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ABSTRACT

Cable-in-Conduit Conductor is the typical geometry for the conductor employed in
superconducting magnets for fusion applications. Once energized, the magnets produce
an enormous electromagnetic force and very large transverse loads are applied against the
strands. This large force results in a degradation of the performance of the
superconducting magnets.

In this thesis work transverse load experiments on sub-sized cables, have been
designed to study the mechanical and electrical transverse load effects on
superconducting cables. Two devices to apply external mechanical loads to a cable have
been developed and several different size cables have been tested simulating the
International Thermonuclear Experimental Reactor (ITER) Lorentz stress conditions.

The first device was designed to use a circular turn sample of a 36-strand cable. Four
samples were successfully tested with this device and significant degradations of the
critical current due to the external transverse loads have been measured. However, all
samples showed unexpectedly large initial degradations that made an analysis of
transverse load effects of the samples difficult.

The second device was developed for a hairpin configuration. Three different size
cables of a single strand, a triplet and a 45-strand cable were systematically tested using
this method. This hairpin sample device has successfully operated and provided very
reliable experimental data.

The experimental results were difficult to explain by existing theories. A new model
based on contact mechanics concepts has been developed to determine the number of
contacts and the effective contact pressure among the strands in a cable. The model was
used to analyze and accurately calculate the displacements of a cable under transverse



mechanical load, and it has evaluated the effective contact pressures between strands for
the first time.

The new model can explain the Lorentz force and contact pressure distribution effect
on the critical current degradation of the tested samples. The 3-strand data and their
critical current behavior as a function of the effective contact pressure were used to
predict the test behavior of a 45-strand cable. It was also used to simulate the critical
current degradations of various cables including ITER full size cables. The model has
predicted an initial degradation of 20% for an ITER TF cable of 1152 strands at 68 kA
operational current caused by the transverse Lorentz load effect only.

Parametric studies of the model have indicated that the initial degradation could be
reduced by shortening the twist pitch length of the initial stages of a full size cable or by
mechanically supporting the last stage bundles of the cable.

This thesis work shows for the first time, that the transverse Lorentz load effect,
which is inherent in the CICC design, contributes a significant fraction of the degradation
of a large Nb3Sn superconducting cable. The model quantifies the degradation and this
information could be used in better estimating the appropriate margin requirements in
magnet design.
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Title: PSFC Technology and Engineering Division Head

Thesis Reader: Prof. Jeffrey P. Freidberg
Title: Professor of Nuclear Science and Engineering

Thesis Reader: Prof. Ronald R. Parker
Title: Professor of Electrical Eng. and Computer Science and Nuclear Science and Eng.
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simulation) compared with measurements taken with the strain gages.
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Typical internal tin wire cross section (Oxford wire).
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Critical current as a function of magnetic field for single strand samples of
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Critical current as a function of field for the different samples tested. Those
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voltage wire running along the sample to cancel inductive pickup) (bottom
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voltage tap wires without damaging it during the loading process. Voltage
taps location at the top of the sample (bottom right).

(a) Bottom voltage tap wires and spacer used to maintain the desired void
fraction during heat treatment. (b-c) Sample ready for heat treatment.
Working principles of the device: (a) resting position of the wedge, (b)
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pieces, (c) displacement measured using the extensometer, (d) heat treatment
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Schematic view of the forces involved in the experiment and how the
transverse force is estimated using geometrical arguments.

Strain gages and voltage taps location on the single piece case and on the
sample. VT1 and VT2 cover the two straight legs of the sample and VT3 is
the overall sample voltage.

Comparison between measured strain gages values and computed values
using FEM code as a function of vertical load applied.

Typical internal tin wire cross section (Oxford wire).

Critical current as a function of magnetic field for single strand samples of
the wires used during the experiment. The expected critical value of the cable
is simply the product of the number of strands in a cable times the current of
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Critical current as a function of field and comparison with the expected
values.

Normalized (to the single strand value) critical current as a function of total
load.

Critical current (normalized to the zero load value) as a function of total load.
Normalized critical current as a function of force per unit length for the
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Normalized critical current as a function of force per unit length for the 3-
strand sample.

Normalized critical current as a function of force per unit length for the 45-
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Irreversible critical current data as a function of the maximum force per unit
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single strand sample.

Young’s modulus measurements as a function of force per unit length for the
3-strand sample.

Young’s modulus measurements as a function of force per unit length for the
45-strand sample.

Projected area used to estimate the pressure on the single strand and 3-strand
samples. The length of the sample is multiplied by the diameter of the sample
(the diameter of the sample is the diameter of the strand for a single strand
sample and it is the expected diameter calculated considering void fraction
for a cable).

Schematic view of two long cylinders in contact.

Cylinder in contact with two solids. The contact pressure distribution is
shown in the figure and is used to estimate the contact width 2/,, 2/,.
Schematic view of the contact area between two strands.

Single strand test configuration and simplified analysis cases.

Contact width 2/ for the three different cases considered. Flat plate R; = oo,
convex surface R; = 2a and concave surface R;= -2a.

Displacement of a single strand (0.82 mm in diameter). Comparison between
measurements and numerical evaluation. The agreement is good at low load
and less good at high load as expected from having disregarded non-elastic
behavior in the model.

Fig. 5.8 Single strand results: nominal pressure and effective contact pressure
approaches.

Simplified view to estimate the angle between two strands.

Schematic view of strand-strand contact points of a 3-strad cable.

Measured displacements as a function of force per unit length compared to
the calculated one using Eq. 5.28.

Measured transverse Young’s modulus and calculated ones for different
cases.

Normalized critical currents as a function of the calculated effective
pressured are compared with the experimental data evaluated using the
nominal pressure.

Schematic view of the two different approaches used to analyze a 45-strand
cable.

Schematic view of the different stages composing a 45-strand cable.
Measured and calculated displacement for the 45-strand cable.

Measured transverse Young’s modulus and calculated ones for different
cases.

Critical current as a function of contact pressure for the three different cables
tested.

Critical current as a function of effective pressure for the 3-strand and 45-
strand cables tested.
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Irreversible critical currents (3-strand measured values and fit) as a function
of effective pressure.

Experimental data and analytical results as a function of effective pressure.
Experimental irreversible data and analytical results as a function of effective
pressure.

Force configuration for a cable loaded with an external mechanical load and
the accumulation of a natural Lorentz load.

Triplet under transverse load and contact places in one twist pitch length.
Three-bundle cable under transverse load and contact places in one twist
pitch length.

Four-bundle cable under transverse load and contact places in one twist pitch
length.

Five-bundle cable under transverse load and contact places in one twist pitch
length.

Schematic view of the crossing between bundles in a swaged cable.
Schematic view of a multi-strand cable indicating the number of strands n,
in layer A at a certain height y.

Schematic view of a fully twisted cable.

Schematic view of the intervals i used to evaluate an integral with the
Gaussian method.

Current distribution and contact pressure distribution in a 45-strand cable as
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Normalized critical current as a function of nominal current.
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Normalized critical current as a function of the nominal current.
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considering the natural Lorentz load effect.
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isolated petal inside a full size cable.

Fig. 6.20  Percent differences between the nominal current and the expected values
considering the natural Lorentz load effect for a full size cable with different
twist pitch configurations.

Fig. 6.21 Percent differences between the nominal current and the expected values
considering the natural Lorentz load effect for a full size cable with different
twist pitch configurations indicating the benefit of shorter twist pitches in the
higher stages of the cable configuration.

Fig. 6.22  Percent differences between the nominal current and the expected values
considering the natural Lorentz load effect for the CSMC Insert cable.

Appendix [

Fig. .1 Single turn circular sample (about 110 mm diameter). Sample and joints
enclosed in copper tubes (left), details of the voltage tap on the sample
(right).

Fig. 1.2 Hairpin samples: 45-strand cable (top), triplet (bottom).

Fig. 1.3 Schematic of the cable before being swaged inside copper and titanium
tubes.

Fig. 1.4 Schematic indicating where the titanium will be removed.

Fig. I.5 (a) Standard bending tool used to perform the 90° bend. (b) Custom designed
bending tool for the circular bend.

Fig. 1.6 Schematic of the cable before being bent (top) and distances to check before
proceeding to the 90° bend (right).

Fig. 1.7 Different stages to prepare the circular sample and the 90° bending so that
the current leads are perpendicular to the plane where the circular sample lie.

Fig. 1.8 (a) Sample sitting in the external ring with the collet positioned but still not
closed. (b) The fingers are added on the collet so that the cable is completely
enclosed. A stainless steel wedge is inserted to maintain the desired void
fraction during heat treatment. (c) Position of the sample during mounting.
(d) Location of the bend of the copper joints. The stainless steel parts will be
either removed or substitutied with G10 pieces after heat treatment.

Fig. 1.9 Sample ready to be placed in a stainless steel can to be inserted in an
horizontal oven.

Fig. .10 Sample mounted on the probe and ready to be inserted in the cryostat.

Fig. .11 Triplet sitting in the sample holder (U-bend section). Glass sleeve was used
to avoid sintering. In the straight test area, where the mechanical load is
applied, anti-sintering powder was used.

Fig. .12 The sample is mounted inside the U-shape holder and the two external
holders (top). Bottom wires of the voltage taps (voltage taps 1, 2 and total
voltage wire running along the sample to cancel inductive pickup) (bottom
left). The top cover of the U-bend is grinded to be able to bring out the
voltage tap wires without damaging it during the loading process. Voltage
taps location at the top of the sample (bottom right).

Fig. 1.13  Pressing plates (top). The ends are rounded off to avoid sharp contacts
between the plates and the cable. Voltage tap wires (bottom). The bottom U-
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Fig. .14
Fig. L.15

Fig. 1.16

Fig. 1.17

Fig. 1.18

Fig. 1.19

Fig. 1.20

Fig. [.21

Fig. 1.22

Fig. 1.23

Fig. 1.24

Fig. 1.25

shape holder is rounded to be able to bring out the wires and to avoid
damaging them.

(a) Bottom voltage tap wires and spacer used to maintain the desired void
fraction during heat treatment. (b-c) Sample ready for heat treatment.
Preparation of the samples and installation of the samples on the heat
treatment rack. Four samples can be heat treated at the same time.

Samples taken out of the oven after heat treatment. The bottom sections
show a dark color due to residual organic materials formed during heat
treatment. Also to notice is that only in this position the cable is supported
well in the U-bend section (piece is touching bottom plate). During assembly
it is necessary to maintain the sample facing up as in the heat treatment
configuration to support the cable at all time.

(a) Copper leads: top section is connected to the vapor cooled leads, the
bottom one is where the sample is soldered. (b) Probe set up w1th 10 kA
vapor cooled leads and copper leads.

(a) After removing the top plate holding the pieces together the central spacer
is carefully removed. The probe is sitting on the side where the surface of the
U-bend section is in contact with the bottom plate. (b) Central spacer is
removed. (c) Top spacer strips are removed using tweezers and small
screwdriver. The bottom spacers are easily removed once the pressing plate
is carefully moved from its position.

Positioning of the wedge, matching wedge pieces, extensometer and voltage
tap wires in preparation of the experiment.

Working principles of the device: (a) resting position of the wedge, (b)
vertical displacement of the wedge and movement outward of the matching
pieces, (c) displacement measured using the extensometer.

Plates from heat treatment are use to hold the sample in position (top and
bottom pictures) while the bottom plates are removed (center picture).

(a) Sample still supported by heat treatment side and top-bottom plates.
Those pieces are going to be substituted with a single piece case. (b) Ready
to remove side plates. (c-d) After removing the side plates the sample is hold
in position momentarily by two side screws joining the sample holder and
the U-bend piece. (e-f) The sample slides inside the case (remove the screws
holding the sample holder and Y-bend hape). Once the sample is inserted
completely into the case screws will be used to firmly position it. These
screws will hold case and sample together during the experiment.

The sample is mounted inside the case and the last heat treatment support
pieces are removed(top) before the sample is slid inside the grooves on the
copper joints area (center and bottom pictures).

Soldering procedure. Cartridge heaters inside aluminum blocks are mounted
on the sides and on the bottom of the copper joints area. Temperature
controllers are used to monitor the temperature and start filling the grooves
with solder.

Sample soldered. Instrumentation wires are connected to 4 wires Teflon
cables that are brought outside the dewar (45 ft long).
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Fig. 1.26  Probe ready to me inserted into the dewar.

Fig.1.27  Probe inside the dewar. The picture show the top flange, the bellow used to
adjust the height of the probe so that it can be easily connect to the pin sitting
on the bottom of the dewar. The linear actuator and the motor used to operate
it are sitting on a plate. The linear actuator is connected to the cylinder that
contains the load cell and connects the actuator to the shaft connected to the
wedge at the sample area.

Appendix 11

Fig. II.1  Modified expanding collet to apply a more uniform load on the cable. The
fingers used to apply pressure on the cable will be removed in two sections to
balance the section where the cable is missing.

Fig. I.2  V-I curves for various conditions.

Fig. I.3  Errors on the critical currents using a non-uniform load on the cable for
initial currents I, = 140 A,n =25 and I, = 100 A, n = 15. If a 2E/3 criterion
is used the error is negligible from the case of uniform load.

Fig. 114 3-D ANSYS® model of the outer ring: mesh and position of strain gages on
the left, pressure load applied in the model.

Fig. I.5  Radial stress contour of the ring (the pressure applied is 20 MPa).

Fig. 1.6 Hoop strain along the ring (values to be compared with the strain gages
measurements).

Fig. I.7  Strain gages during the IGC experiment.

Fig. I.8  Strain gages measurements during the OKAS experiment and their
comparison with a 3-D ANSYS® model.

Appendix III

Fig. 1.1  Axes used to define h (left). Contact among two solids and their respective
deformation once a load P is applied.

Fig. II.2  Schematic view of two solids in contact.

Fig. III.3  Half space used to describe the potential theory [1.5].

Fig. Ill1.4  Schematic view of the contact area between two strands.

Fig. 1.5 Cylinder in contact with two solids. The contact pressure distribution is
shown in the figure and is used to estimate the contact width 2/;, 2/,.

Fig. [II.6  Schematic view of an elastic half space loaded with normal pressure p(x) and
tangential traction q(x).

Appendix V

Fig. V.1 2D schematic view of cables with different number of subcables (top) and how to
calculate the angle between subcables (bottom).

Fig. V.2 3D coordinate system used in the calculation.

Fig. V.3 Variables o and P, used to evaluate the semi-axes of the contact area between
strands, are shown as a function of the angle ¢.
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CHAPTER 1:
Introduction

Since its discovery in 1911, superconductivity has played an increasingly important
role in different fields especially for magnet technology. The non-resistive characteristic
of superconductor materials make them very attractive to achieve performances too
demanding for conventional resistive materials. Despite superconductivity being a
common characteristic of many metals, only a few of them are suitable for magnet
applications requiring a balance between the difficulty and operability of the system itself
and its overall cost.

There are four key magnet issues to be considered in the context of balancing cost
and difficulty of assembly:

e Stability against mechanical, electromagnetic, thermal or nuclear disturbances,

¢ Cryogenics and efficiency of the coolant used,

e Protection of the conductor against events which would lead to a complete loss
of superconductive properties (quench),

e Mechanical stability of the conductor and the supporting structure.

Although superconductivity was discovered nearly 100 years ago, practical
application of this phenomenon requires a broad interdisciplinary knowledge of physics,
material science and engineering (mechanical, electrical) to control the four
aforementioned magnet issues.

The applications of superconductivity cover a broad spectrum of fields that includes
medical, pure science (space and high energy physics), energy (power cables, magnetic
storage and fusion) and transportation.

This chapter discusses the salient characteristics of superconducting materials and
their applications. The chapter begins with a microscopic/macroscopic and
phenomenological description of superconductivity followed by the description of the
materials available (section 1.1) and the major applications of superconductivity (section
1.2). The chapter concludes with a more detailed description of fusion energy application
and its challenges that provide the driving reason of the research carried out in this thesis
work (section 1.3).
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1.1 Background of superconductivity

A material is said to be superconductive if it shows no resistance against the passage
of DC current. This property is usually obtained by sufficiently lowering the temperature
below a critical temperature unique to the material. The discovery of superconductivity
followed the successful liquefaction of helium in 1908 by H. Kamerlingh Onnes. In 1911
while measuring the resistivity of mercury, he discovered a state transition at 4.2K to a
resistance lower than 10-5 Q essentially discovering the superconducting state (Fig.
1.1(a)). Onnes was awarded the Nobel prize for his work in 1913. Many metals possess
this property, but very few of them have all the characteristics suitable for magnet design
as discussed in section 1.2.

It was not until much later (following advances in quantum physics and mechanics)
that the complete microscopic theory of superconductivity was presented by Bardeen,
Cooper, and Schrieffer (1957). Their theory, known as BCS theory, explained the flowing
of current without resistance by introducing the key concept of Cooper pairs, pairs of
electrons interacting through the exchange of phonons inside the crystal lattice.

0.15
Mercury
superconducting
transition

010

A zero
R@)| resistance
state!!

0.05p

4.1 42 43 4.4
Temperature (K)

Fig. 1.1 (a) Mercury superconducting transition showed by the measured resistance as a function
of temperature. For temperatures below 4.2 K mercury shows a virtually resistanceless behavior

[1.1].

As discussed so far temperature is one of the requirements to obtain
superconductivity. There are two other requirements in order to maintain
superconductivity: magnetic field and current density.

Those three properties (current density, field and temperature) describe a surface
under which the material does not show any resistance. It has also been found that axial
and transverse strains affect the material performance (discussed in more details in
Chapter 2). If all but one of these properties are kept fixed, once the variable property
reaches its critical value the superconductive behavior will be lost. A schematic
representation of the critical surface for a superconducting material is shown in Fig. 1.2
[1.2]. This plot represents the typical behavior of NbsSn strands used for different
applications (fusion, high energy physics (HEP) and nuclear magnetic resonance
(NMR)). Each application has different requirements in term of field, temperature and
current density as indicated by the colored areas in the plot.
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Fig. 1.2 Critical surface for Nb;Sn strand. Current density, magnetic field and temperature define
a surface above which the superconductive state is lost [1.2].

Superconductors are said to be of Type I or II depending on their magnetic
characteristics. Type I superconductors show perfect diamagnetism behavior. When an
external magnetic field is applied, a field equal and opposite is induced inside the
superconductor) (Fig. 1.3 (a)). Type II superconductors show partial penetration when an
external field is applied (Fig. 1.3 (b)). The behavior of a single superconducting strand to
an external applied field is fundamental to determine its behavior inside a magnet where
each strand is subjected to the field created by all the other strands.

Diamagnetism

ABexternal

Induced magnetic field
opposes clga nge.

¥

—

Perfect Diamagnetism

Fig. 1.3 Behavior of superconductors to external magnetic field. (a) Type L, (b) Type II [1.3].
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Type 1 superconductors have a single critical field (B.;) above which the material
loses its superconductive property. They show both perfect diamagnetism and no
resistance in both AC and DC conditions below the critical field. Type II superconductors
are bound by both a lower and upper critical fields (B, Bc2) (Fig. 1.4). Above B, the
material becomes normal, below B, it shows perfect diamagnetism as for Type [ while in
between the two limits the material is said to be in the mixed state, allowing partial flux
penetration.

field A

BcZ
NORMAL

STATE

MIXED STATE

MEISSNER (Type )

>

temperature T,

Fig. 1.4 Critical field as a function of temperature for Type I and II superconductors [1.4-1.5].

The mixed state of a Type II superconductor can be pictured as a bulk of
superconducting material with normal cores (Fig. 1.5).

Fig. 1.5 Normal cores
representation in a Type II
superconductors slab. Surface
currents flow to maintain the
bulk of the slab diamagnetic.
[1.6]

SURFACE CURRENTS (to maintain the
bulk of material diamagnetic)

NORMAL CORE
(field penetration)

SUPERCURRENT VORTEX
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vortices in set positions allowing for a net transport of current through the material (Fig.
1.7). When a current is applied to the superconductor in this mixed state, the current will
flow without resistance in a path around the normal cores (now pinned). As the external
field increases the number of normal cores increase until it occupies the entire material at
Bc;and the material becomes normally conducting.

A

|
1! ‘ Magnetic Flux Lines
|
’ 1

i

=

Grain Boundaries/
Structural Defects

Pinned
Vortex Current

YYYY

Supercurrent

Fig. 1.7 Normal cores and pinning centers in a Type II superconductors [1.5].

The critical state is defined by the force balance between the average pinning force
density (f,) and the Lorentz force on the flux vortices:

J Ly =1, (1.3)

Je 1s called critical current density of the superconductor. If the transport current exceeds
the critical current, flux flow and dissipation occur. This quickly causes a breakdown in
the superconductive state and marks the critical state level [1.7-1.8].

Most of Type I superconductors are pure metals and usually have very low critical
field which make them impractical for magnet technology application. Type II
superconductors are usually alloys or intermetallic compounds and have much higher
critical fields (B.;) that make them very attractive for magnet technology application
(Table 1.1).

The critical field and temperature values are intrinsic properties of the material. On
the contrary, metallurgical processing can improve the critical current density.
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There are two groups of superconductors:

1.Low temperature superconductors (LTS) usually alloy or metallic compound

(T.<30K)

2. High temperature superconductors (HTS) usually oxide compounds (T;>30 K).

Table 1.1 Critical temperatures and fields for Type I and II superconductors [1.5].

Superconductors (Type I)
Material T. (K) MoHo
(M)’

Ti (metal) 0.40 0.0056
Zn 0.85 0.0054
Al 1.18 0.0105
In 3.41 0.0281
Sn 3.72 0.0305
Hg 4.15 0.0411
\4 5.40 0.1403
Pb 7.19 0.0803

Superconductors (Type I1)

Material T. (K) MoHeo

(1)

Nb (metal) 9.5 0.2
Nb-Ti (alloy) 9.8 10.5"
NbN (metalloid) 16.8 15.3"
NbsSn (intermetallic compound: A15) 18.3 24.5"
Nb;Al 18.7 31.0"
Nb3Ge 23.2 35.0°
MgB; (compound) 39 ~15"
YBa,Cu;_,0, (oxide: Perovskite) <YBCO> 93 150"
Bi;SryCay.1CuyOzx4 <BSCCO2223 or 2212> 110 180"

* extrapolation at 0 K extrapolation at 4.2 K
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Several remarks can be made regarding the different materials and their applications:

e HTS conductors have much higher critical field and temperature but their
application has been limited due to their recent discovery, the lower critical
current density at high fields and their high cost.

e For stability and protection purposes LTS strands contain copper while BSCCO
(HTS) uses silver. This makes BSCCO strands much more expensive.

e YBCO and BSCCO-2223 are available only in tape geometry

e BSCCO0-2212 is competitive with other materials only at 4.2 K, limiting its high
temperature applicapability (Fig. 1.8-9).

e Magnet grade conductors are presently limited to three materials: NbTi, NbsSn
and BSCCO-2223

e NbTi magnet technology is well established but the limited performance at high
fields is driving attention to other materials

e LTS conductors are used by the High Energy Physics, Fusion Energy and
NMR/MRI communities

e HTS conductors have intially found appllication in electric utility systems.

In Fig. 1.8 critical magnetic fields as a function of temperature are reported for
different superconducting materials. Fig. 1.9 shows the critical current density as a
function of magnetic field at fixed temperature for materials suitable for magnets.

HTS: YBCO; BSCCO; MgB;
LTS: Nb-Ti; Nb3Sn

100
1 Magnet Grade Conductors:
NbTi; Nb3Sn; BSCCO 2223

sol. BSCCO 2212
L NbsSn

oL N> K]
0 20 40 60 80 100

Fig. 1.8 Critical field as a function of temperature for selected LTS and HTS superconductors,
the critical field at 0 K is an extrapolation from values at 4.2 K [1.5].
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Fig. 1.9 Critical current density at 4.2 K for different superconducting material candidates for
magnet design [1.9].

From Fig. 1.9 it can be seen that at 4.2 K there is no clear advantage in using HTS
superconductors unless the application is for high current and high field, in which case
BSCCO-2212 is the most favorable. At higher temperatures (< 77 K) HTS materials are
the only ones suitable for superconducting application but at those temperature their
current carrying capacity is greatly reduced from the 4.2 K values so that the overall cost-
performance favors LTS materials at this time.

Wires used for superconducting applications, and in particular for magnet technology,
must be capable of carrying large transport current and operate in high magnetic fields.
The wires must also be produced cost effectively and in lengths appropriate for ease of
magnet manufacture. Despite the promising progress of HTS materials, LTS remain the
only materials that can be used for large systems and magnets. NbTi and Nb3Sn are the
most used materials. Different applications might opt for one or the other depending on
the requirements of the system. NbTi is more popular and predictable for peak fields
under 9 T, while Nb3Sn is used for higher fields although there are still several challenges
to be overcome.

In this thesis work the superconducting material studied was the same as the one
selected for the production of the Central Solenoid US Inner Module for the ITER
project.

In a typical large scale application such as this, several strands are bundled into a
cable to obtain the required transport current. Typical strands have a diameter of about
1 mm and are composed of thousands of superconducting filaments, each with a diameter
in the um range. Strands are made of filaments to prevent a phenomenon known as flux
jumping. Flux jumping occurs when the Lorentz forces acting on a flux bundle exceeds
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the pinning force in a non-static fashion causing a cascade of events that increase the
local heat deposited inside a region of the superconductor. Once this happens the flux
vortices are not constrained and will start moving causing local heating that will decrease
the current density and eventually could cause a quenching event.

For some large scale applications, a magnet can store megaloules of energy so that if
the magnet quenches and becomes resistive this enormous energy begins to be dissipated
in the very small zone that initially turned normal. Superconducting strands are perfect
conductors when they are in their superconducting state but they become very highly
resistive once they lose their superonducting state. For this reason the strands are
embedded in a low-resistance matrix (usually copper) to create a parallel path for the
current to flow once a normal region develops. Copper also has a larger thermal and
electrical conductivity than the superconducting filaments, once they lose their
supersonduting state, which helps to transfer heat away faster and avoid damage in case
of a quench event.

Fig. 1.10 shows a typical cross section of an Nb3Sn wire made by IGC that was used
for the US Inner Module of the ITER CSMC magnet in the 1990’s. The cable is
composed of 6 petals and each petal is cabled in different stages. The sub-cables of each
stage are twisted together at a specific twist pitch length to minimize losses caused by a
varying magnetic field (AC losses).

STRAND,
d; ~ 0.8 mm

.
'9
.

e.g,\‘::.

o

CABLE d. ~ 33 mm FILAMENT,

di~3 um

Fig. 1.10 Cross-section of the cable used for ITER CSMC US Inner Module. Starting from
bottom left and proceeding clockwise: six petals CICC design with central cooling channel, IGC
Nb3Sn strand used in the cable, superconducting filament bundle, and a single superconducting
filament [1.5]. The filaments inside a strand are twisted to avoid flux jumping and strands are
twisted using different stages to avoid AC losses.
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1.2 Applications of superconductivity

Superconducting materials have their largest application in electromagnets. In fact
they can achieve higher fields with less power consumption than normal conducting
magnets. Though cryogenic systems are required, the overall cost for superconducting
magnets is lower for many high field or large volume applications.

There are six major fields where superconductivity can be applied (Fig. 1.11):

1. Magnetic Confinement Fusion Energy

Fusion energy is a promising source of clean and abundant energy for the future. A
plasma, made out of light elements (hydrogen, deuterium, tritium), is used to activate a
nuclear reaction that releases high energy products that either maintain the chain reaction
or are captured so that their energy can be extracted as heat and used to produce energy.
The leading scheme to confine the plasma is by using a magnetic container. The typical
magnetic confinement configuration is the tokamak and requires the use of very powerful
electromagnets. The ITER machine is the most immediate step towards the goal of
demonstrating the feasibility of fusion energy. All the magnets in this tokamak are made
of superconducting materials (NbTi and NbsSn). This thesis concerns one of the issues
related to the superconducting cables of the machine and more details will be given in the
following sections regarding the machine and the engineering challenges.

2. High Energy Physics

High field requirements turned the attention of high energy physicists to
superconducting magnets. In a particle accelerator, magnets are used to accelerate, focus
and analyze beams of energetic particles. The project Large Hadron Collider (LHC) in
Geneva has become operational in 2008 and contains over 1500 superconducting
magnets to reach the designed collision energy of 14 TeV. The Tevatron in Fermilab was,
unitl the start of the LHC, the world largest accelerator so far with a collision energy of
“Just” 1 TeV.

3. Magnetic Resonance Imaging (MRI)

Imaging techniques using magnetic resonance greatly improved the capabilities in
diagnosing and treating medical problems. Superconducing magnets are widely used
since they produce a very stable DC field over a large volume with minimal power
consumption compared to conventional magnets. Moreover the magnetic fields required
for MRI are well within the safe margin of operation for NbTi superconductors and avoid
any quenching events while providing for high magnetic field accuracy.

4. Superconducting Power Transmission Cables and Superconducting Magnetic
Energy Storage (SMES)

Since the energy in superconducting magnets can be virtually stored indefinitely, they
are considered good energy storage devices. SMES are now commercially available and
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compatible with standard storage device for some limited applications. With the
increasing power production coming from non-continuous sources (like solar, wind,
waves) the presence of storage systems will be fundamental for the best integration of
renewable sources in the present grid. Magnetic storage has advantages compared to
other storage systems in that it does not have moving mechanical parts and can discharge
energy very quickly at a very high power rate.

Additionally to improve the power-handling capabilities of existing underground
circuits even further, HTS power could substitute for the standard high-voltage cables
reducing greatly the foot print of the cables. A typical copper cable carries a current
density of 10 A/mm2 compared with 600-1200 A/mm2 for a HTS cable. A pilot project
using a 3-phase HTS cable has been successfully implemented into the existing Long
Island (NY) power grid system.

Highly efficient HTS transformers would also decrease the environmental
contamination caused by spills from oil-filled high voltage transformers as well as
eliminate the fire hazard.

5. Magnetic Levitation

The use of superconducting magnets allows levitating trains on tracks in
transportation applications. In this application the diamagnetic characteristic of the
superconducting materials is used. The main advantage of magnetic levitation is that
these trains will not have the standard mechanical moving parts, which reduces part wear
and maintenance. This coupled with a linear synchronous motor drive system allows
achievement of very high travel speeds.

6. Basic Research
Superconductivity still offers a wide spectrum of basic research applications.
Among them, the most prominent is the understanding of materials at very high magnetic

fields, especially for NMR application. The basic phenomenon of the interaction of
phonon and electrons and their responses to different stimulation is of interest.
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Fig. 1.11 Superconducting magnets applications: (a) fusion energy, (b) high energy physics, (c)
MRI, (d) SMES, (e) power cable, (f) levitating train. [1.10].
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1.3 Fusion energy, ITER magnet system and Cable-in-Conduit Conductor

The focus of this thesis work is primarily related to superconductors for fusion energy
so in this section more details regarding this desirable source of energy are described
together with its limitations. The principle of a fusion power plant relies on the heat
captured from secondary products (typically neutrons) of a nuclear reaction. This heat is
run through a heat exchanger, producing steam to drive a turbine and generate electricity.
The challenging aspect of these machines is that plasma has to be created and confined at
high density for enough time to be able to fuse and produce nuclear power. The leading
scheme to confine the plasma uses a magnetic system that produces a large magnetic field
that traps the particle in predetermined orbits.

High magnetic fields can be produced more efficiently using superconducting
magnets positioned in a cryogenic system located very close to the hot plasma.

ITER is a current driven plasma experiment that could set a milestone towards the
demonstration of fusion as a source of energy for the future. Fig. 1.12 shows a cutaway of
the machine and a cross section of the magnet systems.

As mentioned earlier, the magnets of this machine will all be built with
superconducting material since the field requirements cannot be met by resistive magnets,
without using an enormous amount of power to sustain the currents. On the other hand,
superconducting magnets require electric power for the cryogenic system but this is very
small compared with the electric power required to drive a resistive magnet system.
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Fig. 1.12 Cut-away of ITER (left) and the magnets system of the machine (right) [1.11].

The magnet systems are composed of 18 toroidal field coils (TF), a central solenoid
(CS), 6 poloidal field coils (PF) and 18 correction coils (CC). TF and CS coils are made
of Nb3Sn conductor while PF and CC coils are made of NbTi [1.11]. The central solenoid
plays a key role to reach the plasma current of 15 MA of the machine. The plasma current
is inductively driven by the CS coil. The CS coil is composed of 6 modules which are
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independently powered. After initially charging the CS coil, a fast discharge follows and
the rate of change of flux induces a voltage inside the plasma and drives the plasma
current (Eq. 1.4).

e
dt

(1.4)

The central solenoid is composed of 6 modules and each module is made of pancake
windings. The conductor is an advanced Cable-in-Conduit (CIC) NbsSn superconductor.
The four components of the Cable-in-Conduit are the cable itself, the central cooling
tube, the foil wraps around the cable and final stages, and the structural jacket. The CS
conductors are five stages of 3x3x4x4x6 cables, where the final stage twists 6 'petals'
around a central channel (Fig. 1.13 (a-b)).

Cooling channel

Superconducti
strands wetted b}

helium | - igh strength
(a) metal conduit (b)

Fig. 1.13 (a) Cross section of a cable in conduit conductor and (b) different stages of the cable
wrapping around a central channel [1.5].

The magnets using this type of conductor are characterized by the presence of local
cooling by supercritical helium in direct contact with the conductor (helium stabilized
magnets). This cable design is usually considered for large or high field magnets. In
particular for magnets with large body force (RxJxB) an external jacket is used to sustain
the large operational forces.

