternator computational model.

%%% SMR Alternator Model

clear all;

%% Static Machine Parameters
m = 2/3;
k = .0033*m;
If = 4.3;
Ls = mA2*116.5e-6;
Rs = .03*m^2;

%% Static SMR Parameters
Vd = .5;

Rdson = .0026;

%Stator winding turns-ratio
%Machine constant
%Maximum field current
%Synchronous inductance
%Stator winding resistance

%Schottky diode forward voltage drop
%MOSFET "on" resistance

%% Static Operational Parameters
Vo = 13.5; %Load voltage
Vod = (4/pi)*(Vo/2+Vd); %Magnitude of the fundamental of EMF

%voltage
%sink from equation 4.11

%% Output Power vs. Speed Model
i = 1; %In
f(i) = 150; %El
Pmax(i) = 0; %In
dmax(i) = 0; %In

dex variable for loop
ectrical frequency
itial power value at given frequency
itial duty cycle value at given
equency

% Model runs from 150 Hz to 600 Hz (1500 rpm to 6000 rpm) in 10 Hz
% increments. At each operating point, the alternator rpm, rotational
% frequency, peak EMF voltage, and optimal duty cycle are computed.
% Duty cycle is initially set to be either 0 or value computed by
% equation 5.12

for f= 150:10:600;
rpm(i) = f*10;
omega(i) = 2*pi*f;
Vs(i) = k*If*omega(i);
d(i) =1-((sqrt(2)*pi*k/(4*Vo))*If*omega(i));
dmin = d(i);

% Embedded duty cycle loop used to find optimal duty cycle
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j = 1;
Isl(j) = 0;
Io(j) = 0;
Po(j) = 0;

if dmin >=0;
dopt(j) = dmin;
else;
dopt(j) = 0;

end;

% Duty cycle is swept from dmin to 1 in increments of .001. At each
% point the peak phase current, average output current, and
% output power are calculated.
while dopt(j)<= 1;

Isl(j) = (Vs(i)^2 - ((l-dopt(j))*Vod)^2)/(((l-dopt(j))*Vod)*Rs
+ sqrt((omega(i)*Ls)^2* (V(i)^2-((l-dopt(j))*Vod)A2)+
Rs^2*Vs (i) ^2));

Io(j) = 3*Isl(j).*(1-dopt(j))./pi;
Po(j) = Io(j).*Vo;
j = j + 1;
dopt(j) = dopt(j-l) + .001;

end;
% End of duty cycle loop

% Maximum output current, output power, and the duty cycle that
% produces those values are extracted
[Pmax(i), jopt(i)] = max(Po);
Imax(i) = Io(jopt(i));
dmax(i) = dopt(jopt(i));
Ifund(i) = Isl(jopt(i));

% Device power dissipation at maximum output power.
Pdiode(i) = (Imax(i)/3)*Vd;
if dmax(i)== 0;

Psw(i) = 0;
else;
Psw(i) = ((Ifund(i)*.169)-4.8)/2;

end;
Pfet(i) = ((Ifund(i)/2)^2)* Rdson + ((Ifund(i)/2)*sqrt(dmax(i)))^2

* Rdson + Psw(i);

% Temperature profile based on expected thermal transfer
% characteristics of devices and heatsink
Ta = 25;
Rsa(i) = (exp(-4.2e-4*rpm(i)) + (1.867e-5*rpm(i)))*(2);
Rjcdiode = .25;
Rcsdiode = .85;
Rjcfet = .5;
Rcsfet = .96;
Tsink(i) = 3*(Pdiode(i) + Pfet(i))*Rsa(i) + Ta;
Tjdiode(i) = Pdiode(i)*(Rjcdiode + Rcsdiode) + Tsink(i);
Tjfet(i) = Pfet(i)*(Rjcfet + Rcsfet) + Tsink(i);

i = i + 1;
end;
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dmax = transpose(dmax);

