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ABSTRACT

In this paper, we review Levinson and fast Choleski algorithms
for solving sets of linear equations involving Toeplitz or almost
Toeplitz matrices. The Levinson-Trench-Zohar algorithm is first
presented for solving problems involving exactly Toeplitz matrices.
A fast Choleski algorithm is derived by a simple linear transforma-
tion. The almost Toeplitz problem is then considered and a
Levinson-style algorithm is proposed for solving it. A set of linear
transformations converts the algorithm into a fast Choleski
method. Symmetric and band diagonal applications are con-
sidered. Formulas for the inverse of an almost Toeplitz matrix are
derived. The relationship between the fast Choleski algorithms
and a Euclidian algorithm is exploited in order to derive
accelerated "doubling" algorithms for inverting the matrix.
Finally, strategies for removing the strongly nonsingular con-
straint of Levinson recursion are considered. We conclude by
applying the techniques to several applications, including covari-
ance methods of linear prediction, rational Toeplitz matrices, and
optimal finite interval ARMA smoothing filters.
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1. Introduction

One of the most common problems in numerical calculation is to solve a set

of linear equations:

RN.N = (1.1)

for the (N+1) long vector _N where RN is an (N+1)x(N+1) matrix. Standard

methods for solving this problem, such as gaussian elimination or Choleski

decomposition, generally require O(N 3 ) operations. When RN has additional

structure, however, the computation can often be significantly reduced. In par-

ticular, if RN is Toeplitz with (i,j)tl element Ri j=r(i-j), then the Levinson-

Trench-Zohar recursive algorithms1 ,2 ,3 ' 4 can solve the linear equations using

only O(N2) operations and O(N) storage. Similar fast algorithms proposed origi-

nally by Friedlander, Morf, Kailath, and Ljung5 and others apply when RN is

almost Toeplitz in the sense of having "low displacement rank". These

Levinson-style algorithms can be viewed as fast procedures for decomposing

the inverse matrix RN1 into a prc luct of Upper triangular, Diagonal, and Lower

triangular (UDL) matrices. Applying a simple linear transformation to these

algorithms yields a set of "fast Choleski" algorithms which compute an LDU

decomposition of RN itself using only O(N2 ) operations. These algorithms were

first discussed by Bareiss 6 Morf,7 and Rissanen. 8 In general, the fast Choleski

algorithms will either require much more storage or somewhat more computa-
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tion than the Levinson-style algorithms in order to compute ZN. When the

matrix RN is also band diagonal, however, variants of the fast Choleski algo-

rithm can be derived which are significantly superior to the Levinson-style band

diagonal algorithms suggested by Trench 9 and Dickinson,1 0 and asymptotically

superior to the O(NlogN) matrix splitting and imbedding approaches of Jain11

and Morf, Kailath.12

The fast Choleski algorithms bear a remarkable resemblance to a Euclidian

polynomial algorithm. Since a "divide and conquer" strategy combined with

Fast Fourier Transforms (FFT's) can be used to accelerate Euclidian algo-

rithms,1 3 it can also be used to accelerate our fast Choleski algorithms. The

result is an O(Nlog 2 N) doubling algorithm for computing RN 1, which is similar to

those of Gustavson and Yun, 14 Bitmead and Anderson, 15 and Morf 16 Unfor-

tunately, the algorithm is relatively complex, so that even for exactly Toeplitz

matrices it is only advantageous for matrices of size N>2000.

One difficulty with all these algorithms, except that of Gustavson and Yun,

is that they require that all the upper left principal minors of RN must be non-

singular. In the closing sections of this report, we show how this constraint can

be removed.

This paper is intended as a coherent summary of Toeplitz matrix algo-

rithms, as well as a presentation of several new results. The approach used for

deriving the fast Choleski algorithm appears to be new. The displacement rank

formalism of Kailath, Kung, Morf17 is used in deriving the Levinson-style

almost-Toeplitz algorithms, instead of that of Friedlander et al. 18 This simplifies

the derivation and the inversion formulas. The band diagonal fast Choleski

algorithms using forward and backward recursions to minimize storage appear

to be new. Section 8 contains a new partial LDU decomposition formula for RN,

which suggests an interesting result for Schur complements. The derivation of
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the doubling algorithms is completely new, and is considerably more concise

and powerful than previous algorithms. The method for dealing with degen-

eracy is also new. Finally, in addition to several examples previously considered

in the literature, we also present several new applications of the methods,

including a very fast finite interval Wiener-Hopf smoothing filter for ARMA

models, and a problem in which RN is a rational matrix. This last example has

also been considered by Dickinson;1 9 our approach is much faster, and appears

to be numerically stable.

2. The Levinson-Trench-Zohar Algorithm for Exactly Toeplitz Matrices

The Levinson-Trench-Zohar (LTZ) algorithm 4 is a recursive method for

solving the simultaneous linear equations RN.N=/N when the matrix RN is

exactly Toeplitz. For simplicity we will consider the case when the entries of R,

are scalar, although the case of block Toeplitz matrices can be handled in much

the same way. 8 20 .21 Let the entries of vectors N and RN be iN and Yi,N for

i=0,...,N. Let Rn be the (n+l)x(n+1) upper left principal minor of RN, and let

n be the vector containing the first (n+1) components of N. Note that

because of the Toeplitz structure of RN, we can partition each minor R, so as to

show its relationship to the lower order minor Rn_ 1:

Rn,-~ r(-n) r(O) ... r(-(f)
gn = : : (2.1)

r(n) r(O) (n) R (2.1)

This structure suggests an approach for solving the linear equations (1.1) in

which we recursively calculate the solution to the following problems for

n=O, .. ,.N:

Rna = · Rn,, = ; Rn = (2.2)
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where On is a vector of n zeroes, en will be defined later, and where:

= ( 1 1,T

bn = ( bnn

(2.3)

bi 1)T

sn = ( ,n .. n )

The solution for n =0 can be found by inspection:

_o =o = (1) ; 0 -r(o) o =I Yo

The solutions at stage n>O can now be calculated recursively using the solu-

tions at stage n-1. To do this, assume that we know the values of

n -1, bn-l E -1, and x_-l. Then from (2.1) it is easy to show that:

En -1-1
Rn~ 0 _ O -1

-Cn E -i

1n n-
and Rn l- 

En -1

where

(n =
1 n-I

- Z r(n-j)a, n-l
:n-1 j=0

(2.6)

1 2
V =- - T(-)bnjn

n -I j=i

Values of a, and b which satisfy (2.2) can thus be computed as appropriate

linear combinations of a-1 and b4-:-Z -r TIn1

(2.7)an = + n

Direct substitution shows that:

En = E - ( -n Vn)

Finally, from (2.1) we see that:

n-o

where X, =Yn -2 r(n-j)zjn
=o

(2.8)

(2.9)

(2.4)

(2.5)
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Thus the solution z can be computed as:

= + bn (2.10)

To summarize, we start with the initial solutions a 0 , bo, x0 in (2.4), then use the

recursions in (2.7) and (2.10) to calculate a., bA , x for n=O,...N, at which

point we will have found the desired solution EN. Total computation will be

about 3N 2 operations (1 operation t 1 add + 1 multiply). Because the computa-

tion can be done in place, total storage required will be about 5N locations for

a, b, L, and r (-N), . . .,r(N). (The solution for z, can be stored in the same

location used for y,,.) The algorithm will work correctly provided that En X0 at

each stage n. We will see later that this condition is equivalent to requiring

that all the principal minors R, of RN must all be non-singular, a condition

known as "strong non-singularity". In the terminology of linear prediction, the

vectors a and b are known as the forward and backward predictors, e n is the

prediction error, and tn and v, are the forward and backward reflection

coefficients.

Note that if RN is symmetric, with r(n)=r(-n), then the vector a will be

identical to b except with the elements in reverse order, a =bj,n. The for-

ward and backward reflection coefficients will also be identical, Cn=k,. These

relationships can be used to cut the computation required to only 2N 2 opera-

tions, and cut the storage required to about 3N locations. If the matrix RN is

also positive definite, then by Sylvester's criterion all the principal minors R,

will be non-singular and thus en will never be zero.

An interesting interpretation of the vectors and b can be gained by

forming the (n+l)x(n+l) matrices A and B whose jth rows contain the

coefficients of the vectors aj and bi.
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1 0

An = a *

an,,n " al, 1

From (2.2), and noting that Rn

An Rn and R B T are upper and

to

AnRn =

*.. ,, 4It

tt a

1 0
bil 1

B, = (2.11)

b,n " b l,n 1

is a principal minor of RN, it is easy to show that

lower triangular matrices respectively:

Eo o0

.nd RB = . . (2.12)
~t e

This in turn implies that

01

en

(2.13)A, = AnRB2 =

0

Rearranging gives:

R' = BT-LAn (2.14)

The various predictor coefficients generated by the Levinson-Trench-Zohar thus

form an Upper triangular, Diagonal, Lower triangular (UDL) decomposition of

the inverse matrix R- 1. This interpretation suggests several interesting results.

For example, we could calculate the vector xn by exploiting the fact that:

(2.15)We could thus compute recursively by:

We could thus compute xn recursively by:

I + AnL (2.16)

n

where XAn = E anj,nYi
J=0

As noted by Zohar, however, this formula for Xn appears to have no obvious

advantages over the formula in (2.9).

The UDL decomposition in (2.14) also implies that:

I,
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n
det(Rn) = 1I ej (2.17)

j=0

This proves that the restriction that En ~ O for all n is equivalent to requiring

that all principal minors Rn of RN must be non-singular.

Several interesting formulas for the inverse matrix R- 1 were suggested by

Gohberg and Semencul.2 2 If Rn and Rn, 1 are both invertible, then they can be

expressed as sums of products of upper times lower triangular Toeplitz

matrices:

R,, = 1
en

1 b ,n "bn ,n 1 0

a ,n
b 1n , (2.18)

0I 1 ann " al,n 1

0 nn " a l,n 0 0

b b ,n

n~ 
,n '

0 b ,,,, " bn,n0

-1 _ 1

1 n n-l,n 

' 1,n'

* b ,n. :(2.19)

0 1 an-l,n " an 1

an,n "*al,n bn 

l0 an,n b 1,n bn,n

We will derive similar formulas for the more general case of almost Toeplitz

matrices in section 8. The important point is that the inverse matrix RP1 can

be completely specified by the vectors , bAN and EN Moreover, we can com-

pute ZN=R -1N solely from knowledge of aN, bN, EN and do not need to actually

compute or store the elements of R 1. In fact, forming the product R-lyN onlyrvr~rrr L I~L F ~1CCLCLI~IC·J VI1\N NL CC~ VIII~Ll:Y UC ~ F LL
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involves multiplying triangular Toeplitz matrices with vectors, an operation

which is equivalent to convolution of the matrix elements with the vector ele-

ments. It is thus possible to calculate N=RN 1 very efficiently by using 2N+1

point FFT's in O(NlogN) operations. In section 13 we will further exploit this

idea to accelerate Levinson recursion by a doubling procedure employing Fast

Fourier Transforms for speed.

Finally, another interesting interpretation of the Levinson recursion can

be found if we define the Levinson-Szdgo polynomials A,(z) and Bn(z) by:

A (z) = 1 + 1 + annz (2.20)

En(z) = 1 + b ,nz I + + bn,n z

Because of the structure of Levinson recursion, the nth order polynomials can

be written as a function of the (n- l)th order polynomials as follows:

An () = A -1 (Z) + ,, z "' Bl(z - 1 ) (2.21)

Bn(Z) = Bn- 1 (z) + vnz nAl(z - 1 )

Let us suppose that the entries r(n) of RN are samples of an infinite sequence

r(n) with a Z-transform R(z) = E r(n)z'- whose region of convergenceI·", =Jg, n =--

includes the unit circle. Let us define the function <P(z),Q(z)>F(z) of the poly-

nomials P(z), Q(z), F(z) by:

<P(z)Q(z?)>F(.) ;P(z)Q(z-l)F(z) Z (2.22)

where the circular integral is evaluated on the unit circle C in a clockwise

direction. Then it is easy to show that equations (2.2) imply that the polynomi-

als zAr(z) and zBm(z) are "biorthogonal" under the measure R(z) on the

unit circle in the sense that:

< znAn(z) z m Bm(z) >R(z) = tn.,m (2.23)

where 6n,, is the Kronecker delta function, 6 n,m =1 if n =m, =0 else.
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3. Fast Choleski Algorithm for Exactly Toeplitz Matrices

Bareiss 6 has devised an alternative algorithm for solving the Toeplitz linear

equations (1.1) which is based on a clever scheme for accelerating gaussian

elimination on Toeplitz matrices. Though it is not obvious from his paper, his

algorithm is actually quite similar to the "fast Choleski" algorithms of Morf 7 and

Rissanen.8 In this section we present a new derivation of these results, which

presents the fast Choleski algorithm as a "mirror image" of the Levinson algo-

rithm.

Start by defining new polynomials a,(z) and fn(z) in terms of the

Levinson-Szego polynomials of (2.20):

an() = An (z )R (z) = ajnzi z(3.1)

=--

Unlike the Levinson-Szdgo polynomials, an(z) and Bn(z) have' an infinite

number of non-zero coefficients. However, using (2.5) it is easy to show that:

en for j =0

CajA = 0 for j=1, ..... ,n (3.2)
-n, En for j=n +1

en for j =0
Pi n = 0 for j=1, ... ,n{-vnen for j-=n +1

The zeroth order coefficients are simply the prediction error en, the next n

coefficients are all zero, and the (n+l)th order coefficients are proportional to

the reflection coefficients n and vn. Multiplying the Levinson Szego polynomial

recursion formulas in (2.21) by R(z) then leads to the following recursive algo-

rithm for computing a n (z) and 1n (z):

Initialization: a(z) = R(z)

no(Z) = R(z-1)
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For n=l, .. ,N

en-1 = aO,n- = O,n-1

an ,n -1

en -1

Vn ln,n -1 (3.3)
en-1

an,(Z) = an-,l(Z) + , n -",n_1(Z 1)

ln () = ln-l(Z) + Z ',nan - (-l)

These recursions form the core of the fast Choleski algorithm.

To understand the role of these polynomials, note first that the polynomi-

als znan(Z) and z m lm(z) are biorthogonal with respect to the measure R(
R(z)

in the sense that:

< z"C. (z) , zmpm(Z) > = < znA,(2) ( zmB(z) >R(z) (3.4)
R(z)

=en n,m

Let us form the (n +l)x(n +l) lower triangular matrices (n and fin whose jth

columns are coefficients of the polynomials aj(z) and/j(z):

aOo 0 fo,o 0

a = -, 0 ao, PIO-1, 0 Po,1
a = . (3.5)

a-n,O a-n+1,1 aO,n -- n,O -n+1,l ' O,n

From (3.1) and (2.11) it is easy to see that:

a n = RtnAn and fin = RnBn (3.6)

Substituting (3.6) into the UDL decomposition formula (2.14) yields:

RJ = p,.-'. T (3.7)

Thus the fast Choleski algorithm (3.3) can be interpreted as calculating an LDU

factorization of the matrix RN by generating a series of polynomials an (z) and

/Bn(z) which are biorthogonal with respect to the measure R() Note the
R(z)'
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symmetrical relationship of this algorithm to the Levinson-Trench-Zohar algo-

rithm, which performs a UDL factorization of the inverse matrix RN1 by generat-

ing a series of polynomials which are biorthogonal with respect to the measure

R(z).

