
Application of a Gradient-Based Algorithm to
Structural Optimization

MASSACHUSETTS INSTIMJTE
)bv OF TECHNOLOGY

Pierre Ghisbain MAR 2 6 2009

LIBRARIES
SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2009

@2009 Pierre Ghisbain. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part in

any mledium now known or hereafter created.

Signature of Author:

Department of Civil and Environmental Engineering
January 26. 2009

Certified by:

Cv Professor of Civi an(l
Jerome J. Connor

Environmental Engineering
Thesis Supervisor

Accepted by:

Daniele Veneziano
Chairman. Departmental Commnittee for Graduate Students

A 1E,Fk, -



Application of a Gradient-Based Algorithm to
Structural Optimization

by

Pierre Ghisbain

Submitted to the Department of Civil and Environmental Engineering
on January 28, 2009 in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Civil and Environmental Engineering

at the Massachusetts Institute of Technology.

ABSTRACT

Optimization methods have shown to be efficient at improving structural design, but
their use is limited in the engineering practice by the difficulty of adapting state-
of-the-art algorithms to particular engineering problems. This study proposes the
use of a robust gradient-based algorithm, whose adaptation to a variety of design
problems is more straightforward. The algorithm was first applied to truss geometry
and beam shape optimization, both forming part of the increasingly popular class
of structural form-finding problems. The results showed that the gradient-based
method is an appropriate tool for defining shapes in structures. The robustness of
the algorithm was verified, as a series of structural configurations were treated with
similar efficiency. The gradient-based method was also applied to a more traditional
structural design problem through the optimization of a steel girder, resulting in a
hybrid scheme featuring a truss stiffener. Throughout the study, emphasis was
laid on the practical computer implementation of the gradient-based algorithm in
interaction with structural analysis tools.

Thesis Supervisor: Jerome J. Connor
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Chapter 1

Structural Optimization Overview

Reducing costs while meeting performance standards is a common challenge in struc-
tural design. Engineers typically rely on experience and standardized design pro-
cedures to make their structures more efficient. Though not widely used in the
structural engineering practice, more systematic methods based on mathematical
algorithms and grouped under the generic name of Structural Optimization are avail-
able to help designing efficient structures.

This first chapter is a general introduction to structural optimization, emphasizing
the reasons that motivated the further study of a particular algorithm. The formu-
lation of structural optimization problems in mathematical terms is first presented.
A general solution strategy is introduced, and several methods are detailed. Past
research works are summarized, stressing the difficulties of applying optimization in
the practice of structural engineering and leading to a study proposal.
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1.1 Structural Optimization Problems

Optimization is a vast field of mathematics whose theory is still actively being

developed. But when applied to structural engineering, it is essentially regarded

as a tool helpful to the engineer willing to design more efficient structures. The

traditional gap between mathematics and engineering must be bridged in order to

use the optimization theory to solve actual design problems. This is done through

appropriate formulation of the structural engineering problems, which are written

as mathematical expressions that can be handled by optimization algorithms.

1.1.1 Mathematical Formulation

Mathematicians have divided the field of optimization into several problem cate-

gories, each type of problem being solved by applying specific strategies. Structural

systems often have nonlinear properties, and all structures are subject to physical

constraints. Therefore, it is somehow natural to resort to the branch of mathematics

referred to as nonlinear constrained optimization. The general nonlinear constrained

optimization problem can be stated as follows:

find x

to minimize f(x)

subject to g(x) = 0

and h() < 0

Optimization Variables

x = (Xl, x2 ... xn) is a set of variables whose values are modified during the opti-

mization process. Each variable xi can be binary, discrete or continuous.

Objective Function

f(x) is a scalar function of the optimization variables. The goal of the optimization

process is to minimize the value of f by adjusting the variables composing x.
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Constraints

91(X) hi(x)

g 92(x) Ihh 2(x)
g() = 9 and h()= h2 are vector functions of x.

gp(X) hqx )

A set of optimization variables x is acceptable if gi(x) =0 for i = ... p
Shj(x) <0 for j= 1...q

1.1.2 Structural Engineering Formulation

Various mathematical methods, referred to as algorithms, have been developed to

solve the generic problem presented in section 1.1.1. The principle of structural

optimization is to express a structural engineering problem in the generic mathe-

matical form and to solve it using one of the available algorithms. This section

presents what the variables, objective functions and constraints can be in structural
engineering.

Optimization Variables

The variables considered in structural design optimization can be any feature of the

structure being optimized. When solving a problem, the choice of the optimization

algorithm greatly depends on the type of variables involved. In particular, it is
important to distinguish binary, discrete and continuous variables.

Binary variables are mostly used in connection design and topology optimization (see

section 1.3.2). Examples of such variables include: presence/absence of a bracing

member in a building frame, pinned/rigid connection at a joint.

Discrete variables are typically used to count structural elements and to represent
the properties of structural members available in standard sizes (see section 1.3.1).
Examples of such variables include: wide flange section assigned to a beam, number
of columns in a building, number of bolts forming a connection.
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Continuous variables can represent geometrical features of structures and are also
used in structural member sizing. Examples of such variables include: column-to-

column distance in a building, location of a truss node, thickness of a shear wall.

Variables of different categories can be combined to better represent engineering

problems, although the resolution is usually simpler and quicker when a single type

of variable is involved. Limiting the number of variables is also key to the conver-

gence speed of the optimization algorithm. However, with computers capabilities

increasing fast, there is a tendency to use more variables in optimization problems,
thus reducing the number of assumptions to be made.

Objective Function

The objective function shall represent the goal of the optimization process. Except

for some very high performance structures, good engineering design is a balance

between performance and cost, making structural optimization a multi-objective

problem. Two strategies are employed to end up with a single objective function,
which is necessary to implement efficient optimization algorithms. A first approach
is to use weighting factors to build a single composite function out of several objec-

tives. This method has been used, in particular, to take into account both technical

and architectural considerations in conceptual design problems (Merello, 2006). The

potential applications of this approach seem limited, as composite objective func-

tions are somehow arbitrary. The other strategy is to select a single optimization

objective to be minimized and to express all other objectives as constraints to be

satisfied. This approach is natural in the majority of actual engineering problems.

A typical scenario is to minimize the weight of a structure considering the maximum

allowable deflection as a constraint.

Purely technical objectives such as weight or stiffness have been less used in recent

works, as minimizing the overall cost of structures is what the industry is interested

in. However, cost estimation in terms of the optimization variables is often prob-
lematic. Sustainability objectives, such as minimizing the total embodied energy,
may become more important in structural optimization.
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Constraints

Two categories of constraints are distinguished in structural optimization, depend-
ing on what they apply to.

A first type of constraints are directly applied to the optimization variables. Such
constraints are used, in particular, to set the boundaries of the continuous design
parameters. Constraints can also relate several variables. For example, if two vari-
ables are used to represent the outer diameter and the wall thickness of a steel pipe,
a constraint must impose that the wall be thinner than half of the diameter at all
times.

The other category of constraints applies to the structure being optimized. Deflec-
tion criteria and maximum allowable stresses are typical example of such constraints,
often imposed by the construction codes. Structural analysis is required to check
whether these constraints are respected in a particular design.
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1.2 Solution Strategy

The structural optimization problems introduced in section 1.1 can be solved using
a very diverse range of methods. This section presents the key concepts common
to all structural optimization techniques and governing their implementation on
computers. The main classes of solution strategies are then distinguished.

1.2.1 Algorithmic Approach

A variety of methods have been developed to solve the optimization problems in
their mathematical form. These methods, grouped under the name of optimization
algorithms, are able to minimize an objective function by adjusting variables while
satisfying constraints. In structural optimization, the variables, objective and con-
straints represent physical properties of the structure being optimized. Since the
algorithms deal exclusively with the mathematical form of the problem, they are
interfaced with computer models representing the physical structure. The model is
used to perform structural analyses requested by the optimization algorithm. The
exact interaction scheme between the algorithm and the analysis tool depends op-
timization method, but a general flow chart is represented on figure 1.1.

,-------------------------- ---------------------
STRUCTURAL OPTIMIZATION
ANALYSIS ALGORITHM

Calculate Check
Objective Stopping
Function Criteria

Non-Optimal
Valid Design

DesigDesign
Design

Invalid
Check Design Modify

Constraintso Optimization
Variables

New Design

. . . . . . . . . . . . . . . . . . . . . . . . . .- - - . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.1: General Structural Optimization Flow Chart
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The structural optimization process is iterative. The algorithm generates a design

by assigning values to the optimization variables. After being updated with the

new values of the variables, the structural model is used to perform analysis. The

quality of the current design is characterized by the value of the objective function

and the state of the constraints, both obtained from the analysis results. These

results are taken into account by the algorithm to generate new designs, as long as

the termination criteria are not met.

Each iteration involves algorithmic steps (variables modification and stopping cri-

teria check) and structural analysis steps (constraints check and objective function

calculation). Analysis steps are typically much longer than algorithmic steps. Quick

structural analysis, using efficient programs and simple models, is key to the speed

of the overall process. Optimization time is also reduced by choosing an algorithm

that converges quickly towards the optimal design, thus requiring fewer iterations

and time-consuming analysis steps.

In this study, the Matlab® computing environment was used to run optimization

algorithms, available through built-in optimization toolboxes. An algorithm is seen

as a black box and interacts with two pieces of Matlab® code (.m files) created by

the user to define the objective and constraints of the problem (figure 1.2). The

optimization variables (x) are handled by the algorithm. The external functions

(objective.m, constraints.m) are called by the algorithm whenever it needs to

know the value of the objective function (f) or the state of the constraints (c, ceq)

for a given design. All details can be found in the Optimization ToolboxTM 3 User's

Guide (The MathWorksTM, 2007b).

Matlab® Optimization Toolbox

x f x (c,ceq)

constraints.m

analyze design x
check constraints (c,ceq)

Figure 1.2: Matlab® Optimization Toolbox Flow Chart

objective.m

analyze design x

calculate objective function f
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1.2.2 Optimization Algorithms

While engineers focus on applying existing algorithms to solve physical problems,
the mathematics of optimization is still being developed. Dozens of algorithms are
available to solve the nonlinear constrained optimization problems considered in
structural engineering. The three groups of algorithms distinguished in this section
do not constitute a formal classification of the optimization methods. This is more
of a quick introduction to different types of algorithms, whose applicability and
implementation differ in the context of structural optimization. Moreover, the few
algorithms mentioned here are far from being an exhaustive list of the available
optimization methods.

Gradient-Based Algorithms

Gradient-based algorithms seek to modify the optimization variables that have the
greatest effect on the objective function. The concept of gradient is used to deter-
mine the influence of each variable on the value of the objective function. Since the
gradient cannot be explicitly calculated in most cases, the algorithm estimates it by
slightly changing the value of each variable and measuring the subsequent effect on
the objective function. If the constraints allow it, the change that had the greatest
effect on decreasing the value of the objective function is amplified to generate a
new design and finish the iteration. The process is repeated until a termination cri-
terion is met. Initially developed to deal with continuous variables, gradient-based
algorithms can be adapted to handle discrete parameters as well, though with a loss
of efficiency. Algorithms are also modified to prevent them from converging towards

local optimums. A great advantage of the gradient-based algorithms is their inher-

ent self-adaptivity. At each iteration, the optimization variables are adjusted with
an appropriate magnitude, based on the value of the gradient.



CHAPTER 1. STRUCTURAL OPTIMIZATION OVERVIEW

Search Algorithms

As opposed to gradient-based methods, search algorithms generate new designs at

the beginning of each iteration. Starting with a single current design, a series of new

potential designs is generated by modifying one or several optimization variables.

These changes are more or less arbitrary depending on the algorithm, but a certain

degree of randomness is often involved. Then, the value of the objective function is

calculated and compliance with the constraints is checked for each new design. The

acceptable design with the lowest objective function value is selected as the new

current design, finishing the iteration. The process is repeated until a termination

criterion is met. With no gradient involved, search algorithms are well-suited to

handle discrete variables, which are very common in structural optimization. How-

ever, implementing these algorithms is not always easy, as parameters governing

the generation of the new designs need to be adapted to each particular problem

for the process to converge properly. The convergence of a search algorithm is also

influenced by the initial design considered. Figure 1.3 shows optimization results

obtained with the same algorithm but using different initial conditions. Examples

of search algorithms that have been applied to structural optimization include Sim-

ulated Annealing (Kost and Baumann, 2001), Pattern Search (Baldock et al., 2005),
Tabu Search (Kargahi et al., 2006) and Big Bang/Big Crunch Optimization (Camp,
2007). More details about these algorithms can be found in the references cited.

Figure 1.3: Facade Bracing Optimization by Pattern Search (Baldock et al., 2005)
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Evolutionary Algorithms

Evolutionary algorithms include the popular genetic algorithms, which have been

applied in many fields of science and engineering to solve optimization problems.

Like the search methods previously described, genetic algorithms generate a series of

new designs at each iteration. But instead of keeping a single current design, genetic

algorithms maintain a population of designs that evolves through the optimization

process. The evolution of the design population is inspired by Darwin's survival

of the fittest theory and is governed by mathematical methods seeking to mimic

genetics, each optimization variable representing a gene. At each iteration, parents

are selected among the best designs of the current population. The values of their

optimization variables are mixed to generate children designs, and random changes

are also applied to prevent early convergence of the population. These operations

are described as genetic crossovers and mutations. The best children are added to

the population, while old and less fit designs are removed from it. The process is

repeated until a homogeneous design population is obtained.

The general genetic algorithm pseudo-code is as follows:

Generate initial population

Evaluate each individual fitness

Repeat until termination criterion is met

Pick parents among the best individuals (selection)

Generate children by mixing the parents properties (crossover)

Applies random changes to the children properties (mutation)

Update population with best children

The implementation difficulties mentioned for search algorithms are also encoun-

tered with genetic algorithms. The behavior of genetic algorithms is determined by

parameters governing the selection, crossover and mutation processes, which need

to be adjusted for each particular optimization case. Nevertheless, genetic algo-

rithms have been applied to a variety of structural optimization problems, such as

truss members sizing (Rajeev and Krishnamoorthy, 1992), truss geometry defini-

tion (Kost, 2003), steel frame members sizing (Foley et al., 2007) and shear wall

placement in building frames (van de Lindt and Dao, 2007).
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1.3 State-of-the-Art Review

Even though the use of optimization is still limited in structural engineering prac-

tice, a great deal of research has been carried out in this field. An article by Cohn

and Dinovitzer (2004) summarizes a review of 500 published structural optimization

examples. All types of structures have been treated, and a variety of optimization

algorithms have been used. Other research works have focused on developing algo-

rithms for specific use in structural optimization. This section presents the main

research trends and the potential applications of structural optimization.

1.3.1 Standard Sizing

The primary potential use of optimization in structural engineering is probably to

size the elements composing a structure. It is not always easy to understand the

contribution of each particular member to the overall performance of a large struc-

ture, and optimization can help designing a system meeting a given performance

criterion at a minimal cost. Sizing the members of a steel frame is a common and

repetitive task in structural engineering practice, which explains why many attempts

to automate and optimize the process have been made.

Steel members are most often made of standard steel shapes. The variables repre-

senting the steel shapes in the optimization process are therefore discrete. Arora

(2000) presented 8 algorithms dealing with discrete variables and successfully ap-

plied to structural member sizing. Many examples of frames and trusses member

sizing have been published.

Rigid frames have been optimized using a range of algorithms, such as Simulated An-

nealing (Balling, 1991), Ant Colony Optimization (Camp et al., 2004), Tabu Search

(Kargahi and Anderson, 2006a) and Genetic Algorithms (Alimoradi et al., 2007).

Several algorithms have been used for truss member sizing as well, such as Genetic

Algorithms (Rajeev and Krishnamoorthy, 1992), Outer-Approximation/Equality-

Relaxation (Silih and Kravanja, 2003), Tabu Search (Kargahi et al., 2006) and Big

Bang/Big Crunch optimization (Camp, 2007).
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1.3.2 Topology Definition

The topology of a structure is defined by the arrangement of its constituting ele-

ments. To optimize the topology is to find the combination of structural elements

forming the most efficient structure. Because of its higher level of abstraction,

structural topology optimization is a relatively recent research topic and has little

application in the industry. However, recent developments in topology optimization

have been driven by the growing popularity of form-finding architecture.

Improving bracing schemes in steel frames is a potential application of topology

optimization. Bracing is a traditional bone of contention between architects and

engineers, and to minimize the number of braces and their effect on the appear-

ance of the structure is interesting. Bracing schemes have been optimized using

continuum-based optimization (Mijar et al., 1998), in which frames are fully braced

by a fictitious continuum that is gradually removed to end up with a discrete bracing

system (figure 1.4). More classical algorithms, working by addition and removal of

bracing elements, have also been used. Baldock et al. (2005) used a Pattern Search

algorithm to optimize the topology of a braced facade on a freeform building. Simi-

lar studies were carried out on shear wall placement (van de Lindt and Dao, 2007).

Topology optimization has also been used to define the shape of full structures. Rea-

sonable results were obtained for sparse structural systems, such as truss bridges

and transmission towers (Rahmatalla and Swan, 2003). As form-finding is becoming

increasingly popular, further developments in topology optimization are expected.

Figure 1.4: Continuum Bracing Topology Optimization (Mijar et al., 1998)
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1.3.3 Structural Member Design

The previously described works aim at increasing the overall performance of struc-
tures. Optimization has also been implemented at a lower level to improve the
design of individual structural members.

Slender members, such as beams and columns, can be optimized in two ways. Trans-
verse optimization improves the design of the cross-section, while longitudinal opti-
mization varies the cross-sectional properties over the length of the member to end
up with a more efficient material distribution.

Steel structural members, and wide flanges shapes in particular, are available in
standard sizes of constant cross-sections. Longitudinal optimization of steel mem-
bers has little practical application, as it is usually not considered economically
worthwhile to fabricate steel members of varying cross-sections and designed for a
specific structure and loading. Transverse optimization has more potential appli-
cations, such as the design of buckling-resistant cross-sections to be used in high-
performance columns (Liu et al., 2004).

Optimization of concrete members is of greater interest, as the use of formworks
makes it relatively easy to fabricate optimized concrete members. Depending on
the loading, appropriate cross-sections can be designed and varied over the length of
the member to better distribute the material. Some very practical applications have
been proposed, such as the design of an optimized box girder for concrete bridges
(Cohn and Lounis, 1994). In reinforced concrete structures, the cross-section of ev-
ery member needs to be designed and the reinforcement layout can be optimized to
minimize the cost and simplify fabrication (Balling and Yao, 1997).
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1.3.4 Algorithms Development

The bulk of the published works on structural optimization present the application
of existing algorithms to structural engineering problems. In parallel, some have fo-
cused on modifying the algorithms and developing new methods in order to provide
more efficient tools for structural optimization.

Topology optimization problems are highly nonlinear, as the addition or removal of a
single member can greatly modify the behavior of a structure. This property makes
it difficult to implement traditional optimization algorithms, whose efficiency typi-
cally decreases with the degree of nonlinearity. The concept of topological derivatives
(Mr6z and Bojczuk, 2000) have been used to adapt the optimization algorithms to
topology problems, while the analysis method presented by Kirsch and Papalam-
bros (2000) allows quick calculation of the effect of a topological modification on
the overall performance of a structure. Both of these promising tools have been
successfully applied to the topology optimization of trusses.

Structural optimization is an iterative process and can require advanced analysis at
every step, making a huge number of computations necessary. Managing the CPU
time is a key issue in implementing optimization on computers. Park et al. (2006)
presented a method to better distribute genetic algorithms on a PC cluster and
demonstrated its efficiency on frame and truss optimization problems.
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1.4 Conclusions and Study Proposal

This quick review shows that optimization is applicable to structural design. As a
proof of feasibility, optimization methods have been applied to virtually all types
of structures and successfully solved a variety of engineering problems. Structural
optimization techniques are constantly being improved at both the mathematical
and the implementation levels.

In spite of its potential, optimization is still not widely used in the practice of struc-
tural engineering. This lack of application can be partly explained by the fact that
typical optimization objectives are not fully relevant in the structural engineering
industry. For example, construction speed is more critical than materials cost in
most building projects, making weight minimization methods less interesting. An-
other reason why optimization is rarely used by structural engineering firms is that
its implementation on a particular project can be problematic. The most efficient
optimization methods require a great deal of adjustment to each particular problem,
making their use tedious for structural engineers.

Using more robust algorithms might be a better approach to structural optimiza-
tion. Compared to evolutionary methods, gradient-based algorithms require very
few adjustments to be fully operational on a given optimization problem. Such al-
gorithms are usually slower, but convergence speed is not necessarily a critical issue
if the optimization method is easy to implement.

