
1 

 

An Experimental Platform  
for Investigating  

Decision and Collaboration Technologies  
in Time­Sensitive Mission Control Operations 

 
 
 

S. D. Scott 
M. L. Cummings 

 
 

Massachusetts Institute of Technology* 
Prepared For Boeing, Phantom Works 

 
 
 

HAL2007-04 
August, 2007 

 
 
 
 
 

 
 
 

 
*MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139 

http://halab.mit.edu         e-mail: halab@mit.edu 



2 

An Experimental Platform for Investigating Decision and Collaboration 
Technologies in Time-Sensitive Mission Control Operations 

Stacey D. Scott & Mary L. Cummings 
 

Executive Summary 
This report describes the conceptual design and detailed architecture of an experimental platform 
developed to support investigations of novel decision and collaboration technologies for 
complex, time-critical mission control operations, such as military command and control and 
emergency response.  In particular, the experimental platform is designed to enable exploration 
of novel interface and interaction mechanisms to support both human-human collaboration and 
human-machine collaboration for mission control operations involving teams of human operators 
engaged in supervisory control of intelligent systems, such as unmanned aerial vehicles (UAVs).  
Further, the experimental platform is designed to enable both co-located and distributed 
collaboration among operations team members, as well as between team members and relevant 
mission stakeholders. 

To enable initial investigations of new information visualization, data fusion, and data sharing 
methods, the experimental platform provides a synthetic task environment for a representative 
collaborative time-critical mission control task scenario.  This task scenario involves a UAV 
operations team engaged in intelligence, surveillance, and reconnaissance (ISR) activities.  In the 
experimental task scenario, the UAV team consists of one mission commander and three 
operators controlling multiple, homogeneous, semi-autonomous UAVs.  In order to complete its 
assigned missions, the UAV team must coordinate with a ground convoy, an external strike 
team, and a local joint surveillance and target attack radar system (JSTARS).  This report details 
this task scenario, including the possible simulation events that can occur and the logic 
governing the simulation dynamics. 

In order to perform human-in-the-loop experimentation within the synthetic task environment, 
the experimental platform also consists of a physical laboratory designed to emulate a miniature 
command center.  The Command Center Laboratory comprises a number of large-screen 
displays, multi-screen operator stations, and mobile, tablet-style devices.  This report details the 
physical configuration and hardware components of this Command Center Laboratory.  Details 
are also provided of the software architecture used to implement the synthetic task environment 
and experimental interface technologies to facilitate user experiments in this laboratory.   

The report also summarizes the process of conducting an experiment in the experimental 
platform, including details of scenario design, hardware and software instrumentation, and 
participant training.  Finally, the report suggests several improvements that could be made to the 
experimental platform based on insights gained from initial user experiments that have been 
conducted in this environment. 



3 

Table of Contents 
1  Introduction ............................................................................................................................. 4 

2  Representative Task Scenario:  UAV Team Operations ......................................................... 4 

3  Command Center Laboratory:  Hardware Setup ..................................................................... 5 
3.1  Networked, Large‐screen Wall Displays ....................................................................................... 7 

3.2  Reconfigurable Operator Consoles ............................................................................................... 7 

3.3  Mobile Team Workstations ........................................................................................................... 8 

3.4  Collaboration Server / Data Analysis Workstation ....................................................................... 8 

3.5  Data Capture Equipment .............................................................................................................. 8 

3.6  Command Center Laboratory Configuration ................................................................................ 8 

4  Software Architecture and User Interfaces ............................................................................ 10 
4.1  Conceptual Software Design ....................................................................................................... 10 

4.2  Implementation Details .............................................................................................................. 13 

4.2.1  Simulation Server ................................................................................................................ 13 

4.2.2  Functionality Common to All Team Displays ...................................................................... 15 

4.2.3  Map Display ......................................................................................................................... 16 

4.2.4  Mission Status Display ........................................................................................................ 18 

4.2.5  Remote Assistance Display ................................................................................................. 20 

4.2.6  Mission Commander Interface ........................................................................................... 22 

4.2.7  Operator Display ................................................................................................................. 24 

5  Conducting a User Experiment .............................................................................................. 25 
5.1  Scenario Development ................................................................................................................ 25 

5.2  Instrumentation .......................................................................................................................... 25 

5.3  Participant Training ..................................................................................................................... 26 

5.4  Running the Experimental Software ........................................................................................... 27 

6  Lessons Learned from Initial User Experiments ................................................................... 28 

7  Suggested Improvements ....................................................................................................... 29 
7.1  Software Improvements ............................................................................................................. 29 

7.2  Participant Training Improvements ............................................................................................ 30 

8  Conclusions ........................................................................................................................... 30 

9  References ............................................................................................................................. 31 



4 

1 Introduction 
This report details an experimental platform developed to support a research project aimed at 
investigating decision and collaboration technologies for complex, time-critical mission control 
operations, such as military command and control and emergency response.  This experimental 
platform is designed to enable exploration of novel interface and interaction mechanisms that 
support both human-human collaboration and human-machine collaboration for mission control 
operations involving teams of human operators engaged in supervisory control of intelligent 
systems, such as unmanned aerial vehicles (UAVs).  Further, the experimental platform is 
designed to enable both co-located and distributed collaboration among operations team 
members, as well as between team members and relevant mission stakeholders. 

To enable initial investigations of new information visualization, data fusion, and data sharing 
methods, the experimental platform provides a synthetic task environment for a representative 
collaborative time-critical mission control task scenario.  This task scenario involves a UAV 
operations team engaged in intelligence, surveillance, and reconnaissance (ISR) activities.  To 
provide further background and context for the details of the experimental platform, the report 
first describes this task scenario in detail, including a discussion of the team composition and 
their task roles within the experimental environment.   

The report then details the hardware setup of a Command Center Laboratory that was built to 
house the collaborative technology research experiments at the MIT Humans and Automation 
Laboratory.  Next, the architecture of the experimental software is then presented, along with the 
design and functionality of the application interfaces currently available in the experimental 
platform.  The process of conducting a user study in the experimental platform is then described.  
In particular, details are provided on designing an experimental scenario, instrumenting the 
experimental setup, training participants, and running the experimental software.  Finally, some 
lessons learned and recommended improvements are discussed based on our experiences with 
initial studies conducted in the environmental platform. 

2 Representative Task Scenario:  UAV Team Operations 
To enable initial investigations of decision and collaboration support technologies in an 
experimental setting, a representative collaborative time-critical mission control task scenario 
was developed as the foundation for a synthetic task environment.  The task scenario involves a 
military unmanned aerial vehicle (UAV) operations team engaged in intelligence, surveillance, 
and reconnaissance (ISR) activities to ensure the safe passage of a political ground convoy that is 
traveling through a potentially hostile geographic area.  During the task, the UAV team surveils 
the area for potential threats. If any emergent, time-sensitive targets are discovered in the UAV 
team’s area of interest (AOI), the team coordinates with a local strike team to prosecute these 
targets before they are within weapons range of the convoy. The team also monitors incoming 
intelligence reports in order to extract information relating to their AOI and potentially 
communicate with other teams as necessary to clarify intelligence reports.  

In order to secure the AOI, the team utilizes a number of semi-autonomous unmanned aerial 
vehicles (UAVs). Various team members monitor the progress of these UAVs as they provide 
surveillance of the large AOI and to reroute the UAVs from their original surveillance course, as 
necessary to secure the area. The team may also be required to coordinate with other teams to 
utilize assets outside of their immediate control to help secure the AOI.  



5 

As shown in Figure 1, the UAV operations team consists of three UAV operators, each 
responsible for controlling multiple UAVs, and one mission commander overseeing the team’s 
mission progress. The UAV operators are responsible for supervising the progress of several 
UAVs surveilling the AOI, confirming and classifying potential targets identified by the UAVs’ 
onboard automatic target recognition (ATR) systems, and coordinating with a strike team to 
destroy confirmed targets. This task scenario assumes advanced onboard ATR capability, as well 
as the use of a distributed ISR Cell that would liaise with this UAV team for any necessary 
detailed image analysis. 

 
Figure 1.  UAV team structure. 

The team’s mission commander is responsible for ensuring the safety of the convoy and for 
managing the workload of the UAV operators on their team throughout the mission. To achieve 
these mission objectives, the mission commander can make several strategic decisions, which 
include requesting the convoy hold its current position if its intended path is not deemed safe for 
passage, requesting supplementary surveillance data from a nearby joint surveillance and target 
attack radar system (JSTARS), and re-tasking of one of the team’s UAV assets to a different sub-
AOI (requiring the handoff of the UAV asset between operators).   

3 Command Center Laboratory:  Hardware Setup 
In order to facilitate the evaluation of new interface technologies to support decision-making and 
collaboration in the UAV operations team described above, and for time-critical mission 
operations in general, a physical laboratory-based testing environment was developed to emulate 
a miniature command center.  This section describes this team testing laboratory and the rational 
for its overall design and constituent components. 

In complex, collaborative mission command environments, such as those in which military 
personnel are engaged in ISR activities, there are typically many people performing various 
related, yet distinct task activities.  Each team member contributes their own skills and duties to 
the overall performance of the team activities.  Often different team members need access to 
different types of information in order to perform their particular duties.  For instance, an 
operator supervising several UAVs during a surveillance task may need to know the status of 
each UAV, and may also need to access video feed from each UAV to monitor his area of 
responsibility.  On the other hand, that operator’s mission commander may be more interested in 
knowing which areas of a larger geographical area their team has currently surveilled and which 
areas still need some attention.  Knowing the overall status of the team’s mission will also help 
the commander report back to their superiors, who are busy managing many teams, performing 
many parts of the overall mission.   

Mission 
Commander 

UAV 
Operators 



6 

The physical characteristics of different display technologies (e.g., size, proximity, number of 
displays, and mobility) that may be present in these complex environments make each display 
technology more or less suitable for particular individual and collaborative uses and interactions.  
This issue has begun to be explored in corporate and design environments (Mandryk et al., 2002; 
Russell et al., 2002; Ryall et al., 2004; Inkpen et al., 2005), but has received little systematic 
investigation in complex, time-critical environments.  However, since the consequences of 
communication and coordination breakdowns in these environments can be more severe than in 
typical corporate or design settings, understanding how to best utilize, and design appropriate 
decision and collaboration interfaces for, different display technologies in these environments 
may help reduce such collaboration breakdowns and enhance the overall effectiveness of these 
technologies for both individual and collaborative use.  

To facilitate this research, a laboratory with the following components was developed (see 
Figure 2): 

1. 3 x Networked, large-screen wall displays  
2. 4 x 3-Screen, reconfigurable operator consoles 
3. 4 x Mobile team workstations (2 tablet-style and 2 handheld-style displays) 
4. 1 x Collaboration server / data analysis workstation 
5. Data capture equipment 

The following section provides more details for each of these components, and the rationale for 
including them in the Command Center Laboratory. 

A

B

C

A

B

C

 
Figure 2.  Concept diagram of the Command Center Laboratory:  (A) large-screen wall displays, (B) reconfigurable, 
multi-display operator consoles, and (C) small, mobile displays (e.g., a TabletPC) (collaboration server and data capture 
equipment not shown). 



7 

3.1 Networked, Large-screen Wall Displays 
Large-screen wall displays are becoming a ubiquitous part of current mission command 
environments (Jedrysik et al., 2000; Dudfield et al., 2001; Smallman et al., 2001; Jenkin, 2004).  
These displays are often used to provide team members with the “big picture” and are often 
referred to as “situation displays” because they are typically used to display maps and status 
information related to the overall battlefield situation (Jenkin, 2004; Peel and Williams, 2004).  
Yet, the best use of these large displays in command center operations remains a challenging 
issue because various team members, each performing different aspects of the overall task, are 
all potential consumers of the information on these displays.   

The experimental platform is designed to enable research on teamwork that occurs in relatively 
confined spaces, similar to teamwork that might occur in the tight confines of a naval vessel or in 
a mobile surveillance truck.  Even in such tight quarters, however, there is still a need for a 
mission commander or the team members in general to maintain an overall awareness of the “big 
picture” and an understanding of how their activities fit into this picture.  In order to explore 
various software visualizations to provide relevant situation awareness information, the 
experimental platform contains several large-screen displays, mounted along the walls of the 
team testing laboratory (Figure 2 (A)).   

The large-screen wall displays are each driven by a separate display server, and are connected 
via the Internet and underlying collaboration software to the other computers in the laboratory.  
Finally, the wall displays each include touch-screen overlay technology to enable team members 
to interact directly with the digital data being displayed on these large-screen displays in order to 
facilitate collaborative planning and decision-making among team members. 

3.2 Reconfigurable Operator Consoles 
In order to investigate the impact of the design of individual operator consoles on team task 
performance and the impact of the relative arrangement of multiple individual operator consoles 
on individual and team task performance, the Command Center Laboratory contains several 
reconfigurable individual operator consoles.  Since most futuristic operator consoles consist of 
multiple displays (Osga, 2000; Peel and Williams, 2004), the operator consoles in the laboratory 
comprise three flat-screen LCD displays (Figure 2 (B)).  To provide flexibility in the team-
related research questions that can be explored in the experimental platform the operator 
consoles are designed to be reconfigurable in the following ways: 

- The relative positions of consoles within the Command Center Laboratory are 
reconfigurable to enable the investigation of the impact of seating arrangement and 
visibility of other team members’ task activities on individual and team task performance.  
To provide this flexibility, the operator consoles are equipped with sturdy, yet small and 
mobile computer desks and mobile computer chairs. 

- The multi-display setups at each console are adjustable to enable investigation of the 
impact of individual console design on individual and team task performance.  To enable 
this display reconfiguration, the operator consoles are equipped with an adjustable 
monitor stand capable of arranging three monitors in a variety of positions. 

The information displayed at each operator consoles is provided by separate computer 
workstations that are connected to the other computers in the Command Center Laboratory via 
the Internet and underlying collaboration software.  Each console also includes wireless headsets 



8 

to enable communication among all team members in the room and to other potential 
collaborators in other external team nodes, via an Internet connection. 

3.3 Mobile Team Workstations 
Smaller, more mobile displays, such as TabletPCs and handheld computers are also becoming 
common in complex, mission control environments.  These displays provide the advantage of 
ultimate portability, especially as wireless network connectivity improves.  These displays can 
also offer the advantage of being semi-private (Mandryk et al., 2002; Inkpen et al., 2005).  Thus, 
they may provide a suitable medium for team members, such as mission commanders, who need 
to access classified information or wish to review pending tasks that the team will soon have to 
handle.   