In the CICC configuration (Fig. 1.13), cabled strands of superconductor are enclosed
in a conduit, which provides the mechanical strength and through which single-phase
cryogen is forced to provide the necessary cooling.

The cable design incorporates the key requirements of a superconductor. The cable is
composed of many strands and can carry large amounts of current. The copper content is
enough to ensure transient stability and quench protection while the twisting in different
stages reduces AC losses with the conduit providing the mechanical integrity.

To maintain a reasonable overall current density, the operation current has to be high
since a major fraction of the cable does not carry current (the void, conduit and liquid
helium channel). Additionally the conduit causes additional strain upon the cable during
cooldown because of differences in thermal coefficient of expansion. This strain has to be
taken in consideration during the design of the desired magnet. The CICC design is
currently the standard cable design for very large magnets but it has inherent mechanical

35



weaknesses since each single strand is not completely supported and can experience large
loads during operation that can degrade its performance.

The predictability of the performance of a NbsSn cable becomes then crucial to
determine the appropriate design values to reach the desired magnetic field. Any
unpredicted degradation could reduce the plasma current and time of plasma burn.

1.4 Scope of the thesis work

The work in this thesis focuses on the effect of transverse forces on Cable-in-Conduit
conductors for magnets used in ITER. Superconducting magnets used for fusion machine
are cryostable against limited transient disturbances. The conductor used is either NbTi or
Nb;Sn in the form of CICC with a central channel for cooling purposes. During operation
the Central Solenoid magnet will be energized with current and field of up to 45 kA and
12.6 T, respectively, for the high current scenario; and 40 kA and 13 T for the high field
scenario. A rough estimate of the transverse load created by the Lorentz force, which
accumulates through the cable cross section, is given by (Eq. 1.5):

kA)- B(T
T:,-,:sv,max (MPQ) = _Jld()m—rng)

(1.5)

where I is the transport current in kA, B the magnetic field in Tesla and d the cable
diameter (32.6 mm) as shown in Fig. 1.14. By substituting the design values, we obtain a
maximum average transverse pressure of 17.4 MPa.

Fig. 1.14 Lorentz force due to electromagnetic interaction of current and field in a CICC cable
[1.5].

When force accumulates on one side of the cable (vector F in Fig. 1.14), the strands
are pushed towards the jacket surface and experience the highest accumlated pressure at
this location. This pressure can be much higher (~100-150 MPa) than the averaged one so
it becomes important to understand the effect of such a force on a more fundamental
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level. Additionally multiple effects are in play during operation including axial and
transverse strains, thermal strain, and bending and pinching inherent in the cable layout.
It is rather difficult to separate theses effect from experimental measurements of full size
cables. At the same time it can be limiting to study a single effect since they are closely
related to each other.

Testing the effect of the electromagnetic transverse force on the real full size cable
used for the magnets would be excessively expensive and difficult due to the size of the
cable and the current requirements. Few full size scale experiments can be found in
literature [1.9] and the general approach is to study the effect of different mechanical
effects on single strand [1.10-12]. A more detailed literature review is given in Chapter 2.

A unique feature of our experimental setup is that we used subsized cables composed
of different numbers of strands to try to extrapolate their behavior to a full size cable. To
reproduce the same Lorentz load seen by a full size cable, currents exceeding the
capability of most common power supplies available would be needed for the test. In this
thesis work the load has been produced mechanically.

We used two different test rigs that are described in detail in the following chapters
and we tested several different samples (36-strand cables, single strand, a triplet and 45-
strand cable). The first rig uses a single turn sample (Fig. 1.15). The second rig was
designed as improvement to the first one and uses hairpin samples (Fig. 1.16). Our tests
were performed at the National High Magnetic Field Laboratory (NHMFL) in
Tallahassee, FL using probes with 10 kA current leads and a Bitter solenoid of 20 T peak
field (first test rig), and a split pair superconducting magnet of 14 T peak field (second
test rig). Since the mnatural Lorentz force created during operation is not
electromagnetically reproducible in the experimental set up (smaller number of strands),
we designed the probes so that an artificial mechanical transverse stress could be applied.

The scope of this work is to apply a known transverse pressure on the cable and
record any visible degradation of its superconducting properties and in particular
degradation of the expected critical current.

Vertical force applied
with linear actuator

Conical wedge
moving vertically

Expandine collet

Nb;Sn
36-strand cable
Fig. 1.15 Schematic view of the single turn test rig
used inside a 20 T, 195 mm diameter bore magnet:
main parts (left), expected load distribution during
the experiment (right).

External holder ring
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Vertical force applied with
linear actuator

Moving wedge, ,
pulled vertically Cable holder

Hairpin Nb;Sn cable Applied force

ot thecable Pressing piece

Transverse load caused by the vertical
displacement of the wedge which
displaces transversally the pressing piece
and the cable

Fig. 1.16 Hairpin test rig setup: main components (left),
top view of applied force direction on the sample cable

(top).
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CHAPTER 2:
Strain characteristics of superconducting wires and cables

As previously stated, superconductivity depends on three main parameters that
describe a critical surface underneath which the material is superconducting. Later
discoveries showed that superconductors are also sensitive to mechanical strains.

In a large magnet using cable in conduit conductors, there are several natural sources
of strain inherent to the design and operation of magnets and it is important to know those
sources of strains and quantify them as precise as possible to be able to predict the
performance of a cable. Generally a single strand, carrying a certain amount of current as
provided by its manufacturer, will always carry less current inside a magnet so
engineering safety factors need to be applied in the design phase to take those effects in
consideration. The three main strain components are: axial, transverse and bending.

The source of axial strain is the thermal mismatch between the superconducting wire
and the conduit materials due to the temperature change from the heat treatment
temperature to the liquid helium operation temperatures. The transverse strain is caused
by the natural electromagnetic force accumulation across the cable. The bending strain is
caused by the cable design and how the strands are twisted together in a configuration
with a void fraction higher than 30% (the void fraction being the empty area of the cable
cross section Fig. 1.10).

Quantifying those strains is extremely difficult because in a large size cable it is
impossible to measure each quantity individually since all of them are acting
simultaneously during operation.

Much work has been done on the subject of strain effects on superconducting strands
beginning about two decades ago. The attention was mainly focused on uniaxial strain
effect on the critical current of single strands (Nb3Sn and HTS). This was followed by
experimental studies of the transverse and bending strain effects on a single strand. Being
an extremely complicated system, less attention has been paid in understanding the axial
and transverse strain effects on a cable. In particular, the transverse strain effect is
dominant for a large conductor of fusion type of magnets using CICC with a void fraction
in the range ~32-37%. This is less of an issue for other types of magnets such as for high
energy physics applications, because these magnets use compacted, flat, Rutherford
cables and they are usually epoxy-impregnated and thus completely supported [2.1].

Ideally, one would want to have scaling laws describing the strain effects to predict
the performance of a strand under certain strain condition. Unfortunately the
extrapolation from a single strand to a full size cable is not straight forward and up to
now only the dependence of the strand critical current as a function of uniaxial strain can
be described with empirical scaling laws.

Generally a single strand is characterized by its critical current value at a certain field
and temperature (generally 12T and 4.2K). This information is obtained by measuring a
sample mounted and heat treated on a titanium alloy barrel. This value can be used to
estimate the critical current dependence on axial strain but generally several parameters
are needed to describe this dependence so that it is standard practice to perform tests to
verify the predicted uniaxial dependence of the critical current. Generally the tests are
done applying axial strain values between -1% and 0.5% with experimental devices
described in this chapter. It is necessary to have data in this range because the initial
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strain condition of a strand in cable depends on the heat treatment used for the particular
cable and the conduit materials used (-0.7% for stainless steel and -0.35% for Incoloy
alloy). Moreover during operation a natural hoop strain develops inside the cable and this
condition generally helps improving the performance of a cable (Fig. 2.1).

The uniaxial strain dependence is the best described by empirical laws and the initial
strain condition of a cable can be predicted with a small error giving confidence in being
able to determine the necessary engineering factor to apply in the design of a magnet.

The bending and transverse strain effects have been receiving attention in the last few
years following the poor performance of magnets that could not be explained by uniaxial
strain. Quantifying the effect of those two strain sources is very challenging because the
tests available are limited and the two strain sources are connected since they both
depends on the cabling pattern and cable design.

Empirical laws describing those two effects do not exist so far, and more work is
being put in understanding better those effects so that is possible to include their
dependence on the overall performance of a cable in conduit conductor.

More work has been done on bending strain effect than transverse strain effect. This
thesis work was focused on the latter one and its unique design allowed the test of single
strands as well as sub-sized cables. Single strand experiments on this subject are few and
experimental works on sub-sized cables are even fewer and this was the driving
motivation to develop experimental devices for those measurements in this thesis work.

This chapter summarizes work done by other researchers to study these strain effects.
Section 1 gives a brief introduction regarding the strain effects on superconducting
strands and cables and how they are currently described by empirical scaling laws. A
summary of different experiments performed by others is described starting with uniaxial
strain effect on a single strand, then pinching and bending loads on single strands, tests of
sub-size cables under axial strain, transverse load effects on single strand and finally tests
on sub-sized cables under transverse load. This background summary is given to explain
the importance of the experiments carried out with this work, since very little has been
done until now on sub-cable samples. The experimental procedures used for the work of
this thesis provide a unique approach and is an important addition to the work done so far
by many different groups around the world.

2.1 Introduction

In this chapter a brief history of experiments dealing with the axial and transverse
effects on superconductors performances is reported. Besides the dependence on current
density, field and temperature, the performance of a superconducting strand or cable is
affected by axial and transverse strain. The latter has a more accentuated effect and the
degradation due to transverse strain is up to one order of magnitude greater than the
degradation due to axial strain at the same level of strain [2.3].

The sensitivity of a Nb3Sn superconductor to transverse loading is dependent on a
large number of factors, including the copper/non-copper ratio (quantity that defines the
amount of copper over the total amount of material in a strand), the ratio of distance
between contact points to the strand diameter, void fraction constraints on strand
deflection, pre-compression strain, heat treatment, and the exact material composition of
the non-copper region. The larger degradation, for a single strand, caused by transverse
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load (a factor of 10 larger than the longitudinal case) is believed to be due to the
multiplier of deviatoric strain in a composite, in which the transverse compression on a
composite with a stiff, unyielding component and a soft, yielding component is translated
into a longitudinal tensile strain in the stiffer element. In the case of a multifilamentary
superconducting strand the soft component is copper and the stiff component is the non-
copper materials comprised of Nb;Sn filaments, a diffusion barrier (usually tantalum) and
a bronze matrix. The copper is the low resistance stabilizer where the current flows
during a transition to the normal state. The diffusion barrier is needed to separate high
purity copper during reaction heat treatment from the rest of the composite, which
contains bronze, Nb and Sn. The resistance between filaments and their twist pitch
(filaments are twisted together with a particular pitch to avoid flux jumping) also play a
role in the way the critical current is effected by strain.

In a cable the degradation due to transverse loads is even more accentuated (~100
times larger than the longitudinal case) [2.2]. A possible explanation for this behavior is
the presence of an additional bending effect on each strand inside a cable due to the
twisting of the strands around each other [2.2-2.4]. A cable is typically composed of
several hundreds of strands bundled together in stages. Each stage is cabled with a
particular twist pitch length to minimize AC losses and strain effects on the total transport
current.

A cable-in-conduit conductor (CICC) is an extremely complicated system because
several components of strain come into play during each process of production and
operation. Axial strain is caused by thermal strain and the natural hoop strain during
operation. Transverse and bending strains are caused by the naturally occurring Lorentz
load and the geometry of the cable design. An additional key factor is the cable void
fraction which allows movement of individual and groups of wires in a cable during
operation. Each of these strain sources needs to be accounted for, and being related to one
another, the modeling of the cable system becomes a multivariable problem that is not
easy to define without making assumptions. Very little mechanical modeling has been
done previously on a full size cable [2.4-2.7] while an experimental approach generally
has been chosen for single strand tests and sub-sized cable tests. Tests of full size cables
have been done but are generally extremely expensive and time consuming so that the
database of results is very limited. The uniqueness of the experimental device described
in this thesis resides in the fact no other similar experiment currently exists.

Previous experiments performed by other researchers are briefly described in the
following sections highlighting results and limitations.

2.2 Uni-axial strain

Much work has been done in the field of uni-axial strain effect on single strand. The
large amount of test results over the years allowed extending the critical surface
parameterization of Nbs;Sn, described by temperature, field and critical current, to axial
strain as well. Parameterization of the critical surface is empirically described by fitting
parameters that include axial strain effects and describe well a single strand behavior.

Some work was also done in studying the strain effect at the atomistic level where the
electron-phonon interaction and its response to strain is the key element used to
understand the behavior of superconductors [2.8-2.9].
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Ekin was the pioneer of the strain dependence of superconductors [2.10]. He
developed a formal relationship for strain scaling based on experimental results using an
apparatus which applied simultaneously tensile strain, current and a perpendicular field to
a short length of wire. The dependences on field, strain and temperature effects were
empirically determined from these measurements. His approach is still used today
although the proposed parameterizations differ in the type of variables used and the
values of parameters given for a certain sample.

A proposed parameterization for the ITER strands (determined empirically) has been
recently released [2.11] and it is summarized in the following paragraphs. The range of
validity is between -1% to 0.5% uni-axial strain. This range covers the expected values of
strain during operation. Several quantities need to be defined before introducing the
equations describing the critical surface and these are given in Table 2.1:

Table 2.1 Definition of terminology used in the equations describing the critical surface.

Description

F,=J.(BT¢&) B Pinning force density
B Maximum critical field, at zero temperature and applied intrinsic

c20max strain
Boo(€) Critical field, at zero temperature and applied intrinsic strain €
B,(T) Critical field, at temperature T and zero intrinsic strain €
B,(T.€) Critical field, at temperature T and applied intrinsic strain €
T;, max Maximum critical temperature, at zero field and intrinsic strain
To(€) Critical temperature, at zero field and applied intrinsic strain €
T)(B) Critical temperature, at field B and zero intrinsic strain
T.)(B,e) Critical temperature, at field B and applied intrinsic strain €

il duced field
R Reduced magnetic fie
B,(T,)

t d duced

= Reduced temperature

Too(€)
5 Reduced field
(SN educed magnetic field at zero temperature
Byo(€)
k(T,e)
k(T g)=——F Normalized Ginzburg-Landau parameter
x(0,0)

Intrinsic strain: longitudinal (in the direction of the strand) strain,
€ = E,pplied ~ Emax and is referred to the applied strain €,ppiied at Which the maximum
critical properties are measured €;,x

Parameters determined by a data fitting procedure and used in the model

C Scaling constant
B:20 max Upper critical field at zero temperature and strain
T ma Critical temperature at zero field and strain
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)4 Low field exponent of the pinning force (p<1, p = 0.5)

q High field exponent of the pinning force (g = 2)

Cu Strain fitting constant

Ca Strain fitting constant

Ea Residual strain component

Epax Tensile strain at which the maximum critical properties are reached

The underlying model for the pinning force, described in Chapter 1 can be written as

py=c| B2l . 1) e

Bc20max k(T’E)m

where m = 1 and n = 2 and the normalized pinning force is
fo(b)=b"-(1-b)" 2.2)

and the exponent p and g have values close to 0.5 and 2 respectively.
The critical field and the normalized Ginzburg-Landau dependence on temperature
and strain are modeled as:

Ball)_ye). 1)
Bc20max (23)
K(T.e)=s(€)- 1:;2

where v is 1.52 and s(¢) is the strain function that will be defined later on (see Eq. 2.9).
Combining Egs. 2.1-2.3 we obtain

F,=C-s(e)-(1-¢" )™ -(1=2*)" -b" - (1-b)" (2.4)

The critical temperature at given strain is

1

Tc*;)max B:ZOmax

where w is around 3 (determined experimentally).
Combining the above equations we obtain the following explicit forms for the critical
field, temperature and current density
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B:Z(T’8)=B:20max 'S(g)'(l_tl.sz) (26)
1

T (BLe)= Ty Is(2 )15 - (1=b, )7 @7
JC(T,B,E)=%-s(e)-(l—t"52)-(1—z2)~b" (1-b )1 (2.8)

The last equations to define are the ones related to the strain function s(g):

1 .

L [ca1 (€ + €, ~(e—4 P +E2,)~Cur €] 29)
1- Cal ’ EO,a

s(e)=1+
Ca2'80,a

En =
/ 2 2
Ca—Ca

As an example we take the parameters for an Oxford wire (Table 2.2) obtained by
fitting experimental data to the proposed scaling laws [2.7]:

(2.10)

Table 2.2 Parameters used for Oxford wire (ITER CS wire [2.7]).

C (AT/mm") 77073.5
B:ZO e (T) 33.92

T max ) 164
CaI 533

Ca 8.55
&4 (%) -0.25

The results of the simulated critical current density as a function of strain and
magnetic field are shown in Fig. 2.1(a-b). Results are similar as a function of
temperature. In Fig. 2.1(c) experimental results are compared to the expected values
estimated with the equations reported above (Eq. 2.8-2.10) [2.12].

The typical experimental setups used to make those measurements are shown in Fig.
2.2 and 2.3. In the so-called “Pacman” device (Fig. 2.2) the measurements can be taken
over a relatively long length. The sample is fixed on the outside diameter of the holder
and when a pure torque force is applied to the sample at the ends of the beam section, the
beam diameter changes and puts the sample in either compression or tension [2.13, 2.14].

The Walters spring (Fig. 2.3) is the most common device used for strain
measurements. This device can hold a sample length of 80 cm and the TiAlsV4 spring
where the sample is mounted, allows linear and reversible strains up to 1.4%. The sample
is fixed by either soldering or it is immobilized in a groove. The mechanism operates by
applying opposite torques at each end of the spring [2.15].

Uni-axial strain measurements have been performed over the last 10 years, greatly
increasing the database of experimental data that were used to improve understanding of
the behavior of superconducting materials under strain. Most of the work is empirical and
the data are used to determine the fitting parameters used in the equations 1-8. Several
parameters are needed to describe a single strand so that more effort is now invested in

44



understanding the microscopic and atomistic behavior of a single strand hoping to find a
universal law applicable to all strands.
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Fig. 2.1 (a) Critical current density as a function of uniaxial strain for different magnetic fields.
(b) Critical current density as a function of magnetic field for different. Strains. (c) Measured and
calculated critical current as a function of uniaxial strain. J. is calculated from Eq. 2.8 using
parameters given in Table 2.2 determined experimentally in Ref. [2.7].
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is made of material with a different coefficient of expansion (COE) with respect to the
cable (an example is stainless steel see Fig. 3.8), the critical current values showed a
dependence on the initial V01d fraction of the cable (Fig. 2.4(b)). Otherwise using
materials like Incoloy Alloy 908® with a coefficient of expansion closer to the one of the
cable, the critical current was nearly independent of this variable [2.16]. These results
were expected since, if the jacket does not match the cable COE, it is adding extra
compressive strain to the cable during cool down to 4.2K. This extra strain caused by
COE mismatch can greatly limit the performance of the cable. The schematic of the
experimental set up is shown in Fig. 2.4.

T
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Fig. 2.4 (a) Schematic of
pull test setup. (b) Ratio of
critical current to
maximum critical current
as a function of wvoid
fraction  for. different
sheath materials (c) Pull
test conductor sample
prepared for testing [2.16].
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Specking has studied the effects of static and cyclic axial strains on sub-cables CICC
for the Next European Torus (NET) [2.17]. His goal was to better relate single strand and

sub-sized cable

measurements.

All  samples were measured at

the

KernForschungsZentrum-Karlsruhe (KFK) laboratory in Germany, using the Force Field
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The measurements showed that the best performance was achieved with void fraction
less than 35%. It was also observed that the shorter twist pitch worsens the performance
of a cable. Additionally hybrid cables (with one copper and two superconducting strands
in the first triplet) were less sensitive to applied strain than cables with all
superconducting strands. Stainless steel was used as jacket material for all the samples
tested.

2.3 Bending strain effect

More recent experiments deal with specific problems related to cable configurations
in which a strand is under both pinching and bending effects [2.19-2.20]. A novel strain
device was created after analysis of the ITER Central Solenoid Model Coil (CSMC) and
Insert Coils revealed degradation higher than expected [2.21]. Test Arrangement for
Strain Influence on Strands (TARSIS) was the first device used to simulate the loads
experienced by a strand in a CICC cable [2.20]. The mechanism is shown in Fig. 2.6.

Fig. 2.6 TARSIS experimental device [2.20].

The experimental device consists of a lower drum and upper cup with a periodic
circular arrangement of fingers and pins, respectively simulating the periodic bending
experienced by a single strand in a cable. Operation entails closing the cap on the drum
so that the fingers close press down on the wire between the pins, placing the strand in a
periodic bending-tension-shearing-pinching state. Measurements showed degradation of
single strand under repeated load application. The degradation is due to a plastic
deformation together with a reversible degradation with loading [2.19-2.20].

Other experiments were done to isolate a single strain characteristic and to understand
the fundamentals related to it. In particular experiments were done to isolate the bending
strain behavior of Nbs;Sn strand. Senkowicz, Takayasu and Lee tested several strands
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under different static bending conditions [2.22]. In these tests the sample was clamped in
a fixture with a constant radius of curvature. The strand was heat-treated in a straight
configuration and then transferred inside a groove between two curved Ti-6Al-4V clamps
at room temperature (Fig. 2.7). A series of clamps were used to bend the samples to
different strain levels. The strand could be tested only once at its fixed bending state, and
therefore could not be loaded at multiple strain states.

Fig. 2.7 Fixed bending strain behavior strand configuration [2.22].

A pure bending device was recently designed and successfully tested by Harris,
Allegritti and Takayasu [2.23-2.24]. In this new design, a series of gears with different
ratios are moved by rotating torque arms through an input shaft controlled outside the
dewar. Fig. 2.9 shows a schematic of the device. The strand is mounted on a support
beam and a groove is placed on the neutral axis of the beam to produce a pure bending
effect on the strand. The bending strain can be increased up to 0.8% at the outside
diameter of the strand (Fig. 2.8).

Fig. 2.8 Maximum bending applied to the support beam at room temperature during preliminary
set up of the pure bending device.
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Fig. 2.9 Pure bending device components: (a) complete mechanism, (b) with strand mounting
system removed, and (c) inner gear train [2.23-2.24].

Five different types of strands were tested during 2006-2007 and a summary of the
results of the normalized critical current as a function of the nominal bending strain is
shown in Fig. 2.10. These results showed that internal tin wires (EM-LMI, LUVATA,
OST) are more sensitive to pure bending than bronze route wires (EAS, FURUKAWA).
This behavior might be due to the different cross section of the wires. Internal tin strands
have fewer sub-elements while bronze route strands have smaller filaments and sub-
elements.
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Fig. 2.10 Experimental results, normalized critical current as a function of nominal bending
strain: internal tin strands (top), bronze route strands (bottom).

Bending strain can be easily added as a strain component inside the parametrical
equations described earlier (Eq. 2.6-2.10). Uni-axial strain has the advantage that it can
be described as a function of intrinsic strain so that it does not depend on the geometry of
a strand. Bending strain, on the contrary, depends on the geometry of the strand but it can
be calculated for a particular geometry from uni-axial strain equations by averaging over
the uni-axial strain curve. It was recognized by Ekin [2.25] that the transport properties of
a Nb3Sn strand are not only affected by the applied bending strain but it also depends on
the inter-filament electrical resistivity. The electrical resistance between filaments
determines whether the distance between the periodically distributed peak strains in the
filaments is short or long compared to the current transfer length. One extreme is that the
current transfer between filaments is not allowed (high resistance, short filaments twist
pitch) so that the minimum critical current for each filament specifies the filament critical
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current. In this case the strand critical current is the sum of the minimum values for each
filament which is limited by the maximum strain along filaments at any point. The other
extreme (low resistance, long filaments twist pitch) allows current transfer so that the
overall critical current of a strand is the sum of the filament currents at any section
considering the local strain variation over the section. The critical current over the cross
section of a strand can be expressed with Eq. 2.11 and 2.12.

2. I" core

No current transfer d S ——— IJ (B,T,€, +t)- tdt (2.11)
gb
25 I‘ core
Perfect current transfer I =— _[J (B,T.e;, +t)-( Eb —t2)dt  (2.12)
T gb —&p

Typically the two regimes are a boundary for the behavior of a strand experiencing
bending and do not correctly describe the bending behavior (Fig. 2.11).
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Fig. 2.11 Normalized critical current as a function of bending strain compared with the low and
high resistivity regimes [2.26].

Takayasu proposed an empirical model [2.27] in which the measurements shown in
Fig. 2.10 are correctly fitted by the expression in Eq. 2.11 and 2.12. In his model he
considered filament breakage, neutral strand axis displacement, current transfer length
and uni-axial strain release (due to the application of bending strain) as fitting parameters
to be varied inside the equations proposed above (Eq. 2.11-2.12). If assumptions are
made for the variation of those quantities as a function of the bending strain (Fig. 2.14(b))
the data can be properly fitted (Fig. 2.14(a)).

To include those variables we start by taking a change of variable in Eq. 2.11 and
2.12 that can be written as:

Ey=EQ+ERy

No current transfer 1.=2n _LR"C{ min\j. (€, )| _
y=€0~¢€hy

} ydy (2.12)
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Perfect current transfer I, =2 f;c J (&, ),/Rfc —y? dy (2.13)

with g =g +¢, , £ being the thermal (intrinsic) strain, &, = %

b

, Ry is radius of

non-copper area, and R}, is the bending radius.

It is important to notice that in the high matrix resistivity case the worst point of the
critical current does not occur always at the compression side. At a large bending rate the
tension side could cause larger degradation of the critical current than the compression
side since the critical current decreases at the tension side more sharply than at the
compression side (Fig. 2.1).

As mentioned earlier experimental results lie in between the two limiting cases. There
are several factors that could contribute to the real experimental critical current results
shape.

Once bending is applied to the strand, the neutral axis of the strand could move so
that:

y+0
&y, = 2.14
by Rb _ 5 ( )
and the peak bending in tension and compression are:
& = R _+0
“ R,-8
(2.15)
v —_ Rnc - 5
»  R,-6

The shift of the neutral axis can increase the fraction of a strand in tension so that the
shape of the high and low matrix resistivity critical current changes. A shift between 50
and 100 um can change the shape of the critical current curve by few percent.

A very small effect to be considered is the fact that the strand is in a pre-strain
condition after cooldown but the bending cycles could remove the pre-strain decreasing
the tensile strain €y,x and increasing the current.

More significant effects are the filament breakage fraction and the current transfer
length. Filament breakages in the tension side due to bending have been found [2.28].
Filament breakages are believed to be the reason of the irreversible behavior of
superconducting strand once the load is removed. If the filament breakage occurs on the
surface of the tension side then the integration used in Eq. 2.12 and 2.13 is over the
unbroken area. It has to be notice that filament breakage will affect much more the
degradation in the case of high matrix resistivity. This is due to the fact that the effective
superconducting filaments will be the only one in the center which does not overlap the
broken area reducing greatly the overall behavior of the strand (Fig. 2.13(a)).
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with
L., minimum current transfer length
L, twist pitch length of strand
To apply the neutral-axis shift effect to the current transfer model the following
rsing+d
R, -0

equation is used for &,¢; &,, =

The effects of those parameters on the two limiting cases are shown in Fig. 2.13 (a-b).
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As it can be seen from Fig. 2.13(a) the high resistivity case (no transfer) is more
heavily affected by the filament breakage because an entire annulus of filaments is
disregarded in the integration even if the breakage is local. Fig. 2.13(b) shows the effect
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of the current transfer length indicating that the change in critical current as a function of
bending strain is smaller if the current transfer length is shorter (perfect current transfer).

Taking all those factors into consideration the experimental results taken by Takayasu
with the pure bending device were properly fitted as shown in Fig. 2.14 (a-b).

Certain assumptions on the shape of the shift, current transfer length, filament
breakage fraction and uniaxial strain relaxation as a function of the bending applied need
to be done in the modeling (Fig. 2.14(b)). The assumptions are believed to be fairly
conservative and were used to give a best fit to the experimental data shown in Fig. 2.10.
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Fig. 2.14 (a) Curve fitting of the critical currents measured for Oxford wire (red solid circles).
Lines are obtained from model calculations: Fine red and blue lines are for perfect current
transfer and no current transfer models, respectively. Measured results fit a thick solid purple line
which was obtained from the model. The dotted lines show recovery curves of the critical
currents after the given bending of 0.42%, 0.49% and 0.56%. The recovered critical currents at

zero bending agree well with the experimental results.
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Fig. 2.14 (b) Estimated behavior of the neutral axis shift (in mm), the current transfer
length (in mm), the breakage and the thermally induced strain release for Oxford wire as
a function of the bending strain [2.27].
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The empirical model presented by Takayasu is the first model capable of properly
fitting the experimental results for bending strain data.

More experiments and theoretical work are needed to better understand the behavior
of superconductors under bending strain and in particular how to relate such results to a
full size cable configuration.

2.4 Transverse strain effect

Until the CSMC experimental results were obtained, the transverse strain effect on
degradation was never taken into consideration in all the preceding analyses [2.21]. The
observed degradation was believed to be due to the transverse strain effect from the
accumulation of Lorentz load during charging. In the years since those experiments
(2000-2003) only a very few experiments have been done on this subject and mostly on
single strands [2.31-2.38]. Only one experiment was done on a sub-sized CICC cable.
The lack of results and studies regarding the effect of transverse strain on CICC cable
motivated our efforts to develop a device capable of applying transverse load on a sub-
sized cable to simulate the loads in a full size cable.

J. Ekin was the first to study the effect of transverse compressive stress on the critical
current and upper critical field of Nb3Sn strand [2.32, 2.33]. In order to obtain data on the
electrical effects of the transverse component of stress, he developed an apparatus to
simultaneously apply mutually perpendicular components of field and current and
transverse compressive stress to a single strand. The sample was compressed between
two stainless steel anvil heads (Fig. 2.15). One of them was fixed while the other was
designed to pivot so that it conforms to the flat surface of the first anvil head. Voltage
taps were soldered to the sample within the compressed region so that the electric field
was measured only over the region where stress was uniformly applied.

Two types of samples of the same bronze process were tested (one round and one
flat). The same approach to estimate the stress applied was used for both the round and
the flat sample so that, for the round sample, the change in contact area between the anvil
and the sample were disregarded. The difference in shape between the two samples did
not affect the results since the change in contact area was strongly affected by the
stabilizer, a thick copper layer. This layer completely surrounded the superconductor and
it served to uniformly distribute the load into the filament region. Both strands showed a
strong degradation as a function of applied transverse load and the effect was much more
severe than in the case of uniaxial strain. A simplified explanation for this difference
given by Ekin was that, under axial strain, the axial force is apportioned among the
various composite materials because they occupied parallel load-bearing paths while, in
the transverse case, all the components of the composite experienced the same stress
which was transferred from one material to the next in a serial load chain. For the
transverse stress at 10 T, the degradation was 10% under a compressive pressure of 50
MPa. This degradation rises to nearly 30% at 100 MPa. For the axial strain, the
degradation was less than 2% at up to about 200 MPa. The stress, which causes a given
amount of critical current degradation at 10 T, was usually seven times less for transverse
stress than for axial stress and was greater at higher fields. The critical current
degradation was noted to be reversible in character (Fig. 2.15).
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critical current of internal-tin and bronze-processed Nb3Sn wires. It was observed that the
bronze-processed conductor exhibited columnar grains that were radially oriented within
the Nb3Sn filaments, while the grains of the internal-tin conductor were more uniformly
distributed around the axis and randomly oriented. It was expected that the radial
orientation of the bronze-processed strand could enhance the transversal strain sensitivity
due to this anisotropy between axial and transversal directions. It was found, however,
that the transverse stress effect was not highly dependent on either grain morphology or
fabrication process.

One of the concerns raised after these first tests on transverse stress effects was that in
cabled conductors, stress concentrations at strand crossover points could aggravate the
transverse stress effect because the stress was no longer distributed uniformly. Bray and
Ekin addressed this issue by comparing uniform transverse stress results with a set of
measurements done on crossover stress concentrated in contact points between the
strands [2.36]. The comparison showed a critical current degradation at equivalent load
that it is greater for the crossover situation due to the reduced area. Nonetheless they are
comparable at equivalent stress (Fig. 2.16).

The analysis of the data were highly simplified considering the equivalent stress on
the wire and not the load, showing that at equivalent stress (since crossover effect was on
a much smaller area) the effect of transverse stress distributed or concentrated was the
same.
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Fig. 2.16 (a) Test set up of crossover effect. (b) Critical current degradation as a function of
transverse stress and magnetic field for uniform and cross over stress [2.36].

More recent work on single strands has been performed by several groups in Europe.
Nijhuis et al. adapted their TARSIS setup to a X-strand configuration shown in Fig. 2.17
together with some results on a sample tested with this configuration [2.37]

Seeber at the University of Geneva is also performing mechanical tests on single
strand using a configuration similar to a spring to apply the load (Fig. 2.18). The results
shown are for a strand with a rectangular cross section to avoid mistake in the evaluation
of the area over which the force is applied [2.38].
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In general, more and more resources are being invested in understanding the
mechanical behavior of superconductors. The mechanical properties and mechanical
behavior of superconductors are a fundamental piece of information since electromagnets
are becoming more and more powerful. The forces in those magnets are becoming the
predominant focus of the design to insure the performance of the conductor. In this
respect more work in determining the mechanical properties such as Young modulus for
different strands are being done [2.39].
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Fig. 2.17 Adapted TARSIS configuration to study crossing effects in a single strand (top). Results
on a powder in tube sample (bottom) [2.37].
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Fig. 2.18 Experimental setup used by the University of Geneva for their transverse load
experiment (left). Some results of a rectangular superconducting wire for different axial and
transverse loads applied (right) [2.38].
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footprint is smaller in high-void samples and causes a higher contact pressure. A higher
contact pressure results in increased sensitivity to applied transverse load.