The following study evaluates the applicability of a gradient-based algorithm to dif-
ferent types of structural engineering problems. Since they are relatively simple to
analyze, trusses have often been used as examples in the development of structural
optimization methods. The geometrical optimization of trusses is proposed as a first
implementation of the gradient-based algorithm in chapter 2. The algorithm is then
applied at a lower level to optimize single structural members with the design of
several beam shapes in chapter 3. To finish, an actual design problem is considered.
A hybrid structure combining beam and truss properties is optimized in chapter 4.



Chapter 2

Truss Geometry Optimization

Trusses are popular examples in structural optimization. Optimization methods

are implemented on structures by running algorithms in interaction with structural
analysis tools. By working on trusses when developing an optimization technique,
one can focus on the algorithmic aspects since this analysis is relatively straightfor-
ward and robust for this type of structure. Many truss optimization examples are
available in the literature, and two categories of problem constitute the majority of
the published works. Theoretical studies have been carried out on optimizing truss
topologies, while other works have focused on the much more practical problem of
optimal member sizing.

The geometry of a truss is characterized by the locations of its nodes. It can be seen
as an intermediate level between the topology and the constitutive members. In a
traditional truss design process, the geometry would be adjusted after defining the
topology and before sizing the members. Geometry optimization has not been as
popular as topology definition or member sizing, and fewer examples are available.
The growing popularity of form-finding architecture may increase the interest for
geometry optimization. Therefore, truss geometry optimization was selected as a
first application example for the gradient-based algorithm considered in this study.
A matrix analysis method was used as the engine of a quick truss analysis tool pro-
grammed to interact with the optimization algorithm. The resulting optimization
program was applied to the geometry optimization of various truss configurations.
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2.1 Truss Matrix Analysis

The proposed gradient-based optimization algorithm needs to interact with a struc-
tural analysis tool in order to optimize trusses. Since algorithmic optimization
methods are iterative, structural analysis is repeated many times throughout the
optimization process. These successive analyses represent most of the overall time
needed to reach the optimal solution. For the optimization process to be reasonably
fast, it is important to couple the algorithm to a structural analysis tool that is effi-
cient at solving the type of structure considered. Trusses are quickly analyzed using
stiffness matrices, provided that a simple linear behavior can be assumed. This
section presents the main steps for solving trusses by matrix analysis and proposes
a convenient way of using this method in the context of optimization.

2.1.1 Linear Truss Model

Each truss member contributes to the rigidity of the full structure. The behavior of
an individual truss member is governed by several force-displacement relationships
summarized in a matricial form called stiffness matrix.

Models of different complexities can be used to derive the stiffness matrix of a
truss member. In this study, a simple linear model is considered. Nonlinear terms
affect the way trusses deform under loading, but they do not change the solutions
to the geometry optimization problems considered here. Typically, a truss being
optimized for stiffness converges towards the same optimal geometry with linear
and nonlinear models, even though the magnitudes of the deflections differ slightly.
Nonlinear effects are therefore not considered, allowing for faster structural analysis
and a reduced optimization time.
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2.1.2 Three-Dimensional Truss Member Stiffness Matrix

Considering a linear model, the force-displacement relationship for a three-dimensional
truss member is expressed as a 6-by-6 stiffness matrix. The derivation of the stiffness
matrix is detailed in appendix A, and its final expression is given below.

The truss member (figure 2.1) is lim-

ited by two nodes (A, B). Each node

has 3 degrees of freedom corresponding

to the orthogonal directions [z, y, z].
The nodal displacements in these di-
rections are noted as [u, v, w] respec-

tively. The truss member is subject to
externally-applied loads and to the ac-

tions of the other members connected to
its nodes. The nodal forces are noted

as [Fx, F,, F,]. The stiffness matrix

relates the nodal displacements to the

nodal forces and depends on the geome-
try and properties of the truss member.

For a truss member of length L, cross-sectional area
whose orientation is described by the angles 0 and
force-displacement relationship is expressed as:

F = KU with the stiffness matrix

where

FxA

FyA

FzA

FxB

FyB

FzB

U

The stiffness matrix of every constitutive
the matrix analysis process of a truss.

ZA WB VB

FzB Fy E

SUB

Fx B

UA I

Fy A Fz A

Figure 2.1: Truss Member

A, modulus of elasticity E and

9y as shown on figure 2.1, the

EA
K= GGT

L --

UA

VA

WA

UB

VB

WB

cos 0 cos p
sin 0 cos o

sin p
-cos 0 cos p
-sin 0 cos po

-sin po

member is calculated as the first step of
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2.1.3 Full Truss Solution

Full Truss Stiffness Matrix

The stiffness matrix of every member of the truss is built as described in section 2.1.2.

These matrices are combined to represent the full truss as a large stiffness matrix,
using the following term-by-term matrix addition:

Truss Member 1 Truss Member 2

A(1 K A B _ K 2 UB
K(B 1) K 1) K(2) K 2)- B BA -BB U B c cB -CC c-

Truss Members 1 and 2

A K K(1)z-AA 'AB L0K (1) K (1) + K(2) K((2 U
-BA -BB -BB BC BC

c  K(2) K UC
-- CB - CC ) -C

For a truss with N nodes, the size of the full stiffness matrix is 3N-by-3N. It relates
the displacements of the nodes to the applied loads and reaction forces acting on
the truss. The stiffness matrix of the full truss cannot be used is this initial form

and needs to be rearranged and reduced to solve the truss analysis problem.

Rearrangement and Reduction

Three categories of degree of freedom are distinguished, as introduced by the exam-

ple shown of figure 2.2.

t t
Figure 2.2: Truss

t t DOFs Distinction
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The stiffness matrix of the full truss is rearranged by grouping the degrees of freedom

into the 3 proposed categories. The non-zero external forces and the free degrees of

freedom are combined to form the column vectors P, R, Uc and U as follows:

Degrees of Freedom External Forces Displacements

Control DOFs P UC

Unconstrained DOFs 0 UU

Fixed DOFs R 0

The external forces P are applied at the control degrees of freedom, whose displace-

ments are noted as Uc . There is no force (forces = 0) acting on the unconstrained

degrees of freedoms, whose displacements are noted as Uu . Reactions R occur at

the fixed degrees of freedom, whose displacements are 0. The force-displacement

relationship for the full truss is now written as:

P KPc Kpu Kpo Uc
S = Koc ou Ko u (2.1)

R KRc KRU KRO 0 /
The externally applied forces P are known, and the goal is to solve for Uc, Uu and

R. By using the lines of (2.1) as 3 equations, the displacements Uc and UU and the

reactions R can be expressed as functions of the applied loads P:

Uc = £c U = u EP (2.2)
Control DOFs Flexibility Matrix: F C = (KP - Ku K K )1 -1

Unconstrained DOFs Flexibility Matrix: F u  = -Ku Koc E

Force Equilibrium Matrix: E = KRc F + Kau E

In the following, the three matrices defined in (2.2) are referred to as intermediate

matrices, as they are just tools to solve (2.1) but have little physical meaning. The

stiffness matrix of a full truss can be very large, so the calculation of Fc, F U and E

require many operations. When implementing optimization on computers, not all

three of these matrices are always needed. For example, if a cantilever truss-beam

with a point load applied at the end is being optimized to limit the deflection of the

free extremity, only F is needed since one only wants to calculate the displacement

of a control degree of freedom.
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2.2 Truss Optimization Program

Truss geometry optimization was implemented in Matlab ® . A built-in optimization

toolbox was used to run the gradient-based algorithm, and a program was developed

to define and analyze trusses in interaction with the optimization tool. Trusses were

analyzed using the stiffness matrix method presented in section 2.1. The strategy for

implementing structural optimization on computers was introduced in section 1.2.1

and more details on the Matlab® optimization tool can be found in the Optimization

ToolboxTM 3 User's Guide (The MathWorks TM , 2007b).

2.2.1 Schematic Diagram

Figure 2.3 shows the group of Matlab® functions used to optimize trusses and the

way they interact. Each rectangle represents a function, that is, a piece of code

contained in a separate file. The arrows represent arguments being passed between

functions. The layout is top-down, meaning that a function called during the execu-

tion of another function is represented below the latter function. More clarifications

about the schematic diagram can be found in appendix C. The functions objective,

constraints and output interact directly with the optimization toolbox, while all

other functions form the truss analysis program.

Figure 2.3: Truss Optimization Program Schematic Diagram
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2.2.2 Functions Description

The operations carried out by the functions represented on the schematic diagram

(figure 2.3 p.27) are described in this section. The code is available in appendix D.

Optimization Objective Function - objective

The objective function (objective) is required to use the Matlab ® optimization

toolbox (see figure 1.2 p.13). It is called by the optimization algorithm whenever

it needs to evaluate the quality of a design scenario. The algorithm sends the

current values of the set of optimization variables (x) to the objective function. The

objective function transmits these variables to the truss analysis function (analyze)

which returns the results of the analysis: list of truss nodal displacements (Ulist)

and reaction forces (Flist), total weight of the truss (w) and various data about the

truss members (Mt). Using these data, the objective function evaluates the value (f)

of the current truss, and the way this is done depends on the goal of the optimization

process. For example, if a cantilever truss-beam is being optimized for stiffness, the

objective value is the deflection at the free extremity. This value is returned to the

optimization algorithm, whose goal is to minimize (f) by adjusting the values in (x).

Optimization Constraints Function- constraints

The constraints function (constraints) is required to use the Matlab® optimization

toolbox (see figure 1.2 p.13). It is called by the optimization algorithm whenever it

needs to check whether a design scenario is acceptable or not. It is used to define

the boundaries of the optimization variables and the criteria that the optimal truss

must meet. The function receives the values of the optimization variables (x) from

the optimization algorithm and returns two series of numbers (c, ceq) calculated

from the optimization variables. The design scenario is acceptable if all numbers

in the first list (c) are negative and all numbers in the second list (ceq) are zero.

For example, if the truss has to meet a deflection criterion, the constraints function

(constraints) calls the analysis function (analyze), finds the maximum deflection

from the deflection list (Ulist) and returns a positive constraint value (c) if the

deflection criterion is not met.
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Main Truss Analysis Function - analyze

This function does not directly carry out analysis operations but manages the suc-

cessive steps of the truss analysis process by calling other functions. The analysis is

triggered by the objective function, which transmits the values of the optimization

variables (x). The functions corresponding to the 5 steps of the analysis process are

called successively:

1. TRUSS DEFINITION. The values of the optimization variables (x) are passed to

the truss definition function (define_truss), which returns information about

the truss geometry and mechanical properties: list of truss nodes (Nt) and

associated degrees of freedom (DOFt) and list of truss members (Mt) containing

information such as their length, orientation, stiffness ...

2. STIFFNESS MATRIX CALCULATION. The truss members information (Mt) and

the list of degrees of freedom (DOFt) are passed to the stiffness matrix calcula-

tion function (stiffness), which returns the stiffness matrix of the full truss

(Kt).

3. STIFFNESS REDUCTION. The full stiffness matrix (Kt) cannot be directly used

to solve the problem. Some intermediate matrices, described in section 2.1.3,

are needed. The lists of control degrees of freedom (DOFc) and fixed degrees

of freedom (DOFf) are defined in the analysis function and passed to the ma-

trix reduction function (reduce) along with the full stiffness matrix (Kt) and

the full list of degrees of freedom (DOFt). The flexibility matrices (Fc, Fu),

the force equilibrium matrix (E), the list of unconstrained degrees of freedom

(DOFu) and the rearranged full list of degrees of freedom (rDOFt) are returned.

4. PROBLEM SOLUTION. A list of loads (P), corresponding to the control degrees

of freedom (DOFc) is defined in the analysis function. It is passed to the

problem solution function (solve) along with the intermediate matrices (Fc,

Fu, E) and the lists of degrees of freedom (DOFc, DOFu, DOFf). The lists

of the truss nodal displacements (Ulist) and support reactions (Flist) are

returned.

5. DEFORMATION ANALYSIS. Truss members information (Mt) and nodal dis-

placements (Ulist) are passed to the deformation analysis function (def ormations).

The truss members information (Mt) is returned, containing additional data

about the truss members in the deformed configuration (displacements, strains ... )
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Apart from the main analysis process, the weight calculation function (weight) is

called. The weight (w) is calculated from the truss members information (Mt).

Truss Definition Function - define_truss

This function contains two lists of data entered by the user and defining the truss

to be optimized.

1. NODES LIST. A list of nodes (Nt) defines the coordinates and degrees of free-

dom of the truss nodes (in trusses, the degrees of freedom are all nodal dis-

placements).

2. MEMBERS LIST. A member definition list (dMt) defines the truss members,
assigning to each member two nodes and some mechanical properties (section

area, material elasticity). This list is passed to a processing function (members)

which returns a modified version of the list (Mt), containing additional infor-

mation to be used in the following steps of the analysis process.

The truss definition function accepts the design variables (x) as input, and these

variables can be used in both lists defining the truss. For example, if the goal is

to optimize the truss geometry, the coordinates of some nodes can be defined by

optimization variables. If the material distribution is being optimized, then the

cross-sectional area of the truss members can be defined by optimization variables.

Truss Members Processing Function - members

In the truss members definition list (dMt), the geometry of each truss member is

simply defined by its two nodes. This list (dMt) is passed with the nodes list (Nt) to

the truss members processing function (members). This function retrieves the nodes

coordinates from the nodes list (Nt) to calculate the length (L) and orientation

(0, 0) of each truss member by calling a geometry function (geometry). This

information is returned to the truss definition function (definetruss) as a more

detailed list of truss member properties (Mt).
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Truss Member Geometry Function - geometry

This function accepts the coordinates of both nodes of a truss member as arguments

(xa, ya, za, xb, yb, zb) and returns the length (L) and orientation (0, ¢) of

this member.

Truss Stiffness Matrix Calculation Function- stiffness

This function receives the full list of the truss degrees of freedom (DOFt) and the

truss members list (Mt) as inputs. For each truss member in the list (Mt), the

function sends the member length (L), its orientation (0, ¢), its cross-sectional

area (A) and elasticity (E) to the member stiffness matrix calculation function

(member_stiffness), which returns the member stiffness matrix (Km). The terms of

the member stiffness matrix (Km) are distributed in the truss stiffness matrix (Kt) as

described in section 2.1.3. The order of the terms is defined by the list of the truss

degrees of freedom (DOFt). When the contribution of every truss member has been

taken into account, the truss stiffness matrix (Kt) is returned.

Member Stiffness Matrix Calculation Function - member_stiffness

This function accepts the length (L), the orientation (0, ), the cross-sectional area

(A) and the elasticity (E) of a member as inputs. The stiffness matrix of this member

(Km) in the global coordinates is calculated as in section 2.1.2 and returned.

Stiffness Reduction Function - reduce

This function transforms the truss stiffness matrix (Kt) into the 3 intermediate

matrices described in section 2.1.3 and needed to solve the problem. In addition to

the truss stiffness matrix (Km), the function accepts the full list of degrees of freedom

(DOFt), the list of the fixed degrees of freedom (DOFf) and the list of the control

degrees of freedom (DOFc) as inputs. First, a list of unconstrained degrees of freedom

(DOFu) is generated (degrees of freedom that are neither fixed nor controlling). Then

the intermediate flexibility matrices (Fc, Fu) and the force equilibrium matrix (E)

are calculated and returned, along with the list of unconstrained degrees of freedom

(DOFu) and a rearranged full list of degrees of freedom (rDOFt).
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Problem Solution Function - solve

This function multiplies the intermediate matrices (Fu, Fc, E) by the load vector
(P) to calculate the nodal displacements and reaction forces. The lists of nodal
displacements (Ulist) and reaction forces (Flist) are returned.

Deformations Analysis Function - deformations

This function uses the nodal displacements (Ulist) and the truss members list (Mt)
to calculate quantities due to the truss deformation (strains, stresses, forces ... ).

This information is added to the truss members list (Mt), which is returned.

Weight Calculation Function - weight

The truss members list (Mt) is sent to the weight calculation function (weight),
which returns the total weight of the truss (w).

Optimization Output Function - output

Though not required to use the MatLab® optimization toolbox, the output func-
tion (output) is directly called by the optimization algorithm. At the end of each
iteration, the current values of the optimization variables (x) are sent to the output
function (output), which can store the data and generate plots to represent the
evolution of the optimization process.
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2.3 Truss Geometry Optimization Examples

The computer program described in section 2.2 was used to find optimal geometries

for various truss configurations. The results are presented in this section.

2.3.1 General Considerations

In the examples presented in this section, only the geometry of the truss is optimized,
while the truss topology and members properties remain constant.

Constant Truss Topology

The topology of a truss is defined by the arrangement of its constituting mem-

bers. Since the topology is constant, no member is added nor removed during the

optimization process, and all member-to-member connections remain fastened.

Constant Member Properties

In truss analysis, the key properties of each member are its cross-sectional area and

modulus of elasticity, both used to calculate the member stiffness. If buckling is

considered, the cross-sectional moment of inertia becomes another important prop-

erty for compression members. All member properties are considered constant in

the geometry optimization problems presented in this section.

Variable Truss Geometry

The geometry of a truss is defined by the location of its nodes. As nodes are moved

during the optimization process, member lengths and orientations are modified,
changing the overall shape of the truss.

Since only the geometry was optimized, unit cross-sectional areas were assigned to all

truss members. The magnitudes of the loads were adjusted so that all deformations

remain elastic. The optimization variables used to parameterize the geometry of

the trusses were also unitless. The resulting structures have therefore no technical

meaning, but optimal geometries can still be obtained. In chapter 4, an actual

structure with truss properties is optimized and constitute a more practical example,
supported by numerical values.
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2.3.2 Planar Cantilever Truss Beam

A cantilever truss beam made of 10 segments is defined and parametrized as shown

on figure 2.4. A truss segment is a group of members arranged in a pattern that

is repeated in the direction of the beam. In this truss, each segment is made of

4 members: top, bottom, vertical and diagonal. The optimization variables are the

lengths of the vertical members, and the objective is to minimize the end deflection.

hh 4 hi hih hn

L

Figure 2.4: Cantilever Truss Beam Parametrizetion

The following unitless values and constraints are imposed:

ho = 10 L = 105 1<hi 50 for i = 1...10

A lower limit of 1 is used to prevent the truss from becoming unstable. The upper

limit of 50 defines a reasonable search space for the optimization algorithm. No

optimization variable reaches either limiting value, meaning that the search for the

optimal geometry is not restricted by the constraints. The shape evolution leading

to the optimal geometry (figure 2.5) is shown on the next page.

Figure 2.5: Cantilever Truss Beam Optimal Geometry

Considering the bending moment diagram, a triangular shape tapering towards the

free extremity could have been expected. The oval shape obtained instead is due to

the fixity. For the arbitrary combination of member sections and load magnitude

considered in this example, the fixity is too short to allow for an optimized triangular

shape. This phenomenon is shown on the three-dimensional cantilever truss-beam

treated in section 2.3.5.
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ITERATION 0. All optimization variables have an initial value of 10, so that each

truss segment is square. End deflection: 14.02

ITERATION 1. The depth of the beam starts growing at the fixity, creating a curved

shape. End deflection: 11.57

ITERATION 4. The increase in depth propagates towards the free extremity of the

beam. End deflection: 9.38

ITERATION 8. Propagation stops approximately at mid-span. End deflection: 8.61

ITERATION 12. The shape is smoothed as the final adjustments of the optimization
variables are made. End deflection: 8.46

CHAPTER 2.
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2.3.3 Multi-Span Truss Bridge

Two similar truss bridges are optimized. Both bridges are made of 30 truss segments

forming three spans and parametrized by the lengths of the vertical members. In the

first bridge (figure 2.6), each span is an independent simply-supported truss beam.

The second bridge (figure 2.7) is made of a single continuous truss beam resting

on 4 supports. A uniform distributed load is applied at the bottom chord of both

bridges. The objective is to minimize the aggregate deflection, defined as the sum

of the maximum deflections of each span.

h 1 4 7 8 14 20 21 24 27

L1 L2 L3

Figure 2.6: Truss Bridge 1 Parametrization and Optimal Geometry

h 1 4 8 15 22 26 29

L L2 L3

Figure 2.7: Truss Bridge 2 Parametrization and Optimal Geometry

The following unitless values and constraints are imposed to both bridges:

L 1 = 80 L2 = 140 L3 = 80 5 < hi < 25

In both cases, the optimal shape corresponds to the magnitude of the bending

moment acting on the bridge. The optimal shape of the first bridge features a flat top

chord at the middle of the longer span. At this location, where the bending moment

is maximum, the optimization variables have reached the upper limit imposed by

the constraints (h = 25), affecting the optimal shape expected. The shape evolution

of both bridges is shown on the next page.
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Shape Evolution of Truss Bridge 1

Figure 2.8: Truss Bridge 1 Shape Evolution

Shape Evolution of Truss Bridge 2

-':7

Figure 2.9: Truss Bridge 2 Shape Evolution
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2.3.4 Semi-Circular Truss Arch

A semi-circular truss arch is modeled as a series of 20 truss segments, as shown
on figure 2.10. The arch is pinned at both fixities and a point load is applied at
mid-span.