In order to explore appropriate uses of such mobile technology in the context of mission 
command operations, the Command Center Laboratory includes several mobile displays (Figure 
2 (C)), including two TabletPCs and two handheld computers.  While both of these technologies 
are very portable, the relative difference in their display sizes will likely impact the most suitable 
usage of each device.   

3.4 Collaboration Server / Data Analysis Workstation 
In order to enable user input to the simulated task environment from any team display and to 
support data sharing across these displays, the experimental platform includes a main 
collaboration server.  This server also doubles as a data analysis workstation between 
experimental testing phases.  To facilitate quantitative data analysis, this workstation includes the 
SPSS statistical data analysis software package.  To facilitate qualitative data analysis from video 
data captured during team experiments, this workstation includes the Altas.ti qualitative data 
analysis software package.  Finally, to facilitate creation of demonstration videos of new 
technology developed during this project, this workstation includes the Adobe Premiere video 
editing software package.   

3.5 Data Capture Equipment 
To facilitate careful analysis of the individual and team behavior that occurs during experimental 
testing, the Command Center Laboratory contains several types of data capture equipment.  First, 
a digital mini DVD camcorder, with a wide angle lens, is available to capture video and audio 
data of team members' interactions.  These data help provide context to the quantitative measures 
that are collected through the software datalogs during experimental trials.  This context enables 
richer interpretation of the data and, ultimately, a better understanding of how well the 
technological solutions being tested are able to support individual and team task performance.  
Several accessories for the digital camcorder are also available, including a tripod, and a supply 
of mini DVDs for capturing and archiving the experimental data.  In order to capture an accurate 
account of the dynamic changes to the software interfaces during the experiments, the computers 
in the Command Center Laboratory are also equipped with real-time screen-capture software that 
can be replayed during the data analysis phase.  This software is also useful in replaying all or 
part of a participant’s session during retrospective interviews. 

3.6 Command Center Laboratory Configuration  
This section describes the Command Center Laboratory equipment’s current physical 
configuration.  Figure 3 illustrates the current setup of the main equipment components in the 
laboratory.  Figure 4 shows a schematic diagram of the current setup, illustrating the relative 



9 

placement of these components.  Appendix A provides further details on these components, 
including their hardware specifications. 

The collaboration server is currently located just outside of the laboratory, beside the observation 
window (Figure 3a).  This location enables an experimenter to control the simulation software 
during experimental trials without disturbing the experiment participants and to monitor the 
participants’ behavior.    

Two of the three large-screen wall displays are mounted by stationary, but tiltable wall mounts 
(the left and center displays in Figure 3b), while the third display is mounted by a wall mount 
with an articulated arm that enables a variety of positions, including one that covers a bookshelf 
mounted in the back, right corner of the laboratory (the right display in Figure 3b).   

Server

Observation 
Window

 
(a)  (b) (c) 

Figure 3.  Command center laboratory equipment in its current configuration:  (a) collaboration server, (b) three large-
screen wall displays, and (c) four reconfigurable operator consoles (note, this diagram is show from the back of the lab 
looking towards the observer window). 

Legend

Operator
Console

Large Screen
Wall Display

Collaboration
Server

 
Figure 4.  Current equipment configuration of the Command Center Laboratory. 



10 

The four reconfigurable operator consoles shown in Figure 3c are easily re-positioned as they are 
self contained on a wheeled computer station.  During experiments including local operators, 
these consoles support up to four local operators (i.e. UAV or communications operators), and 
can also be used to facilitate supplementary data capture during experiments.   

Finally, the Command Center Laboratory also includes several mobile displays (tablets and 
handhelds (not shown in Figure 3).  These displays can be positioned anywhere in the laboratory.  
For extended experimental sessions, a portable wooden shelf is provided for participants to rest 
the mobile displays, since some participants find these displays (particularly the tablet displays) 
quite heavy to hold for long periods of time. 

4 Software Architecture and User Interfaces 
This section summarizes the underlying software architecture of the current synthetic task 
environment in the experimental platform.  It also provides details of the available user 
interfaces, including both the proposed UAV team user interfaces and the experimenter displays.  
The team displays described in this section were developed based on information and functional 
requirements generated from a cognitive task analysis (CTA) performed on the task scenario 
described above (Scott et al., 2006; Scott et al., 2007).   

As an initial starting point to enable preliminary research studies in the experimental platform, 
the CTA, and the subsequent displays focus on supporting the mission commander’s role in the 
UAV team task scenario.  Thus, the behaviors of the UAVs and UAV operators are currently 
simulated in the software testbed, and experiment participants assume the role of the UAV 
mission commander.  The type of user experiments currently supported in the experimental 
platform will be described in more detail below.  Ongoing efforts are focused on extending the 
capabilities of this experimental platform to include active UAV operator displays in order to 
provide complete support for experiment participants to assume all roles of the UAV team. 

4.1 Conceptual Software Design 
The conceptual design of the currently available software in the experimental platform is shown 
in Figure 5.   

The complete testbed consists of five separate executable applications, each representing a 
separate UAV team or experimenter interface.  Represented as rounded boxes in Figure 5, these 
applications include: 

- Simulation Server.  This application provides the main simulation engine for the synthetic 
task environment.  It governs the entity and events behaviors during the experimental 
scenarios and provides all the main calculations for any data displayed on the team 
displays, based on the current and expected state of the simulated world and its 
components.  This application also provides the functionality for creating test scenarios to 
use in the synthetic task environment, including functionality to create world entities (e.g., 
UAVs), to set their attributes (e.g., UAV planned routes), and to create planned scenario 
events (e.g., communication link outages).  These test scenarios can be saved to XML files 
and reloaded later into the Simulation Server. 

 



11 

 
Figure 5.  Conceptual design of the experimental platform software (see Appendix B for expanded view). 

- Map Display.  This application provides the functionality for one of the supervisory-level 
interfaces, designed to be displayed on a large-screen wall display.  It provides an updated 
view of the main mission assets (e.g., convoy, UAVs, targets) in the context of the team’s 
area of interest (AOI).  This application also provides a visual timeline display that provides 
an updated representation of the current and expected threat level of the convoy.     

- Mission Status Display.  This application provides the functionality for a second 
supervisory-level large-screen wall display.  It displays a variety of mission status 
information, including communication link connectivity status, operator performance data, 
UAV tasking information, and team communication and system status messages. 

- Remote Assistance Display.  This application provides the functionality for a third 
(optional) supervisory-level, large-screen wall display.  This display enables the UAV 
mission commander to assist a (simulated) remote UAV operator with a target classification 
operation (explained in detail below).   

- Mission Commander Interface.  This application provides the functionality for executing 
command decisions during experimental scenarios.  These command decisions are the main 
mechanisms by which the mission commander can effect changes in the synthetic task 
environment during experimental trials.  This interface, designed to be run on a tablet 



12 

display, enables software actions such as stopping or starting the convoy’s progress, 
reassigning a UAV from one area in the team’s AOI to another, and requesting additional 
surveillance data from a nearby intelligence source. 

- Operator Display.  This application provides limited, optional functionality for supporting 
local UAV operators during experimental scenarios.  This display provides a very basic 
UAV operator display, that essentially mimics that map-related functionality of the Map 
Display, though filtered to show only the AOI of one of the three possible operators (the 
desired operator view can be selected in the provided interface).  While the majority of the 
UAV operator behavior is still simulated by the Simulation Server (e.g. control of the 
UAVs), when this display is used instead of the Remote Assistance Display, a separate, 
external process map-based search program (call the City Search program) is launched to 
emulate a target identification activity whenever one of the operator’s UAVs’ detects a 
potential target in their AOI. 

To facilitate data storage and sharing in this software environment, the Grouplab.Networking 
collaboration software toolkit (a .NET derivative of Bolye’s (2005) Collabrary toolkit) is used. 
This toolkit handles all of the low-level networking coordination between the distributed 
software applications and provides a data storage and data sharing mechanism called the 
SharedDictionary.  The SharedDictionary serves as a central data store for all connected 
applications (Figure 5).  It uses a subscription-based approach to data sharing.  In particular, the 
Simulation Server creates and initializes an instance of the SharedDictionary class upon start-up.  
Each application, including the Simulation Server, then opens a TCP connection to the 
SharedDictionary process and identifies the particular data items1 about which they wish to 
receive notifications, that is, they “subscribe” to those data items.  Any application connected to 
the SharedDictionary can add, modify, or delete a data item from the SharedDictionary.  
Through the built-in functionality of the Grouplab.Networking toolkit, these changes are 
automatically propagated to any application that is subscribed to that particular data item.  Thus, 
connected applications do not need to continually poll the SharedDictionary for updates, nor do 
they need to know which other applications need to be informed of particular data updates. 

In order to enable the experimental platform to emulate a number of different task situations, the 
Simulation Server utilizes a number of data files (Figure 5). As previously mentioned, the 
Simulation Server can store and load scenario XML data files.  The scenario generation process 
and the contents of the scenario data files are detailed below.  The Simulation Server can also 
load target-related information from an XML data file (generated externally).  This information 
is used in conjunction with the Remote Assistance Display to simulate data that would be 
received from a UAV’s onboard automatic target recognition (ATR) system (e.g. target imagery, 
initial target classification, and certainty of classification).  Finally, the Simulation Server can 
also create text-based data log files to facilitate analysis of experiment participants’ system 
interaction and overall performance.  These files are formatted to be easily imported into 
Microsoft Excel for processing and analysis. 

                                                 
1 The SharedDictionary supports storing and sharing of many types of data items, including complete classes.  Any 
class object that can be serialized can be stored in and retrieved from the SharedDictionary. 



13 

4.2 Implementation Details 
This section provides further details of the software design, including the graphical user interface 
designs and the particular functionality of each application display.  The experimental platform 
software applications were develop using the C# programming language and the Microsoft .NET 
framework in the Microsoft Visual Studio (Visual C# 2005 Express Edition) integrated 
development environment.  The Grouplab.Networking toolkit that provides the SharedDictionary 
functionality is a publicly available2 .NET library (Boyle and Greenberg, 2006).  To facilitate 
modularity and code reuse, two helper libraries were created and are used by the experimental 
platform software applications: an entity library and a draw library (Appendix B).  The entity 
library, called TST Entity Library, provides the class descriptions for all world entities used in 
the synthetic task environment, such as the UAV, Convoy, Target, and Strike Schedule classes.  
The draw library, called the TST Draw Library, provides standard methods for drawing the 
visual representations of world entities and common interface components.   

4.2.1 Simulation Server 

Figure 6 shows the graphical user interface (GUI) of the Simulation Server.  This interface 
consists of two panels, a Build Mode panel (Figure 6a) and a Simulation Mode panel (Figure 6b). 
The Build Mode panel provides the functionality to create, save, and load scenario files, to load 
target-related data files, and to create data log files.  The Simulation Model panel provides the 
functionality to connect to the SharedDictionary and to run, pause, and restart experimental 
scenarios.  An experimental scenario can be run as a standalone application, that is, offline from 
the SharedDictionary, with no other testbed applications running.  The ability to run the 
Simulation Server offline enables experimenters to test potential scenario files without the hassle 
of setting up each team display.  Likewise, each team display can be executed offline, however 
no entity data will be shown until they are connected to the SharedDictionary and the Simulation 
Server begins to run a scenario. 

In order to run an experimental scenario in the experimental platform, a scenario file must first 
be created (Appendix D details the process of creating or modifying an experimental scenario) or 
loaded in the Build Mode panel.  To load an existing scenario file, select the “Load” button at the 
top of the Build Mode panel, and then select the desired XML scenario file from the file browser 
dialog that appears.  If the Remote Assistance Display is being used during an experimental 
scenario, a Targets data file must also be loaded in the Build Mode panel.  To accomplish this, 
select the “Browse” button from the “Remote Operator Request File” area at the bottom of the 
panel, and then select the desired Targets XML file from the file browser dialog that appears.  
Finally, before an experimental scenario is started, a log file should be created in the Build Mode 
panel.  All scenario events and user interaction will be written into this file.  To create a log file, 
enter the appropriate participant, trial, and condition number data in the “Event Log File” area 
and select the “Create Log File” button.  The program will automatically create a log file in the 
same directory as the Simulation Server executable file, labeled with these data in the following 
format. 

<year>_<month>_<day>_<participant_no>_<trial_no>_<condition_no>.txt 

 
                                                 
2 The Grouplab.Networking software toolkit is licensed under the Academic Free License Version 1.2 
(http://www.opensource.org/licenses/academic.php). 



14 

 
(a) 

 
(b) 

Figure 6.  Simulation Server Display:  (a) the Build Mode panel, and (b) the Simulation Mode panel. 



15 

Alternatively, a filename can be manual entered into the filename text box, which by default 
contains the text “Sim_Log.txt”.   If no customized log file is specified, all data will be logged to 
a file with this default name.  This file will be overwritten for each new simulation run, if an 
alternative file is not created. 

Once all of the data files have been loaded or created, an experimental scenario can be run from 
the Simulation Mode panel.  Unless the scenario is being run as an offline process, the 
Simulation Server must first be connected to the SharedDictionary by selecting the “Connect” 
button in the upper left corner of the panel.  The URL and port “tcp://localhost:hello” (the default 
URL) should be entered into the connection dialog that appears.  Next, each team display that is 
being used in the experimental scenario should be opened and also connected to the 
SharedDictionary via the “Connect” button on each respective display (the URL and port of the 
server computer should be used, e.g. “tcp://boeingserver:hello”).  Finally, the “Start” button in 
the Simulation Mode panel should be selected to initiate the scenario simulation.  Once a 
scenario has been started, it can be paused at any time by selecting the “Stop” button in this 
panel.  A scenario can be restarted from the beginning by selecting the “Restart” and then “Start” 
buttons in sequence3.   

When an experimental scenario is running, the Simulation Mode panel provides a view of the 
team’s AOI map, similar to the view provided in the Map Display (described below).  However, 
on this display, all world entities in the AOI are shown, even targets that the UAV team has yet 
to discover (Figure 6b).  This enables the experimenter to remain updated on the expected 
scenario events and participants’ mission progress.  This panel also provides a view of the 
Convoy Threat Summary timeline that is provided on the Map and Mission Status Displays, as 
well as the operator performance panel that is provided on Mission Status Display.  These 
visualizations are provided on this panel to facilitate pre-experiment scenario testing when the 
Simulation Server is being run as a standalone application.  During this activity, the experimenter 
will test the scenarios to ensure that they provide the desired situation complexity.  These 
visualizations also enable the experimenter to easily monitor the status of the scenario during 
experimental trials. 

