A Relational Framework for (ASSAGISETTS WNEFTOTE

Bounded Program Verification FE
SEP 3 0 2009

by
LIBRARIES

Gregory D. Dennis

B.S., Massachusetts Institute of Technology (2002)
M.Eng., Massachusetts Institute of Technology (2003)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2009
© Massachusetts Institute of Technology 2009. All rights reserved.

— ARCHIVES

Author T L AL LT LIRS
Department of Plectrical Engineering and Computer Science
June 19, 2009

Certified by .. .
Daniel N. Jackson

Professor
Thesis Supervisor

Accepted by ,
/ Professor Terry P. Orlando
Chair, Department Committee on Graduate Students

A Relational Framework for
Bounded Program Verification

by
Gregory D. Dennis

Submitted to the Department of Electrical Engineering and Computer Science
on June 19, 2009, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

All software verification techniques, from theorem proving to testing, share the com-
mon goal of establishing a program’s correctness with both (1) a high degree of
confidence and (2) a low cost to the user, two criteria in tension with one another.
Theorem proving offers the benefit of high confidence, but requires significant exper-
tise and effort from the user. Testing, on the other hand, can be performed for little
cost, but low-cost testing does not yield high confidence in a program’s correctness.

Although many static analyses can quickly and with high confidence check a pro-
gram’s conformance to a specification, they achieve these goals by sacrificing the
expressiveness of the specification. To date, static analyses have been largely limited
to the detection of shallow properties that apply to a very large class of programs,
such as absence of array-bound errors and conformance to API usage conventions.
Few static analyses are capable of checking strong specifications, specifications whose
satisfaction relies upon the program’s precise behavior.

This thesis presents a new program-analysis framework that allows a procedure
in an object-oriented language to be automatically checked, with high confidence,
against a strong specification of its behavior. The framework is based on an interme-
diate relational representation of code and an analysis that examines all executions of
a procedure up to a bound on the size of the heap and the number of loop unrollings.
If a counterexample is detected within the bound, it is reported to the user as a trace
of the procedure, though defects outside the bound will be missed.

Unlike testing, many static analyses are not equipped with coverage metrics to
detect which program behaviors the analysis failed to exercise. Our framework, in
contrast, includes such a metric. When no counterexamples are found, the metric
can report how thoroughly the code was covered. This information can, in turn, help
the user change the bound on the analysis or strengthen the specification to make
subsequent analyses more comprehensive.

Thesis Supervisor: Daniel N. Jackson
Title: Professor

Acknowledgments

Many people deserve my thanks and gratitude for making this thesis possible.

First, a big thanks to my supervisor Daniel Jackson. It was Daniel’s teaching of
6.170 that ignited my interested in software design and development. After that class,
I joined his Software Design Group as an undergraduate researcher, then a Masters
student, and finally a Ph.D. Throughout that time, he has provided invaluable in-
sights, challenges my assumptions, and made me think more deeply and clearly about
every problem I encountered. Thanks, too, to the other members of my thesis com-
mittee: Carroll Morgan and Arvind. With their insights, edits, and tough questions,
I was able to hone my thinking and clarify my presentation.

During my time in SDG, I have had the pleasure of meeting and working with
many smart people. First, a thanks to the doctoral students who welcomed me into
the group when I first joined and provided mentorship and advice along the way:
Sarfraz Khurshid, Ilya Shlyakhter, and Mandana Vaziri. I think, too, all the fellow
students and researchers who joined about the same time I did and whom I relied
upon for advice and laughs: Felix Chang, Jonathan Edwards, Carlos Pacheco, Derek
Rayside, Robert Seater, Mana Taghdiri, and Emina Torlak. Finally, thanks to all
the new additions to the group, whose energy and enthusiasm has been a source of
inspiration: Zev Benjamin, Eunsuk Kang, Aleksandar Milicevic, Joe Near, Rishabh
Singh, and Kuat Yessenov.

Kuat deserves special thanks for his intense involvement building a Java front-end
to my analysis. Without his tireless work understanding the Java Modelling Language
and translating it to relational logic, the case studies would not have been possible.
His more recent work on the JForge Eclipse plugin and specification language brought
the usability and applicability of my research to an entirely new level. He has a bright
future ahead.

Finally, I thank my family. My parents, brothers, and sister were always there for
me with encouragement and support. My mom’s warmth and my dad’s judgement
are the backbones of my success. Most of all, I thank my loving wife Joselyn, who
during my time as a Doctoral student, married me, bought a home with me, and gave
birth to our beautiful son, Noah. She has always been patient and supportive, and
Noah will soon realize how lucky he is to have a mother like her.

Contents

1 Introduction
1.1 The Cost vs Confidence Tradeoftf
1.2 Strong vs Weak Specifications
1.3 Introducing Forgeo
1.3.1 The Forge Framework
1.4 Forge from the User’s Perspective
1.4.1 An Example Analysis oL
1.5 Discussion
1.6 The Road Ahead L.
2 Intermediate Representation
2.1 The FIR Grammar v
2.1.1 FIRexpressions
2.1.2 FIR Procedures
2.2 Transforming FIR
2.2.1 Unrolling Loops
2.2.2 Inlining Procedure Calls
2.3 Chapter Summaryo
3 Bounded Verification
3.1 Model Finding with Relational Logic
3.1.1 Using Kodkodo
3.2 Symbolic Executiono oL
3.2.1 Small Example: Social Network
3.2.2 Building the Initial State00
3.2.3 Translating Expressions
3.2.4 Formal Execution Rules
3.2.5 Generating the Logic Problem
3.2.6 Larger Example: Web Registration
3.3 A Correctness Argument
3.3.1 Semantics
3.3.2 Symbolic Executiono
3.3.3 Proof Framework
3.3.4 Applying the Proof System to Forge
3.3.5 Summary of Correctness Argument

7

3.4 Breaking Symmetries on Dynamic Allocation
3.4.1 Isomorphic Allocation Orders
3.4.2 Modified Initial State
3.4.3 Modified Rules for Create Statements.
3.4.4 Implications for Correctness

3.5 Chapter SUmMmMAary ¢ v v v v vt e e e e

Coverage Metric

4.1 Examples of Poor Coverage

4.2 Exploiting the Unsatisfiable Core

4.3 Symbolic Execution with Formula Slicing
4.3.1 Example: Coverage of the Register Procedure
4.3.2 The Problem with the Inline Strategy

4.4 Coverage before Unrolling

4.5 Chapter SUMMATY« . i

Object Orientation and
Data Abstraction

5.1 From Object-Oriented Codeto FIR
5.1.1 An Example Translation
5.1.2 Complexities of Real Programs

5.1.3 Unsoundness and Incompleteness
5.2 Dealing with Abstraction
5.2.1 Abstraction Function & Representation Invariant S
5.2.2 Invariant Preservation and Trace Inclusion

Case Studies

6.1 Case Study 1: Linked Lists
6.1.1 Results. L
6.1.2 Scope Effectso
6.1.3 Specification Errors oL

6.2 Case Study 2: Electronic Voting Software
6.2.1 Specification Violations
6.2.2 Example Violations oL

6.3 Case Study 3: Strategy/Coverage Evaluation
6.3.1 Performance of Symbolic Execution Strategies
6.3.2 Mutant Generation
6.3.3 Infinite Loop Detection
6.3.4 Insufficient Bound Detection

6.4 Chapter Summary

Discussion
7.1 Verification with Relational Logic
711 Jalloy

7.2

7.3

7.4

7.5

7.1.2 Karun o o e e e 116

7.1.3 Verification with DynAlloy 118
Related Languages & Representations 118
7.2.1 Relational Programming Languages 118
7.2.2 Intermediate Representations 118
Related Program Analyses 119
731 Testing. 120
7.3.2 Theorem Proving 122
7.3.3 Model Checking 123
7.3.4 Shape Analysis 126
Related Coverage Metrics 126
7.4.1 Coverage Metrics for Testing 127
7.4.2 Coverage Metrics for Model Checking 127
7.4.3 A Coverage Metric for ESC? 127
Conclusions e 128

10

List of Figures

1-1
1-2

1-3

1-4
1-5

2-1

2-3

2-4
2-5

3-4

4-1

4-2

Cost vs. Confidence comparison of testing and theorem proving. . . . 16
The Forge Tradeoff. Forge is economical for those development projects
spending anywhere in the gray area on testing. For that cost, Forge
offers greater confidence, and for that level of confidence, Forge could
offer alower cost. 18
The Forge Framework. Elements in black are the contributions of this
thesis; gray are the contributions of others; and white have yet to be

developed. 19
Linked List Implementation & Specification 22
The get method and its counterexample trace. 24
FIR Grammar e 28
Website Registration Program in FIR 29
Three Examples of Relational Join. For each tuple in p of the form
{p1, - - -, Pn, m) and tuple in q of the form (m, qi, ..., qk), there is a
tuple in p.q of the form (p;, ..., pn, Q1. - .-, qx). Example (ii): when

p is a set, the join p.q is equivalent to the relational image of q under
p. Example (iii): when p is a singleton and q is a function, p.q is
equivalent to function application.o o0 30
List containment procedurein FIR 38
The contains procedure unrolled twice. Gotos indicate aliased state-
ments. The thickness of the lines is used only to disambiguate line

CTOSSINES. .« v v v v e e et e e e 38
Relational Logic 43
Semantics of FIR Expression Translation 51

Symbolic Execution Rules. For assign, create, and branch statements,
the “inline” rule (=) or the “constrain” rule (=) may be applied.
All primed relational variables, e.g. v/, are fresh. 53
Website registration procedurein FIR 57

Examples of Poor Coverage. Bounded verification does not find coun-
terexample for these examples, yet problems remain. The statements
shown in gray are “missed” (not covered) by the bounded verification
analysis. 78
Register procedure Lo 82

Birthday Example in Java 89
Translation of Birthday.setDay into FIR 89

Strategy Performance Comparison. The bars show the average number
of variables, clauses, and time-to-solve for the SAT problems generated
by each strategy, as a factor of those numbers for the “al cI bI” strategy.109
Percentage of Mutants Killed per Bound. A bound of n is a scope of
n, bitwidth of n, and n loop unrollings. 111

12

List of Tables

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

Duration of Method Analyses (seconds)
Summary analysis statistics of each class. Means are calculated over
the analyses of the methods within a class, not over successive analyses
ofthesame class.
Specification violations: error classification and minimum bound (scope
/ bitwidth / unrollings) necessary for the error’s detection.
Characteristics of the benchmark problems.
MuJava Mutation Operators
Mutants per Benchmark and Minimal Bound for Detection of All Kil-
lable Mutants. A mutant is not killable by bounded verification if it is
equivalent to the original method on all of its terminating executions.
A bound of “sS bB ul” is a scope of S on each type, a bitwidth of B,
and U loop unrollings
Infinite Loop Detection. The “missed” column lists the number of
missed statements measured in an infinitely-looping mutant compared
to the original method. Lo
Insufficient Bound Detection.

13

101
102

107
110

111

14

Chapter 1
Introduction

Software failures continue to pose a major problem to software development and the
economy generally. Studies have estimated software errors to account for between
25% and 35% of system downtime [76, 71]. A 2002 study by the National Institute of
Standards & Technology (NIST') estimated the annual cost of software failures in the
U.S. at between $20 and $60 billion [68], or as much as 0.6% of the U.S. GDP. The
consequences of these failures vary greatly, from the merely annoying, such as the
crash of a desktop word processor, to the tragic, such as the 28 overdoses delivered by
a radiotherapy machine in Panama City in 2001, an event which led to 17 deaths [44].

Software verification techniques hold the promise of dramatically reducing the
number of defects in software. The term “software verification” refers here to all
manner of checking program correctness: from formal verification approaches like the-
orem proving, to dynamic analyses like testing, to static analyses, such as ESC/Java.
Ideally, these techniques would establish that a program is correct with a high degree
of confidence while requiring limited cost from the user, but these two goals — high
confidence and low cost — are at odds. Theorem proving, for example, offers the
benefit of high confidence, but requires significant expertise and effort from the user.
Testing, on the other hand, can be performed for little cost, but low-cost testing does
not yield high confidence in a program’s correctness.

1.1 The Cost vs Confidence Tradeoff

Our assessment of the cost-versus-confidence tradeoff of testing and theorem proving
is shown in Figure 1-1. “Cost” in the figure refers to both the time required to carry
out the technique and the cost of employing someone with the expertise to carry it
out. “Confidence” refers to the degree of certainty in the program’s correctness that
the analysis provides.

Due to its low initial costs, testing can be an attractive option for checking program
correctness. A handful of test cases can be written quickly without much expertise,
run fully automatically, and when bugs are found, testing provides the user with
concrete counterexample traces that exhibit the error. As shown in Figure 1-1, testing
allows users, for relatively little cost, to obtain an immediate boost of confidence in
the correctness of their code.

15

-

testing

confidence

theorem proving

>

cost

Figure 1-1: Cost vs. Confidence comparison of testing and theorem proving.

The challenge of testing is that high confidence is very difficult and costly to
obtain. Test selection, test generation, and calculation of coverage metrics are tasks
too tedious to be performed manually, and building testing infrastructure to automate
them causes dramatic increases in cost. As a result, the testing curve in Figure 1-1
quickly levels off. The eventual high costs of testing explain why it consumes about
half the total cost of all software development [11] and why Microsoft, for example,
employs approximately one tester for every developer [17]. ‘

If very high confidence is required, a developer might instead opt for theorem prov-
ing. As its name implies, theorem proving yields a proof of the program’s correctness
— a very high level of confidence. However, as reflected in Figure 1-1, theorem prov-
ing requires a large investment in both time and expertise before any confidence is
obtained. It is common for a theorem prover to carry a learning curve of about 6
months, even for a highly skilled software developer [87, 6]. That amount of upfront
investment makes theorem proving prohibitively expensive for most projects.

1.2 Strong vs Weak Specifications

One area with much recent progress in combining high confidence with low cost is
static analysis. A variety of static-analysis tools can now automatically check a pro-
gram for conformance to a specification and provide a high degree of confidence in
their result. Some of these tools, like FindBugs [2], use pattern-based heuristics;
others, such as Astrée [1], use abstract interpretation; some combine abstract inter-
pretation and model checking, like SLAM [8]; and others are explicit-state model
checkers, like SPIN [43].

16

However, these analyses, by and large, achieve their combination of full automa-
tion and high confidence by sacrificing the expressiveness of the specifications they
accept. To date, static analyses have largely been limited to checking code against
very partial properties that apply to a large class of programs, such as the absence
of array-bound errors and conformance to API usage conventions. Some shape anal-
yses, like SATC [42], can check deeper, structural properties of the heap, such as list
acyclicity, but these are nevertheless still very partial correctness properties.

Less progress has been made in static analyses for checking strong specifications.
A “strong specification” here refers to a detailed property that is specific to the indi-
vidual program under analysis.! For the software controlling a radiotherapy machine,
a strong specification may be that “the radiotherapy machine delivers the prescribed
dose,” and for a voting system perhaps “the winner of the election has the most
votes.” These are properties that require the precise behavior of the code for their
satisfaction, and thus cannot be analyzed by a technique that relies on abstraction,
a technique common to static analysis generally. Strong specifications are typically
written by the user in a general-purpose specification language, such as Larch [41],
the Java Modeling Language [58], or Spec# [10].

To summarize, while many static analyses deliver high confidence at a low cost,
they typically do so with respect to a partial, general-purpose property, not a strong,
program-specific specification. As a result, the high confidence they offer in the
program’s correctness with respect to that property does not translate into high
confidence in its correctness overall.

1.3 Introducing Forge

While there is much research dedicated to shifting the testing curve in Figure 1-1
up (to increase its confidence) and other research to shift the theorem proving curve
to the left (to lower its cost), the analysis presented in the this thesis, implemented
in a tool called Forge, aims for a different cost/confidence tradeoff. As illustrated
in Figure 1-2, it requires a greater upfront investment than testing, but once that
initial investment is made, it provides a dramatic increase in confidence. Being fully
automatic, its cost is much lower than theorem proving, though it can never attain
the confidence of a proof. And unlike most automatic static analyses, which sacrifice
the expressiveness of the specifications they accept, Forge is capable of checking a
procedure against a strong, user-provided property of its behavior.

We expect Forge to be economical for those software projects whose current in-
vestment falls somewhere in the gray area in Figure 1-2 but are currently situated on
the testing curve. The black circle in the figure is example of where those projects
might currently lie, and the arrows point to where they might move in the space if
they were to adopt Forge. For their current level of investment, Forge could signifi-
cantly increase the level of confidence in the software’s correctness. Or, if the current
level of confidence is already deemed adequate, Forge could obtain that confidence
for lower cost.

IThe term “strong specification” is borrowed from Robby, Rodriguez, Dwyer, and Hatcliff [72]

17

(11111})

testing

theorem proving

confidence

>

cost

Figure 1-2: The Forge Tradeoff. Forge is economical for those development projects
spending anywhere in the gray area on testing. For that cost, Forge offers greater
confidence, and for that level of confidence, Forge could offer a lower cost.

1.3.1 The Forge Framework

Forge is a program-analysis framework that allows a procedure in a conventional
object-oriented language to be checked against a strong specification of its behavior.
The Forge framework is shown in Figure 1-3. The elements in black in the framework
are the contributions of this thesis; elements in the gray are the contributions of
others; and those in white have yet to be developed.?

At the center of the framework sits the Forge tool. Forge accepts as input a pro-
cedure, a specification of the procedure, and a bound on the analysis. The procedure
and its specification are both expressed in the Forge Intermediate Representation, or
FIR. Discussed in greater detail in Chapter 2, FIR is a simple relational program-
ming language that is amenable to analysis. FIR is intended to be produced by a
mechanical translation from a conventional high-level programming language, but a
user could also program in FIR directly. Specifications in FIR can involve arbitrary

first-order logic, plus a relational calculus that includes transitive closure.

The bound provided to Forge consists of the following:
e a number of times to unroll each loop and recursive call;

e a bitwidth limiting the range of FIR integers; and

e a scope for each type, i.e., a limit on the number of its instances that may exist

in any heap reached during execution.

2JForge was a collaborative effort with Kuat Yessenov.

18

lils

procedure
fir

spec

java _ fir
coverage coverage

Figure 1-3: The Forge Framework. Elements in black are the contributions of this
thesis; gray are the contributions of others; and white have yet to be developed.

Forge searches exhaustively within this bound for a trace of the procedure that
violates the specification. Bugs outside the bound will be missed, but in exchange
for that compromise, the analysis is fully automated and delivers concrete counterex-
amples. The success of this bounded verification approach rests on an idea called the
“small-scope hypothesis,” which is the expectation that bugs will usually have small
examples. It’s a hypothesis consistent with our own experience, with prior empirical
evaluation [5, 27, 28], and with the case studies presented in Chapter 6 of this thesis.

To perform the exhaustive search, Forge encodes the FIR procedure and specifi-
cation in the relational logic accepted by the Kodkod model finder [84]. From the
procedure, Forge automatically obtains a formula P(s, s’) in this logic that constrains
the relationship between a pre-state s and a post-state s’ that holds whenever an ex-
ecution exists from s that terminates in s’. The states are vectors of free relational
variables declared in the logic. The translation of the procedure to the logic uses
a symbolic execution technique presented in Chapter 3. A second formula (s, s")
is obtained from the provided specification, the negation of which is conjoined to P
yielding the following formula, which is true exactly for those executions that are
possible but that violate the specification.

P(s,s) N —)(s, s") (1.1)

This formula is equivalent to the negation of (P(s,s’) = (s, s’)), the claim that
every execution of the procedure satisfies the specification. Forge translates the bound
on the FIR procedure into a bound on the relations in states s and s" and hands the
formula and resulting bound to Kodkod. Using a SAT solver, Kodkod exhaustively
searches for a solution to the formula within the bound, and reports such a solution
if one exists. Forge then translates this solution back into a counterexample trace of
the FIR procedure.

19

Since bounded verification is unsound, when no counterexamples are found it is
unclear how much confidence one should have that the procedure meets its specifi-
cation. For example, was the bound on the analysis too small to fully exercise all
of the procedure’s behaviors? Testing addresses this problem with coverage metrics,
analyses which can reveal behaviors of code that a test suite has left unexplored, but
most static analyses offer nothing analogous.

Forge includes its own coverage metric, analogous to those for testing, which, in the
absence of counterexamples, can identify a subset of the code that was not explored.
This information can, in turn, inform the user how to tune Forge to attain a more
comprehensive analysis. The coverage metric, which is based on an “unsatisfiable
core” formula reported by Kodkod, is explained in detail in Chapter 4.

Since Forge operates on code and specifications written in the intermediate repre-
sentation, analyzing a conventional high-level language requires a front-end for trans-
lating that language and its specifications to FIR. The Forge framework includes
JForge, a front-end tool for translating Java code and specifications written in the
JForge Specification Language [90] into FIR. A front-end for C is being developed
independently by Toshiba Research [75]. Chapter 5 explains how a high-level object-
oriented programming language like Java is translated to FIR. As will be explained, -
there are some limitations in this translation: it cannot handle some features of Java,
including multithreading and real numbers, and it uses a few unsound optimizations
that can theoretically lead to false alarms (Section 5.1.3). It is left to future work
on JForge to map the trace and coverage information produced by Forge back to the
original Java code.

When analyzing object-oriented programs, an additional complexity arises from
the specification of abstract data types. Note that in Formula 1.1, the procedure
and specification are formulas over the same state, but when checking a procedure of
an abstract data type, the (abstract) representation referred to in the specification
usually differs from the (concrete) representation in the code. Chapter 5 addresses
how to make such specifications amenable to the bounded verification analysis.

We have conducted a series of case studies with Forge demonstrating its utility
and feasibility, and these are presented in Chapter 6. Finally, related work, directions
for future work, and general conclusions are discussed in Chapter 7. But before
embarking on these technical presentations, the following section demonstrate how
the Forge framework looks from the user’s perspective.

1.4 Forge from the User’s Perspective

This section illustrates a user’s experience with the Forge framework on a small
example. The example involves checking a method of a linked-list implementation
against its specification. The code and specification of the linked list is shown in
Figure 1-4. The linked list is circular and doubly-linked, and for simplicity, the
buckets in the list are themselves the values®. Clients of the list are expected to
extend the abstract Value class with the values they wish to store in the list.

3The implementation is similar to the TLinkedList class provided by the GNU Trove library [3]-

20

In this example, our hypothetical user wishes to check the get method of the
linked list against its specification. A bug has deliberately been seeded in the get
method: in the body of the first for-loop, value should be assigned value.next
instead of value.prev. Because this bug does not raise a runtime error, tools that
search for shallow properties like the absence of null pointer dereferences and array
out-of-bounds errors cannot catch it. To detect the bug, one must apply an analysis
that is capable of checking a code against a strong specification of its behavior.

The strong specifications found in Figure 1-4 have been written by our user in the
JForge Specification Language (JFSL)? [90]. JFSL is not a contribution of this thesis
and so will not be discussed in depth, but enough will be explained to understand
this example. JFSL specifications are written in the form of Java annotations, which
are special Java metadata constructs that begin with the ‘@’ symbol.

