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Abstract

The problem of filtering a number of channels of information for the best recovery

of one particular channel message is considered in detail. Each channel is assumed to

carry a message and a disturbance function, and correlation is assumed to exist between

all possible pairs of message and disturbance functions. Exact solutions are obtained

for filtering with long delay, and expressions for the irremovable filtering error are

derived and discussed.

The synthesis of optimum linear filters by approximation methods is considered. A

method of approximation which tends to minimize the filtering error for a given allow-

able network complexity is given and detailed examples in the use of the method for the

general solution of the multiple time series problem are presented.

It is shown that the multichannel filtering techniques may be applied to the problem

of detection of amplitude-modulated signals. Adjacent channel interference situations

are examined in detail for both double-sideband and single-sideband signals.

Experimental results are presented which verify the theoretical conclusions.





INTERFERENCE FILTERING

I. Statistical Concepts in Communication

A. Transmission of Information

The basic purpose of a communication system is the transmission of information

from a transmitter to a receiver. The forms in which communication systems appear

are many, but common to all systems is the process of information transmission. The

quantity "information" has been defined in different ways (refs. 1, 3, 4). However,

certain fundamental conclusions may be drawn concerning information-bearing signals

which are consistent with almost any definition of information.

An information-bearing signal or message function can never be considered as a

known function of time. Certainly if the future of a message function could be determined

exactly from a knowledge of its past, no new information would be received. In short,

message functions are necessarily random functions of time and can be described math-

ematically only in terms of their statistical characteristics.

It becomes quite clear from the foregoing that the design and analysis of communi-

cation systems must necessarily utilize the statistical properties of the messages and

noises involved.

B. Design of Optimum Linear Systems

The notation used in this report will be exactly that of Lee (ref. 6) and will corre-

spond very closely to that of Wiener (ref. 2). It must be understood that a complete

background cannot be given here; only a brief survey of the mathematics is possible.

For further discussion the reader is referred to existing literature (refs. 1, 2, 6, 7, 8).

An "optimum" system will be considered one which minimizes the mean-square

error between the actual system output fo(t) and the desired output fd(t). Thus the mean-

square error e may be written as

T

= lima 2 T [fd(t) f(t)
T-o co T

If linear systems only are to be considered, the statistical parameters needed for

design are known as the correlation functions. The crosscorrelation function +12()

between random functions fl(t) and f 2 (t) is defined by

T

(T) lim 2T fl(t)f2 (t+T)dt. (2)
T-oo -T

The autocorrelation function bll(T) of the random function fl(t) is defined by

T

Tc 2T=iM fl (t)fl(t+T)dt. (3)

-T

-1 -



The Fourier transform pair g(t), G(w) are related by

oo

G(°) = g(t)EJ tdt (4)
-00

and

00

g(t) f= G() E+jwtd. (5)

-o0

By the Laplace transform we shall mean relations (4) and (5) except that w is replaced

by k where

x = + j. (6)

An important theorem due to Wiener (refs. 6, 7) states that the power density

spectrum of a random function fl(t) is given by the Fourier transform of the autocorre-

lation function of fl(t). That is

00

Mj~ 41 (T)C1Ej T dTr. (7)

-00

In a similar manner we may define a cross-power spectrum 1 2 (w) between random

functions f (t) and f2 (t) as

00

12( 2 r c 1 (T)E dT. (8)

Let us define the unit impulse u(t) by

u(t) = lim a -a (9)
a- oo

Then we may show using (4) that the transform U(o) of u(t) is given by

U() = 1 (10)

Now if h(t) is the response of a linear system to a unit impulse input, it may be shown

(ref. 6) that the output fo(t) of the linear system to an arbitrary input fi(t) will be given

by

-00

Let e(t) be the transient output of the linear system due to a transient input ei(t). If

a system function H(o) is defined for the linear system such that

-



Eo(M)
H(w) =- (12)

where E(o) is the Fourier transform of e(t) it may be shown that H(o) and h(t) are related

by
oo

H() = h(t) e-j tdt (13)
-00oo

and

o00

h(t) = 21 H()+Jtdw (14)

-00o

which correspond to (4) and (5) except for the location of the 2r term.

Since 1 1 ()' 12( °)' and H(w) are Fourier transforms of real functions it may be

shown from (5) that the real parts of the frequency function are even functions of X and

the imaginary parts odd functions of a. In particular since it may be shown that

~1 1(T) =1 1(-T) (15)

it follows that 11(o) is real. Also since

+1i2(T) =2~1(-T) (16)

it may be shown that

1m2(t0) = 21(- '). (17)

The material in this section is considered of fundamental importance so that use of

relations (1) through (17) may be made without specific reference.

II. Optimum Linear Systems for Multiple Time Series

A. General Discussion

Consider the situation described by Fig. 1. Let

fk(t), (1 k n)

represent message functions while

gk(t), (1 k n)

th
represent disturbance functions. Let it be desired to recover fj(t+a), the j message

predicted or retarded by a seconds. Clearly if there exists no correlation between the
.th
j message or disturbance and any other channel message or disturbance, the only

network to be designed will be Hjj(w) of Fig. 1. The case of single-channel filtering

has been treated extensively by Lee (ref. 6) and by Wiener (ref. 2).

If instead we assume that the j message is correlated to all the other messages

-3-



fo (t)

Fig. 1

Multiple time series filtering.

and disturbances as is the j disturbance, the recovery of f(t+a) becomes more complex.

In this latter case not only must the jth channel be filtered, but so also must every other

channel since all other channel voltages are correlated to f(t) and gj(t). By proper

treatment of each channel voltage we shall attempt to make the sum of the network
.th .th

outputs give a reinforced j message and a diminished j noise. The effect of noise

cancellation gives rise to the term "interference" filtering. This writer is indebted to

Professor Norbert Wiener for both the basic idea and title of "Interference Filtering".

B. Derivation of the Error Expression

Before continuing it is convenient to define some new symbols. Let the message

correlation function mkM(T) be defined by

T

4 jmM(T) = lim 1 { f (t)fk(t+T)dt, (18)
jk T-oo T

-T

dd
the disturbance correlation function jdk (T) by

T

jk (T) = lim T gj(t)gk(t+T)dt, (19)
j k(T = T-0o -T

-T

md
and the message-disturbance crosscorrelation function qbkd (T) by

T

djk (T) = lim 2T fj(t)gk(+T)dt. (20)T-aoo 2T
-T

In addition it is convenient to let

mm md dm dd
jk(T) = jkm(T) + -jMk (T) + jk m(T) + jk (T) (21)

and

mm dm
jk(T) = jk (T) + jk (T). (22)

The output voltage fo(t) of Fig. 1 is composed of the sum of the individual network
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output voltages so that

n 00

fo(t) = J dahjk(a)
k=l -oo

(23)
[fk(t-a) + gk(t-c)].

Now since the desired output is fj(t±a) the mean-square error of the system is

= lim 2
T-2oo T

T ( n o0 11 2

S dt fj(t+a) - J dhjk(a) [fk(t-o) + gk(t- )]
-T k=l -oo

(24)

which may at once be written as

n oo

: jj (o) - 2 dhjk(c()@kj(+a ) +
k=l -oo

n

k, r=1

00 00

- -)dacdvhjk ()h j r(v)kr(a v)
- 00 00

Equation (25) is the desired error expression. A set of networks hjk(t) must now be

found which will make minimum.

