
Error-Correcting Codes and Applications to Large

Scale Classification Systems

by

Jeremy Scott Hurwitz

S.B., Massachusetts Institute of Technology (2008)

MASSACHUSETTS INSTTUTE
OF TECHNOLOGY

JUL 2 0 2009

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009 ARCHIVES

@ Jeremy Scott Hurwitz, MMIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author.. .
Department

r\ r',

Certified by.

Electrical Engineering and Computer Science
May 22, 2009

Ahmad Abdulkader, Staff Software Engineer
/ VVI-A Company Thesis Supervisor

Certified by..'
T~jnas Lozano-Perez, Professor

M.I.T. Thesis Supervisor

A ccepted by.....
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Error-Correcting Codes and Applications to Large Scale

Classification Systems

by

Jeremy Scott Hurwitz

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

In this thesis, we study the performance of distributed output coding (DOC) and
error-Correcting output coding (ECOC) as potential methods for expanding the class
of tractable machine-learning problems. Using distributed output coding, we were
able to scale a neural-network-based algorithm to handle nearly 10,000 output classes.
In particular, we built a prototype OCR engine for Devanagari and Korean texts based
upon distributed output coding. We found that the resulting classifiers performed bet-
ter than existing algorithms, while maintaining small size. Error-correction, however,
was found to be ineffective at increasing the accuracy of the ensemble.

For each language, we also tested the feasibility of automatically finding a good
codebook. Unfortunately, the results in this direction were primarily negative.

Thesis Supervisor: Ahmad Abdulkader
Title: Staff Software Engineer

Thesis Supervisor: Tomas Lozano-Perez
Title: Professor

Acknowledgments

There are many, many people I need to thank for their help throughout the thesis

process. On the MIT end: Professor Tomas Lozano-Perez, Professor John Guttag,

and the VI-A program. On the Google end: Ahmad Abdulkader, Russell Smith,

Michele Covell, Shumeet Baluja, and the entire Google OCR Team. And finally, on

the "bug me to write the thesis" end, my mother and the beautiful Anya.

Chapter 1

Introduction

Optical Character Recognition (OCR) is the task of recognizing text in an image,

or more recently, in a video. Clearly a large problem, it can be broken down into

a series of independent tasks. First, the text within the image must be located

and the layout and character set determined. Once the text has been linearized,

it is segmented into individual words, which are then segmented into fundamental

units (ie, letters or glyphs). Finally, the characters corresponding to the individual

graphemes are identified. A post-processing step may also be used to fix errors, at

the word or higher levels of granularity.

Each of these steps must be tackled by any OCR engine. Thankfully, each is

largely (although not completely) independent from the others, allowing the differ-

ent pieces to be improved independently. In this thesis, we concern ourselves with

the character recognition step, which formally is a classification problem, mapping

bitmaps to unicode symbols (or possibly a set of unicode symbols). That we are

actually functioning within a larger OCR engine manifests itself in two ways. First,

the character segmentation may not have worked correctly, meaning that the input

does not correspond to any of the outputs and should be rejected as such. Secondly,

a short list of alternative characters, along with the relative confidences, should be

returned to allow for post-processing at the word level.

The primary approach to character classification is via machine learning. Machine

learning algorithms can be generally grouped into two categories: discriminative and

(a) Devanagari (b) Hangul

Figure 1-1: Sample text in Hindi, written using Devanagari, and Korean, written
using Hangul.

generative/density-based. Discriminative models, whose complexity depends on the

number of free parameters, scale well with respect to the dimension of the input space

but tend to perform badly as the number of output classes increases. Generative

algorithms are the opposite, scaling well with the number of output classes, but

suffering from the curse of dimensionality as the dimension of the input increases.

Trying to bring together the best parts of each model is an active area of research in

AI, with a wide variety of suggested approaches.

In this thesis, we investigate two ensemble-based approaches to scaling discrim-

inative models to large languages. Distributed Output Coding (DOC) attempts to

limit the number of parameters which must be learned by dividing the problem into

independent subproblems. Error-Correcting Output Coding (ECOC) attempts to im-

prove the resilience of the ensemble to random errors by introducing redundancy into

the system. In both, instead of using a single classifier, a group of classifiers are used

instead, whose results are combined in some fashion to yield the final result. If the

ensemble is well designed, then erroneous results can often be out-voted, allowing the

system to return the correct answer, even in the presence of noise.

To test the effectiveness of these methods, we considered two very large languages

- Hindi (Devanagari) and Korean (Hangul). Each language contains approximately

10,000 distinct graphemes which must be differentiated. In Chapters 2 and 3, we

present the background on the languages and ECOC. Then in Chapter 4, we study

the effectiveness of a various types of codebooks. Finally, in Chapter 5, we turn our

attention to the challenge of finding a codebook.

DOC was found to be very effective, resulting in small ensembles with good overall

accuracy, and the resulting OCR-engine prototype performed competitively against

commercial engines. ECOC, however, was found to be ineffective. Ensembles designed

solely based upon error-correction capabilities performed very poorly, and appending

error-correcting capabilities to a good DOC ensemble did not improve the ensemble

accuracy.

10

Chapter 2

Notation and Definitions

In this section, we present the formal mathematical framework used by DOC and

ECOC.

2.1 Classifiers

A classifier takes as training data a set of labeled examples (xi, yi), with the samples

drawn from a domain X and labels drawn from the set of possible classes Y =

[1,..., k]. Implicit in the classifier is also a hypothesis class F, which is a subset of

all possible functions X -- Y. Based on the training data, the classifier determines

a function f E F such that f(xi) = yi for all i, if such a function exists. If no such

function exists, the classifier instead determines the "best" function f, where "best"

is defined according to some loss function L. A classifier is binary, or a dichotomizer,

if there are exactly two output classes, which are then generally denoted ±1.

