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Abstract

We investigate a decentralized detection problem in which a set of sensors transmit a
summary of their observations to a fusion center, which then decides which one of two
hypotheses is true. The focus is on determining the value of feedback in improving
performance in the regime of asymptotically many sensors. We formulate the decen-
tralized detection problem for different network configurations of interest under both
the Neyman-Pearson and the Bayesian criteria. In a configuration with feedback, the
fusion center would make a preliminary decision which it would pass on back to the
local sensors; a related configuration, the daisy chain, is introduced: the first fusion
center passes the information from a first set of sensors on to a second set of sensors
and a second fusion center. Under the Neyman-Pearson criterion, we provide both
an empirical study and theoretical results. The empirical study assumes scalar linear
Gaussian binary sensors and analyzes asymptotic performance as the signal-to-noise
ratio of the measurements grows higher, to show that the value of feeding the prelimi-
nary decision back to decision makers is asymptotically negligible. This motivates two
theoretical results: first, in the asymptotic regime (as the number of sensors tends to
infinity), the performance of the “daisy chain” matches the performance of a parallel
configuration with twice as many sensors as the classical scheme; second, it is optimal
(in terms of the exponent of the error probability) to constrain all decision rules at the
first and second stage of the “daisy chain” to be equal. Under the Bayesian criterion,
three analytical results are shown. First, it is asymptotically optimal to have all sen-
sors of a parallel configuration use the same decision rule under exponentially skewed
priors. Second, again in the asymptotic regime, the decision rules at the second stage
of the “daisy chain” can be equal without loss of optimality. Finally, the same result
is proven for the first stage.
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Chapter 1

Introduction

1.1 Scope, background, and related work

Interest in sensor networks, data fusion, and distributed signal processing has virtually

exploded in recent years, because of new technologies (especially the availability of

low-cost sensing devices) and numerous potential applications. Research in the field

involves problems that are both practically relevant and intellectually deep. On the

application side, data fusion and sensor networks play a prominent role in a vast range

of contexts; on the intellectual side, the development of new mathematical methods

for new types of problems has obvious intrinsic intellectual merit.

The following two paragraphs, taken verbatim from the NSF proposal [14] which

resulted in the funds that partly supported our research work, convey accurately the

scope of our project.

“In the general context of the models that we will be considering, a sensor network

consists of sensors (nodes) each of which makes a (generally noisy) observation of one

or more random variables, related to a phenomenon of interest. The sensors use their

observation, as well as messages received from other sensors, to form and transmit

their own messages. Messages propagate through the network until eventually one

(e.g. a fusion center) or multiple sensors form a final decision.

We are particularly interested in sensor networks operating in a regime of limited

communication capabilities. Our focus on this regime reflects an emphasis on net-
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works consisting of many, small, and inexpensive devices that have limited battery

life and power, and cannot afford to communicate frequently or to transmit a lot of

data. With abundant communication capabilities, the sensors could just share all

their measurements, in which case the network aspects become immaterial, and we

are faced with much easier, centralized information processing problems. In addition,

we focus on the important issue of scalability, as the number of sensors increases.

This is because there is abundant interest in sensor networks involving very large

numbers of sensors, and also because some very difficult problems sometimes become

tractable in the asymptotic regime. Our approach here is philosophically similar to

the successful study of scalability issues in wireless networks, although the techni-

cal details are very different. Finally, our end goal is not only to optimize a given

sensor network, but to derive important lessons on the merits of different network

architectures. This is to be contrasted with the majority of the literature on decen-

tralized detection, which assume a star or parallel configuration, with every sensor

transmitting a message directly to a fusion center.”

In a centralized scheme, each sensor communicates all of its observations to the

fusion center; we discuss instead decentralized detection (introduced in [11]), where

each sensor sends only a summary of its observations to the fusion center with a

message that takes values in a finite alphabet. The fusion center then decides on one

of the alternative hypotheses. The problem is to identify how each peripheral sensor

should decide what message(s) to send, and how the fusion center should interpret

these messages to make a final decision, in a manner that minimizes the probability

of error. In our work performance is analyzed in the asymptotic regime, through the

use of error exponents. The key point of our research is to assess the value (in terms

of performance improvement) of feeding a preliminary decision back to sensors in tree

networks.

A lot of research followed the seminal paper of Tenney and Sandell ([11]); for

a review, see [13]. For conditionally dependent observations, the decision version

of the problem becomes NP-complete (and the problem itself NP-hard). Under the

assumption of conditional independence, the optimal decision rule for each sensor
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takes the form of a likelihood ratio test, with a suitably chosen threshold. In turn,

an optimization over the set of all thresholds can yield the desired solution.

We briefly note several pieces of work that study decentralized detection under

a Bayesian or Neyman-Pearson criterion. By no means are the works mentioned

here exhaustive; rather, we list those that most closely relate to the analyses we will

perform in this work. [1] presents a unified approach to the study of decentralized

detection systems with any configuration, and introduces and evaluates the perfor-

mance of a new toplogical structure, namely a decentralized detection system with

peer communication; this structure features feedback and assumes that sensors have

memory. [2] investigates a decentralized detection system with feedback and memory

using the Bayesian formulation and finds the system probability of error to be no

larger than that for a parallel configuration without feedback, provided the mecha-

nism for feedback is properly designed. In addition, analysis and experiments show

that the probability of error decreases to zero as the number of fed back observations

goes to infinity. [7] considers a Neyman-Pearson formulation to compare two different

feedback architectures: the first permits feedback only from the fusion center back to

the local decision makers, while the second permits feedback among all peripheral sen-

sors. The superiority of the latter structure over the former is empirically established

and it is shown that the contribution of feedback decreases exponentially with the

signal-to-noise ratio and the number of local sensors. [9] explores the use of feedback

(of all sensor decisions to all sensors) and successive retesting and rebroadcasting of

the updated decisions until a consensus is reached, an operation identified as “par-

ley”. Two modes of operation of “parley” are considered. In the first, all sensors are

as correct as possible at all times; convergence to a consensus is demonstrated to be

quite fast, at the expense of performance. In the second, the decision reached by the

consensus is constrained to be optimum in the sense that it would match that of a

centralized processor, at the expense of haste.

The underlying non-convexity of the problem of optimizing the decision rules as

the number of sensors increases has promoted research into more tractable asymptotic

formulations (i.e., when the number of sensors approaches infinity). [12] focuses on
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optimizing the asymptotic error exponent, defined by the normalized logarithm of the

probability of error as the number of nodes goes to infinity, for the case of a parallel

configuration with a large number of sensors that receive conditionally independent,

identically distributed observations. [10] considers the broader problem of decentral-

ized binary detection in a network consisting of a large number of nodes arranged

as a tree of bounded height; the error probability is shown to decay exponentially

fast with the number of nodes under both the Bayesian and the Neyman-Pearson

formulation. Necessary and sufficient conditions are provided for the optimal error

exponent to be the same as that corresponding to a parallel configuration, under

the Neyman-Pearson criterion. [4] studies decentralized binary detection in wireless

sensor networks where each sensor transmits its data over a multiple access channel.

Under constraints for the capacity of the wireless channel, it is proven that for the

problem of detecting deterministic signals in additive Gaussian noise, having a set of

identical binary sensors is asymptotically optimal, as the number of observations per

sensor goes to infinity.

Finally, [6] escapes the asymptotic regime and the limitations of the parallel config-

uration to discuss message-passing algorithms for online measurement processing and

offline strategy optimization that exploit sparse graph structure of a sensor network.

While the parallel configuration is not sparse from the fusion center’s perspective, the

associated algorithm can be applied for problems of up to 10 nodes.

1.2 Contributions and thesis outline

In Chapter 2 we formally introduce the basic model that overarches the analysis

of this thesis. We first define the detection problem for all network configurations

discussed in this thesis: after defining the classical decentralized detection problem,

we formulate problems associated with other configurations of interest. We then

provide a framework in which the asymptotics of decentralized detection shall be

discussed.

Chapter 3 provides some motivating examples, as well as easy-to-draw compar-
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isons between the performance of different configurations. In the first part of this

chapter, the “simulation” argument (i.e., simulating the communication capabilities

of a network configuration with the communication capabilities of another) is used to

compare the performance of configurations proposed in Chapter 2 in the optimal error

exponent sense. In the second part, we consider a classical decentralized detection

model (as defined in Subsection 2.1.1) when all sensors are scalar linear Gaussian

binary detectors, and analyze asymptotic performance as the measurements under

the two hypotheses become more and more informative.

In Chapter 4 we prove that under the Neyman-Pearson formulation, the perfor-

mance of the “daisy chain” configuration (Subsection 2.1.4) is asymptotically equal

to the performance of the parallel configuration with twice as many sensors as the

classical scheme (Subsection 2.1.2), in the optimal error exponent sense. We first ar-

gue that the “daisy chain” cannot be worse than the parallel configuration with twice

as many sensors as the classical scheme; we then prove that it cannot perform better.

We conclude that the value of feeding the preliminary decision to a second set of

sensors is asymptotically negligible. We also prove that there is no loss of optimality

asymptotically in the “daisy chain” if all decision rules at both stages are constrained

to be equal.

Chapter 5 solves the Bayesian detection problem for the “daisy chain” configura-

tion. [12] proves that for the parallel topology, it is asymptotically optimal to let all

sensors use the same decision rule in deciding what to transmit. In particular, it is

asymptotically optimal to have all sensors perform identical likelihood ratio tests, us-

ing the same threshold. First we extend this result to the case of exponentially skewed

priors; we then make the connection between the result for exponentially skewed pri-

ors and Bayesian detection in the “daisy chain”. Specifically, we prove that under

the mild assumption that the Type I and Type II error probabilities of the first stage

decay exponentially with the number of sensors, it is asymptotically optimal to have

all sensors in the second stage perform identical likelihood ratio tests. Finally, we

prove that it is asymptotically optimal to have all sensors in the first stage perform

identical likelihood ratio tests as well. In all cases, optimality is meant in terms of

15



the overall system’s optimal error exponent.

Finally, in Chapter 6 we summarize and suggest directions for future research.
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Chapter 2

The Basic Model

In this chapter we formally introduce the basic model that overarches the analysis

of this thesis. We first define the detection problem for all network topologies dis-

cussed in our work: after defining the classical decentralized detection problem, which

assumes a parallel configuration, we formulate problems associated with other con-

figurations of interest. When defining the problem for configurations other than the

parallel, we focus on aspects in which the problem deviates from the parallel config-

uration problem, without repeating common aspects. We then provide a framework

in which the asymptotics of decentralized detection shall be discussed.