C. Conditions for Minimum Error

Since hjk(t) is by definition the response of the k t h network to a unit impulse input,

it must be kept in mind that

hjk(t) = 0 for all t<O. (26)

Any solution which makes £ of (25) a minimum must also satisfy (26) if the solution is

to be physically realizable.

Let hjk(t) take on an admissible variation Ekk(t) where k is a parameter inde-

pendent of qlk(t) and hjk(t). By an admissible variation it is meant that

lk(t) = 0 for t<0. (27)

Thus if hjk(t) is replaced by hjk(t) + knk(t) in (25) & will also take on a variation 6 

so that

n

£ t 6! = jj m() - 2 ,
k=l

00oo

i da [hjk(a) + kTlk( )]
-00

n 0 o
k,+ rl -0 daudv

k, r= - -0

[hjk() + Eklk(UT [hjr(V) + rTIr()]4~kr(O-v) (28)

Now if a set of networks hjk(t) is chosen such that e of (25) is a minimum then from

(28) we must have

a + 6e]
8 Eq IE1,E 2 ,3 .-- E n = 0

= 0,

(29)

(1 q,< n).

-5-
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Furthermore (29) must hold for any admissible set of variations lq(t). The set of

networks hjk(t) which makes minimum must necessarily satisfy (29). Thus

00

a 56 + 6 = -2 Jdqq(4)qj(U).(a+a)
E1 En - 0

n 00 00

k=l -oo -oo
dadvfkq(v-c)hjk(v)rlq() = 0

(1< q< n)

which may be rewritten as

da lq(c)Z i , dvkq(v-a)h jk(v)- iPqj(a+a) = 0
-00 k=l -oo

(I q< n).

Since the above relation must hold for any admissible q(a) we may write at once that

n o00

Z Z d
k=l -oo

for a>O0

lV1kq(v - )hjk(V) = qj(a+a)

(1 q< n).

Any set of networks hjk(t) which makes e of (25) a minimum must also satisfy (32). It

must now be shown that solutions of (32) are networks giving minimum E and not maxi-

mum or stationary solutions.

In order to prove that solutions of (32) always result in minimum ~ we shall show

that of (28) is always positive if (32) is satisfied.

From (28) we have

n Xo oo

6 = 2 17 { dadvkr(c-v)¢krlk(() [hjr(V) + rrlr( )]

k r=l -oo -oo

n co

-2 fI dakji(a+a) kk( ))'

k=l -oo

(33)

In (32) change k to r, q to k and obtain

n 0o

i£ j dV rk(V)hjr(V) = PkJ( C' + a )
r=l -oa

for a > 0 (1 k n).

(34)
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Now multiplying both sides of (34) by EkTk(G)da and integrating from - to oo in cy and

at the same time summing over k from 1 to n we get

n co n o

1 J dcd vkr(cr v)hjr(v) kEk(a-) 1= 3, do,'kj(a-+a) Ek5k(a5) (35)
k, r=l -oo - k=l -oo

When (35) is substituted into (33) there results

n co co

6= 2 L k 5 r ddv kr(Cr-v)11k(C)Tlr (v) (36)
k, r=l -o -co

Note that in trying to prove §6 always positive it must be realized that the k are arbi-

trary as are the Tlk(c) provided (27) is satisfied.

Since the 1 k satisfy (27), physical networks may be built having lk(t) as impulse

responses. Let the k t h channel voltage ek(t) where

ek(t) = fk(t) + gk(t) (37)

be the input to the llk(t) network and let e(t) be the output as shown in Fig. 2. Now the

crosscorrelation ' (-) between e(t) and e (t) isr k r

(Ir(T) f dcrdvrlk(Cr)1r(V)kr(T+C--V) (38)
-00 -oo

where

T

(T) = lim 1 ek(t)er(t+T)dt. (39)
T-*o T

The double integral expression of (36) is given by (38) if T is set equal to zero. Thus

(36) becomes

n

6 = 2 23. krkr(0) . (40)

k, r=l

Since the Ek and k are all real valued we have the following inequality

et(t ) e(t)

ek~t = er(t) Z i keL(t) (41)

Fig. 2

Variational network pair. which may be written as

-7-
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n

2 EkEr e k(t)e r (t) O. (42)
k, r=l

If the time average is taken of both sides of (42) one obtains

n

£ kE 4'rkr (0) > 0 (43)
k, r=l

which means that 6 Ž>0 for all Ek and all admissible 1lk. Since the equality in (43) holds

only in the trivial case where all channel voltages are zero one can be sure that solu-

tions of (32) will yield a minimum system mean-square error.

To obtain expressions for the minimum error multiply both sides of (34) by hjk(c)dc

and integrate from - to o in o-. At the same time sum over k from 1 to n getting

n o 00 n o00

3 J f dadvkr(Cr-v)hjr(v)h k(O)= f dcrI4kj(cr+a)hjk(C). (44)

k, r=l -00 -co k=l -oo

The above expression when substituted into (25) gives the minimum error, min' where

n o

mn = m m (0) -3 J, dahjk(cT)I kj(C+) (45)

k=l -0oo

or in terms of Fourier transforms

oo00 n

min = s d. mm() -kj()Hjk(-_)IE+ 1 (46)
-00 k=l

It must be remembered that the network functions which appear in (45) and (46) are not

arbitrary but are solutions of (32).

D. Network Solutions for Long Delay Filtering

The general solution of the set of equations (32) is left to the approximation method

of Sec. III. For an exact general solution the reader is referred to Wiener's method

of undetermined coefficients (ref. 2). Since the best possible recovery of the j message

will be obtained if a long delay is allowed in the system (ref. 6), the long delay solution

will give indications as to the ultimate filtering possibilities for given input messages

and noises. It must be kept in mind that "long" is used in a comparative sense here.

For example, one-tenth of one second may be considered a long time where speech vol-

tages are concerned.

First let (32) be rewritten as
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n 0o

>- dV0qk(J-V)hjk(V) - lPj(a+ a) = Pq(o)
k=l - (

( 1 q n).

where pq(a) is a function having the property

Pq(O) = O for > o. (48)

Taking the Laplace transform of both sides of (47) we obtain

n

Z, qk(k)Hjk(X) - qj(X)E j = Pq(X)
k=l (49)

( 1< q.< n).

Let qq(x) be factorable so that

{qq(k) = ~ qq() qq(50)

where +qq(k) has all its poles and zeros in the upper half of the X plane and qq(X) has

all its poles and zeros in the lower half of the X plane. Poles or zeros will not occur

on the axis of the X plane as qq(o) is the power density spectrum of a random time

function.

Then (49) may be written as

H4,)+ (k) + qk(k)ik ) () Pq(x)

k=l q(X) iqq(X) q qq-k
(51)

(l< q< n).

where the prime after the summation sign indicates that the k=q term is missing. Let

n ,

R() = ' q Hjk(X) - (52)
k=l qq) qq(X)

Then (51) may be written as

00

Hjq() qq(k) + 1 , -JXtdt I R(o)E+Jotdw

O -oo

0 0t (X)

+ 1 E- Xtdt R(o),) +jitdow -= q (53)

-00 - 0o qq

Now the first two terms on the left have all their poles, if any, in the upper half of the
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X plane. The last term on the left and the term on the right have all their poles in the

lower half of the X plane. Thus the first two terms on the left must sum equal to a

constant since they cannot have poles in either half of the X plane. Therefore

00 o

+s , I E -JXtdt t R(w)E+iJtd = constant

o _ 00 (54)

(1 < q< n).