Those data were considered sufficient to conclude that there was not significant
degradation caused by natural electromagnetic load up to 50 MPa which is higher that the
average Lorentz load effect expected in the ITER cable (~ 20 MPa). The results were
believed to be the demonstration that the electromagnetic effects were not important in
full size cable and experiments on transverse load effects were abandoned.

It has to be noticed once again that those assumptions were made considering a
nominal pressure approach (pressure over the diameter of the full size cable) but
disregarding the effective contact pressure among strands that can be much higher and
jeopardize the performance of a cable as it will be shown later in this thesis work.

It is only after the ITER CSMC test results that this effect came to attention once
again since the magnet showed a degradation that was higher than the expected value
from witness sample data. Those data could be explained only taking in consideration the
transverse load effect of the accumulating Lorentz load across the cable cross section
[2.42].

Based on the above mentioned works of the single strand tests of J. Ekin [2.32] and
the small sub-sized cable experiments of Summer and J. Miller [2.40-2.41], degradations
of the critical currents of ITER CSMC test results were investigated taking into account
the electro magnetic transverse loads (Lorentz load) [2.42]. The general equations
describing the critical field as a function of strain were modified to take in consideration
the Lorentz load effect and it was shown that the test results could be properly fitted only
taking in consideration this modification.

The effective upper critical field B.»/B.;» was approximated in a simplified form from
the Nb;Sn strand test data of Ekin [2.32] as

Ba 111100, (2.18)

c2m

where o is the transverse load stress of a CICC cable which is given as

vV vy B-D-J 4
c

2 S d

o, = (2.19)

here B is the field, D is the cable diameter, J; is the strand overall current density, d is the
strand diameter, d_ is the strand core diameter, and vris the void fraction.

Using these equations, B.;p(€) in the Summers critical-current scaling equation [2.43]
has been modified with

Byy(€.06,) = By - (1-900- | €7 )-(1-1.1-107 | 1-0, ') (2.20)

here, A is a constant parameter.
Fig. 2.21(a) shows the fitting results of the temperature dependences of the critical
currents measured for the ITER CSIC Nb3Sn conductor. The temperature trends of the
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analytical curves with transverse load effect fitted to the measured data better than those
without the transverse load effect shown in Fig. 2.21 (b).
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Fig. 2.21 Curve fittings of critical current temperature dependences measured for the ITER CSIC
with transverse load effect (a) and without it (b).
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2.5 Motivation for further investigations and challenges

In recent years, most of the experiments concentrated on axial strain effect on
superconductors. Very little has been done on transverse strain effect on superconductors
especially on cables, and the only experiments done on sub-sized cables were the two
described at the end of the previous section [2.40, 2.41] and performed 20 years ago.

The fusion community is especially interested in this subject because CICC cables are
more sensitive to this effect due to their design. Initially the transverse load effect was
thought to be small enough to be disregarded and that is why experiments were
abandoned. Later on, the tests of the ITER TF Model Coil and ITER CS Model coil
showed measurable degradations of the cable and it is believed that these degradations
are caused by the transverse strain created by the accumulation of electromagnetic force
(JxB) across the cable cross section [2.21, 2.42].

The uncertainties left by the results obtained with those model coils, were the driving
reasons to have further experiments studying the transverse load effect on CICC
conductor. The scope of this thesis is to develop a device to take those measurements and
better understand the performance of a cable during operation.

Tests on sub-sized cables are very challenging due to the high current required to test
the critical current. The measurements try to emulate the magnetic Lorentz force in a
cable. This force is a body force which accumulates over the cross section of the cable
and creates a pressure against the strands. The range of pressures of interest is between
10 MPa and 20 MPa based on the ITER TF and CS conductor designs (nominal
pressures). It is not possible to obtain this range of pressures using only the
electromagnetic force. This is because to fit the existing magnet facility, a sub-sized cable
is used and only loads up to about 7 MPa can be obtained electromagnetically. Thus it is
necessary to simulate the pressure by applying an external load mechanically.
Additionally it is of interest to study the dependence of the critical currents of cables as a
function of transverse pressures higher than the nominal pressures because as it was
indicated several times in this chapter, it is the effective contact pressures between
strands that determine the overall behavior of a full size cable.

The design and the measurement technique of our new experiment are unique making
the work of this thesis challenging but also very stimulating. In addition, these
experiments are the only one performed on sub-sized cables since the work done more
than 20 years ago [2.40-2.41]. Chapter 3 and Chapter 4 describe two experimental setups
developed to perform several experiments on various cables including different strands
types and different sizes. In Chapters 5 and 6 the experimental results are discussed and a
new model is presented and correlated with the measured results. Contact mechanics is
used to evaluate the real contact pressure among strands and used to estimate the
effective contact pressure. It will be shown that locally the pressures experienced by the
strands can go well beyond the averaged pressure of 10-20 MPa making the performance
of a full size cable more vulnerable to the natural Lorentz load developed during
operation.
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CHAPTER 3:
Single turn experimental setup and results

3.1 Introduction

In this chapter a detailed description of the single turn experimental setup is
presented. The goal of this experiment is to measure the effect of transverse load on the
critical current of a 36 strands superconducting cable. The load is applied mechanically
by pulling a conical wedge that expands a collet which, ultimately, applies the transverse
load on the cable located between the collet and an external ring (see Fig. 3.1). A load
cell was mounted outside the dewar to measure the vertical load applied to move the
conical wedge upward. This force can be easily related to the actual force applied to the
cable by geometrical analysis. The components of the probe used for the experiments are
described in detail and the measurement technique is presented. The experimental results
are presented and discussed.

Vertical force applied
with linear actuator

Conical wedge
moving vertically

Expanding collet

NngI‘l
36-strand cable
External holder ring

Fig. 3.1 Schematic view of the single turn test rig used inside a 20 T, 195 mm diameter bore
magnet: main parts (left), expected load distribution during the experiment (right).

3.2 System requirements and probe description

Four different samples were tested with this experimental setup over four different
campaigns from October 2005 to Jan 2007).

The probe used in this experiment was modified from a previous experimental work
[3.1]. Minor modifications were required to increase the strength of the supporting rods
of the probe itself. The rods were designed to sustain a 100 kN vertical load. The probe
and its main components are shown in Fig. 3.2 with it main components.

In Fig. 3.2 the sample area and the linear actuator area are indicated. A long shaft
connects the sample area to the linear actuator that is used to vertically move the conical
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wedge that applies the transverse load onto the sample. The linear actuator is moved by
using a motor drive. The motor allows for remote application of the displacement without
being close to the current leads and for a better control of the applied displacement. A
load cell is mounted between the linear actuator and the rod connected to the sample to
measure the absolute vertical force applied during the experiment.

pad cell location
nection linear
ator with 1o
|| attached to the
¢onical wedge

Room temperature

10 kA current lead
terminations connected
to the current supply.
The sample is soldered
to the 10 kA current
leads inside the cryostat.

Connection point between
conical wedge and rod,
connected to linear actuator

a s

Sample area

Fig. 3.2 Probe before being inserted
in the cryostat and details of the sample
area and the linear actuator area.
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The sample is soldered to the 10 kA current leads mounted on the probe. The current
leads sit in liquid helium and helium gas. The terminations of the current leads are
outside the cryostat at room temperature where they are connected to the current leads
from the power supply. Fig.3.3 is a schematic representation of the circuit used during the
experiment.

Once the cables were mounted on the probe, it was inserted inside a cryostat (170 mm
in diameter) that is positioned inside a 20 T, 195 mm warm bore Bitter magnet (Fig. 3.4-
3.5) at the NHMFL facility in Tallahassee, FL.

NHMFL Magnet
Power Supply _< )—— Cell Enable
CELL2
E;lurrel:tnt User's Toggle NHMFL
10 kA Current onLior Switch Mac Data
o Acquisition
Magnetic Field (10 T- 15 T) Voltage Meter
by the 20 T magnet Keithley 2000 Current Monitor
CELL 4 Water cooled resistors
3.1mQQ each
Voltage Meter
Keithley 2182A sample Voliage

(100 micro-V)

Single Turn, 36 Strand
Superconducting Cable | Quench
with Externally Loaded Detector -
Transverse Force
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Fig. 3.4 System used for the single turn experiments: 20 T Bitter magnet (left), with the cryostat
(right).
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Fig. 3.5 Experiment setup. Data acquisition system and instrumentation used (top), current leads
and position of water cooled resistors (bottom).
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3.3 Sample area structure

The probe head where the superconducting cable is mounted is the most critical
component to design and has to comply with the sample test requirements. Fig. 3.6 is a
cross section of the sample area with all the different components used. The bulk of the
components have the purpose of supporting the probe and avoiding damage to the fragile
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Fig. 3.6 Cross-section of the probe head structure used for the experiment.
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The cable is enclosed in between a sample holder ring (referred to as outer ring CSX-
001) and a stainless steel collet-type or ring (referred to as inner ring CSX-005). The
inner ring can expand when the conical wedge slides vertically upward (CSX-007).
Details of the components can be seen in the photographs shown in Figs. 3.7(a)-3.7(e),
taken during the assembly of the first sample.

(b)

Fig. 3.7 (a) Structure seen from the bottom. The cable is between an external ring and the
expanding collet. (b) Detail of the expanding collet and the enclosed cable.
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Fig. 3.7 (c) Stainless steel cone used during heat treatment to maintain the proper void fraction of
the cable. (d) Cable mounted and detail about how the cable comes out of the structure. (e)
Sample and structure ready before heat treatment.

73



The probe design was dictated by several constraints:
e Maximum inner diameter of dewar at NHMFL is 170 mm.

This constraint is met by designing the probe head with a maximum diameter of 166
mm. This constraint was not as challenging as other problems but it greatly limited
the dimension of the cable which is a single turn with maximum length of 350 mm. A
longer cable inside the groove would have made it easier to measure the signals from
the voltage taps.

e Materials should be used for both heat treatment and test.

This requirement is dictated from the fact that Nb;Sn material becomes very brittle
after heat treatment and any handling should be avoided. In our experiments very few
parts (stainless steel) needed to be removed (CSX-025, CSX-023, CSX-026) or
substituted with G10 parts (CSX-013, CSX-012) and brass (CSX-007) after heat
treatment. Those changes were necessary to be able to mount and solder the sample
on the probe.

e Materials used should be non-magnetic.

The presence of any magnetic material could distort the uniform magnetic field seen
by the sample once it is inserted in the solenoid. The first two samples tested used
Incoloy Alloy 908® while the third and fourth sample were enclosed in Haynes 242.

¢ The materials enclosing the cable should have a similar coefficient of expansion
(COE) of the cable itself.

If the materials used have a larger or smaller COE, this could create an initial strain
condition on the cable and reduce its initial performance. Fig. 3.8 shows the materials
available considering thermal expansion and strength requirements. From this
selection the best choices to better match the thermal expansion of Nb3;Sn are titanium
(and titanium alloys), Haynes 242 and Incoloy Alloy 908°. Generally a CICC is
enclosed in stainless steel conduit (high strength material) but this implies accepting a
~0.5% initial axial strain on the cable that greatly reduces its performance (Nb;Sn can
carry 30-50% less current under those conditions). In our experiments we are mostly
interested in studying the degradation caused by a force applied directly on the bare
cable so that all our samples are enclosed by a supporting structure but the application
of the force is directly on the Nb3;Sn and not on a conduit. The first two samples were
mounted in an Incoloy Alloy 908% external ring. Despite being magnetic its cryogenic
mechanical properties are desirable. The last two samples used Haynes 242 external
ring. Haynes is not magnetic and it has strength properties similar to Incoloy.
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Fig. 3.8 Coefficient of thermal expansion of different materials as a function of temperature. The
range of interest is between 1000 K (highest temperature reached during heat treatment) and
4.2 K (typical temperature of operation).

e The materials enclosing the cable have to be dimensionally precise to create the
right void fraction before heat treatment.

CICC cables used for fusion experiments generally have void fraction between 32-
37%. It was shown [3.2-3.3] that below this range the strands could be locally
damaged and deformed. Above this range the strands are not supported enough when
the Lorentz load act on them causing very high initial degradation.

e The expanding collet needs to be flexible enough to apply the desired load.

The material chosen for this part is stainless steel 316. The collet is slit in multiple
sections (16-18) to enhance its flexibility during the experiment.

e The external ring enclosing the cable needs to be a special material so that it is
possible to make measurements with strain gages but also not create too much
axial strain to the test sample.

For equally applied strain, the degradation of the current due to the transverse strain is
much higher than for longitudinal strain. In order to study a pure transverse effect on the
cable, it is necessary to make sure that the level of transverse strain is below the level at
which the longitudinal strain is important. From Fig. 3.9, it is clear that the degradation
due to longitudinal strain becomes important for strain variation on the order of 107 [3.4].
If the strain level is kept at a factor of ten lower than this, the main cause of degradation
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of the critical current will be the transverse strain. Otherwise, it could be very
complicated to interpret the results and separate the components due to the two effects.

The longitudinal strain in this design is the hoop strain effect. The strain is measured
by strain gages positioned on the external ring. Thus it is necessary to have strain values
higher than 10™ in order to be detected but lower than 107 to avoid longitudinal effect
(Fig. 3.8). In fact, if the strain variation created by the hoop effect is low (<3:10™*) the
degradation due to the axial effect will be negligible (less than 1%) and any degradation
of critical current could be interpreted as transverse load effect.

"hs Sn

(Ti, Ht, Ga)
Nbgy Sn

(Ta,H)

L 1 | 1 ' 1 1 1 1 I §

1 Il 1
I -08 -04 -0.2 (1] 0.2 04 0.6 0.8
intrinsic Strain (%)
Fig. 3.9 Critical current variation as a function of uni-axial longitudinal strain applied. The

orange rectangle represents the limits in which the axial contribution to the degradation has to lie
in order to consider the transverse load effect as the dominant effect [3.4].

To limit the hoop tension to acceptable values, the external ring has to be thick
enough and have a high Young’s modulus. This is the reason why the material chosen for
this part was Incoloy Alloy 908® or Haynes 242.

3.4 Sample fabrication

One of the most difficult challenges of this experimental setup has been the sample
fabrication. All the samples tested showed an initial degradation so each subsequent
sample has been fabricated in a more careful and detailed manner. In this section the
main characteristics are discussed leaving the details to Appendix I.

The cable was wound with a cabling machine in our laboratory in 3 stages (3x3x4).
The cable is equipped with voltage taps to measure the transition from superconducting
to normal state during the test. The voltage taps were thin stainless steel wires covered by
a fiber glass sleeve. Once the cable is mounted between the external ring and the
expanding collet, it cannot be removed or touched after heat treatment. For this reason,
the insulation of the voltage tap wire is made of fiber glass which is an insulating material
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that can withstand the high temperatures (660 °C) reached during heat treatment. The
stainless steel wire is embedded in between the stages of the cable so that it does not lie
on the surface of the cable (Fig. 3.10). Once the stainless steel wires are firm in their
positions the fiber glass sleeve is added to the wires. One of the two wires is wrapped
around the cable and positioned in between voids left by the different sub-stages of the
cable (there are 4 visible triplets). A thin stainless steel wire is wrapped at the same time,
with opposite twist, to hold the wire and fiber glass in position. This wire is brought on
the opposite side of the cable to eliminate any inductive voltage pickup during the
experiment. Once it reaches the other side and the other wire, the two wires are twisted
together again to reduce any inductive signal.

EemTpr

terminations to be
to the current
ter heat treatment

. of wire
B r“ 'W’O‘.‘lnd‘i CILH l s

Voltage ta;; wire

Fig. 3.10 Cable prepared for mounting. Voltage taps wires are visible (one of which is wrapped
around the cable to eliminate inductive voltage pickup).

The straight section of the cable was enclosed in a copper tube swaged down to
7.5 mm diameter so that it fits the current lead slots. The copper sheath was added to
protect the cable during the soldering of this section on the current leads connection after
heat treatment (Fig. 3.11). Moreover, soldering was more easily done on copper.

The copper tube was swaged in steps starting from a die of 0.361 inches in diameter
and diminishing with dies of 0.338, 0.325, 0.3125, and 0.294 inches.

The cable length including the termination legs inserted in the copper tube was
roughly 1.6 m (test cable of 335 mm inside the groove, 135x2 mm to reach out of the
structure, 465x2 mm to reach the current leads).
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Fig. 3.11 Copper terminations
soldered to the current leads
connection.

Soldered copper
terminations

Sample area

The first sample was prepared applying a manual circular bend and forcing the cable
inside the slot where it was supposed to sit. The void fraction of the cable (~ 35%) was
reached in subsequent steps using the heat treatment stainless steel wedge. This was set
during heat treatment to maintain a 1 mm distance between collet and external ring to
reach the desired void fraction and have the necessary space to move the collet
transversally against the sample during the test. The stainless steel collet was used to
reduce the void fraction of the cable by mounting all the pieces and moving the cone
upward as in the experiment and reduce the gap between the collet and the external ring.
At this stage if assembly, manipulation of the cable before heat treatment should not
jeopardize the superconductor performance because the superconducting filaments are
not formed yet. The process was tedious and required a rather large physical strength.
After the first sample test the only modification made was to improve the heat transfer
characteristic of the probe since the first sample had been accidentally burned out due to
a poor cooling condition. The second sample showed a much improved cooling condition
but the initial degradation was still observed. With the first two samples the swaging of
the copper tubes on the ends was performed once the cable was bent in its final
configuration sample (single turn with 90 degree bends) so that we had to feed the two
legs one at the time changing feeding direction and causing local de-twisting and
relaxation of the cabled sample. With the third sample we decided to be more careful
during the swaging process. It was decided to add a tube of titanium around the length of
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cable that will be bent after the swaging process. So now the cable has one piece of
copper, one of titanium, one of copper and some bare cable in between the three sections.
The bare cable length is located at the 90 degree bends. The cable is left straight and fed
inside the swaging machine in only one direction to avoid de-twisting of the cable. The
copper sections are swaged one extra step compared to the titanium tubing section. The
swaged straight cable was then bent into its circular form together with the titanium tube
again to avoid any relaxation of the cable and to maintain the desired void fraction. Once
the cable was ready in its final form the titanium tube was cut open and removed and the
cable inserted inside the structure. Despite the careful operation the cable still showed
some degradation (~35%). Thus in the fourth experiment we decided to follow the same
operations as the third one but the titanium tube this time covered the entire length in
between the two copper sections so that during the preparation of the sample in final form
also the 90 degree bends could be maintained with their original void fraction and form.
We also decided to remove the titanium only along the tested area (circular bend) but
leave the tube where the leads are coming out (90 degree bent area) since we suspected
that this was the weakest point of the sample (Fig. 3.12). Yet again the cable showed
degradation. The results will be discussed in more detailed in section 3.6.

Copper

Titanium that will be left

Sample area section
where titanium will be
removed after bending

Fig. 3.12 Schematic view of the sample swaging preparation (left). Final stage before removing
the titanium from the test length (right).
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3.5 Instrumentation

The experimental probe has been equipped with several instrumentation tools. Three
different liquid level sensors are used to determine the liquid level during the experiment.
These are used to monitor and to maintain the minimum level required for safe operation
(entire sample and joints to copper leads immersed in liquid helium). Located outside the
cryostat there is a load cell attached to the linear actuator, which applies the vertical
displacement to the conical wedge. This load cell records the vertical load applied to the
experiment. Disregarding friction effect, this load is used to determine the transverse load
applied to the sample by geometrical calculation as shown in Fig. 3.13 and Eq. 3.1.

Lvertical
»
Fvertical-load
o= 10°
E vertical—load Lvertical =F, transverse Ltransverse
F =F . Lvertica! - . 1 (31)
transverse — * vertical-load L — L vertical-load
fransverse tan (a)
L
»—> [ transverse
Ftransverse

Fig. 3.13 Schematic view of the forces involved in the experiment and how the transverse force is
estimated using geometrical arguments.

The side surface of the external ring holding the sample is equipped with strain gages
that provide an additional method to estimate the pressure applied to the sample. While
loading the sample, the external ring is under hoop strain that can be measured with strain
gages. The collet piece expands radially when the conical wedge is pulled vertically. The
collet was originally made with 16 slots but for the last experiment (January 2007) a new
collet with 18 slots was used. In the first experiment (October 2005) the collet has been
mounted in its original configuration with all the matching finger pieces in place (see
Fig. 3.6 and Table 3.1). During this experiment was observed that the strain gages were
showing a non linear behavior against the expectation of a uniform hoop tension applied
on the external ring during loading. The first modification, applied to the sample tested in
January 2006, was to remove two of the finger pieces (Table 3.2). The pieces removed
are located where the cable is bent to be connected to the current leads. The bend is
perpendicular to the plane of the single turn where the load is applied. It was believed
that since the cable is missing in this section, the conical wedge could be prone to move
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towards the section where it does not have to apply any load and move freely. Despite
this modification (also shown in Table 3.1), the strain gages still showed a non-linear
behavior (Fig. 3.14).
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Fig. 3.14 ANSYS" simulation of expected values of hoop strain on the Incoloy Alloy 908" ring
compared with measurements taken with the strain gages.

It was then decided to apply the load with a 3-points load configuration as shown in
Table 3.3. This method of applying load should give a more uniform load distribution at
the cost of applying load only on 3 sections of the sample and not the entire length. The
analysis in Appendix II shows how this modification does not affect the sensitivity of our
measurements as long as the appropriate criterion is used to estimate the critical current.
With this configuration the strain gages showed a linear behavior and agreed very well
with a simplified FEM simulation performed with ANSYS® (Fig. 3.15).
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Fig. 3.15 Comparison of measured strain (solid lines) and FEM simulations (symbols) using the 3
point contact method.

81



The fourth sample tested on January 2007 was prepared in a very similar way to the
third sample but the titanium tube used for swaging was left in position on the bends to
increase the support in this area. A new collet was fabricated having 18 slots instead of
16 so that the three pressed sections were equally long (Table 3.4). The strain gages data
showed a similar behavior to the previous test indicating indeed a more uniform and
controlled loading process.

All the samples have at least 3 voltage taps located in different position of the sample
(Table 3.1). The voltage taps are used to record the voltage across the sample that is used
to estimate the critical current and n-value of the superconducting cable. The first sample
showed large inductive voltages signals because not all the voltage samples were
mounted appropriately. In all the other samples the voltage taps were carefully twisted
and wound along the sample to reduce inductive pick up during the experiment.

Table 3.1 IGC sample loading, strain gages and voltage taps configuration.

IGC sample tested October 2005

Strain gage configuration Voltage taps configuration

voltage tap 3 386 mm
leads exit

SG 1 (H-A)

voltage tap 2 voltage tap 1
262 mm 262 mm

SG 3&4 (H-A)

Table 3.2 Second IGC sample loading, strain gages and voltage taps configuration.

IGC sample tested January 2006

Strain gage configuration Voltage taps configuration
leads exit voltage gap 3
381 mm voltage tap 2 235 mm
SG 1
voltage tap 1
211 mm
SG2

SG 3 (H)
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Table 3 OKAS sample loading, strain gages and voltage taps configuration.

OKAS sample tested July 2006

Strain gage configuration Voltage taps configuration

<5 (H)

voltage tap 4
394 mm

leads exit

e

SG3 (H)

voltage tap 3

82 mm

Table 3.4 OXFORD sample loading, strain gages and voltage taps configuration.

OXFORD sample tested January 2007

Strain gage configuration Voltage taps configuration

voltage tap 4
390 mm

leads exit
SG 1 (
P .
Q I ‘
scu}

SG 5 (H)

voltage tap 1&2
290 mm

SG 3 (H)

voltage tap3 62 mm

With the last three samples, an extensometer was added at the bottom of the conical
wedge to have a direct measurement of the vertical displacement applied to it and to
estimate with those values the displacement in the transverse direction. This information

was used to estimate the Young’s modulus of the cable as discussed in the following
section.
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3.6 Experimental results and discussion

Three different wires were used for the four samples tested. The first two samples
were made with the same wire (IGC), the third sample used OKAS wire, while the last
sample used Oxford wire. All the samples have the same cable pattern 3x3x4 with twist
pitches of 45 mm, 85 mm and 125 mm for the three stages, respectively. The wire used
for all experiments is internal tin type. An example is shown in Fig. 3.16. The main

properties as given by the manufacturers are given in Table 3.5.

Table 3.5 Main properties of the wire used in the experiments.

October 2005, January 2006 samples

Strand manufacturer 1GC

Strand Type Internal Tin
Filament Material NbsSn
J.(12 T, 42 K) 682 A/mm”
Diameter 0.808 mm
Copper/non-copper ratio 1.5:1
Number of strands 36

Average cable diameter 6.25 mm
Cable pattern 3x3x4

July 2006 samples

Strand manufacturer OKAS
Strand Type Internal Tin
Filament Material Nb;Sn

J. (12T, 42K) 856 A/mm’
Diameter 0.832 mm
Copper/non-copper ratio 1.18:1
Number of strands 36

Average cable diameter 6.25 mm
Cable pattern 3x3x4
January 2007 samples

Strand manufacturer Oxford
Strand Type Internal Tin
Filament Material Nb3Sn
J.(12T,42K) 1037 A/mm”
Diameter 0.83 mm
Copper/non-copper ratio 1.1:1
Number of strands 36

Average cable diameter 6.25 mm
Cable pattern 3x3x4
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Fig. 3.16 Typical internal tin wire cross section (Oxford wire).

Typically the manufacturer provides data for the critical current at a certain field (12
T) and the n-value of the strand. The n-value represents the sharpness of the transition
(described by Eq. 3.2) from superconducting to resistive state.

n

E _ B Lstgorzy _ r _| L (3.2)
Ec Ec ! lvoltagetap Vc J[c

where the quantities with subscript ¢ are critical properties defined prior to the
experiment, £ and V being electric field and voltage across the sample (the product of
electric field by the length of the voltage tap). Typical critical electric field criteria values
are 10 and 100 uV/m. During an experiment the temperature is set at 4.2 K and the field
is fixed at a certain level. The sample is charged up and the currents corresponding to the
electric field of those values are the critical currents for a particular sample. With two
values of current and voltages it is possible to evaluate the n-value. Generally the voltage
is measured as a function of current and natural logarithm of both quantities is evaluated
to estimate the n-value (slope of linear fit) which is then used to determine the critical
current at the two established current criteria (Fig. 3.17).

It is practice to heat treat a sample on a standard barrel together with the test cable.
This single strand witness sample is measured separately to determine a few points of the
critical current-field curve and verify the value given by the manufacturer. This critical
current curve is also used to evaluate the expected critical current for a cable (critical
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current of a single strand multiplied by the number of strands). In Fig. 3.18 the critical
currents of all the strands used in our experiments are shown as a function of the field.
Points between 11 and 13 T are experimental values while the others are typically
extrapolated values. In Fig. 3.18 there are 3 curves corresponding to the Oxford wire. The
one labeled Oxford is from a strand that followed the same heat treatment as given by the
manufacturer but it is not corresponding to a witness sample. The curves labeled Oxford
CS and Oxford TF correspond to the witness samples of a cable using the Central
Solenoid (CS) and the Toroidal Field (TF) coils strand specification. The Oxford CS wire
was used for the last sample tested in January 2007. The Oxford TF wire has been used
for the experiments carried out with the second test rig (Chapter 4).
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Fig. 3.17 Typical voltage trace recorded during an experiment (top), manipulation of the data to
determine the n-value and the critical current values at the two established criteria.
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Fig. 3.18 Critical current as a function of magnetic field for single strand samples of the wires
used during the experiment. The expected critical value of the cable is simply the product of the
number of strands in a cable times the current of one strand.

All the samples were tested inside a dewar located in the bore of a 20 T magnet at
NHMFL. Each sample test campaign was allotted a one week time frame generally split
between preparation and tests. The tests include a preliminary check of the system,
critical current measurements as a function of field and critical current as a function of
sequential step loads at a fixed field. The preliminary check helps in debugging the
system and assessing the reliability of the voltage taps on the samples. Typically only one
voltage tap pair is used during the experiment but usually multiple sets are mounted in
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case the chosen one stops working appropriately. While applying the load the voltage tap
wires can be damaged if they were not mounted properly.

Fig. 3.19 shows the critical current as a function of the field for all the cables tested. It
has to be stated that the field is the nominal field in the center of the bore. At the location
of the cable there is a small radial component of the field in addition to the axial. The
total effect is an increase in field of roughly 0.2 T which is not adjusted for in this plot.

Addltlonally for the experiments using the IGC strand the cables are inside an Incoloy
Alloy 908% ring which is slightly magnetic. Thus the cable is experiencing a higher
magnetic field (~ +0.3 T) than the applied background field.

Even if we had to take in consideration those two effects for the data in Fig. 3.19, it
can be seen clearly that all the cables tested would show a similar large initial
degradation from their expected single strand value without considering this effect.
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Fig. 3.19 Critical current as a function of field for the different samples tested. Those
measurements are done prior applying any mechanical load. The natural Lorentz load is too small
too account for any degradation (< 6 MPa). In this plot the radial component of the field and the
additional field caused by the Incoloy Alloy 980" are not taken in account.

It was believed that the first two samples exhibited low performance due to the higher
void fraction than the desired 35%. The third sample was carefully cabled and pre-
swaged to obtain a better void fraction and it showed an encouraging improvement with
respect to the second sample. Following the same procedure for the fourth sample and
improving the overall support did not show any further improvement. On the contrary, it
showed the worst performance.

We tried everything possible to minimize the damage during the fabrication process
(before and after heat treatment), we could not determine the causes of this initial
degradation. One possible explanation is that the current sharing between copper leads
and sample was extremely low even if the resistance of the joints was in the nQ range.

Despite those horrific results, the test plan was carried out and transverse load was
applied to the sample in multiple steps. The first sample lacked good cooling condition
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and was permanently damaged before applying any considerable load. During the second
experiment it was possible to load the sample to the desired pressure but the sample was
not cycled more than once. The third and fourth samples were loaded multiple times with
the experience gained from the first two sample tests helping us to improve efficiency
and productivity of the last two sample tests.

The results for the last three samples are shown in Fig. 3.20(a-b). It can be seen that
the new ITER wires (OKAS and Oxford) are more sensitive to the applied load. Those
strands have a much higher critical current density than the other two but seem to be
weaker mechanically. Those samples were also loaded in different cycles as shown in
Fig. 3.20(b). Once the load was removed the sample recovered but it never went back to
the original starting point of the cycle. It is important to notice that the load represents the
total load applied to the sample: mechanical load and natural Lorentz load. That is the
reason why the starting point is not at zero load.

The load is estimated using Eq. 3.3:

1
F F vertical—load *
o= lransverse =F= tan(a) (33)
Area l pressed D cable

A unique feature of this experimental setup is that the system is equipped with an
extensometer that measures the vertical displacement of the conical wedge. This
measurement was used to estimate the transverse displacement and calculate the dynamic
Young’s modulus of the cable defined by Eq. 3.4:

D-F, transverse - D- F;ransverse (3 4)
5 ) \D1,,-d

E =
transverse
A

cable—xsec tion cable
Where D is the nominal cable diameter (6.25 mm), Fiunsverse 1S the transverse load
calculated from the measured vertical load (Eq. 3.1), /.. is the length of the cable inside
the sample holder and ¢, is the transverse displacement evaluated with the measured
vertical displacement (&, =0, - tan()). The results are shown in Fig. 3.21. The

very low values of Young’s modulus are due to the fact that the cable has a significant
void fraction. The Young’s modulus reaches a saturation value at high value of force per
unit length as previously shown in the literature [3.5] where similar values are observed.

The Young’s modulus value is extremely dependent on the transverse displacement
which is the most uncertain variable since an offset has to be applied to the vertical
displacement measurements. Assuming there can be a 0.5 mm uncertainty on the vertical
displacement, the error bars on those data points are of the order of unity as shown in
Fig. 3.21.

This uncertainty is caused by the fact that initially the conical wedge is not touching
the collet and even if were moving vertically the collet is not expanding. The value of
vertical displacement for which the extensometer does not show a linear behavior
indicates the conical wedge is not moving freely anymore but it is pushing against the
collet.
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Normalized critical current results for different cycles.
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3.7 Conclusions

The four samples tested in this single turn configuration showed significant initial
degradation compared to the expected values. Several different techniques to improve the
fabrication process were tried with marginal success.

The testing procedure allowed us to indentify weakness of the design and it was
possible to build a new test rig (see Chapter 4) in within a six months period. The rig was
designed retaining the features that worked well for the single turn configuration test
(strain gages, voltage taps, extensometer, linear actuator).

Despite moving to a new rig, the tests described in this Chapter were really important
and interesting measurements were carried out indicating a strong dependence of the
normalized critical current on the mechanical load applied.