Finally, the Simulation Model panel enables scenarios to be run faster than real-time during pre-
experiment scenario testing by providing a Simulation Rate slider4.   

4.2.2 Functionality Common to All Team Displays 

For experimental purposes, all of the team displays in the experimental platform (Map Display, 
Mission Status Display, Remote Assistance Display, Mission Commander Interface, and 
Operator Display) provide several features designed to assist the experimenters and participants 
in understanding their temporal progress within the current mission and the state of the 
connected displays.  In particular, all team displays provide a Mission Clock that depicts an 
updated view of the elapsed and current mission times located at the top of each display.  
Additionally, all team displays provide a “Connect” button that enables the application to be 

                                                 
3 The Restart feature currently does not correctly reset all data items in the SharedDictionary.  It is highly 
recommended that all applications, including the Simulation Server, be reopened between experimental trials. 
4 Due to computational and redrawing inefficiencies in the current software, the Simulation Rate feature currently 
does not provide significant simulation speed-ups.  Switching to the Build Mode panel while a scenario is running 
tends to provide a slight increase in simulation rate. 



16 

connected to the SharedDictionary during the setup phase of any experimental scenario.  The 
current connection status is displayed in a small adjacent textbox.  When connecting to the 
SharedDictionary, the team displays should use the URL and port that corresponds to the 
computer currently running the Simulation Server (“tcp://boeingserver:hello” is currently the 
default, which corresponds to the current Simulation Server machine). 

4.2.3 Map Display 

The main purpose of the Map Display, shown in Figure 7, is to provide an up-to-date view of the 
main mission assets (e.g., convoy, UAVs, targets) in the context of the UAV team’s AOI. The 
symbology used on this display is primarily based on standard military display symbology from 
MIL-STD-2525B (DOD, 1999), modified to satisfy the information requirements generated by 
the cognitive task analysis (CTA) conducted on the UAV task scenario (Scott et al., 2006; Scott 
et al., 2007).   

In particular, the map symbology is designed to dynamically change through the mission to 
enhance the mission commander’s awareness of possible threat and operator performance issues. 
For example, areas of the map which have not yet been surveilled are indicated by a semi-
transparent black overlay. When a UAV surveils an area, its overlay is cleared. Thus, the current 
surveillance progress across the UAV team is indicated by the relative amount of clear and black 
areas in each operator’s AOI. Though not currently supported, ideally these areas would fade 
back to black as time passes and the surveillance data ages (Bisantz et al., 2006).  Table 1 
describes the current map symbology. 

 
Table 1.  Map Symbology used throughout the team displays. 

Convoy

UAV

Targets

AOI boundary

ATR = automatic target recognition
WR  = weapons range
OPL = operator performance level

Convoy route

1C

(nominal) (down)
2B

(identified) (destroyed)

(nominal) (request for assistance 
received from operator)

(OPL critically low)

1C

(reviewing ATR imagery)

(potential target
detected)

Map Entity Symbology

 



17 

Mission Clock

Map Filters

Spatial Map of  
AOI

Threat 
Summary  & 
Strike 
Schedule

Mission Clock

Map Filters

Spatial Map of  
AOI

Threat 
Summary  & 
Strike 
Schedule  

Figure 7. Map Display. 

When an operator is in the process of confirming a possible target detected by a UAV’s onboard 
automatic target recognition (ATR) system, an orange target symbol is displayed on the map in 
the location of the detected target and the UAV that detected the target is displayed as orange. 
When the operator has finished confirming the target, the UAV returns to its nominal blue color 
and the target is displayed as red, indicating a known threat. 

The color of the AOI boundaries also changes depending on operator performance, which is 
tracked and displayed in more detail on the Mission Status Display. A black boundary indicates 
the corresponding operator is expected to meet their ISR responsibilities. That is, the operators 
are predicted to surveil areas in their AOI that are within at least long range weapons range of the 
convoy in the near future. If the system detects a critical drop in operator performance, their AOI 
boundary will change to red. Currently, critically low operator performance indicates that an 
operator has significantly fallen behind schedule in checking areas directly along the route of the 
convoy, perhaps due to UAV losses.  Also, if the operator requests command assistance with 
their current tasking (currently implemented for assistance with target identification tasking 
only), their AOI boundary will change to orange. 

The Map Display also provides various view filters to enable the mission commander to show or 
hide extra display information, as needed during the mission. These filters include “Target 
Range,” which displays the weapons range rings around identified targets, “UAV Path,” which 
displays the planned route for the team’s UAVs, and “Convoy Range,” which displays a set of 
rings centered on the convoy’s position the correspond to short, medium, and long range 
weapons distance ranges expected in the area. 



18 

The Map Display also provides an up-to-date Threat Summary timeline below the AOI map 
(Figure 8). This timeline indicates when the convoy is or is expected to be in range of any 
unsurveilled areas (i.e., a potential threat, shown as a yellow time window) or in range of a 
known threat (shown as a red time window). These time windows will be referred to as threat 
envelopes, that is, durations of time in which the convoy will be in potential or known threat 
situations.  

The timeline also shows the up-to-date target strike schedule in the context of the current and 
expected convoy threats. Known threats are shown as red diamonds in the last row of the 
timeline. The position of a known threat on the timeline indicates the scheduled time when it will 
be destroyed by the external strike team. If the convoy is or is expected to be within weapons 
range of a known threat, a black line is displayed between the target’s symbol in the strike 
schedule and the beginning of its corresponding threat envelope in the preceding row. 

Since humans are adept at perceiving differences in line angles (Ware, 2000), this connector line 
creates an emergent feature to help the mission commander identify off-nominal situations when 
a threat strike will not happen before the convoy will be within its weapons range. For example, 
when the mission commander sees a threat connector line at a vertical angle or sloping 
downwards to the right (e.g., the strike will be later than the convoy’s arrival within the threat’s 
weapons range), they should take action to delay the convoy and let the strike team destroy the 
threat before the convoy is allowed to continue.  

4.2.4 Mission Status Display 
The Mission Status Display shows various types of information designed to provide the mission 
commander current and expected status of the UAV operators’ task performance, the convoy’s safety 
level, and the UAV team’s communication connections to remote contacts (Figure 9). The CTA 
highlighted the importance of supporting the mission commander’s analysis of the ongoing temporal 
relationships between the UAV team’s activities and the convoy’s safety; thus, the critical status 
information presented on this display is provided in the form of timelines and time graphs that show the 
current situation, along with the recent history and the expected future status of mission related data.  

 
Figure 8. Strike schedule example: Threat 4M is scheduled to be destroyed 2 minutes before the convoy will be within its 
weapons range. Threat 5L is scheduled to be destroyed 1 minute after the convoy will be within its weapons range. Threat 3M is 
far enough away from the convoy’s route that the convoy is not expected to pass within its weapons range, thus no 
corresponding “threat window” is shown. 



19 

In particular, the Mission Status Display contains a Convoy Threat Summary timeline (mirrored 
on the Map Display as described above) and Operator Performance time graphs.  The Operator 
Performance time graphs show the current and expected operator performance, currently based 
on each operator’s ISR performance and its current and expected impact on convoy safety. In 
particular, each point on the graph indicates the corresponding operator’s ISR performance for 
the previous 30 seconds (for points in the future, this calculation is based on expected 
performance, based on current surveillance patterns, and may change if the operator 
subsequently detects a target). If an operator’s ISR performance begins to degrade, putting the 
convoy’s safety in jeopardy, the operator’s performance score decreases. When an operator’s 
performance is or expected to become critically low (i.e., their surveillance performance is 
putting the convoy in eminent danger of being attacked), the alert to the left of the corresponding 
time graph will turn red. Also, the corresponding operator AOI boundary will turn red in the Map 
Display.  The Operator Performance score is calculated using a four-point scale (4 = high 
performance, 1 = low performance), which is based on the following heuristic: 

4:  Probable convoy safety level is high - all areas within expected weapons range have 
been or are expected to be surveilled 

3:  Probable convoy safety level is somewhat uncertain - convoy is within or expected to 
be within long-range weapons distance to unsurveilled areas 

2:  Probable convoy safety level is very uncertain - convoy is within or expected to be 
within medium-range weapons distance to unsurveilled areas  

1:  Probable convoy safety level is low - convoy is within or expected to be within short-
range weapons distance to unsurveilled areas 

Threat Summary & 
Strike Schedule

Timeline Filters

Mission Clock

Operator 
Performance 

Panel

Message 
History

UAV Operator Activity Overview Communication Status  
Figure 9. Mission Status Display. 



20 

The Mission Status Display also provides a visual summary of the current tasking of each of the 
team’s UAVs, arranged by UAV operator.  For example, when a UAV and its operator are 
engaged in target identification activities, the symbol representing that UAV will turn orange, 
corresponding to the UAV symbol color change on the Map Display.  This view also provides 
timing data to assist with supervisory-level decision making.  For example, when a UAV and its 
operator are engaged in target identification, the time-on-task information is given, as well as the 
estimated time this task should take. 

This UAV tasking panel also provides an “Assistance Request” alert that corresponds to the 
Remote Assistance Display (see Section 4.2.5).  When that display is in use, the synthetic task 
environment can simulate a request from a remotely located (currently simulated) operator for 
help with the target identification activity that is performed whenever a UAV detects a potential 
target.  When such a request is received, the “Assistance Request” alert corresponding to the 
sending operator will turn orange.  Also, the corresponding operator AOI boundary will turn 
orange in the Map Display. 

The Mission Status Display also provides an up-to-date view of the UAV team’s current 
connection status to the external contacts. When the UAV team is connected to all external 
contacts, the connecting lines between the UAV team icon and the contacts are shown as solid 
black lines. When a communication link is lost, the corresponding connecting line is shown as a 
dashed red line and the corresponding contact icon is also outlined in a dashed red line.  

Finally, the Mission Status Display contains a message history box, which displays 
communication messages sent to the mission commander from team members and external 
contacts, as well as status messages from the system.  Messages are displayed in the following 
format: 

<time> [sender] <message text> 

4.2.5 Remote Assistance Display 

The Remote Assistance Display enables the mission commander to monitor the current UAV 
related activities of remotely located (current simulated) operators, as well as assist an operator 
with a target classification if they are having difficulties (Figure 10).  This display consists of 
three main components, a list of assistance requests, a request-related communications message 
box, and the operator tab panels.  Completed requests remain in the requests list, in the order of 
arrival, and are grayed out and labeled as completed.   

When there are no outstanding requests from an operator, their corresponding tab panel displays 
a visual summary of that operator’s UAV activity (similar to the information provided on the 
Mission Summary Display).  This view also provides a button, “Request Status Update from 
Operator X,” which enables the mission commander to request a status update from that operator 
(Figure 10a).  For experimental purposes, selecting this button (when at least one of the 
operator’s UAVs engaged in target identification) triggers the Simulation Server to send an 
assistance request (via the SharedDictionary)5. When the assistance request arrives, it is added to 
the requests list and the operator panel is populated with details of the assistance request (Figure 
10b).  These details include the imagery containing the potential target detected by the UAV’s 
onboard ATR system, contextual information about this image (the UAV that captured the 
                                                 
5 Assistance requests are created using target details from the Targets XML data file discussed in Section 2.6.1.   



21 

image, the location of the UAV, and the time the image was captured), and the operator’s 
proposed target classification and the confidence level of that classification.   

The mission commander can confirm and return the classification and confidence level to the 
operator by selecting the “Send Classification” button.  Alternatively, they can change these 
values from the available drop down lists before returning the classification to the operator.  
Finally, they can veto the classification, indicating that they do not believe the image contains an 
immediate threat to the convoy (e.g. it may contain a farmer’s tractor).  When a remote operator 
has an outstanding assistance request, a camera icon appears in their corresponding tab label 
(Figure 10b).  The currently displayed request is highlighted in orange in the requests lists, and 
the camera icon is colored orange in the tab label.  Otherwise, the request list entries and camera 
icons appear as dark gray. 

Assistance 
Requests List

Operators Status 
Tabs (depicting 

UAV Tasking 
Summary for 

Operator 2)

Mission Clock

Request Related 
Communications

 
(a) 

Request Related 
Communications

Assistance 
Requests List

Operator Status 
Tabs (depicting 

Assistance 
Request Details 
for Operator 1)

Mission Clock

 
(b) 

Figure 10. Remote Assistance Display. 



22 

4.2.6 Mission Commander Interface 

The Mission Commander Interface, shown in Figure 11, is used by the mission commander to 
execute mission decisions in the synthetic task environment.  These decisions include: 

- holding or releasing the convoy’s current position, 

- requesting additional surveillance data from a nearby JSTARS (Joint Surveillance and 
Target Attack Radar System), a multi-sensor aircraft, within range of the team’s AOI, and  

- reassigning a UAV from one part of the AOI to another to replace a downed UAV. 

This display also enables the mission commander to report any “threat buffer violations” that 
occur during the mission.  A threat buffer violation is an instance of scheduled target strikes such 
that the strike is expected to occur after the convoy has passed within weapon’s range of that 
target (also referred to as a “late strike”). 

Similar to the Mission Status Display, a message history is provided at the bottom of this display.  
This message history is a simple text log of all events that occur during the mission (e.g., convoy 
attacks, UAV tasking, and communication link failures).  The above functionality is provided on 
the basic version of the Mission Commander Interface (Figure 11a).   

The experimental testbed also includes an alternate version of this display that includes an 
additional timeline designed to support interruption recovery support to the mission commander 
in the UAV team task (Figure 11b).  This timeline provides a visual summary, using iconic 
bookmarks, of the critical mission events that can occur in the synthetic task environment, 
including convoy attacks (first row), UAV attacks (second row), late strikes (third row), and 
communication link outages (last row).  With the exception of communication link icons, 
selecting a bookmark on this timeline causes additional information related to the event to be 
displayed on the Map Display (e.g., selecting a Convoy attack bookmark results in a red, semi-
transparent X to be displayed on the Map Display).  Appendix C provides more details on this 
interruption recovery support functionality. 

 

 



23 

Mission Clock

Convoy Decisions

JSTARS Decisions

UAV Reassignment 
Decisions

Threat Buffer 
Violation Reporting

Message History

 
(a) 

Mission Clock

Convoy Decisions

JSTARS Decisions

UAV Reassignment 
Decisions

Threat Buffer 
Violation Reporting

Message History

Interruption Recovery 
Assistance Timeline

 
(b) 

Figure 11.  Mission Commander Interface: (a) basic version, and (b) with interruption recovery support. 