Figure 2.10: Truss Arch Topology

In this example of truss geometry optimization, the overall shape of the structure
is fixed. The objective is to minimize the deflection at mid-span while keeping the
semi-circular appearance of the arch. It is known that semi-circular arches are not
the most efficient ones, so the design can only be partially optimized. This is a very
common situation in structural engineering, as architecture does not necessarily
compromise with structural efficiency.

The arch is set to remain semi-circular throughout the optimization process by
appropriately parametrizing the problem (see figure 2.11 p. 39). What is being
optimized is the distribution of the truss members within a semi-circular envelope.
Since the problem is symmetric, optimization is carried out on one half of the truss
arch only.
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The half-arch considered for optimization is made of 10 truss segments, each segment

being limited by two radial truss members (i.e. members oriented towards the center

of the circular arch). The location of each radial member within the semi-circular

envelope is parametrized by an angle 0, as shown on figure 2.11. The angles are

selected as optimization variables, so that the radial members of the truss can be

displaced by the optimization algorithm.

i+1

Figure 2.11: Truss Arch Parametrization

The following unitless values are fixed:

R = 100 t = 10

To prevent the truss segments from overlapping or
following constraints are applied to the optimization

becoming infinitely small, the
variables:

10 < 01
Oi-1 + 10 < 0i

< 800

< (79 + i)o for i = 2... 10

The optimization variables are therefore not fully independent in this problem.

Starting with a random distribution of the radial members, the evolution of the

truss arch is shown on the next page.
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ITERATION 0

A list of angles satisfying the constraints is randomly
generated and used as the initial design for the opti-
mization process. Top deflection: 12.25

ITERATION 6

As the optimization algorithm starts running, the truss
segments tend to even out. The radial truss members
are almost evenly distributed over the quarter circle.
Top deflection: 9.13

ITERATION 15.

The even design is stable during a few iterations, before
a longer truss segment appears. Top deflection: 8.82

ITERATION 18.

The size of the longer segment keeps increasing, as the
other segments shrink. Top deflection: 7.05

ITERATION 25.

The shrinking segments eventually collapse, leading to
a final design equivalent to a single compression mem-
ber. Top deflection: 2.87

The design with truss segments of even sizes was a
local optimum. After a few iterations around that de-
sign, the algorithm was able to find a shape which,
considering the constraints, was better. However, the
final design obtained is not be acceptable since the goal
was to optimize a semi-circular arch. More constraints

(e.g. buckling) would be needed to make the design
converge towards an more acceptable shape.
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2.3.5 Triangular Cantilever Truss Beam

A triangular truss beam is modeled as a series of 9 truss segments, whose arrange-
ment is shown on figure 2.12.

Figure 2.12: Triangular Truss Beam Topology

A cantilever problem is considered. The left extremity of the truss is fixed and two
point loads are applied at the other end. The height of each truss segment (shown
as hi on figure 2.13) can be varied as an optimization variable. The objective is to
minimize the deflection of the free extremity.

'P

Figure 2.13: Triangular Truss Beam Parametrization

The following unitless values and constraints are imposed:

w = 10 L = 180 1 < hi < 80 for i=0...9

The evolution of the truss geometry leading to the optimal shape is represented on
the next page.

CHAPTER 2.
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ITERATION 0

ITERATION 3

ITERATION 6

Figure 2.14: Triangular Cantilever Truss Beam Shape Evolution

In the initial design, all truss segments have a height of 10. The depth of the truss

beam starts increasing at the fixity, leading to a roughly triangular but still irregular

shape. The truss segments close to the fixity reach the limiting depth of 80, causing
flattening of the shape. The flat portion propagates towards the free end of the
beam, stopping approximately at mid-span. The remaining of the triangular shape
is rounded up, leading to the final design. This result is discussed on the next page.
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When optimizing a cantilever structure, a triangular shape corresponding to the
bending moment is intuitively expected. In the optimal design previously obtained

(reproduced on figure 2.15), several optimization variables have reached the upper
limit imposed by the constraints (i.e. depth of 80), affecting the overall geometry.

Figure 2.15: Optimal Shape Consid-
ering a Depth Constraint

The same beam was optimized with no depth constraint. The resulting optimal
design (figure 2.16) is the expected triangular shape. The left part of the truss is
deeper than the limit of 80 previously applied.

Figure 2.16: Optimal Shape with No
Depth Constraint

To finish, the beam was optimized with a single constraint limiting the depth of the
first segment to 20. Like in the two-dimensional example presented in section 2.3.2,
an oval shape is obtained (figure 2.17).

Figure 2.17: Optimal Shape Consid-
ering a Depth Constraint at Fixity
only

Optimization constraints can have a significant effect on the final geometry and
must therefore be carefully applied.
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2.3.6 Rectangular Clamped Truss Beam

A rectangular truss beam is modeled as a series of 10

rangement is shown on figure 2.18.

truss segments, whose ar-

Figure 2.18: Rectangular Truss Beam Topology

A double cantilever problem is considered. Both extremities of the truss are fixed

and a same point load is applied to every node on the top of the truss, resulting in

a uniform distributed load. The height of each couple of vertical members (shown

as hi on figure 2.19) can be varied as an optimization variable. The objective is to

minimize the deflection at mid-span.

0 i i+1 10

L

Figure 2.19: Rectangular Truss Beam Parametrization

The following unitless values are fixed:

L = 300 ho = hio = 20 wi = 10 for i = 0... 10

The optimization variables are limited by the following constraints:

1 <hi < 20 for i= 1...9

The evolution of the truss geometry leading to the optimal shape is represented on

the next page.
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The optimization process is quick, meeting the termination criterion after 10 itera-
tions only. The truss takes a shape that resembles the bending moment acting on a
clamped beam subject to a distributed load.

ITERATION 10

Figure 2.20: Rectangular Clamped Truss Beam Shape Evolution
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2.3.7 Square Truss Shaft

The rectangular truss beam used as a double cantilever in section 2.3.6 is now

modified to represent a square truss shaft. The loads and fixities are changed and a

new parametrization of the geometry is used, as shown on figure 2.21.

i i+1 P

Figure 2.21: Square Truss Shaft Parametrization

The left extremity of the truss is fixed and 4 point loads are applied at the other

end in order to create a torque in the axial direction of the shaft. The dimensions of

all truss segments are now constant, but these segments are allowed to rotate about

the axis of the shaft. The rotation 0 of each segment is an optimization variable.

The following unitless values are fixed:

L = 300 Shaft cross-section = 20 x 20

The optimization variables are limited by the following constraints:

-180' < 0i < 180' for i = 1...10

The evolution of the truss geometry leading to the optimal shape is represented on

the next page.
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ITERATION 0

ITERATION 4

ITERATION 8

ITERATION 12

ITERATION 16

ITERATION 26

Figure 2.22: Square Truss Shaft Shape Evolution

The shaft takes a twisted shape opposite to the orientation of the applied moment.

Deformation starts at the free extremity, where the torque is applied, and then

propagates towards the fixity. The optimal design (figures 2.23 and 2.24) features a

constant rotation rate.

Figure 2.23: Optimal Shape - Side View

Figure 2.24: Optimal Shape
- Perspective View



Chapter 3

Beam Shape Optimization

Sizing beams and columns is a necessary step in every building design project.

Automating and optimizing this process is consequently of great interest to the

structural engineering practice. Many methods have been proposed to optimize the

performances of building frames by appropriately sizing the constitutive members.

At a lower level, the design of individual structural members can also be optimized.

Beam shape optimization is to design the cross-section and distribute the mate-

rial over the length of the member to improve its performance and/or reducing its

cost. The performance of a beam is typically characterized by a stiffness, buck-

ling or vibrational property, while the cost depends on the amount of material and

on various fabricability aspects. Beam shape optimization has not been as widely

developed as optimizing beam sizes in building frames, since non-standard beam

shapes are often considered of little practical use. However, optimized shapes ob-

tained through form-finding processes are becoming increasingly popular. Moreover

some new, sustainable definitions of cost, including the concepts of life cycle cost and

embodied energy, give more importance to the amount of material used in structures.

The gradient-based algorithm previously used to optimize trusses was therefore

applied to beam shape optimization as well. Two beam analysis methods were

considered to interact with the algorithm, and optimal shapes were obtained for

various beam configurations.
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3.1 Analytical Beam Optimization

The structural optimization method discussed throughout in this report involves a

gradient-based algorithm in interaction with a structural analysis tool. A first ap-

plication to truss geometry optimization was presented in chapter 2. The methods

of this type, with an optimization routine generating successive trial designs in an

effort to find the optimal one, are called algorithmic optimization methods. They

can be opposed to the analytical optimization methods, whose principle is to ex-

plicitly derive optimal solutions by analyzing the structure. In practice, analytical

solutions are derived by hand, whereas algorithmic solutions are obtained through

computer implementation.

Algorithmic methods are necessary to optimize large-scale structures requiring com-

puter analysis. But single structural components, such as beams or truss members,
are simple enough for explicit solutions to be found. Analytical optimization can

therefore be used to improve the performance of individual structural components.

This section presents a strategy for analytically optimizing beams for stiffness under

a weight constraint.

3.1.1 Design Problem

Lightness and stiffness are conflicting objectives in beam design. For a given beam

shape, stiffer members are also heavier. (e.g. the only way to stiffen a wide flange

beam of given depth is to increase the flanges thickness, resulting in a heavier

member). The stiffness-to-weight ratio depends on the beam geometry. For a given

beam depth, wide flange beams have higher stiffness-to-weight ratios than any other

flexural member of constant cross-section. Still, this ratio can be increased by

varying the cross-sectional properties. The goal of beam shape optimization is to

design non-standard members with improved balance between lightness and stiffness.

The problem can be approached in two different ways:

1. Finding the lightest beam meeting a given deflection criterion

2. Finding the stiffest beam of a given weight

The solutions to these problems are equivalent, as optimal beam shapes can be

scaled up and down to achieve a particular weight or deflection criterion.
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3.1.2 Constant Curvature Criterion

It is often said about bending members that an efficient design should resemble

the bending moment diagram. Constant curvature is sometimes considered as an

optimality criterion for beam design. For beam of material elasticity E and cross-

sectional moment of inertia I subject to a bending moment M, the curvature is

expressed as:

d dO M(x)
C - (3.1)

dx EI(x)

For the curvature to be constant, the moment of inertia of the beam must be pro-

portional to the bending moment acting on it:

I(x) = alM(x)f where c = constant (3.2)

Equation (3.2) can be used as a basis to develop an optimal beam design. The

moment of inertia I needs to be replaced by its expression in terms of the chosen

design parameters (e.g. beam depth, flanges thickness ... ), and the parameter a is

adjusted to meet a given deflection criterion or a given weight limit imposed on the

full beam.

The next section presents a modification of ( 3.2) for beam stiffness optimization

under a weight constraint.
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3.1.3 Derivation of a Modified Criterion

In this section, an optimality criterion for bending member design is analytically
derived. For the purpose of this analysis, the quantity whose optimal distribution
is to be determined is the cross-sectional moment of inertia I. The bending rigidity
distribution has less physical meaning than the material distribution, but it has
the advantage of being general to all types of beam sections. Section 3.1.4 explains
how the optimal bending rigidity distribution can be transformed into an optimality
criterion for material distribution.

Therefore, even though this has no physical meaning, it is assumed that a total
amount of available inertia is fixed. For a beam of length L:

'tot = 1 I(x)dx (3.3)

The goal is to find the bending rigidity distribution I(x) that minimizes the deflec-
tion at a chosen point.

The model used as illustration is a simple cantilever beam (figure 3.1), and the
goal is to find the moment of inertia distribution I(x) that minimizes deflection at
the free extremity. This cantilever is a determinate system, for which the bending
moment diagram is fully known from the applied loads. The generalization to inde-
terminate systems, whose bending moment diagram depends on the bending rigidity
distribution, is treated is section 3.1.4.

Xo -xi- Xi Xn

Figure 3.1: Participation of Segment Rotation in Beam Deflection
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The moment of inertia distribution is derived from the discrete model shown on

figure 3.1 (p.51) and then transformed into a continuous distribution. Discrete

models are also considered for computer implementation.

As shown on figure 3.1 (p.51), the rotation of the i-th beam segment (segment

between xzi- and xi) accounts for ui in the total deflection. Since all rotations are

considered small, fi can be expressed as:

Ui = (i - Oi- 1)(xn - zi-1) (3.4)

In this discrete model, the bending moment is considered constant over each beam

segment. The bending moment acting on the i-th beam segment (between xi-1 and xi)

is noted as Mi . When implementing optimization with numerical computer pro-

grams, the bending moment is usually known at the points xi only. In this case, the

bending moment Mi can be estimated as:

M(Xi-1) + M(xi)

2

The moment-curvature equation (3.1) is discretized:

dO - M(x -+ (Oi - 0i-1) (i - i-1) (3.5)
dx El(x) E 1i

Equations (3.4) and (3.5) yield:

Ui- (xi - xi-1)(n - i-1) (3.6)
E li

Notations are simplified:

Ui = - where aji - (xi - xi)(x - 1) (3.7)
Ii E

Starting with a random allocation of the available inertia to the beam segments, the

strategy is to transfer some inertia from segments to others in order to incrementally

decrease the total deflection.
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The effect of a change in Ii on the deflection participation ui is described by the

derivative:

d 9i 1 ( a
dl dl 1Ii + dl (3.8)

'-
l\ I

Two beam segments a and b are now considered. Their moment of inertia are noted
as Ia and Ib, and their contribution to the total deflection are Ua and Ub respectively.
Their aggregate contribution to the total deflection is:

Ua+b = Ua + Ub

The derivatives dil/dl can be calculated using (3.8). Assuming that:

d -a dib / ,\

dl dl (3.9)

Then a small amount of inertia AI is transferred from Ib to Ia. The new contribu-
tions of segments a and b to the total deflection are:

Ua' Ua + dAI
dl

dUb
and Ub = Ub - Aldl

The new aggregate contribution of segments a and b to the total deflection is:

Ua+b a Ua/+Ub

a + Ub - b dAI
dl dl

= a+b (dUb d Ia
= b dl dl

Ua+b < Ua+b

The total deflection is decreased. As AI was transferred from Ib to Ia, segment b

lost rigidity, increasing Ub, while segment a gained rigidity, decreasing Ua. But the

decrease in Ua was greater than the increase in Ub, which is what (3.9) represents.

CHAPTER 3.
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Similar transfers of inertia can be done between any couple of beam segments whose
derivatives di/dl are different, every transfer reducing the total deflection u. The
smallest possible deflection is reached when no more transfer of inertia can decrease

it, that is, when all the derivatives diil/dl are equal.

d-ui -- Ii - 0 2 -- 1 ai (3.10)

/0, /1 and all other /k terms used in the following represent constants. It is conve-
nient to use such terms to group all the constants, since the goal is to find the shape

of the optimal moment of inertia distribution, which can then be scaled to achieve

a given weight or deflection. The term ai is replaced by its expression (3.7), giving

the discrete moment of inertia distribution:

Si2= 1 Xi-1)(n - i-1) (3.11)

The discrete distribution (3.11) is made continuous:

li I(s)
i M( I(x)2  /2 (L - x) (3.12)

xi - xi-1 -+ constant E

Xn - Xi-1 - L - x

The continuous distribution (3.12) can be written as:

I(x) = 0 (L - x)M(x) (3.13)

The term /(L - x)M(x) is the shape of the optimal moment of inertia distribution.

The scaling factor / can be adjusted in order to achieve a given weight or deflection.

Further adjustments are necessary for implementation. The bending moment M(x)

and the distance to maximum deflection (L - x) must be taken as absolute values,
and a lower limit must imposed to I(x) to keep some material at the inflexion points,
where the bending moment is zero.
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3.1.4 Implementation of the Modified Criterion

Actual Optimization Variables

An expression for the optimal bending rigidity distribution was derived in sec-

tion 3.1.3. In practice, one is not directly interested in the bending rigidity dis-

tribution. Most often, the goal is to optimize for weight and stiffness, and the

optimal material distribution is sought. Material distribution is described by the

cross-sectional area A(x). The total volume of material V and the weight of the

beam W are:

V = A(x)dx and W = pV where p is the material density

One can either fix the total weight and determine the stiffest beam, or fix the max-

imum allowable deflection and determine the lightest beam meeting that deflection

criterion. For same fixity and loading conditions, the optimal material distribution

differs only by a scaling factor between the two problems.

The optimal moment of inertia distribution was found by splitting the beam into

small segments, expressing the contribution of each beam segment to the total de-

flection, and setting the derivative of that contribution with respect to the moment

of inertia to be equal for all segments (see section 3.1.3)

Mi (L - xi) d-i Mi(L - xi)Ui Oc li - d o i2 opt(x) oC V(L - x) M (x)

The proportionality symbol (cc) is used, as one is only interested in the shape of the

optimal distribution, which is then scaled to achieve a given weight or deflection.

The beam property governing bending deformation is the moment of inertia I. It can

be directly related to the cross-sectional area if the section has a single optimization

parameter (e.g. rectangular section height, circular section radius ... ). In order to

find the optimal area distribution A,,pt(), one cannot simply replace the optimal

inertia distribution Iopt(x) by its expression in terms of the area. The substitution

must be done prior to taking the derivative, which is then taken with respect to the

area. Since the inertia-area relationship depends on the cross-section geometry, the

operation has to be done separately for each type of beam.
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As an illustration, the optimal material distribution is derived for two types of solid
cross-section.

Circular Section

For a circular cross-section of radius r, the cross-sectional area A and the moment
of inertia I can be related:

A = rr2

4

A2

47r

The segment contribution Ui to the overall deflection is expressed in terms of the
cross-sectional area, and the derivative is taken:

Mi(L - xi)
Ui (cx

li
_ Mi(L- xi)
U- i o

A?
dii Mi(L - xi)

c-+ -
dA A3

A constant derivative corresponds to the optimal material distribution:

Aopt(x) c( [(L - x)M(x) ]1/3 (3.14)

Rectangular Section

The breadth b of a rectangular cross-section is fixed and its height h is kept as the

only variable. The cross-sectional area A and the moment of inertia I can therefore

be related:

A = bh
bh3

12

A3

12b 2

The segment contribution ui to the overall deflection is expressed in terms of the
cross-sectional area, and the derivative is taken:

Mi(L - xi)
i

S Mi(L - xi)
-- i Oc

dLui Mi(L - xi)

dA Af

A constant derivative corresponds to the optimal material distribution:

Aopt(s) oc [(L - x)M(x) ]1/4 (3.15)

CHAPTER 3.
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Indeterminate Systems

In indeterminate systems, the bending moment acting on the beam depends on

the stiffness distribution. And since the stiffness distribution is derived from the

bending moment, the problem is coupled. An iterative approach is proposed to find

the optimal material distribution for indeterminate beams.

If the cross-section is parametrized by a single variable (e.g. pipe diameter, tube

wall thickness ... ), then the cross-sectional area A and the moment of inertia I can

be related. The material distribution is better represented by the cross-sectional

area A(x), and therefore the optimal distribution Aopt(x) is sought.

A beam with constant cross-sectional area A (1 ) is considered as the initial design:

Beam Volume

Beam Length

The loads P are applied and the system is solved to find the acting bending moment:

P ~M(1) (X)
A( 1)(x) - (1)(x) (1 (

The material distribution is updated using a formula analytically derived and equiv-

alent to (3.14) or (3.15):

A( 2)(x) = F(x, M(1)(x))

The process is repeated, k representing the iteration:

A(k)(X) j(k) M(k)

A(k+l)(x) F(x, M(k)(x))

The area distribution A(k)(x) converges towards an the optimal distribution Aopt ().

Convergence is quick, since the sensitivity of the bending moment to the changes in

bending rigidity is limited for typical beam configurations.
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3.2 Numerical Moment Integration

Following its application to truss geometry optimization (chapter 2), the gradient-

based algorithm discussed in this report is proposed as a form-finding method for

individual beams. Gradient-based optimization is iterative and many successive

beam designs are analyzed during a beam shape optimization process. Therefore,

the gradient-based algorithm needs to interact with an analysis tool that is efficient

at solving beam problems. A first analysis strategy is to implement on a computer

the well-known equations governing the behavior of beams: the bending moment

is integrated twice to calculate the beam deformation. This method is applicable

to some beam configurations and is therefore presented in this section. The other

analysis technique is to model the beam with stiffness matrices and is detailed in

the next section (3.3).

