DSpace@MIT

MIT Open Access Articles

Measurement of D(0)-D\# (0) Mixing from a Time-Dependent Amplitude Analysis of D(0) -->K(+)pi(-)pi(0) Decays

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Aubert, B. et al. "Measurement of $\mathrm{D}(0)$-D\# (0) Mixing from a Time-Dependent Amplitude Analysis of D(0) -->K(+)pi(-)pi(0) Decays." Physical Review Letters 103.21 (2009): 211801. © 2009 The American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevLett.103.211801
Publisher: American Physical Society
Persistent URL: http://hdl.handle.net/1721.1/52620
Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Measurement of $D^{\mathbf{0}}-\bar{D}^{\mathbf{0}}$ Mixing from a Time-Dependent Amplitude Analysis of $\boldsymbol{D}^{\boldsymbol{0}} \rightarrow K^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$ Decays

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3 \mathrm{a}, 3 \mathrm{~b}}$ A. Palano, ${ }^{3 \mathrm{a}, 3 \mathrm{~b}}$ M. Pappagallo, ${ }^{3 \mathrm{a}, 3 \mathrm{~b}}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan,,${ }^{5, *}$ K. Tackmann, ${ }^{5}$ T. Tanabe,,${ }^{5}$ C. M. Hawkes, ${ }^{6}$ N. Soni, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett, ${ }^{10}$ A. Khan, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14, *}$ G. M. Vitug, ${ }^{14}$ Z. Yasin, ${ }^{14}$ L. Zhang, ${ }^{14}$ V. Sharma, ${ }^{15}$ C. Campagnari, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman,,${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ L. Wang, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom,,17 C. H. Cheng,,18 D. A. Doll, ${ }^{18}$ B. Echenard, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$
F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ P. C. Bloom, ${ }^{20}$ W. T. Ford, ${ }^{20}$ A. Gaz, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ R. Ayad, ${ }^{21, \dagger}$ A. Soffer, ${ }^{21, \ddagger}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ M. Karbach, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ M. J. Kobel, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ S. Playfer, ${ }^{25}$ J. E. Watson, ${ }^{25}$ M. Andreotti, ${ }^{26 a}, 26 \mathrm{~b}$ D. Bettoni, ${ }^{26 a}$ C. Bozzi, ${ }^{26 a}$ R. Calabrese, ${ }^{26 a, 26 b}$ A. Cecchi, ${ }^{26 a, 26 b}$ G. Cibinetto, ${ }^{26 a, 26 b}$ P. Franchini, ${ }^{26 a, 26 b}$ E. Luppi, ${ }^{26 a, 26 b}$ M. Negrini, ${ }^{26 a, 26 b}$ A. Petrella, ${ }^{26 a, 26 b}$ L. Piemontese, ${ }^{26 a}$ V. Santoro, ${ }^{26 a, 26 b}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27,8}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28 a}$ R. Contri, ${ }^{28 a, 28 b}$ M. Lo Vetere, ${ }^{28 a, 28 b}$ M. M. Macri, ${ }^{28 \mathrm{a}}$ M. R. Monge, ${ }^{28 a, 28 b}$ S. Passaggio, ${ }^{28 \mathrm{a}}$ C. Patrignani, ${ }^{28 a, 28 b}$ E. Robutti, ${ }^{28 \mathrm{a}}$ A. Santroni, ${ }^{28 \mathrm{a}, 28 \mathrm{~b}}$ S. Tosi, ${ }^{28 \mathrm{a}, 28 \mathrm{~b}}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ V. Klose, ${ }^{31}$ H. M. Lacker, ${ }^{31}$ D. J. Bard, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ J. A. Nash, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ M. Tibbetts, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ Y. Y. Gao, ${ }^{35}$ A. V. Gritsan, ${ }^{35}$ Z. J. Guo, ${ }^{35}$ C. K. Lae, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ J. Béquilleux, ${ }^{37}$ A. D'Orazio, ${ }^{37}$ M. Davier, ${ }^{37}$ J. Firmino da Costa, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ S. Pruvot, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ J. Serrano, ${ }^{37}$ V. Sordini, ${ }^{37, \|}$ A. Stocchi, ${ }^{37}$ G. Wormser, ${ }^{37}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ I. Bingham, ${ }^{39}$ J. P. Burke, ${ }^{39}$ C. A. Chavez, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ C. K. Clarke, ${ }^{40}$ K. A. George, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ R. Sacco, ${ }^{40}$ M. Sigamani, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ S. Paramesvaran, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ K. E. Alwyn, ${ }^{43}$ D. Bailey, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. Jackson, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ T. J. West, ${ }^{43}$ J. I. Yi, ${ }^{43}$ J. Anderson, ${ }^{44}$ C. Chen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ J. M. Tuggle, ${ }^{44}$ C. Dallapiccola, ${ }^{45}$ X. Li, ${ }^{45}$ E. Salvati, ${ }^{45}$ S. Saremi, ${ }^{45}$ R. Cowan, ${ }^{46}$ D. Dujmic, ${ }^{46}$
P. H. Fisher, ${ }^{46}$ K. Koeneke, ${ }^{46}$ G. Sciolla, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ M. Zhao, ${ }^{46}$ P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48 a, 48 \mathrm{~b}}$ V. Lombardo, ${ }^{48 \mathrm{a}, 48 \mathrm{~b}}$ F. Palombo, ${ }^{48 \mathrm{a}, 48 \mathrm{~b}}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49, \text {, }}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ G. De Nardo, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ L. Lista, ${ }^{52 \mathrm{a}}$ D. Monorchio, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ G. Onorato, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ C. Sciacca, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ K. J. Knoepfel, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ W. F. Wang, ${ }^{54}$ G. Benelli, ${ }^{55}$ L. A. Corwin, ${ }^{55}$ K. Honscheid, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }_{55}$ J. P. Morris, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ J. J. Regensburger, ${ }^{55}$ S. J. Sekula, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ J. A. Kolb, ${ }^{56}$ M. Lu, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ G. Castelli, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ N. Gagliardi, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ M. Margoni, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ M. Morandin, ${ }^{57 \mathrm{a}}$ M. Posocco, ${ }^{57 \mathrm{a}}$ M. Rotondo, ${ }^{57 \mathrm{a}}$ F. Simonetto, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ R. Stroili, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ C. Voci, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ P. del Amo Sanchez, ${ }^{58}$ E. Ben-Haim, ${ }^{58}$ H. Briand, ${ }^{58}$ G. Calderini, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ O. Hamon, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Ocariz, ${ }^{58}$ A. Perez, ${ }^{58}$ J. Prendki, ${ }^{58}$
S. Sitt, ${ }^{58}$ L. Gladney, ${ }^{59}$ M. Biasini, ${ }^{60 a, 60 b}$ R. Covarelli, ${ }^{60 \mathrm{a}, 60 \mathrm{~b}}$ E. Manoni, ${ }^{60 \mathrm{a}, 60 \mathrm{~b}}$ C. Angelini, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ G. Batignani, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ S. Bettarini, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. Carpinelli, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, * *}$ A. Cervelli, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ F. Forti, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. A. Giorgi, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ A. Lusiani, ${ }^{61 \mathrm{a}, 61 \mathrm{c}}$ G. Marchiori, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. Morganti, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ N. Neri, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ E. Paoloni, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ G. Rizzo, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ J. J. Walsh, ${ }^{61 \mathrm{a}}$ D. Lopes Pegna, ${ }^{62}$
C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J.S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Anulli, ${ }^{63 \mathrm{a}}$ E. Baracchini, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ G. Cavoto, ${ }^{63 \mathrm{a}}$ D. del Re, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ E. Di Marco, ${ }^{63 a, 63 b}$ R. Faccini, ${ }^{63 a, 63 b}$ F. Ferrarotto, ${ }^{63 a, 63 b}$ F. Ferroni, ${ }^{63 a, 63 b}$ M. Gaspero, ${ }^{63 a, 63 b}$ P. D. Jackson, ${ }^{63 a, 63 b}$ L. Li Gioi, ${ }^{63 a}$ M. A. Mazzoni, ${ }^{63 \mathrm{a}}$ S. Morganti, ${ }^{63 \mathrm{a}}$ G. Piredda, ${ }^{63 \mathrm{a}}$ F. Polci, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ F. Renga, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ C. Voena, ${ }^{63 \mathrm{a}}$ M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ B. Franek, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ F. F. Wilson,,${ }^{65}$ S. Emery,,${ }^{66}$ M. Escalier, ${ }^{66}$ L. Esteve, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X.R. Chen, ${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit,,${ }^{67}$ R. M. White, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ J. F. Benitez, ${ }^{68}$ R. Cenci, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$ G. P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ A. M. Gabareen, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ W.R. Innes, ${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith,,${ }^{68}$ S. Li, ${ }^{68}$ B. Lindquist, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth,,${ }^{68}$ H. L. Lynch,,${ }^{68}$ D. B. MacFarlane,,${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ H. Neal,,68 S. Nelson, ${ }^{68}$ C.P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ A.P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ C. A. West, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ H. W. Wulsin, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C.C. Young, ${ }^{68}$ V. Ziegler, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ T. S. Miyashita, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed,${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ S. B. Zain, ${ }^{70}$ S. M. Spanier, ${ }^{71}$ B. J. Wogsland, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R.F. Schwitters, ${ }^{72}$ B. W. Drummond, ${ }^{73}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ F. Bianchi,,$^{74 a, 74 \mathrm{~b}}$ D. Gamba, ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$ M. Pelliccioni, ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$ M. Bomben, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ L. Bosisio, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ C. Cartaro, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ G. Della Ricca, ${ }^{7 \mathrm{Fa}, 75 \mathrm{~b}}$ L. Lanceri, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ L. Vitale, ${ }^{75 a, 75 b}$ V. Azzolini, ${ }^{76}$ N. Lopez-March,,${ }^{76}$ F. Martinez-Vidal, ${ }^{76}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ H. H.F. Choi, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ M. J. Lewczuk,,${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ T. J. Gershon, ${ }^{78}$ P.F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ C. O. Vuosalo, ${ }^{79}$ and S. L. Wu ${ }^{79}$

