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We report a measurement of the top-quark mass Mt in the dilepton decay channel t�t ! bl0þ�0
l
�bl� ��l.

Events are selected with a neural network which has been directly optimized for statistical precision in

top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is

extracted from per-event probability densities that are formed by the convolution of leading order matrix

elements and detector resolution functions. The joint probability is the product of the probability densities

from 344 candidate events in 2:0 fb�1 of p �p collisions collected with the CDF II detector, yielding a

measurement of Mt ¼ 171:2� 2:7ðstatÞ � 2:9ðsystÞ GeV=c2.

PRL 102, 152001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

17 APRIL 2009

152001-3



DOI: 10.1103/PhysRevLett.102.152001 PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.Ni, 13.85.Qk

Over ten years after the discovery of the top quark, its
mass, Mt, remains a quantity of great interest.
Mt-dependent terms contribute to radiative corrections to
precision electroweak observables, thus providing infor-
mation on the unobserved Higgs boson [1] and other
particles in possible extensions to the standard model [2]
(SM). Top quarks are produced only at the Fermilab
Tevatron, primarily in pairs and decay � 100% to a W
boson and a b quark, t�t ! WþbW� �b, in the SM. The
dilepton channel, where both W bosons decay to charged
leptons (electrons and muons, including leptonic decays of
� leptons) and neutrinos, has the smallest branching frac-
tion, but also has the least number of hadronic jets in the
final state and hence a smaller sensitivity to their energy
calibration. Significant differences in the measurements of
Mt in different decay channels could indicate contributions
from sources beyond the SM [3].

Reconstruction of Mt in the dilepton channel presents
unique challenges, as the two neutrinos in the final state
result in a kinematically underconstrained system. We
utilize a likelihood-based estimator that convolutes leading
order SM matrix elements and detector resolution func-
tions and integrates over unmeasured quantities. Prior
applications of this method to dilepton events have yielded
the most precise measurements ofMt in this channel [4–6].
These prior measurements utilize event selection criteria
that were designed to maximize signal purity for a mea-
surement of the t�t production cross section [7]. The selec-
tion optimization for precision in Mt is hampered by the
difficulty of searching the space of arbitrary multivariate
selections. Well established multivariate algorithms such
as neural networks are typically limited to minimization of
a specific metric, such as misclassification error. They are
not designed to optimize an event ensemble property, such
as the uncertainty on the top-quark mass. In contrast, the
technique of neuroevolution [8] combines the parametri-
zation of an abitrary multivariate selection described by a
neural network with an evolutionary minimization ap-
proach to search for the network weights and topology
which optimizes an arbitrary metric. In this Letter, we
present a measurement using an improved matrix element
analysis technique and an event selection optimized with
neuroevolution to minimize the expected statistical uncer-
tainty in the top-quark mass measurement. We utilize
2:0 fb�1 of data collected between March 2002 and
May 2007 with the CDF II detector at the Fermilab
Tevatron.

CDF II [9–11] contains a charged particle tracking
system consisting of a silicon microstrip tracker and a drift
chamber immersed in a 1.4 T magnetic field. Surrounding
electromagnetic and hadronic calorimeters measure parti-
cle energies. Outside the calorimeters, drift chambers and
scintillators detect muons.

We use lepton triggers that require an electron or muon
with pT > 18 GeV=c. We define a preselection which
satisfies the basic signature of top dilepton decay: two
oppositely charged leptons with pT > 20 GeV=c, two or
more jets with ET > 15 GeV [12] within the region j�j<
2:5, E6 T > 20 GeV [13], and dilepton invariant massMll >
10 GeV=c2. Suppression of the Z ! ll background is per-
formed by the subsequent neural-network selection.
Neuroevolution, an approach modeled on biological

evolution, is used to search directly for the optimal neural
network. Beginning with a population of 150 networks
with random weights, the statistical precision of Mt is
evaluated for each network by performing experiments
using the simulated signal and background events which
survive a threshold requirement on the network output. The
events are simulated using the PYTHIA [14] and ALPGEN