The SpecField annotation at the top of Figure 1-4 declares a specification field
named elems that serves as the abstract representation of the list data type. The
elems field is of type seq Value, meaning it is a sequence of Value objects. In JFSL,
a sequence declared of type seq T is actually a binary relation mapping integers to
elements drawn from type T, whose domain is constrained to consist of consecutive
integers, starting at zero. So elems, while conceptually a sequence, is semantically a
binary relation of type Integer — Value. For example, the sequence [A, B, C] would
be encoded in elems as the binary relation {(0,A), (1,B), (2,C)}.

The formula given in a SpecField annotation is the abstraction function that
determines the value of the specification field from the values of the concrete fields.
The abstraction function in Figure 1-4 gives an inductive definition of elems as a
conjunction of two constraints. According to the first constraint (the base case of
the induction), the first element in the sequence equals the set-difference of the head
field and null. When head is null, there is no first element (this.elems[0] is the
empty set); and when head is not null, the first element equals head. The second
constraint (the inductive case) says that for every positive integer i, the element at
index i in the sequence equals the next field of the element at index (i - 1), unless
next equals head, which indicates the end of the list has been reached.

The representation invariant of LinkList is given by the Invariant annotation,
where it is expressed as two (implicitly conjoined) constraints. According to the
first constraint, when the head field is not null, the head is reachable from itself
by following the next field one or more times. The expression “next denotes the
transitive closure of the next field. The second constraint says the size field is
equal to the number of reachable values in the list. The ‘4’ symbol is the cardinality
operator: #e yields the number of tuples in the relation e.

The specification of the get method is expressed in three annotations on the
method: Requires, Returns, and Throws. The Requires annotation specifies a
precondition under which no exception is thrown, in this case it is that the index
argument is within the bounds of the list, i.e., it is non-negative and less than the
length of the list. The expression #this.elems yields the number of tuples in the
sequence, which is the same as the length of the sequence. The Returns annotation

4JFSL is a product of ongoing work led by Kuat Yessenov.

21

@SpecField("elems: seq Value | " +

"(this.elems[0] = this.head - null) && " +

"(all i: int | 1 > 0 => this.elems[i] = this.elems[i-1].next - this.head)")
public class LinkList {

@Invariant ({"this.head !'= null => this.head in this.head. next",
"#this.head. next = this.size"}))

private Value head;

private int size;

@Requires("index >= 0 &% index < #this.elems")
@Returns("this.elems[index]") ,
@Throws (" IndexOutOfBoundsException: index < 0 || index >= #this.elems")
public Value get(int index) {

// check whether index is in bounds

checkIndex (index) ;

Value value;
// if index is in front half of list,
// search from the first element
if (index < (size >> 1)) {
value = head;)
for (int i = 0; i < index; i++) {
value = value.prev;
}
}
// if index is in back half of list,
// search from the second-to-last value
else {
value = head.prev;
for (int i = size = 1; i > index; i—) {
value = value.prev;
}
}
return value;

}

@Requires("index >= 0 && index < #this.elems")
@Throws ("IndexOutOfBoundsException: index < 0 || index >= #this.elems")
private void checkIndex(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException();
}
}

@Invariant ("next = “prev")
public static abstract class Value {
Value next, prev;

}

Figure 1-4: Linked List Implementation & Specification

22

specifies an expression to be returned by the method when the precondition given by
Requires is true. The expression in the Returns annotation, this.elems [index],
evaluates to the Value at the given index in the elems sequence. The Throws anno-
tation specifies that the method throw an IndexOutOfBoundsException when index
is out of bounds.

The specification of checkIndex has the same Requires and Throws annotations
as the specification of get, because it throws the same exception under the same
conditions. Lastly, the inner class Value has an invariant that the next field is the
relational transpose (~) of the prev field. In other words, if following the next field
of x yields y, then following the prev field of y must yield x. Code that is not relevant
to the analysis of the get method is not shown in Figure 1-4.

1.4.1 An Example Analysis

To perform an analysis with Forge, the user provides a bound on the analysis, con-
sisting of a number of loop unrollings, a bitwidth to restrict the range of integers, and
a scope on each type. The “scope” of a type is a limit on the number of instances
of that type that may exist over the course of an execution. For this example, our
hypothetical user applies JForge to analyze the get method initially in a scope of 3
Value instances and 1 LinkList, a bitwidth of 4, and 1 loop unrolling.

The analysis completes in about two seconds and reports that “no counterexamples
were found.” Not sufficiently confident that no bugs exist, our user invokes Forge’s
coverage metric, which responds by highlighting statements that were missed (not
covered) by the prior analysis. A statement is “missed” if the analysis would have
still succeeded had been removed from the procedure. For our example analysis, the
coverage metric highlights the first for-loop as missed:®:

if (index < (size >> 1)) {
value = head;
for (int i = 0; i < index; i++){
value = value.prev;
} i
}

From this coverage information, our user realizes that her chosen bound of 3 Value
instances was too small for adequate coverage, because the first for-loop is unnecessary
for lists of length 3 or less. If the list is of length 3, then index arguments equal to
1 or 2 are reached from traversing from the end of the list. Only an index of 0 is
reached by iterating from the front-half of the list, and when the for-loop is reached
with an index of 0, the loop condition is immediately false, rendering the entire loop
unnecessary.

5The metric highlights statements in FIR code but is not yet mapped to Java source code.

23

public Value get(int index) {
checkIndex(index) ;
Value value;
if (index < (size >> 1)) {
value = head;
for (int i = 0; i < index; i++) {
value = value.prev;

}
}
else {
value = head.prev;
for (int i = size - 1; i > index; i—-) {
value = value.prev;
}
}

return value;

initial state:
LinkList = {LO}
Value = {VO, Vi, V2, V3}
this = LO
index = 1
elems = {<LO, 0, VO>, <LO, 1, Vi>, <LO, 2, V2>, <L0O, 3, V3>}
head = {<LO, VO>}
next = {<V0, V1>, <Vi, V2>, <V2, V3>, <V3, VO>}

prev = {<Vi, VO>, <V2, Vi>, <V3, V2>, <V0, V3>}
size = {<LO, 4>}

checkIndex (index) :

if (index < (size >> 1)):
true

value = head:
value = VO
int 1 = 0:
i=0
i < index:
true
value = value.prev:
value = V3
i++:
i=1
i < index:
false
return value:
return = V3

Figure 1-5: The get method and its counterexample trace.

24

Desiring a more thorough analysis, our user increases the scope of Value to four
instances and runs Forge again. The analysis again completes in two seconds, but
this time finds a trace of the get method that violates its specification. This trace is
shown in Figure 1-5. This trace is an execution of the get method where the index
argument is 1 and the list is the sequence [VO, V1, V2, V3]. The return value
should therefore be V1, but it is incorrectly V3.

By inspecting the trace, the user discovers the error (value is assigned value.prev
in the first loop instead of value.next). After fixing the error, the user repeats the
Forge analysis and it reports that counterexamples are no longer found. However, the
tool still shows some statements missed by the analysis. The user increases the scope
to 5 and then finally to 6 Value instances, at which point the analysis completes in
two minutes and reports full coverage. (The analysis time when coverage mode is
turned off is 10 seconds.)

Although the analysis has reached full coverage and no counterexamples are found,
it has not established a proof of correctness. Full coverage indicates only that the
coverage analysis has reached the limit of its ability to discover areas where bugs may
exist.

1.5 Discussion

The linked list example makes concrete several of the features and characteristics
of the Forge framework. First and foremost, it demonstrates the ability of Forge
to check a method in an object-oriented program against a strong specification of
its behavior. Even many tools that ostensibly check strong specifications, such as
ESC/Java2 [23], would not be able to handle the specification in this example, because
it used transitive closure, a feature which they do not support.

The example showcased some advantages of Forge over theorem provers. Once
the bound was chosen, the analysis was fully automatic and did not require user
interaction or the writing of loop invariants as required by verification techniques,
like Boogie [9] for example. Also, the code failures are presented as counterexample
traces, rather than failed verification conditions or open subgoals that theorem provers
often report. The traces make locating the error a relatively easy task.

A test suite that achieves full branch coverage would have probably found the bug,
but not necessarily. Indeed, if the sequence has duplicates, then with the right argu-
ment, the method could return the correct value even when a test case branches into
the first for-loop to execute the erroneous statement. Although that is unlikely, the
observation highlights the fact that a test suite that achieves full branch or path cov-
erage makes no claim about which heap configurations have been explored. Bounded
verification, in contrast, makes a specific claim about the heaps explored — all those
within the user-provided bound -— and when combined with the coverage metric
illustrated, makes a claim about code coverage as well.

25

The initial analysis in a scope of three value instances and a bitwidth of 4 explored
all lists up to length 7 with 3 unique elements. There are Ezzo 3% = 3280 such lists
and and 16 different integer arguments, for a total of 16 x 3280 = 52,480 argument
combinations explored, a large number of test cases to write and execute. With Forge,
all those tests were effectively constructed and simulated in two seconds. The final
analysis in a scope of 6 values explored the equivalent of 16 x ZZ:O 6% = 5,374,768
tests and the analysis completes in 10 seconds. Granted, many of those lists are
isomorphic to one another; by our calculation there are 1155 non-isomorphic lists
up to length 7 for a total of 18480 test cases. But avoiding non-isomorphic tests in
general would pose an additional burden on a tester. Forge is able to avoid searching
through many isomorphic structures for free by relying on the symmetry breakmg
capabilities of the underlying Kodkod model finder.

Forge’s bounded verification analysis is unsound: when it does not find a trace of
the procedure that violates the specification, that is not a guarantee of the program’s
correctness. However, the coverage analysis helps mitigate that unsoundness. In
our example, coverage reported by Forge showed that the initial analysis had not
exercised the statement inside the first for-loop, which motivated our hypothetical
user to expand the bound, thereby leading to the bug’s detection. :

1.6 The Road Ahead

The remainder of the thesis describes the techniques that ma,kevthis user experience
possible. It covers the following topics: :

e the intermediate representation on which the Forge analyseé are performed;

e the bounded verification analysis that given a procedure and specification in the
intermediate representation searches for a trace of the procedure that violates
the specification; ‘

e the coverage metric that reports how thoroughly the bounded verification anal-
ysis examined the code;

e techniques for applying the Forge analysis to programs written in high—levél
languages;

e case studies in which Forge was used to analyze Java programs; and

e discussion of related work, suggestions for future directions, and general reflec-
tions on the tool.

Enjoy!

26

Chapter 2

Intermediate Representation

Due to the complexities of dealing with high-level programming languages, many pro-
gram verification techniques encode high-level programs in an intermediate represen-
tation (IR) that is more amenable to analysis [59]. ESC/Java [37] and ESC/Java2 [23]
encode Java in a variant of Dijkstra’s guarded commands [31]; Boogie [9] encodes
.NET bytecode in BoogiePL [25]; the Bogor model checker [72] encodes Java in the
Bandera Intermediate Representation [46]; and Krakatoa [62] and Caduceus [36] en-
code Java and C, respectively, into the Why language [35]. These intermediate repre-
sentations facilitate transformations and optimizations of the code, and they simplify
the eventual translation to verification conditions.

The Forge Intermediate Representation (FIR) is the language on which the Forge
bounded verification and coverage analyses are performed. In contrast to other inter-
mediate representations, FIR is relational. That is, every expression in the language
evaluates to a relation, a feature that makes its semantics simple and uniform, and
therefore, more amenable to automatic analysis. In addition to being a programming
language, FIR is at the same time a specification language. As will be illustrated in
this chapter, declarative specification can be embedded as statements — specifica-
tion statements — within what is otherwise imperative code. And FIR expressions
can include arbitrary first-order logic (any alternation of quantifiers), a useful, if not
necessary, feature for writing strong specifications.

Modeling code and specifications with a combination of first-order logic and a
relational calculus is an idea drawn from experience with the Alloy modeling lan-
guage [48] and the Kodkod model finder [84]. User experience with Alloy has shown
that a combination of first-order and relational logic can encode the heap of an ob-
ject program and operations on that heap in a clear and concise way [47]. Further
experience and empirical data [82] has demonstrated the Kodkod model finder to be
an efficient tool for finding solutions to formulas in this logic.

To analyze programs written in a conventional high-level programming language
they must first be translated to FIR. The Forge framework includes a translation
from Java to FIR that is discussed in Chapter 5, and Toshiba Research is developing
a translation for C [75]. This chapter describes the structure and semantics of FIR,
as well as and how to unroll loops and inline method calls in FIR procedures.

27

Program ::= UserDomain* UserLiteral* Variable* Procedure*

Domain ::= Boolean | Integer | UserDomain Expr 1=
Type := 0 | Domain | Type U Type | Type — Type varld | litld | domID | @ leaf
UserDomain ::= domain domld | Expr C Expr subset

| Expr {= | #} Expr (in)equality
Variable ::= LocalVariable | GlobalVariable | {some | one | lone | no} Expr multiplicity
LocalVariable ::= local localld: Type | Expr {U | N | \} Expr set operations
GlobalVariable ::= global globalld: Type | Expr . Expr join
varld ::= localld | globalld | Expr — Expr cross product

| Expr @ Expr override
Literal ::= BooleanLiteral | IntegerLiteral | UserLiteral | |~ Expr transitive closure
BooleanLiteral ::= true | false | ~ Expr) transpose
IntegerLiteral =01 |-1]2}|-2]... | w(Expr, IntegerLiteral*) projection
UserLiteral ::= literal litld: domld | Expr-? Expr.: Expr conditional

| {varld* | Expr} comprehension
Procedure ::= proc procld (localld*) : (localld*) Stmt | | - Expr Boolean negation
Stmt ::= BranchStmt | UpdateStmt;Stmt | ExitStmt | Expr {A| V} Expr Boolean operations
BranchStmt ::= if Expr then Stmt else Stmt | {V | 3} varld* | Expr quantification
UpdateStmt ::= Assign | Create | Call | Spec | = varld* | Expr summation

[Expr {+ | — | x | +| mod} Expr arithmetic
Assign ::= varld := Expr | Expr {>| < | > | <} Expr integer inequality
Create ::= varld := new domld | Expr {|| & |71 < |>|>> } Expr bitwise operations
Call ::= varld* := procld (Expr*) | # Expr cardinality
Spec 1= varld* := spec (Expr) | varldgiqg pre-state variable

Figure 2-1: FIR Grammar

2.1 The FIR Grammar

The FIR grammar is shown in Figure 2.1. The Forge Intermediate Representation
is described as “relational”, because every expression in its grammar evaluates to a
relation. A relation is a set of tuples, where each tuple is a sequence of atoms. The
arity of a relation (the length of its tuples) can be any strictly positive integer. A set
of atoms can be represented by a unary relation (relation of arity 1), and a scalar by
a singleton set.

FIR consists of data structures assembled via API calls and has no formal syntax.
However, for expository purposes, this thesis includes textual and graphical represen-
tations of these data structures as needed. Figure 2.1 shows a textual representation
of a FIR program that performs registration for a website on which every user must
have a unique email and a unique integer id. The register procedure takes an email
argument and returns a user atom. If an existing user already has that email, the
procedure returns the Error literal. Otherwise, the procedure creates and returns a
new user instance with that email and with a new unique id.

As shown in Figure 2.1, a program declares a series of user-defined domains, user-
defined literals, variables, and procedures. A domain is a sort (“sort” as in “sorted
logic”), a set of atoms that is disjoint from all other domains. Two domains are
built into the language: the domain of Boolean values and the domain of integers’.
A FIR program may declare any number of user-defined domains, which are the
only domains from which new atoms may be dynamically allocated. The example in
Figure 2-2 declares two user-defined domains, User and String.

IFIR does not currently provide a domain of real numbers, though support for real numbers is a
potential area of future research.

28

domain User, domain String, literal Error: User
global id: User—Integer, global email: User—String
local newEmail: String, local newUser: User, local newld: Integer

proc register (newEmail) : (newUser)
1 if newEmail C User.email

2 newUser := Error
else
3 newUser := new User
4 email := email U newUser—newEmail
5 setUniqueld(newUser)
6 exit

proc setUniqueld (newUser) : ()
7 id := spec(3newld | (id =idq ® newUser—newld) A —(newld C User.ida))
8 exit

Figure 2-2: Website Registration Program in FIR

The type of a FIR expression is either a domain or some combination obtained by
unions and cross products of domains. For example, an expression of type
(D, U Dy) — D3 evaluates to a binary relation, whose first column contains atoms
from domains D; and D, and whose second column is drawn from domain Ds;. An
expression with the empty type () must evaluate to the empty set?.

FIR variables, both global and local, are declared with an identifier and a type.
The program above declares two global variables: id and email. The id global variable
is declared of type User — Integer, meaning it is a binary relation mapping users
to integers. Similarly, email of type User — String is a binary relation from users
to strings. (If this FIR program has been generated from high-level object-oriented
code, id and email likely correspond to fields named id and email in a class named
User.)

A FIR program declares a single alphabet of local variables to be used by the
procedures. Semantically, every procedure gets its own copy of every local variable.
For example, the register and setUniqueld procedures both use the newUser and newld
local variables, but they are using their own copy of those variables, not accessing
shared state as they would if these variables were global. All the local variables in
the example are declared to be sets (relations of arity 1) but there is no restriction
in FIR that this be the case. Local variables may in general be relations of any arity,
just like global variables (although multiple-arity local variables never appear in FIR
that is generated by JForge).

2Therefore, an expression with the empty type, unless that expression is the empty set itself,
indicates a likely error in the generation of the FIR code.

29

p q P9

@ <a, C, b> <a, b> <aca> |
<c,d, c> : <b, a> = <c, d’ b>
<b, b, d> <c, b> T
(i1) <a, b> <a>
<c> . <b, a> =
<d> <c, b>
(iii) <a, b>
<pb> . <b, a> = <a>
<c, b>

Figure 2-3: Three Examples of Relational Join. For each tuple in p of the form
(p1, - -+ Pn, m) and tuple in q of the form {m, qi, ..., q), there is a tuple in p.q
of the form (p1, ..., Pn, Q1, ..., dz). Example (ii): when p is a set, the join p.q is
equivalent to the relational image of q under p. Example (iii): when p is a singleton
and q is a function, p.q is equivalent to function application.

Literals are constant values that evaluate to singleton sets, and the value of each
literal is disjoint from every other literal. FIR has built-in literals for the Boolean
constants true and false and for each integer. Programs may additionally declare
user-defined literals belonging to any of the declared user-defined domains. The FIR
program above declares a literal named Error of type User, a value that the register
procedure returns to signal an error has occurred.

2.1.1 FIR expressions

To simplify automatic analysis, every expression in FIR is side-effect free. Domains,
variables, literals are all expressions themselves. When treated as an expression, a
domain evaluates to its extent, i.e., the set of atoms that have so far been allocated
from the domain. The empty type () doubles as the expression for the empty set. The
expression language has largely been adopted from the Alloy Modelling Language [48].
An important operator in the expression grammar is the relational join (.). In-
formally, the join expression p.q matches the right-most column of p against the
left-most column of q, concatenates the matching tuples, and drops the matching
column. Formally: for each tuple in p of the form (py, ..., p,, m) and tuple in q of
the form (m, qi, ..., qx), there is a tuple in p.q of the form (py, ..., pp, Q1 -- ., q)-
Three examples of applying the relational join are shown above in Figure 2-3. In
example (i), a ternary relation p is joined with a binary relation q. Example (ii) shows
that when p is a set, the join p.q is equivalent to the relational image of q under p.
For example, the register procedure contains the expression User.email, an expression
which evaluates to the set of all emails currently held by some user. Example (iii)
shows that when p is a singleton and q is a function, p.q is equivalent to function

30

application. The expression newUser.email, for example, evaluates to the singleton set
containing the email of newUser.

Expressions can involve standard set operations, too, including union (U), inter-
section (N), difference (\), and cross product (—). For example, Statement 3 in the
register contains the expression

email U newUser—newEmail

Suppose that newUser is Greg, that newEmail is gdennis@nit.edu, and that email cur-
rently contains no tuple beginning with Greg. The cross product newUser—newEmail,
evaluates to a relation containing the single tuple <Greg, gdennis@mit.edu>, so the
entire expression evaluates to a relation that is the same as email except it also con-
tains that tuple.

Another frequently used operator is relational override (©). The expression p @ q
denotes all the tuples in q plus any tuple (p1, ..., pn—1, Pn) in p, so long as there is
no tuple in q of the form (p1, ..., pr—1, gs) for some q,. In the common case, p is
a function containing the pair (x, y) and q is exactly the pair (x, z). The expression
p @ q, in this case, evaluates to a function whose value is the same as p, except (X, y)
has been replaced with (x, z). For example, consider the following expression:

email ® newUser—newEmail

Suppose again that newUser is Greg, but that email currently maps Greg to
gdennis@mit.edu and that newEmail is now drgreg@phd.com. In this case, the ex-
pression evaluates to the relation that is the same as email, except it contains the
tuple <Greg, drgreg@phd.com> in place of <Greg, gdennis@mit.edu>.

Boolean expressions can be formed by comparing expressions to one another using
the equality (=), inequality (#), and subset (C) operators. Statement 1 in register,
for example, tests whether the following expression is true:

newEmail C User.email

It is true if the singleton set newEmail is a subset of the emails currently taken by
users, i.e., it tests whether newEmail is a fresh email.

Boolean expressions can also be formed with the standard logical connectives
including (A), or (V), not (—), and implies (=), and by universal (V) and existential
(3) quantification. For example, if we add two more local variables, ul and u2 of type
User to the web registration program, then we can express the constraint that no two
users have the same email:

V ul, u2 | ul # u2 = ul.email # u2.email

Quantified variables are implicitly quantified over their type, so this is a quantification
of all singletons ul and u2 drawn from the domain User.

