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A SIMPLE MODEL OF FIRM BEHAVIOR UNDER

REGULATION AND UNCERTAINTY
*

Stewart C. Myers

Introduction

It is not new to say that risk is important in regulation.

The legal principle guiding rate of return regulation provides that

"the return to the equity owner should be commensurate with returns

on investments in other enterprises having corresponding risks."

This idea, that risk determines allowable return, is incorporated in

2
court and regulatory decisions dating back to the turn of the century.

I doubt there is one regulatory case in which the firm's representatives

have not argued that the firm is facing high risks and therefore should

be allowed a high return, or in which the firm's opponents have not ar-

gued the opposite.

With so much talk, one would expect the economic theory of

regulation to include a discussion of how a utility's risk is related

to demand and cost conditions and to regulatory procedures. But as far

as I know this paper is the first attack on this problem.

The paper's line of attack is (1) to calculate the equilibrium

investment and output decisions of a monopolistic firm acting under uncer-

tainty, (2) to compare this equilibrium result with the one that would

be achieved under competitive conditions and (3) to show how regulatory

constraints can affect the behavior of such a firm. The analysis is
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conducted for an extremely simple case with the help of a geometric

presentation and a numerical example. I believe this case captures the

essential elements of the problem. However, I am not at this time at-

tempting to present a general model or to state theorems about optimal

regulatory strategies.

Framework for the Analysis

The analysis will employ the "time-state-preference" framework

3
for analysis of behavior under uncertainty. That is, uncertainty about

conditions in a future period is described by specifying a set of possible

"states of nature," only one of which can actually occur. The realized

values of random variables are contingent on which state of nature occurs.

I will analyze a one-period world, in which there are only two

possible future states of nature (s = 1, 2). Decisions are made now, at t=0,

without knowing which state will occur at t = 1. (The generalization to

many states is trivial; the generalization to many time periods is not.)

Thus, we can describe uncertainty about anv relevant variable

(cost, demand, profit, production capacity, etc.) by listing the two pos-

sible contingent values for the variable. Suppose, for example, that an

investment will return $1,000 if s = 1 and $1,500 if s = 2. A complete

specification of the investment's risk-return characteristics is simply

the vector [1000,1500].

Under ideal conditions, markets will arise for payments contin-

gent on the occurrence of particular states of nature. For example, we

might find a contracts promising payment of $1 if, and only if, state s

occurs selling now for V(l) dollars. V(l) is thus the present value of





a dollar delivered contingent on state 1. In the two-period case,

we might observe that V(l) = $.50 and V(2) = $.40. Thus, if an investor

wants to purchase one dollar delivered in each state, it will cost him

$.50 + .40 = $.90.

If there are no restrictions on trading in these contingent con-

tracts then the possibility of arbitrage insures that the present market

value of any asset is given by

PV = V(l)
cash payoff + \;(o\ cash payoff
if s = 1

J

if s = 2

With V(l) = $.50 and V(2) = $.40 the value of the investment offering

[1000, 1500] is

PV = .5(1000) + .4(1500) = 1100.

If an investment of $1000 is required, the net present value of the asset

is

NPV = .5(1000) + .4(1500) - 1000 = +100.

The prices V(s) also specify the risk-free rate of interest, R^.

Imagine a contract offering a certain return of $1 — that is, $1 contin-

gent on s = 1 and $1 contingent on s = 2 . The present market value of

the contract will be V(l) + V(2) = . 50 + . 4O = $.90. The implied risk-

free rate is

% - -ii'





The Basic Model

Consider a firm which has to invest now (t = 0) in order to

build capacity for production in the future (t = 1) . Cost and demand

conditions for t = 1 are not known. They depend on which of the two

possible states of nature occurs.

We will employ the following notation, where s indexes the

possible states:

V(s) = present value of $1 delivered if and only if

state s occurs,

Q(s) = the firm's output in s,

Q = maximum output, determined by investment at
" t = 0,

C(s) = cost per unit of output in s,

P(s) = price per unit of output in s, and

F(Q ) = investment required to build the capacity Q .

The firm's objective is to maximize the net present value of

its investment, subject to the constraint that, regardless of the state

of nature occuring, it cannot produce more than its capacity. Formally,

Its problem is to:

Max .

