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Abstract

These lectures on selected chapters of communication theory are comple-
mentary to the well-known works of American authors on the statistical theory
of communication, which is not discussed here at any length. About one-third
of the lectures have as their subject the theory of signal analysis or represen-
tation, which precedes the statistical theory, both logically and historically.
The mathematical theory is followed by a physical theory of signals, in which
the fundamental limitations of signal transmission and recognition are discussed
in the light of classical and of quantum physics. It is shown that the viewpoints
of communication theory represent a useful approach to modern physics, of appre-
ciable heuristic power, showing up the insufficiencies of the classical theory.
The final part of the lectures is a report on the present state of speech analysis
and speech compression, with suggestions for further research.







LECTURES ON COMMUNICATION THEORY

I. Introduction
I.1. What is Information?

Communication theory owes its origin to a few theoretically interested engineers who
wanted to understand the nature of the goods sold in communication systems. The general answer
has, of course, been known for a long time. Communication systems sell information capacity, as
power systems sell energy. The way from this general idea to the quantitative definition of the
concept of information was a long one, and we are not by any means at its end.

The first step in dispersing the cloud of vagueness which hangs around the concept of in-
formation is the realization that information, if it is to be communicable at all, must be of a discrete
nature. It must be expressible by the letters of the alphabet, adding to these, if necessary, mathe-
matical symbols. In general, we must make use of an agreed language, in which the process of
reducing our chaotic sensations to a finite number of elements has led to some sort of vocabulary.
How this vocabulary came to exist, how it is enriched from day to day by new concepts which crys-
tallize in the form of a word, and how it is learned by children —these are dramatically interesting
questions, but outside the range of communication theory.

Once we have a vocabulary, communication becomes a process of selection. A selection
can always be carried out by simple binary selections, by a series of yeses or noes. For instance,
if we want a letter in the 32-letter alphabet, we first answer the question *‘is it or is it not in the
upper half?’’ By five such questions and answers we have fixed a letter. Writing 1 for a *'yes”’
and O for a *‘no’’, the letter can be expressed by a symbol such as 01001, where the first digit is
the answer to the first question, and so on. This symbol also expresses the order number of the
letter (inthis example, the number 9) in a binary system.

By the same method we can also communicate quantities. Physical quantities can be meas-
ured only with finite accuracy, and if we take as the unit of our measure the smallest interval which
we can assert with about 50 percent confidence that the quantity in question is inside it, we can
write the result...010011 X 1. Alternatively we can also use a ‘‘decimal’’ (really ‘‘binary’’) point.
Any measured number must break off somewhere. It is true that there are numbers, such as V2, or
7, which do not break off, but in these cases the instruction to obtain them can be communicated
in a finite number of words or other symbols. Otherwise, they could never have been defined.

This suggests immediately that the number of digits, that is, the number of yeses and noes
by which a certain statement can be described, should be taken as a measure of the information.
This step was essentially taken by Hartley in 1928 (1). It may be noted that if n such independent
binary selections are carried out, the result is equivalent to one selection of N =22 possibilities.
Since n = log, N, the informative value of a selection from N possibilities appears as the logarithm
of N to the base 2. This is unity for one binary selection. The unit is called one *‘bit’’ or “‘binit’’,
short for **binary digit’’.

The word ‘‘possibilities’’ suggests an extension of this definition. The N selections are
all possible, but are they also equally probable? Of course, the answer is that in general they are
not. It may be remembered that we are conversing in a certain language. Whether this language
is as full of clich€s as the lyrics of the music halls, or as full of surprises as the report on a racing
day, there will always be certain features which we can predict with more or less certainty from
what has gone before. But what we knew before, we evidently cannot count as information.

The extension of the information concept to the case in which we have certain expectations
regarding the message has been made by N. Wiener and C. E. Shannon. They chose, for good reasons,




the unexpectedness of a message as a measure of its informative value. Consider, for simplicity,

a set of l...i...N possible events which we think may happen, and to which we assign expectation
values p,. In general, the p, present a thorny problem (for instance, if they represent the probabil-
ity of the horse i winning a race). They become simple only in the so-called “‘ergodic’’ case, in -
which the next event is picked out of a homogeneous statistical series. In this case we take the

past experience as a guide and identify the probabilities p; with the frequency of the occurrence

of the event i in the past, in similar trials.

R

Assume that we know the probabilities p, of the events i in such an ergodic series. Using
the language of communication theory, let us consider these events as “‘symbols’’ delivered by an
ergodic “‘source’’. By Shannon’s definition, the expectation value of the information is

N
H =~ X p,log,p; bits per symbol (1)
1

an expression which is also called ‘“‘the entropy of the source’’. This definition, in order to be
acceptable, must satisfy certain postulates. The first is that in the case of equal probabilities it
must go over into Hartley’s definition; that is, for p, = 1/N we must have S = log,N, which is easily
verified. Likewise one can verify also that if the events in question are composite (consisting of
two or more independent events), the S are additive. Shannon also shows that in whatever way the
events are broken down into component events, with their respective probabilities, the result is the
same. A further important property of S is that it becomes a maximum (with the auxiliary condition
2p; = 1) if all p, are equal (2). The full justification of the definition (Eq. 1) and its importance

are revealed by Shannon’s fundamental coding theorem: If a noiseless channel has a transmission
capacity of C bits per second, codes can be constructed which enable the transmission of a maximum
of C/H symbols per second. Thus, with ideal coding, a symbol supplied by a source with entropy H is
completely equivalent to H bits, as compared with log,N bits of a source which delivers its N sym-
bols at random and with equal probability.

Equation 1 is identical in form with one of the definitions of physical entropy in statistical
mechanics. It may be recalled that H is a quantity which depends on the frequencies with which
the symbols are emitted by the source of information, such as a speaker, using the English language,
talking of a certain field, having certain habits, and the like. The connection between this expres-
sion and the entropy of a physical system is by no means simple, and it will be better to distinguish
them, following a suggestion by D. M. MacKay, by calling H the ‘'selective entropy’’.

I.2. What is the Value of Information?

The quantity H defined in Eq. 1 has proved its great importance for communication engineer-
ing in Shannon’s general theory of coding. It is, in fact, the only satisfactory definition from the
point of view of the communication engineer faced with the problem of utilizing his lines to the best
possible advantage. While we shall not go into the theory of coding, since these lectures will be
devoted to other features of communication theory, we must warn against mistaking H for a general
“‘measure of information value’’ and forgetting the qualifications which we have added to it: “‘Ex-
pectation value of the information in the next event in an ergodic series’’.

The quantity H is a fair measure of what the customer pays for if he buys information capacity,
but it would be rash to say that this is what he pays for if he wants to buy information. A moment’s
consideration will show that what people value in information, in everyday life, contains two new
elements, exclusivity and prediction value, in addition to the element of unexpectedness.

A newspaper editor will pay for news if it is a ‘‘scoop’’, that is, exclusive, and if, in addi-
tion, it suddenly opens a vista of the future, such as the news of war preparations or the imminent




outbreak of a war, which is the key, in the mind of the reader, to a vast field of well-prepared as-
sociations (3). (There are, of course, other elements in popular appeal; the field of associations
need not extend towards the future, but can merely evoke strong personal experiences in the reader’s
mind. This, however, need not interest us here.)

A real estate speculator may be prepared to pay well for a piece of ‘‘inside information’’
on the direction in which a town is planning to extend. But let us consider rather a less criminal
example —a racing tip. This is simpler and yet contains all the essential elements.

Let there be 1...i...N horses running, whose probability of winning is assessed by popular
opinion as p,. The bookmakers have adjusted the odds roughly in inverse proportion to p,, so
that the expectation value of a dollar returned on any horse is one dollar and the expected gain nil.
There would be no betting unless people had their own ‘‘hunches’’. Consider, for simplicity, some-
body who has no hunch and is in complete uncertainty. He receives a “‘tip’’ which, through rather
subjective mental processes, induces him to assess the probabilities of winning as p™ (m for **mod-
ified”’) instead of p,. He now expects for one dollar laid on the i-th horse a gain of

(pT/pY-1 (2

dollars. He can pick out the maximum of this expression, lay his bet on the corresponding horse,
and reasonably pay the tipster a commission in proportion to the expected gain. (Though he would
be even more reasonable if he paid only after the race.)

This simple example illustrates what information may be worth if it modifies the expecta-
tions one step ahead. It also contains the element of exclusivity in the assumption that the odds
have not changed, which may remain true so long as the backer does not lay a too heavy bet; then
he automatically passes on information.

Let us now generalize this simple case somewhat by considering the case in which we want
to look three steps ahead in a probability chain of three sets of events, i, j, and k. Let p, be the
probability of the event i; p,; the probability that after i has happened, it will be followed by j;

Pijy the probability that the sequence i, and j will be followed by k. Since we know that one or
the other event is bound to happen in each step, we have the relations

Zp; = 1L p; = Zpypys Zp; = L py = 2EPPiPijis 2Py = 1 (3)

The odds are laid according to the a priori p,, and for simplicity we will again assume that they
do not change. If, now, we receive a tip on the first step, which modifies the expectations to p?,
the expected gain on the event k will be

(EEP?PuPuk/Pk) -1 (4)

The tip in the first step will be most valuable if it restricts the choice in the third step of
the chain and produces a prominent maximum. In general, we cannot assess its value by a single
measure, but we have to consider the whole modification which it produces in the probability distri-
bution three steps ahead.

It is evident that any single measure of the ‘‘peakedness’’ of a distribution must to some

extent be arbitrary, but if we have to select one, there can be no doubt that the entropy is the best.
It has been mentioned previously that the expression

N
H=- 5 p,log,p; (1)
1

has a maximum if all p; are equal, and is zero only in the case of certainty, that is, if one of the
P; is unity and all the rest zero. Adopting this, we have only to compare the modified entropy
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H= = -%pRlogpy PE =2ZpPpy; Pyjx 5)
with its value before the modification by the information, whose value we can then assess as H/H®.

These examples, which can be easily generalized, are sufficient to illustrate what we mean
by the “‘prediction value of information’’. It might appear that what we have discussed is the rather
unscientific question: ‘‘How much do we pay the tipster or the informer?’’ But the problem has a
more serious side. Information is something which enables us to take action, sooner or later. How-
ever, there are, often enough, situations so confused that it is impossible or impractical to take
action on every bit of information received. In these cases, a criterion which sifts information ac-
cording to its prediction value and allows us to reserve action for the worth-while cases may be of
practical importance. It appears that little work has been done in this direction (4).

The idea that information is something which enables the receiver to take action which is
in some way gainful to him is slightly more general than the prediction value, since it also com-
prises immediate action, and certain action, not based on probabilities. The information in the rail-
way timetable enables me almost certainly to get a train to a destination; the information in a text-
book, if it is sufficiently comprehensive, enables the student almost certainly to pass his examina-
tions. An interesting suggestion for a physical measure of the action which a receiver can take on
the basis of information comes from Szilard (5). He measured the information received by a system
A from a system B by the reduction of entropy, that is, the reduction of disorder which it enabled A
to effect on B. This is of great interest, and we are coming back to it later. At this place a warn-
ing may not be untimely. Thermodynamics is the science of the physical interaction of systems
which are in almost complete disorder. Forgetting this fact might lead to considerable confusion
in the minds of students of electrical engineering. In communication we are usually dealing with
systems in only very partial disorder, so that the limits set up by thermodynamics are often of very
remote interest only. Szilard has shown that at the thermodynamic limit a binary selection is worth
a reduction of entropy by k log 2, where k is Boltzmann’s constant, two-thirds of the heat capacity
of, say, a hydrogen atom. To believe that this is what any ‘“‘yes’’ or ‘‘no’’ is worth (for instance,
the “‘yes” or ‘‘no’’ which decides a war) would be rather more than absurd!

I.3. Classification of Communication Theory.

The purpose of communication theory is, first, to convey an understanding of communication
processes and, second, to suggest improvements in the handling of information. This includes not
only communication, but also classification and storing. Taken in this wide sense, communication
theory appears to encroach, on the one hand, on such old-established branches of learning as epis-
temology and mathematical logic; on the other hand, it borders on the techniques of communication.
Rather than annex old sciences to this new branch of science, it will be better to restrict the dis-
cussion to those chapters which are more or less new, and yet have reached an apprecxable degree
of development. These can be represented in the followmg scheme:

Signal analysis.
Theory of Signals Determinate trans-

formations of signals. .
> Theory of Coding

. . Random transformations.
Statistical Theory of

. Signal correlations. J
Communication e .. . z
Theory of discrimination.
Acting on the basis of q Cybernetics
information received. )




Signal analysis has as its main purpose the nonredundant description or ‘‘representation’’
of signals, that is, the eliminating of those data which do not convey new information, but which
could have been inferred a priori from a knowledge of the instruments used. What this type of
a priori information means may be illustrated by Eddington’s famous ‘‘Parable of the Fishing Net’’.

An ichthyologist wants to explore the life of the ocean, and he comes to the conclusion
that no sea-creature is less than two inches long. He could have known this, without doing any
fishing, merely by noticing that he has used a net with two-inch meshes. Similarly, if a meteorol-
ogist wants to investigate lightning and other atmospheric surges with a receiver of 10-kc band-
width, he need not be surprised if he finds that no surge has a base of less than 100 psec.

The same information, that is, the same set of new data can appear in an infinity of differ-
ent forms, either by deliberate encoding or by unwanted but known distortions. This is the subject
of the theory of determinate signal transformations.

It is convenient to exclude noise from signal analysis, since this makes for a certain unity
of the mathematical methods. Thus, in our classification (which is, of course, a matter of personal
opinion) probability has no place in signal analysis.

Statistical Theory of Communication. In all physical communication processes signals suf-
fer unavoidable, unpredictable distortions by what we generally call “‘noise’’. This is one of the
new elements which enter into the statistical theory. The other is: signals which are not connected
by any rigid law (functionally) may be correlated statistically. This means that in the long run there
will be less novelty in a message than one would infer from the a priori enumeration.

The theory of coding is astride the previous system of division. It has a determinate branch
and a statistical branch. The second is mainly the creation of Claude Shannon. Its purpose is to
eliminate the redundancies in the message and to create, as nearly as practicable, a code in which
every signal is a novelty, so that the channel capacity is fully utilized.

The theory of discrimination, chiefly the work of Norbert Wiener, has as its purpose the pick-
ing up of signals from a background, making use of statistical knowledge both on the signal and on
the background. It is one of the main objects of interest, but will not be treated in this course.

Cybernetics, also from Wiener, can be loosely defined as the science of purposeful action
on the basis of information received. In the previous classification it is shown to overlap the theory
of discrimination for two reasons. One is that, of course, information is the basis of action. The
other is that part of the action may be itself directed toward an improvement of the discrimination.

Of these branches of communication theory only signal analysis, including noise theory,
- will be treated in some detail. Special attention will be given to the problem of speech communi-
cation, hence the analysis of speech sounds will receive an important part of the space.

In addition, some subjects will be treated which are closely connected with communication
theory but which are partly outside the scheme at the beginning of this section. This scheme might
give the impression that communication theory is applied mathematics. We talk of applied mathe-
matics in fields in which the physical basis is so secure and well-known that it is hardly worth
mentioning. This, however, is by no means the case in all problems of communication theory.
Especially when the problem is to decide what is physically possible and what is not, it is neces-
sary to take into very careful consideration the physical limitations; not only those of classical
physics but those of quantum theory.

It has been pointed out, first by D. M. MacKay (6), that the points of view of communication
theory are useful guides in designing and understanding physical experiments, and the habit is
spreading of talking of information theory instead of communication theory when discussing its




consequences on scientific method. There was reluctance from some sides (also on the part of .*
the author) to accept this somewhat pretentious name for a new branch of science of which the
outlines have just become visible. More recent investigations, however, which will be discussed

in the fourth lecture of this course, are going some way towards justifying the claim that the prin- ¢~
ciples of communication theory are powerful heuristic tools when applied to physical problems.

