

HD28
.M414

^6

C)ewey

MAR 18 1987

A Microcomputer-Based Image

Database Management Systenri

B. E. Prasad

Amar Gupta

Hoo-min D.Toong
Stuart E. Madnick

November 1986

CISRWPNo. 146

Sloan WP No. 1839-86

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

A Microcomputer-Based Image
Database Management System/

B. E. Prasad

Amar Gupta

Hoo-min D. Toong
Stuart E. Madnick

November 1986

CISRWPNo. 146

Sloan WP No. 1839-86

©1986IEEE

To be published in IEEE Transactions on Industrial Electronics , February 1987.

Centerfor Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology

M.IT. '

MAR 18 1937

A MICROCOMPUTER-BASED IMAGE DATABASE MANAGEMENT SYSTEM

Bandreddi E. Prasad, Amar Gupta,

Hoo-min D. Toong, and Stuart E. Madnick

ABSTRACT

Industrial applications frequently involve manipulation

and management of pictorial information. In spite of the fact

that digitized images and pictorial information are becoming

more significant as parts of user databases, conventional

database techniques have focused primarily on numerical and

textual information. The Image Database Management System

(IDBM) extends these techniques to encompass images, pictures

and graphs. Designed to run in a microcomputer environment,

the design of IDBM integrates efficient database algorithms

and compression techniques to permit fast retrievals as well

as an unusally large number of images to be set up as a single

database. The support of a synonym base is another important

characteristic of the IDBM system.

I . INTRODUCTION

In terms of basic computing power, the mainframes of the

early 1960s, the minicomputers of the early 1970s, and the

microcomputers of the 1980s are all in the same performance

bracket [1]. However, each of these three decades is

characterized by emphasis on a different type of information.

During the 1960s, the focus was on processing numerical

information. The 1970s witnessed attention geared towards

processing of textual information. During the present decade

increasing efforts are being concentrated towards efficient

representation and manipulation of pictorial information.

To illustrate the above trend, consider the maintenance

manual for any major industrial equipment. The manual

typically contains engineering numbers, descriptive text, and

some black-and-white or full color pictures. In the 1960s,

computers were used to generate the numbers. By the late

1970s, computers began to be commonly used for processing and

updating the text. Now, computers are used to create and to

manipulate graphical and pictorial information [2, 3].

Even images of average complexity require large amounts

of storage. A single high resolution image, in color,

typically requires about a million bits of memory space. In

spite of this fact, until recently little attention was paid

to the management of nonalphanumeric information. The advent

of powerful low-cost microcomputers has motivated use of these

systems for image-oriented applications in many different

areas including interactive computer-aided design (CAD),

robotics, computer-aided manufacturing (CAM) and automated

process control [4, 5, 6, 28].

At this stage, it is pertinent to distinguish between two

aspects of image management. One relates to the physical

storage of pictorial information, and encompasses issues such

as the development of new data compression techniques and

error correction algorithms to enable compact and accurate

representation of images. The other relates to management of

image databases, and includes investigation of strategies that

enable a desired sub-set of images to be retrieved based on a

group of selection criteria specified by the user. The latter

aspect alone is examined in this paper.

II. IMAGE DATABASE SYSTEMS

An image database is a system in which a large amount of

pictorial information is stored in an integrated manner. A

collection of many images does not mean it is a database. To

be classified as an image database, the management aspect must

also be present.

One method to extend a conventional alphanumeric database

is to add images as a data type. Each image can be assigned a

unique picture name, and sets of images are retrieved in a

manner analogous to numbers and text. This approach has been

employed in several early systems including Aggregate Data

Manager [32] and Spatial Data Management System. The latter

project was originally conceived at MIT [33], and subsequently

a commercial model was developed at the Computer Corporation

of America [34]

.