This LDU factorization suggests a two stage method for solving our original

set of linear equations RN__N=yN. First we compute an intermediate solution Ny

by solving:

O N A_'V = 'N (3.8)

then we solve for z:

T
aUN _~ = AN . (3.9)

Since O(N and fN are triangular matrices and AN is diagonal, solving these

equations requires only about N 2 operations.

The chief difficulty is that since the polynomials c, (z) and n, (z) have an

infinite number of non-zero coefficients, the recursions in (3.3) would require

an infinite amount of computation. Fortunately, to solve for _o we only need to

compute a finite number of these coefficients. As noted by Bareiss 6 and by

Morf 7 there are at least two different approaches for solving for the desired

coefficients, depending on whether we generate the matrices n and fl,

column by column or row by row.

3.1. Detailed Columnwise Fast Choleski Algorithm

The columnwise recursion starts with the values of aji0 and flj,o for

j=-N, ... N and on the n th step recursively generates the coefficients ajn

and ,n1, for j=-(N-n), ... ,N. The nth recursion of the algorithm thus gen-

erates the coefficients of the n t h columns of XN and PfN. The algorithm is as

follows:
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lnlllmnnwisp Fat ChnlPki

Initialization: aj,o = r(j) I for j=-N .. -1
j =(-j) and j=l, ... , N

to = r(O)

For n=l,... N

n an n-I (3.10)

en -1

, = -1

En -1

ain = j,n-1 + n n-- j,n-1 l for j=-(N-n), ... -1

n =2 fun-+ Vn an -j~n J and j=n+l, ... N

en = E[n (n-n1 Vn)

Note that on the n t h pass we can store the reflection coefficients en and v n in

the locations previously used by an,n-I and in-,_1. It is convenient to organize

storage so that after the nth pass we will have saved:

aN,O ... an-N,n an-N+l,n ... a-l,n ''' n an+l,n ..' aN,n

(3.11)

-No... fn-Nn fln-N-i,n ... 8-I,|1 Vn Vn1 ln n

Computation can thus be done in place, About 4N storage locations and about

2N2 operations will be needed to compute OaN and PN, which is identical to the

requirements of the Levinson-Trench algorithm for computing An and Bn.

The solutions _n, and zN to the linear equations in (3.8) and (3.9) can also

be computed by using the coefficients of C(n and fn in columnwise order. Solv-

ing for Xk requires a forward substitution step; solving next for zN requires a

backward substitution step.
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Fnrwrr1 S1 ht.ihiti Hnn

Initialization: Yjo '- Y for j=, ... ,N

For n=0, ..... N (3.12)

Yn ,n
An=

En

Yjn+l = Yjn -Xna-jn for j=n+l..., N

Rafk -llh titutian

For n=N, ... O

1 N
Xn = n - E E anjon xi (3.13)

en Jf=n+l

Since the computation can be done in place, putting Xn and then xz in the

same location used for y,n only N+1 extra storage locations are needed. Total

computation for generating aj n and fij,n and then solving for N is thus only

about 3N2 operations, which is identical to the Levinson-Trench-Zohar algo-

rithm.

The forward substitution phase for calculating the intermediate solution

_N uses the coefficients ij,n in ascending order of n, which is the same order in

which they are generated. It is thus easily integrated into our columnwise fast

Choleski algorithm (3.10) for calculating aj,n and j,n. Unfortunately, the

backward substitution phase for calculating N from XN requires the

coefficients ac,n in descending order of n, which is the reverse of the order in

which they are generated. One approach would be to save the values of a n as

N 2
they are generated. This, however, would require an extra 2 storage loca-

tions, which is an order of magnitude more than Levinson recursion requires. A

more storage efficient approach is to use a backward recursion to regenerate

these polynomial coefficients in descending order of n for use in calculating x.

To do this, we will need to save the reflection coefficients n and vn and the

coefficients tn-Nn calculated during the forward phase (note that these are

* --



- 14 -

exactly the values saved in the scheme illustrated in (3.11)). Given these

values, in the backward phase we can then reverse the polynomial recursion in

(3.3):

an-1 (z) = - az -n ( ] (3.14)

fn -1 (Z) = -6 v, an ( nz ) -n c (z

Normalization by (1-nvOn)l- can be avoided by calculating the scaled polyno-

mials a (z)=-an (z) and (z)= n f, (z) instead and compensating accord-

ingly. Computational effort can also be reduced by exploiting the fact that we

only need to calculate the matrix C(N . The complete backward phase will then

be:

qRankwarri Phia (Minimal Storage)

Saved from forward phase: a -N,n , vn , n ,n for n =0. N

For n=N . 0.,O

1Xn N C isi (3.15)
'N i=nil

If n=O END

ajn-1= a-jn nfln-j,n|

pn-j,n- 1 = fln-jn f j-N-) -

EN
n7-1-N,n -1 = n-l-Nn-1

Wn,n -l = -Vn EN

e7n

en- = ( 1-, Vn )

Total storage required with this approach will now only be about 5N locations,

which is the same as the Levinson-Trench-Zohar (LTZ) algorithm.

__i____ -1111 I_ _^__·�II_· 11_·_ 111--1_-·1111�-
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Unfortunately, about 4N 2 operations are needed, compared to only 3N 2 opera-

tions for the LTZ algorithm.

Note that if the matrix RN were symmetric so that R(z)=R(z-1), then

tn=v , and an (z)=Pn(z) for all n. This symmetry could then be used to reduce

the requirements for calculating zN to 3N 2 operations and 3N locations.

3.2. Detailed Rowwise Fast Choleski Algorithm

A somewhat different Choleski algorithm results when we solve for the

coefficients of the 0[n and /3 matrices in rowwise order. The nth pass of this

algorithm will generate the coefficients of the nth row aj_,, an J, fBj-nj and

fBnj for j=O .... n.

_ �_ ___ __ �



- 16 -

Rnwwi p Fa t Ch n alki

Initialization: Eo = r(O)

For n=1..... N

an,O = i-n,O = r (n)

a, = i,o = _T(- )

aj-nj = aj ,j 1- + Cjinj-1

n,j = #n,j-l + vja l-n,j-1

anj = anj- + Cifi-Jl

i-ni i -i-1 + Vj nj -

for j=1,..., n-1

Cn tn = (3.16)
en -1

? n,n -
Vn

en-1

en = ,-l ( l- n)

The coefficients Blnj and anoj do not need to be stored since they are not used

in the (n+1)th pass, nor are they needed for solving for x. Total storage

required for saving the coefficients aj n j , j-nj and the reflection coefficients

(j and j is therefore about 4N locations, and all computation can be done in

place. About 2N 2 operations will be needed to compute the matrices ON and

#N-

It is also possible to solve for the solution&, and z n to the linear equations

in (1.1) by using the coefficients of /aN and PN in rowwise order. Once again we

have a forward substitution phase for generating X, and a backward substitu-

tion phase for generating xn:

-- --- --- ___ ___1111______11I - II -. ~--- I~---_-
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Frrw rr Sllhstitutinn

For n =O,..., N

eI n -n (3.17)

Rag kwa rd Slhbstitlti nn

Init: j,N = XjEi for j=O, ... ,N

For n=N,...O

z An , (3.18)
n n

XAj,n -1 = Xj, - zn a, for j =0, ... n-1

Computation can be done in place, so that the same (N+1) long array can be

used for storing Yn, An, and Zn. Unfortunately, the rowwise algorithm has the

same difficulties as the columnwise lgorithm with the backward substitution

step. The forward substitution phase for calculating A, uses the coefficients

ij-nj in ascending order of n=O ... N, and is thus easily integrated into the

rowwise fast Choleski algorithm (3.16). The backward substitution phase, how-

ever, requires the values of a_,j in descending order of n=N, . . . 0, which is

the reverse of the order in which they are generated. These coefficients could

N 2

be stored as they are computed, but this would require -- extra storage, which

is an order of magnitude more than that used by the LTZ algorithm. Alterna-

tively, we could recalculate the values of aj,j in descending order of n by

exploiting the backward polynomial recursion (3.14). We will start with the

values of an-N,n n vn. An, and N as calculated on the forward pass. Rescal-

ing as in the columnwise algorithm to reduce the operations count, and elim-

inating all unnecessary computation, then yields the following backward substi-

tution phase:

I
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lRark-wardl ,ibtittintirn (Minimal Storage)

Initialization: XA,N - AXn for n=O, .... N

For j =N-1, .... 0

i= (1-cj+llj+l)

EN
aj -NJ v- j ai-Nj

For n=N,..,.0 (3.19)

ln
z -

EN

If n=O0 END

Ain-l = , -zm j j for j=O, .... ,n-1

n ,n -1 = -Vn EN

jj- = ji -n,j a ej-n, 
anI, j=an-U j j I for j=n-1, 1

Once again, computation can be done in place. Also note that, as in the forward

phase, it is not necessary to save the values of nj since they are not used in

computing EN nor are they used in the (n-l)th pass. Total storage and compu-

tation requirements for the rowwise fast Choleski algorithm are thus 5N loca-

tions and 4N2 operations, which is the same as the columnwise algorithm. If RN

is symmetric, then 7n=vn and can(z)=n,(z), and the storage and computation

requirements reduce to 3N locations and 3N 2 operations.

The rowwise algorithm thus has the same storage and computation

requirements as the columnwise algorithm. Its chief advantage is in certain

applications where the length of the available data N may increase as new data

arrives. The rowwise algorithm easily adapts to this situation simply by resum-

ing the forward iteration where it had left off. In general, both the fast Choleski

algorithms are slower that the LTZ algorithm, unless N 2 extra storage loca-

�_ __I_ � ·_ �LI__1 ---- ----- �II--·CPI 1� �-�1II1III�---- ICII �-I·I--��---I_
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tions are used to save the values of amj.,. As we will see in section 12, however,

the fast Choleski algorithms are far superior to the LTZ algorithm when the

Toeplitz matrix is band-diagonal.

4. Almost Toeplitz Matrices

Toeplitz matrices arise in applications in which the underlying system is

characterized by some form of "shift invariance" (or "stationarity" or "homo-

geneity"). Many shift invariant systems, however, may lead to sets of linear

equations which are closely related to Toeplitz matrices, but are not exactly

Toeplitz. For example, we may have the (non-Toeplitz) inverse of a Toeplitz

matrix, or the (non-Toeplitz) covariance matrix of a stationary process with an

initial transient. Friedlander, Morf, Kailath, and Ljung5 and Kailath, Kung, and

Morf 1 7 have shown that in fact we can characterize such "almost-Toeplitz"

matrices by a "distance from Toeplitz" K, such that the amount of computation

required to invert the matrix is O(icN 2). Kailath's idea was to consider the class

of matrices RN which could be represented as the sum of ,c+ products of lower x

upper triangular (block) Toeplitz matrices:

RN = E L(_.)U(YT) (4.1)
i=1

where L() (and U(T)) are the (block) lower triangular (and upper triangular)

Toeplitz matrices whose first column is x (and whose first row is XT). in the fol-

lowing discussion, we will also use the notation L@.T) (and U(y)) to refer to the

(block) lower (and upper) triangular Toeplitz matrices whose last row is T (last

column is .) One reason for choosing a representation for RN like (4.1) is that

if we form the shifted difference IRN defined by:

o,o RO,N_ ]

JRN = R N - R O (4.2)

0N- RNi,0 RN-1,N-1

_ _�_�
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then this matrix _RN can be factored in terms of the vector zA, /L:

Lmrna 1 RN = E L(.)U( T) if and only if IRN = E iT
t~~~~=l~~~ i =l

This can be proven by direct calculation. In particular, this implies that c+ is

the minimum number of terms in a lower x upper representation for RN like

(4.1) if and only if c+=rank(_RN). (If the entries of RN are p xp blocks instead

of scalars, then ic+ will be the smallest integer greater than -rank(JRN).)
P

Hence we call ic+ the (+) displacement rank of RN. In general, (block) Toeplitz

matrices can be written as the sum of Kc+=2 products of lower x upper triangu-

lar (block) Toeplitz matrices. For example, we could choose

Z2 (4.3)

T [ .. T [ r (-1) 7(-N))

This representation is not unique; for example, we could also have chosen:

r(O) O
r() (1)

) (0) 2 r (o) (4.4)

r (N) r(N)

xL= r())YT, r(O) r(-1) -- r(-N)] 2 = (0)o) [o0r(-1) .. r(-N)]

This latter form is most convenient when RN is symmetric, since then =y .

Now the form of RN in (4.1) is not the only one suitable for our needs. We

might also consider matrices of the form of sums of products of upper x lower

triangular (block) Toeplitz matrices:

RN = Z U(x)L(MiT) (4.5)
it=1

The interesting feature of this representation is that if we form the shifted

_ I _ _ 1_1_1 ^· .·�-_--*IC-lll�.- ·I-·.-.^--�----I-_ -I^-�C- I II II�-C-I�C· 1·1III�--·II� �
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difference rRN defined by:

|R1 , . R1,N 0

FR'RN RN, RNN : (4.6)

0 0O

then this matrix RN can be factored in terms of the vectors , i:

£_ /_

L.mma 2 RN = Z U(-f)L(zT) if and only if rRN = E .. iT
(=l i=l

Once again, Kc_(RN) will be the minimum number of terms in this upper x lower

decomposition of RN if and only if c_=rank( rRN). (This must be modified

appropriately if the entries of RN are themselves matrices.) We call K-(RN) the

(-) displacement rank of RN.

The lower x upper and the upper x lower representations are equivalent in

the sense that if we can represent RN in one form, we can also represent RN in

the other form with approximately the same number of terms. To do this, note

that:

o 0 Yo YN
L(~)U(T) = :

ZN "Xo YO

O N .. 0

yI oYN O

T T
Yo YN

0 yT0 Y

0 N .. z 0 0
T .

ZN ·

0 0 Y1

z1

0 ' YT. y T (4.7)

where T is a Toeplitz matrix with entries equal to the convolution of the xzi and

I - '
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yT sequences. We can thus convert the lower x upper representation (4.1) into

the form:

RN = L)U( T) = T + U L yl yo 0 (4.8)
i=1 il ZN

0

Since a Toeplitz matrix T can be represented by a sum of no more than 2 pro-

ducts of upper x lower triangular Toeplitz matrices, we have shown that we can

construct an upper x lower representation for RN with Kc_< ,c++2. Applying a

similar argument in reverse proves that:

Lemmaa I K+(RN)- ic(RN) 2

Thus the minimum number of terms in the lower x upper and upper x lower

representations for RN will differ by no more than 2.