Critical current measurements at different fields and critical current measurements at
different loads and different cycles were successfully performed providing useful
information and giving the confidence necessary in designing a new improved test rig.
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CHAPTER 4:
Hairpin experimental setup and results

4.1 Introduction

Using the test rig described in Chapter 3, we observed significant degradation from
unknown origin of the critical current before applying the external load. Therefore we
decided to retain all the information learned from this experimental rig and build a new
experimental setup that could perform the same type of measurements but that improved
the ease of the sample fabrication and mounting. The intent was to minimize or eliminate
any source of initial mechanical damage. At the same time, a magnet facility was updated
and became available at the NHMFL which uses a high field superconducting split
magnet. This gave us the opportunity to use a hairpin design for the test sample. The
hairpin design gives more flexibility over the fabrication process. Additionally, with
minor changes to the sample holder, it was possible to test different size cables including,
single strand, triplet, 9-strand and 45-strand cable. In this Chapter we present a detailed
description of the hairpin experimental setup as well as a summary of the experimental
results.

The goal of this experiment is the same as for the previous one, that is, to measure the
effect of transverse load on the critical current of a superconducting cable. The load is
applied mechanically by pulling a multiple wedges piece that transversely displaces
pieces that, ultimately, apply the load on the cable located inside its holder (see Fig.
1.16). The components of the probe used for these experiments are described in detail and
the measurement techniques are presented in this chapter. The system to apply the load is
the same linear actuator outside the cryostat that was used in the previous experiment. A
load cell was mounted outside the dewar to measure the vertical load applied to move the
wedge upward. This force was then translated to the actual transverse force applied to the
cable by geometrical analysis as described in Section 4.5. The experimental results are
presented and discussed.

4.2 System requirements and probe description

The primary magnet test facility used in this experiment is located at the NHMFL
facility. The magnet system used to apply the external field is comprised of an Oxford
superconducting split magnet with a 30x70 mm vertical slot where the sample can be
mounted and which provides the magnetic field of 12 T uniform over a 150 mm length.
Holmium pole pieces can be inserted in the center of the coils to reach 14 T magnetic
field.

A picture of the magnet system is shown in Fig. 4.1 showing the slot (Fig. 4.1b)
through which the sample is lowered. The magnet is located inside a cryostat. Once the
sample is inserted into the cryostat and through the bore of the magnet, it has to be held
in position so that it does not move while the load is applied with the linear actuator. A
remotely actuated sliding pin is used to lock the bottom of the sample holder to the
crysotat. Certain flexibility is required in the positioning of the sample inside the magnet.
This is obtained by having a slightly oversized hole at the bottom of the probe where the
pin slides in. On the top of the cryostat, outside, a bellows is mounted between two plates
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and the flange of the probe rests on top of the plate. The bellows is used to adjust the
vertical position to within 1 inch.

An overall schematic view of the magnet system is shown in Fig. 4.2 also showing
how the probe is positioned inside the magnet. In the same figure the linear actuator is
shown. The actuator is operated by an electric motor.

(b)

(c)

Fig. 4.1 (a) Split magnet outside the cryostat with coil current and generated magnetic field
directions. (b) Slot where the probe will be lowered to be positioned in the center of the magnet.
(c) Remotely actuated sliding pin used to lock the probe in position.
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Fig. 4.3 Probe inside the dewar. The picture show the top flange, the bellow used to adjust the
height of the probe so that it can be easily connected to the pin sitting on the bottom of the dewar.
The linear actuator and the motor used to operate it are sitting on a plate. The linear actuator is
connected to the cylinder that contains the load cell and connects the actuator to the shaft
connected to the wedge at the sample area.

The probe used for the experiment is the same as the one described in Chapter 3. The
copper current leads which attached to the 10 kA vapor cooled leads were re-designed to
improve the flexibility and to adapt the joint design to the new sample structure (Fig.
4.4).

Further details of the probe design are given in Appendix I.

96



Top section of

copper leads tobea
attached toithe

vapor cooled lea

10 (A vapor
cooled leads

ETmL
i

i
r

i

I

‘

pper leads

Sample location

(b)

Fig. 4.4 (a) Copper leads: top section is connected to the vapor cooled leads, the bottom one is
where the sample is soldered. (b) Probe set up with 10 kA vapor cooled leads and copper leads.
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4.3 Sample area structure

The split magnet system creates a magnetic field perpendicular to the vertical
direction and gives the flexibility to use a hairpin sample with legs that connect to the
current leads without having to bend the sample out of its plane (Fig. 4.5). The field and
current direction create a natural load in the same direction as the mechanically applied
load applied. , Vertical force applied with
linear actuator

Moving wedge,
pulled vertically Cable holder

Applied force ) .
Hairpin Nb;Sn cable on the cable Pressing piece

Transverse load caused by the vertical
displacement of the wedge which
displaces transversally the pressing piece

and the cable , +l

Fig. 4.5 schematic view of the sample holder and how
it is inserted inside the split magnet.
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The load is applied to the sample using the same technique as in the previous
experimental setup. To ensure uniformity of the load applied over the length of the
sample the piece moving vertically and applying the transverse load is segmented into
multiple wedges. Next to this moving piece there are two matching pieces (one on each
side) that are constrained vertically and can only slide horizontally. They touch two
pressing pieces underneath which the sample is located, thus the sample is pressed in
between the holder and the pressing piece. The matching wedges pieces are made of 316
stainless steel. This is a strong and non-magnetic material. The wedge pieces were cut
using EDM technique and have very high tolerances. Any imperfection could create an
undesirable localized force accumulation.

The main advantage of this design compared to the one described in Chapter 3 is that
the sample is straight making it easier to handle and fabricate. The heat treatment
structure is much smaller than that in the previous design (circle 115 mm in diameter
compared to a block 30x70 mm). Those dimensions allowed the use of a smaller furnace
and the heat treatment of multiple samples at the same time. The cooling conditions of
this design are better since the helium is flowing in parallel to the cable. The entire
structure was made of TiAlgV, alloy that has an excellent strain matching with Nb3Sn
(see COE in Fig. 3.7) and it is a strong enough material to react the forces of the
experiment. Another advantage is that the same structure can be used to test different size
cables. The only parts that require dimensions specific to the cable size are the holder and
the pressing piece reducing the overall cost for the test of multiple samples. Samples can
be changed fairly easy (2 days to remove one sample and mount a new one) reducing the
overall time of preparation.

The general observations made in Chapter 3 regarding void fraction and strain
requirements remain valid for this experimental setup. A spacer block was used to
maintain the void fraction during heat treatment together with some metal strips that
maintained the correct distance between holder and pressing piece. The metal strips and
the block were removed after heat treatment and the wedge pieces were mounted instead.

4.4 Sample fabrication

In this section the sample fabrication is described presenting the main characteristics
of the experimental setup. More details can be found in Appendix I where the description
of each step during the preparation is given.

All the samples were cabled in our laboratory. The total length of each sample is
roughly 1.45 m. The two joints are each 28 cm long and they are positioned inside the
channels (Fig. 4.4(a)) designed on the copper leads that need to be solder filled once the
sample is mounted on the probe and properly positioned.

Four different samples were prepared and heat treated but only three of them were
tested (single strand, triplet, 45-strand cable). The hairpin sample lies on a single plane
and it is bent in a U-shape. It was verified on a dummy cable that the bend is not causing
de-cabling of small cables (up to 9 strands) but it can cause significant de-cabling in a 45-
strand cable. It was decided to pre-swage this cable inside a titanium tube and then bend
it to the desired shape (Fig. 4.6). The cable outside the tube was wrapped with stainless
steel sheet and pre-swaged to the desired dimension. The last die used for the 45-strand
cable was 0.267” while for the 9 -strand cable it was 0.117” and swaged manually (dies
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were chosen to achieve a 33% void fraction). The other two samples (single strand and
triplet) did not require any pre-swaging. All the samples were inserted in their holder
using glass sleeve to avoid sintering to metal part during heat treatment. The holder
section where the load is applied is painted with graphite coating to avoid sintering and
leave the bare cable exposed to the mechanical load. Flat plates and lateral bars are used
to hold the cable holder in position (Fig. 4.7-4.8). Most of the support structure during the
heat treatment is carefully removed after the heat treatment and replaced with a single
piece case where the cable, its holder and pressing pieces are positioned together with the
wedge pieces as shown in Fig. 4.9.

Fig. 4.6 U-shape sample in its holder. Only the 45-strand cable required a supporting titanium
tube in the bending area.

Fig. 4.7 The sample is mounted inside the U-shape holder and the two external holders (top).
Bottom wires of the voltage taps (voltage taps 1, 2 and total voltage wire running along the
sample to cancel inductive pickup) (bottom left). The top cover of the U-bend is recessed by
grinding to be able to bring out the voltage tap wires without damaging them during the loading
process. Voltage taps location at the top of the sample (bottom right).
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Fig. 4.8 (a) Bottom voltage tap wires and spacer used to maintain the desired void fraction during
heat treatment. (b-c) Sample ready for heat treatment.
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measured using the extensometer, (d) heat treatment case and single piece case, (e) sample inside
the single piece case ready to be soldered.
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4.5 Instrumentation

The experimental setup was equipped with several instrumentation tools similar to the
ones described in Chapter 3. There are three different liquid level sensors to determine
the liquid level during the experiment and to maintain the minimum level required for
safe operation. Outside the cryostat there is a load cell attached to the linear actuator that
applies the vertical displacement to the wedge piece in the cryostat. This unit records the
vertical load applied to the experiment. Disregarding friction effect, this load is used to
determine the transverse load applied to the sample by geometrical analysis as shown in
Fig. 4.10 and by Eq. 4.1. One of the advantages of this configuration is that we used a
smaller angle o (5° instead of 10°) then previously, but for the same force, we obtain half
of the force in the transverse direction because the wedge is pushing two sides at the
same time. These two effects balance to give a similar vertical load applied for the two
configurations.

chnical

Fverlical-load

F vertical—load Lvertical =2 B transverse Ltransverse
F =F . Lvertica! : 1 (41)
transverse — * vertical-load 2. L — * vertical-load 9
: transverse : tan(a)
o=>5°
Ltrdnsverse
Ftransverse

Fig. 4.10 Schematic view of the forces involved in the experiment and how the transverse force
is estimated using geometrical analysis.

Strain gages were mounted on the wide side surface of the single piece case to verify
the uniformity of the applied load since the wedge piece was composed of four sections.
Three strain gages were mounted on the front of the case and two in the back (Fig. 4.11).
A Hall sensor was mounted on the same surface to verify the direction of the split magnet
field and to avoid damaging the sample in case the Lorentz load was inward (no support).

An extensometer was mounted on the wedge piece and secured on the sample so that,
while the load is applied and the wedge displaced, the extensometer remains in position
and measures the vertical displacement (Fig. 4.9 (a-c)). These measurements were used to
evaluate the transverse Young’s modulus of the tested cables as presented in the
following section.

Three pairs of voltage taps were mounted along the sample with two covering each
leg and one covering the entire length. The joint resistances were measured at the
beginning of the experiment using one wire mounted on the joint and one taken from the
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voltage tap (Fig. 4.11). The voltage taps are twisted to reduce the inductive voltage as
much as possible. The voltage taps were mounted on the samples before heat treatment
and insulated by glass fiber sleeves that can resist the high heat treatment temperatures.
One of the advantages of using a superconducting split magnet to create the
background field is the overall reduction of noise level in the system (less than 0.5 pV).

Fig. 4.11 strain gages and voltage taps location on the single piece case and on the sample. VT1
and VT2 cover the two straight legs of the sample and VT3 is the overall sample voltage.

Fig. 4.12 is a comparison between the measured strain gage values and the estimated
strain gage values using ANSYS®. It can be seen that the estimated values are roughly
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twice the average of the measured ones but follow the same trend. The difference could
be due to the simplicity of the model that disregards any friction and interaction of the
pieces of the experiments and simply considers the case geometry loaded by a transverse
force. Additionally, the measurements show similar but not identical values. This could
be due to some tilting of the wedge piece or some friction effect although the wedges
pieces and their matching part were coated with graphite to reduce friction as much as
possible. Strain gages 3 and 4 (SG3-SG4, bottom gage) read the lowest value as expected
because the bottom of the wedge is the last to feel the pulling force.

A | | : | :
——SGl : | : :
800 +1 ~@®—SG2  |--q-------- oo e i
—A—SG3 : ; ; !
—A—8G4 : J : !
F 6001 YT P E
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E 20011 ~ae8® K —"T" fomsesany
o R ]
-200 i ! l l i
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Vertical Load (N)

Fig. 4.12 Comparison between measured strain gage values and values computed using the
ANSYS® code as a function of vertical applied load.
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4.6 Experimental results and discussion

A single strand, triplet, 9-strand cable (not tested) and a 45-strand cable were
prepared. The cables were made of an internal tin, Oxford wire (Fig. 4.13) and differ only
by the number of strands used. The 45-strand cable is hybrid meaning that the first stage
was composed of one copper strand and two superconducting strands. The 45 strands
cable thus has 30 superconducting and 15 copper strands. The triplet has a twist pitch of
45 mm, the 9-strand cable has a 3x3 cabling pattern (twist pitches of 45 mm, 85 mm)
while the 45-strand cable has a 3x3x5 cable pattern (twist pitches 45, 85, and 125 mm).
The void fractions for the 9-strand and 45-strand cable aimed to be 33% following the
general guideline of the ITER project. This void fraction is smaller that the one used for
the samples in Chapter 3. The main properties of the samples are given in Table 4.1.

Table 4.1 Main properties of the sample used in the experiments.

December 2007 samples

Strand manufacturer Oxford

Strand Type Internal Tin

Filament Material Nb;Sn

L2 T42 K 1014 A/mm”

Diameter 0.82 mm

Copper/non-copper ratio 1.04:1

Number of strands 1 3 9 45
Average cable diameter (mm) 0.82 1.74 3.01 6.72
Cable pattern 1 triplet 3x3 (1Cu+2SC)x3x5

Copper
stabilizer

Superconducting Bronze and ;
filaments unreacted niobium

Fig. 4.13 Typical internal tin wire cross section (Oxford wire).

Typically the manufacturer provides the critical current at a certain field (12 T) and
the n-value of the strand. The n-value represents the sharpness of the transition from
superconducting to resistive state as described by Eq. 3.2. These manufacturer values
were confirmed by witness samples reacted with the cables.

A technique similar to that described in Chapter 3, is used to evaluate critical currents and
n-value (Fig. 3.16). The expected values at different fields were represented in Fig. 3.17
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in Chapter 3 and they are replicated here for completeness (Fig. 4.14). The wire used in
this experiment is labeled as Oxford TF. Those values are used to estimate the expected
overall current in the different samples with the cable current being the product of the
single strand current and the number of superconducting strands.
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Fig. 4.14 Critical current as a function of magnetic field for single strand samples of the wires
used during the experiment. The expected critical current of the cable is simply the product of the
number of strands in a cable times the current of one strand.

The campaign of experiments was three weeks long and due to some facility
problems of the locking mechanism at the bottom of the dewar, the 9-strand cable was
not tested. It took four days for one sample test including preparation and actual test.

As already mentioned, the single piece case and the wedge pieces were the same for
all the experiments. Two types of linear actuators were used for the experiments, since
the single strand test required a finer sensitivity that the other two. The vertical load
applied on the single strand was less than 1500 N while for the other two experiments it
was 3600 N and 17700 N respectively. In addition a very fine vertical displacement had
to be applied on the single strand so it was decided to use a micro-actuator (rated capacity
1000 Ibs, 0.5 travel). The linear actuator for the triplet and 45-strand cable was the same
(rated capacity 10 ton, 2” travel).

The first sample tested was the single strand sample. It must be noted that the external
load control was not performed well for a single strand test due to the sensitivity of the
mechanical measurements and controls. The testing of the triplet and the 45-strand cables
followed the first experiment.

As a general comment, this experimental setup was much easier compared to our
previous design, and the compact system obtained by using the hairpin sample allowed a
smooth and easy interchange of the samples. A disadvantage of the system is that the
background magnetic field obtained with a superconducting magnet can not be changed
as quickly as with a resistive magnet so the measurements at different field were limited.

All the experiments started with critical current measurements as a function of field
and the results are reported in Fig. 4.15 with the critical current evaluated at 10 uV/m
criteria.

It can be seen that the single strand and triplet reached their expected values while the
45-strand cable showed an initial degradation of 23%. Initially the single strand and
triplet showed a higher value than expected with the measurements showing a 40-45 A
greater critical current that the nominal value. It is believed that this is caused by the fact
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that a conductive Ti-6Al-4V plate was placed over the current leads for strength
purposes. It turns out the plate was lying in a zero field region of the split solenoid. At
zero field this material becomes superconductive so that a large fraction of the current
might have been flowing inside the plate before reaching the sample itself. The data
shown in Fig. 4.15 have been corrected for this effect by estimating the current leaking in
the plate.

The 45-strand cable shows some degradation but it is far better than any cable tested
with the previous experimental setup discussed in Chapter 3. The fabrication process has
been carried out very carefully but still unexpected damages might have occurred during
the process.

Critical Current (A)
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Fig. 4.15 Critical current as a function of field and comparison with the expected values.

Following the critical current measurements the mechanical loads were applied in
small steps at a fixed field of 12 T. The single strand sample has been cycled only once
since the time required to test the sample was longer than expected, and the micro linear
actuator has been reset since it reached its maximum travel. Resetting the linear actuator
was a very delicate process in which the load already applied was maintained and the
linear actuator was removed and reset. After this operation the measurements were
concluded with a maximum load applied of 80 MPa and a change of 40% from the initial
value. Once the load was removed there was partial recovery of the critical current and its
permanent degradation was roughly 20% (Fig. 4.16).

The triplet and 45-strand cable were cycled multiple times as shown in Fig. 4.16. In
this figure the critical current normalized to the expected value is plotted as a function of
the total load comprised of the applied mechanical load and the small Lorentz load. The
mechanical pressure is estimated using the measured vertical force from which the
transverse force is calculated (Eq. 4.1). The pressure is simply the ratio of this force to
the cross sectional area of the loaded cable. This projection area is the product of the
length pressed, /,yes5eq, and the diameter of the cable, D.qp

r 1

vertical—load ~

o= F‘transverse — 2+ tan(a) (4 2)
Area l pressed ~  cable

108




Several observations can be made from Fig. 4.16. First of all, the single strand and
triplet do not show any initial degradation. The 45-strand cable shows a ~ 23% initial
degradation from the expected values. The single strand starts showing some degradation
at loads around 50 MPa while both the triplet and 45-strand cable show degradation at
lower loads near 35 MPa. Another interesting observation is that the single strand data
falls off more quickly than the two cables above the 75 MPa load level. This could be due
to the fact that the single strand is pressed along its entire length and could be damaged
over the entire length while in a cable configuration the load is more localized at the
contacts among strands. It is necessary to emphasize once again that those data are
plotted against the conventional pressure and the cross sectional areas used are different
for each sample.

The behavior of the three samples tested is more clearly delineated if the critical
currents normalized to the zero-load values are shown as a function of load (Fig. 4.17). In
this figure again it can be seen again that the slope at which the single strand is degrading
is more dramatic that the one of the cables.

In Figs. 4.18-4.20 the same data are plotted against the transverse force per unit
length applied during the experiment. The plots show clearly the amount of force applied
on each sample (the lengths on which the load was applied was similar for all the
samples) and the number of cycles applied to each sample.
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Fig. 4.16 Normalized critical current normalized to the single strand value as a function of total
pressure.

109



-~ 4 - - Single strand
3 strands

--4& -- 45 strands

1.20

1.00 +

0.60 +
0.40 +

j
o0
S
w/A 0101w ()]
PROJ 013Z-0]/]

0.00

120

100

Total Pressure (MPa)
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Fig. 4.20 Normalized critical current as a function of force per unit length for the 45-strand

sample.



The data points after unloading the samples can be also plotted as a function of the
maximum force applied to the sample before removing the load. As shown in Fig. 4.21
and 4.22 for the 3-strand and 45-strand cables, those data represent the irreversible
degradation at the load applied before removing it. In other words, if we consider the
3-strand cable as an example the normalized critical current at 100 kN/m is roughly 60%
of its initial value. Once the load is removed the current of the sample is not recovering
completely and the normalized critical current is 80% of its initial value. Those plots
indicate that above a certain load the sample is permanently degraded and only partially
recovers if the load is removed.
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Fig. 4.21 Irreversible critical current data as a function of the maximum force per unit length
applied before releasing the load (3-strand cable).
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Fig. 4.22 Irreversible critical current data as a function of the maximum force per unit length
applied before releasing the load (45-strand cable).
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Those data are the ones that will be used for the analysis in Chapter 5 in which the
force will be used to estimate the real area of contacts for each sample. In addition, in the
modeling it will be required to set some parameters obtained from the measured
displacements. The displacements for the three different samples are shown in
Figs. 4.23-4.25.

Single strand
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Fig. 4.23 Transverse displacement as a function of force per unit length for the single strand
sample.
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Fig. 4.24 Transverse displacement as a function of force per unit length for the 3-strand sample.
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45-strand
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Fig. 4.25 Transverse displacement as a function of force per unit length for the 45-strand sample.

The displacement data are determined from the raw data of the vertical displacement.
The force per unit length is determined from the vertical load measured with the load cell.
The raw data need to be manipulated to remove the offset. In these experiments the offset
is not simply driven by the instrumentation used, but it is most importantly driven by the
fact that the wedge is initially hanging free in the probe so as not to apply load during
cool down. The position of the wedge at which the load start affecting the sample is not
very easy to determine and the initial displacement steps are very carefully applied in
order to be able to determine when the wedge begins contact with the matching pieces
effectively applying the load to the sample.

The extensometer data and load cell are studied for each load step until a non-linear
behavior is noticed. This behavior indicates that the wedge is not free to move anymore
but it is touching the matching piece and does not displace a constant amount per each
step. Once the offset for the extensometer and the load are determined the data can be
shown as in Figs. 4.21-4.23.

As already described in Chapter 3, the displacement measurements taken with the
extensometer are used to estimate the transverse Young’s Modulus of the different
samples. The results are shown in Fig. 4.26-4.28 as a function of the force per unit length
applied to the samples. The Young’s modulus values are within previously reported
values for the same quantity [4.1].
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Fig. 4.26 Young’s modulus measurements as a function of force per unit length for the single
strand sample.
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Fig. 4.27 Young’s modulus measurements as a function of force per unit length for the 3-strand
sample.
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Fig. 4.28 Young’s modulus measurements as a function of force per unit length for the 45-strand
sample.
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4.7 Conclusion on experimental results

The test rig for a hairpin sample discussed in this chapter was made possible to test at
the new facility of a superconducting split magnet at NHMFL, Florida State University.
The new rig is conceptually similar to the old rig presented in Chapter 3. However, the
new setup has various versatilities. It allowed testing samples of different cables by
changing only few parts of the probe. The samples became much more compact
compared to the single turn samples. Therefore the sample fabrication is simplified, and a
few samples can be heat-treated in a laboratory furnace at once. Furthermore one sample
test takes less than a week including the time to change a sample.

The new test rig was designed and built in less than six months and three cables were
successfully tested (single strand, 3-strand, 45-strand). It was possible to perform critical
current measurements as a function of mechanical load applied.

The data were analyzed as a function of the nominal pressure i.e. force divided by the
cross sectional area of the sample considered (see Figs. 4.16-4.17).

The critical current does not degrade up to a certain transverse load and then
decreases sharply when the load is increased further. The results show significant
transverse load degradation even for the single strand and the 3-strand cable. These
degradations could not be explained by a recent bending model.

Considering those results it seems that the single strand is less sensitive to transverse
load than a multi-strand cable but such a conclusion can be misleading.

It will be shown in Chapter 5 that a more meaningful analysis can be approached for
the same critical current data as a function of the effective contact area and not the
average cross section of the sample. If the single strand is taken as an example, the load is
localized and for sure is not applied to the entire cross sectional area of the sample. This
means the area over which the load is applied is much smaller resulting into a larger
pressure to the superconductor.

The critical current data and displacement data will be analyzed with a newly
developed model that considers the effective areas of contacts among strands under load.
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CHAPTER 5:
Modeling and comparison with experimental results

5.1 Introduction

In Chapter 3 and 4 the results were presented for two different experimental setups.
The data of normalized critical current were plotted as a function of the nominal pressure
Prominal @pplied to the cable. This nominal pressure, Eq. 5.1, is defined, for a transverse
force Fiansverse, in the same way for all the cables tested as long as the appropriate
dimensions are used for each of the cases:

F, . FE

transverse fransverse
I : (5.1)
nominal S length - diameter

This pressure is often referred to as average pressure because it is determined from
the force divided by the projected area of the sample (Fig.5.1).

Projected

arca

Fig. 5.1 Projected area used to estimate the average pressure on the single strand and 3-strand
samples. The length of the sample is multiplied by the diameter of the sample. The diameter of
the sample is the diameter of the strand for a single strand sample and for a cable it is the
expected outside diameter calculated considering void fraction.

This pressure definition has been often used in the literature but, it does not take into
account the actual area pressed and the local effects that might occur within the sample.
In a single strand, for example, the transverse area pressed is much smaller than the
projected area of the wire. In a cable composed of several strands, the real pressed area is
a combination of the angle at which the strands cross over and the number of their
contacts. Using the projected area of the wire or the cables is a very simplified way of
estimating the pressure exerted on a sample, but it can be much smaller than the pressure
caused by the local contacts in a cable and produce a distorted image of the stresses felt
within the superconducting filaments of a cable during operation.

In this Chapter a technique to evaluate the real deformation of the cables under a
mechanical load is presented according to the theory of contact mechanics. This approach
allows calculating local effective pressures acting on strand-strand contacts in a multi-
strand cable. The critical current and the displacement data measured for all the samples
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(single strand, triplet and 45-strand cable) can be correlated by a newly developed model
described in this Chapter. The analysis is limited to the samples tested with the hairpin
design since the single turn circular samples showed a significant initial degradation that
makes the interpretation of the data collected very difficult.

A brief introduction on the theory on contact mechanics used as an analysis tool is
presented in Section 5.2. The single strand data is discussed in Section 5.3 while the
triplet and 45-strand samples are discussed in Section 5.4 and 5.5 respectively.

5.2 Contact mechanics of circular cylinders

When two bodies come in contact it is important to study the stresses and the

deformation that arise from the contact. Contact mechanics has been developed first by
Hertz in 1892 [5.1] while he was studying Newton’s optical interference fringes in the
gap between two glass lenses and he was concerned about the elastic deformation of the
surfaces due to their contact pressure. More details have been developed by Timoshenko,
Goodier and Lessells [5.2-5.4] who presented derivation of elastic equations for loading
of elastic half-spaces (stress, strain and displacement). The case studies most relevant to
this thesis are summarized in this section [5.5] and more specific details are given in
Appendix III.
When two non-conforming solids are brought into contact they touch initially in a single
point or along a line and under a certain load they deform in the vicinity of the point of
contact. If an appropriate coordinate system is chosen it can be shown that the separation
between the two surfaces is given by (5.2):

+By2 =51—,x2 +——1—,,—y2 (5.2)

where 4 and B are positive constants and R’ and R” are defined as the principal relative
radii of curvature. If the x; and x; axis are inclined to each other by an angle ¢ then it can
be shown that (R, being defined as the equivalent radius):

LY (O SO U ¥ O TP S S
(A+B)—2(R,+ ) ( +—+—+ J 5.3)

R') 2\R, R R, R,
(1 1Y 1Y v
1 1
|B—Al=— — = | t=—-—= +2 ———1— —I—“L cos2¢r (5.4)
R,=(R'R")"* (5.5)

By observation, Hertz then assumed that the typical profile of the contact surface is
an ellipse. He also introduced the simplification that for the purpose of estimating the
local deformation, each body can be considered as an elastic half-space loaded over a
small elliptical region. With this assumption the highly concentrated contact stresses are
treated separately from the general distribution in the rest of the solid.
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In order for this simplification to be justifiable, the contact area must satisfy two
conditions:

(1) it must be small compared to the dimensions of each body so that the local stress
does not influence the general behavior of the solid

(i1) it must be small compared to the relative radii of curvature of the surfaces so that
the strains in the contact region are sufficiently small to lie within the linear theory of
elasticity.

Additionally, the two surfaces are assumed to be frictionless. Referring to Fig. 5.2, if
the significant dimension of the contact area is 2/ and the relative radius of curvature R,
the significant radii of each body R; and R and their length and depth L, the assumptions
made in the Hertz theory can be summarized as:

(1) the surfaces are continuous and non conforming: 2/ << R

(i1) the strains are small: 2/ << R

(ii1) each solid can be considered as an elastic half space: 2] << R; ;, 2l << L
(iv) the surfaces are frictionless

Fig. 5.2 Schematic view of two long cylinders in contact. Applied force

|

Elastic compression §

t

Applied force
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Two cases are relevant for the analysis of our data: the case of a cylinder between two
plates, resembling the single strand sample on Fig. 5.3; and the case of crossing cylinders,
resembling the general contacts between strands in a cable on Fig. 5.4. More details on
the equations derivation can be found in Appendix III. The strategy is to use the general
equations to estimate the effective contact areas in the tested cables and show that under
very reasonable assumption all the samples behaved similarly with respect to the change
in critical current as a function of load.

(1) Infinite cylinder (single strand)
The single strand sample (with radius a) tested resembles a case in which a long

cylinder is pressed in between two flat plates or two solids with radius much bigger that
the single strand diameter, as shown in Fig. 5.3.

Pressure distribution ,
at O; and O, in the <‘:
cylinder.

Fig. 5.3 Cylinder in contact with two solids. The contact pressure distribution developed in the
cylinder is shown in the figure and is used to estimate the contact width 2/,, 2/,.

The compressive load per unit axial length F; (N/m) gives rise to a Hertzian
distribution of pressure p given by Eq. 5.6:

2. F(, )"
P = ”.l’ (1—72-] (5.6)

1

where the semi-contact width /; is given by Eq. 5.7 (1/R,; = 1/a+1/R; given that B is zero
in Egs. 5.3-5.5):

4-F,-R,,;

12
n-E;

i

1/E =(1-v?)/E+(1-v})/E, (5.7)

The stress caused by the Hertzian distribution at O; and O, can be estimated using
equations described in Appendix III. Using plane strain condition (g, = 0), those stress
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components can be used to evaluate the strain component in the z-direction. Integrating
the strain component of z between z = 0 and z = a the compression of the upper and lower
half of the cylinder can be found using Eqgs. 5.8 and 5.9.

The displacement (J; and o) of the top and bottom half of the cylinder (Eq. 5.10) is
given respectively,

— a . —_— . (1 V2) . -4_a —

0, = 6[82 dz=F, . {2 ln[ L } 1} (5.8)
= | . = . (1 VZ) . 4_a —

0, = 6"82 dz=F, ) {2 ln( L ) 1} (5.9)

The total displacement & is the sum of d; and &:

2
5, =6,+6,=2r, 12V {ln(4—a)+ln(%J—l} (5.10)

- FE I8 5

The results obtained are for the pressure distribution in Eq. 5.6. In general they
depend on the profile chosen for the pressure distribution. In literature a parabolic profile
is often found to describe the pressure distribution [5.9] but the total displacement is not
that different from the one obtained by Eq. 5.10 (less than 8% difference).

(i) Crossing cylinders (multi-strand cable)

The general profile of a contact between two solids will be described using the theory
developed by Hertz.

It is assumed that the area of contact is elliptical in shape with semi-axis 77 and &
(Fig. 5.4).

Applied

Force F,
l ()2

Zi

2n .

Fig. 5.4 Schematic view of the contact area between two round strands.
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In Hertz’s theory, using an analogy with electrostatic potential, he assumed that the
pressure distribution close to the contact point can be described by Eq. 5.11:

np-(3) -2} 1)

The semi-axes of the ellipse are often evaluated [5.3, 5.6-5.8] with the following
equations:

1/3
n:a-(f—“—E'—f—Q-J (5.12)

1/3
§=ﬂ~(—-Fc;(Dj (5.13)

where F,=(2/3)- poz-n-¢ is the total force in Newton, o and [ are tabulated values
dependent on the crossing anglesd between the two solids (Table 5.1),
1/E"=(1-v})/E +(1-v})/E,, and

1 3
1/R +1/R,+1/R, +1/R, A+B

3
KD'_—E'

5 ) 1/2 |B AI
2-K -
cos 2= L. ——I-——L + L—L +2 ——1——L L——l— cos2¢ =
3 R, R, R, R, R, R AR, R, A+B

The cross-contact displacement &, in this case (deformation of both strands) can be

evaluated by using Eq. 5.14:
F2
0y =AY~ (5.14)
V() &,

Using Eq. 5.12 and 5.13, the contact surface can be evaluated using Eq. 5.15.
S, =rn-n¢ (5.15)

In the case of 3-strand and 45-strand cables, R, =R, =a; R, =R, = o (a being the
radius of a strand) so that:
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_2+(

1

a

4

)

a

1/2
)cos 2(1)}

={(1+cos2¢)

2

}1/2

Table 5.1 Tabulated values of o and f to evaluate the semi-axis of the ellipse of contact [5.7, 5.8].