3.2.1 Limitations to the use of Analytical Integration

In a pure bending beam (no shear deformation), the bending moment M, the neutral

axis rotation 0 and the deflection u are related through:

dO du
M=EJd O  and 0 = (3.16)

dx dx

The rotation 0 and deflection u can be calculated using:

.X M(x)
O(x) = E + M(x) dx (3.17)

x0 EI()

u(x) = uo + 0O(x) dx (3.18)

However, such computations cannot always be carried out by computer programs.

First, the analytical expression of the bending moment M(x) is needed. Second, a

computer code must be able to perform the integration. Third, even when analytical

integration is technically possible, the required computations can be slow, which is

problematic in the context of iterative optimization. It is easier and faster to resort

to numerical integration. This allows the program to deal only with numbers and

no variable.



CHAPTER 3. BEAM SHAPE OPTIMIZATION

3.2.2 Integral Approximation

Numerical integration is equivalent to approximating the integral by area calcu-
lation. In order to perform a numerical integration of the bending moment over
the beam, the system must be discretized. Figure 3.2 illustrates the discretiza-
tion. Instead of a continuous analytical expression M(x), the bending moment is
numerically known at (n + 1) points distributed along the beam. These points are
called integration points, and their coordinates in the beam direction are noted

X0, Xl, ---Xn. The moment at the integration point xi is noted as Mi. Integration
points separate the beam into segments, and the moment of inertia of the beam is
considered constant over each segment. The moment of inertia of the beam segment
between integration points xi and xi+1 is noted as Ii,i+l.

Mih+i 
--------------

MI M - Mi Mi+ M M

o,1 1,2 ii+1 I-,n

I I I -------- ---- I I >X > X
Xo X1 X2 Xi Xi+1 Xn-1 Xn Xi Xi+1

Figure 3.2: Integration Points on a Beam Figure 3.3: Affine Approximation

Starting with an initial rotation 00, the rotation 0 would be analytically calculated
at each integration points, using:

1i+1
0 i+1 - Oi + E Jj J,1M(x) dx (3.19)

In order to easily calculate the integral in (3.19), the moment is assumed to vary

linearly between two successive integration points (figure 3.3). Then, its integral is

estimated as the area Ai,i+,:

i  
) dMi = Aii+ Mi+ 

(3.20)M (x) dx \Ai +M 2 ) (Xi+ 1 - Xi) (3.20)



The recursive relationship used for numerical integration is therefore:

611 )= (i Mi +Mi+ )(xi+ - xi)

The same process is used to calculate the deflection u by integrating the rotation 0:

and SXi+1xi

Oi + 0i+)1 (i+
2 ) i+

O(x) dx Oi Oi+ )(x i+l - x i)

- xi) (3.22)

3.2.3 Boundary Conditions

Recursive relationships (3.21) and (3.22) are enough to calculate the rotation and

deflection at all integration points if the initial rotation 00 and deflection u0o are

known. Though some beam configurations impose uo = 0, the initial rotation 00

is usually not known. A strategy is to first calculate a pseudo-rotation 0 and a

pseudo-deflection 7 corresponding to zero initial rotation and deflection:

and i+1 = i + E ,i+
Mi +xMi+MA + M1ii (xi+i - xi)

2
(3.23)oi + Oi+l

Uo = 0 and Ui+ 1 = ui + (i i2 (xi+i - xi)

The actual rotation 0 and deflection u can be written as:

(3.24)

0o and uo are determined by applying equations (3.24) to rotations and/or displace-

ments known from boundary conditions.

(3.21)

ui+1 = Ui + I i O(x) dx

-- + Ui+l - Ui +

00 = 0

0 i = 00 + 0 i

ui = Uo + 0 0 (Xi - X0) + Ti

CHAPTER 3. BEAM SHAPE OPTIMIZATION
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3.2.4 Example

In this example, numerical integration is used to calculate the rotation and deflection

of a simply-supported beam loaded at mid-span.

P {M(x)
PLE 1

4 x

L XO Xl X2 X3 X4 X5 X6 X7 X8 X9 X10

Figure 3.4: Problem Figure 3.5: Discretization

The problem is presented on figure 3.4. The point load P = 10 kip is applied at the

middle of the beam of length L = 100 in whose constant section moment of inertia is

I = 2in4. The problem is discretized at 11 integration points, evenly spaced along

the beam (figure 3.5). By applying equilibrium, the bending moment is known at

all integration points. Table 3.1 shows the values calculated during the numerical

integration process.

i xi Ali i ui 0i Ui
0 0 0 0.000 0.000 -0.108 0.000

1 10 50 0.004 0.021 -0.103 -1.056

2 20 100 0.017 0.129 -0.090 -2.026

3 30 150 0.039 0.409 -0.069 -2.823

4 40 200 0.069 0.948 -0.039 -3.362

5 50 250 0.108 1.832 0.000 -3.556

6 60 200 0.146 3.103 0.039 -3.362

7 70 150 0.177 4.720 0.069 -2.823

8 80 100 0.198 6.595 0.090 -2.026

9 90 50 0.211 8.642 0.103 -1.056

10 100 0 0.215 10.77 0.108 0.000

Table 3.1: Simply Supported Beam Numerical Integration



Once 0i and Ui are calculated using (3.23), boundary conditions are used with (3.24)

to determine uo and 00:

uo + 0(io - X0o) + -10 o 0 -4 00 = -- O = -0.108
X10 - X0

The pseudo- (0, -) and final (0, u) deformations are represented on figure 3.6:

-5

-10
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 3.6: Numerical Integration Steps

The analytical solution for the rotation at x = 0 is:

PL2

Omax = 00 - 0.108 rad
16EI

(3.25)

The analytical solution for the deflection at mid-span is:

PL3

Umax = U5 = PL = 3.592 in
48EI

(3.26)

In this particular case, numerical integration gives the exact rotation value. This

is because the actual bending moment varies linearly between integration points,
making the affine approximation (figure 3.3 p.59) equivalent to the exact integral.

Since the rotation is not linear, its numerical integral differs from the exact integral.

This is why there is a 1% difference between the exact deflection and the value

obtained by numerical integration. Only 11 integration points were considered, and

the difference could be made even smaller by increasing the number of points.

Uo = 0

Uio = 0

2 Rotation (rad)

1 e-0.
-0.2,

0

0 Deflection (in)
5 U

U

BEAM SHAPE OPTIMIZATIONCHAPTER 3.
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When programming numerical integration to implement optimization, it is impor-

tant to consider a sufficient number of integration points for the model to be sensitive

enough to the adjustments of the optimization variables. In order to keep the total

number of integration points reasonably low, more points should be allocated to the

portions of the beam where the bending moment has large derivatives (e.g. around

mid-span supports of multi-supported beams). Adaptive algorithms can be used

to perform these more precise numerical integrations. Such algorithms detect large

derivatives and increase the number of integration points where necessary. These are

especially useful if many load cases are considered in the optimization process, mak-

ing it necessary to numerically integrate different bending moments, whose higher

derivatives are not always at the same locations.

If the applied loads are known but not the bending moment (i.e. indeterminate

systems), deflection calculation by numerical integration is still possible but more

complex. The shear force is calculated by summing the loads applied along the

beam, and variables must be introduced to represent the reaction forces and mo-

ments. These variables are kept as unknown during the integration process. 3

successive integrations are carried out to get the deflection, and boundary condi-

tions are applied to find the reaction forces and initial rotation and displacement.

Since variables are used, much of the advantage of numerical integration is lost

and the process is slower. Another analysis method is therefore needed to solve

indeterminate beam configurations.
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3.2.5 Numerical Integration Code

The Matlab® code below numerically integrates the bending moment on a simply-

supported beam to calculate its rotation and deflection.

1 function[R,U]=numerical_integration(X,I,M);
2
3 E=29000;
4 n=length(X);
5
6 R=[O] ;
7 for i=1:1:n-1;

8 R=[R, R(i)+(M(i)+M(i+l))/(2*E*I(i))*(X(i+l)-X(i))];
9 end;
10

11 U=[01 ;
12 for i=1:1:n-1;
13 U=[U, U(i)+(R(i)+R(i+l))/2*(X(i+l)-X(i))];
14 end;
15

16 uO=0;
17 rO=-Ut (n) / (X (n)-X (1) ) ;
18

19 R=R+rO;

20 U=U+uO+rO*(X-X(1));

X (i) x-coordinate of i-th integration point

I(i) : moment of inertia of beam segment between i-th and (i+l)-th points

M (i) : bending moment at the i-th integration point

R(i) rotation at the i-th integration point

U(i) : deflection at the i-th integration point

6-9 calculates rotation by integrating bending moment

11-14 : calculates deflection by integrating rotation

16-17 calculates initial rotation and deflection

19-20 adds the effect of initial deformations to rotation and deflection

Lines 16 and 17 are specific to the beam support conditions. In this example, initial

rotation and deflection are calculated for a beam simply-supported at both ends.

Only these two lines need to be modified to deal with other beam configurations.
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3.3 Beam Matrix Analysis

The numerical moment integration method presented in section 3.2 is an efficient

tool to solve determinate beam problems with the speed and accuracy necessary in

optimization. Indeterminate systems can still be solved by numerical moment in-

tegration, but the process is slower since integration constants must be introduced,
making the method loose its advantage of handling only numbers. The matrix

analysis method used in chapter 2 to optimize trusses is well-suited to handle inde-

terminate systems and is therefore considered for beam optimization as well. This

section presents the main steps for solving beams by matrix analysis and proposes

a convenient way of using this method in the context of optimization.

3.3.1 Linear Model

Beam shape optimization deals with beams of non-constant cross-sections. In ma-

trix analysis, such beams can be modeled as series of small beam segments whose

cross-sectional properties are varied independently. The behavior of an individual

beam segment is governed by several force-displacement relationships summarized

in a stiffness matrix.

Models of different complexities can be used to derive the stiffness matrix of a beam

segment. In this study, a simple linear model is considered. Nonlinear terms affect

the way beams deform under loading, but they do not change the solutions to the

shape optimization problems considered here. Typically, a beam being optimized for

stiffness converges towards the same optimal shape with linear and nonlinear mod-

els, even though the magnitudes of the deflections differ slightly. Nonlinear effects

are therefore not considered, allowing for faster structural analysis and a reduced

optimization time.

A two-dimensional horizontal beam model is sufficient for the beam shape opti-

mization problems treated in this study, further simplifying the stiffness matrices.
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3.3.2 Beam Segment Stiffness Matrix

Considering a linear model, the force-displacement relationship for a two-dimensional

beam segment is expressed as a 4-by-4 stiffness matrix. The derivation of the stiff-

ness matrix is detailed in appendix B, and its final expression is given below.

A

MA
VA E,I B

FA L FB

MB

MB

Figure 3.7: Beam Segment

The beam segment (figure 3.7) is limited by two nodes (A, B). Each node has 2

degrees of freedom [v, 0] representing a vertical displacement and a rotation respec-

tively. The beam segment is subject to externally-applied loads and to the actions of

the other beam segments connected to its nodes. The resulting loads IV, M] acting

at the nodes correspond to the shear force and bending moment in the beam. The

stiffness matrix relates the nodal displacements [v, 0] to the nodal forces [V, M] and

depends on the properties of the beam segment.

For a beam segment of length L, cross-sectional moment of inertia I

lus of elasticity E, the force-displacement relationship is expressed as:
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The stiffness matrix of every segment is calculated as the first step of the matrix

analysis process of a beam.
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3.3.3 Full Beam Solution

Full Beam Stiffness Matrix

The stiffness matrix of every beam segment is built as described in section 3.3.2.

These matrices are combined to represent the full beam as a large stiffness matrix,

using the following term-by-term matrix addition:

Beam Segment 1 Beam Segment 2
SA K K UA B 2  K UB2

-LLAA AB __ -BB ,BC --

(1) K ~1  UB K(2) (2)

Beam Segments 1 and 2
( FA ( K~E KU~E0WMA(1)

SAA -AB

FB = I (1) K (1) + K(2) K ( UB
-B BA -BB -BB -BC UB

F c 0 K(2) (2) U c
-- ) CB - CC

For a beam discretized into (N-1) segments, the size of the full stiffness matrix is

2N-by-2N. It relates the displacements of the nodes to the applied loads and reaction

forces acting on the beam. The stiffness matrix of the full beam cannot be used is

this initial form and needs to be rearranged and reduced to solve the beam analysis

problem.

Rearrangement and Reduction

Three categories of degree of freedom are distinguished, as introduced by the exam-

ple shown of figure 3.8.

Figure 3.8: Sample Beam Configuration (left) Modeled as 4 Beam Elements (right)
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The stiffness matrix of the full beam is rearranged by grouping the degrees of freedom

into the 3 proposed categories. The non-zero external forces and the free degrees of

freedom are combined to form the column vectors P, R, Uc and UU as follows:

Degrees of Freedom External Forces Displacements

Control DOFs P ULC

Unconstrained DOFs 0 UU

Fixed DOFs R 0

The external forces P are applied at the control degrees of freedom, whose displace-

ments are noted as Uc . There is no force (forces = 0) acting on the unconstrained

degrees of freedoms, whose displacements are noted as UU . Reactions R occur at

the fixed degrees of freedom, whose displacements are 0. The force-displacement

relationship for the full beam is now written as:

P Kpc Kpo Uc

0 1 Koc K o K00 Uv  (3.27)
IKRC RU Ro

The externally applied forces P are known, and the goal is to solve for Uc, UU and

R. By using the lines of (3.27) as 3 equations, the displacements Uc and UU and

the reactions R can be expressed as functions of the applied loads P:

ULc = F c P u = Fv P R = EP (3.28)

Control DOFs Flexibility Matrix: F = (Kpc - Kpu K Kc)-1

Unconstrained DOFs Flexibility Matrix: Fu = - 1 Koc Fc

Force Equilibrium Matrix: E = KRc F c + KRu Fu

In the following, the three matrices defined in (3.28) are referred to as intermediate

matrices, as they are just tools to solve (3.27) but have little physical meaning. The

stiffness matrix of a full beam can be very large, so the calculation of Fc, Fu and E

require many operations. When implementing optimization on computers, not all

three of these matrices are always needed. For example, if a simply-supported beam

loaded at mid-span is being optimized to limit the mid-span deflection, only Fc is

needed since one only wants to calculate the displacement of a control degree of

freedom.
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3.4 Beam Optimization Program

Beam optimization was implemented in Matlab ® . The program created to optimize

trusses (section 2.2) was modified to handle beams. The truss optimization program

used a built-in optimization toolbox to run the optimization algorithm and featured

a truss analysis tool based on stiffness matrices. Since the same gradient-based

algorithm was used for beam optimization and since beams can also be analyzed

using stiffness matrices, very few modifications of the program were necessary.

3.4.1 Schematic Diagram

Figure 3.9 shows the group of Matlab® functions used to optimize beams and the

way they interact. Clarifications about the schematic diagram can be found in

appendix C. The functions objective, constraints and output interact directly

with the optimization toolbox, while all other functions form the beam analysis

program. All functions are described in section 2.2.2 for the very similar truss

optimization program, and the code is available in appendix D.

Figure 3.9: Beam Optimization Program Schematic Diagram
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3.5 Beam Shape Optimization Examples

The computer program described in section 3.4 was used to find optimal beam

shapes for various support conditions. The results are presented in this section.

3.5.1 General Considerations

Objective

A beam of solid rectangular cross-section (figure 3.10) is optimized by adjusting the

material distribution in order to increase the overall stiffness. A solid cross-section

is considered because the shape of a solid beam clearly reflects its material distri-

bution, turning the stiffness optimization into a more visible form-finding process.

In practice, however, solid cross-sections are more relevant for concrete beams.

10

Optimization Variables

The beam is sliced into segments whose

heights are varied individually. The ---

beam has a total length of 400 and is 10 -h -----

discretized into 40 segments of length

10. The depth (hi) of each beam seg-

ment is an optimization variable. The ' -- 10i

number of variables can be reduced to ----- 10 (i-1)

20 for symmetric problems. The beam

has a constant width of 10. All numer-

ical values are unitless.
Figure 3.10: Beam Parametrization

Constraints

The beam cannot be shallower than 10 nor deeper than 30 at any point. The total

volume of material is limited to 80000, corresponding to a constant depth of 20.

These constraints are expressed as:
40

10 < hi < 30 for i = 1... 40 hi < 800
i=1

During the optimization process, no structural analysis is not needed to check the

constraints, since they are directly expressed in terms of the optimization variables.
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3.5.2 Clamped Beam

The optimal beam design process is detailed on the example of a clamped beam,

with moment connections at both ends. The results for other beam configurations

are presented in the next sections (3.5.3 - 3.5.7).

Problem Configuration

The beam is fully restrained (displacement and rotation) at both extremities and

subject to a uniformly distributed load over its whole span.

Figure 3.11: Problem
Configuration

Shape Evolution

Starting with a uniform material distribution, the optimization algorithm varies the

depth of the beam to minimize its mid-span deflection. The initial design given to

the algorithm has an effect on the convergence speed of the process.

I I 0

S.........1

IZ z-zczzz2cZZ

I~ _ _" Ii

~ ccli

Iteration

Figure 3.12: Shape Evolution Depending on Initial Depth

The left-hand side of figure 3.12 shows a few steps of the optimization process initial-

ized with the deepest uniform beam satisfying the constraints (depth=20, limited

by the amount of material available). The algorithm redistributes the material and

reaches the optimal design, as defined by the stopping criterion, after 15 iterations.

On the right-hand side, the process is initialized with the shallowest beam satisfy-

ing the constraints (minimum depth=10). In that case, some additional material is

directly added where it is most needed, resulting in a faster convergence after only

10 iterations.

r~nIcl7~?rr~7fi
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Optimal Material Distribution

The optimal material distribution (figure 3.13) generated by the algorithm features

two shallow portions, corresponding to inflexion points when the load is applied.

- Figure 3.13: Optimal

Material Distribution

The shape of the optimal material distribution resembles the bending moment dia-

gram (figure 3.14), with the exception of the curvature at both fixities. The variation

in beam thickness is limited at the fixities, while the derivative of the bending mo-

ment is maximum. The difference is due to the constraints imposed to the depth of

the beam and to corrective effects presented in section 3.1.

Figure 3.14: Bending Moment Act- M (x lO)

ing on Clamped Beam 1

M(x) = 12 (6Lx - L 2 - 6 2)  0

Unitless graph for x
L = 400 and w = 1 0 100 200 300 400

The optimal material distribution minimizes the deflection at mid-span, as shown

on figure 3.15. The deflection of the optimized beam is decreased by 40% compared

with a beam made with the same amount of material uniformly distributed.

Figure 3.15: Stiffness Comparison

The application of the optimization algorithm allows for a significant increase in

structural efficiency. However, the curved shape obtained would not be convenient

in actual constructions. Further modifications of the material distribution are nec-

essary to complete the design of a usable optimized beam.
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Top Surface Flattening

Beams typically support horizontal surfaces, making inconvenient the use of the

curved shape obtained from optimization. The material is shifted to end up with

a flat top surface (figure 3.16) keeping the optimal distribution in the longitudinal

direction of the beam.

.. Figure 3.16: Flattened
Beam

Cross-sections are not modified as the beam is flattened. Therefore, as long as the

slopes on the curved bottom surface are reasonably small, the flattening of the beam

does not affect its deflection (figure 3.17).

Figure 3.17: Flattened Beam Deformation

Cambering

The flattened beam can be cambered to pre-compensate for deflection. Cambering

is not an additional difficulty for this type of optimized beam, since curved shapes

are fabricated anyway. The final beam shape is represented on figure 3.16, with an

exaggerated camber.

Figure 3.18: Cambered
Beam

When the load is applied, the top surface of the beam becomes horizontal (fig-

ure 3.19). In its final configuration, the optimized beam can be seen as architec-

turally interesting.

Figure 3.19: Cambered Beam Deformation



3.5.3 Two-Support Beam

The beam is supported at both extremities and subject to a uniform distributed

load.

Figure 3.20: Problem
Configuration

The algorithm is run to optimize the material distribution.

(figure 3.21) is oval.

The resulting shape

Figure 3.21: Optimal
Material Distribution

The mid-span deflection of the optimized beam is decreased by 32% compared with

a beam made with the same amount of material uniformly distributed.

Figure 3.22: Stiffness Comparison

Based on the optimal material distribution, a practical beam (figure 3.23) is designed

so that its top surface is horizontal when the load is applied.

Figure 3.23: Practical
Beam Design
(Exaggerated Camber)
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3.5.4 Three-Support Beam

The beam is supported at both extremities and at mid-span. A uniform distributed

load is applied.

Figure 3.24:
Configuration

Problem

The algorithm is run to optimize the material distribution. The resulting shape

(figure 3.25) features 2 shallow portions, corresponding to inflexion points when the

load is applied.

Figure 3.25: Optimal
Material Distribution

The aggregate deflection of the optimized beam is decreased by 39% compared with

a beam made with the same amount of material uniformly distributed.