(BABAR Collaboration)

[^0]${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Humboldt-Universität zu Berlin, Institut für Physik, Newtonstrasse 15, D-12489 Berlin, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{36}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 Orsay Cedex, France
${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{40}$ Queen Mary, University of London, London, E1 4NS, United Kingdom
${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom
${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{47}$ McGill University, Montréal, Québec, Canada H3A 278
${ }^{48 \mathrm{a}}$ INFN Sezione di Milano, I-20133 Milano, Italy
${ }^{48 \mathrm{~b}}$ Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{52 \mathrm{a}}$ INFN Sezione di Napoli, I-80126 Napoli, Italy
${ }^{52 b}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{57 a}$ INFN Sezione di Padova, I-35131 Padova, Italy
${ }^{57 \mathrm{~b}}$ Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
${ }^{58}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,
Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{60 \mathrm{a}}$ INFN Sezione di Perugia, I-06100 Perugia, Italy
${ }^{60 \mathrm{~b}}$ Dipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy
${ }^{61}{ }^{\text {a }}$ INFN Sezione di Pisa, I-56127 Pisa, Italy
${ }^{61 \mathrm{~b}}$ Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
${ }^{61 \mathrm{c}}$ Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63 a}$ INFN Sezione di Roma, I-00185 Roma, Italy
${ }^{63 \mathrm{~b}}$ Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{66}$ DSM/Irfu, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74 \mathrm{a}}$ INFN Sezione di Torino, I-10125 Torino, Italy
${ }^{74 b}$ Dipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy
${ }^{75 a}$ INFN Sezione di Trieste, I-34127 Trieste, Italy
${ }^{75 \mathrm{~b}}$ Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 28 July 2008; revised manuscript received 16 June 2009; published 18 November 2009)
We present evidence of $D^{0}-\bar{D}^{0}$ mixing using a time-dependent amplitude analysis of the decay $D^{0} \rightarrow$ $K^{+} \pi^{-} \pi^{0}$ in a data sample of $384 \mathrm{fb}^{-1}$ collected with the BABAR detector at the PEP-II $e^{+} e^{-}$collider at the Stanford Linear Accelerator Center. Assuming $C P$ conservation, we measure the mixing parameters $x_{K \pi \pi^{0}}^{\prime}=\left[2.61_{-0.68}^{+0.57}(\right.$ stat $\left.) \pm 0.39(\mathrm{syst})\right] \%, y_{K \pi \pi^{0}}^{\prime}=\left[-0.06_{-0.64}^{+0.55}(\mathrm{stat}) \pm 0.34(\mathrm{syst})\right] \%$. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of $C P$ violation in mixing.

DOI: 10.1103/PhysRevLett.103.211801
PACS numbers: $13.25 . \mathrm{Ft}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Mm}, 14.40 . \mathrm{Lb}$
$D^{0}-\bar{D}^{0}$ mixing is a transition between flavor eigenstates of neutral charmed mesons $\left|D^{0}\right\rangle$ and $\left|\bar{D}^{0}\right\rangle$, and it depends upon the mass and width differences of the mass eigenstates. If mixing occurs, the physical eigenstates $\left|D_{1,2}\right\rangle=$ $p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle\left(|p|^{2}+|q|^{2}=1\right)$ must have different masses $M_{1,2}$ or widths $\Gamma_{1,2}$. The oscillation is parametrized by $x \equiv 2\left(M_{1}-M_{2}\right) /\left(\Gamma_{1}+\Gamma_{2}\right)$ and $y \equiv\left(\Gamma_{1}-\Gamma_{2}\right) /\left(\Gamma_{1}+\right.$ Γ_{2}), where 1 (2) refers to the nearly $C P$-even (odd) eigenstate. If $C P$ is conserved, then $|p / q|=1$ and $\arg \left(q / p \bar{A}_{f} / A_{f}\right)=0$. Here $A_{f}\left(\bar{A}_{f}\right)$ is the amplitude of the transition of the $D^{0}\left(\bar{D}^{0}\right)$ to the final state f. In the standard model (SM), the $D^{0}-\bar{D}^{0}$ mixing contribution from loop diagrams is negligible [1]. This is due to Glashow-Iliopoulos-Maiani suppression of the first two quark generations and Cabibbo-Kobayashi-Maskawa suppression of the third. Contributions from intermediate physical states that couple to both D^{0} and \bar{D}^{0} are difficult to predict; they are estimated to be of the order $10^{-3}-10^{-2}$ [1]. Several recent studies report evidence for mixing parameters at the 1% level [2]. This is consistent with some SM expectations. As mixing is a rare process, it may be sensitive to particles and processes beyond the SM; existing measurements already pose constraints on a large number of new physics models [3]. $C P$ violation in the charm sector is expected to be negligible in the SM; an observation would indicate contributions beyond SM.