It can be shown that the constant term of this equation must be chosen as zero so that

o00

Hj () = + -Jxtdt
2q rr2qq(X) O

n 

00 kqj(w)E illw -_ qk(.)Hjk(w)
k= 1 jtd

-00 qq

(1< q.< n).

This last equation yields a general solution only for n=l. For > 1 the system function

of the qth network is expressed in terms of all the other network system functions in the

rather complex form of (55).

For long delay filtering it is convenient to define

Hjk(X) = H!k(X) -jax (56)

and rewrite (55) as

H. (X) = 1 dtE-jkt

qq(X)0

(57)
n 

00 tqj(k1> k=l
J -

-00

Ejotdw

qqa(w)

(1 q n).

As a--oo the lower limit of zero in the time integration of (57) may be changed to -00 and

we have

Hjq(k) =

for aI- oo

n 

kqj(X) -1 4qk(X)Hjk(X)

k=l
, qq(k)

(1 < qs. n)

-10-
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or

n

Hijk(X)Iq k((X) = qj(X)
k=l ~~~k=l~~ 1 ~~~(59)

for aH- e- (< q< n).

The set of equations (59) may now be solved quite easily for Hjq(X), that is
Aq

H'q(k) =
J

l nn
l l

( k )` lg(k}----ln(X)

21 ()) P22 (X)- §n(k)
I I I

`n 1 () `nS(k) -.. n()

(60)

In particular for j=l, n=l

Hl 1 1(X) (61)

and for j=l, n=2

( 1 1 ( X) 2 (k ) -T2 1 ( ) 12 ( k )

Hl() 1 1 )22) 21 2() (62)

and

21(X)`} 11 ) 1
( X) 21 (k)

H1 2(X) 11( ) 2 2 (X) - 21(X)12() (63)

E. Irremovable Error Considerations

Since the best possible filtering is obtained in the long delay case, an expression

for the irremovable error 5irr may be derived by using the long delay network solutions

of (60) in the minimum error expression of (46). From (56) and (46) we see that

o00 n

irr -o j ) -kj()Hijk(-w) (64)
-o k=l

For the special case j=l, n=l using (61) we have

00 1 m()>(X) - L() 12

irr f 11 -de (65)
-Or =° ~ - V1

-00
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which is in agreement-with the expression given by Lee (ref. 6). If in addition the

message fl(t) is not correlated to the disturbance gl(t), (65) becomes

00 11m(W) dd(W)

'irr _= (>1 ) 1 -dw. (66)ir mm() + cdd d.

For the case j=l, n=2 (64) becomes

oo

00
dwo -4 '1 1 (w)Hw(-W) -' 2 (c)H 2 (-w)j (67)

where Hi (- ) and H 2 (-O) may be derived from (62) and (63) respectively. These

special cases will be investigated in greater detail in Sec. IV.

III. An Approximation Method for the General Treatment of Multiple Time Series

A. Conventional Approximation Technique

Let us consider for the moment the filtering of a single time series. Setting n=l in

(55) there results

Hll() = dt jXt +jwtd (68)

2 1(%) 0 -oo 1()

which is the well-known optimum filter formula (refs. 2, 6). Thus, if the correlation

functions of the message and noise are known, (68) will give the ideal system function

H1 1 (k) from which the ideal impulse response h l(t) may be obtained. Since in general

H1 1 (X) will not be a rational function of X, some type of approximation method must be

used for actual network realization.

Let the ideal impulse response h 1 (t) be represented by an infinite series of ortho-

normal functions u (t), that is

00

hl l(t) = CsuS(t) (69)

s=l

The set of functions us(t) has the property that (refs. 9, 10)

0 (0, r ;s

so that the coefficient of the expansion may be determined from

o0

c = Us(t)h 1 1 (t)dt. (71)

0

-12-
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We must limit ourselves, of course, to those orthonormal sets us(t) having transforms

Us(c) which are rational functions of frequency (refs. 2, 6, 9, 10).

Practical considerations limit the degree of the approximation; that is, the network

to be built will have an impulse response hapP(t) where

N

hlaPP(t) =-Cs U(t). (72)

s=l

The impulse response (72) is the series (69) terminated with the Nt h term. The approxi-

mate system function HlPP(,), where

N

HlPP(C,) =CsUs() (73)

s=l

is a rational function of c and a network may be built having (73) as its transfer function

(refs. 11, 13).

The method outlined above has been used with success, but certain disadvantages

are to be noted. First, the terminated series (72) has the property that the coefficients

c s as given by (71) will yield the least integral of the squared error between the ideal

and approximate impulse response (refs. 9, 10). That is

0o

J[h aP(t) - hll(t) dt (74)
0

is minimized by this method. However, it is not (74) that we wish to minimize with a

given complexity of network, but the filtering error A, where

T

= lim 2T [f(t) - fl(t+)] dt. (75)
T-oo -

-T

Lee has clearly shown (ref. 6) that the condition of minimum approximation error (74)

is quite different, in general, from the condition of minimum filtering error (75). In

short, the conventional method is aimed at getting the best approximation of an ideal

response for a given network complexity rather than getting the best possible filtering.

The amount of work required is generally large; however, several ingenious tech-

niques have been devised to expedite the synthesis (ref. 14).

B. An Improved Method of Network Realization

It is quite clear that since, in general, the ideal transfer function H (co) is not a

rational frequency function, a perfect job of network synthesis can never be done. How

closely this ideal may be approached depends on the allowable complexity of the network.

Since practical considerations limit the number of elements in a given filter we must

13-
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content ourselves with something less than a perfect job. Within the constraints

imposed by practical or engineering considerations we must design for the best possible

filtering performance. An example of such an approach is given in the following section.

C. Derivation of Design Equations

Returning to the multiple time series problem of Fig. 1 let the networks

limited to RC networks. Furthermore, let the poles of Hjk(o) be at = jp,

jNp. Thus the impulse response hjk(t) must be of the form

N

hjk(t) =Z -ick -spt

s=l

and

hjk(t) = 0

for t> 0

for t<0.

Hjk(w) be

j2p, j3p, ---

(76)

Sets of coefficients cj k

(76) into (25) gives

must now be found to make of (25) a minimum. Substituting

n, N oo

= mjj (0 ) - 2 cs J do E P kjo+a)
k, s=l 0

n, n, N, N

k, r, , =
k, r, s, u=l

00 0o0

cjkcjr ddve -spa-uV ( -V) up
s 0 dd kr

0 0

Now a necessary condition for making a minimum is that

for all (1 q n) and (1 m N).a = 0
Oc J q

m

Performing the differentiation one obtains

N, n

u, r=l

cjr aJo od (--v) EmpC upv = dcr (+a) E -mpa

U 0 0

for all (1< q< n) and (1 m< N).

For convenience, changing m to s and q to k results in

N, n oo00 00

C Ju dcrdv4 kr(O'-v) E -Pepv = I dcr ikj(Ca)Sp(

u, r=l 00 0

for all (1 k< n) and (1 s< N).