They have yet to prove their worth in leading to new discoveries, but there can be little doubt that
they are useful guides for understanding modern physics.

Probably the most interesting discoveries may be expected from the application of communi-
cation theory to the human nervous system, not only as ‘‘terminal equipment’’, but as a study in
itself. In fairness, it must be pointed out that much of the credit will have to go not so much to
the theory as to the techniques of electrical communications. The telephone exchange was for a
long time a favorite model of neurophysiologists; more recently the modern calculating machines
and closed loop systems have provided new models. There is no need to worry much about the dis-
tribution of credits, since both the techniques and the theory have been mostly provided by electri-
cal engineers, who are richly rewarded by seeing an astonishing renaissance of their old craft.

II. Signal Analysis.
[I.1. The Nature, Scope, and Purpose of Signal Analysis.

The breaking down of quantitative experience into discrete elements will be achieved in two
steps. In the first step we will specify the degree of freedom of the communication channel, which
means that we will count the number of independent data in a message. In this first step each datum
is supposed to have an exact value. In the second step we will determine the number of ‘‘yeses”’
and ‘‘noes’’ contained in each datum, in the presence of noise, and of other sources of uncertainty.

We will first discuss those communication processes which we are accustomed to consider
as ‘‘one-dimensional’’: the transmission of a quantity s in time. We do this only in order to establish
continuity with habitual methods of thinking; it will be seen later that ‘‘dimensionality’’ is a some-
what arbitrary concept if the result is, as it must be, a finite set of data.

The orthodox method starts with the assumption that the signal s is a function s (t) of the
time t. This is a very misleading start. If we take it literally, it means that we have a rule of con-
structing an exact value s (t) to any instant of time t. Actually we are never in a position to do
this, except if we receive a mathematical instruction; but in this case it was not s which was sent,
but the instruction. If s is being sent, two difficulties arise. One is the definition of the ‘‘instant
of time’’, in such a way that there shall be complete agreement between the transmitter and the re-
ceiver. But if there is a waveband W at our disposal, we cannot mark time more exactly than by
sending the sharpest signal which will get through W. This, however, as will be shown later, has
a time-width of the order 1/W; hence we cannot physically talk of time elements smaller than 1/W.
The other difficulty is, of course, the exact definition of the value of s. This is outside the scope
of signal analysis as we define it and will be dealt with later.

Since signal analysis deals with a finite number of independent data only, it follows that
after having specified these, there is nothing else left in the signal, and all physically meaningful
mathematical operations can be carried out without any further reference to the signal ‘s (t)’’. This
was only a sort of crutch to the mind accustomed to analytical thinking, and can now be thrown away.
In fact, this is done, for example, in the steady-state analysis of linear circuits, where, after speci-
fying that the class of time functions admitted in the analysis is that of the harmonic functions of
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time, all further discussion is carried out in terms of their complex amplitudes.

In signal analysis we cannot throw away the crutches so easily, since a very wide class
of functions will be admitted, but it may always be remembered that we are dealing with their data
only, not with the time functions. What then do the time functions mean?

The answer is that they establish the connection of signal analysis, as a branch of mathe-
matics, with physics. They are instructions to construct apparatus for producing them or handling
them. For instance, a harmonic signal may be produced by a pendulum, or by a rotating disk, or
by a Thomson-circuit; linear circuits (physical instruments made of copper, iron, insulators, and
so forth) are required for transforming it without distortion, that is, without changing the function.
If we have the rules for constructing these devices, the concept ‘‘time function’’ becomes a label
for these, but has no other physical meaning. Evidently it is difficult to do one’s thinking in such
epistemologically correct but practically unhandy terms, and the confused concept of time as being
““something that exists, but which we cannot measure exactly’’ cannot be easily discarded by the
human mind. There is no harm in it, so long as we remain aware of the limits to which it can actu-
ally be measured, that is, in which it has a physical meaning in the given circumstances.

By the fact that it deals with a finite number of data, signal analysis is most closely related
to interpolation theory among the branches of mathematics. But while modern interpolation theory
insists on full analytical rigor, we will entirely disregard rigor, not only because we want to hand
on the results to practical people, but also because rigor is pointless, in view of the intermediate
character of signal analysis. In order to make the results physically meaningful, we shall have to
add ‘‘noise’’ to the data. Hence, in signal analysis, we need consider only functions which are
continuous and differentiable beyond any limit, because any function can be approximated by such
a function to any finite limit, however small.

The problems of signal analysis fall naturally into two classes. In the first class, the sig-
nal is ‘‘dead’’; it has happened before the analysis starts, and all its data can be assumed to be
known. This is the case, for example, if the message is handed to us in the form of a telegram.

In the second class the signal is ‘“‘alive’’; it is known only up to the present instant, as in teleph-
ony. Attention will have to be given to both cases, but they will not be dealt with in separate sec-
tions.

II.2. Fourier Analysis in Infinite, Semi-Infinite, and Finite Intervals.

Linear signal analysis is the representation of arbitrary signals as series of a set of elemen-
tary signals, with suitable coefficients. Nonlinear analysis has not yet been developed to any ap-
preciable extent, though it may become of great importance, for example, in problems of speech com-
munication.

The historically first, and still practically the most important set of elementary functions is
that of sine waves, which may be infinite at both ends, or bounded at one end, or at both. It is con-
venient to start from analysis in terms of infinite waves, considered by Fourier, though this is not
the historically first case.

Let s (t) be a function known in the infinite interval. By Fourier’s integral theorem we have
the two reciprocal relations

s(®) = [ S(f)e2miteds 1.1
S(f) = [ s (t) e"2mifegy 11.2
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By these relations the function of time s (f) has been ‘‘imaged’’ or transformed into another function
S of a new variable f, which is called the frequency. s(t) and S(f) are a pair of Fourier transforms.
It is useful to call S(f) the “left-hand’’ transform of s(t), and s (t) the “‘right-hand’’ transform of S (f),
since S is found at the left, and s at the right, in the standard tables of Campbell and Foster (7). «
S(f) is also called the ‘‘complex spectrum’’ of s(t). In general, it will be complex even if s (t) is
real, but for real signals we have the condition

S (f) = S* (-f) I1.3

The asterisk stands for the complex conjugate. Thus, if the spectrum for positive frequencies is
known, the negative frequencies are not needed.

e

From Egs. II.1 and I1.2 one derives at once

Yls@©+s(t)] = [ S(E) cos 2afe df L4
YIS +S(—f)] = [ s(t) cos 2nfe dt IL.5

These are a pair of completely symmetrical transforms. There is no ‘‘left-hand, right-hand”’
difference, but they give only the even part of the signal or of the spectrum. This, however, is com-
pletely sufficient if the signal is known only in a semi-infinite interval, for example, for t < 0. In this
case we are free to imagine it continued in the range of t> 0 as an even function, and we can write

s()=2 [ S, () cos 2nft df 1.6
[e]

S.(f) =2 [ s (t) cos 2nft dt 1.7

where s (t) and S_ (f) are a pair of cosine Fourier transforms. For a real signal the cosine spectrum
is real and an even function of the frequency, hence negative frequencies can be altogether disregarded.
One can similarly define a sine spectrum by odd continuation, but this is far less convenient.

Thus if the signal is known up to a time t, we can define the ‘‘up-to-date cosine spectrum’’ as
t
S. (f,t) =2 [ s(r) cos 2af (t—r) dr 11.8

One can say that complex Fourier analysis regards the signal sub specie aeternitatis, when it is all
dead, while the up-to-date analysis applies to a live signal whose past is completely unforgotten.

Let us now consider, with R. M. Fano (8), an analysis in which the past is gradually forgot-
ten (see Fig. 1) because it is weighted with an exponential function.

e~ (=7 (g >0)

The up-to-date spectrum of the weighted signal is called by Fano the ‘‘short-time spectrum’’,
but we will call it the “‘perspectivic spectrum’’, since ‘‘short-time spectrum’’ will be reserved for
other applications. The exponentially weighted signal can be easily realized, as Fano has shown,
by an RC circuit. Fano’s analysis can also be considered as analysis in terms of damped harmonic
waves, all damped retrogressively by the same exponential factor.

Let us now consider another special way of ‘‘weighting the past’’, by a function which leaves
the signal unaltered in an interval T preceding the present instant and entirely suppresses what
has gone before that. In principle, we could proceed exactly as before: introduce into Eq. II.8 for




- S=t the up-to-date cosine spectrum this new, discon-
tinuous weighting function. (The reader may carry
' this out as an exercise.) It may be remembered

7 STet _—7  that the up-to-date spectrum S is the Fourier spec-
\/ trum S of the signal, if it is continued into the

PAST, FUTURE, future as an even function. 'In the present case we

KNOWN UNKNOWN thus get the spectrum of a signal which is symmet-

rically repeated around the instant t in an interval
+ T, and is suppressed outside. Evidently one
can think of many other rules of continuation. Per-
haps the most natural is that proposed by Fourier
himself: continue the signal as a periodic function.
Again it may be a useful exercise for the reader

WEIGHTING
FUNCTION

T prove that this assumption, introduced into Egs.
I1.6 and I1.7, leads to the representation of the sig-
WEIGHTED nal as a Fourier cosine series
SIGNAL\ -
PaN /V] s(© = X S, cos(mnt/T) IL9
- N —T

o

S =% [ s () cos(ent/T) dt  IL.10

n
=T

Fig. 1.

Perspectivic weighting of signals.

This series has the period 2T, because Egs. II.6 and I1.7 contained the assumption of even continu-
ation. Dropping this and going back to Eqgs. II.1 and I1.2, one obtains Fourier’s sine-cosine series,
with period T.

We can thus represent a signal, by chopping it into intervals T and writing down for every
interval the set of Fourier components. This is not a very elegant method, but it is a useful one,
which we shall later apply repeatedly in problems of speech analysis. Instead of the up-to-date
spectral function, which is continuous and changes continuously with time, we now have a discon-
tinuous line spectrum, which changes abruptly when we step from one interval T into the next. Both
are equally valid and complete specifications of the same signal.

I[I.3. The Energy Spectrum and the Autocorrelation Function.

There are important cases in which the Fourier spectrum is either not defined physically,
or without interest, while the concept of energy spectrum or power spectrum still remains valid and
important.

The spectrum of light as taken with a spectrograph is a clear example of the first case.
The phase of light waves is unmeasurable, except at extremely high intensities, which never occur
in practice, but their intensity is easily found. Noise is an example of the second case. The phases
are not unmeasurable, but irrelevant. Acoustical communication, where the ear is the final receiving
organ, is another example. The situation here is a little more complicated, and we shall return to
it later.

<

If the complex Fourier transform S (f) of a signal is known, the ‘‘spectral energy density’’
is, by definition, the absolute square of S (f) or
S (f) S* (f)

If the signal is real, this can be written by Eq. 1.3 as




S(f) S (-) -
In the case of cosine transforms, which are even functions of f, this is simply the square of S.. In
every case we have the energy theorem

o0 ©o
[s*sdt= fS*Sdf .11
-0 - 00
(This theorem, often called by the name of Parseval, who established it for series, is really attrib-
utable to Rayleigh, 1889.) It is interpreted as the equality of ‘‘energy’’ in the time description and
in the Fourier description. (Some caution is needed, as ss* does not always exactly coincide with
the physical definition of power.)

Thus if we know the Fourier spectrum of a signal, we also know its energy spectrum, but
the converse is not true; the phases have been lost, and an infinity of different signals may have
the same energy spectrum. It is of interest to inquire what these signals of equal power spectrum
have in common in the time description.

We get an answer to this if we transform the energy spectrum back into time language. To
do this we require a rule for the transforms of products, called ‘‘the theorem of resultants’’. Thus
for complex transforms (Eqgs. II.1 and 11.2)

The left-hand transform of s, (t) s, (t) is fx S,(-x)S, (f +x)dx

- .12
The right-hand transform of S, (f) S, (f) is [ s; (x) s, (t- x) dx

Apply this rule to the case S; = S, S, = S*; moreover, assume a real signal for which Eq. II.3 holds.
There is now no difference between right-and left-hand transforms. Both become Fourier cosine
transforms, and the result is:

The spectral density of energy SS* is the Fourier cosine transform of the convolution integral

o0
V()= [ s(t) s(t+r)dt .13
-00
and vice versa. This function ¥ (r) we will call the autocorrelation function of the signal. Some
caution is needed, since this term is familiar in the theory of stochastic processes; but there the
autocorrelation function is defined as

.1 +r
d(r=lim== [ s(t)s(t+ndt I1.14
T=0o 2T _7p

and this ¢ (r) stands in the same relation to the power spectrum P (f) = S$* /2T, as our ¥(r), defined
by Eq. II.13, to the energy spectrum:

& (1) = [ P () cos (2mfr) df P(f)= | &() cos (2nfr)dr .15

This last theorem, from N. Wiener (1930), was also discovered independently by Khintchine in
1934 and is often called the Wiener-Khintchine Theorem. Its importance is in its application to
chaotic processes, where no Fourier spectrum can be defined. This theorem is acornerstone of the
statistical theory of communication, but we shall not need it in signal analysis, where the formally
similar theorem has been known for a much longer time. We will use the autocorrelation function
as defined by Eq. I1.13 with finite energy because we always speak of signals of finite duration
only.
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The autocorrelation function and the energy spectrum are two equivalent descriptions of
the same thing, but in many cases one may be more practical than the other. For instance, the two-
dimensional autocorrelation functions of X-ray diffraction diagrams, called ‘‘Patterson diagrams’’
or “‘vector diagrams’’, are much used by crystallographers because they make it possible to pick
out, at one glance,all the periodicities which occur in a crystal. Statisticians have started to use
autocorrelations in time series which are too short for forming a reliable function S(f) S* (f), which
they call a *‘periodogram’’, and they find that significant periodicities can be picked out more re-
liably from the peaks of the autocorrelation function than from the peaks in the periodogram. There
are also indications (9, 10) that the ‘‘short-term autocorrelation function’’ or ‘‘correlogram’’ has
advantages for the recognition of speech sounds over ‘‘short-time spectra’’ or ‘‘sonograms’’.

In defining a “‘short-term autocorrelogram’’ we have the same freedom of choice as in the
matter of ‘‘short-time spectra’’, that is, we are free in the choice of our perspectivic weighting
function. Once we have chosen this, the only reasonable way is to define the short-time correlo-
gram as the convolution integral of the weighted signal. This will always be the cosine Fourier
transform of the similarly defined short-time energy spectrum.

One might ask whether the convolution integral of the Fourier spectrum might not also be
an interesting quantity, since it would show up periodicities in the spectrum, which, one would
suspect, might play some part in speech recognition. But the answer is in the negative. This con-
volution integral would be the cosine Fourier transform of the squared signal, and it is known that
squared or two-way rectified speech loses most of its intelligibility. This reveals a difference
between time and frequency which is physically obvious, but which is somewhat obscured by the
deceptive symmetry of Fourier’s formulas.

II.4. Analytical Signals.

We now return to the study of Fourier analysis in the infinite time interval, in order to in-
troduce certain new concepts which will be useful later on. We have seen that in general, that is,
excepting even functions of time, the transform S (f) of a real signal s (t) is complex and extends
over both positive and negative frequencies. One of these is redundant, since for real signals
S (f) = S* (f). We could simply ignore the negative part of the spectrum, but it may be more in-
structive to show how we can suppress it.