31

A Contrast with Relational Logic

Although the FIR expression grammar is very similar to and inspired by the relational
logic of Alloy, there is a key difference between the two. Unlike FIR, relational logic
maintains a hard distinction between relational expressions, Boolean formulas, and
integer expressions. In the logic, one cannot apply a relational operator, like union
(U) or cross product (—), to Booleans or integers, e.g. one cannot take the cross
product of true and false or the union of 7 and 2. Nor can one apply formula or
integer operators to relational expressions, e.g. even if sets a and b each contain
exactly one integer, one cannot take the sum of a and b.
The reason for this restriction is that the cardinality of (number of tuples in) a Iog1c

expression cannot be statically known in advance of solving. If integer addition could
~ be applied to two sets, therefore, it would need to be well-defined in the case where
either or both of those sets contained no elements or multiple elements. Rather than
adopt an arbitrary meaning for integer and Boolean operators on sets, it maintains
the distinction between relational, Boolean, and integer expressions, and disallows
operators for one kind of expression from being applied to either of the two other
kinds. : :
Due to a different set of priorities, FIR offers an alternative solution to this prob-
lem. FIR is meant to be a convenient intermediate representation into which high-level
object-oriented languages can be translated, and programs in these languages include
expressions like the following: '

x.f & (x.g > 0)

where f is a field of type Boolean and g is a field of type integer in T. It is convenient
for translations to FIR, like the Java translation to FIR discussed in Chapter 5, to
translate this expression into the following FIR expression:

x.f A (x.g > 0)

where f is a binary relation whose range is Boolean and g is a binary relation whose
range is Integer. In contrast, the expression (z.f A z.g > 0) in relational logic would
not be well-formed, because z.f and z.g are relational expressions to which Boolean
operators like and (A) and integer operators like greater-than (>) cannot be applied.
When the expression (x.f A x.g > 0) has been translated from the expression
(x.f && x.g > 0) in code, x will be a singleton, f and g will be functions, and x.f
and x.g will therefore be singletons. Nevertheless, in general Forge does not know
the source of the FIR code, and x.f and x.g cannot statically be determined to be
singletons in advance. As a result, to allow for expressions like (x.f A x.g > 0), FIR
must give meaning to Boolean and integer operators when applied to sets.
’ Applying an integer operator to two sets means: take the sum of the integers in
each operand and apply the standard meaning of the operator to those sums. For
example, {3, 4} - {} evaluates to 7: ~

(3.4}-{} = B+4)-0=7

32

Applying a Boolean operator to two sets means: take the disjunction (the Boolean
sum) of each set and apply the operator to those two disjunctions. For example,
{true, false} A {} evaluates to false:

{true, false} A {} = (true V false) A false = true A false = false

These semantics of Boolean and integer operations could surprise a user who
is coding directly in the intermediate representation. But, in the normal use case,
the expressions are generated mechanically from high-level code, where the language
dictates the operands be singletons, in which case the Boolean and integer operations
have their standard meaning.

2.1.2 FIR Procedures

The signature of a FIR procedure consists of an identifier that names the procedure,
followed by any number of input and output parameters given as lists of local vari-
ables. The signature of the register procedure, for example, declares that it takes one
input, newEmail, and returns one output, newUser:

proc register (newEmail) : (newUser)
The setUniqueld procedure takes one input, newUser and has no outputs:
proc setUniqueld (newUser) : ()

The body of the procedures consist of a control-flow graph of program statements.
There are no “return” statements in FIR code; instead, the final values of all output
parameters are visible to a procedure’s caller.

FIR Statements

There are three kinds of statements that appear in FIR control-flow graphs: branch,
update, and ezit. Every control-flow graph in FIR contains a single exit statement,
marking the end of its execution. The first statement of the register procedure is a
branch statement:

1 if newEmail C User.email

2 newUser := Error
else
3 newUser := new User

Branch statements consist of a Boolean condition, in this case (newEmail C User.email),
and two successor statements in the control-flow graph. As explained, this condition
is true if newUser is the email of an existing user. If the condition is true, control pro-
ceeds to the “true” successor; here that is Statement 2. Otherwise, control proceeds
to the “false” successor, here Statement 3.

33

Update statements are the only statements that may modify the program state.
There are four kinds of update statements: assign, create, call, and spec. Assign
statements take the form v := e and assign the value of the expression e to the
variable v. In the register procedure, there are two assignment statements:

2 newUser := Error
and :
4 email := email U newUser—newEmail

Statement 2 sets newUser to the Error literal. Statement 4 updates the value of emall
so that it contains a mapping from newUser to newEmail.

A create statement takes the form v := new D and dynamically allocates a new
atom from the user-defined domain D and assigns it to v. This statement has the
additional side-effect of adding the newly allocated atom to D. The register procedure
contains a smgle create statement: ,

3 newUser := new User

It creates a new atom from the User domain and assigns it to newUser. :

Call statements invoke procedures. To call a procedure p; it takes the general form
Vi, Vg, ..., Vp :=p(ay, ag, ..., a,), where a; .. .a, are arguments to the procedure and
vy ...v, are variables to which the output parameters of the procedure are assigned
when the call returns. Consider, for example, the following swap procedure:

proc swap(x, y) : (x2, y2)
X2 =y
y2 =X

Tt could be called as follows to swap the values of a and b:
a, b := swap(a, b)
The final kind of update statement, a speciﬁcation statement, is discus}sed inithe
next section.
The Specification Statement

An idea originating in refinement calculus [7, 65, 66, 67], the specification statement .
is a declarative specification that is embedded in otherwise imperative code. A spec-
~ ification statement first lists the frame condition (the variables that may be modified
by the statement), followed by a Boolean expression that the statement ensures is
true (by modifying at most the variables in the frame condition):

Vi, Vg ...V, := spec (expr)

The expression relates the old and new values of the modified variables, referring to
the old value of a variable v with the expression v,;4, and the new values are chosen
non-deterministically. For example, the following specification statement assigns to x
non-deterministically so that its value is greater than its previous value:

34

x := spec (X > Xoq)

The first statement of the setUniqueld procedure is another example of a specifi-
cation statement:

id := spec(Inewld | (id = idyq ® newUser—newld) A —(newld C User.idga))

It modifies the value of id to be equal to its previous value, id,q, overridden with a
mapping from newUser to newld, where newld is some integer that is not currently
the id of another user.

An important application of specification statements in the Forge framework is
to enable modular analysis of high-level programs. As described in greater detail in
Chapter 5, the JForge front-end does not examine the implementations of methods
called by the method under analysis. Instead, JForge translates the specifications
of those called methods into specification statements, and it uses these statements
of their specification in place of their implementation. By doing so, JForge allows
the implementation of the called methods to change, so long as its specification does
not, without requiring a new analysis of the methods that call it. Also, since the
specification is usually more compact and sometimes an abstraction of the code,
using it in place of the implementation tends to greatly improve performance.

Many other intermediate representations, including that used by ESC/Java [37],
offer equivalent support for specification statements in the form of assume and havoc
statements. A havoc statement specifies a set of variables whose values may change
non-deterministically. The FIR equivalent would be a specification statement with
those variables on the left-hand side a right-hand side of true. An assume statement
coerces a particular formula to be true; its FIR equivalent would be a specification
statement with that formula on the right-hand side and an empty list of variables on
the left. In general, a FIR specification statement of the following form:

V1, Vo ... V, := spec (expr)
can be equivalently expressed in these other representations as

havoc vy, va ... v,
assume expr

We prefer the specification statement because it is more concise, and because we can
also use it to represent the specification of a procedure.
Infeasible Specifications

Specification statements should be used with some caution, however. The need for
caution is due to the possibility of infeasibility; that is, there may exist no assignment
to the variables on the left-hand side of a specification statement that makes its
expression true. Consider if, for example, the subscript of the second occurrence of
id,q were left out of the specification statement in register:

id := spec(Inewld | (id = id,;q ® newUser—newld) A —(newld C User.id))

35

Now the second constraint, —(newld C User.id), says that newld must not be the
id of a user in the post state, which contradicts the first constraint, (id=idyq®
newUser—newld), that newld be the id of newUser. So there is no assignment to id
such that the expression is satisfied. :

If there is no assignment to the variables in the frame condition that satisfies
the the specification statement, the statement is said to be “infeasible.” When we
changed idyg to id, we created a specification statement that is infeasible on every
execution of the code, but sometimes a specification statement in infeasible on some
execution but not others. For example, the following specification statement that
finds the square root of n is infeasible when n is negative:

r:=spec(r X r=n)

Semantically, an execution that encounters an infeasible specification statement
results in a miracle [31, 65, 67, 70]. An analysis of such an infeasible execution will find
it capable of (“miraculously”) satisfying any post-condition, even the post-condition
false. Consider, for example, the following piece of code:

n:=-1
r ;= spec(r X r = n)

Does this code satisfy the post-condition (r x r = n)? Yes, but since every execution
of the code is infeasible — results in a miracle — it also satisfies the post- condltlon
(r x r # n) and even (r # r). It satisfies anything and everything.

Miracles are certainly problematic when they arise accidentally. Because infeasible
executions vacuously satisfy any post-condition, an analysis of code that contains an
infeasible specification statement will effectively leave those executions unexplored.
Indeed, it is not very useful to a user to find that all feasible executions of their code
satisfy their post-condition, when in fact no feasible executions exist.

Due to their ability to satisfy any post-condition, Dijkstra recommended forbid-
ding miracles, and thus his Law of the Excluded Miracle [31]. While the Forge frame-
work in unable to automatically exclude miracles, its coverage metric, described in
Chapter 4, can help a user detect them. Plus, as Morgan [65] and others have found,
miracles have practical applications, too. For example, an infeasible specification may
be included in a procedure deliberately to cause a subsequent analysis from explor-
ing some set of executions. Loop unrolling, for instance, a process discussed below
in Section 2-4, uses an infeasible specification statement for the explicit purpose of
rendering executions infeasible if they exceed the unrolling limit.

2.2 Transforming FIR

The bounded verification analysis, explained in the following Chapters 3 and 4, ac-
cepts only a restricted subset of FIR that cannot contain loops or procedure calls. To
ensure FIR code always meets this restriction, Forge performs two transformations —
one that unrolls loops and the other that inlines procedure calls — to a FIR procedure
before it is analyzed. These transformations are discussed below.

36

In addition to loop unrolling and call inlining, a client of the framework may
additionally configure Forge to apply any number of custom transformations prior
to analysis. For example, when JForge is the client, it configures Forge to apply a
custom transformation that utilizes a dataflow analysis to find and eliminate logically
infeasible branches.

Since the Forge analysis operates on the transformed FIR procedure, the trace and
coverage information it computes is initially in terms of that transformed code, not
the original. To convert the trace and coverage into terms of the original procedure,
all transformations record a mapping from the statements in the transformed proce-
dure to their corresponding source statements in the original. With this mapping,
Forge automatically reconstructs the trace and coverage information of the original
procedure from the results of analyzing the transformed one.

The basics of loop unrolling and call inlining are described in the next sections.

2.2.1 Unrolling Loops

This transformation unrolls each loop in the procedure according to a user-specified
limit on the number of consecutive executions of the loop body. The transformation
begins by unrolling all of the top-level (outer-most) loops in the procedure. If loops in
the procedure remain, the transformation is applied again to unroll all the loops now
at the top-level — loop that were formerly inner loops. This process is repeatedly
applied until no loops remain. Note that this transformation will unroll an inner loop
anew for every unrolling of the outer loop. That is, if the user requests m unrollings
of a procedure that contains one outer loop and one inner loop, then the body of the
inner loop will effectively be replicated m x m times.

To detect a top-level loop, our algorithm performs a depth-first search of the
control-flow graph and checks whether each statement it encounters is the head of a
loop, using the same criterion as Tarjan’s interval-finding algorithm [81]. For every
statement s in the control-flow graph of a procedure, Tarjan’s algorithm defines s
to be the head of a loop if there exists a back-edge in the control-flow graph whose
target is s. Any nodes that can reach s via that back-edge are considered part of the
loop body. Consider, for example, the contains procedure in Figure 2-4, which checks
when an integer value is contained in a list. Tarjan’s algorithm identifies Statement
1 in the procedure as a the head of a loop, because it is the target of the back-edge
from Statement 3, and it identifies Statements 2 and 3 as the loop body.

A loop is unrolled by replicating its body for the specified number of unrollings.
If there are inner loops within the body, they are not unrolled yet, but are replicated
as the rest of the body was. They will be unrolled on subsequent passes of the
algorithm. To illustrate the unrolling, Figure 2-5 shows the CFG of the contains
procedure unrolled twice. To ensure that every execution exits the loop with the loop
guard condition false, after the last statement of the last unrolling, the algorithm
inserts a specification statement whose Boolean condition is the negation of the loop
guard and whose frame condition is empty. In Figure 2-5, this is Statement 9.

37

domain List
global next: List—List, global value: List—Integer
local list: List, local val: Integer, local result: Boolean

proc contains(list, val) : (result)
1 while (list # 0) {
2 if (list.value # val) {

3 list := list.next
} else {
4 result := true
exit

}
}

5 result := false

exit
Figure 2-4: List containment procedure in FIR
1 if (list # 0) {
2 if (list.value # val) {
3 list ;= list.next
6 if (list # 0) {
7 if (list.value # val) {
8 list := list.next
9 spec(list := 0)
goto 5
} else {
goto 4
}
¥
} else {
4 result := true
exit
}
}
5 result := false

exit

Figure 2-5: The contains procedure unrolled twice. Gotos indicate aliased statements.
The thickness of the lines is used only to disambiguate line crossings.

38

If our algorithm finds a top-level loop that is the target of multiple back-edges,
it rejects the procedure (throws a runtime exception), and the Forge analysis cannot
be applied. Nevertheless, the algorithm is sufficient for unrolling CFGs generated
from any structured code, including arbitrary combinations of loops, inner loops, if-
statements, and break and continue statements. Unrestricted gotos could cause the
unrolling to fail; but many languages, including Java and C, prohibit their use.

2.2.2 Inlining Procedure Calls

This transformation inlines the bodies of all called procedures into the control-flow
graphs of their callers. Our example will be the following area procedure that calcu-
lates the area between two Cartesian points:

proc area(x, y, X2, y2) : (a) proc abs(x) : (a)
width := abs(x - x2) if (x < 0) then a := -x else a := x
height := abs(y - y2)
a := width X height

This section will show how the two calls to the abs procedure are inlined.

Prior to inlining a called procedure, all the local variables in the procedure, in-
cluding its input and output parameters, are renamed to fresh local variables in order
to avoid name conflicts:

proc abs(x') : (a')
if (x' < 0) thena' :=-x"else a’ :=x’

To inline a procedure call, the call statement is replaced with the following state-
ments, in this order: (1) statements that assign the arguments of the call to the
renamed input parameters of the called procedure; (2) statements that comprise the
body of the renamed called procedure; and (3) statements that assign the output
parameters to the variables that were assigned the result of the call. Thus, inlining
the first call to abs into the area procedure produces the following result:

proc area(x, y, X2, y2) : (a)
X' 1= x-x2
if (x' < 0) then a' := -x"else a' := x’
width := a’
height := abs(y - y2)
a := width x height

To inline the second call, the local variables in abs are again given fresh names:

proc abs(x") : (2")
if (x" <0) then a" = -x" else a" := X

i1

39

And the result of the second inlining looks as follows:

proc area(x, y, X2, y2) : (a)
X' =X - X2
if (X <0)thena :=-x elsea’ :=x
width := a’
X' :=y-y2
if (X" <0) thena” := X" else " = x"
height := a"
a := width X height

If a call is recursive, that recursion is unrolled according to a client-specified limit,
similar to loop unrolling.

2.3 Chapter Summary

This chapter presented the Forge Intermediate Representation (FIR). It covered the
structure and semantics of the FIR, including its differences from relational logic
and the uses and ramifications of specification statements in FIR. It also showed

how Forge unrolls loops and inlines procedure calls that appear in FIR code. Once |

its loops are unrolled and calls inlined, a FIR procedure is ready for the bounded
verification analysis presented in the next chapter. :
Despite the richness of FIR’s relational syntax, there are still areas in which it

lacks some of the expressive available in high-level languages. For example, FIR -

lacks support for real numbers and real number arithmetic. While it would not be -
particularly difficult to add support for real numbers to FIR itself, we currently have
no way of analyzing code that includes them, because the underlying Kodkod model
finder upon which the tool relies provides no such support. Another area where FIR
lacks expressiveness is in concurrency: it has no comstructs for forking or joining
threads or acquiring or releasing locks. In this area, however, we do not have Kodkod
to blame. There is prior work on modular, formal verification of concurrent systems,
and it should be possible for us to learn from this work in the future and apply our
bounded verification to these systems as well.

40

Chapter 3

Bounded Verification

The bounded verification analysis takes as input a procedure in the Forge Interme-
diate Representation, a specification of the procedure provided in the form of a FIR
specification statement, and a bound on the analysis, and it exhaustively searches
within the bound for a trace of the procedure that violates the specification.

The bound provided to the analysis consists of the following:

e a number of times to unroll each loop and recursive call;
e a bitwidth to limit the range of integers in the Integer domain; and

e a scope on each user-defined domain in the program, i.e., a limit on the number
of instances of that domain that may exist in any heap during execution.

Each of these limits results in under-approximation, eliminating, never adding, pos-
sible behaviors. Thus, any counterexample generated will be valid — either demon-
strating a defect in the code or a flaw in the specification; and if a counterexample
exists within the bound, one will be found, though defects that require a larger bound
will be missed. (Although, as discussed in Section 5.1.3, the translation from a high-
level programming language to FIR is free to use optimizations that undermine these
soundness and completeness properties.)

The bounded verification begins by applying transformations to the FIR procedure
under analysis. Loops are unrolled for the specified number of iterations and calls
are inlined (with recursion unrolled for the same number of iterations), using the
techniques previously described (Section 2.2).

The analysis then builds a formula in a relational logic that is true exactly when
there is a trace of the transformed procedure that does not satisfy the specification.
The construction of this formula uses a symbolic execution technique that traverses
each branch in the code, building a symbolic relational expression for every variable
at each program point.

The chosen bound and the formula are handed to the Kodkod model finder to
solve. If Kodkod finds a solution, the analysis translates that solution into a coun-
terexample trace of the transformed FIR procedure, and then finally to a trace of the
original FIR procedure.

41

3.1 Model Finding with Relational Logic

The basic idea underlying the analysis is as follows. From the transformed FIR
procedure (free of loops and procedure calls), the analysis automatically obtains a
formula P(s,s’) in relational logic that constrains the relationship between a pre-
state s and a post-state s’ and that holds whenever an execution exists from s that
terminates in s'. ,

A second formula (s, s’) is obtained from a user-provided specification. Using P
and 1), the analysis checks the validity of the correctness claim, a formula that is true
exactly when every trace of the procedure satisfies the specification:

Vs,s' | P(s,s') = (s, s)

However, since states s and s’ are vectors of relations, solving the quantification
over those states in the correctness claim requires enumerating all possible values
of each relation. We call this a higher-order quantification because it amounts to
quantifying over every value in a powerset, the size of which will be exponential in the
scope on the analysis, and this exponential explosion makes the analysis intractable.
To achieve a tractable analysis, the correctness claim is first negated to obtain the
refutation formula which is true exactly for those executions that are possible but
that violate the specification: :

3s,8" | P(s,8') A (s, s)

A solution to the refutation formula is a counterezample to the correctness claim.
The refutation formula still contains a higher-order quantification, but the existen-
tial quantifier can be eliminated by Skolemization. Skolemization turns the quantified
variables s and s’ into free variables, yielding a first-order formula that is equisatisfi-
able to the original':
P(s,s) AN (s, s)

Forge invokes the Kodkod model finder to solve this Skolemized refutation formula,
solutions to which witness traces of the procedure that violate the specification.

3.1.1 Using Kodkod

Kodkod translates the formula and the bound it is given into a Boolean satisfiability
(SAT') problem, and invokes an off-the-shelf SAT solver on it. If the SAT solver finds
a solution to the problem, Kodkod translates that SAT solution into a solution to the
relational logic formula, and Forge translates that logic solution into a counterexample
trace of the original FIR procedure. Kodkod is the result of many years of research
into solving relational logic problems efficiently by an encoding to SAT. It incorporates
compact sparse matrix representations and novel techniques for sharing detection and
symmetry breaking. [84].

!The Skolemized refutation formula is first-order so long as the formulas P and —/ do not contain
higher-order quantifiers themselves, which is prohibited by the intermediate representation.

42

An abstract syntax for the relational logic accepted by the Kodkod model finder
is given in Figure 3-1. The logic is a core subset of the Alloy modeling language [48].

A logic problem consists of a universe
declaration, a set of relation declarations
and a set of formulas in which the de-
clared relations appear as free variables.
The universe is a finite set of atoms from
which solutions to the problem will be
drawn. The relations are declared with
an arity, a lower bound, and an upper
bound. The lower and upper bounds are
constants — sets of tuples drawn from
atoms in the universe. The upper bound
is the set of tuples that may appear in
the relation, and the lower bound is the
set of tuples that must appear in the
relation. The lower bounds of the de-
clared relations are collectively referred
to as the problem’s partial instance. A
solution to the problem binds each de-
clared relational variable to a constant
within that relation’s bounds such that
every formula is satisfied.

The formula and expr syntactic pro-
ductions define a relational logic with
transitive closure, first order quantifiers,
and logical connectives. As illustrated by
the intexpr production, the logic addi-
tionally supports integer expressions, in-
cluding arithmetic and bitwise operators.
An intexpr may be cast to an ezpr using
the int2expr function. The sum function
yields the integer that is the sum of all
the integers in a set; if the set is single-
ton of one integer, sum can be regarded
as a “cast” from an ezpr to an intezpr.

The following logic problem formu-
lates the task of assigning teachers to
classes for a semester. The problem
involves three teachers (Smaith, Jones,
Brown) that will be assigned to teach
four classes (Math, History, FEnglish,
Music). Every class must have exactly

one teacher and every teacher must teach at least one but less than three classes.

problem ::= universe relDecl* formula™
universe := {atom*}
relDecl := relation :4igy [constant, constant]
constant = {tuple*}
tuple = (atom™)
arity ;1= positive integer
relation ::= identifier
atom 1= identifier
formula ::=
expr C expr subset
| expr = expr equality
| some expr non-empty

| one ezpr

| lone expr

| no expr

| =formula

| formula A formula

| formula V formula

| formula = formula

| YvarDecls | formula

| JvarDecls | formula

| intexpr {=| > | <} intezpr

expr =
var
| ~expr
| “expr
| expr U expr
| expr N expr
| expr \ expr
| expr.expr
| expr — expr
| formula ? expr : expr
| {varDecls | formula}
| w(ezpr, intexpr*)
| int2expr(intexpr)
| univ

intexpr 1=
integer
| #expr
| sum(e)
| ZvarDecls | Expr
| intezpr {+| — | x |+} intexpr
| intezpr {|| & | "} intezpr
| intezpr {<K | > | >>} intexpr

varDecls ::= (variable : expr)*
variable ::= identifier

exactly one
empty or one
empty
negation
conjunction
disjunction
implication
universal
existential

int comparison

variable
transpose
closure
union
intersection
difference
join
product
conditional
comprehension
projection
int cast
universe

literal
cardinality
sum
summation
arithmetic
bitwise ops
bit shifts

Figure 3-1: Relational Logic

Also, teacher Smith must always teach the Math class.

o {Smith, Jones, Brown, Math, History, English, Music}

1 Teacher :; [{},{{Smith), (Jones), (Brown)}]
2 Class :; [{{Math), {History), (English), (Music)},
{(Math), (History), (English), (Music) }]
3 teach o [{{Smith, Math)},
{{Smith, Math), (Smith, History), {Smith, English), { Smith, Music),
(Jones, Math), (Jones, History), (Jones, English), { Jones, Music),
(Brown, Math), (Brown, History), (Brown, English), (Brown, Music)})

4 teach C (Teacher — Class)
5 Vc: Class | one teach.c
6 Vt: Teacher | some t.teach A #t.teach < 3

The problem declares a universe of 7 atoms (Line 0) and three relations (Lines
1-3). The Teacher relation (Line 1) has an arity of 1 (it is a set) and represents the
set of teachers employed for the semester; it is bounded below by the empty set and
bounded above by the constant containing all the atoms that represent teachers. The
Class relation (Line 2) is bounded both above and below by the atoms representing
classes, so the set of classes taught is fixed to those exact four. The teach relation is
binary. It is bounded below by the constant containing the tuple (Smith, Math) —
to ensure Smith teaches Math — and above by the cross product of all the teacher
and class atoms.