Instead of considering the entire picture or screen as a

single indivisible unit, more sophisticated image database

systems allow the image to be described in greater depth. For

example, in a system called IMDS, each LANDSAT image is

defined in terms of its name, the image matrix, the spectral

channel, the geographic coordinates, the scale factor, the

date of creation, and a legend. In cartographic applications,

maps are specified in terms of primal components such as

points, line segments, and polygons. Image specification

strategies adopted by different designers, and instances of

new languages used to specify and to retrieve pictorial

information from different image databases can be divided into

four categories:

1) Efforts within the framework of a relational database

model [1, 9, 11, 12, 20, 21],

2) Extending/modifying relational database model to

include new features for handling images [13, 17, 18],

3) Special hardware for image processing (14, 28], and

4) Specific applications [4, 5, 8, 14, 15, 20] such as

medical images, LANDSAT photos and cartography.

Whereas the preferred strategy for handling alphanumeric

databases is to use the relational model, the choice is not

clear in the case of image databases. In [28], McKeown points

out three major disadvantages of using relational database

techniques. First, the use of the basic attribute-value pairs

implies that all primary key attributes must be duplicated in

each relation, since there is no mechanism for allowing

multiple-valued entities. Second, the relational database

operators (union, join, project, etc.) are ill-suited for

implementing geometric notions of proximity and intersection.

Third, partitioning of large image databases is difficult

using the relational model. These issues become even more

significant in the context of microcomputers, which inherently

possess lesser computing power and smaller storage capacity

than available on mainframe computers and minicomputers.

III. DESIGN OF IDEM

The Image Database Management System (IDEM) is designed

to serve as a generalized tool for storing and retrieving

pictorial information in a microcomputer environment. Unlike

other strategies that are geared to one discipline (e.g.,

medical image databases, cartographic databases), IDEM employs

techniques that are suitable in many different disciplines.

We distinguish between two forms of pictorial

representation. A slide refers to a picture occupying the

entire screen. A pix is a subset of a picture. The size and

content of a pix is determined by the user by moving and

scaling a pix-rectangle on the screen and enclosing the

desired section of the screen in this rectangle. The

difference between slides and pixes is explained in [2, 31].

The use of the dual structure allows full pictures, as well as

parts of pictures, to be referenced individually. In IDEM

each slide is assigned a unique slide-name. If the slide

contains more than one pix, then these pixes are numbered 1,

2, 3, and so on. Ey concatenating the slide name and the pix

number, a unique identifier (ID) is generated for each pix.

The CREATE module of IDEM enables the image to be

described in terms of four sets of attributes. In the present

implementation of IDEM, these attributes are termed (i)

Subjects; (ii) Emotion; (iii) Action; and (iv) Physical

Attributes. In each set any desired number of elements can be

specified. For example, an image may contain a computer, a

table, and a man. All these three elements will be specified

as subjects. The other three attributes are described in a

similar manner. Further, modifiers can be used with each

descriptor. For example, personal computer, mechanical part,

power supply, etc. By using multiple modifier-descriptor

pairs, any image can be defined with as much precision as

desired.

Images pertaining to one discipline can be organized into

a library. The RETRIEVE module of IDEM allows images to be

retrieved in three different ways:

(i) By specifying the library number to retrieve all

images in a particular discipline;

(ii) By specifying the unique identifier to retrieve a

particular slide or pix; and

(iii) By specifying conditions in an attribute list to

retrieve the particular set of slides that meet all the

criteria.

While (i) and (ii) above are easy to implement, the process of

8

selective retrievals is more complex. Before discussing how

images are selectively retrieved, it is necessary to first

describe the basic structure of IDEM.

IV. STRUCTURE OF IDEM

IDEM consists of four main modules: (i) the

specification database which contains information about each

image; (ii) the syntactic database used to validate and to

decompose a user query; (iii) the pictorial database which

contains the images; and (iv) the user interface routines.

These four modules are described in the following paragraphs.