In the complex Fourier analysis every harmonic component appears in a form

cos wt = %(ei®tyeti®t)  sin ot =é—1i—(ei®‘-e'i‘°‘) 11.16

That is to say, it has one component at +w, one at -w. The electrical engineer is accustomed to
visualizing this as the sum of two vectors, of equal value, rotating in opposite sense. But it is
well known that one can consider an oscillating vector also as the projection of one rotating vec-
tor:

cos wt =R (el®t) sin wt =R (-j ei®t) I1.17

This means that we can consider the real signal
s(t) =a cos wt +b sin wt
as the real part of the complex signal

Y(t)=s(t) +jot =(a - jb)ei®t I1.18
This contains one rotating vector only, and we have produced it by adding to the real signal one
in quadrature to it. Evidently we could now apply the same process to any arbitrary signal s (t) of
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which we know the Fourier transform, and carry out the corresponding operation on every Fourier -,
component, There is no need, however, to go into the Fourier transform first, since the signal in
quadrature to a given signal s (t) can be directly calculated by the formula

a(t):%— [s(n .19

(This is an improper integral; it is to be understood as taken over the indented real axis, that is,
around the pole at r=t. The integral thus taken is also called the ‘‘Cauchy principal value’’.) It

is easy to verify this by showing that it converts s (t) =cos wtinto sin wt and sin «t into-cos wt.
Conversely s (t) can be expressed as

s (=== [ o)

- 00

.20

dr
r—t

s (t) and o (t) are a pair of Hilbert transforms (11).

By this method we can convert any real signal into one with the same real part, but without
a negative spectrum. The study of these complex signals was started by the author (12), and was
continued by J. Ville (13), who gave them the name of analytical signals.

Apart from signal analysis, Eqs. [1.19 and II.20 are also of interest because they give an
answer to the questions, ‘‘Why can we not add or subtract frequencies? Why do we always get both
sidebands in heterodyning?’’ The answer is that we could, in fact, shift the whole spectrum in one
direction, but only if we could construct the in-quadrature function to the signal, and this we could
do only if we knew its future!

II.5. Specifying a Signal by its Moments.

We have started by considering the signal as a function. The Fourier-series description of
a signal in a limited interval was a first example of expressing it by an enumerable set of numbers
(the coefficients of the Fourier-components). We now discuss another method, which, in principle,
is applicable to any signal so long as its energy is finite, This is the specification of a signal by
its moments. We profit from our previous results by carrying out the discussion simultaneously and
symmetrically in time language and in frequency language.

Consider a signal ¢ (t), which may be real or complex or, as a special case, analytical, and
its complex Fourier transform ¢ (f). These are connected by

g (t) = [ ¢ (F)emifegs S(£) = [ (t)e-2miteds .21

If ¥ (t) is analytical, the integration over f can be restricted to positive frequencies only. The nota-
tions ¢ (t) and ¢ (f) have been so chosen as to emphasize the similarity of the formulas which fol-
low with those of wave mechanics. Analytical signals have an advantage in this connection, as

in wave mechanics the frequency is considered a positive quantity.

We now introduce two kinds of moments: in time and in frequency. For the weighting func-

tion of the first, we adopt ¢* (t) ¢ (t), the "‘instantaneous power’’; for the second, the ‘‘spectral

energy density’’ ¢* (f) ¢ (f). Adopting an arbitrary zero point in time we write down the double
sequence of moments.

MO = fytyde MO = [y tgde. .. M® = [y ergde 11.22

MO = [ G df M{D = [ Egpdf ... M{™ = [ ¢*fnpdf IL.23

Writing the conjugate first and the power of t or f between the other two factors are conventions in
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wave mechanics; the reason for this rule will be seen in a moment.

We now define mean epochs (epoch means ‘‘time of occurrence’’) t of different orders n by

ty =t =MD /MO (£,)2 = £2 = M@ /M. .. (¢,)" =7 = M{=) /M(®) I1.24
and similarly, mean frequencies f of different order by
£, =T = M /M) (£,)% = 2= ME2) /M) oL (F)R =7 = M{n)/M{e) 11.25,

It may be noted that the phase drops out in ¢* ¢, hence the frequency moments do not com-
pletely specify the signal, though they specify its energy spectrum or its autocorrelation function.
On the other hand, the two rows of moments taken together completely specify the signal, under
very general assumptions.

The mean frequencies of even order form a monotonically increasing sequence. They are
equal if, and only if, the signal consists of a single harmonic wave train.

There exist important reciprocal relations between moments in time and in frequency. The
first is
s g de = [¢* g df
This is the energy theorem, which we have already met in Eq. II.11. We can write it M{®) = M{®) =
M_; that is, there is only one moment of zero order, and this is the energy of the signal. It is a
special case of the two general relations

n JLY « 4"
fo* fr df _( 27ri) Iy o ¥ de I1.26
and .
% ¢n _ .:l_ " d°
fy*er gy de —( Py ) fo* 7 ¢ df 11.27

This means that if we want to translate a moment or mean value in frequency from ‘‘frequen-
cy language’’ into ‘‘time language’’, we must replace ¢ by ¢, and the quantity f by the operator
(1/2#j) (d/dt). Conversely, if we want to translate a time moment into frequency language we must
replace i by ¢ and the quantity t by the operator —(1/27j) (d/df).

Those conversant with wave mechanics will recognize the formal identity of these rules
with the passage from ‘‘coordinate language to momentum language’.

II.6. The Uncertainty Relation.

There exists an important relation between the zero- order moment M and the two second-
order moments in time and in frequency, M (2 and M,;(?), in the form of an inequality

(4m2 M2 M= (M,)? 11.28
This can be derived from Schwarz’s inequality (14, 15)
*
4([F*x2F dx)(fj—i— %}; dx) =(fF*F dx)? I1.29

by substituting either ¢ or ¢ in place of F, f or t in place of x, using Eq. 11.26 or I1.27 applied to
n = 2, and taking into consideration the fact that we admit in our analysis only such functions
¢ and ¢ which vanish at infinity. The detailed proof may be left to the reader.

Equation II.28 can also be written in the simpler form

(4n)2 f2.t2>1 11.30
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Thus the product of the mean-square frequency and of the mean-square epoch of any signal cannot .
be smaller than a certain minimum. This remains true wherever we put the zero point of time or
of frequency.

Now f, = (£2)% and t, = (¢2)% can be inter-

f ' | | preted as the inertial radii of the two portions shown
, | ' * shaded in Fig. 2, relative to arbitrary axes. But
—_ —— — Y it is well known that these become smallest when
F - :Af ——  taken relative to axes drawn through the center of
F ! | ‘f‘ gravity, i.e. through f and t, respectively. Hence
ENERGY _ the inequality II.30 appears in its sharpest form if
SPECTRUM f*{\ | —_—t we replace

f2 by (f ~f)2 and t2 by (t-t)2
Thus the rectangle, shown shaded, which
is limited by the inertial radii at both sides of
CONJUGATE | fand t has a minimum area of 1/7. (This *‘area’’
QUADRATURE SIGNAL » (1) is,of course, a pure number.) In order to avoid
\!\ the factor #, it is convenient to define the ‘‘effec-
tive duration’’ At of a signal, and its “‘effective

T % o2
POWER IN FUNCTION VY ES+8" o iral wideh” Af by
OF TIME

—t
At =27% (t-t)2
I1.31

= 4%
Af =2a% (f-f)2

We can now write the relation II.30 in its sharpest

. ) form as
bandwidth of a signal. AtAf=1 11.32

Fig. 2.

Defining the effective duration and effective

This is the quantitative formulation of the uncertainty relation between time and frequency,
which expresses the intuitively obvious fact that the concepts of “‘epoch’’ and of *‘frequency’’ of
a signal cannot both be defined simultaneously beyond a certain limit, If the frequency is sharply
defined, the signal must be an infinite harmonic wave with entirely undefined ‘‘epoch’’. If the time
is sharply defined, the signal must be a §- function whose frequency is entirely undefined.

II.7. Representation of Signals by Gaussian Elementary Signals.

Every physical signal is limited in time and in frequency (finite observation time, finite
bandwidth). This obvious limitation does not fit in with either of the two descriptions which we
have previously discussed. In the ‘‘time description’’ as s (t) we have really analyzed the signal
into 8- functions, one infinitely sharp peak to every instant. In the Fourier description the para-
meter was the frequency, and a sharp frequency means infinite duration. What we require are inter-
mediate descriptions, linear expansions in terms of elementary signals which are finite both in fre-
quency and in duration.

If we have an observation time T and a bandwidth F, how many elementary signals do we
need for a full description? An approximate answer can be given on the basis of the Fourier series
description in Eq. II.9. There we had a section of the signal, of length T, and we expanded it in
terms of functions cos n(nt/T), i.e. with frequencies n/2T, spaced by 1/2T. Thus the number of
coefficients in a frequency range F is 2FT 1L.33

and this is what we can call, according to our previous definition, the ‘‘degree of freedom’’ of the
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signal in the interval T, F. (If instead of the cosine series we had used the sine-cosine series,
the frequencies would have been spaced by 1/T, but now there are two coefficients to every fre-
quency, and the result is again 2FT.) This answer was given independently by Nyquist, and by
Kupfmuller, in 1924.

The uncertainty relation now allows us to give this statement a more precise meaning. It
is evidently not quite admissible to say that because we have Fourier-analyzed the signal in the
time interval T into a series, the frequencies in it are n/2T, up to F. There is a discontinuity on
passing from one interval into the next; the change in the Fourier series coefficients produces
extra frequencies, a widening of the lines into bands. By Eq. II.32 we can confine the effectively
covered area of an elementary signal at best to unity, and the discontinuously changing truncated
sine waves are very far from the optimum. (They cover, in fact, an infinite effective area.) There-
fore, let us do the analysis rather in terms of elementary signals which come nearer to the optimum
or which, if possible, represent the optimum itself.

Such signals exist, and they have a particularly simple structure. They are the gaussian
elementary signals (Fig. 3), whose time description is
—g2 (t—t )2 ;
G(t) =e® (t—t,) ~e2"’f°t .34

and whose spectrum is

7.2
—( ;) (f-f,)? .e—Zﬂ'ito (f-£,) 1L35
Thus both descriptions have the same mathematical
form. (It may be left to the reader to prove directly
that these functions satisfy the relation At-Af =1
with At = n% /a, Af = o/#%.) They are harmonic
waves with a gaussian probability envelope. They
center on the point t_, f  in the time-frequency
plane, and extend effectively over a rectangle
of area unity. The shape (aspect ratio, At/Af)
depends on the parameter a, which can be given any
value.

¢(f) =e

The procedure of expanding an arbitrary
signal in terms of these elementary signals is this:
We divide the time-frequency plane into rectangles
or ‘“‘cells’’ of unit area, and we associate with
every one a gaussian signal ¢, with a complex
coefficient c,,, as shown in Fig. 4. These coeffi-
cients are so determined that if we draw a vertical
line at any instant, that part of the signal which is in-
side the frequency band F is given by the expansion

Yp () =22 ¢, ¥, (0 I1.36
Fig. 3. Formally the summation has to be carried out over
all cells, but it can be shown that only the next
. columns at either side have an appreciable influ-
ence on the sum (16). Similarly, we can draw any horizontal line and obtain the expansion

ér () =23 ¢, ¢;, () .37

Gaussian elementary signals.

-15-




i
f K
Cioi, k+1 | Ci;k+r | Civr, k41 T
F 1 Ciak Ci,x Cit+1,K
’ 4
Ciel,k-1 | Ci,k-1 | Ci+1, k-1 ?f
<——Af—>~
T e
—t
Fig. 4.

Matrix representation of a signal. A complex
amplitude c,, is associated with each cell

of unit area.

where the ¢,, are the gaussian elementary signals
in the frequency language. The coefficients c;,
are the same in both descriptions.

The gaussian signals are the most “‘com-
pact’’ of all possible signals, their ‘‘spill-over’’
is a minimum, and the uncertainty of description
is just unity, for any area FT. They also have
the advantage of complete symmetry in time and
frequency, which they share with the Hermitian
functions, of which we shall talk later. Another
advantage is that the familiar concepts of ‘‘am-
plitude’’ and *‘phase’’ can be taken over from in-
finite wave trains and can acquire a meaning which
is not only more general, but also more precise
than in the Fourier description. We will come
back to this point when we discuss Ohm’s ‘‘Law
of Acoustics’’. In fact, the description by gaus-
sian signals is intermediate between the time-

description and the Fouriet-description. It goes over into the first for a = «, and into the second

for ¢ = 0.

The gaussian signals have, on the other hand, the disadvantage that the analysis cannot
be carried out easily by electrical means, since the signals are difficult to produce by electronic
circuits; nor can they be carried out mathematically, since they are not orthogonal. Far this reason,
it is worth while to consider other sets of elementary signals, which are somewhat off the optimum,
but have practical advantages.

II.8. Representation by ‘‘Signals with Limited Spectrum’’.

An elementary signal, convenient for many purposes, is given by

Its Fourier transform is

Uto(f) =QF) ™ [H(f+F) -H (f-F)le

u_(6) = (2F) %

sin 27F (t~-t)

27F (t-t,)

I1.38

—2mjft, 11.39

H is Heaviside’s unit step-function, which is -4 for negative arguments and +% for positive. (An
arbitrary constant can be added.) Hence Eq. 1I.38 represents a function whose spectrum has the
constant amplitude (2F)™% inside the frequency range — F <f <F, and is zero outside it. It may be
left to the reader, as a useful exercise, to find the signal with limited frequency whose nonzero

band does not center on zero.

From the point of view of ‘‘compactness’’, these signals are not very suitable because
their effective duration At is infinite. On the other hand, they possess the advantage of orthog-

¢

onality. The

‘inner product” of two u functions, whose mean epochs are t; and t, is

o o sin 27F (t—t;)-sin 2aF (t—t,) sin2#F (t,—t;)

dt = 11.40

[ugoug de=2F J

— 00 — 00

(27F)2 (t =t ) (t—t,) 2aF (ty—ty)

This vanishes if the epochs t,t, are spaced by multiples of 1/2F, except if t; = t,, in which
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case it is unity. Hence a set of u functions whose epochs are spaced by 1/2F is an orthonormal
set. It is also a complete set because it takes just 2F data per unit time to describe any signal
inside the bandwidth F.

By using the property of orthogonality, it can be shown immediately that the expansion of

an arbitrary real signal s(t) in terms of this set is

sin (2#Ft — nr)
n 2nFt — nn 11.41

sp(t) = % s
with —

S, =s(n/2F)

That is to say the expansion coefficients are simply the values assumed by the signal at the equi-
distant points t = n/2F. This is therefore an interpolation formula, from E. T. Whittaker (17), 1915,
who called s the “‘cardinal function’’. Whittaker was also the first to prove that the cardinal func-
tion contains no Fourier components outside * F. If F is increased beyond any limit, the u func-
tions approach delta functions, and the cardinal function becomes identical with the original function.

Shannon (18) and particularly Oswald (19) have made many interesting applications of these
‘‘signals with limited spectrum’’.

I1.9. Other Elementary Signals.

In 1938, Wheeler and Loughren (20), in the course of a historically important and still valu-
able investigation of television problems, discussed signals of the form of a ‘‘cosine half-wave’’,
or alternatively,signals whose spectrum has this shape. The author showed later (12) that if one
prescribes that the spectrum must be limited to a certain bandwidth, signals with this spectrum
will have the smallest effective duration, that is, these are the signals which one can drive in min-
imum effective time through a certain waveband. The uncertainty product At Af is 1.14, only 14
percent larger than the absolute minimum.

If one wants to record only the absolute squares of the amplitudes, as in a ‘‘sound spectro-

gram’’ or ‘‘sonogram’’ like that developed by Potter and his collaborators in the Bell Laboratories,
one is led to the same type of filter. This has the additional advantage that an even field will ap-
pear even, if the cosine half-wave filters are staggered by half their width. In analyzing a sonogram
or playing it back, for example, through photocells, one should for the same reason use a squared
cosine half-wave filter. In addition to evenness, this will give the best resolution in the direction
of the scan.

Wheeler and Loughren have also discussed signals with ‘‘parabolic spectrum’’. These have
a slightly larger uncertainty product, 1.194.