We present the first time-dependent amplitude analysis of the $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ Dalitz plot to extract the mixing parameters. Previously, we studied the time dependence of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decays integrated over large regions of the Dalitz plot. We found no evidence for mixing [4]. However, since certain regions of the phase space are more sensitive to mixing than others, this analysis is more sensitive than our previous work. Two modes are reconstructed: (1) right-sign (RS) decays $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ from a Cabibbo-favored (CF) amplitude and (2) wrongsign (WS) decays $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ from the coherent sum of a doubly Cabibbo-suppressed (DCS) amplitude and a CF amplitude produced by mixing. The interference of the two amplitudes gives rise to a linear dependence on the mixing parameters. We analyze events in which the flavor of the D^{0} [5] is measured at production. We identify RS and WS decays by reconstructing the $D^{*+} \rightarrow D^{0} \pi_{s}^{+}, D^{0} \rightarrow$ $K \pi \pi^{0}$ decay chain. The flavor of the D^{0} candidate is
known by the charge of the low-momentum pion $\left(\pi_{s}^{+}\right)$. The DCS and the CF amplitudes are described with isobar models [6].

The time-dependent decay rate depends on both the DCS amplitude $A_{\bar{f}}\left(s_{12}, s_{13}\right)=\langle\bar{f}| \mathcal{H}\left|D^{0}\right\rangle$ and the CF amplitude $\bar{A}_{\bar{f}}\left(s_{12}, s_{13}\right)=\langle\bar{f}| \mathcal{H}\left|\bar{D}^{0}\right\rangle$, where $s_{12}=m_{K^{+} \pi^{-}}^{2}$, $s_{13}=m_{K^{+} \pi^{0}}^{2}$, and $\bar{f}=K^{+} \pi^{-} \pi^{0}$. In the limit $|x|,|y| \ll 1$ and defining $\delta_{\bar{f}}\left(s_{12}, s_{13}\right)=\arg \left[A_{\bar{f}}^{*}\left(s_{12}, s_{13}\right) \bar{A}_{\bar{f}}\left(s_{12}, s_{13}\right)\right]$,

$$
\begin{align*}
\frac{d N_{\bar{f}}\left(s_{12}, s_{13}, t\right)}{d s_{12} d s_{13} d t}= & e^{-\Gamma t}\left\{\left|A_{\bar{f}}\right|^{2}+\left|A_{\bar{f}}\right|\left|\bar{A}_{\bar{f}}\right|\left[y \cos \delta_{\bar{f}}\right.\right. \\
& \left.\left.-x \sin \delta_{\bar{f}}\right](\Gamma t)+\frac{x^{2}+y^{2}}{4}\left|\bar{A}_{\bar{f}}\right|^{2}(\Gamma t)^{2}\right\} . \tag{1}
\end{align*}
$$

The first term in Eq. (1) is the DCS contribution to the WS rate; the second term arises from the interference between DCS and mixing CF amplitudes; the third term is a pure mixing contribution. We determine the CF amplitude $\bar{A}_{\bar{f}}$ in a time-independent Dalitz plot analysis of the RS decay sample and use it in the analysis of the WS sample. The DCS amplitude $A_{\bar{f}}$ is extracted along with the mixing parameters using a fit to the WS data that separates the time dependence across the Dalitz plot from its overall rate. The time dependence is manifest in

$$
\begin{array}{r}
\frac{d N_{\bar{f}}\left(s_{12}, s_{13}, t\right)}{d s_{12} d s_{13} d t} \propto e^{-\Gamma t} r_{0}^{2}\left[\left|A_{\tilde{f}}^{\mathrm{DCS}}\right|^{2}+\left|A_{\tilde{f}}^{\mathrm{DCS}}\right|\left|A_{\tilde{f}}^{\mathrm{CF}}\right|\left[\tilde{y} \cos \delta_{\bar{f}}\right.\right. \\
 \tag{2}\\
\left.\left.-\tilde{x} \sin \delta_{\bar{f}}\right](\Gamma t)+\frac{\tilde{x}^{2}+\tilde{y}^{2}}{4}\left|A_{\tilde{f}}^{\mathrm{CF}}\right|^{2}(\Gamma t)^{2}\right\},
\end{array}
$$

where $\quad A_{\bar{f}}^{\mathrm{DCS}} \equiv A_{\bar{f}} / \sqrt{\int\left|A_{\bar{f}}\right|^{2} d s_{12} d s_{13}} \quad$ and $\quad A_{\bar{f}}^{\mathrm{CF}} \equiv$ $\bar{A}_{\bar{f}} / \sqrt{\int\left|\bar{A}_{\bar{f}}\right|^{2} d s_{12} d s_{13}}$ are normalized shapes, $r_{0} \equiv$ $\sqrt{\int\left|A_{\tilde{f}}\right|^{2} d s_{12} d s_{13} / \int\left|\bar{A}_{\bar{f}}\right|^{2} d s_{12} d s_{13}}$, and $\tilde{x} \equiv x / r_{0}$ and $\tilde{y} \equiv$ y / r_{0} are normalized mixing parameters. In the isobar approach, $\bar{A}_{\bar{f}}$ and $A_{\bar{f}}$ are described as coherent sums of amplitudes, where each amplitude accounts for a resonance contribution. Previous studies [6] showed that the WS decays proceed primarily through the resonance $D^{0} \rightarrow$ $K^{*+} \pi^{-}$, while RS decays proceed primarily through $D^{0} \rightarrow$ $K^{-} \rho^{+}$[Figs. 1(a) and 1(b)].