I I--- ......- ~~- --

; z Tmz T T 4.mT TmTzIrT

Figure 3.26: Stiffness Comparison

Based on the optimal material distribution, a practical beam (figure 3.27) is designed

so that its top surface is horizontal when the load is applied.

Figure 3.27: Practical
Beam Design
(Exaggerated Camber)
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3.5.5 Four-Support Beam

The beam is supported by 4 supports evenly spaced and is subject to a uniform

distributed load.

Figure 3.28: Problem
Configuration

The algorithm is run to optimize the material distribution. The resulting shape

(figure 3.29) features 4 shallow portions, corresponding to inflexion points when the

load is applied.

Figure 3.29: Optimal
Material Distribution

The aggregate deflection of the optimized beam is decreased by 43% compared with

a beam made with the same amount of material uniformly distributed.

Figure 3.30: Stiffness Comparison

Based on the optimal material distribution, a practical beam (figure 3.31) is designed

so that its top surface is horizontal when the load is applied.

Figure 3.31: Practical
Beam Design
(Exaggerated Camber)

I I
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3.5.6 Simple Cantilever Beam

The simple cantilever beam is subject to a uniform distributed load.

U I . . 7
Figure 3.32: Problem
Configuration

The algorithm is run to optimize the material distribution. The resulting shape

(figure 3.33) tapers towards the free extremity. The shape is not exactly triangular,
due to the constraints imposed to the beam depth.

I _
Figure 3.33: Optimal
Material Distribution

The free extremity deflection of the optimized beam is decreased by 51% compared

with a beam made with the same amount of material uniformly distributed.

Figure 3.34: Stiffness Comparison

Based on the optimal material distribution, a practical beam (figure 3.35) is designed

so that its top surface is horizontal when the load is applied.

Figure 3.35: Practical
Beam Design
(Exaggerated Camber)

I I
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3.5.7 Hybrid Cantilever Beam

A pinned support is added at 1 / 3rd of a simple cantilever beam. A uniform dis-

tributed load is applied.

- .. . .. .. . . Figure 3.36: Problem
Configuration

The algorithm is run to optimize the material distribution. The resulting shape

(figure 3.37) features a shallow portion between the fixities, corresponding to an

inflexion point when the load is applied. The beam is deeper around the pinned

support, where the bending moment is maximum. The cantilever portion tapers

towards the free extremity.

SFigure 3.37: Optimal

Material Distribution

The free extremity deflection of the optimized beam is decreased by 50% compared

with a beam made with the same amount of material uniformly distributed.

I -------------- ---------

Figure 3.38: Stiffness Comparison

Based on the optimal material distribution, a practical beam (figure 3.39) is designed

so that its top surface is horizontal when the load is applied.

Figure 3.39: Practical
Beam Design



Chapter 4

Design Optimization Example

In the previous chapters, a gradient-based optimization method was applied to truss

and beam form-finding. The algorithm proved to be self-adaptive to a range of struc-

tural configurations, making implementation relatively quick and simple. In this last

chapter, the robustness the gradient-based method is further evaluated by applying

the same algorithm to a different type of structural design problem.

A simple girder was first optimized as part of the design process of a bridge. Com-

pared with the form-finding problems treated before, this is a more practical ap-

plication of optimization since the goal was to adjust the sizes of the constitutive

members.

The girder was then stiffened with a truss system, and the resulting hybrid struc-

ture was also optimized as a whole. This last example, combining beam and truss

behaviors, shows that the gradient-based method is applicable to the optimization

of more complex systems.
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4.1 Problem Introduction

The chapter is based on an actual design problem requiring optimization. The

context, objective and constraints of the problem are presented in this section.

4.1.1 ASCE/AISC Student Steel Bridge Competition

The Student Steel Bridge Competition is a national contest co-sponsored by the

American Society of Civil Engineers (ASCE) and the American Institute of Steel

Construction (AISC). The competing teams, representing their schools, must design

a 20-foot long steel bridge and fabricate its constitutive pieces. On the day of the

competition, each team assembles its bridge as fast as possible. The structures are

then weighted and tested for deflection. The weight, stiffness and construction speed

are taken into account to determine the winner.

Figure 4.1: MIT Steel Bridge 2007-08

The problem posed by the Student Steel Bridge Competition is a good example for

optimization. It is of practical use, as a structure is to be built and presented at the

contest. But unlike real-world projects, the problem to be solved in the context of

the competition is very well-defined through a set of rules.
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4.1.2 Rules Summary

The Student Steel Bridge Competition is governed by new rules every year. The main

rules for the 2009 edition are summarized in this section. The detailed rules can be

found in the Student Steel Bridge Competition 2009 Rules (ASCE/AISC, 2008).

Overall Design Deck Supports

The bridge must fit in the bounding

box represented of figure 4.2. Two deck 240

supports must be provided over the full

length of the bridge, but no actual deck 24

is required. Pieces of deck will be in- 42"

stalled and loaded for the deflection

test. The entire structure must stand 12" 36" 1212" 36" 12"

below the deck supports and rest on four

legs. Figure 4.2: Steel Bridge Bounding Box

Fabrication

The pieces constituting the bridge are fabricated by the teams before the compe-

tition. The main constraint is that every piece must fit within its own prismatic

bounding box of 42" x 6" x 6". All pieces must be made exclusively from steel and

be rigid. Pieces shall be made as light as possible, as the weight of the bridge is

taken into account in the evaluation.

Assembly

During the contest, the bridge is assembled from the prefabricated pieces initially

placed in a staging area next to the construction site. No pre-assembly is allowed,

meaning that every piece must be individually added to the bridge. Every connection

must be fastened with a bolt. The assembly process is subject to many rules defining

where the builders can operate and what they can do. Construction speed forms

part of the evaluation of the bridge.
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Load Test

Two pieces of deck loaded with 1250 lb each are successively placed on the supports.

The locations of the loads, measured from the left extremity of the bridge, are

determined by two dice rolls rl and r2.

Location of First Load

Location of Second Load

x, = 40 + 6 ri (inches)

X2 = 110 + 6r 2 (inches)

As a result, 36 load cases are possible. Three deflections are measured during the

test to evaluate the stiffness of the bridge:

dia

dib

d2

Deflection of one side of the bridge at x, due to first load

Deflection of other side of the bridge at xl due to first load

Deflection of either side of the bridge at x2 due to both loads

The aggregate deflection is defined as d = dia + dib + d2

Bridge Evaluation

The construction cost C, is defined as:

n = number of builders

T = construction time (min)

The structural cost CQ is defined as:

= bridge weight (lb)

= aggregate deflection (in)

-+ Construction Cost C, = nT

- Structural Cost CQ = 5w + 400d

The total cost Ct of the bridge is defined as Ct = C, + C,

The bridge with the lowest total cost wins the competition. In 2008 the winning

bridge (UC Berkeley) was assembled in 3 min 38 sec, weighted 142 lb and had an
aggregate deflection of 0.36 in (the rules were different).
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4.1.3 Optimization Problem

The design problem posed by the Student Steel Bridge Competition is challenging

since lightness, stiffness and construction speed are often conflicting goals in struc-

tural engineering. Important questions arise in the conceptual design phase of the

project. Does a light weight compensate an increased deflection? Should the struc-

ture rather be stiff but heavy? Or is construction speed the key to winning the

competition? The answer certainly lies somewhere in between.

It is not easy to intuitively balance weight, stiffness and constructability when de-

signing the bridge, and the experience of the previous editions is of limited help since

the rules change every year. Regarding the balance between lightness and stiffness,
the structural cost formula ( Cs = 5w + 400d ) means that an inch of aggregate

deflection is worth 80 pounds of steel. This is, however, not sufficient to quickly size

the bridge, as the deflection is composite and depends on the load case.

A more systematic approach is proposed. The gradient-based algorithm previously

used to optimize trusses (chapter 2) and beams (chapter 3) is now applied to the steel

bridge design problem. Like real-world projects, the steel bridge problem is multi-

objective, whereas the gradient-based algorithm requires a single objective function.

For beam and truss optimization, the strategy was to choose a single objective to be

minimized and to express the other goals as constraints to be satisfied. In the case

of the steel bridge, a trade-off between weight, performance and constructability is

explicitly given through the definition of the cost, which can therefore be used as

the unique objective function.
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4.2 Girder Optimization Model

4.2.1 Girder Concept Selection

The gradient-based optimization tool considered in this study is helpful to improve

structures but cannot design from scratch. A conceptual bridge design must be

defined first, and only then can optimization be used to adjust the overall geometry

and size the constituting elements. Girders and trusses (figure 4.3) are two structural

systems that could support the loads and fit in the bounding box imposed by the

rules (see section 4.1.2).

Figure 4.3: Girder and Truss Concepts

The choice of the structural system was affected by the upcoming optimization pro-

cess. Weight, performance and constructability are taken into account in a single

cost function to determine the winning bridge. This cost would therefore be natu-

rally selected as the objective function to optimize the bridge. When implementing

optimization, the weight and stiffness of a particular bridge design can be accu-

rately calculated using structural analysis tools. But the construction time is more

complicated to estimate, since it depends on the construction sequence and can be

reduced by practicing. The assembly time of a piece could be estimated based on

its weight or the number of bolts to be fasten, but such models would rely on too

many assumptions to be relevant in optimization. It was therefore decided not to

take construction speed into account in the optimization process. Constructability

considerations will determine the choice of the bridge concept, and then will the

selected structure be optimized for lightness and stiffness only.

The constitutive pieces being limited to 42" in length, 6 segments are necessary to

build a girder (see figure 4.3). A truss would need many more pieces, increasing

construction time dramatically. It was therefore decided to design a girder bridge.
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4.2.2 Girder Overall Design

The girder bridge consists of two identical girders placed parallel and working as

flexural members. Both girders are assembled from 6 pre-fabricated pieces that must

fit in a 42" x6"x6" bounding box (figure 4.4). The girders are supported at both

ends by a leg system to be designed separately. Since the contact area with the

ground is limited and the legs cannot be anchored, the supports are not restrained

in rotation. The girder is therefore assumed to be pin-supported.

20'

'
2"6"

~ -I !

- # I,

3 '4" x6" x 6"

Figure 4.4: Girder Pieces Bounding Boxes

Each girder can be seen as a beam whose cross-section needs to be designed and

sized. The section can vary over the length of the girder but is constant over each

segment to simplify fabrication. In the following, 6 types of cross-section (figure 4.5)

are considered.

Figure 4.5: Girder Section Options, with 6"x6" Limits

-- -

I r I I I
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4.2.3 Girder Cross-Sections Parametrization

It is proposed to optimize the girder for each potential type of section in order

to select the geometry leading to the lowest structural cost. Each cross-section is

parametrized, so that its properties can be varied during the optimization process.

Two-Pipe Section

In an attempt to maximize the distance between the tension and compression chords,

a girder section made of two pipes placed on the diagonal of the bounding box is

considered.
w

Figure 4.6: Section Rendering

Figure 4.7: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis zn and the moment

of inertia I of the section are given by the following equations:

A = AT + AB where AT = 7r(a 2 - b2 ) and AB = (c2- d2 )

Zn = / ( AT (h - a) + AB A

/2 ( AT+ AB

I = (a b4) + AT( (h - a) - )2 4 -d4) + AB (Zn - 2

This type of section has a low lateral stiffness.
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Three-Pipe Section

Lateral stiffness can be increased by using a triangular shape made of three pipes.

A compression chord made of two pipes is also less subjected to buckling.

Figure 4.8: Section Rendering

Figure 4.9: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis z, and the moment

of inertia I of the section are given by the following equations:

A = 2AT + AB

where AT r(a2 - b2 ) and AB = ( 2 - d2)

2AT(h - a) + AB C
Zn 2AT + AB

I = (a4 - b4) + 2AT(h - a - zn)2 (c4 - d4 ) + A(Zn - C)2

2 4
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Four-Pipe Section

A section made of four pipes has high lateral and torsional stiffness.

Figure 4.10: Section Rendering

Figure 4.11: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis z and the moment

of inertia I of the section are given by the following equations:

A = 2AT + 2AB

where AT= r(a 2 - b2 ) and AB = (C2 - d2 )

2AT(h - a) + 2AB c
n = 2AT + 2AB

7r 4 4
I = (a - b4) + 2AT(h - a - z n )2  ( c 4 - d4) + 2AB(z n - C) 2

2 2

For all the sections made from pipes, the moment of inertia is maximized by setting

the values of all inner radiuses to zero, changing the pipes into rods. However, the

inner radiuses are kept as potential optimization variables so that pipes can still be

used if local buckling of the girder chords turns out to be a critical issue.
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I-Shape Section

A girder section similar to an I-beam shape can be built, using steel plates as flanges.

Figure 4.12: Section Rendering

w

b

d

C----

Figure 4.13: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis zn and the moment

of inertia I of the section are given by the following equations:

A = ab + cd

ab(h- -+ cd ()

Zn ab + cd

I +ab h -zn- + + cd Zn - C 2

Using all the available width by setting b = d = w would maximize the moment of

inertia for a given amount of steel but could lead to very thin flanges, subject to

local buckling in compression.
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Two-L-Shape Section

a

Figure 4.14: Section Rendering

Figure 4.15: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis zn and the moment

of inertia I of the section are given by the following equations:

s 1 = a+b s2 = a-b s3 = s4 = b

bi = siVV/
Si

hi- -
N 2

s5 = c+d s6 = c-d S7 = Ss = d

bih 3

Ii = 36
zi =

hi
zm - hi +

3

A = Ai - A +A -E Ai

Zn -
zlA 1 - e=2(ziAi) + z 5A 5 - " 6 (ziAi)

I = Ii + AI(z1- zn) 2 -  (li + Ai(zi- zn)2 )
i=2

8

+ 15 + A 5 (zn - Z5) 2 - (i + Ai(zn - zi) 2 )

i=6

IC

i= 1...4

i = 5...8

(4.1)

DESIGN OPTIMIZATION EXAMPLECHAPTER 4.

bih
Ai =bihi

2

/, L
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Two-Triangle Section

Considering the bounding box, a girder section made of two solid triangular rods

has the highest possible stiffness-to-weight ratio. The material is pushed as far as

possible from the neutral axis of the section.

a

b

Figure 4.16: Section Rendering

Figure 4.17: Section Parametrization

The cross-sectional area A, the z-coordinate of the neutral axis zn and the moment

of inertia I of the section are given by the following equations:

a2

AT --
2

ZT - Zm-
3

b2
AB - 2

ZB - vb
3

A = AT + AB

AT ZT + AB ZB

Zn = AT + AB

a4  b4

I = - + AT(ZT - Zn) 2 + + AB(Zn - ZB) 2

72 72
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4.3 Girder Optimization Program

The girder optimization was implemented in Matlab®. A built-in optimization tool-

box was used to run the gradient-based algorithm, and a program was developed to

define and analyze girders in interaction with the optimization tool. The strategy for

implementing structural optimization on computers was introduced in section 1.2.1

and more details on the Matlab® optimization tool can be found in the Optimization

ToolboxTM 3 User's Guide (The MathWorksTM , 2007b).

4.3.1 Program Overview

The shallow girder considered in this study behaves as a beam. Flexural members

can be analyzed by numerical moment integration or using matrix analysis, as pre-

sented in sections 3.2 and 3.3 respectively. The robust matrix analysis method was

used in chapter 3 as beams of different support conditions were considered, includ-

ing hyperstatic configurations. The girder to be optimized here is a determinate

system, for which numerical moment integration is straightforward (see example

section 3.2.4). Both analysis methods are therefore applicable.

A total of 36 load cases can occur on the day of the competition. At each iteration

of the design, the girder needs to be solved for all possible load scenarios in order

to determine the worst case deflection and to check the stresses. The speed of the

analysis tool is therefore critical. Since numerical moment integration is faster for

simple beams, a girder analysis program based on this method is used to interact

with the gradient-based optimization algorithm. Since the bending moment acting

on the girder depends on the load case but not on the girder design, the moments

corresponding to every load cases are calculated once at the initialization of the

process and stored in a database.

4.3.2 Schematic Diagram

Figure 4.18 (p.93) shows the group of Matlab® functions used to optimize the girder

and the way they interact. Each rectangle represents a function, that is, a piece of

code contained in a separate file. The arrows represent arguments being passed

between functions. The layout it top-down, meaning that a function called within

a function is represented below the function that calls it. More clarifications about

these schematic diagrams can be found in appendix C.
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Figure 4.18: Girder Optimization Program Schematic Diagram

DESIGN OPTIMIZATION EXAMPLECHAPTER 4.



CHAPTER 4. DESIGN OPTIMIZATION EXAMPLE

4.3.3 Functions Description

The operations carried out by the functions represented on the schematic diagram

(figure 4.18 p.93) are described in this section. The code is available in appendix E.

Optimization Objective Function - objective

The objective function (objective) is required to use the Matlab® optimization

toolbox (see figure 1.2 p.13). It is called by the optimization algorithm whenever it

needs to evaluate the quality of a design scenario. The algorithm sends the current

values of the set of optimization variables (x) to the objective function. The objective

function calls to the girder properties function (properties) to transform these

optimization variables (x) into a list of girder segments (P) desribing the properties

of each segment. The current design of the girder is fully described by this list

(P) throughout the upcoming analysis process. Then, the objective function loads

from the database the list of integration points (Y) and the corresponding values of

the shear force and bending moment for all possible load cases (all_V, all_M). All

the data, along with the girder properties data (P), are transmitted to the analysis

function (structuralcost), which returns the structural cost (sc) of the current

girder design. This value (sc) is then returned to the optimization algorithm as the

design value (f).

Girder Properties Function - properties

The role of this function is to interpret the optimization variables (x) and to rewrite

them in a format (P) describing the current design of the girder and that can be

conveniently used in the analysis process. This function is edited by the user to

define the girder to be optimized and to assign the optimization variables. The

translation of the optimization variables into girder properties is made by calling

functions (section) that calculate the girder section properties.
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Section Properties Calculation Function - section

Each function of the set (sectionl, section2 ... ) calculates the cross-sectional

properties of a given type of girder section. The cross-sectional area (A), the moment

of inertia (I) and the maximum distance to the neutral axis (z) are returned.

Structural Cost Calculation Function - structuralcost

In addition to the general data (Y, all_V, all-M), this function accepts the girder

properties data (P) as argument, and its role is to calculate the structural cost (sc)

of that particular girder, as defined by the rules. First, the weight (w) of the girder

is obtained by sending the girder properties (P) to the weight calculation function

(weight). The girders properties (P) are then sent to the deflection calculation

function (deflection) along with the general data (Y, allV, all_M), which returns

the deflection (d). The weight (w) and the deflection (d) are combined to calculate

the structural cost (sc), which is returned.

Weight Calculation Function - weight

This function uses the cross-sectional areas contained the girder properties data (P)

to calculate the weight of the girder (w).

Worst Case Deflection Calculation Function - deflection

This function does not directly calculate the girder deflection but is used to find the

worst-case aggregate deflection, whose value is to be used to calculate the structural

cost. For each possible load combination, defined by the dice roll values (rl, r2), the

general data (Y, all_V, all_M) and the girder properties (P) are transmitted to the

actual lower-level deflection calculation function (aggregate_deflection), which

returns the aggregate deflection (agg d) for that load combination. The maximum

aggregate deflection value (p) is returned to the structural cost calculation function

(structuralcost).
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Aggregate Deflection Calculation Function - aggregatedeflection

This function simulates the two steps of the loading process for a given load combi-

nation, specified by the dice roll values (rl, r2) received as arguments, along with

the general data (Y, all_V, all_M) and the girder properties (P). The numerical

integration function (displacement) is called twice, the bending moment to be in-

tegrated (M) being the one due to the first load and then the one due to both loads.

These bending moments are retrieved from the bending moment data (all2) using

the dice roll values (rl, r2). Both times, the displacements values of the girder

(D) corresponding to the integration points (Y) are returned, and the deflections at

the points of interests are saved. Using the deflection values from both steps of the

loading process, the aggregate deflection (agg_d) is then calculated and returned.

Numerical Integration Function - displacement

This function carries out the numerical integration of the bending moment over

the girder to calculate its deformation. Computer implementation of the numerical

integration is presented in section 3.2. The bending moment (M) and the girder

properties (P) are used to assign a bending moment and a bending rigidity to each

integration point of the list (Y). Two successive integrations are then carried out,
and the resulting deformation values at each integration point (D) are returned.

Optimization Constraints Function - constraints

The constraints function (constraints) is required to use the Matlab® optimization

toolbox (see figure 1.2 p.13). It is called by the optimization algorithm whenever it

needs to check whether a design scenario is acceptable or not. The function receives

the values of the optimization variables (x) from the optimization algorithm and

returns two series of numbers (c, ceq) calculated from the optimization variables.