Q o B A

0 - 0 0

1 36.890 0.131 0.047
2 22.260 0.169 0.090
3 16.500 0.196 0.130
4 13.310 0.209 0.165
6 9.790 0.255 0.227
8 7.860 0.285 0.278
10 6.612 0.319 0.320
20 3.778 0.408 0.456
30 2.731 0.493 0.542
35 2.397 0.530 0.579
40 2.136 0.567 0.614
45 1.926 0.604 0.645
50 1.754 0.641 0.672
55 1.611 0.678 0.693
60 1.486 0.717 0.710
65 1.378 0.759 0.724
70 1.284 0.802 0.737
75 1.202 0.846 0.750
80 1.128 0.893 0.764
85 1.061 0.944 0.775
90 1.000 1.000 0.777
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5.3 Single strand sample

The single strand sample was located inside a narrow groove plate and pressed by the
pressing plates as described in Chapter 4. The machining of the groove was very deep
and narrow inside the holder, and the grooves on the pressing plates were required to be
very precise but in reality the curvature of the bottom groove and the pressing plate were
not well controlled. Considering the uncertainty of the contacting curvatures, the pressing
mechanism was first evaluated with the following assumptions regarding the radius of the
surface of contacts with the strand:

(i) extreme case of the grooves surrounding the strand to be flat (//R.=1/a)

(ii) case in which the contact is between convex surfaces (//R.=1/a+1/R;)

(iii) case in which one of the two surfaces is concave (//R.=1/a-1/R;)

Using Eq. 5.7 the total contact width a;+a; was estimated for 3 different cases (Fig. 5.5):

i

EL rand
el

Strand holder Pressing plate

Contact region
with curvatures considered
in the calculation

(1) (ii) (iii)
RI _Rl
(%
R
a=0.41 mm R;
E=0.95 GPa a=0.41 mm E=0.95 GPa a=0.41 mm E=0.95 GPa
E,=E;=100GPa Ri=R,=0.82 mm E=E,=100 GPa R;=R,=-0.82 mm E;=E,= 100 GPa

Fig. 5.5 Single strand test configuration and simplified analysis cases.
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Using Egs. 5.7 and 5.10, the transverse displacement measured in the experiments can
be compared to the one evaluated numerically as show in Fig. 5.6-5.7.

Fig. 5.6 shows the contact width 2/ for the three different cases. The case with convex
and concave surfaces are evaluated with radii that are double the radius a of the strand.
The other parameters used in the analysis are:

E = 0.95 GPa Strand Young’s modulus and E,=E;=100GPa matching pieces Young’s
modulus.

0.6 — Flat plates

Convex contact surface i
0.5 + Concave contact surface |- =" _____

Contact width

Fig. 5.6 Contact width 2/ for the three different cases considered. Flat plate R; = oo, convex
surface R;= 2a and concave surface R;= -2a.

¢ Single strand experimental
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Fig. 5.7 Displacement of a single strand, 0.82 mm in diameter. Comparison between
measurements and numerical evaluations. The agreement is good at low load and less good at
high load as expected from having disregarded non-elastic behavior in the model.
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Fig. 5.7 shows the displacement of a single strand (0.82 mm in diameter) for the three
different pressing surfaces configuration calculated using Eq. 5.10. The calculated
displacements are compared to the experimental results. The agreement is good at low
load and less good at high load as expected from having disregarded non-elastic behavior
and the limitation of /; being much less than the radius of the strand.

In Fig. 5.7 the concave surface case shows better fitting to the experimental results
and it is the more appropriate to describe the experimental setup but the precise
dimensions are unknown so that there is some uncertainty on the results.

When the force per unit length F; [N/m] is applied to a single strand, the effective
contact pressure p; [Pa] is given using Eq. 5.16:

=i

= 5.16
T (5.16)

Py
where /;is [; or [,.

Fig. 5.8 shows the experimental results of the normalized critical current plotted as a
function of the contact pressure calculated with Eq. 5.16. As mentioned earlier, the
pressure applied has been commonly evaluated as the ratio of the force per unit length
divided by the diameter of the strand. The conventional averaged nominal pressure
differs from the contact pressure evaluated using the width of the contact area described
above. In Fig. 5.8 the normalized critical current is also plotted for the conventional
pressure. The degradation of the single strand starts at contact pressures greater than 105
MPa in contrast with the case of nominal pressure where the degradation starts at around
40 MPa.

w Lad . . .
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= } < Nominal Pressure
E [ ¢ Contact Pressure-Flat plates
£ 021 7771 M Contact Pressure-Convex 1
5 } A Contact Pressure-Concave

0 L | i

0 50 100 150 200
Effective Contact Pressure (MPa)

Fig. 5.8 Single strand results: nominal pressure and effective contact pressure approaches.

From Fig. 8 it can be seen that the three cases are relatively different. Considering the
uncertainty on the machining of pressing pieces for the single strand the analysis results
are contained between the concave case and the flat plate case. The experimental setup
was not optimized for a single strand sample but for sub-cables. The flexibility of the
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design allowed us to easily adjust the design to test a single strand but the overall
sensitivity for this case was not ideal so that those results are not conclusive.

More systematic studies on Young’s modulus and behavior of single strand samples
to transverse load are necessary to better understand how the contact area is changing
with the applied load.

These initial results are very promising and with future experiment the parameters for
the analysis can be better redefined to obtain better agreement between experiments and
simulations.

It will be possible to utilize the 3-strand cable sample results to carry on the analysis
and modeling. A 3-strand cable, being the lowest stage of any full size cable seems more
appropriate to use for the modeling, maintaining the attractiveness of being a simpler
experiment to carry out than a multistage sub-cable or full size cable sample.
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5.4 3-strand sample

The sample composed of 3 superconducting strands is treated with a similar approach
to the single strand sample by using contact mechanics. But for this case a two crossing
cylinders model discussed earlier, in order to estimate the local contact pressure at strand-
strand contacts under a certain load. Eq. 5.12 and 5.13 are used to estimate the two semi-
axes of the contact area. To evaluate those quantities it is necessary to estimate the
parameters ¢ and [ that depend on the parameter cos{2 (Table 5.1). In this case

considering R{ = R; =a; R, = R; = oo (g being the radius of a strand):

_3. 1 _3-a
2 1/a+1/a 4

14cos20)"> [142-cos?9—-1]"
cosQ-—-{—z——-—} ={ 5 } =cos ¢

D

where ¢ is the angle of crossing between two strands (in this case equal to £2). The angle
for the 3-strand cable tested can be evaluated from geometry as shown in Fig. 5.9. It had
a twist pitch L, of 45 mm, the radius of the strand, a, is 0.41 mm for the Oxford strand
used in the experiment. Ry is the distance between the cable and the strand centers. The
geometrical radius of the triplet is Ryta. The three strands will find their natural
configuration with no need to reduce the void fraction at this stage.

load
! L
. tano = —-=
9:1 02 27 R,
N g =2 %3,
3
2R,

Strand-to-strand
contact

Fig. 5.9 Simplified view to estimate the angle between two strands.

Using the aforementioned parameters, it can be found that 2=¢ is 6.549°.
Interpolating the values for arand £ from Table 5.1 it is easy to find that in this case «is
9.260 and Sis 0.263.

Any cross section of the 3-strand cable has the same layout as in Fig. 5.9. Each strand
touches any other strand at 2 points as shown in Fig. 5.10. So the total number of contacts
per twist pitch is 6 (6 = 3 strands x 2 x 2 divided by 2 since one contact place is counted
twice). It is also assumed that the pressure is highest where the area of contact is the
lowest. The triplet tested was sitting in a groove and the reaction forces were on a much
larger area than the contact forces among strands. In a larger cable the assumption of
disregarding the reaction forces is also valid in first approximation because the number of
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strands in contact with the surface of the conduit is small compared to the total number of
strands. A more comprehensive calculation of the total number of contact points is
presented in Chapter 6 where the analysis is extended to a full size cable. In this chapter
the parameters and basic equations are given to analyze the behavior of the tested cables.

The number of strand-strand contact points per unit length, N;, is written as
(Eq. 5.17):

N =2 (5.17)
L,

where L, is the twist pitch of the first stage.

 SREEREEEEEELLCEy o

Fig. 5.10 Schematic view of strand-strand contact points of a 3-strand cable.
When the 3-strand cable has the applied force per unit length F; [N/m], the contact

force F, and the contact effective pressure p. of each crossed contact point between
strands are given respectively by:

_b

e N (5.18)
p==  IPa (5.19)

4

where the contact area S, is obtained from S, = 7-77-& using the semi-axes 1, & of the

contact area given by Egs. 5.12-5.13.

The deformation between the centers of the strands of each contact point directly
contributes to the vertical displacement due to the transverse load; therefore the
displacement of the 3-strand cable is given by Eq. 5.14. Calculated displacement obtained
from the equation for the 3-strand cable is shown together with the experimental results
in Fig. 5.11. The calculated displacement was evaluated for different Young’s
modulus. If the same Young’s modulus used for the single strand analysis is used, the
agreement between measurements and calculation is quite poor. A value of E between 3

and 4 GPa (1/E"=2(1- Vl2 )/ E) is used in Eq. 5.14 to give a more accurate description
to the data for the 3-strand sample.
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Both the experimental and calculated results agree well at low load in Fig. 5.11. It is
important to notice the difference between the parameter £ (Young’s modulus) of the
analysis describing the overall mechanical property of the material and the dynamic
Young’s modulus described at the end of Chapter 4. From the measured displacement
data we calculated the dynamic transverse Young’s modulus using Eq. 3.4 and this shows
a good agreement for an assumed strand Young’s modulus, E to be used in Eq. 5.14, of 3

or 4 GPa as indicated earlier (Fig. 5.12).
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Fig. 5.11 Measured displacements as a function of force per unit length compared to the

calculated ones using Eq. 5.28.
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Fig. 5.12 Measured transverse Young’s modulus and calculated ones for different cases.

130



The normalized critical current for the 3-strand cable can be plotted for the different
cases considered (Fig. 5.13).
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Fig. 5.13 Normalized critical currents as a function of the calculated effective contact pressure
with different Young’s modulus are compared with those plotted using the nominal pressure.

It can be seen that the absolute values of the contact pressures vary with the Young’s
modulus quite widely. The Young’s modulus values itself is important to know the
absolute values of the contact pressures, however the model analysis of an actual cable
operation with Lorentz force presented in Chapter 6 will not lose its generality and this
parameter does not play a key role in the end analysis.
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5.5 45-strand cable

The 45-strand cable can be treated with a similar technique to the one used with the
3-strand cable. The main difficulty for this case is to properly estimate the number of
strand-to-strand contacts in the cable and their crossing angles. Two different approaches
were used to analyze a 45-strand cable. The first method uses the approximation that the
cross section of the cable is square, as commonly used by others, while the second one is
a more refined technique maintaining the circular cross section (Fig. 5.14).

Fig. 5.14 Schematic view of the two different approaches used to analyze a 45-strand cable.

(i) Square Cross-Section Analysis

The 45-strand cable has three different stages (3x3x5) with twist pitches of 45, 85 and
125 mm, respectively.

The cross sections of the three stages are shown in Fig. 5.15. The first stage 3-strand
cable has been discussed in the previous section. In the second stage of 3x3, the three
3-strand cables are twisted together in a similar way as that of the first stage. Following a
similar analysis of the 3-strand cable case, each 3-strand sub-cable crosses with another
3-strand sub-cable at 2 places in one twist pitch of the second stage (85 mm), and each
3-strand sub-cable sees 2 other sub-cables. Therefore there are a total of 6 places (= 3
sub-cables x 2 x 2 divided by 2 since the same cross point is counted twice). The number
of strand-to-strand contact points per unit length, N,, of the second stage is given by:

N, =6 -2 (5.20)

p2
where n; is a parameter giving the number of the strand-to-strand contact points at one
crossing point between the 3-strand sub-cables (n=ng’ discussed in the general analysis in
Chapter 6 (ii)), and L,; is the twist pitch length of the second cabling stage. The value of
n, used is 2.43.
As presented in Chapter 6 (i), for the third stage of a 3x3x5 cable the number of
strand-to-strand contact points of the third stage per unit length, N3, is given as:
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N,=2.5.-3 (5.21)

p3

where n3 is the number of the strand-to-strand contact points at one crossing point
between the 9-strand sub-cables, and L3 is the twist pitch length of the third cabling
stage. The value of n3 used is 12.15.

Now the total number of strand-to-strand contact points per unit length, Nr.4s, of a 45-
strand cable of 3x3x5 is given using Egs. 5.20 and 5.21 with the contact points N, of the
first stage as:

NT_45=15«N1+5-N2+N3=-L-9—0-+30-”—2+10-"—3 (5.22)

pl p2 p3

&

1* stage 2" stage 3" stage
3-strand cable 9-strand cable 45-strand cable

Fig. 5.15 Schematic view of the different stages composing a 45-strand cable.

Substituting the variables n; = 2.43, n3 = 12.15, L,; = 0.045 m, L,, = 0.085 m and
L,3 = 0.125 m the total number of contacts per unit length Nt4s is 3829.0 m’.

If the cross section of the cable is taken to be a square instead of a circle, then the
number of strand on a horizontal plane is equal to/ N, (N being the number of strands,

45 for a 45-strand cable). The number of strand-to strand contact points, Nj, in one
horizontal plane per unit cable length is given, under the assumption of a uniform strand
distribution in the square cross-section, as follow:

N
N,=—F% (5.23)

N,

The force F. per strand-to-strand contact is given by Eq. 5.24 (F; being the total
applied force per unit length) in the same way as Eqgs. 5.18 and 5.19:

o FL

L= N, [N] (5.24)
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The contact pressure p. of the strand-to- strand contact point is obtained by dividing
the contact force F, [N] by the contact area S, [m ’l:

po=E [P (5.25)

4

The contact area S, is obtained from S, =7 -77-& using the semi-axes 1, § of the
contact area given by Egs. 5.12-5.13. Note that the semi-axes 77, £depend on the angle
between the cross contact strands which is a function of the twist pitch of the sub-cables.
In this analysis the 77, &for the first stage cable triplet are used for the strand-to-strand
contact areas of the higher sub-cables for simplicity as will be discussed in Chapter 6.

To find the total displacement in the transverse direction for a 45-strand cable, it is
necessary to evaluate the number of contacts along vertical lines. Those contacts are the
ones that need to be considered to calculate the effective displacement. In the square

approximation the number of vertical contact-point layers is N, = J N, but the strand-to-
strand contact points /N, are not perfectly aligned to contribute directly to the vertical

S

displacement. A fraction of /N, will be the effective number of contacts for the vertical

direction displacement so that the number of vertical displacement contact points is
written as:

N,=p-N, (5.26)

where p is the probability factor that represents the fraction of vertical contact points
aligned along the same line.

As described earlier, the displacement J; of a pair of strand-to-strand contact points is
given by Eq. 5.14 rewritten here for simplicity:

2
) =,1'3_*F.;_ (5.14)
(E° ) K,

The total vertical displacement &, is then given by (Eq. 5.27):

2
St =P AN, A3 J(E) e (5.27)

The calculated vertical displacement &, is plotted with the experimentally measured
results as a function of the load applied for different Young’s modulus
(E"=2(1 —Vlz)/E) in Fig. 5.16. In this analysis p is 0.3 indicating that there is a 30%
chance for the strand-to-strand contacts to be aligned vertically. The results obtained
show a good agreement between experimental and calculated displacements for values
similar to the 3-strand cable sample (3 and 4 GPa). As done with the 3-strand cable, the
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displacement measurements and calculated values can be used to evaluate the transverse
Young’s modulus as shown in Fig. 5.17 showing a good agreement with the 3 and 4 GPa
cases.
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Fig. 5.16 Measured and calculated displacements for the 45-strand cable.
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Fig. 5.17 Measured transverse Young’s modulus and calculated ones for different cases.
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In Fig. 5.18 the normalized critical currents of the 45-strand cable are plotted as a
function of the contact pressure evaluated using Eq. 5.25 for the different cases
considered.
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Fig. 5.18 Critical current as a function of contact pressure for the three different cables tested.

In Fig. 5.19 the normalized critical current as a function of effective pressure is
plotted for the 3-strand and 45-strand samples for the case of £ = 3GPa. The experimental
data are fairly close in behavior indicating a similar response to the effective pressure

applied.
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Fig. 5.19 Critical current as a function of effective pressure for the 3-strand and 45-strand cables
tested.
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The degradation trend of the 45-strand cable is slightly dull compared to the one of
the 3-strand cable. This might be due to the fact that a square cross section was used. In a
round cable the contact pressure cannot be considered uniform as done in this case. The
following section describes another model (using a circular cross section) that will be
used to better estimate the behavior of a 45-strand cable under load.

{ii) Circular Cross-Section Analysis

The strand-to-strand contact mechanism of a 45-strand cable using a circular cross
section (actual shape) is analyzed. The analysis procedure is similar to the above method
used for the square cross section analysis, except that the number of contact points now
depends on the location of the horizontal plane (Fig. 5.20). That is, the number of strand-
to-strand contact points in the horizontal plane is not constant as in the previous case, but
it is given by a function of the vertical coordinate y. The number of strands, »,, in a
horizontal plane of a distance y from the cable center is given by:

4-(Roge” =¥*) - (1=v )cos &
- wT-a

n (5.28)

y

where a is the strand radius, vsthe void fraction and R the cable radius.

Fig. 5.20 Circular cross section schematic used to estimate the number of contact points.

The number of the strand-to-strand contact points, Ny, in the horizontal plane at a
certain y (per unit cable length) is given by Eq. 5.29 using the total number of points Nr.45

given by Eq. 5.22:

N 4-\/R 2 _y2)(1=-v, ) -cos®®

Nhy V745 'l’ly » NT—4S ) ( cable Y ) ( f) (529)
N N T-a

5 §

The strand-to-strand contact force F,, per contact point for a given force per unit
length, F}, is given by:
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F
F,=—L

[N] (5.30)

The contact pressure p,, of the strand-to-strand contact is given by:

F
Poy =2 [Pa] (5.31)

where contact area S, is obtained from S, =7-77-& using the semi-axes 77, §of the

contact area given by Egs. 5.12-5.13. Note that the semi-axes 73, £ depend on the contact
force which depends on the location y, therefore also the contact area varies with the
location y.

The critical current of strands in the cable depends on the contact pressure p., which
is a function of y. As shown earlier, the critical current behavior of the 3-strand cable has
been obtained as a function of the contact pressure (Fig. 5.13). From these results, the
critical current of each strand is obtained for a given effective contact pressure. The best
fit curve obtained from the experimental data is shown in Fig. 5.21 based on the 3-strand
data using E=3 GPa. The experimental data points are limited, therefore it was necessary
to extend the data set in the most reasonable way as seen in the figure.

12

& 3-strand

Normalized Critical Current

900

Effective Contact Pressure (MPa)

Fig. 5.21 3-strand sample data as a function of effective pressure and the extrapolation used in the
analysis.

The total critical current of the round 45-strand cable is given for an untwisted cable
model and a twisted cable model by an integration of Eqs. 5.32a and 5.32b, respectively:
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Untwisted cable model

Reable
I,=2-(1- Vy ) cos¥- .[ ch—engineering (pcy ) (Rcable2 - y2 )-dy (5.32a)
~Reable
Twisted cable model
0
=21 (1=, ) cos®  [Joy ongincoring(Pey )* ¥+ Y (5.32b)

—Reable

where Jy-engineering(Pey) 1S the engineering critical current density as a function of the
contact pressure p., evaluated from the results of the 3-strand experimental results shown
in Fig. 5.21.

In the untwisted cable model the strands are parallel along the cable axis. Therefore a
location of each strand is identified along the cable by a single value of y. The contact
pressure of a strand is also given by the single value of y. On the other hand, in the case
of a twisted cable the critical current of the strand could be evaluated with the highest
contact-pressure experienced along the twisting if the current sharing of the strand with
adjacent strands does not occur. The critical current of a fully twisted cable is given by
Eq. 5.32b. In our present experiment the sample length between the voltage taps was
125 mm which was the same length of the last stage twist pitch; therefore the cable was
not fully twisted. The twist pitch effect could be partially important since the 45-strand
sample cable is in between the two cases.

The integral in Eq. 5.32 is calculated using the Gaussian method of order 40 [5.10].
The critical current equation can be written as:

Untwisted cable model

b b —b 40
Io=[fly) dp===-2w f(y)  [A] (5.33a)
b i=1

f(yi )=2-(1- Vg ) cos V- Jc—engineering (pcy ) ‘/(Rcable2 - yiz)

(l—v )'005291 ~sin Iesrand(pc )
=2 f2 T - "\/(Rcablez—yiz)
T-a*-N s 1 co—singlestrand
where
b= —Rcavie
b2 = Rcable
Twisted cable model

/] b2 _ bl 40

Io=[f(y)dy==——t3w () [A] (5.33b)
b i=1
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f(yj )=27-(1- Ve )-cos V- Jc—engineering (pcy ) Yi
. (l B vf ) -cos U Ic—.vinglestrand (pcy) )

=2 5 ;
a - Ns Ico—sfngiestrand
where
b1 =—Reable
bz =0

where w; and y; are weights and abscissas of Gaussian integration for order 40,
respectively (these numbers are given in Appendix IV). N; is the number of strands in
the cable (45), a is the strand radius (0.41 mm), vris the void fraction (0.33), and y; varies
between b; and b;.

After finding the contact pressure using Eq. 5.31, the normalized value of

I _singtestrand / Leo-singlesrana @t @ particular applied load can be evaluated from the

3-strand data of Fig. 5.21, and then the total critical current of the cable is obtained by
Eq. 5.33 using Microsoft Excel®. Calculation methods of the critical currents will be
given a detailed discussion in the next Chapter.

In addition, the irreversible critical currents of the 45-strand cable were evaluated
from the experimental irreversible critical current data of the 3-strand cable.
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Fig. 5.22 Experimental results as a function of the effective pressure of all cycles.

The irreversible critical current is the current achieved after the load is removed at the
end of a cycle. Several cycles were applied during the experiment (see Fig. 4.30). Each
time the critical current would partially recover (Fig. 5.22). The recovered critical current
is plotted as a function of the maximum pressure applied at each cycle in this figure. The
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data points are indicated as “irreversible”. As explained earlier in Chapter 1, the
superconducting magnets are cycled and any degradation caused by the cycling
operations is undesirable.

In Fig. 5.23 the irreversible critical currents of the 3-strand are plotted again as a
function of the peak contact pressure applied. The best fitting of the normalized
irreversible critical current 1., o / Leosrana 15 Shown in Fig. 5.23 by a solid line.
This best fitting is used for the analysis of the irreversible critical currents of the 45-
strand cable and other cables in Chapter 6.

The irreversible critical current of the 45-strand cable can be calculated from Eq. 5.33
by substituting / . g to 1, /1 given in Fig. 5.23.

In Fig. 5.24 and 5.25 the analytical results are plotted. It can be seen that the experimental
values (both critical currents measured during a loading cycle and the irreversible critical
currents) are contained between the twisted and untwisted models as expected from the
fact that the sample was not fully twisted.
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Fig. 5.23 Irreversible critical currents (3-strand measured values and fit) as a function of effective
pressure.
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Fig. 5.24 Experimental data and analytical results as a function of effective pressure.
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Fig. 5.25 Experimental irreversible data and analytical results as a function of effective pressure.
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5.6 Summary

Degradation of the critical currents due to mechanical transverse loads has been
investigated considering the contact pressure acting on strands by using contact
mechanics theory.

A new theoretical model was developed to analyze the critical current of a
superconducting cable taking into account the local contact pressures. Two main models
were presented: a parallel strand contact and a crossing-contact between two strands in
cable, the former one representing the single strand sample case and the latter the 3-
strand and 45-strand samples.

The model analyzes the contact point populations in a cable which is used to find the
force on each contact and its pressure.

The developed theory calculates an effective contact pressure between strands
accurately. The evaluation of the transverse load effect is very different from the
conventional method using the “nominal” pressure obtained from a projection area of the
strand diameter (Eq. 5.1).

Experimental data of the critical currents and the displacements due to the mechanical
transverse loads obtained for a single strand, 3-strand cable and 45 strand cables have
been all well understood considering the local effective pressures acting between strand
contacts in a cable.

An analytical model for a circular cross-section cable taking into account strand
twisting has been developed and compared with the 45-strand cable test data. Irreversible
critical currents of a 45-strand cable have been also analyzed. It was found that the
critical current and the irreversible behaviors of a 45-strand cable agreed well with the
model analysis based on that the behavior of a triplet.

In this analysis, Young’s modulus of a strand for a transverse load was used as fitting
parameter to analyze the experimental displacement data. For the single strand data, the
Young’s modulus value of E = 0.95 GPa was selected to obtain the best fit. On the other
hand, the larger value of about £ = 4 GPa gave better fitting for the displacement data of
the 3-strand and the 45-strand samples.

It is difficult to determine the absolute values of the transverse Young’s modulus of a
strand from the present experiments since the experiment itself was not designed to
measure Young’s modulus. Those measurements would require a dedicated experiment
using an absolute method to determine the displacement-force curves. In the present
experiment, the Young’s modulus values come as extra measurements with little effort
and offer insight on the mechanical behavior of the different samples.

Considering the present experimental results and a few reported Young’s modulus
values of Nb3Sn strands, for a transverse load, the extended model analysis of the Lorentz
load effect for a magnet operation will be performed with the Young’s modulus of 3 GPa
in the next Chapter. This parameter is to be used in evaluating the semi-axes of the
contact area between strands.

It can be concluded from this Chapter that the degradation of the critical current due
to transverse loads of a multi-strand cable can be evaluated taking in consideration the
local contact pressure between strands. The newly developed model analysis suggests
that multi-strand cable degradation could be estimated from the transverse load data of a
triplet cable by assuming the triplet curve as reference curve for the critical current and
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the irreversible critical current as a function of effective contact pressure as we did for the

45-strand cable in this Chapter.
Chapter 6 will expand the model presented in this Chapter and it will discuss the
Lorentz load effect on a 45-strand cable and a full size cable.
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CHAPTER 6:
Lorentz Load Effect and Extension to a Full Size Cable

6.1 Introduction

In Chapter 5, the discussion was focused on explaining the results obtained from the
experimental measurements of superconducting cables under external mechanical loads.
In this Chapter the developed model of contact pressure effects is used to analyze a full
size cable degradation due to the electromagnetic Lorentz force. Full size cable
degradation due to the Lorentz force is discussed as well as that of a 45-strand cable.

As previously mentioned, the experiment on sub-sized cables required a system to
apply a mechanical load to the samples in order to simulate the forces in a full size cable.
The natural Lorentz load in a full size cable is too large to be produced in the limited
space of an experimental magnet and with currents capability limited to 10 kA, so that a
sub-sized cable is used to reproduce similar loads in magnitude with an external
mechanical load applied.

Applying an external mechanical load is the only way to simulate the Lorentz load
but there is a fundamental difference between the two approaches. The mechanical load is
applied uniformly through the cross section of a cable, while the Lorentz load
accumulates linearly through the cross section since the Lorentz force is produced by the
self current and field distribution (Fig. 6.1).

It is shown in this Chapter that a similar approach as used in Chapter 5 can be used to
predict the behavior of a cable during operation considering the natural Lorentz load
created by the interaction of current and magnetic field. The model is simplified, and
does not lose its generality, by disregarding the central cooling channel of a CICC.

l Mechanical Force Accumulating Electromagnetic
L l l l l (Lorentz) Force
Force l g \/ ¥ Force
distribution P\ v distribution
B
l Highest p T l
l pressure areas : l

Fig. 6.1 Force configuration for a cable loaded with an external mechanical load and the
accumulation of a natural Lorentz load.

6.2 Number of contact points in a multi-strand cable

(i) Crossing contact locations between sub-bundles
In Chapter 5, the modeling presented assumed the number of strand-to-strand contacts

to be known and the explanation on how to find this number were deferred to this
Chapter. In this section, we present first a model to count contacts in a multi-strand cable.

145



The number of contacts is calculated for the different stages starting from a
3-strand cable. In general a cable in conduit conductor is produced in multiple stages
starting from twisting three strands together and then twisting together triplets or four
bundles and so on, until the final stage is reached.

Referring to Fig. 6.2, when a transverse load is applied to a 3-strand cable it is noted
that there are six places of strand-to-strand contact points that support the load in one
twist pitch length as marked in the figure. At each contact, two strands overlap each other
to make one strand-to-strand contact, so that the total number of strand-to-strand contacts
is 6 per twist pitch, which is twice the number of strands.
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Fig. 6.2 Triplet under transverse load and contact places in one twist pitch length.

The next stage could be composed of three, four or five bundles of 3-strand cables
(3x3, 3x4, 3x5) as shown in Fig. 6.3, 6.4 and 6.5, respectively. In the case of three
bundles (Fig. 6.3), the number of contact places between two bundles is 6 using the same
analogy of the triplet in Fig. 6.2.
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Fig. 6.3 Three-bundle cable under transverse load and contact places in one twist pitch length.
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In the case of four bundles the number of effective contact places between bundles is
8 per twist pitch as shown in Fig. 6.4. Note that one cross section produces two contact
places such as A-B and C-D in this case.
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In the case of five bundles the number of bundle-to-bundle contact places is 10 as
shown in Fig. 6.5. In general, the contact places between sub-bundles are given by 2°k
where £ is the number of bundles.

The approach followed with the examples just presented allows concluding that the
bundle crossing contact places, Neyoss,i, for the stage 7, where the strand-to-strand contact
points are created after cable swaging, is given per unit length by Eq. 6.1:

N =2k 6.1)

cross,i
L p;

where k; is the number of bundles and L,; is the twist pitch.
(ii) Number of strand-to-strand contact points

To evaluate the total number of strand-to-strand contact points it is necessary to
determine the number of strands in the bundle-to-bundle contact. The strand-to-strand
contacts occur between bundles as illustrated in Fig. 6.6. The width of the bundle-to-
bundle contact place in a swaged cable can be taken to be equal to the radius of the cable
as shown in the figure. Taking into consideration the void fraction in a cable, the radius R
is derived as follows:

Ns-fc~a2=7r-R2-(l—vf)-cosﬂ (6.2)

2
R=/ N, a (6.3)
(1-v,)-cos¥

where N, is the total number of strands, a the radius of a single strand, vsthe void fraction
of the cable and @ is the average angle between strands and the cable axis. For a large
cable like the ITER cable cos@ is 0.93-0.95 and & is 15-20°. For smaller cables
cos0>0.99 so that it does not have to be taken in consideration in the calculations.

Fig. 6.6 Schematic view of the crossing between bundles in a swaged cable.
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The number of strands across the radius R can be written as:

2:a-(1-v;)cos®-R 2-(1-v,)cosV R Z-J(l—vf)'cosﬂNs

ft-az w-a /4

Ny 6.4

Both bundles expose the same amount of strands to the contact area as illustrated in
Fig. 6.6, so that the cross contact points are given by » RZ. For the i™ stage cable ngis
named ny; .

Now the strand-to-strand contacts »; of stage i of a cable with a total number of
strands Nj; of a cable composed of %;, k»,...k; bundles in the first, second,..., K stage is
given per unit length as:

2 4.(1-v,)-cos®-N_,

Ni=2.ki.nL-_-2.ki, ( f2) si
Lpi T 'Lpi

N,=ky ky- .-k (6.6)

St

(6.5)

A five stages cable can be taken as an example, and Table 6.1 summarizes the main
parameters used later in the Chapter.

Table 6.1 Parameters used to calculate the total number of contacts.

Stage | # bundles Twist Strands
i (or strands) | pitch L,; N, Strand-to-strand contacts N;
(1-v;)-cos¥-N
1 kl Lpl N51=k1 N1=8'k1' f2
7[ ‘Lpl
(1-v,)-cos-N,,
2 k2 Lpz N32=k1'k2 N2:8.k2, S > s
ﬂ- * Lpz
(1-v,)-cost-N
3 k; Ly Na=ki k ks N,=8 k- f : s
T -Lp3
(1-v;)-cos¥-Ng,
4 ky LP4 N =k k; ‘ks'ky N4=8’k4 . 5
T -Lp4
(1-v;)-cos¥- N
5 k5 LP5 N55= kl' k2 k3k4k5 N5 =8 k5 . 5
” .LPS

The total number of contacts in a multi-strand cable can be then written as:
NT =k2 'k3 ‘k4 'k5 'Nl +k3 'k4 'k5 ‘Nz +k4 'ks ‘N3 +k5 'N4 +N5 (6.7)

For an ITER cable, as described later in this Chapter, the fifth stage cabling is
composed of 6 bundles. Each one of the last stage bundles is wrapped with stainless steel
foil. Therefore the contacts between bundles during the fifth stage can be disregarded
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(Ns = 0). Furthermore higher stages cabling are the ones that contribute the least to the
total number of contact points.

(iii) Contact force and effective contact pressure due to Lorentz force

In order to estimate the Lorentz load effect on the critical current it is necessary to
find the number of strands at a plane perpendicular to the Lorentz load (Fig. 6.7) in order
to evaluate the contact force and pressure.

Lorentz
force
direction

Fig. 6.7 Schematic view of a multi-strand cable indicating the number of strands 7, in layer A at
a certain height y.

The number of strands 7, on a horizontal plane at height y when the Lorentz force is
vertical, can be written as:

__2-(1—vf)-cosl9-1/(Rmbk,2 —5* ) O _4-(1—vf)-cosﬁ-1/(Rcab,ez =y? }

n
hy T az T-a (6.8)
Ns Aslrana’

Acabie (1 - vf )

costd=

where v is the void fraction, Reape the cable radius, a the strand radius and @ is the
average angle between strand and cable axis.

Using the expression in Eq. 6.8 the strand-to-strand contact points N, in a plane per
unit length can be found as:

(6.9)

where Ny is the total contact points in a cable per unit length evaluated with Eq. 6.7.