24 

4.2.7 Operator Display 

The main purpose of the Operator Display is to provide limited functionality for supporting local 
UAV operators during experimental scenarios.  This display essentially mimics the map-related 
functionality provided by the Map Display, filtered to show only the map of the currently 
selected operator’s AOI (Figure 12).  The current operator can be chosen from a drop-down list 
located on the control panel to the left of the screen.  Similar to the Map Display, the operator 
can hide or show additional information on the Map by toggling the view filters (Convoy Threat 
Rings, UAV paths, Targets, and Target Ranges).  While the majority of the UAV operator 
behavior is simulated by the Simulation Server (e.g. navigational control of the UAVs), this 
display enables human operators, played by experimental “confederates,” to engage in a 
computer-based activity designed to emulate the image-based, target identification activity an 
actual operator would perform whenever one of their UAVs detected a potential threat.  In 
particular, when one of the operator’s UAVs’ onboard ATR systems detects a potential threat, 
this display launches a map-based search program (City Search program, described in Crandall 
and Cummings, 2007).   

Once the operator has completed the City Search task, the program closes, and the operator 
selects the “Done Hovering” button to release the UAV from its current hover position over the 
detected target.  To facilitate this functionality, each UAV’s “Auto Hover” attribute must be set 
to false when the Scenario files are being created (see Appendix D scenario creation details). 
When no UAVs are hovering, this button is grayed out and displays the text “No Hovering 
UAVs.”  In order to vary the search task over multiple experimental trials, different trial names 
(e.g., Practice, Trial 1, etc) should be selected from the Scenario Selector drop-down list.  This 
supplies a unique list or city order to the City Search program for each new instance of target 
detection (i.e. each UAV hover event).   

Threat Summary & 
Strike Schedule 

(filtered for current 
operator)

View Filters

Mission Clock

Scenario Selector

Hover Release

Operator Selector

Map of AOI
(filtered for current 

operator)

 
Figure 12.  Operator Display. 

 



25 

5 Conducting a User Experiment 
This section describes the process of conducting a user study in the experimental platform with 
the currently available software, as well as future software variants.  Specifically, this section 
summarizes the process of developing a scenario, the current experimental platform 
instrumentation, participant training methods, and running the experimental software during 
experimental trials. 

5.1 Scenario Development 
In order to conduct a user study in the experimental platform, one or more carefully crafted 
software simulation scenarios are required.  These scenarios define the simulated entities (e.g., 
UAV, targets) that will exist in the simulation environment, as well as the attributes of these 
entities (e.g. UAV speed, target weapons range).   

Since the studies that are conducted in the experimental platform generally concern the 
investigation of interface technologies designed to facilitate individual and collaborative decision 
making and task performance in response to complex, time-critical task situations, it is essential 
that the study scenarios produce appropriately complex, time-critical situations to which 
participants much respond during the study trials.  At the same time, it is important that the 
scenarios be design to limit the number of uncontrolled situations so the experimenters can be 
certain (as much as possible) of the cause of observed user behaviors during study trials. 

As described in Section 4.2.1, the experimental platform includes functionality to facilitate 
scenario development as part of the Simulation Server application (Figure 6a).  Appendix D 
details the process of creating a basic scenario using this application.  Scenario files can also be 
created from scratch or by way of another custom made application, as scenarios can be loaded 
into the Simulation Server application from any XML file containing the correct entity format.  
Appendix E provides an example of a scenario file in XML format.  Scenarios generated in the 
Simulation Server can be (and are recommended to be) saved to an automatically generated 
XML file.  Therefore these scenarios can be reloaded in the future. 

Due to the criticality of using well designed scenarios during user experiments, all scenarios 
should be developed iteratively.  Researchers should schedule time for “debugging” 
experimental scenarios, not only for completeness and correctness, but in order to determine 
whether the scenario will produce simulated situations appropriate for the goals of the study.  In 
particular, once the basic scenario components are developed, it is important to test the scenarios 
with all of the interfaces that will be used in the study, as opposed to running the Simulation 
Server in the “offline” mode that is convenient to use during basic entity and attribute creation.  
This will help the experimenter assess and become familiar with what the user will, or might, see 
during the study trials.  Further, it is critical to pilot test the full scenarios with people outside of 
the research group who may be more likely to exhibit unexpected behaviors. 

5.2 Instrumentation 
In order to understand the impact of the proposed interface technologies in the experimental 
platform, data must be collected during study trials and analyzed for (statistical or logical) 
significance.  The experimental platform is currently instrumented in a variety of ways to 
facilitate collection of both quantitative and qualitative data.  Given that the goals of the 
anticipated studies in the experimental platform will likely focus on understanding the impact of 
technologies on individual team member system performance and on the overall teamwork 



26 

(communication, collaboration, coordination), the experimental platform provides 
instrumentation to capture user interaction directly with the technology and user behavior and 
interaction around the technology, including between human participants.  More specifically, the 
experimental platform software automatically collects and stores any user interactions with the 
team displays, as well as critical system events to provide context for these actions.  These data 
are stored as textual logfiles by the Simulation Server (see Appendix G for a sample data 
logfile).  These logfiles can be analyzed for performance impacts of the technologies or 
experimental interventions under study.  The experimental platform also enables real-time screen 
capture using external software, such as TechSmith’s Camtasia, which can continuously capture 
the changing state of the team displays during study trials.  This screen capture can be replayed 
later to facilitate data analysis or retrospective interviews (discussed below).  One study 
performed in the experimental platform used a spare UAV operator console as a data capture 
computer, on which the large display interfaces were emulated and captured together in a single 
screen capture video file using Camtasia.   

Video data can also be collected during study sessions using an available digital camcorder.  A 
camcorder setup in one corner of the Command Center Laboratory enables video and audio 
capture of all participant interactions in the environment during study trials.  These data help 
analysts determine the impact of the technology or experimental interventions on interactions 
between team members and interaction at the large displays.  Using a wide-angle lens on the 
camcorder enables video capture of the entire laboratory space. 

Finally, it is also useful to collect direct user feedback through questionnaires and post-
experiment interviews.  One method of collecting user opinions and clarifying observed user 
behaviors that has been useful in initial studies in the Command Center Laboratory is to conduct 
a retrospective interview with experiment participants after the study trials.  This method 
involves conducting a semi-structured interview during which the experimenter shows the 
participant(s) a replay of the screen capture video that was captured during one or more of their 
experimental trials. This interviewing method is helpful for prompting participants’ memories of 
their thought processes at different points during the study.  It tends to evoke more specific user 
feedback about the task and interactions with the technology than standard interviewing 
techniques, which tend to evoke more generalized answers of past events. 

5.3 Participant Training 
Due to the relatively novel and complex tasks participants are asked to perform in the 
experimental platform, providing sufficient training is critical to the success of any experiment 
conducted in this environment.  Effective training on the software, hardware, and expected task 
and collaborative activities is particularly critical in studies involving complex, time-critical 
tasks so that the researchers can be reasonable certain that the behaviors exhibited during study 
are a result of the technology or experimental interventions being evaluated.  Insufficient training 
could result in participants reacting to some misunderstood aspect of the experimental 
environment, rather than reacting to the actual elements of the task to which the researchers 
assume they are attending. 

An important aspect of providing “sufficient” training is to develop a training protocol that 
attempts to ensure that all participants in similar task roles achieve a similar level of task 
competency.  This approach helps to ensure that any observed differences in individual or team 



27 

level task performance can be reasonably attributed to differences in individual or group working 
styles or experimental or technological interventions, rather than differences in task skill levels. 

To date, participant training in the experimental platform has involved two stages.  First, 
participants are asked to read, at their own pace, a computer-based tutorial that explains the 
experimental task, or “the mission,” and the mission goals that they are expected to meet during 
the study trials.  This tutorial also details the task environment, technology, and the interface 
displays and their functionality (see Appendix H for an example Participant Training Tutorial for 
the experimental platform).  Upon completion of the computer-based tutorial, participants then 
complete one or more hands-on practice sessions in the Command Center Laboratory.  These 
sessions begin with a simplified task scenario, during which the experimenter calls attention to 
critical system features and task events and answers any participant questions.  One or more 
additional practice sessions without the experimenter’s assistance should also be used to provide 
participants with further task experience.  A useful experimental objective for these additional 
scenarios is to ensure that participants encounter all possible critical system events, possibly 
multiple times, so that they can gain practice reacting to those events prior to their actual test 
trials. 

Further work is needed to develop a baseline test for core task competencies in the experimental 
platform that would help determine whether participants are ready to advance to the test trials.  
Currently, the experimenter’s best judgment is used; however, observations of several ineffective 
task performers in initial studies indicate that a base competency test would be quite beneficial. 

5.4 Running the Experimental Software 
Once one or more scenario files (and Targets data files if appropriate) have been created, the 
scenario can be run with the Simulation Server and applicable team displays6.  Due to the 
distributed system architecture of the experimental platform, running the software requires the 
following multi-step process: 

1. First, load a Scenario XML file (and Targets data XML file, if applicable) in the 
Simulation Server in the Build Mode tab, and then create a data log file if data capture is 
desired (Section 4.2.1). 

2. Next, connect the Simulation Server to the SharedDictionary (SD) (Section 4.2.1) using 
the local URL and port (e.g. “tcp://localhost:hello”) in the Simulation Mode tab. 

3. Next, open all team displays that will be used in the scenario (Sections 4.2.2-4.2.7) on 
their respective computer displays, and connect each display to the SD, using the URL 
and port of the Simulation Server computer (e.g. “tcp://boeingserver:hello”). 

4. Finally, start the Scenario on the Simulation Server in the Simulation Mode tab (Section 
4.2.1). 

It is strongly recommended that the experimenter restart all software applications (Simulation 
Server and all team displays) between each experimental trial to ensure the proper data 
initialization, as the “Restart” button the Simulation Server does not reliably reinitialize the SD. 

                                                 
6 At the time of writing, all necessary executable files corresponding to the Simulation Server and team display 
applications were located in a “Boeing” folder on the desktop of all computers in the Command Center Laboratory. 



28 

6 Lessons Learned from Initial User Experiments 
As mention above, several user studies have been conducted in the experimental platform.  Our 
experiences with these studies provide several important lessons that may help improve future 
experimental efforts conducted in this environment.   

First, the design of the scenario behavior (i.e., the world rules or logic) can significantly impact 
participant behavior during experimental trials.  As most simulation-type game designers are 
well aware, “balance” in a simulated game environment between the user goals and incentives 
and the possible user activities in the world is critical to yield proper and effective user behavior.  
Consider, for example, designing the scenario behavior governing the loss of convoy health, 
which is the main visible “performance score” for the UAV team in the experimental platform.  
Typically the scenarios begin with the convoy at 100% health.  There are currently two ways to 
lose health points: the mission commander holding the convoy in one position and a target 
attacking the convoy.  If the amount of health lost in each situation is not carefully weighted, 
participants may actively choose to let the convoy be attacked by a target rather than holding it in 
place for a few minutes.  Users quickly learn the incentive structure (i.e. point system) of the 
environment and how to “game the system” to maximize their scores.  This tendency can lead to 
mismatches between what would realistically be considered good decision making (i.e., 
protecting the lives of those in the convoy) and what would lead to good game playing behavior 
(i.e., maximize convoy health).  Pilot testing scenarios with a variety of possible scenario rules 
and considering such behaviors during scenario development can experimenters set these values 
to produce “appropriate” behaviors during experimental trials. 

A related issue concerns the creation of scenario behavior that is sufficiently complex and 
realistic in order to produce representative actions and decision making behavior for the type of 
tasks under investigation.  The current scenario behavior is quite predictable, with limited 
behavioral uncertainty for scenario entities.  Thus, participants rarely had to engage in the type of 
risk-taking decisions during experimental trials that would be quite common for real-world 
mission control activities.  In the current simulation environment, for example, the convoy is 
always attacked when it passes within weapons range of a target, losing a similar amount of 
health (between 10 and 15 health points), regardless of how long it remains within range of that 
target.  In reality, it is likely that the convoy would not always be attacked by each known threat, 
especially if the threat was located at some distance.  Also, the longer the convoy was in range of 
a threat, that more damage it would likely sustain (i.e. convoy health it may lose).   Predictable 
convoy attack behavior can again lead to participants gaming the system, rather than making 
decisions and taking actions appropriate to the task activities the experimental platform is 
attempting to emulate.  This issue is discussed further in the following section. 

As discussed in Section 5.3, another important lesson learned from initial studies in the 
experimental platform is the importance of providing adequate participant training.  The 
environment and task is novel and relatively complex for most participants (despite the 
predictable entity behavior).  Thus, it is essential to provide them with sufficient background 
information and hands-on practice so that they can perform the task at a reasonable competency 
level, to the extent that their behaviors during experimental trials can be confidently considered 
realistic and representative of expert behavior for this environment. 

Finally, our experiences with the initial user studies revealed the importance of making 
participants feel engaged and part of a team during the experimental trials.  This is particularly 



29 

important because the technology is designed to support and enhance teamwork.  However, if 
participants feel they are performing the task alone, their behavior may not be representative of 
someone acting as part of a team in the environment.  Said another way, we would essentially be 
testing the ability of the technology to support an individual, rather than our intention of testing 
its ability to support team members trying to accomplish a shared goal.   

To this end, we have tried a variety of things to emulate a “team” environment, even though to 
date we have only tested individual participants.  We have used confederates (i.e. members of the 
experimental team who have “played” team members using scripted behaviors).  This method 
requires deception (participants are led to believe that the confederates are also experiment 
participants), which increases the complexity of the study protocol and complicates participant 
scheduling.  Another approach we have used involved emulating “remote” team members, with 
whom a participant could indirectly “interact with” through the system by assisting with the task 
activities of those team members (see Section 4.2.5).  Observations made of participants while 
employing these methods highlighted the importance of designing dependencies between the 
task activities and goals of the experiment participants and the activities and goals of the 
confederates or the simulated team members.  If participants do not believe their actions impact, 
or are impacted by, their team members (real, confederate, or simulated) they tend to ignore their 
team members’ activities and begin acting independently. 

7 Suggested Improvements 
This section describes several recommendations aimed at addressing some of the issues 
discussed in the previous two sections.  These recommendations relate to modifications to the 
experimental software and to the available training material and procedures. 