%% Sample plot of relevant data
figure ();
subplot(2,1,1),
plot(rpm,Pmax, 'linewidth',2);
title('Pout vs Alternator Speed, m = 2/3');
ylabel('Pout');
ylim([0 30001);
xlabel('Alternator Speed (RPM)');
xlim([0 6000]);
grid minor;
axis on;
subplot(2,1,2),
plot(rpm,Tjdiode,rpm,Tjfet,'linewidth',2);
title('Junction Temperature vs Alternator Speed, m = 2/3');
ylabel('Junction Temperature (C)');
ylim([50 200]);
xlabel('Alternator Speed (RPM)');
xlim([0 6000]);
grid on;
axis on;
legend('Diode', 'FET');
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Appendix E

E. PIC18F1230 Assembly Code

Filename: PWM
Date: 2.1.08
File Version: 1
Author: Armando Mesa
Company: MIT

** * ** **** ***** ********************************t*

Files required: P18F1230.INC
18Fl230.LKR

LIST P=18F1230, F=INHX32
#include <Pl8Fl230.INC>

;Configuration bits
Oscillator Selection:

CONFIG OSC = INTIO1
CONFIG FCMEN = OFF
CONFIG IESO = OFF
CONFIG PWRT = OFF
CONFIG BOR = OFF
CONFIG WDT = OFF
CONFIG HPOL = HIGH
CONFIG LPOL = HIGH
CONFIG PWMPIN = OFF
CONFIG FLTAMX = RA7
CONFIG T1OSCMX = HIGH
CONFIG MCLRE = OFF

;Variable definitions
; UDATA variables are only needed if low priority interrupts are used.
; UDATAACS variables are needed to store other special function
; registers used in the interrupt routines.

UDATA

WREG TEMP RES 1
STATUS TEMP RES 1
BSR TEMP RES 1

UDATA ACS

Example RES 1
SETTIME RES 1
RTNTIME RES 1
RTNTIMEA RES 1
RTNTIMEB RES 1
RTNTIMEC RES 1
TABOFFSET RES 1
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PosDMaxL RES 1
TABDIFF RES 1
LowDiff RES 1
HighDiff RES 1
PhCTnewHC RES 1
PhCToldHC RES 1
PhCTnewFC RES 1
PhCToldFC RES 1
PhCTavg RES 1

PhATnewHC RES 1
PhAToldHC RES 1
PhATnewFC RES 1
PhAToldFC RES 1
PhATavg RES 1

PhBTnewHC RES 1
PhBToldHC RES 1
PhBTnewFC RES 1
PhBToldFC RES 1
PhBTavg RES 1

IdleSpeed RES 1
IdleCount RES 1

;; Address of PWM duty cycle table

TABPWM equ OxD4

*************************************************************** **

;EEPROM data
; Data to be programmed into the Data EEPROM is defined here

DATA EEPROM CODE Oxf00000
DE "Test Data",0,1,2,3,4,5

;* ***AWWW**A*WWW*W*WWWWWWWWA**A*+*+W+ WWAAA WWW *W**k WWW+WW*

;Reset vector
; This code will start executing when a reset occurs.

RESET VECTOR CODE Ox0000

goto Main ;go to start of main code
******************************** *****************************

;High priority interrupt vector
; This code will start executing when a high priority interrupt occurs;
; or when any interrupt occurs if interrupt priorities are not enabled.

HI_INT_VECTOR CODE 0x0008 ;high priority interrupt address

bra HighInt ; high priority interrupt routine

;Low priority interrupt vector
; This code will start executing when a low priority interrupt occurs.
; This code can be removed if low priority interrupts are not used.

LOW_INTVECTOR CODE 0x0018 ;low priority interrupt address
bra LowInt ;low priority interrupt routine
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;High priority interrupt routine

; High priority interrupt routine is triggered off of
; a zero crossing of the phase current in any of the 3
; phases. Routine reads and averages the number of
; primary timer counts and sets conditions for operation
; during ensuing half-cycle.

