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Abstract

Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome
networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways
and together mediate a biological process. However, it is still poorly understood how biological information is transmitted
between different modules. We have developed information flow analysis, a new computational approach that identifies
proteins central to the transmission of biological information throughout the network. In the information flow analysis, we
represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as
interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method
calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or
betweenness that only consider topological features, our approach incorporates confidence scores of protein–protein
interactions and automatically considers all possible paths in a network when evaluating the importance of each protein.
We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the
likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein’s
information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong
predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes
supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We
also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of
noisy data is added to an interactome. Finally, we combine gene expression data with interaction data in C. elegans and
construct an interactome network for muscle-specific genes. We find that genes that rank high in terms of information flow
in the muscle interactome network but not in the entire network tend to play important roles in muscle function. This
framework for studying tissue-specific networks by the information flow model can be applied to other tissues and other
organisms as well.
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Introduction

In the last decade, several high-throughput experimental

techniques have allowed systematic mapping of protein-protein

interaction networks, or interactome networks, for model organ-

isms [1–4] and human [5,6]. Interactome networks provide us

with a global view of complex biological processes within an

organism. However, it has been a challenge to associate network

properties with functional relevance.

Work on global topology of interactome networks has led to a

conclusion that these networks are small-world with power-law

degree distributions [7–10]. This translates to having a few hub

nodes and a majority of nodes with a few partners. This property

of interactome networks is very different from random networks

where the degree is uniformly distributed. Given that interactomes

evolved into this topology, analyzing topological properties of

biological networks should provide system-level insights on key

players of biological processes.

In an interactome network, the ‘central’ proteins, which

topologically connect many different neighborhoods of the

network, are likely to mediate crucial biological functions. The

most straightforward way of quantifying the centrality of a protein

in the context of interactome networks is to examine the protein’s

degree, e.g. the number of binding partners interacting with the

protein of interest. Perturbations of high-degree proteins (hubs) are

more likely to result in lethality than mutations in other proteins

[7,11]. However, degree only measures a protein’s local

connectivity and does not consider the protein’s position relative

to other proteins except for the direct binding partners of the given

protein. A metric to estimate global centrality is betweenness.

Betweenness determines the centrality of a protein in an

interactome network based on the total number of shortest paths

going through the given protein [12,13]. A node partaking in a

large fraction of all shortest paths has high betweenness. Such

nodes have been termed bottlenecks [14] as they are not necessarily

high degree (as are the hub nodes), yet they have a large amount of
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‘‘information traffic.’’ The bottlenecks, like the hubs, are more

likely to be essential than randomly sampled proteins in

interactomes [11,15]. Recent evidence shows that high between-

ness is correlated with pleiotropy [16], and bottlenecks tend to

mediate crosstalks between functional modules [14].

Both degree and betweenness are graph metrics that are not

specifically tailored to describe biological networks. Degree

measures a protein’s local connectivity and does not consider the

protein’s position in the network globally. Betweenness is a better

measure for centrality in that it takes into account paths through

the whole network, but it still has the disadvantage of only

considering the shortest paths and ignoring alternative pathways of

protein interactions. More importantly, interactome networks can

be error-prone and some interactions in the same network are not

as reliable as others. Many studies have been conducted to

categorize interaction data into different confidence levels

[3,17,18]. Neither degree nor betweenness takes the confidence

levels of interactions into consideration. To provide a better

solution for identifying central proteins, we developed an

information flow model of interactome networks. We took the

approach of modeling networks as electrical circuits, which had

been presented in previous network analyses [19–21]. Construing

the propagation of biological signals as flow of electrical current,

our method identified proteins central to the transmission of

information throughout the network. Unlike the previous methods

which characterized only the topological features of proteins, our

approach incorporated the confidence scores of protein-protein

interactions and automatically considers all possible paths in a

network when evaluating the importance of proteins. We

compared the information flow score to betweenness, and found

that the information flow score in the entire interactome network

is a stronger predictor of loss-of-function lethality and pleiotropy,

and better tolerates the addition of large amounts of error-prone

data.

For a multi-cellular organism, not all interactions have the same

propensity to occur in every tissue. However, the current network

metrics usually treat interactome networks as a whole, disregard-

ing the possibility that some interactions may not occur at all in

certain types of tissues. To address this, we developed a framework

for studying tissue-specific networks using the information flow

model. We constructed an interactome network for muscle

enriched genes in C. elegans, and showed that genes of high

information flow in the muscle interactome network but not in the

entire interactome network are likely to play important roles in

muscle function.

Results

Information flow model considers interaction confidence
scores and all possible paths in protein networks

We modeled an interactome network as an electrical circuit,

where interactions were represented as resistors and proteins as

interconnecting nodes (Figure 1). In the circuit, the value of

resistance for each resistor is inversely proportional to the

confidence score of the interaction. According to Kirchhoff’s

circuit laws, the current entering any node is equal to the current

leaving that node. By applying a current source to one node and

grounding another, we determined the exact amount of current

flowing through each node in the network (see Materials and

Methods). We iterated over all pairwise combinations of ‘‘source’’

and ‘‘ground’’ nodes in the network and summed up the absolute

values of current through the node of interest from all iterations.

We defined the information flow score of a protein as the sum of

absolute values of current through the corresponding node. A

node that actively participates in the transmission of current for

other nodes ends up with a high sum of absolute values of current,

and the corresponding protein receives a high information flow

score.

Unlike degree that only considers direct interactions or

betweenness that only scores proteins along the shortest paths

interpreted as the dominant paths, the information flow model

weighs proteins along all the possible paths. Therefore, the

information flow model is able to rank ‘‘runner-up’’ proteins

participating in many paths of information transmission, instead of

only the seemingly prominent ones. This aspect of the information

flow model reflects the property of biological pathways more

faithfully: there have been plenty of observations for multiple

pathways acting in parallel to achieve a specific biological function

[22–26], and the active pathways may not always be the shortest

ones.