Q(s).
Qm ^ V(s)[P(s) - C(s)]Q(s) - F(Qj^) (1)

8=1,2

S.T. 0(s) = Q(s) -
Qj^ < 0.

Assuming Q(l) , Q(2) , and Q all are positive, the conditions

for the maximum are:





Q(l): V(l) P(l) + Q(l) 1^ - C(l) - Q(l) 1^ - X(l) = (2)

Q(2): V(2) P(2) + Q(2) ^^ - C(2) - Q(2)
^^^^^

6Q(2) ' ' ^' ' 6Q(2)
- X(2) =

/

Also: 0(s)X(s) =0, s = 1, 2.

The conditions are easy to interpret. The shadow prices A(l)

and A (2) represent the present value of the difference between marginal

revenue and marginal cost. Marginal revenue and marginal cost are not

equal unless output is less than capacity, in which case 0(s) < and

A(s) = 0. But the condition for Q assures that capacity will limit out-

put in at least one state, since 6F/6Q^ > 0. Thus the sum of the shadow

prices X(s) also represents the present value of extra capacity,

and the condition on Q simply states that capacity should be expanded

until the marginal cost of an extra unit equals the present value of an

extra unit available for use in the various states.

The solution for competitive markets is different in two respects.

6P(s)
First, from the viewpoint of the competitive firm, Q(s) . .. = for all s.

That is, P(s) appears instead of marginal revenue in the conditions on Q(s).

Second, there will entry into, or exit from, the industry until V = 0.

There is no reason to expect A(l) to equal A(2) in either the

competitive or monopolistic case. This is important, because the A's

reflect the profitability that the utility will enjoy after the true

state of nature is revealed — in other words, they reflect "ex post"

profitability. Even in competitive equilibrium, firms may





enjoy "monopolistic profits" or incur substantial losses after the fact.

Clearly, the attempt by regulators to impose a "reasonable" or "fair" rate

of return after the fact may rule out any chance of approximating the

competitive solution.

Regulation as a Substitute for Competition

It is a bit artificial to think of a "competitive solution" in a

regulated industry, in which competition is almost by definition imperfect.

Nevertheless, regulation has been conceived of as a substitute for competi-

tion — that is, as an attempt to enjoy the welfare-maximizing properties

of competitive equilibrium despite the existence of a naturally monopolistic

or oligopolistic industry.

Thus in the present context ideal regulation would meet two con-

ditions :

Condition 1 . — Regulation would force the utility to act as if

6P(s)
marginal revenue in s equalled P(s) rather than P(s) + Q(s) c. , \ .

Condition 2 . — If satisfaction of condition 1 leads the firm to

a solution where ip is not zero, then the regulators would impose a lump-

sum tax or subsidy equal to -<i).

The hard part is clearly to achieve condition 1. The second

condition will not be discussed further in this paper. Regulation will be

said to lead to the "competitive solution" if the first condition is

satisfied.





Rate of Return Regulation

There are a variety of regulatory strategies that might lead to

a competitive solution. The impact of these strategies can be analyzed by

adding constraints and observing the changes in Q(l), Q(2) and Q .

In real life the constraint is on book rate of return — i.e., on

the ratio of accounting income to the book value of past investment. Pre-

sumably a utility's investment decision and operating plans take account of

the fact that regulators will force it to lower the price of its product

if its ex post rate of return would otherwise exceed some maximum R .

Of course the firm does not know what the future value of R will

be, although an established utility probably can make a good guess. Nor

does it know how promptly and effectively the constraint will be enforced.

However, I will ignore these complications here. R will be assumed known

ex ante, and it will be assumed that the constraint is strictly enforced.

Thus, the constraints change to

0^(s) = Q(s) -
Q^ ^ 0,

* (la)
0g(s) = 0(s)[P(s) - C(s)] - (1 + R ) F(Qj^) < 0.

To simplify notation, let MP(s), "marginal profit" in s, be

given by

H,M = P<s) + Q(s) ffifi - C<s) - ,(s)
nil} .