CODE

HighInt:
BTFSC
bra
BTFSC
bra
BTFSC
bra
BCF
retfie

PhCTimer:
movf f
clrf
RRCF
BCF
movf
addwf
mullw
movff
movf f
RRCF
BCF
movf
addwf
movf f
movf
subwf
movff
BTFSS
bra
bra

PhCLessThan:
CPFSGT
bra
bra

PhCGreaterThan
CPFSLT
bra
bra

PhCClear:
BTFSC
nop
BCF
retfie

PhCState:
BTFSS

PIR1, 1
PhCTimer
PIR1, 2
PhATimer
PIR1, 3
PhBTimer
PIR1, 1

TMROL,PhCTnewHC
TMROL
PhCTnewHC
PhCTnewHC,7
PhCTnewHC,0
PhCToldHC,0
0x02
PRODL, PhCTnewFC
PhCTnewHC, PhCToldHC
PhCTnewFC
PhCTnewFC,7
PhCTnewFC,0
PhCToldFC,0
WREG, PhCTavg
PhCTnewFC,0
PhCToldFC,0
PhCTnewFC,PhCToldFC
STATUS,4

PhCLessThan
PhCGreaterThan

LowDiff
PhCClear
PhCState

HighDiff
PhCClear
PhCState

CMCON, COOUT

PIR1,1

CMCON, COOUT
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bra
bra

PhCDCycleNEG:
BCF
BCF
BCF
movf
mullw
movf
subwf
movwf
RRCF
BCF
RRCF
BCF
RRCF
BCF
subwf
decf
movlw
CPFSLT
retfie
movff
movff
retfie

PhCDCyclePOS:
BSF
BCF
BSF
movf
mullw
movf
movff
CPFSGT
incf
addwf
movwf
movlw
TBLRD*
CPFSLT
retfie
movlw
mulwf
movff
movff
retfie

PhATimer:
movff
RRCF
BCF
movf
addwf
mullw
movff
movff
RRCF
BCF

PhCDCycleNEG
PhCDCyclePOS

OVDCOND,1
PIR1,1

PORTA, 2
PhCTnewHC,0
Ox02
PRODL,0
PhCTavg,0
Example
WREG
WREG, 7
WREG
WREG, 7
WREG
WREG, 7
Example
Example
0x68
Example

Example, RTNTIME
RTNTIME, RTNTIMEC

OVDCOND, 1
PIR1,1
PORTA, 2
PhCTavg, 0
0x02
PRODL, 0
PRODH, TBLPTRH
TABDIFF
TBLPTRH
TABOFFSET, 0
TBLPTRL
OxOA

TABLAT

0x04
TABLAT
PRODL, PosDMaxL
PosDMaxL, PDCOL

TMROL,PhATnewHC
PhATnewHC
PhATnewHC, 7
PhATnewHC, 0
PhAToldHC, 0
0x02
PRODL, PhATnewFC
PhATnewHC, PhAToldHC
PhATnewFC
PhATnewFC, 7
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movf
addwf
movff
movf
subwf
movff
BTFSS
bra
bra

PhALessThan:
CPFSGT
bra
bra

PhAGreaterThan:
CPFSLT
bra
bra

PhAClear:
BTFSC
nop
BCF
retfie

PhAState:
BTFSS
bra
bra

PhADCycleNEG:
BCF
BCF
movff
retfie

PhADCyclePOS:
BSF
BCF
movff
retfie

PhBTimer:
movff
RRCF
BCF
movf
addwf
mullw
movfF
movff
RRCF
BCF
movf
addwf
movff
movf
subwf
movff
BTFSS
bra
bra

PhBLessThan:

PhATnewFC, 0
PhAToldFC, 0
WREG,PhATavg
PhATnewFC,0
PhAToldFC,0
PhATnewFC,PhAToldFC
STATUS,4
PhALessThan
PhAGreaterThan