The design scenario is acceptable if all numbers in the first list (c) are negative and

all numbers in the second list (ceq) are zero. This function is edited by the user to

set the boundaries of the optimization problem, that is, the minimum and maximum

values of the optimization variables. The girder is optimized for stiffness and only

checked for strength, the maximum allowable strength becoming a constraint to

the optimization problem. The girder properties function is called to get the girder
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properties (P), which are passed to the stress calculation function (stresses), along

with the integration points (Y) and the shear and moment envelopes (V_env, M_env)

loaded from the database. The axial (Sa) and shear (Ss) stresses distributions are

returned. If one of the stresses exceeds the maximum allowable value, a positive

term is added to the constraints list (c), making the design is not acceptable.

Stress Calculation Function - stresses

A cross-sectional area, a moment of inertia and a distance to neutral axis are assigned

to each integration point (Y) using the girder properties (P). Then, the axial stress

(Sa) due to the bending moment envelope (M_env) and the shear stress (Ss) due to

the shear force envelope (S_env), and returned.

Three additional programs (single_load, load scenarios, envelopes) are used

only once at the beginning of the optimization process to generate and store data

to be used at every iteration.
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4.4 Girder Optimization Results

The computer program described in section 4.3 was used to optimize the 6 different

girder designs considered in this study. The optimization process is presented on the

example of the girder made of two pipes, and results for the other 5 girder sections

are given.

4.4.1 Optimized Two-Pipe Section Girder

The girder is assembled from 6 pre-fabricated segments, as shown on figure 4.19.

Each segment is made of two pipes placed parallel about 8" from each other and

linked by a series of diagonal webbing elements. The objective of the optimization

process is to determine the size of every pipe in order to minimize the structural

cost of the girder (balance between weight and stiffness, as defined by the rules of

the competition). The webbing elements are not considered as design parameters

in the optimization process and are to be sized separately. Working as a bending

beam, the girder is assumed to have identical top and bottom chords. Both pipes

of a segment are therefore of the same size. The girder is designed symmetrically,

since no particular load direction is assumed (loading is asymmetric, but the side

on which the first load is applied is not known). Considering all of the previous

assumptions, only 3 pipe sizes need to be determined.

b, b2X b

Figure 4.19: Two-Pipe Section Girder Parametrization

The girder segments are labeled with numbers, and segments with the same label

are identical. The optimization variables ai and bi represent the outer and inner

radiuses of the pipes constituting the segments of type i.
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The 6 variables (al, bl, a2, b2, a3 , b3) parametrizing the girder design are given to the

gradient-based algorithm. Initial values of 1/2" and 1/4" are respectively assigned

to the outer and inner radiuses of all pipes.

The algorithm is then run. At each iteration, the gradient-based algorithm updates

the values of the inner and outer radiuses. The aggregate deflection of each new

girder design is evaluated for the different load cases. The worst-case deflection

is combined with the weight of the bridge to calculate the structural cost. The

next iterations take into account the results from the previous ones to adjust the

optimization variables. The algorithm stops when a pre-defined optimality criterion

is met.

The convergence diagrams of the optimization process are shown on figure 4.20. The

upper graph represents the evolution of the optimization variables, and the lower

diagram shows the decrease of the objective function (structural cost S,).

x103

0.6

Z 0.5]

0.4

0.3

" 0.2

> 0.1

81675

1650

2 1625

Figure 4.20: Algorithm Convergence Diagrams

The outer radiuses quickly reach the range of their respective final values. The

inner radiuses evolve more steadily and slowly, since a change in inner radius has

less effect on the pipe cross-sectional area than a change in outer radius.

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Sc= 1624
I 1 .t t I | I I t ! I
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Hollow pipes are changed into solid rods since all inner radiuses converge towards

zero, meaning that buckling does not govern the design of girder chords.

The cross-sections of the three types of girder segments (labeled as 1, 2 and 3 on

figure 4.19) are represented to scale on figure 4.21. Rods diameters are indicated

in inches. As expected from the bending moment diagram, the optimized girder is

heavier at mid-span.

D = 0.52

D = 0.52

D = 0.85

D = 0.85

D = 1.05

D = 1.05

Figure 4.21: Optimized Two-Pipe Sections

If this optimized girder was selected for the actual bridge, further adjustment would

be necessary. Since steel rods and are available in standard sizes, the girder chords

diameters would have to be slightly modified. Another option would be to use pipes

instead of rods, selecting standard sizes for the inner and outer radiuses to find

members whose cross-sectional areas match the areas of the rods in the optimal

design. Rods are optimal since they maximize the moment of inertia of the girder

section by placing the material as far as possible in the corners of the square bound-

ing box. However, using small pipes instead of rods would have a negligible effect

on the bending capacity of the girder.

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight

aggregate deflection

structural cost

147 lbs

1.27 in

$ 1,624,000

100
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4.4.2 Optimized Three-Pipe Section Girder

w

i
Figure 4.22: Girder made of Three-Pipe Sections

The cross-sections of the three types of girder segment, labeled as [1, 2, 3] on fig-

ure 4.22, are represented to scale on figure 4.23. Diameters are indicated in inches.

D = 0.44 D = 0.44

D - 0.61 0

D = 0.72 D = 0.72

D = 1.00-------------------

D = 1.00

D = 0.87 D = 0.87

D = 1.22
D = 1.22

Figure 4.23: Optimized Three-Pipe Sections

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight 208 lbs

aggregate deflection 1.80 in

structural cost $ 2,300,000

The structural cost of this section is 40% higher than the structural cost of the

two-pipe section presented in 4.4.1. The triangular cross-section is only 6"-deep and

is therefore much less efficient than the two-pipe section, whose depth is 8"1/2.

101
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4.4.3 Optimized Four-Pipe Section Girder

wil

w
w

Figure 4.24: Girder made of Four-Pipe Sections

The cross-sections of the three types of girder segment, labeled as [1, 2, 3] on fig-

ure 4.24, are represented to scale on figure 4.25. Diameters are indicated in inches.

D = 0.44 D = 0.44

D -- 0----------.44 D---- 0----.44
D = 0.44 D = 0.44

D = 0.72 D = 0.72

D ----------0.72 D=-------- 0.72
D = 0.72 D 0.72

D = 0.87 D = 0.87

D = 0.87 D = 0.87

Figure 4.25: Optimized Four-Pipe Sections

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight

aggregate deflection

structural cost

206 lbs

1.71 in

$ 2,227,000

102
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4.4.4 Optimized I-Shape Section Girder

w

w
El

Figure 4.26: Girder Made of I-Shape Sections

The cross-sections of the three types of girder segment, labeled as [1, 2, 3] on fig-

ure 4.26, are represented to scale on figure 4.27. Diameters are indicated in inches.

0.55 x 0.55
----------- E -----------

0.55 x 0.55

0.90 x 0.90

I lI
I00----------

SI

0.90 x 0.90

1.10x 1.10

L --- 1.10x 1.10

1.10 x 1.10

Figure 4.27: Optimized I-Shape Sections

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight

aggregate deflection

210 lbs

1.79 in

structural cost $ 2,303,000

103
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4.4.5 Optimized Two-L-Shape Section Girder

w

w
Figure 4.28: Girder made of Two-L-Shape Sections

The cross-sections of the three types of girder segment, labeled as [1, 2, 3] on fig-

ure 4.28, are represented to scale on figure 4.29. Diameters are indicated in inches.

0.53 x 0.26

I

0.53 x 0.26

0.87 x 0.43

I

I 2

0.87 x 0.43

1.05 x 0.53

F 

3

J1

1.05 x 0.53

Figure 4.29: Optimized Two-L-Shape Sections

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight

aggregate deflection

structural cost
E

146 lbs

1.22 in

1,584,000

104
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4.4.6 Optimized Two-Triangle Section Girder

E

w
Figure 4.30: Girder made of Two-Triangle Sections

The cross-sections of the

ure 4.30, are represented

0.65 x 0.65

0.65 x 0.65

three types of girder segment, labeled as [1, 2, 3] on fig-

to scale on figure 4.31. Diameters are indicated in inches.

1.05 x 1.05

-1I

1.05 x 1.05

1.O5 x 1.05

1.30 x 1.30

1.30 x 1.30

Figure 4.31: Optimized Two-Triangle Sections

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

weight 146 lbs

aggregate deflection 1.21 in

structural cost $ 1,577,000

105
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4.5 Convergence Analysis

In the following, the convergence speed refers to the number of iterations needed

by the algorithm to reach the optimal design, whereas the convergence time is the

actual duration of the optimization process.

Quick convergence towards the optimal solution is a critical issue when dealing with

complex systems. Adjustments within the optimization algorithm and a relevant

definition of the objective function can make the process faster. But the selection of

the optimization variables and the initial value assigned to them also greatly influ-

ences the convergence speed. This section shows how selecting relevant optimization

variables and assigning appropriate initial values can reduce the convergence time

of a gradient-based algorithm. The steel girder presented and optimized in the pre-

vious sections is used as an example.

The convergence of the optimization variables towards their value in the optimal

design scenario are represented on convergence diagrams. An example is shown on

figure 4.32. The important aspect to look at is how a gradient-based algorithm

handles a group of variables. What each of these variables represents does not re-

ally matter. Therefore, for simplicity and clarity of the diagrams, all variables are

represented by black lines. The vertical line on each diagram represents the end of

the iteration process. The process ends when a pre-defined convergence criterion is

met. This convergence criteria is the same for all optimization processes discussed

in this section.

0.5
0.40.4

0.36

" 0.3

0.22
._

S0.1

0.. .- ' " 0.00 -

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.32: Example of Optimization Variables Convergence Diagram
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4.5.1 Effect of the Number of Variables

The effect of the number of optimization variables on convergence speed is shown

using the optimization of the girder made of two-pipe sections. The girder is made of

6 segments but is symmetrical with respect to the mid-span, so that only 3 segments

are optimized. Each segment is made of two pipes, and each pipe is parametrized by

its outer and inner radiuses. The resulting 12 optimization variables to be considered

are represented on figure 4.33.

bl

C C2  C3

d2 d d3

Figure 4.33: Two-Pipe Section Girder Optimization Variables

The optimal design values are (see section 4.4.1):

al = cl = 0.52 in

a2 = C2 = 0.43 in

a 3 = C3 = 0.26 in

bl = dl = 0.00 in

b2 = d2 = 0.00 in

b3 = d3 = 0.00 in

Though the system was parametrized with 12 optimization variables, only 3 values

of interest are to be found. Using simple engineering considerations, one can reduce

the number of variables from 12 to 3. First, all pipe inner radiuses shall be zero,

since the highest moment of inertia is obtained by pushing the material as far as

possible from the centerline of the section and quick analysis shows that buckling

is not an issue. Second, for each of the three girder segments, the top and bottom
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pipes (rods) have same dimensions, since this type of cross-section is most efficient

when symmetrical with respect to the centerline. The following diagrams show how

the duration of the optimization process is reduced by that kind of pre-analysis. In

this girder optimization example, the duration of the optimization process is of the

order of a few seconds in the worst case. But reducing the number of variables would

be very useful when applied to more complex optimization problems, for which the

gradient-based algorithm would have to run much longer.

Since the goal is to show the influence of the number of optimization variables

only, the same initial values are assigned to these variables in the different cases

considered. All inner radiuses start at 0.25 in and all outer radiuses start at 0.5 in.

All Optimization Variables

As no assumption is made, all of the 12 variables represented on figure 4.33 are given

to the optimization algorithm. With the algorithm termination criteria considered

in this study, convergence is achieved after 35 iterations.

Variables: al b1 cl dl a2 b2 c2 d2 a3 b3 c3 d3

0.5 0.52

00.4.43

> 0.30.26 S0.20.26

CU 0.
> 0.1

Figure 4.34: Convergence of 12 Optimization Variables
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Symmetrical Sections

Each of the 3 girder segments is assumed to be made of a symmetrical section, that

is, with identical top and bottom pipes. The number of optimization variables is

down to 6. Convergence is achieved after 25 iterations.

Variables: al bl a2 b2 a 3 b3

Assumptions: a -=cl a2 c 2 a3 c 3 b -= di b2 d2 b3  d3

0.0.52

0.43

0 0.3
0.26

.0.2

> 0.1

0- 0.00
I I .i I , I I ii

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Figure 4.35: Convergence of 6 Optimization Variables

The group of 6 variables converge 40% faster than the 12 variables considered ini-

tially. The convergence time is even more reduced, as each iteration is faster when

fewer variables are considered.
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Zero Inner Radiuses

All pipes inner radiuses are set to zero, changing the pipes into rods. The remaining

optimization variables are the 6 outer radiuses. Convergence is achieved after 15

iterations.

Variables: al cl a2 c2 a3 c3

Assumptions: b dl = b2 d2 = b3 = d 0

0.6-

0.5.2
0.43

S0.3
S" 0.26

- 0.2

> 0.1

0

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Figure 4.36: Convergence of 6 Optimization Variables

The same number of optimization variables was considered in the previous case.

However, convergence is much quicker in the current case (15 vs. 25 iterations),

showing that the number of variables is not the only factor affecting the convergence

speed of the optimization process. The effect of other factors are presented in the

following sections (4.5.2 and 4.5.3).
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Symmetrical Sections and Zero Inner Radiuses

The two assumptions made separately in the previous convergence analyses are

now made simultaneously. Only 3 optimization variables remain. Convergence is

achieved after 13 iterations.

Variables: al a2 a3

Relationships: al = cl a2 = c 2 a3 =c 3 b = di = b2 =d 2 = b3 = d3 = 0

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Figure 4.37: Convergence of 3 Optimization Variables

Summary

The number of variables parametrizing the system greatly affects the convergence

speed of the gradient-base optimization algorithm. With less optimization variables,

fewer iterations of the algorithm are necessary to reach the optimal design. The ac-

tual optimization time is even more reduced, as a smaller number of variables makes

each iteration faster, due to the nature of the gradient-based algorithm. However,

the number of variables is not the only parameter to significantly affect the con-

vergence speed of the optimization process. Figure 4.35 shows a convergence 40%

faster than figure 4.36, though the same number of variables was considered.
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4.5.2 Effect of the Absolute Initial Values

Convergence speed is affected by the initial values assigned to the optimization

variables. This effect is shown using the optimization of a girder made of L-shape

sections. The girder is made of 6 segments but is symmetrical with respect to the

mid-span, so that only 3 segments are to be optimized. Each segments is made of

two L-shapes, each L-shape being parametrized by its side length and thickness.

The resulting 12 optimization variables are represented on figure 4.38.

a, b a2 b2 a3

cL d, cL d2 3 $d3

Figure 4.38: L-Shape Section Girder Optimization Variables

The optimal design values are:

al = cl = 0.53 in

a2 = C2 = 0.87 in

a3 = C3 = 1.05 in

bl = dl = 0.26 in

b2 = d2 = 0.43 in

b3 d3 = 0.53 in

Knowing the final value reached by each variable in the optimal design, the opti-

mization process was run with the initial values successively assigned with a 1%,

10%, 25%, 50% and 100% difference from final values. The number of iterations

required before convergence are compared.
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1% Difference

Side lengths start 1% longer than their final values, while thicknesses start 1%

thinner. Convergence is achieved after 9 iterations.

1.6-

,. 1.4 -

1.2
1.05

> 
0.87

_ 0.8-

"= 0.6m 0.6 0.53
0.4 0.43

0.2- 0.26

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4.39: Initial Values 1% Different from Final Values

10% Difference

Side lengths start 10% longer than their final values,
thinner. Convergence is achieved after 16 iterations.

Iteration 6 8 10 12 14 16 18

while thicknesses start 10%

20 22 24 26 28 30

Figure 4.40: Initial Values 10% Different from Final Values
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25% Difference

Side lengths start 25% longer than their final values, while thicknesses start 25%

thinner. Convergence is achieved after 20 iterations.

1.6-

1.2
1.05

S0.80.87
60-.8

• 06wL,-, _ 0.53-
0.40.43

0.2 
0.26

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4.41: Initial Values 25% Different from Final Values

50% Difference

Side lengths start 50% longer than their final values, while thicknesses start 50%

thinner. Convergence is achieved after 25 iterations.

1.6

1.2
1.05

to0.87

-2 0.6 - 10.53
,., 0.43

Figure 4.42: Initial Values 50% Different from Final Values
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100% Difference

Side lengths start 100% longer than their final values, while thicknesses start 100%

thinner. Convergence is achieved after 30 iterations.

1.6

1.4

1.2 -
1.05

0.87
0.8 -

-: 0.6 0.53
0.4 - 0.43

0.2- 0.26

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4.43: Initial Values 100% Different from Final Values

Summary

The gradient-based algorithm needs several iterations to find the appropriate range

of each optimization variable before more finely adjusting them and reach the opti-

mal solution. A good estimate of the optimal solution is therefore a better starting

point for the optimization process than a random design. If the system to optimize

is too complex to estimate the optimal design, the optimization variables shall be,
at least, initialized with reasonable values for the design parameters they represent.

Figure 4.44: Effect of Initial Values
on Convergence Speed

1 10 25 50

% from Final Value
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4.5.3 Effect of the Relative Initial Values

Section 4.5.2 shows that the absolute initial value given to the optimization variables

affects the convergence speed of the optimization process. The relative initial value

of each variable with respect to the others also affects the convergence speed. This

effect is shown using the optimization of a girder made of 4-pipe sections. The

girder is made of 6 segments but is symmetrical with respect to the mid-span, so

that only 3 segments are optimized. Each segment is made of 4 pipes, with both top

pipes assumed to be identical and both bottom pipes also identical (but potentially

different from top pipes). Each pipe is parametrized by its outer and inner radiuses.

The resulting 12 optimization variables are represented on Figure 4.45.

a1  a 2  a 3

b b2' b3

Figure 4.45: Four-Pipe Section Girder Optimization Variables

The optimal design values are:

al = cl = 0.44 in

a2 = C2 = 0.72 in

a3 = c3 = 0.87 in

bl = dl = 0.00 in

b2= d2 = 0.00 in

b3= d3 = 0.00 in

Knowing how the final values of the optimization variables are ordered, initial values

are ordered in different ways and the number of iterations required for convergence

is compared.
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Finely Ordered Initial Values

The initial values of the pipes inner radiuses are increased where the bending moment

is larger, and the top and bottom pipes of a same segment are given similar initial

values. Convergence is achieved after 32 iterations. Optimization variables remain

in their initial order, as they do not cross each other.

0.5

0.43
.G 0.4

00.36

0.20.22

S0.10.00

0 .. .. .I t f ll i I ! ii . i

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.46: Finely Ordered Initial Values

Roughly Ordered Initial Values

The initial values of the pipes outer radiuses are still increased where the bending

moment is larger, but the top and bottom pipes of a given girder segment do not

have close initial values. This has little effect on convergence speed, as the process

needs only one additional iteration to converge (33 vs. 32 iterations).

0.5 ------- ----- 0.43
0.0.43

S- 0.36

" 0.3

020.2

C0 0.1.

0 - 0.00

I I I t . ....I L. l...J I I I IIt I l i I l I

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Figure 4.47: Roughly Ordered Initial Values
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Equal Initial Values

All outer radiuses are given the same initial value, and all inner radiuses also start

with a common initial value. The algorithm adjusts the variables in their final

relative order quite quickly at the beginning of the process, but the convergence

time is still increased to 37 iterations.

0.43

0.36

0.22

0.0
0 0.2

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.48: Same Initial Values

Non-Ordered Initial Values

Optimization variables are organized into 4 groups: top pipes outer radiuses (al a2 a3),

bottom pipes outer radiuses (cl c2 C3), top pipes inner radiuses (bl b2 b3 ), bottom

pipes inner radiuses (dl d2 d3). All variables within a group are given the same

initial value. Convergence is achieved after 37 iterations.

0.5 -
0.43

S0.36
0.3

S0.22

>W 0.1

0- 0.00

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.49: Non-Ordered Initial Values
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4.5.4 Conclusions

General Algorithm Behavior

All convergence diagrams show a common general behavior. The convergence occurs

in three successive phases, as illustrated on Figure 4.50.

* PHASE A: Optimization variables experience large variations from their initial

values to reach the range in which their final value will eventually be. At the

end of this first phase, the variables are in their final order. If starting with

the same value, variables whose final value are close may experience the same

evolution during this phase.

* PHASE

value.

* PHASE

checks

B: Variations are smaller, as variables are adjusted to reach their final

C: Optimization variables remain almost constant, as the algorithm

that the current design is actually the global optimum.