7.1 Software Improvements 
In order to invoke more realistic collaboration and decision-making behavior during 
experimental trials, it is recommended that changes be made to the current behavior governing 
the entities in the simulation environment.  The following changes are recommended: 

- Introduction of uncertainty related to convoy attacks.  The level of certainty associated with 
whether or not a target attacks a convoy that passes within its weapons range may be based 
on the type of target (e.g., different target classifications could have different probabilities 
of attack) or on the weapons range of the target (e.g., the probability of attack may be 
higher for a short-range target versus a long-range target).  For experimental control 
purposes, whether a target will attack the convoy should be deterministic (i.e., the same 
target will have the same behavior (attack or not attack) for all experimental subjects).  
However, having some targets attack and others not, governed some underlying logic that 
subjects can learn, can help convince them that the behavior is probabilistic.  This type of 
uncertainty can currently be implemented by defining the appropriate convoy attack 
behavior for each defined target during scenario creation, based on manual calculations of 
probabilities for the targets in the scenario.  Yet, more sophisticated methods could also be 
used by creating rules within the simulation code for governing attack behavior or for 
producing balanced scenarios during scenario creation. 

- Realistic penalties for poor task performance.  Currently, a convoy loses a predetermined 
amount of health points when it passes within range of a target, regardless of how long it 
remains within range of that target.  Realistically, a convoy might continue to sustain 



30 

damage the longer it was within range of an enemy threat.  The simulation code should be 
modified to reflect this by continuing to deplete the convoy health (or have some increased 
probability of getting attacked) the longer the convoy is within range of a target. 

- Modification to the UAV attack behavior.  Currently, the simulation environment provides 
uncertainty related to whether a target will attack a UAV by allowing the experimenter to 
define whether each target can attack UAVs.  However, the simulation currently only 
attacks the first UAV it encounters.  If a subsequent UAV passes overhead and the target is 
still active, it will not attack the UAV.  To more accurately represent the real-world entities 
the simulation is emulating, targets able to attack a UAV should continue to attack UAVs 
that pass overhead as long as they are active (possibly with some uncertainty).  This 
behavior will encourage participants to respect this known hazard area as a new spatial 
constraint for future planning until the target is destroyed. 

- Improved usability of the scenario creation functionality.  As described in Appendix D, 
creating or modifying a scenario for the experimental platform can be an arduous process, 
especially with respect to fine-tuning a scenario during pilot testing to ensure that 
appropriate situations are established during scenario runs to facilitate the study objectives.  
Significant improvements are recommended, especially related to defining and testing the 
temporal aspects of a scenario, in order to minimize the time needed for scenario 
development.  In particular, a feature that enables an experimenter to anticipate, rather than 
through trial and error, the temporal impacts of specific changes to entities and their 
attributes would be particularly helpful for defining the tempo of a scenario. 

7.2 Participant Training Improvements 
Finally, as discussed in Section 5.3, improvements are warranted for the participant training 
procedures.  Training in the experimental platform currently consists of tutorial-based training 
followed by several hands-on practice scenarios.  However, observations from our initial studies 
indicate the need for one or more standardized benchmark tests to determine a sufficient level of 
task competency. Such adjustments to the training procedure would help ensure that participants 
are suitably ready to advance to the experimental trials as “task experts” and allow experimenters 
to be more confident in that participants’ task and system performances are suitably comparable 
for data analysis. 

8 Conclusions 
The experimental platform described in this report provides a software and hardware testbed to 
explore novel interface technologies aimed at supporting critical decision making and effective 
communication and coordination during complex, time-critical collaborative mission control 
operations.  This platform is currently focused on investigating supervisory-level decision 
making during UAV Team Operations, however the underlying software and hardware 
architecture of the testbed could be extended to support investigations of other UAV team 
member roles, as well as investigations of other mission control operations.  Possible expansions 
to this platform include redesigning the UAV Operator Displays to provide real (i.e. non-
simulated) operator tasking behavior, development of “remote” operator stations as part of the 
physical laboratory configuration to enable investigation of distributed UAV team interactions 
between real experiment participants, and development of other military and non-military task 
scenarios to enable investigation of generalized mission control interface technologies. 



31 

9 References 
Bisantz, A. M., J. Pfautz, R. Stone, E. M. Roth, G. Thomas-Meyers and A. Fouse (2006). 

Assessment of Display Attributes for Displaying Meta-information on Maps. 
Proceedings of HFES 2006:  Human Factors and Ergonomics Society 50th Annual 
Meeting, San Fransisco, CA, USA, HFES. 

Boyle, M. (2005). Privacy in Media Spaces. Department of Computer Science. Calgary, AB, 
Canada, University of Calgary. Ph.D. Thesis. 

Boyle, M. and S. Greenberg (2006). GroupLab.Networking Library, University of Calgary. 
Crandall, J. W. and M. L. Cummings (2007). Developing Performance Metrics for the 

Supervisory Control of Multiple Robots. Proceedings of the 2nd Annual Conference on 
Human-Robot Interaction, Arlington, VA, USA, ACM Press. 

Dudfield, H. J., C. Macklin, R. Fearnley, A. Simpson and P. Hall (2001). Big is better? Human 
factors issues of large screen displays with military command teams. Proceedings of 
People in Control (PIC'01):  International Conference on Human Interfaces in Control 
Rooms, Cockpits and Command Centres Manchester, UK, IEE. 

Inkpen, K., K. Hawkey, M. Kellar, R. Mandryk, K. Parker, D. Reilly, S. Scott and T. Whalen 
(2005). Exploring Display Factors that Influence Co-Located Collaboration: Angle, Size, 
Number, and User Arrangement. Proceedings of HCI International 2005, Las Vegas, 
NV. 

Jedrysik, P. A., J. A. Moore, T. A. Stedman and R. H. Sweed (2000). Interactive displays for 
command and control. Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA. 

Jenkin, C. (2004). Team Situation Awareness: Display Technologies in Support of Maritime 
Domain Awareness. Proceedings of 7th Marine Transportation System Research & 
Technology Coordination Conference, Washington, DC. 

Mandryk, R. L., S. D. Scott and K. L. Inkpen (2002). Display Factors Influencing Co-located 
Collaboration. Extended Abstracts of CSCW'04:  ACM Conference on Computer-
Supported Cooperative Work, New Orleans, LA, ACM Press. 

Osga, G. A. (2000). Task Managed Watchstanding - Concepts for 21st Century Naval 
Operations. Proceedings of HFES'00:  Human Factors and Ergonomics Society 44th 
Annual Meeting, Santa Monica, CA, Human Factors and Ergonomics Society. 

Peel, R. R. and B. J. Williams (2004). Bringing A Common Operating Picture To Fleet UUV 
Exercises. Proceedings of AUVSI Unmanned Systems North America 2004 Symposium 
and Exhibition, Anaheim, CA. 

Russell, D. M., C. Drews and A. Sue (2002). Social Aspects of Using Large Public Interactive 
Displays for Collaboration. Proceedings of UbiComp'02:  Conference on Ubiquitous 
Computing, Göteberg, Sweden, Springer-Verlag. 

Ryall, K., C. Forlines and C. R.-M. Shen, M. (2004). Exploring the Effects of Group Size and 
Table Size on Interactions with Tabletop Shared-Display Groupware. Proceedings of 
CSCW'04:  ACM Conference on Computer-Supported Cooperative Work, Chicago, IL, 
ACM Press. 

Scott, S. D., A. E. Rico, C. Y. Furusho and M. L. Cummings (2006). Designing Decision and 
Collaboration Support Technology for Team Supervision in Multi-UAV, Time-Sensitive 
Targeting Operations. Cambridge, MA, USA, MIT Humans & Automation Lab. 

Scott, S. D., J. Wan, A. Rico, C. Furusho and M. L. Cummings (2007). Aiding Team Supervision 
in Command and Control Operations with Large-Screen Displays. HSIS 2007: ASNE 
Human Systems Integration Symposium, Annapolis, MD. 



32 

Smallman, H. S., H. M. Oonk, R. A. Moore and J. G. Morrison (2001). The Knowledge Wall for 
the Global 2000 War Game:  Design Solutions to Match JOC User Requirements. San 
Diego, CA, Pacific Science and Engineering Group. 

Wan, J. (2007). Assisting Interruption Recovery in Mission Control Operations. Electrical 
Engineering and Computer Science. Cambridge, MA, USA, Massachusetts Institute of 
Technology. B.S. Thesis. 

Ware, C. (2000). Information Visualization:  Perception for Design, Morgan Kaufmann 
Publishers Inc. 

 
 



33 

Appendix A:   Command Center Laboratory Configuration & Equipment 
Details 

1

Server

Dell Precision PWS 670 -
Intel Xeon processor 
3.4GHz, 3GB RAM, 
250GB HD

Dell 19" diagonal LCD 
monitor with adjustable 
stand (Flat panel, 
rotatable)

 
Figure 13.  Command center laboratory: observation window and collaboration server / data analysis station. 

Dell Dimension 5150 -
Pentium D Processor 
2.8GHz, 2GB RAM, 
160GB HD (with multi-
monitor graphics card 
(64 MB DDR 
SDRAM)) (Total: 3)

Dell Dimension 9100 - Intel Pentium 4 
Processor 3GHz, 1 GB RAM, 150 GB HD 
(with multi-monitor graphics card (64 MB 
DDR SDRAM)) (Total: 1)

Dell 17" diagonal 
LCD monitor with 
adjustable stand (Flat 
panel, rotatable). 
(Total: 12)

Adjustable triple 
monitor stand 
(Total: 4)

Mobile 
Computer Desk 
(Total: 4)

 
Figure 14.  Command center laboratory: four reconfigurable operator consoles. 

 



34 

Dell Optiplex GX520 
DT - Pentium 4 
Processor 3.4GHz, 
2GB RAM, 160GB HD

Dell Optiplex GX520 DT -
Pentium 4 Processor 
3.4GHz, 2GB RAM, 
160GB HD

Not currently in use

- Wall-mount for plasma display 
- SmartBoard interactive touch 
screen overlay
- Large-format Flat Panel displays 
(42" Plasma HDTV Display)

Supported with 
an articulated 
arm mount

 
Figure 15.  Command center laboratory: three large-screen wall displays, with display servers.  There is one spare display 

server, not currently in use. 

2 x Fujitsu Lifebook tablet PCs 
Intel® Pentium® M Processor 740 
(1.73 GHz, 2 MB L2 cache, 533 
MHz FSB), 1GB RAM, 80 GB HD, 
12.1 SXGA

2 x Handheld PCs – Dell Axim X51

 
Figure 16.  Command center laboratory: four mobile team workstations (2 tablets, 2 handhelds). 



35 

Tripod

Panasonic VDR-D300 
DVD camcorder (with 
SGW-05Pro .5X 
f/37mm wide angle 
lens)

Recordable 
mini DVDs

Bookshelf

 
Figure 17.  Command center laboratory: data capture equipment (digital video camera (Panasonic VDR-D300 mini DVD 

digital camcorder) and recordable mini DVDs). 



36 

Appendix B:  Conceptual Design Diagram 

 
Figure 18.  Expanded view of the conceptual design of the experimental platform software (Figure X in the main text). 



37 

 
Figure 19.  Conceptual design of the experimental platform software, including software libraries. 

C
ity

 S
ea

rc
h 

Pr
og

ra
m

<e
xt

er
na

l p
ro

ce
ss

>

O
pe

ra
to

r D
is

pl
ay

M
is

si
on

 S
ta

tu
s 

D
is

pl
ay

R
em

ot
e 

A
ss

is
ta

nc
e 

D
is

pl
ay

M
ap

 D
is

pl
ay

Si
m

ul
at

io
n 

Se
rv

er
 / 

Sc
en

ar
io

 G
en

er
at

or
Sh

ar
ed

D
ic

tio
na

ry

Sc
en

ar
io

fil
e 

(x
m

l)

Ta
rg

et
s

fil
e 

(x
m

l)

Lo
gf

ile
(tx

t)

M
is

si
on

 C
om

m
an

de
r 

In
te

rf
ac

e

La
rg

e-
S

cr
ee

n 
D

is
pl

ay
s

Ta
bl

et
PC

 D
is

pl
ay

O
pe

ra
to

r D
is

pl
ay

s

O
pe

ra
to

r S
ta

tio
n 

D
is

pl
ay

s

C
on

ce
pt

ua
l S

of
tw

ar
e 

D
es

ig
n 

(w
ith

 L
ib

ra
rie

s)

N
ot

es
:  

*S
ce

na
rio

 e
nt

ity
 in

fo
 in

cl
ud

es
: C

on
vo

y 
& 

U
AV

 in
iti

al
 s

ta
te

s 
an

d 
ro

ut
e 

pl
an

s,
 T

ar
ge

t i
nf

o 
(lo

ca
tio

n,
 w

ea
po

ns
 ra

ng
e,

 U
AV

 
& 

C
on

vo
y 

at
ta

ck
 v

al
ue

s)
, A

O
I b

ou
nd

ar
ie

s
+ P

re
pl

an
ne

d 
ev

en
ts

 in
cl

ud
e:

  c
om

m
un

ic
at

io
n 

lin
k 

co
nn

ec
tio

n 
lo

ss
es

, C
on

vo
y 

& 
U

AV
 a

rri
va

ls
++

Si
m

ul
at

e 
m

sg
s

in
cl

ud
e:

 c
om

pu
te

r g
en

er
at

ed
 m

sg
s

re
pr

es
en

tin
g 

re
m

ot
e 

co
m

m
un

ic
at

io
ns

 fr
om

 U
A

V 
op

er
at

or
s,

 s
tri

ke
te

am
 p

er
so

nn
el

, &
 J

ST
A

R
S 

pe
rs

on
ne

l)
± C

om
m

an
d 

de
ci

si
on

s 
in

cl
ud

e:
 c

on
vo

y 
ho

ld
s 

& 
re

le
as

es
, J

ST
AR

S 
da

ta
 re

qu
es

ts
, U

AV
 re

as
si

gn
m

en
ts

 

Sc
en

ar
io

 e
nt

ity
 in

fo
*, 

pr
ep

la
nn

ed
 e

ve
nt

s+

AT
R

 ta
rg

et
 d

at
a

Lo
gg

ed
 d

at
a

M
is

si
on

 ti
m

e,
 in

iti
al

 e
nt

ity
 

da
ta

, e
nt

ity
 s

ta
te

 c
ha

ng
es

, 
sy

st
em

 &
 s

im
ul

at
ed

 m
sg

s++
, 

co
m

m
s

st
at

us
 c

ha
ng

es
, 

co
nv

oy
 th

re
at

 in
fo

, o
p 

pe
rfo

rm
an

ce
 in

fo
, k

no
w

n 
ta

rg
et

 in
fo

, a
ss

is
t r

eq
ue

st
 

in
fo

, A
TR

 ta
rg

et
 d

at
a,

 [I
R

A 
ev

en
t d

at
a]