We applied the information flow model to two publicly available

interactome networks: a S. cerevisiae interactome consisting of 1516

proteins involved in 39,099 interactions [3] and a C. elegans

interactome consisting of 4607 proteins involved in 7850

interactions [2,27,28] (see Materials and Methods). Every

interaction in the yeast interactome is accompanied by a socio-

affinity index, which quantifies the tendency for a pair of proteins to

identify each other when one of the pair is tagged and to co-purify

when a third protein is tagged [3]. A high socio-affinity index

indicates a high confidence level for an interaction. We used all the

interactions with socio-affinity indices of 2 or higher. The worm

interactome does not have numerical scores for the interactions, so

we regarded all of the interactions for worms equally. Using these

two interactomes, we were able to evaluate the information flow

model under situations where interactions are treated equally or

interactions have different confidence scores. Similarly to degree

and betweenness, information flow scores of proteins in the yeast

or worm interactome network did not follow a Gaussian

distribution (data not shown), so we converted information flow

Author Summary

Protein–protein interactions mediate numerous biological
processes. In the last decade, there have been efforts to
comprehensively map protein–protein interactions occur-
ring in an organism. The interaction data generated from
these high-throughput projects can be represented as
interconnected networks. It has been found that knock-
outs of proteins residing in topologically central positions
in the networks more likely result in lethality of the
organism than knockouts of peripheral proteins. However,
it is difficult to accurately define topologically central
proteins because high-throughput data is error-prone and
some interactions are not as reliable as others. In addition,
the architecture of interaction networks varies in different
tissues for multi-cellular organisms. To this end, we present
a novel computational approach to identify central
proteins while considering the confidence of data and
gene expression in tissues. Moreover, our approach takes
into account multiple alternative paths in interaction
networks. We apply our method to yeast and nematode
interaction networks. We find that the likelihood of
observing lethality and pleiotropy when a given protein
is eliminated correlates better with our centrality score for
that protein than with its scores based on traditional
centrality metrics. Finally, we set up a framework to
identify central proteins in tissue-specific interaction
networks.
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scores into ranks and percentiles to reflect their relative values in

an interactome network.

Although the information flow score is a very different network

metric from betweenness or degree, there might be relationships

between the information flow score and these two topological

metrics. We obtained scatter plots for the ranks of information flow

scores versus the ranks of betweenness or degree for both the yeast

interactome and the worm interactome (Figure 2). Although the

information flow score and betweenness are correlated, a given

betweenness rank usually corresponds to a wide range of

information flow ranks, and vice versa (Figure 2A and 2C). The

information flow score and degree are less correlated (Figure 2B

and 2D). Low degree does not necessarily imply low information

flow score, although very high degree often implies high

information flow score.

The information flow score is a strong predictor for
essentiality and pleiotropy

We propose that the information flow model is able to identify

proteins central to the transmission of biological information in an

interactome network. If this model works, eliminating the proteins

of high information flow scores should be deleterious. The

perturbation of information flow and the disintegration of

functional modules are likely to result in lethality or multiple

phenotypes (pleiotropy). To test our hypothesis, we performed a

correlation analysis between the percentages of essential proteins

or pleiotropic proteins and the percentiles of information flow

scores (see Materials and Methods). For each bin containing

proteins within a certain range of information flow scores (in

percentiles), we calculated the percentage of proteins whose loss-

of-function strains exhibit lethality and the percentage of proteins

whose loss-of-function strains exhibit two or more phenotypes. We

observed a strong increasing trend for the percentage of essential

proteins and the percentage of pleiotropic proteins when

information flow scores increase (Figure 3). For S. cerevisiae, the

Pearson correlation coefficient (PCC) between the percentages of

essential proteins and the percentiles of information flow scores is

0.84, and the PCC between the percentages of pleiotropic proteins

and the percentiles of information flow scores is 0.60. For C.

elegans, the PCC between the percentages of essential proteins and

the percentiles of information flow scores is 0.95, and the PCC

between the percentages of pleiotropic proteins and the percentiles

of information flow scores is 0.85 as well.

In contrast, betweenness is a poorer predictor for both

essentiality and pleiotropy. For S. cerevisiae, the PCC between the

percentages of essential proteins and the percentiles of between-

ness is 20.02, and the PCC between the percentages of pleiotropic

proteins and the percentiles of betweenness is 20.31. For C. elegans,

the PCC between the percentages of essential proteins and the

percentiles of betweenness is 0.67, and the PCC between the

percentages of pleiotropic proteins and the percentiles of

betweenness is 0.49.

To determine the statistical significance of the correlation, we

generated randomized datasets by shuffling genes among the

percentile ranges while keeping the number of genes in each range

fixed. Next we obtained the percentage of essential or pleiotropic

genes for each range and performed correlation analysis for each

randomized dataset. We found that the correlation between

essentiality or pleiotropy and information flow scores is generally

stronger in the actual datasets than in the randomized datasets (P-

value = 0.0059 and P-value = 0.055 for essentiality and pleiotropy

in S. cerevisiae, respectively; P-value = 0.00054 and P-value = 0.0047

for essentiality and pleiotropy in C. elegans, respectively), while the

correlation between essentiality or pleiotropy and betweenness is

Figure 1. Circuit representation of an interactome network. We model an interactome network as an electrical circuit, where a node
represents a protein and a resistor represents an interaction. The resistance value of a resistor is inversely proportional to the confidence score of the
corresponding interaction.
doi:10.1371/journal.pcbi.1000350.g001
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not significant (P-value.0.05). Information flow outperforms

degree in terms of correlation with essentiality or pleiotropy in S.

cerevisiae (Figure S1). In the C. elegans interactome where the

interactions are unweighted, degree is still a strong indicator of

essentiality and pleiotropy (Figure S1).