The most interesting result for our purposes, however, is the following

theorem proved by Kailath, Kung and Morf:17

Theornrem 1 If RN is invertible, then its (±) displacement rank is equal to the

(+) displacement rank of its inverse:

1c+(RN) = ic_(R') c_(RN) = c+(RN1) (4.9)

Pronf The proof we give is due to Delosme and Morf.2 3 Let Z be the "lower shift"

matrix:

0 0

Z = .. (4. 10)

0 io1

so that

jR = R - ZRZT (4.11)

rR = R - ZTRZ

__��_�_���III_ _L
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Then:

rank |[ z R-l1 = rank I ZTRN-1 I RN _ZTRZ
[ Z' R -1 R -1-ZTR-1 Ras 

= rank0N -1

= rank [ RN + rank [ r ) (4.12)

where we use the fact that the rank of a matrix is not changed by multiplication

by a full rank matrix. Similarly, by performing a UDL rather than an LDU

decomposition on the matrix on the left of (4.12), we can show that:

rank zT R l =rank[Rl + rank[ RN (4.13)
NJ

Since rank(RN) = rank(R- 1) = N+1, we are left with:

irc+ (RN) = rank( RN ) = rank( -R1N ) =ic_(Rl1 ) (4.14)

The other equality can be proven in much the same way. *

Note that the Gohberg-Semencul formula (2.18) expresses theorem 1 for

exactly Toeplitz matrices. Starting with a Toeplitz matrix RN with /c+=2, this

formula expresses R 1 as a sum of 2 products of upper x lower triangular Toe-

plitz matrices. Moreover, the elements of this representation can be calculated

by Levinson recursion. In the following sections we will develop an analogous

constructive procedure for starting with any Ic term (not necessarily minimal)

lower x upper representation of RN, and calculating the corresponding upper x

lower representation of R-1 in only O(IcN 2) operations. Both Levinson and fast

Choleski algorithms will be developed. LDU decomposition formulas for RN and

RN1 will also be given, as well as techniques for calculating N without explicitly
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calculating RN 1. We will assume throughout that the lower x upper factoriza-

tion of RN is given a priori by the structure of the applications. Finding such a

representation otherwise would be a difficult numerical problem, especially if an

upper bound on ic+(RN) were not known.

5. Almost Toeplitz Matrices - Levinson-Style Algorithm

Let us assume that we are given a factorization of RN as a sum of /c pro-

ducts of lower x upper triangular Toeplitz matrices:

RN = E L(_)U(d) (5.1)
t=1

where: c = = 
ci din n

To simplify the presentation, we will assume that c and d are scalars (note

that i is a superscript and not an exponent.) Extending the algorithm to the

case where c and dn are matrices is simple, and only requires somewhat

greater care in the order in which we multiply and transpose the various quan-

tities. We will implicitly assume that the (+) displacement rank is small rela-

tive to N. Let R be the (n+l)x(n+1) upper left principal minor of RN; we will

assume that RN is strongly non-singular so that all the minors R are non-

singular. By definition, Rn l is the upper left principal minor of Rn:

n= : .. (5.2)
Also, by lemma 1:

nn =+O _c °t (5.3)

n-1T

In the same way that (2.1) is the key partitioning relationship which defines

Levinson recursion for exactly Toeplitz matrices, these two partitioning formu-
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las are the key to the almost Toeplitz algorithms. As in Levinson recursion, we

will use the solution to a set of auxiliary equations to help solve our given prob-

lem. In our case, the equations we will need to solve have the following form:

n1 b ln = (5.4)

ROS =, for i=1, ... 

RnXz = L

where:

Ibn A: i o kO: (55)

The solution for n =0 can be found by inspection:

bo= (1 )

to Ro,o = c d
i(=

i 0 for i =l,. (5.6)
g0 J

- Yos to
where fRj is the (i,j)th element of Rn . The solution at the nth stage for n>O

can now be recursively expressed in terms of the solutions at the (n-l)th stage.

To see this, note that by using (5.3):

Rn 1 ]l . v (5.7)
P~ -en-1

where: v i j )]

Also, by using (5.2):

nR =° -4t) for i=1, ... ,. (5.8)

where: = n - n 1
j=0
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It is thus possible to find a solution b to (5.4) by combining appropriate multi-

ples of f_1I with b,_1 in order to cancel out the terms on the right hand side

of (5.7):

bn =I) ] + 1/n Vn | (5.9)

Then it is easy to show that this b satisfies (5.4) with:

en = eCn 1 - v (5.10)
i=l

The solution for LA can then be constructed by combining appropriate multi-

ples of b and.l in order to cancel the extra term on the right hand side of

(5.8):

= (T°] + b for i=1, ... ,c (5.11)

Finally, to solve for I, let us suppose we know the solution for,_l., Then:

R )= -( ) (5.12)

n -I
where: X, = yn - E R,jxjn- 1

j=0

The solution for xz can then be constructed in much the same manner used in

constructing L:

-l + X b (5.13)

By applying equations (5.9), (5.11) and (5.13) recursively for n=1, ... ,N, we will

be able to construct EN. The coefficients (i and v can be viewed as general-

ized reflection coefficients, and Lt can be viewed as generalized predictors,

and en is a prediction error. Note that the algorithm requires that env-0 at

every step; as in the Levinson algorithm, we will see that this is equivalent to

requiring that RN be strongly non-singular.
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The basic form of the algorithm above was given by Dickinson.19 It can be

simplified somewhat further so that only K-1 of the vectors f_ need to be cal-

culated. The key is to note that:

E doL = O O (5.14)

To prove this, it is only necessary to multiply both sides by Rn and note that the

first column of R is ,d-oj. We will assume that cdJ I0 (if this is not true,
i=l

simply renumber the vectors; at least one of these pairs must satisfy this, since

by the assumption of strong non-singularity, e0 = od" 0. ) From (5.14):
6=l

d I -On i=2do [ [ On -E =2 |i (5.15)

Substituting this into our update formula for b gives:

| bV ] =2 (5.16)

where: in = for i=2,. . . ,

and:

E, ~~~~= tnE,,~~~~~~ 1 -~ C(5.17)
t=2 e

Since f~ and 1 are no longer needed for calculating bn or En , they need not

be calculated at all. The complete Levinson-style algorithm thus takes the

form:
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Initialization: Get b0 , L2 . . , o ., o from (5.6)

For n=1, . N
a) Calculate reflection coefficients 2, t and v. .. v from (5.8)

and (5.7.)

b) Update b and en using (5.16) and (5.17)

c) Update £ 2 .... ,' using (5.1 1)
d) Calculate Xn from (5.12) and z from (5.13)

Total computation is approximately (4-1)N2 operations and about 3Nc

storage locations are needed for _, i, N LN and yL. One difficulty with this

algorithm is that it requires the values Rnj for j <n. If these are not stored,

they they may have to be calculated recursively during the recursion above:

cdo for j=O
i=1

RnJ-l j- + c dj for O<j<n
i=l

This would require an additional XcN 2 operations and N storage locations. If RN

is symmetric, then the computation can be simplified slightly because it will be

possible to calculate the i coefficients directly from the Ct coefficients or vice

versa. The details of this, however, we leave to a succeeding section. Finally, if

CL and d were TX-r matrices instead of scalars, the block almost Toeplitz ver-

sion of the algorithm above would require only T3 as much computation and T2

as much storage.

As a simple example of this technique, consider the case when Rn is an

exactly Toeplitz matrix and we express RN in the form suggested in (4.3). Then

it is easy to see that bn is the backward predictor of the Levinson algorithm,

eng/2 is the forward predictor, :n is the prediction error, v=, and 2 and

-are the forward and backward reflection coefficients respectively (the "2"
En -1

is a superscript, not an exponent).
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6. UDL Decomposition of RN 1 by Extended Levinson-Style Algorithm

The Levinson-style algorithm we have presented does not calculate a full

UDL decomposition of R-1. To accomplish this, we will need to repeat our

almost-Toeplitz algorithm except with RN replaced by RNT . At each stage n we

will need to solve for the (n+l) long vectors an and e_ which satisfy:

|,a = On where: a = (an, n ... al,n 1)T

R =< where: e = ( .n et .)T (6.1) e

By considering the quadratic form (RTR=n) =aT(Rnb )=En it is easy to show

that the prediction errors en of the original and the transposed almost-Toeplitz

problems are identical. As in Lhe previous section, we can show that the solu-

tion an, to the n a order problem can be recursively constructed from the

(n -1)th order solution as follows:

C4r-1 I =2an =~i | na + E ion | O ] (6.2)

where: 4 = a- I 

ci

and:

0 = O n (6.3)

li-i
where: p = d- Rj,nen -

j=0

Note that because the prediction errors of the original and the transposed

problems will be identical, we will have:

E (nVn = E t in = E P = Ex P in (6.4)
t=1 t=2 i=l i=2

Now that we have calculated b, f and Sa, e, let us define the (N+1) long vec-
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tors An, by:

an

an = RN N |n = · nn (6.5)

aN,1

nn n,n

Ano

PN,n

where an,n=9n,n=En. As in the Levinson algorithm, let us form the

(n+l)x(n+l) lower triangular matrices An and Bn whose jth rows contain the

coefficients of the vectors _ and b_

1 0 1 0
al, 1 b 1,1 1

An = . Bn = (6.6)

an,n al,n 1 b* b l 1

Let us also form the (n+l)x(n+l) lower triangular matrices A n and l, whose

jth column contains the first (n +1) entries of the vectors a and I:

aO 0 0 9o,o O

al IO a,1 9l,o 91,1
n = a a1 = 10 (6.7)

an,O an, a0n,n , n,o n,l ,n,n

Then from the definitions of an and& f in (6.5) it is easy to see that:

RnBT = (6.8)

T
An n = n

From this we can conclude, as in the Levinson case (2.14), that:

Rn = BTAnA-An where: An = diag( eo en ) (6.9)

Thus the extended Levinson-style algorithm which calculates a. _ f andb e

effectively performs a UDL decomposition of the inverse matrix Rn1. From (6.8)
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we can also conclude that

Rn = nAn (Ctn (6.10)

This formula suggest that a fast Choleski algorithm for computing the LDU fac-

torization of Rn will need to recursively compute the vectors a and& in (6.5).

7. Fast Choleski Algorithms for Almost-Toeplitz Matrices

Fast Choleski algorithms for solving almost Toeplitz linear equations can be

developed in much the same way as for exactly Toeplitz equations. We start

with the extended Levinson-style algorithm above which calculates the full UDL

decomposition of the inverse matrix RN1. A linear transformation similar to the

one used in section 3 then converts the algorithm into a fast Choleski method

for computing the LDU factorization of RN. Exploiting several relationships

among the various predictors and reflection coefficients reduces the computa-

tional effort substantially, and gives us our final algorithm.

The vectors a and& in (6.5) are linear transformations of the vectors an

and . In fact, their definition is quite similar to the linear transformation

used in section 3 for the exactly Toeplitz problem. To complete the transforma-

tion, let us define the (N+1) long vectors .p and 3n as transformations of ft

and e:

0 +1

iR i In +,n9N,n

_nf+ln

Nt = RN - L 

Note that the (n+l)lh elements of these vectors are the reflection coefficients:
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Yon +ln In= - (7.2)

Oni+l,n = -pl

Because a, &. 5_ and g have been defined as linear transformations of the

vectors a, b, and _, they will obey the same type of recursive relation-

ships:

. Y -P + - ,n for i=2,...,K
en

and:

0

n CO,n -1 +jlr l (7.4)

i=2
aN-1 ,n -1

1Cg =4-l + P a for i=2,...,E

These recursions form the heart of the fast Choleski algorithm for almost Toe-

plltz matrices. The chief remaining difficulty is to find the values of the

reflection coefficients A,,, , 74in and p i without having to calculate the original

vectors a , f, or i . The reflection coefficients v and /4 do not appear

explicitly in the fast Choleski recursion, and so do not have to be computed. As

noted in (7.2), the coefficients Ci and pi can be read off directly from the vec-

tors . and 3. This leaves the more difficult problem of finding the values of

'pi and ~. To do this, note that:

aTIRnj] 9=Z{j

= n =2 
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n + _ ! 1-Rj 1 - 1 for j=2,..., (7.5)
i=2

But also:

= tz

= (7.6)

Combining (7.5) and (7.6) yields:

2 A2

.= MT_, . (7.7)

Cn Aln

where Mn_ l is a (-1)x(K-1) matrix with entries Mn-l]ije A Rn-iLl -6

Similarly, by considering the quadratic product e R we can show that:

Equations (7.7) and (7.8) together suggest that we can calculate the reflection

coefficients i and from � and p i provided we know Mn_, and provided that

this matrix is invertible. To calculate this matrix efficiently, note that:

Pn~~fI ]' I JTR, = | | + a R + b

n - nn+ 1 *| tPn (7.10) 

� __
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Assuming that Mn_ 1 is invertible, then the inverse of M n can be calculated

recursively by using the Woodbury formula:

(A-BD-'C) - 1 = A - -A-1B(CA-1B+D)- CA-1 (7.11)

Applying equations (7.7) and (7.8), and noting that:

en = enl C tZ = enl- tn -M1 (7.12)
i=2 2

Pn

leads to:

Thus MJ (7.13)en-= 

Thus Mn will be invertible if and only if Mn_ 1 is invertible and enloO. Applying

this argument recursively leads to the conclusion that M n is invertible if and

only if RN is strongly non-singular.

Let us summarize our progress so far. Calculating a full LDU decomposi-

tion of RN requires calculating the vectors an and . Equations (7.3) and (7.4)

define a recursion for the vectors a., &, t and _. The reflection coefficients

t and p for this recursion can be found directly from 2_ and g by using

(7.2). The coefficients V' and jo can be calculated as a linear transformation

of t and pi from (7.7) and (7.8). This linear transformation matrix Mnl 1 can

be calculated recursively from (7.13).

Given the LDU factorization of RN, the solution zN to our linear equations

can be found by the usual two stage forward /backward substitution algorithm:

Solve: P'N Ž = N (7.14)
T

Solve: N ZN = AN AN

As in the fast Choleski algorithm for exactly Toeplitz matrices, the forward sub-

stitution phase for calculating AN is easily integrated into the fast Choleski

^__ · Illllly 11_1· ·1--111�·111_-·-·�·1I�l�·-�-·-�L--_l- .. _IX1· 71L· 
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algorithm. The backward substitution phase, however, requires the coefficients

aj.n is the reverse order in which they are generated. These coefficients must

therefore either be stored or regenerated in a backward phase.

The iteration can be simplified slightly if we define our initial conditions for

n=-1:

Initialization: e-1 = c d 

P-l,-1 = dOjI for j=O, ... ,N

i iaj 1 1 = Co
,-1 - dj

M_ =-I

The forward phase of our fast Choleski algorithm will then be as follows:

Fnrward Ph ~o_'

(7.15)

For n=O,...,N

i = -Ynn-

= Mn- 1

n :

~ n

(7.16)

for i=2, ... 

Pn

t~
n~

1 = 
n n- e'n-I * · g .. )

V nc 

n = En-1 - E Nn 
i=2

flj-n = j- l, n - 1 + Vn d,n

j, = aj-1,n-1 + Z ani,n
i=2

for j=n+l,..N.,N

a
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CjI,n = Sin,,-1 + - tl,nj=l,...,N
for

n = Vi, n = -n + n .... ,.pn

n =
En

Yj -J n -Xaj,n for j=n+l,... N

Total storage required in this forward phase is about (2,c+1)N locations for the

an _ , ., ~ and yN vectors. Computation can be done in place, and it will be

convenient on the n t h pass to save the values of the reflection coefficients <

and p, in the locations previously used by the entries n-and n-lIt is

also useful to retain the values of aNj. Storage after the nth pass should thus

be organized as follows:

a: ONN, O ' aN n aXN-l, n ' t n+l,n

f #N,O ... 'N,n PN-l,n ... n+1,n

iZ Nn .i Pn + 1,n n (7. 17)
•i. i i i

VN,n '" ' i +1n n 

L: YN 'Yn+1 An " '

Total computation on the forward phase will be about X(4/c-3)N2 operations.