Then the addition of the constraints 0„(s) changes the conditions for the
o

maximum to:

Q(s): V(s)MP(s) - A.(s) - A„(s)[P(s) - C(s)] =

(2n)

'^^Vi)-\(^)-,^^^M^ -;SQ:^^A^1) -^^(2) -.-^ (1 +R^)a,^(l) +A^(2)) =

also: 0^(-s)A^(.s) = 0; <fi^(s)\^^(^) = 0.

A variety of other regulatory strategics can also he an.ilvzed

by changing the constraints 0„(s), but Kqs. (la) seem to be the best

simple representation of actual practice.





A Numerical Example

The implications of Eqs. (2a) turn out to be surprisingly complex

and difficult to interpret. Therefore it will help to start with a numer-

ical example. We assume that the firm is a monopoly, and faces the follow-

ing contingent demand functions:

Q(l) = 2200 - 400 P(l)

Q(2) = 3000 - 400 P(2)

Thus: P(l) = 5.5 - .0025 Q(l)

P(2) = 7.5 - .0025 Q(2)

Costs are also contingent on the state occurring: C(l) = 1,5 and C(2) = 1.0.

The present investment required per unit of capacity is 1.0; i.e., F(Qw)

= (1.0) Q . Present values are obtained via the assumed prices V(l) = .5

and V(2) = .4. This implies a risk-free rate of interest of about 11

percent.

Using the conditions stated in Eqs. (2a) the optimal solution

for 0(1), 0(2) and Q.. can be calculated. The values are shown in the
M

first column of Table 1, along with several other characteristics of

the solution. These may be compared with column two of the table, which

shows the solution if the monopoly could be forced to behave like a per-

fect competitor.

The results for the competitive case were calculated from Eqs. (2),

but with price substituted for marginal revenue in each state.





The differences between the monopoly and competitive solutions

are clear from the first two columns of Table 1. Only a few comments

are called for.

When the firm is free to act as a monopoly it restricts

capacity and output, charges high prices, and earns a whopping profit.

The profit is reflected in a high positive net present value. In the

competitive case there is no such ex ante windfall gain, although profits

are high ex post if state 1 occurs.

In this two-state model, a firm's risk may be simply described

by the ratio of its payoffs in states 1 and 2 — or, alternatively, by

the ratio (1 + R(2))/(l + R(l)), where R(s) is the ex post rate of return

in s. (In a state-preference framework, the riskier assets are those

which pay off relatively more in states with low V's and less in states

with high V's.) Thus we see from Table 1 that the monopoly solution for

this example results in a safer firm than the competitive solution.

Incidentally, although the monopoly is safer in this instance,

this is not a general result.

Now let us see how the firm reacts to a regulatory constraint
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Table 1

Results for Numerical Example

Q(l)

Q(2)

%
Req'd Investment

Net Present Value 1480

R(l),Expost Rate of

Return in s = 1 1.47

R(2),Ex Post Rate of

Monopoly
Solution
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of R = .20. There are a number of responses the firm might make. One

would be to expand investment and output in s = 2 until P(2) = .20,

and to maximize profits if state 1 occurs, subject of course to the con-

straints 5). (1) and (1). The results for this case are shown in the third
A B

column, headed "Response A," in Table 1.

Given this response, the effect of the constraint is to drive

the net present value of the utility from 1480 to approximately zero, i.e.

to eliminate the ex ante monopoly profit. This presumably is a good

thing. However, other characteristics of the constrained solution are not

so desirable. The firm is led to invest more than it would in the competi-

tive case; it does this to drive down the ex post rate of return in s = 2.

This additional capacity is used only in state 2, however. The firm has

invested enough so that the constraint on maximum profit is not binding

in s = 1» and so the firm seeks maximum profit in that state, restrict-

ing output and driving up prices. Even at an output of 900, where

MP (1) = 0, it can only earn 5 percent on the investment of 1920.

In short, the regulatory constraint would eliminate ex post

"monopoly profits" in one state at the expense of allowing the firm free-

dom from regulation if the other state occurs.

It is also interesting that in this example the firm becomes

safer from the investor's point of view when it operates under the con-

straint.
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It must be emphasized that this is one of several ways in

which the firm might react to imposition of a rate of return constraint.

But I will defer consideration of the other responses to a bit later in

the paper.