The problem consists of three constraints. According to the first constraint (Line
4), teach is a subset of of the cross product of the Teacher and Class sets, which
means the teach relation only assigns the teachers for the semester to classes being
taught. The second constraint (Line 5) says every class is taught by exactly one
teacher. The third constraint (Line 6) says every teacher must teach at least one but
less than 3 classes. ‘ ,

Kodkod translates the logic problem, upper bounds, and partial instances into a
Boolean formula and invokes a SAT solver to find its satisfying solutions. Kodkod’s
support for partial instances is one of its key advantages over the Alloy Analyzer,
and one which our tool exploits in its analysis. Because partial instances reflect fixed
parts of the solution that do not need to be discovered, they enable Kodkod to reduce
the sizes of the Boolean formulas it generates.

Here is a solution that Kodkod might find to the problem:

Teacher — {(Smith), { Brown)}
Class +— {(Math), (History), (English), (Music) }
teach > {(Smith, Math), (Smith, English), { Brown, History), { Brown, Music) }

In the solution, Smith and Brown are the teachers for the semester. Smith teaches
both Math and English, and Brown teaches History and Music.

44

3.2 Symbolic Execution

The FIR procedure under analysis is translated to relational logic by a symbolic
execution [50]. The state of the symbolic execution at each program point consists of
three pieces of information:

e a relational declaration, D: a set of relations from the logic;

e a path constraint, P: a set of formulas that must be true for an execution to be
feasible up to the current program point; and

e a symbolic environment, £: a mapping of program variables and user-defined
domains to expressions in the logic for their current value.

The symbolic state at a program point encodes the set of feasible program states at
that point. Consider a program point for which the symbolic execution produces the
symbolic state (D, P,E). If there exists a binding of the relations in D to constants
such that the formulas in P are true, then the execution may feasibly reach that
program point. Furthermore, if we look up in £ the expression to which each program
variable is bound and evaluate that expression against the binding, we would produce
a binding of program variables to constants that is a feasible state of the program at
that program point. The example in the next section will help elucidate this idea.

3.2.1 Small Example: Social Network

This section demonstrates the symbolic execution on a small example and illustrates
the key ideas involved. It omits some details of the symbolic execution, but these ideas
will be explained in later sections. The example program records friendships between
people, as in a simple social network. The befriend procedure adds a friendship two
persons p and q:2

domain Person
global friends: Person—Person
local p: Person, local q: Person

proc befriend(p, q) : ()
friends := friends U p—q U q—p
exit

The specification we will check this procedure against is the preservation of the
following invariant:

friends := spec(friends,;y = ~friends,; = friends = ~friends)

which says that if the friendships are symmetric in the pre-state then they are sym-
metric in the post-state. The FIR expression ~r is the relational transpose of r.

2Technically, the parameters p and q may in general be sets of persons.

45

Small Example: The Initial State

For the befriend procedure, the symbolic execution constructs the following initial
symbolic state — initial relational declaration Dy, initial path constraint Py, and
initial symbolic environment & — to represent all possible initial program states to
the procedure:

Dy = {Persony, friendsy, po, o }
Po = {friendsy C Persony — Persony,pg C Persong, qo C P ersong }
&y = {Person — Persony, friends — friendsy, p — pp, q — qp}

In this initial state, the domain Person, the global variable friends, and the input
parameters p and q are each bound to fresh relations for their value. The initial path
constraint says that the initial values for friends, p, and q contain only persons that
exist in this initial state. Now consider any binding of the variables in Dy to constants
such that the formulas in Py are true. Here is one such binding:

Persony = {(P1), (P2), (P3)}

friends, = {(P1, P2), (P2, P1), (P2, P3)}
Po = {(P1)}

90 = {(P3)}

By evaluating the expression to which each variable is mapped in E’o against this
binding, we derive a possible initial state to the program:

Person = {(P1), (P2), (P3)}

friends = {(P1, P2), (P2, P1), (P2, P3)} .
P ={(1)}

q ={{P3)}

The single symbolic state is encoding all such feasible initial program states. This
particular program state does not satisfy the invariant, but that is not of concern at
this point. The symbolic execution is conducted independently of any specification.
The specification will be taken into account once the symbolic execution is complete.
Now consider the effect of leaving out the formulas in the initial path constraint.
If they were left out, the initial symbolic state would also encode initial progra:
states like the following: '

Person = {(P1), (P2)}

friends = {(P1, P3), (P3, P1)}
p ={(P2)}

q = {(P3)}

where the variables friends and q contain atoms representing persons that do not exist
(at least not yet). Such program states are not feasible initial states to the procedure,
and the formulas in the initial path constraint are needed to exclude them.

46

Small Example: Executing the Statements

Once the initial symbolic state is constructed, the body of the procedure is symboli-
cally executed which, in the befriend procedure, consists of the following assignment:

friends := friends U p—q U q—p

To symbolically execute this assignment the symbolic execution, we first translate
the FIR expression on the right-hand side into an expression in relational logic. Since
the current symbolic environment & maps the FIR variables friends, p, and q to the
expressions friendsy, pg, and qp, respectively, the right-hand side is straightforwardly
translated to the following logic expression:

friendsy U pg—qo U go—po

The analysis can symbolically execute this assignment statement in two possible
ways. The first way maps the assigned FIR variable, friends, to the logic expression
friendsy U pg — go U gp — pp, and does not modify the relational declaration or path
constraint. This produces the following symbolic state, which being the final symbolic
state of the procedure, we mark with the subscript f:

Dy = {Persony, friendso, po, 4o}
Ps = {friendsy C Persony — Persong, pp C Persong, go C P ersomny
&; = {Person — Persong, p — pg, q — qo,

friends > friendsp U po — go U g0 — po }

The change to the environment is highlighted in gray.

The other, equivalent, symbolic execution of this statement adds a fresh relation,
friends;, to the relational declaration to store the value of friends after the statement.
It constrains friends; to equal friendsy U pp — qo U go — po, and it maps friends to
friends; in the symbolic environment:

D; = {Persony, friendsy, po, qo, friends; }

P; = {friendsy C Persong — Persong,py C Persony, gy € Persony,
friends; = friendso U po — o U g0 — Po }

& = {Person — Persong, p — po, qQ — qp, friends > friends; }

The two ways to symbolically execute this assignment statement reflect two ap-
proaches to the symbolic execution generally. The first way was an example of the
inline strategy. The inline strategy for symbolic execution tries to avoid, whenever
possible, adding fresh relations to the symbolic state®>. The second way was an ex-
ample of the constrain strategy. The constrain strategy maps each modified variable
to a fresh relation and constrains the value of that variable by adding new path con-
straints. These two strategies are equivalent in that they encode the same set of
feasible program executions. The choice of strategy has performance implications for
the performance of the Kodkod analysis (Section 6.3.1), and for the accuracy of the
coverage metric (Chapter 4).

3Some statements require that fresh relations be declared, e.g. specification statements, because
they allows variables to change non-deterministically.

47

Small Example: Building the Logic Problem

Once the symbolic execution of the procedure is complete, the analysis generates,
from the provided specification, a problem in relational logic for the Kodkod model
finder to solve. The specification for our befriend procedure is that the symmetry of
the friendships is preserved:

friends := spec(friends,;q = ~friends,y = friends = ~friends)

~ From this specification, the analysis creates a logic formula 1 by replacing all the
occurrences of friends,;; with the expression to which friends is bound in the initial
symbolic environment (in our example, friends;) and replacing all the occurrences
of friends with its expression in the final environment (an expression which differs
depending on the symbolic execution strategy).
If the inline strategy were used, the final environment would bind friends to the
expression (friendsy U py — go U gp — Pp), so ¥ would be:

friendsy = ~friendsy = :
(friendsp U pg — go U qo — po) = N(frzendso Upo = g U g — po)

If the constrain strategy were used, the final environment would bind friends to
the expression friends;, so ¥ would be: N

friendsg = ~friendsp = friends; = ~friends;

Finally, the analysis asks Kodkod to find an assignment to the logic variables in
the final relational declaration, Dy, such that the formulas in P; are true and v is
not, i.e., a solution to the formula Py A —1p. With the inline strategy, this formula
would be: '

(friendsy C Persony — Persong) A (pg € Persony) A (go C Persong) A
~(friendsy = ~friendsy =
(friendsg U po — qo U go — pg) = ~(friendsy U pg — o U go — po))

With the constrain strategy it would be:

(friendsg C Persong — Persong) A (pp C Persong) A (qp C Persong) A
(friends; = friendsy U pp — qo U gp — po) A
—(friendsy = ~friendsy = friends; = ~friends;)

A solution to either formula witnesses a feasible execution of the procedure that
violates the specification.

48

3.2.2 Building the Initial State

We will now explain the symbolic execution in detail. Given a FIR program, the
symbolic execution begins by populating the initial relational declaration with several
relational logic variables. To encode FIR literals, Dy contains the following relations:

e true and false, singletons to encode the true and false literals in FIR;

e Integer, the set containing all the integers in the specified bitwidth, to encode
the value of the FIR Integer domain; and

e for every user-defined literal L in the FIR program, a corresponding unary re-
lation L to encode its value.

For every user-defined domain M in the program, D, contains a corresponding
relation My, and the initial symbolic environment & maps M to M,.

For every input parameter (to the procedure analysis) and global variable v, Dy
contains a corresponding relation vy, & maps v to vy, and the initial path con-
straint, Py, contains a formula that restricts vy to be a subset (or sub-relation) of
the initial value of its type. That is, if the type of v is a cross-product of domains
M; — My — ... — M, then Py contains a constraint of the following form:

v € My, = My, — ... = My,

where M;,, My, ... M,, are the relations to which the domains M;, My, ... M, are
bound in the initial symbolic environment.

3.2.3 'Translating Expressions

The symbolic execution frequently translates expressions in FIR into expressions in
relational logic. This is mostly a straightforward task because, for nearly every op-
erator in FIR, there is a corresponding operator in the relational logic with the same
semantics. For example, if the FIR variables x and y are bound to the relations z
and v in the symbolic environment, then the symbolic execution translates the FIR
expression (x U y) to the logic expression (z U y).

However, this otherwise straightforward task is slightly complicated by the differ-
ence discussed in Section 2.1.1 between the FIR expression grammar and the logic
expression grammar. Recall that in FIR, one can write the following expression:

x.f A (x.g > 0)

where x is a set, f is a binary relation whose range is Boolean, and g is a binary relation
whose range is Integer. However, the identical expression in relational logic would
not well-formed, because z.f and z.¢g are relational expressions to which Boolean
operators like and (A) and integer operators like greater-than (>) cannot be applied.

As Section 2.1.1 explained, the ability to apply Boolean and integer operators to
relation-valued expressions requires that FIR give meaning to Boolean and integer
operators when applied to non-singleton sets. In FIR, applying an integer operator

49

to two sets means: take the sum of the integers in each operand and apply the
standard meaning of the operator to those sums. Thus, in general, the FIR expression
(a x b) is translated into the logic expression (sum(a)* sum(b)), for every integer
operator . Applying a Boolean operator to two sets means: take the disjunction
(the Boolean sum) of each set and apply the operator to those two disjunction. Note
that a disjunction of Booleans is true if and only if true is an element of that set.
Thus, in general, the FIR expression (a x b) is translated into the logic expressmn
((true C a) * (true C b)), for every Boolean operator *. :

We’ve discussed how the symbolic execution translates Boolean and integer opera-
tions on set-valued operands, but it must also be able to translate relational operations
to the logic when the operands are Booleans or integers. Consider, for example, the
FIR expression (1 U 2) that takes the union of integers 1 and 2 and evaluates to
the set containing exactly both integers. This union expression cannot be translated
naively to the logic expression (7 U 2), because union (U) is a relational operator that-
cannot be applied to integer expressions. The translation must essentially “cast” the-
integers to singleton sets before the union is applied. To cast an integer expression 4
to a set, the translation uses the logic’s built-in int2expr function. Therefore, the FIR
expression (1 U 2) is translated into the logic expression (int2expr(1) U int2expr(2)).
To cast a Boolean formula f to a set, the translation builds a conditional expres-
sion of the form (f ? true : false), where true and false are the relations in Dy that
correspond to the FIR literals true and false. .

, The translation of FIR expressions to logic expressions is given in Flgure 3—2 It
is defined in terms of three functions: 73 for translating FIR expressions to relatlonali
expressions in the logic, 7r for translating FIR expressions to Boolean formulas in the
logic, and 77 for translating to integer expressions in the logic. As shown in the figure,
the translation of a FIR expression depends upon the current symbolic environment.

For example, consider the symbolic environment that maps x to p and y to ¢:

E={xrp,y—q}

In this environment, translating the FIR expression x U y to a relational expression
in the logic yields p U ¢:

Trlx Uy, E] = Tr[x, E] U TRy, E] = E(X) U E(Y) = pU g

But translating the FIR expression x + y in the environment to a relational expression

in the logic involves “casting” back and forth between relations and integer in the
logic to yield int2expr(sum(p) + sum(q)):

TR[[X +v, S]] =
int2expr(T1[x, E] + T1lly, £]) = int2expr(sum(Tr[x, E]) + sum(Tr[y,£])) =
int2expr(sum(E (x)) + sum(E(y))) = int2expr(sum(p) + sum(q))

In addition to binding variables and user-defined domains to expressions, the
symbolic environment, as shown in Figure 3-2, can also bind “old” variables to ex-
pressions. The environment will only bind old variables when the symbolic execution
is translating FIR specifications to logic.

30

Modifiable = Variable U UserDomain U {vyq | v € Variable}
& € Env = Modifiable — expr

Tr : Expr x Env — expr
Tr : Expr x Env — formula
T; : Expr x Env — intexpr

Tr[true, &] = true

Tr[false, £] = false

Tr[i, €] = int2ezxpr(3), for an integer literal i

Tr[Boolean, £] = true U false

Tr[Integer, &] = Integer

Tr[L, €] = L, for an instance literal L

Tr[v, &] = €(v), for a variable, instance domain, or old variable v

Tr[*e,] = xTg[e, £], for x in {",~}

Tr[*e, E] = form2ezpr(xTg[e, £]), for * in {some,one,lone,no}
Tr[—e,] = form2ezpr(—Tr[e, £])

Tr[*e, £] = int2ezpr(xTg[e, £]), for in {sum,#}

Trlerxes, £] = Tr[er, €] * Trlez, £], for x in {U,N,\,—, .}

Trleixes, E] = form2expr(Trle1, £] * Tr[e2, £]), * in {=,#,C}

Trleixes, E] = form2ezpr(Trler, E] * Trles, £]), * in {A,V, =, &}

Trleixes, E] = form2ezpr(Ti[er, £] * Ti[es, £]), in {>, <, >, <}

Trleixes, £] = int2expr(Ti[er, E] » Ti[es, £]), » in {+, —, x, +,|, &,", <, >, >>}

Trler @ e2, &] = (Tr[e1, E] \ (n(e, 1,...,n — 1) — univ))Ue
where e = Tg[es, £], n is the arity of e, w(e, 1,...,n — 1)
is the relational projection over the first n — 7 columns of e,
and undv is the universal set of all atoms

Trl»v | e, &] = form2ezpr(xvar : T[T,£] | Tr[e, E[v — varl]])
where + in {V, 3}, var is a fresh logic variable, and T is the type of v

Trle,] = true C Trle, &]
T:ile, £] = sum(7g[e, &])

formZexpr(f) = f 7 true : false
int2expr(i) = the singleton set containing the integer ¢, a built-in function in Kodkod

Figure 3-2: Semantics of FIR Expression Translation

ol

' 3.2.4 Formal Execution Rules

Each step of the symbolic execution takes as input a FIR statement and the current
symbolic state (a relational declaration, path constraint, and symbolic environment)
and yields a new symbolic state that reflects the effect of the statement. For assign,
create, and branch statements, the symbolic execution may apply either a rule from
the inline strategy or the constrain strategy to generate the new state. The formal
symbolic execution rules are given in Figure 3-3 and are explained below.

Assignment Statement Rules

A FIR assignment statement has the following form:
vi=e

Starting from the symbolic static (D,P,€E), the inline rule for an assignment
statement does not alter the relational model, D, or the path constraint, P, but
maps the assigned variable to the translation of the expression on the right-hand
side, yielding the symbolic state:

(D,P,Ev — Tx[e,]

The constrain rule for an assignments statement introduces a fresh relation v’ to
store the new value of the assigned variable, constrains that relation to equal the
translation of the right-hand side expression, and maps the assigned variable to the
fresh relation, yielding the symbolic state: :

(DU{v'},PU{v =Tg[e,]}, Elv = ')
Create Statement Rules

A FIR create statement has the following form:
v := new M

Let currs be £(M), an expression which evaluates to the set of atoms currently
in the domain M. The inline strategy for create statements declares a fresh relation
v’ for the new value of v and constrains v’ to be a singleton that is not currently in

M. The symbolic environment after the statement maps v to " and M to the union
- of the atoms currently in M and v':

(DU{v'},PU{one v',=(v' C currs)}, E[v — v', M +— (currs U v')])

The constrain strategy is similar, except it also declares a fresh relation, M’ for
the new value of the domain M, constrains M’ to equal the union of currs and v/,
and maps M to M’ in the symbolic environment:

(DU{v,M'},PU{one v',=(v' C currs), M' = currs Uv'},Elv — v/, M — M'])

92

D € Decl = set of relations

P € Path = set of formulas

& € Env = Modifiable — expr

=: Stmt x (Decl, Path, Env) — (Decl, Path, Env)

S1,(D,P,E) = (D1, P1,&1) S2,(D1,P1,E1) => (D2, P2, &)
SI;SZa (D7P>g> = <D27P2782>

v:=-¢,(D,P,E) = (D,P,E|v — Tg[e, &)
v:i=¢,(D,PE)=¢c (DU{v},PU{V =Tg[e,E]},Ev — v'])
currs = E(M)

v:=new M (D, P, &) =>;
(DU{v'},PU{one v/, ~(v' C currs)},Elv — v/, M — (currs U v')])

currs = E(M)
v:=new M, (D,P,£) =¢
(DU{v',M'},PU{one v/, ~(v' C currs), M' = currs Uv'},E[v — v', M — M'])

gnew = 8[V1 — 'U;a sV U'r/z] gspec = gnew[vlold — g(vl)y -+ sVnold T S(Vn)]

Vi,...Vn = spec(e), (D, P, &) =
<D U {Uﬁv ety U,:l}, P U {TFIIG, gspec]]» 'U; g 732[[1_1’ gnew]]) ey 'U;l g TRﬂTnygnew]]}a gnew)

where Tq,...,T,, are the FIR types of vy,...,v,, respectively.
ST7<D7P7 g) = (DT>PT75T> SF,<D),P75> ad <DF7PF75F>

if e then St else S, (D, P, &) =
(D5, Pp, Ep[{v = (cond 7 Ex(v) : Er(v)) | v € Vp}])

ST, (D, P, g) B <DT:PT75T> SF, <D,P,g> = (DF7PF75F>
if e then St else Sp, (D, P,€) —=¢
(DpU{v' | v € Vp},
PpU{cond = v' =Er(v) |v € Vp} U {—~cond = v/ = Er(v) | v € Vg},
Ep[{v—v"|v e Vp})

where cond = Tr[e, £]

Dy = Dy UDy
Pg=PU{cond = f|fe (Pr\P)}U{~cond = f|fe(Pr\P)}
Eg=ErnNé&r

Vg = (domain(Er) N domain(Er)) \ domain(Ep)

Figure 3-3: Symbolic Execution Rules. For assign, create, and branch statements,
the “inline” rule (=) or the “constrain” rule (=>¢) may be applied. All primed
relational variables, e.g. v/, are fresh.

53

Specification Statement Rule
A specification statement has the following form:
V1, V2, ..., V, := spec(e)

The symbolic execution has only a single rule for specification statements — no
separate inline and constrain options. The symbolic environment that results from a
specification statement maps every variable on the left-hand side of the statement to
fresh relations for their value. Let &,., denote this environment:

!’ / !
Enew = EV1 — V), va > Vg, ..., vy > U]

The expression e on the right-hand side of the statement will be evaluated in an
environment that is the same as &£,q,, except it alsQ maps all the old, versions of the
variables vy,. . .,v, to the expressions for their values in the current environment: ‘

' gspec = Cnew [Vlozé = 8(\/1)7 Vooq ™ S(v2), cros Vngg 7 8(\/”)]

The symbolic execution adds all of the fresh relations v} ... v, to the relational
declaration; it uses Egpec to translate the expression e to a logic formula and adds the
formula to the path constraint; it adds constraints that the relations v/ ... v/ contain
only atoms in the types of vi,.. .,v,, respectively; and it sets the symbolic environment
to Enew, yielding the following symbolic state after the specification statement:

<D U {vﬁ, ey vqlz}a P U {TF[[ey gspec]]; v‘/l g IJ}%I[TI; gnew]]a sy u,,;, g. TR'ITna gnewll}; gnew)
where Ty,..., T, are the FIR types of vy,...,vp, respecti\vfely.k .

Branch Statement Rules
A branch statement has the following form:
if e then St else S

To execute a branch statement symbolically, each side of the branch is executed in-
dividually, and then the symbolic states resulting from the two sides are merged. The
symbolic execution offers both an inline and a constrain rule for branch statements
that differ in how they perform the merging step.

Let (D,P,&) be the symbolic state immediately before the branch statement.
Let (Dr,Pr,E7) be the result of symbolically executing statement Sr from state
(D, P,E) and let (Dr, Pr, Er) be the result of executing Sg from (D, P, E). Both the
inline and constrain strategies produce a relational declaration that contains at least
the relations declared on both branches, a set we abbreviate Dg:

Dp=DrUDp

Both rules also share a set of path constraints. If a formula is in Pr but not P,
then it was generated from a statement in Sp. Similarly, if a formula is in Pr and
not P, then it was generated from Sg. Both the inline and constrain strategies yield
a path constraint after the branch that contains at least the following formulas:

54

Pg=PU{cond=f|fe (Pr\P)}U{—-cond=f|fe(Pr\P)}

where cond stands for Tr[e, £], the translation of the branch condition e to a logic
formula.

Both rules also yield a symbolic environment that contains at least the mappings
that are common to both & and £, a set of mappings we abbreviate £g:

8B:ng5F

The inline and constrain rules differ in what additional relations they add to the
symbolic state beyond Dpg, what additional formulas they add to the path constraint
beyond Pg, and to what expressions they bind variables in Vp:

Vg = (domain(Er) N domain(Er)) \ domain(Eg)

These are the variables and domains bound in both £r and £ (“defined” on both
sides of the branch in the def-use sense) which are bound to different expressions on
each side of the branch.

The inline strategy does not declare any relations beyond Dpg nor any path con-
straints beyond Pp. It maps every variable or domain v in Vp to a conditional
expression of the following form:

(cond 7 Ex(v) : Ep(v))

which evaluates to the expression from the true side of the branch if the branch
condition cond is true, and otherwise evaluates to the expression from the false side.