A dichotomizer is a margin-based classifier if, instead of determining a function

f : X -- +1, it determines a function f : X --+ R. The output class is determined

by sign(f(x)), while If(x) provides a measure of confidence. Many standard binary

classifiers, particularly support-vector machines and neural nets with sigmoid output,

are margin-based. Since I will be focusing exclusively on margin-based classifiers in

my thesis, all classifiers will be assumed to be margin-based unless otherwise stated.

2.1.1 Ensemble Classifiers

Given a dichotomizer, we wish to extend it to a k-class setting by using an ensemble

of £ classifiers. To do so, we first determine £ encoding functions El,..., E that

[1,..., n] -- ±1, creating £ dichotomies. We then train £ classifiers on the induced

binary problems, resulting in functions fi,..., ft. Finally, we decode the £ results via

a function D mapping (fi(x),..., f (x)) to a class y. In general, the Ej and D will

be closely related, although neither strictly determines the other.

When designing an ensemble-based classifier, there are many ways to structure the

ensemble. Each method tries to optimize a number of features, including robustness,

conceptual simplicity, simplicity of the induced dichotomies, and size. Since it is

generally impossible to optimize all of these features at one time, we must instead

choose which aspects to focus on.

One-Versus-All Coding The simplest ensemble structure for multi-class learning

is the one-vs-all approach. Given k possible classes, we train k classifiers, each of

which is responsible for recognizing a single class. The final answer is then the class

corresponding to the classifier which gives the most resounding "yes" for a given

input. More formally, the encoding and decoding functions are given by

1 k
Ej(y) Y= 1 = and D(yl,...,yk) arg max y

0 y=fj
i

One-vs-all possesses two primary advantages. The first is that it is fairly resilient

to errors. Whether or not each binary classifier erred on a particular input is irrele-

vant, provided that the correct classifier had the largest margin. The second is that it

is simple, both conceptually and in terms of the induced dichotomies. The downside

is the number of classifiers required is linear in the size of the problem.

All-Versus-All Coding For completeness, we briefly mention all-vs-all coding

here. In this scheme, 0(k 2) classifiers are used, each distinguishing between a pair

of output classes. Although this method is competitive with most other ensemble

schemes (see, for example, [1] and [10]), it is infeasible for domains with very large

numbers of classes. With 1000 classes, almost 1 million classifiers would be required.

Therefore, we will not address this scheme again.

Distributed-Output Coding To deal with the number of classes required in the

one-vs-all approach, distributed-output coding was introduced. In this formulation,

each of the k classes is assigned a codeword of size n = [lg k]. We then train one

classifier for each bit-position in the codewords. To decode simply requires running

the new sample through each classifier, and returning the class that corresponds to

the generated code word. More formally, if the code word for class yi is c c2 ... c,

the encoding functions are Ej(yi) = c and the decoding function maps the string

sign(fi (x))sign(f 2(x))... sign(f,(x)) to the class corresponding to the nearest code.

DOC has the obvious advantage of only requiring a logarithmic number of clas-

sifiers, as compared to the linear number required in one-vs-all. However, it is very

susceptible to errors. If even a single classifier errs, the final answer will be wrong.

Therefore, each bit of the code must be very easy to learn.

2.1.2 Error-Correcting Output Codes

Error-correcting codes were introduced to try to get the resilience of one-vs-all, while

achieving the space gains of DOC. This approach was first pioneered in [6], and

has been the subject of a large body of research since. As in distributed-output

representations, each output class is assigned a codeword of size n. However, in this

case n is chosen to be larger than [lg kl, so as to increase the minimum Hamming

distance between code words. Intuitively, this allows the ensemble to recover from

errors made by individual binary classifiers, since incorrect bits can be identified and

corrected. This intuition can be formalized, if we assume that the errors made by

the individual classifiers are independent. According to [13], if each classifier has

error-rate e, the worst-case error-rate for one-vs-all coding is

Pr[ensemble error] = min{ke, 1}

while for codes with error-correction the worst-case error-rate is

Pr[ensemble error] = 2e
d'

where d is the minimum Hamming distance between code words. [13] further shows

that the bound on one-vs-all coding is tight, while the bound on error-correcting

codes is within a factor of 2 from being tight.

It should be noted, however, that this does not necessarily translate into actual

performance improvements, since the error-rate e may be drastically different between

the two methods. Indeed, [6] show that when using a decision tree as the underlying

binary classifier, the number of leaves per classifier is often an order of magnitude

larger in ECOC than in a one-vs-all ensemble. This issue is discussed in more detail

in section 3.1.4.

One of the primary challenges in constructing an error-correcting ensemble is the

construction of the encoding. Although the error-correcting code should have the

Hamming Distance properties required by standard communications theory, use for

classification places an additional restraint on the code. Each bit-position should be

highly different from the other bit-positions, so as to hopefully reduce error-correlation

between classifiers. This is due to the fact that most binary classifiers are symmetric

with respect to the positive and negative classes, and therefore perfectly complimen-

tary dichotomies will have perfectly correlated errors.

2.1.3 Unification of the Ensemble Methods

In [1], these methods were shown to be special instances of a more general framework.

Given k output classes and f binary classifiers, let M E {±l, o}kx be a k x f matrix

over {+1, 0}. Each row of the matrix corresponds to a class, while each column

corresponds to a binary classifier in the ensemble. An entry of +1 corresponds to

positive samples, an entry -1 corresponds to negative samples, and an entry of 0

means that that classifier makes no statement about that class.