Proteins of high information flow and low betweenness
show a high likelihood for being essential or pleiotropic

Proteins with similar betweenness in an interactome can differ

significantly in terms of information flow scores (Figure 2). We

investigated whether the information flow score is well correlated

with essentiality and pleiotropy among proteins that rank low in

terms of betweenness. We identified 449 proteins that rank the

lowest 30% in the yeast interactome and 672 proteins that rank the

lowest 30% in the worm interactome. We found that the

correlation between the information flow score and essentiality

or pleiotropy holds for these two groups of proteins (Figure 4). For

example, we found ten yeast proteins that are among the highest

30% of all proteins in terms of information flow but are among the

lowest 30% of all proteins in terms of betweenness. Out of these 10

proteins, 8 correspond to lethal phenotypes when deleted, and the

other 2 correspond to multiple other phenotypes when deleted

(Table S1). In contrast, we found three yeast proteins that are

among the highest 30% of all proteins in terms of betweenness but

are among the lowest 30% of all proteins in terms of information

flow, and none of them are essential or pleiotropic. Similarly, we

found that the information flow model is predictive of essentiality

or pleiotropy among medium- or low-degree proteins as well

(Figure S2).

What properties make some proteins low in betweenness but

high in information flow scores? From the information flow model,

we can expect two typical situations: one situation is that a protein

lies on alternative paths that are slightly longer than the shortest

paths; the other situation is that a protein has a limited number of

high-confidence interactions. Betweenness does not take any

alternative, longer paths into consideration in the first situation,

and betweenness does not give ‘‘extra credit’’ to high-confidence

interactions in the second situation. We illustrated the above two

Figure 2. Scatter plots of ranks of information flow versus betweenness (Panel A) or degree (Panel B) in a S. cerevisiae interactome
network and in a C. elegans interactome network (Panel C and Panel D). Overall, ranks of information flow and betweenness are correlated,
but a given betweenness usually corresponds to a wide range of information flow scores. Ranks of information flow and degree are less correlated.
Low degree can correspond to low, medium or high information flow, but high degree usually corresponds to high information flow.
doi:10.1371/journal.pcbi.1000350.g002
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situations with example ‘‘toy’’ networks, and analyzed how the

information flow model scores nodes that may be important but

not recovered by betweenness (Text S1). A closer look at the

individual proteins from the interactome networks confirms the

existence of both situations in biological networks.

Every interaction in the yeast interactome has a socio-affinity

index that measures the likelihood of a true interaction [3]. A

hub that has many low-confidence interactions may not be rated

as high as a protein with a limited number of high-confidence

interactions by the information flow model. We defined an

average interaction score for a protein as the average of socio-affinity

indices for all interactions involving the given protein. For

example, SRP68, a core component of the signal recognition

particle ribonucleioprotein complex, has a high average

interaction score which ranks among the highest 30% in the

yeast interactome. SRP68 ranks among the lowest 30% in terms

of betweenness but the highest 30% in terms of information flow

score. The deletion of this gene results in lethality of the yeast

strain. The same situation applies to RPB5, an RNA polymerase

subunit. The high average interaction scores are not taken into

account in the calculation of betweenness. In the information

flow model, we give more credit to the proteins with high-

confidence interactions.

The C. elegans interactome does not have numerical scores

associated with the interactions, so all the interactions are treated

equally in our information flow model. Therefore, the discrep-

ancy of information flow scores and betweenness is likely to

result from topological features of the network. For example,

KLC-1, which has been found to interact with UNC-116/

kinesin, KCA-1/kinesin cargo adaptor, and the ARX-2/Arp2/3

complex component by yeast two-hybrid (Y2H) screens [2], is

involved in intracellular transport and is required for embryonic

viability. KLC-1 is on a topologically central position (Figure 5A)

but scores low in terms of betweenness. Another example is

TAG-246, an ortholog of mammalian SWI/SNF-related matrix-

associated actin-dependent regulator of chromatin subfamily D

(SMARCD). TAG-246 is required for LIN-3/EGF signaling in

C. elegans vulva development. Just like KLC-1, TAG-246 only has

4 interactions. The loss-of-function of TAG-246 results in

lethality as well as several post-embryonic phenotypes, such as

protruding vulva and sterile progeny. Figure 5B shows that there are

many parallel paths around TAG-246, so TAG-246 does not

Figure 3. Correlation between information flow scores and loss-of-function phenotypes. The higher a protein’s information flow score is,
the higher the probability of observing lethality (Panel A) or pleiotropy (Panel B) when the protein is deleted from S. cerevisiae. This trend is observed
for C. elegans as well (Panel C and Panel D). The correlation is not as strong for betweenness and loss-of function phenotypes. The PCCs for
information flow scores and phenotypes are 0.84, 0.60, 0.95, and 0.85 in Panels A–D, respectively. In contrast, the PCCs for betweenness and
phenotypes are 20.02, 20.31, 0.67, and 0.49 in Panels A–D, respectively.
doi:10.1371/journal.pcbi.1000350.g003
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always lie on the shortest path, thus scoring low in betweenness.

Although KLC-1 and TAG-246 are neither high-degree nor

high-betweenness, the information flow model ranks them in the

top 37% and top 26%, respectively, because it considers all

possible paths in the network.

Taken together, the information flow model is effective in

identifying proteins that are central in interactome networks. Even

in cases where betweenness ranks are relatively low, the

information score serves as a strong predictor for essential or

pleiotropic proteins.

The ranks of information flow scores are more consistent
than that of betweenness when a large amount of low-
confidence data is added

As more high-throughput datasets become available, new

interactions are added into the networks. High-throughput

experiments are error-prone and false positives can be problematic

[17]. To address the data-quality issue, there have been many

studies attempting to estimate the probability of a true interaction

between a pair of proteins instead of weighing all interactions

equally [18]. However, previous network metrics such as

betweenness do not take the likelihood of interactions into

account. By incorporating likelihood of interactions into resistor

values, the information flow model is able to more accurately

simulate information propagation throughout the network.

In order to analyze how well the information flow model

tolerates the addition of a large amount of noisy data, we

simulated a growing yeast interactome network by adding low-

confidence interactions. Higher socio-affinity indices indicate

higher confidence of interactions. In total, there are 9,290

interactions with socio-affinity indices of 4.5 or higher, or 17,159

interactions with socio-affinity indices of 3.5 or higher, or 39,099

interactions with socio-affinity indices of 2 or higher. We rank both

information flow scores and betweenness for all the proteins in

each of the three versions of the interactome. We showed that

ranks of information flow scores were more consistent than that of

betweenness when low-confidence interactions were added to the

interactome (Figure 6). The consistency of information flow ranks

suggests that the information flow model is not only effective but

also robust in the case of noise in the data.