The Lorentz force Af;r, per unit length caused by strands in a layer A at position
y =Y (Fig. 6.7) can be written as:

150



N A Ns I—in le(p )
Mgy =BTy nyy- Nsc 2ya_B 2-(1=vy ) cos ¥ \/Rcabze -yt NC‘ — 2 =
s

s T-a
(6.10)

where B is the magnetic field, and I sngre(p.,) is the critical current of a single strand at a

certain contact pressure p.y.
The total force acting on layer A, Firy, caused by the strands above the strands of

layer A and the strands in layer A, is then:

Fi= | Z'B N 1 o I Poyldy (611
LFy — j fLFy ( _vf) cos II —smgle(pcy) cable -y ay ( . )

Y s

The contact force F., experienced by a strand in contact with another strand at a
particular location y is then given with the total contact point N, of Eq. 6.9:

F
Fo=— (6.12)
hy

The contact pressure can be obtained as:

fo (6.13)
< .

4

Py =

here S, is the area of a contact, as discussed in Chapter 5 evaluated using Egs. 5.12-5.13
replicated here for the reader’s convenience:

Fcy'KD 1/3
= | — 6.14
n a[ = ] (6.14)
E= ﬁ( KD] (6.15)
S, =m-n-& (6.16)

where M and & are the semi-axes of the ellipse that describe the contact area,
3 1 3 a

2 1/R +1/R,+1/R +1/R, 4

1/E =(1-v?)/E, +(1-v})/E,, Kp=

6.3 Critical current under Lorentz force load

To calculate the critical current of the cable as a function of load two cases will be
considered: (i) untwisted and (ii) twisted cables. A real cable would be always twisted,
but both cases will be discussed.
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(i) Untwisted cable
All the strands in a horizontal plane (like layer A) have the same uniform Lorentz
load, so that the currents of the strands are also the same. The total critical current of a

cable can be written for an untwisted cable as:

Reable

N, dy
Ic = J‘Ic—single(pcy)'nhy ’ Nsc ~£=
—Reabie 5 (6 17)
Reapl )
¢ 2N 2 2 dy
= |I,_; S (1=v, ) cos Py (Rogpe” — —
—RC_L; single (pcy) T a2 ) NS ( f) ( bl y 2

The critical current I, is normalized by the initial value I.o. The normalized critical
current I, is given by:

Reabl
* ]c € I —si le(pc ) 2NSC
Ic = = .[ — — 2 N .(l_vf)'cosﬁ‘ V(Rcable2 —yz)dy

0 —Reaple Ny - Ico—single T-a - NN

Reable
2 ]c——sin e(pc )
=t | RO 1oy ) cosO (Rt ¥ )y (6.18)

7T-a - NS —Reable ICO—single
2 Rcable* . A
T2 J]c—single'(l_vf)'COSl?‘ (Rcable —y*)dy
7-a” N
5 —Reable

The integral is evaluated using the Gaussian method as discusses in Chapter 5 and
Appendix IV (w;being weights of Gaussian integration for order 40):

Reable 40
* Rca e _Rca e
= ] Sy =CRane) 5y py) (6.19)
~Reable i=1
2 x
F(ri) = Iesngiecos - VR’ =7 )-(1=v,)  (6:20)
(i) Twisted cable

In the case of a fully twisted cable each strand is assumed to spiral along the cable
axis, and in a twist pitch length it will go back to its original location. This means that in
a twist pitch length each strand will experience the highest Lorentz load at some point
(Fig. 6.8) so that the currents of strands on the same annulus will transport the same
current I(r) corresponding to the minimum critical current experienced in a twist pitch
length. No current sharing among strands is assumed in a twist pitch length. This is true
for a chrome plated wire cable.
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Accumulating

Lorentz force
Location where Lorentz load is

the highest and the critical
current the lowest. In one twist
pitch length every strand on the

annulus of radius » passes this

location.

Fig. 6.8 Schematic view of a fully twisted cable.
The total critical current of a twisted cable, I, is written as:
N_ 2(1-v,)-cos® °
c = NSC ’ fz Iy ’ Ic-single(pcy ) ) dy (621)
§ & =Reable
(6.22)

The normalized critical current Ic* 1s:
0
_[ c—single (pcy .) ’ ydy

I :2-7r-(1—vf)-cosz9

—Reable

Ns-ir-a2

*

I =
) I c0
The integral of Eq. 6.22 is again calculated using Gaussian integration but this time

the integral is evaluated between —R..s and 0 since the factor 27y in the equation takes
(6.23)

into account both halves of the cross section.
0 40

i 0—(—-R, )
L'= [ fy)-dy==——=3 w f(3.)

—Reable i=l

2-(1=v,)-cosV I, _ 1. P

( f) e glz(.py). i (6.24)

a

f(yi)= N,

6.4 Numerical calculation method of critical current
The integration of the critical currents given in Eq. 6.19 and 6.23 are calculated using
Microsoft Excel®. To calculate the contact pressure p., the strand currents are required.
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Therefore an iteration process is used to perform critical current calculations. It is
necessary to start off with an assumed current I singre=Ip to properly operate the iteration

process.
The critical current for an untwisted cable is calculated with the following steps:

(a) Give an initial strand current I.gnge=Ip for the first segment of Gaussian
integration i=1 (Fig. 6.9)

Fig. 6.9 Schematic view of the intervals i used to evaluate an integral with the Gaussian method.

(b) Calculate the Lorentz force f;r,(i=1) for segment i=1 (I;=;=Ip)

— N Yo—)2 _
Jiry =BTy -ny, - NSC YW Yo=Rcabie (6.25)

N

(c) For i=2 the accumulating Lorentz force F;r,(i=2), at the location y corresponding
to i=2, is:

Frp=fir(i=)+ f1p(i=2)
Nsc.yl—y3 (626)

fLFy(i=2)=B’Ic—single(pcy)'nhy' NS 2.4

The accumulating force at a location y corresponding to a certain interval i and using
Eq. 6.13 for p, is then:

Fip = fir(i=D)+ fip(i=2)+.+ fip(i=i-1)+ f15,(i)

; Ny Yia =V (6.27)
fLFy(l)=B']c—single(pcy)'nhy ’ Nsc ) 12-a 1, Yar = Reapie

N
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(d) Obtain I-3, Ii~...Ji=4 using the measured critical current as a function of the
transverse load for a 3-strand as shown in Fig. 5.21 and 5.22 (once the load is known the
normalized critical current can be found) and use it to recalculate steps (a)-(c) until the
iteration converges.

(e) Obtain total current I, = f;=; + ;=) +...+ Li=g9
Table 6.2 summarizes the calculation steps for an untwisted cable.

Table 6.2 Steps used in the iterative process to calculate the normalized critical current of an
untwisted cable.

Normalized
Step Number | Lorentz Load Contact | Contact | Contact Critical

Force | Surface | Pressure

Current

i=1 I firy-1 F Sci P ci=Li/Ie
1=2 Ipcy firy1tfiry2 Fo S Py cr=Lea/Ieo
i=3 Iycs fipyatHfieyo Hieys Fg Se3 Pg cs=Ly/L,
1=39 Ip-ca firyr * fippo +o.. + fipea Feag Se9 Peag c3o=Le3o/1eo
i=40 Iy-ca feyatfipya ... Hiryso ey Foo Sca0 Peap Ca0=Lean/Leo

For a twisted cable, the critical current is obtained with two iteration processes. One
is the same as the one used for an untwisted cable to calculate a self-consistent current
with its Lorentz force effect. The other iteration process is to make a requirement of the
strand currents as following: I;=; = li=49, Li=2 = Ii=39, Ii=3 = Li=38, ..., Ii = 141.;

Table 6.3 summarizes the calculation steps for a twisted cable.

Table 6.3 Steps used in the iterative process to calculate the normalized critical current of a
twisted cable.

Normalized
Step Number | Lorentz Load Contact | Contact | Contact Critical

Force | Surface | Pressure

Current
i=1 Ipcqg fLFy-l Fe Sci P ci=luao/Ieo
1=2 10‘039 fLFy.]+fLFy_2 Fc2 ScZ Pc2 c2=I<:39/ Ico
i=3 I()'C3g fLFy-l+fLFy-2 +fLFy-3 Fc3 Sc3 Pc3 c3=Ic38/ Ico
! ' | | ' K

1=39 Ip-ca firya + firgo tooo + fipeao Feo Sc39 Peag c39=Le3o/ Lo
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6.5 Lorentz load effect on a 45-strand cable

The 45-strand cable tested in the experiment was a hybrid cable in which one of the 3
strands of the first stage triplet had a pure copper wire, the other two being
superconductor. The cabling pattern is (2 superconductors +1 copper wire)x3x5 so that
the total number of strand N; = 45 (k;- ko k3 = 3-3-5), and the total number of
superconducting strands is Ny, =30.

In this case cos@ is 0.991 and could be disregarded since it has only a 1% effect on
the results.

Table 6.4 summarizes the assumed parameters and the calculation of the total number
of contacts per unit length (Ny7) using Egs. 6.1-6.7.

Table 6.4 Parameters assumed to estimate the total number of contact points in a 45-strand cable.

Given Parameters

ki 3 Field (T) 12

ky 3 Strand Radius a (mm) | 0.41

k; 5 E (GPa) 3

L, (mm) 45 Poisson’s ratio 0.3

Ly, (mm) 85 Ns (Nso) 45 (30)
| Ly3 (mm) 125 vr 0.33

Calculated Parameters

4-(1=v,)-cosV-k
”mz: ( f)z : I*
V4
4.-(1-v,.)-cosV k, -k
Mgyt = (A=vs) 8 L2 2.43
/4
4.-(1-v,)-cosV-k, -k, k
Nl Gl - 12.15
V4
n. 2
pl
0.2
Ny=2-ky — 171.5
P2
. 2
Ny=2-ky —2 971.7
p3
NT=k2'k3'N1+k3'N2+N3 3829

* The calculated value for n R12 is less than 1 but in a real cable this value should be 1.

Using the information in Table 6.4 it is possible to estimate the contact force and
pressures using Egs. 6.10-6.16. The effective contact pressures are then used to estimate
the normalized critical current in Eq. 6.18 and Eq. 6.22 for the case of untwisted and
twisted cable respectively using the 3-strand cable data of Figs. 5.21 and 5.22 for the
loading and irreversible cases respectively.
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In general cables are fully twisted so that the most important results will come from
this condition.

Several results can be obtained with the modeling discussed in the previous sections.
It is interesting to plot the current distribution and the contact pressure distribution in the
cable. Fig. 6.10 shows the strand current distribution of both untwisted and twisted cables
for the non-degraded strand current of 280 A. It can be seen that the current distribution
is very similar for the twisted and untwisted case, but the twisted case shows a symmetric
distribution with respect to the center plane (y=0) of the cable because the currents are
determined by the lowest currents at the highest pressure points (bottom half of the cable
0<y<-R.apie). In the untwisted case the strands at the top of the cable (v = +R i) are the
ones carrying the highest current since the accumulating Lorentz force is the smallest.

Similarly the contact pressure distributions for the two cases are very similar, and the
pressure is very low at the top of the cable since the strand currents are small. The
pressure increases gradually across the cable (the larger number of contacts is in the
middle) before peaking at y = -Rape.

Current Distribution in Cable Contact Pressure Distribution
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- ) i i
E 150 B - Rt < [ (-9 ﬂ-soo N | 1
S U N PR S N g
3 £ 200 -
50 +-A- | ==TUntwisted | - - - -~ = 8 100 -
—o— Twisted i
O T T : O
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Fig. 6.10 Current distribution and contact pressure distribution in a 45-strand cable as a function
of the position across the cable.

Fig. 6.11 shows the cable currents as a function of the nominal current
(TIsingte-stranaXNumber of strands) which is expected without degradation.

One can see the degradation of the cable currents and the irreversible currents due to
the Lorentz loads. Fig. 6.12 shows the degradation rates calculated from the data in
Fig. 6.11. It can be clearly seen that the Lorentz load created an inherent degradation
which is mostly accentuated when the cable is twisted. For example, in the 45-strand
cable test presented in Chapter 4, the cable contained 30 superconducting strands each
one capable of carrying a current as high as 280 A. The expected maximum current was
8400 A but in reality the Lorentz force effect degrades the cable which is then expected
not to carry more than 7800 A (twisted case).

In Chapter 4, we stated that a 23% initial degradation of the tested 45-strand cable
was observed. The present analysis indicates that for the 45-strand cable sample an initial
degradation of at most 7.5% should have been expected caused by Lorentz load.

As we mentioned earlier our sample was too short to be considered as a fully twisted
sample, so that the expected degradation could range between 1.5% (untwisted case) and
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7.5% (twisted case). It is worth to notice that our model predicts degradation caused only
by the transverse load due to Lorentz force. Thermal contraction could be responsible of
the remaining 15% of the initial degradation. Bending effect due to Lorentz force could
also be a cause of some degradation.

Those results indicate that the ideally expected current from single strand data can
never be reached since the Lorentz load effect cannot be avoided. The degradation though
is not very large for a 45-strand cable.

However this effect is much more important in a large size cable, like an ITER cable,
as it will be shown in the next section.

45-Strand Cable ((2+1)x3x5, 15 Cu strands)
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Fig. 6.11 Normalized critical current as a function of nominal current.
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Fig. 6.12 Percent difference between the nominal current case and the expected values
considering the natural Lorentz load effect.
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6.6 Lorentz load effect for a full size cable

A full size cable of five stages (kiXkyxksxksxks) has a total number of strands
N, = ky-ky'ky-ke'ks with the total number of superconducting strands being Ny = 2-ky'ks-ka'ks
(typically the first stage has 2 superconducting strands and 1 copper strand).

Table 6.5 summarizes the assumed parameters. The calculation of the total number of
contacts per unit length (Ny) is obtained using Eqs. 6.1-6.7. This model cable has the
original cable pattern proposed for the TF coil in ITER (3x4x4x4x6) with all strands
being superconductive.

As expected the number of strand-to-strand contacts in this case is much larger than
in the case of the 45-strand cable, and the Lorentz force accumulation is also greatly
increased considering the total number of strands (1152).

Table 6.5 Parameters assumed to estimate the total number of contact points in a full size cable.

Given Parameters

k; 3 Field (T) 12

ky 4 Strand Radius @ (mm) | 0.41

ks 4 E (GPa) 3

k4 4 Poisson’s ratio 0.3

ks 6 N; (Ng) 1152 (1152)

L, (mm) 65 vy 0.33

Ly (mm) 90 cos@ 0.95

Lp3 (mm) 150

L,4 (mm) 270

Lys (mm) 430

Calculated Parameters

”Rl2 1*
gy’ 3.10
Ny 12.38
Ny 49.53
Mg 0.00
N, 92.3
N, 2752
N 660.4
N, 1467.5
Ny 0.0
NT =k2 'k3 'k4 k5 'Nl +k3 'k4 'kS 'N2 +k4 ‘k5 'N3 +k5 'N4 +N5 86,516

* The calculated value for » R12 is less than 1 but in a real cable this value should be 1.

Similar figures to those shown for the 45-strand cable can be obtained for this case
using the normalized critical current as a function of load of the 3-strand cable.
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Fig. 6.13 shows the computed current and pressure distributions for a non-degraded
strand carrying 120 A. In this case the difference in the current distribution in the twisted
and untwisted case is much larger than in the case of the 45-strand cable (Fig. 6.10)
indicating a larger effect of the accumulated Lorentz load on the current distribution. The
larger Lorentz load accumulation, caused by the large number of strands, creates a larger
contact pressure between strands, causing a significant degradation on their critical
currents.

Current Distribution in Cable Contact Pressure Distribution
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Fig. 6.13 Computed current distribution and contact pressure distribution in a full size cable as a
function of the position across the cable.

In Fig. 6.14 the calculated currents are plotted as a function of the expected nominal
current without degradation from single strand data. If a fully twisted case is considered
the expected initial degradation caused by Lorentz load can be as high as 20% for a
current similar to the one expected in the TF coil (68 kA), as shown in Fig. 6.15. The
irreversible degradation can be more than 10% at 68 kA.

The model presented only considers degradation caused by transverse load due to the
natural Lorentz load (contact pressure between strands). Axial and bending strains caused
by thermal contraction and Lorentz load are additional sources of degradation as
described in the work done by Mitchell, Zhai and Nijhuis [6.1-6.3]. The overall
degradation could then be higher than 20%.

The initial degradation of a full size cable is very important information to know
considering that the superconducting magnets are the most expensive component of a
tokamak machine. Typically the magnets are designed in a very conservative way and the
operation current in each strand is much smaller than its real carrying capability. For
example in this cable 1152 strands are used and only 60 A is applied to each strand even
if the strands could carry a much higher current.
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Full Size Cable (3x4x4x4x6, no Cu strand)
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Fig. 6.14 Normalized critical current as a function of the nominal current.
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Fig. 6.15 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect.

Parametric studies have been carried out to determine what would be the best
configuration for a cable in conduit conductor. The goal is to minimize the inherent
Lorentz load effect on the critical current.

Figs. 6.16 and 6.17 show results for five cables in which the same amount of total
current is carried by different numbers of strands. Only the twisted cable case is
considered since it is the most relevant to a cable design. From these figures it can be
clearly seen that the smaller the number of strands the higher is the degradation caused by
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the Lorentz load accumulation. This is intuitively obvious considering that if a cable is
composed by a smaller number of strands; each one of them has to carry a higher current
so that the Lorentz load effect is higher. For example, for a 1152-strand cable carrying a
nominal current of 68kA, each strand has to carry a current of 60 A while each strand of a
288-strand cable (used for illustration purposes) should carry at least 236 A if the same
wire dimensions are maintained. Therefore the transverse loads are larger and the local
contact pressure increases. By increasing the number of strands, the transverse loads can
be distributed across the cable and among strands. The smaller cable (288 strands) is
expected to have an initial degradation as high as 40% which is 20% more compared to
the standard design with 1152 strands.

It is then preferred to have a larger cable with less current for each strand to smear out
the Lorentz load effect over a larger number of strands.
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Fig. 6.16 Normalized critical current as function of nominal current for cables with different
number of strands.
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Fig. 6.17 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect for cables with different numbers of strands.
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Additionally it can be observed from Fig. 6.17 that the cabling pattern is affecting the
degradation. For example, a cable with 864 strands with cable pattern 3x3x4x4x6 has a
degradation that is more similar to a cable with 450 strands with cabling pattern 3x5x5x6
than a cable with 1152 strands and a 3x4x4x4x6 pattern. This behavior is driven by the
choice of using a second stage composed of 3 bundles reducing the number of contacts.
This effect is more clearly represented in Fig. 6.18 where a cable composed of 486
strands and a cabling patter 3x3x3x3x6 shows a larger degradation than a cable composed
of 450 strands and a cabling pattern 3x5x5x6 (the degradation is 10% larger).
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Fig. 6.18 Percent differences between the nominal current and the expected values considering
the different cabling patterns used for the cables.

An advantageous configuration for a full size cable would be one in which the 6
petals of the last stage are completely independently supported (each one is mechanically
supported and does not affect the other petals) so that the load accumulation is limited to
an area which is six times smaller than the original size cable. This configuration, despite
increasing the fabrication challenges, would allow reducing the current and the total
Lorentz load in each petal. The degradation in this configuration would be 6% at 11.3 kA
instead of the 20% at 68 kA for the standard design (Fig. 6.19).
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Fig. 6.19 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect for a full size cable and one with isolated petals inside a full size
cable.
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Another critical parameter of a cable is the cabling pattern and, in particular, the twist
pitches selected for each stage composing the cable. The model presented here estimates
the number of contacts in a cable, and concludes that the larger the contact-points number
is, the better the performance of the cable. In fact a larger number of contacts lead to a
smaller pressure felt by each strand which translates into a smaller degradation.

Results for different twist pitch configurations are plotted in Fig. 6.20. The figure
reports the nominal case for a TF ITER cable labeled 1x1x1x1x1, indicating that the twist
pitches are the nominal ones used for this cable (given in Table 6.5). The other curves
have twist pitches that are a fraction of the original twist pitch. For example the label
0.75x1x1x1x1 indicates a cable with a first stage twist pitch that is 25% smaller than the
original case and so on.

The figure shows that having shorter twist pitches help the performance of a large
cable. For example, a decrease of 25% of the twist pitch of the first stage reduces the
initial degradation at 68 kA nominal current from 20% to 16.5%.

These results are in contrast with the ones obtained by Nijhuis and others using their
bending model [6.1]. Their work indicates that a longer twist pitch in the first stage helps
reducing the bending degradation effect. In their work the transverse load effect is
considered to be small but the pressure is evaluated using an averaged value on the
diameter of the strand.

As explained in Chapter 5, this averaging approach can be misleading because locally
the pressures can be much higher that this nominal value. We believe that their results are
very valuable and that indeed the choice of a longer twist pitch could reduce the bending
effect. We also believe that the cable design should be a compromise between the
bending effect and other sources of degradation present in a cable in conduit conductor
namely the transverse Lorentz load contact pressure effect considered in this work.

For example, if the first pitch length is increased by 25% and the twist pitch lengths
for the 2™, 3 and 4" stages are reduced by 25%, the benefit of reducing the bending
effect could be retained but also the Lorentz load initial degradation could be reduce from
20% to 16.9% by increasing the number of contact points (Fig. 6.21).
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Fig. 6.20 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect for a full size cable with different twist pitch configurations.
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Fig. 6.21 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect for a full size cable with different twist pitch configurations
indicating the benefit of shorter twist pitches in the higher stages of the cable configuration.

It is important to stress the fact that the presented model only predicts the degradation
caused by transverse contact pressure caused by Lorentz load. Axial and bending strains
caused by thermal contraction and by Lorentz load could be additional sources of
degradation and can affect the performance of superconducting strands and of a full size
cable, as discussed in Chapter 2. Those effects are complementary and not mutually
exclusive so all should be considered in the overall performance of a cable. The work of
this thesis was limited to the contact pressure effect due to transverse Lorentz load.

For example we can consider the test results of the ITER Central Solenoid Model
Coil (CSMC) and the CS Insert which were tested in 1999-2000. The coils were designed
with a large safety margin and they reached successfully their operational values but the
conductor showed a significant degradation which was unexpected.

The tests in large magnets usually measure the current sharing temperature at a
certain current. For example the CS insert was charged up to 40 kA at 12 T and the
current sharing temperature measured was 7.6 K. The cable was composed of 1152
strands so that the current for each strand was 34.7 A. The critical current per strand at
7.6 K, 12 T 1s 70.2 A as estimated with equations discussed in Chapter 2 (Egs. 2.3-2.10)
[6.4]. This indicates that the degradation of the strands in the insert was 51%.

By using the model presented in this chapter with the parameters summarized in
Table 6.6, the results of the simulation of the ITER CS Insert are shown in Fig. 6.22.
From this figure it can be clearly seen that the expected degradation from the transverse
Lorentz load contact pressure effect is 12% which partially explains the estimated
experimental degradation of 51%. Axial and bending strains caused by thermal
contraction and by Lorentz load could be additional sources of degradation so that overall
degradation could be significantly higher than 12%.
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Table 6.6 Parameters assumed to estimate the total number of contact points in the CSMC Insert.

Given Parameters

k; 3 Field (T) 12

ky 4 Strand Radius @ (mm) | 0.41

ks 4 E (GPa) 3

k4 4 Poisson’s ratio 0.3

ks 6 N; (Nge) 1152 (1152)

L,; (mm) 65 vy 0.36

Ly» (mm) 90 cos@ 0.95

Lp3 (mm) 150

L,4 (mm) 270

L,s (mm) 430

Calculated Parameters
2 1*

R
2

B 2.96
2

R ps 11.83
2

Mpy 4731
2

o 0.00

N, 92.3

N, 262.8

N, 630.8

N, 1401.8

N 0.0

* The calculated value for np, ? is less than 1 but in a real cable this value should be 1.
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Fig. 6.22 Percent differences between the nominal current and the expected values considering
the natural Lorentz load effect for the CSMC Insert cable.
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6.7 Summary

Further discussions of the newly developed cross-contact model have been continued
in this Chapter. In this model, the critical current degradation occurs due to transverse
stresses at the cross contacts between strands. The contact mechanisms between strands
and the contact-point population in a cable have been discussed and analyzed. The model
has been extended to the transverse load effect on the critical current due to electro-
magnetic loads of Lorentz force in a general cable. Simulations of the critical current
degradation for a 45-strand cable and an ITER full size cable have been performed.

Lorentz load effects on a 45-strand sub-sized cable similar to the cable used in the
experiment have indicated that the critical current degradation of the cable could be as
high as 7.5% at the measured critical current of 6.5 kA (the expected current from
witness sample was 8.4 kA). It means that one third of the initial degradation 23%
observed during the experiment can be explained by the Lorentz force effect. Other
major origin of the initial degradation could be the thermal strain effect.

A full size cable simulation using an ITER TF conductor design has revealed
degradation as high as 20% due to Lorentz force load itself at the operation current of
68 kA. These simulations have been performed based on the experimental data obtained
with the 3-strand cable presented in Chapter 5.

Parametric studies considering different number of strands and different twist pitches
have been also presented. Those studies indicated that to obtain the desired current it is
better to use a large number of strands with a small current than using a small number of
strands with a large current. Additionally, a cable with shorter twist pitches has a smaller
degradation caused by the Lorentz load effect. Since other work show a benefit in having
longer twist pitches to reduce the bending degradation, a compromised design has been
also discussed. It was shown that the number of contacts is greatly reduced if the second
stage is composed by 3-bundles increasing the overall degradation of a cable with this
cabling pattern.

As mentioned in Chapter 5, the newly developed contact pressure model can predict
the critical current degradation of a CICC cable from transverse load data on a 3-strand
cable, which is the smallest stage of a multi-stage cable. This means that a relatively
simple test could be carried out on a small 3-strand sample and the experimental

information could be used to predict degradations of larger cables caused by Lorentz
load.

The analysis presented in this Chapter showed for the first time how the transverse
Lorentz load effect could result a significant inherent degradation to a large size cable.
This is a very important piece of information that could help improve the cable design
and explain more appropriately the behavior of a full size cable during operation.
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CHAPTER 7:
Conclusions

In the ITER design criteria (DDD 1.1-1.3 Appendix C) documented in the late 1990’s
and issued before starting the series of ITER model coil tests [7.1], it was stated that
transverse stress/strain effects due to the electromagnetic loads on the conductor (IxB)
had shown no evidence of critical current degradation in the experiments carried out on
full size conductors up to that point. No degradation due to transverse loads had been
assumed in the document, and axial strains caused by cool down and an operation hoop
force were the only strain effects taken into consideration.

The assumption that the Lorentz load effect was not causing degradation came from
experimental results performed on single strands and sub-sized cables. Ekin’s strand data
[7.2] showed no degradation up to about 100 MPa. The transverse load in a large size
cable has been always estimated as an averaged “nominal” pressure over the diameter of
the cable giving values of around 20 MPa. Considering those values it is clear that the
electromagnetic load should not cause any degradation because the nominal pressures
expected for ITER CICC cables have been thought to be in the range of the plateau of the
single strand data. Additionally, other work on sub-sized cables showed no degradation
up to a nominal pressure of 50 MPa so it was concluded that the Lorentz load would not
be a problem [7.3-7.4].

The approach of the nominal pressure could be misleading because the local pressure
could be much higher since the strand contact area of circular wires is much smaller, as
demonstrated in the newly developed model analysis.

In Chapter 5 it was also concluded that the single strand tested in this work did not
show degradation up to 100 MPa (Fig. 5.8) if the pressure is appropriately calculated
considering the effective area pressed. Nonetheless, the contact pressures in 3-strand
cable and 45-strand cable are higher so that those samples show a worse performance
under the applied transverse load showing clearly the effect that electromagnetic load can
have on a full size cable.

The primary motivation to start the research work of this thesis was that, although the
ITER design criteria was not expecting transverse load effects to be important, at the
beginning of 2000’s the ITER model coil tests of large CICC cables, which had never
been tested before at this scale, showed unexpectedly large degradations.

In 2003, Mitchell proposed a “bending” model taking into account of the transverse
loads to explain the ITER cable degradations [7.5]. Since then many research activities
have been focused on bending effects on strands and cables with regard to the transverse
loads [7.6-7.9]. The bending models with theirs modifications have dominated the
understanding of CICC cable degradations for the past few years. The bending effect it is
one of the sources of degradation but, as it was found in this thesis work, it is necessary
to consider also the transverse load and effective contact pressure among strands caused
by the Lorentz load.
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We have developed a unique experimental setup studying the effect of transverse load
on sub-sized cables. The experiment is the first of a kind following those experiments
performed 20 years ago.

Our experiments on a 3-strand sample and a 45-strand sample minimized the thermal
mismatch by using a titanium alloy and focused on the effect coming only from a
mechanically applied transverse load. As mentioned in Chapter 4, no initial degradation
was observed in the 3-strand sample where the Lorentz load effect is very small, and the
bending effect is also small since the 3-strand cable is well supported since the natural
3-strand configuration has negligible bending. Applying the mechanical load however,
we have observed significant degradation. The degradation observed for a single strand
and a 3-strand cable have been poorly correlated by the bending model since there is no
room for significant bending in these simple and well supported samples.

The newly developed model based on a contact mechanics theory could explain the
experimentally observed degradation. The new model evaluates much more accurately
the effective contact pressure which is experienced by superconducting strands in a cable
than the conventional method using an averaged ‘“nominal” pressure.

In this research work, first a transverse load test device for a circular cable of one turn
was developed as described in Chapter 3. This device could be used with an existing
magnet of a 195 mm bore 20 T Bitter magnet at NHMFL, Florida State University. At
that time the magnet was the only possible choice for the test of a large sample at a high
magnetic field (at least 12 T). Four cable samples, fabricated using ITER wires, were
tested in the circular samples using the device. However the test results of all samples as
described in Chapter 3 showed significant initial degradations without the plateau of the
critical current vs. transverse load behavior observed in the experiments by other
researchers. Due to this high initial degradation it was difficult to identify transverse load
effects in the cable samples.

Fortunately, later on in 2006, a split superconducting magnet of 14 T became
available at NHMFL. This magnet allowed us to develop the new transverse load test
device for a hairpin sample which was discussed in Chapter 4. The hairpin sample has
two straight sections of 125 mm length where transverse load can be applied. The sample
test sections are straight; therefore the device becomes very simple and compact. The
device has been developed to systematically investigate the transverse load effects on
various samples, such as a single strand, 3-strand, 9-strand and 45-strand cables. The
samples could be changed in a short period of time at the test site. It was possible to test
one sample in less than one week including the time required to change a sample.

Three samples of a single strand, 3-strand, and 45-strand cables made of ITER TF
Oxford pre-production wire were tested. Test results were described in Chapter 4. The
measured experimental data of the critical currents and the transverse displacements
obtained for these samples were investigated using the newly developed contact pressure
model. The critical current degradation of the single strand sample was explained very
well using the analytical prediction of a line-contact pressure model with Young’s
modulus of 0.95 GPa which was obtained from the displacement data.
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The experimental data of the 3-strand and 45-strand cables were explained using the
cross-contact model. The critical currents and the displacements of these samples agreed
with the model analysis. The displacement data were accurately predicted by using a
Young’s modulus between 3 GPa and 4 GPa, however it has been recognized that more
experimental work with regard to characterization of mechanical properties of
superconducting wires is required to identify Young’s modulus values. Knowledge of
mechanical properties of superconductors is very important to establish their behavior
under loading conditions but those properties are not very well known making the
modeling difficult. It has to be observed though, that even if the absolute values of the
contact pressures varies with Young’s modulus values, the value of this parameter does
not change the overall results of the modeling.

The contact mechanics is used to evaluate the contact areas between strands and the
effective contact pressures of the strands in a cable by estimating the total number of
contacts. The 3-strand experimental data are used to evaluate the transverse load effect on
the total critical current of a large cable.

Two different scenarios were considered in the analysis: the first one simulates the
response to a known mechanical load representing our experiments and the second one
simulated the accumulating effect of the natural electromagnetic force (Lorentz force) in
a cable representing a typical full size cable. The second case requires an iteration
process to calculate the degradation of a cable for a given nominal current since the
critical current in a particular layer in the cable depends on the critical current dominated
by the Lorentz load accumulating through other layers.

It was found that the degradation results of the 3-strand cable test could predict the
behavior of the 45-strand cable under the applied mechanical load indicating that the
model is appropriate in counting the number of contacts in a cable and predicting its
behavior by using the 3-strand sample results.

The model was then expanded to evaluate the initial degradation caused by Lorentz
load in the 45-strand cable using the 3-strand data. The simulation result partially
explains the initial degradation observed in the experiment. Thermal contraction could be
responsible of the remaining 15% of the initial degradation. Bending effect due to
Lorentz force could also cause an additional degradation.

The degradation of a large full size cable due to Lorentz load effect was also studied
evaluating the total number of contacts in a full size cable and using the behavior of the
3-strand sample to calculate the degradation at a certain transport current. The simulation
results indicate that the Lorentz force load degradation of an ITER TF cable could be as
high as 20% at the operation current of 68 kA. This degradation is the one caused only
by the transverse contact pressure Lorentz load. Axial and bending strains caused by
thermal contraction and Lorentz load are additional sources of degradation as described
in the work done by Mitchell, Zhai and Nijhuis [7.5-7.7]. The overall degradation could
then be higher than 20%.
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From the preliminary analysis offered in this thesis work the following areas can be
suggested to improve a cable operation:

(1) In order to reduce the contact pressure between strands, a shorter twist pitch
resulting in a large number of contacts, especially in the first stage, could be very useful.
This is in contrast with work done considering the bending effects and which shows a
beneficial effect in having longer twist pitch in the first stage [7.6]. A compromise of the
two effects should be considered since both effects are inherent to the cable design and
they are both important. This thesis work for the first time showed how the transverse
Lorentz load effect plays an important role in the degradation and should be taken into
consideration together with the bending and axial effects caused by thermal contraction
and Lorentz load.