[15] generators and a full detector simulation [16]. Poorly
performing networks are culled, and the 30 strongest per-
formers are bred together and mutated in successive gen-
erations until performance reaches a plateau in a
statistically independent pool of events, which occurs after
15 generations. The statistical uncertainty obtained from
the best performer in each generation is shown in Fig. 1(a).
In the context of an arbitrary but a priori fixed choice of
network threshold, the networks evolve to optimize the
selection regardless of the threshold’s value. Because we
have optimized directly on the final statistical precision
rather than some intermediate or approximate figure of
merit, the best-performing network is the one which gives
the most precise measurement. This approach has been
shown to significantly outperform traditional methods in
event selection [17]. In particular, we use neuroevolution
of augmenting topologies [18], a neuroevolutionary
method capable of evolving a network’s topology and
weights.
Some of the events passing this selection have secondary

vertex tags [19], which enhance the b-quark fraction and
thus signal purity. We exploit this enhancement by sepa-
rately fitting events with and without secondary vertex
tags, and combining the fits. The predicted number of
signal and background events is shown in Table I. Using
the optimized selection improves the a priori statistical
uncertainty on Mt over the selection used in previous
analyses [6] by 20%. This neural-network selection yields
344 candidate events (Fig. 2). Strikingly, the sample se-
lected by the neural network is expected to be dominated
by background events; the resulting measurement is ex-
pected to be more precise than previous measurements due
to the increase in t�t acceptance and the suppression of
background effects as described below. The distribution
of expected statistical uncertainty versus signal purity for
all evaluated networks can be seen in Fig. 1(b).
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We express the probability density for the observed
lepton and jet measurements, xi, as a function of the top-
quark massMt as PsðxijMtÞ. We calculate PsðxijMtÞ using
the theoretical description of the t�t production and decay
process with respect to xi, PsðxijMtÞ ¼ ½1=�ðMtÞ��
½d�ðMtÞ=dxi�, where d�

dxi
is the differential cross section

[20–22] and � is the total cross section. The term 1=�ðMtÞ
ensures that the probability density satisfies the normaliza-
tion condition,

R
dxiPsðxijMtÞ ¼ 1.

We evaluate PsðxijMtÞ [6] by integrating over quantities
that are not directly measured, such as neutrino momenta
and quark energies. The effect of simplifying assumptions
is estimated using simulated experiments. We integrate
over quark energies using a parametrized detector transfer
function [5] Wðp; jÞ, defined as the probability of measur-
ing jet energy j given quark energy p.

We account for backgrounds using their probability
densities Pbgk

ðxiÞ and form the full per-event probability

PnðxijMtÞ ¼ PsðxijMtÞpn
s þ

X
k

Pbgk
ðxiÞpn

bgk
: (1)

The functions Pbgk
ðxiÞ are calculated using the differential

cross section for each background. The proportions pn
s and

pn
bgk

depend on whether the event has n secondary vertex

tags, and are obtained from Table I. We evaluate back-
ground probability densities for Z=��ð! ee;��Þ þ jets,
Wþ � 3 jets where a jet is misidentified as a lepton, and
WW þ jets. Probability densities for smaller backgrounds

TABLE I. Expected sample composition after neural-network
selection for events with and without secondary vertex tags.

Source Nð0 tagÞ Nð� 1 tagÞ
Z ! ll 116:5� 18:6 4:1� 1:8
Z ! llþ c �c=b �b 9:3� 1:4 10:1� 4:0
WW, WZ, ZZ, W� 17:3� 5:9 0:7� 0:7
Misidentified leptons 29:0� 8:7 4:5� 1:1
t�t (� ¼ 6:7 pb, Mt ¼ 175 GeV=c2) 43:8� 4:4 78:0� 6:2

Total 215:8� 21:9 97:5� 7:2
Observed (2:0 fb�1) 246 98
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FIG. 1. (a) Expected statistical uncertainty for the best network in each successive generation of network evaluation. The points
show the average performance for each generation; the error bars show the variation due to the randomly generated networks in
generation 0. (b) Expected statistical uncertainty on Mt versus signal fraction after neural-network selection, for all evaluated
networks. The selection [7] used in previous measurements is shown (?) for comparison. The arrows show the expected statistical
uncertainty and signal fraction corresponding to the network used in the analysis.

FIG. 2. The output of the final network evaluated on the
collected data (black triangles), with expected signal and back-
ground contributions (stacked solid histograms). The data show
events passing the preselection. The evolution of the optimum
selection network is performed with an a priori threshold set at
0.5 for candidate selection. Of the 642 preselected events shown,
344 events pass this threshold and constitute the final candidate
sample for mass fitting.
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(WZ, ZZ, W�, and Z ! ��) provide negligible gain in
sensitivity and are not modeled.