Information flow analysis of a muscle interactome
network reveals genes important for muscle function in
C. elegans

In multi-cellular organisms such as C. elegans, a pair of proteins

may only interact in certain tissues or cell types. Therefore, the

architecture of interactome networks may vary according to tissue

or cell types [29]. We hypothesize that proteins of high

information flow in a given tissue play crucial roles for the normal

function of that tissue.

Figure 4. Correlation between information flow scores and loss-of-function phenotypes among proteins of low betweenness. Even
among those proteins that rank in the lower 30% in terms of betweenness, a protein’s information flow score is still a good indicator for the
probability of observing lethality (Panel A) or pleiotropy (Panel B) when the protein is deleted from S. cerevisiae. This trend is observed for C. elegans
as well (Panel C and Panel D). The PCCs for information flow scores and phenotypes are 0.89, 0.79, 0.69, and 0.65 in Panels A–D, respectively.
doi:10.1371/journal.pcbi.1000350.g004
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We tested our hypothesis in an interactome network for muscle-

enriched genes. From a SAGE (Serial Analysis of Gene

Expression) dataset of 12 C. elegans tissues [30], we identified

muscle-enriched genes using a semi-supervised learning method

[31]. The semi-supervised learning analysis combines the benefits

of unsupervised clustering and supervised classification. In other

words, both the distribution of data points and prior biological

knowledge can be utilized to identify genes enriched in a particular

tissue. We manually curated the biomedical literature and found

25 genes known to show enriched expression in muscle cells and

165 genes known not to be expressed in muscle cells (Table S2).

These two groups of genes served as positive and negative training

data, respectively. For each gene expressed in muscle, the semi-

supervised learning procedure gave a probability score (Pi(muscle))

ranging from 0 to 1 to indicate the gene’s expression enrichment in

muscle as compared to other tissues (Table S3). We defined genes

scoring 0.5 or higher (Pi$0.5) as muscle-enriched genes and

identified 310 such genes (Figure 7). Among the muscle-enriched

genes identified by us, promoter::GFP reporter strains are

available for 52 of them, and 31 of them (60%) show clear

expression patterns in body wall muscle (Table S4), not including

those that might be expressed in other types of muscle. In addition,

260 (84%) of muscle-enriched genes contain cis-regulatory

modules that indicate expression in muscle in their promoter

sequences [32] (Table S5).

From the interactome dataset, we identified direct interacting

partners of the muscle-enriched genes. We discarded the

interacting genes that, according to the SAGE data, are not

expressed in muscle cells. The muscle-enriched genes and their

interacting partners which are expressed in muscle form a network

of 332 genes and 638 interactions. We defined the weight of an

interaction (g12) in the muscle interactome network as the product

of the probability scores for the two interacting genes (g12 = P1P2).

In other words, the more enriched a given gene’s expression is in

muscle, the higher its propensity is to interact with other enriched

genes in muscle cells.

We applied the information flow model to the muscle

interactome network, taking the weights of interactions into

account. We ranked all the genes in the muscle interactome

network by their information flow scores in the muscle interactome

network and by their information flow scores in the entire

interactome network, respectively. We found that genes of high

information flow in the muscle interactome network and genes of

high information flow in the entire network did not completely

overlap (Figure 8). In other words, some genes rank high in both

the muscle network and the entire network, while others rank high

in the muscle network but not in the entire network. We first

examined genes ranking high in both networks. We identified the

top 35 genes based on the sum of their ranks from both networks

and found that 40% of them correspond to loss-of-function

lethality, which implies that they are essential for the organism

development. We then hypothesized that the genes ranking high in

the muscle network but not in the entire network play crucial roles

in muscle function, though they may not be essential for the whole

organism.

We obtained the percentiles of genes in terms of information

flow scores in the muscle network and the percentiles of genes in

the entire network, calculated the differences between these two

percentiles, and ranked the genes by the differences. A C. elegans

homolog of human paxillin, tag-327, shows the largest percentile

difference (Table 1). This gene is suspected to be part of the worm

muscle attachment complex [33]. A homozygous gene knockout of

tag-327 resulted in uncoordinated animals arrested at the L1

developmental stage, displaying mild disorganization of the

myofilament lattice in their muscle cells [33]. The gene showing

the second largest percentile difference is dys-1, which ranks top

15% in terms of information flow scores in the muscle network and

71% in the entire network. dys-1 encodes an orthologue of the

human DMD [34], which when mutated leads to Duchenne

muscular dystrophy, a severe recessive x-linked form of muscular

dystrophy that is characterized by rapid progession of muscle

Figure 5. Examples of proteins showing high information flow
but low betweenness in the C. elegans interactome network. The
interactions in the C. elegans interactome do not have numerical
confidence scores, and the discrepancy between information flow
scores and betweenness is likely to be due to topological features such
as the existence of alternative paths. KLC-1 (Panel A) and TAG-246
(Panel B) are two worm proteins that have only 4 interactions, and
neither of them scores high in betweenness. However, KLC-1 rank the
highest 37% and TAG-246 rank in the highest 26% in terms of the
information flow scores. The two proteins both correspond to lethal
phenotypes upon loss-of-function.
doi:10.1371/journal.pcbi.1000350.g005
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degeneration. The gene showing the third largest percentile

difference is lev-11, which ranks in the top 21% in terms of

information flow scores in the muscle network and 78% in the

entire network. lev-11 encodes an orthologue of the human

TROPOMYOSIN 1 [35] (www.wormbook.org), which when

mutated leads to familial hypertrophic cardiomyopathy, a genetic

disorder caused by the thickening of heart muscle. The gene

showing the fourth largest percentile difference is deb-1, which

encodes a muscle attachment protein found in dense bodies, and is

required for attaching actin thin filaments to the basal sarcolemma

[35] (www.wormbook.org). Out of the top 35 genes that show the

largest differences, RNAi feeding strains are available for 25 genes

from a library [36]. We performed feeding RNAi experiments

using the rrf-3 strain, an RNAi-sensitive strain, and found that the

perturbation of 6 genes (24%) cause motility defect (Table 1). In

contrast, RNAi experiments of only 1 out of 16 genes (6%) that

rank the lowest in terms of percentile differences revealed any

motility defect (Table 1). As a general reference, in a genome-wide

RNAi screen using the rrf-3 strain [37], RNAi experiments of 4.1%

of all tested genes showed paralyzed or uncoordinated phenotypes.