Thus, the inline strategy yields the following symbolic state after the branch
statement:

(Dg, Py, Epl{v — (cond ? Ex(v) : Ep(v)) | v € VE}])

The constrain strategy maps every variable v in Vg to a fresh relation v" and adds
two formulas to the path constraint of the following form:

cond = v' = Ex(v)
—cond = v = Ep(v)

So it yields the following symbolic state after the branch statement:

(DpU{v' | v € Vg},
PpU{cond = v' =E7(v) | v € Vgt U{-cond = v' = Ep(v) | v € Vp},
Epl{v— v'|v e Vg}])

95

3.2.5 Generating the Logic Problem

Once the symbolic execution of the procedure is complete, the analysis, given a speci-
fication of the procedure, constructs a relational logic problem to hand to the Kodkod
model finder. The specification is provided in the form of a specification statement:

V1, Vg, ... V, := spec(e)

The analysis first builds a symbolic environment &pe. which it will use to translate
the FIR expression e to a logic formula. Let & be the initial symbolic environment
and &; the final environment generated by the symbolic execution. &gy is the initial
environment overridden with mappings from the variables vy, ... v, to their expres-
sions in the final environment and with additional mappings from the old versions of
those variables to their mappings in the initial environment:

gspec = SO[VI Lo 8f(Vl)a Vg = gf(VZ), cvey Vp gf(vn)a
Viold F 50(V1), Voold 50(V2), « vy Vnold T 50(Vn)]

Using Espec, the expression in the specification statement is translated to a logic
formula 1) and conjoined with a frame condition on the global variables not modified
by the specification:

'@b = TF[[G, gspec]] A /\ gf (Vz) = 80 (Vl)
v;Z{vs...vn}

Finally, the analysis invokes Kodkod to find an assignment to all the logic variables
in the final relational declaration, Dy, such that th‘e formulas in the following set are
true:

PruU{-y}

That is, Kodkod searches for an assignment to the logic variables such that all the
formulas in the final path constraint are true and the specification is false. If such a
solution exists, it corresponds to a feasible trace of the procedure that violates the
specification. ' '

3.2.6 Larger Example: Web Registration

This section illustrates the symbolic execution on a larger example program. The
program, found in Figure 3-4, is a modified version of the web registration program
from Chapter 2. Our goal for this example is to check whether the register procedure
satisfies the following specification:

newUser, email, id := spec(—(newEmail C User.emailyq) =
(newUser.email = newEmail A —(newUser.id C User.idy4)))

o6

domain User, domain String, literal Error: User
global id: User—Integer, global email: User—String
local newEmail: String, local newUser: User, local maxld: Integer local i: Integer

proc register (newEmail) : (newUser)
1 if newEmail C User.email

2 newUser := Error
else
3 newUser := new User
4 email := email U newUser—newEmail
5 maxld := spec(maxld C User.id A Vi | i C User.id = maxld > i)
6 id := id U newUser—(maxId + 1)

exit
Figure 3-4: Website registration procedure in FIR

which says that newUser, email, and id may change, and if the given newEmail is
not in use, then in the post-state the newUser must have that email and a fresh id.
Statements 5 finds the maximum id in use, and Statement 6 maps the new user to
that maximum id plus 1.

The symbolic execution constructs the following initial symbolic state for the
register procedure:

Dy = {true, false, Integer, Error, Usery, Stringy, idg, emaily, newEmaily }
Py = {idy C Usery— Integer, emaily C Usery — Stringg, newEmaily C Stringy}
& = {User — Usery, String — Stringy, id — idy, email — emaily,

newEmail — newEmaily}

The initial relational declaration, Dy, contains the relations true, false, and Integer,
for the true and false literals and Integer domain, respectively. It also contains the
relation Error for the Error literal in the program. Lastly, it contains the relations
with subscript zero for the initial values of the domains, global variables, and input
parameter. The initial path constraint, Py, constrains each variable to be a subset
(or sub-relation) of the initial value of its type, and the initial symbolic environment,
&y, maps each domain and variable to the relation for its initial value.

Larger Example: Executing the Statements

Having constructed the initial symbolic state of the register procedure, the analysis
symbolically executes the statements in its body. The analysis first encounters a
branch statement, Statement 1, at which point it symbolically executes the true side
of the branch, then the false side, and then merges the results. We show the symbolic
execution of the body here using the inline strategy for all statements.

The first (and only) statement on the true side of the branch is Statement 2, which
sets the newUser variable to the Error literal:

o7

2 newUser := Error

The Error literal translates to the relation Error in the logic. The inline strategy
binds newUser to Error an does not modify the relational declaration or the path
constraint:

D, = {true, false, Integer, Error, Usery, Stringo, idp, emaily, newEmaily }
Py = {idy C Usery— Integer, emaily C Usery— Stringg, newEmaily C Stringp}
&y = {User — Usery, String +— Stringy, id — idy, email — emaily,

newEmail — newEmaily, newUser — Error }

The difference from the initial symbolic state (Dg, Py, Ep) is highlighted in gray.
The symbolic execution of the true side of the branch is complete, so the analysis
now symbolically executes the false side, which begins with a create statement:

3 newUser := new User

The expression £y(User) = Usery evaluates to set of users allocated before this state-
ment. The inline strategy binds newUser to a fresh relation, newUsers, constrains
newUsers to be a singleton that is not in the current set of users, and binds the User
domain to be the union of the current set of users and newUsers:

D; = {true, false, Integer, Error, Usery, Stringo, idg, emaily, newEmaily,
newUsers }

Ps = {idy C Userp— Integer, emaily C Userg— Stringg, newEmaily C Stringy,
one newUsers, ~(newUsers C Usery) }

& = { User = (Userg U newUsers), String — Stringy, id — idp,
email — emaily, newEmail — newEmail,, newUser — newUsers }

The differences from the initial symbolic state are again in gray.
After Statement 3 is Statement 4, an assignment statement:

4 email := email U newUser—newEmail

The symbolic execution uses the current symbolic environment, £; to translate the
right-hand side to the following logic expression:

emaily U newUsers — newEmaily
The inline rule for assignments binds email to that expression:

Dy = {true, false, Integer, Error, Usery, Stringy, idp, emaily, newEmaily,
newUsers }

P, = {idy C Usery— Integer, emaily C Usery— Stringy, newEmaily C String,,
one newUsers, ~(newUsers C Useryp)}

&y = {User — (Usery U newUsers), String — Stringy, id — idy,
email — (emaily U newUsers — newEmaily) , newEmail — newEmaily,
newUser — newUsers }

The differences with the state before the statement are shown in gray.

58

After Statement 4 is Statement 5, a specification statement:
5 maxld := spec(maxld C User.id AV i|iC User.id = maxld > i)

The symbolic execution declares a fresh relation, mazlds, for the value of maxld after
the statement. Using the current environment &£ with an additional mapping from
maxld to mazlds, it translates the specification to the following logic formula:

mazlds C (Userp U newUsers).idy A
Vi | i C (Usery UnewUsers).idg = sum(mazlds) > sum(i)

Recall that the expression translation uses the sum function to cast set-valued ex-
pressions like mazlds to ints so that integer operators like > may be applied.

The symbolic execution adds this formula to the path constraint, adds mazlds to
the relational declaration, and binds maxld to maxzlds, yielding the following state:

D5 = {true, false, Integer, Error, Usery, Stringy, idg, emaily, newEmaily,
newUsers, mazlds }

Ps = {idy C Userp— Integer, emaily C Userg— Stringy, newEmaily C Stringo,
one newUsers, ~(newUsers C Usery), mazlds C (Usery U newUsers).idy
AYi | i C (Userp U newUsers).idy = sum(mazlds) > sum(i) }

Es = {User — (Usery U newUsers), String'»—> Stringy, id — idp,
email — (emaily U newUsers — newEmailp), newEmail — newEmaily,
newUser — newUsers, maxld — mazlds }

The final statement of the false side of the branch is Statement 6:
6 id := id U newUser—(maxld + 1)

Using the current symbolic environment, Envs, the right-hand sides translates to
the following logic expression:

idy U newUsers — int2ezpr(sum(mazlds) + 1)

Recall that the expression translation uses the int2ezpr function to cast integer-valued
expressions to sets before relational operators like cross product (—) may be applied.
The inline strategy maps id to this expression in the symbolic environment:

De = {true, false, Integer, Error, Usery, Stringy, idg, emaily, newEmaily,
newUsers, mazlds}

Ps = {idy C Userp— Integer, emaily, C Userg— Stringg, newEmaily C Stringo,
one newUsers, —~(newUsers C Usery), mazlds C (Userg U newUsers).idp
AV i | i C (Usery UnewUsers).idg = sum(mazlds) > sum(i)}

& = {User — (Usery U newUsers), String — String,,
id — 4dy U newUserg — int2ezpr(sum(mazld) + 1) ,
email — (emaily U newUsers — newEmailp), newEmail — newEmaily,
newUser — newUsers, maxld — mazlds}

The symbolic execution of the false side of the branch is now complete. The
symbolic execution will now merge the symbolic states resulting from the two sides
of the branch to arrive at the final symbolic state of the procedure.

59

Larger Example: Merging the Sides of the Branch

Recall the branch statement that began the procedure:

1 if newEmail C User.email

Before the merge, the branch condition, newEmail C User.email, is translated to a
logic formula using & (the symbolic environment before the branch), yielding:

newEmaily C Userg.emaily

On the left below is the symbolic state (Dg, Ps,E2) resulting from the true side
of the branch and on the right the symbolic state (Dg, Ps, Es) from the false side.

Their respective differences with the initial state are shown in gray.

(D27P21 g?)

<D61’P5)86')

true, false, Integer, Error

true, false, Integer, Error

D| Usery, Stringy, idp, Usery, Sm'ng id emai
emaily, newEmaily newkmail,,
idg C Usery— Integer,
emaily C Usery — Stringy,
. e)
idy © Userg—» Integer, newEmaily C Stringp,
P | emaily C Userg— Stringp,

newEmaily C Stringg

User +— Usery

String — Stringg

id — idp

email — emaily
newEmail — newEmaily

Merging the two symbolic states yields the final symbolic state of the procedure. The
final relational declaration, Dy, is the union of the declarations from both sides:

Dy = {true, false, Integer, Error, Usery, Stringg, idp, emaily, newEmaily,

newUsers, mazlds}

60

The final path constraint, Py, includes all the formulas in the initial path con-
straint (those not in gray on either side). No formulas were added to the path con-
straint by the true side of the branch (none appear in gray on the left). If there were
such formulas, then for every one of those formulas f, P; would have contained a
formula (newEmaily C Userg.emaily) = f. For the three formulas added to the path
constraint by the false side (those in gray on the right) Py contains a formula of the
form —(newEmaily C Usery.emaily) = f.

Ps = {idy C Usery — Integer,
emaily C Usery — Stringy,
newkmaily, C Stringg,
—(newEmail, C Usery.emaily) = one newUsers,
—(newEmaily C Usery.emaily) = —(newUsers C Usery),
—(newEmaily C Userp.emaily) = (mazlds C (Userg U newUsers).idy A
Vi|i C (Userg U newUsers).idy :>‘sum(maz]d5) > sum(i))}

The final symbolic environment, £, includes all the mappings for variables and
domains not modified by either side. Here, those are the mappings String—String,
and newEmail—newFEmail,. It does not contain a mapping for maxld because it is
only defined (in the def-use sense) on the false side. For the remaining domains and
variables — User, id, email, and newUser — &; binds them to conditional expressions
of the form (newFEmail, C Userp.emailp) 7 er : ep, where er is its expression on the
true side and ep is its expression on the false side.

& = {String — Stringy,
newEmail — newEmaily,

User — (newFmaily C Usery.emaily) 7 Usery : (Userg U newUsers),
newUser +— (newEmaily C Usery.emaily) 7 Error : newUsers,
id — (newEmaily C Usery.emaily) ?

idy : (idp U newUsers — int2ezxpr(sum(mazlds)+1)),
email — (newEmaily C Usery.emaily) ?

emaily : (emaily U newUsers — newEmaily)}

The symbolic execution of the register procedure is now complete. We now show
how the results of the symbolic execution are used to build the logic problem.

Larger Example: Solving the Logic Problem

Recall the specification the register procedure:

newUser, email, id := spec(—(newEmail C User.emailyy) =
(newUser.email = newEmail A —(newUser.id C User.idyq)))

61

The analysis constructs a symbolic environment, e, that is will use to translate
the specification to a logic formula. &, is the same as the initial symbolic environ-
ment &, except all of the variables in the frame condition — newUser, email, id -
are bound to their expressions from the final symbolic environment, £¢, and the old
versions of email and id are bound to their expressions from &:

Espec = {User — Usery, String — Stringg, newEmail — newEmaily,
emai|old — emailg, idold — ’Ldo
newUser — (newEmaily C Userg.emaily) 7 Error : newUsers,
id — (newEmaily C Usery.emaily) 7
idp : (idp U newUsers — int2expr(sum(mazlds)+1)),
email — (newEmaily C Usery.emailp) ?
emailp : (emaily U newUserg — newEmaily) }

The analysis then uses g to translate the specification to a logic formula .
The formula in this case is the result of replacmg each of the domains and variables
in the specification with its expression in Egpec. '

—(newEmaily C Usery.emaily) = ‘
(((newEmaily C Userp.emaily) 7 Error : newUsers).
((newEmaily C Userg.emailp) 7 emailp : (emaily U newUsers — newEmaily)) =
“newEmaily N
=(((newEmaily C Userp.emailp) 7 Error : newUsers).
((newEmaily C Userg.emaily) 7 idp :
(idp U newUsers — int2expr(sum(mazlds)+1))) C Userp.idy))

Forge now invokes Kodkod to find an assignment the relations in Dy that satisfies
all the formulas in P; but not . In this example, if the analysis is conducted with
scope and bitwidth of 3 (there are no loops so unrollings are irrelevant), Kodkod
would find a solution like the following;:

true — {(true)},

false — {(false)},

Integer — {(-4),(-3),(-2),(-1),(0),(1)(2),(3)},
Error v {(Error)},
Usery — {(User1),(User2)},

Stringy — {(Stringl),(String2),(String3)},

idg — {(User1,3), (User2,-4)},
emaily — {(Userl,Stringl), (User2,String?2)},
newEmaily — {(String3)}
newUsers — {(User3)}
mazlds; — {(3)}

62

From this solution, Forge constructs a trace of the register procedure that violates
the specification. Here is the procedure again, followed by the counterexample trace.

proc register (newEmail) : (newUser)
if newEmail C User.email
newUser := Error

else
newUser := new User
email := email U newUser—newEmail

maxid := spec(Vi|iC User.id = maxld > i)
id := id U newUser—(maxld + 1)
exit

initial state
User — {Userl, User2}
String + {String1, String2, String3}
id — {(Userl, 3),(User2,—4)}
email + {(Userl, String1), (User2, String2)}
newEmail > {String3}
if newEmail C User.email
false
newUser := new User
newUser — { User3}
User — {Userl, User2, User3}
email := email U newUser—newEmail
email s {(User1, String1), (User2, String2), (User3, String3)}
maxld := spec(maxld C User.id A Vi | i C User.id = maxld > i)
maxld — {3}
id := id U newUser—(maxIid + 1)
id — {(Userl, 3),(User2,—4),(User8,—4)}
final state
newUser — {User3}
User — {Userl, User2, User3}
email — {(Userl, String1),{User2, String2), (User3, String3)}
maxid — {38}
id +— {(Userl, 3),(User2,—4),(User3,—4)}

The trace begins by describing the initial state of the execution. It then lists every
statement executed followed by the effect of that statement. It ends by listing the
final values of all the variables and domains modified by the procedure. This trace
highlights the potential for the arithmetic in the procedure to overflow the bitwidth.
When a user has the maximum integer then choosing the next id to be one greater
than that will cause the integer to wrap-around, possibly to an id already taken by
an existing user.

In our example analysis, the bitwidth was set to 3, so the (two’s-complement)
integers ranged from -4 to 3. In the trace, User! has an id of 3, and setting the id of
the new user, User3, to be one greater, gave it the same id as User?2, in violation of the
specification which says the new user’s id must be unique. Not merely a theoretical
concern, the potential for the user id’s to overflow is an important issue the developer
of a web registration program would need to address in real life.

63

3.3 A Correctness Argument

This section argues that the symbolic execution presented in this chapter is correct.
It begins by describing a framework for demonstrating the correctness of a symbolic
execution, a framework that is applicable more broadly than the specific symbolic
execution used by the bounded verification analysis. The system could be used to
prove the correctness of wide class of symbolic executions that encode the behavior
of an imperative program in a logic over free variables. Next, the section applies the
proof system to the symbolic execution presented in this chapter.

3.3.1 Semantics

A program executes over a set of variables V. Let PEzprY DV be the set of possible
program expressions over variables in V, which must include V itself. Let StmtY be
the set of possible program statements over V.

A program binding over V is a mapping from variables in V to values:

PBindY =V — Value

For a program binding pb and a variable v, pb(v) denotes the value to which v
is mapped in pb. More generally, we lift the pb(-) function over any expression
pe € PExprY, so that pb(pe) denotes the evaluation of that expression in the bind-
ing pb, as defined by the semantics of the programming language. (We assume the
semantics of evaluating a variable in a binding is always the result of looking up the
value of that variable in the binding, so pb(v) is unambiguous.)

For a program V, B/ is the set of possible bindings at the start of the program:

BOV g 2 PBindY

The Ezec” function gives the semantics of program execution. It accepts a state-
ment and a binding and yields the set of bindings that may result from that statement:

EzecV: StmtY — PBindY — 2FBind”

The Ezec function yields a set of bindings, as opposed to exactly one, to account for
possible non-determinism in the program (e.g. as allowed by specification statements).
A declaration consists of a set of logic variables D. Let LEzpr® O D and FormP
be the set of expressions and formulas, respectively, that can be constructed from
variables in D. A logic binding over D, is a mapping from variables in D to values:

LBind® = D — Value

For a logic binding /b and a logic variable d, Ib(d) denotes the value to which d is
mapped in lb. We lift the function b(-) over any expression le € LEzpr?, so that
Ib(le) denotes the evaluation of that expression to a value in b, as defined by the
semantics of the logic. We also overload Ib(+) so that for any formula f € Form?,
Ib(f) denotes the Boolean predicate that is true if and only if f evaluates to true in
Ib. Let solutions®(f) be the set of all logic bindings over D in which f is true:

solutions®(f) = {lb € LBind® | Ib(f)}

64

3.3.2 Symbolic Execution

For a program V and declaration D, a symbolic environment EnvY'P is a mapping of
variables in V to logic expressions over D:

EnvYP =V — LEzprP
The state of a symbolic execution of a program V is a triple:
State¥ = (D, P,€)
consisting of the following:
D . a set of logic variables
P € FormP : a logic formula over D

£ € Env¥'?P : a symbolic environment that maps program variables in V to
logic expressions over D

For a program V), a symbolic execution consists of an initial symbolic state:
<Do, Po, 80) € State¥

a symbolic execution function, SymY, which, given a statement and symbolic state
over V, vields a new symbolic state:

SymY: StmtY — State¥ — State?

and an expression translation function 7P for translating program expressions in a
symbolic environment to logic expressions:

TV'?: PExprY — Env¥'P — LEzprP

3.3.3 Proof Framework

Given a symbolic environment £ € Env¥P, a logic binding Ib € LBind® encodes a
program binding pb € PBind¥ with respect to £ if, for every variable in V), looking
up the value of that variable in pb yields the same value as looking up the logic
expression for that variable in £ and evaluating that logic expression in [b:

encodes¥'P(Ib, pb,E) =V v € V| pb(v) = Ib(E(v))

For a set of program bindings B C 27 Bind” g symbolic state (D, P,E) is a sound
encoding of B if every solution to P encodes a binding in B:

sound(D,P,E,B) =V b € solutions®(P) | Ipb € B | encodes(lb, pb, &)

A symbolic state (D, P, £) is a complete encoding if every binding in B is encoded by
some solution to P:

complete(D,P,E,B) =V pb € B| 31b € solutions®(P) | encodes(lb, pb, E)

A symbolic state is a correct encoding of B if it is both sound and complete.

With these definitions, we can now prove by induction that a symbolic execution
is correct by showing that the symbolic state that it generates at each program point
is a correct encoding of the reachable program bindings at that point: that the state
is sound (i.e., it includes only states the program can reach) and complete (i.e., it
includes all the states the program can reach).

65

Proof by Induction

For a program V), the base case must demonstrate that Dy, Py, £y, the initial symbolic
state produced by the symbolic execution, correctly encodes By, the set of initial
valid bindings to the program, i.e., it must demonstrate sound(Dy,Py,Ep,By) and
complete(Dy, Py, Eo, Bo)-

The inductive case assumes that a current symbolic state (D, P, E) is a correct en-
coding of a set of program bindings B for a program V. For any statement s € StmtY,
let B’ be the set of feasible program bindings after the statement:

= {pb’ € PBind” | 3 pb : B | pb’ € Exec(s, pb)}
For the same statement s, let (D', P’,£’) be the symbolic state after the statement:
(D', P,E"Y = Sym(s,(D,P,E))

The inductive case must demonstrate that (D', P’,£’) is a correct encoding of B’
— sound(D', P', &', B') and complete(D’,P’, &', B') — for every statement s € StmtY.

Correctness of Expression Translation

Since statements in the program contain expressions, demonstrating the inductive

case will rely upon a correct translation from program expressions to logic expres-
sions. To prove the correctness of the expression translation function 7P one must

demonstrate the following. Consider any program binding pb and any logic binding b

that that encodes it with respect to a symbolic environment £ € EnvY'P. Given any
such pb, Ib, and &, evaluating any program expression pe € PEzprY in the program
binding pb should yield the same value as translating pe to a logic expression’ and
evaluating that logic expression in the logic binding Ib:

VE € EnvY'P, pb € PBindY, b € LBind® | encodes”P (b, pb, E) =
V pe € PExprY | pb(pe) = (TP (pe,£))

3.3.4 Applying the Proof System to Forge

We now apply the proof system to the Forge symbolic execution rules given in this
chapter. When applied to the our symbolic execution, the set of variables V to
which the proof refers are the variables and user-defined domains declared by the FIR
program. The set of program expressions PEzprY and statements StmtY are those
that can be constructed according to the FIR grammar (Figure 2.1 of Chapter 2).
The variables in the logic declaration D become relations in the Kodkod relational
logic, and the expressions in LEzpr? and formulas in FormP are those that can be
constructed following the grammar of the relational logic (Figure 3-1 of this chapter).
The set of Values to which bindings map program and logic variables are relational
constants, i.e., fixed sets of tuples.

66

What follows is not intended to be a rigorous proof, but a sufficiently convincing
sketch that persuades the reader of the correctness of our symbolic execution and
provides enough guidance so that readers could complete the proof on their own.
Below we argue for the correctness of the initial state of the symbolic execution and
for the correctness of the inline symbolic execution rules for assignment and branch
statements.