We still need to calculate EN from XN. If an extra XN 2 storage locations are

available for saving the values of ajn then we can solve for E using simple

back substitution:

R;rnk Sllh.tii t in (Extra XN 2 storage)

For n =N, .. ,.0

Z = An a (7.18)
en j=n+l

_I_1__LI I__II 1·_1__· 1_1_1_ ___�1^(_1
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Total computation will then be about (2c-1)N2+O(lc 2 N) operations, which is

slightly faster than the Levinson-style algorithm in section 5.

If no extra storage is available, it will be necessary to recalculate the

values of aj n in descending order of n in order to solve for N. If the forward

phase has saved the values of Bi, p and N,n as suggested above, then the

backward substitution phase would be as follows:

RBankwArr Phap (no extra storage)

xN = XN (7.19)

For n =N,..., 1

- pn for j=n
t,=i for i=2,. ,

for =n+ ,..., N

aj-l,n-l aj,nfor jn+1.N

(value aN n _ 1 saved from forward phase)

en-1 = + Z1~ P in
i=2

N
n-1 = -1 - ZJaj.n-1

~n-1 j=n

Total computation time is now about X(5-2)N2 +0(C 2 N) operations, and total

storage required is about (2ic+1)N locations. This fast Choleski algorithm thus

uses 50% less storage and about IN2 more computation than the Levinson-

style algorithm.

The above algorithms are similar to the columnwise fast Choleski algo-

rithms for exactly Toeplitz matrices. As in section 3, it is possible to rearrange

the computation into a rowwise form, which computes the LDU decomposition of

RN row by row instead of column by column. Although we will not present the

details, this variation has certain advantages in problems such as adaptive

filtering where the data length N may not be fixed in advance.

__ _I __ __
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B. Formulas for RN and RN 1

Before continuing, given a vector zN, let us define:

1 Z1

ZN (8.1)
0 zN

Also let us define:

F= E=[2 n (8.2)

As we have emphasized in earlier sections, the fast Choleski algorithm can

be interpreted as an N step algorithm for performing an LDU decomposition

(6.10) of the matrix RN. After n steps of the columnwise fast Choleski algo-

rithm, we will have computed only the first (n+1) columns and rows of this LDU

decomposition. It is of considerable interest to note that the matrix RN can be

written as the product of these first (n +1) columns and rows of CXN and RTN plus

a matrix R, which is zero everywhere except in the lower right

(N--o-1)x(N- -1) corner, and which can be expressed as a sum of Ic products

of lower, diagonal, and upper triangular block Toeplitz matrices:

/o,o 0
o.O Eo 0 . .0 aN,o

RN= = : Kn · + Y (8.3)

0 en 0 an.n "-N,n

PNO PN,n

where:

v vT
=R ()D(e -)U() - L(,n)D(M' )U( T) (8.4)

where L_), U(T) should be interpreted as block lower (upper) triangular Toe-

__�__��_�_1_1�� I^ II·�·LI�_C-I I- I I---C-��l I I
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plitz matrices with first column of z (first row of ST) and D(S) is a block diago-

nal Toeplitz matrix with diagonal elements S. The proof of this formula uses

induction, and may be found in Appendix A. This formula has a very interesting

interpretation in terms of Schur complements. Partition off the first (n+1)

rows and columns of RN:

RN = C D (8.5)

where A is (n +1)x(n +1), D is (N-n)x(N-n), and B and C are sized accordingly.

Factor A=LaU a into lower and upper triangular matrices. Then:

RN = UJ a(Uca B)+ D-CA'J ° (8.6)

Comparing (8.3) and (8.6), it is clear that:

0 D-CA-1B Rn(8.7)

Thus the Schur complement D-CA-IB can be represented as a sum of lower x

upper triangular Toeplitz matrices composed of the n h order fast Choleski

predictors ,, ,,. _, . This fact could have been used, for example, to sim-

plify the doubling algorithms of Bitmead and Anderson1 5 and Morf. 16

The important Gohberg-Semencul formulas (2.18) and (2.19) for exactly

Toeplitz matrices can also be generalized to almost-Toeplitz matrices. Appendix

A proves that if RN and RN-1 are both invertible, then we can write R 1 and

RN 1 as sums of upper times diagonal times lower triangular Toeplitz matrix

products:

RN 1 = U(b,)D(eN )L() - U(Fn)D(MIl )L(E) (8.8)

N-1 = U()D( -I)L(g) - U(N)D(M )L(ET)

where U() (and L(LT)) are block upper (lower) triangular Toeplitz matrices

with last column z (last row T). These formulas are the upper x lower
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representation of R-1 whose existence was guaranteed in Theorem 1 of section

4. The advantage of these formulas is that they completely specify R-1 and

RN 1 in terms of the Levinson-style algorithm predictors a, bNa f. . and EN1

MK'1. We can thus calculate _N=RY~VN directly from the output of the

Levinson-style algorithm without needing to actually compute or store R1

Furthermore, computing RyIO/vD only involves multiplying (block) triangular or

diagonal matrices times vectors, which is equivalent to convolving the matrix

and vector coefficients. Thus we can use 2N+1 point FFT's to solve for : in

O(NlogN) operations. It is these formulas for R- 1 which allow the use of the

doubling algorithm described in sections 13 and 14 for computing N in

O(c 2Nlog2N) operations.

9. Alternative Algorithms Exploiting Other Almost-Toeplitz Forms

The Levinson-style and fast Choleski algorithms developed above are not

the only available algorithm for dealing with almost-Toeplitz matrices. Other

algorithms can be easily devised which normalize the various predictors in

different ways, or define the A, and e vectors differently (see, for example, the

square root algorithms of Morf2 4 or the Friedlander algorithm .)

Other almost-Toeplitz algorithms can be developed by using different for-

mulations of RN. In the preceding algorithms, we have assumed that RNA can be

written as the sum of c;+ products of lower and upper triangular Toeplitz

matrices.

RN = 2 L()Uk) (9.1)
-=1

Similar algorithms could be developed for the case when RN can be written as

the sum of c_ products of lower and upper triangular Toeplitz matrices:

RN = E U()L ) (9.2)
(l=1

-111_1_11_--··1�----C 11_1111-_1_-1__1_-____CX__IIIII 1�- I II·-
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The Levinson and fast Choleski algorithms appropriate to this form of RN will

look similar to those developed above, except that they work with the lower

right principal minors of RN. Mixed representations of the form:

RN = L()U(A) + U()LN) (9.3)
(=1 X1+1

could also be considered. Again, the corresponding algorithms will be similar to

those above, except that the recursions on the predictors will be considerably

more complicated.

Of course, as described in section 5, all these representations are

equivalent in the sense that each form can be converted into any of the others.

Nevertheless, certain representations may have slightly fewer terms than the

others, and may lead to a faster algorithm. Moreover, certain forms may allow

exploiting any additional structure in RN. Marple, 25 for example, considers the

modified covariance method of linear prediction in which a set of linear equa-

tions must be solved for which rank(RN)=rank( rRN)=6 . By choosing a mixed

representation of the form (9.3), however, he is able to exploit the symmetry of

RN about both the main and secondary diagonals in order to reduce the

number of different predictors to only 3.

Finally, we should note that the key concept exploited by all these algo-

rithms is the type of partitioning of RN in (5.3), where we express RN in terms of

a matrix RN- 1 , for which we know how to solve the problem, plus a correction

term of low rank. This same idea can be exploited in many other contexts as

well. Morf, for example, has developed numerous "time update" recursive algo-

rithms for linear prediction problems in which the size of the matrix does not

change from iteration to iteration, but low rank correction terms are added as

new data points arrive. Jain11 ,2 6 has also exploited this idea in order to express

a band diagonal almost-Toeplitz matrix RN as the sum of a circulant matrix (or

(I
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some other convenient matrix) plus a correction term. The Woodbury formula

(7.11) is then used to calculate R~ 1 using FFT's (or similar transform.)

10. Quadratic Forms

Many applications require evaluating the quadratic form:

= TR-L (10.1)

where R is almost-Toeplitz. If we use a fast Choleski method to factor

R=PA- l OCT, then:

r= [C1 ) A [ VY2) (10.2)

Evaluating a - 1 and p-1X.2 will only require forward substitution, and is easily

integrated into the fast Choleski recursion. The backward recursion will be

unnecessary. A different approach would be to use the Levinson-style algorithm

to factor R -1 =BTA-lA, in which case

=[ Bl )TA-'1 [ AL 2] (10.3)

Evaluation of the terms Bll and Ay2 is easily integrated into the recursion.

Still another approach would be to use the Levinson-style algorithm to calcu-

late the upper lower representation of R-l in (8.8), in which case can be

evaluated using Fast Fourier Transforms in O(NlogN) operations.

11. Symmetry

Both the fast Choleski and Levinson-style algorithms simplify when RN is

symmetric, Rij=Rji. The first step is to start with a symmetric representation of

RN in the form:

RN = E LC,)Uc))- L)U() (11.1)
i=F ie=l+1

For example, if RN were exactly Toeplitz, we could choose cl=l, K=2 and:

(0o)

_2 OF1 ,7(1)

r (N)

0

r(1) (11.2)

r(N)
_ _ L----�--------··-··lslL - __ �_� --- - ---- _I__ I I I
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With this representation, symmetry guarantees that:

an An 2n Al
ie A =± (11.3)

C, tin An A -n

where the + sign is valid if i/cl and the - sign is valid if Ic <i<c. These relation-

ships immediately cut the computational effort and storage requirements of the

fast Choleski algorithm in half. Solving for EN using our storage efficient

forward/backward recursion will require only about 2cN2 operations and about

(,c+1)N storage locations.

The Levinson-style algorithm does not simplify quite so drastically. The

chief savings is that now it is not necessary to calculate the reflection

coefficients l using the formula in (5.8), since they can be calculated exactly

fromVn and Mn -1:

= 0R (11.4)

where An = ±~, as explained above. This removes the need for storing and/or

calculating the values of R-, and it reduces the computational effort for calcu-

32
lating z to aboutN2 operations and about (2tc+1)N storage locations for V,

bNv. v, and v. The symmetric Levinson-style algorithm thus is still faster than

the symmetric fast Choleski algorithm for calculating z, but it uses more

storage.

12. Band Diagonal Toeplitz Matrices

When RN is band diagonal with Rij=O except for -qi-j<p, then the fast

Choleski algorithm simplifies so that the computational effort is only O(N(p +q))

operations. Band Diagonal Levinson-style algorithms can also be devised, 9 10

but they are usually numerically unstable. It is difficult to treat this case in
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general because of the wide variation in the structure of the problem for vari-

ous applications. We therefore treat the exactly Toeplitz band diagonal case in

some depth, and then indicate how the ideas can be extended to the almost-

Toeplitz case. Several examples involving band diagonal almost-Toeplitz

matrices are presented in sections 18,19.

Trenchg and Dickinson l° have noted that when the matrix RN is Toeplitz

and band diagonal, with r(n)=0 for n<-q and n>p, then the Levinson-Trench-

Zohar algorithm can be simplified somewhat. They pointed out that if we knew

the last p coefficients Np+1, . zvN of _N, then the remaining coefficients

could be recursively generated by exploiting the band diagonal structure of RN:

= 1 rn -r-(p -) n . -T(-q)Z+ +1 (12.1)

for n=N-, . ... 0. Dickinson and Trench further pointed out that calculating

the last p points of ZN only required knowledge of the coefficients ai,n and

bn ,n for j =0,...,q-1 and j =n -p + 1... n. Total computation required to

calculate N using the band diagonal LTZ algorithm is thus only about

(6p+4q)N operations. Total storage required for saving i, aj,n, bnjn and

r(n) is only about N+3(p +q +1) locations.

The crucial flaw in this algorithm, which was not remarked on by Trench or

Dickinson, is that the recursion in (12.1) for z n is often numerically unstable

for many problems of interest. Suppose, for instance, that RN is symmetric and

positive definite, with R(z)= r(n)z- n . Let us factor R(z)=P(z)P(z- 1) where
n =-p

P(z) is a causal and minimum phase polynomial of order p. The recursion in

(12.1) is thus equivalent to filtering y, with an infinite impulse response filter

with transfer function

1 1 (12.2)
zPR~z) _ P}z vP z) __1

..... -I I C-__l-·-*· 1 I - ~ I

zP R(z) zP P(Z -')P(z )
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Unfortunately, all the roots of P(z - 1) will be outside the unit circle, and thus

this recursion for calculating z n will be numerically unstable.

The fast Choleski algorithm, on the other hand, is ideally suited for solving

linear equations involving band diagonal Toeplitz matrices. Because only

(p +q +1) coefficients of R(z) are non-zero, the polynomials a n (z) and n (z) will

also have only (p+q+l) non-zero coefficients. Thus the matrices AN and PN

will be band diagonal. This enables us to significantly reduce the storage and

computation requirements of both the columnwise and rowwise fast Choleski

algorithms. Several variations are possible which use differing amounts of

storage and computation. The most storage efficient method (and the slowest)

uses less storage than the Trench-Dickinson algorithm and about the ame

number of operations. Unfortunately, this particular variation is not numeri-

cally stable in general. The less storage efficient (and faster) fast Choleski algo-

rithms, however, appear to be numerically stable.

We will assume that r(p),r(-q)O. Only the following coefficients of a n (z)

and fn (z) will be non-zero:

an(z): a-qn n a +,n an+l,n ... an+, (12.3)

n (z): 'P o. , n n+l,Tn ... ,n

It is thus quite feasible to compute the coefficients in ascending order of n

using the polynomial recursion in (3.3). About 2(p+q)N operations will be

required. If we need to solve RNFN=yAr, then we will use the usual

forward/backward substitution algorithm of section 3. The forward substitu-

tion phase for calculating Ad uses the values ,-j,n is ascending order of n, and

is easily integrated into the fast Choleski algorithm. If Nq extra storage is

available for saving the values of a-n for n =O, ... , N and j =-q, . ..,-1, then

the backward phase for computing N would take the form:
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Rrnkward PhA1p (Nq extra storage for a j,,)

For n =N . 0

-Zn max N-n) (12.4)
7n j=1

Total computation would then be about (3(p +q)+4)N operations, and total

storage required would be N(q+1)+2(p+q) locations. This is (3p+q)N fewer

operations but Nq more storage than the Dickinson-Trench algorithm.

If only 2N extra storage locations were available, then we could save the

values of the reflection coefficients tn and v, as they were calculated during

the forward phase of the fast Choleski algorithm. The backward phase for cal-

culating EN from NV could then start with the values of aN(z) and SN(z) and

exploit the backward polynomial recursion in (3.14). Renormalizing to decrease

the operation count, and noting that Pn+ qn-l= so that Pn+q, =Vn aq,n then

gives the following algorithm for the backward phase for calculating N: (we

delete the "-" to simplify the notation):

RaTlkward Phqp (2N extra storage for tn, Vn)

ZN = XN (12.5)

For n=N,...,1

Cli A1 = 2 A - n n Vilsn |for j =-1, ....- q +1

a,n-1 = a- n 1 -

axp,n -1 = a ,n( 1- vn)

1N in(q N -i+l)
rn-1 = Xn-1

Total computation required is (3p +5q +5)N operations and 3N+2(p +q) storage

locations are needed. This is still faster than the Dickinson or Trench algo-

rithms, but it requires 2N more storage locations.