Even among the muscle-enriched genes identified by the semi-

supervised learning method, only 9% of the genes correspond to a

paralyzed or uncoordinated phenotype. The analysis’ result

supports our hypothesis that genes of high information flow

specifically in the muscle network play important roles in normal

muscle function.

It is plausible that the genes showing higher information flow

scores in the muscle network than the entire network can also be

distinguished by conventional methods such as betweenness. To

clarify this, we obtained the percentiles of genes in terms of

betweenness in the muscle network and that of genes in the entire

network, and ranked the genes by the differences between the two

Figure 6. Scatter plots for ranks of information flow scores in different versions of yeast interactome networks (Panel A and C) and
for ranks of betweenness in different versions of yeast interactome networks (Panel B and D). The Y-axis represents the rank of
information flow scores (Panel A and C) or the rank of betweenness (Panel B and D) in a yeast interactome that includes high-confidence interactions
only (socio-affinity scores of 4.5 or higher). In Panel A and Panel B, the X-axis represents the rank of information flow scores or the rank of
betweenness in a yeast interactome that includes interactions at lower confidence levels (socio-affinity scores of 3.5 or higher). The PCCs for the ranks
of information flow scores (Panel A) and the ranks of betweenness (Panel B) are 0.83 and 0.71, respectively. In Panel C and Panel D, the X-axis
represents the rank of information flow scores or the rank of betweenness in a yeast interactome that includes interactions at still lower confidence
levels (socio-affinity scores of 2.5 or higher). The PCCs for the ranks of information flow scores (Panel C) and the ranks of betweenness (Panel D) are
0.54 and 0.38, respectively.
doi:10.1371/journal.pcbi.1000350.g006
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percentiles (Table S6). The top genes identified by differences in

information flow do not necessarily rank high by the differences in

betweenness (Table 1 and Table S6). For example, tag-327, dys-1,

lev-11, and deb-1, the top four genes identified by differences in

information flow, only rank No. 20, 23, 58, and 59 by differences

in betweenness, respectively. This is due to the fact that the

information flow model considers the confidence of interactions

derived from co-expression while betweenness does not. Similarly,

if we rank genes by the probability of expression in muscle,

Pi(muscle), as derived from the semi-supervised learning method,

tag-327, dys-1, lev-11, and deb-1 rank only at No. 149, 269, 97, and

124, respectively. The relevance in muscle function of these genes

has been reported in the literature [33–35], suggesting that the

information flow method does identify biologically relevant

candidate genes that can be distinguished using neither the gene

expression data nor a graph metric such as betweenness.

Discussion

We model interactome networks as large electrical circuits of

interconnecting junctions (proteins) and resistors (interactions).

Our model identifies candidate proteins that make significant

contributions to the transfer of biological information between

various modules. Compared to degree and betweenness, our

model has two major advantages: first, it incorporates the

confidence scores of protein-protein interactions; second, it

considers all possible paths of information transfer. When a

protein that mediates information exchange between modules is

knocked down, the disintegration of multiple modules is very likely

to result in lethality. Even if the organism is still viable, pleiotropy

may be observed because multiple phenotypes imply the

breakdown of multiple modules. In support of our model, we find

that the information flow score of a protein is well correlated with

the likelihood of observing lethality or pleiotropy when the protein

is eliminated. Even among proteins of low or medium between-

ness, the information flow model is predictive of a protein’s

essentiality or pleiotropy. Compared to betweenness, the infor-

mation flow model is not only more effective but also more robust

in face of a large amount of low-confidence data. Our method is

accessible to the public. The MATLAB implementation of the

information flow algorithm, along with the information flow scores

for proteins in the yeast interactome network and proteins in the

worm interactome network, can be downloaded at http://jura.wi.

mit.edu/ge/information_flow_plos/.

The information flow model identifies central proteins in

interactome networks, and these proteins are likely to connect

different functional modules. We developed an algorithm that

decomposes interactome networks into subnetworks by removing

proteins of high information flow in a recursive manner (Figure 9)

(Materials and Methods). Starting from the largest network

component, we removed the protein with the highest information

flow score. If the proteins remained connected in a single network,

we removed the protein with the next highest information flow

score one-at-a-time, until the network fell into multiple pieces

upon the protein removal. We then counted the number of

proteins in each of the subnetworks. If a subnetwork contained

between 15 and 50 proteins, we examined whether any Gene

Ontology (GO) term was enriched among proteins in the

subnetwork [38,39]. If a subnetwork contained over 50 proteins,

we repeated the procedure of removing high information flow

proteins from the subnetwork. Overall, we obtained 37 subnet-

works, and all but two of them were enriched with proteins from

certain GO categories (Table S7). We investigated the effects of

varying the minimum and maximum size of subnetworks (Text

S2). The selected range of 15 to 50 proteins was based on the

number of recovered subnetworks as well as the overall GO

enrichment scores. If we increased the minimum subnetwork size

to 20 proteins, the number of subnetworks shrank to 24, all of

which were functionally enriched. However, in order to recover

the additional 11 GO enriched subnetworks for a total of 35, we

decided to keep the lower threshold at 15 proteins. The fact that

the majority of subnetworks are functionally enriched provides

additional evidence that proteins with high information flow score

interconnect different modules.

It was previously observed in a yeast interactome network that

‘date hubs’, which connect different modules, are more likely to

participate in genetic interactions than randomly sampled

proteins, because elimination of date hubs may make the organism

more sensitive to any further genetic perturbations [40]. We tested

whether proteins of high information flow and proteins of high

betweenness show the same property in the C. elegans interactome.