Correctness of Initial State

From a FIR program with a set of variables and user-defined domains vy, v, ..., vy,
recall that the symbolic execution constructs an initial symbolic environment &, that
maps each v; to a fresh relation v;,,. We first prove that a logic binding lb, encodes a
program binding pby, both of the following form, with respect to &:

lbg = {1, = €1,V8, — Coy...,Uny — Cp}
pbg ={vi— c1, Voo Cayo ity Vo Cr)

The logic binding by encodes the program binding pb, if, for all program variables
v;, the following holds:

pbo(vi) = lbo(Eo(vs))

Since pby(vi) = ¢, Ep(vi) = vy, and lbg(vi,) = ¢;, both sides are equal to ¢;, so lby
encodes pby.

Proving that (Dy, Py, £p) is a correct encoding requires showing that a logic bind-
ing by of the form above is in solutions??(P,) if and only if the program binding
pby of the form above in an initial program binding. (That b, encodes pb, was just
demonstrated.) This is true by construction. The feasible initial program states to a
FIR program are ones in which the domains, global variables, and input parameters
to the procedure are bound to constants of the same arity, the only restriction being
that the global variables and input parameters are subsets (or sub-relations) of the
initial value of their types. Those program states correspond exactly to the solutions
permitted by the initial path constraint Py.

Inline Rule for Assignments. A FIR assignment statement has the form x := e.
Executing an assignment from a program binding pb deterministically yields a single
program binding pb’ in which x is bound to the evaluation of e in pb and in which
the bindings for all other variables have stayed the same, i.e., pb’ = pb[x — pb(e)].
Thus, B’ after an assignment statement is as follows:

B' = {pb'| Ipb € B | pbt’ = pb[x — pb(e)]}

Recall that the inline rule for the assignment maps x to the translation of the expres-
sion e and does not alter the relational declaration or path constraint:

(D', P& =(D,P,Exw—T(eE)))

To show this is correct, we first show that it is a sound encoding:

67

Y Ib' € solutions® (P') | Apb’ € B’ | encodes(Ib’, pb', £")
which, given (D', P',&") = (D, P,Ex — T (e, &)]), reduces to:
V b € solutions?(P) | Ipb’ € B’ | encodes(Ib, pt', E[x — T (e, E)])

Consider any logic binding b € solutions?(P). By the assumption that (D, P, £)
soundly encodes B, there must be a pb € B such that encodes(ib, pb,£). Let pb/ =
pb[x — pb(e)], which must be a member of B’ by the definition of B’ above. It remains
to show that Ib encodes pb’ with respect to £’

VveV|pb(v)=IbE V)

Since Ib encodes pb with respect to £, and since pb’ differs from pb and &' from &
only in x, it suffices to show that pb’(x) = Ib(£'(x)). By the definition of pb’ and &',
this reduces to pb(e) = Ib(7 (e, £)), which is true by the assumed correctness of the
expression translation. '

Given (D', P, &) = (D, P,E[x — T (e, E)]), proving completeness of the encoding
reduces to: o

Vpb' € B'| 3b € solutions®(P) | encodes(Ib, pb', E[x — T (e, £)])

Consider any program binding pb’ € B'. By the definition of B, there must ex-
ist some pb € B such that pb’ = pb[x — pb(e)]. By the assumption that (D,P,E)
completely encodes B, there must exist a logic binding b € solutions” (P) such that
encodes(lb, pb, £). Tt remains to show that b encodes pb’ with respect to £’. Since Ib
encodes pb with respect to &, and since pb’ differs from pb and &’ from & only in x, it
suffices to show that pb’(x) = Ib(£'(x)). By the definition of pb’ and &£, this reduces
to pb(e) = Ib(7 (e, £)), which is true by the assumed correctness of the expression
translation. ~

Solution Monotonicity Proving the correctness of some of the symbolic execution
rules, including the inline rule for branch statements below, relies on the solution
monotonicity of our symbolic execution, defined as follows. Consider any logic binding
' € solutions® (P'), where (D', P, £ = Sym(s, (D, P,E)) for any s € Stmt¥. Let
D« lb' denote the logic binding formed by restricting b’ to the logic variables in D.
The solution monotonicity property says that (D < 1b’) € solutions®(P). This is true
because the symbolic execution rules only adds, never removes, logic variables and
path constraints to the symbolic state.

Inline Rule for Branch Statements. We assume again that a current sym-
bolic state (D, P, E) correctly encodes set of program bindings B. For a FIR branch
statement of the form if e then St else Sg, let (D7, Pr,Er) = Sym(Sr, (D, P,E))
and (Dp, Pr,Er) = Sym(SF, (D, P,E)). Using induction on the structure of the
branch statement, this proof also assumes that (Dr, Pz, Er) correctly encodes Br and
(Dr,Pr, Er) correctly encodes Br, where By and By are defined as follows:

68

Br = {pbr | 3pb € B | pbr € Ezec(St, pb)}
Br = {pbp l dpbe B I pbr € E.’L'@C(Sp,pb)}

Executing the branch statement from a set of possible program bindings B will yield
the set of program bindings B’, defined as follows:

B = {pb' | Ipb € B| (pb(e) A pb’ € Exec(Sr, pb))V
(—pb(e) A pb’ € Ezec(SF, pb))}

Recall that the inline rule for branch statements yields the following symbolic state:

(D,7 Pla‘gI) - (DT U DF',
PU{cond = f|fe€Pr\PtU{-cond = f|fePr\P}
E[{v — (cond ? Ex(v) : Ep(v)) | v € V}])

where cond stands for 7 (e, £).

Soundness of Encoding. To show that (D',P’,&’) is a sound encoding of B’, con-
sider any b’ € solutions? (P'). Let Ib =D < lb’. By the solution monotonicity prop-
erty, lb € solutions®(P). By the assumption that (D, P,&) is a sound encoding of
B, there must exist a pb € B that is encoded by Ib. Since lb encodes pb, we know
from the correctness of the expression translation that pb(e) = Ib(T'(e, £)) = b(cond).
We now split the proof into two cases: when pb(e) = lb(cond) = true and when
pb(e) = Ib(cond) = false.
When pb(e) = Ib(cond) = true, B’ and (D', P’,£’) simplify to the following:

B = Br = {pb' | 3pb e B| pbt’ € Ezxec(Sr, pb)}
(D/7 Pla 8,> = <DT U DF, PT, 8T>

It remains to show that (Dr UDp,Pr,Er) is a sound encoding of Br. From any
b’ € solutionsPTYPF (Pr), construct the logic binding lbr = (Dr < Ib). Since Pr does
not involve any logic variables in (Dr \ Dr), it follows that lbr € solutions®T(Pr).
From the assumption that (D7, Pz, Er) is a sound encoding of By, there must exist
pb’ € Br that is encoded by lbr. Since £r doesn’t involve any logic variables in
(Dr \ Dr), it follows that b’ encodes pb’ as well.

The case when pb(e) = Ib(cond) = false can be demonstrated analogously.

Completeness of Encoding. To show that (D', P’,&’) is a complete encoding of B’,
consider any pb’ € B’. By definition of B’, there exists pb € B such that (pb(e) A
pb’ € Ezec(St, pb)) V (—pb(e) A pb’ € Exec(Sr, pb)). By our assumption that B is
completely encoded by (D, P,€), there must exist Ib € solutions®(P) that encodes
pb. Since Ib encodes pb, we know from the correctness of the expression translation
that pb(e) = b(T (e, &)) = Ib(cond). We now split the proof into two cases: when
pb(e) = Ib(cond) = true and when pb(e) = lb(cond) = false.

When pb(e) = Ib(cond) = true, B and (D', P, £’) again simplify to the following:

B = Br = {pb'|Ipb e B| pb' € Ezec(St, pb)}
<D/,’P',gl> = <DT] DF7PT78T>

69

It remains to show that (Dr UDp, Pr,E7) is a complete encoding of Br. For any
pb’ € By, by our assumption that (Dr, Pr,E7) is a complete encoding of By, there
must exist lbr € solutionsPT(Pr) that encodes pb’. Construct a logic binding b’
such that (Dr < Ib’) = Ibr and where the variables in Dp \ Dr are assigned arbitrary
values. Since Pr does not involve any logic variables in (Dp \ Dr), it follows that
b € solutions®T"Pr (Pr). Since £ doesn’t involve any logic variables in (Df \ Dr),
it follows that Ib’ encodes pb’ as well.
The case when pb(e) = Ib(cond) = false can be demonstrated analogously.

Correctness of FIR Expression Translation

Recall from above that to prove the correctness of the expression translation function,
T, one must show that for every program binding pb and logic binding Ib, where [b
encodes pb with respect to an symbolic environment £, the following holds:

V pe € PEzprY | pb(pe) = Ib(T (pe, E))
This can be proved by induction on the structure of program expressions pe € PEzprY.

The following sections give the base case and an example inductive case of that proof. -

Base Case of Expression Translation. The base case of that induction shows
that 7 correctly translates all program expressions that are variables:

VveV|pbv)=Ib(T(v,E))

The translation of a variable v in an environment &, 7 (v, £), is defined (Figure 3-2)
to be the result of looking up the expression to which that variable is bound in the
environment, £(v). So the base case reduces to demonstrating the following: '

VveV|pb(v)=Ib(E(V))
which is exactly the definition of consistency of pb and b that we are assuming. -
Inductive Case of Expression Translation. The inductive must be demon-
strated for every kind of FIR composite expression. All of these are fairly trivial
examples that follow straight from the semantics of FIR expressions. We show here
an example induction for expressions formed with the FIR union (U) operator. The

inductive case assumes the existence of two FIR expressions, x and y, which for any
pair of bindings, /b and pb, where lb encodes pb, are translated correctly:

pb(x) = b(T (x,£))
pb(y) = (7 (y, &)

With this assumption, we will show that the union expression (x Up y) is translated
correctly:

pb(x Up y) = (T (x Up y,£))

70

We use the subscripts to distinguish the union operator in FIR (Up), from a union in
the logic (Ug), from a union of constants (Ug). The semantics of evaluating a union
in FIR is the union of the evaluation of two operands, so we can rewrite the left hand
side as follows:

pb(x) Uc pb(y) = (T (x Up ¥, £))

The expression translation for a FIR union expression (as given in Figure 3-2)
performs a union of the translation of the subexpressions, which we can use to rewrite
the right-hand side:

pb(x) Uc pb(y) = (T (x,E) UL T (y,E))

And the semantics of evaluating a union in relational logic is the union of the evalu-
ation of two operands:

pb(x) Uc pb(y) = Ib(T (x,£)) Uc (T (y, £))

This formula follows directly from the assumptions of the inductive case that
pb(x) = Ib(T(x,£)) and pb(y) = (T (y, E))-

3.3.5 Summary of Correctness Argument

This section provided a framework for proving the correctness of a symbolic execution
and applied it to parts of the Forge symbolic execution to produce the following:

e A partial structural induction proof that the translation from FIR expressions to
logic expressions is correct, including a base case involving the translation of FIR
variables, and an inductive case involving the translation of union expressions.

e A partial proof by induction that the symbolic execution is correct, including a
base case that the initial symbolic state is correct, and an inductive case that
the inline symbolic execution rules for assign and branch statements are correct.

The goal here was not a completely rigorous proof, but rather enough of an ar-
gument to convey the basic sense in which the Forge symbolic execution is correct
and to provide intuition for how the rest of the symbolic execution could be proven
correct in a similar manner.

3.4 Breaking Symmetries on Dynamic Allocation

This chapter presents an optimization to the symbolic execution that improves the
performance of the bounded verification analysis. The optimized symbolic execution
presented here generates relational logic problems that the Kodkod model finder
can solve in less time, compared to the original symbolic execution presented in
Section 3.2. The optimization exploits the symmetries in the order of allocation of
atoms from a domain.

71

3.4.1 Isomorphic Allocation Orders

Consider, for example, a simple procedure that creates two marbles:

domain Marble

proc makeTwo () : ()
1 a:= new Marble
2 b := new Marble

To analyze this procedure, the symbolic execution previously described, regardless
of the strategy, would declare at least three relations: a relation Marble, for the initial
value of the Marble domain, and relations a; and b, for the values assigned to the
a and b locals. In a scope of three marble atoms: {(M1),(M2),(M3)}, there are 12
feasible traces of this code — a and b can be assigned according to any permutation
of 2 atoms chosen from the 3, and the initial value of Marble either contains the
remaining atom or it does not:

Marble,;; a b Marble Marble,; a b Marble

Marbley a; by MarblegUa;Uby | Marbley a; by MarblegUa;Uby
{} M1l M2 {M1, M2} {M3} Ml M2 {Mi1, M2, M3}
{ M2 M1 {Mi1, M2} {M3} M2 M1 {MI1, M2, M3}
{} M1l M3 {M1, M3} {M2} M1 M3 {M1, M2, M3}
{} M3 Ml {M1, M3} {M2} M3 M1 {Mi1, M2, M3}
{} M2 M3 {M2, M3} {M1} M2 M3 {M1, M2, M3}
{} M3 M2 {M2, M3} {M1} M3 M2 {M1, M2, M3}

The key observation exploited by the optimization is that all of the traces on the
left-hand side of the table are isomorphic to one another, as are all those on the right. -
Conceptually, there are only two potential traces to the procedure — one in which
Marble,;y is empty and one in which it is a singleton — but these two conceptual
- traces are expanded to the 12 above by permuting the atom names. For example,
swapping M1 and M2 in the top execution on either side yields the execution second
from the top. Given the execution second from the top, replacing M1 with M3, M3 with
M2, and M2 with M1 yields the execution third from the top. Each side is said to form
an equivalence class of isomorphic executions.

Since a specification cannot reference the name of an atom, an execution satisfies
a specification if and only if every execution in its equivalence class satisfies it. As
a result, it would be wasteful for Forge to check all 12 executions above against the
specification; it would suffice instead to check one execution from each side of the
table. This process is known as symmetry breaking. Symmetry breaking is the elimi-
nation of solutions (in our setting, executions), that leaves at least one representative
solution from each equivalence class.

Without any hints from our analysis, Kodkod performs some symmetry breaking
on our marble example automatically. Specifically, it imposes a lex-leader symmetry
breaking predicate [77] on an arbitrarily-chosen relation. The lex-leader predicate

72

constrains the chosen relation to contain atoms that belong to a prefix of the lexical
ordering of the atoms. In our example, it would say that if the relation contains M3,
then it must contain M2, and if it contains M2 it must contain M1. If this predicate
were imposed on Marbley, then it would reduce the 12 possible executions to 8:

Marble,,y a b Marble Marble,; a b Marble

Marbley a; by MarblegUa;Ubs | Marble, a; bs MarblepUa;Uby
{} M1 M2 {M1, M2} {M1} M2 M3 {Ml1, M2, M3}
{} M2 M1l {M1, M2} {M1} M3 M2 {M1, M2, M3}

{0 M1 M3 {MI1, M3}
M3 M1 {MI1, M3}
O M2 M3 {M2 M3}
O M3 M2 {M2 M3}

What Kodkod cannot infer in advance, however, is that the order of allocation
is a total ordering of the atoms in the domain: each atom allocated is a singleton
that has never previously been allocated. Our optimization exploits this knowledge
to choose an arbitrary total ordering in advance, by convention the lexical ordering,
and constrains the allocations to follow this total order. On the marble example,
this optimization reduces the possible executions to just two, exactly one from each
equivalence class:

Marble,; a b Marble Marble,;; a b Marble
Marbleo ajp b2 MarbleOUGI Ubg Marbleo aj bg MarbleOUa1 Ubg
{} M1 M2 {M1,M2} | Ml M2 M3 {Ml1, M2, M3}

The optimization requires a change to how the symbolic execution constructs
the initial symbolic state and to the symbolic execution rules for create statements.
Theses changes are discussed below.

3.4.2 Modified Initial State

Section 3.2.2 listed the relations added to the initial relational declaration, Dy. In
addition to those, for every user-defined domain M in the FIR program, the optimized
symbolic execution adds two more:

® M,.4er, @ binary relation that totally orders the atoms in the scope of M; and

e Mgy, a singleton set containing the first element in the total order.

For each of these domains M, the optimized symbolic execution also adds a formula
to the initial path constraint, Py, that constrains the initial value of the domain to
be some prefix of the total order:

Morder~M0 g MO

73

which says the join of the total order relation with the set of all initial elements is a
subset, of those initial elements. This is true if and only if M, is a prefix of My.ger-

In the bounds of the relational logic problem, Forge fixes each relation M4, and
Mgrs: to the lexical ordering. Recall from Section 3.1, that a relation in the logic is
declared as follows: '

relation : 4y [lowerBound, upperBound]

where the lowerBound are the tuples that must be in the relation and the upperBound
are those that may be in the relation.

If the user chooses a scope on a domain M of, say, 3, then the declaration of M, ger-
and Mg, would bound them both above and below by (exactly to) the following
lexical order:

Morger 22 [{{M1, Ma), (M2, M3) }, {{M1, Ma), (M2, M3)}]

Mirsi 21 [{ (M)}, {(M1)}]

This modified initial symbolic state breaks symmetries on the possible initial val-
ues of the domains, which is equivalent to what the lex-leader predicate accomplished
in our example. The modified inline and constrain rules for create statements, de-
scribed next, go further to break symmetries on the entire allocation order.

3.4.3 Modified Rules for Create Statements.

A FIR create statement has the following form:
v := new M

From a symbolic state (D, P, £), the modified symbolic execution rules bind v to
an expression that evaluates to the next atom to be allocated from the total order.
Let currs be £(M), an expression which evaluates to the set of atoms of type M
currently allocated. Since the initial value of M was constrained to be a prefix of the
total order, and since these rules allocate the next atom in the total order, we know
by induction that currs will always be a prefix of the total order as well.

Given that currs is a prefix of the total order, let next denote the following
expression, which evaluates to the next atom to be allocated in the total order:

no currs 7 Mg : (currs. Morger \ currs)

If currs is empty — if the domain has no atoms allocated yet — then nezt is the
first atom in the total order; otherwise, nezt is obtained by joining the current atoms
with the total order and then removing the current atoms. Joining currs with the
total order shifts the currs prefix over by one, so that it contains the next atom but
previous atoms as well. Taking the set difference of that expression and currs removes
the previous atoms, leaving just the next atom. ‘
But what if all of the atoms have been allocated so that there is no next atom? In
that case, currs.M,q4.. does not contain any additional atom, and next evaluates to
the empty set. To address this, the modified symbolic execution rules add a formula

74

to the path constraint forcing nezt to be non-empty. This makes the create statement
infeasible when there are no more atoms to be allocated, which was also the case with
the original symbolic execution rules and cannot be avoided when working with finite
domains.

The modified inline rule for create statements binds the assigned variable to the
next expression, adds the formula that next be non-empty to the path constraint,
and binds the domain M to the union of currs and nexzt:

currs = E(M) next = no currs ? Mprst : (currs. Mopger \ currs)
v:=new M, (D, P E) =
(D,P U {some next},E[v — next, M — (currs U next)])

The constrain strategy is similar except it declares fresh relations for v and M:

currs = E(M) next = no currs 7 Mgpst : (currs. Mopger \ currs)
v:=new M, (D, P, &) =>¢
(DU{v',M'},P U {some v',v' = next, M’ = currs Uv'},E[v — v/, M — M'])

3.4.4 Implications for Correctness

In Section 3.3, we argued for the correctness of the symbolic execution by demonstrat-
ing that the symbolic states it constructs encode exactly the set of feasible program
bindings. With the optimization, that is no longer true. The optimization has no
effect on the soundness of the symbolic states: every logic binding they permit still
encodes some feasible program binding. But it does affect the completeness of the
symbolic states, because many feasible program bindings in each equivalence class
have been excluded from the encoding.

To prove the correctness of the optimized symbolic execution, we have to weaken
our definition of completeness to allow for symmetry breaking. The former definition
said that a symbolic state (D, P,&,) is a complete encoding of a set of program
bindings B if, for every program binding pb € B, there exists a logic binding Ib that
is a solution to P and that encodes pb:

complete(D,P,E,B) =V pb € B| 31b € solutions®(P) | encodes(lb, pb,E)
Let iso(pbl,pb2) be a predicate on program bindings that is true if the bindings
are isomorphic. The modified definition of completeness that accounts for symmetry

breaking says that every program binding pb € B must be isomorphic to some program
binding pb2 (possibly itself), such that b encodes pb2:

Vpb € B|3Apb2 € B, b € solutions®(P) | iso(pb, pb2) A encodes(lb, pb2, &)

The new definition adds some complexity to the proofs of completeness but should
not fundamentally alter their structure.

75

3.5 Chapter Summary

This chapter explained the Forge bounded verification analysis. It showed how the
analysis, from a procedure and specification in FIR, uses symbolic execution to derive
a formula in relational logic that is true if there exists and execution of the procedure
that violates the specification. It also offered an argument for the correctness of the
symbolic execution and described an optimization of it that uses symmetry break-
ing. The next chapter explains the coverage metric that complements the bounded
verification analysis. :

Usually, when a tool claims to use “symbolic execution,” the connotation is that
it symbolically executes and analyzes each path through the code individually. It is
rare for a tool to perform an “all paths” symbolic execution as we do. In the future,
it would be interesting to implement a version of Forge that uses single-path symbolic -
execution and empirically compare it to our current version. Which is faster to solve:
one large SAT problem or several smaller SAT problems? The answer is not clear to
us and probably depends on the context. However, if the analysis is performed on a
multi-core machine, a single-path symbolic execution would allow those analyses to
be parallelized, which could offer a significant performance boost.

76

Chapter 4

Coverage Metric

The bounded verification analysis described in the previous chapter is unsound. Not
being a full verification of the program, it may fail to find counterexamples when they
exist. When the bounded verification analysis does not find an existing problem in
a procedure, it is because the analysis, in some way, did not explore, or cover, all of
the procedure’s behaviors. The coverage metric described in this chapter attempts to
identify statements that were “missed” (not covered) by the bounded verification, so
that Forge can, in turn, warn the user of these missed statements. This information
can help the user determine whether the bound, the specification, or the code should
be modified to make the analysis more comprehensive.

4.1 Examples of Poor Coverage

The coverage metric identifies statements that were “missed” by the bounded veri-
fication analysis when the analysis does not find a counterexample. A statement is
marked as “missed” if it could be replaced with any statement that modifies at most
the same variables — it has the same frame condition — regardless of how it modifies
those variables. Missed statements are effectively statements that were not needed by
the analysis to find the procedure correct (within the bound).

There are four scenarios in which bounded verification may fail to find a problem
when one exists. These scenarios are explained below and illustrated by the exam-
ples in Figure 4-1. The statements identified as missed by the coverage metric are
highlighted in gray in the figure. By identifying these missed statements, the metric
can help a user determine when one of these scenarios has occurred.

Under-constrained specification. If the specification of the code is accidentally
under-constrained, then the code may satisfy the specification while nevertheless al-
lowing buggy behaviors. At the extreme, the specification may be a tautology, in
which case every implementation will vacuously satisfy it.

Example (a) in Figure 4-1 shows how an under-constrained specification can mask
bugs. The specification of the swap procedure requires only that x" equals y (and not
that y' equals x), and, as a result, the analysis cannot detect the bug. Since the
bounded verification would succeed given any assignment to y’ at Statement 2, the
metric identifies that statement as missed.

