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Abstract:  We report the experimental implementation of optical diffraction 
tomography for quantitative 3D mapping of refractive index in live 
biological cells. Using a heterodyne Mach-Zehnder interferometer, we 
record complex field images of light transmitted through a sample with 
varying directions of illumination. To quantitatively reconstruct the 3D map 
of complex refractive index in live cells, we apply optical diffraction 
tomography based on the Rytov approximation. In this way, the effect of 
diffraction is taken into account in the reconstruction process and 
diffraction-free high resolution 3D images are obtained throughout the 
entire sample volume. The quantitative refractive index map can potentially 
serve as an intrinsic assay to provide the molecular concentrations without 
the addition of exogenous agents and also to provide a method for studying 
the light scattering properties of single cells.  

©2008 Optical Society of America  

OCIS codes: (120.3180) Interferometry; (180.0180) Microscopy; (170.3880) Medical and 
biological imaging.   
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1. Introduction  
Refractive index serves as an important intrinsic contrast agent in visualizing nearly 

transparent living biological cells. Examples are phase contrast microscopy[1] and differential 
interference microscopy[2], which have been widely used in cell biology studies. In essence, 
both of techniques make use of optical interferometry to enhance contrast. Interferometry 
converts phase changes of the transmitted light mainly induced by the heterogeneous 
refractive index distribution within the cell into intensity variations. However, these 
techniques do not provide quantitative maps of phase change. 

More advanced phase microscopy techniques have been developed to record quantitative 
phase images of specimen-induced phase changes [3-7]. These techniques can either provide 
average refractive index of cells or cell thickness [8-11], but not detailed 3D structure. 

These advanced phase microscopy techniques have paved the way to the development of 
3D imaging techniques. Several successful experimental implementations are capable of 
mapping the 3D structure of the specimen. The common idea is to record multiple images for 
various angles of illumination with respect to the specimen, and then to reconstruct 3D 
structure with this set of angular images. There are two ways to change the relative angle of 
illumination with respect to the specimen. One is to rotate the sample with the illumination 
beam fixed, and the other is to rotate the illumination beam with sample fixed. Rotating the 
sample makes it possible to cover the entire angular range, and thus obtain the same axial 
resolution as the transverse resolution. But it is difficult to fix the axis of rotation, and rotation 
inevitably perturbs the sample. In addition, data acquisition speed is limited due to the use of 
mechanical rotation of the sample. Therefore, the use of sample rotation is typically restricted 
to solid non-biological objects such as optical fibers [12, 13]. Special sample preparation is 
required for imaging biological cells [14]. On the other hand, the rotating beam approach 
doesn’t perturb the sample during data acquisition, and is thus suitable for imaging live cells 
in their native state [15, 16]. Data acquisition can be fast enough to study the dynamics of the 
live cells. Only small modifications are needed for the instrument to fit into a conventional 
high NA optical microscope. A drawback of this method is related to the lack of complete 
angular coverage due to the finite numerical aperture of an imaging system, as is usual in 
conventional optical microscopy. Thus, the axial resolution is poorer than the transverse 



resolution. Various algorithms have been developed to solve missing angle information with a 
prior knowledge of the specimen [17, 18].  

The reconstruction algorithm is an important factor in determining the spatial resolution 
and quantification of the complex refractive index. The way of interpreting the experimentally 
measured complex field determines the algorithm to be used. If the phase of the transmitted 
field is interpreted as a line integral of the refractive index along the propagation direction, 
then the filtered back-projection algorithm based on the inverse Radon transform can be 
applied [19]. For weakly scattering biological cells, this is often a good approximation [14, 
16] for points close to the plane of focus. However, since the effect of diffraction is ignored, 
there is loss of resolution for samples which are large compared to the depth of focus of the 
imaging system.  

A more general approach, which takes the diffraction into account, is diffraction 
tomography first proposed by Wolf in 1969[20]. The Born approximation is typically adopted 
to make the relation linear between the complex refractive index of the object and the E-field. 
Several experimental studies have implemented diffraction tomography in the optical regime 
[13, 15, 21], but none of these have provided quantitative refractive index maps. 

In previous work, we have developed tomographic phase microscopy (TPM) [16] for 
quantitative 3D mapping of refractive index in live cells in their native state. TPM can collect 
angular images ranging from -60 to 60 degrees in 10 seconds. The rotating-beam geometry 
was adopted to avoid perturbing specimens during data acquisition, and filtered back-
projection along with an iterative constraint algorithm was used for 3D reconstruction. 
Recently, we also developed an algorithm which corrects for the effect of diffraction by 
numerically propagating the focus of the images [22]. However, this method is highly 
computationally intensive as it requires multiple runs of the inverse Radon transform.  