Thus (80) represents nXN equations in the nXN cjr unknowns.u
It must now be shown that solutions of (80) represent minimum error conditions.

-14-
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o o Taking the second partial derivative of with respect to
eq(t} h (t): E-_t e~t) c jqq(). E hc (t) =qmpte bt ) Cjs we get from (77)

m

Fig. 3 c 2 i · ·00cFig. 3 a ~82 = 2 r dcrdv (a-v)E-mp(a+v)
Network for cjq2 qq

·minimization proof. m 0 0 (81)

(1<m< N), (l q<tn).

Consider now the situation of Fig. 3. The input voltage eq(t) is the qth channel message

plus noise voltage. The output voltage e(t) has an autocorrelation function ' q(T)

which may be shown to be given by

oo o00

iq(T) = f{ d-dVE mP(+v), (T.+a-v). (82)qq
0 0

Thus (81) may be written as

a ez = (0) 0. (83)

m

The equality holds only for the trivial case when the qth channel voltage is zero, so that

solutions of (80) will yield minimum filtering error.

It is now important to find the mean-square error which results if (80) is satisfied.

Multiplying both sides of (80) by c jk and summing over k and s from 1 to n and 1 to
5

N respectively we find

n, n, N, N, oo00 n,N oo

21c c Sjkc Jr dcdv kr(C -v) e - sPE upv = 7 E ckf do-S'(P)e (84)
k, r, s,u=l 0 0 k,s=l 0

When (84) is substituted into (77) one obtains for the minimum filtering error

n, N oo

emin = m m() c j k doe spcrkj (C+a ) . (85)
k, s=l 0

Note that the integral involved in (85) is also found in (79) so that min may be obtained

quite easily once a solution of (80) is made.

Consider now the special case of j=l, n=l. From (80) we have

N 00o o00 00

Zi cl fJ d(advll((a-v) sp Eupv =f dcrP (a) 5spu

u=l 0 0 0 (86)

for (l sN)

and from (85)
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N oo

Ce'min = 4m() cl f daceSPU4i 1 1 (a±a). (87)
emin -a 1 .

s=l 0

For j=l, n=2 we have

ic fddtklT) au N 00 00

E d U V,+1 f d dadvk2(a v) sP -uPv
u=1 00 u=l 0 u=l 0

oo

= da (a-+a)E -spa (88)

0

for k = 1,2 and (l s <N)

and for min

s=l 0
(89)

N 0N
- c2 dUE sPa 2 1 (+a).

s=l 0

Detailed examples of these special cases may be found in Sec. V.

D. Realization of Networks

From the work of the previous section it can be seen that the network transfer

functions will be of the form

N jk

jk(X) jX + sp (90)
s=l

The poles of this transfer function all lie on the a axis in the upper half of the X plane.

The residues at these poles are all real so that (90) can always be synthesized as an RC

network (refs. 11, 12, 13). With little difficulty a symmetrical RC lattice may be

designed (ref. 13) and Guillemin has shown (ref. 15) that (90) may always be realized as

an unbalanced structure composed of paralleled RC ladders. If active networks are

considered the synthesis becomes considerably simplified.

The transfer function (90) cannot be realized as a driving-point impedance since, in

general, some of the ck terms will be negative. However, if (90) is written in the form
5i~) 0 X+s

(+jk (

r +cjk for cjk + sp
L-- ~s l

-16-
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both bracketed terms may be realized as RC driving point impedances. Since Hjk(k) is

equal to the difference between two impedances, that is

Hjk(k) = Z l ( X) Z2 (k) (92)

we may realize this transfer function by the method shown in Fig. 4. An electronic

filter of the form of Fig. 4 has been designed and operated successfully. A detailed

description of this work may be found in Sec. V. Thus through the use of active elements

the design of the filter is reduced simply to the synthesis of RC impedances Z 1 and Z 2.

IV. Application of Interference Filtering Theory to the Detection of Amplitude-

Modulated Signals

A. Synchronous Detection of Amplitude-Modulated Signals

If a message function fm(t) amplitude modulates a carrier wave of frequency o

the resultant amplitude-modulated signal fs(t) may be written

f(t) = [Ao + fm(t)]cos wot. (93)

Since it will later be shown that the carrier component is basically unimportant (93) may

be written

fs(t) = fm(t)cos Wot (94)

and by an a-m signal we shall mean a signal of the form (94). The process of amplitude

modulation is, therefore, essentially one of multiplication in the time domain. To deter-

mine the significance of the process in the frequency domain we first find the autocorre-

lation function ss(T) of the a-m signal which is given by

+mm 
( T )

&SS(T) = 2 · (95)

which when transformed yields

1ss(<O) 4 [ ~mm( -Wo) +mnP+ mm( . (96)

Thus, in the frequency domain the modulation process results in a shift of the message

eN

Fig. 4

A possible scheme for network realization.
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0>mm(-)

0X

Fig. 5

(top) Original message spectrum.
(bottom) Resultant a-m signal spectrum.

spectrum by an amount co . This situation

is described by Fig. 5.

Since the process of amplitude modula-

tion is essentially one of spectrum shift, a

possible detection method immediately

presents itself. That is, detect the a-m

signal by shifting the message spectrum

back to its original position about = 0.

Thus in the time domain such a detection

process would appear as

fm (t)
fs(t) cos ot = [1 +cos 2t] (97)

which when put through a low-pass filter will give

f5 (t) cos ot]L
fm(t)

2 - (98)

This method is by no means new (refs. 16, 17, 18).

One advantage of synchronous detection that has attracted much attention is the possi-

bility of "phase duplexing" two messages in a given a-m channel. Let fl(t) and f2 (t)

be two messages which amplitude modulate cosine and sine carriers respectively at a

frequency (. The transmitted signal, fs(t), would then be given by

f (t) = fl(t) cos cot + f(t) sin wot.s o f 2to (99)

Now at the receiver, voltages cos o 0 t and sin wot are generated and the low frequency

components of the following products are taken

and

fs(t) cos O t] L. P.

fs(t) sin o t ] L. P.

fl(t)

f 2(t)
= T 

(100)

(101)

Thus, the two messages may be detected separately at the receiver. In this way the

bandwidth conservation properties of single sideband transmission may be realized with

a possible reduction in the complexity of terminal equipment.

This "two-phase" method of detection may prove useful even though a single message

is being transmitted in the a-m channel. To illustrate this point consider the case of

an adjacent channel signal

fm)(t) cos (O + )t

-18-
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which is interfering with the reception of the desired signal

fm(t) cos cot.

In such a case the receiver input, fi(t), would be given by

fi(t) = fm(t) cos wot + f(n)(t) cos (w + A)t. (102)

First using synchronous detection in the ordinary way we get

fm(t) f(m)(t)
f.(t) cos cat]l = + cos At (103)

which is the desired message plus a noise term due to the adjacent channel signal. This

message, plus noise output, could be filtered for best message recovery by the single

time series methods of Secs. II and III. However, if a sine detection is also made one

obtains

f(n)(t)

fi(t) sin o t]L. sin At. (104)

This sine detection process yields no message voltage, but it does give a noise voltage

which is correlated to the noise component of the cosine detector output (103). We may

take advantage of the crosscorrelation between the voltage (104) and the noise component

of (103) for best message recovery by the methods of Secs. II and III using the double

time series results. A more general treatment of noise correlation in two-phase detec-

tion is given in the following section.