_____LII_· ^�··I_ I� I _·
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Even if no extra storage locations are

the forward recursion, it is still possible to

descending order of n given only the values

on the forward phase. The trick is to note

can calculate the reflection coefficients

coefficients of a n (z) and fn (z):

n = an +n and vn =

It is easy to show that:

available beyond those needed for

regenerate the a, n coefficients in

of EN, aN(z), and PN(z) calculated

that in the band diagonal case we

tn and vn from the outermost

An +q,n

a-_q,n
(12.6)

a.q,n = a,O = r (-q) o a (12.7) 
for al7n (l2.7)9-p n = l_,, = r(p) 0 0

and thus the denominators in (12.6) will always be non-zero provided that

r(p),r(-gq)O. Given a, (z) and n, (z) on the n t h pass of the backward phase,

we can thus use (12.6) to calculate ,n and vn, and then exploit the backward

recursion in (3.14) to generate °,,l(z) and nl 1(z). Renormalizing to minimize

the operation count then yields the following backward phase for calculating

(N:

Rarkward Phaqpo (no extra storage)

XN = X-N

For n =N,..., 1

tn = a~Xn +p ,n

9-np,n

Vn 
an

aj,,,_- = 8ainn -,l,,, n for j=-q+l, ... .. -1

n jn - = n j,n - an, J and j=n+l1, .. .,n+p-1

(12.8)

a-q ,, -1 = a-q,n (1 -tn ,n )

an,,n-1 = -n N

I__ __ � ____
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9-p,nl-1= -f ,n (1 n Vn)

fn ,n-1 = V-nEN

1 ma(q N-n + 1)

EN i=1

Total computation is (5(p+q)+7)N operations, and total storage required is

only N+2(p +q) locations. If the matrix RN is symmetric, then p =q, n =vn, and

aj,n=gj,n. This symmetry can be exploited to reduce the computation to

(3(p+q)+6)N operations and N+(p+q) storage locations. These figures are

quite similar to those of the Trench-Dickinson algorithm.

Unfortunately, while our first two backward phase algorithms are numeri-

cally stable, this storage efficient algorithm is not. If RN is symmetric, Toeplitz

and positive definite, then it can be shown2 7 that as n-. - the polynomials a, (z )

and #n7 (z) converge to anticausal, maximum phase polynomials ,,(z) and ,,.(z)

with aj,.=j,,=O for j>O and R(z)=a(z)l.(z-1). The minimum storage back-

ward phase algorithm above attempts to reverse this stable recursion, starting

from aN(z), fN(z) and generating ao(Z) and fo(z) after N steps. The difference

between aN(z), PN(Z) and a,,.(z), ,.(z), however, can be quite insignificant for

large N, and small errors in the values of aN(z), N(z) will inevitably lead to

large errors in the final values of ao(z) and 0o(z). (This problem can be par-

tially cured by saving "snapshot" values of an(z), 9n (z) after every m steps of

the forward recursion, and using these to periodically "reset" the backward

recursion on can(z), n (z).)

To demonstrate the relative accuracy of our various methods, we have run

the Levinson-Trench-Zohar (LTZ) algorithm the Trench-Dickinson (TD) algo-

rithm, and the last two variants of the fast Choleski algorithm (the "extra 2N"

storage and the "minimal" algorithms) on the same band diagonal Toeplitz

��_�1_^11^111 _1�- �--�·-.��-l-tlllll_·li�·llll�__-l-----· --IC_ I_-· IL 11
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matrix. The coefficients of XV were independent gaussian random variables

with unit variance. The following table compares the mean square error

N
E (X- ,~)2 between the calculated value of N and the known solution ZN for

n=O

various values of N. (Double precision floating point (64 bits) was used.)

R(z) = ( 1 )(1-87z -1)(1-.9e -j/4Z)(1 _.9ge ,i/4, )

LTZ TD Fast Choleski
extra 2N minimal

N=20 5.0 *10-27 3.5 *10-25 1.3 *10-27 1.2 *10-25
N=50 6.1 *10-27 3.0 10 - 1 3 2.8 *10-27 4.9 *10-22
N=100 2.9 10 - 26 1. *10+4 7.2 10-27 6.2 10-16
NV=250 6.7 10-26 2.3 10+37 6.6*1-2 96 *10-1

Trench-Dickinson has the worst behavior due to the instability of the

recursion in (12.1) for x(n). The fast Choleski algorithm using 2N extra storage

locations to save the reflection coefficient values Cn and vn from the forward

phase is most accurate. The minimal storage fast Choleski algorithm is also

clearly unstable, though it is not as bad as Trench-Dickinson.

Exactly the same type of reasoning can be applied to almost-Toeplitz prob-

lems involving band diagonal matrices. Only a few coefficients of the vectors _,

L_, . 3g will be non-zero, and this drastically simplifies the computational

effort and storage requirements. In solving for EN, a numerically stable back-

ward phase will require saving the 2(xc-l)N values pi and 7n. Several examples

are given in section 18,19.

13. Doubling Algorithms - Exactly Toeplitz Matrices

The Levinson-Trench and fast Choleski algorithms are not the fastest avail-

able algorithms for solving Toeplitz or almost-Toeplitz problems. Gustavson and

Yun 14 have shown that the exactly Toeplitz problem can be solved using a Eucli-

dian algorithm involving repeated division of polynomials. Applying the divide

and conquer strategy of Aho, Ullman and Hopcroft (chap 8)13 and using Fast

- --- -
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Fourier Transforms for fast multiplication of polynomials, they arrived at an

algorithm for calculating AN(Z) and BN(z) in only O(Nlog2 N) operations. Using

the Gohberg-Semencul-like formulas (8.8) for R1, they then calculate

.4N=R~1/N in only O(NlogN) additional operations. Their algorithm does not

require the strongly non-singular constraint of Levinson recursion. Bitmead

and Anderson 15 and Morf16 applied a similar divide and conquer strategy to the

almost-Toeplitz problem, although their algorithms are rather complex and are

not easily automated. Bitmead and Anderson, in particular, rely on a "generic"

method for factoring a low rank displacement matrix, which will fail in many

applications.

We take a somewhat different approach towards deriving these doubling

algorithms, in which we exploit the resemblance between the fast Choleski

recursion and a Euclidian algorithm. Euclidian polynomial algorithms calculate

the greatest common divisor of two polynomials by recursively dividing polyno-

riials. Thus if Fn(z) and Gm(z) are n t h and mth degree polynomials respec-

tively with n>m, we can divide Gm(z) into Fn(z), giving a quotient Qn,-m(z) of

degree (n -n) and a remainder Hf(z) with degree r<m:

Fn(z) = Q_(z)Gm(z) + H(z) (13.1)

The key idea is to subtract shifted and scaled versions of the polynomial Gm(z)

from Fn (z) in order to drive the (n-mr) highest order coefficients of Fn(z) to

zero. Now the polynomials cxn(z) and Cfn(z) potentially have infinite degree,

and thus applying a Euclidian algorithm to these would be infeasible. However,

the fast Choleski algorithm can be loosely viewed as an "inside out" Euclidian

algorithm, in which we subtract shifted and scaled multiples of zpn(z -1 )

from a(z) and vice versa in order to drive the positive coefficients to zero,

starting at the zeroth coefficient and working outward. It is thus reasonable to

expect that the HGCD divide and conquer strategy of Aho, Hopcroft and Ullman

_____II_ I _ __1__1 _I_·___I_· ·�-_IV-�_�-�Y�--�-----·-L·l·-^-� FI--LII._II---- -II1�--�- ----1 --1------^-1_11_--·1_----·-------
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for accelerating Euclidian algorithms can be modified for our "inside out" Eucli-

dian algorithm. The resulting scheme retains the strongly non-singular con-

straint of Levinson recursion, but its structure is more intuitive than that of

Gustavson and Yun. Furthermore, it directly generalizes to almost-Toeplitz

matrices. For exactly Toeplitz matrices, our method requires approximately

16Nlog 2 N operations and about 10N storage, and is thus faster than Levinson

recursion for N>2500.

In this section we will treat the case of exactly Toeplitz matrices. Let us

first put the Levinson recursion on the predictor polynomials An(z), Bn(z) into

matrix polynomial form as follows:

An (Z) 1L-1(Z)l a (Z-1) n= zBn-l - ) (13.2)

1 ,z -

where On - = -1

The matrix On,n-1 transforms the (n-l)th order polynomials into the nth order

polynomials. Let us define n ,m for n>m by:

nm =n,n-%n-l,n-2 fs... ml,m (13.3)

Multiplying this matrix 6nm by the m th order polynomials Am(z), z-mBm(z - 1 )

yields the nth order polynomials A n (z), z-nBn(z-1). In particular, for m=O:

An(z)
Z n(Z ) a lPo 1 (13.4)

The goal of our doubling procedure will be to calculate the matrix polynomial

%1N,O and the error Nv. Formula (13.4) will then be used to give the desired poly-

nomials AN(z), z-NBN(Z-1), and R 1' can be constructed using the Gohberg-

Semencul formula (2.18).

Multiply both sides of (13.2) by R(z) to get a matrix polynomial form of the
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fast Choleski recursion:

an () a, (z

z (- ) J N z-mf 'a(Z-') (13.5)

Note that the fast Choleski algorithm uses exactly the same recursion as the

Levinson algorithm. The important point is that it is easy to derive the matrices

an, m in terms of the coefficients of the polynomials am(z), z#,fm(Z- 1 ). To

calculate 6n n-1 and e,, all we need are the nth order reflection coefficients ,

v,. Given cxn-l(z) and fn-1l(z), these can be calculated as follows:

n:-1! = CO,7-1 = O,n-1

n= ann -1
En -Irn-1

= n 1 (13.6)
en -1

tn Z
r6n,n- 1 = -1Vn z

en = En-1(1 n n,)

All we need to calculate n,n-1 and En, therefore, are the 4 coefficients aO0n- l .

can,n-l flo,n-1 fln,n-l' In a similar manner, to calculate ,m for -m>l, we

will need the values of the (+l) th through n t h order reflection coefficients.

These can be calculated solely from knowledge of the 4(n-m) coefficients aj,,

Bjm for j =-(n-n)+l, .. , O and j =m +1, . . . n.

To calculate its m for n>l, we will use a divide and conquer strategy.

We start with our 4(n--m) coefficients of ac(z), Pm(z). Let =P(n+m)l be the

smallest integer greater than (n +m). The divide and conquer strategy will be

to compute Asm and 6nj separately, and then form in, = %n,1131,m

Rtp 1 Calculate t1,m by calling our doubling procedure recursively with

the coefficients:

a-(m)+1,m ... laO,m am+1,m ''' oti,m (13.7)
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-(t-m)+l,m ... O,m #m+lm ' ' ,m

Now in order to calculate 6nl we will need the appropriate coefficients of a l (z)

and fl, (z).

Stap 2- Calculate the coefficients:

a(n-)+1,1 0AXO a 4+1 an (13.8)

9-(n )l, I ' ' 0, aIr +l, ' ' ' an,t

by computing:

a, (z) am(z)
| (z -1) ='i,m z-m m (z-l) (13.9)

The coefficients of .,m are polynomials of degree no larger than I-m. Thus to

calculate the values of a+l,, t... ,an,L, for example, we will only need the

coefficients am+l,m ... an,m and P-(n-m)+ ,m, ...0o,m' Moreover, since mul-

tiplying two polynomials is equivalent to convolving their coefficients, it will be

possible to compute a+1,l ... an by taking an (n-m+l) point FFT of i,m,

multiplying by (n -m +1) point FFT's of am+l m ... , anm and of

-(n-)m)+l,m .... o,o,m and then calculating an inverse (n-m+l) point FFT.

The other needed coefficients of a (z) and 8fi(z) can be computed similarly.

PtPp R: Calculate ,nj, and en by calling our doubling procedure recursively

with the coefficients of al (z) and pBt(z) computed on step 2.

S.t.oep 4 Compute n ,m = n,At,m

Multiplying these two matrices simply involves multiplying (n -) t h degree poly-

nomials times (-m) th degree polynomials to give (n -- )th degree polynomials.

Once again, since polynomial multiplication is equivalent to convolution of the

polynomial coefficients, these polynomials can be computed using (n-m +l)

point FFT's.

Now that we have defined how to recursively compute 1,,m for n -m =1 and
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for n ->1, we can state the entire doubling algorithm for calculating R 1:

a) Initialization: ao(z) = fl0(Z- 1) = R(z)

b) Calculate 9N,;0 and EN by our 4 step doubling algorithm

c) Compute AN(z) and BN(Z) from$3N,O using (13.4)

d) Construct RN 1 from the Gohberg-Semencul formula (2.18)

Note that to solve iEN=R jt it is not necessary to multiply out the matrices in

the Gohberg-Semencul formula for R 1 . Multiplying a triangular Toeplitz

matrix by a vector is equivalent to convolving the (N+1) elements of the matrix

with the (N+1) elements of the vector. With some care, we can thus compute zN

using eight (2N+1) point FFT's in about 16NlogN operations.

Total computation time is dominated by the time required to compute Nv%,0.

Let C(n-m) be the computational cost for generating 6n,m. In step 1 of our

N
doubling procedure, we will compute 3N in C( ) operations. Step 2 can be

v so

solved using four (N+1) point FFT's of the entries of N , four (N+1) point

FFT's of N positive and N negative coefficients of ao(z ) , flo(z), four (N+1)/2

point complex vector multiplies and adds, and four inverse FFT's to compute

N N
the needed positive and -negative coefficients of a N(Z) and B N(z). Step 3

2~2 2

computes i3 N recursively in C( 2- ) operations. If we have saved the FFT's of
N.- 

15N from step 2, then step 4 only needs four (N+I) point FFT's of the entries of
To2

~ N, eight (N+1)/2 point complex vector multiplies and adds, and four inverse
NT

FFT's.

With some cleverness, this computation time can be further reduced. For
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example, the last step of the calculation of N (and 6 N) computes the

N
approximately - point transforms of 19N (and 1 N), and then inverse

2 - , N,V

transforms them. The very next step is to take the approximately N point

transforms of 6 N and $ N in preparation for further computation. Since the
-,o N,-

N point transform contains all the even samples of the N point transforms, it is
2

actually only necessary to compute the odd samples of the N point transforms.

This reduces the computational effort for computing the eight N point FFT's of

'ON and 9 N by about half. Thus:,o N,-

C(N) P 2C(--) + 16NlogN

= 16NlogN + 2 16 log N + 4[16 N109 +

$ 16Nlog2 N (13.10)

This algorithm will thus be faster than Levinson recursion for N>2000.

We will need 2(2N+1) storage locations for saving aO(z) and ,60(z) until

aN and /N are calculated. Also a workspace of about 4(N+l) locations willTO -o

be needed for computing N , plus 4(N+1) more locations for computing I N'
20 2

However, if the only purpose for computing 6No is as a means for getting the

Levinson-Szeg6 polynomials AN(z) and BN(Z), then as soon as ' N is computed,
wecouldcalculateAN(andnddiscardN Thenwhen Nhas

we could calculate AN(z) and BN(z) and discard 3 N . Then when %9 N has
~ o N, -

been found, we simply multiply by AN(Z) and BN(Z) to get AN(Z), BN(Z). This
2 2

will cut the necessary storage to approximately 10N locations.