In this paper, we report the first experimental implementation of optical diffraction 
tomography to image live biological cells and provide quantitative 3D refractive index maps. 
We used tomographic phase microscopy, developed earlier by our group, to record complex 
transmitted fields at various angles of incidence. By employing optical diffraction tomography 
based on the Rytov approximation, we take diffraction into account and thus produce high 
resolution 3D refractive index maps for the entire cell without need for propagation in the 
reconstruction algorithm. We demonstrate that the Rytov approximation is valid for live cell 
imaging, while reconstruction based on the Born approximation leads to severe distortions. 
An iterative constraint algorithm is applied to minimize the effects of incomplete angular 
coverage. 

The quantitative refractive index maps thus obtained can be used to quantify molecular 
concentrations without adding fluorescence agents [23]. They also provide a means of 
studying the light scattering of single cells [24], which may lead to develop in-vivo light 
scattering instruments for disease diagnosis. 

2. Theory of optical diffraction tomography 
It is relatively straightforward to implement a deconvolution algorithm for creating 3D 
fluorescence image from a stack of full-field fluorescence images taken with a scanning 
objective lens. Each fluorescent particle acts as a point source, and there is negligible 
interference among the particles. The point spread function is thus defined only by the 
imaging system. On the other hand, it is more complicated to implement 3D deconvolution for 
absorption and refractive index. Unlike fluorescence imaging, both amplitude and phase 
images of the transmitted field must be recorded, since absorption coefficient and refractive 
index affect both amplitude and phase of the field. Moreover, interference among scatterers 
complicates the deconvolution process. To fully describe the effect of interference, the wave 
equation must be solved. However, this would require extensive computation time, and it is 
even more difficult to extract the structure of objects from the transmitted E-field images.  

Approximations such as Born and Rytov have been employed in the past to make this 
problem relatively easy to solve [19]. In essence, by assuming that the scattered field is weak 
compared to the incident field, the relationship between the three-dimensional scattering 



potential and the two-dimensional measured field can be simplified. Using the Born 
approximation, Wolf derived a formulation which enables reconstruction of a 3D object from 
2D measured E-fields [20]. For each illumination angle the Fourier transform of the 2D 
measured E-field is mapped onto a spherical surface in the frequency domain of the 3D 
scattering potential. This spherical surface is called the Ewald sphere. In this section, we 
briefly introduce Wolf’s original theory and Devaney's modification to adopt the first Rytov 
approximation [25]. Based on this section, we will explain the experimental implementation 
of these theories in section 4. 

 With scalar field assumption, the propagation of light field, ( )U R
�

, through the medium, 
can be described by the wave equation as follows: 
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is the wave number in the free space with λ0 the wavelength in the free 
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then, the wave equation becomes 
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is known as the object function. Based on Green’s theorem, the formal solution to Eq. (3) can 
be written as 
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with 0( ) exp( ) / (4 )mG r in k r rπ=  the Green’s function. Since the integrand contains the 

unknown variable, ( )U R
�

, we employ an approximation to obtain a closed form solution for 
( ) ( )SU R

�

. The first Born approximation is the simplest we can introduce when the scattered 

field is much weaker than the incident field ( ( ) ( )S IU U<< ), in which case the scattered field is 

given by the following equation: 
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                                    (5) 

This approximation provides a linear relation between the object function ( )F R
�

 and the 

scattered field ( ) ( )SU R
�

. By taking Fourier transform of both sides of Eq. (5), we obtain the 

following relation, known as the Fourier diffraction theorem [20]: 
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Here, F̂  and ( )ˆ SU  are the 3D and 2D Fourier transform of F and ( )SU , respectively; kx and ky 

are the spatial frequencies corresponding to the spatial coordinate x and y in the transverse 
image plane, respectively; z+ =0 is the axial coordinate of the detector plane, which is the 
plane of objective focus in the experiment. (Kx, Ky, Kz) , the spatial frequencies in the object 
frame, define the spatial frequency vector of (kx, ky, kz) relative to the spatial frequency vector 

of the incident beam (kx0, ky0, kz0), and zk is determined by the relation ( )2 2 2
0z m x yk n k k k= − −  . 