(2) The cabling pattern should be chosen to minimize the effective contact pressure
by maximizing the number of contacts between strands. More contacts between strands
would reduce the overall contact pressure and the degradation of the strands.

(3) A rectangular shape cable with the shorter side in the same direction as the
Lorentz load would reduce the overall accumulation and degradation. However,
rectangular cables are not ideal for the cable preparation because it is not easy to obtain a
uniform distribution of the strands in the cable cross section.

(4) Sub-bundles of a large cable could be supported mechanically to reduce the
accumulation of loads. Each petal would now be considered an entity by itself.

(5) Using smaller size cables would also reduce the Lorentz load effect but it would
increase the length of the conductor and the electrical inductance.

(6) Improving the structure design and mechanical properties of a strand, for example
increasing the transverse Young’s modulus, will reduce the transverse load degradation
of a strand.

The importance of this thesis work is that for the first time the Lorentz load effect is
quantitatively shown to be a significant fraction of the inherent degradation of a large
Nb3Sn superconducting cable. The model evaluates the number of contacts among
strands and the effective pressure among strands caused by the natural electromagnetic
load. More experimental work needs to be carried out to verify our model and many
different parameters such as twist pitch, cable pattern, and wire diameter could be
investigated to improve and optimize a cable design. Experimental tests are rather
expensive, therefore a more systematic procedure should be established among the
groups working on the same subjects, in order to eliminate redundant tests and to provide
effectively the database on the information necessary to make the appropriate cable
designs.

For simulations of a large size cable, it has been proposed to use experimental data of
a 3-strand cable. This will be an attractive and simple method to provide information
regarding transverse load effects of various wires developed.

Improvements in both theoretical and experimental fields are desired to investigate

the transverse stress effects and especially its temperature dependence. This information
is needed to establish a transverse stress scaling law.
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As already noted, more detailed measurements of the mechanical properties of
superconducting strands and cables are necessary to implement finite element simulations
that could greatly help the understanding of the detailed strain mechanisms under loading
conditions. At present, theoretical analysis of transverse load stress and strain effects on
the critical currents is very limited even for a single strand. Appropriate finite element
simulations could help determining a general behavior of the critical current density as a
function of effective contact pressure.

The understanding of a cable-in-conduit-conductor has greatly improved, however the
safety margin used for large superconducting magnets is still very large. Superconducting
magnets are the most expensive components of a fusion machine. A better understanding
of their limitations to predict their behavior, and more efforts in improving their design
are of vital importance to the end goal of producing power reliably and cost effectively.
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APPENDIX I:
Sample preparation

Chapters 3 and 4 summarize the test results for the sample tested but avoids
describing the details of samples preparation. In this appendix, the entire process is
described in details. The preparation of a sample includes different stages:

e Cabling

e Sample preparation

o Assembly of the sample for heat treatment,

e Assembly of the sample for the test and mounting on the probe.

Each stage requires special attention since any damage to the sample before the test
could jeopardize its performance. The cabling process is the same for all the samples
tested (circular samples and hairpin samples). All the other stages depend on which
experimental setup was used.

1.1 Cabling

Once the strand is provided by vendors, cables are prepared using the cabling
machine located in the basement of MIT building NW22. The cabling process has been
described in details somewhere else [I.1] so only the essential information will be
reported in this section. A total of eight different samples have been prepared, four single
turn circular samples and four hairpin samples. The circular samples (Fig. I.1) are all
composed by 36 superconducting strands (3x3x4 cabling pattern) while the hairpin
samples are all different: single superconducting strand, triplet (three superconducting
strands), nine-strand cable (9 superconducting strands 3x3 cabling pattern) and 45-strand
hybrid cable (30 superconducting strands, 15 pure copper strands (2Sc+1Cu)x3x5 cabling
pattern) (Fig. 1.2).

Fig. .1 Single turn circular sample (about 110 mm diameter). Sample and joints enclosed in
copper tubes (left), details of the voltage tap on the sample (right).
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& The 45-strand cable is enclosed in a titanium tube

. on the bending section to withstand the Lorentz load

during the test and to maintain the desired void
fraction when the cable is bent to the desired
bending radius (cabling stages tend to become

* undone when bent).

Smaller size cables (3-strand for example) do not

need a titanium tube because smaller cabling stages

maintain their shane.

Fig. 1.2 Hairpin samples: 45-strand cable (top), triplet (bottom).

Table 1.1 list the type of strands used for the different experiments:

Table 1.1 List of strand types used for the experiments. All the strands are Internal Tin type (see

Chapter (3-4)).

Sample type Vendor | MIT Strand ID

36-strand single turn circular cable 1GC B6771 96-9B

36-strand single turn circular cable 1GC B6771 96-9B

36-strand single turn circular cable OKAS MIT 06-01 (RN2101)

36-strand single turn circular cable Oxford MIT 05-05 (CS-OST-A-8405-1)

Single strand hairpin Oxford MIT 07-10 (ITER TF B9561-2)

Triplet hairpin Oxford MIT 07-10 (ITER TF B9561-2)

9-strand hairpin cable Oxford MIT 07-10 (ITER TF B9561-2)

45-strand hybrid hairpin cable Oxford MIT 07-10 (ITER TF B9561-2 and
ITER TF Oxford Cr-plated Copper)
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The dies typically used for cabling are the following:

e Triplet & = 0.07 inches
e O-strand stage & = 0.118 or 0.127 inches
e 36-strand stage & = 0.246 or 0.265 inches.

Once the cabling process is completed the cables are cut at length: 1.6 m (63 inches)
for the single turn circular samples, 1.45 m (57 inches) for the hairpin samples. Those
lengths are referring to the total length of the samples (test area and joints). It is necessary
to remove the chrome from the two ends of the cable (at least 20” for each end for the
circular sample and 11 for the hairpin sample).

Given the fact that the geometries of the two experimental setups were different, the
preparation of the samples is also different. Following is a more specific description of
the preparation stages for the two sample geometries used in the experiments.

1.2 Single turn circular samples

I.2.a Swaging cable with copper and titanium tubes

Once the cable is ready it is necessary to prepare two pieces of OFHC (oxygen free
and high conductivity copper) copper tubes (20” long each) and 1 piece of titanium tube
(217 long). All the tubes have a .375" Od, .305" Id, .035" Wall. The copper tubes need to
have small holes that will enhance helium cooling during the experiment (hole size & =
1/8”). The holes need to be on one side of the tube.

The copper tubes need to be wiped using lint free cloth with acetone. After this
operation they need to be cleaned with hydrochloric acid (37% original) for 10 seconds
and with 66% nitric acid for a couple of seconds . It is necessary to rinse them thoroughly
with pure water few times and then again with acetone and ethyl alcohol.

It is necessary to remove the chrome from the two ends of the cable (at least 20" for
each end) and etch the two copper tubes to assure proper sintering of the current leads
length. The cable is inserted in the two pieces of copper and the piece of titanium.

OQFHC 20~ Titanium 21" QFHC 20”
i Ezzi | E

+—
Insert in swaging machine

mm
nm
nm

N
nin

nn
nin
nm
mn
nm

Bare cable, at least 3.25” separation
between the two tubes before
starting the swaging operation.

Fig. 1.3 Schematic of the cable before being swaged inside copper and titanium tubes.

The swaging process requires the use of 5 different dies for the copper tube (to reach
a void fraction of ~23%) and 4 different dies for the titanium one (to reach a void fraction
of ~33-35%) (Table 1.2).

The tubes should be swaged once at the time starting from one of the copper tube and
proceeding in sequence (the cable is stretching at the same time so to avoid bulging of the
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cable in the bare cable sections it is necessary to swage the tubes in order). The initial
distance between tubes (bare section cables) is ~3.25”.

The typical elongation obtained for our cables are: copper tube 20” long becomes
~21.2” long, titanium tube 21> long becomes ~22.75” long. The final distance between

the tubes (bare cable sections) is ~2.5”.

Attention during the swaging process has to be put in maintaining the holes in the

copper tubes to face the same side.

Table 1.2. Dies used for the swaging process for the circular samples.

Dies for copper tube Dies for titanium tube
0.361” 0.361”
0.338” 0.338”
0.325” 0.325”

0.312” 0.312°
0.294”

[.2 b Bending

Once the swaging of the cable is finished, it is necessary to bend the cable (the
section in the titanium tube) to shape the cable to the desired geometry.

Fig.I.4 Schematic indicating where the
titanium will be removed.

Copper

Titanium that will be left

Sample area section

where titanium will be
removed after bending

Bending the cable is a very delicate operation since the length of the cable needs to be as
precise as possible. The titanium will be removed from the circular section and left only

on the 90° bending. For this bending process two different bending tools are used:

Fig. 1.5 (a) standard bending tool used to perform the 90° bend. (b) Custom designed bending tool

for the circular bend.

(a) Standard bending tool for 90° bend (OD 3/8”, R 15/16)

Standard bending tool
(3/8” OD, 15/16 R)
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(b) Specially designed bending tool for circular bend
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Fig. 1.6 Schematic of the cable before being bent (top) o :
and distances to check before proceeding . 12.476 9
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Several steps need to be followed during this process (see f(')lllowing' pictures):
(1) Mark the center C on the titanium tube
(ii) mark A and A’ (90° sign) at 5.40” from point C. This sign is used to position the
bending device at the 0 scale sign and start bending.
(iii) Bend 90° (using the standard bending tool). The holes on the copper tubes should be
on the plane.
(iv) Check the 90° arm (6.238”) and if needed adjust the position of A’ for the other arm.
(v) Bend the other arm and check the distance (12.476”).
(vi) Adjust the U-shape cable so that it’s lying on a single plane
(vii) Mark B and B’ at 5.720” from the center. This is the mark that should be used to
start removing the titanium tube (so that the bare cable has a total length of
11.44”=289.56 mm).
(viii) Make the circular bending using the specially designed (for this sample fabrication)
bending tool and making sure the holes on copper tubes are on the outer surface (bend the
U-shape cable inside the paper in the schematic above). Further bending might be
necessary at the final part of the circular bend (at the 90 bend) in order to have a more
circular shape. This is usually a difficult step and to apply a stronger force to shape the
sample at the corner it is necessary to use a G10 block.
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Fig. 1.7 Different stages to prepare the circular sample and the 90° bending so that the current

leads are perpendicular to the plane where the circular sample lie.

Mark to align with
the zero scale

Sample enclosed in copper
tubes and titanium tube ready
to be bent using the standard
bending tool (for 90° bend)

Sample after the first 90° bend.
The sample is placed so that
the sign indicated is on the
zero scale of the bending tool)
before starting the bend.

Sample after the two 90°
bends. The U-shape sample is
on a single plane and the holes
on the copper tubes are on the
same side of the sample.
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Part to be removed before
proceeding to the finalized
circular bend.

Sample placed in the
customized bending tool
before starting the circular
bend.

The sample is placed so that
when it is bent the holes on the
copper tubes face the outside.

Partially bent cable. The cable
needs to be placed upside
down to bend the rest of the
circular path.

The part shown in the picture
is removed to complete the last
section of the bending as
shown in the next page.
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Final operation of the sample
bending in circular shape.

This operation requires the use
of a G10 place to force the
cable round in the sections
close to the 90° bend (using
the cut section of the
customized bending tool).

Details of the operation in
order to round off completely
the cable and make it of the
desired shape.
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At the end it is necessary to verify
that the circular part lies on a
single plane and the two leads are
perpendicular to this plane and
parallel to each other.
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1.2.c Remove titanium

Remove the titanium tube cutting at the two sign B. B’ being careful not to damage
the cable (Fig. .6).

1.2.d Cleaning parts and anti-sintering powder

Clean all the part and screws of the assembly with alconox and water to remove
grease and dirt and then ethyl alcohol. Let dry and put a thin layer of anti-sintering power
(Nicrobraz Stop off powder) on each of the parts that could sinter during heat treatment
(add ethyl alcohol to the powder till it looks like a white liquid and apply with an acid
brush).

1.2.e Voltage taps

Voltage taps need to be mounted on the cable before it is inserted in the structure. The
wires used for the voltage taps are composed of a thin stainless steel wire wounded
tightly with a thin copper wire (stainless steel wire is strong, the copper has a lower
resistance and it is soft so that it can make a good contact to pick up the signal). All the
voltage taps wires need to be inserted inside an insulating glass sleeve (size 24). Voltage
taps will have a positive and negative side. The positive and negative side will be
mounted in opposite sections of the cable. To avoid inductive pick up of the two will be
wrapped along the cable and will meet and be twisted together with the other end. If a
voltage tap is placed along the cable (together with the voltage taps positioned at the
ends), it is necessary to make sure that the voltage tap is positioned so that it is not
crashed during the experiment (it is placed in between two fingers). Voltage tap wires are
wrapped two or three times at the desired location and part of the copper and the stainless
steel wires are used to position as tightly as possible the voltage tap.

1.2.f Mounting sample

It is easier to mount the sample upside down with the leads pointing towards the
floor. Stack up the structure pieces and the inner ring (collet). Slide the cable (leads first)
inside the support pieces and before it reaches the final position squeeze the legs of the
cable so that it is possible to insert the cable inside the outer ring (Haynes 242 ring). Push
the cable all the way down to reach the final position in which is sitting nicely between
the outer ring and the collet. Add the fingers of the collet so that the cable is enclosed in
the two rings. Add the conical wedge and lock it so that the gap between the two rings is
as close as possible to 1 mm required distance for the aimed void fraction of ~33-35%).
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Fig. 1.8 (a) Sample sitting in the external ring with the collet positioned but still not closed. (b)
The fingers are added on the collet so that the cable is completely enclosed. A stainless steel
wedge is inserted to maintain the desired void fraction during heat treatment. (c) Position of the
sample during mounting. (d) Location of the bend of the copper joints. The stainless steel parts
will be either removed or substitutied with G10 pieces after heat treatment,

L.2.g Bending copper section

Once the sample is settled in the supporting structure it is necessary to bend the
copper legs in two different places so that it fits the parts the support the leads during heat
treatment and prepare the copper legs to be in the appropriate position when the sample
needs to be transfer on the probe and soldered to the current leads.
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1.2.h Wrapping in SS foil and insert the sample in the canister for heat treatment

Wrap the structure and the sample (together with the witness sample strand) in SS foil
and insert the sample in the canister which will be then welded at the ends and put inside
the furnace for heat treatment. One thermal couple will be mounted on the sample holder
to monitor the temperature during heat treatment.

Fig. 1.9 Sample ready to be placed in a stainless steel can to be inserted in an horizontal oven.

[.2.1 Mounting of the sample on the probe

After heat treatment very few parts are removed in order to avoid moving the sample
in a way that it could damage it. The stainless section holding the copper joints is
removed and the sample is gently positioned onto the probe so that the copper joints fit in
the channel where they will be soldered to the 10 kA current leads.

et

———— Sample copper jOints

Joint to probe
urrent lecads

Fig. 1.10 Sample mounted on the probe and ready to be inserted in the cryostat.

184



1.3 Hairpin samples
The advantages of this design has been already largely discussed in Chapter (XXX)
so the intent here is to give details on the assembly process for the hairpin cables without

repeating what has been said already.

[.3.a Swaging cable with titanium tube and bending

Among the simplification of the hairpin sample design is that a 90° bend is avoided
and the cable is lying on the same plane. Nevertheless it is necessary to bend the cable
with a U-shape so that the two ends can be connected with the current leads. Bending the
cable can cause a de-cabling of the higher stages of sample. It was verified with dummy
samples that this effect is significant only for the 45-strand cable so that it was decided to
swage a titanium tube only on the bent section of the 45-strand cable (Fig. 1.2). A 10.5”
titanium tube was used. The single strand, triplet and 9-strand cables were left bare and
covered with glass sleeve or anti-sintering powder to avoid sintering during heat
treatment. Those small samples were bent in shape by hand while the 45-strand cable
with the titanium tube was bent using the same tool of Fig. .5(a). Once the sample is
sitting in the U-bend holder, a plate is positioned on top of it and additional heat
treatment parts are connected.

Fig. 111 Triplet sitting in the sample holder (U-bend section). Glass sleeve was used to avoid
sintering. In the straight test area, where the mechanical load is applied, anti-sintering powder
was used.

[.3.b Voltage taps and heat treatment preparation

Fig. .12 shows the sample inside its heat treatment fixture. As described for the
circular sample, voltage taps need to be mounted on the cable before it is inserted in the
structure. The wires used for the voltage taps are composed of a thin stainless steel wire
wounded tightly with a thin copper wire. All the voltage taps wires need to be inserted
inside an insulating glass sleeve (size 24). Voltage tap wires are wrapped two or three
times at the desired location and part of the copper and the stainless steel wires are used
to position as tightly as possible the voltage tap. Voltage taps will have a positive and
negative side. There is one pair of wires (one voltage tap) on each straight side of the
sample. The third voltage tap is placed along the entire sample with one wire following
the entire length of the sample to cancel inductive pick up.
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Fig. .12 The sample is mounted inside the U-shape holder and the two external holders (top).
Bottom wires of the voltage taps (voltage taps 1, 2 and total voltage wire running along the
sample to cancel inductive pickup) (bottom left). The top cover of the U-bend is grinded to be
able to bring out the voltage tap wires without damaging it during the loading process. Voltage
taps location at the top of the sample (bottom right).
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After adding the voltage tap wires and inserting the sample in the U-bend part and the
sample holder straight section parts, the rest of the parts (pressing plate and spacer)
needed for heat treatment are positioned in their location (Fig. 1.13-1.16). The spacer will
be substitute with the moving wedge after heat treatment as described later. The spacer
maintains the desired distance between sample holder and pressing plate so that the
desired void fraction is maintained during heat treatment but the sample is not pre-
stressed during heat treatment (spacer strips are also positioned in location and will be
removed after heat treatment). The following figures show the necessary stages
performed before heat treatment and how the samples are heat treated.

Pressing plates

Spacer

F o

Voltage \“

Btbvires Strip spacersto

maintain void
fraction

Fig. 1.13 Pressing plates (top). The ends are rounded off to avoid sharp contacts between the
plates and the cable. Voltage tap wires (bottom). The bottom U-shape holder is rounded to be able
to bring out the wires and to avoid damaging them.
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_Pressing |
plates Spacer

Strip spacers
on top and
bottom (4 each

<ide)

Current leads
section

U-bend

* séction

()
Fig. 114 (a) Bottom voltage tap wires and spacer used to maintain the desired void fraction
during heat treatment. (b-c) Sample ready for heat treatment.
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Samples mounted on heat
treatment support structus

Fig.1.15 Preparation of the
samples and installation of
the samples on the heat
treatment rack. Four samples
can be heat treated at the
same time.
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Fig. 1.16 Samples taken out of the oven after heat treatment. The bottom sections show a dark
color due to residual organic materials formed during heat treatment. Also to notice is that only in
this position the cable is supported well in the U-bend section (piece is touching bottom plate).
During assembly it is necessary to maintain the sample facing up as in the heat treatment
configuration to support the cable at all time.
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1.3.c Sample preparation and mounting on the probe

The same probe used for the single turn sample was used for this experiment but the
copper leads design had to be changed (the 10 kA vapor cooled leads were not modified).
The copper leads are composed of two parts: the top section connecting to the vapor
cooled leads and the bottom part where the sample is soldered during the test. The two
parts are connected with a screw. Additionally copper+NbTi cables are used to enhance
the current transported and improve the flexibility of the two pieces connected Fig. 1.17):

Top scetion of
-copper leads fobe.
~Afached oithe &
Wapor cooled lea

£

i

10 KA va‘pprr
cooled lcaﬁ_s

ppet/NbTi
cing the
¢ of the joint of
Opper sections

Copper leads

Sample Jogation

(b)

Fig. 117 (a) Copper leads: top section is connected to the vapor cooled leads, the bottom one is
where the sample is soldered. (b) Probe set up with 10 kA vapor cooled leads and copper leads.
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Once the copper leads are mounted and connected to the 10 kA vapor cooled leads
the probe is sat horizontally so that the sample can be mounted more easily.

Following are all the steps required to mount the sample from removing the heat
treatment parts not needed during the experiment to the soldering of the sample onto the
copper leads. The first step is to remove the spacer piece and the spacer strips used during
heat treatment to maintain the void fraction. During the experiment the central spacer is
substituted with the movable wedge piece while the spacer strips are removed because we
want the press plate to be free to move and apply the load on the cable (Fig. .18 (a-c)).

Fig. 118 (a) After removing
the top plate holding the pieces
together the central spacer is
carefully removed. The probe
is sitting on the side where the
surface of the U-bend section
is in contact with the bottom
plate.

| Fig. L18 (b) Central spacer is
| removed.

Press plate

Fig. 118 (c) Top spacer strips
. are removed using tweezers
How % remove t ' and small screwdriver. The
——— bottom spacers are easily
removed once the pressing
plate is carefully moved from
its position.

o

Press plate
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In Fig. .19 the procedure of mounting the sample is represented. The pressing plates
are put back in place and the wedge and its matching pieces are positioned where the
spacer was located during heat treatment. Before being inserted in the slot, those pieces
need to be “painted” with powdered Molybdenum Disulfide to reduce friction and avoid
sintering between same material pieces during the experimental procedure at liquid
helium. The voltage taps wires need to be positioned along the slot between pressing
piece and cable holder and are taped at the top to avoid movement and flux trapping
during the measurements.

Wedge and matching
pieces

ng the space
between pressing plate and cable holder

Fig. 1.19 Positioning of the
wedge, matching wedge pieces,
extensometer and voltage tap
wires in preparation of the
experiment.

. : Cable holder
Matching wedge picces

" Extensometer fixed on
bottom and connected to
the moving wedge
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Fig. 120 shows the working principle of the device which is not vi
y positioned so that it sits on its matching pieces. Once
pushing the matching pieces transversally
y) and ultimately pushing the cable sitting in
ovement by the outside case (Fig. 1.21 and

operations. The wedge is initiall
the wedge is pulled vertically upward it goes
outward (since they are constrained verticall
the cable holder which is restrained in m

following).

Resting
position

()

Vertically
constrained pieces

!

;
P
f -

J Ext nsometet

I

(©)

o IS
B 4

sible during

Fig. 1.20 Working principles of the device: (a) resting position of the wedge, (b) vertical
displacement of the wedge and movement outward of the matching pieces, (c) displacement

measured using the extensometer.
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Once the wedge and all the parts are inserted it is necessary to put back a couple of
the cover plates and then flip the sample so that the screws holding the bottom plates can
be removed. The plates will be left in position and removed one at the time once the
structure will be inserted in the single piece case. Some of the plates will be used to hold
the top section of the sample while sliding the single piece case so that the sample can not
move (Fig. 1.21).

Fig. 1.21 Plates from heat
treatment are use to hold the
sample in position (top and
bottom pictures) while the
bottom plates are removed
(center picture).
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Fig. 1.22 (a-f) shows the steps necessary to insert the sample inside the single piece
case. This is the most delicate procedure of our experiment since the cable is extremely
delicate. Most of the heat treatment support pieces have to be removed and substituted
with the case so it is necessary to support the cable during the change and avoid any
unwanted strain that could cause initial degradation.

Bottom plates =

(b)
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U-bend piece

Fig. 1.22 (a) Sample still supported by heat treatment side and top-bottom plates. Those pieces are
going to be substituted with a single piece case. (b) Ready to remove side plates. (c-d) After
removing the side plates the sample is hold in position momentarily by two side screws joining
the sample holder and the U-bend piece. (e-f) The sample slides inside the case (remove the
screws holding the sample holder and Y-bend hape). Once the sample is inserted completely into
the case screws will be used to firmly position it. These screws will hold case and sample together
during the experiment.
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Once the sample is firmly mounted inside the case it is possible to flip around the
sample so that it matches the design of the copper joints design. The sample is removed
from the remaining of the heat treatment support pieces and it is carefully slid towards
the copper joints where it is positioned inside grooves where the soldering will be done
(Fig. 1.23).

Fig. 1.23 The sample is mounted inside the case and the last heat treatment support pieces are
removed(top) before the sample is slid inside the grooves on the copper joints area (center and
bottom pictures).
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Three 1kW cartridge heaters are mounted on the sides of the copper joints and the
area is warmed up so that the grooves where the sample is located can be soldered filled
(Fig. 1.24). Temperature controllers are used to monitor the temperature of the joints and
do not overheat the copper joints. The sample is now fully mounted on the probe. The
wedge is connected to the shaft connected to the actuator on the top flange, the voltage
taps are soldered to the connector and all the instrumentation connectors are mounted.
The probe is now ready to be put vertically and to be put inside the dewar (Fig 1.25-1.27).

N GL‘()()QS; e the cable is
- sitfing. They need to be filled
. with solder

.

"*E .S
: ’E‘;qmpe sature
U‘Cgl"'m]’[er ]

= -

Fig. .24 Soldering procedure. Cartridge heaters inside aluminum blocks are mounted on the sides
and on the bottom of the copper joints area. Temperature controllers are used to monitor the
temperature and start filling the grooves with solder.
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Fig. 1.25 Sample soldered. Instrumentation wires are connected to 4 wires Teflon cables that are
brought outside the dewar (45 ft long).

Fig. 1.26 Probe ready to me inserted into the
dewar.
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Fig. 1.27 Probe inside the dewar. The picture show the top flange, the bellow used to adjust the
height of the probe so that it can be easily connect to the pin sitting on the bottom of the dewar.
The linear actuator and the motor used to operate it are sitting on a plate. The linear actuator is
connected to the cylinder that contains the load cell and connects the actuator to the shaft
connected to the wedge at the sample area.
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APPENDIX II:
Advantages of a three-point load configuration

I1.1 Introduction

In this appendix, a general approach will be used to justify the choice of applying a
three-point load configuration to the single turn experiment setup.

Ideally, it is desired to apply transverse pressure uniformly along the test cable. The
test cable in the single turn configuration is not a complete turn, but missing a part of it
for the current leads. To improve the load application method after the first and second
experiment, it was suggested to modify the expanding collet by using three sections of
the collet instead of the continuous circular all-around arrangements, as shown in Fig.
IL1.

Test cable

Fig. II.1 Modified expanding
collet to apply a more
uniform load on the cable.
The fingers used to apply
pressure on the cable will be
removed in two sections to
balance the section where the
cable is missing.

Force applying cone

Expanding collet fingers

The missing section of the cable does not have the force cone fingers so additional
missing cone finger sections will be created in other two locations (every 120 degrees).
In this way the force applying cone faces uniformly to the three groups of the expanding
collet fingers so that the applied transverse load could be uniform. The two portions
missing the expanding collet fingers (4 and 8 o’clock) will not have the transverse load
and will show a normal critical current behavior (no loading condition). It will not be a
critical issue to study the effect of transverse loads on a cable as it is explained in the
following sections.

The fact that there are sections not loaded does not introduce an error in estimating
the critical current as it will be explained. This is true if instead of considering the entire
length of the voltage tap, only the length of the pressed section is used to estimate the
current.
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11.2 Calculation of the critical current and estimation of the error introduced by the non-
uniform load

The length of the groove where the cable is sitting is ~ 350 mm. The maximum
voltage tap length L is limited to roughly 270 mm.. In the calculations below the critical
voltage values V. of 2.7 uV and 27 uV were used, corresponding to E; of 10 and
100 uV/m respectively.

We discuss a series of simulations considering single strand values of n = 25 and
I. =140 A.

From this starting point the critical current measurement error (considering a
degraded strand) for the partial load of the sample is evaluated using a corresponding
degraded n-value (ngee) estimated by:

[c—degr
degr — I
c

Using the critical voltage criteria and the critical current values the V-I curve is given
by the following equation:
IC

Let’s now call V; and V, the voltages created by the sample (length L) without and
with degradation, respectively. Considering that we are pushing only 2/3 of the cable, the
voltage is given by (Fig. I1.2):

1 2

V==*V +=*V,
3 3
50 : ; _ | —Vn=25Flc
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V1 N L V degraded 2/3L + V non degraded L/3
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Fig. I1.2 V-I curves for various conditions.
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This equation (sum of V,/3 of non degraded voltage and 2V,/3 of degraded voltage)
evaluates the critical current of the partially loaded sample. It is possible to estimate the
critical current applying the load on the entire length or only on 2/3 of it (by using the
modified collet in Fig. II.1).

The voltage curve V in Fig. IL2 was used to estimate the critical current at
E. = 100 uV/m (corresponding to 27 uV) and 2/3*E, (corresponding to 18 uV).

It turns out, the critical current estimated using the voltage curve V with the 2E/3
criterion is very close to the critical current obtained by using the voltage V, (entire
length degraded) at E..

The following parameters have been used for these simulations:

Ic;-nondegraded =140 A
Npondegraded = 25

Table I1.1 Results of the simulation.

Err % Err %
Ide(gK;ie d Idegraded/lc Ngegraded Ic at Ec Ic at 2Ec/ 3 for IC at for IC at
E. 2E/3
140 1.00 25 140 138.5 0.00 -1.07
130 0.93 23.2 131.6 129.75 1.23 -0.19
120 0.86 214 122.5 120 2.08 0.00
110 0.79 19.6 112.6 110 2.36 0.00
100 0.71 17.9 102.5 100 2.50 0.00
90 0.64 16.1 92.5 90 2.78 0.00
80 0.57 14.3 82.4 80 3.00 0.00
60 0.43 10.7 62.4 60 4.00 0.00
50 0.36 8.9 52.2 50 4.40 0.00
40 0.29 7.1 42.25 40 5.62 0.00
30 0.21 54 32.25 30 7.50 0.00

From the table we can clearly see that if the cable is degraded only over 2/3 of the
length the critical current estimated by using a criterion of 2E/3 instead of E; is very
close to the critical current obtained with a cable degraded over the entire length (Fig.
I1.2).

We can conclude that we will be able to measure the correct critical current by a
criterion 2E./3 even if the voltage drop is not uniform over the entire length.

If the critical current of the strand (non-loaded) is already degraded (due to
fabrication process, for example n = 15 and I, = 100 A), similar results are obtained
(Fig. I1.3). The error increases if we use the E criterion but it remains the same if we use
the 2E./3 criterion.

These results follow from the fact that the voltage of the non-degraded area is
negligible.
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Fig. 113 Errors on the critical currents using a non-uniform load on the cable for initial currents

I.=140 A, n=25and I. = 100 A, n = 15. If a 2E/3 criterion is used the error is negligible from
the case of uniform load.

These simulations support the feasibility of using an expanding collet that presses
only on 2/3 of the cable and not its entire length. The critical current measurement by
using this modified collet should not be an issue and it is very close to the critical current
of a cable entirely loaded as long as an appropriate criterion is used.
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11.3 Transverse Load Measurements

To verify if the three-point load configuration would give a more uniform distribution
of load, a 3-D model of ANSYS® was used. Only the outer ring was modeled and a
constant pressure was applied where the cable is located. The results of the strain on the
outer ring were compared with the measurements taken with the strain gages located on
the outer ring (comparison between measurements and strain values obtained with the
model taken at the strain gages locations).

Fig. 114 3-D ANSYS® model of the outer ring: mesh and position of strain gages on the left,
pressure load applied in the model.

LUTION

Fig.IL.5 Radial stress contour of the ring (the pressure applied is 20 MPa).
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Fig. I1.6 Hoop strain along the ring (values to be compared with the strain gages measurements).
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Fig. I1.7 shows the measurements recorded with the strain gages for the IGC cable as a
function of the load applied. The strain gages do not have a monotonic behavior showing
asymmetry or non linear effects in the structure. After room temperature experiments
performed at MIT it was decided that a 3 points load would have helped in having a more
uniform distribution of the strain along the external ring. Using this loading configuration
(shown in Fig. I1.1) a more uniform behavior was measured with the second experiment

as shown in Fig. IL.8.
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Fig. I1.7 Strain gages during the IGC experiment.

5E-04

g 7 R A

2E-04 f------------ b

AE04 L - oo R

1n

Stra

Y, AT —a— ANSYS SGI-8G5
- —-&-- ANSYS SG2-SG4
-+ ANSYS SG3

OE+00 Wil - -

1E-04 +------------ -

PRI s IS L ~

S g~ — === —— —

-3E-04

60
Load Applied (MPa)

| —
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APPENDIX III:
Contact Mechanics Concepts

I11.1 Contact mechanics: Hertz theory and line loading of an elastic half space

When two bodies come in contact it is important to study the stresses and the
deformation that arise from the contact. Contact mechanics has been studied first by
Hertz in 1892 [I.1] while he was studying Newton’s optical interference fringes in the
gap between to glass lenses and was concerned about the elastic deformation of the
surfaces due to their contact pressure. More details have been studied by Timoshenko,
Goodier and Lessells [1.2-1.4] who presented derivation of elastic equations for loading of
elastic half-spaces (stress, strain and displacement). The case studies most relevant to this
thesis will be summarized in this section [L.5].