We found that genes that rank the highest 30% in terms of

information flow or betweenness are more likely to participate in

genetic interactions than randomly selected genes (P-value =

1.16610210 and P-value = 1.16610210, respectively). This is not

particularly surprising because many proteins of high information

flow or high betweenness are hubs in the network.

Another possible feature of ‘‘between-module’’ proteins is

related to the expression dynamics of these proteins and their

interacting partners. In general, interacting proteins are likely to

share similar expression profiles [41]. Date hubs in yeast

interactome networks have been found to be less correlated with

their binding partners in terms of expression dynamics than ‘party

hubs’ which function within a functional module [40]. Proteins of

high betweenness in yeast interactome networks have also been

Figure 7. Muscle-enriched genes identified by semi-supervised
analysis. Each row represents a gene and each column represents a
tissue or cell type. The normalized values of gene expression are
represented in a color scale. Genes are sorted by probability scores (Pi)
which indicate expression enrichment in muscle as compared to other
tissues. Altogether 310 muscle enriched genes (Pi$0.5) were identified.
In this plot, the 310 muscle enriched genes, 155 randomly selected
genes, and 155 genes with the lowest Pi are shown. The list of genes
can be found in Table S9.
doi:10.1371/journal.pcbi.1000350.g007
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reported to show the lack of expression correlation with their

binding partners [14]. On the other hand, it has been argued in

another study that the lack of correlation is dependent on the

datasets examined [42]. We investigated the correlation of

expression profiles [43,44] for proteins of high information flow

or proteins of high betweenness with their interacting partners in

the C. elegans interactome. We did not find proteins of high

information flow or proteins of high betweenness behaving

differently from other proteins in terms of expression correlation

with their interacting partners (data not shown). Thus the

expression correlation between topologically central proteins and

their binding partners may be worth further investigations.

The transmission of biological signals is directional while at

present interactome networks often reflect the formation of protein

complexes [3] and do not contain directionality. We explored

whether the information flow model is also applicable to signaling

networks with directionality. We generated a signaling network for

S. cerevisiae by integrating phosphorylation events [45] and Y2H

interactions (see Materials and Methods). In this network, we

examined the top 30% versus the bottom 30% of genes ranked by

the information flow score. We found a significant increase in the

percentage of pleiotropic genes in the former group (17.0%) as

compared to the latter (5.3%) (Table S8) (P-value = 0.01), though

the percentages of essential genes are similar for the two groups.

This analysis suggests that the information flow model is useful for

discovering crucial proteins in signaling networks, as well as in

networks of protein complexes. The lack of correlation with

lethality may reflect the fact that fewer proteins in signaling

networks participate in ‘‘housekeeping’’ functions, which are often

mediated by multi-protein molecular machines.

In the future, with more information integrated into inter-

actome networks, we should be able to improve on the

Figure 8. An interactome network for muscle-enriched genes. We identified direct interacting partners for the muscle-enriched genes from
the C. elegans interactome dataset. We required that an interacting partner must be expressed in muscle cells according to the SAGE dataset. The
muscle-enriched genes and their interacting partners form a network. The blue nodes represent the top 20 genes with the highest information flow
scores given that the information flow score is calculated just in the muscle network and that the weight of an interaction is defined as the product of
the probability scores of the two interacting genes. The green nodes represent the top 20 genes in the muscle network with the highest information
flow scores given that the information flow score is calculated in the entire C. elegans interactome network and that the interactions are unweighted.
Some genes (red nodes) rank in the top 20 under both conditions.
doi:10.1371/journal.pcbi.1000350.g008
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performance of information flow model. In addition, interactome

networks can vary at different times or in different spatial locations.

After all, we still have very limited understanding of how biological

information flows through cellular networks. Most likely, it does not

flow exactly as the electrical current flow does. As more knowledge is

accumulated, we should be able to modify the information flow

model according to the design principles of cellular network and

highlight the dynamic nature of cellular networks.

Table 1. Genes showing significant difference of information flow scores in the muscle interactome network versus in the entire
interactome network.

Gene name
% in the entire
interactome network

% in the muscle
interactome network

%
difference

Motility rate of RNAi-treated
worms (thrashes per minute)
(mean6s.d.)

tag-327 73 14 59 Maternal sterility, unable to score

dys-1 72 14 58 103619

lev-11 77 21 56 20614*

deb-1 69 14 55 Maternal sterility, unable to score

F37B4.7 72 21 51 95630

dsh-1 64 13 51 104622

F41C3.5 66 17 49 105618

tag-163 58 9 49 108610

tol-1 68 25 43 93626

D2063.1 52 10 42 104622

Y11D7A.12 45 6 39 11369

bath-40 67 29 38 100611

cey-1 68 32 36 106613

lec-2 59 25 34 111619

Y62E10A.13 77 45 32 93610

unc-87 34 3 31 16618*

unc-15 35 4 31 1268*

Y39A1A.3 42 11 31 99614

gpd-3 36 5 31 65626*

gly-4 70 40 30 10265

tag-208 48 18 30 103611

uvt-5 63 33 30 39630*

unc-51 74 45 29 469*

tag-210 78 49 29 98610

R07G3.8 73 45 28 93612

sec-23 51 100 249 102611

klc-2 11 63 252 48647*

pqn-28 47 100 253 11069

M05D6.2 11 63 252 105613

hpl-2 45 100 255 11068

F14E5.2 44 100 256 Maternal sterility, unable to score

unc-84 43 100 257 104611

lap-1 40 100 260 10466

F11D5.1 39 100 261 111612

ttm-1 36 100 264 105613

emb-30 30 100 270 100612

F31E3.2 30 100 270 11568

tag-205 16 100 284 97615

T18D3.7 15 100 285 11167

lrx-1 12 100 288 114612

sta-1 12 100 288 11469

The normal motility of the rrf-3 strain is 9968 thrashes per minute. Genes with * show significantly lower motility rates upon RNAi treatment compared to the rrf-3
strain.
doi:10.1371/journal.pcbi.1000350.t001
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Materials and Methods

Data sources
All of the data used in our study comes from openly available

databases and published high-throughput datasets. We obtained a

list of essential genes for S. cerevisiae from the Saccharomyces Genome

Database (http://www.yeastgenome.org/) and a list of essential

genes for C. elegans embryos from the WormBase (http://www.

wormbase.org/). We downloaded phenotypic data of S. cerevisiae

deletion strains under various conditions [46] and C. elegans post-

embryonic phenotypes from genome-wide RNAi screens [37,47].