7

code

specification

(a) under-constrained specification

0
1
2
3

proc swap(x, y) : (x,y')

X =y
y =x
exit

X',y = spec(x =y)

(b) over-constrained spec statement

0
1
2

3

proc registerUser(u: User) : ()
registered := registered U u
id := spec(3 uid | —=(uid C User.id)
A (id = idga U u—uid)
exit

registered, id := spec(V ul, u2 |

(ulu2 A ul U u2 C registered) =

‘ul.id # u2.id)

(c) nfinite loop

0
1
2
3
4
5

proc cube(n) : (result)
exponent := 3
result :=1
while (exponent > 0)
result := result x n
exit

result := spec(result =n x n x n)

(d) insufficient bound

0
1
2

proc putCache(key, value) : ()
if (#cache < 10)
cache := cache @ key—value
else
cache := spec(cache C cacheyy A
one cache,y - cache)
exit

cache := spec(#tcache < 10 A
key—value C cache)

(not covered when the scope
has less than 10 keys)

Figure 4-1: Examples of Poor Coverage. Bounded verification does not find coun-
terexample for these examples, yet problems remain. The statements shown in gray
are “missed” (not covered) by the bounded verification analysis.

78

Over-constrained spec statement. Bounded verification is incapable of detect-
ing accidentally over-constrained code. Because it eliminates possible behaviors, an
over-constraint may only make code more like to satisfy its specification, not less. At
the extreme, the code may have no feasible executions (the final path constraint is a
contradiction), which would cause it to vacuously satisfy any specification.

One source of over-constraint is an infeasible specification statement in the pro-
cedure. The register procedure in example (b) contains a specification statement,
Statement 2, that was intended to find a new id not used in the pre-state but was
accidentally written to find an id not used in the post-state; that is, =(uid C User.id)
should be —(uid C User.idy4). When conjoined with the constraint that forces the id
be used in the post state, (id = idyg U u—uid), this constraint makes the specifica-
tion statement infeasible, and the procedure vacuously satisfies its specification.

In this example, the analysis needs only Statement 2 to find the register procedure
correct, so the metric finds all other statements to be missed. In fact, because this
procedure would have satisfied any specification, the metric identifies the specification
of the procedure as missed, too.

Infinite loop. Another source of over-constraint is an infinite loop or recursion in
the procedure. Bounded verification cannot detect that a procedure might not termi-
nate, because non-terminating executions are not feasible within any finite number
of loop unrollings. (The unrolling of an infinite loop or infinite recursion introduces
an infeasible specification statement in the code, so all over-constraints are ultimately
brought about by an over-constrained specification statement.)

In example (c), the developer failed to decrement exponent inside the loop, causing
the loop never to terminate. In this example, Statements 1 and 3 are sufficient for
non-termination, so all other statements are identified as missed.

Insufficient bound. If the bound on the analysis is too low, buggy behaviors of
the code may go undetected. For example, if the code contains a branch that is used
only for large data structures, then a low bound could make the statements on that
branch irrelevant to the procedure’s correctness.

Example (d) in Figure 4-1 contains a bug that would go undetected in too low
a bound. When the cache size is less than 10, the given key-value pair is correctly
added to the cache (overriding any previous mapping for the key). However, when it
is greater than 10, it drops some arbitrary pair from the cache but, incorrectly, does
not add the given pair to the cache. If the scope on the keys is set to less than 10,
then this bug goes undetected by our analysis. Since cache could be assigned any
value at Statement 3 without affecting the analysis, Statement 3 is missed.

The examples in Figure 4-1 demonstrate the usefulness of a coverage metric to a user
of the bounded verification analysis. It is important to note, however, that a lack
of full coverage is not by itself a definitive sign of a problem with the analysis. For
example, a specification may be intentionally under-constrained in a way that leaves
statements missed but still does not mask some latent bug. Also, statements will be
identified as missed if they are dead or redundant code, even though these statements
do not cause undesired behavior (but a user may wish to remove them anyway).

79

4.2 Exploiting the Unsatisfiable Core

To explain how the coverage metric detects missed statements, we first review how
the bounded verification analysis works. From the code of a procedure, the analysis
obtains by symbolic execution a set of formulas Py, and from a specification of the
procedure, it obtains a formula . It then invokes the Kodkod model finder to find a
solution to the formulas in Py U {—9}. If Kodkod finds such a solution, the analysis
uses it to construct a trace of the procedure that violates the specification.

When a model finder determines a set of formulas to be satisfiable, it always
reports evidence of the satisfiability to the user: namely, the solution itself. However,
when the formulas are unsatisfiable, most model finders are incapable of reporting any
feedback as to the cause of the unsatisfiability [82]. The Kodkod model finder stands
out in this respect. When given an unsatisfiable set of formulas, Kodkod can extract
an unsatisfiable core [83], a subset of the formulas that is by itself unsatisfiable. The
core reported by Kodkod is locally minimal: removing any single formula from the
core renders it satisfiable. o

Let the final path constraint Py derived by the symbolic execution be { f1, ..., fi}.
The set of formulas handed to Kodkod is, therefore, {fi,..., fr, %}, of which the
unsatisfiable core will be some subset. If =) is in the core, then the metric identifies
the specification as covered. But if a formula f; is in the core, which statements in
the code should be considered covered? Namely, which statements are responsible for
fi being in the path constraint?

To answer this question, we augment the symbolic execution so that, in addition
to D, P, and &, it maintains a formula slice map, F, which maps each formula, upon
its insertion into the path constraint, to the set of statements in (or “slice” of) the
procedure from which that formula was generated:

F:P— QStmt

In addition to (Dy, Py, Ep), the augmented symbolic execution begins from an
initial formula slice map, Fy, that is empty; and the result of the symbolic execution
includes, in addition to (Dy, Py, &), a final formula slice map Fy. If the unsatisfiable
core is C, then the metric considers the following statements to be covered:

U (o)

ceC

and the rest are identified as missed.

For the coverage metric to be sound in its detection of missed statements — for
it to only mark statements as missed when they are not needed for correctness —
the symbolic execution must use the constrain strategy. Since the inline strategy
avoids adding formulas to the path constraint, it prevents the metric from finding
statements to be covered when in fact they were. The next section explains how the
formula slice map is updated by the symbolic execution, shows the technique on an
example program, and illustrates the problem with using the inline strategy.

80

4.3 Symbolic Execution with Formula Slicing

When symbolically executing update statements — assign, create, or specification
statements — updating the formula slice map is straightforward. Recall that applying
the constrain rule to an assignment statement S of the form v := e, starting from the
symbolic state (D, P,), yields a state (D', P, £’), where P’ was the following form:

P =PU{v = Tule,]}

When the coverage metric is enabled, the symbolic execution of this assignment state-
ment S adds to the current formula slice map, F, a mapping from the formula added
to the path constraint to the singleton set containing S:

F' = FU{(v' = Txle,€]) — {S}}

Now if the formula v' = Tg[e, £] ends up in the unsatisfiable core, it will be mapped
back to S, and S will be considered covered. Create statements and specification
statements are handled in the same way: each formula they add to the path constraint
is bound in the formula slice map to the singleton set containing the statement.

Updating the formula slice map when symbolically executing branch statements
is more involved. Recall that upon encountering a branch statement of the form
if e then St else Sy, the symbolic execution generates from Sy and Sg the respective
symbolic states (Dr, Pr,Er) and (D, Pr,EF), and then merges these states into a
single symbolic state (D', P’,E’), where P’ has the following form:

P'—PU {cond = f |/ € (Pr\P)}U{~cond = f | f € (Pr\ P)} U
{cond = v/ = Er(v) | v € Vg} U {~cond = v' = Ep(v) | v € Vp}

where cond is again the translation of the branch condition to a logic formula, and Vg
are the variables modifid by one or both sides of the branch. (Recalling the precise
definition of Vg isn’t needed to understanding how the formula slice map is updated.)

Our augmented symbolic execution will produce, in addition to (Dr, Pz, E7) and
(DF,Pr, EF), two formula slices maps Fr and Fp. Merging Fr and Fy for a branch
statement S yields the following formula slice map after the statement:

Fr = F U {(cond = f) — (Fr(f) U{S}) |] € (Pr\ P)} U

{(~cond = f) = (Fr(f) U{S}) | f € (Pr\P)} U

{(cond = v' = Er(v)) — {S} |v € Vp} U

{(=cond = v' = Ep(v)) — {S} | v € VB}}
Each of the formulas of the form (cond = f) is the result of both the statements that
generated f (all the statements in Fr(f)) and the statement that generated cond
(the branch S itself). Similarly, each formula —~cond = f is the result of both Fp(f)
and S. The remaining formulas added to the path constraint — all those of the form
(cond = v' = Er(v)) and (—cond = v’ = Ep(v)) — are generated soley by S itself.

An example of this formula slicing process is shown next.

81

proc register (newEmail) : (newUser)
1 if newEmail C User.email

2 newUser := Error
else
3 newUser := new User
4 email := email U newUser—newEmail

5 id := spec(3 newld | =(newld C User.idyg) A
id = (idyq U newUser—newld));
exit

Figure 4-2: Register procedure

4.3.1 Example: Coverage of the Register Procedure

To illustrate the coverage metric, consider the register procedure in Figure 4-2. Unlike
the version of the procedure in Chapter 3, this one satisfies its specification, so the
bounded verification analysis finds no counterexamples, regardless of the bound.

The formula slice map that results from executing the true side of the branch, Fr,
will map the formula added to the path constraint by Statement 2, call it fa, to the
singleton set containing Statement 2, abbreviated here S,:

Fr=A{fe = {S}}

- Similarly, the formula slice map from the false side of the branch maps each of
the formulas generated from statements 3, 4, and 5 to the singleton sets containing
those statements’:

Fr={fs = {Seh, i = {Si}, f5 = {Ss}}

Merging the sides of the branch yields the final formula slice map:

Fr = {(cond = fo) — {S1, Sz}, (mcond = f5) — {S1, Ss},
(‘“'CO'nd = f4) — {51, 54}, ('WCO’I'I,d —_—>f5) — {S1, S5},f1 g {81}}

Since S, generated f» and S; generated cond, they are both responsible for cond = f».
Similarly, the path constraints from the false side of the branch of the form ~cond = f;
are generated by both the statement S; and S. Lastly, fi is the formula added to the
path constraint by the branch Sy itself.

The specification of register for this example is the same as before:

newUser, email, id := spec(—(newEmail C User.emailyy) =
(newUser.email = newEmail A =(newUser.id C User.id,4)))

!These statements can add multiple formulas to the path constraint, but this description gener-
alizes naturally to that case. Plus, we can equivalently presume that rather than adding multiple
formulas, they add a single conjunction of those formulas.

82

Because the procedure meets this specification, bounded verification does not find
any counterexamples, but Kodkod reports the following unsatisfiable core:

{f1,—~cond = fs,—cond = f;,~cond = f5, -}

From the presence of —) in the core, the metric finds the specification of the
register procedure to be covered. Looking up the remaining formulas in F; identifies
the following statements as covered:

{Slv S3r S4, 55}

but S, as missed. Indeed, the specification does not stipulate what must happen
when the branch condition, newEmail C User.email,y, is true, so the assignment in
Statement 2, newUser := Error, does not affect the correctness of the procedure.

This is an example of where a lack of full coverage may not be indicative of a
problem with the analysis. In this case, the user may have intentionally left the
specified behavior non-deterministic when given a duplicate email. In either case,
the coverage metric provides additional information that will help the user make that
determination.

4.3.2 The Problem with the Inline Strategy

This formula slicing technique does not produce an accurate coverage measure when
using the inline strategy for symbolic execution. Because the inline strategy avoids
adding formulas to the path constraint, mapping formulas in the path constraint
back to the statements from which they were generated does not adequately track
the impact of statements. Namely, it can mark statements as missed when they were
in fact necessary for correctness.

For example, when the inline strategy is applied to the register procedure in Fig-
ure 4-2, Statements 2 and 4 do not introduce any additional formulas to the path
constraint. Following the coverage technique as described above, the final formula
slice map F; would be:

ff = {("'COTLd :>f3) — {51, 53}, ("‘CO'I’Ld = f5) — {S], 55}}
And the core reported by Kodkod would include the following formulas:
{—cond = f3,—cond = f5,)}

Thus, the analysis would correctly find the specification and statements {Si, Ss, Ss}
to be covered, but it would incorrectly identify S4 as missed, even though a coun-
terexample would be found if it were removed.

To prevent covered statements from being identified as missed when using the
inline strategy, a number of over-approximation techniques could be incorporated into
the metric that finds statements to be covered even when they do not correspond to
formulas in the core. We briefly experimented with an over-approximation technique
that used variable slicing in addition to formula slicing, but it proved too imprecise
to be useful in practice, often marking the entire procedure as covered when many
statements were not needed for correctness.

83

4.4 Coverage before Unrolling

Recall that the symbolic execution is performed on the procedure after it has been
unrolled. As a result, the coverage technique just described measures the coverage of
the procedure after unrolling. A question remains of how this coverage of the unrolled
procedure should be mapped to a coverage measure of the original FIR procedure.

To investigate this question, we consider the following FIR program whose length
procedure correctly calculates the length of a linked list and logs that it has been
called:

00 domain Node

01 global head: Node, global next: Node—Node, global log: Boolean
02 local curr: Node, local len: Integer

03

04 proc length () : (len)

05 log := true

06 len :=0

07 curr := head

08 while (some curr)
09 len :=len + 1
10 curr := curr.next

And consider an analysis in a bound of 2 Nodes, 2 loop unrollings, and a bitwidth of 3
(integers -4 to 3) that checks whether the procedure meets the following specification:

log, len := spec(len = #head.*next)

which says that the length of the list is equal to the number of nodes reachable from
the head of the list and that the log may change arbitrarily.

The bounded verification analysis first unrolls the loop in the procedure twice and
then performs a symbolic execution to search for counterexample traces to the un-
rolled procedure. Since the procedure (original and unrolled) meets the specification,
no counterexamples are found. When the coverage metric is enabled, it finds the gray
statements in the unrolled procedure below to be missed:

11 proc length () : (len)
12 log := true

13 len := 0

14 curr := head

15 if (some curr)

16 len :==len + 1

17 curr := curr.next
18 if (some curr)

19 len :=len +1
20 curr ;= curr.next
21 spec(no curr)

84

Statement 12 is missed due to an under-constrained specification that puts no re-
quirements on the final value of the log variable. Statements 20 and 21 are missed
due to an insufficient bound: in lists of length two nodes or less (the bound chosen
for the analysis), the expression curr.next at Statement 20 will always be the empty
set, so that assignment and the subsequent constraint imposed by the specification
statement are unnecessary.

From this information, Forge can present the coverage of the original procedure
in two formats: on the left, a fine-grained view of the coverage, and on the right, a
summary view:

04 proc length () : (len) 04 proc length () : (Ien)
05 (0/1) log := true 05 log := true

06 (1/1) len:=0; 06 len := 0

07 (1/1) curr := head; 07 curr := head

08 (2/3) while (some curr) 08 while (some curr)
09 (2/2) len:=len +1; 09 len :=len + 1
10 (1/2) curr := curr.next; 10 curr := curr.next

In the fine-grained view, each statement is given a fractional score. The denomi-
nator is the number of statements in the unrolled procedure to which that statement
corresponds; and the numerator is the number of those corresponding statements
that were covered. The while-statement (Statement 8), for example, corresponds to
three statements in the unrolled procedure: two branches (Statements 15 and 18)
that were covered and a specification statement (Statement 21) that was missed. In
the summary view, a statement is highlighted as missed if its numerator is zero, i.e.,
if all of its corresponding statements in the unrolled procedure were missed, and the
fractions are not shown.

The advantage of the fine-grained view is that it can show a user when the bound
was not sufficient to fully explore all the loop unrollings. Here, it shows that a scope
of 2 nodes is insufficient to fully explore three loop unrollings — a scope of 3 is
actually needed to falsify the loop condition at the end of the second trip through the
loop. The summary view shows the statement missed due to an under-constrained
specification, but its purely binary notion of coverage — each statement is either
missed or not — cannot reveal the insufficient bound.

However, in our experience, users tend to find the fine-grained view confusing,
mainly because it requires an understanding of how the unrolling works. With this
example, for instance, users were often confused as to why the denominator of the
while-loop is three when only two unrollings were specified. The fine-grained view
also has the non-intuitive property that increasing the number of loop unrollings can
decrease the fraction to which a statement has been covered, because more unrollings
means more opportunities for statements in the unrolled procedure to be missed.

Currently, the Forge tool has been configured to provide only the summary view
of coverage by default, with the fine-grained view still available for experts. Since the
summary view is therefore the one that will be used most often, it is the one we use
when evaluating the effectiveness of the coverage metric in Chapter 6.

85

4.5 Chapter Summary

This chapter presented the coverage metric used by Forge. It discussed the scenarios in
which poor coverage by the analysis can mask a problem in the code, and it explained
how the coverage is calculated by mapping the formulas in the unsatisfiable core back
to the statements that generated them. The next chapter addresses two challenges
that arise when applying Forge to the analysis of programs written in high-level
languages.

While the Forge coverage metric tells the user the statements that were missed
by the analysis, it does not attempt to explain why those statements were missed. It
would be interesting to explore in future work whether the tool could provide a helpful
answer to this “why” question. For example, if the specification of the procedure is
missed by the analysis, the tool might at least report that “the procedure has no
executions within the provided bound.” Or, if the body of a loop is missed but
the loop condition is not, the tool could warn that the “loop may not terminate.”
Like this infinite loop warning, some reports could result from heuristic pattern-
matching for common problems. Although not definitive diagnoses, such warnings
could nevertheless be useful.

86

Chapter 5

Object Orientation and
Data Abstraction

Two key challenges arise when attempting to apply the Forge framework to the anal-
ysis of programs written in high-level, object oriented (OO) programming languages.
The first challenge is the task of translating the code of a high-level program to the
Forge Intermediate Representation. Section 5.1 of this chapter explains the key ideas
involved in encoding OO programs in FIR.

The second challenge arises from the specifications of abstract datatypes. Recall
that the bounded verification analysis automatically obtains a logic formula P(s,s’)
that constrains the relationship between a pre-state s and a post-state s’ and that
holds whenever an execution exists from s that terminates in s’. A second formula
(s, s') is obtained from a user-provided specification, and the analysis searches for
counterexamples to the following correctness claim:

Vs, s' | P(s,s') = ¢(s,s')

In this formula, the procedure and specification are both in terms of the same
pair of states, s and s’. When checking a procedure of an abstract data type, how-
ever, the (abstract) representation referred to in the specification usually differs from
the (concrete) representation in the code. The standard technique for bridging the
gap involves the user’s providing an abstraction predicate a(c, a) for the data type
that relates concrete and abstract states, and a specification S(a, a’). Section 5.2 be-
low explains how to formulate the claim that the procedure of an abstract datatype
satisfies its specification in a form that is tractable for our bounded verification.

5.1 From Object-Oriented Code to FIR

The translation of OO programs to FIR is based on a relational view of the heap [47],
in which program constructs are interpreted as relations or operations on relations.
Specifically, types are viewed as sets; fields as binary, functional relations that map
elements of their class to elements of their target type; and local variables as singleton

87

sets. In this setting, field dereference becomes relational join and field update becomes
relational override.

Under the relational view of the heap, field dereference can be encoded as relational
join. To illustrate, consider the field dereference x.value. The relational view of the
heap encodes the local variable x as a singleton set, call it rx, and the field value
as a functional relation, call it rvalue. Recall that since rx is singleton and rvalue a
function, the join expression rx.rvalue is equivalent to function application and yields
a singleton set. This singleton set represents the value of the dereference x.value.

An update to a non-static field is encoded using a relational override (@) op-
erator. The field update this.value = v is encoded in FIR as the assignment
value := value @ this—v, where value & this—v evaluates to the set of tuples con-
taining the tuple this—v and any tuples in value that do not begin with this.

5.1.1 An Example Translation

The basic process of translating OO code to FIR will be illustrated here by example,
starting from the Java code in Figure 5-1 and resulting in the FIR program in Figure 5-
2. The example omits some of the complexities that arise in real high-level programs,
including exceptions and dynamic dispatch, but solutions to these are explained below
in Section 5.1.2 and are implemented in the JForge front-end.

The translation associates each class and interface in the type hierarchy of the OO
program with a type in FIR. To do so, it uses a technique called atomization [33],
which encodes each type as a union of disjoint FIR domains. For each concrete (non-
abstract) class in the hierarchy, atomization creates a corresponding FIR domain, so
for the birthday program in Figure 5-1, it declares three domains: Birthday, Month,
and Object (Figure 5-2, Line 00). A class’s corresponding domain represents the set of
objects whose runtime type is that class. That is, the Object domain doesn’t represent
the set of all instances whose Java static type is Object, a set which would include
all Birthday and Month instances too, but only those instances of type Object that
do not belong to any subtype.

Each static type in the OO program is then associated with the FIR type that
is the union of all FIR domains that correspond to concrete subtypes of that static
type. For our example, the translation associates the static types in Figure 5-1 to
FIR types with the following mapping:

Birthday + Birthday
Month +~ Month
" Object +~— Birthday U Month U Object

The static types Birthday and Month are mapped to the FIR domains Birthday and
Month respectively. Because every Java class is a subclass of Object, the translation

maps the static type Object to the FIR union type Birthday U Month U Object.

88

class Birthday {
@NonNull Month month;
int day;

O@Requires("d > O && d <= this.month.maxDay")
@Modifies("this.day")

@Ensures("this.day = d")

void setDay(int d) {

3

Month m = this.month;
boolean dayOk = m.checkDay(d);
if (dayOk)

this.day = d;

class Month {
int maxDay;

@Ensures("return <=> (d > 0 & d <= this.maxDay)")
boolean checkDay(int d) {

b

00
01
02
03
04
05
06
o7
08
09
10
11
12

return false;

Figure 5-1: Birthday Example in Java

domain Birthday, domain Month, domain Object
global month: Birthday — Month

global day: Birthday — Integer

global maxDay: Month — Integer

local this: Birthday, local d: Integer

local m: Month, local dayOk: Boolean

proc setDay (this, d) : ()
m := this.month
dayOk := spec (dayOk < (d > 0 A d < m.maxDay))
if dayOk
day := day & (this — d)
exit

Figure 5-2: Translation of Birthday.setDay into FIR

89

The translation encodes each OO field as a global variable that maps members
of the enclosing class to members of the field’s type. For example, the field month
in Figure 5-1 is encoded as a FIR global month whose type is Birthday — Month
(Line 01). Similarly, the translation creates global variables day: Birthday — Integer
and maxDay: Month — Integer (Lines 02-03). The translation will add constraints
that these binary relations be functions to the analysis of any method. For each
parameter and local variable in the method under analysis, the translation declares
a local variable of the corresponding type, whose value is constrained to be a scalar.
For the setDay method, the translation creates four FIR locals: this of type Birthday,
d of type Integer, m of type Month, and dayOk of type Boolean (Lines 04-05).