A Geometric Treatment of the Model

The consequences of the model just described can clarified

by a geometric presentation. I will first present the solution for an

unconstrained monopoly and then show how the firm can respond when a con-

straint is imposed on ex post rate of return.

For convenience, it will be assumed that ^F/iSO^. = f, a constant.

That is, the marginal investment required to add a unit of capa-

city is constant. Also, let TP(s) = 0(s)[P(s) - C(s)], the total cash

return realized in state s. Note that MP(s) = '5tp(s)/'5q(s) .

Figure 1 shows the conditions for equilibrium for the uncon-

strained monopoly case. They are simply that f equals the sum

V(1)MP(1) + V(2)MP(2). This is the condition for 0,, in Eqs . (2a).
'M

Since f is a positive constant, MP(s) must be positive in at least one

state. The monopoly will not build enough capacity to allow it to maxi-

mize TP(s) in all states.

This result is shown in Figure 2, which plots TP(s) for each

state as a function of potential or actual output. In the case shovm,

both MP(1) and MP(2) are positive at the optimal Q , so the monopoly





13

Output: Q(1),Q(2)
Capacity: Qj^

V(2)MP(2)

V(1)MP(1)

Note: >,(s) = niax(q(s)MP(s),0)

.

FIG. 1

Conditions for Equilibrium — Unconstrained Monopoly
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will produce at capacity in each state. (This would be a frequent result

in highly capital intensive industries.)

The solid ray extending from the origin in Figure 2 represents

F, the amount of investment as a function of Q . Any constraint on ex

post rate of return limits TP(1) and/or TP(2) to an amount proportional

to F. Given R , we can thus represent the level of the constraint as a

function of Q by a ray lying above F. The higher R^, the higher the slope

of the ray. Given Q the rays Z, Y, X, W and V define a series of con-

k
straints resulting from successively higher values of R .

Once 0., is established the constraint on total profits is
M

independent of output in either state. Thus, if capacity is that called

for by the monopoly solution and if R is set at level V, then the con-

straint on TP(1) and TP(2) may be represented by the dashed horizontal line

shown in Figure 2.

Now we can see how the utility's output and investment decisions

"k

change if R is set at a high value (level V) but then gradually lowered.

We continue to assume that the utility's response to a binding constraint

is to lower price and increase output in the binding state.

Level W . — At this level the monopoly solution violates the

constraint in state ^. The utility is thus forced to increase investment

Q . Since MP(1) and MP(2) are both positive at the monopoly solution and

at the new levels of output and capacity, both output and "total profits"

TP(s) increase in each state. The net present value of the firm declines,

however

.

*
Level X. — As R is decreased to level X, the utility is
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A

Constraint on TP(s)
given monopoly
solution and
Rjj at level V,

Constraint on TP(s)
given Rj^ at
'level Z

^
Solution for Qm for
unconstrained monopoly;
in this case
Q(i) = q(2) . Qm.

K r=

TP(2)

TP(1)

Potential or Actual
Output

Q(1),Q(2),Qm

FIG. 2

Effects of ex post Elate of Return Constraint

on a Utility's Output and Investment Decisions
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forced to increase Q^, and Q(2) still further to satisfy the constraint
M

in state 1. Q(l) will be increased also, but only up to the point at which

TP(1) is maximized. There will be excess capacity in s = 1 because the con-

straint on ex post rate of return is not binding in s = 1, and because in-

creasing output to Q(l) = Q would reduce TP(1). In other words, the

utility can act like an unconstrained monopolist in that state.

Level Y . — Reducing R to level Y does not change Q(l), but

forces the utility to increase Q(2) and Q . The effect is to decrease TP(2)

Level Z . — Finally, at level Z, the constraint is

binding in both periods. As R is moved from level Y to Z, both 0(1) and

Q(2) are increased, although the utility will still have excess capa-

.

city in state 1. Since TP(1) = TP(2) the effect of the constraint at

level Z is to make the utility an absolutely safe firm — assuming, of

course, that it is still willing to stay in business at this point.

Note that the results obtained for response A in Table 1 are

are of type X or Y.

Effects of the Ex-Post Constraint on the Utility's Risk

One useful feature of the model as presented in Figure 2 is that

it shows how regulation affects the risk of the utility as seen by its

shareholders. In particular, we have just shown that if an ex post con-

straint on rate of return is set low enough, then it will either force the

firm out of business, or make it safer than it would be if it were- un-

regulated. It is as if the regulators were saying to the utility, "We'll
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make you a safe investment if it kills you."