LowDiff
PhAClear
PhAState

HighDiff
PhAClear
PhAState

CMCON, ClOUT

PIR1,2

CMCON, ClOUT
PhADCycleNEG
PhADCyclePOS

OVDCOND,3
PIR1,2
RTNTIME, RTNTIMEA

OVDCOND,3
PIR1,2
PosDMaxL, PDC1L

TMROL,PhBTnewHC
PhBTnewHC
PhBTnewHC, 7
PhBTnewHC, 0
PhBToldHC, 0
0x02
PRODL, PhBTnewFC
PhBTnewHC, PhBToldHC
PhBTnewFC
PhBTnewFC,7
PhBTnewFC,0
PhBToldFC,0
WREG,PhBTavg
PhBTnewFC, 0
PhBToldFC, 0
PhBTnewFC,PhBToldFC
STATUS,4
PhBLessThan
PhBGreaterThan
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CPFSGT
bra
bra

PhBGreaterThan:
CPFSLT
bra
bra

PhBClear:
BTFSC
nop
BCF
retfie

PhBState:
BTFSS
bra
bra

PhBDCycleNEG:
BCF
BCF
movff
retfie

PhBDCyclePOS:
BSF
BCF
movff
retfie

LowDiff
PhBClear
PhBState

HighDiff
PhBClear
PhBState

CMCON, C20UT

PIR1,3

CMCON, C20UT
PhBDCycleNEG
PhBDCyclePOS

OVDCOND,5
PIR1,3
RTNTIME, RTNTIMEB

OVDCOND,5
PIR1,3
PosDMaxL, PDC2L

.**WWWWt*t********WWWtWAk*kk***** WWWWWWWWWWWW**W***WWWkkWW*WWW

;Low priority interrupt routine
; The low priority interrupt code is placed here.
; This code can be removed if low priority interrupts are not used.

; Low priority interrupt routine is triggered off of an overflow
; in the secondary timer. Routine monitors the pulse width of
; synchronous rectification timer and shuts MOSFETs off when
; pulse width has expired.

LowInt:
movff
movff
movff
BCF
setf
movff
BTFSS
call
BTFSS
call
BTFSS
call
goto

CONDA:
dcfsnz
BSF
return

CONDB:
dcfsnz

STATUS,STATUS TEMP
WREG,WREGTEMP
BSR,BSR TEMP
PIR1, 0
TMR1H
SETTIME, TMR1L
OVDCOND, 3
CONDA
OVDCOND, 5
CONDB
OVDCOND, 1
CONDC
Restore

RTNTIMEA
OVDCOND, 3

RTNTIMEB
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BSF OVDCOND, 5
return

CONDC:
dcfsnz RTNTIMEC
BSF OVDCOND, 1
return

Restore:
movff BSR TEMP,BSR
movff WREG_TEMP,WREG
movff STATUSTEMP,STATUS
retfie

;Start of main program

; Lookup table for max duty cycle. Timer counts in high
; priority routine map to a table pointer which extracts
; a PWM duty cycle from table.

org TABPWM
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00
data Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox01, Ox01
data Ox01, Ox01, Ox01, Ox01, 0x02, 0x02, 0x02, 0x02
data 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
data 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
data 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04
data Ox05, Ox05, 0x05, 0x05, 0x05, Ox05, 0x05, 0x05
data 0x05, 0x06, 0x06, Ox06, 0x06, 0x06, 0x06, 0x06
data 0x06, Qx06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07
data 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08
data Ox08, 0x08, Ox08, 0x08, 0x08, 0x08, 0x08, 0x08
data 0x08, 0x08, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data Ox09, 0x09, 0x09, 0x09, 0x09, 0x09, Ox09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, Ox09
data 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09

TABEND
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;;;; Main code - Setting all control registers for operation

clrf
clrf
movlw
movwf

movlw
movwf

movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
clrf
clrf
movlw
mullw
movf f
movf f
movf f
movff