FIG. 1 (color online). Dalitz plots for the (a) RS and (b) WS D^{0} samples. The reconstructed (c) D^{0} mass and (d) Δm distributions for the WS sample requiring, respectively, (c) $0.1449<\Delta m<0.1459 \mathrm{GeV} / c^{2}$ and (d) $1.8495<m_{K \pi \pi^{0}}<1.8795 \mathrm{GeV} / c^{2}$. The fit results are shown by the superimposed curves. The light histogram represents the mistag background, while the dark histogram shows the combinatorial background.

The interference terms in Eqs. (1) and (2) produce a variation in average decay time as a function of position in the WS Dalitz plot that is sensitive to the complex amplitudes of the resonant isobars as well as the mixing parameters. The change in the average decay time and the interference between the $D^{0} \rightarrow K^{*+} \pi^{-}$and $D^{0} \rightarrow \rho^{-} K^{+}$ amplitudes are the origin of our sensitivity to mixing. For both $\bar{A}_{\bar{f}}\left(A_{\bar{f}}^{\mathrm{CF}}\right)$ and $A_{\bar{f}}\left(A_{\bar{f}}^{\mathrm{DCS}}\right)$, one complex amplitude must be fixed arbitrarily; the strong interaction phase difference $\delta_{K \pi \pi^{0}}$ between the DCS $D^{0} \rightarrow \rho^{-} K^{+}$and the CF $\bar{D}^{0} \rightarrow$ $K^{+} \rho^{-}$cannot be determined in this analysis. As a result, we are sensitive to x and y in the form

$$
\begin{align*}
x_{K \pi \pi^{0}}^{\prime} & \equiv x \cos \delta_{K \pi \pi^{0}}+y \sin \delta_{K \pi \pi^{0}}, \tag{3}\\
y_{K \pi \pi^{0}}^{\prime} & \equiv y \cos \delta_{K \pi \pi^{0}}-x \sin \delta_{K \pi \pi^{0}} .
\end{align*}
$$

A nonzero value of $x_{K \pi \pi^{0}}^{\prime}$ or $y_{K \pi \pi^{0}}^{\prime}$ would signify mixing. In general, δ differs among decay modes.

The amplitudes entering the WS analysis are described as a sum of isobar components A_{j} that are parametrized with Breit-Wigner functions, $A_{\bar{f}}^{\mathrm{CF} / \mathrm{DCS}}=$ $\sum_{j=1}^{n_{\text {CFIDS }}} a_{j} e^{i \delta_{j}} A_{j}\left(m_{K^{+} \pi^{-}}^{2}, m_{K^{+} \pi^{0}}^{2}\right)$, where a_{j} and δ_{j} are the strong interaction amplitudes and phases of the j th resonant amplitude [6]. For the $K \pi S$-wave component, we use
a parametrization derived from $K-\pi$ scattering data [7], which has a $K_{0}^{*}(1430)$ resonance plus an effective nonresonant component. The mass and width of the resonances are taken from the world average [8].

We analyze a data sample of $384 \mathrm{fb}^{-1}$ collected with the BABAR detector [9] at the PEP-II $e^{+} e^{-}$collider at the Stanford Linear Accelerator Center near a center-of-mass energy of 10.58 GeV . Charged tracks are reconstructed with a silicon-strip detector (SVT) and a drift chamber (DCH), both in a 1.5 T magnetic field. Particle identification is based on measurements of ionization energy loss ($d E / d x$) in the SVT and DCH together with measurements from a Cherenkov ring-imaging device. Photon energies are measured with a $\mathrm{CsI}(\mathrm{Tl})$ calorimeter. All selection criteria, the fit procedure, and the systematic error analysis are finalized before we search for evidence of mixing in the data.