B. Two-Channel Analogy of a Radio Transmission Circuit

One possible method of transmitting a single message in a radio-frequency channel

is illustrated by Fig. 6. The message, fm(t), amplitude modulates a cosine carrier

directly while a sine carrier is modulated by fc(t), the output of a linear system H(w)

whose input is fm(t). To the transmitted signal fs(t), a noise voltage fn(t) is intro-

duced additively in the transmission path so that the receiver input, fi(t), is equal to

the sum of f(t) and fn(t). Cosine and sine synchronous detection is then performed

at the receiver, the 2 terms being removed by the low-pass filters Q(c). Except for

the removal of these high radio-frequency terms, the networks Q(o) serve no other

purpose. The actual filtering of the message from noise is performed by networks

H 1 1(w) and H12z().

Since the input to H1 1( ) is fm(t) + gl(t) and the input to H 1 2(w) is fo(t) + g(t) the

equivalent two-channel representation of Fig. 7 may be used rather than Fig. 6. The

disturbance voltages gl(t) and g(t) must now be determined from the actual represen-

tation of Fig. 6, for use in the equivalent representation of Fig. 7.

From Fig. 6 we have

-19-
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UT

ft) +g

Fig. 6

A-m radio transmission circuit.

00

and

gl(t) f
-00

00

-00

t)

Fig. 7

Simplified equivalent transmission circuit.

daq(cr)2 cos o(t-o )fn(t- ) (105)

dv q(v)2 sin wo0 (t-v)fn(t-v ). (106)

These two voltages have the same autocorrelation functions, that is

dd dd
dldl(T) = c22(T) = dd(T)

where

qdd(T) = r r dadvq(a)q(v)g2nn('T+-v) cos o(+-v).
-00 -00

The disturbance power spectrum is then given by

dd(') i= Q(')I [nn( o

The crosscorrelation between gl(t) and g(t),

- Wo)+ nn( + Wo) 

dd
ddl(T), is given by

-20-
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0o ok

dd (110)
l2 (T) = dodvq(c)q(v)2nn(Tr+a-v) sin (T+C-V) (110)

-00 -00

from which the cross-power spectrum

dd o) ~ mnn f Wo~l (111)
1 12(w) coj nn( ° nn( ) (o)

may be obtained. Thus, unless the noise in the radio channel, fn(t), has a spectrum

1nn(w) which is symmetric about wo there will always exist some correlation between

gl(t) and g2 (t).
In order to design the receiver filter networks H 1 1() and H12 () we have need for

the following quantities as defined in Sec. II.

(1 (W) = mm ( ) + dd(w) (112)

12(w) = H(wo) mm (c) + dd (W) (113)

4zz(cA) = IH(w) Imm () + dd(w) (114)

1( ) = mm () (115)

21 ( ) = H(-wo) ( mm(o). (116)

For long-delay filtering (62) results in

mm(W) [i dd(w) - H(-w) dd( ()17)
H 1()- D(w)(117)

while (63) gives

· )[W W~() dd
IHI(w) =mm() [H(- dd() 12 (118)

H12() = D(w)
where

D(o) = mm() {dd(W) [1 I H(w)l 2] (-) - H(-dd(mm 1

{~2 d(d)) dd 2 (119)
dd(w) m 1 2

The irremovable error of the transmission circuit may be obtained by substituting (118)

and (119) into (67) which results in

00 ~ jz( - dd
irr J X mm() dd( ()W) do. (120)

-00

-21 -
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C. Double-Sideband Transmission and Reception

If H(w) in Fig. 6 is chosen equal to zero, the transmitted signal, f s(t), will be

simply

fs(t) = fm(t) cos cot (121)

which is an ordinary double-sideband a-m signal. This corresponds to putting all the

signal power into channel one of Fig. 7 and using channel two for noise pickup only. For

double-sideband (117) and (118) give

1 1() =_ mm() dd(o)
H' () = - . . . . ?. . . I T (122)

mm(-) dd(-) + 4Idd() - 12(O)

mm mm +X0(

H2() (123)

mm()dd(w) + dd() . 123)

The irremovable error as given by (120) becomes

00 f1{2 dd ,

eirr = m ) dd() 12 dw. (124)
irr S o+ 2 -

DSB -00 mm( dd dd( ) 12 )

D. Single-Sideband Transmission and Reception

Let H() in Fig. 6 be defined by

H() = +j forwo > 
(125)

H(w) = -j for < 0.

In this discussion we shall ignore the infinite delay associated with the response of (125).

The transmitted signal will then be

fs(t) = fm(t) cos wt + f (t) sin o t (126)

where

oo

fc(t) = doh( c)fm(t-). (127)
-00

The signal autocorrelation function will be given by

cos T sin T
( T )

= 2 [mm(T) + CC(T [+ mc( cm (128)
Ss(T) - mm ccm(cm

Now since

4 (cc = mIH() = mm mm( ) (129)cc) IH( )I
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mc(CW) = H(c) mm(w ) = cm(-w)
(130)

the power spectrum of the transmitted signal becomes

ss (c)= 2 Lmm( - oo) + mm)] 4 { [(w - w) - H( o mm( 

(131)

+ [H- - o) - H(w + W0)] Pmm ( + Wo)}.

Therefore

ss (c ) = mm ( c - o)

s (W) = 0ss

Oss) Zmm Wo

for 1o>o
for - < < 

foro w< -w.

From Fig. 8 it can be seen that a single-sideband transmitted signal results if H(c) is

chosen as in (125). If the +j and -j terms of (125) are interchanged, the signal will

again be single-sideband, but with the lower sideband being transmitted.

Using the results of Sec. IV-B, it may be shown that

(mm
(

mm
H' () =

X>O

(133)

2 mm(w) + dd + 2(

b2lm(w) + edd(0 dd) + )
2mm(w) + dd(w) + 3' 12

- -jH 1 (a)
o>0

00 LP ddM - j4ddM
= 2 mm o) dd( ) - 12 () d.

2 (W) + L - dd )
0 mm dd 12

-W0

A W..)

q\m[o

.% 

+Wo

Fig. 8

(top) Original message spectrur
(bottom) Resultant single-sideba

signal spectrum.