For each illumination angle, the incident wave vector changes, and so does (Kx, Ky, Kz). As a 
result, we can map different regions of the 3D frequency spectrum of the object function ( )F R

�

 
with various 2D angular complex E-field images. After completing the mapping, we can take 
the inverse Fourier transform of F̂  to get the 3D distribution of the complex refractive index.  

 



Numerical simulations have demonstrated that the Born approximation is valid when the 
total phase delay of the E-field induced by the specimen is less than π/2[19]. The thickness of 
single biological cells is typically about 10 μm, with index difference with respect to the 
medium about 0.03. Thus, the phase delay induced by typical cells is approximately π at a 
source wavelength of λ = 633 nm. Therefore, one would not expect the Born approximation to 
be valid for imaging biological cells. 

We note that the Rytov approximation is more relevant to imaging biological cells than 
the Born approximation. It is not sensitive to the size of the sample or the total phase delay, 
but rather to the gradient of the refractive index. Specifically, the Rytov approximation is 
valid when the following condition is satisfied: 
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and nδ  is the index variation in the sample over the length scale of wavelength. This 

condition basically asserts that the Rytov approximation is independent of the specimen size 
and only limited by the phase gradient ( )Sϕ∇ . For a weakly scattering sample such as 

biological cell, the phase change ( )Sϕ∇  is linearly proportional to nδ  to a first approximation, 

such that the relation is valid when nδ«1. According to our previous work [16], the index 
variation nδ  is in the range of 0.03 - 0.04 for biological cells. As shown in the section 4, we 

obtain a high quality image of a live cell when we use the Rytov approximation, while the 
Born approximation leads to significant distortions in the reconstructed image. 

As suggested by Devaney [25], the implementation of the Rytov approximation in the 
Fourier diffraction theorem requires a slightly different approach. Following Devaney’s 
method, we introduce the complex phase ( )Rφ

�

, defined by ( )( ) RU R eφ=
�

�

, and substitute this 
into the wave equation (Eq. (1)). After applying the approximation of Eq. (7), we again obtain 
the Fourier diffraction theorem (Eq. (6)), but with ( )SU

 

replaced by ( )S
RytovU  defined as 
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The rest of the reconstruction then is the same as described in the text following Eq. (6).  

3. Experiment 
 

We used tomographic phase microscopy instrument (Fig. 1) to record complex E-field 
images at various angles of illumination for the sample stationary at the sample stage of the 
microscope [16]. Although we used only phase information in reconstructing 3D objects in 
the previous study, the heterodyne Mach-Zehnder interferometer [5] used in the instrument is 
capable of recording amplitude images as well as phase images. A He-Ne laser beam of 
wavelength 633 nm was divided into sample and reference beams. The propagation direction 
of the sample beam was controlled by a galvanometer mirror and the sample image of the 
transmitted beam was delivered to the camera by objective and a tube lenses. Two acousto-
optic modulators were used to shift the frequency of the reference beam by 1.25kHz, and the 
frame rate of a CMOS camera (Photron 1024PCI) was adjusted to take images with 200 μs 
intervals. For each angle of illumination, we recorded four successive interferogram images in 
800 μs and used phase-shifting interferometry to produce a pair of quantitative phase and 
amplitude images. To maximize the range of illumination angles, a high NA condenser 
(Nikon, 1.4 NA) and objective lens (Olympus UPLSAPO, 1.4 NA) were used. The sample 
beam was rotated using a galvanometer mirror to cover from -70 to 70 degrees in 0.23 degree 
steps. It takes about 10 seconds to record a set of angular complex E-field images.  

 
 
 



 
 

Figure 1. Tomographic phase microscope.  GM: galvanometer scanning mirror; L1: lens (f = 
250 mm); C: condenser lens (NA 1.4); OL: objective lens (NA 1.4); Tube: tube lens (f = 200 
mm); BS1 and BS2: Beamsplitters; AOMs: acousto-optic modulators. The frequency shifted 
reference laser beam is shown in blue. 
 