Selection criteria, identical for the RS and WS samples, are based partly on Ref. [4]. The π_{s}^{+}candidates must have a transverse momentum $p_{t}^{\mathrm{LAB}}>0.12 \mathrm{GeV} / c$, where LAB indicates the laboratory frame, and reject electrons using $d E / d x$ measurements. We use kinematic selection criteria to eliminate electrons from pair conversions. The energies of photon candidates used to form π^{0} are required to be greater than 0.1 GeV ; the invariant mass of photon pairs
must be in the range $0.09<m_{\pi^{0}}<0.16 \mathrm{GeV} / c^{2}$. We require the π^{0} momentum $p_{\pi^{0}}^{\mathrm{LAB}}$ to be greater than $0.35 \mathrm{GeV} / c$. The reconstructed invariant mass for the D^{0} candidates must have $1.74<m_{K \pi \pi^{0}}<1.98 \mathrm{GeV} / c^{2}$. The π^{0} and D^{0} masses are then set equal to their nominal values [8], and the D^{*} is refitted [10] with the constraint that its production point lies within the beam spot region. The D^{*+} invariant mass and D^{0} measured decay time $t_{K \pi \pi^{0}}$ are derived from this fit. We require $0.139<\Delta m<$ $0.155 \mathrm{GeV} / c^{2}$, where $\Delta m \equiv m_{K \pi \pi^{0} \pi_{s}}-m_{K \pi \pi^{0}}$. To reject D^{*} candidates from B decays, we require the D^{0} center-ofmass momentum to be greater than $2.4 \mathrm{GeV} / c$. For events containing multiple D^{*} candidates with shared tracks, the candidate that yields the most probable fit for the decay chain is used. The three-dimensional flight path determines $t_{K \pi \pi^{0}}$ and its uncertainty σ_{t}. For signal events, the typical value of σ_{t} is 0.23 ps ; we accept D^{*} candidates with $\sigma_{t}<$ 0.50 ps . The K^{+}and π^{-}tracks dominate the decay-vertex resolution.

We extract the signal and background yields from a binned extended maximum likelihood fit to the $m_{K \pi \pi^{0}}$ and Δm distributions [Figs. 1(c) and 1(d)]. For subsequent analysis, we retain D^{*} candidates in the signal region, $0.1449<\Delta m<0.1459 \mathrm{GeV} / c^{2}$ and $1.8495<m_{K \pi \pi^{0}}<$
$1.8795 \mathrm{GeV} / c^{2}$. Our final RS (WS) sample is composed of 658986 (3009) events with a purity of 99% (50\%). The efficiency of the signal region selection is 54.6%.

The RS sample is used to determine the CF isobar model parameters a_{j}^{CF} and δ_{j}^{CF}, as well as the decay time resolution function, which is parametrized as a sum of three Gaussian functions with a common mean, with widths given by the per event σ_{t} times a different scale factor for each Gaussian. We account for the reconstruction efficiency in the determination of the a_{j}^{CF} and δ_{j}^{CF}. The reconstructed RS signal decay time distribution [Fig. 2(a)] is described by a probability density function (PDF) consisting of an exponential function convolved with the resolution. The resolution function parameters and D^{0} lifetime are determined in an unbinned maximum likelihood fit. The mean value of the resolution function is found to be $4.2 \pm 0.7 \mathrm{fs}$, and it is consistent with the magnitude expected from instrumental effects. The associated systematic uncertainty is determined by setting the value to zero. We determine the D^{0} mean lifetime to be $[409.9 \pm$ 0.8 (stat only)] fs, in agreement with the world average $[410.1 \pm 1.5($ stat + syst $)]$ fs [8].

The D^{0} candidates in the WS signal region can be divided into three categories: signal events, combinatorial

FIG. 2 (color online). (a) Proper time distribution for RS events with the fit result superimposed. The distribution of background events is shown by the shaded histogram. (b) Proper time distribution for WS events. (c), (d) $m_{K^{+} \pi^{-}}^{2}$ and $m_{K^{+} \pi^{0}}^{2}$ projections with superimposed fit results (line). The light histogram represents the mistag background, while the dark histogram shows the combinatoric background.
background, and incorrectly tagged RS events (mistag), each one described by its own PDF whose parameters are determined in an unbinned maximum likelihood fit. During the fit procedure, the number of events in each category is fixed to the value obtained from the fit to the $m_{K \pi \pi^{0}}$ and Δm distributions.

The PDF describing the WS decay rate as a function of the Dalitz plot variables is convolved with the $t_{K \pi \pi^{0}}$ resolution function. The DCS amplitudes and phases for each resonance, along with the mixing parameters, are determined in the fit. The CF Dalitz plot amplitudes arising from mixing are taken from the fit to the RS sample previously described. The mistag events contain correctly reconstructed RS D^{0} decays; as the π_{s}^{+}has no influence in the decay chain fit, the D^{0} lifetime of those events is also correct. Therefore, the mistag events are parametrized using an empirical PDF obtained from the RS data for both the lifetime and the Dalitz plot variables. The PDF describing the combinatorial background is constructed by averaging the ($s_{12}, s_{13}, t_{K \pi \pi^{0}}$) distributions obtained from the WS $m_{K \pi \pi^{0}}$ sidebands: this accounts for correlations between those three variables that might be present in the data. We describe the σ_{t} distribution for signal and background using an empirical PDF from the RS data.

The results of the time-dependent fit of the WS data, the $a_{j}^{\mathrm{DCS}}, \delta_{j}^{\mathrm{DCS}}$ and fit fractions $f_{j}[6]$, are given in Table I. The fit fraction of the nonresonant contribution to the $K \pi S$ wave is absorbed into the $K_{0}^{*+}(1430)$ and $K_{0}^{* 0}(1430)$ fit fractions. Projections of the fit results are shown in Figs. 2(b)-2(d). The change in \log-likelihood $(-2 \Delta \ln \mathcal{L})$ between the fit with mixing and with no mixing $\left(x_{K \pi \pi^{0}}^{\prime} / r_{0}=y_{K \pi \pi^{0}}^{\prime} / r_{0}=0\right)$ is 13.5 units, including systematic uncertainties. For 2 degrees of freedom, the confidence level for the no-mixing hypothesis is 0.1%. Equivalently, this constitutes evidence for $D^{0}-\bar{D}^{0}$ at the 3.2 standard deviation level.