2.1 Network configurations of interest for decen-

tralized detection

2.1.1 The classical decentralized detection problem

In the Bayesian formulation, the state of the environment can be captured by one

of M alternative hypotheses H0, H1, . . . , HM−1, with known positive prior proba-

bilities Pr(Hi). Let set X be endowed with a σ-field FX of measurable sets. There

are N sensors indexed 1, . . . , N and each sensor i observes a realization of a random

variable Xi, which takes values in X . We assume that conditioned on hypothesis

Hj, the random variables Xi are independent and identically distributed (i.i.d.) with
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a known conditional distribution Pj. Let D be a positive integer; let T be a pre-

determined symbol alphabet with |T | = D. Each sensor i evaluates a D-valued

message Yi ∈ T as a function of its observation: Yi = γi(Xi), where the function

γi : X 7→ T (assumed measurable) is the decision rule (or transmission function) of

sensor i. Messages Y1, . . . , YN are communicated to a fusion center which uses a

fusion rule γ0 : T N 7→ {0, . . . ,M − 1} and declares hypothesis Hj to be true if and

only if Y0 = γ0(Y1, . . . , YN) = j. The objective is to choose the rules γ0, γ1, . . . , γN

so as to minimize the probability of an erroneous decision at the fusion center.

In the Neyman-Pearson formulation, the problem is set up in the same way but

priors Pr(Hi) need not be defined. For the case M = 2 the objective is to choose the

rules γ0, γ1, . . . , γN so as to minimize the missed detection probability P1(Y0 = 0)

subject to a constraint P0(Y0 = 1) ≤ α on the false alarm probability, where α is a

constant such that 0 < α < 1.

The parallel configuration we just described is shown in Figure 2-1. We are mostly

interested in the case where M = 2 and D = 2 (each peripheral sensor transmits one

bit to the fusion center) or D = 4 (each peripheral sensor transmits two bits to the

fusion center).

2.1.2 Decentralized detection with double the number of sen-

sors

We will also consider the configuration in which there are 2N sensors, indexed 1, . . . ,

N , N + 1, . . . , 2N . The setup is analogous to the one described in Section 2.1.1.

Messages Y1, . . . , YN , YN+1, . . . , Y2N are communicated to a fusion center which uses

a fusion rule γ0 : T 2N 7→ {0, . . . ,M − 1} and declares hypothesis Hj to be true if

and only if Y0 = γ0(Y1, . . . , YN , YN+1, . . . , Y2N) = j. In both the Bayesian and the

Neyman-Pearson formulation, the objective is to choose the rules γ0, γ1, . . . , γN ,

γN+1, . . . , γ2N according to the respective criterion.

The parallel configuration just described is shown in Figure 2-2. We are mostly

interested in the case where M = 2 and D = 2 (each peripheral sensor transmits one
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Figure 2-1: The parallel configuration.

bit to the fusion center).

2.1.3 Decentralized detection with simple feedback

Let D1, D2 be positive integers; let T1, T2 be predetermined symbol alphabets with

|T1| = D1 and |T2| = D2. We consider a two-stage process. At the first stage,

each sensor i evaluates a D1-valued message Yi ∈ T1 as a function of its observation:

Yi = γi(Xi), where the function γi : X 7→ T1 (assumed measurable) is the decision

rule (or transmission function) of sensor i in this first stage. Messages Y1, . . . , YN are

communicated to a fusion center which uses a fusion rule γ0 : T N1 7→ {0, . . . ,M − 1}.

Intuitively, the fusion center “believes” hypothesis Hj to be true if and only if Y0 =

γ0(Y1, . . . , YN) = j. The fusion center sends its current belief Y0 back to each of the

N sensors. At the second stage, each sensor i now evaluates a D2-valued message
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Figure 2-2: The parallel configuration with double the number of sensors.

Ui ∈ T2 as a function of its observation and the feedback: Ui = δi(Xi, Y0), where the

function δi : X × {0, . . . ,M − 1} 7→ T2 (assumed measurable) is the decision rule

(or transmission function) of sensor i in this second stage. Messages U1, . . . , UN are

communicated to the fusion center which uses a fusion rule δ0 : T N2 7→ {0, . . . ,M−1}

and declares hypothesis Hj to be true if and only if U0 = δ0(U1, . . . , UN) = j. In

both the Bayesian and the Neyman-Pearson formulation, the objective is to choose

the rules γ0, γ1, . . . , γN , δ0, δ1, . . . , δN according to the respective criterion.

The above described parallel configuration with feedback is shown in Figure 2-3.

We are mostly interested in the case when M = 2 and D1 = D2 = 2 (each sensor

transmits one bit to the fusion center in each stage of detection/communication).
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Figure 2-3: The parallel configuration with feedback.

2.1.4 Decentralized detection with two nested groups of sen-

sors - The “daisy chain” configuration

In this configuration there are 2N sensors indexed 1, . . . , N , N + 1, . . . , 2N and

each sensor i observes a realization of a random variable Xi, which takes values in X .

Let D1, D2 be positive integers; let T1, T2 be predetermined symbol alphabets with

|T1| = D1 and |T2| = D2. Each sensor i in the set of sensors indexed 1, . . . , N evaluates

a D1-valued message Yi ∈ T1 as a function of its observation: Yi = γi(Xi), where

the function γi : X 7→ T1 (assumed measurable) is the decision rule (or transmission

function) of sensor i. Messages Y1, . . . , YN are communicated to a fusion center which

uses a fusion rule γ0 : T N1 7→ {0, . . . ,M − 1}; intuitively, it “believes” hypothesis Hj

to be true if and only if Y0 = γ0(Y1, . . . , YN) = j. The fusion center sends its belief

Y0 to each of the N sensors indexed N + 1, . . . , 2N . Each sensor i in the set of
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sensors indexed N + 1, . . . , 2N now evaluates a D2-valued message Ui−N ∈ T2 as a

function of its observation and the fusion center’s belief: Ui−N = δi−N(Xi, Y0), where

the function δi−N : X × {0, . . . ,M − 1} 7→ T2 (assumed measurable) is the decision

rule (or transmission function) of sensor i. Messages U1, . . . , UN , along with the

fusion center’s belief Y0, are communicated to a second (global) fusion center which

uses a fusion rule δ0 : T N2 ×{0, . . . ,M −1} 7→ {0, . . . ,M −1} and declares hypothesis

Hj to be true if and only if U0 = δ0(U1, . . . , UN , Y0) = j. In both the Bayesian and

the Neyman-Pearson formulation, the objective is to choose the rules γ0, γ1, . . . , γN ,

δ0, δ1, . . . , δN according to the respective criterion.

The above described configuration is shown in Figure 2-4. We are mostly inter-

ested in the case when M = 2 and D1 = D2 = 2 (each sensor transmits a total of one

bit).

2.2 The asymptotic regime

It is widely known that, as the number of sensors grows, the probability of error goes

to zero exponentially fast for any “reasonable” set of decision rules. This calls for a

more refined measure of performance as N →∞. We describe the large N regime for

the classical decentralized detection problem of Subsection 2.1.1, in both the Bayesian

and the Neyman-Pearson formulations. The formulation of the asymptotic regime of

other network configurations of interest is similar.

2.2.1 Bayesian asymptotics

As [12] notices, having fixed the decision rules γ1, . . . , γN of the sensors, the optimal

decision for the fusion center γ0 is the maximum a posteriori (MAP) probability rule.

Thus, we will be concerned only with optimization with respect to γ1, . . . , γN . We

follow the notation used in [12] to denote any such set of decision rules by γN . Let

Γ be the set of all measurable functions from X into T , and ΓN be the Cartesian

product of Γ with itself N times. For any γN ∈ ΓN , we define JN(γN) to be the

probability of an erroneous decision by the fusion center. For any given N and choice
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of decision rules γN , we define the exponent of the error probability to be

rN(γN) =
log JN(γN)

N
. (2.1)

Let

RN = inf
γN∈ΓN

rN(γN) (2.2)

be the optimal error exponent. We focus on the asymptotic optimal error exponent,

limN→∞RN , which we denote g∗P . In the relevant literature, g∗P is often termed “the

optimal error exponent”, as opposed to “the asymptotic optimal error exponent”; we

respect this convention. In this thesis, optimal error exponent refers to g∗P , unless

otherwise indicated.

2.2.2 Neyman-Pearson asymptotics

Let M = 2, and let Γ be again the set of all measurable functions from X into T . We

allow the decision rule of the fusion center γ0 to be randomized; as [12] notes, the final

decision of the fusion center may depend on the decisions of the local decision-makers

as well as an internally generated random variable. Let Γ0 be the set of all candidate

decision rules γ0. For any given choice of decision rules (γ0, γ1, . . . , γN) ∈ Γ0 × ΓN ,

we define the Type I and Type II error probabilities to be respectively:

J IN(γ0, γ1, . . . , γN) = P0(γ0(γ1(X1), . . . , γN(XN)) = 1), (2.3)

J IIN (γ0, γ1, . . . , γN) = P1(γ0(γ1(X1), . . . , γN(XN)) = 0). (2.4)

We require that J IN(γ0, γ1, . . . , γN) be no more than a given α ∈ (0, 1) and we are

interested in minimizing J IIN (γ0, γ1, . . . , γN) over all γ0, γ1, . . . , γN satisfying

J IN(γ0, γ1, . . . , γN) ≤ α. (2.5)

We define

rN(γ0, γ1, . . . , γN) =
log J IIN (γ0, γ1, . . . , γN)

N
. (2.6)
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Let

RN = inf
(γ0,γ1,...,γN )∈Γ0×ΓN s.t. JIN (γ0,γ1,...,γN )≤α

rN(γ0, γ1, . . . , γN). (2.7)

Suppose that Xi is a sensor observation. For any γ ∈ Γ, let the distribution of

γ(Xi) under hypothesis Hj be Pγj . We list some of the common assumptions we will

be making in the sequel. For the proofs of all results in this thesis pertaining to

Neyman-Pearson detection, we make these assumptions, unless otherwise indicated.

Assumption 2.1. The measures P0 and P1 are equivalent, i.e. they are absolutely

continuous with respect to each other. Furthermore, there exists some γ ∈ Γ such that

−D(Pγ0 ‖P
γ
1 ) < 0 < D(Pγ1 ‖P

γ
0 ).