Figure 4.50: Main Phases of the Convergence Process

The absolute and relative durations of each phase depends on the problem consid-

ered and on parameters adjusting the behavior of the gradient-based algorithm. In

particular, the duration of the third phase is governed by the termination criterion.
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Variables Selection

The behavior of the gradient-based algorithm is greatly affected by the set of opti-

mization variables parametrizing the design problem. The selection of the variables

is an important preliminary step in algorithmic optimization. The number of vari-

ables and the absolute and relative initial values assigned to them all affect the

convergence speed of the algorithm, as shown in sections 4.5.1, 4.5.2 and 4.5.3 re-

spectively.

To reduce the number of variables is more efficient at increasing convergence speed

than to finely adjust the initial values assigned to a greater number of variables. In

section 4.5.3, adjusting the initial values of 12 variables allowed for a slightly faster

convergence (32 vs 37 iterations). Figure 4.51 (below) shows the same problem

being solved in only 19 iterations after removal of 6 irrelevant variables.

Iteration 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.51: Convergence of 6 optimization variables (c)

The effect is even more important on the
faster with less variables.

convergence time, since each iteration is
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4.6 Stiffened Girder Optimization Model

In the context of the Student Steel Bridge Competition, the girder option was pre-

ferred to the truss based on constructability issues. The girder concept was then

optimized to minimize the structural cost and, considering its quick assembly, might

be a good bridge design overall. However, it is not clear whether a more elaborate

structure, longer to build but stiffer, can be a better option. Full trusses seem too

long to assemble for their increased stiffness to compensate the loss in construction

speed. But a hybrid scheme, consisting in a quickly assembled girder equipped with

a few additional truss members, could be a good balance. It is proposed to use the

gradient-based optimization method to evaluate the potential of a stiffened girder.

4.6.1 Girder Concept Modification

The components of a stiffened girder as shown on figure 4.52. The girder is a flexural

member, behaving as a beam. The stiffener is made of pinned members and is also

pinned to the girder, therefore behaving as a truss. Several truss configurations

are considered (see section 4.6.2) but all trusses feature vertical members. These

members are also called king posts and work in compression (refer to the hybrid

schemes analytical solutions derived in appendix F). They are balanced by tension

rods, installed horizontally and diagonally.

Girder (Beam)

King Post
(Compression Member)

Tension
Rods

Stiffener (Truss)

Figure 4.52: Hybrid System Description

Tension and compression in the stiffener are caused by the differential displacements

of the truss nodes connected to the girder. As a result, the stiffener tends to generate

an opposed bending moment on the stiffener, thus reducing its deflection.
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4.6.2 Stiffener Schemes

The girder considered in this study has a triangular cross-section made of three

longitudinal pipes. It is equipped with three different stiffeners. In the following,

the terms simple, double and triple stiffener refer to the number of king posts in

the stiffening truss. On the following renderings, the king posts are represented as

elaborate members since they are subject to compression and would be engineered

to prevent buckling. Tension members are represented as simple rods.

A simple stiffener (figure 4.53) is made of 5 members. Each diagonal tension rod

requires 2 segments due to the member size limit of 42".

Figure 4.53: Simply-

Stiffened Girder

A double stiffener (figure 4.54) is made of 6 members. The horizontal tension rod

requires 2 segments due to the member size limit of 42".

Figure 4.54: Doubly-

Stiffened Girder

A triple stiffener (figure 4.55) is made of 7 pieces.

Figure 4.55: Triply-

Stiffened Girder

Truss topology optimization is not considered in this study, and each hybrid system

is therefore optimized separately. The design parameters are the girder and truss

members sizes as well as the truss geometry, varied by adjusting the lengths of the

king posts.
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4.7 Hybrid System Analysis Methods

In order to optimize the stiffened girders, the gradient-based algorithm needs to

interact with a structural analysis tool that is efficient at solving this type of hybrid

structures. Unstiffened girders were analyzed using numerical moment integration

as a fast method easily applicable to determinate structures. Trusses were analyzed

using stiffness matrices as a robust method to solve more complex structures. The

stiffened girders considered here are hybrid structures featuring girder and truss

properties. Both analysis methods are applicable to this type of structures. Though

relatively slow, matrix analysis is easily implemented by combining beam and truss

stiffness matrices. The numerical moment integration method is faster but requires

the derivation of an analytical solution for the beam-truss interaction. Both methods

are developed in the following.

4.7.1 Hybrid System Matrix Analysis

The stiffened girder is modeled as an assembly of beam and truss elements. The

beam is discretize into 30 elements, allowing for precise load placement and accurate

results while keeping the analysis reasonably fast.

Figure 4.56: Elements Assembly for the Girder with Double Stiffener

V MB

HA A EA,I vB OB

MA V HI uV
OA

UVA

Figure 4.57: Beam Element

VB

HB uJ

VA

HA UA

Figure 4.58: Truss Element
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Beam Element Stiffness Matrix

The two-dimensional beam element, represented on figure 4.57 (p.123), is of length

L and has a cross-sectional area A, a moment of inertia I and a modulus of elasticity

E. The derivation of its stiffness matrix is detailed in appendix B, and the resulting

force-displacement relationship is expressed as:

EA
0 0

L

6EI
L 2

4EI

L

EA
0 0

L

6EI
L2

2EI
L

Truss Element Stiffness Matrix

The two-dimensional truss element, represented on figure 4.58 (p.123), is of length

L, has a cross-sectional area A and a modulus of elasticity E. Its stiffness matrix is

obtained by simplifying the result derived in appendix A for a the three-dimensional

truss member. The resulting force-displacement relationship is expressed as:

Cos2

cos 0 sin 0
-cos 2 p

-cos ( sin 0

sin 0 cos 0

sin2

-sin 0 cos 0

-sin 2 0

-cos 2

-cos 0 sin 0

Cos 2 0

cos 0 sin 0

Beam and truss stiffness matrices are combined by adding the terms corresponding

to the same degrees of freedom, as described in sections 2.1.3 and 3.3.3.
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0
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0
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0
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0
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0
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4.7.2 Hybrid System Numerical Moment Integration

Hybrid systems are more sensitive than simple girders to the different load cases

considered for the competition. For example, the behavior of a stiffened girder is

significantly modified as a load is moved from the top of a king post to a location

between two king posts. It is risky to consider only a few significant load cases in the

optimization process, as an unconsidered load scenario might become critical when

the design is modified. The structure is therefore solved for all of the 36 load cases

at each iteration, making the need for a quick analysis tool even more important.

Numerical moment integration is faster than matrix analysis and shall therefore be

considered.

The stiffened girders are indeterminate systems, making the solution by moment

integration non-trivial. The computer program can carry out the moment integra-

tions, but an analytical solution for the girder-truss interaction is still needed. The

derivation of this solution is detailed in appendix F for the simple and double stiff-

ener schemes. The results are presented in the following in the form of practical

methods to solve both hybrid systems.

Simple Stiffener Analytical Solution

The following symmetrical scheme is considered:

0 L/2- a L/2 L/2 + a L

x
a a

b

The lengths L, a and b define the geometry of the problem. The moment of iner-

tia I(x) of the girder is known, as well as the cross-sectional areas Ab and A, of the
truss members.
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The first step is to apply the external loads on the unstiffened girder, creating

the external bending moment Me. This moment is integrated twice to obtain the

deflection Ue due to the external loads. By convention, Ue < 0.

L 0

Ue (x)

Me(X)

The deflection ue is calculated at 3 particular points:

Uel = Ue - a
(2

Ue2 Ue (L) Ue3 = Ue ( + a)
2

The reaction of the stiffener is parametrized by the force in the vertical member,
noted F. Its value is not yet known. Considering a unit value for F, the stiffener

generates a pseudo-bending moment Ms acting on the girder. This bending moment

is integrated twice to obtain the pseudo-deflection us. By convention, Us > 0.

MS (x)

F/2 F IF/2
u ()

0 L/2-a L/2 L/2 +a L

The pseudo-deflection us is calculated at 3 particular points:

Us1 = Us - a)
(2 Us2 = Us

2
L

s3_ Us ( + a
2

The actual value of the force F in the girder is calculated using:

(_ + - +us Uel + Ue3
FQ s2  U2F 2 2 sin20EA EAb 2

The actual girder deflection is then given by:

u = ue + FUs (> 0 upwards by convention)
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Double Stiffener Analytical Solution

The following scheme is considered:

0 Xi X2 X3 X4 L
I I I I I)

1 _ X

The lengths L, d and e and the coordinates xl, x2, x 3 and x4 of the truss nodes

connected to the girder define the geometry of the problem. The moment of iner-

tia I(x) of the girder is known, as well as the cross-sectional areas Ad, Ae, Af, Ag
and Ah of the truss members.

The first step is to apply the external loads on the unstiffened girder, creating the

external bending moment Me. This moment is integrated twice to obtain the de-

flection Ue due to the external loads. By convention, Ue < 0.

O L 0
! >X -

Ue (x)

Me (X)

The deflection ue is calculated at 4 particular points:

tel = Ue (x1 ) Ue2 - U (X2 ) Ue3 = e ( 3 ) Ue4 U (X4)
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The reaction of the stiffener is parametrized by the force in the bottom truss member,
noted F. Its value is not yet known. Since the truss is determinate, the force in every

member can be expressed in terms of F. Considering a unit value for F, the stiffener

generates a pseudo-bending moment Ms acting on the girder. This bending moment

is integrated twice to obtain the pseudo-deflection us. By convention, Us > 0.

M (x)
s (X-)

0 x1 X2 x3 X4 L 0

The pseudo-deflection us is calculated at 3 particular points:

Us2 Us ( 2) Us3 = (X3) Us4 = Us (X4)

The actual force F in the girder is calculated using:

(Us2 - Us3) tan 0

F + (us2 - 1) tan p

+ (us - Us ) tan0

(Ue2 - Ue3) sin 0 +

g 1

EAg cos 0

f cos 0
EAf cos2 P

h cos 0

EAh cos 2V

d sin(9 + 0)
+ (tan + tan 8)

EAd cos yp

e sin(c- )"0 (tan V - tan 8)
EAe cos 0

(Ue2- Uel) Cos tan p + (Ue3 - Ue 4 ) Cos O tan, (4.2)

The actual girder deflection is then given by:

u = ue + FUs (> 0 upwards by convention)
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4.8 Stiffened Girder Optimization Results

The three hybrid systems proposed in section 4.6.2 were optimized as more complex

application examples for the gradient-based algorithm. For each hybrid system, the

girder and the truss stiffener are both taken into account in a single optimization

process. Reusing an optimal girder previously obtained and simply adding a stiff-

ener would not lead to an optimal hybrid system since the girder shall be specifically

designed to work best with the truss.

The simple and double stiffener schemes were analyzed by numerical moment inte-

gration, using the analytical solutions derived in section 4.7.2. The triple stiffener

scheme was solved by hybrid matrix analysis, as presented in section 4.7.1. In all

cases, a three-pipe section was used for the girder.

4.8.1 Simple Stiffener

The simply-stiffened girder is assembled from 11 pre-fabricated members, as shown

on figure 4.59. The both the girder and the truss stiffener are symmetric, and the

members labeled with the same number are identical.

Figure 4.59: Simply-Stiffened Girder Parametrization

Optimization variables are used to parametrize the girder, the king post and the

tension rods. These parameters are all considered simultaneously in the optimization

process.
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Table 4.1 below is a list of the variables considered in the optimization process of

the simply-stiffened girder. The pipes are described by their cross-sectional areas

instead of the typical inner and outer radiuses. Resistance of the pipes to buckling

is not imposed as an optimization constraint, allowing for a faster optimization

process. Rods can therefore be used instead of pipes, as the section area is the only

relevant design parameter. The inner and outer diameters of these members are

selected after the optimization process to match the optimal areas, with negligible

effect on the girder capacity as long as the selected pipes remain slender.

Element Description Notation Optimum Value (in, in 2)

1 Top Pipes Area AT1 0.152

Bottom Pipe Area AB1 0.299

2 Top Pipes Area AT2 0.235

Bottom Pipe Area AB2 0.461

3 Top Pipes Area AT3 0.107

Bottom Pipe Area AB3 0.211

4 Length L4 21

Total Area A 4  0.192

5 Area A 5 0.300

Table 4.1: Simply-Stiffened Girder Optimization Variables

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.

Figures 4.60 and 4.61 on the next page illustrate the behavior of the simply-stiffened

girder during the loading process. The bending moment acting on the girder is rep-

resented and the values of the forces in the truss are given, as well as the deflections

at the points of interest.
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Load Placement
and Deflection (in)

0

-10

-20-

-30-

-40 - Deformed Shape (x50, in)

Forces in Truss (kip) 1.36 -0.78 1.36

10- Bending Moment (kip-in)

0

-10

-20-

-30

0 40 80 120 160 200 240

Figure 4.60: Deformation of Simply-Stiffened Girder under First Load

Load Placement D1=0.48 D2=0.48
and Deflection (in)

0

-10

-20-

-30

-40 - Deformed Shape (x50, in)

Forces in Truss (kip): 2.64 -1.52 2.64

10 - Bending Moment (kip-in)

0

-10

-20

-30 -

0 40 80 120 160 200 240

Figure 4.61: Deformation of Simply-Stiffened Girder under Both Loads
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4.8.2 Double Stiffener

0I

Figure 4.62: Doubly-Stiffened Girder Parametrization

Element Description Notation Optimum Value (in, in2)

1 Top Pipes Area AT1 0.153

Bottom Pipe Area AB1 0.301

2 Top Pipes Area AT2 0.173

Bottom Pipe Area AB2 0.340

3 Top Pipes Area AT3 0.057

Bottom Pipe Area AB3 0.113

4 Length L4 21

Total Area A 4  0.163

5 Area A 5  0.265

6 Area A 6  0.228

Table 4.2: Doubly-Stiffened Girder Optimization Variables

The worst-case aggregate deflection and the total weight of the bridge give the

structural cost of the optimal design.
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Load Placement
D1=0.28

and Deflection (in)

0-

-10

-20

-30

-40 - Deformed Shape (x50, in)

Forces in Truss (kip) 1.17 -0.6 1 -0.6 1.17

10- Bending Moment (kip-in)

0-

-10

-20

-30

0 40 80 120 160 200 240

Figure 4.63: Deformation of Doubly-Stiffened Girder under First Load

Load Placement
and Deflection (in)

0

-10

-20

-30

-40 Deformed Shape (x50, in)

Forces in Truss (kip) 2.33 -1.2 2 -1.2 2.33

10o Bending Moment (kip-in)

0

-10

-20

-30

200 240

Figure 4.64: Deformation of Doubly-Stiffened Girder under Both Loads
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4.8.3 Triple Stiffener

R1

WI

Figure 4.65: Triply-Stiffened Girder Parametrization

Element Description Notation Optimum Value (in, in2)

1 Top Pipes Area AT1 0.153

Bottom Pipe Area AB1 0.301

2 Top Pipes Area AT2 0.173

Bottom Pipe Area AB2 0.340

3 Top Pipes Area AT3 0.057

Bottom Pipe Area AB3 0.113

4 Length L4 21

Total Area A4 0.163

5 Length L5 21

Total Area A5 0.016

6 Area As 0.266

7 Area As 0.227

Table 4.3: Triply-Stiffened Girder Optimization Variables

Weight 98 lbs

Aggregate Deflection 0.75 in

Cost $ 1010

The triply-stiffened girder behaves exactly as the doubly-stiffened girder, as the

middle king post cannot take any load in the optimal geometry obtained. The

double stiffener scheme is therefore selected.
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Load Placement
and Deflection (in)

Deformed Shape (x50, in)

Forces in Truss (kip) 1.17 -0.6 1 0 1 -0.6 1.17

Bending Moment (kip-in)

.I ! t .. .. ... .

0 40 80 120 160 200 240

Figure 4.66: Deformation of Triply-Stiffened Girder under First Load

Load Placement 01=0.35 D2=0.36
and Deflection (in)

200 240

Figure 4.67: Deformation of Triply-Stiffened Girder under Both Loads
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Appendix A

Truss Member Stiffness Matrix

A three-dimensional truss member is shown on figure A.1. The geometry is defined

by the length L of the member and the oriented angles 0 and (p. The truss member

is limited by two nodes (A, B). Each node has 3 degrees of freedom corresponding

to the orthogonal directions I[, y, z]. The nodal displacements in these directions

are noted as [u, v, w] respectively.

Z

uA

Fy B

B
UB

-I

0

WA

Fx A

FyA Fz A

Figure A.1: Nodal Displacements Figure A.2: Nodal Equilibrium

External and internal actions are shown on figure A.2. The external forces [Fx, Fy, Fz]

are applied at both nodes of the truss member in the directions of the degrees of

freedom. The internal force T is due to the deformation of the truss member and

acts in its the axial direction.
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The elongation of the truss member is a function of the nodal displacements and

depends on the geometry:

AL = (UB - UA) COS 8 CoS + (VB - vA)Sin 8 cosp + (WB - A) sin (A.1)

The elongation creates a force in the member. Using an elastic model, where A is

the cross-sectional area of the member, E its modulus of elasticity and L its length:

AL
T = AEAL (A.2)

L

If T > 0, the truss member is in tension.

If T < 0, the truss member is in compression.

Force equilibrium is applied at both nodes by projecting the force T in the directions

of the degrees of freedom:

FxA -T cos 0 cos { FB = Tcos cos
Node A FyA = -TsinOcosy' Node B FyB = TsinOcosyQ (A.3)

FzA = -T sin~ p FB = Tsin

(A.1), (A.2) and (A.3) are combined:

FxA - cos 0 cos p
FyA ( -sin 6 cos pFyA (UB - UA) COS 0 COSsin COS

-Fx) L cos 0 cos pFyB - (WB - WA) sin sin 0 cos
FyB sin 0 cos W
FzB /, sin /

T
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(A.4) is rearranged to express the nodal forces as

The force-displacement relationship is summarized

F=KU

where

FxA

FYA

FzA

FxB

FyB

FzB

UA

VA

WA

UB

VB

WB

functions of the displacements.

as:

(A.5)

= Cos 8

= sin 0

= Cos p

= sin y

K is the stiffness matrix of the truss member:

c) c222
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Appendix B

Beam Segment Stiffness Matrix

MAC
E,I

SMB

R,

Figure B.1: Forces Acting on Beam Segment

A beam segment and the forces acting on it is represented on figure B.1. Force and

moment equilibrium are applied:

FA+ FB = 0 MA + MB + FBL

9A __---

VB - VA - LOA

Figure B.2: Beam Segment Displacements

The deformation of the beam segment is represented by two vertical displacements

(VA, VB) and two rotations (OA, OB), as shown on figure B.2.
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BEAM SEGMENT STIFFNESS MATRIX

An equivalent cantilever beam segment (figure B.3) is used to derive the force-

displacement relationships.

)MB

FB VB - VA- LOA
)MA 

OA

Figure B.3: Equivalent Cantilever Beam Segment

The deformation of a cantilever beam subjected to the end force FB and the end

moment MB is known:

VB - VA - LOA

OB - OA

FBL
3

3EI

FBL 2

2EI

MBL
2

2EI

MBL
EI

(B.2)

The system of equations (B.2) is solved for FB and MB:

FB EI -12 vA

MB El Iv A +
( L2

6 12 6
- OA VB - -
L2 L3 L2

2

L

- 6 B + 4 0B

B)

(B.3)

Using the equilibrium equations (B.1), the load-displacement relationship for the

beam segment is written:

= EI

12

6

L2

12

L3

6

L 2

12 6
3 L2

4 6

L L2

6 12

L2 L3

2
L
6
L 2

2 6 4

L L2 L /

VA N

OB /
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Appendix C

Program Schematic Diagrams

This appendix intends to clarify the schematic diagrams used is section 3.4.1, 2.2.1

and 4.3.2 to represent optimization programs.

Functions

Rectangular boxes represent functions. A function accepts inputs, carries out var-

ious operations and returns outputs. In practice, each function consists of a series

of instructions written in a file (.m files for Matlab ® code used in this study).

The name of each the function is indicated in the rectangular box. Arrows arriving

to the top of the rectangle represent function inputs. Arrows departing from the top

of the rectangle represent function outputs. The name of input and output variables

are indicated along the corresponding arrows.

input output

function

Figure C.1: Representation of a Function
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Sub-Functions

A function can call other functions, then called sub-functions. Arrows departing
from the bottom of the rectangle represent data passed as input to the sub-function
called within the execution of the function. Arrows arriving to the bottom of the
rectangle represent outputs of the sub-function returned to the function. In fig-
ure C.2, function A calls sub-function B.