When two non-conforming solids are brought into contact they touch initially in a
single point or along a line and under a certain load they deform in the vicinity of the
point of contact. If a coordinate system in which the x-y plane coincides with the tangent
plane of the two surfaces is chosen, then the profile of each surface close to the origin can
be expressed with the following Eq. IIL.1:

z, = Ax* +By* + Coxy + .. (IIL1)

where the higher order terms in x and y are neglected.
The x and y axes can be chosen so that the term in xy vanishes and (III.1) can be
written as:

1 1
| =——X{ +—— Yy Ill.1a
1 2R, i 2| i ( )
1, 1 5
Zy=—(——Xx5 +—y5 ) II1.1b
2 2R, 2 2R, 2 ( )

The separation between the two surfaces is given by (1I1.2):

1 1
h=z —z,=Ax> + By + Cxy=Ax* + By? =——x* +—y?  (ll1.2
1722 24 R 2R y ( )

where the third equality is obtained by choosing appropriate axes to make the constant C
equal to zero, 4 and B are positive constants and R’ and R’ are defined as the principal

relative radii of curvature (1/R =1/R, +1/R, ; 1/R =1/R, +1/R2” ). If the x;
and x; axis are inclined to each other by an angle ¢ (Fig. III.1) then it can be shown that:

1
(A+15')=l(i,+—:]=l —1—+—1—+—1—+-1— (111.3)
2\R R 2{R, R R, R,
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5 2 1/2
lB—Alz—l— 11y LI ) 1L L1 eos26!  iLa

The equivalent radius R, is defined as:

R,=(RR')"*= %(AB iz (11L.5)

Fig. IIL.1 Axes used to define h (left). Contact among two solids and their respective deformation
once a load P is applied.

Fig. III.1 shows two solids in contact and how they deform once a normal force P is
applied. Before deformation the separation between the two corresponding surface points
S1 (x,y,z1) and S; (X,y,72) is given by Eq. II.2. During the compression, two distant points
T, and T, move toward the origin by displacements &, and &, respectively. If the two
solids did not deform then their profiles would penetrate each other. Due to the contact
pressure the surface of each body is displaced by an amount %, and u,,relative to the
distant points T; and T,. Following the definitions in Fig. IIL.1 and using Eq. IIL2 the
total displacement can be written as:

W, +il, 20, +0, - Ax* — By> 28— Ax* - By’ (111.6)
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where x and y are the common coordinates of S; and S; projected on the xy plane and 9y,
0; are the displacements of the two bodies. Those two conditions, first introduced by
Hertz, must be satisfied by the normal displacements within the contact area (= sign) and
outside the contact area (> sign).

By observation, Hertz then assumed that the typical profile of the contact surface is
an ellipse. He also introduced the simplification that for the purpose of estimating the
local deformations, each body can be considered as an elastic half-space loaded over a
small elliptical region. With this assumption the highly concentrated contact stresses are
treated separately from the general distribution in the rest of the solid.

In order for this simplification to be justifiable, the contact area must satisfy two
conditions:

(i) it must be small compared to the dimensions of each body so that the local stress
does not influence the general behavior of the solid

(ii) it must be small compared to the relative radii of curvature of the surfaces so that
the strains in the contact region are sufficiently small to lie within the linear theory of
elasticity.

Additionally, the two surfaces are assumed to be frictionless. Referring to Fig. I11.2, if
the significant dimension of the contact area is a and the relative radius of curvature R,
the significant radii of each body R; and R, and their length and depth L, the assumptions
made in the Hertz theory can be summarized as:

(1) the surfaces are continuous and non conforming: 2/ << R

(ii) the strains are small: 2/ << R

(iii) each solid can be considered as an elastic half space: 2/ << R; ,, 2l << L
(iv) the surfaces are frictionless

Applied force Applied force

| Elastic compression

Fig. II1.2 Schematic view of two solids in contact.
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Two cases are relevant for the analysis of our data: the case of crossing cylinders
(resembling the general contacts between strands in a cable) and the case of a cylinder
between two plates (resembling the single strand sample). The strategy is to use the
general equations to estimate the real contact areas in the cables tested and show that
under very reasonable assumption all the samples behaved similarly to respect of the
change in critical current as a function of load.

The classical approach to finding the stresses and displacements is due to Boussinesq
and Cerruti who made use of the theory of potential. The general profile of a contact
between two solids will be described using the theory developed by Hertz and the
specific cases discussed later in this section.

A(x,y,2)

Fig. 111.3 Half space used to describe the potential theory [L.5].

If C(,A) is a general surface point within the loaded surface S and A(x,y,z) a general
point in the solid then the distance CA (Fig. II1.3) can be expressed as:

CA=y={C -2 +(A-y)2 + 22| (IIL.7)

A distribution of pressure p({,4) and tangential traction ¢.({,A), ¢,({,A) are acting on
the surface S. The following potential functions are defined to solve the general problem
and find pressure and displacements (II1.8):

FI=§”‘JI“-“Q"’F5"’1 ai—” (L A)In(x+2)-dEdA

G,=!fqy(§',/1).g-d§dﬁ i aai_”qy(g«,;u),m(ZJ,Z).dgdg

Hy = [[p(¢.A)-Q-dédA ” §

Qz;fﬂqﬂ)_}( H=T=§”p(§,/1)‘ln()(+z)-d§d/1
(IIL.8)
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The function ; and  are also defined:

oF, 0G, O0H,
Yi=——+ +
ox dy oz
_y _OF G oH
oz ox dy Oz

(1IL.9)

Love showed that the components of the elastic displacement at a point A(x,y,z) can
be expressed as:

1 . 2_a£_a_H+2V_a__'//.l__Za_l//
0z Ox ox ox

o=t ],0G _OH , 0% _ dy (I1L.10)
oz dy oy dy

1 oH oy
= A -y -2 28
“ Ar-G {az t-wy Zax}

Using Hooke’s law the corresponding stress can be evaluated:

: ou
0'x=2V G (du, L%y +8uz +ZGaux
1-2v { dx dy oz ox
_2v-G [ou, ou, ou, G Ju y Normal stress
Y 122w | ox + dy + % + "é}— components
: ou
O_x=2v G aux+ y+8uz +2Gau2
1-2v { ox dy Oz 0z
(IIL.11)
0 ou
Txy = G . ..& + _r
oy Ox
Shear stress
z-yz =G a:;—y + %J components
4
7, =G o, +§Ei
ox oz
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In the analysis performed in this thesis it was assumed the solid is only under the

action of a normal pressure p(¢{,4) (frictionless contact) so that the previous equations can
be simplified to:

F=F=G=G,=0

H
wl=—az—‘=H=ij(f,/l)~zn(z+z)-dfdﬂ
oH a;//
===t jj (M)—dfd/l
ux=———l {(1 2v)—‘+za—"”} (IL12)
4z -G ox ox

__ 1 85//
R G{( o 3 ay}

1 oY
= 21 - -2
" 47['G{( 4 Zaz}

But y and y,; are harmonic functions of x, y, and z so that they satisfy Laplace’s
equation:

Viy=V’y, =0
aux +auy +auz _ 1=2v al// (11113)
ox dy 0dz 2r-G oz

A

Substituting Eq. I11.12 into II1.12 the components of stress at any point in the solid
can be found to be:

1 oy oy 0’y oy 821//
S | Yt EPL Ay I, LA 41 L Ly
o {V P (1-2v) 5 Ty == (1-2v)—L

2 Bxay Bxay
1 oy oy, 1 %y
=—JyZr _2Y _n-2 -
% 275{ P oy’ (i=2v) oy’ " on” dyoz
2
o _L aw_zizz sz:-_—l_zal//
Yoomloz ot 27 0xdz
(II1.14)
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At the surface of the solid the normal stress and the displacements are:

p ___1_(3_1//) _{—p({,ﬂ) insideS}
=0

ol oz ), 0 outside S
T o4r-G\ ox =0
Uy =— —

dr-G\ 3 ) _,

He —27;-(;( oz Lo_zz-G(W“‘)

(IIL15)

(i) Crossing Cylinders(multi-strand cable)

If a general pressure distribution generating an elliptical contact area is assumed (the
area of contact is elliptical in shape with semi-axis 77 and £Fig. 111.4):

P=D, {1 —(-;—Jz —(?]2} (I11.16)

Applied Force

_—C )
__2?_ I

2n

Fig. II1.4 Schematic view of the contact area between two strands.

The classical approach, using the potential functions brings to the following results:

w(xyz)=[[pli-&/nf-(as&2f plagar iy
S

where p? =({ -x)* +(A-y)* +z°.
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The normal displacement is given by:

Uz =

1-v
- II1.18
27[ . G (y/)z—O ( )

For a general point in the solid, following the potential theory:

n+l/2
T(n+1I(1/2 ¥ X2 2 2\
Vixyz)= (r(n+)3§2))p°'”'§'J(l_ 2+w_§2y+w__J *
AN (I1L.19)
y aw

{n? +w)- & +w)-w}”

where 7"is the gamma function and % is the positive root of the equation (% is taken to be
zero to evaluate  at a surface point within the loaded region):

2 2 2
* Y I (111.20)

n+y E+y ¥

In the case of Hertzian pressure (most commonly used) n = /2 so that:

7= {1 - (%} - (-:;) } (I.21)

1 oo x2 y2 22 n+l/2
v(xyz)=—pyn§ |1-—-—-—1 X
n

dw
{2 +w) & +w)-w}”?

X

on the surface within the loaded region (I11.22)

1 oo x2 y2 n+l/2
x,y,0)=— n-&-|1- — X
V(xy0)=2py 1§ Oj( - §2+wj

dw
{n?+w)- (&2 +w)-w}”

X
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This pressure produces displacements within the ellipse given by Eq. I11.23:

2
u, = ! l;: (L— Mx* - Nyz) (I11.23)
So that for both bodies (Fig. I11.2)
T+l = (L- Mx® = Ny?)—— (11.24)
T-E
with
v 2 TPl dw - '21’025 [K(e)-E(e)} (11.25)
2 mewp & ewpw]? e
o0 i 2
N=F Polls dw _ _Z ngf {Q?E(e)—K(e)} (111.26)
2 i ewxe wwpnl? Int 18
I= 7T poné dw — = pol-K(e) (1IL.27)

2 (){(772+w)(‘fz+w)w}l

where e is the eccentricity of the ellipse e=(1-¢ 2/n? )1/ 2 K(e) and E(e) are complete

elliptic integrals of the first and second kind and 1/E" =(1-v})/E, +(1-v; )/ E,.
The pressure distribution is semi-ellipsoidal and the total load F is given
byF=(2/3) pym-1-&.

The total displacement in Eq. I11.24 has to satisfy the condition expressed by Eq. I11.6
so that:

A=M/7-E =(p,/E")-(£/e*n*)-{K(e)- E(e)} (I11.28)
B=N/m E"=(p,/E")-(£/e*n?){n? 1€ )E(e) - K(e)} (11.29)
S, =y=L/n-E =(p,/E")-E-K(e) (111.30)

To find the shape and size of the ellipse of contact the following equations can be
used:

E:T:(n/é‘)z -E(e)-K(e) (I1.31)
R K(e)—E(e)

1
amyec (L)L p b {{(a/b)zE(e)—K(e)}x]z a132)

2R, E a%e®|x{K(e)-E(e)}

B
y
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Defining ¢ =(7-&)'/*and substituting for py:

3F.R
c=|—2|F(e I11.33
(4E J i(e) (IIL.33)

where F'(e) is also an elliptic integral.
The semi-axes of the ellipse are often evaluated [II1.3, I11.6-I11.8] with the following
equations:

1/3
n=a- (—FEKD J (I11.34)

1/3
&=p- (——-F" EKD j (I11.35)

where F is the total force in N, o and B are tabulated values dependent on the crossing
angles ¢ between the two solids (Table II1.1) and

c 3 1 3
° 2 1/R +1/R,+1/R +1/R, A+B
2 2 1/2
. B-4
cosQ=2—K' L—L + L—L +2 —L—L ‘I——L cos2¢ =‘—‘|
3 Rl Rl RZ R2 Rl Rl RZ R2 A+B

Table II1.1 Tabulated values of o and B to evaluate the semi-axis of the ellipse of contact [5.7,
5.8].

Q o B A

0 - 0 0

1 36.890 0.131 0.047
2 22.260 0.169 0.090
3 16.500 0.196 0.130
4 13.310 0.209 0.165
6 9.790 0.255 0.227
8 7.860 0.285 0.278
10 6.612 0.319 0.320
20 3.778 0.408 0.456
30 2.731 0.493 0.542
35 2.397 0.530 0.579
40 2.136 0.567 0.614
45 1.926 0.604 0.645
50 1.754 0.641 0.672
55 1.611 0.678 0.693
60 1.486 0.717 0.710
65 1.378 0.759 0.724
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70 1.284 0.802 0.737
75 1.202 0.846 0.750
80 1.128 0.893 0.764
85 1.061 0.944 0.775
90 1.000 1.000 0.777

The total displacement in this case (deformation of both strands) can be evaluated by

using Eq. 1I1.36:
F 2
O =A3—75— (I11.36)
(E" )" -Kp

Using Eq. I11.34 and II1.35, the contact surface can be evaluated using Eq. II1.37.
S, =x-n¢ (111.37)

In the case of 3-strand and 45-strand cables, R, =R, =a; R, =R, = (a being the
radius of a strand) so that:

1 _3-a
1/R +1/R, 4

3
K,=2.
by

1/2

2 2 1/2
os=2Ko .{(_1_] 1 +2(1)(1)mz¢} farenze)
3 a a al\a 2
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(ii) Infinite cylinder (single strand)

The single strand sample (with radius a) tested resembles a case in which a long
cylinder is pressed in between two flat plates (or two solids with radius much bigger that
the single strand diameter) as shown in Fig. IIL5.

Fig. II1.5 Cylinder in contact with two solids. The contact pressure distribution is shown in the
figure and is used to estimate the contact width 2/,, 21,.

In this case the stresses and deformation are evaluated for an elastic half-space loaded
one-dimensionally over a narrow strip (line loading). Considering a more general case,
the stress components at any point A of an elastic half space (Fig. II1.6) loaded over a
strip (-d<x<g) by a normal pressure p(x) and tangential traction g(x) can be expressed
as[II1.2, I11.5]:

o =— S p(s)(x-s)* ds 2 J‘q(S)(x s)%ds
’ —d{(x s)? +z} _d{(x s +z }2
o, =_223 £ p(s)ds _22 J- q(s)(x—s)ds (I1138)

-d{(x—s)2+22}2 a —d{(X—S)2+22}2
] =—222 & p(s)(x—s)ds _Q?Q(S)(x—s)zds
d -d{(x—s)2+22}2 ”—d{(x—s)2+zz}2

The elastic displacements on the surface can be found using Hooke’s law:

- 1-2v)(1 ¥ ¥ -v?) %
RS 7 O SRR S

(I11.39)

_ 2 8 _ x g
Uz =—%—) Ip(s)lnﬂx—-sl)ds+ a 2V2)E(1+V){ J.q(s)ds— Iq(s)ds}+C2
-d —-d x

220



L d . g
ds
p(s)
—ry —P — —> >
q(s) PEIN C(x, 0) X
- » r
v

A(x, z)
Fig. II1.6 Schematic view of an elastic half space loaded with normal pressure p(x) and tangential
traction q(x).

Using Eq. 11139 it is possible to estimate the strain in the x direction and the slope of
the deformed surface (which will be used later in this section). In particular the case of
interest for the single strand is considering a frictionless surface (g(x)=0):

o ux__(1=w)(1+v)

ox E
du. _ 21-v*)

x n-E

(x)
(I11.40)

g
[ ps)——ds
By x—s

With the information gathered in the previous equations the case depicted in Fig. 1115
is considered and the approach used by Hertz is followed. Eq. IIl.41 represents the
separation between corresponding points on the unloaded surface (z is the single strand, z;
correspond to the surfaces pressing against it):

h:z-{-zi:sz:l l+i x2=l 1
2\a R, 2| R

i eq,i

sz (111.41)

For points lying within the contact area after loading:

u,+u,;=06,+0, _ax? =51 L |s (111.42)
' 2\ R,y
For points lying outside the contact area after loading:
_ 1
i, +i, >0, +05, —Ax* =0 . | x* (111.43)
! 2\ R,,;
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Differentiating Eq. I11.43 and using Eq. I11.40:

_ 817 i
G TS S | P(S) g (I11.44)
X—3S

ox ox Req,i - Ei I

where 1/E, =(1-v?)/E+(1-v*)/E,
Eq. I11.44 can be solved to find the pressure distribution ps(x). ps (x) has to satisty the

conditions 111.32 and IIL.33 so that if a compressive load per unit axial length F; (N/m)
the pressure distribution is as follow:

2 F b 1/2
. l x
= l-— I11.45
p/ - ll' ( liz } ( )

where the semi-contact width /; is given by Eq. 111.46:

_4F Ry,

I? - (I11.46)
- E’
The maximum pressure is:
2-F,
Po=—o (111.47)
-l

1

The stresses between the two solids can be found substituting the pressure distribution
of Eq. IIL.45 into Eq. IIL.38. At the contact interfacec, =0, =—p(x); outside the

contact region the stresses vanish to zero and along the z-axis the integration of II1.38
gives:

12 +222 2F 12 + 222
Oy, = (21 2 1)/2 TAIET lz (21 2 1)/2 -2z
L% +222) z- 12 (12 +22%)

Po 1 2F, 1
0,=- 2 22 2 2 2.1/2

__Po

(I11.48)
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In the case of the single strand pressed between two bodies with radius bigger than
the radius of the single strand, as shown by Timoshenko and Goodier [II1.2], the stress at
a point A will be given by Eq. IIL.41, a uniform biaxial tension (0, =0, =-P/7-a )
caused by the diametrically opposed forces cause by the two solid pressing on the

cylinder and the stress caused by the pressure at point O, (far from A).
Adding all those components the stress components can be written as:

F |1 212+22%) 4z
O'x = —— — + —
7 la liz(liz +222)1/2 1.2

1

Flt 2 1
0, =—1—- -
T la 2a_Z (112+222)1/2

Using plane strain condition (g, = 0), those stress components can be used to evaluate
the strain component in the z-direction:

(111.49)

e, ={1-v? )/E}{az o, L} (IIL.50)

1-v

Integrating the strain component of z between z = 0 and z = a the compression of the
upper and lower half of the cylinder can be found using Eq. II1.51 and II1.52.

The total displacement is the sum of the displacement from the top and bottom half of
the cylinder (Eq. 111.53).

“ (1-v*) 4qa
51=6[82-dz:Fl- — {2~ln[7l—J—1} (IIL51)
e g (A=VE) ], [ 4a)
az_ojsz dz=F) - —— {2 ln{lzj 1} (111.52)
2
s=2r, .02V ){zn(“—“]+zn(ﬂ’-]—1} (IIL.53)
n-E I8 l,

The results obtained depend on the profile chosen for the pressure distribution. In
literature a parabolic profile is often found to describe the pressure distribution [IV.9] but

the total displacement is not that different from the one obtained by Eq. II1.53 (less than
8% difference).
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APPENDIX IV:
Critical Current Evaluation Using Gaussian Method

IV.1Normalized Critical Current of a Multi-strand Cable

The normalized critical current of a multi-strand cable can be evaluated by knowing
the contact pressure and using the critical current data available for a single strand or
3-strand cable as a function of load (Eq. IV.1):

R

Ic =2 Jch—engineering ’ V(RZ _y2) '(1_Vf )dy:'
7. J‘ c—sin glestrand ‘/—__y— )(1- v, ) dy
-R

R

I—sm estran
=2 [ (R —y?) (1-v, )y =

I co—45strand Rﬂ- a 4 co—45strand

R I
7. 1 c—singlestrand . /(RZ _y2) '(1_vf )dy

R—]Vs_ﬂ'a -1

co—singlestrand

(IV.1)

Where Jey-engineering 1S the engineering critical current density, R the radius of the multi-
strand cable, a the radius of a strand, v, the void fraction of the cable, N; the number of
strands in the cable.

The integral in Eq. IV.1 is evaluated using the Gaussian method of order 40 [IV.1].

The end result will be a list of force per unit length and normalized critical current as
a function of the force per unit length. Additionally, as explained later in this paragraph,
the normalized critical current considering also the cycling effect will be obtained
(Table IV.1).

Table IV.1 Table obtained as a result of the Gaussian integration.

Total force per unit length 1/ c0-45-strand I/Tc0-45-strand
(kN/m) (considering cycles)

0 1 1
8 0.99994 0.99637

776 0.16287 0.19138

784 0.16146 0.18863

792 0.16006 0.18592

800 0.15867 0.18325
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Each value of the second and third column is calculated using a Gaussian integral as
follow (R4 is the error on the approximation of the series and it is a small quantity):

7} b, —b 40
Jf(p)dy==0 2w f()+ R (IV.2)
b 1

f(yi)=2"]c—engineering ) V(Rz —yiz)'(l_vf)=
V3
g L1 . N(R* =y} )-(1=v;) "

2
N s T-a I c0-singlestrand

where w; and y; are weights and abscissas of Gaussian integration for order 40,
respectively (Table IV.2, IV.3). N; is the number of strands in the cable (45), a is the
strand radius (0.41 mm), b; 1S —Rcqple (radius of the cable) and b; is Rcqe and vris the void
fraction (0.33), y; varies between —R zpre and +Rcape.
After finding the contact pressure, the single strand data can be used to estimate

I

c—singlestrand

1

co-singlestrand

multi-strand cable

at that particular pressure and evaluate the normalized critical current of a
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Table IV.2 Weight wi used to evaluate the integral of Eq. IV.2

Gauss-Legendre Weights for order 40

+0.004521277098533191258471732878185332727831110199706241869181

+0.010498284531152813614742171067279652376792621315797356467534

+0.016421058381907888712863484882363927292342293346958645582974

+0.022245849194166957261504324184208573207033196679355587584551

+0.027937006980023401098489157507721077302550862050767791132672

+0.033460195282547847392678183086410848977241786653765919852723

+0.038782167974472017639972031290446162253459211232027534050595

+0.043870908185673271991674686041715495811006837170238588858361

+0.048695807635072232061434160448146388067843027377121400152438

+0.053227846983936824354996479772260504555321171822007893991711

+0.057439769099391551366617730910425985600104835854454774028546

+0.061306242492928939166537996408398595902593763511175060695761

+0.064804013456601038074554529566752730032692964208489133544205

+0.067912045815233903825690108231923985984197238379285589516653

+0.070611647391286779695483630855286832359559103995585092649872

+0.072886582395804059060510683442517835857559080985796983255344

+0.074723169057968264200189336261324673191202934420357578847714

+0.076110361900626242371558075922494823012559553845068365314109

+0.077039818164247965588307534283810248524439754163937314935990

+0.077505947978424811263723962958326326963668652788103147669063

+0.077505947978424811263723962958326326963668652788103147669063

+0.077039818164247965588307534283810248524439754163937314935990

+0.076110361900626242371558075922494823012559553845068365314109

+0.074723169057968264200189336261324673191202934420357578847714

+0.072886582395804059060510683442517835857559080985796983255344

+0.070611647391286779695483630855286832359559103995585092649872

+0.067912045815233903825690108231923985984197238379285589516653

+0.064804013456601038074554529566752730032692964208489133544205

+0.061306242492928939166537996408398595902593763511175060695761

+0.057439769099391551366617730910425985600104835854454774028546

+0.053227846983936824354996479772260504555321171822007893991711

+0.048695807635072232061434160448146388067843027377121400152438

+0.043870908185673271991674686041715495811006837170238588858361

+0.038782167974472017639972031290446162253459211232027534050595

+0.033460195282547847392678183086410848977241786653765919852723

+0.027937006980023401098489157507721077302550862050767791132672

+0.022245849194166957261504324184208573207033196679355587584551

+0.016421058381907888712863484882363927292342293346958645582974

+0.010498284531152813614742171067279652376792621315797356467534

+0.004521277098533191258471732878185332727831110199706241869181
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Table IV.3 Abscissas y; used to evaluate the integral of Eq. IV.2

Gauss-Legendre Abscissas for order 40

- 0.998237709710559200349622702420586492335770381595045808577581

- 0.990726238699457006453054352221372154962222081351086024878352

-0.977259949983774262663370283712903806978667932037984851175804

-0.957916819213791655804540999452759285094883490602744761591148

-0.932812808278676533360852166845205716434753575282688898929952

- 0.902098806968874296728253330868493103584488081057664431112536

- 0.865959503212259503820781808354619963570546553011094983606217

- 0.824612230833311663196320230666098773907240384242979438623162

-0.778305651426519387694971545506494848020691316126881762542263

-0.727318255189927103280996451754930548557378673533316562403522

-0.671956684614179548379354514961494109970325981383838269965139

-0.612553889667980237952612450230694877380123781683135778757367

- 0.549467125095128202075931305529517970233975101595637141746493

- 0.483075801686178712908566574244823004599022395533099841136162

- 0.413779204371605001524879745803713682974099624052904661350012

- 0.341994090825758473007492481179194310066953620027313547235050

-0.268152185007253681141184344808596183424804373236236683321946

-0.192697580701371099715516852065149894814092021105201079079604

-0.116084070675255208483451284408024113768728530854211087557655

-0.038772417506050821933193444024623294679364634383139947198477

+0.038772417506050821933193444024623294679364634383139947198477

+0.116084070675255208483451284408024113768728530854211087557655

+0.192697580701371099715516852065149894814092021105201079079604

+0.268152185007253681141184344808596183424804373236236683321946

+0.341994090825758473007492481179194310066953620027313547235050

+0.413779204371605001524879745803713682974099624052904661350012

+0.483075801686178712908566574244823004599022395533099841136162

+0.549467125095128202075931305529517970233975101595637141746493

+0.612553889667980237952612450230694877380123781683135778757367

+0.671956684614179548379354514961494109970325981383838269965139

+0.727318255189927103280996451754930548557378673533316562403522

+0.778305651426519387694971545506494848020691316126881762542263

+0.824612230833311663196320230666098773907240384242979438623162

+0.865959503212259503820781808354619963570546553011094983606217

+0.902098806968874296728253330868493103584488081057664431112536

+0.932812808278676533360852166845205716434753575282688898929952

+0.957916819213791655804540999452759285094883490602744761591148

+0.977259949983774262663370283712903806978667932037984851175804

+0.990726238699457006453054352221372154962222081351086024878352

+0.998237709710559200349622702420586492335770381595045808577581
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APPENDIX V:
Calculation of the angle between sub-cables in a multi-strand cable

V.1 Calculation of the angle between sub-cables and its effect on the modeling

In Chapters 5 and 6, the contact area between strands is evaluated using two
parameters o, and 3 that depends on the angle ¢ between the two strands. The angle ¢ can
be found using a simple 2D model or a more precise 3D model. It turns out there is not
much difference between the two model for the tested cables (3-strand cable and 45-
strand cable) presented in Chapter 5 but for higher stages cables the more precise model
has to be used.

In this appendix, the two approaches will be presented and a comparison between the
results will be made for the appropriate cases of interest. Cables composed of three, four
and five subcables will be considered in the calculation.

2D model

Referring to Fig. V.1 it can be seen that with a simplified 2D assumption the angle
between strands can be estimated with Eq. V.1-2:

— LP
tany = V.1
27[' rb
T
w=2-(5—7) (V.2)

where L, is the twist pitch of a particular stage, ® the angle between the strands, b the
radius of the subcable, r, the distance from the center of the cable around which the
subcable rotates. This distance depends on the number of subcable inside the cables as
shown in Fig. V.1.

ry=sqrt(2)-b
r,=b/sin(7U/5)
b
L /\
tany = £ \ Fig. V.1 2D schematic view of
271, A Lp, B cables with different number of
- subcables (top) and how to
Y \ calculate the angle between
2 \ subcables (bottom).
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3D model
Using a 3D approach, three different cases are considered:

(i) Three subcables

Fig. V.2 3D coordinate system used in the calculation.

The trajectories of the center of sub-cables (or strands) A and B shown in Fig. V.2
can be written with vectors 4and B :

A=r,-cosbx+r,-sindy+r,-0-tanyz (V.3)

B=r, '608(5"'2?7[);“"’1; .sin(5+27”);+ r, - tanyz (V.4

with tany= L,/2my, L, being twist pitch.
The line vectors on the axis of a sub-cable (or strands) A and B are:

Zg::—rb .siné'-d§;+rb 'cosd~d§;+rb -tan}/-dﬁz (V.5)

ZZS_B=—rb -sin(5+27”)~d5;+rb ~cos(§+2§)‘d5;+rb-tan}/-dﬁg (V.6)

Given the Eq. V.3-V.6 the angle ¢ between the subcables A and B (the angle between
ds , and ds 5 ), can be found using the well known general vector equation:

ds . -ds. tanty— sinty—
cos ¢=—54 s 2-tan"y—1 3-sin” y—1

= 4B L v.7)
|ds,|-|dsg| 2-(1+tany) 2
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(ii) Four subcables
In case of a cable composed of four subcables (before swaging):
A=r, .cosOx+r, -sin5_):+rb 8- tanyz

E=rb 'COS(5+'72£);+rb 'Sin(5+§);+rb -tan}/;

with tany= L/2mry, , L, being twist pitch.
The line vectors on the axis of a sub-cable (or strands) A and B are:

E=—rb -sin5-d5;+rb -cos5~d5;+rb ~tan}/-d5;
E="‘b 'Si”(5+%)-d5;c+rb -cos(5+§)'d§;+rb tany-ddz
Given the Eq. V.2-V.5 the angle ¢ between the subcables A and B is:

—— —— )
cosP= _C_lff di’fL __fan Z =sin2}/
|ds |-|dsg| (1+tan”y)

(iii) Five subcables
In case of a cable composed of five subcables (before swaging):
A=r, -cosSx+r, .sindy+r,- 8- tanyz

§=I’b'COS(§+2?ﬁ);+rb'Sin(5+2?ﬂ);+rb tanyz

with tany= L,/2 7y, L, being twist pitch.
The line vectors on the axis of a sub-cable (or strands) A and B are:

ds,=-r,-sin8-dox+r, cos8-ddy +r, .tany - ddz
ds, =-r, .sin(§+2?7[).d5;c+rb -cos(§+2?ﬂ)-d6;+rb tany-doz

Given the Eq. V.2-V.5 the angle ¢ between the subcables A and B is:

- g cos(—2”)+tan2}’
ds - d.
cos = B4 D _ > . =1—(1—cos(2—”))c0s27
| ds || dsg| (1+tan”y) 5

(V.8)
(V.9)

(V.10)
(V.11)

(V.12)

(V.13)
(V.14)

(V.15)
(V.16)

V.17)
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Table V.1 gives three examples of different cables and the results obtained using Eq.
V.2 and Eq. V.7, V.17. The table clearly shows that the difference between ® and ¢ can
be significant for larger cables (45-strand cable). The subcable distance from the center,
rb, is obtained using the information obtained from the previous stage (b for the 9-strand
is the radius of the 3-strand, b for the 45-strand is the radius of the 9-strand).

Table V.1 Results using different cables using the 2D and 3D models.

Cable 3-strand 9-strand 45-strand

Stage 3x3 3x3x5

Wire radius a (mm) 0.41 0.41 0.41

Void fraction v¢ 0.33 0.33 0.33

Subcable center r 2-b_2-a_ | 2-b_2-088_ b _ 1503 _, s

(mm) NG NG sin(m/5) 0.5878
=0.473 =1.020

Radius after swaging | 0.883 1.503 3.360

(mm)

Twist Pitch (mm) 45 85 125

tany (L,/27r,) 15.1 13.3 7.8

Y (°) 86.2 85.7 82.7

®(°) 7.6 8.6 14.6

¢ (°) 6.5 7.5 8.6

As presented in Chapter 5 and Appendix III, the angle ¢ is used to estimate the
parameters ¢ and B that are used to calculate the semi-axes of the ellipsoidal contact
between two strands using the following equations:

2-K 1V (1) (1)1 Y (14 cos20))
cosQ="—2 {(—j +(—) +2(—j(—)cos 2¢} ={-(—cof—¢)} =cos ¢ (V.18)
3 a a a\a 2

F-K 1/3
_a. D V.19
n 05( = ) (V.19)
1/3
E=p (FEKD) (V.20)

Table V.2 is reporting o and P as a function of the angle Q which for the case of our
analysis is equal to ¢.

Fig. V.3 shows the two values as a function of the angle ¢ and it can be seen that in
the range of interest between 0 and 30° while  does not vary very rapidly, o is varying
sharply especially at small angles. The 3D analysis is used to better estimate the angle ¢
so that the best estimate for the variables o and B can be obtained.

For the cables tested in this work and for a full size cable like the one used in ITER,
the angle ¢ varies from 6.5° and 8.6° and the variables o and 3 do not vary much in this
range. Furthermore the majority of crossing points are generated by 3-strand (triplet)
bundles so that the 3-strand contact angle ¢;=6.5 °is used in the analysis.
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Table V.2 Tabulated values of o and B to evaluate the semi-axis of the ellipse of contact [5.7,
5.8].

Q=6 o B

0 - 0

1 36.890 0.131
2 22.260 0.169
3 16.500 0.196
4 13.310 0.209
6 9.790 0.255
8 7.860 0.285
10 6.612 0.319
20 3.778 0.408
30 2.731 0.493
35 2.397 0.530
40 2.136 0.567
45 1.926 0.604
50 1.754 0.641
55 1.611 0.678
60 1.486 0.717
65 1.378 0.759
70 1.284 0.802
75 1.202 0.846
80 1.128 0.893
85 1.061 0.944
90 1.000 1.000

Angle (degree)

Fig. V.3 Variables o and B, used to evaluate the semi-axes of the contact area between strands,
are shown as a function of the angle ¢.
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