The posterior joint probability for the sample is the
product of the per-event probability densities,

PðxjMtÞ ¼
�Y

i0

P0ðxi0 jMtÞ
��Y

i1

P�1ðxi1 jMtÞ
�

(2)

over all untagged (i0) and tagged (i1) events. The measured
mass Mt is taken as the mean hMti computed using the
posterior probability, and the measured statistical uncer-
tainty �Mt is taken as the standard deviation.

The response of our method for simulated experiments
[Fig. 3(a)] is consistent with a linear dependence on the
true top mass. Its slope is less than unity due to the pres-
ence of unmodeled background. We derive corrections,
Mt ! 175:0 GeV=c2 þ ðMt � 171:0 GeV=c2Þ=0:86 and
�Mt ! �Mt=0:86, from this response and apply them to
the measured quantities in data.

From the pull distribution of our simulated experiments,
we find that �Mt is underestimated [Fig. 3(b)]. This is due
to simplifying assumptions made in the probability calcu-
lations for computational tractability [5]. These assump-
tions are violated in small, well-understood ways in
realistic events. We scale �Mt by an additional factor, S ¼
1:16, derived from our simulated experiments. Applying
this method to the 344 candidate events, we measure
Mt ¼ 171:2� 2:7ðstatÞ GeV=c2. The posterior probabil-
ity is Gaussian within the statistical accuracy of the
Monte Carlo integration.

There are several sources of systematic uncertainty in
our measurement, which are summarized in Table II. The
single largest source of systematic error comes from the
uncertainty in the jet energy scale, which we estimate to be
2:5 GeV=c2 by varying the scale within its uncertainty
[23]. An uncertainty specific to jets resulting from b par-

tons contributes 0:4 GeV=c2, while in-time pileup contrib-
utes 0:2 GeV=c2. Uncertainty due to the Monte Carlo
generator used for t�t events is estimated as the difference
in Mt extracted from PYTHIA events and HERWIG [24]
events and amounts to 0:9 GeV=c2. Uncertainties due to
parton distribution functions are estimated using different
parton distribution function sets (CTEQ5L [25] vs MRST72

[26]), using different values of �QCD, and varying the

eigenvectors of the CTEQ6M [25] set; the quadrature sum
of the last two (dominant) uncertainties is 0:6 GeV=c2. The
limited number of background events available for simu-
lated experiments results in an uncertainty on the shape of
the background distributions, which yields an uncertainty
on Mt of 0:5 GeV=c2. Uncertainty due to imperfect mod-
eling of initial (ISR) and final (FSR) QCD radiation is
estimated by varying the amounts of ISR and FSR in
simulated events [27] and is estimated to be 0:5 GeV=c2.
The uncertainty in the mass due to uncertainties in the
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FIG. 3. (a) Mean measured Mt in simulated experiments versus top-quark masses. The solid line is a linear fit to the points. (b) Pull
widths from simulated experiments versus top-quark masses. The solid line is the average over all points.

TABLE II. Summary of systematic uncertainties on the mea-
sured top-quark mass.

Source Size (GeV=c2)

Generic jet energy scale 2.5

b-jet energy scale 0.4

In-time pileup 0.2

Generator 0.9

Parton distribution functions 0.6

Background statistics 0.5

Radiation 0.5

Response correction 0.4

Sample composition uncertainty 0.3

Background modeling 0.2

Lepton energy scale 0.1

Total 2.9
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response correction is evaluated by varying the response
within the uncertainties shown in Fig. 3(a) and is
0:4 GeV=c2. The contribution from uncertainties in back-
ground composition is estimated by varying the back-
ground normalizations from Table I within their
uncertainties and amounts to 0:3 GeV=c2. We estimate
the uncertainty coming from modeling of the missing
tranverse energy in Z=�� events and the uncertainty in
the data-derived model of misidentified leptons to be
0:2 GeV=c2. The uncertainty in the lepton energy scale
contributes an uncertainty of 0:1 GeV=c2 to our measure-
ment. Adding in quadrature yields a total systematic un-
certainty of 2:9 GeV=c2.

In summary, we have presented a new measurement of
the top-quark mass in the dilepton channel. We have ap-
plied the technique of neuroevolution, for the first time in
particle physics, to devise an event selection criterion
which optimizes statistical precision. We measure Mt ¼
171:2� 2:7ðstatÞ � 2:9ðsystÞ GeV=c2. This is the single
most precise measurement of Mt in this channel to date,
is in good agreement with measurements in other channels
[28,29], and represents a�30% improvement in statistical
precision over the previously published measurements in
this channel [6,30,31].
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