We also downloaded interaction datasets for S. cerevisiae [3,45,48]

and C. elegans [2,26,27].

Betweenness
Betweenness is a centrality measure of a node in a network

graph. The betweenness of a particular node is determined by how

often it appears on the shortest paths between the pairs of

remaining nodes [12]. For a graph with N nodes, the betweenness

CB(v) for node v is:

CB vð Þ~
X

s=v=t[V
sst vð Þ=sst

where sst represents the number of shortest paths from node s to

node t, and sst(v) represents the number of shortest paths from

node s to node t that pass through node v. To compute shortest

path, we used Dijkstra algorithm [49]. Dijkstra algorithm is a

greedy search algorithm that solves the single-source shortest path

problem for a directed graph with non negative edge weights. We

modified it to handle edges without directionality.

The information flow model
We model an interactome network as a resistor network,

where proteins are represented as nodes and interactions are

represented as resistors. The conductance of each resistor is

directly proportional to the confidence score of the correspond-

ing interaction. In cases where the confidence levels of

interactions are not known, we assume that all resistors have

unit conductance.

In order to estimate the importance of node k in conducting

electrical current in a network of N nodes, we connect node i to a

unit current source and node j to the ground, and we compute

how much current flows through node k using Kirchhoff’s laws (see

Figure S3). We define the information flow score of node k as the

sum of current through node k among all pair-wise combinations

of source and ground nodes. Since exchanging the source node

and the ground node does not lead to different current

distributions, we perform the calculation of information flow

scores only for cases where i.j. The total number of pair-wise

combinations of nodes (i,j), such that i?k, j?k and i.j is (N-2)(N-

3)/2. The information flow through node k is

Iflow
k ~ 1=4ð Þ N-2ð Þ N-3ð Þ

X
iwj

X
m

Ikmj j
� �

, ð1Þ

Figure 9. An interactome network can be partitioned into subnetworks by recursively removing proteins of high information flow
scores. Panel (A) shows our procedure for network partition, and Panel (B) shows a ‘‘toy’’ example.
doi:10.1371/journal.pcbi.1000350.g009
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where Ikm is the current between the nodes k and m, and Sm is the

sum over all resistors connected to node k.

For a given pair of source node and ground node, the standard

way of computing resistor currents of a circuit is using nodal analysis

and solving the resulting system of (N -1) linear equations for node

voltages. For each node m that is not a ground node, we have the

following equation:

X
l

vl{vmð Þ=RmlzIm~0, ð2Þ

where vl is a voltage at node l, and the sum is over all nodes

directly connected to node m. When node m is a source node, the

right-hand side of equation (2) is a unit value of current. Node

voltages can be computed by solving the following linear system of

equations:

Gv~J, ð3Þ

where G is a symmetric (N-1)6(N-1) conductance matrix, v is a

vector of unknown node voltages and J is a vector of currents to

every node. The matrix G can be calculated using the following

algorithms.

Algorithm 1: assembly of the nodal matrix.

1. Initialize an N6N matrix G* to zero.

2. For every resistor in the circuit:

a. Insert the off-diagonal element gij = gji = (21/Rij), where i

and j are the end terminals of the resistor;

b. Add the value (1/Rij) to both diagonal values gii and gjj.

3. Remove the row and column of G* corresponding to the

ground node (since its voltage is zero).

The right-hand-side of the equation (3) is a vector of currents,

which is zero except for the source node i which has a unit value.

The most time consuming part of solving (3) is LU decomposition

of matrix G. Since G remains the same if the ground node is fixed,

we can reuse matrices L and U while iterating over all source

nodes. Therefore, we need only N LU decompositions of G.

Below we outline the resulting algorithm for calculating

information flow of a given circuit.

Algorithm 2: calculation of the information flow.

1. Assemble the N6N matrix G* by following steps 1 and 2 of the

Algorithm 1.

2. Initialize the absolute sum of currents for each node to be the

zero vector IS.

3. Iterate over the ground node j = 1…N:

a. Get matrix G by removing the row and column j of G*

(step 3 of algorithm 1);

b. Compute the LU decomposition of matrix G.:

G~LU,

where L is lower-diagonal matrix and U is upper-diagonal;

c. Iterate over the source node I = (j+1)…N:

1) Set the right-hand-side vector J to have all zeros

except the unit ith entry;

2) Solve for node voltages v using matrices L and U:

v~U{1 L{1J
� �

3) Compute the absolute sum of all currents for each

node and add them to the entries of IS.

4. Using (1), compute the information flow for each node.

Decomposition of interactome networks using the
information flow model

Our information flow model identifies central proteins in

interactome networks. Very likely the proteins of high information

flow scores represent connecting points of functional modules. To

test this hypothesis, we designed an algorithm to recursively

remove the highest flow proteins and release subnetworks from a

large interactome network component. In the algorithm described

below, a ‘core module’ refers to a subnetwork composed of 15 to

50 proteins.

Algorithm: recursive node removal.

1. Initialize:

N core module set, M*, to an empty set,

N core module size limits, smin = 15 and smax = 50,

N G to the set of all genes;

N G* to the set of all proteins sorted from highest to lowest

information flow score;

N R, the set of proteins that have been removed, to an empty

set,

N C, the protein connectivity matrix, with a 1 for each protein-

protein interaction and 0 s for no interaction.

2. Iterate while G is not empty:

N Given G and C, extract a list of protein modules, S.

N Initialize nodes to be removed from G, Gremove to an empty

set.

N Iterate over the set of modules S, i = 1 … size(S):

# If number of genes in S(i), size(S(i)), = smax

& If size(S(i)). = smin

Append S(i) to M*,

& Add genes in S(i) to Gremove

N Remove nodes present in Gremove from G.