Further optimization will be useful for choosing reasonable sizes for the
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FFT's. For example, it may be worthwhile to split the computation of NNo into

three or more phases in order to efficiently use available storage or FFT sizes.

Also, beware also that choosing N+1 to be a power of 2 is a poor idea, since the

transforms on the next lower level will need to be length N-+1, which will be

slightly too large for the next smaller size transform.

14. Doubling Algorithms - Almost-Toeplitz Matrices

Except for one minor difficulty, the doubling procedure presented in the

previous section can be applied directly to the almost-Toeplitz matrix algo-

rithms. The problem is that the doubling algorithm for exactly Toeplitz

matrices relies heavily on the exact symmetry between the fast Choleski and

Levinson algorithms. By accelerating the fast Choleski algorithm we simultane-

ously accelerate the Levinson algorithm. The almost-Toeplitz problem has a

similar symmetry between the fast Choleski and the extended Levinson-style

algorithm, except that the reflection coefficients vI and , l needed by the

Levinson-style algorithm do not appear in the fast Choleski algorithm. To get

around this problem we will have to restrict our attention to almost-Toeplitz

matrices RN for which the values of v~ and / can be deduced from the other

reflection coefficients. For example, suppose RN could be written as the sum of

a Toeplitz matrix T plus products of lower and upper triangular Toeplitz

matrices:

RN = T + E LU( (14.1)
i=9

where Ti =t(O)•O. To put this into our usual lower x upper representation,

choose:

____ dI1~f- (14.2)
t (N) t (-N)
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0 0

c 2 t () __ _ t (-)

t (N) t(-N)Iv C tdN)nohe

Note that if RN can be represented in this way, then v and /L do not have to

computed independently, but can be found from:

V = = n (14.3)

t = n = A

In some cases RN does not have the form (14.1), and cannot be put into any

other form in which vn and p4 can be deduced from the other reflection

coefficients. Then as a last resort, we can consider using a non-minimal

representation for RN so that C is linearly dependent on the other E. vectors,

and dI is linearly dependent on the other At vectors. When this is done, v 1 and

/L can be computed as appropriate linear combinations of the other vn and /4n

coefficients.

With this caveat, we now develop a doubling procedure for the case of

almost-Toeplitz matrices. Define the polynomials an(z), fn(z), 9ni(z) (z)

and An(z), Bn(z), f(z). e(z) and Ci(z), Di(z) in the obvious ways. Then the

fast Choleski recursion can be stated in matrix polynomial form as follows:

fn(Z) n-l(z
p2,(z) ( 14.4)
Pn 1 n (Z 4

n,((Z) 9n (Z)

lne n-1 n)
where 4n z n n t2 Z -10 0where n,n -1 = - .0I

'n (z) ,,()

: = Dn,n-1 : (14.5)

'n(z) An-_1(Z)
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2z 0 tn°
where n- = + 'I

The matrices - ,n- transform the (nl) t h order polynomials into the

thn t order polynomials. Define 6n,m and n.,m for n >m by:

On,m = n,n- n-l,n-2 'm+l,m (14.6)

Dn,m = n,n-In-l,n-2 |m+l,m

These polynomial matrices On.m and nm have degree (n-m) and they

transform the mth degree polynomials into the nth degree polynomials.

The Levinson-style recursion can also be stated in a similar form:

1

Z-n B(Z 1 )

f 2(z)

f7n(z)

rn,n -1

where On,n-1 =

1

Z-nAn (Z 1)

e, (z )

I

VI/n
C

-= °n,n -1

where n,n-l =
f1i

1

z-(n-l).B, (z -)

fn - (z)

f n-lI (z )

1'd
/o

n ,n -1

1
z -( )An -, ( - )

en-1 ()

0 1

/ C 
O '6,n -1 Ij

(14.7)

(14.8)

Define n,m ad in,,m for n >m by:

16 ? :t· (14.9)
nm = -n,n-ln-l,n-2 ' m+l,m (14.9)

jn,Tm = - n,n-1 n-1,n -2 '' Im+1,m

Because , n-1 and Wn,_n-I are block lower triangular, fn,,m and wn,m will have

6

j
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the form:

1 0
,n,m = * (14.10)

n ,m

I O

Our strategy for calculating RN 1 or EN is the same as in the exactly Toe-

plitz case. Our goal is to compute .N, -N, fL. ar, EN' MN 1 so that we can com-

pute RN1 as a sum of upper times lower triangular Toeplitz matrices as in (8.8).

We do this by computing N,0 and wN,o using an accelerated fast Choleski algo-

rithm. The desired vectors can then be found from:

1
z-NBN(z -1)

f ( )

1

z-NAN(z - )

eN(Z)~(~)~~~~~~~

1
1

~= N,o Co 2 /Oto (14.11)

c O/ so

1
1

ONO do / to| (14.12)

We again use a divide and conquer strategy to compute On,m and n,m. Using

our assumption about the form of RN in (14.1), we can compute on,n-1 and

Conn- 1 from an-ln-, l n- -1 ~-1 M-

Pnn -

an = ,n-1

A n::= Mn- 1. P1
~-~_; T i n(14.13)
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en-1 = an-l,n-1 = n-l,n-1

En = En-l -iia
t=2 nr

Calculate v and j41 from the other reflection coefficients as in (14.3)

Compute 9,n-1 and Cn,n-l from (14.4,5) and (14.7,8)

Note that computing dn,n-1 and n,nl-1 only requires knowledge of the 2ic

values anln_ 1 , n-ln- n,n-l nn-l'

Now to compute nm and Cnm for n-nm>l we will need to start with em,

M 1 and the 2I(n-m) coefficients aj_lm, j-l,mi oj ,m im for j=ml,...,n.

Let L =[i(n +m).l Then:

Step 1. Compute y,m, ° GL,m and M-1, eL by calling the procedure recur-

sively with coefficients

for j=m+1, ... ,n
Iam ,m .m +''P',m for i=2,. (14.14)

M-1 . e

Stpp .. Compute the coefficients acj-l,, pBji-. VI,. ',PJL for j =+1 ... n by

exploiting the relationships:

gm(Z)
1l (Z) Ym2(Z)

:= ,lm (14.15)

aL (z( )m Z)

ctj(z) am(z)

,m :z)

Stpp .. Compute O9,t,. cnPL and M-1, E, by calling the procedure recur-

sively with the coefficients calculated in step 2.
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Step 4 Compute , m, =n,t 1, m and cn,m =Cn,lWL,m

Step 2 can be performed using (n-m+l) point FFT's to convolve the (-m)

degree polynomial entries of O, m and wl, m with the appropriate elements of

the right hand sides of (14.5). Step 4 can also be performed using (n-m+l)

point FFT's to convolve the (n-1) and (-r) degree polynomial entries of n,, ,

cn,l and 9L,m, oI,m. In all, steps 2 and 4 will require about (6/c2 +8x) FFT's of

length (nm+l). Computing lON,o and CN,O will thus require about

(6s2+8c)Nlog2 N operations. The vectors .Nr, bN, ,. _ can then be found from

(14.11), (14.12) in O(N) operations, and the solution .N can be computed in

O(cNlogN) operations using formula (8.8). Total storage required will be about

(4c 2 +8ic)N locations. Careful optimization can probablj reduce all these

requirements somewhat.

15. Degeneracy

The Levinson-style, the fast Choleski, and the doubling algorithms will all

fail unless the matrix RN is strongly non-singular so that the prediction error

,n is always non-zero. One practical solution to this difficulty, if the prediction

error E, should hit zero at some stage, would be to simply perturb the matrix

RN slightly in order to drive En slightly away from zero. More elegant methods

for dealing with this difficulty, however, can be devised. The strongly non-

singular constraint arises from Levinson recursion's inflexible strategy of solv-

ing a series of problems R = in which the matrix Rn is always the nth prin-

cipal minor of RN. A very desirable solution to the problem of zero prediction

error, therefore, would be to incorporate some form of partial pivoting into the

Levinson algorithm so that the sequence of nested minors Rn do not necessarily

lie along the main diagonal. Musicus has in fact presented a Euclidian algo-

rithm replacement for inverse Levinson recursion which has exactly this struc-



- 62 -

ture. Unfortunately, this solution does not appear to be easily applicable to the

forward Levinson recursion algorithms that we have discussed in this paper. A

less desirable solution to the problem has been suggested by Gustavson and

Yun, 14 whose algorithm effectively uses the lower left minors of RN to recur-

sively construct n, bN. Bareiss also suggested a fix for one type of degeneracy

in the Choleski algorithms. We present yet another approach, a "shifting" pro-

cedure which resumes the Levinson recursion when the prediction error en at

some stage is exactly zero. Our approach will not cure the problems of numeri-

cal ill-conditioning which occur when en is very tiny but non-zero, but it should

be regarded as a first attempt toward a more general procedure. The

Levinson-style almost-Toeplitz algorithm can also be patched up to handle the

case when en=0, but the method requires adding an extra predictor, and is

sufficiently inelegant that we do not present the details

Assume that RN is exactly Toeplitz, and is non-singular but not necessarily

strongly non-singular. We will then modify Levinson recursion so that at the

n t h stage we calculate (n +rn) long vectors _ and b satisfying:

RN O = ; RN _ = L (15.1)

where the first rn coefficients of an and b are zero:

n = (T 1 al,n ' a )n, (15.2)

b = T b. b o, b )T

We start at n=O. Let o be the smallest positive integer O-<To-N such that

r(-r 0o)•O. Then choose:

So _ 1 to == (-ro) (15.3)i%] oz]~~~-6
__ _ _
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Clearly there must be such an integer To or else the entire first row of RN will

be zero and RN would be singular. (In most cases, r0=O0 and the initial choices

above are similar to the initial choices of the usual Levinson algorithm.) Now we

can calculate the nth order solutions a, b in terms of the (n -l)th order solu-

tions in the following way:

an -1 1 0O 
a l ° J b (15.4)

=-1 0 +En 

where:

n-I
n - r(n-j)an-

j=0

In =-E r(-j -I)bn jn-1 (15 5)
$='

en = En-1 - n Vn

Trouble arises in this algorithm at some stage m if when we compute am from

m-m-l, b- 1 in (15.4) we find that rm=0. This makes it impossible to calculate

_. One possible solution to this deadlock is to try shifting the coefficients in

the vector am down a steps until we find a (m +rn_+a) long vector [m with

Tm =rml+u leading zeroes such that:

RrSN j = * (15.6)N =(
0

where m+c, = [r(O)* r()) [5 j 0

Clearly there must be such a a•N-n -T-_ for which we would find Em+aO, or

else we would find that

RNl = (15.7)

-- I
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with a mO, which would contradict our assumption that RN is non-singular. Let

us define the errors En = r +a for n =m, ... ,.n +a, and let us define the (n +m)

long vectors a, by extending a with zeroes:

r
n = m (15.8)

m -1 

Extend -_m with a zeroes, bm- ( 0 and now recursively generate the

(n +-m) long vectors bm ... , bm satisfying (15.1) by the following recursion:

For n=m, . m a

= = b_ + - an (15.9)

where vn = - i (-1)...r(--t)) Vn -1

At this point we will have (m +a+Tm) long vectors am+ and bm+v which satisfy

(15.1) whose first m+a=T=Tr_1+a coefficients are zero. We now resume our

normal Levinson recursion step (15.4) at n=m+a+l. Should En=O again at

some stage, we simply repeat our shifting step.

Eventually we will reach a stage M=N-T M at which the vectors a d, b d will

have length N so that they can no longer shift down. For the last TM steps we

will recursively create vectors by shifting -1 up one notch and adding an

appropriate multiple of ~ to ensure that only the last N-M coefficients of

RNan will be non-zero. (Shifting n-1 upwards is feasible since its first

TM-(n -M) coefficients will be zero.)

For n=M+l...,N

aN,n -1
-t = aNn-...1 + (n(15.10)

0
qN-i

where On =- Z r(M-j)a+ln- 1
J=N-n

_�____��11_1 ___ _�___ _�_ __ _
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It is easy to verify that only the last N-M coefficients of RNa will be non-zero;

call these coefficients a/+l,n aN,m:

+1

RNE:, = . for n=M+l,...,N (15.11)

aNm

Now to solve for the vector EAN, we can start by using our usual algorithm

for the first M steps:

z_ 1 =N0_

For n=, ..... M (15.12)

En = n-1 + -nb

N
where X,n = y, - r (n -j)x.n - 1

j=0

At this point the vector M will satisfy:

+1

Af+l
RNyS =N - . (15.13)

XN

Computing the final solution_ Z will now require adding appropriate multiples of

,... .~ * to ZAg,

N
E = + E 17. a, (15.14)

n=M+ll

where the coefficients On solve:

aM+1,I+1 " a+I,N 1]m+l X'M+

: : = : (15.15)
N,M+1 a rN, N 7N N

This matrix on the left of (15.15) can be shown to have full rank because the

vectors s,/+1 ... SaN will be linearly independent.

This particular algorithm can be viewed as an extension of an idea by

Bareiss6 for dealing with the case when r(0)0. It has an interesting
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interpretation in terms of non-principal minors of RN. Suppose that step n of

the algorithm is a "normal" step using the recursion in (15.4). Then because

the first l n coefficients of an, are zero, the last n coefficients of these vec-

tors must satisfy:

~ a J L=) (15.16)

; be On

where:

T (- r) . (- -Tn)

-7"L = ·. : (15.17)
r (n Tn '(- fi)

In other words, the last n coefficients of the vectors a, b satisfy a set of

linear equations involving a non-principal minor Rn of RN. This modified Levin-

son recursion therefore starts by solving linear equations involving principal

minors Rn of RN. If one of the minors Rm happens to be singular, however, the

algorithm effectively shifts off the main diagonal to a non-principal minor RC+ a

and resumes the iteration.

18. Example - Covariance Method of Linear Prediction

We first consider a problem originally treated by Morf, Dickinson, Kailath

and Vleira.2 8 The covariance method of linear prediction fits an optimal pth

order linear predictor to a given N point data sequence x(0) . . . x(N-1) by

minimizing:

E mm- Nn1 - (x(k)+alx(k-1)+ .+ax(k-p)l2 (16.1)
Since Nthis is quadratic in the unknowns a, inimizing (16.1) is equivalent to

Since this is quadratic in the unknowns aj, minimizing (16.1) is equivalent to

I�l��--_IYII1-·-- �-_-·�_I�__ _- X-_ -· - I�- _I
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solving:

RP 0 (16.2)

I1 E

where: [R., = w (k +)w (k +j)

This matrix Rp can be written in the form of a symmetric almost-Toeplitz matrix

with displacement rank ;=4:

11P | ° -o ccA1 + AdHS+ AC C Ad'L n r h(16.3)

with

= V_7_ Rl l 2 = 1 R
R0,0 0 R'

(16.4)

0 0

3 X (N-P) 44 ~ (0)

(N-1) X(p-1)

We now simply apply our symmetric almost-Toeplitz algorithm to calculate an,

. After p steps, the vector will solve (16.2), and will thus be the desired

predictor, with E=ep the prediction error. Moreover, the intermediate solutions

m, En for n=O, ... ,p represent optimal nth order forward predictors and

prediction errors given the data z(p -n), ... , (N-l).