In other words, given a matrix M mapping k output classes to £ classifiers, we

have

Ej(yi) = Mij and D(yl,..., y') = argmin L(Mi, yl,...,y(1})

where L is some loss function, such as the Hamming distance or inner product.

Although both ECOC and DOC are special cases of this unified framework, we

maintain a distinction between the two approaches. When considering a codebook

based on easy dichotomies, we refer to the approach as DOC. When attempting to

use error-correction in the ensemble, we consider the approach to be ECOC.

2.2 Devanagari and Korean

Devanagari is the script used by many Indian dialect, particularly Hindi, Marathi, and

Nepali. It consists of 36 consonants and 14 vowels, occupying Unicode points U+0900

to U+097F. When written, however, these letters are not simply arranged linearly as

in most Latin scripts. Instead, the letters combine to form graphemes, as shown in

figure 2-1a. Although the distortions do follow a pattern, the rules are generally too

complicated and subject to variation to reliably encode directly into a computer; such

an approach certainly does not scale to multiple languages. Furthermore, because

the letters are distorted and merged when becoming a grapheme, a computer cannot

easily segment out the individual letters from a grapheme. As a result, the number

of distinct output classes a character classifier must recognize grows combinatorially.

Since a syllable may have two or more consonants and a vowel, there are theoretically

over 36 - 36 .14 = 18144 distinct graphemes possible. Thankfully, not every possible

grapheme occurs in practice, greatly reducing the number of output classes. Based on

a combination of books and webpages, Google estimates that roughly 1500 graphemes

are needed to achieve 90% coverage and roughly 8500 graphemes are needed to achieve

99% coverage.

(a) The Devanagari grapheme ddhrya. The (b) The Korean grapheme han. The lead
left half consists of the letter da () with the is hieut, the vowel is a, and the tail is
letters dha (u) and ra (r) attached below. The nieun.
right half consists of the single letter ya (n).

Figure 2-1: Sample graphemes for Devanagari and Hangul.

Hangul, the script used for Korean, also has a compositional structure. Each

letter is composed of a lead consonant, a middle vowel, and a final consonant, as

shown in figure 2-1b. There are 19 leads, 21 vowels, and 27 tails. In practice, only

approximately 2000 graphemes are used. However, Unicode supports all possible

combinations, spanning code points U+ACOO to U+FFDC. A specialized segmenter

can, in principle, separate a Hangul grapheme into its constituent letters. However,

most OCR engines do not contain such a specialized segmenter, and for this paper

we treat the graphemes are indivisible.

In both languages, humans do not learn all possible graphemes by rote (as opposed

to other Asian languages, such as Chinese). Instead, they learn the basic letters and

the general rules for composition. Given a grapheme, it is generally fairly easy for a

human to understand which letters form that symbol. This will be key to training a

computer to do the same.

Chapter 3

Previous Work

It is crucial to note up front that the literature strongly disagrees on the perfor-

mance of error-correcting coding versus one-vs-all coding. Many papers claim that

error-correcting coding performs noticeably better (see, for example, [1] and [6]),

while many others claim that the two methods are comparable (see, for example,

[10] and [15]). In particular, [19] performs a detailed survey of the field, and reaches

the conclusion that one-vs-all performs as well as ECOC. According to [19], papers

stating otherwise have two flaws. The first is that the binary classifiers used in the

experiments were not sufficiently well-tuned. The second is that the results, while

technically statistically significant, were not actually practically significant, especially

considering the increased conceptual and computational difficulty.

It is worth noting that in all of these papers, the number of classes under consider-

ation rarely exceeded 30. Indeed, [12] specifically attempts to apply error-correcting

coding to situations with a "large" number of classes, and yet only considers 105

classes.

3.1 Construction of the Coding Matrix

Against this backdrop of inconclusive results, research has attempted to optimize each

facet of ECOC. Much of the research has obviously focused on the construction of

the encoding used for error-correction.

3.1.1 Column Separation and Error Correlation

In [13], error-correlation is established on a theoretical basis as one of the most impor-

tant factors for ensemble error-rate. As a result, many authors (for example, [4], [6],

and [20]) have attempted to maximize the Hamming distance between the columns

of the encoding matrix. Furthermore, since classifiers tend to be symmetric with re-

spect to dichotomies, the Hamming distance between columns and the complements

of columns is also maximized. These approaches have focused on producing codes

based solely on their error-correcting properties, without taking a specific underlying

domain into account.

3.1.2 Designing A Priori Codes

Depending on the properties required, a variety of methods exist for constructing

error-correcting codes. The primary ones, particularly in early papers, generated

the encoding based solely on their error-correcting properties and without taking

the training data into consideration. Such methods include complete codes, random

codes, and BCH codes. Complete codes consist of using all possible combinations, in

the hopes of maximizing error-correcting capabilities and the information available

with which to make a final decision. However, for k classes, the number of distinct

columns is O(2 k), which quickly becomes infeasible.

[4] showed that random codes achieve good row and column separation as the

length of the code increases. In that approach, a large number of random matri-

ces are generated, and the best one is selected. Multiple papers empirically support

this effectiveness of this approach, although it is challenged in [12]. Two more de-

terministic approaches involve using BCH codes ([6]) and Hadamard matrices ([14]).

However, these codes do not appear to work any better than random codes, and so

may not be worth the complexity of generating them.