Figure C.2: Function calling a Sub-Function

Databases

Ovals represent data stored in a database. Data is stored and retrieved by functions.
Arrows arriving to the oval represent data being stored in the database. Arrows
departing from the oval represent data being retrieved from the database.

input A output A input B output B

function A function B

data stored data retrieved

database C.3: Functions Interacting with a Database

Figure C.3: Functions Interacting with a Database
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Order of Operations

The diagrams are laid out to represent the order in which the main operations are
carried out within a function. In the example shown in figure C.4, function A
starts by calling sub-function B, then loads data from database and finally calls
sub-function C before returning outputA.

input A output A

IT - function A
inputB outputB input C output C

data retrieved

Figure C.4: Complex Function
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Truss Optimization Program Code

Optimization Algorithm Objective Function

1 function[f]=objective(x);
2
3 [Mt,Ulist,Flist,w]=analyze(x);

4
5 f=abs(Ulist(find(Ulist(:,1l)==dof),2));

Truss Analysis Process

1 function[Mt,Ulist,Flist,w]=analyze(x);
2
3 [Nt,DOFt,Mt]=define truss(x);
4
5 cd('..\..\code');
6
7 [Kt]=stiffness(DOFt,Mt);

8
9 DOFf=transpose([list of fixed degrees of freedom]);

10 DOFc=transpose([list of control degrees of freedom]);
11

12 [rDOFt,DOFu,Fc,Fu,E]=specify(Kt,DOFt,DOFf,DOFc);

13 P=transpose([list of loads applied to control degrees of freedom]);
14 [Uc,Uu,Ulist,R,Flist]=solve(DOFc,DOFu,DOFf,Fc,Fu,E,p);
15 [Mt]=deformations(Mt,Ulist);
16 w=weight(Mt);
17
18 cd('..\problems\1');
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Truss Definition

1 function [Nt, DOFt, Mt] =definetruss(x);
2
3 DOFt=transpose([list of all truss degrees of freedom]);
4
5 Nt=[tag x y z dofx dofy dofz];
6
7 dMt=[tag nodeA nodeB E A];
8
9 cd('..\..\code');

10

11 Mt=members(Nt,dMt);

12

13 cd('..\problems\pl');

Truss Members Properties

1 function[Mt]=members(Nt,dMt);
2

3 Mt= [];
4
5 for i=1:1:length(dMt(:,1));

6 a=find(Nt(:,1)==dMt(i,2));
7 b=find(Nt(:,1)==dMt(i,3));

8 [L,T,P]=geometry(Nt(a,2),Nt(a,3),Nt(a,4),Nt(b,2),

9 Nt(b,3),Nt(b,4));

10 Mt=[Mt;dMt(i,1) Nt(a,:) Nt(b,:) L T P dMt(i,4) dMt(i,5)1;
11 end;

Truss Members Geometry

1 function[L,T,P]=geometry(xa,ya,za,xza,b,yb,zb);
2
3 L=((xb-xa) ^2+(yb-ya) ^2+(zb-za) ^2) ^0.5;
4
5 Lh=((xb-xa)^2+(yb-ya)^2)^0.5;
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6
7 if Lh>0;

8 if yb>=ya;

9 T=acos((xb-xa)/Lh)/pi*180;

10 elseif yb<ya;

11 T=-acos((xb-xa)/Lh)/pi*180;

12 end;

13 elseif Lh==O;

14 T=O;

15 end;

16

17 P=asin((zb-za)/L)/pi*180;

Truss Stiffness

1 function[Kt]=stiffness(DOFt,Mt);
2
3 Kt=zeros(length(DOFt));

4

5 for k=1:1:length(Mt(:,1));
6
7 M=[Mt(k,:)];
8
9 Km=member_stiffness(M(16), M(17), M(18), M(19), M(20));
10

11 DOFm=[M(6), M(7), M(8), M(13), M(14), M(15)];
12

13 for i=1:1:length(DOFm);

14

15 a=find(DOFt==DOFm(i));

16

17 for j=1:1:length(DOFm);
18
19 b=find(DOFt==DOFm(j));
20
21 Kt(a,b)=Kt(a,b)+Km(i,j);
22
23 end;

24 end;
25 end;
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Member Stiffness

1 function [Km] =memberstiffness(L,T,P,E,A);
2

3 st=sin(T/180*pi);
4 ct=cos(T/180*pi);

5 sp=sin(P/180*pi);
6 cp=cos(P/180*pi);
7

8 line=[-ct*cp -st*cp -sp ct*cp st*cp sp];
9

10 Km=(E*A/L)*transpose(line)*line;

Matrix Reduction

1 function[rDOFt,DOFu,Fc,Fu,E]=reduce(Kt,DOFt,DOFf,DOFc);
2
3 DOFu=[];

4 for k=1:1:length(DOFt);

5 if and(length(find(DOFf==DOFt(k)))==0,

6 length(find(DOFc==DOFt(k)))==0);

7 DOFu=[DOFu;DOFt(k)];

8 end;

9 end;

10

11 rDOFt=[DOFc;DOFu;DOFf];

12

13 rKt=zeros(length(rDOFt));

14 for i=1:1:length(DOFt);

15 a=find(rDOFt==DOFt(i));
16 for j=1:1:length(DOFt);
17 b=find(rDOFt==DOFt(j));
18 rKt(a,b)=Kt(i,j);

19 end;

20 end;

21

22 nc=length(DOFc);

23 nu=length(DOFu);

24 nf=length(DOFf);

25 nt=length(rDOFt);
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26
27 if nu>=1;

28 Ka=rKt(1:nc,1:nc);

29 Kb=rKt(1:nc,(nc+l):(nc+nu));

30 Kd=rKt((nc+l):(nc+nu),1:nc);

31 Ke=rKt((nc+1):(nc+nu),(nc+1):(nc+ nu));
32 Kg=rKt((nc+nu+l):(nc+nu+nf), 1 :nc);
33 Kh=rKt((nc+nu+) :(nc+nu+nf),(nc+l):(nc+nu));

34 C=-inv(Ke)*Kd;

35 Kc=Ka+Kb*C;

36 Fc=inv(Kc);

37 Fu=C*Fc;

38 E=Kg*Fc+Kh*Fu;

39 elseif nu==O;
40 Ka=rKt(1:nc,1:nc);
41 Kg=rKt((nc+nu+l):(nc+nu+nf), 1:nc);

42 Fc=inv(Ka);

43 Fu=[];
44 E=Kg*Fc;

45 end;

Problem Solution

1 function[Uc,Uu,Ulist,R,Flist]=solve(DOFc,DOFu,DOFf,Fc,Fu,E,P);
2
3 Uc=Fc*P;

4 Uu=Fu*P;

5 R=E*P;

6

7 Ulist=[[DOFc,Uc]; [DOFu,Uu];[DOFf,zeros(length(DOFf),1)]];
8 Flist=[[DOFc,P];[DOFu,zeros(length(DOFu),1)]; [DOFf,R]];
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Deformed Truss Analysis

1 function[Mt]=deformations(Mt,Ulist);
2

3 Mt=[Mt(:,1:20),zeros(length(Mt(:,1)),46-length(Mt(1,:)))];
4

5 for i=1:1:length(Mt(:,1));

6

7 ua=Ulist(find(Ulist(:,1)==Mt(i,6)),2);
8 va=Ulist(find(Ulist(:,1)==Mt(i,7)),2);
9 wa=Ulist(find(Ulist(:,1)==Mt(i,8)),2);

10 ub=Ulist(find(Ulist(:,1)==Mt(i,13)),2);
11 vb=Ulist(find(Ulist(:,1)==Mt(i,14)),2);
12 wb=Ulist(find(Ulist(:,1)==Mt(i,15)),2);
13 xpa=Mt(i,3)+ua;
14 ypa=Mt(i,4)+va;
15 zpa=Mt(i,5)+wa;
16 xpb=Mt(i,10)+ub;
17 ypb=Mt(i,11)+vb;
18 zpb=Mt(i,12)+wb;
19 L=Mt(i,16);
20 T=Mt(i,17);
21 P=Mt(i,18);
22 E=Mt(i,19);
23 A=Mt(i,20);
24
25 st=sin(T/180*pi);
26 ct=cos(T/180*pi);
27 sp=sin(P/180*pi);
28 cp=cos(P/180*pi);
29
30 dL=(ub-ua)*ct*cp+(vb-va)*st*cp+(wb-wa)*sp;
31 strain=dL/L;
32 stress=E*strain;
33 F=A*stress;
34
35 Mt(i,31:46)=[ua va wa ub vb wb xpa ypa zpa xpb ypb zpb dL
36 strain stress F];
37

38 end;
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Truss Weight

1 function [w]=weight (Mt);
2
3 w=0;
4

5 for i=1:1:length(Mt(:,1));
6 w=w+Mt(i,16)*Mt(i,20) /12/12/12*490;
7 end;

151

APPENDIX D.



Appendix E

Girder Optimization Program

Code

Structural Cost

1 function [sc]=structural_cost (Y,all_V, all_M,P);
2

3 w=weight(P);

4 d=deflection(Y,all_V,allM,P);
5 sc=700*d+5*w;

Weight

1 function [w]=weight (P);
2

3 w=O;

4

5 for i=1:1:length(P(:,l));

6 w=w+2*(P(i,2)-P(i, ))*P(i,3)/(12-3)*490;
7 end;
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Deflection

1 function [d] =deflection(Y, all_V, allM,P);
2

3 AggD= [];
4 for rl=:1: 6;

5 for r2=1:1:6;

6 agg_d=aggregate_def lect ion(Y, allV,all_V, all, rl, r2, P);
7 Agg_D= [AggD; agg_dl;
8 end;
9 end;

10 d=max(AggD);

Aggregate Deflection

1 function[agg_d]=aggregatedeflection(Y,allV,allM,rl,r2,P);
2
3 M1=allM(:,rl);

4 D1=displacement(Y,M1,P);

5 yl=40+6*rl;

6 dl=Dl(find(Y==yl));

7

8 M2=allM(:,6+r2);

9 M=M1+M2;

10 D2=displacement(Y,M,P);

11 y2=110+6*r2;

12 d2=D2(find(Y==y2));

13

14 agg-d=-(2*dl+d2);
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Displacement

1 function[D]=displacement(Y,M,P);
2

3 E=29000; % Steel Modulus of Elasticity (ksi)
4

5 nbpoints=length(M(:,1));
6 A=[Y,zeros(nbpoints,1) ,M,zeros(nbpoints,2)];
7

8 % Find cross-section for each segment
9 for i=2:1:nb_points;

10 A(i,2)=P(find(and(A(i-1,1)>=P(:,1),A(i,1)<=P(:,2))),4);
11 end;
12

13 % Calculate angle
14 A(1,4)=0;

15 for i=2:1:nbpoints;
16 A(i,4)=A(i-1,4)+(A(i,1)-A(i-1,1))*((A(i-1,3)+A(i,3))/2)/(E*A(i,2));
17 end;

18

19 % Calculate deflection
20 A(1,5)=0;

21 for i=2:1:nb_points;

22 A(i,5)=A(i-1,5)+(A(i,1)-A(i-1,1))*((A(i-1,4)+A(i,4))/2);
23 end;

24

25 % Calculate initial angle
26 initial_angle=-A(nbpoints,5)/A(nbpoints, );
27

28 % Re-calculate angle

29 A(1,4)=initial_angle;

30 for i=2:1:nbpoints;

31 A(i,4)=A(i-1,4)+(A(i,1)-A(i-1,1))*((A(i-1,3)+A(i,3))/2)/(E*A(i,2));
32 end;

33

34 % Re-calculate deflection
35 A(1,5)=0;
36 for i=2:1:nbpoints;

37 A(i,5)=A(i-1,5)+(A(i,1)-A(i-1,1))*((A(i-1,4)+A(i,4))/2);
38 end;
39

40 D=[A(:,5)];
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Stresses

function [Sa, Ss]=stresses (Y, V_,M-env, P);

nb_points=length(Y);

A=P(1,3:5);

% Find cross-section properties for each segment
for i=2:1:nb_points;

A=[A;P(find(and(Y(i-1,1)>=P(:,1),Y(i,1)<=P(:,2))),3:5)];

end;

Sa= [] ;
Ss= [];

for i=1:1:length(Y);

sa=Menv(i)*A (i,3)/A(i,2);
Sa=[Sa;sa];

ss= [V-env(i)/A(i, 1)];
Ss=[Ss;ss] ;

end;

Single Load

1 function [V,M] =single_load(Y,yload);
2

3 L=240;
4 d=36;
5 w=O.01737;
6
7 Ro=-w*d*(- (2*yload+d)/(2*L));
8 Rl=-w*d*(2*yload+d)/(2*L);
9

10 V=[] ;
11 M=[] ;
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13 for i=1:1:length(Y);
14 y=Y(i);

15 if y<=yload;

16 v=-Ro;

17 m=-Ro*y;

18 elseif and(y>yload,y<=yload+d);

19 v=-Ro+(Ro+Rl)*(y-yload)/d;

20 m=-Ro*y+(Rl+Ro)/(2*d)*(y-yload)^2;

21 elseif y>yload+d;

22 v=Rl;

23 m=-(Ro+Rl)*(yload+d/2)+Rl*y;

24 end;

25 V=[V;v] ;
26 M=[M;m];
27 end;

Load Scenarios

1 function[all_V, all_M]=loadscenarios(Y);
2

3 allV=[] ;
4 all_M=[];
5
6 for rl=1:1:6;

7 yl=40+6*rl;

8 [V,M]=singleload(Y,yl);
9 all_V=[all_V,V];

10 allM=[all_M,M];
11 end;

12

13 for r2=1:1:6;

14 y2=110+6*r2;

15 [V,M]=single_load(Y,y2);
16 all_V=[all_V,V];
17 all_M=[all_M,M] ;
18 end;
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Envelopes

1 function [V_env, Menv]=envelopes (Y);
2
3 [allV, allM] =load_scenarios(Y);
4

5 V_comb= [] ;
6 M_comb= [] ;
7 for rl=1:1:6;

8 for r2=1:1:6;
9 V_comb= [V_comb, [all_V(: ,rl)+all_V(: ,6+r2)]] ;
10 M_comb=[M_comb, [allM(:,rl)+all_M(: ,6+r2)] ;
11 end;

12 end;

13

14 V_env= [] ;
15 Menv= [] ;
16
17 for i=1:1:length(V_comb(:,1));

18 V_env=[V_env;max(abs(Vcomb(i,:)))];
19 M_env= [M_env;max(abs(M_comb(i,:)))];
20 end;
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Hybrid Systems Analytical

Solutions
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Simple Stiffener

A symmetrical stiffener scheme with a single king post is considered first.

0 L/2- a L/2 L/2 + a L
I I I I )x

x

Figure F.1: Problem Geometry

The lengths a and b define the geometry. Then:

a
cos 0 - -c = /a 2 +

b
sin 0 = - (F.1)

L 0

Ue (X)

Me (x)

Figure F.2: External Load Action

The downward deflection ue due to externally applied loads is calculated from the

bending moment Me created by these loads:

e = EI

159

I Ue(X) (F.2)
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Fa
M(x)

L/2 - a L/2 L/2 +a x

F s(

2 sin(O)
2 F
2 sin(8)

F F
2 sin(6) 2 sin(0)

Figure F.3: Forces in Stiffener and Moment Created on Beam

The force in the stiffener, F, is not known yet

The bending moment Ms created by the stiffener is:

Ms(x) = 0

F
2

F
M\s()= -2

L
for O<x<-- a

2

+a)

L
+a-

( 2

MS(x) =0

for L
for -

2

L
for -

2

L
for -

2

L
--a<z<--

-2

L
<z<-+a

- -2

+a<x<L
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(x)
Us(X)

0 L/2-a L/2 L/2 +a L

Figure F.4: Stiffener Action

The upward deflection us due to

moment Ms:

us =

stiffener action is calculated from the bending

EI A -u() FU (xEl

F is the still unknown force in the stiffener.

; is calculated and represents the deflection caused by

The actual deflection u, due to the combined action of

reaction, is:

U = Ue +s - U(X) = U,(X) -

a unit force in the stiffener.

external loads and stiffener

F us(x) (F.5)

(F.4)

The following notation is used:

SUl1  Uel - F us

= U2  Ue2 -Fus2

Ul = Ue3 - FUs3
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L/2 - a L/2 L/2 + a

x

Figure F.5: System Deformation

Truss members deformations are related to beam displacements, considering the

angle a small:

Ec c = (u2 - U1 + b b) sin 0 - oab cos 0

Ec C = (u 2 - U3 + Eb b) sin 0 + ab cos 0

(F.7)

(F.8)

(F.7) and (F.8) are added to cancel the angle a:

u1 + U3- + E b b sin 0
2

(F.9)

Each truss member strain (see Fig. F.5) is related to the member force (see Fig. F.3)

through the member stiffness, function of the member cross-sectional area:

F
= EAe ec

2 sin 0

F = -EAb Eb

F
c = 2EAc sin 0

F
b EAb

162

(F.10)
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In (F.9), displacements are decomposed using (F.6) and strains are expressed in

terms of the member forces using (F.10).

F Uel -
- F Us2 -

F uf + ue3 - F Us3 Fb n
1 sin0 (F.11)

EAb)

(F.11) is rearranged to be solved for F:

us1 + us +
2

C Ab Uel + Ue3

2 sin 2 EAc EAb Ue 2 2
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Double Stiffener

A stiffener scheme with two king posts is considered.

0 Xl X2 X3 X4 L
I II I I>. X

Figure F.6: Problem Geometry

To define the geometry, xl, x 2, x3, x 4, d and e can be chosen independently. Then:

a = 2 - X1

f = va 2 + d2

b = X3 - 2

=\ZTe;J

a = 4 - X3

h= vc 2 + e2

a
cos =

f

d
sin p = -

f

c
cos = -

h
sin =

h
b d-e

cos = - sin 0 =
g g

L 0
-* X-

Ue()

Me (x)

Figure F.7: External Load Action

The downward deflection Ue due to externally applied loads is calculated from the

bending moment Me created by these loads:

Ue = EI
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(F.14)
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Figure F.8: Forces in Stiffener and Moment Created on Beam

The force Fg, acting in the bottom member, is chosen as the reference force F. By
applying equilibrium at the nodes, all forces in the truss are expressed in terms of
the reference force F:

sin (p + 8)
Fd = -F

cos 0

cos
Ff= Fos

cos 0

sin (( - 8)
Fe = -F

cos (

Fg =F Fh = F

The bending moment Ms due to stiffener reaction is:

Ms(x) = 0

Ms(x) = F cos O tan o (x - 2 1 )

(a tan

X - X2)

b
+ c tano (- x 2 ))

Ms(x) = F cos 0 tan, (c- x + x 3)

Ms(x) = 0

for X 1 < X < X2

for x2 < x < x3

for x3 < X < L4

for X4 < x < L

(F.16)
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Ms(x) = F cosO
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XmflnhVz MsX)
0

0 xi X2

x

X3 X4 L

Figure F.9: Stiffener Action

The upward deflection us due to stiffener action is calculated from the bending

moment Ms:

us = EI - us(x) = Fus(x)

F is the still unknown reference force in the stiffener.

us- is calculated and represents the deflection caused by a unit reference force F in
the stiffener.

The actual deflection u, due to the combined action of external loads and stiffener

reaction, is:

U = U e - U s u(x) = Ue(X) - F Us(x) (F.18)

The following notation is used:

u(x 1 ) = U1 = Uel - F Usl

u(Z 3 ) = U3 Ue3- F Us3

u(x 2 ) =2 Ue2 - FUs2

u(x 4 ) = 4 = e4 - F Us4
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Xi x2 X3

I I I I >

(1+ Eg)g

Figure F.10: System Deformation

Truss members deformations are related to beam displacements, considering angles

a and / small:

Ef f = (u 2 - Ul Ed d) sin - ad cos p

Chh = (U3 - U4 + Ce e) sin V) + e cos

Eg g = (U2 + Ed d - U3 -e e) sin 0 + (a d - / e) cos 0

(F.20), (F.21) and (F.22) are combined to cancel angles a and /:

= (u 2 + dd-u 3 - e e)sin O

+ ((u 2 - Ed d) tan -p -

+ ((u 3 - U4 + ee)tani -

6f f ) os 0

Ch h 
os cos

Each member strain ci is related to the member force Fi through the member stiff-

ness, function of the member cross-sectional area Ai:

Fd
d - EAd

Fe Fd

EAe EAf
l'g

p- EA,

Fh
h = EAhEAh (F.24)
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(F.21)

(F.22)

Cg g
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In (F.23), displacements are decomposed using (F.19) and strains are expressed in

terms of the member forces using (F.24). These member forces are then expressed

in terms of the reference force F using (F.15). The resulting equation can be solved

for F:

(Us2 - Us3) tan 0 +
g 1

EAg cos 0

+ (Us2 -u)tan

+ (sa - u~4) tan

f cos 0
EAf cos 2p

h cos 0
EAh cos 2 9

d sin(p + )
+(tan W + tan 0)

EAd cos p

e sin( - )
+ (tan - tan 0)

EAe cos )

= (Ue2 -Ue3) Sinl + (Ue2-U el) COstan + (Ue3 - Ue4) cosOtan0 (F.25)
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