N Initialize high flow node(s) to be removed at this iteration, F,

to an empty set.

N Iterate while G* is not empty and F is empty

# Remove next highest flow protein(s) from G* and assign it

to F,

# Set F to nodes common to G and F,

# Append F to R.
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Applying information flow model to a yeast signaling
network

To evaluate the performance of information flow in signaling

networks, we combined a phosphorylation dataset for S. cerevisiae

which contained kinases and their target proteins [45] with various

sources of Y2H data [48]. Specifically, we searched for Y2H

interactions between the target proteins in the phosphorylation

dataset. As a result, we obtained a set of 77 kinases involved in

1008 phosphorylation events with 312 target proteins intercon-

nected by 503 Y2H interactions. Each kinase phosphorylates one

or more of the 312 proteins in the Y2H network. In order to retain

the directionality of phosphorylation in the information flow

model, we compute the information flow separately for each

kinase. First, we use directed edges to link the kinase to its

phosphorylation targets in Y2H network. Next, we set the kinase

to be a source and sequentially set the remaining 312 proteins to

be sinks as we compute the information flow. Before we move on

to the next kinase, we remove the phosphorylation edges specific

to the previous kinase. The total information flow score for each of

the 312 proteins in the Y2H network is obtained by summing the

absolute values of information flow from 77 kinase-specific

networks.

RNA interference
We performed RNA interference (RNAi) experiments by

feeding L4 worms, following protocols from the WormBook [50]

(www.wormbook.org). The bacteria strains for feeding RNAi

experiments were from an RNAi library [36] that is commercially

available.

Supporting Information

Figure S1 Correlation between degrees and loss-of-function

phenotypes. The higher a protein’s degree is, the higher the

probability of observing lethality (Panel C) or pleiotropy (Panel D)

when the protein is deleted from C. elegans. However, this trend is

not observed for S. cerevisiae (Panel A and Panel B). The PCCs for

degrees and phenotypes are 0.31, 20.53, 0.96, and 0.97 in Panels

A–D, respectively.

Found at: doi:10.1371/journal.pcbi.1000350.s001 (0.08 MB

DOC)

Figure S2 Correlation between information flow scores and loss-

of-function phenotypes among proteins of low or medium degrees.

Even among proteins of low or medium degrees, a protein’s

information flow score is still a good indicator for the probability of

observing lethality (Panel A) or pleiotropy (Panel B) when the

protein is deleted from S. cerevisiae. This trend is observed for C.

elegans as well (Panel C and Panel D). The correlation is not as

strong for betweenness and loss-of function phenotypes. The PCCs

for information flow scores and phenotypes are 0.80, 0.86, 0.84,

and 0.80 in Panels A–D, respectively. In contrast, the PCCs for

betweenness and phenotypes among low- or medium-degree

proteins are 0.61, 0.037, 0.32, and 0.49 in Panels A–D,

respectively.

Found at: doi:10.1371/journal.pcbi.1000350.s002 (0.10 MB

DOC)

Figure S3 Kirchhoff’s Current Law: the basis for calculating

information flow scores.

Found at: doi:10.1371/journal.pcbi.1000350.s003 (0.10 MB EPS)

Table S1 Genes in the S. cerevisiae interactome that rank the

highest 30% by information flow and rank the lowest 30% by

betweenness.

Found at: doi:10.1371/journal.pcbi.1000350.s004 (0.02 MB

DOC)

Table S2 Training examples in the semi-supervised analysis of

genes expressed in C. elegans muscle cells.

Found at: doi:10.1371/journal.pcbi.1000350.s005 (0.02 MB XLS)

Table S3 A list of genes expressed in C. elegans muscle cells with

their probability scores.

Found at: doi:10.1371/journal.pcbi.1000350.s006 (0.71 MB XLS)

Table S4 A list of muscle-enriched genes for which promo-

ter::GFP strains are available.

Found at: doi:10.1371/journal.pcbi.1000350.s007 (0.03 MB XLS)

Table S5 A list of muscle-enriched genes identified by the semi-

supervised analysis. We scored whether the promoters of these

genes contain cis-regulatory modules that indicate gene expression

in muscle.

Found at: doi:10.1371/journal.pcbi.1000350.s008 (0.04 MB XLS)

Table S6 Genes showing significant difference in betweenness

scores in the muscle interactome network versus in the entire

interactome network.

Found at: doi:10.1371/journal.pcbi.1000350.s009 (0.04 MB XLS)

Table S7 Subnetworks revealed by recursive removal of genes of

high information flow from the C. elegans interactome. Only the

subnetworks that contain 15 to 50 genes are shown. The P-value

cutoff for enrichment of Gene Ontology terms is set at 0.1. If

multiple Gene Ontology terms are enriched in a subnetwork, only

three of them are displayed in this table.

Found at: doi:10.1371/journal.pcbi.1000350.s010 (0.07 MB

DOC)

Table S8 Information flow scores, lethality, and pleiotropy

scores of proteins which are part of a signaling network for S.

cerevisiae containing phosphorylation binding events and Y2H

interactions.

Found at: doi:10.1371/journal.pcbi.1000350.s011 (0.03 MB XLS)

Table S9 A list of genes shown in Figure 7. This list includes 310

genes with enriched expression in muscle cells, 155 randomly

selected genes, and 155 genes that are the least likely to be

enriched in muscle as identified by the semi-supervised analysis.

Found at: doi:10.1371/journal.pcbi.1000350.s012 (0.04 MB XLS)

Text S1 In order to better illustrate the properties of information

flow which are not exhibited by betweenness, we analyze two toy

examples of possible network topologies using either of the two

methods.

Found at: doi:10.1371/journal.pcbi.1000350.s013 (0.05 MB

DOC)

Text S2 We executed the module extraction routines while

varying the maximum and the minimum number of proteins

allowed in a single subnetwork in order to determine the best size

range.

Found at: doi:10.1371/journal.pcbi.1000350.s014 (0.06 MB

DOC)
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