3.1.3 Designing A Posteriori Codes

Rather than construct the encoding based on coding theory, more recent research has

focused on designing codes around the underlying domain. In [11] and [7], the code

is designed so as to focus on distinguishing classes which are similar to each other.

In [7], the authors suggest iteratively improving the coding-matrix by appending a

classifier which is good at distinguishing the pair of classes with the highest mutual

error-rate. In [11], it is suggested that the Hamming distance between the code

words should depend on the distance between the corresponding classes (as measured

by some metric on the input space). However, the authors of [11] do not actually

implement such an algorithm, and instead attempt to minimize the dependence on

such issues.

3.1.4 Simplifying Induced Dichotomies

In [6], the authors note that when using a decision-tree for the underlying classifier,

each individual classifier tended to have roughly the same number of leaves as a

decision-tree that solved the entire multi-class classification problem directly. This

was roughly an order of magnitude more per tree than in the one-vs-all approach.

These results showed that the induced dichotomies in ECOC tend to be much more

complicated than the dichotomies of one-vs-all, and were in fact often almost as

complicated as the original problem.

Since complicated dichotomies tend to increase error-rate, [18], [2], and [16] at-

tempt to simplify the induced dichotomies by machine-learning the encoding dynam-

ically. In all three approaches, a static code is used to generate an initial guess, and

then some form of relaxation or gradient descent is used to improve the encoding.

They found that the complexity of the induced dichotomies can be "drastically re-

duced . . . without deteriorating the overall generalization" ([16]). [10] uses this idea

to instead try and improve the performance of the resulting classifier. However, the

resulting classifiers still performed comparably to ECOC.

More recently, researchers have begun investigating how to dynamically construct

the code from the ground up, instead of relaxing a complete matrix. In [17] and

[9], mutual information is used to find classes which relate to each other. These

groupings are then used to determine the dichotomies in the coding matrix by a

greedy algorithm.

Unfortunately, the problem-dependent encoding algorithms tend to be hierarchical

in nature, and as a result tend to result in a linear number of classifiers. In fact, [16],

which results in a codebook of polylogarithmic size, is the only method I could find

in the literature which resulted in a codebook of size o(n).

We also note in passing that designing optimal codes has been shown to be NP-

hard in general ([5]). [5] also shows that this problem can be overcome if the encoding

matrix is relaxed to allow real-valued entries. However, since sufficiently-good codes

can be generated without using such machinery, real-valued encodings are generally

not investigated, even in papers which cite their existence (for example, [15]).

3.2 Structure of the Ensemble

In terms of implementing the individual classifiers, [15] establishes that the individual

classifiers should be implemented as separate, parallel classifiers, rather than as mul-

tiple outputs of a single monolithic classifier. Although this issue does not appear to

be specifically addressed elsewhere, most other papers simply use parallel classifiers.

We note that a parallel implementation is also desirable given the Google framework,

since a monolithic architecture is much harder to distribute across machines.

As to which classifier to use for the binary classifiers, margin-based classifiers are

preferable to non-margin-based, since they allow for fancier decoding. As to which

margin-based classifier should be used, no consensus has been reached. in fact, mixed

ensembles have been explicitly suggested as a means of reducing error-correlation.

3.3 Decoding

The most basic method for decoding is based solely on Hamming distance, and was

first used in [6]. This idea has since been improved by the use of loss-based encoding,

introduced in [1] and [13]. In loss-based decoding, the returned class is the codeword

which minimizes

Z L(y3 , Mij),
j=1

where L is the loss-function minimized by the underlying binary classifiers. This

approach or a variation of it is used in all of literature occurring after [1].

If the encoding matrix is taken over {+1, 0}, the decoding becomes trickier. [8]

provides a fairly comprehensive treatment of the topic.

22

Chapter 4

Codebook Styles

Given the many styles of codebook proposed throughout the literature, I began by

testing their effectiveness when applied to thousands of possibly output classes.

For each codebook to be tested, I trained an ensemble of neural nets. The nets

were had two primary architectures - fully-connected and convolutional. A fully-

connected net consisted of two hidden layers, in addition to the input layer and

output node. Every node was then connected to every node of the previous layer.

Convolutional nets consisted of two convolutional layers, the second of which was

then fully-connected to the output node. The exact layout of the classifiers is given

in Appendix 6.

Training data consisted of artificially generated samples from a variety of fonts

and sizes. These samples were then degraded using various heuristics modeling the

degradation normally experienced during OCR. Depending on the situation, either

single graphemes were generated or entire words were generated and then split by the

segmenter from an existing OCR engine. The resulting training set contained 1 million

samples, for an average of approximately 100 samples per grapheme, distributed

according to the natural frequency of the graphemes. The testing set was generated

by the same process on demand, again following the natural frequencies.

The obvious control to test against would be a monolithic multi-output neural

net. Four such nets were trained, each containing two hidden layers of size 25, 50, 75,

and 100. The three smallest converged, after a few months, to an accuracy well-below

10%. The largest, after four months, still had not converged and was terminated.

4.1 A Priori Codebooks

A priori codebooks, as discussed in section 3.1.2, are constructed specifically to have

good error-correcting properties. However, intuitively they should have a high error-

rate. After all, if the dichotomies have no structure to them, solving a single bit

becomes nearly as difficult as solving the entire original problem.

To test this intuition, I randomly split the first k output classes of Devanagari

into two groups, for k ranging from 2 to 8000. Then, for each of these dichotomies,

I trained a single-output neural net (two hidden layers, each of size 30). The results

are shown in figure 4-1. For k > 1000, the net appears to have reached capacity, and

performance begins to deteriorate quickly. The convergence rate is shown in figure 4-

lb. Again, the graph contains a corner after which the convergence rate appears to

have flattened. Interestingly, the critical points in the two graphs do not appear at

the same value of k.