To derive the values of $x_{K \pi \pi^{0}}^{\prime}$ and $y_{K \pi \pi^{0}}^{\prime}$, we first determine $r_{0}^{2}=\left[5.25_{-0.31}^{+0.25}(\right.$ stat $) \pm 0.12($ syst $\left.)\right] \times 10^{-3}$ using

$$
\begin{equation*}
r_{0}^{2}=N_{\mathrm{WS}} /\left[N_{\mathrm{RS}}\left(1+\tilde{y} A^{2}-\tilde{x} B^{2}+\frac{\tilde{x}^{2}+\tilde{y}^{2}}{2}\right)\right] \tag{4}
\end{equation*}
$$

with $A^{2}\left(B^{2}\right) \equiv \int \operatorname{Re}(\operatorname{Im})\left[A_{\bar{f}}^{\mathrm{DCS} *} A_{\bar{f}}^{\mathrm{CF}}\right] d s_{12} d s_{13} . N_{\mathrm{WS}}\left(N_{\mathrm{RS}}\right)$ is the number of WS (RS) signal events in the sample. We then generate $10^{6}\left(x_{K \pi \pi^{0}}^{\prime} / r_{0}, y_{K \pi \pi^{0}}^{\prime} / r_{0}\right)$ points in accordance with the fit covariance matrix, assuming Gaussian errors (width given by the total uncertainty including systematics). For each point, we compute r_{0} using Eq. (4) and determine values for $x_{K \pi \pi^{0}}^{\prime}$ and $y_{K \pi \pi^{0}}^{\prime}$. Using a Bayesian approach, by integrating the likelihood function with respect to $x_{K \pi \pi^{0}}^{\prime}$ and $y_{K \pi \pi^{0}}^{\prime}$, assuming a flat prior distribution, we obtain $x_{K \pi \pi^{0}}^{\prime}=\left[2.61_{-0.68}^{+0.57}(\right.$ stat $) \pm$ $0.39(\mathrm{syst})] \% \quad$ and $\quad y_{K \pi \pi^{0}}^{\prime}=\left[-0.06_{-0.64}^{+0.55}(\mathrm{stat}) \pm\right.$ 0.34 (syst) $] \%$ with a correlation of -0.75 .

TABLE I. Fit results for the WS D^{0} data sample. The total fit fraction is 102% and the $\chi^{2} /$ ndof is $188 / 215$. The results for $x_{K \pi \pi^{0}}^{\prime} / r_{0}$ and $y_{K \pi \pi^{0}}^{\prime} / r_{0}$ include statistical and systematic errors; their total linear correlation is -0.34 .

Resonance	a_{j}^{DCS}	$\delta_{j}^{\mathrm{DCS}}\left({ }^{\circ}\right)$	$f_{j}(\%)$
$\rho(770)$	1 (fixed)	0 (fixed)	39.8 ± 6.5
$K_{2}^{* 0}(1430)$	0.088 ± 0.017	-17.2 ± 12.9	2.0 ± 0.7
$K_{0}^{*+}(1430)$	6.78 ± 1.00	69.1 ± 10.9	13.1 ± 3.3
$K^{*+}(892)$	0.899 ± 0.005	-171.0 ± 5.9	35.6 ± 5.5
$K_{0}^{* 0}(1430)$	1.65 ± 0.59	-44.4 ± 18.5	2.8 ± 1.5
$K^{* 0}(892)$	0.398 ± 0.038	24.1 ± 9.8	6.5 ± 1.4
$\rho(1700)$	5.4 ± 1.6	157.4 ± 20.3	2.0 ± 1.1
$x_{K \pi \pi^{0}}^{\prime} / r_{0}=0.353 \pm 0.091 \pm 0.066$			
$y_{K \pi \pi^{0}}^{\prime} / r_{0}=-0.002 \pm 0.090 \pm 0.057$			

Extensive validation of this fitting procedure is performed using Monte Carlo (MC) experiments based on the PDF shapes and DCS amplitudes extracted from data. The validation studies are performed over the range $\{-0.6,0.6\}$ for both $x_{K \pi \pi^{0}}^{\prime} / r_{0}$ and $y_{K \pi \pi^{0}}^{\prime} / r_{0}$. These studies demonstrate that the fit correctly determines the mixing parameters to within a small offset of $0.2-0.3 \sigma$, where σ is the statistical uncertainty. These small biases are a consequence of the relatively small size of our data sample and become negligible if MC samples with higher statistics are used. We correct the final result for this offset.