The Specification Database

The specification database is logically organized as

shown in Fig. 1. The physical structure of the specification

database is shown in Fig. 2. Because a user is more likely to

specify a list of attributes than the image ID's, an inverted

file structure has been used. When an image is initially

specified in terms of the library number, image ID, and

attributes (see top left of Figs. 1 and 2), the files

containing these pieces of information are updated. At Level

LIBRARY

IMAGE 10

ATTRIBUTES

DESCRIPTORS

[LEVEL 2]

LIBRARY

DESCRIPTIONS
I

ACCESSION

LISTS

[LEVEL 1]

MODIFIERS

[LEVEL 3]

ACCESSION

LISTS

[LEVEL 4}

PICTORIAL

DATABASE
PHYSICAL

IMAGE STORAGE

Z^

USER INTER-

FACE ROUTINES

SZ
IMAGE

PROCESSOR

> IMAGE ID'S

[LEVEL 5}

PACKED

DESCRIPTIONS

IMAGE

DIRECTORY

SPECIFICATION

DATABASE

Figure 1. Logical structure of IDBM

LIBRARY

IMAGE

ATTRIBUTES

i-¥
LI

11

1 the library file (middle top of figures) contains a pointer

to the block (shown on top right) containing ID's of all

images in that library. If the block space is insufficient to

hold the information, overflow blocks are used.

The bottom left of Fig. 2 is shown in greater detail in

Fig. 3. For each value of the attribute, there is a pointer

indicating the beginning entry of the list of modifiers for

that value. If subject-1 had four different modifiers, there

would be four entries in the row in Level 3 for this subject.

Each entry, in turn, contains a pointer to the block (Level 4)

containing ID's of all images corresponding to that particular

set of descriptor and modifier. Again, overflow blocks are

automatically employed, when required.

Level 5 (see Fig. 2) contains image ID's and the

corresponding physical location of the respective slides and

pixes. Level 3 serves as the image directory. In Fig. 2, the

image ID's have been shown as SPl, SP2 , etc., to denote that

an image can be either a slide or a pix. Apart from the ID

and the corresponding address, there is a pointer to the

location containing the full description (descriptors and

modifiers) for the image. Actually, the description for any

image can be assembled from the information contained in

Levels 2 and 3. However, the latter process is very tedious

and time consuming. As such, the descriptors are duplicated

12

LEVEL 3

LEVEL 2

ATTRIBUTE-I

ATTRIBUTE-2

ATTRIBUTES

ATTRIBUTE-4

SUBJECT1

I'S

and stored in Level 5 in the form of a packed description.

This enables the full description for any image to be

retrieved immediately without having to read all the entries

in Levels 3 and 4.

It is appropriate to clarify one important aspect of

Level 3. The right side of Fig. 3 shows the set of modifiers

for subject-1, subject-2 and so on. In the parenthesis of the

modifier, the first number relates to the subject, and the

second to the modifier. With this convention MODIFIER (1,2)

implies the second modifier relating to the first subject.

The same modifier may occur under several subjects. For

example, the word ELECTRONIC can be modifying COMPUTERS and

COMMUNICATIONS. It may appear that the duplication of

modifiers is leading to inefficiency, but this is not so.

First, each modifier occupies only two bytes of storage and as

such the overall contribution to program size is minimal.

Second, it is essential to store modifiers, in the present

form, in order to directly determine the descriptor value, to

obtain efficient retrieval, and to handle accession lists with

speed and accuracy.

In our opinion, the image specification structure

described above offers the best response time, given the

typical memory sizes available on contemporary microcomputers.

14

The Syntactic Database

In most cases, the person retrieving images is different

from the person who initially stores the images. This makes

it unrealistic to contemplate that the two persons would

define a particular image in an identical manner. For

example, at the initial stage, the word MEMORY may have been

chosen as a subject. Later, another person could specify

STORAGE as the selection criterion. For the system to be

truly effective, there must be a mechanism to know that these

two words are functionally equivalent.

The above objective is one of the goals of the syntactic

database. This database consists of two sets of dictionaries,

The entries in each of these dictionaries are of the form:

(n, w, p,

)

where

"n' is the unique number assigned to the particular

word,

"w' is the word, and

" p,
' is the pointer to the synonym.

The value of p, is zero in two cases: (i) when there is no

synonym for "w"; or (ii) when w' happens to be the word to

15

which all its synonyms point. The set of words characterized

by p, equal to zero are called basic words. The unique

numbers associated with such words are used for internal

coding. For all other words, the corresponding basic words

are first assigned, and the unique numbers assigned to the

latter words are then used.