For comparison, figure 4-1c shows the convergence rate for dichotomies constructed

specifically to be easy to learn (see section 4.2 for how these dichotomies were con-

structed). The net converged onto the easy dichotomies roughly twice as fast as it did

for the a priori dichotomies. The error rates for the easy dichotomies is not shown

since it never rose above 1%.

With an error rate above 25%, as it was for the full a priori dichotomy, correcting

that many errors would require an impractically large number of extra classifiers,

even if the information-theoretic optimal correction rate could be achieved in practice.

Given these results, combined with the difficulties with a priori codes described in

previous work, such encodings appear to not be a feasible approach.

Error Rates versus Number of Classes Convergence Rate versus Number of Classes Covnergence Rate versus Number of Classes

30 3,000 2,000 r----------,--- ----

25 2,500

15 1,0001500

5 1 500

Number of Classes N Class Nuber of Classes

(a) The error rate versus the (b) The convergence rate ver- (c) The convergence rate ver-
number of classes for an a pri- sus the number of classes for sus the number of classes for
ori code. an a priori code. an a posteriori code.

Figure 4-1: The difficulty in learning an a priori dichotomy. For each graph, the
training and testing samples were drawn uniformly from a fixed subset of the output
classes. The classifier was a neural net with two fully-connected hidden layers of 30
nodes each.

4.2 Compositional Codebook and Results

Given that oblivious codebooks yielded such poor performance, any output coding

clearly must take the structure of the input domain into account. We therefore turn

our attention to distributed-output coding, with error-correction be introduced later.

Hindi and Devanagari both contain an obvious compositional structure, which

allows for the easy creation of a DOC code. Specifically, the graphemes of each

language are created by composing a small set of fundamental units. This suggests

the use of a compositional codebook, in which each classifier is responsible for deciding

the presence/absence of a single fundamental unit within the grapheme.

Formally, let E = {aj} be the alphabet of the language. For Devanagari, IEI = 70,

while for Korean IEI = 67.1 Let G = {gi} be the set of indivisible graphemes in the

language. The codebook C will then have size IGI x IEI. We set Cj = 1 if gi contains

aj, and Cij = 0 otherwise.

This codebook has the obvious advantage of being comprised of very simple di-

chotomies. As figure 4-2 shows, many bits had 0% error. On the other hand, there

is essentially no error-correction, since flipping almost any bit of a codeword (partic-

ularly from a 1 to a 0) results in another valid codeword.

For Devanagari, this codebook cannot differentiate graphemes containing the same

1We consider the alphabet to be the set of Unicode points, not the size of the actual alphabet.

Distribution of Error Rates for Devanagari Distribution of Error Rates for Korean

< 202 2 - > 20

_ 0 a.

<1% 1-2% 23% >3% 1-2 2-3% >3%

Error Rate Error Rate

(a) Devanagari (b) Korean

Figure 4-2: The error-rate per bit for the compositional codebooks, using a neural
net with two fully-connected hidden layers of size 30 each.

letters in a different order. For this thesis, I treated these graphemes as interchange-

able, and counted as correct any output which erred only in the ordering of the letters

within the grapheme. To handle this case in a full-fledged character classifier, a spe-

cialized second-level classifier can be dispatched which differentiates between those

graphemes which differ only in ordering. Such a classifier would have at most four

outputs, and these four graphemes are all drastically different, allowing for very high

accuracy.

The compositional codebooks resulted in reasonably good performance, even with-

out any pruning or other incremental improvements. As is shown in figure 4-3, using

two hidden layers of size 30, we achieved an accuracy for Devanagari of almost 80%.

For Korean, the accuracy was over 90%.

These accuracies, although promising, are clearly not good enough for a com-

mercial OCR engine. However, a look at how the errors were distributed suggests

multiple ways to boost the accuracy. According to figure 4-2, for the vast majority of

bits, no or almost no errors occurred, even using a weak dichotomizer, emphasizing

how easy these dichotomies were to detect. Certain other bits, however, had rather

high error rates. Indeed, only 3 bits accounted for over a third of the total errors.

These bits corresponded to letters which drastically changed their shape depending

on their location, and therefore contained too much variety for the classifier to han-

dle, as evidenced by the drastic improvement as the classifier was strengthened. By

Language Network Layout Average Bit Errors (%) Accuracy (%)
Arithmetic Geometric Predicted Actual

Devanagari Hidden 10-10 14.64 10.98 36.62 (n/a)
Devanagari Hidden 20-20 8.97 6.18 56.87 (n/a)
Devanagari Hidden 30-30 6.65 4.57 65.89 78.64
Devanagari Convolve 2-2 10.98 7.57 50.08 62.18
Devanagari Convolve 3-3 7.71 5.29 61.73 72.52
Devanagari Convolve 4-4 5.87 4.03 69.27 76.36

Korean Hidden 10-10 6.87 4.47 66.51 81.92
Korean Hidden 30-30 5.08 3.31 73.97 87.80

Figure 4-3: Summary of Results for the Compositional Codebook. This table shows
the results of using a compositional codebook. The neural nets used either a fully-
connected net with hidden layers of the specified size or a convolutional architecture
with the two convolutional layers replicated the specified number of times.. The
geometric mean of the errors is calculated as 1 - GeoMean(success), to ensure that it
is well-defined. The predicted accuracy is based on assuming no error correction and
uncorrelated errors.

splitting such cases into multiple bits, each corresponding to one form of the letter,

the accuracy can be easily boosted without having to use large, and therefore slow,

dichotomizers.