Assumption 2.2. E
[
log2 dP1

dP0

]
<∞, where dP1

dP0
is the Radon-Nikodym derivative of

the two measures, and the expectation is taken with respect to P0.

It was shown in [12] that under Assumptions 2.1 and 2.2, the asymptotic optimal

error exponent, which we denote g∗P , is given by

g∗P = lim
N→∞

RN = − sup
γ∈Γ

D(Pγ0 ‖P
γ
1 ), (2.8)

where D denotes the Kullback-Leibler divergence of two probability measures. In the

relevant literature, g∗P is often termed “the optimal error exponent”, as opposed to

“the asymptotic optimal error exponent”; we respect this convention. In this thesis,

optimal error exponent refers to g∗P , unless otherwise indicated.
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Figure 2-4: The “daisy chain” configuration.
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Chapter 3

Motivation and Simple Examples

In this chapter we provide some motivating examples, as well as easy-to-draw com-

parisons between the performance of different configurations. In the first part of this

chapter, the “simulation” argument (i.e., simulating the communication capabilities

of a network configuration with the communication capabilities of another) is used to

compare the performance of configurations proposed in Chapter 2, in the optimal er-

ror exponent sense. In the second part, we study the classical decentralized detection

problem (as defined in Subsection 2.1.1) when all sensors are scalar linear Gaussian

binary detectors, and analyze asymptotic performance as the measurements under the

two hypotheses become more and more informative, i.e. as the signal-to-noise ratio

grows higher. The results motivate the analysis in Chapter 4: the value of feeding

the preliminary decision to decision makers is asymptotically negligible.

3.1 Comparison between configurations using the

“simulation” argument

For finitely many sensors, the metric of the performance of a configuration would be

the probability of an erroneous decision, with smaller probability of error implying

better performance. In the asymptotic regime, we are interested in the exponent of

the error probability. Assuming exponential decay of error probabilities, the error
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exponents of interest are negative, and smaller values correspond to better perfor-

mance.

We restrict our attention to the Neyman-Pearson paradigm. Assuming all expo-

nents are well defined, let g∗P , g∗2b, g
∗
2N , g∗F , g∗DC denote the optimal error exponent of

the parallel configuration when all sensors send one bit to the fusion center (D = 2),

the parallel configuration when all sensors send 2 bits to the fusion center (D = 4),

the parallel configuration with twice as many sensors, the simple feedback network

and the “daisy chain”, respectively. g∗P and g∗DC are formally defined in 2.2.2 and 4.1,

while the definition of g∗2b, g
∗
2N , and g∗F is similar.

Proposition 3.1. Assuming g∗P , g∗2b, g
∗
2N , g∗F , g∗DC are all well defined,

−∞ < −D(P0||P1) ≤ g∗F ≤ g∗2b ≤ g∗P < 0

−∞ < −D(P0||P1) ≤ g∗DC ≤ g∗2N ≤ g∗P < 0

Proof. No configuration of interest can do better than a network in which all the

observations are provided uncompressed to the fusion center, in which case the error

exponent is −D(P0||P1) by the Stein lemma (see [5]), and is finite as a consequence

of Assumption 2.2.

The simple feedback configuration can simulate communication in the parallel

configuration when all sensors send 2 bits to the fusion center; the latter can simulate

communication in the parallel configuration when all sensors can only send 1 bit to

the fusion center.

Similarly, g∗DC ≤ g∗2N is Lemma 4.1. The parallel configuration with 2N sensors

can simulate the communication capabilities of the parallel configuration with N

sensors.

It remains to show that g∗P < 0, which follows from [12].

Figures 3-1 and 3-2 summarize the above results.
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Figure 3-1: The real axis of error exponents: comparisons with the simple feedback
configuration.

Figure 3-2: The real axis of error exponents: comparisons with the “daisy chain”.

3.2 Neyman-Pearson detection with scalar linear

Gaussian binary detectors

Let us consider a classic decentralized detection model with M = 2, D = 2 under

the Neyman-Pearson formulation. We assume that conditioned on hypothesis H0,

the random variables Xi are independent and identically distributed (i.i.d.) with a

known conditional distribution P0 that is normal with mean −µ < 0 and variance

σ2 > 0; conditioned on hypothesis H1, the random variables Xi are independent and

identically distributed (i.i.d.) with a known conditional distribution P1 that is normal

with mean µ and variance σ2. The densities fX|H(x|H0) and fX|H(x|H1), correspond

to the measurement distributions P0 and P1 respectively.

The error exponent of a parallel configuration in which all the observations are

provided uncompressed to the fusion center is −D(P0||P1) by the Stein lemma (see

[5]); as discussed in Section 3.1, summarizing the raw data leads to worse error ex-

ponents. Nevertheless we show that for the Neyman-Pearson decentralized detection

problem with Gaussian measurements as described above, the performance converges

to the centralized optimal performance in the error exponent sense as measurements

become more informative (i.e., as the means of distributions P0, P1 are pulled further

apart).
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Calculating the error exponent for a centralized system, we have

−D(P0||P1) = −
∫ +∞

−∞

1√
2πσ

e−
(x+µ)2

2σ2 log

1√
2πσ

e−
(x+µ)2

2σ2

1√
2πσ

e−
(x−µ)2

2σ2

dx

= −
∫ +∞

−∞

1√
2πσ

e−
(x+µ)2

2σ2 log e−
2xµ

σ2 dx

=
2µ

σ2

∫ +∞

−∞

1√
2πσ

e−
(x+µ)2

2σ2 x dx

=
2µ

σ2
(−µ)

= −2µ2

σ2
. (3.1)

Let L(x) denote the likelihood ratio at x for a decision rule γ ∈ Γ. Let “H ′′0 , “H ′′1

stand for deciding to send a bit in favor of H0 and H1 respectively. A likelihood ratio

test will be of the form

L(x) =
fX|H(x|H1)

fX|H(x|H0)
≷

“H′′1
“H′′0

ε ⇐⇒

1√
2πσ

e−
(x−µ)2

2σ2

1√
2πσ

e−
(x+µ)2

2σ2

≷
“H′′1
“H′′0

ε ⇐⇒

e
2xµ

σ2 ≷
“H′′1
“H′′0

ε ⇐⇒

x ≷
“H′′1
“H′′0

σ2 log ε

2µ
,

where ε is a parameter. Let us define xtε,µ,σ = σ2 log ε
2µ

. The choice of ε and therefore

of threshold xtε,µ,σ determines decision rule γ completely. Suppose that X is a sensor

observation and, as in Subsection 2.2.2, let the distribution of γ(X) under hypothesis

Hj be Pγj . It is clear that the distributions Pγ0 , Pγ1 will be Bernoulli with parameter 1−

Φ(
xtε,µ,σ+µ

σ
) and 1−Φ(

xtε,µ,σ−µ
σ

) respectively, where Φ( ·, ) is the cumulative distribution

function of a standard normal random variable. The Kullback-Leibler divergence of
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Pγ1 from Pγ0 is

D(Pγ0 ||P
γ
1 )=Φ

(
xtε,µ,σ+µ

σ

)
log

Φ

(
xtε,µ,σ+µ

σ

)
Φ

(
xtε,µ,σ−µ

σ

)

+
(

1− Φ
(
xtε,µ,σ+µ

σ

))
log

1−Φ

(
xtε,µ,σ+µ

σ

)
1−Φ

(
xtε,µ,σ−µ

σ

) .
(3.2)

We gain some insight by running some numerical simulations involving the KL-

divergence of interest. We fix σ = 1. Figure 3-3 plots the negative K-L divergence

of Pγ1 from Pγ0 as a function of the threshold xtε,1,1 for µ = 1, while Figure 3-4 plots

the same (negative) K-L divergence for various values of the mean µ. Notice that

the function has a unique local minimum, and that the K-L divergence takes greater

values as µ increases.

Figure 3-3: Plot of the negative K-L divergence −D(Pγ0 ||P
γ
1 ) as a function of the

threshold xtε,1,1 (for µ = 1).

It is of interest to investigate how the decentralized detection model defined above
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Figure 3-4: Plot of the negative K-L divergence −D(Pγ0 ||P
γ
1 ) as a function of the

threshold xtε,µ,1 for various values of the mean.

performs in comparison to centralized detection. Figure 3-5 plots the ratio of the

error exponent for the centralized system over the optimal error exponent for the

decentralized parallel detection model as a function of the mean µ. Notice that the

ratio appears to converge as µ grows. The same behavior is observed when we compare

the decentralized detection model where each sensor can send two bits (instead of one)

to the fusion center to the centralized detection system (Figure 3-6). As expected, by

the simulation argument of Section 3.1, the ratio of the error exponent in centralized

detection over the optimal error exponent in decentralized detection where each sensor

can send two bits to the fusion center takes lower values than the ratio of the error

exponent in centralized detection over the optimal error exponent in decentralized

detection where each sensor can only send one bit.

The observed converging behavior motivates the following result:

Proposition 3.2. The ratio of the error exponent of the centralized detection over
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Figure 3-5: Plot of the ratio of K-L divergences as a function of the mean: error expo-
nent in centralized detection over optimal error exponent in decentralized detection.

Figure 3-6: Plot of the ratio of K-L divergences as a function of the mean: error expo-
nent in centralized detection over optimal error exponent in decentralized detection
where each sensor can send two bits.

the optimal error exponent of a decentralized detection model with Gaussian detectors

as defined above converges to 1 as µ→∞. That is,

lim
µ→∞

−D(P0||P1)

g∗P
= 1,

where g∗P denotes the optimal error exponent of the parallel configuration.