Since single - sideband and double- sideband systems

are to be compared in the next section a few

changes must be made in the error expressions

to insure a fair comparison. From (128) it can

be seen that the transmitted average power is

24mm(0) while for the double-sideband case (121)

shows an average power of mm(0). Thus, in

order to have the same power in both cases we

must replace wmm(o) in (135) by Pmm(w)/2. This
.m

.nd corresponds to dividing fm(t) by 2 and since the
system is now minimizing the mean-square error

-23-
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between f(t) and fm(t)/ - we must multiply the resulting &irr expression by two to

regain the voltage level assumed by (124). When these changes are made we have for

upper-sideband transmission

E 2 co 9O) [0 dw) - jP.dd, ,]

eirr =2 mm() [ d() (136)
irr 'm d(W) -. ~dd d~SSB+ 0 mm( ) + dd( )

- j12()

and for lower-sideband transmission

irr 2 S i, 4( +) dd() + jlZ() d (137)

SSB- d lmm (b) + {[ dd() + i( c d)

The double-sideband error equation (124) may be written as

00 4 oW) iP 2 dd(w) 2 dw

DS = 2 J :mm(t) (dd(") - I(12w)I 1}( (138)

DSB 0 mm(w) dd(w) + dd( w) - 1 ')

E. Adjacent Channel Interference Studies

If the radio-frequency channel noise, fn(t), is "white" then

nn() = a (139)

and from (109) and (111) we have

}dd(w) = 2a 2 (140)

and

dd (141)
}1 2 (0) = 0. (141)

Under these conditions (136), (137), and (138) become identical. Thus, for white noise

in the radio channel single-sideband and double-sideband systems will give identical

performance. In many practical situations the main cause of trouble is not white noise

but rather adjacent channel interference. For example, if the interfering signal is a

nearby a-m signal fn(t) will be given by

fn(t) = f(n)(t) cos ( + A)t (142)

which will result in

1 nn nn 
~dd() = 4 L mm(C-) + mm ( co + )] (143)

and

TPdde 1 F.nn (CaP+A) n bmm( A. (144)
12( =4j Lmm

-24-
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Equations (143) and (144) are valid for both A > 0 and A < 0.

If the interference is caused by a single-sideband signal transmitting the upper

sideband, we shall have

(145)
fn(t) = f()(t) cos (o + )t + f(n)(t) sin ( + )t

where f() (t)
m

and (111) we

and f(n)(t) are related by H(c) of (125) and Fig. 6.

obtain for > 0

n( ) Ann
Pdd() =)mm _o-)

dd(c ) = 0

dd ( )nn (+mA)
~dd ( ' ) = mm

Using now (131), (109),

for o >A

for - <<A

for X < -A

(146)

and

dd 1 nn (w-A)forw>A
12 = j mm(lz~co): Y
dd

.12() = 0 for -A<w <A

dd 1 nn (+A) for w< -A.

If A< 0 we let 6 = -A and obtain in the same manner

forc >6dd( nn (e )
~dd(o) = ~mm ( ~

dd(' ) = mN mm(-) + mm(+6)

for -<w<6

for < -6dd() = mmn ( - )

.. -1 nn . .i

lZ(w) = Vmm(-w+6)for >612d = mm

~dd~ } [m("0-6- m"

for -6<w<6

dd J1 n =n-m(5w6) for w<-6.1l ( co = mm

Using the results of this section we may now consider certain special interference situ-

ations.

(1) Desired signal DSB, undesired signal DSB.

In this case (138), (129), and (146) must be used yielding
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o0O

i ir 2 _ _ _ + 1di + 1 * (150)
+ 1

DSB 0 nn (w+A) 1, nn (w-) 4P M
DSB mm( ) mm(A) mm(@)

Let us assume that ff(t) and fn)(t) have spectra which are related by

}n n (o)= K}m (c ) . (151)
mm mm

Thus

K Average Power of Undesired Signal
K Average Power of Desired Signal (152)

Let us further assume that

-(W) X I (153)mm = ~ 2 2'

When (153) and (151) are substituted into (150) one obtains

ir _ K 1 . (154)
Jirr +K (2+K) + 2

It is interesting to compare (154) with the error expression obtained if the sine detection

as shown in Fig. 6 had not been performed. The expression for single-phase detection

may be shown to be

-Z Zn~ I 2

ir L\ P/ I 1 (155)

p 1/

where

= + 4) BK+2) + 2

(156)

q= [(K+2) + (K-4) ] (156)

r = (K+2).

Equations (154) and (155) are plotted for

comparison in Fig. 9 for K = 1. Note thatFig. 9
for a given mean-square error single-phase

Adjac ent channel interference:
desired and undesired signals DSB. detection requires about twice the center
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2 3 4 5 6 7 8 9

Fig. 10

Adjacent channel interference:
undesired signal DSB; desired signal as indicated.

frequency separation of two-phase detection. For example, if irr = 0.2, A 1. 6 for

two-phase detection while a separation of A 4 is required if cosine detection only is

used.

(2) Desired signal SSB+, undesired signal DSB.

Substituting (143) and (144) into (136) while using (151) and (153) will yield

2K

S+r 'r+ tan Z 1(157)
irr 2 22 2

SSB+ (K+2) + 2a K+2) 2 + 2a2K

where a = A/P. In Fig. 10 (157) and (154) are plotted for comparison for K = 1.

(3) Desired signal SSB+, undesired signal SSB+.

In keeping with the conditions which led from (135) to (136) we must divide (146) and

(147) by two before substituting into (136). This gives for A>0

rr () nn (w A)dwJ mm mm
irr ( (X) + nn A)

SSB+ a m ()m +mm(A)

After applying (151) and (153) we get

2K

irr
SSB+ K(a + 2) + K + I K(a + 2) + K + 1 (159)

where a = A/3 and A>0.

For <0 use (148) and (149) obtaining

-27-
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Fig. 11

Adjacent channel interference:
signal SSB+; desired signal as indicated.

2K
Tr

yK(a + 2) + K + 1
[- tan-

a1
+2 2 + 1K(a. + 2) +K+l1_

where a = -A/p and A< 0. Equations (159) and (160) are plotted in Fig. 11 for K = 1.

(4) Desired signal SSB-, undesired signal SSB+.

When (146) and (147) are substituted into (137) one gets

C irr = 0 for >Oirr
SSB-

(161)

as expected. For A < 0 dividing (148) and (149) by two and using (137) one obtains

2K
= rr an

JK(a2 + 2) + K2 + 

Ka

K(a + 2) + K + 1

+ tan 1 aC

IK(a + 2)+ K2 +

where a= -A/p and A <0. Equation (162) is plotted in Fig. 11 for K = 1.

(5) Desired signal DSB, undesired signal SSB+.

For A >0 substitution of (146) and (147) into (138) yields

. = 0 for A >0.irr
DSB

For A < 0 dividing (148) and (149) by two and substituting into (138) yields

irr
DSB

2K 1 -1
-T .(K+tan a

n (K+) [K+) + a ]

K+ 1

K+ 1 + a2
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where a = -A/3 and A <0. Euations (163) and (164) are plotted for K = 1 in Fig. 11.

Note that (163) holds even though the upper sideband power is being used by the receiver.

F. Summary of Results

One difficulty with synchronous detection is the need for phase synchronization in the

receiver. That is, we must generate a pair of local signals which not only must be of

the correct frequency, but must also be of the correct phase with respect to the desired

signal. On the other hand the envelope type of detectors now in general use are not

phase or even frequency sensitive. However, these properties which make the envelope

detector easy to use are the same properties which make it an inferior performer. The

following list of advantages of synchronous over envelope detection serves to clarify this

last statement.

(1) Use of synchronous detection allows filtering to be performed after detection.

This makes possible use of broad banded inputs with subsequent elimination of tracking

problems. Also since the filtering may be done at audio frequencies more flexibility in

filter design is available to meet various different interference situations.

(2) In the case of adjacent channel interference the S/N power ratio after detection

is exactly twice the S/N ratio before detection as may be observed from (102) and (103).

This is a result of the frequency discrimination characteristic which is totally lacking

when envelope detection is used.