Further elementary signals have been recently investigated by van der Pol (21),who has
produced a set of functions intermediate between signals of limited spectrum and gaussian signals.
Hermitian signals will be discussed in a later lecture.

I11.10. Generalized Linear Signal Analysis.

All these representations were based on the two ordering parameters ‘‘time’’ and “‘frequency’’,
which have become suffixes capable of assuming integer values only, instead of being continuous
parameters. One can also say that the analysis was based in every case, whatever choice of ele-
mentary functions we have made, on the pair of operators t and (1/2#j) 9/dt. (A quantity like t can
also be considered as an operator; it means that the operand at its right must be multiplied by t.)

The question now arises whether we could not have associated, instead of the frequency,
another operator with t; or whether we could not have replaced both of them by some other operators.
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This is a question of more than mathematical interest, because it throws some light on all multi- .
plex systems of communication. Dividing a channel into frequency bands is one way of separating
channels; time-division multiplex is another; but there must exist an infinity of other methods.

The answer can be given in a general way. Representation by two quantities A and B is
possible if these correspond to noncommuting operators A and B. This means that if they applied to
a symbol at their right in the order A,B, the result must be different from that obtained by interchang-
ing A and B.

In symbols [A,B]=A'B-B-A# 0 I1.42

If this condition is satisfied, there will exist an uncertainty relation between the quantities A and B,
and a representation similar to our joint time-frequency representation will be possible. It will also
be possible to separate transmission channels, by allotting to them different domains of A and B.

Space forbids our going into more detail concerning these interesting problems. For those
who want to study them, the following* are references to works on Quantum Mechanics, where the
general mathematical part of the problem has already been explored to a considerable extent,

I[II. PHYSICAL SIGNAL ANALSYIS.

I1I.1. Introduction.

All methods discussed in the previous section lead to a system of “free coordinates’’ in
the form of coefficients c;,. We must now go on with the process of breaking down a signal into
a selection from a finite set of possibilities. This means that we can no longer consider the c;,
as exact quantities in a mathematical sense.

While the previous analysis was based on mathematical identities, on purely logical proces-
ses, further progress can be made only by taking at least a few basic experiences from physics.
This is evident, as the c;, now become physical quantities. Before we can reduce them to numbers
and start a mathematical discussion, we must have some sort of unit, and this can come from phys-
ics only.

The physical situation is that if we measure a quantity c,,, this will be different by some
uncertain amount from the value c,, which represents one datum of the message. The situation is
particularly simple in the case of communication between human minds, or between machines of
the digital type if c,, is known to be quantized. In this case the problem is of the type: *‘A value
c has been measured. What are the probabilities p, (c; Ic) that ¢, has been sent?’’ Thus we have
the choice of a discrete set of values; only their probabilities are continuous.

In practice, we can always reduce the problem to this simple case, because the sender will
not attempt to transmit data so finely graded that there is no reasonable chance of getting his orig-
inal meaning. Moreover, we will arrive at a very similar result even in the case in which the sender
is not a human being or a digital machine, but some natural phenomenon, because it is meaningless
to talk of quantities which exist if they are too fine to be measured, and because there are physical
limits to the precision of measurement.

Uncertain quantities, which cannot be calculated from the data available, are termed ‘‘noise’’.
The term also has another meaning; noise is what we do not want in a communication channel.
This second definition is more or less the accepted basis in Wiener’s filtering theory, which starts

* For the association of operators with physical quantities, see any textbook on Wave Mechanics. Max Born in his ‘"Atomic
Physics’’ gives a particularly simple and elegant proof of the theorem that there exists an uncertainty relation between quantities
whose operators are noncommuting. Further investigations on the general uncertainty relations can be found in reference 15, p. 235.
The general theory of representation is known in Wave Mechanics as the Dirac-Jordan transformation theory, which is also very
clearly explained in Tolman’s book. Compare also reference 12, Appendix. I.
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from some statistical regularities in the signal source, and in the noise source, which are assumed
as known. There need not be any physical difference between the two; the crosstalk may be just
as intelligent talk as the message, only we do not want it. In the physical theory, on the other
hand, we must disregard this type of noise, since we cannot define ‘‘what is wanted’’ in physical
terms. -

If crosstalk and the like are eliminated, there remain three basic physical causes of un- j
certainty:

1. Temperature. We do not know the state of our apparatus ( transmitter, channel, receiver)
exactly.  We know only its macroscopic parameters, such as the mean energy contained in a
thermoelement, or the mean voltage drop across a resistor. In order to have a basis for the calcu-
lation, we assume that at least each part with which we are dealing separately is in thermal equilib-
rium, so that we can assign to it a temperature T. We can call this cause of uncertainty the ‘‘clas-
sical ignorance of detail’’.

2. The Finite Size of the Quantum of Action. Even if we eliminated the classical uncertain-
ty by cooling all our instruments to the absolute zero, there would remain an uncertainty due to the
basic physical fact that the exact measurement of energy requires infinite time. If there is a time
interval At at our disposal, the error AE made in the determination of an energy will be of the order

as given by the relation
" AE-At =h I.1

where h is Planck’s constant, 6.54 x 10~ 27 erg sec.

It is convenient for our purposes to consider this uncertainty relation as the basic formula-
tion of quantum theory. It can be interpreted by Planck’s relation

E = hf 1.2

_ where f is a quantity of the dimension of a frequency. With this substitution III.1 goes over into

the mathematical identity II.32. But it must be made clear that by making the substitution III.2 we
have by no means explained or derived a fundamental fact of experience. In most cases the fre-
quency f associated with an energy E has no verifiable physical meaning. Even in the case of
light we cannot measure the frequency directly; we only infer it from measurements of the wave-
length and of the velocity of light. Hence Eq. IIl.1 is the physical statement, not Eq. III.2. It is
important to realize from the start that the direct physical manifestations of the quantum are fluc-
tuations and other uncertainties.

3. The Finite Size of the Elementary Charge. It may be remembered that electromagnetic
signals become observable and measurable only through the forces which they exert on charged
bodies. Moreover, weak electric signals are always amplified by electron streams, either in vacuo
or in solids. The atomic nature of electricity manifests itself as shot noise, which, as will be
shown, is one of the factors determining the ultimate limits of signal detection.

I1I.2. The Information Cell as a Planck Oscillator.

All electromagnetic signals are conveyed by radiation. Even if conductors are used in the
transmission , by the Maxwell-Poynting theory the energy can be located in empty space.

The simplest model which we can use as a physical illustration of one-dimensional trans-
mission is a cable, or a line, in which all signals are propagated with the velocity of light c. A
signal of duration At extends over a length cAt of the cable and travels with speed ¢ towards the

receiver. In addition, there may be another wave travelling in the opposite direction; this does not
concern us.

We can now apply to the forward wave in the cable exactly the same mathematical consider-
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ations as those used in the last section, with the only difference that the time interval At is now
replaced by the length cAt. We thus find that this physical system, the cable, has 2FL/c degrees
of freedom for the forward wave on a length L. (L/c is the time interval T in which the wave of
length L passes a fixed point, say the terminals of the receiver.) We can now apply to this physical
system the general results of the Statistical Theory of Radiation. These can be expressed in the
form:

(a) Two joint degrees of freedom (one amplitude with its phase, or simply one complex
degree of freedom) can be considered as a ‘‘Planck oscillator’’. '

(b) At a temperature T the mean energy of each Planck oscillator is
- _bf
€1 = exp (nf/kT) - 1

This is Planck’s law. Thus we can say that at thermal equilibrium each information cell,
At Af = 1 will contain this energy.*

1.3

We can generalize this somewhat to the case when there is no thermal equilibrium. By the
general law that “‘bodies radiate independently of one another, as if they radiated into a surrounding
of zero absolute,’’ it is evident that if there is no thermal equilibrium, T means the temperature of
the transmitter, not of the receiver. If the cable has a third temperature the situation is more com-
plicated, but the solution can be inferred from our later results.

At large values of the parameter kT/hf, Planck’s law (Eq. IIl.3) goes over into Boltzmann’s
law

€ =kT II1.4
T

The range of validity of this ‘‘classical’’ approximation can best be seen by expressing the para-
meter in terms of wavelength A = c¢/f instead of in terms of frequency

kT kT

W = he A=0.7AT HL.5
where A has to be substituted in cm, T in degrees absolute. When this number is large we are in
the classical region. As an example for A =1 cm and T = 300°K, it is 210, still a large number.
The change-over into the ‘‘quantum region’’ occurs rather abruptly when the parameter becomes of

order unity.
I11.3. Thermal Fluctuations in the Information Cell.

The expression II1.3 represents the thermal energy in the cell, but it does not in itself mean
a “noise’’. If it were constant, we could simply subtract it from the received signal. It becomes
a disturbing factor only by its fluctuations. (This fact is usually forgotten in technical texts on
noise, but without consequence, since it so happens that in the classical region the rms fluctuation
of the noise power is equal to the noise power itself.)

Gibbs and Einstein have shown independently that the mean-square fluctuation of energy
in any system at thermal equilibrium, whose specific heat is d£/dT, is given by the formula

— —= dé

- ~F )2 - kT2 £ IL.
b7 = (£ £)" = kT2 = I11.4a

*The physical laws, which we have adopted here without proof or explanation, are from Planck and from Jeans. It was Jeans
who first counted the degrees of freedom of a cavity in terms of standing waves or “‘modes’’ and interpreted them as **Planck oscil-
lators’’. Von Laue, in 1914, carried out the analysis in terms of travelling waves, in a way similar to the one used here. In 1928
Nyquist used the cable model to derive his well-known law of thermal noise.
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(The bar notation of mean values requires careful writing. x2 means the mean square of x; X?,
the square of the mean.) Applying this general equation toPlanck’s law, one finds ,
} .- S "t ,;Pé>(+
III.5a
DI S ' {’V“;.»“L
To this equation Einstein, in 1905, gave an extremely illuminating interpretation. It is
seen that the mean-square fluctuation of energy is the sum of two terms, as would be the case if
the fluctuation were due to the superposition of two independent causes. The second is the ‘‘clas-
sical’ or ““wave term’’, because, as H. L. Lorentz has shown in detail, it can be ascribed to the
superposition of wave components (the Fourier components of the radiation field, classically an-
alyzed) with random phases. But the first term is evidently of quantum origin, since it would van-
ish if we could neglect h. We see its significance better if we express the energy ET in terms of

units hf, putting &
= T 1

8? =hfg +é‘2
T T T

No= % = exphi/kD) -1 L6
We now obtain the fluctuation Eq. IIl.5a in the form
2 = 2 = =2
SN =(N-N )" =N +N 1.7
T T T T

If N is a large number, the second, classical, term predominates; at small N the first predominates,
so that in this domain —
SN2 =N 1.8
T T

But this is Poisson’s Law of Rare Events. We should obtain it if we imagined that the energy £
is present in the form of particles, “‘photons’’, each with an energy hf, and that these photons
moved about independently of one another, like the particles in a rarified gas.

We see again that it is by the fluctuations that the quantum aspect is introduced into radia-
tion theory. Equation IIl.5a is also a warning against a too naive interpretation of the photon or
particle aspect of radiation. Neither the classical field concept nor the particle concept can ex-
plain the phenomena, but only the two together.

Equation III.7 shows very clearly the division between the classical and the quantum do-
main, which occurs where NT is of the order unity. If NT is large, it can be approximated by

N . kT/hf =0.7A T I111.9

an expression which we have already discussed, while for small values

NT = exp (= hf/kT) = exp (- 1/0.7AT) I11.10

is a good approximation. For visible light, A =5.10~5 cm. This gives the extraordinarily small
figure of 10~3% photons per cell, if T = 300 °K. At room temperature the division between the
classical and quantum domain can be putroughly at A = 3.10=3 cm, or 30 microns. Wavelengths
only about three times as long have already been produced electronically.

It may be noted that in the classical domain the rms power fluctuation is equal to the mean
thermal power, but in the quantum domain it is always larger and may become very much larger.

III.4. Fluctuations in the Presence of a Signal.

So far we have considered thermal fluctuations only. It would be wrong to assume that in
the presence of a signal we have only to add this to the signal, as if they were independent. We
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can, however, obtain the resulting noise by the following heuristic consideration (22).

We start from Einstein’s result that the classical and the quantum parts of the mean-square
energy fluctuation are additive, as if they were independent. Let us first calculate the classical
part.

Consider a complex Fourier amplitude E_ of the signal at a frequency w;, and the Fourier
amplitude E . of the thermal noise at w,. The instantaneous energy density, resulting from the
interference, is proportional to

EsEY + EqE% +{EsEfexp [j (w,-0,)t] + E{Ep exp [-j (0, -w;)e1}

The first term is the energy of the signal; the second, the noise energy; the rest is the result of
interference or beats. Let us write this in the form

The mean value of the interference energy £ is nil, but not its mean square, which is
EL. = 2EgS{-EE} = 264 &, 1112

Using this, one obtains for the resulting mean-square fluctuation

(E=8) =[(Eg+E+Esp) = (Eg+ €V =€2 _EX 28 E, 11.13
Here we have made use of the relations

85 EST=6T 5sr =0

which are evident, as there is no correlation between the signal and the noise. We know the first
two terms in Eq. III.13 from Lorentz’s calculation, which gives

2 {2 g2

E. - =&
T T T

so that the classical part of the energy fluctuation becomes, expressed in terms of signal energy

and noise energy,

(€E-€)7 =26 € 4+ E° 1114
S T T

It may also be convenient, for some purposes, to write this in terms of the total mean energy
€= é‘s + ET in the cell. This gives
(E-€)Y - & -E)E 11115
T T

To this classical part we must now add the quantum component, which by its interpretation
as photon noise can depend on £ only, irrespective of how it is divided between thermal and sig-
nal energy. This term is therefore taken over without alteration from Eq. III.5, and we obtain the
complete formula for the energy fluctuation in the presence of a signal

56 =(E-F) -nf& + 2 E ET-Zi 111.16

HI.5. The Ladder of Distinguishable States of an Information Cell.

If we carry out a measurement of the energy in a cell, how much of the measured energy
belongs to the signal? The answer is evidently uncertain, and the rms value of the fluctuation
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suggests itself naturally as a measure of this uncertainty. This suggestion receives its justifica-
tion from a theorem of Bxenayme and Tchebycheff: Whatever the law of fluctuation, the probability
of an error k times exceeding the rms value of the fluctuation is always smaller than 1/k2.

Thus, if we divide the scale of a physical quantity into intervals equal to the rms fluctua-
tion, we can say that, a measurement having given a certain value, there will be about a 50-50
chance that the signal contained in the value differs only by at most 7 division from it. In general
such a division will not be even. We can make it uniform by expressing the value directly by the
number of divisions or steps which lead to it. Following the useful terminology of D. M. MacKay . . -
(23) we call this the proper scale of the physical quantity.

Equation III.16 now enables us to calculate the proper scale of any electromagnetic signal,
associated with one information cell. It is advantageous to express this result first in terms of
photon numbers N, since in this writing it can immediately be seen when we are in the classical
domain (N >> 1), and when in the quantum domain (N <<1),

8N2 = (N -N)? = N(1 + 2N;) - N2 1117

Assuming that we have to deal with a fairly large number of steps S up to a level N, as is always
the case, this will be approximately

N 4N dN

s=i _I — =
Ny (3N)* Ny [N(1+2Np)-N71*
1 22N {[N(1+2NT)-N§ ~[N; (1+N; )]y’} _oNE I11.18
T (1+285)"

The last expression is valid for large signals N>>N. In the classical case, in which N;>>1, this
simplifies further to

s ~ QN/Np)”* = 2¢/8 )" 111.19

This shows that in the classical case the proper scale is the square root of the energy scale, i.e.

the amplitude scale. This may be somewhat surprising, since it is usually assumed that as the
signal and the noise are uncorrelated, the noise energy has to be added to the signal energy. But
though this is true if mean values are concerned, it is not true for the fluctuations, as we have seen.
The phenomenon of beats between the signal and the noise has the consequence that the uncertainty
increases with the square root of the signal energy, while on the amplitude scale it remains constant.
The factor 2% in Eq. 1I1.19 is a matter of convention; it could have been avoided if we had adopted
2% times the rms value of the energy fluctuation as the unit step.