Proof. Fix c > 0 and let ε = e
(−µ+c)2µ

σ2 so that xtε,µ,σ = −µ + c. Let γc be the

associated decision rule. We denote the probability density function of a standard
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normal random variable by φ( · ). Then

lim
µ→∞

−D(P0||P1)

−D(Pγc0 ||P
γc
1 )

= lim
µ→∞

−2µ2

σ2

−
(

Φ( c
σ
) log

Φ( c
σ

)

Φ(−2µ+c
σ

)
+ (1− Φ( c

σ
)) log

1−Φ( c
σ

)

1−Φ(−2µ+c
σ

)

)

= limµ→∞
2µ2

σ2

Φ( c
σ

)(log Φ( c
σ

)−log Φ(−2µ+c
σ

))+(1−Φ( c
σ

))(log (1−Φ( c
σ

))−log (1−Φ(−2µ+c
σ

)))

= limµ→∞
4µ

σ2

Φ( c
σ

)(−1) 1

Φ(
−2µ+c
σ )

φ(−2µ+c
σ

)−2
σ

+(1−Φ( c
σ

))(−1) 1

1−Φ(
−2µ+c
σ )

(−1)φ(−2µ+c
σ

)−2
σ

(3.3)

= limµ→∞
4µ

σ2

2Φ( cσ )φ(
−2µ+c
σ )

σΦ(
−2µ+c
σ )

− 2(1−Φ( cσ ))φ(
−2µ+c
σ )

σ(1−Φ(
−2µ+c
σ ))

= limµ→∞
4µ

σ2

2
σ
φ(−2µ+c

σ
)(

Φ( cσ )

Φ(
−2µ+c
σ )

− 1−Φ( cσ )

1−Φ(
−2µ+c
σ )

)

= limµ→∞
4µ

σ2

2
σ
φ(−2µ+c

σ
)

Φ( cσ )−Φ(
−2µ+c
σ )

Φ(
−2µ+c
σ )(1−Φ(

−2µ+c
σ ))

= lim
µ→∞

µΦ(−2µ+c
σ

)

φ(−2µ+c
σ

)

2

σ
Φ( c

σ
)−Φ(−2µ+c

σ
)

1−Φ(−2µ+c
σ

)

 , (3.4)

with Equation (3.3) following from l’Hôpital’s rule. It is known that

x−1 − x−3e−
x2

2 <
√

2π(1− Φ(x)) < x−1e−
x2

2 , x > 0. (3.5)

Note that Φ(−2µ+c
σ

) = 1− Φ(2µ−c
σ

). For µ > c
2
, by Equation (3.5), we have:

lim
µ→∞

µΦ(−2µ+c
σ

)

φ(−2µ+c
σ

)
≤ lim

µ→∞

µ 1√
2π

σ
2µ−ce

− (
2µ−c
σ )2

2

1√
2π
e−

(
−2µ+c
σ )2

2

=
σ

2
(3.6)

and

lim
µ→∞

µΦ(−2µ+c
σ

)

φ(−2µ+c
σ

)
≥ lim

µ→∞

µ 1√
2π

( σ
2µ−c −

σ
(2µ−c)3 )e−

(
2µ−c
σ )2

2

1√
2π
e−

(
−2µ+c
σ )2

2

= lim
µ→∞

(
µσ

2µ− c
− µσ

(2µ− c)3

)
=
σ

2
.

(3.7)
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By Equations (3.6) and (3.7), Equation (3.4) becomes

lim
µ→∞

−D(P0||P1)

−D(Pγc0 ||P
γc
1 )

=
σ

2

2

σΦ( c
σ
)

=
1

Φ( c
σ
)
.

Nevertheless, limµ→∞
−D(P0||P1)

− supγ∈Γ D(Pγ0 ‖P
γ
1 )
≤ limµ→∞

−D(P0||P1)
−D(Pγc0 ||P

γc
1 )

= 1
Φ( c

σ
)
, and since c was

is arbitrary, it follows that

lim
µ→∞

−D(P0||P1)

− supγ∈ΓD(Pγ0 ‖P
γ
1 )
≤ lim

c→∞

1

Φ( c
σ
)

= 1. (3.8)

Because −D(P0||P1) ≤ − supγ∈ΓD(Pγ0 ‖P
γ
1 ) < 0,

lim
µ→∞

−D(P0||P1)

− supγ∈ΓD(Pγ0 ‖P
γ
1 )
≥ 1. (3.9)

By Equations (3.8) and (3.9), limµ→∞
−D(P0||P1)

− supγ∈ΓD(Pγ0 ‖P
γ
1 )

= 1 and the proof of the propo-

sition is complete.

A consequence of Proposition 3.2 is that the ratio of the error exponent of the

centralized scheme over the optimal error exponents to the left of the error exponent

of the parallel configuration on the real axes of Section 3.1 also converges to 1 as the

measurement model becomes more informative, i.e. as the means of measurement

distributions P0 and P1 grow apart, making the SNR higher. Specifically,

Proposition 3.3. Consider the measurement model introduced above. Then

lim
µ→∞

−D(P0||P1)

g∗F
= 1

and

lim
µ→∞

−D(P0||P1)

g∗DC
= 1,

where g∗F and g∗DC denote the optimal error exponent of the simple feedback configu-

ration and the “daisy chain”, respectively.

The corollary that follows from Propositions 3.2 and 3.3 gives us the motivation

for the analysis of Chapter 4 as well as future work proposed in Chapter 6. Feeding
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the preliminary decision to sensors before making the final decision bears no value for

performance improvement in the regime of infinitely many sensors and infinite SNR;

in fact, having N sensors, each communicating 1 bit to the fusion center, suffices

asymptotically as SNR grows higher.

Corollary 3.1. Consider the measurement model introduced above. Then

lim
µ→∞

g∗F
g∗P

= 1

and

lim
µ→∞

g∗DC
g∗P

= 1,

where g∗P , g∗F , and g∗DC denote the optimal error exponent of the parallel configuration,

the simple feedback configuration, and the “daisy chain”, respectively.

The question that arises naturally is whether there is some converging behavior

in the position of the optimizing threshold (the threshold xtε,µ,σ that minimizes the

negated K-L divergence between Pγ0 and Pγ1 ), which we denote xt∗µ,σ. Fixing again

σ = 1 for the purpose of running numerical simulations, Figures 3-7 and 3-8 suggest

that xt∗µ,σ is to first order equal to −µ. In particular, we have the the following

conjecture, which rests unproven:

Conjecture 3.1. limµ→∞
xt∗µ,σ−(−µ)

µ−(−µ)
= 0.

36



Figure 3-7: Plot of the position of the minimizing threshold xt∗µ,1 as a function of µ.
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Figure 3-8: Plot of the relative position of the minimizing threshold xt∗µ,1 with respect
to −µ and +µ as a function of µ.
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Chapter 4

Neyman-Pearson Detection in the

“Daisy Chain”

In this chapter we prove the result that under the Neyman-Pearson formulation, the

performance of the “daisy chain” configuration (Subsection 2.1.4) is asymptotically

equal to the performance of the parallel configuration with twice as many sensors as

the classical scheme (Subsection 2.1.2), in the optimal error exponent sense. We first

show that the “daisy chain” cannot be worse than the parallel configuration with

twice as many sensors as the classical scheme; we then prove that it cannot perform

better. We conclude that the value of feeding the preliminary decision to a second

set of sensors is asymptotically negligible. In the last section, we prove that there is

no loss of optimality asymptotically in the “daisy chain” if all decision rules at each

stage are constrained to be equal. Throughout the chapter, we use g∗DC to denote

the optimal error exponent of the “daisy chain”, and g∗2N to denote the optimal error

exponent of the parallel configuration with 2N sensors.
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4.1 Neyman-Pearson asymptotics for the “daisy

chain”

In Subsection 2.2.2 the asymptotics of the parallel configuration with N sensors were

defined in a way that makes the extension to the other configurations of interest clear.

Nevertheless, we define here the asymptotics specifically for the “daisy chain”, for the

sake of completeness.

Let M = 2, let Γ be the set of all measurable functions from X into T1, and

let ∆ be the set of all measurable functions from X × {0, 1} into T2. Given that

the decision of the first stage is Y0 = y0, let ∆Y0=y0 be the set of all measurable

functions from X × {y0} into T2. Let Γ0 be the set of all candidate decision rules γ0,

∆0 be the set of all candidate decision rules δ0. For any given choice of decision rules

(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) ∈ Γ0 × ΓN ×∆0 ×∆N , we define the Type I and Type

II error probabilities to be, respectively:

J IN(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) = P0(U0 = 1) =

P0(δ0(δ1(XN+1, γ0(γ1(X1), . . . , γN(XN))), . . . , δN(X2N , γ0(γ1(X1), . . . , γN(XN))),

γ0(γ1(X1), . . . , γN(XN))) = 1),

(4.1)

J IIN (γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) = P1(U0 = 0) =

P1(δ0(δ1(XN+1, γ0(γ1(X1), . . . , γN(XN))), . . . , δN(X2N , γ0(γ1(X1), . . . , γN(XN))),

γ0(γ1(X1), . . . , γN(XN))) = 0).

(4.2)

(Remember that U0 is the decision of the second fusion center). We require that

J IN(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) be no more than a given α ∈ (0, 1) and we are inter-

ested in minimizing J IIN (γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) over all γ0, γ1,

. . . , γN , δ0, δ1, . . . , δN satisfying

J IN(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) ≤ α. (4.3)
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We define

rN(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) =
log J IIN (γ0, γ1, . . . , γN , δ0, δ1, . . . , δN)

N
. (4.4)

Let

RN = inf
(γ0,...,γN ,δ0,...,δN )∈Γ0×ΓN×∆0×∆Ns.t.JIN (γ0,...,γN ,δ0,...,δN )≤α

rN(γ0, . . . , γN , δ0, . . . , δN).

(4.5)

We focus on the optimal error exponent, limN→∞RN , which we denote g∗DC .

Suppose that Xi is a sensor observation, 1 ≤ i ≤ N ; for any γ ∈ Γ, let the

distribution of γ(Xi) under hypothesis Hj be Pγj . Suppose that Xi is a sensor ob-

servation, N + 1 ≤ i ≤ 2N , and Y0 is the decision of the first stage; for any δ ∈ ∆,

let the distribution of δ(Xi, Y0) under hypothesis Hj be Pδj . If it is given that the

decision of the first stage is Y0 = y0, then for any δY0=y0 ∈ ∆Y0=y0 , let the distri-

bution of δ(Xi, y0) under hypothesis Hj be PδY0=y0
j . Since Γ ⊂ ∆, it follows that

− supγ∈ΓD(Pγ0 ‖P
γ
1 ) ≥ − supδ∈∆D(Pδ0‖Pδ1). Nevertheless, it is the case that

− sup
γ∈Γ

D(Pγ0 ‖P
γ
1 ) = − sup

δY0=y0
∈∆Y0=y0

D(PδY0=y0
0 ‖PδY0=y0

1 ). (4.6)

4.2 The “daisy chain” is not worse than 2N sensors

in parallel

Lemma 4.1. g∗DC ≤ g∗2N

Proof. The “daisy chain” can simulate the communication of sensors in the tree of

Figure 4-1, which by Theorem 3.1(ii) of [10] (notice that the parameter z in [10] is

equal to 1) is asymptotically as good as the parallel configuration with 2N sensors.