4. Data analysis 
Using the set of phase and amplitude images taken at various angles of illumination, we 
applied diffraction tomography algorithm described in section 2. Given a quantitative phase 
image ( , ; )x yϕ θ

 

and an amplitude image A(x,y;θ) taken at each illumination angle, θ, we can 

reconstruct the total E-field, ( , ; )( , ; ) ( , ; ) i x yU x y A x y e ϕ θθ θ= , at the image plane. The measured 
field image is composed of the phase change induced by the sample and the phase ramp 
introduced by the tilted illumination. A corresponding set of images 

0 0( , ; ) ( , ; ) x yik x ik y

bg bgU x y A x y eθ θ +=  taken when no sample is present provides the background field, 

which can be considered as the incident fields. Figure 2(a) shows the phase image 
( , ; 0)x yϕ θ = of a 6 μm polystyrene bead (Polysciences. Inc.) taken at zero incidence angle. 

Figure 2(b) shows the typical amplitude image of ˆ ( , ; )x yU k k θ  on a logarithmic scale. 

 
To apply the Fourier diffraction theorem (Eq. (6)), we convert ( , )x yk k  on the right hand side 

into ( , )x yK K  as follows.  
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We first calculate ( )ˆ ( , ; )S
x yU k k θ  (Eq. (2)) or ( )ˆ ( , ; )S

Rytov x yU k k θ (Eq. (8)) from measured 

complex fields. We then shift them by 
0 0( , )x yk k− −  in spatial frequency space following the 

right hand side of Eq. (9). In mapping the experimental data, we divide them by the incident 
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field ( , ; )bgU x y θ , which is equivalent to shifting them in Fourier space. In other words, the 

scattered field used in the Fourier diffraction theorem in the experiment is as follows: 
In the case of the first Born approximation: 

           
( )

0 0
ˆ ( , ; ) ( ( , ; ) ( , ; )) / ( , ; )S

x x y y bg bgU K k K k U x y U x y U x yθ θ θ θ+ + = −                           (10) 

In case of the first Rytov approximation: 

       
( )

0 0
ˆ ( , ; ) ln( ( , ; ) / ( , ; ))S

Rytov x x y y bgU K k K k U x y U x yθ θ θ+ + =                                            (11) 

 
Figures 2(c)-(d) show the results of this mapping on the (Kx,Ky,Kz=0) and (Kx, Ky=0,Kz) planes, 
respectively. The data along the blue line in Fig. 2(b) is mapped onto the blue half-circle on 
the (Kx, Kz) space of Fig. 2(d). Different angular images are mapped onto different spaces such 
that they eventually cover a significant portion of the (Kx, Ky, Kz) space of the object function 

( )F R
�

. Looking at the frequency spectrum of Figs. 2(c)-(d), ring patterns are clearly visible 
after mapping various angular images, which is expected for the spherical shape of the sample. 
By taking the inverse Fourier transform of the entire 3D frequency spectrum, we obtain the 
3D distribution of refractive index and absorption coefficient of the object. 

 

Figure 2. Mapping of the complex E-field onto the 3D Fourier space of the object function. (a) 
Quantitative phase image of a 6 μm polystyrene bead at zero degree illumination. The color bar 
indicates phase in radians. Scale bar, 5 μm. (b) Amplitude of the Fourier transform of the 
complex E-field image at zero degree illumination on a logarithmic scale. (c) Amplitude 
distribution in Kx-Ky plane after mapping all the angular E-field images. (d) Amplitude 
distribution in the Kx-Kz plane. The color bar indicates base-10 logarithm of the amplitude of E-
field. The scale bars in (b-d) indicate 2 μm-1. 

 
With our current configuration, we could get an image within illumination angles of up to 

±70 degrees which was measured via the spatial frequency of the fringe pattern at the image 
plane. As a result, we could not fill the entire region of frequency space, as can be seen in Figs. 
2(c)-(d). In other words, the inverse problem is underdetermined. In our first round of 



reconstruction, we put zero values in the missing angle space. The reconstructed object 
function then exhibits negative bias around the sample and the refractive index is smaller than 
the actual value (Fig. 3(a)).  

To minimize the artifact introduced by the missing angles, we applied an iterative 
constraint algorithm [17, 18] based on the prior knowledge that the object function is non-
negative for the live cells. The index throughout the field of view, either inside or outside of 
the cell, is at least the same or higher than the medium. We first take the inverse Fourier 
transform of the originally mapped data with zero values for the missing space (Fig. 3(d)). In 
the reconstructed image there are pixels whose index values are smaller than index of the 
medium (Fig. 3(a)). We forced these to be the same as the index of the medium and take the 
Fourier transform. The index values in the Fourier space in which we put zero values are no 
longer zero, and we obtain an approximate solution for the missing angles (Fig. 3(e)). But, at 
the same time, the data in the space which contains measured data is now modified. Since the 
experimentally measured data is accurate, we replace the modified data with the measured 
data. We iterate this procedure until the reconstructed object function converges (Fig. 3(c)-(f)). 
As a result, the negative bias is removed and the reconstructed image becomes more accurate. 
For the case of the polystyrene bead, we estimate that the accuracy of the measured refractive 
index is close to 0.001 after application of the iterative constraint algorithm. When the Fourier 
maps before (Fig. 3(d)) and after (Fig. 3(f)) iteration are compared, the ring patterns are 
generated in the missing angle regions (Fig.3(f)). This indicates that iterative constraint 
algorithm can generate reasonably accurate solutions for the missing angle regions. 