(3) The phase-sensitive property of synchronous detectors makes possible the

"phase-duplexing" of two messages in a given channel as discussed in Sec. IV-A. This

is clearly impossible when using envelope detection.

(4) Synchronous detection makes possible the use of two-channel interference fil-

tering techniques for improved message recovery as demonstrated by Fig. 9. Even in

the case of white noise disturbance where noise crosscorrelation vanishes, it can be

shown that synchronous detection is superior t envelope detection for low S/N ratios.

For high S/N ratios the two detectors will give about the same results.

(5) The presence of a carrier wave is not needed when synchronous detection is used

whereas a full carrier must be transmitted for envelope detection. As a practical

matter a low level carrier might be transmitted for purposes of synchronization and for

information concerning the transmission medium, but the greater part of the power of

the full carrier could be used in the sidebands for more effective transmission.

With the above advantages in mind it is interesting to compare single-sideband and

double-sideband systems when both are being properly received. From Figs. 10 and 11

it can be seen that in almost every case DSB operation is superior to SSB operation.

This may seem strange since the DSB signal occupies twice the bandwidth of the SSB

signal. However, consider the equivalent transmission circuit of Fig. 7. In Sec. IV-C

it was shown that DSB transmission results in the sending of all the signal energy down

channel one and using channel two only for noise pickup. Section IV-D shows that in the

SSB case half the signal energy is sent down each line. Since networks H 1 (w) and

H12( ) in the SSB case both receive signal power, a design compromise must be made

-29
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for best signal reinforcement consistent with best noise cancellation. In the DSB case

only H 1 () receives signal power and in general a better job of filtering may be done.

Another point to consider here is the fact that when nonlinear operations are per-

formed spectrum functions tell only part of the story. For example in the phase

duplexing situation of Sec. IV-A we may have two signals with identical spectra and yet

separate them perfectly by the two-phase detection method described previously.

V. Examples of the Use of the Approximation Method and Experimental Results

A. Synthesis of Transfer Functions

At the end of Sec. III the problem of designing networks having transfer functions of

the form (90) was discussed. It was proposed that impedances Z 1 and Z 2 of (92) be

built and used in the manner of Fig. 4 in order to obtain the desired transfer function.

The circuit diagram of an electronic filter based on Fig. 4 is shown in Fig. 12 and

described below.

The filter input voltage is phase inverted by V-l, the outputs of which drive pentodes

V-2 and V-3 in push-pull. Thus the plate currents of V-2 and V-3 are equal and pro-

portional to the filter input voltage but opposite in sign. The networks Z1 and Z 2 are

plugged into the octal sockets directly above V-2 and V-3. Thus if the plate voltages of

V-2 and V-3 are added, the desired transfer function will clearly result. The pentode

V-4 acts as a constant current source and compensates for unequal tube drives and

transconductances. This eliminates the need for any phase inverter adjustments or tube

selection of V-2 and V-3.

The adder circuit cathode followers V-5 and V-6 have large cathode loads, thus

making the gain very nearly unity and essentially independent of tube parameters. The

two 100K resistors in the output circuit were matched to within one percent. Thus, the

sum of plate voltages V-2 and V-3 appears across the grid resistor of the cathode

follower output tube V-7.

B. Single Time Series

In order to demonstrate the approximation method for the single time series case

we choose a message correlation function mm(T) where

mm
Xmm{T)' = wT~e 1 1 (165)

and a noise correlation function nn(T) where

~nn(T) = 2a2UO(T). (166)

Zero crosscorrelation is assumed between the message and noise. The resulting power

density spectra are

mm 2 (167)
+ +
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and

· (w) = a (168)
nf

From Sec. III using (86) for the case n=l we have

N

c 11Bs As (1 s N) (169)
u=l

and from (87)

N

min= m () - Cs As (170)
s=l

where
00o oo00

Bsu = I dddV1 ll(C-v)EP spUPV (171)

0 0

and
00

As= dcl4l l((v+a)E -s p( (172)

0

When (165) and (166) are substituted into (171) and (172) there results for the lagging

filter case

Bsu p-+( ( - pu) [ I ps + I + p u)p(s+u) p (173)

and

P-a [ 2P -asp

As wu(s p - D (sp + f)(sp - )

Now if we let

(175)
p= 1 a = 0 . 5

and solve (169) the results obtained will be as shown in Table I. When the coefficients

from this table are used in (76) the resulting network impulse responses are obtained.

Plots of these responses for the different N are shown in Fig. 13 along with the ideal

response (ref. 6).

Note from Table I that for N=3 the mean-square error of filtering is very nearly

equal to Cmin for the ideal response. The response curves for N=3, 4, 5 are very

nearly the same as are the 6 min's for these values of N. For N=6 some difference

may be noted in the response curve but very little improvement results in the value of

emin over that for N=3.
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Table I

For an experimental check using the N=3 results we first change (175) to

a = 0.25 X10

p= 104

= 104

a = 0.5 X 10
4}

(176)

11
From (173) and (174) it can be seen that this change will result in an increase of the c

t (SECONDS)

Fig. 13

Network impulse response: single time series.
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N 1 2 3 4 5 6

11
cl l 0.80871 0.76982 -0.47011 -0.45640 -0.45787 -0.3941

0C1 0.06562 5.7515 5.63304 5.66315 4.014:

11
c3 -5.11066 -4.85417 -4.9950 1.643'

11
c 4 -0. 15746 0.06815 -5.2668

11
c 5 1 -0.11527 -6.0673

11
c6 6.4192

'min 0. 509| 0. 509 0. 472Tr 0.472rr 0.472r 0. 4 701T

For ideal network, min = 0.465wrmin

-- -�- -



of Table I by a factor of 10 . Since a constant factor multiplication of this sort merely

changes the impedance level of Z 1 and Z 2 it is of no consequence.

From Fig. 4 and (91) it can be seen that the R's and C's of zl and z 2 will be related

to the c 1 1 by

11c
R = u (177)u pu

and

Cu = * (178)cU

Of course the impedance level of the resulting networks may be changed so that practi-

cal R and C values will result.

Using the above results the following networks were obtained for N=3 of Table I

using the values of (176).

The experimental test setup used is shown in Fig. 15 and photographs of the time

functions involved are shown in Fig. 16. A random square wave having an average

crossing rate of 5000 per second was used as the message (ref. 6) and a white noise

generator produced the noise voltage. All the equipment of Fig. 15 except the electronic

filter was designed and built by C. A. Stutt and a detailed description of these compo-

nents may be found elsewhere (refs. 19, 20). The measured mean-square error was

0. 51r and the calculated value from Table I is given as 0. 472rr. The difference between

the calculated and measured Emin values is well within the range of experimental error.