It follows that

g∗DC ≤ g∗2N = 2g∗P = −2 sup
γ∈Γ

D(Pγ0 ‖P
γ
1 ). (4.7)
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4.3 The “daisy chain” is not better than 2N sen-

sors in parallel

Lemma 4.2. g∗DC ≥ g∗2N

Proof. The tree in Figure 4-2 showcases the following probabilities:

βN2 = P0(γ0(γ1(X1), . . . , γN(XN)) = 0) = P0(Y0 = 0)

βN1 = P0(Y0 = 1)

βN4 = P1(Y0 = 0)

βN3 = P1(Y0 = 1)

α′N2 = P0(δ0(δ1(XN+1, Y0), . . . , δN(X2N , Y0), Y0) = 0|Y0 = 0) = P0(U0 = 0|Y0 = 0)

αN2 = P0(U0 = 1|Y0 = 0)

α′N1 = P0(U0 = 0|Y0 = 1)

αN1 = P0(U0 = 1|Y0 = 1)

αN4 = P1(U0 = 0|Y0 = 0)

α′N4 = P1(U0 = 1|Y0 = 0)

αN3 = P1(U0 = 0|Y0 = 1)

α′N3 = P1(U0 = 1|Y0 = 1).

It becomes clear that the Type I and Type II error probabilities are given by

J IN(γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) = P0(U0 = 1) = βN2 α
N
2 + βN1 α

N
1 (4.8)

and

J IIN (γ0, γ1, . . . , γN , δ0, δ1, . . . , δN) = P1(U0 = 0) = βN4 α
N
4 + βN3 α

N
3 (4.9)

respectively. To show that g∗DC ≥ g∗2N , it suffices to show the following:
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Proposition 4.1. For any ε ∈ (0, 1
2
),

lim infN→∞ inf(γ0,γ1,...,γN ,δ0,δ1,...,δN )∈Γ0×ΓN×∆0×∆Ns.t.βN2 α
N
2 +βN1 α

N
1 ≤ε

log(βN4 α
N
4 +βN3 α

N
3 )

N
≥

−2 supγ∈ΓD(Pγ0 ‖P
γ
1 ) = g∗2N .

(4.10)

Proof. By the Stein lemma (see [5]) and the “Conditional” Stein lemma (presented

in the Appendix), and using Equation (4.6), the following are true:

1. For any ε1 ∈ (0, 1) and for any γ0, γ1, . . . , γN satisfying βN1 ≤ ε1, we have

log βN4
N

≥ − sup
γ∈Γ

D(Pγ0 ‖P
γ
1 ) + f1(N, ε1),

where f1 is a function with the property limN→∞ f1(N, ε1) = 0, for all ε1 ∈ (0, 1),

and which does not depend on γ0, γ1, . . . , γN . While this result does not follow

directly from the usual formulation of the Stein lemma, it may be proven by

changing the proof of the Stein lemma in [3] according to the small variation

described in the proof of Theorem 2 in [12], and using Assumptions 2.1 and 2.2.

2. For any ε2 ∈ (0, 1) and for any γ0, γ1, . . . , γN , δ0, δ1, . . . , δN satisfying αN2 ≤ ε2,

and if Y0 = 0, we have

logαN4
N

≥ − sup
δY0=0∈∆Y0=0

D(PδY0=0

0 ‖PδY0=0

1 )+f2(N, ε2) = − sup
γ∈Γ

D(Pγ0 ‖P
γ
1 )+f2(N, ε2),

where f2 is a function with the property limN→∞ f2(N, ε2) = 0, for all ε2 ∈ (0, 1),

and which does not depend on γ0, γ1, . . . , γN , δ0, δ1, . . . , δN . This result follows

by the small variation of the proof of the (“Conditional”) Stein lemma discussed

in item 1, and as a consequence of Assumptions 2.1 and 2.2.

3. For any ε3 ∈ (0, 1) and for any γ0, γ1, . . . , γN , δ0, δ1, . . . , δN satisfying αN1 ≤ ε3,

and if Y0 = 1, we have

logαN3
N

≥ − sup
δY0=1∈∆Y0=1

D(PδY0=1

0 ‖PδY0=1

1 )+f3(N, ε3) = − sup
γ∈Γ

D(Pγ0 ‖P
γ
1 )+f3(N, ε3),
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where f3 is a function with the property limN→∞ f3(N, ε3) = 0, for all ε3 ∈ (0, 1),

and which does not depend on γ0, γ1, . . . , γN , δ0, δ1, . . . , δN .

Additionally, by reversing the semantics of the decision of the first stage:

4. For any ε4 ∈ (0, 1) and for any γ0, γ1, . . . , γN satisfying βN2 ≤ ε4, we have

log βN3
N

≥ − sup
γ∈Γ

D(Pγ0 ‖P
γ
1 ) + f4(N, ε4),

where f4 is a function with the property limN→∞ f4(N, ε4) = 0, for all ε4 ∈ (0, 1),

and which does not depend on γ0, γ1, . . . , γN .

Fix N . Since βN2 + βN1 = 1, βN2 > 1
2

and βN1 > 1
2

cannot hold simultaneously. We

therefore have the following cases:

1. βN2 ≤ 1
2
. In this case, the inequality βN2 α

N
2 +βN1 α

N
1 ≤ ε implies that there exists

a constant ε5 ∈ (0, 1) such that αN1 ≤ ε5. By items 3 and 4 above, it follows

that for any γ0, γ1, . . . , γN , δ0, δ1, . . . , δN satisfying βN2 α
N
2 + βN1 α

N
1 ≤ ε, we have

log(βN3 α
N
3 )

N
≥ −2 sup

γ∈Γ
D(Pγ0 ‖P

γ
1 ) + f3(N, ε5) + f4(N,

1

2
).

2. βN1 ≤ 1
2
. In this case, the inequality βN2 α

N
2 +βN1 α

N
1 ≤ ε implies that there exists

a constant ε6 ∈ (0, 1) such that αN2 ≤ ε6. By items 1 and 2 above, it follows

that for any γ0, γ1, . . . , γN , δ0, δ1, . . . , δN satisfying βN2 α
N
2 + βN1 α

N
1 ≤ ε, we have

log(βN4 α
N
4 )

N
≥ −2 sup

γ∈Γ
D(Pγ0 ‖P

γ
1 ) + f1(N,

1

2
) + f2(N, ε6).

It follows that for any γ0, γ1, . . . , γN , δ0, δ1, . . . , δN satisfying βN2 α
N
2 + βN1 α

N
1 ≤ ε, we

have
log(βN4 α

N
4 + βN3 α

N
3 )

N
≥ −2 sup

γ∈Γ
D(Pγ0 ‖P

γ
1 ) + h(N, ε5, ε6), (4.11)

where h is a function with the property limN→∞ h(N, ε5, ε6) = 0, for all ε5, ε6, and

which does not depend on γ0, γ1, . . . , γN , δ0, δ1, . . . , δN .
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Equation (4.10) then follows by taking the infimum of both sides of Equation (4.11)

over all γ0, γ1, . . . , γN , δ0, δ1, . . . , δN and letting N tend to infinity.

Theorem 4.1. g∗DC = g∗2N

Proof. The theorem follows directly from Lemmata 4.1 and 4.2.

4.4 No loss of optimality with equal decision rules

in each stage

Theorem 4.2. g∗DC = g∗2N if in definition (4.5) we impose the additional constraint

γ1 = . . . = γN = δ1 = . . . = δN .

Proof. Since g∗DC ≥ g∗2N (by Lemma 4.2), and the optimal error exponent for the

“daisy chain” under the constraint that γ1 = . . . = γN = δ1 = . . . = δN cannot be

better than the optimal error exponent for the “daisy chain” without the constraint,

it follows that g∗DC ≥ g∗2N if in definition (4.5) we impose the additional constraint

γ1 = . . . = γN = δ1 = . . . = δN .

Furthermore, the “simulation” argument can be used to claim that the optimal

error exponent for the “daisy chain” under the constraint that γ1 = . . . = γN = δ1 =

. . . = δN is at least as good as the optimal error exponent for the tree configuration of

Figure 4-1 where there is no communication of the decision of the first fusion center to

sensors N + 1, . . . , 2N under the constraint that every leaf (i.e., every peripheral sen-

sor) uses the same decision rule. By Proposition 3.3 of [10], and specifically Lemmas

3.2, 3.3, and the proof of Lemma 3.4 therein, the latter optimal error exponent under

the constraint that every sensor uses the same decision rule matches the optimal error

exponent for the parallel configuration with 2N sensors. It follows that g∗DC ≤ g∗2N if

in definition (4.5) we impose the additional constraint γ1 = . . . = γN = δ1 = . . . = δN .

The theorem follows.
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Figure 4-1: The “daisy chain” configuration without a feedback link from the first
fusion center to the second set of sensors.
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Figure 4-2: The two-stage decision tree for the “daisy chain”.
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Chapter 5

Bayesian Detection in the “Daisy

Chain”

In this chapter, we study the Bayesian detection problem for the “daisy chain” con-

figuration. [12] proves that for the parallel configuration, it is asymptotically optimal

to let all sensors use the same decision rule in deciding what to transmit. In particu-

lar, it is asymptotically optimal to have all sensors perform identical likelihood ratio

tests, using the same threshold. First we extend this result to the case of exponen-

tially skewed priors; we then make the connection between the result for exponentially

skewed priors and Bayesian detection in the “daisy chain”. Specifically, we prove that

under the mild assumption that the Type I and Type II error probabilities of the first

stage decay exponentially with the number of sensors, it is asymptotically optimal to

have all sensors in the second stage perform identical likelihood ratio tests. Finally,

we prove that it is asymptotically optimal to have all sensors in the first stage perform

identical likelihood ratio tests as well. In all cases, optimality is meant in terms of

the overall system’s optimal error exponent.

5.1 Bayesian asymptotics for the “daisy chain”

In Subsection 2.2.1, the asymptotics of the parallel configuration with N sensors were

defined in a way that makes the extension to the other configurations of interest clear.
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Nevertheless, we hereby formulate the asymptotics specifically for the “daisy chain”,

for the sake of completeness.