 
 

 
Figure. 3. Iterative constraint algorithm. (a) Slice image of a 6 μm bead before application of 
the constraint algorithm. (b) Same slice image as in (a) after application of the non-negative 
constraint. (c) Same slice image as in (b) after 100 iterations. The color bar indicates the 
refractive indices at 633 nm wavelength. The scale bar, 5 μm. (d) Amplitude distribution in Kx-
Ky plane before application of the constraint algorithm. (e) 3D Fourier transform of tomogram 
after non-negative constraint. (f) 3D Fourier transform of tomogram after 100 iterations. The 
color bar indicates base-10 logarithm of E-field amplitude. Scale bar, 2 μm-1. 

5. Experimental Results 
To test the performance of the 3D reconstruction methods, we first obtained two sets of 

angular E-field images of 6 μm polystyrene beads (Polysciences) immersed in oil (Cargille, n 



= 1.56) at two different foci, one in the middle of the bead and the other 4 μm above the 
center. When we applied the filtered back-projection algorithm based on the projection 
approximation, the slice image at the middle of the bead was uniform when the objective 
focus was set to the middle of the bead (Fig. 4(a)). However, when the focus was above center, 
the slice image in the middle of the bead presented ring patterns (Fig. 4(b)), which are due to 
diffraction of the propagating beam. 

We applied diffraction tomography based on the Rytov approximation. The resulting slice 
images of tomograms are shown in Figs. 4(c) and (d) at the objective focus in the middle of 
the bead and 4 μm above the center of the bead, respectively. Both images show clear 
boundaries of the bead with uniform index distributions. This indicates that the diffraction 
tomography properly accounts for the effects of diffraction. Note that the index of the bead 
relative to that of the oil was set to 0.03. This difference is very close to the relative index of 
the cell to the culture medium. Hence, we expect the Rytov approximation to be applicable to 
imaging of single cells. Based on the analysis of the slope at the edge of the bead, the spatial 
resolution of the reconstructed image was estimated to be 0.35 μm in the transverse and 0.7 
μm in the axial direction.   
 
 

 
Figure 4. Comparison between filtered back-projection algorithm and diffraction tomography 
with the Rytov approximation. (a) and (b): Slice images of tomogram in the middle of a 6 μm 
bead reconstructed by the filtered back-projection algorithm when the objective focus is in the 
middle of the bead (a) and 4 μm above the center of the bead (b). (c) and (d): Same slice 
images as (a) and (b) after reconstructed by the diffraction tomography based on the Rytov 
approximation at objective focus in the middle of the bead (c) and 4 μm above the center of the 
bead (d). The color bar indicates refractive indices at 633 nm wavelength. Scale bar, 5 μm. 

 
Next, we compared the performance of the Rytov and Born approximations. Figures 5 (a) 

and (c) show the slice images of a 6 μm bead reconstructed from the Born and Rytov 
approximations, respectively. The index in the middle of the bead is lower for the Born 
approximation while it is relatively uniform for the Rytov approximation. For a10 μm bead, 
distortion inside the bead is even more pronounced for the Born approximation (Fig. 5(b)), 
whereas the refractive index of the slice image of the Rytov approximation is still uniform. 
This demonstrates that the validity of the Born approximation is highly dependent on the size 
of the object and is not suitable at all for the 10 μm polystyrene bead in oil, whose phase delay 
is close to 3 radians. This suggests that the Born approximation cannot be used for imaging a 



biological cell which typically induces similar phase delay as a 10 μm bead. On the other 
hand, the Rytov approximation is less affected by the object size and valid for the index 
difference of 0.03. Thus the Rytov approximation will be appropriate for imaging biological 
cells. 
 