In some cases, it would be convenient for the intermediate solutions a to

represent the optimal nth order forward predictor given all the data

xz(),... ,(N-1). This becomes possible by choosing a mixed representation

for Rp like that in (9.3). Let Rn be the covariance matrix formed as in (16.2)

with p replaced by n. The matrices Rn are no longer the principal minors of
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Rp, but instead satisfy:

zx(N-n)
R n -1N, = z (N-1) -)

|Rn -I(N-1) [(N ) I (16.5)

0

Rn = ' Rn-I
z(n-1)

We will need 4 predictor vectors in order to solve this problem recursively.

Several selections are possible; we choose to calculate a,, , , defined

by:

Rn t R, |1 5
(16.6)

(N-n -1) x (0)
Rn = [) RnLn = :

z (N-1) z (n)

The nth order predictors can be recursively computed from the (n-l 1 )th order

predictors. The computation is somewhat involved, however, and so we will omit

the details.

A similar approach could be used for other pre-windowing and post-

windowing covariance methods, where we pad the data sequence on the left or

on the right with zeroes. Padding on the left with zeroes ensures that 4=O in

(16.4), and then we need only retain 3 vectors in the recursion. Similarly, pad-

ding on the right makes c =0. Padding on both the right and the left, as in the

Yule-Walker equations, sets = 4=0, and the matrix Rp becomes exactly Toe-

plitz with displacement rank 2.

__�_I__�� �L_ �I___ � �
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17. Example - Modified Covariance Method

The modified covariance method of linear prediction is quite similar to the

covariance method above, except that it selects an optimal predictor by averag-

ing the forward and backward prediction errors:

2(N-pN) p

+ N (x(k)+alx(k+l)+ · +ap(k+p) 

This is again quadratic in the parameters aj, and so minimizing (17.1) is

equivalent to solving:

ap 0

Rpa =0 (17.2)

1 E

where Rp, =ZVS| I x (k +i)x (k +j) + p (k -i)z (k -jwhere R 1.2(N-) I o k=p

Marple2 5 treated this problem originally. It is possible to represent Rp as a sum

of lower x upper triangular Toeplitz matrices with displacement rank c=6. How-

ever, Marple pointed out that if we let Rn be the modified covariance matrix for

an n th order model, rather than simply the nth principal minor of Rp, then:

0 0

(O) 0 x (0) x(n -1) (N-1) 0 x (N-1) x(N-n)

x (n-1) z(N-n)

(17.3)

z(n -1) z(N-n)
[ Rn-1 : ((n -) . (0) : (N) =(N-1) 0 )

R · o(0) - (N-1)
0 0

This partitioning can be exploited to produce a fast recursive algorithm for

computing the modified covariance predictor. We will need 6 different predic-

tors; let us use:
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Rn o)n-

z(0) X(n)IRn J n:] 1R,,z (17.4)

x (N- -- x(N-1)
= · R 

= z(N-n ) = (N-n)-1)

These can be computed recursively by an updating procedure which is concep-

tually similar to those we have used before. The important point noted by Mar-

pie, however, is that the matrices Rn are not only symmetric about the main

diagonal but are also symmetric about the secondary diagonal (i.e. they are

persymmetric.) Thus a, ~ are simply the vectors b, f upside down. Only 3

different predictors will need to be calculated; in fact, the final algorithm he

derives is almost as fast as Burg's linear prediction algorithm.

18. Example - Rational Toeplitz Matrices

A common problem in many filtering and deconvolution applications is to

solve a set of linear equations:

SNN = (18.1)

where the (N+i)x(N+i) matrix SN is exactly Toeplitz and its elements

Sij= (i-j) form the inverse Z-transform of a rational polynomial:

S(z) = s(n)z- = z) (18.2)
G(z)H(z)

We will assume that G(z) and H(z) are causal monic polynomials with all their

roots inside the unit circle:

G(z)=go+glz-l+ . +gzP ;g0=1

H(z) = h + h + + hz-q ;h 0o=l (18.3)

F(z) = f_z + + f ; o:0

------ ~ ~ llll~l -- I - -
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Dickinson 19 has treated this problem and shown that the rational polynomial

structure can be exploited to linearly transform the set of linear equations into

a form involving an almost Toeplitz band diagonal matrix with displacement

rank ic=2. He then showed that a fast Levinson-style almost Toeplitz algorithm

could be used to solve for zN with a number of operations proportional to the

length of the data N times the degree of the rational polynomial. His approach,

however, had two faults - it used a slow version of the Levinson-style algorithm,

and the final step involved a recursion similar to (12.1) which is usually numeri-

cally unstable. We will present a much superior approach in which we apply our

fast Choleski algorithm to this problem, and thereby derive an algorithm which

is at least 33% faster and uses less storage than Dickinson's.

Our presentation of the problem initially follows Dickinson quite closely.

First find a partial fraction expansion of the rational polynomial S(z) as follows:

WG(z) H(z- 1)S(z) =(z) + H(z -) (18.4)

where V(z) and W(z) are causal polynomials with degrees =max(-r,p) and

a=max(a,q) respectively. (A very fast method for calculating V(z) and W(z) is

the Euclidean algorithm developed by Musicus.) The first term in (18.4),

S'(z )=G(z), has an inverse Z-transform s+(n) which is causal, while the

second term, S(z)= W(z-1) has an inverse Z-transform s-(n) which is anti-
H(z 1 )

causal. Then

s n) = s (n) + s (n) (18.5)
where s+(n)=O and s-(-n)=O for n<O

In an analogous fashion, we can decompose the matrix SN into a sum of a lower

triangular Toeplitz matrix S and an upper triangular Toeplitz matrix S with

entries S =s +(i -j) and Sij =s (i -j):

1 -
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SN = SN + SN (18.6)

Define:

go ho to W0

0 0 0 0

where the (n+l) long vectors are suitably truncated if n is smaller than the

degree of the polynomial. Because of the isomorphism between multiplication

of lower (upper) triangular Toeplitz matrices and causal (anti-causal) polynomi-

als, it is easy to see that:

LN)SN = ) (18.8)

SNU() = U(\J)

Combining (18.8) and (18.6), the matrix RN defined by:

RN = L(gN)SNU(h)

= L(_v)U (A) + L(g)U( )- (18.9)

will be band diagonal and almost Toeplitz with displacement rank ,c=2. This sug-

gests the following three phase procedure for calculating «N:

a) Calculate iG=GNYLN

b) Solve RNN=yN

c) Calculate N=HTN

Steps a) and c) only involve multiplying a band diagonal Toeplitz matrix and a

vector; they thus consume only NA and Nq operations respectively. Step b) can

be most efficiently solved using a band diagonal fast Choleski algorithm.

The matrix RN will have the shape shown below:

�_�_����11_1 · __1�1_1 ·_�__111111____1�__1_ --·- 1� 11^--11_11 ^·--- 1 --- I---
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lo
Except for the upper left yxU corner, RN will actually be a banded exactly Toe-

plitz matrix with entries equal to the numerator polynomial coefficients:

Rij 0 | o else for i> , j>d (18.10)

(Beware that the width of the band of non-zero diagonals, '+a+1, may be

smaller than the width of the upper left yxa corner if T<p or a<q.) To apply

our fast Choleski method to this problem, let us assume that voho0 1, and take:

C d1 = h1 = 2 = 2 , (18.11)

(If voho0 0, we can try swapping the roles of c, I and 2, . ) Because RN is

only band diagonal, only the following coefficients of the vectors A, _, l and

2 will be non-zero:

fnn ' ma(,n +),n

an,n ... ' amax(an +a),n (18.12)
2 2

n +l ,n ' max (n +a),n

This fact can be used to significantly reduce the necessary computational

effort. To simplify the notation, we will drop the "" from i and g, omit the

superscript "2", and take gn=0 for n>p and h n =0 for n>q. The forward phase

of the fast Choleski algorithm is then:
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F'nrward Ph asop

Initialization: = max(-,p)

= max(a,q)

-1 = vo0ho0

-1,-1 = h Ovj

Pj,-1 = - gj
aj-l ,- = ohj

%j,-1 = -Wj

M- 1 = -1

for j=1,. .T

for j=1, .. . ..

For n=O,...,N

Pn = - Yn,n-1

In = n-lPn

Vn = MnlJn

I1 = M 1 P-7

en = n -1 Vn n

If n < T-T

fin +j,n = n +j-1,n- 1 + Vn n +j,n -1

n

for j=1, ... 7--

for j=1, . . T-n

Else:

6n +j,n = I
Yn +j,n =

If n s -a

an j,n=

fn +j -1 ,n -1

n +r-l ,n -1

Pn +j,n-1 +

n +n +j,n

~tL

En fin +,n
En

Can +j-l,n-1 + n'n +j,n -1

'n +i,n = Pfn +j,n -1 + Pn an +j,n

for j=1 ..... -1

for j=r

for j =1, . ..,--1

for j =r

for j=1,... n-

for j=1 ..... --n

(18.13)

�-�-"1"11-�1-�ls`-��·L---I�··_II�CIIII -�--- ^·_1�-11�- · 1_1�-�1� --
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Else;

an +j-l,n - + n +j ,n -1

'n +j,n = Pnan an +a-l,n -1P71Vn 7Ln 1+ n, nL- +jn

gn +j - gn +j - XPn ,, ,n

for j=1,...a-1

for j =a

for j=l,...,a-1

for j=a

for j=l,... ,max(T-nT)

As before, the structure of the backward phase depends on how much extra

storage is available to save values from the forward phase. If we had stored all

the values an+ for j=0, . .. max('-n,a) and n =O, ... , N then we could

immediately solve for ZN by back substitution:

,RAlwarr PhA.q' (extra Na storage)

For n=N,...,O (18.14)

1 min( max(fn+C) .N 
R = i - - E aj n Z;

En =n+l

Total computation will be about [3(r+a)+6]N operations.

If only 2N extra storage locations were available, then we could save the

values of Pn and An from the forward phase and recalculate the values of

an+jon in descending order of n for use in calculating -v:

Ra rkwa rd Ph bap'

(18.15)

n Pn

an +j ,n -Pn an +j,n-1f an&-j en
= a +a,

0

for j=O

for j=1, . ..,max(-n ,a-1)

for j=1, . ..,max(a -n,a-1)

for j=a if a>a-n

for j=U-n+1 if aU-n

For = N

For n=N, ... , 1

~'n +j,n -1 =

--

Vnn
Ihn 

En



- 76 -

in-1 = n + n P n

1 mint marV-n +,.o) N-o +l 

tn A-1 j=n

Total computation is now about [3T+5a+6]N operations.

Finally, if no extra storage is available, so that we only want to use about

2(-T+a) locations for the recursions plus about N locations for r, then it is still

possible to recalculate the values of an+j,, in descending order of n starting

only from the knowledge of the various vectors at stage N. We do this by

exploiting the fact that:

n, +-rn C= l n + for n >T-T

7>+r, = f O (ls.16)
Pn

$n+a,n = j91Pan+aT for nL>d-c

Given -, -n, n 3-n we can thus derive n, Pn. These can then be used to gen-

erate v n and ., and then the (n -1)th order vectors -, - -1, -1l and n -1.

The only difficulty will be for values of n<T-- and n•-a. To cover these cases,

the values of t, and Pn will have to be saved for n = 1 . . , T-T and

n=1 ,...,-a respectively. This can actually be done on the forward phase

without using up any extra storage. After the n th step in the forward phase for

n>-r and n>-a we should organize storage as follows:

n: 0 0 f in +r,n 0. f.n +1 ,n (length :F)

n': 1 ' -r ,n ...n+ l,n (length )

M: 0 0 na,n... an+ln (length ) (18.17)

!: P1 Pv-a 3Pn+a,n 7 +n I ,n (length 7)

V: X0 Xn YL §n+ ' YN (length N)

..._I1II_--- I^^-·^-^-·-~~~~~~ ICLI· ----- I~I -- _- C^- -·· 
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The backward phase will then take the form:

Ralkward Ph s.' (no extra storage)

FN = VN

For n=N, .. , 1

0n +1r,n e

K +n I

Pn =[

Pn =

for n>T-T

(value saved for n -- r )

n;% +on
'O nE for n>U-a

(value saved for n,n
(value saved for na-a )

Mn_ = Mn P
En

Pn
vn Mn-1

Mn-1

en- = n + Vn n

for j=O

- -- fn +j, for j=1,... , max(r-n ,7-1)

Pn +j,n-1 = I
- Pn

Pn
E -n +j,nnZ

IBn +j,n -Vn Yn +j,nn-r
fin +j,n
0

an+j,n -/1pn +j,n-1
an a,n
0

for j=O

for j=1,..., max(-n ,a-1)

for j=l, ... ,max(-n,r-1)

for j=-r if mn>T-r

for j=T-n+1 if n -!-r-

for j=l ... .max(U-n ,a-1)

for j=a if n >a-a

for j =-n +1

(18.18)

- fn

Yn +j,n-1 = I -n ,I,n

'n +,n

fln +j -It-1 =

if n _a-a
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1 mln(max'- +1L) .N-n+1 

e- = An-1 I E ai-n-
e, -1 j =n

Total computation time will be about [(r+a)+10]N operations (at least 33% fas-

ter than Dickinson's algorithm) and about 2(7'+?)+N storage locations are

needed (less than Dickinson's algorithm.) Unfortunately, as in the case of

exactly Toeplitz matrices, this minimal storage algorithm is not always stable.

One partial solution to this difficulty is to save the values of mcn(z) and p,i(z)

after every m th step of the forward recursion, then periodically reset the back-

ward recursion to the correct values of an(z) and ,n(z). A simpler solution, of

course, would be to add 2N extra storage locations, and use our previous back-

ward phase algorithm since it appears to be numerically stable.

If the rational polynomial S(z) is also symmetric with =a, p =q, G(z)=H(z)

and F(z)=F(z - 1 ) then the computation and storage requirements can be

reduced considerably. We will be able to choose a symmetric partial fraction

decomposition (18.4) with V(z)=W(z). Also RN will be symmetric, RN=R. We

can choose a symmetric lower x upper decomposition of RN by setting:

I = (M +s) (18.19)
2 = ,-n +Sn

so that:

RN = LSj)U(NS) - L()UT T ) (18.20)

Then by symmetry:

an= ,, ,,. = -,n C,, = -. =E-n -. (18.21)

This cuts the computation and storage requirements of the minimal storage

algorithm to about (6r+11)N operations and about N+(T+U) storage locations.

(If an extra N locations are available for saving the values ,, then the algo-

rithm would be stable and (6T+9)N operations would be needed.)
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19. Example - Smoothing Filter for Noisy ARMA System

It is possible to apply our almost Toeplitz algorithms even to certain prob-

lems which don't quite fit the model we have assumed for RN. A good example of

this is Maximum Likelihood estimation of a noisy Autoregressive Moving Average

(ARMA) signal like that in figure 19.1

.)