The optimal decision for the second fusion center δ0, having fixed the decision rules

γ0, γ1, . . . , γN , δ0, δ1, . . . , δN of the sensors and the first fusion center, is determined by

the maximum a posteriori (MAP) probability rule. Thus we will be concerned only

with optimization with respect to γ0, γ1, . . . , γN , δ0, δ1, . . . , δN . Any set of decision

rules γ1, . . . , γN will be denoted by γN , and any set of rules δ1, . . . , δN will be denoted

by δN . Let Γ be the set of all measurable functions from X into T1, and ΓN be

the Cartesian product of Γ with itself N times. Let ∆ be the set of all measurable

functions from X × {0, . . . ,M − 1} into T2, and ∆N be the Cartesian product of ∆

with itself N times. Let Γ0 be the set of all candidate decision rules γ0. For any

given choice of decision rules (γ0, γ1, . . . , γN , δ1, . . . , δN) ∈ Γ0 × ΓN ×∆N , we define

JN(γ0, γ
N , δN) to be the probability of an erroneous decision by the fusion center.

For any given N and choice of decision rules γ0, γ
N , δN , we define the exponent of the

error probability to be

rN(γ0, γ
N , δN) =

log JN(γ0, γ
N , δN)

N
. (5.1)

Let

RN = inf
(γ0,γN ,δN )∈Γ0×ΓN×∆N

rN(γ0, γ
N , δN). (5.2)

We focus on the optimal error exponent, limN→∞RN , which we denote g∗DC .

5.2 Exponentially skewed priors in the parallel con-

figuration with N sensors

We return to our definitions in the formulation of the Bayesian asymptotic regime for

the parallel configuration given in 2.2.1 (as opposed to the definitions introduced in 5.1

for the “daisy chain”). We restrict to M = 2 and we let the priors πN0 = Pr(H0) and

πN1 = Pr(H1) change with the number of sensors N . We assume that limN→∞
log πN0
N

=
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−β for some β > 0. As in [12], we let ΓN0 be the set of all γN ∈ ΓN with the property

that all elements in the set {γ1, . . . , γN} are identical. Let QN = infγN∈ΓN0
rN(γN) be

the optimal exponent when we restrict to sets of decision rules in ΓN0 .

Theorem 5.1. Subject to Assumption 5.1 below, limN→∞(QN −RN) = 0.

Proof. The structure of the proof, and sometimes the wording, is intentionally left the

same as in the proof of Theorem 1 of [12] so that the reader who is familiar with [12]

can follow readily and pinpoint the modifications. Although we could only present

the parts of the proof that are modified, we repeat the entire proof for the sake of

completeness, so that the reader who is not familiar with [12] can follow as well.

Having fixed some γ ∈ Γ, we can consider the mapping from the true hypothesis

Hi to the decision of a sensor using decision rule γ as a noisy communication channel

defined by the probabilities pγi (d) = Pi(γ(X) = d) where X is the observation of the

sensor. As in [8], we quantify the ability of such a channel to discriminate between

hypotheses Hi and Hj (i 6= j) by defining the function µij(γ, s), s ∈ [0, 1]:

µij(γ, s) = log
D∑
d=1

(pγi (d))1−s(pγj )
s. (5.3)

The convention 00 = 0 is used. If µij(γ, s) is not infinite, then it is infinitely differ-

entiable as a function of s, and its derivatives are continuous on [0, 1], provided we

define the derivative at an endpoint as the limit of the derivative when we approach

the endpoint from the interior.

For any fixed γ, the function µij(γ, s) is equal to log E
[
esX
]
, where X is the

log-likelihood ratio of the distributions associated with pγj ( · ) and pγi ( · ). A suitable

minimization involving the moment generating function of a random variable X yields

tight bounds on the probability of large deviations of X from its mean. Since here X

is the log-likelihood ratio, the minimization leads to tight bounds on the probability

of error.

We have the following lemma, whose wording is intentionally left the same as in

Lemma 1 of [12]. Notice that the measurements can be assumed to take values in
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{1, . . . , D}, as opposed to taking values generally in an alphabet of cardinality D,

without loss of generality.

Lemma 5.1. Let there be two hypotheses H ′ and H ′′. Let Z1, . . . , ZN be measurements

taking values in a finite set {1, . . . , D}, which are conditionally independent given

the true hypothesis, and assume that the conditional distribution of Xi, when H is

true, is given by piH(d) = Pr(Xi = d|H). Let µ(i, s) = log
D∑
d=1

(piH′(d))1−s(piH′′(d))s

and µ(s) =
N∑
i=1

µ(i, s). Assume that µ(i, s), µ′(i, s), µ′′(i, s) exist and are finite for

s ∈ [0, 1], where primes on µ stand for differentiation with respect to s. Let ŝ minimize

µ(s)− βNs over s ∈ [0, 1]. Then,

(a) There exists a decision rule for deciding between H ′ and H ′′, on the basis of the

measurements Z1, . . . , ZN , and a constant ca > 0, such that for every ε > 0,

there exists Na
ε such that for every N ≥ Na

ε ,

πN1 Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true) ≤ ecaεNeµ(ŝ)−βNŝ.

(b) There exists a constant cb > 0 such that for every ε with 0 < ε < β, there exists

N b
ε such that for every N ≥ N b

ε , for any decision rule for deciding between H ′

and H ′′, on the basis of the measurements Z1, . . . , ZN ,

πN1 Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true)

≥ e−cbεNeµ(ŝ)−βNŝ−
√

2µ′′(ŝ).

Proof. Because limN→∞
log πN0
N

= −β and β > 0, it follows that for every ε > 0 there

exists N
′
ε such that if N ≥ N

′
ε , then

e−βN−εN ≤ πN0 ≤ e−βN+εN (5.4)

and

1− e−βN+εN ≤ πN1 ≤ 1− e−βN−εN . (5.5)
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We will prove each part of the lemma separately.

Part (a) follows from [8], Theorem 5 (Equations (3.13) and (3.14)). Indeed, fixing

ε > 0:

πN1 Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true)

≤ 1 ·Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true)

≤ eµ(s)−sµ′(s) + e−βN+εNeµ(s)+(1−s)µ′(s)

=eµ(s)−sµ′(s) + eεNeµ(s)−sµ′(s)+µ′(s)−βN

(5.6)

for all s ∈ (0, 1) and N ≥ N
′
ε , with the second step following from [8], Equations

(3.13) and (3.14). At ŝ the bound becomes

eµ(ŝ)−ŝµ′(ŝ) + eεNeµ(ŝ)−ŝµ′(ŝ)+µ′(ŝ)−βN . (5.7)

If ŝ ∈ (0, 1), then µ′(ŝ) = βN by definition of ŝ, and therefore

eµ(ŝ)−ŝµ′(ŝ) + eεNeµ(ŝ)−ŝµ′(ŝ)+µ′(ŝ)−βN = (1 + eεN)eµ(ŝ)−βNŝ.

Because there exists N
′′
ε such that (1 + eεN) ≤ e2εN for N ≥ N

′′
ε , the result follows by

letting ca = 2 and Na
ε = max(N

′
ε , N

′′
ε ). If ŝ = 0, we may take the limit of (5.6), as

s ↓ 0. It can be easily checked that µ′(0) =
N∑
i=1

−D(piH′ ||piH′′), where D denotes the

Kullback-Leibler divergence of two distributions, a nonnegative quantity. The bound

in (5.7) becomes eµ(0) + eεNeµ(0)+µ′(0)−βN , and we have

eµ(0) + eεNeµ(0)+µ′(0)−βN ≤ eµ(0) + eεNeµ(0) = eµ(0)(1 + eεN)

for N ≥ N
′
ε . Because there exists N

′′
ε such that (1 + eεN) ≤ e2εN for N ≥ N

′′
ε , the

result follows by letting ca = 2 and Na
ε = max(N

′
ε , N

′′
ε ). The argument for ŝ = 1 flows

analogously.

Part (b) follows from [8], Equations (3.40), (3.41), and (3.42), as we proceed to
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show. For fixed 0 < ε < β, there exists N̂ε such that

πN1 ≥ 1− e−βN+εN ≥ 1

2
(5.8)

for N ≥ N̂ε. Defining Qs( · ) as in Equation (3.27) of [8], and Region1, Region2, and

Regions as in Equations (3.30) and (3.33) of [8], we have

πN1 Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true)

≥ 1
2

Pr(decide H ′|H ′′ is true) + πN0 Pr(decide H ′′|H ′ is true)

≥ 1
2
eµ(s)−sµ′(s)−s

√
2µ′′(s)

∑
Region1

c∩Regions Qs( · )

+e−βN−εNeµ(s)+(1−s)µ′(s)−(1−s)
√

2µ′′(s)
∑

Region2
c∩Regions Qs( · )

≥ 1
2
eµ(s)−sµ′(s)−

√
2µ′′(s)

∑
Region1

c∩Regions Qs( · )

+e−βN−εNeµ(s)+(1−s)µ′(s)−
√

2µ′′(s)
∑

Region2
c∩Regions Qs( · )

= 1
2
eµ(s)−sµ′(s)−

√
2µ′′(s)

∑
Region1

c∩Regions Qs( · )

+e−εNeµ(s)−sµ′(s)−
√

2µ′′(s)+µ′(s)−βN∑
Region2

c∩Regions Qs( · )

for all s ∈ (0, 1) and N ≥ N̂ε, with the second step following from Equations (3.40)

and (3.41) of [8]. At ŝ the bound becomes

1
2
eµ(ŝ)−ŝµ′(ŝ)−

√
2µ′′(ŝ)

∑
Region1

c∩Regionŝ Qŝ( · )

+e−εNeµ(ŝ)−ŝµ′(ŝ)−
√

2µ′′(ŝ)+µ′(ŝ)−βN∑
Region2

c∩Regionŝ Qŝ( · ).

If ŝ ∈ (0, 1), then µ′(ŝ) = βN by definition of ŝ. Because there exists
ˆ̂
Nε such that

1
2
≥ e−εN for all N ≥ ˆ̂

Nε, it follows that

1

2
eµ(ŝ)−ŝµ′(ŝ)−

√
2µ′′(ŝ)

∑
Region1

c∩Regionŝ

Qŝ( · )

+e−εNeµ(ŝ)−ŝµ′(ŝ)−
√

2µ′′(ŝ)+µ′(ŝ)−βN∑
Region2

c∩Regionŝ Qŝ( · )

≥ e−εNeµ(ŝ)−βNŝ−
√

2µ′′(ŝ)

·
(∑

Region1
c∩Regionŝ Qŝ( · ) +

∑
Region2

c∩Regionŝ Qŝ( · )
)

≥ 1
2
e−εNeµ(ŝ)−βNŝ−

√
2µ′′(ŝ)
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for all N ≥ max(N̂ε,
ˆ̂
Nε), with the last step following from Equation (3.42) of [SGB].