As an example, assume COMPUTING and COMPUTATIONAL are

desired to be stored as synonyms. Then the two entries in the

dictionary may well appear as (150, COMPUTING, 0) AND (180,

COMPUTATIONAL, 150). This implies that COMPUTING is a basic

word, and COMPUTATIONAL is its synonym. Also, the unique

number 150 will be used when storing or retrieving an image

containing either of these words. Apart from mitigating the

problem of functionally-equivalent words, this technique

reduces the number of descriptors for each image.

Of the two dictionaries, the first dictionary contains

words of universal importance. The data in this dictionary is

an integral part of IDEM. The second dictionary is

application-dependent, and its vocabulary is created and

expanded by the user. Although both dictionaries contain the

same structure of entries, the size and contents of the first

dictionary are invariant whereas the second dictionary

gradually grows in size. When a retrieval criterion is

specified, the standard dictionary is first searched and then

16

the application-dependent one. If the word is located in

either dictionary, then the corresponding basic word is

identified and the query process proceeds. If the word is not

currently in either dictionary, the user can add it to the

application-dependent dictionary and also indicate its

synonyms, if any.

The Pictorial Database

The image database management routines of IDEM can

operate in conjunction with any pictorial database system

capable of running in an IBM Personal Computer or compatible

environment. Since all programming has been done in the C

language, it is relatively easy to tailor IDEM routines to

execute in many other computing environments. It can be used

to store, catalog, and retrieve pictures, images, graphs,

photographs, maps, and virtually anything that can be

displayed on the screen.

Depending on the environment, the image may be drawn,

generated by a digitizer, or created using another package.

IDEM does not deal with the issues of creating the pictorial

database. Our research has focused on identifying management

strategies that can work in conjunction with state-of-the-art

off-the-shelf graphics software. To demonstrate the

17

viability of our strategies, VCN ExecuVision was selected as a

test case since it offers the largest number (over 4,000) of

pre-rendered images [2]. Independent reviewers have highly

recommended it as "The Cadillac of Presentation Graphics

Software" [35] and "What a word processor is to words, VCN

ExecuVision is to graphics" [36]. This graphics package uses

sophisticated data compression algorithms to store images in a

very compact mode. We used this software to design and test

various routines of IDEM.

Total Storage Recruirements

The total storage requirements for IDEM program routines,

and the four modules (including the pictorial database) for

2,000 images are as shown in Table 1. Note that the total

storage requirements of 8 Mbytes fall within the storage

capacity of contemporary hard disks. IDEM program routines

account for only 84 Kbytes. The rest is comprised of data.

V. USING IDEM

When a user enters a set of selection criteria, the

sequence of steps performed by IDEM is summarized in Fig. 4,

18

STEP1

STEP 2

STEPS

STEP 4

STEPS

STEP 6

STEP?

STEPS

STEP 9
Using Level S, Retrieve and

Display Actual images

Next Iteration

Begins

Figure 4. Sequence of steps in response to user query.

19

ENTITY SIZE/ASSUMPTION STORAGE IN KBYTES

Standard Dictionary 10,000 words 300

User Dictionary 2,000 words 50

Level 1 25 libraries 9

Level 2 4,000 attribute values 28

Levels 2 modifier/attribute values 128

Level 4 10 attribute values/ID 256

Level 5 2,000 IDs 208

Hash Overhead — 100

Total = 1,079 (i)

Average storage requirement per image = 3.5 Kbytes

Storage requirement for 2,000 images = 2,000x3.5 = 7,000 Kbytes (ii)

Total storage requirements = (i) + (ii)

= 1,079,000 + 7,000,000 bytes

= 8 Mbytes

Table I. Storage Requirements For an IDBM System With 2,000 Images

20

The general form of a query based on attributes is as follows:

Ai (mi , Vi) & A, (m^ , v^) & & A^ (m^ , v^)

where,

Ai is one of the attributes: SUBJECT, ACTION,

EMOTION, PHYSICAL CHARACTERISTICS;

m^ is a modifier; and

Vi is an attribute value also known as descriptors.