4.2.1 Optimizing the Ensemble

As a very basic optimization beyond the uniform ensemble originally tested, I trained

multiple ensembles on the codebook, using multiple network layouts. For each bit, I

then selected the best classifier from the trials. This allowed for some pruning, as well

as avoiding some local minima from the training phase. I did not split complicated

bits into simpler dichotomies, since that required a slow manual step2

The resulting classifier for Devanagari achieved a nearly 90% accuracy at the

grapheme level, while a single multi-output neural net only achieved 85% accuracy.

For Korean, the grapheme accuracy was almost 98%. At the word level, the Korean

classifier was 96% accurate, as opposed to the commercial engine used by Google,

which only achieved 88% accuracy. These results could most likely be further im-

2A native speaker would be able to perform this task fairly quickly.

proved by more agressive pruning, modifications to the codebook against hard di-

chotomies, and other standard optimizations.

It should be noted that these results may be slightly exaggerated, particularly

for Korean. The training data given to the DOC ensemble was fairly similar to the

testing data. The commercial OCR engine, on the other hand, was likely trained

on different data. Therefore, these results should be interpreted as saying that DOC

yields a competitive classifier, but not necessarily a superior one.

4.2.2 Effects of Error-Correction

Given the strong results achieved by distributed output coding, we now turn our

attention to error-correction.

For the compositional codebook, slightly over 33% of the ensemble errors were

caused by a single bit-error. Therefore, error-correction seems as though it could

significatly boost the accuracy of the ensemble. Indeed, to correct against such errors,

only [lg(67)] = 8 error-correcting bits are required in theory.

To achieve this, I appended 8 bits to the compositional codebook, forming a BCH

code with 1 bit of error correction. Unfortunately, the error-correcting bits had a

25% error rate. Assuming that the errors were indepenedent, this means that with

probability 1 - 0.758 = 0.90, an error occured in the error-correcting bits, exhausting

the error-correcting capabilities of the code. In fact, with probability 0.63, more than

one error occured, lowering the overall accuracy of the system. For only 10% of the

samples were the extra bits able to contribute useful information.

This prediction closely matches the empirical results. The BCH-extended ensem-

ble had an overall accuracy identical to the pure compositional ensemble; the two

error rates were within each other's margin of error.

Interestingly, the accuracy of the error-correcting bits was nearly independent

from the accuracy of the compositional bits. This leaves open the possibility that

error-correcting bits could be appended in a useful way. However, such a system

would most likely need to be domain specific and the number of extra bits needed

before the signal became usable over the noise is likely to be prohibitively high.

Chapter 5

Designing a Codebook

Korean and Devanagari both contained a natural decomposition, thereby allowing a

good codebook to be easily constructed semi-automatically. Given the unicode for

the output class, simple scripts and existing libraries could determine the codeword,

allowing automatic construction of the codebook. However, such behavior cannot be

generally assumed, since in many domains simple dichotomies may not be readily ap-

parent. We therefore would like to machine-learn the codebook, with minimal manual

involvement. Such a codebook should yield good performance, while maintaining a

small size.

5.0.3 Forgiving Hash Functions

Locality-sensitive hash functions are hash functions which approximately preserve

distances, in that inputs which are close in the original space remain close in the

compressed space, while inputs which are far apart remain far apart. Forgiving Hash

Function are a specialized version of locality-sensitive hashing which were first de-

signed as a means for doing quick database lookup of a song. The goal is to learn a

locality-sensitive hash function which is easy to compute and resilient to noise. [3]

used the hash function as the key to a hash table.

Similarly, we could use the forgiving hash function to generate the encoding for

an ECOC ensemble. This approach does result in a linear-sized codebook. However,

Covnergence of Forgiving Hash Functions

1,000 .

800

D)
600

iNo-Share

n- EShare
w 400
a- EHiddenlO
0

200

Iterations (50 training rounds per)

Figure 5-1: The convergence rate for Forgiving Hash Functions. In addition to not
stabilizing, the ensemble seems to regress as the number of iterations increases.

the constant-factor is, in practice, much less than 1, so the resulting codebook would

be feasibly sized.

Unfortunately, although this approach seems very promising and most likely de-

serves further study, I was unable to get the learning algorithm to converge, as shown

figure 5-1.

5.0.4 Expanding ECOC

Originally introduced in [16], Expanding ECOC works by repeatedly executing the

algorithm shown in figure 1. This algorithm constructs the codebook by repeatedly

appending bits to the encoding until all classes have minimum distance A. While

a pair of classes exist which are not sufficiently-well separated, a weak-classifier is

trained to separate those two classes. A sampling of instances from every class is

then presented to the classifier. If most samples from a class are classified as positive,

that entry of the codebook gets a 1. If most samples are classified as negative, that

entry of the codebook gets a 0.

This algorithm can also be generalized to allow for a "Don't Care" option. In

this case, new bits are only assigned if they have a sufficiently high confidence. More

formally, given a classifier and a class, the corresponding entry is labeled a 1 if at

least a 1 - c fraction of the samples are classified as positive and is labeled a 0 if

Algorithm 1 The Expanding ECOC Algorithm. While a pair of classes exist which
are not well separated, append a bit which separates those classes.
M <-- []
k +-- 0.
while there exist classes i, j such that d(Mi, Mj) < A do

Train a classifier C with class i as positive examples and j as negative examples.
for e = 1...n do

Run C on samples from class f.
Assign M,k = +1 accordingly.

end for
k --k+1

end while

at least a 1 - e fraction of the samples are classified as negative. If neither case is

satisfied, the entry is marked "Don't Care."