Because there exists
ˆ̂
N̂ε such that 1

2
e−εN ≥ e−2εN for N ≥

ˆ̂
N̂ε, the result follows by

letting cb = 2 and N b
ε = max(N̂ε,

ˆ̂
Nε,

ˆ̂
N̂ε). If ŝ = 0 or ŝ = 1, an argument similar to

the one used in the proof of part (a) of this lemma applies.

Assumption 5.1. For i 6= j,

(a) |µij(γ, s)| <∞, for all γ ∈ Γ and s ∈ [0, 1].

(b) There exists a finite constant A such that
∣∣µ′′ij(γ, s)∣∣ ≤ A, for all γ ∈ Γ and

s ∈ [0, 1].

As explained in [12], the restrictions imposed by Assumption 5.1 are of minor

practical significance.

The proof of Theorem 1 in [12] can be employed almost as is to complete our proof.

The proof in [12] assumes M distinct hypotheses, whereas we are only interested

in the M = 2 case; we can thus give a simplified proof, without employing linear

programming theory. We argue that the decision rules γ1, . . . , γN should be chosen

so as to minimize

min
s∈[0,1]

(
N∑
k=1

µ01(γk, s)− βNs

)
. (5.9)

We show that all γk’s can be taken equal.

Let

Λ̂ = min
γ∈Γ

min
s∈[0,1]

(µ01(γ, s)− βs) . (5.10)

(To keep the proof simple, we assume that the minima in (5.10) are attained.)

Let us fix some ε with 0 < ε < β, some N ≥ max(Na
ε , N

b
ε ), and some collection

γN ∈ ΓN of decision rules. Part (b) of Lemma 5.1 yields

JN(γN) = πN1 Pr(decide H0|H1 is true) + πN0 Pr(decide H1|H0 is true)

≥ e−cbεNeµ(ŝ)−βNŝ−
√

2µ′′(ŝ)

= e−cbεNe
∑N
k=1 µ01(γk,ŝ01)−βNŝ01−

√
2
∑N
k=1 µ

′′
01(γk,ŝ01), (5.11)
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where ŝ01 minimizes
N∑
k=1

µ01(γk, s)− βNs over s ∈ [0, 1]. By Assumption 5.1(b), and

the definitions of ŝ01 and Λ̂,

JN(γN) ≥ e−cbεNemins∈[0,1](
∑N
k=1 µ01(γ,s)−βNs)−

√
2NA

≥ e−cbεNeNΛ̂−
√

2NA. (5.12)

This shows that RN ≥ −cbε + Λ̂ −
√

2A
N

. We take the limit as N → ∞ and use the

fact that ε was arbitrary to obtain

lim inf
N→∞

RN ≥ Λ̂. (5.13)

Let us fix some ε > 0 and some N ≥ max(Na
ε , N

b
ε ). Let γ̂ be the solution to (5.10).

We now define a collection γN of decision rules to be used by the N sensors: for each

k, let γk = γ̂.

We estimate the probability of error under this particular γN . Using Lemma 5.1(a),

we have

JN(γN) = πN1 Pr(decide H0|H1 is true) + πN0 Pr(decide H1|H0 is true)

≤ ecaεNeµ(ŝ)−βNŝ

= ecaεNe
∑N
k=1 µ01(γk,ŝ01)−βNŝ01

= ecaεNemins∈[0,1](
∑N
k=1 µ01(γ̂,s)−βNs)

= ecaεNemins∈[0,1](Nµ01(γ̂,s)−βNs)

= ecaεNeNΛ̂. (5.14)

Taking logarithms and dividing by N , we obtain

QN ≤
log JN(γN)

N
≤ caε+ Λ̂.
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Taking the limit as N →∞ and using the fact that ε was arbitrary, we conclude that

lim sup
N→∞

QN ≤ Λ̂ (5.15)

By (5.13), (5.15), and the inequality RN ≤ QN , the theorem follows.

5.3 No loss of optimality with equal decision rules

at the second stage of the “daisy chain”

We are now ready to consider the problem of Bayesian detection in the “daisy chain”.

We restrict to the case with M = 2, and constant priors Pr(H0) and Pr(H1). Re-

member that Y0 denotes the decision of the first stage (the first fusion center), and

U0 denotes the decision of the second stage (the second fusion center). We prove the

following result:

Theorem 5.2. Let us restrict to sequences {γN} for the decision rules of the first

stage such that the probabilities of error at the first stage satisfy

lim
N→∞

log Pr(Y0 = 0 |H1)

N
= −β2 and

lim
N→∞

log Pr(Y0 = 1 |H0)

N
= −β1

for some β1, β2 > 0. It is then asymptotically optimal to have all sensors in the second

stage of the “daisy chain” use the same decision rule.

Remark 5.3. An intuitive way of understanding the result is that once the fusion

center of the first stage has formed its belief, we are left with a single set of N

sensors (corresponding to the sensors of the second stage of the “daisy chain”) which

observe the exponentially skewed (varying with N) priors πN0 = Pr(H0 |Y0) and πN1 =

Pr(H1 |Y0). As we proved in Section 5.2, there is no loss of optimality if all sensors

(i.e., sensors N + 1, . . . , 2N of the “daisy chain”) use the same decision rule.
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Proof. By Bayes’ rule,

Pr(H0 |Y0 = 1) =
Pr(Y0 = 1 |H0) Pr(H0)

Pr(Y0 = 1 |H0) Pr(H0) + Pr(Y0 = 1 |H1) Pr(H1)
.

It follows that

lim
N→∞

log Pr(H0 |Y0 = 1)

N

= lim
N→∞

(
log (Pr(Y0 = 1 |H0) Pr(H0))

N

− log (Pr(Y0 = 1 |H0) Pr(H0) + Pr(Y0 = 1 |H1) Pr(H1))

N

)
= −β1 − 0

= −β1,

and similarly

lim
N→∞

log Pr(H1 |Y0 = 0)

N
= −β2.

Fix N and decision rules (γ0, γ1, . . . , γN , δ1, . . . , δN) ∈ Γ0 × ΓN × ∆N . Then the

probability of an erroneous decision by the second fusion center is

JN(γ0, γ
N , δN) = Pr(erroneous decision |Y0 = 0) Pr(Y0 = 0)

+ Pr(erroneous decision |Y0 = 1) Pr(Y0 = 1).
(5.16)

The first conditional probability is

Pr(erroneous decision |Y0 = 0)

= Pr(U0 = 0 |H1, Y0 = 0) Pr(H1 |Y0 = 0) + Pr(U0 = 1 |H0, Y0 = 0) Pr(H0 |Y0 = 0).

(5.17)

The second conditional probability is

Pr(erroneous decision |Y0 = 1)

= Pr(U0 = 0 |H1, Y0 = 1) Pr(H1 |Y0 = 1) + Pr(U0 = 1 |H0, Y0 = 1) Pr(H0 |Y0 = 1).

(5.18)

By redefining the µ( · )’s of Section 5.2 using conditional probabilities, so as to account

58



for the decision of the first stage, and noticing that

limN→∞
log πN1,Y0=0

N
= limN→∞

log Pr(H1 |Y0=0)
N

= −β2,

πN0,Y0=0 = Pr(H0 |Y0 = 0) = 1− πN1,Y0=0,

and

limN→∞
log πN0,Y0=1

N
= limN→∞

log Pr(H0 |Y0=1)
N

= −β1,

πN1,Y0=1 = Pr(H1 |Y0 = 1) = 1− πN0,Y0=1,

we can bound the right-hand side of each of Equations (5.17) and (5.18) above and

below using Lemma 5.1. In particular, we define the exponents

Λ̂β2 = lim
N→∞

inf
(γ0,γN ,δN )∈Γ0×ΓN×∆N s.t Y0=0

log Pr(erroneous decision |Y0 = 0)

N
(5.19)

and

Λ̂β1 = lim
N→∞

inf
(γ0,γN ,δN )∈Γ0×ΓN×∆N s.t Y0=1

log Pr(erroneous decision |Y0 = 1)

N
. (5.20)

Furthermore, we can use Bayes’ rule to write

Pr(Y0 = 0) = Pr(Y0 = 0 |H0) Pr(H0) + Pr(Y0 = 0 |H1) Pr(H1) and

Pr(Y0 = 1) = Pr(Y0 = 1 |H0) Pr(H0) + Pr(Y0 = 1 |H1) Pr(H1).

Therefore limN→∞ Pr(Y0 = 0) = Pr(H0), limN→∞ Pr(Y0 = 1) = Pr(H1), and

lim
N→∞

log Pr(Y0 = 0)

N
= lim

N→∞

log Pr(Y0 = 1)

N
= 0.

It follows that Λ̂ in the proof of Theorem 5.1 can be replaced with Λ̂D(β1, β2),

where we define

Λ̂D(β1, β2) = max(Λ̂β1 , Λ̂β2). (5.21)

Notice that the two exponents Λ̂β2 , Λ̂β1 arise from the two summands respectively

on the right-hand side of Equation (5.16); Λ̂D(β1, β2) is the “slowest” (dominating)

exponent out of the two, which determines the rate of decay of the probability of
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error in (5.16).

The proof of Theorem 5.1 can be then followed verbatim to show that all sensors

in the second stage can use the same decision rule without loss of optimality (in the

sense of the overall network’s error exponent).

5.4 No loss of optimality with equal decision rules

at the first stage of the “daisy chain”

Having proven that there is no loss of optimality if all decision rules at the second

stage of the “daisy chain” are constrained to be equal, we are now ready to prove

that there is no loss of optimality if all sensors in the first stage use the same decision

rule as well. We prove the following result:

Theorem 5.4. Let us restrict to sequences {γN} for the decision rules of the first

stage such that the probabilities of error at the first stage satisfy

lim
N→∞

log Pr(Y0 = 0 |H1)

N
< 0 and

lim
N→∞

log Pr(Y0 = 1 |H0)

N
< 0.

It is then asymptotically optimal to have all sensors in the first stage of the “daisy

chain” use the same decision rule.

Sketch of Proof. Some technical details are omitted, and therefore the reasoning

presented here is not a complete proof.