Suppose a user wanted to retrieve all images that pertained to

the subject "CAD/CAM APPLICATIONS ON PERSONAL COMPUTERS."

Under an IDEM environment, this requirement would be

translated as "show all images containing subjects

<CAD; CAM; application;personal computer>." The word "personal'

is a modifier to the descriptor "computer,' while the other

descriptors carry no modifiers. This user query can be

written formally as:

Ai (@,CAD) & A, (@,CAM) & A, {@, application) &

A, (personal, computer)

where @ refers to null string and

Ai , Aj , A3 , and A^ are all SUBJECTS in this case.

21

Based on the above query, IDBM first searches for all

images containing CAD and its synonyms (computerized design;

automated design, etc.) and generates a first list.

Similarly, three lists are generated for the other three

descriptors. Finally, a short-list is compiled containing

image ID's in all four lists. From a technical perspective,

the process can be visualized in terms of four steps as

follows

:

Step 1: Using the ordered pairs (m^ , Vj) , (mj , V2)

(ro^ , v^) , search the standard dictionary to get the

corresponding numbers. Ignore any m^ which is a null string

or a blank. If a word is not found in the standard

dictionary, search the application-dependent dictionary. If

the word is still not found, trigger an error message. If

Step 1 is completed properly, assume that the number pairs

obtained for the query are

(nmi , nvi) , (nm^ , nvj) (nm^ , nv^,
)

where

nm^ = if mj = @(null string)

Step 2

:

Depending on attribute A, associated with (m^ , v^)

,

22

search the corresponding attribute file for the number nv^ .

Then,

if nnii = take all pointers to the accession

list associated with modifiers of nv^

;

if nm^ > take only the pointer associated

with nm^ .

Repeat this step for all the pairs in the query.

Step 3

:

Accession lists obtained by Step 2 contain pointers

to slide data file. Assume that Bj , B2 B^ are the

accession lists for the given query. Since each query

condition is connected by an "and' operation, we select those

pointers which appear in all the accession lists. Denote this

set by B* . The number of values in B* is equivalent to the

total number of images (slides and pixes) that meet the

criteria specified by the user.

Step 4; Using the pointers in B* , retrieve the slide names

and pix numbers which are then passed to the IMAGE SYSTEM for

display.

After completing Step 3, the total number of images that

meet all the selection criteria is displayed. On request, the

number of images fulfilling individual criterion is also

23

displayed. This enables the user to reframe his or her query

to come up with the appropriate number of images. These

images are then displayed using the pictorial database and the

interface routines.

Instead of retrieving information, if the user desired to

add an image to the database, a template is provided to enter

the specifications for the particular image. If the user

entered a descriptor that is not contained in either of the

two dictionaries, the user is informed accordingly. There are

two possibilities: (i) either the user specified an incorrect

spelling and as such he or she can now state the correct word;

or (ii) the user wishes to enter a new word in the dictionary.

In the latter case, IDEM provides the facility for specifying

synonyms as well, as described in the previous section.

It is clarified that the current version of IDEM supports

only the logical 'AND' between values specified in the

retrieval criteria. A user desiring to specify an "OR*

operation must use a succession of queries. For example, to

get all images containing either a CAR or a TRUCK, the user

first obtains all images specifying CAR alone. Then, he or

she can retrieve images containing TRUCK. As this process can

get cumbersome, we are currently enhancing the logical set to

allow for operations other than a simple 'AND'.

24

The retrieval speed and efficiency of IDEM is heavily

influenced by (i) the size of the syntactic database; (ii)

the level of specification of each image at the time of

storage; and (iii) the level of detail of the retrieval

criteria. Using a sub-set of VCN ExecuVision libraries

containing 400 (of the 4,000) images, and specifying each

image in terms of an average of 10 descriptor-modifier pairs,

the observed response time has been 5 seconds or less using an

IBM PC/XT system. The performance will be still better using

a faster computer. This response time is acceptable for most

applications.