We can now complete our program of breaking down signals into discrete elements. We have
only to change our previous two-dimensional representation into a three-dimensional one (Fig. 5).
On each information cell we erect a ladder of distinguishable steps, which will be evenly spaced
if we take the signal on the proper scale. If now we have at our disposal for the signal a time T,
a frequency band F, and an energy which corresponds to a maximum number of s steps, any signal
in these limits corresponds to TF selections, each from s possible choices. Thus, by the Hartley-
Shannon definition we can at once write down the information capacity

S =FT log s 111.20

With our definition of noise as due to unavoidable physical causes, this expression contains
the temperature as the only parameter in addition to those exhibited in the equation.
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It is also noted that Eq. II1.20, of course, contains the assumption that the energy disposable «-
in each cell is prescribed. If the total energy in the signal is given, we should obtain another expres-
sion, though of similar build. (Cf. ref. 11, p.1168.) In every case, the problem is reduced to a purely
mathematical one: calculating the possible selections of lattice points with the prescribed limitations: ®

III.6. Classical Analysis and Quantum Analysis.

We have now brought our mathematical scheme into agreement with physics, but it might ap-
pear that we have lost half of the data. Originally we started out with two data per cell: an ampli-
tude and a phase. Now we have only one, which can be expressed in terms of a real positive number,
the number N of quanta in the cell.

To explain this paradox it must first be understood that the formulation, ‘‘we have lost half
the data”’, is wrong. In fact, we have lost all degrees of freedom; instead of a 2FT-fold infinity we
now have only a finite set of possible choices. But there remains a physical question.

We know that it is possible to analyze an electromagnetic wave in terms of amplitude and
phase. We can do this if we have first recorded it, for example, by means of a cathode-ray oscillo-
graph. We also know that we can count photons by means of scintillation counters, Geiger-counters,
and the like. Ordinarily we never count the quanta in electromagnetic radiation, though this is pos-
sible to some extent, at least for microwaves, by the molecular beam methods developed by I.I. Rabi
and his collaborators. Nobody has yet succeeded in taking an oscillogram of visible light. Yet the
wave aspect and the photon aspect always co-exist, and they may even become simultaneously im-
portant in the extreme microwave region. Thus the problem is: If we analyze the same electromag-
netic signal alternatively by ‘‘counter’’ methods and by ‘‘oscillograph’’ methods, do we get the same
number of discrete data, or is one method of analysis inherently superior to the other?

In previous sections we have calculated the number of data which we could ascertain with
ideal counters, which determine the photon number N accurately. We must now explore an ideal
amplitude-phase or wave-analyzing device and compare the results. Only a very abridged summary
of this investigation can be given here. (For details refer to Gabor, 1950, 1951.)

If we want to analyze a signal to its smallest details, we must first amplify it as nearly pro-
portionally as possible. Amplification means that the signal is used for modifying a stream of energy.
As the signal is in electromagnetic form, the stream must be one of charged particles. For simplicity
we assume a stream of electrons in vacuo, which crosses the stream of electromagnetic energy. This
is a special choice; the electron stream could as well move with the wave. But there is no essential
difference once one goes to the limit, and the cross-stream device is simpler to analyze.

)’/S

x 2!-
z| S ELECTRON. X ELECTRON
2 BEAM\Y 4 / BEAM
1 172[}_2777 [ Ll Z 222 o\

Sl T

\/_.s

PRI IS IS v o> AJ]—V >4 o)
Fb— T —=y |
Fig. 5.
Three-dimensional representation of signals. Fig. 6.
The ordinate s gives directly the number Imaginary experiment for the detection of an
of distinguishable steps. electromagnetic signal.
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If the electromagnetic signal is introduced into a rectangular wave guide in the TE;, mode,
as shown in Fig. 6, the electron beam passes through two small holes in the direction of the electric
field E. One could just as well assume that the beam is running at right angles to field E, so that the
beam is deflected instead of velocity-modulated. It is known how the velocity modulation can ultimate-
ly be translated into current modulation, by bunching, or by submitting the beam to a constant deflec-
tion field, so that it is made to play between two collecting electrodes, which are close together. In
either case, the result is an alternating current which is proportional to the electron current and to
the accelerations and retardations suffered by the electrons in the waveguide.

The first problem is to calculate the energy exchange between the wave and the beam. This
is best done in units hf, where f is the mean frequency in the waveband admitted. Let N be the mean
number of photons in an information cell Af At = 1, and 1 the mean number of photons which a beam
electron picks up or loses in passing through the guide. It may be emphasized that this is not to be
understood in the naive sense that the interchange goes in steps hf. n connotes just the mean inter-
change energy, always a positive number, divided by hf.

The calculation has to be carried out differently in the classical region, where N and n are
large, and in the quantum region. In the classical region one obtains

- 2\ gin? - -
G2 =_33(27re ) sin?6 v [1 _ (c/2bf)2_J % Af N 1121
73 \ he @ bf f

This means that the energy exchange is proportional to N % i.e. to the field amplitude. In
the proportionality factor, e is the electron charge, v the electron velocity, 6 = maf/v is one-half of
the “‘transit angle’’ of the electron in the guide, the guide dimensions a and b are as shown in the
sketch. The numerical factor, shown separately in brackets, is of interest; its reciprocal

he/2re? = 137

is the fundamental number which connects photons with elementary charges.

In order to make the analysis efficient, the numerical factor of N in Eq. II1.21 must be made
as large as possible. The factor sine? 6/6 has a maximum of 0.723 at 6 = 67°, i.e. at a transit angle
of 134°. This disposes of the depth a of the guide. The width b is determined by the consideration

that the quantity cb [1 - (c/2b£)21% = bU

must be as small as possible. This is b times the group velocity U in'the guide. The smallest pos-
sible value of this is achieved if the cutoff is at the low-frequency edge, f — %Af of the waveband
Af. Substituting the corresponding value of b into Eq. III.21, one now obtains for optimum conditions

the energy transfer 1.5 %
=2 m(_z)(%_f) X 1122

This is an interesting formula; it shows that the exchange in a single passage cannot be pushed be-
yond a certain figure because the velocity v of the beam electrons is always smaller than c. One can
obtain better exchange by repeated passages. If the waveband Af is sufficiently narrow, one can make
the electron pass the guide P times, but only so long as P is not larger than f/Af, else the passages
will fall out of phase with the wave, and there will be loss instead of further gain. But if Af/f is a
sufficiently small number, the number of passages can be increased until one reaches

2

n =N 11.23
which, as will be shown later,is the optimum adjustment.

In the quantum domain, that is, for small n and N the result is different. One finds for the
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optimum, instead of Eq. I11.22, Lo Af) % .
- 0 (v =
A C)( f) N I11.24
This is quite similar to the classical equation, but with the fundamental difference that the
energy exchange @i is now proportional to N instead of to its square root. Thus in the quantum region
it is as if we had single collisions of electrons with photons. We could try to interpret the classical
Eq. II1.22 similarly as the result of many collisions, each of which can have a positive or a negative
result. But this does not take into account the fact that the positive and negative exchanges are not
randomly distributed but ordered in time, i.e. it would not explain the formation of a field. This is a
reminder that one cannot understand radiation on the basis of the naive particle picture; the photon
picture and the field picture must be kept in mind simultaneously and not used as alternatives.

In the quantum domain, analysis into amplitude and phase is meaningless, but in the classical
domain, to which Eq. III.22 refers, we can now ask the question: How many steps in the photon num-
ber N can be distinguished if we apply the output of the modulated beam, for example, to a cathode-ray
oscillograph, which traces a curve of N or of N*%, and permits separation of amplitude and phase?

The problem is again one of calculating the rms fluctuation of the quantity which will be re-
corded as the “‘amplitude of the field’’, and to count the number of steps up to a certain level. Again
only the bare outlines of the calculation can be given.

We want to make the rms error as small as possible, and to do this we have two variables at
our disposal. One is the coefficient of N (multiplied by the number of passages P). Let us write this
as

2

n =KN I11.25

and call K the exchange parameter. The other variable still at our disposal is the electron current
density. Let us express this by the number M of electrons which pass through the guide while it is
traversed by one information cell of duration At = 1/Af. Thus we are still free to chose K and M.

There must be an optimum both for K and for M, for these reasons. A too weak interchange
(small K, small M) would leave the cell unexplored. A too strong interchange, on the other hand,
would spoil the object of observation. Though in the mean, electrons are as often accelerated as
retarded, so that no energy is taken out of the signal, the electron numbers which go through in
positive and negative phases will necessarily fluctuate, because of the finite size of the elementary
charge (shot effect). Thus a strong interchange can, for example, extract energy which is not nec-
essarily given back in the next half-cycle, and a spurious signal has been produced. Thermal noise
we will disregard; it is not essential in this connection.

Taking these effects into consideration, and assuming normal shot effect,

SMZ =M I11.26

1_% without a smoothing factor, one obtains two simple rules for the optimum. One is K = 1, i.e.
n = N. This determines the apparatus, apart from the electron current. The current in turn is
given by

n.M = 2N I1.27

or, combining the two conditions,

e

M = 2N I11.28

Comparing this with Eq. IIL.18, in which we put N.. = 0, we see that this can also be expressed by
the simple rule: Take one electron per distinguishable step.
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If we give K and M their optimum values, we find that the relative error in the modulated
electron current which measures the field amplitude is much larger than the relative error in the
photon scale. The number of distinguishable steps on the amplitude scale is only the square root
of the steps in the scale which we could have obtained by an ideal counter, which measures N only,
but disregards the scale altogether. The reason is that now we have a second variable: the phase,
which we can also measure, with the same accuracy. By combining the two independent scales,
“‘the amplitude ladder’’ and the ‘‘phase ladder,”” we obtain N* x N% = N*, the same as before.
Thus, ideally, the classical analysis gives us in the limit the same information as the photon anal-
ysis. All we have done by applying classical analysis was to order the information points in a
two-dimensional lattice instead of in a row.

We can now answer the puzzling question regarding the phase of a ray of visible light.
How is it that it has never been measured? The answer is that it can never be measured until we
have light sources with very much higher spectral densities than at present. The relative error in
the determination of the phase is the inverse foutth power of the photon number N per cell. Thus
we require 108 quanta to determine phase to 1 percent. But sunlight at its visible maximum has
only 0.03 photons per cell, and even the most intense line-spectrum sources have hardly more than
100 times as much. On the other hand, there is, in principle at least, no difficulty in determining
the phase of the radiation emitted by a 10-cm, 1-Mw pulsed magnetron, because this sends 10
quanta into one cell.

It can be seen, however, even from this last example, that with the progress towards shorter
and shorter waves, and considering the weakness of the signals which are available in the reception,
the limit will soon be reached when the present methods of dealing with signals as waves will no
longer pay, and instruments of the ‘‘counter’’ type will have practical advantage.

III.7. The Limits of the Shannon-Tuller Law.

C.E. Shannon (24) and W.G. Tuller (25) have given a formula for the transmission capacity
of a communication channel in the presence of white noise, basing their arguments on classical
physics. We will now discuss the manner in which the validity of this law may be affected by the
fundamental phenomena studied in the last section.

In Shannon’s exact formulation, a channel of bandwidth F, in time T, in the presence of
white noise of mean power €., has a capacity of

C=FTlog, (E/€ ;) = [FT log, (1 + S/N) ] bits 111.29

assuming that the signal has a Gaussian amplitude distribution, with a mean power which is

€s = €= €, with our symbols. In the second expression for C we have used the more usual sym-
bols S for the mean signal power, N for the mean noise power. By Shannon’s theorem this is the
upper limit for the amount of information which can be transmitted in these circumstances, and this
upper limit can be approached with an error arbitrarily small, if an ideal code is used and the trans-
mission time is very long.

In Eq. IIl.19 we have found that the number of distinguishable steps up to an energy level
Cinacellis (2 8/61.)% in the classical case. This allows us to give a simple interpretation of
Eq. II1.29, which is, of course, no full substitute for Shannon’s more exact theory. Disregarding
the factor 2% and similar factors which arise if we substitute a Gaussian distribution instead of an
upper limit for the amplitude, we see that the number of distinguishable amplitude configurations
is the square root of the expression under the logarithm sign in Eq. I11.29. This gives a factor of
one half, if we take the power before the logarithm. The other half is accounted for by the equal
number of independent phase configurations.
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We have seen, however, in the last section, that
ultimately there is just as much information in the energy
steps alone as in the amplitude-phase analysis. It must.

p;(\O \N% be emphasized that this is true only if we go to thelimis,
at which we can disregard the thermal noise (or white
<% noise of any origin). The calculations in the last section
Q,‘\ were based on the assumption iy =0. In radiofrequency
Q\‘\ | communication the white noise is usually so strong
oé \(N/N )E that the fundamental limitation will make itself felt only
) T at very high signal intensities. This is illustrated in
Fig. 7. So long as white noise is dominant, the number
of distinguishable steps is approximately (N/N)* This
A WHITE NOISE LIMITATION is represented by a straight line. The Shannon-Tuller
(SHANNON-TULLER LAW) Law holds until this line intersects the parabola repre-
senting the fundamental limitation, whose equation is
0 1 approximately s =N*% Hence the Shannon-Tuller Law is
AMPLITUDE N2 — valid up to about

STEPS ON AMPLITUDE SCALE

(OR ON PHASE SCALE)

N/N, g N*% I11.30

Fig. 7. that is, up to the point when the signal-to-noise power
The limits of the Shannon-Tuller law for the ratio reaches the square root of the photon number. For
capacity of a noisy channel. example, at 60-db signal-to-noise the Shannon-Tuller
Law holds so long as the signal itself corresponds to
more than 1012 photons per cell.

Actually this breakdown would be well within the range of observation in the microwave re-
gion, were it not for the fact that the white noise is usually considerably in excess of the thermal
noise, calculated by Eq. IIL.9 for room temperature. For instance for A = 10cm the number of photons
at T = 300° is only 2100 per cell. Thus we could realizea transmission with 60-db signal-to-noise
with about 4.1012 photons per cell, where the fundamental limitation is just about reached. The
power P in a waveband Af, at a mean frequency f is connected with the photon number N by the

relation N = P/hf Af = 1.5x1034 P/f Af (P is expressed in watts)

At f = 3.107 cycles, corresponding to A = 10 cm, and a bandwidth Af of 1 Mc, this shows that the
noise power in this band is only about 6.10~13 watt. Thus one could test the Shannon-Tuller Law
with a power upwards of approximately 1 pw, if the noise could be really kept so low. Yert it can
be seen that the modified law might soon come into the range of an experimental test. This modifi-
cation was pointed out to the author privately by Leon Brillouin.

IV. Information Theory Applied to Light.
IV.1. What is Information Theory?

As we stated in the Introduction, information theory is a fairly recent attempt to introduce
the point of view of communication theory into scientific method. Before we start enumerating these
guiding principles, we must start witha disclaimer. It is not claimed that all or even any of them
are novel. On the contrary, all of them have been known for a more or less long time, especially
in physics, and it is through modern physics that they have found their way into communication
theory. Yet it is possible, and even likely, that after a certain process of systematization and log-
ical clarification, these principles will do good service as guides in scientific research.

The first is that everything we can learn by experiments can be expressed in finite form,

-28-




AY,

by a finite set of data. Continua exist only as mental constructions, and are used to simplify the
analysis, but they can have no physically ascertainable meaning.