Figure 19.1 - Noisy ARMA Model

Unit variance white gaussian noise w(n) drives a known pth order autoregres-

sive filter --- to generate an autoregressive signal (n). This signal is
H(z)

further processed by a known qt h order all-zero filter F(z) to form s(n). (We

will assume that q <p to simplify the following.) Independent unit variance

white gaussian noise v (n) is added with gain a to form the observations y(n):

x(n) = hx(n-1) + . + hp,,(n-) + g (n)

y(n) = fo(n) + + f:z(n -q) + av(n) (19.1)

where: p(v(n)) = p(w(n)) = N(O,1)

for n =0, ... , N

Values of h for n>p and f, for n>q will be taken to be 0. We will assume that

the a priori distribution of the initial condition xl=(x(-1) ··· x(-p))T is also

gaussian:

P( ) = N(, 1. r) (19.2)
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Let:

x (N) y(N)

Sn +p = ' N =) (19.3)
=(-P) v (0)

(Note that the order of the coefficients in these vectors has been reversed from

our previous examples.) It is easy to show that the joint probability density of

EN+p and RN is:

log p(_.) =-i{T HTH+ 0 .s1 x + a2+ constant }

where: F= 0 f0 f and H= 2o o hp (19.4)

and F and H are Nx(N+p) band diagonal Toeplitz matrices. Given the observa-

tions y (n) for n=0,... ,N, the Maximum Likelihood (ML) estimate of N+p is

found by maximizing this log likelihood function over all z. Since the log likeli-

hood function is quadratic in , the ML estimate _l+ p can be calculated by

solving the linear equations:

1 HTH + FTF[ (19.5)

The matrix on the left, which we will call RN+p, is close to being almost Toeplitz

with displacement rank K=2. Unfortunately, because of the addition of the ini-

tial covariance matrix .i- and because H and F are not square, the lower right

pxp corner does not fit this pattern. The first N minors R, of RN+p I however,

are not only almost Toeplitz with displacement rank =2, but are also sym-

metric and band diagonal. One approach for solving (19.5), therefore, would be

to use our fast Choleski algorithm to calculate the LDU decomposition of the

first N rows and columns of RN+p. The remaining p rows and columns of the

decomposition can be computed by standard gaussian elimination. Let us set:

ho fo

1=d · 1 2 (19.6)

0 
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Because of the symmetry, a=_, =+X, pn=~- and l =Pn. Because R is

band diagonal, only (p +1) elements of L andp elements of E will be non-zero.

The resulting Choleski algorithm will therefore only require about 2pN opera-

tions to calculate the following LDU factorization of the first N rows and

columns of RN+P:

Poo 0 

0 I 0
'p~o ,8 ,N , N

o I#N4p,N'p 0I~~o%
an X)n identity matrix and Up is a p xp

' p,o

0

.0

PN,N . N+p,N

IP

matrix of the form:

RN+ I,N+I RN+I,N+p

RN+p,N+1 .' RN+,N+p

fl1V+1,N-p +1 #N+,N N+I,,NVp 1

l0 #+pJN Of 1,

Let us call the matrices on the right hand e of (

To solve for the ML estimate ZN+ thus requ s the

(19.8)

PN+p,, N

- AT
19.8) PN+p. AN^.i+p, and PN+p

: following 3 step procedure:

a) Solve N+X N+= ¾ZJ r _Zi +2

b) Solve 8N+p.N+p = N+p

c) olve usual +pforwardp p substitution and is easily integrated into the

Step a) requires the usual forward substitution and is easily integrated into the

forward fast Choleski algorithm. Step b) requires solving a set of p simultane-

ous equations involving the matrix Rm. Step c) is the usual back substitution

fast Choleski phase, and will require regenerating the coefficients i,n in des-

cending order of n. Putting all of this together, with some algebraic

simplification, yields the following algorithm for solving this finite interval

RN =

where In is

(19.7)

Do
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smoothing filter problem: (we delete the "-" and the superscripts "2" to sim-

plify the notation)

]FPrwa rd Ph q p.-

Initialization:
g£-1 = 2f

-= -2 

rpj,-l = j i

iZN~p =
0

E-1lxI 1+

for j=1, .... ,p

FTXNa L

For n=O,...,N

tn = - n,n-1

,n = Mltn

n £n- -1

£n = En71 -Vntn

p3n j -,n - 1 + Vn n +j,n -1

n +j,n -1 + e7 g+j ,nn

t7%
£ r-n +p,n
n

for j=1, .

for j=p

for j =1 . . . p -1

for j=p

Yn+j - Vn7+j ' - -j,n

(19.9)

Vn j ,n = I

_�-�-�--.1111�--- ___ ·_· 1_1

hn W 

for j=1, . . .
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middlh PhaP-

Compute f, from (19.8) and (19.5)

IN+l XN+ 1

Solve Rp ( =

XN+p N+p

R.nkward Pha.p (Minimal Storage)

For n=N,...,1

zn = Xn 1 t n +i,n +i
CN i=l

n +p ,n

-n +p ,n

Mn 1 = M - n

e n

= Mn -1

En-1 E + ntn

90n +j,n-1 t

An +j,n 4- f n +j,n -1
n +j-1,n - = no j,n Vn 9 +jnn I j -l~n -1 an t

for =0

for j=1, ... p-1

for j=1, .... p-1

for j=p

Total computation required will be about (6p +11)N+O(p3 ) operations and about

N+3p +-2 storage locations will be needed. If an extra N storage locations are

available, we will be able to save the values of n generated on the forward

phase, 'and thus avoid recalculating these on the backward recursion and also

avoid a potentially unstable recursion. Note that, unlike the Chandrasekhar

filter,1 8 the complexity of this algorithm is independent of the initial covariance

EI. In fact, our method is faster than the Chandrasekhar algorithm. Its disad-

vantage is that it is strictly a "batch" processing method, and a completely new

calculation is needed if more data becomes available.

--
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A somewhat different approach would be to recognize that RN+p can be

expressed exactly in the form of a sum of products of lower x upper triangular

Toeplitz matrices, provided we allow up to p+2 terms in this sum. As in the

algorithm above, the first two terms will involve the pole and zero coefficients hj

and fj. The last p terms will only be non-zero in the lower right p xp corner.

Since these terms will not contribute to the first N minors Rn , they will only be

involved in the recursion on the final p steps. The first N steps will thus be

identical to the algorithm above. Adding these p extra terms thus only avoids

the need in the previous algorithm for a middle phase to solve the p simultane-

ous equations involving Rp.

k special case in which this purely lower x upper approach is quite suc-

cessful is when the signal process x(n) is assumed to be stationary. The initial

signal mean I will be zero, and the initial signal covariance ZI will be Toeplitz

with entries equal to the ideal correlations of the autoregressive power spec-

2
trum ---- . Applying a variant of the Gohberg-Semencul formula (2. 18):

H(z)H(z')

ho 0 h hp_ hp 0 |h hp h -h

9 h ho 0 ho 9 h, " 0 ho

Substituting this into our formula for RN+p. it is straightforward to show that

RN+p will be an almost Toeplitz matrix with displacement rank c=4. Vectors C1,

dlI _2, and 2 will be the same as in (19.6), and:

N+1 ON+1

hp3 4 =-- J-1

m,3 -= d 3 (19.11)

hi fp -1

The first N+1 elements of these last two vectors are zero. Thus

( -n==n=p =O for i=3,4 and n=O, ... ,N. This implies that these last two vec-

�________11_·1_ 1�11 _I___ C__I _ X �I I
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tors need only be considered in the last p steps; the first N steps will be identi-

cal to our fast Choleski algorithm above. Because of symmetry, 9=-i.

=-n, and =-pn for i=3,4. Also, because RN+p is band diagonal, at most

the last p coefficients of n and .4 will be non-zero. Putting all this together,

the complete algorithm starts with the forward phase described above for

n=O, . . N. Steps n=N+l, ... , N+p have the following form:

Fnrwarrd Ph aq. (last p steps)

Init: SN+j,N = N+j,N (from first N steps) for j=1 . p

3 _N+j,N - p-j+l for j1. ,p

CN+i,N = - f-

YA +j,N = - aj-1 for j=O, .*,p

Extend M 1 into a 3x3 matrix

MNI 0

M~-1 = -10 -1

For n=N+1 ... N+p (19.12)

= for i=2,3,4

v 2=

jn = M, n -1 -4 4 

Yn.+j,.n- + .,,- o.n . for ..... p-l
i :2

nn + .-1 for 0 ... ,p- f

n +j ,_ ' I for i=2,3,4

fln+jl n +p -,n -for p

jl _
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n +j n +j - An 9n j,n for j =1,. . ., N+p Ln

It is convenient to save not only the usual vectors N+p, 2+p kN+p and N+p

generated on the forward phase, but also the values of the reflection

coefficients n for i=N+1, ... ,N+p as well as the value of MN1' The first p

steps of the storage efficient back substitution phase for regenerating the

values of Bj , in descending order of n and calculating -LN+p then has the form:

Baklkward PhA p- (first p steps)

For n=N+p, ... , N+

Zn = Xn Pn Xi
n = j=n+

n = L for i=2,3,4

Vn saved from forward phase

(19.13)

En-= + 'onn
t =2

n for j=O
V9n +j,n-1 =

f+j,n T- n+j,n for j=1,. ,. ,p-1

| n+j,n - + Vynjnl for j=1, ... p-

-Pn+j-ln-1 = n+p~n for j=p

The remaining N steps of the backward substitution phase are then identical to

the previous fast Choleski algorithm. Note that the chief advantage of this sta-

tionary filtering algorithm is that it avoids the need for solving a set of p linear

��--.�_-11111_--_ _·_ 11111 1 ___-

Vn
En
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equations involving the matrix Rp. It thus replaces a symmetric gaussian elimi-

nation problem (O(p 3 ) operations and y3p 2 extra storage) by p steps of a fast

Choleski algorithm with ic=4 (about (7/p +22)p operations and (5p +7) extra

storage.)

20. Conclusion

In this massive tome, we have attempted to present a concise (unsuccess-

fully) and coherent development of the Levinson-style, fast Choleski and dou-

bling algorithms for solving exactly Toeplitz and almost Toeplitz linear equa-

tions. Levinson-style algorithms result when we recursively solve an almost-

Toeplitz problem by recursively solving the linear equations associated with the

upper left principal minors of the matrix. These algorithms can be viewed as

performing a UDL decomposition of R 1. Applying a simple linear transforma-

tion to the Levinson recursions results in the fast Choleski algorithms, which

effectively perform an LDU decomposition of RN itself. Several variants of this

fast Choleski algorithm can be derived; the predictor values can be computed in

columnwise or rowwise order, and various backward recursions can be

employed to minimize the required storage. In general the fast Choleski algo-

rithms are somewhat slower than the Levinson-style algorithm for computing

_N=R1yN. When RN is band diagonal, however, the fast Choleski algorithms

simplify dramatically and are quite attractive. Other algorithms for band diago-

nal matrices which should also be considered, however, are the matrix splitting

and imbedding techniques of Jain, l l Morf and Kailath, 1 2 and Fisher, Golub, Hald,

Leiva, Widlund.2 9 It is also possible to view the Choleski algorithm as an "inside

out" Euclidian algorithm. This leads to O(Nlog 2N) doubling algorithms for

inverting RN which use a divide and conquer strategy combined with FFT's to

achieve their speed. Unfortunately, these algorithms are rather complex, and

are competitive only for N>2500 or more. Finally, the range of applications of
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these algorithms is enormous, since almost-Toeplitz equations often arise when-

ever stationary data is processed. We have discussed covariance methods of

linear prediction, rational Toeplitz matrices, and an ARMA filtering problem. In

addition, the basic concept behind these algorithms, splitting the matrix into a

sum of a more convenient matrix plus a correction term, is applicable to an

extremely wide range of applications and matrix structures.

_�_��_��I __ _I_ _ *_ I_ _ � __ _ � _ _
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Appendix A - Proofs for Section 8

Proof of formula (8.3),(8.4)

The proof of equation (8.3) proceeds inductively. We start by proving it for

n=-1. We are given:

(A.1)RN = E v) U(.)
i=1

Applying lemma 1 in section 4 gives

J RN = -1v

2T

· 11·11LdNn

Using the definitions in (7.15):

= ii

ij-l, = .2 o.- 1 = -_

M_ = -I
1

we immediately have:

we immediately have:

_JRN = [ao. .. , aN1)

Applying lemma 1 gives the formula in (8.3) for n =-1.

Now suppose the formula is correct for n=-1, . .. ,m-1. We now prove it

for n =m. From lemma 1, we know that:

I-1E;mL-I ~j-I
( em-1 0

0

(A.5)

0 aO,m 1. " N-,m-1

1ln-1

Mri -1'Mm-I

(A.2)

(A.3)

(A.4)

0

Po,m-1

PN-,m-i

I

- (~~-,M-I+T,

M-1 =1)a 1 & -I'nlr -E/ M-02~~n-i M-I-
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The recursion on the vectors a, 2. can be stated in the form:

0

0,m.- 1

PN-1 ,m -

2 2
e - " m-1

I II 1
v2

1 MI

em 1 E, j~~jnI

+ O I0 +10 1]

The inverse of the matrix on the right can be computed from the general parti-

tioning formula:

IA B
CD

= A- 1 0 -A-B][D-CA-B[ -CA-' I)
(A.7)

Multiplying equation (A.6) on the right by this inverse gives:

(P m Ik & I)

e -1

mXM

m It 0

PO,m -1

/N-1,m-1

2-1 -1
E~'- n- I

Similarly:

2
___ Pm

cm cm Em

I
aO,m -1

aN-l1,m -1

Substituting (A.8) and (A.9) into (A.5) and using the recursion formulas involv-

ing M - 1 in (7.7), (7.8) and (7.13):

1 m -l= [LnTLO

Applying lemma 1:

Tm-1 = L(Ln)D( - E-)Ua. )
m

Mo ]-] , T

M AmoM 'M,

- L(Qm)D(Mm')U( T )

(A.8)

(A.9)

(A.10)

_�I�I ��__� _ _I ___ I

I

( _tm en 

iEn 
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4.LJ + LL )D|1 u(J-) L[m,)D(Mm )U[]

m m
(A. 11)

Substituting back into equation (8.4) proves the formula for n =m. Continuing

inductively for n=O,. . ., N then proves equations (8.3),(8.4) for all n.

Proof of Formula (8.8)

The UD UDLdecomposition R'v=B-A N
1 AN derived in section 6 implies that:

(A. 12)R1 = O 1 T

Define the matrix RN by:

(A. 13)R= 0 RN- 1 +] +N - RN - CNDT

Applying the Woodbury inversion formula (7.11) gives:

- I] DTR1r=RN - N NC ADIR N N N

or since:

RNEN = CN

RNFN = DN

MN = ETRNFN -I

(A.14)

(A. 15)

then:

RN = RN 1 FNMN ET

Applying the partitioning formula (A.7) to Rl1 then gives:

R=[ : R 1 ]

nd thN-us

and thus

(A.16)

(A. 17)

J + FNMN EN

____

t

(A. 18)
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Combining equations (A.12) and (A.18) for RN 1, we get:

7RN = NpyV FTNMNEN (A. 19)
'EN N-N

Equating (A.1l) with [-RR 1 as calculated from (A.12) gives:

RN-_1 = N NMNEN (A.20)

Applying lemma 2 immediately gives our formulas (8.8) for RN1 and R -1~rryrl~Irrlrr kLILLICIQ~C~Y~lt; Vr VILILLL3\UUJLV N-N, N
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