VI. UNIQUE FEATURES AND NEW DIRECTIONS

As explained earlier, the subject of image database

management system has received attention of several

researchers in recent years. In our opinion, the unique

features of IDEM are as follows:

(1) Whereas almost all other image database management

systems have been hosted only on mainframes or minicomputers,

IDEM has been specifically developed to work in an IBM

Personal Computer (or compatible) environment;

(2) IDEM has been designed for storing and retrieving

icons, symbols, and images, unlike other microcomputer-based

25

database packages (e.g., dBase-II) which are directed towards

numeric and textual information;

(3) IDEM allows multiple values per attribute to be

specified at the time of storage and also at the time of

retrieval;

(4) IDEM supports the mechanism for automatic checking

for synonyms. This eliminates the need for the user to be

aware of what particular descriptors have been used previously

in the CREATE mode.

It is pertinent to mention here that IDEM can be used in

conjunction with any pictorial information database. This

includes the spectrum of areas from maps used in cartographic

applications to graphs used in industrial applications and

from spreadsheets used in the office environment to

photographic information gathered by satellites. The first

version of IDEM has been tested in conjunction with VCN

ExecuVision [2, 31] presentation graphics software. This

package was preferred because it offered immediate access to

several thousand prerendered professional quality images, and

because it is widely used in industrial and business

applications

.

The concept of IDEM was originally conceived to

encapsulate the intelligence by which a user is able to

selectively recall the images that pertain to a particular

26

topic of interest. However, in most environments, information

of many different types, besides images, is needed, and no

distinction is made between numeric, textual, graphical and

pictorial information. IDEM has recently been enlarged to

allow for storage and retrieval of numeric and textual

information. At present, new input and output routines are

being developed to allow IDEM to operate in conjunction with

the software packages commonly used for manipulating numbers

and text in a microcomputer environment.

27

REFERENCES

1. H. D. Toong and A. Gupta, "Personal Computers,"
Scientific American , vol. 247, no. 6, Dec. 1982, pp. 88-99.

2. H. D. Toong and A. Gupta, "A New Direction in
Personal Computer Software," Proc. of the IEEE , VOL. 72, NO.
3, March 1984, pp. 377-388.

3. S. Feiner, S. Nagy and A. Van Dam, "An experimental
system for creating and presenting graphical documents," ACM
Trans. Graphics , vol. 2, no. 1, January 1982, pp. 59-77.

4. J. C. Dorng and S. K. Chang, "Design considerations
for CAD/CAM databases," in Proc. Int. Computer Symp. , Taipei,
Taiwan, December 1984.

5. Y-C. Lee and K. S. Fu, "A CAD/CAM database management
system and its query languages," in Languages for Automation ,

edited by S. K. Chang, Plenum: New York, 1985.

5. S. K. Chang, "Image Information Systems," Proc. of
the IEEE , vol. 73, no. 4, April 1985, pp. 754-764.

7. R. B. Abhyankar and R. L. Kashyap, "Pictorial Data
Description and Retrieval with Relational Languages," IEEE
Picture Data Description & Mgmt. Workshop , 1980, pp. 57-60.

8. T. Ichikawa, T. Kikuno and M. Hirakawa, "A Query
Manipulation System for Image Data Retrieval by ARES," IEEE
Picture Data Description & Mgmt. Workshop , 1980, pp. 61-67.

9. N. S. Chang and K. S. Fu, "A Query Language for
Relational Image Database Systems, " IEEE Picture Data
Description & Mgmt. Workshop , 1980, pp. 68-73.

10. S. Levialdi, "Programming in PIXAL, " IEEE Picture
Data Description & Mgmt. Workshop , 1980, pp. 74-82.

11. B. S. Lin and S. K. Chang, "GRAIN--A Pictorial
Database Interface," IEEE Picture Data Description & Mgmt.
Workshop , 1980, pp. 83-88.

12. S. Uno and H. Matsuka, "A Relational Database for
Design Aids System, " IEEE Picture Data Description & Mgmt.
Workshop , 1980, pp. 89-94.

23

13. K. Yamaguchi et al

.