Second, in analyzing any experiment, we must first lay down a system of ‘‘free coordinates’’,
each corresponding to a quantity which is & priori independent of the others, which allow a complete
and nonredundant description of anything observable under the given conditions. In other words,
the free coordinates must take care of all of the limitations which are imposed on the phenomena
by the observation system: the a priori limitations. Forgetting these might lead to errors like those
of Eddington’s ichtyologist, mentioned in the first lecture.

It must not be thought, however, that the a priori information about our experimental setup
can be obtained by pure thought, as the words a priori might perhaps suggest. It means only ‘‘what
we knew before the experiment started’’, including both knowledge of the particular apparatus, and
of the general laws of physics, and so forth, as known until that moment.

The “‘free coordinates’’ embody only a part of the a priori information, the part which is
nonstatistical. (In MacKay’s terminology this is the *‘structural’’ a priori information.) Statistical
knowledge means that though we know nothing certain about what we are going to observe, we know
in advance certain mean values which would emerge if we repeated the observation a very great
number of times. The experimenter can make use of this knowledge, to some extent, in designing
his experiments so as to reserve as much as possible of his information capacity for what is really
new. This is a problem to which statisticians have given much attention long before the advent of
communication theory, but interesting results may be expected from the impact of the Shannon-Wiener
theory on this art. In the physical sciences statistical experiments are rather rare, and where cor-
relations occur (e.g. between the disintegration products of nuclei), they are usually taken care of
by special techniques. Hence we will leave out of account this potentially important concribution
of communication theory to the natural sciences.

Finally, the information which arrives in the free coordinates or ‘‘logons’’, each of which
can be considered as an independent communication channel (called by MacKay the “‘metrical”’ or
a posteriori information) has to be broken down into selections from a finite number of possibilities.
We saw an example of this when we constructed the proper scale for one cell of an electromagnetic
signal. Thus the result of any experiment so treated will appear as a finite set of pure numbers,
with certain confidence limits.

It may be observed that the basic element in this view of science is not an object, a “‘thing
which exists’’, but the observation. The *‘thing’’ is defined only by the observational results.
As a philosophical system this view has existed for a long time (at least since Kant) but its conse-
quent application to science is still largely a task for the science of tomorrow. We shall not be
able to add much to it here; our present task is only to justify confidence in the method by showing
its heuristic power in problems whose solution is already known.

IV.2. The Free Coordinates of Light Signals.

The historically first, ‘‘geometrical” theory of light is completely unsatisfactory from our
point of view. The basic element in the geometrical theory is the *‘ray of light’’, a geometrical
line which may be straight or curved, according to the refractive properties of the medium. If this
were taken seriously, point-to-point imaging of a plane on any other would be possible, simply by
means of a cameraobscura, whose aperture is itself a geometrical point.

This is evidently an over-abstraction of the same nature as the substitution of an analytical
function for a signal, and we need not consider it further, since the difficulty of an infinite number
of free coordinates is at once avoided in the classical wave theory.
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To simplify matters, let us first consider an optically homogeneous medium, say the vacuum. *
In the wave theory of the vacuum the most convenient basic element of discourse is the plane, mono- "
chromatic wave. It will be sufficient to consider ‘‘scalar light’’ first, which is described by a sca- | Y
lar amplitude u. (The passage from this to ‘‘vector light”’, according to the electromagnetic theory
is trivial; it is done by considering u as a vector at right angles to the propagation direction, i.e.
by describing it by two numbers instead of by one.) The classical description of a plane wave is

u(x,y,zt) =u, exp [j (k; x +k,y + k;z - 0t) ]

Iv.1
=u, exp [j(kr-owt)]

where in the second line we have used vector notation. The absolute value of the vector k is 2a/);
its points in the direction of the wave normal whose direction cosines are k /k, k /k, k,/k. Where
t is the radius vector (x,y,z).

EquationIV.1 is an undoubtedly correct description of an electromagnetic radio wave. Its
application to light is open to the objection that (as we have seen in the previous section) no meas-
urement of the temporal factor exp (~jwt) is possible, except at extraordinary intensities. Thus
we can expect that it will drop out in the final description, but it would lead to great difficulties
if we wanted to do without it from the start.

Equation [V.1 contains only one, very general assumption, and this is that the amplitude u,
where it is measurable, behaves as if it were a function of space and time everywhere (or at least
in certain domains of space and time) independently of the fact that it is observed. If one grants
this, Eq. IV.1 means only that we want to apply four-dimensional Fourier analysis to this space-
time phenomenon.

We now take from experience the fact that light propagates in vacuo with the constant veloc-
ity c. Mathematically this finds its expression in the wave equation
2 92 2 1 2
Du=[i+——+—£—?—-——i]u=0 Iv.2
ox2  dy? 922 c? &2

Applied to a plane wave this gives

In optics the frequency is never measured directly, but always calculated from the wavelength
A =2n/k by the last relation.

We can now apply this to the analysis of optical imaging if we only take one more fact from
experience. This is, that at least for a certain class of objects (not too small and nonfluorescent),
the wavelength of the light does not change appreciably in being transmitted or reflected by the object.

For convenience, let us take a plane object in the plane z = 0 and illuminate it, again for
simplicity only, by a plane monochromatic wave incident from the z-axis. We can now apply Fourier
analysis to the light field behind the object and find that in addition to the original k, = k, =0, k, =k,
plane waves in all directions have appeared. Let us interpret this by assuming an amplitude trans-
mission coefficient ¢ (x,y) such that if the amplitude of the incident plane wave immediately before
the object was

u(x,y,-0,t) =u_exp (-jowt)

it has changed immediately behind the object into

u(xy, +0,t) =t(x,y)u, exp(-jot) V.4
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The function t(x,y) is'‘the object’’, by definition. It may be noted that it is defined for one method
of illumination only. How it has to be modified if the illumination is changed does not concern us
here, though we know from experience that for a certain class of objects (almost plane, with not too
fine details) t is almost independent of the illumination. What we want to investigate is only how
much of the function t (x,y) is transmitted by the light wave which issues from it. The simplest
way to do this is to consider instead of t (x,y) its Fourier transform T (£,7) in the **Fourier coordi-
nates’’ &7 which will soon receive a physical interpretation. That is to say we put

E,y) = [T (&n) 2™ €+ ggq, Iv.5

Geometrically this means that we imagine the density t of the object as composed of sinusoidal
stripes of all periods and directions. We can now write down the relation IV.4 for z = 0 for each
Fourier component T (&) dédn separately. Its contribution to the light amplitude immediately be-

hind the object, at z = + 0, is
u T (&n) exp [27) (2 +yn +fr) 1dédy

We can immediately extend this to all positive values of z, by writing instead

u T (&) exp [2n) (x€+yn + 2{~ft) 1d&dy » IV.5a
This wavelet must satisfy the wave Eq. IV.2, which gives the condition
1
F=g - Iv.6

. . . 2 2 .
For the Fourier components of the object for which £ +7~ < 1/A? this gives plane waves, propa-
gating in a direction whose direction cosines are

cosa=A¢ cos B=Ap cosy=A§=[1-/\2(§2+n2)]% Iv.7

This is the geometrical interpretation of the Fourier coordinates &,7. Apart from a factor they rep-
resent the direction cosines of the corresponding plane wavelet.

On the other hand, for those Fourier components of the object for which fz +7°> 1/)° we
obtain a quite different result. ¢£is now imaginary, and we obtain evanescent waves, which are
rapidly damped out in a matter of a few wavelengths from the object. This means that transmission
by light always acts as if it contained a lowpass filter; the periodicities of the object finer than a
wavelength are not propagated, i.e. detail below a certain minimum can never be imaged. This is
a first limitation. We see that the transmission function t (x,y) has objective existence only within
a certain ‘‘waveband’’ of spatial periodicity.

Thus we have the amplitude for the light wave. behind the object in the form

A2(£2+92)=1
u(x,y,z,0) =u e ff(%:('fnf) e)XP {2"i [;1-2 -(§2+92) 1% Z} e 2m (x{+yM) dgdy IV.8
00

This is the expression for the propagation in free space without any aperture to restrict the plane
waves. If small apertures are introduced at close distance, there results a complicated diffraction
problem. If, however, the aperture is large enough and sufficiently far away, each plane wave can
be considered approximately as a *‘ray’’, that is, replaced by its wave normal, starting, for example,
from the center of the object; a result which we give without proof. In this case the only change
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in the above expression is that the integration limits must be replaced by those given by the aper- .
ture, that is, the summation is to be extended only over the directions given by Eq. IV.7, correspond-,
ing to rays which are not cut out.

It can now be seen that the situation is mathematically the same as the one which we had
in the one-dimensional communication problem, only now we have to deal with two dimensions (in
addition to time). Each object coordinate, x or y, now takes the place of time; the corresponding
Fourier coordinates ¢ or n take the place of the frequency. Thus, generalizing our previous results,
we can say at once that the number of complex data which can be transmitted in a stationary trans-
mission is

JSJJ dxdyd £dy

where the integration has to be carried out over the object x,y, and over these Fourier coordinates
which are not cut out by apertures. In terms of the solid angle Q admitted by the imaging system,
we can also write for the degree of freedom

[7dSdQ /A2 IvV.9

where dS means the object area. This is the number of complex data; the number of real data is
twice as much (26).

Now we can at once generalize this to a time-variable transmission by joining to it the
factor 2FT, where F is the frequency band of the light used and T is the observation or transmis-
sion time. In order to unify the mathematical form, we write the final result:

Number of degrees of freedom = 2.2.(2) fff :d-% dQ dfde Iv.10
A

The first factor 2 is due to our counting real data, the second to the vector nature of light (two in-
dependent transmissions are possible by using polarized light), the last factor 2 belongs to the
“‘temporal phase’’. In view of the difficulties of measuring this last factor, discussed in the pre-
vious section, we have put this in brackets.

In the derivation (or, rather, explanation of this expression we have used plane waves, but
it is evident that we could have just as well used other “‘elementary waves’’, as we used other
elementary signals in the section on signal analysis. ‘‘Gaussian light bundles’’ are again partic-
ularly simple, but their application to this case may be left to the reader.

The main result, so far, is that an optical image, by whatever instrument it is produced, is
not essentially different from a television picture. It has only a finite degree of freedom; that is,
it contains only a finite number of independent points. We see again that the continuum, in the
mathematical sense, is only an auxiliary construction which disappears when we come to observ-
able quantities.

IV.3. An Imaginary Experiment with Light.

By allowing us to formulate the degrees of freedom in an optical image, the wave theory of
light has brought us a step further in the application of the principles of information theory, but not
far enough. Doubts arise already from inspecting Eq. IV.10. We have counted the degrees of free-
dom, but have they really all the same value? We could make the division into elementary light
bundles, for example, in such a way that each beam covers the whole object area but only a frac-
tion of the aperture area. Now we cover this up, not entirely, but using a screen which cuts out
0.999 of the light. Can we still count this as a degree of freedom?

Classical light theory is entirely unable to answer questions such as this, since it contains
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no natural unit for amplitude or energy. This, and the answer, can come only from quantum theory.
But while in the last section we have taken the results from physics, we will now argue the exist-
ence of photons from an epistemological consideration.

PHOTOGRAPHIC PLATE — BALANCING
OBJECTIVE
SEMI-REFLECTING
MIRROR — = | : MIRROR

IMAGE- CARRYING
BEAM

Y

OBJECTIVE -<«—"BACKGROUND BEAM"
OBJECT —=

SEMI-REFLECTING
MIRROR
MIRROR — 0

-<—CONDENSER LENS

MONOCHROMATIC LIGHT
SOURCE, (PINHOLE)

Fig. 8

Imaginary experiment, to lead ad absurdum the classical theory
of light which allows “‘observation without illumination’’.

We take from experience the evident fact that a recording instrument, such as a photographic
plate, can record a light signal only if it has some finite energy. Yet we will show that it can re-
cord an image of the object even if the object has been illuminated by light of any small energy,
which can be made zero in the limit.

Consider the interferometric arrangement as shown in Fig. 8. It differs from an ordinary
Jamin-Mach interferometer only inthat we have introduced two lenses in its two branches. One is
an objective, which images an object on aphotographic plate; the other is only a “‘balancing’’ lens
to make the two optical paths approximately equal. Also, contrary to ordinary interferometer prac-
tice, we make the light intensities in the two branches very unequal. Only a small part, say 0.0001,
of the intensity goes through the object; the rest, the ‘‘background’’, which carries no information,
goes through the other arm. The illumination is coherent, which means that the light source is ap-
proximately monochromatic, and a sufficiently small pinhole is used as the source.

For simplicity we consider only one ‘‘point’’ of the object, that is, a patch equal in diameter
to the resolution limit; and we assume that this “‘point’’ is either black or white. In other words,
we are asking only for one “‘bit”’ of information: ‘‘Is the patch covered or not?”’

The light is coherent, hence we must form the vector sum of the amplitudes A (of the back-
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ground) and a (of the image-carrying wave) and take the absolute square of this sum to obtain the
resulting intensity.

A? + a2 y 2Aa cos ¢ Iv.11
where ¢ is the phase angle between the two waves. This is not the temporal, but the spatial phase,
resulting from the geometrical path differences, a measurable quantity. Thus the intensity consists
of three terms. The first, A2, is known in advance and carries no information. The second, a?, is
negligibly small, since we have assumed a2<<A2. The third could be zero if ¢ happens to be * %z,
but for safety we can carry out two experiments, in one of which we introduce a quarter-wave plate
into one of the beams so that in one of the two experiments cos ¢ is at least * 1/Y2. Thus this
term of the order A-a can be considered as the image-carrying term. The first large term A2, being
known and constant, can be subtracted.*

This term will betray the presence or nonpresence of the object point, provided that it car-
ries enough energy in the observation time T. Let us write A?T = E and a2T = e. The crossterm

represents an energy signal of the order
(eE)* Iv.12

and this will be observed, if it is sufficiently large. But with our assumptions, however small we
make e, ( the light which has gone through the object), we can always make E (the background) so
large that we get an observable signal. Thus we come in the limit to the paradox of observation
without illumination.

The flaw in this argument evidently must be in the constant and accurately predictable back-
ground which we have subtracted. Let us now assume that the experiment is impossible because
a limit will be reached at an energy e, where the fluctuations of the background E outweigh the
image-carrying term; that is, we postulate that for e<e

8E? > E-e, Iv.13
Dividing by e 2, we have at the limit
8(E/e )2 =E/e, V.14

This means that the energy, measured in a certain unit e (i.e. expressed as a number N = E/e )
obeys the fluctuation law _
SN2 =N
This, however, is Poisson’s fluctuation law, which can be interpreted by saying that the
energy behaves as if it were arriving in discrete units e , which have the property that at least one
of these is required to carry a bit of information. We see that the photons have again made their
appearance, as a result of the simple postulate that observation without illumination is impossible.**

By an extension of this experiment one can also prove that e  must be inversely proportional
to the wavelength, by postulating that a rotating mirror between the object and the plate cannot make
something observable which would not be otherwise visible. This extension emerged in conversa-
tions of the author with Norbert Wiener.

L
Electrical methods for subtracting a constant background are well-known, but there are also convenient optical methods, such as the
‘‘schlieren’’ method. The background can be subtracted before it reaches the photographic plate.

*s

One might make the objection that the classical theory also recognizes fluctuations; those of thermal origin. But a light source at
the absolute zero of temperature is not classically impossible; for example, an electric dipole, tied to a rotating shaft, and kept at
T=0 together with the rest of the apparatus.
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At this point we have reached, by a heuristic argument, the starting point of the previous
section, whose results we can now take over in order to complete the picture of the information
carried by light.

IV.4. The Capacity of an Optical Transmission.