Sources of systematic uncertainty for $x_{K \pi \pi^{0}}^{\prime} / r_{0}$ $\left(y_{K \pi \pi^{0}}^{\prime} / r_{0}\right)$, related to the choice of the isobar model and the experimental assumptions, are considered. For each effect we refit the data with an alternative assumption and extract the overall correlated uncertainty for the fitted parameters. We estimate the Dalitz model uncertainties $[0.38 \sigma(0.35 \sigma)]$, where σ is the statistical uncertainty, by varying the mass and the width of each resonance within their error and by using alternative parametrizations for the isobar components A_{j} in the fit: the largest error arises from uncertainties in the K^{*} and ρ parameters and from uncertainties in the parametrization of the $K \pi S$ wave. Systematic uncertainties related to the number of signal and background events $[0.15 \sigma(0.22 \sigma)]$ are evaluated by varying them according to their statistical uncertainties. Similarly, the definition of the signal region, the σ_{t} requirement, and the selection of the best D^{*} candidate are varied. The effect on the mixing parameters is $0.50 \sigma(0.37 \sigma)$. Variations in efficiency across the Dalitz plot contribute systematic uncertainties of $0.09 \sigma(0.10 \sigma)$. The $t_{K \pi \pi^{0}}$ resolution function parameters are varied within their errors. The offset is also set to zero. The systematic effect is 0.11σ (0.09σ). The total systematic error on $x_{K \pi \pi^{0}}^{\prime} / r_{0}\left(y_{K \pi \pi^{0}}^{\prime} / r_{0}\right)$ is $0.66 \sigma(0.57 \sigma)$.

The same procedure is applied separately to the WS D^{0}-tagged (+) and \bar{D}^{0}-tagged (-) events to search for
$C P$ violation in mixing or interference. We find $x_{K \pi \pi^{0}}^{\prime+}=$ $\left(2.53_{-0.63}^{+0.54} \pm 0.39\right) \%, \quad y_{K \pi \pi^{0}}^{\prime+}=\left(-0.05_{-0.67}^{+0.63} \pm 0.50\right) \%$, $x_{K \pi \pi^{0}}^{\prime-}=\left(3.55_{-0.83}^{+0.73} \pm 0.65\right) \%, \quad$ and $\quad y_{K \pi \pi^{0}}^{\prime-}=$ $\left(-0.54_{-1.16}^{+0.40} \pm 0.41\right) \%$, respectively, and thus observe no evidence for $C P$ violation. The correlation between $x_{K \pi \pi^{0}}^{\prime+}$ $\left(x_{K \pi \pi^{0}}^{\prime-}\right)$ and $y_{K \pi \pi^{0}}^{\prime+}\left(y_{K \pi \pi^{0}}^{\prime-}\right)$ is $-0.69(-0.66)$.

Our data are inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations including systematic uncertainties and thus present evidence of mixing. For the rotated mixing parameters, we find $x_{K \pi \pi^{0}}^{\prime}=$ $\left(2.61_{-0.68}^{+0.57} \pm 0.39\right) \%$ and $y_{K \pi \pi^{0}}^{\prime}=\left(-0.06_{-0.64}^{+0.55} \pm 0.34\right) \%$ with a correlation of -0.75 . These values are consistent with our previous result [4] and with some SM estimates. No evidence for $C P$ violation is found.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[^1]${ }^{\text {§ }}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
"Also with Università di Roma La Sapienza, I-00185 Roma, Italy.
${ }^{\text {II}}$ Now at University of South Alabama, Mobile, AL 36688, USA.
**Also with Università di Sassari, Sassari, Italy.
[1] L. Wolfenstein, Phys. Lett. 164B, 170 (1985); A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, Phys. Rev. D 69, 114021 (2004).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 211802 (2007); M. Staric et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211803 (2007); L. M. Zang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 131803 (2007); B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 011105 (2008); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 121802 (2008).
[3] G. Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53, 431 (2003); A. A. Petrov, Int. J. Mod. Phys. A 21, 5686 (2006); E. Golowich, J. Hewett, S. Pakvasa, and A. A. Petrov, Phys. Rev. D 76, 095009 (2007); S. Bergmann, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, Phys. Lett. B 486, 418 (2000).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 221803 (2006).
[5] The use of charge-conjugate modes is implied unless otherwise noted.
[6] S. Kopp et al. (CLEO Collaboration), Phys. Rev. D 63, 092001 (2001).
[7] D. Aston et al., (LASS Collaboration), Nucl. Phys. B296, 493 (1988).
[8] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[9] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[10] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
 ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
 ${ }^{3 \mathrm{Ia}}$ INFN Sezione di Bari, I-70126 Bari, Italy
 ${ }^{3 \mathrm{~b}}$ Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
 ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
 ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{22}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
 ${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
 ${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{26 a}$ INFN Sezione di Ferrara, I-44100 Ferrara, Italy
 ${ }^{26 \mathrm{~b}}$ Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
 ${ }^{27}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
 ${ }^{28 a}$ INFN Sezione di Genova, I-16146 Genova, Italy
 ${ }^{28 \mathrm{~b}}$ Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy

[^1]: *Deceased.
 ${ }^{\dagger}$ Now at Temple University, Philadelphia, PA 19122, USA.
 ${ }^{\dagger}$ Now at Tel Aviv University, Tel Aviv, 69978, Israel.