There is more to the matter than that, however. A close look

at Figure 2 shows the marginal effect of a small decrease in R , starting

from each of the levels V, W, X, Y and Z. In this context, it is easiest

to interpret "risk" as the ratio of TP (2) to TP (l). At V there is of

course no change in risk. At W, the effect is ambiguous, since both TP(1)

and TP(2) are affected. At X risk increases, since TP(2) ircreases

*
as R declines, but TP(1) is unchanged. Finally, risk decreases at levels

Y and Z, since TP(2J decreases and TP(l) is either constant or equal to

TP(2). In short, the conclusion is that risk may actually increase if R

is decreased from relatively generous levels. Ultimately, however, a

decrease in R makes the utility safer, if it is in business at all.

Other Responses to the Regulatory Constraint

All this has assumed that the firm responds to the rate of

return constraint by investing more and producing more in the high-

profit state. However, there are other responses that may be better from

the firm's point of view.

Figure 3 is Figure 2 redrawn, except that the effects of the

rate of return constraint are shown only for level Y. The type of response

discussed so far will lead to the investment and output decisions la-

belled "A."
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Constrain
on TP(S) I A
given
response
type

Capacity for
the different
Responses

Fig. 3

Alternative Responses to Rate of

Return Constraint
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Actually, the firm may be better off taking "Response B."

Here the firm invests and produces only enough to satisfy the rate of

return constrairtt in state 1, the "low-profitability" state. Given this

lower level of investment the firm could earn substantially more than

the minimum return R if it produced at capacity in s = 2 and did not

ration its product. To satisfy the constraint in s = 2 without ration-

ing it increases price, reducing demand further and further below capacity,

until finally the constraint is satisfied.

Now turn to the fourth column of Table 1 which shows the results

for the numerical example, given response B. Compared to response A,

we find that although investment is lower, the firms net present value is

increased. The increase occurs because the firm now earns the maximum

20 percent return in each state rather than in state 2 only; the present

value of the decrease in TP(2) is more than offset by the increase in

TP(1) and the reduced investment

Of course, strategy B will not always be prefereble to A. The

choice between them would depend on R , demand and cost conditions,

etc.

If the firm is allowed to ration its output in some states,

still another response is available. The firm could, for example, pro-

duce at B in s = 2 , and it could produce the same quantity in

s = 1 while still keeping price low enough to satisfy the rate of
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return constraint. The excess demand in s = 1 would be cured by

rationing. The firm's net present value would be the same as under

response B.

Still better, the firm could increase capacity — say to C —

allowing it to produce and earn more in each state. It will increase

investment from level B until the incremental return on investment drops

to the risk-free rate.

Although the opportunity to ration will never decrease a firm's

net present value, it does not follow that rationing will always be a de-

sirable strategy for the constrained firm.

Implications . — It may be argued that cases B and C are not of

practical interest. Responses like B would lead utilities to raise price

and produce less relative to capacity in response to an unexpected

upward shift in demand — which is exactly opposite to how the actual

process of regulation works. Similarly, it is not at all clear that ra-

tioning is a tolerable response to regulation. Naturally, it occurs

from time to time when a mistake is made and capacity falls short of demand.

But rationing in these instances is accepted as an inescapable short-run

evil — remember the public outcry when telephone service was rationed

in New York City and elsewhere?
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Thus responses of type A seem to be of the most practical in-

terest. Nevertheless, the fact that there are a variety of strategies

open to the firm even in this simple case, and the fact that the firm

could thereby be enticed into rather odd behavior, leave one a bit worried

about the possible effects of regulation in the face of uncertainty and

the complications of real life.

Further Theorems and Conclusions

The main conclusion of this paper is probably clear by now, but

it should nevertheless be stated precisely and proved.

Consider a monopolistic firm in the one-period world 1 have

assumed. The object of regulation is to find a value for R such that

the firm will act as if it were in perfectly conpetitive markets. This

'bompetitive solution" will be denoted by 6 , 0(s).