Let us first separate the ‘‘time-frequency cell’”’ At Af from the integrand in Eq. IV.10, and
put it equal to unity. By this we have imposed the coherence condition that all elementary beams
which arise by diffraction from an illuminating beam satisfying the condition At Af = 1 are coherent
in the sense that they can be described by one time-function in the classical theory; they form only
one complex wave. In quantum theory this means that the N photons of the illuminating beam are
distributed over these subject only to the condition that their sum is equal to N. Thus the math-
ematical problem is that of counting the distinguishable configurations which can be produced by
distributing up to N photons over F degrees of freedom.

Let n, be the number of photons in the i~th degree or ‘‘logon’’. We have the condition

N, +...+0,+...+0p <N IV.15

where all n; are positive. By Eq. III.18, the number of distinguishable steps ini up to n; is

1

s;=2(L+2ny ) % ¥ Iv.16

Let us now imagine the s; as Cartesian coordinates in an F-dimensional space. The num-
ber of distinguishable configurations is now equal to the number of integer lattice points inside a

hypersphere with the radius

R=2(1+2n;)""N" V.17
This radius is the maximum number of steps in i; it corresponds to the case when all the N photons
appear in this one logon. The total number of lattice points is equal to the volume of that sector
of the hypersphere in which all s; are positive, which is, by a known formula,

p_ /)" 1 AN\ %F
T (%F +1) F(%F+1) \1+ 20,

Iv.18

The information capacity is the logarithm of this number P. Using Stirling’s formula
log I' (J4F + 1) = /4F (log J4F — 1)

valid for large F, we obtain

log P = 4F log 2reN V.19

1+2n;)

This is the maximum capacity in which the appearance of photons in the elementary diffrac-
ted beams is restricted only by the conditions IV.15. Now, we can also decide the question, ‘‘What
is the capacity of an optical channel which is partly obscured by absorbing screens?’’* Let us assume
that the screens have the effect that the transmission in the i-th logon is r; < 1, so that the maximum
energy which can appear in it is not N but r,N.

*The expansion of the light wave into elementary beams must be fitted to the position of the absotbing screens. For instance, if there
is a screen only in a certain aperture plane, it is convenient to use elementary beams which have a minimum cross section in this plane
but cover the whole object atea.
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This problem is easily reduced to the previous one, if we replace the n; by n;r,. We now v,
have to consider the volume of a hyperellipsoid with semi-axes Rr;. The transmission capacity is

F .
1ogp=%Elog—zﬁ-N'— V.20 )
S F(l+2n;) *

This formula at last gives an answer to our objections to the classical theory; the degrees
of freedom are no longer counted, but are properly weighted. It may be noted that the formula is,
of course, an asymptotic one; it must not be extended to transmissions 7, so small that an added
degree of freedom appears to make a negative contribution to it. This happens if the argument of
the logarithm falls below unity, that is, we must cut out those degrees of freedom for which

N _
e ThTS 2—11,,3 (1 +2n4) IV.21

The left side is the mean number of photons which will appear in this logon. The numerical factor
is about 1/17.

It may be noted that the quantity log P differs only slightly from the physical entropy of the
imaging light beam. By Max Planck’s definition (27) the entropy of a system is k times the logarithm
of the number P of ways in which a given energy can be distributed over the possible states of a sys-
tem. The numerical difference between ‘‘a given energy’’ and “‘up to a given energy’’ is very small
in the case of systems with a high degree of freedom; it is the difference between the surface and
the volume of a hypersphere of F dimensions.

Space prevents us from going into the discussion of the connections and the differences be-
tween physical and selective entropy. In addition to the paper by Szildrd, reference may be made
to two recent studies by Brillouin (28).

V. Problems of Speech Analysis.
V.1. Analysis, Compression, Recognition.

Telephony started with Alexander Graham Bell’s idea of the faithful reproduction of pressure
waves by ‘‘undulatory currents’’. This was indeed the only sound starting point so long as no ad-
equate knowledge was available on the restrictions to which the message is subjected at the trans-
mitter (the human voice organs) and at the receiver (the human ear plus brain). It is interesting that
Bell’s highly successful idea was preceded by other, unsuccessful ones, which to us appear much
more modern. Bell’s own “*harmonic telegraph’’ was a forerunner of the vocoder; the Reis telephone
was an on-off device, a ‘‘speech clipper’’; and Bell’s father, Melville Bell, spent many years on
a phonetic writing based on the principal positions of the vocal organs. It appears a general prin-
ciple that economy must step in towards the end of a development, not at its beginning.

The imperfect economy of the telephone was noticed as soon as Nyquist and Kiipfmiiller had
established the principle: ‘“The capacity of a line is proportional to the bandwidth’’. Good quality
speech communication requires about 4000 cycles, and the intelligibility is still satisfactory if the
band is restricted to the range of 400-2400 cycles, that is, to a band of 2 kc. This is sufficient for
transmitting a maximum of about 20 letters per second, which could have been transmitted by teleg-
raphy in a band of 100 cycles, using the 5-digit binary Baudot code. The economy figures even worse
if we make the estimate in terms of ‘‘bits’’, as was first done by Hartley. Twenty letters (including
spaces) represent 100 bits on the basis of the 32-letter alphabet. On the other hand, the capacity
of a channel of 2000 cycles, with a signal-to-noise ratio of 30 db, is

2000 log, 103 = 2000 x 3.32 x 3 =2.10% bits/sec
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Thus it appears that telephony utilizes the channel only to 0.5 percent.* It must not be forgotten,
however, that here we have made the comparison by equating the spoken word with its message when
it is printed. But the spoken word communicates, in addition, the ‘‘emotional’’ content of the mes-
sage. (This term, coined by Harvey Fletcher, does not necessarily mean violent emotions; it com-
prises, for example, all the features by which we recognize the identity of the speaker.) It may well
be asked whether the emotional content is worth in all cases 99.5 percent of the channel capacity,
and whether we could not convey it in less.

Thus the first problem which faces us is that of condensation or ‘‘compression’’ of the mes-
sage into a narrower band, and this again splits naturally into two types:

(1) *‘Commercial quality’’ speech compression, which could be used as a substitute for ordinary
telephony;

(2) Transmission of the bare intelligence content of the speech.
One problem, of course, shades into the other, but it will be useful to keep them separate.

The second type of problem leads naturally to a third. If the speech is boiled down to its ‘‘print-
able’’ skeleton, why not print it? The message might be handed out in visual form, on a tape, or on
a sheet. This problem can again be split into two parts:

(3) The message is visually recognizable, but it has a code of its own. This could be called
the problem of the “‘mechanical stenographer’’.

(4) The message is spelled out in the letters of the alphabet. This means that the work of speech-
sound recognition is carried out by the machine. This is the problem of the ‘‘mechanical typist”
or of the ‘‘mechanical telegraphist’’.

We will deal with these problems briefly, though not necessarily in this order. There is an
essential difference between the first two and the last two: in the first group the receiver is the
ear; in the second, the eye. Hence, an approach to the first group must necessarily be preceded by
a discussion of hearing. This is also indispensable for the second group, because we can spell
out only what we hear (though not all of it).

Another approach to all four groups is through the vocal organs. The human vocal apparatus
can produce only sounds of certain types, and not all of these are actually used in conversation, at
leastnot in any one language. A preselection of the sound patterns to be transmitted is evidently
a very powerful principle of condensation. It is seen that this problem involves two very different
sciences: the physiology of the vocal organs, on the one hand; phonetics and linguistics, on the
other.

The fourth problem, speech recognition, is the most difficult of all, since it involves all the
problems of the previous groups, and in addition, a higher function of intelligence, that of pattern
identification,** which has to be taken over from the human brain by the machine. None of the
four problems has yet received a fully satisfactory solution (No. 3 is perhaps the most advanced),
but it can be foreseen that speech recognition will involve the greatest amount of work.

V.2. Ohm’s Law of Acoustics.
The first and most general simplification which we can apply to any audio signal is the elim-
ination of the phases, because by what is usually known as Ohm’s Law of Acoustics, the ear is not

* This becomes even four to five times worse in Shannon’s statistical theory, if the correlations are taken into account in a given

language, for example, in English.

** The German word ‘Gestalt’’ is often used for *‘pattern’’ in this connection, after the German school of ‘‘Gestalt psychologists™’
whose chief representatives were Kohler, Wertheimer, and V. Hornbostel.
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supposed to be sensitive to it. .

This law requires some investigation and restatement, all the more because in its usual .
interpretation it is notoriously wrong. The communication engineer will interpret amplitudes and
phases in the sense of the Fourier spectrum. In this sense Ohm’s law would mean: If we have a
signal which is a function s(t) of time, which has a Fourier transform S (f), the ear cannot tell the
difference between this signal and another, s’(t), whose transform is S (f) exp [jF (f)], where the
phase shift F is any arbitrary function of f. But this is evidently wrong. Every communication
engineer knows that unless F is made a linear function of the frequency the signal will not only
suffer a delay, but it will be distorted. For example, the high frequencies will arrive before the
lower ones, causing a chirping scund before every word. Sometimes there is an attempt to qualify
Ohm’s law by the uncertain statement, ‘““The ear is insensitive to small phase differences’’, which
is also wrong. However, we need not go into a discussion of this.

It is evident that Ohm’s law needs restate-

N ) ) o ment. Let us try to replace Fourier analysis by
NN #, *o analysis into gaussian elementary signals, to which,
NN W, pt as we have seen, the concepts of ‘‘amplitude’’ 'and
- NN H, r & Phi:lse clafg !)e cli]l.recztly transfe_rred. Ohm’s la:: if
- N ) N?,, it is valid in this interpretation, must mean this:

N ““There is no audible difference between any signal

N\ S 4= in a gaussian representation with properly chosen
N NI

N © NN At and Af = 1/At and another whose expansion
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We will now show that Ohm’s law is not
exactly valid, even in this interpretation, with any
choice of the cell aspect ratio. To show this, con-
sider a sharp click whose matrix representation is
particularly simple. (See Fig. 9.) Its expansion co-

2 efficient is constant in absolute value, say unity,
TS in the column in which it occurs, and is zero out-
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side. We can prove easily that such a column rep-

resents a sharp click. For simplicity let us write

f, in the place of J4Af. If the c;, are all unitary

in a column extending from f; = n,f_to f, =n,f ,

Fig. 9. we can represent with them, for example, a time
function

—t

Disproving Ohm's Law of Acoustics. It is n
2 2 .
iti a“t 2mjnf_(t—
shown that a pulse can be split into two by s(t) =e Zﬂ e jafy(t—t,) V.1

varying the phases of its components. m
1

The sum here is a simple geometrical series, and its real part can be written in the form

sinm(n,—n, -1) f_(t—t o)

—a?
s(t) =e ¢ ¢ cos m(n; +n,)f (t—,) V.2

sinaf (t— )
It is easy to see that this represents a click, occurring at t = t_, which will be sharp if n,~n, is

a sufficiently large number. We see that by modifying the phases of the expansion coefficients, we
can shift the click about. We cannot, however, shift it by much more than about the cell length

At = 1/Af = 1/2f , because beyond this it will be cut out by the gaussian factor.
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Let us now imagine, for instance, that we first make all coefficients equal and real over
the whole column, from f = 0 to the maximum f = F. This gives one click, occurring at t = 0, in the
middle of the column. Next let us split the column into two halves. In the upper half we modify
the phases so that the click is shifted to t = + %At; in the lower half we shift it to — Y4At. We have
now produced two clicks instead of one, simply by modifying the phases.

The ear may not be able to tell these two clicks from one another if At is less than approx-
imately 10 msec. But in this case we can test Ohm’s law with the ‘‘dual’’ pattern, which consists
of a single row in place of a column. By the perfect symmetry in time and frequency of the gaussian
representation we can say at once that we can now produce, in the first case, a single pure tone; in
the second, two tones succeeding one another and differing in frequency by Af = 1/At. If the two
clicks could not be distinguished from one another, because At was less than 10 msec, this frequen-
cy jump will be more than 100 cps, which can certainly be distinguished anywhere in the audio range.

te

Thus Ohm’s law never holds exactly, whatever interpretation we put to the “‘phases’’, be-
cause we can always produce a test sound which by suitable manipulation of the phases we can
change into something distinctly different.

The reason that Ohm’s law is still almost generally accepted (and this finds its expression
in the fact that the ‘‘visible sound’’ patterns which we discuss in the next section are considered
as complete representations as far as the ear is concerned) is twofold. First, such abrupt phase
changes as those that we have considered rarely occur in sound-reproducing apparatus. Second, in
the case of speech, one can choose the cell so that both the time displacement of clicks and the
shifts in frequency become almost if not entirely inaudible. It appears that the best choice is At =
25 msec, Af =40 cycles. Thus, at least with this interpretation, we can accept Ohm’s law as a
good practical rule which holds true for at least the great majority of the sound patterns and phase-
distortion patterns with which we have to deal in practice.*

V.3. Visible Speech.

Accepting Ohm’s law with these reservations, we can produce a representation of a speech
signal which does not contain the phase simply by taking our previous ‘‘matrix’’ or ‘‘cell’’ represen-
tation and writing the energy c,, c}, into every cell, instead of the complex amplitude c,,. This can
also be done with elementary functions other than gaussian, provided they are sufficiently ‘‘compact’’;
that is, that they have an uncertainty product not much exceeding unity.

If instead of assigning a number to every point, we indicate the energy by the density of shad-
ing and merge the densities into one another by some interpolation method, we arrive at the ‘‘visible
speech’’ representation which has been worked out experimentally by R.K. Potter and his collabora-
tors at the Bell Telephone Laboratories from 1941 onwards (29). This has now become the most
powerful tool of speech analysis, and the technical methods used in producing the ‘‘sound spectro-
grams’’ (now usually called ‘‘sonograms’’) are too well known to require description.

Sonograms taken with different analyzing filter widths are all equivalent; they correspond to
representations with different cell aspect-ratios, but they have very different appearances. There
is a maximum of visual detail in those taken with a bandwidth of approximately 45 cycles. This de-
tail, however, appears to be mostly redundant, and even confusing, from the point of view of recog-
nition, and a filter 300 cycles in bandwidth is used with preference both by deaf people for reading
and for learning the correct pronunciation of speech sounds, and for the purposes of speech research.

* It can be proved very simply that sonograms are far from being complete representations once we go sufficiently far off the optimum
division. **Amplitude clipped speech’’ is almost completely intelligible, but if we produced a sonogram of it with a filter width of the
whole audio range, the result would be a uniform black surface!
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We will return to this question later. LB

It may be asked whether or not a two-dimensional representation is necessary if one wants .
to eliminate the phase. The answer is that any number of signals can be substituted for s (t) in
which the phase carries no information because it has been standardized in some way. One method ~
of doing this would be, for instance, to use only elementary functions of the cosine or even type,
whose amplitude is proportional to the square root of energy in the cell, and add these up to obtain
the new signal with standardized phases. There is, however, no evidence that these signals would
look simpler than the original.

-

The short-time autocorrelation function as a substitute for the short-time energy spectrum
has already been discussed in section II.3. If it were plotted at right angles to time, and again
shown in terms of densities, this would give a highly interesting alternative to visible speech.

V.4. The Vocoder.

After two decades of work by Harvey Fletcher and his collaborators in the Bell Telephone
Laboratories, the science of speech and hearing resulted in the invention of the vocoder by Homer
Dudley (30, 31). This instrument has given, in return, some of the most important contributions of
the last decade to this science.

The vocoder is too well-known to be described in detail. It will only be recalled that it can
be used in two ways: as an instrument which conveys intelligibility in the form of a hoarse whisper;
and in a more perfect form, as an instrument in which the character of the voiced sounds is imitated,
as if a larynx were in operation. In the first method the voice spectrum is analyzed by a number of
filters, usually ten, covering the frequency band from approximately 250 cycles to 2750 cycles. The
output of each channel is rectified; transmission of the rectified output (the envelope ) requires a
channel that is only 25 cycles (single sideband) wide. At the receiver this is remodulated with “*white
noise’’ filtered through the original channel. In spite of the unnatural character of the sound it can
be 90 percent intelligible. This is called the ‘‘hiss’’ operation.