 

 
Figure 5. Comparison of the Born and Rytov approximations in diffraction tomography. (a) and 
(c): Slice images of a 6 μm bead reconstructed based on the Born and Rytov approximations, 
respectively. Line profiles across the center of the bead are presented next to the slice images. 
(b) and (d): Same as (a) and (c) for a 10 μm bead. The color bar indicates refractive indices at 
633 nm wavelength. 

 
We imaged live HT29 cells, a human colon adenocarcinoma cell line. Cells were prepared 

in an imaging chamber specially designed for the imaging of a live cell. It is composed of two 
coverslips separated by a 125 μm thick plastic spacer. Cells were incubated at 37 oC for 12 
hours before the measurements such that they become fully attached to the coverslip surface. 
For a fixed objective focus, we took a set of angular complex E-field images and applied both 
filtered back-projection algorithm and diffraction tomography based on the Rytov 
approximations. 

Figures 6(e)-(g) are x-y slices of tomogram images processed by the projection algorithm. 
Figures 6(i)-(k) are slice images of a tomogram reconstructed by diffraction tomography 
based on the Rytov approximation, corresponding to the Figs. 6(e)-(g), respectively. Figures 
6(f) and (j) are the slices corresponding to the objective focus plane. Figure 6(e) and (i) are 
slice images 1.7 μm above the focus, and Figs. 6(g) and (k) 2.9 μm below the focus. The 
bright field images (Fig. 6(a)-(c)) were taken for comparison by moving the objective lens at 
the same height as Figs. 6(i)-(k), respectively. It is clear that the structures in both of the 
refractive index tomograms are well matched to the bright field images. However, if we 
compare the details of the images at the tomogram slices 2.9 μm below the focus, the 
difference between tomograms can be seen. Figures 6(d), (h) and (l) are the zoom-in images 
of the white rectangles in Figs. 6(c), (g) and (k), respectively. Compared with the bright field 
image, tomograms processed using the filtered back-projection algorithm show ring pattern 
for the particles in the cytoplasm, and the two holes in the nucleolus are blurred. In contrast, 
in the tomogram processed by diffraction tomography, the two holes in the nucleolus are 
clearly resolved and the particles in the cytoplasm are well in focus (Fig. 6(l)). This 



demonstrates that the Rytov approximation is valid for taking the effect of diffraction into 
account in reconstructing 3D refractive index maps of live biological cells. As a result, we 
could clearly image the details of the 3D structures of a single live cell throughout its entire 
volume as well as quantify the refractive index of subcellular organelles. The observation that 
the index of the nucleus other than the nucleolus is no higher than the average index of 
cytoplasm is consistent with our previous report[16]. 

 

 
Figure 6. Bright field images (a-d), and 3D tomogram of HT29 cells reconstructed by the 
filtered back-projection algorithm (e-h) and diffraction tomography based on the Rytov 
approximation (i-l). (f) and (j) are slice images corresponding to the objective focus. (e) and (i) 
are slice images 1.7 μm above the original focus. (g) and (k) are slice images 2.9 μm below the 
focus. (a-c) are bright field images at the same foci as (e-g). (d), (h) and (l) are zoom-in images 
of the rectangular boxes in (c), (g) and (k), respectively. The color bar indicates refractive 
indices at 633 nm wavelength. Scale bar, 10 μm. 

 

6. Discussion 
To our knowledge, this is the first successful implementation of optical diffraction 

tomography for providing quantitative 3D refractive index maps of live biological cells. The 
first order Rytov approximation enabled accurate imaging of biological cells, whereas the first 
order Born approximation caused distortion in the reconstructed images. The iterative 
constraint algorithm helped to reduce the effect of missing angles. But the prior knowledge 
employed, non-negative constraint, is a rather weak constraint. With a better constraint such 
as the support constraint using cell boundary, the accuracy of reconstruction can be further 
improved, especially in axial direction. Theoretically, the spatial resolution can be better than 
twice the diffraction limit due to the Ewald sphere mapping [15]. But in imaging biological 
cells, weak contrast due to small index differences poses practical limits to the resolution 
beyond diffraction limit. For biological and biomedical applications, quantitative index maps 
can provide molecular concentrations without the need of fluorescence agents [23]. Further, 
since the refractive index is an intrinsic quantity, the dynamics of molecules can be studied 
without such artifacts as photobleaching. Refractive index maps can also help understand the 



way individual organelles in single live cells contribute to light scattering, and thus help in the 
design of in-vivo light scattering instruments for disease diagnosis [24].  
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