C. Double Time Series

In this section we shall consider the design of networks Hll( ) and Hl 2 () of Fig. 6

by the methods of Sec. III. In particular the case of adjacent channel interference

between two double-sideband signals will be considered. The receiver input fi(t) will

be given by

f.i(t) = f(t)cos ot - f(rn)(t)sin(w + )t. (179)

28.8K

After synchronous detection and low-pass filtering

as shown in Fig. 6 we have for the input to H1 1 ( )

. . . -(n) .*..
4.70K 17.IK m (t) .+ t''(t)cos At---% -m m

o 0.021310 0.0019611f °10 and for the input to H 1 2 (w) we have

Z2

f(n)(t)sin t.m
Fig. 14

Networks Z and Z2 Let fm(t) and fn)(t) have the same autocorrelation

single time series; N = 3. function 0mm(T) where
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Fig. 15

Experimental test set-up:

A- MESSAGE GENERATOR OUTPUT
B-NOISE GENERATOR OUTPUT

A- MESSAGE ONLY INTO ELECTRONIC FILTER
B- ELECTRONIC FILTER OUTPUT

A-UPPER TRACE
B- LOWER TRACE

Fig. 16

Experimental test set-up oscillographs:

single time series.

A- ELECTRONIC FILTER INPUT
B- ELECTRONIC FILTER OUTPUT

A- DELAY LINE OUTPUT
B- ELECTRONIC FILTER OUTPUT

TRACE DESCRIPTIONS REFER
TO FIGURE 15

single time series.
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Qmm (T) = ITI (180)

Thus using the notation of Sec. II one obtains

+ ) P 11I (+COS AT) (181)

+(T) = -P ITI sinAT (182)

() = | P TI cos AT (183)

,1(T) = - (184)

and

21 (T) = 0. (185)

For a delay filter solution we let

-4 3
a = 10 4 p = 5 x 10

(186)

= 104 = 2 X 104

and when (181) through (185) are substituted into (88) a set of 2N simultaneous equations
11 12

result involving the cu and cu unknowns. Table II gives the coefficient solutions and

emin values for various N. A multiplier of 104 has been omitted in the table for

reasons discussed in the previous section. The network impulse response functions

hll(t) and hl2(t) are plotted in Figs. 17 through 22 for different N values.

For experimental purposes an N value of 4 was chosen. Using the coefficient values

from Table II, networks Z 1 and Z were obtained for Hl(11) and H1 2 () as shown in

Fig. 23. The message voltage fm(t) was produced by passing white noise through an

RC filter having a half-power frequency of 1590 cps. For the noise voltage fn)(t) a

random square wave having an average of 5000 zero crossings per second was used. A

block diagram of the experimental arrangement is shown in Fig. 24 with detailed circuit

diagrams for the interference filtering test circuit and the amplifier-adder circuit being

given by Figs. 25 and 26 respectively. The multiplier circuits V 4, V 5 and V 1 3, V 14

are described in detail elsewhere (ref. 21). As in the single time series work the

message and noise generators, delay line, and mean-square error measurement circuit

were designed and built by C. A. Stutt and detailed descriptions of these units may be

found in his writings (refs. 19, 20).

The measured value of min was found to be 0. 39 while the calculated value from

Table II is given as 0. 32. Here again the discrepancy is well within experimental error.

Photographs of some of the time functions involved are shown in Fig. 27.
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05

0.4
h,,(x)

0.3

hl2(X)

0.2

0.1

h,, (x)

x5xlO 

I I I hl2(x)= 0 I
0 0.2

I I I I
0.4 06 0.8 1.0 1.2 1.4 1.6

Fig. 17

Network impulse response:
double time series; N = 1.

0.8-

xSxIO3t

Fig. 18

Network impulse response:
double time series; N = 2.
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x=5x10 t

Fig. 19

Network impulse response:
double time series; N = 3.

xv5xIO t

Fig. 20

Network impulse response:
double time series; N = 4.
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1.25 -

1.0 -

0.75-

0.50 -

0.25-

0

-0.25

-0.5

-0.75

-10

-1.25

-1.5

-1.75

-2.0

x 5xI(vt

4 0.6 0.8 L 1.2 1.4 0.6 0.8 LO .`2 IA I.6

I
Fig. 21

Network impulse response:
double time series; N = 5.

x=5xIO3t

1.4

1.2

1.0

0.8

0.6

0.4-

0.2.

0.6 0.8 1.0 .---- -6 1.8
0

-0.2

-0.4

-0.6

-11 .

-1.0 -

Fig. 22

Network impulse response:
double time series; N = 6.
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0.764 K 19.3K

0.2618 Ff 0.00346 uf

z

HII()

7.51K 11.6K

0.0133pf 0.00430 /f

z2

1336K 5.96K 2.82K 16.6K

o- c. ° H12() °aH j)

0.0074 8 f 0.00839/f 0.0708/f 0.00402,af
ZI Z2

Fig. 23

Networks Z1 and

double time series;
Z2:
N = 4.

I INTERFERENCE FILTERING TEST 
L___ CIRCUIT, FIG.25 _I

L_____1______--____~~~~~~~~~

Fig. 24

Experimental test set-up:
double time series.
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A- MESSAGE INPUT, fm(t)
B- DELAY LINE OUTPUT

A- SINAt INPUT
B- H2 (wJ) INPUT

A- H(w) INPUT A- DELAY LINE OUTPUT
B- MESSAGE INPUT, f(t) B- AMPLIFIER-ADDER OUTPUT

A- UPPER TRACE TRACE DESCRIPTIONS REFER
TO FIGURE 24B- LOWER TRACE

Fig. 27

Experimental test set-up oscillographs.

VI. Conclusion

The statistical approach to filter design as originally conceived by Wiener and later

developed by Lee is just beginning to come into general use. It seems appropriate to

conclude this report by a brief discussion of the advantages to be gained by substituting

statistical design methods for the conventional ones.

For the single time series filter one must not expect greatly improved performance

to result from the new method. For example, it has been shown (ref. 20) that for

certain message and noise situations a conventional Butterworth filter will give a mean-

square error of output which is very nearly that obtainable by the optimum statistical

filter. On the other hand the statistical methods of filter design are of an exact nature.

Once the correlation functions of the message and noise are known the optimum filter

characteristics may be determined. In this respect it is interesting to observe that

the filter design work of Sec. V could have been done by someone quite unfamiliar with

-43-

� I�--CI�·I�--C--- C-



filter design techniques. One could even build a machine which would compute filter

parameters from given correlation data. It might be said that the design of filters is

an art when using conventional methods and becomes an exact science when the statisti-

cal approach is employed.

When dealing with multiple time series the systematic approach of the statistical

method becomes even more important. Design techniques for the treatment of several

channel voltages by conventional methods are unavailable unless the cross-channel rela-

tionships are of a rather simple nature. For this reason it is believed that there may

exist many practical problems involving multiple time series which may be treated

much more satisfactorily by the methods of this report.

Table II
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N 1 2 3 4 5 6

11
c1 +0.56037 +0.31125 -1.22168 +0.38158 +0.29408 -0.92599

1

c211 +0.44206 +7.57798 -7.51342 -5.03243 +29.0283

11
c3 1 -6.53750 +28.9270 +14.6605 -237.498

c 41 -23.2832 +3.42800 +730.390

11C5 -15.4189 -899.337

c 611 +379.707

c12 0 +0.74514 +0.33221 -1.41210 +2.86000 +1.65913

12

c 2 -1.03175 +1.21125 +13.3636 -41.9777 -35.3767

2

c 3 2 -2.51992 -24.8938 +185.355 +208.060

12
c4 2 +11.9144 -290.923 -447.391

12
c5 2 +146.067 +391.280

51212 -117.929

1m 0.506 0.482 0.371 0.318 0.313 0.279imi n III
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