In the voiced or ‘‘buzz’’ operation the pitch of the speaker (the larynx frequency) is contin-
uously measured whenever it steps above a certain minimum level. The pitch frequency is translated
into a current intensity, which is transmitted again through a channel (the 11th) to the receiver.

Here it is again translated into the basic frequency of a buzzer, which produces the pitch and all
its overtones. This is used instead of the white noise as the energy source, modulated by the 10
channel outputs.

One of the most important results obtained with the vocoder is that the pitch contributes al-
most nothing to the intelligibility (apart from a certain improvement in the start and stop consonants;
in some languages, like Chinese, this statement does not hold). Whether the buzzer is switched
off, set to a constant pitch, or made to follow the speaker’s larynx frequency makes hardly any dif-
ference, proving that the intelligibility is mainly conveyed by the spectral energy envelope, while
the emotional content of the speech is mainly carried by the inflections of the pitch. Moreover, it
is sufficient to analyze the envelope only in steps of about 250 cycles each, which checks in an in-
teresting way with the observation that visible speech is perfectly legible with a filter bandwidth
of approximately 300 cycles. This almost perfectly intelligible speech is, however, far from natural.
It has a “‘machine-made’’ character, with noisy transients especially at the beginning and at the end
of words. It becomes natural only when the number of channels is increased to 30, each with a band-
width of approximately 80 cycles, as in the new vocoder of the Bell Laboratories. This can be con-
sidered as the first successful attempt at condensed speech of commercial quality. The gain in wave- .
band is, however, not very large. Each channel (vestigial single sideband with guard band) requires
approximately 40 cycles, making about 1200 cycles in all, a gain of little more than a factor of 2.
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Intelligible but not natural speech can be transmitted in 400 cycles to 450 cycles.
V.5. Painted Speech.

Visible speech and the vocoder were combined in an important experiment. The ‘‘bars’’ in
a sonogram were painted black where their density appeared more than a certain minimum; all the
rest was left blank. This record was scanned simultaneously with 10 photocells, whose output
was connected with the channels of a vocoder. The result was a certain degree of intelligibility,
not sufficient for communication, but surprisingly high considering that the gradations in the ampli-
tude had been entirely thrown away.

This line of research was continued, in particular by Cooper and by Vilbig. A 300-cycle
sonogram proved to be a suitable starting point. This was painted in, or copied on a second sheet,
with certain rules of schematization, as roughly indicated in Fig. 10. Playing this back with an
instrument equivalent in effect to a 30-channel vocoder, i.e. with a bandwidth of about 100 cycles,
the intelligibility reached about the same high level as in the 10-channel vocoder in the “‘hiss’’
operation, which is highly remarkable in view of the fact that the spectral envelope has now only
a very superficial resemblance to the original, since it has only two levels: “‘something’’ and
“‘nothing’’.

On the basis of this experience we can now make
a new estimate of the channel capacity required for intel-

“lece e ligible, not natural, speech. Let us divide the time-
* e - frequency plane into cell of At = 25-msec duration, Af = .
g,

-

o
Y 40-cycle bandwidth. This cell size seems to have special

significance for the analysis of audio signals. We have
already met it when stating that Ohm’s law appears to be
best satisfied with this division, and a second time when
noting that sonograms taken with a 45-cycle bandwidth
have a maximum of visual detail. But a time interval of
25 msec appears to have an even more fundamental sig-
nificance. It seems to mark the limit between spectral
sh — i — p analysis and time analysis by the human ear, at least if
the object presented to it is speech. It has been known
for a long time that 25 msec is the lower limit at which
Fig. 10. a speech echo as such becomes noticeable; a time delay
of less than this only gives a "‘fuller’’ character to the
speech. The echo begins to be very disturbing at 50
msec; this is the point where the delayed message begins to become intelligible in itself. A further
argument in support of this cell division is the fact that it was found that the limits of the bars in
painted speech had to be accurate to within 30 to 40 cycles.

+——-2 50 ms —»

Example of a ‘‘low definition’' sonogram.

Thus, dividing the time into units of 25 msec, (see Fig. 11) and the frequency band of, say,
2640 cycles into 64 strips, it is found that in each time interval it is sufficient to transmit, at most,
6 numbers, under 64, which mark the upper and lower limits of the three formant bars or the limits
of the ‘‘dots’’ by which, for example, the ‘‘sh’’ has been replaced in the previous figure. As each
cell can be identified by 8 binary selections, this means that painted speech can be transmitted with
good intelligibility in a channel of not more than

40 x 6 x 8 = 1920 bits/ second

capacity. This corresponds approximately to a channel 200 cycles wide, with 60-db signal-to-noise,
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i.e. to tenfold compression. A further gain by about the same factory,
would be possible if we took into account the fact that the config-
urations which will actually occur in speech, in a given language, -
are actually only a small selection among those possible. A ma- *-
chine, however, which could make use of this fact would be a
speech-recognizing machine, and we will deal with this possibility
- in a later section.

-

V.6. Speech Analysis in Terms of Moments.

We have learned from this that the transmission of intelligi-

ble speech requires the transmission of six suitable selected data,

1 40 40 times per second. But the six data in the last section were ob-
~FCYCLES tained by a highly nonlinear method, via a visible speech pattern,
which was intelligently simplified and schematized. Could we not

T ! obtain six significant data also by a linear analysis?

ms The first method which suggests itself is the Method of Mo-

Fia. 11 ments, discussed in section II.5. We know that the short-time ener-
ig. 11.

gy spectrum belonging to a time interval T (25 msec with preference),
““Yes or no'' simplification  which we will call S, can be expressed by the sequence of its mo-

of the amplitudes transmit-  ments of even order. We recall their definition, for a real signal
ted in an elementary time  s(t) which exists only in the time interval T preceding the present
interval. instant t = 0, and some of their properties:
F , o
M=2 S (f)df =2 [ s2(t)dt V.3
o T -
F, , 2 o d2 2 0/ 4s\?
M,=2 [£°S_(f)df =~ [ se— sdt=—— [(E5) dt V.4
o T (27)2 I dt2 (2r)2 21\ dt
F,, 2 o d4 2 0 7425\2
M, =2 [£'S? £df = feo L sa- X (——) de V.5
0 T 2m4 -t det (2m4 1 \dt?

and so on. The right-hand sides show the important property of these moments, that they can be
determined directly without spectral analysis. We must only differentiate the signal successively,
square the derivatives, and integrate them.

There is no doubt that the sequence of the moments contains the intelligence, but to what
order must we go, and in what form is the essence of the information contained in the sequence?
In order to decide this question, we apply the following method.

We know that speech can be processed in certain ways, without losing its intelligibility.
If we subject a speech wave to such a nondestructive transformation, the intelligence must be con-
tained in the invariants or near-invariants of the transformation.

The first test to which we submit the moments is differentiation of the signal. This is the
same as passing it through a network whose amplitude transmission is proportional to the frequency.
It is known that speech can be differentiated twice, and that it rather gains than loses intelligibil-
ity, especially in the presence of background noise. (It would be of interest to investigate how often
one can repeat this process.) Now one can see immediately that by differentiation each moment
steps up one in the sequence, that is, M_ takes on the value of M, and so on. This might suggest
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that the sequence of moments is indeed significant, but that it is only the relation of consecutive
moments that matters, not their order. This, however, leads to difficulties which are more clearly
seen if instead of the moments we consider the mean frequencies of different order:

£, =(M2/Mo)% fy = (M4/Mo)% coofy =(Mn/M°)1/" V.6

Differentiation of s(t) changes this into the sequence
£, = (M,/M)" £, = (Mg/MD* ... = (M, /M) " V.7

Thus the sequence of mean frequencies is not only renumbered but significantly changed.

A second, and even more decisive test is that of speech clipping. As Licklider(32) and
others have shown, speech retains a high degree of its intelligibility if its amplitude s (t) is clip-
ped at a low level, so that only the zero crossings retain their position, but the amplitudes are all
replaced by a standard amplitude. Moreover, as E.C. Cherry, in particular, has shown (33), the in-
telligibility is retained if after clipping the signal is differentiated, that is, if zero crossings are
replaced by spikes, with signs according to the direction of the crossing. If, however, the wave
thus obtained is rectified, most of the intelligibility is lost, and in particular, all vowels sound the
same. (See Fig. 12.)

By a rather long calculation, of which only
M [V\I\ the results can be given here, the author has in-
} MA_ NN vestigated what happens to the moments and to the
vV VN \ mean frequencies of different order if the input is
ORIGINAL SPEECH WAVE a single frequency f, and the waveband admitted
is F. If the tone f were faithfully reproduced, all
mean frequencies would be equal to one another

L mEm ] and to f. Figure 13 shows the colossal distortion
L) U U . .
produced by clipping. Even at zero signal frequen-

(a.) CLIPPED cy the second-order mean output frequency is 0.58F;
the fourth order, even 0.67F. Thus their whole
l | | 1 range of variation is only a fraction of F if the in-
] ' I I l put frequency runs from 0 to F. In case (c) the dis-
tortion is even worse. The mean output frequencies
(b.) CLIPPED AND DIFFERENTIATED actually drop if the input frequency is rising Yet
speech clipped, differentiated, and rectified .till
l l l I | l I I l ] has a certain degree of intelligibility, especially

for consonants.
(c.) CLIPPED, DIFFERENTIATED, AND

RECTIFIED We must conclude that the sequence of mo-

ments and of mean frequencies, which suggests it-
Fig. 12. self so readily as a mathematical tool, is in fact
very unsuitable for the analysis of speech. There
is no doubt that it contains the intelligence because
it contains everything, but to extract from it what is essential would require very complicated fur-
ther operations.

Varieties of speech clipping.

V.7. Speech Analysis in Terms of Hermitian Functions.

Though the moment approach fails, this is no reason to give up linear analysis altogether.
In the moment method we have formed a sequence of values by multiplication of the energy spectrum
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Fig. 13.

The first two effective frequencies resulting from two differ-
ent methods of clipping o harmonic signal of frequency f.

with an even power of f, followed by integration over the spectrum. Let us now try to replace the
powers by some more suitable set of functions. Orthogonal sets suggest themselves naturally be-
cause, in this case, the result of the integration gives the expansion of the energy spectrum interms
of the chosen set.

Hermite’s orthogonal functions offer special advantages because of their self-reciprocity
in Fourier analysis. It will be shown that if we expand the energy spectrum in terms of these, we
obtain at the same time the expansion of the autocorrelation function.

It is convenient to start from the definition of the ¢- functions (also called *‘parabolic cyl-
inder functions’’) as listed by Campbell and Foster (ref. 7):

af 2 —2nf?

6 (E/E) = e d‘:—" €2 C 0" e T (4P H, () V.8

n

where x = (47)% f/f and H_(x)is the n-th Hermite polynomial

% x?_dn e_%x2 =xn _n____(nz—l) xn—2 +___n(n—21)4(n—3) x4, ., V.9
dx® - )

H, (x)=(9)"e

(This definition is slightly different from that used in many textbooks on wave mechanics.) For
these functions there exists the simple relation:

The right-hand Fourier transform of ¢, (f/f ) is j® ¢_ (f t) V.10
The orthonormal Hermite functions follow from these by multiplication with a normalizing factor

h (1) = —2m (x) V.11
nt = (4m)% n p! Pa (X )
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These are also self-reciprocal, and have the property

Shh, dx= 8, V.12

where §,, is Kronecker’s symbol; unity for i =k, otherwise zero.

long-time) in terms of these functions in a form

/\ [\ S2(f) =a h (f/f,)) +a,h, (f/f)) +ah, ((/f)+... V.13

\U the corresponding expansion of the autocorrelation function
will be

W(f) =a_h (f t)—a,h,(f ) +ah,(f ) — ... V.14

|
/\ m /\ that is, it is a series with the same coefficients, but the sign
|

‘ If we now expand the energy spectrum (short-time or
|

of every second is reversed. We will call the sequence a_,a,,
a,,...; the Hermite spectrum. Only terms of even order are
needed, since both the spectrum and the correlogram are even
functions. Their shape is shown in Fig. 14.

Whether the Hermite spectrum is a useful tool or not re-
mains to be seen, but a few conclusions can be drawn from ex-
isting experimental material. When subjected to the test of
differentiation, the Hermite spectrum a_(unlike the sequence
of moments or of mean frequencies) reveals a simple property:
Its zeros remain very nearly invariant. Hence we have some
right to expect that the zeros, i.e. the sign changes of the se-
quence of the a will stand for characteristic data of the speech
signal, which are essential for the intelligence.

It may be noted that the Hermite expansion also gives
interesting results if it is applied to the signal itself instead
of to its energy spectrum or its correlation function.

[
n=8

Fig. 14.

The first five hermitian or-

V.8. The Problem of Speech Recognition.

This difficult problem can be discussed only very brief-
ly. Perhaps the most important result of research to date is
the fact that deaf people and others can be trained to read vis-
ible speech. This, however, means only that sonograms, even of the simplified painted type, con-
tain the information from which the eye plus the brain can carry out the identification which other-
wise is carried out by the ear plus the brain. In both cases highly complicated processes are in-
volved.

thogonal functions of even
order,

I[dentification of “‘universals’’ can be carried out in principle in two ways. One is to apply
certain transformation groups to the single phenomenon and to check whether by these it can be re-
duced to a standard, with certain limits of tolerance.

This is the method which, according to W.S. McCulloch and W. Pitts of this laboratory, the vis-
ual cortex is using when it tries to decide whether a letter is an ‘“‘A’’. The letter is translated to a
standard position, rotated into a standard direction, and finally reduced to a standard size. If it cov-
ers the ‘‘key’’ or standard ‘*A’’ of the mind, it will pass for an "*A’’.
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This also may well be the method, again according to McCulloch and Pitts, which the ear .
is using when it recognizes speech sounds. Just as an illustration let us think again of visible
speech, but laid out on a logarithmic frequency scale, while the time axis remains linear. We want
to recognize a speech sound, whether it is spoken by a man or a woman. In the second case the
formants are about 10 percent higher. On the logarithmic scale this corresponds to a translation
in the frequency direction. Let us imagine that we have a set of standard sonogram patterns. We
can try these in turn, shifting them in the time direction and a little up and down, until one of them
fits. We have intentionally used the vague term ‘‘speech sound’’. It may well be that our patterns
will have to be two-letter combinations, syllables, and even words. But if we try long enough, and
with a sufficient number of standards, we must succeed.

The second possible way of recognizing universals is through their invariants. Searching
for an “*A’’ we could ask a number of questions such as: *‘Is there a point in which two lines ter-
minate in an acute angle? Are these two lines of about equal length? Is there a third line about
halfway to their junction?’’ If we have an exhaustive set of questions for every ‘‘universal’’, and
every one of them has been answered with a yes, then and only then have we made an identification.

We have been in possession of such a complete set of questions for the vowels for a long
time (Helmholtz, Jones, Steinberg and others). A complete classification of all phonemes has been
given quite recently by Roman Jacobson. One of the most important present problems of speech
analysis is to translate Jacobson’s criteria into mathematical and instrumental language.

In concluding these lectures, as at the beginning, it may again be emphasized that their
purpose was not and could not be to present a complete picture of communication theory, which,
though only a few years old, has already grown to impressive proportions. In the selection the guid-
ing principle was to present with preference the methods of the British contributors, which are less
well-known in this country, and which the author felt more competent to explain. Thus it could not
be avoided that the methods and results of the American or “‘stochastic’’ school (Wiener, Shannon,
Fano, and many others) have received much less than their fair share of space. The author had
no wish to take owls to Athens and believes that he can leave the presentation of these theories
to far more competent hands.
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