Since we want high distance between the columns of the codebook, we can further

improve the algorithm by only including columns which are sufficiently different from

the columns already created. Formally, if the new column differs from an existing

column in less than F locations, we discard it.

To test the behavior of this system, I trained an ensemble using all combinations

of

1. Minimum row distance - 1, 2, 3

2. Minimum column distance - 0, 100, 300, 500

3. Minimum bit confidence - 0.75, 0.8, 0.85, 0.9

Size of the Codebook Given a confidence parameter of e, suppose that a given

class is marked as a 0 with probability f (), a 1 with probability f (), and "Don't

Care" otherwise, each independently at random. Then the expected size of the code-

book is O(lg n).

Experimentally, this prediction holds. As shown in figure 5-2a, the number of bits

does grow roughly logarithmically. Furthermore, the separation between two classes

obeys a roughly binomial distribution, as shown in figure 5-2b. Unfortunately, the

Growth Rate For Expanding Codebooks Hard Row Separation in Expanding Codebooks
600 2,000,000

500

1,500,000

300 1,000,000

. 200 .

500,000
100

0 O0

Number of Classes Separation

(a) The size versus number of classes for an (b) The Hamming Distance between rows of
ExpandingECOC codebook. an ExpandingEcoc codebook. If either row

contained a "Don't Care" in a particular bit,
that bit is not counted towards the Hamming
Distance.

Figure 5-2: The growth rate and row separation for ExpandingECOC codebooks.

constant factor hidden in the E(lg n) is very large; every codebook was well over one

order of magnitude above the theoretical size necessary.

Accuracy Due to limits in available computation power, I only fully trained a single

Expanding ECOC ensemble. I used a row separation of 1, a column separation of

300, and a bit-confidence of 0.9.

Since every bit should, by construction, have accuracy at least 0.9, we can use the

distance distribution form figure 5-2b, along with an assumption of error indepen-

dence, to estimate the performance of the ensemble. According to such an estimate,

the overall ensemble should have an accuracy of roughly 92%, since the average bit

error-rate was 0.07 with a maximum of 0.15.

However, in practice, the accuracy was much, much lower - the overall ensemble

accuracy was just 15%. This was a result of two factors. First and primarily, the

extreme number of "Don't Care" bits resulted in a fragile ensemble. Second, the bit

errors were not uncorrelated, making the theoretical prediction nearly meaningless.

Chapter 6

Conclusions and Future Work

On both Devanagari and Hangul, a DOC ensemble of discriminative classifiers achieved

excellent results relative to existing approaches. For Hindi, comparing the perfor-

mance of ensemble to other approaches was difficult, since there was no previous

result to compare it to (that I am aware of). However, I was able to show that its er-

ror rate was comparable to that achieved by classifiers working with a much-reduced

output space. For Korean, the ensemble classifier appeared to work at least as well

as the commercially-available alternative.

Given these promising results, there are numerous avenues for future work. The

first is to implement an industrial-grade version of the compositional ensemble for

both languages, and see how well a finely-tuned version performs. In particular, I

focused on character-level accuracy, although OCR engines actually care about word-

level accuracy. It is hopeful that on instances where the classifier errs, the correct

answer will have a sufficiently small penalty that it will be corrected at the word level.

It also remains to compare the speed of the ensemble classifier to the speed of

other approaches, both discriminative- and generative-based. Ideally, the ensemble

approach will result in both higher accuracy and better speeds. However, if the

accuracy is better while the speed is worse, then it may be possible to use the ensemble

as a "second-pass" correction, in which only characters with a confidence below a given

threshold are tested. Such a hybrid approach may result in getting the best of all

worlds.

Another avenue is to use a hybrid approach within the ensemble itself. Such an

approach may be useful, almost certainly for speed and probably for accuracy. In this

work, I required the base-level classifier to always be a dichotomizer. However, the

base levels could easily be a multi-output neural net or other multi-class classifier.

For example, a single classifier could detect and identify all the Hindi vowels. Since

many classifiers are likely performing similar internal calculations, this could greatly

reduce the computation cost, and may also improve the accuracy and generalization.

At a more extreme level, there could be a weak classifier performing a very simple

classification, perhaps into only a few dozen general classes. These general classes are

then solved using conventional techniques. In other words, the output coding is only

used until the problem becomes tractable. Qualitatively, the marginal effectiveness

of each successive bit appeared to diminish, so this approach seems very promising.

Focusing on construction of the codebook, the major open problem is obviously to

do so with minimal human intervention. Running a clustering algorithm on the input

space and using the resulting clusters to seed the codebook seems fruitful. Allowing

some manual intervention, it would be useful to start with a human-generated code-

book and attempt to refine that codebook. Regardless of the approach, it may be

useful to only require the encoding to shrink the problem into tractable subproblems,

since splitting the final few classes from each other is far harder than finding broad

distinctions.

An automated approach to learning the codebook would also allow the approach

to be applied to situations which lack a compositional structure. Given a language

such as Chinese, manually constructing a codebook could be tedious even if good

features can be identified. It remains to determine if this approach can be generalized

effectively to less structured domains.

Regardless of the results of such future work, ensemble-based approaches have

been shown to be a viable approach for efficiently scaling discriminative classifiers to

structured domains with very large numbers of output classes, without sacrificing an

undue amount of accuracy or time.