U
se

r i
np

ut
 to

 lo
g 

(v
ie

w
 fi

lte
r 

ch
an

ge
s,

 T
BV

 re
po

rts
, t

ar
ge

t 
cl

as
si

fic
at

io
ns

, [
IR

A 
ev

en
t 

re
pl

ay
s]

), 
co

m
m

an
d 

de
ci

si
on

s± , 
op

 s
ta

tu
s 

re
qu

es
ts

M
is

si
on

 ti
m

e,
 e

nt
ity

 d
at

a 
(in

iti
al

 &
 

ch
an

ge
s)

, c
on

vo
y 

th
re

at
 in

fo
, [

IR
A 

ev
en

t r
ep

la
ys

] 

Vi
ew

 fi
lte

r c
ha

ng
es

Vi
ew

 fi
lte

r c
ha

ng
es

M
is

si
on

 ti
m

e,
 U

A
V 

in
fo

, s
ys

te
m

 &
 

si
m

ul
at

ed
 m

sg
s,

 c
om

m
s

st
at

us
, 

co
nv

oy
 th

re
at

 in
fo

, o
p 

pe
rfo

rm
an

ce
 

in
fo

, a
ss

is
t r

eq
ue

st
 a

le
rts

M
is

si
on

 ti
m

e,
 U

AV
 

in
fo

, a
ss

is
t r

eq
ue

st
 

in
fo

, A
TR

  t
ar

ge
t 

da
ta

O
p 

st
at

us
 re

qu
es

t, 
ta

rg
et

 
cl

as
si

fic
at

io
n,

 
U

AV
 in

fo

M
is

si
on

 ti
m

e,
 s

ys
te

m
 &

 s
im

ul
at

ed
 

m
sg

s++
, U

A
V 

in
fo

, k
no

w
n 

ta
rg

et
 

in
fo

, [
IR

A 
ev

en
t d

at
a]

 

C
om

m
an

d 
de

ci
si

on
s± , 

TB
V 

re
po

rts
, 

[IR
A 

ev
en

t r
ep

la
ys

]

M
is

si
on

 ti
m

e,
 e

nt
ity

 d
at

a 
(in

iti
al

 &
 

ch
an

ge
s)

, c
on

vo
y 

th
re

at
 in

fo
, 

ta
rg

et
 d

et
ec

tio
n 

al
er

t, 
U

AV
 

nu
m

be
r

U
AV

 n
um

be
r

C
ity

 S
ea

rc
h 

Pr
og

ra
m

s
<e

xt
er

na
l p

ro
ce

ss
es

>

Sc
en

ar
io

 e
nt

ity
 in

fo
*, 

pr
ep

la
nn

ed
 e

ve
nt

s+

TS
T 

En
tit

y
Li

br
ar

y
TS

T 
D

ra
w

Li
br

ar
y

TS
T 

En
tit

y
Li

br
ar

y

TS
T 

D
ra

w
Li

br
ar

y

TS
T 

E
nt

ity
Li

br
ar

y

TS
T 

D
ra

w
Li

br
ar

y

TS
T 

En
tit

y
Li

br
ar

y

TS
T 

D
ra

w
Li

br
ar

y



38 

Appendix C:  Interruption Recovery Support Functionality 
As discussed in Section 4.2.6, when event bookmark icons are selected on the Interruption 
Recovery Assistance timeline corresponding to the Convoy Attacked, UAV Destroyed, and Late 
Strike events, additional information is displayed on the Map Display.  This information is 
displayed for five seconds, and then fades to reveal the current state of the map.  This time frame 
was selected based on pilot tests, which indicated five seconds was long enough for someone to 
select the bookmark from the tablet PC and look to the Map Display to see the change on the 
map.  The respective change to the Map Display was available an additional few seconds as the 
information was fading back to its normal state.  Figures 17-19 show the details of these 
interactions.   

 
Figure 20.  Revealing the Convoy Attacked event information on the Map Display (from Wan, 2007). 

 



39 

 
Figure 21.  Revealing the UAV Destroyed event information on the Map Display (from Wan, 2007). 

 
Figure 22.  Revealing the Late Strike event information on the Map Display (from Wan, 2007). 

 



40 

Appendix D:  Generating a Scenario for the Experimental Platform 
This appendix provides instructions on developing a scenario to run in the Simulation Server.  If 
an XML scenario file is already available, it can be loaded into the Simulation Server by 
selecting the “Load” button at the top of the Build Mode screen (Figure 23) and then selecting 
the desired file from the Open XML File dialog box.  Once loaded, a scenario can be updated by 
following the scenario development instructions below.  Scenario modifications can then be 
saved by selecting the “Save” button at the top of the Build Mode screen.  The scenario file can 
either be overwritten, if the same filename is provided, or saved as a new scenario by providing a 
new filename in the Select Save File dialog box.   

 
Figure 23.  Simulation Server, Build Mode screen with a loaded scenario file. 

 

Scenario Development 
To create a new scenario file, select the “New” button at the top of the Build Mode screen.  If a 
scenario file is currently loaded, this action will cancel any unsaved changes and produce a blank 
scenario.  Next, follow the steps below to create the desired scenario entities and events and set 
their corresponding attributes to produce the desired simulation behavior.   

Note, in the following discussion entities are spatially defined (e.g., regions, convoy, UAVs, 
targets) and events are temporally defined (e.g., status messages, communication link losses).  To 
facilitate real-time calculations while running a scenario simulation, the scenario map is 
computationally represented as a grid of squares.  Each square, called a grid node, currently 
represents a 25x25 pixel on screen area.  During the simulation, entity moves typically occur 
from grid-square to grid-square, since pixel-by-pixel movement is computationally demanding.  



41 

Thus, if an entity, such as a UAV, is defined to move once a clock tick, then it will move the 
distance of one grid square each clock tick.  If an entity, such as the convoy, is defined to move 
only every 6 clock ticks, then it will move the distance of one grid square every 6th clock tick.  
This enables relative entity speeds to be simulated. 

Regions (Required) 
A “region” is an area of interest associated with a specific UAV operator in the UAV team.  By 
default, Region 1 is associated with Operator 1, Region 2 with Operator 2, and Region 3 with 
Operator 3, regardless of their geospatial size or location.  Any UAV defined within a region is 
assumed to be controlled by the Operator associated with that region, with the exception of a 
UAV transiting through a region en route to another region during a UAV reassignment. 

To define the UAV team’s regions, select the “Region” mode button on the left side of the Build 
Mode screen (Figure 24).  Then, define the location and size of the region by dragging a 
rectangle in the map panel.  Region boundaries are automatically snapped to the map grid lines 
during this process.  A defined Region cannot be modified, but instead must be deleted and 
recreated.  Regions also must be created in order, and the Simulation Server program assumes 
the existence of three (3) regions at runtime.  Fewer defined regions will cause runtime errors.  
This scenario constraint exists to facilitate calculations related to operator performance within 
each associated region. 

 
Figure 24.  Simulation Server, Build Mode screen in “Region” creation / modification mode. 

 



42 

The Convoy 
The UAV team’s primary goal is to protect the Convoy in the current experimental platform task.  
Thus, a convoy should be defined for each scenario.  To create a convoy, select the “Convoy” 
mode button on the left side of the Build Mode screen (Figure 25).  Then, select the “Set 
Position” button from the Convoy functions panel to the right of the map panel, and select the 
position on the map at which the convoy will enter the map.  Ideally, this position will be on the 
road depicted on the underlying map image, and near the edge of the map area.   

 

 
Figure 25.  Simulation Server, Build Mode screen in “Convoy” creation / modification mode. 

 

Next, define the convoy’s path by selecting the “Set Path” button from the Convoy function 
panel, and then select a set of waypoints on the map.  These waypoints define the path along 
which the convoy will travel, beginning with its original entrance point.  To make changes to the 
path, it must first be deleted, using the “Clear Path” button in the Convoy function panel, and 
then recreated using “Set Path”. 

To allow time for experiment participants to become engaged in the simulation environment, and 
for an interesting and potentially difficult situation to emerge, the convoy can be released (i.e., 
set to enter the map area) at a predetermined time after the scenario begins.  To set this “release 
time,” set the Minute and Second numeric values under the “Release Time” label in the Convoy 
functions panel.   



43 

Next, to enable scenario events to unfold at a certain rate, the relative convoy speed must be set.  
This defines how fast the convoy will travel along its defined path during the simulation (as long 
as the participant hasn’t requested that it hold its current position).  To set the speed, select an 
appropriate numeric value under the “Speed” label in the Convoy functions panel.  This value 
represents how many simulation clock ticks should elapse before the convoy’s position is moved 
to the next grid square.  Initial studies in the experimental platform have shown that a clock 
frequency of 6 ticks per second provides a reasonable scenario rate, enabling the Convoy and 
UAV speeds to be set at a reasonable differential, corresponding appropriately to the fact that a 
Convoy would travel slower than would a UAV.  These studies also showed that also setting the 
convoy speed to 6, that is the convoy would move once per second, appears to provide a 
reasonable scenario rate.  Setting the convoy speed to a value less than the Clock Frequency will 
produce a faster convoy pace, and to a value higher will produce a slower convoy pace.  The 
convoy and UAV speed values, and thus modifying the rate at which events unfold during the 
scenario, should be determined based on the goals of the study. 

Finally, an initial convoy health should be set by selecting a numeric value (between 1-100) 
under the “Health” label in the Convoy functions panel.  This value represents the percent of 
health with which the convoy begins a scenario.  Typically this value is set to 100.  Setting a 
lower initial value would increase the urgency of convoy protection during a scenario, likely 
increasing the intensity / difficulty of the scenario. 

Once the above convoy attribute values are set, they must be saved by selecting the “Edit 
Convoy” button in the Convoy functions panel.   

If any of the above attribute values require modification after initially being set, change their 
values as indicated above, and then apply the changes with the “Edit Convoy” button.   

UAVs 
To create or modify UAV entities, select the “UAV” mode button from the left side of the Build 
Mode Screen.  The full paths and UAV attribute details will appear for existing UAV entities 
(Figure 26).  To create a UAV, select the “Add UAV” button from the UAV functions panel to 
the right of the map panel, and then select the initial UAV release position on the map.  
Experiment participants are told that their UAVs will be air-dropped form a plane at set positions 
and times during the mission scenario.   

The UAV will automatically be labeled by the next available UAV number, and will appear, in 
order of its label number, in the UAV list at the top of the UAV functions panel.  In order to set 
or modify any UAV attributes, a UAV must first be selected from this list.  The numbers to the 
right of the UAV label in this list indicate the UAV’s grid square position in the map.  Selecting 
an existing UAV from the list will display the attribute values for that vehicle in the UAV 
function panel.   

To create a surveillance flight path for the UAV, select the desired UAV from the list, then select 
the “Set Path” button.  Then, select a set of path waypoints, originating at the UAV’s initial 
release position.  Similar to the convoy path, a completed UAV path cannot be modified.  
Instead, the path must be first deleted, by selecting the “Clear Path” button, and then recreated 
with the “Set Path” function. 

 



44 

 
Figure 26.  Simulation Server, Build Mode screen in “UAV” creation / modification mode. 

 

To set the UAV’s release time, select the desired UAV from the list, then set the Minute and 
Second values under the “Release Time” label. 

To set the relative speed at which a UAV travels during a scenario, select the desired UAV from 
the list, then set the numeric value under the “Speed” label.  Recall from above that the 
Simulation Clock Frequency is typically set to 6 ticks per second.  Initial studies indicate that 
setting the UAV speed to 1, with this Clock Frequency (i.e., the UAVs will move 6 times per 
second), produces reasonable UAV flight speeds.   

Once the above UAV attribute values are set, they must be saved by selecting the “Edit UAV” 
button in the UAV functions panel.  Also, if any of the above attribute values require 
modification after initially being set, change their values as indicated above, and then apply the 
changes with the “Edit UAV” button.   

To delete a UAV from the scenario, select the desired UAV from the list and then select the 
“Delete UAV” button in the UAV functions panel.   

By default, a UAV will automatically hover (i.e., remain in a stationary location, in reality the 
aircraft would fly in a holding pattern) above a newly discovered potential target for the amount 
of time specified by the targets “TargetID Time” (see Targets section below), while its operator 
performs a target confirmation / identification procedure.  If the UAV is currently set to perform 
this behavior, the radio button beside the “Auto Hover for 30” will be selected in the UAV 
functions panel.  (The “for 30” part of this label is now obsolete:  Hover time used to be defined 



45 

at the UAV level, now it is defined at the Target level and defined per target as described below.  
Also, changing the numeric value below the Hover selection options is also obsolete.)  UAVs 
should be set to Auto Hover unless the Operator Display (see Section 4.2.7) is being utilized in 
the experimental platform.  When the Operator Display is utilized, which requires non-simulated 
UAV operators to participate in the experimental trials, the “Operator Hover” Hover selection 
option should be selected for each UAV created in the scenario, and then saved using the “Edit 
UAV” button.  This Hover attribute setting will ensure that each UAV will hover indefinitely 
above a detected potential target until its associated operator manually releases the UAV after 
performing the necessary procedure for target identification / classification in the Operator 
Display. 

Targets 
To create or modify Target entities, select the “Target” mode button from the left side of the 
Build Mode Screen (Figure 27). 

 

 
Figure 27.  Simulation Server, Build Mode screen in “Target” creation / modification mode. 

 

All existing targets are displayed in the map panel as small diamond-shaped icons, surrounded 
by a red circle.  By default, target icons have a red fill color.  A gray target icon fill color 
indicates the target is set to attack a UAV upon target discovery.  The size of the target’s 
surrounding circle indicates its currently set weapon’s range (Short, Medium, Long).  The line 
type (solid or dashed) indicates whether or not the target will attack the Convoy if it passes 



46 

within the target’s weapons range (dashed = convoy will be attacked; solid = convoy will not be 
attacked).   

Similar to the UAV functions panel, a list of existing Targets will appear in the top of the Target 
function panel.  Each target line details the current weapons range (Short, Medium, Long) and 
the grid location of the target.  Selecting a target from this list will highlight the associated target 
diamond icon on the map in blue and display the attribute values for that target in the Target 
function panel.   

In order to add a new Target, simply move the mouse into the map area (a red diamond icon 
surrounded by an orange circle will appear centered at the cursor) and click the desired location 
on the map to set the target’s position during the scenario.  All targets will remain stationary 
throughout a scenario simulation. 

Existing targets cannot be moved.  It order relocate a target, the target must be first destroyed, 
but selecting the desired target from the Targets list and then selecting the “Delete Target” button 
from the Target function panel.  Then a new target can be added in the new location. 