, "ELF: Extended Relational Model
for Large, Flexible Picture Database," IEEE Picture Data
Description & Mgmt. Workshop , 1980, pp. 95-102.

14. M. Friedell et al

.

, "The Management of Very Large
Two-dimensional Raster Graphics Env.," IEEE Picture Data
Description & Mgmt. Workshop , 1980, pp. 139-144.

15. D. M. McKeown, Jr., "Knowledge Structuring in Task
Oriented Image Databases," IEEE Picture Data Description &
Mgmt. Workshop , 1980, pp. 145-151.

16. P. G. Selfridge, "Name-Value Slots and the Storage
of Image Information, " IEEE Picture Data Description & Mgmt.
Workshop , 1980, pp. 152-157.

17. G. Y. Tang, "A Logical Data Organization for the
Integrated Databases of Pictures and Alphanuemrical Data,"
IEEE Picture Data Description <& Mgmt. Workshop , 1980, pp. 158-
166.

18. G. Y. Tang, "A Management System for the Integrated
Databases of Pictures and Alphanumerical Data," Comput

.

Graphics & Image Process. , vol. 16, 1981, pp. 270-286.

19. K. R. Sloan, Jr. and A. Lippman, "Databases
of/about/with images," Proc. of IEEE Computer Society Conf. on
Pattern Recognition and Image Processing , 1982, pp. 441-445.

20. M. Nagata, "A relational image data base system for
remote sensing (LAND DBMS)," Proc. of IEEE Computer Society
Conf. on Pattern Recognition and Image Processing , 1982, pp.
491-495.

21. N. S. Chang and K. S. Fu, "Query-by-pictorial-
example," IEEE Trans. Softw. Engg. , SE-6, 1980, pp. 519-524.

22. N. S. Chang and K. S. Fu, "Picture query languages
for pictorial database systems," IEEE Computer , vol. 14, no.
11, 1981.

23. S. K. Chang and K. S. Fu, "Pictorial data base
systems," Springer-Verlag: Berlin, FRO, 1980.

24. S. K. Chang and T. L. Kunii, "Pictorial Data base
Systems," IEEE Computer , vol. 14, no. 11, 1981.

25. A. Blaser (ed
.) , "Data base techniques for pictorial

applications," Springer-Verlag: Berlin, FRO, 1980.

26. H. Tamura and N. Yokoya, "Image database systems: A

29

survey," Pattern Recognition , vol. 17, no. 1, January 1984.

27. G. Nagy, "Image Database," Image and Vision
Computing , vol. 3, no. 3, August 1985.

28. D. M. McKeown, Jr., "Digital catography and photo
interpretation from a data base view point," in New
Applications of Databases , Academic Press, 1984, pp. 19-42.

29. M. Crehange et al

.

, "Exprim: an expert system to aid
in progressive retrieval from a pictorial and descriptive data
base," in New Applications of Databases , Academic Press, 1984,
pp. 19-42.

30. S. K. Chang and S. H. Liu, "Picture indexing and
abstraction techniques for pictorial databases," IEEE Trans.
Pattern Anal. Mach. Intell. , vol. 6, no. 4, 1984.

31. A. Gupta and H. D. Toong (eds.). Insights into
Personal Computers , IEEE Press: New York, 1985.

32. Y. Takao, S. Itoh and J. lisaka, "An image-oriented
database system, " in Data Base Techniques for Pictorial
Applications , A. Blaser, ed. , Springer-Verlag, 1980, pp. 527-
538.

33. W. C. Donelson, "Spatial management of information,"
Computer Graphics , vol. 12, 1978, pp. 203-209.

34. C. F. Herot, "A prototype spatial data management
system," Computer Graphics , vol. 14, 1980, pp. 63-70.

35. , "Great and 'Not-So-Great Graphics'," PC, June
11, 1985, pp. 160-161.

36. W. J. Hawkins, "Bits and bytes," Popular Science ,

January 1984.

13U 039-^

Date Due

WAY ^

WIS. 05 1998

Lib-26-67

3 TDflD D OM 3flS 2b3