Appendix: Structure of the Neural Networks

Below are the formal descriptions of the layout for the various neural networks used

in this thesis. The basic connections are

* fullconnect inputs outputs

* convolve inputs outputs insize_x insize_y windowx windowy stepx step_y

outsize_z outsizey copies_z copies_y

Hidden 10-10

input in[0,2303]

output out[0,0]

fullconnect in[0,2303] hidden_l[1,10]

fullconnect hidden_l[1,10] hidden_2[1,101

fullconnect hidden_2[1,10] out[0,0]

Hidden 20-20

input in[0,2303]

output out[0,0]

fullconnect in[0,2303] hidden_ [1,20]

fullconnect hidden_ [1,20] hidden_2[1,20]

fullconnect hidden_2[1,20] out[0,0]

Hidden 30-30

input in[0,2303]

output out[0,0]

fullconnect in[0,2303] hidden_l[1,30]

fullconnect hidden_ [1,30] hidden_2[1,301

fullconnect hidden_2 [1,30] out[0,0]

Convolve 2-2

input in[0,2303]

output out[0,0]

convolve in[0,2303] layer_1[1,9001 48 48 6 6 3 3 15 15 2 2

convolve layer_l[1,9001 layer_2[1,324] 30 30 6 6 3 3 9 9 2 2

fullconnect layer_2[1,324] out[0,0]

Convolve 3-3

input in[0,2303]

output out[0,0]

convolve in[0,2303] layer_l1[1,20251 48 48 6 6 3 3 15 15 3 3

convolve layer_1[1,20251 layer_2[1,784] 45 45 6 6 3 3 14 14 2 2

fullconnect layer_2[1,7841 out[0,0]

Convolve 4-4

input in[0,2303]

output out[0,0]

convolve in[0,2303] layer_1[1,3600] 48 48 6 6 3 3 15 15 4 4

convolve layer_1[1,3600] layer_2[1,1444] 60 60 6 6 3 3 19 19 2 2

fullconnect layer_2[1, 1444] out[0,0]

Bibliography

[1] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to

binary: A unifying approach for margin classifiers. In Proc. 17th International

Conf. on Machine Learning, pages 9-16. Morgan Kaufmann, San Francisco, CA,

2000.

[2] E. Alpaydin and E. Mayoraz. Learning error-correcting output codes from data.

Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on

(Conf. Publ. No. 470), 2:743-748 vol.2, 1999.

[3] Shumeet Baluja and Michele Covell. Learning to hash: forgiving hash func-

tions and applications. Data Mining and Knowledge Discovery, 17(3):402-430,

December 2008.

[4] A. Berger. Error-correcting output coding for text classification, 1999.

[5] Koby Crammer and Yoram Singer. On the learnability and design of output

codes for multiclass problems. In Computational Learing Theory, pages 35-46,

2000.

[6] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems

via error-correcting output codes. Journal of Artificial Intelligence Research,

2:263-286, 1995.

[7] Sergio Escalera and Oriol Pujol. Ecoc-one: A novel coding and decoding strat-

egy. In ICPR '06: Proceedings of the 18th International Conference on Pattern

Recognition, pages 578-581, Washington, DC, USA, 2006. IEEE Computer So-

ciety.

[8] Sergio Escalera, Oriol Pujol, and Petia Radeva. Decoding of ternary error correct-

ing output codes. In Jos Francisco Martnez Trinidad, Jess Ariel Carrasco-Ochoa,

and Josef Kittler, editors, CIARP, volume 4225 of Lecture Notes in Computer

Science, pages 753-763. Springer, 2006.

[9] Sergio Escalera, David M.J. Tax, Oriol Pujol, Petia Radeva, and Robert P.W.

Duin. Subclass problem-dependent design for error-correcting output codes. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 30(6):1041-1054,

June 2008.

[10] Eibe Frank and Stefan Kramer. Ensembles of nested dichotomies for multi-class

problems.

[11] R. Ghaderi and T. Windeau. Circular ecoc. a theoretical and experimental anal-

ysis. Pattern Recognition, 2000. Proceedings. 15th International Conference on,

2:203-206 vol.2, 2000.

[12] Rayid Ghani. Using error-correcting codes for text classification. In Pat Lang-

ley, editor, Proceedings of ICML-00, 17th International Conference on Machine

Learning, pages 303-310, Stanford, US, 2000. Morgan Kaufmann Publishers, San

Francisco, US.

[13] Venkatesan Guruswami and Amit Sahai. Multiclass learning, boosting, and error-

correcting codes.

[14] Shilei Huang, Xiang Xie, and Jingming Kuang. Using hybrid hadamard error

correcting output codes for multi-class problem based on support vector ma-

chines. Computational Intelligence and Security, 2006 International Conference

on, 1:7-10, Nov. 2006.

[15] F. Masulli and G. Valentini. Effectiveness of error correcting output coding

methods in ensemble and monolithic learning machines. Pattern Anal. Appl.,

6(4):285-300, 2003.

[16] Eddy Mayoraz and Miguel Moreira. On the decomposition of polychotomies

into dichotomies. In ICML '97: Proceedings of the Fourteenth International

Conference on Machine Learning, pages 219-226, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc.

[17] 0. Pujol, P. Radeva, and J. Vitria. Discriminant ecoc: a heuristic method for

application dependent design of error correcting output codes. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 28(6):1007-1012, June 2006.

[18] Gunnar Ritsch, Alexander J. Smola, and Sebastian Mika. Adapting codes and

embeddings for polychotomies.

[19] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. J.

Mach. Learn. Res., 5:101-141, 2004.

[20] T. Windeatt and T. Ghaderi. Coding and decoding strategies for multi-class

learning problems, 2003.