Assume there is uncertainty about demand and/or cost conditions,

and that the firm's profits are uncertain at the competitive solution Q , C(s).

Is there always some value of R that would lead to Q(s) , Q ?

Unfortunately, the answer is no.

Suppose the firm has somehow arrived at a provisional investment

and output plan which calls for Q(s), Q . It clearly will not scick with

this plan once it considers the alternatives. However, is there some rate

of return constraint which will prevent the firm from deserting the com-

petitive solution? '

*
If such a constraint exists then R must be exactly equal to R(z)
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where R(z) is the highest rate of return that might be achieved in the

competitive case. This means that the rate of return constraint will not

7be binding in the other states.

Consider a state s from among these others. Clearly Q(s) must

be less than or equal to Q . Suppose it is less; then at 0(s) , price

equals MC(s), MR(s) < MC(s), and there will be an incentive for the firm

to raise price and reduce Q(s). Since the constraint on rate of return

is not binding, the constraint cannot maintain the competitive solution.

However, it is possible that Q(s) = Q^, for all s, and that the
M

firm would have no incentive to change price or output in any state.

This would reauire MR(s) > MC(s) in all states when output is at the capa-

city Q^.

There is, of course, an incentive to reduce Q . However, the

firm cannot do so if Q(z) = Q , since setting Q < Q would require Q(z) <

Q(z), and this would lead to a violation of the rate of return constraint.

Note that the condition Q(z) = Q requires that P(z) >_ MC(z) at the output

Q(z)

To sum up, imposing the competitive solution Q(s), Q on a
M

*
monopolistic firm requires setting R = R(z) and the existence of two

conditions. The first is that Q(z) = Q ; i.e., that price is greater

than or equal to MC(z) at the output Q(z). The second is that MR(s) > MC(s)

at the outputs Q(s) for all s + z. This implies that Q(s) =
Q^^,

although

the converse does not hold. Neither condition is generally true, although

admittedly each is more likely to be true, the more highly capital-intensive

the industry.





FOOTNOTES

Associate Professor of Finance, Sloan School of Management,

Massachusetts Institute of Technology.

The ideas in this paper have been presented at two conferences. The

first was sponsored by the Inter-University Committee on Public

Utility Economics and held at Michigan State University in February

1971. The second was the AT&T Conference on Financial Aspects of

Utility Regulation, held at Stanford University in July 1971. My

audiences at these conferences supplied many helpful comments.

Mr. Stavros Thomadakis deserves special thanks for his detailed

comments and advice on the paper.

1. Federal Power Commission et. al. vs. Hope Natural Gas Company (1949)'

320 U.S. at 603.

2. Wilcox vs. Consolidated Gas Company. 212 U.S. 19, Bluefield Water

Works and Improvement Company vs. Public Service Commission, 262

U.S. 679.

3. For a detailed exposition see J. Hirshleifer, Investment, Interest and

Capital (Englewood Cliffs, New Jersey, 1970).

4. A model similar to this one was arrived at independently by S. C.

Littlechild in "A State-Preference Approach to Public Utility Pricing

and Investment Under Risk." (Unpublished ms., Graduate Center for Man-

agement Studies, Birmingham, England.) However, Littlechild does not

investigate the effects of regulation.
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However, this is not a very comfortable result even if the

*
conditions really are true. Since R would be set at the highest possible

competitive rate of return the rate of return constraint would be bind-

ing ex post only a small percentage of the time. A utility could violate

it ex ante with confidence that it would be discovered only rarely.

If the regulatory authorities reduced R to "catch" the utility more fre-

quently, it would drive the utility to the type of behavior illustrated

by Responses A, B and C in Table 1 and Fig. 3. There would seem to be no

practical way to use a straight-forward rate of return constraint to en-

force competitive behavior under uncertainty.





5. This assumes, of course, that the required subsidy is less than the

consumer surplus generated at the competitive solution.

6. The constraints shown are linear because F is assumed to be a linear

function of Q . This is not necessary to the argument, but it makes

a neater diagram.

7. This assumes that the maximum competitive rate of return occurs in

only one state, i.e. that R(s) < R(z) for all s ^ z. It is conceivable

that there will be some state y in which R(y) = R(z). However, the

discussion in the text can be applied to y as well as to z.
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