In order to set or modify the target’s weapons range, select the desired range (Short, Medium, or 
Long) from the drop-down list under the “Delete Target” button on the Target function panel 
(see below for instructions on how to modify the definition of these ranges). 

To define whether the selected target will attack the Convoy if it passes within the target’s 
weapons range during a scenario before target is destroyed by the Strike Team, set the checkbox 
beside the “Attack Convoy?” label in the Target function panel appropriately:  checked indicates 
the target will attack the Convoy, unchecked indicates the target will not attack the Convoy.  
During the scenario, whenever the Convoy is attacked by a target, a certain level of Convoy 
Health is lost, representing amount of damage sustained by the attack.  See below for instructions 
on setting how much Convoy Health will be lost during an attack from a target.  

Similarly, to define whether the selected target will attack a UAV that passes over the target (i.e., 
the UAV enters the same grid square and detects the target) during a scenario before target is 
destroyed by the Strike Team, set the checkbox beside the “Attack UAV?” label in the Target 
function panel appropriately:  checked indicates the target will attack the first UAV that detects 
it, unchecked indicates the target will not attack any UAVs.  During the scenario, when a UAV is 
attacked by a target, it will be fully destroyed (equivalent to losing 100% health). 

To set the amount of Convoy Health value that will be lost during an attack from the selected 
target, select a numeric value (in percent health) beside the “Attack Value” label in the Target 
function panel. 

As mentioned in the UAVs section above, the amount of time that a UAV hovers above a target 
upon its discovery is specified by each target.  This enables more natural behavior to occur 
during the scenario, since it is likely that it would take the UAV operator different amounts of 
time to identify and classify each potential target.  To define how long a UAV should hover 
above each target, the “TargetID Time” numeric value must be set (in seconds) beside the 
corresponding label in the Target function panel.   

Once the above Target attribute values are set for each Target, they must be saved by selecting 
the “Edit Target” button in the Targets functions panel.  Also, if any of the above attribute values 
require modification after initially being set, change their values as indicated above, and then 
apply the changes with the “Edit Target” button.   



47 

There are several global target attribute values and functions that can also be modified. 

To define the available target weapons ranges for a scenario, the ranges for Short, Medium, and 
Long can be set for all targets by first selecting a target in the Targets list of the desired range (or 
changing the range in the weapons range drop-down box for the currently selected target), and 
then changing the numeric values (in pixels) under the “Short: X  Medium Y  Long Z” label in 
the Target function panel, and then select the “Set Range” button.  This will apply that range 
value for all targets of the selected weapons range, and will update the label to reflect the current 
weapons range. 

Instead of setting the “Attack Value” for each target individually (recall, this is the amount of 
Health the Convoy will lose if it passes within weapons range of the target), a global function 
can be invoked to set to randomly set the Attack Values for all targets between 10 and 15 health 
points by selecting the “Set Random Attack Values for All Targets” button in the Target function 
panel. 

The final global function relates to the scheduling of target strikes by the Strike Team once a 
target has been identified by a UAV operator.  In order to space out the timing of events (since it 
would actually take the Strike Team some time to reroute between each target strike), any new 
target added to the strike schedule will be added at some predetermined period of time past the 
current time (currently set to 50 seconds, but can be changed in the code, by changing the 
“Default_Strike_Time” value in the StrikeTeam class).  Also, if a target is added to the strike 
schedule when there are one or more pending strikes, the scheduled strike time for the new target 
is set to certain timing interval after the last target on the schedule.  By default, this value is 20 
seconds (this value can be changed in the code by changing the “Default_Strike_Interval” value 
in the StrikeTeam class).  That is, the new target is scheduled to be destroyed 20 seconds after 
the last pending target strike.  In order to add variability to event occurrences during the scenario, 
some pseudo randomness can also be introduced to these target strike intervals but selecting the 
“Set Random Strike Offsets for All Targets” button in the Targets function button.  This 
randomizes the strike interval (by default 20) for all targets defined in the scenario to a value 
between 20 and 30 seconds.  If new targets are added, this function needs to be reapplied to the 
set of targets. 

Communication Link Status Events 

Another aspect of the simulation environment that can be controlled throughout a scenario is the 
UAV team’s connection status of the communication links to the external contacts, including the 
connections to the Convoy, the Strike Team, and the JSTARS (Joint Surveillance and Target 
Attack Radar System).  By default, these communication links remain connected and available 
throughout the scenario.  In order to define period of communication link loss for one or more of 
these communication links during the scenario, select the “Link Status” mode button on the left 
side of the Build Mode screen (Figure 28).   

A list of any existing status changes defined for the scenario will appear in the Link Status events 
list at the top of the Link Status function panel to the right of the map panel.  Selecting a Link 
Status event will display the details for that event in the Link Status function panel. 

 



48 

 
Figure 28.  Simulation Server, Build Mode screen in “Link Status” creation / modification mode. 

 

To create a Link Status event, select the connection state for all three UAV team contacts that 
should occur at that event (and will continue until a subsequent Link Status event alters the 
connection status) by checking or unchecking the checkboxes to the right of the Convoy, Strike 
Team, and JSTARS Status labels.  Selecting the checkbox (i.e. presence of a checkmark) 
indicates the communication link to that contact will be activated (or remain active if it was 
active prior to the event).  Unselecting the checkbox (i.e. no checkmark) indicates the 
communication link to that contact will be deactivated (or remain inactive if it was previously 
inactive).   

The text in the textboxes beside the Convoy, Strike Team, and JSTARS Text labels are 
automatically updated as the above selections/deselections are made.  This text indicates the 
labels that will be displayed in the Communication Link Status panel associated with each 
contact in the Mission Status Display (see Section 4.2.4).  Alternate labels can be added if 
desired by replacing the text in these fields. 

Next, the time of the Link Status event must be defined in the numeric textboxes below the 
Minute and Second labels in the Link Status functions panel. 

The Link Status event information then must be saved by selecting the “Add” button at the 
bottom of the Link Status function panel. 

To modify an existing Link Status event, select the desired event from the Link Status list, alter 
the information as described above, and then save the changes by selecting the “Edit” button. 



49 

Finally, to delete an existing Link Status event, select the desired event from the Link Status list 
and then select the “Delete” button from the bottom of the Link Status function panel. 

Status Messages 
The final type of event that can be defined in a scenario is the sending of predefined messages 
from either the system or one of the external contacts (Strike Team, Convoy, JSTARS).  These 
messages appear in the Status Message / Message History panels on the Mission Status Display 
and Mission Commander Interface (see Sections 4.2.4 and 4.2.6) at the predefined time during 
the scenario.  In order to create such messages, select the “Stat Msg” mode button from the left 
side of the Build Mode screen (Figure 29).  A list of any existing Status Messages defined for the 
scenario will appear in the Message list at the top of the Status Message function panel to the 
right of the map panel.  Selecting a Message will display its details in the Status Message 
function panel. 

 

 
Figure 29.  Simulation Server, Build Mode screen in “Status Message” creation / modification mode. 

 

To create a new Message, first select the sender of the Message from the drop-down list beside 
the “From” label.  Then, write the message text in the textbox below the “From” label.  Next, set 
the time at which the message should appear during the scenario in the numeric textboxes below 
the Minute and Second labels. When the Status Message appears in the team displays, it will 
appear in the format:   

<time> [sender] <message text> 



50 

If the Status Message should be highlighted in red on the team displays, the checkbox beside the 
“Critical Message” label should be selected. 

Finally, to save the Message, select the “Save” button at the bottom of the Status Message 
function panel. 

To modify an existing Message, select the desired Message, alter the Message event details as 
described above, and then select the “Edit” button. 

Scenario Background Image 
In order to display a different image as the background in the map display, select the “Select 
Image” button on the left side of the Build Mode screen and select the desired image from the 
Select Image file browser.  Changes to the background image will not be saved once the 
Simulation Server is closed:  this information is not currently saved in the scenario file.  If 
permanent changes to the background image are desired, then a different image should be saved 
in the code, in the SimulationServer class, and saved to an updated application executable.  

 

 

 



51 

Appendix E:  Sample XML Scenario File Format 
This section contains a sample XML Scenario file.  This XML file describes a scenario with the 
following details:   

• A convoy with a simple path, which enters the team’s AOI 90 seconds into the scenario.  
The convoy is set to travel at speed level 6, meaning that it will move one grid square per 
second, when the simulator is run at 6 clock ticks per second (the standard way to run the 
simulated scenarios). 

• One target, located at (10, 6) (grid square coordinates).  The target has long range 
weapons range capability (weaponsRange 3), will strike the convoy if the convoy passes 
within its weapons range before the target is destroyed (attackConvoy true), but will not 
strike a UAV that passes overhead (attackUAV false).  If the target attacks the convoy, 
the convoy will lose 10 points of health (attackValue 10).  If the target is detected by a 
UAV and the UAVs are set to AutoHover in the Simulation (see Appendix D), then the 
UAV will hover above the target for 30s while its operator engages in target 
identification (targetIDTime 30).  Once the target has been identified, it will be scheduled 
to be destroyed 20s after the last scheduled target strike (scheduleOffset 20).   

• One UAV set to a simple, sweeping surveillance path.  The UAV is released at location 
(4, 183) (on-screen pixel location) at 10 seconds into the scenario.  The UAV is set to 
travel at speed level 1, meaning that it will move one grid square per clock tick.  At the 
standard simulation speed of 6 clock ticks per second, this means the UAV will travel at 
6 grid squares a second. 

• Three operator regions (required) 

• A planned communication link loss between the UAV team and the Strike team from 
320s and 620s (5:20-10:20) in the scenario. 

• A planned message from the Strike Team of “We will be unavailable for the next 5 
minutes.” at 320s (5:20) in the scenario. 

 
 
<?xml vrsion="1.0" encoding="utf-8"?> 
<World xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  <s_range>25</s_range> 
  <m_range>50</m_range> 
  <l_range>105</l_range> 
  <glength>25</glength> 
  <clock_frequency>6</clock_frequency> 
  <convoy> 
    <Xlocal>3</Xlocal> 
    <Ylocal>187</Ylocal> 
    <current_Region>0</current_Region> 
    <Ghost_X>3</Ghost_X> 
    <Ghost_Y>187</Ghost_Y> 
    <isReleased>false</isReleased> 
    <Ghost_isReleased>false</Ghost_isReleased> 
    <releaseTime>90</releaseTime> 
    <timeUntilRelease>90</timeUntilRelease> 
    <Ghost_timeUntilRelease>180</Ghost_timeUntilRelease> 
    <currentSpeed>6</currentSpeed> 
    <speed_int>6</speed_int> 
    <Ghost_speed_int>6</Ghost_speed_int> 



52 

    <originalPath> 
      <path> 
        <Point> 
          <X>3</X> 
          <Y>187</Y> 
        </Point> 
        <Point> 
          <X>3</X> 
          <Y>187</Y> 
        </Point> 
        <Point> 
          <X>0</X> 
          <Y>184</Y> 
        </Point> 
        <Point> 
          <X>319</X> 
          <Y>284</Y> 
        </Point> 
        <Point> 
          <X>533</X> 
          <Y>211</Y> 
        </Point> 
        <Point> 
          <X>631</X> 
          <Y>202</Y> 
        </Point> 
        <Point> 
          <X>698</X> 
          <Y>208</Y> 
        </Point> 
        <Point> 
          <X>844</X> 
          <Y>233</Y> 
        </Point> 
      </path> 
      <current_Local>0</current_Local> 
    </originalPath> 
    <plannedPath> 
      <path> 
        <Point> 
          <X>3</X> 
          <Y>187</Y> 
        </Point> 
        <Point> 
          <X>3</X> 
          <Y>187</Y> 
        </Point> 
        <Point> 
          <X>0</X> 
          <Y>184</Y> 
        </Point> 
        <Point> 
          <X>319</X> 
          <Y>284</Y> 
        </Point> 
        <Point> 
          <X>533</X> 
          <Y>211</Y> 
        </Point> 
        <Point> 
          <X>631</X> 
          <Y>202</Y> 
        </Point> 
        <Point> 
          <X>698</X> 
          <Y>208</Y> 
        </Point> 
        <Point> 
          <X>844</X> 
          <Y>233</Y> 
        </Point> 



53 

      </path> 
      <current_Local>0</current_Local> 
    </plannedPath> 
    <currentWaypoint>0</currentWaypoint> 
    <Ghost_Waypoint>0</Ghost_Waypoint> 
    <currentHealthLevel>100</currentHealthLevel> 
    <isFinishedRoute>false</isFinishedRoute> 
    <Ghost_isFinishedRoute>false</Ghost_isFinishedRoute> 
    <numberOfHolds>0</numberOfHolds> 
    <isHolding>false</isHolding> 
  </convoy> 
  <Target_Places> 
    <Point> 
      <X>10</X> 
      <Y>6</Y> 
    </Point> 
  </Target_Places> 
  <Targets> 
    <Target> 
      <weaponsRange>3</weaponsRange> 
      <attackConvoy>true</attackConvoy> 
      <attackUAV>false</attackUAV> 
      <attack_convoy_value>10</attack_convoy_value> 
      <schedule_offset_value>20</schedule_offset_value> 
      <targetIDTime>30</targetIDTime> 
    </Target> 
  </Targets> 
  <UAVs> 
    <UAV> 
      <Xlocal>4</Xlocal> 
      <Ylocal>183</Ylocal> 
      <current_Region>0</current_Region> 
      <Ghost_X>4</Ghost_X> 
      <Ghost_Y>183</Ghost_Y> 
      <isReleased>false</isReleased> 
      <Ghost_isReleased>false</Ghost_isReleased> 
      <releaseTime>60</releaseTime> 
      <timeUntilRelease>60</timeUntilRelease> 
      <Ghost_timeUntilRelease>60</Ghost_timeUntilRelease> 
      <currentSpeed>1</currentSpeed> 
      <speed_int>1</speed_int> 
      <Ghost_speed_int>1</Ghost_speed_int> 
      <originalPath> 
        <path> 
          <Point> 
            <X>4</X> 
            <Y>183</Y> 
          </Point> 
          <Point> 
            <X>4</X> 
            <Y>183</Y> 
          </Point> 
          <Point> 
            <X>11</X> 
            <Y>82</Y> 
          </Point> 
          <Point> 
            <X>35</X> 
            <Y>85</Y> 
          </Point> 
          <Point> 
            <X>38</X> 
            <Y>192</Y> 
          </Point> 
          <Point> 
            <X>62</X> 
            <Y>200</Y> 
          </Point> 
          <Point> 
            <X>60</X> 
            <Y>88</Y> 