PORTB
PORTA
OxOC
TRISB
;RBO = output (PWMO, Pin 8

;RB1 = output (PWM1, Pin 9

;RB2 = input (CMP2, Pin 17

;RB3 = input (CMP1, Pin 18

;RB4 = output (PWM2, Pin 10

;RB5 = output (PWM3, Pin 11

;RB6 = output (PWM4, Pin 12

;RB7 = output (PWM5, Pin 13
OxB3
TRISA
;RAO = input (CMPO, Pin 1 =

;RA1 = input (AN1, Pin 2 =

;RA2 = output (RA2, Pin 6 =

;RA3 = output (RA3, Pin 7 =

;RA4 = input (AN2, Pin 3 =

;RA5 = input (Vpp, Pin 4 =

;RA6 = output (CLKO, Pin 15

;RA7 = input (FLTA, Pin 16

OxCO
OSCTUNE
OxF2
OSCCON
0x45
TOCON
0x00
TMROL
0x00
TMROH
0x00
PTCONO
0x80
PTCON1
0x13
PTPERL
0x00
PTPERH
0x57
PWMCONO
Ox3E
OVDCOND
Ox3E
OVDCONS
PTMRL
PTMRH
0x04
0x09
PRODL, PosDMaxL
PRODL, PDCOL
PRODH, PDCOH
PRODL, PDC1L

151

Main:

= Field PWM)
= PHC PWM)
= PHB voltage comparator)
= PHA voltage comparator)
= Unused PWM)
= PHA PWM)
= unused PWM)
= PHB PWM)

PHC voltage comparator)
VBAT sense)
debug output)
debug output)

unused analog input)
programming voltage)

= Oscillator output)
= PWM fault input)



movff PRODH, PDC1H
movff PRODL, PDC2L
movff PRODH, PDC2H
movlw 0x07
movwf CMCON
movlw OxA4
movwf CVRCON
movlw 0x00
movwf T1CON
movlw OxD2
movwf TMR1L
movlw OxFF
movwf TMR1H
movlw 0x00
movwf PIE1
clrf PIR1
movlw OxCO
movwf INTCON
BSF RCON, 7
movlw OxOE
movwf IPR1

movlw UPPER(TABPWM)
movwf TBLPTRU
movlw HIGH(TABPWM)
movwf TBLPTRH
movlw LOW(TABPWM)
movwf TBLPTRL
movwf TABOFFSET
clrf TABLAT

movlw 0x2B
movwf TABDIFF
movlw OxD2
movwf SETTIME
movlw OxFF
movwf IdleCount
movlw 0x68
movwf IdleSpeed
movlw 0x05
movwf LowDiff
movlw OxFA
movwf HighDiff
clrf PhCToldHC
clrf PhCToldFC
movlw 0x64
movwf RTNTIME

; Startup routine. Up to this point all timers and
; interrupts are disabled. Startup waits for first
; interrupt on primary phase (Phase C) to enable
; primary timer
Startup:

BTFSS PIR1, 1
bra Startup
BTFSS CMCON, COOUT
nop
clrf PIR1
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BSF TOCON, 7
movff IdleSpeed, PhCToldHC

; CCM code polls for interrupts on Phase C. Waits for
; a set number of successive interrupts producing the
; same number of timer counts before enabling all interrupts
CCM:

BTFSS PIRI, 1
bra CCM
movf TMROL, 0
clrf TMROL
BTFSS CMCON, COOUT
nop
clrf PIR1
CPFSEQ PhCToldHC
bra CCM
movff WREG, PhCToldHC
decfsz IdleCount
bra CCM
movff PhCToldHC, PhCToldFC
RRCF PhCToldHC
BCF PhCToldHC,7
movlw OxOF
movwf PIE1
BSF T1CON, 0
bra MainPoll

; MainPoll routine is a PWM
; PORT output of respective
; over to debug output
MainPoll:

BTFSS PORTB,1
BTFSS PORTB,5
BTFSS PORTB,7
bra BitClear
bra BitSet

BitClear:
BCF PORTA,3
bra MainPoll

BitSet
BSF
bra

"mirror" routine. Looks at
phase and mirrors that bit

;PhC PWM
;PhA PWM
;PhB PWM

PORTA, 3
MainPoll

;End of program

END
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