In Section 5.3 we argued that given exponents −β1 < 0,−β2 < 0 for the proba-

bilities of error at the first stage, the optimal error exponent for the overall network

is given by Λ̂D(β1, β2) = max(Λ̂β1 , Λ̂β2). This means that to optimize the network’s

performance, the decision rules need to give rise to appropriate exponents −β1,−β2

so as to minimize Λ̂D(β1, β2). Using the notation of Section 5.1, the optimal error
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exponent of the “daisy chain” is

inf
β1,β2>0: ∃γ0∈Γ0,{γN} with {γN}i∈Γ ∀i s.t.

limN→∞
log Pr(Y0=0 |H1)

N
=−β1 and limN→∞

log Pr(Y0=1 |H0)
N

=−β2

max(Λ̂β1 , Λ̂β2). (5.22)

For now we assume that the infimum is attained, although in a complete proof this

assumption will not be needed. This optimization problem will yield optimizing pairs

(β̂1, β̂2), and therefore pairs of exponents (−β̂1,−β̂2). Proving the theorem reduces

to proving that any such pair of exponents (−β̂1,−β̂2) is attainable with equal rules

in a parallel single-stage configuration.

In a parallel single-stage configuration, fix a sequence of decision rules {γN} for the

sensors. As the fusion rule γ0 varies, different pairs of exponents (−β1,−β2) (β1, β2 ≥

0) are attained asymptotically. Let us refer to the set of all such possible pairs of

exponents as the “exponent set” for decision rules {γN}. The curve in Figure 5-1

traces all points on the exponent set for the sequence of decision rules {γN}. Notice

that given the sequence of decision rules {γN}, the optimal decision rule for the fusion

center is the MAP rule, at which −β1 = −β2.

Crossings between curves corresponding to different sequences of decision rules are

possible. This motivates the definition of the “envelope” of many exponent sets. If F

is a non-empty collection of exponent sets, we define the “envelope” of all exponent

sets in F as follows: a pair of exponents (−β1,−β2) (β1, β2 ≥ 0) belongs to the

“envelope” if and only if

(i) ( -β1,−β2) ∈
⋃
F F , where an overline denotes the closure of a set, and

(ii) there does not exist a pair of exponents (−β′1,−β′2) such that (−β′1,−β′2) ∈ F ′

for some exponent set F ′ ∈ F and −β′1 < −β1,−β′2 < −β2.

Let Fall be the collection of all exponent sets. We refer to the envelope of all

exponent sets (in Fall) as the “mixed efficient frontier”, since any pair of exponents

on it results from possibly unequal decision rules. We use EM to denote the “mixed

efficient frontier”, shown in the curve of Figure 5-2. It is easy to argue that any pair

(−β̂1,−β̂2) lies on the mixed efficient frontier.
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Figure 5-1: The “exponent set” for a sequence of decision rules.

Fixing γ and a sequence of decision rules {γN} such that γ1 = . . . = γN = . . . = γ,

different pairs of exponents (−β1,−β2) (β1, β2 ≥ 0) are attained asymptotically as

the fusion rule γ0 varies. Let Fequal be the collection of all exponent sets for sequences

of decision rules {γN} such that γ1 = . . . = γN = . . .. We can consider the envelope

of all exponent sets in Fequal, which we refer to as the “pure efficient frontier”, and

denote by EP .

Assume for the purpose of contradiction that there exists a point A on EM which

lies outside EP (see Figure 5-3). There then exists a pair of exponentially skewed

priors Pr(H0),Pr(H1) for which the translation of the mixed efficient frontier is such
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Figure 5-2: The “mixed efficient frontier”.

that the translation of point A (call it AT ) is now on the slope-1 line. Notice that

skewing the priors results in translation of the pure efficient frontier, too, from EP to

ET
P . This shows that if the fusion rule is constrained to use the MAP rule, the strategy

{γN} on the pure efficient frontier is strictly worse (leads to a greater error exponent

asymptotically) than the strategy on the mixed efficient frontier which corresponds to

point AT . This contradicts our result in Section 5.2, that there is no loss of optimality

if all sensors are constrained to use the same decision rule in a parallel configuration

under exponentially skewed priors.

It follows that any pair (−β̂1,−β̂2) lies on the pure efficient frontier, which com-
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pletes the proof.
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Figure 5-3: Introducing skewed priors translates both the mixed efficient frontier and
the pure efficient frontier.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we have studied a decentralized detection problem and focused on

determining the value of feeding a preliminary decision to sensors, which take it

into consideration along with their observation when making their local decision, in

improving the detection performance of a sensor network architecture. Performance

is studied in terms of exponents of the error probability; that is, the analysis is done

in the asymptotic regime, as the number of sensors in the network becomes very large.

We define the detection problem for all network configurations of interest: the

parallel configuration with N sensors, the parallel configuration with 2N sensors, the

simple feedback configuration (with N sensors), and a newly introduced configuration,

the “daisy chain”, in which the preliminary decision of a first set of N sensors is passed

on through a first fusion center to a second set of N sensors and a second fusion

center, which is responsible for the global decision. Our mathematical framework

encompassed all of these configurations, as well as a definition of the asymptotic

regime.

We use the “simulation” argument (i.e., simulating the communication capabil-

ities of a network configuration with the communication capabilities of another) to

compare the performance of configurations of interest in the optimal error expo-

nent sense. We consider a classical decentralized detection model where all sensors
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are scalar linear Gaussian binary detectors, and analyze asymptotic performance as

the measurements under the two hypotheses become more and more informative,

to conclude that the value of feeding the preliminary decision to decision makers is

asymptotically negligible.

We prove that under the Neyman-Pearson formulation, the performance of the

“daisy chain” configuration is asymptotically equal to the performance of the parallel

configuration with twice as many sensors as the classical scheme, in the optimal error

exponent sense. We first show that the “daisy chain” cannot be worse than the parallel

configuration with twice as many sensors as the classical scheme; we then prove that

it cannot perform better. We conclude that the value of feeding the preliminary

decision to a second set of sensors is asymptotically negligible. We also prove that

there is no loss of optimality asymptotically in the “daisy chain” if all decision rules

at both stages are constrained to be equal.

We solve the Bayesian detection problem for the “daisy chain” configuration. [12]

proves that for the parallel topology, it is asymptotically optimal to let all sensors use

the same decision rule in deciding what to transmit. In particular, it is asymptotically

optimal to have all sensors perform identical likelihood ratio tests, using the same

threshold. First we extend this result to the case of exponentially skewed priors;

we then make the connection between the result for exponentially skewed priors and

Bayesian detection in the “daisy chain”. Specifically, we prove that under the mild

assumption that the Type I and Type II error probabilities of the first stage decay

exponentially with the number of sensors, it is asymptotically optimal to have all

sensors in the second stage perform identical likelihood ratio tests. Finally, we prove

that it is asymptotically optimal to have all sensors in the first stage perform identical

likelihood ratio tests as well. In all cases, optimality is meant in terms of the overall

system’s optimal error exponent.
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6.2 Future work

Several issues remain outstanding and are areas of future research. The simple feed-

back configuration (which is defined in Subsection 2.1.3) is what motivated the study

of the “daisy chain” (which is defined in Subsection 2.1.4); the “daisy chain” became

the most salient configuration in our research work, leaving an intriguing question

unanswered: what is the value (in performance improvement) of feeding the pre-

liminary decision back to the same set of sensors that generated it, like the simple

feedback configuration suggests? We conjecture that for the Neyman-Pearson crite-

rion, the performance of the simple feedback configuration is asymptotically equal to

the performance of the parallel configuration when each sensor transmits two bits,

in the optimal error exponent sense. This result would be in the spirit of our theo-

rem stating that the performance of the “daisy chain” is asymptotically equal to the

performance of the parallel configuration with 2N sensors. The two results can be

thought of in the light of Figures 3-1 and 3-2, respectively.

Another extension to our study of the “daisy chain” is to let the first fusion center

send more than one bit to the second set of sensors and the second fusion center. We

conjecture that, for binary hypothesis testing and the Neyman-Pearson formulation,

sending more that one bit has no value asymptotically over only sending one bit.

Supposing we are allowed to send N bits from the first fusion center to the second

set of sensors and the second fusion center, there is no better rule than for the N -bit

bus to the second stage of the “daisy chain” to be a copy of the N local decisions,

coming from the first set of N sensors (each sensor transmits each decision, which is

one bit, to the first fusion center). Because of the assumption of identical sensors in

both stages, nevertheless, it suffices for the sensors in the second stage and the second

fusion center to know what the count is of the N decisions coming from the first set

of N sensors, i.e. how many of the N bits are “1”. This can be done if the first stage

communicates with the second stage through a logN -bit bus, instead of a N -bit bus.

Therefore the problem is reduced from whether there is value in sending N bits from

the first stage to the second, to whether there is value in sending logN bits from the
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first stage to the second, over only sending one bit. A further reduction of the logN

bits to log logN bits using the same argument would result in loss of information,

and a reduction from logN bits to only one bit remains unproven.

Finally, a natural further step to our study of the “daisy chain” is to prove our

belief that under the Bayesian formulation feedback results in strict improvement of

the performance.
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Appendix A

Stein Lemmas

We hereby present the Stein lemma (see [5]) and explain what we call the “Condi-

tional” Stein lemma.

A.1 Stein lemma

Theorem A.1. Let X1, X2, . . . , Xn be independent and identical distributed with dis-

tribution Q(). Consider the hypothesis test between two alternatives, Q = P1 and

Q = P2, where D(P1||P2) <∞. Let An ⊆ X n be an acceptance region for hypothesis

H1. Let the probabilities of error be αn = P n
1 (Acn), βn = P n

2 (An), and for 0 < ε < 1
2
,

define βεn = minAn⊆Xn,αn<εβn. Then

lim
n→∞

1

n
log βεn = −D(P1||P2),

where D is the Kullback-Leibler divergence of two distributions.

A.2 “Conditional” Stein lemma

We introduce this corollary of the Stein lemma to employ it specifically in the analysis

of Neyman-Pearson detection in the “daisy chain” with M = D1 = D2 = 2. Because

the final decision U0 is a function of the first fusion center’s belief Y0, the Stein
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lemma can characterize the probabilities of error of the final decision with respect to

the original hypotheses H0, H1 conditioned on the decision of the first stage. We use

this observation for facts 2 and 3 in the proof of Proposition 4.1.
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