54 

          </Point> 
          <Point> 
            <X>90</X> 
            <Y>88</Y> 
          </Point> 
          <Point> 
            <X>87</X> 
            <Y>207</Y> 
          </Point> 
        </path> 
        <current_Local>0</current_Local> 
      </originalPath> 
      <plannedPath> 
        <path> 
          <Point> 
            <X>4</X> 
            <Y>183</Y> 
          </Point> 
          <Point> 
            <X>4</X> 
            <Y>183</Y> 
          </Point> 
          <Point> 
            <X>11</X> 
            <Y>82</Y> 
          </Point> 
          <Point> 
            <X>35</X> 
            <Y>85</Y> 
          </Point> 
          <Point> 
            <X>38</X> 
            <Y>192</Y> 
          </Point> 
          <Point> 
            <X>62</X> 
            <Y>200</Y> 
          </Point> 
          <Point> 
            <X>60</X> 
            <Y>88</Y> 
          </Point> 
          <Point> 
            <X>90</X> 
            <Y>88</Y> 
          </Point> 
          <Point> 
            <X>87</X> 
            <Y>207</Y> 
          </Point> 
        </path> 
        <current_Local>0</current_Local> 
      </plannedPath> 
      <currentWaypoint>0</currentWaypoint> 
      <Ghost_Waypoint>0</Ghost_Waypoint> 
      <currentHealthLevel>100</currentHealthLevel> 
      <isFinishedRoute>false</isFinishedRoute> 
      <Ghost_isFinishedRoute>false</Ghost_isFinishedRoute> 
      <uavID>1</uavID> 
      <operatorRegion>1</operatorRegion> 
      <isHovering>false</isHovering> 
      <isAutoHover>true</isAutoHover> 
      <HoverTime>30</HoverTime> 
      <IsRouteReassignedToAlternateUAV>false</IsRouteReassignedToAlternateUAV> 
      <IsRealTarget>true</IsRealTarget> 
    </UAV> 
  </UAVs> 
  <Regions> 
    <Sector> 
      <Operator>1</Operator> 
      <rootX>0</rootX> 



55 

      <rootY>3</rootY> 
      <width>12</width> 
      <length>12</length> 
    </Sector> 
    <Sector> 
      <Operator>2</Operator> 
      <rootX>12</rootX> 
      <rootY>4</rootY> 
      <width>12</width> 
      <length>12</length> 
    </Sector> 
    <Sector> 
      <Operator>3</Operator> 
      <rootX>24</rootX> 
      <rootY>1</rootY> 
      <width>10</width> 
      <length>14</length> 
    </Sector> 
  </Regions> 
  <links> 
    <LinkStatus> 
      <strike_status_txt /> 
      <jstars_status_txt /> 
      <convoy_status_txt /> 
      <currentTime>320</currentTime> 
      <Strike_last_comm>0</Strike_last_comm> 
      <JSTARS_last_comm>0</JSTARS_last_comm> 
      <Convoy_last_comm>0</Convoy_last_comm> 
      <Strike_next_comm>0</Strike_next_comm> 
      <JSTARS_next_comm>0</JSTARS_next_comm> 
      <Convoy_next_comm>0</Convoy_next_comm> 
      <Strike_avg_cycle>0</Strike_avg_cycle> 
      <JSTARS_avg_cycle>0</JSTARS_avg_cycle> 
      <Convoy_avg_cycle>0</Convoy_avg_cycle> 
      <strike_connected>false</strike_connected> 
      <jstars_connected>true</jstars_connected> 
      <convoy_connected>true</convoy_connected> 
    </LinkStatus> 
    <LinkStatus> 
      <strike_status_txt /> 
      <jstars_status_txt /> 
      <convoy_status_txt /> 
      <currentTime>620</currentTime> 
      <Strike_last_comm>0</Strike_last_comm> 
      <JSTARS_last_comm>0</JSTARS_last_comm> 
      <Convoy_last_comm>0</Convoy_last_comm> 
      <Strike_next_comm>0</Strike_next_comm> 
      <JSTARS_next_comm>0</JSTARS_next_comm> 
      <Convoy_next_comm>0</Convoy_next_comm> 
      <Strike_avg_cycle>0</Strike_avg_cycle> 
      <JSTARS_avg_cycle>0</JSTARS_avg_cycle> 
      <Convoy_avg_cycle>0</Convoy_avg_cycle> 
      <strike_connected>true</strike_connected> 
      <jstars_connected>true</jstars_connected> 
      <convoy_connected>true</convoy_connected> 
    </LinkStatus> 
  </links> 
  <stats> 
    <StatusMessage> 
      <msgType>1</msgType> 
      <msgText>We will be unavailable for the next 5 minutes</msgText> 
      <msgTime>320</msgTime> 
      <Critical>false</Critical> 
    </StatusMessage> 
  </stats> 
</World> 



56 

Appendix F:  Sample XML Targets File Format 
This section contains a sample XML Targets Data file.  This XML file is necessary whenever the 
Remote Assistance Display (Section 4.2.5) application is used in the experimental platform.  The 
Targets Data file describes several targets, each of which represent a potential “target” that has 
been identified by an Automatic Target Recognition (ATR) system onboard one of the team’s 
UAVs.  Within this file, a number of details are provided about each target to facilitate the 
flexible use of different targets during different simulated scenarios during experimental trials.  
For each target, this file provides: 

• The filename and file location of an image of the target, which represents the image that 
was captured by the (simulated) UAV (AtrImageFile). 

• An initial target classification, which represents the current target classification suggested 
by the UAV operator when he/she requests classification assistance from the mission 
commander (see Section 4.2.5 for details of this process) (OperatorClassification).  This 
value must correspond to a defined value in the ATR_Classification enumeration in the 
TSTEntityLibrary.RemoteOperatorRequest class.  If a new classification type (or a set of 
classifications to be displayed in the Remote Assistance Display) is desired, simply 
update the ATR_Classification enumeration. 

• An initial confidence level, which represents how confident the UAV operator is in the 
suggested target classification.  This value must correspond to a defined value in the 
ATR_Confidence enumeration in the TSTEntityLibrary.RemoteOperatorRequest class.  
Again, if new confidence types are desired, the enumeration can be updated. 

NOTES:   

1. This file must contain enough target definitions to cover all possible Target Classification 
assistance requests.  That is, if the mission commander decides to assist with each target 
identification the team makes, there must be a different / new target description in this 
file to populate the data for each request.  This requirement is not currently checked 
during the initialization / file loading process, but will cause a system failure during run-
time if the program runs out of target data during a new Assistance Request.   A safe rule 
to follow during experimental preparation is to have at least as many target definitions in 
this file as there are possible targets defined in the scenario. 

2. To facilitate with file organization and storage, the Target image files are currently 
located in at “Targets” directory in the same directory as the Simulation Server 
executable.  Notice that the filenames of the image files in this sample file are all prefixed 
with “Targets\” that tells the Simulation Server application to look for the file in the local 
Targets directory. 

 
 
<?xml version="1.0" encoding="utf-8" ?>  
 <AssistanceRequestsFromXML> 
 <AssistanceRequests> 
 <RemoteOperatorRequest> 
 <AtrImageFile>Targets\IED.bmp</AtrImageFile>  

<OperatorClassification>IED_Package</OperatorClassification>  
<OperatorConfidence>High</OperatorConfidence>  

 </RemoteOperatorRequest> 
 <RemoteOperatorRequest> 



57 

<AtrImageFile>Targets\headquarter_1.bmp</AtrImageFile>  
<OperatorClassification>Munitions_Depot</OperatorClassification>  
<OperatorConfidence>High</OperatorConfidence>  

 </RemoteOperatorRequest> 
   </AssistanceRequests> 
 </AssistanceRequestsFromXML> 

 



58 

Appendix G:  Sample Data Log File Format 
Data log files are created automatically by the Simulation Server, whenever a scenario is 
executed in the Simulation Mode screen.  As described in Section 4.2.1, unless otherwise 
specified by the experimenter in the Build Mode screen, the log is written to the file called 
“Sim_Log.txt” in the same folder as the “Simulation Server.exe” executable file.  This file is 
continuously overwritten, unless another filename is specified (see Section 4.2.1 for details of 
saving log data to a specific file).  Data logs are written as ASCII text files, in a compatible 
format to be imported and parsed into columns by MS Excel.  To import a data log file, open 
Excel, invoke the Open File function (Ctrl-O), and select the data log file (you will likely need to 
set the file type to “All Files” to see the desired data log text file).  The import wizard will 
automatically begin the import procedure.  When asked for a delimiter, deselect the default 
“space” or “tabs” (whichever your application is set to use), and select “Other,” and type in a 
tilde (“~”) symbol into the free text box.  The Simulation Server automatically inserts a “~” 
symbol between each value in the data log file entry lines – this makes it difficult to read log 
files with the human eye, but facilitates the import procedure.  The first line of every log file are 
the column headers for the Excel spreadsheet, which defines the column values. 

 
TIME~MESSAGE~CONVOY_MOVING/STOPPED~CONVOY_HEALTH~CONVOY_X_POSITION~CONVOY_Y_POSITION~C
ONVOY_INRANGE_TARGETS~UAV1_REGION~UAV1_X_POSITION~UAV1_Y_POSITION~UAV1_STATUS~UAV2_REG
ION~UAV2_X_POSITION~UAV2_Y_POSITION~UAV2_STATUS~UAV3_REGION~UAV3_X_POSITION~UAV3_Y_POS
ITION~UAV3_STATUS~UAV4_REGION~UAV4_X_POSITION~UAV4_Y_POSITION~UAV4_STATUS~UAV5_REGION~
UAV5_X_POSITION~UAV5_Y_POSITION~UAV5_STATUS~UAV6_REGION~UAV6_X_POSITION~UAV6_Y_POSITIO
N~UAV6_STATUS~UAV7_REGION~UAV7_X_POSITION~UAV7_Y_POSITION~UAV7_STATUS~UAV8_REGION~UAV8
_X_POSITION~UAV8_Y_POSITION~UAV8_STATUS~UAV9_REGION~UAV9_X_POSITION~UAV9_Y_POSITION~UA
V9_STATUS~CONVOY_CONNECTION~JSTARS_CONNECTION~STRIKE_TEAM_CONNECTION~MD_CONVOY_THREAT_
RINGS_FILTER~MD_RANGE_ALL_FILTER~MD_RANGE_SHORT_FILTER~MD_RANGE_MEDIUM_FILTER~MD_RANGE
_LONG_FILTER~MD_UAV_ALL_FILTER~MD_UAV_OP1_FILTER~MD_UAV_OP2_FILTER~MD_UAV_OP3_FILTER~S
D_REGION_ALL_FILTER~SD_REGION_1_FILTER~SD_REGION_2_FILTER~SD_REGION_3_FILTER~ALIVE_UAV
_REGION~DOWN_UAV_REGION~ALIVE_UAV_ID~DOWN_UAV_ID~JSTARS_REGION~BUFFER_VIOLATION_TARGET
_ID~ELAPSED_TIME~IS_TB_VIOLATION~TARGET_ID~CONVOY_ATTACK_TIME~TARGET_CLASS~TARGET_CONF
IDENCE_LEVEL~RAD UAV 

00:00:01~STATUS_MESSAGE: Convoy communication link lost.~moving~100~1~189~~1~13~162~su 
rveilling~1~14~311~surveilling~1~14~536~surveilling~2~265~162~surveilling~2~265~362~su
rveilling~2~264~536~surveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~
surveilling~connected~connected~connected~hide~hide~hide~hide~hide~hide~hide~hide~hide
~hide~hide~hide~hide~0~0~0~0~0~~00:00:00~False~~00:00:00~~~0 

00:00:19~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~38~152~surveilling~1~63~307~sur
veilling~1~15~511~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~264~536~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~hide~hide~hide~hide~hide~hide~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 

00:00:20~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~38~147~surveilling~1~63~302~sur
veilling~1~15~506~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~264~536~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~show~show~hide~hide~hide~hide~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 

00:00:20~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~38~147~surveilling~1~63~302~sur
veilling~1~15~506~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~264~536~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~show~show~show~hide~hide~hide~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 



59 

00:00:20~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~38~147~surveilling~1~63~302~sur
veilling~1~15~506~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~264~536~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~show~show~show~show~hide~hide~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 

00:00:20~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~38~147~surveilling~1~63~302~sur
veilling~1~15~506~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~264~536~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~show~show~show~show~hide~hide~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 

00:00:24~MAP_DISPLAY_FILTER_CHANGE~moving~100~1~189~~1~18~138~surveilling~1~52~286~sur
veilling~1~15~479~surveilling~2~265~162~surveilling~2~265~362~surveilling~2~263~509~su
rveilling~3~565~163~surveilling~3~564~363~surveilling~3~564~537~surveilling~down~conne
cted~connected~show~show~show~show~show~hide~show~hide~hide~hide~hide~hide~hide~0~0~0~
0~0~~00:00:00~False~~00:00:00~~~0 



60 

Appendix H:  Sample Participant Training Tutorial 
Figures 30-42 contain a set of Microsoft PowerPoint slides that was used as the tutorial portion 
of the participant training in one of the experiments performed in the experimental platform (for 
details of the experiment see Wan, 2007).  These slides detail the mission summary and mission 
goals for the participant during the experimental scenarios and summarize the functionality of 
the experimental interfaces they will use during the experiment.  

  
Figure 30.  Tutorial Slide 1 (from Wan, 2007). 



61 

 
Figure 31.  Tutorial Slide 2 (from Wan, 2007). 



62 

 
Figure 32.  Tutorial Slide 3 (from Wan, 2007). 



63 

 
Figure 33.  Tutorial Slide 4 (from Wan, 2007). 

 



64 

 
Figure 34.  Tutorial Slide 5 (from Wan, 2007). 

 



65 

 
Figure 35.  Tutorial Slide 6 (from Wan, 2007). 

 



66 

 
Figure 36.  Tutorial Slide 7 (from Wan, 2007). 

 



67 

 
Figure 37.  Tutorial Slide 8 (from Wan, 2007). 

 



68 

 
Figure 38.  Tutorial Slide 9 (from Wan, 2007). 

 



69 

 
Figure 39.  Tutorial Slide 10 (from Wan, 2007). 

 



70 

 
Figure 40.  Tutorial Slide 11 (from Wan, 2007). 

 



71 

 
Figure 41.  Tutorial Slide 12 (from Wan, 2007). 

 



72 

 
Figure 42.  Tutorial Slide 13 (from Wan, 2007). 

 