The result of translating the setDay method is the FIR setDay procedure, which
has two inputs — this and d — and no outputs (Line 07). The procedure begins by
assigning the FIR expression this.month to the local variable m (Line 08). Although
the FIR statement looks nearly identical to its OO counterpart, the dot (.) operator in
FIR stands for relational join, not field dereference. As mentioned above, representing
fields as functional relations and locals as singleton sets allows field dereference to be
encoded as relational join.

The call to checkDay in the OO code has been encoded in FIR as a specification
statement (Line 09) that is an instantiation of the specification of checkDay. As
discussed in Section 2.1.2, using specification statements in place of calls makes the
analysis of a high-level program modular. That is, setDay will be analyzed assuming
that checkDay conforms to its specification, regardless of its implementation. This
modularity, in addition to allowing each procedure to be checked in isolation, is crucial
to making the analysis scale to real programs.

A field update is encoded using the FIR relational override (@) operator. The
value of the FIR expression day @ (this — d) is the relation containing the tuple
(this — d) and any tuples in day that do not begin with this. Thus, the assignment day
= day @ (this — d) (Line 11) encodes the Java statement this.day = d. Because the
day relation encodes the mapping from every Birthday to its day field, and because
this field update is encoded as an assignment to the entire relation, this translation
to FIR fully captures the effect of any object aliasing. ‘

5.1.2 Complexities of Real Programs

There are a number of additional complexities that arise in object-oriented code that
were omitted in the above example. Our solutions to these complexities, as they have
been implemented in JForge, are presented below.

Dynamic Dispatch. As shown above, a method invocation is converted into a
specification statement that instantiates the specification of that method. However,
if the method call is virtual and may dynamically dispatch to multiple targets, which
target specification should be used? JForge uses the method specification from the
static type of the receiver. Note that if the analysis were not modular, then this
solution would not be adequate, because some methods are pure virtual, i.e., they

90

have no implementation in the static type. Any abstract method in Java, including
all methods of interfaces, are pure virtual.

Exceptions. FIR offers no special constructs for raising exceptions or handling
them. To encode the possibility of an exceptional return value, each generated pro-
cedure is given an extra output variable named “throw” that stores the value of any
exceptional return, and all exception handling is encoded as branches in the control-
flow graph. Every statement in code that throws an exception is converted into an
assignment to the throw variable, followed by a series of branches that test which of
the enclosing try blocks will catch the exception. If throw does not match any of
the caught types, the FIR code branches to the exit statement of the procedure. To
model the propagation of an exception up the call chain, a similar series of branches
is introduced after each procedure call.

JForge uses an unsound optimization in its encoding of exceptions that treats each
exception class as a singleton. To do so, it creates exactly one FIR literal that by itself
represents every NullPointerException instance, one literal for I11egalArgument-—
Exception, and so on; and each dynamic allocation of an exception class is replaced
with its literal. As a result, the scope on each exception class can be set to 1, the
state space of the analysis is reduced, and performance is improved. However, if the
correctness of a Java method depends not only upon the type of exceptions, but upon
their fields, then this optimization can theoretically produce spurious counterexamples
or additional missed counterexamples; but this is rare in practice.

Collections. JForge provides abstract datatype specifications for common library
collections, including sets, maps, and lists. Using abstractions of these collections in
place of their concrete representations reduces the complexity of the resulting FIR
program to be analyzed, thereby improving the performance of the analysis.

Sets are modelled abstractly by a binary relation whose domain is the Java Set
objects and whose range is the elements in the set. A map is abstracted with a ternary
relation that contains (Map, key, value) tuples. The ternary relation is constrained
to ensure there is exactly one value for each (map, key) pair. Lists and arrays are
abstracted by ternary relations containing (List — index — value) tuples. The indices
into a list are constrained to start at zero and continue in consecutive order. That is,
a list cannot have a value at index 3 unless it also has a value at index 2. The Java
specifications of these collections can be modelled precisely using these relations, so
this abstraction does not introduce any unsoundness into the analysis.

5.1.3 Unsoundness and Incompleteness

Although a bounded verification of FIR itself never issues false alarms and always
finds a counterexample if one exists within the bounds, front-ends that encode high-
level languages in FIR are free to take liberties with their translation that ultimately
permit spurious counterexamples to the original program or allow counterexamples
within the bound to be missed. JForge takes just such a liberty when it treats
exception classes as singletons, as discussed above.

91

Another potential source of false alarms in JForge is the choice of an integer
bitwidth that is less than the true width of Java integers. Consider, for instance, an
analysis with a bitwidth of 5 that produces a counterexample due to integer overflow.
Because Java integers have a width larger than 5, this counterexample does not
represent an actual trace of the code. That said, in our experience, errors due to
overflow in a low bitwidth have usually indicate the presence of an analogous error
in the true bitwidth. In other words, if the code can overflow at a bitwidth of 5,
it can probably overflow at 32. Nevertheless, an analogous counterexample is not
guaranteed to exist in the true bitwidth.

5.2 Dealing with Abstraction

As discussed in Chapter 3, from a procedure in the Forge Intermediate Representation,
the symbolic execution automatically obtains a formula P(s, s’) that holds whenever
an execution of the procedure exists from s that terminates in s’. A second formula
(s, s’) is obtained from a user-provided specification. Using P and 1 we state the
correctness claim, a formula that is true when every trace of the procedure satisfies
the specification.

Vs,s' | P(s,s') = (s, s)

Since the unbounded quantification over those states requires a higher-order, in-
tractable analysis [55], the claim is negated and Skolemized, yielding the refutation
formula, which is free of higher-order quantifiers and, therefore, tractable:

P(s,8) N (s, s)

Forge invokes the Kodkod model finder to search for solutions to this formula, which
are counterexamples to the correctness claim.

In the formulas above, the procedure and specification are both in terms of the
same pair of states, s and s’. When checking a procedure of an abstract data type,
however, the (abstract) representation referred to in the specification usually differs
from the (concrete) representation in the code. The standard technique for bridging
the gap involves the user’s providing an abstraction predicate a(c, a) for the data
type that relates concrete and abstract states, and a specification S(a, a’) for the
procedure that relates abstract pre- and post-states [16].

92

The correctness of the procedure with respect to the specification and abstraction
predicate can be established with a forward simulation refinement [88], as visualized
by the commuting diagram above. Given the existence of concrete states ¢ and ¢’
related by the procedure P, and given the existence of abstract state a related to c by
the abstraction predicate «, the procedure is correct if there exists an abstract state
a’ such that @ and o' are related by the specification S and ¢ and a’ are related by
a. We express this constraint in the refinement-correctness claim:

Ve,d,a | (ale,a) A Ple,d)) = 3d' | a(d,d’) A S(a,d’)

As we did with the original correctness claim, we can try to eliminate the quantifier
in the refinement-correctness claim by negating it and Skolemizing it, which yields
the following refinement-refutation formula:

alc,a) A P(c,d) A—=3d' | a(d,a’) A S(a,d’) (5.1)

Yet, unlike before, after Skolemization, we are still left with a quantifier over an
abstract state and, therefore, a higher-order, intractable analysis.

5.2.1 Abstraction Function & Representation Invariant

To make the analysis tractable, we begin by recognizing that in practice the ab-
straction predicate « is given as the conjunction of two predicates, a representation
invariant R(c) on a concrete state, and an abstraction function A(c, a) that interprets
concrete states as abstract ones [66]: a(c,a) = R(c) A A(c, a).

Substituting the definition of a into the refinement-refutation formula (5.1) yields:

R(c) A Ae,a) A P(c,d) A—Fa’ | R(d) A A(¢,d') A S(a,a)
Because R(c’) does not depend on a', it can be lifted out of the quantification:
R(c) A A(c,a) A P(c,d) A~(R(c)YATa' | A(,a’) A S(a,d)) (5.2)

Although the still quantifier persists for now, the following sections will demon-
strate that it can be eliminated by assuming that A is a function over the domain of
concrete states ¢ that satisfy R(c), a property that nearly always holds in practice.
We show that under this assumption, formula 5.2 has a solution if and only if one of
the following two formulas has a solution:

e the invariant preservation formula:

R(¢) A P(c,) A ~R(c) (5.3)

e the trace inclusion formula:

R(c) A A(c,a) A P(c,d) NA(d,a") A =S(a,a’) (5.4)

93

Because these two formulas are free of higher-order quantifiers, we will have de-
rived a tractable way to solve the refinement-refutation formula 5.2, providing our
assumption that A is a total function over R is correct. If A is not at least a par-
tial function, then solving trace-inclusion could produce spurious solutions to formula
5.2. If A is not total, then solving invariant-preservation and trace-inclusion may miss
solutions to formula 5.2.

To avoid spurious counterexamples, we can run a separate check that A is a partial
function over R. Finding a solution to the following formula establishes that A is not
functional:

R(c) A A(c,al) A A(c,a2) A al # a2

While we cannot create a tractable check that A is total over R, we can at least
check that it is consistent, i.e., true at least once on the domain R. Finding a solution
to the following formula establishes that A is consistent:

R(c) A A(e, a)

If no solutions are found to the consistency check, then either A is false for all concrete
states satisfying R (within the bounds of the analysis) or R itself is false. Both cases
indicate an error in the data abstraction.

In order to split the refinement refutation formula into the separate trace-inclusion
and invariant preservation formulas, we will need the tools of the next section.

5.2.2 Invariant Preservation and Trace Inclusion

To review, we negated the refinement-correctness claim and substituted R(c) A A(c, a)
for a(c, a) to arrive at the refinement-refutation formula:

R(c) A A(e,a) A P(e,) A=(R(<)AN3d' | A(d,a’) A S(a,d)) (5.5)
To eliminate the higher-order quantifier, we need the following lemmas:!

Lemma 1.
3z | f(z) A g(z) and Vz | f(z) = g(x) are equivalent when Jlz | f(x)

Proof. Under the assumption that there exists exactly one x such that f(z) is true,
we can equivalently name that z, call it e, and rephrase the condition (J'z| f(z)) as
the conjunction of two conditions: f(e) A (Vz | f(z) = x = e). Under this condition,
both 3z | f(z) A g(x) and Vz | f(z) = g(z) simplify to g(e). O

Lemma 2.
dA3z| f(x) Ag(z) and d AVz| f(z) = g(x) are equivalent when d = 3lz| f(x)

Proof. When d is false, both formulas are false. When d is true, they are equivalent
under Lemma 1. O

131z | f(z) means there is exactly one z for which f(z) is true.

94

The assumption that A is a function over R is expressed as follows:
Ve | R(c) = 3la | A(c,a)

So for any given ¢, say ¢/, the following must be true:

R(d) = 3’ | A(d,d)

We now apply Lemma 2 to this formula. By letting d = R(¢), f(z) = A(c,), and
g(z) = S(a, z), from Lemma 2 we learn that the following two formulas are equivalent:

R(d)A3d' | A(d,a) A S(a,a’)
R(c) AVd' | A(d,d") = S(a,a’)

Substituting the latter for the former in the refinement-refutation formula (5.5) yields:

R(c) A A(c,a) A P(c,d) A —(R(c) AVa' | A(d,a’) = S(a,a))

By pushing negation to the leaves of the formula with DeMorgan’s laws, we obtain:

R(c) A A(c,a) A P(e,d) A (=R(d) v 3a' | A(d,a’) A —=S(a,a’))

And by distributing over the disjunction we obtain:

(R(c) A A(c,a) A P(c,c) AN—R(d)) V (5.6)
(R(c) A A(c,a) A P(c,d) A3d'|A(d,a') A =S(a,d’)) (5.7)

A disjunction is satisfiable if and only if either (or both) of its operands are satisfiable.
Thus, we can treat each half of the disjunction as a separate problem.

On formula 5.6, we reuse our assumption that A is a function, and therefore
total, over R, to eliminate A from the formula, arriving at the promised invariant-
preservation formula:

R(c) A P(c,c') A =R(c)

On formula 5.7, we apply Skolemization to yield the promised trace-inclusion formula:

R(c) A Ale,a) A P(e, ') AN A(,a') A —S(a,a)

In conclusion, we began with a the refinement-refutation formula, a formula that,
if satisfied, represents a counterexample to the claim that the procedure obeys a
specification over abstract states, but solving it would have required a higher-order
intractable analysis. Using the assumption that A is a function over R, we split the
refinement-refutation formula into two separate formulas, (1) invariant preservation
and (2) trace inclusion, both free of higher-order quantifiers.

95

96

Chapter 6

Case Studies

This chapter reports on three case studies we conducted with the Forge framework and
the JForge front-end. In the first study, we checked a series of linked list implemen-
tations against an abstract list specification [27]. In the second study, we analyzed
electronic voting software [28]. The third study compares the symbolic execution
strategies and evaluates the coverage metric on a series of benchmark problems.

6.1 Case Study 1: Linked Lists

This study analyzed a series of linked-list implementations against the Java List in-
terface. The implementations were drawn from the Java JDK, the GNU Trove library,
the Apache Commons-Collections library, and variants of the JDK implementation
that had been seeded with bugs for an MIT software-engineering class.

The Forge framework was used to check twelve methods of each linked list im-
plementation: add(int, Object), add(Object), clear, contains, get, indexOf,
isEmpty, lastIndex0f, remove(int), remove(Object), set, and size. To obtain
a formal specifications of the List interface, we started from its specification in the
Java Modelling Language (JML) that was made available on the JML website [58].
We then built an automatic translation from these JML specifications to FIR. The
analyses revealed bugs in some of the implementations, as well as errors in the JML
specifications themselves.

6.1.1 Results

The bounded verification analyses were conducted with a scope of 4 list buckets, 4
list values, integers ranging from -8 to 7 (4 bits), and 3 loop unrollings. All experi-
ments were run on a 2.2GHz Intel Pentium 4 machine with 1GB RAM and Ubuntu
GNU/Linux 5.10. The complete timing results are shown in Table 6.1.

JDK LinkedList

This experiment analyzed the java.util.LinkedList class provided in the Sun JDK.
We checked each of the 12 List methods against its JML specification, finding no
specification violations. As shown in Table 6.1, no analysis exceeded two minutes.

97

+
[
L]

add(i,o)
add(o)
indexOf
isEmpty
lastIndexOf
remove(i)
remove(o)
set

size

clear
w .
= | contains
oo

JDK 235 16.0 126 16.6 17.2 151 626 19.8 77.5 18.0 18.7

Trovel.lb5 18.3 150 126 146 169 200 156 183 222 11.1* 240 13.0
Trove0.1.2 14.2 138 128 153 13.0 194 156 15.0 13.3 204 13.9 129
ApacheAbstract 20.8 202 13.0 645 164 252 209 949 374 34.2 209 294

ApacheCaching 253 241 149 1193 238 229 225 848 285 100.2 24.8 19.1

10.7

10.1 10.4 11.0

MITSeeded 10.1

Displayed above are the times (in seconds) to check each method against its specification. Each analysis was bounded
by 4 list buckets, 4 list values, integers ranging from -8 to 7 (4 bits), and 3 loop unrollings. Specification violations are
displayed in bold, and the * indicates the violation was intentional and documented by the developer. In the seeded
implementations only the seeded methods were checked, and those times are shown collectively in the last row. Two
seeded implementations had bugs in index0f.

Table 6.1: Duration of Method Analyses (seconds)

GNU Trove

GNU Trove is a library of collection implementations designed to yield better perfor-
mance than the Java Collections Framework in special situations. The library includes
a class called TLinkedList, a linked list implementation that accepts elements imple-
menting an interface that provides four methods: getNext, getPrevious, setNext,
and setPrevious. TLinkedList uses the elements added to it as the actual nodes in
the linked list. This is intended to avoid the extra cost of constructing separate node
instances. One disadvantage of this design is that it disallows duplicate list entries.

We checked two versions of the TLinkedList class for conformance to the JML
specifications. The first version was distributed with Trove 1.1b5, which at the time
of the study was the most recent version of the library. The second version, version
0.1.2, was released four years earlier and contained a bug in an inner iterator class in
TLinkedList, according to the project’s CVS logs.

Upon checking the most recent version of TLinkedList, we found two of its meth-
ods to violate the JML specifications, remove (Object) and add(int,0Object). When
the argument to remove(Object) is not already contained in the list, the method can
behave incorrectly. Upon inspection of the Trove API, we found this behavior to be
deliberate; its specification for remove (Object) includes a precondition that the ele-
ment must be contained in the list. We temporarily amended our JML specification
to include this precondition and found no further violation of this specification.

The violation in add(int,0bject), however, was not deliberate and constitutes a
genuine bug in the implementation that was apparently unknown to the developers.
The method contains a subtle off-by-one error when inserting into the middle of the
list. Checking the older version of TLinkedList, we found half of its methods to
violate their specifications, including the bug in the iterator’s remove, but including
several other bugs as well.

98

Apache Commons-Collections

Commons-Collections is a library offered by the Apache Jakarta project that con-
tains collection implementations to supplement those in the standard Sun library.
It includes two linked list implementations, both of which we analyzed. The first,
AbstractLinkedList, is a standard linked list that provides the same functionality
as the Sun implementation, except that it is written with finer-grained procedural
abstraction, giving potential subclasses more flexible implementation support. Al-
though it is an abstract class, it contains no abstract methods, so we were able to
check it directly for its conformance to the JML specifications.

The second class analyzed was NodeCachingLinkedList. Like the TLinkedList
class in GNU Trove, this implementation attempts to mitigate the cost of constructing
new nodes on each addition to the list. To do so, it maintains a separate linked
list of nodes that have already been constructed and reuses nodes from this cache
whenever possible. Nodes are added to the cache upon element removal, but the
cache is constrained to not exceed a preset maximum size. We found no specification
violations in either implementation.

MIT Seeded Implementations

As an exercise on test coverage, students in an MIT undergraduate course in software
engineering were asked to write comprehensive test suites of the Java List interface.
To measure the coverage of each student’s suite, the suites were executed on a series
of mutant versions of the Java LinkedList implementation. The mutants were each
generated by seeding a single bug in one of the LinkedList methods, causing the
method to violate its specification.

Five of these mutants contained bugs in one of the 12 methods considered in
this experiment. We used our tool to check the mutant methods and successfully
detected the bug in each one. We did not check the remaining methods, because they
directly delegated to the Sun implementation, which we had already determined did
not violate the specifications.

6.1.2 Scope Effects

We ran further analyses to determine the smallest scope needed to detect each of the
specification violations. No violation required more than a single loop unrolling to be
revealed, and all but one violation was detected when linked lists were limited to a
length of 2 and integers to a bit width of 3. The remaining violation — the apparently
unknown bug in the latest version of the Trove library — required 3 buckets and 4-bit
integers for its detection.

To evaluate the scalability of the analysis, we re-analyzed the add(int, Object)
method in the Sun implementation for progressively larger scopes. When bounded by
5 buckets, 5 values, 4 loop unrollings, and 4 bits to an integer, the analysis completes
in about 2 minutes. When increased to 6 buckets, 6 values, and 5 loop unrollings, it
takes about 20 minutes. If the bounds are increased to 7 buckets and 7 values and
integers are increased to 5 bits, the analysis continues for one hour before timing out.

99

6.1.3 Specification Errors

In the process of checking these implementations against the published JML speci-
fications, our tool revealed two errors in the specifications themselves. These errors -
were corrected during the course of the analysis, and the data shown in Table 6.1
used only the corrected specifications.

The first error, found in the specification of the add(int, Object) method, was
discovered when our tool reported a specification violation in the Sun implementation.
The JML specification states that the method adds a specified element at a specified
index in the list when the following condition is true:

requires O <= index && index < this.size();

— and that it throws an exception otherwise. However, the Sun specification
states that the element should be added even when the index is equal to the size, in
which case it should be added to the very end of the list.

A second error was found in the index0f method when the tool failed to find a
bug in a seeded implementation. The JML specification says, correctly, that if the
method does not return -1, then the specified element must be in the list. However,
it omits the necessary inverse: if the method does return -1, the element must not -
appear in the list. '

6.2 Case Study 2: Electronic Voting Software

This study analyzed the code of the KOA Remote Voting System. First deployed for
public elections in the Netherlands in 2004, KOA is an open-source, internet voting
application written in Java. Intended to be used primarily by expatriots, KOA stands
for the Dutch phrase “Kiezen op Afstand” which means “voting at a distance.”

The KOA application contains a small vote-tallying subsystem that processes the
ballot data and counts the votes. The vote-tallying module was developed indepen-
dently of the rest of the application by the Security of Systems (SoS) research group
at the University of Nijmegen, the developers of ESC/Java2 [23]. In building the
module, SoS annotated their Java source code with specifications in the Java Mod-
eling Language and used their own ESC/Java2 tool to check the code against those
specifications [49, 34, 52, 51]. The code was also subject to about 8,000 tests from
the unit-testing tool jmlunit [19].

We applied Forge to check the KOA vote-tallying code against the prov1ded JML
specifications. The analysis was limited to eight classes, listed in Table 6.2, that form
the core of its functionality. The AuditLog class logs the progress of the vote-tallying;
Candidate records the tally of an individual candidate; CandidateList pairs a list
of candidates in an election with a CandidateListMetadata that stores additional
properties of the election; District, KiesKring, and KiesLijst are kinds of political
district boundaries; and VoteSet records the cumulative tally for all candidates in
the election. The methods column in the table lists the number of methods analyzed
in each class.

100

® o

2 0 gl 8.2 g 59| =%

& g sl 2 2% 3| §&8| €&

class g) = °| © E S| B ®| E=
AuditLog 90 286 | 1237 1617 18.0 1 5.0 2.3
CandidateListMetadata 10 72 246 643 64.3 1 5.0 33.6
Candidate 12 103 363 1013 84.4 1 5.0 59.3
KiesKring 15 119 4821 1272 84.8 5 50| 249.7
District 6 53 163 543 90.5 0 5.0 18.5
KiesLijst 12 111 367 1432| 119.3 4 5.0| 104.6
CandidateList 13 130 493 1746 | 134.3 3 4.511416.8
VoteSet 11 113 400 2688 244.4 4 3.7(11783.9

Sum or Mean 169 987 | 3751{10954| 64.8 19 4.9 262.7

Table 6.2: Summary analysis statistics of each class. Means are calculated over the
analyses of the methods within a class, not over successive analyses of the same class.

When Forge is applied to the methods of a class, the performance of the analysis
depends not only upon the complexity of the code in the class but also upon the
complexity of its specification, as well as the specifications of classes upon which that
class depends. The sloc column in Table 6.2 gives the number of source lines of code
in each class; slocc includes code and comment lines. Because JML is written inside
Java comments, the slocc measures, albeit indirectly, the complexity of the class’
code and specification. The dslocc is the slocc plus the number of lines of comment
in classes upon which the class directly depends. The dslocc/method approximates
the complexity of a modular analysis of a method within the class.

As shown in the table, we applied Forge to a total of 169 methods of varying com-
plexity across the eight classes. The wiolations column lists the number of methods
that were found to violate their specification. A total of 19 specification violations
were found. The experiments were run on a Mac Pro with two 3GHz Dual-Core
Intel Xeon processors and 4.5GB RAM running Mac OS X 10.4.11. (Forge is single-
threaded and so it did not take advantage of the multiple cores.) The code on which
these analyses were conducted was, at the time of this study, the latest version avail-
able in its Subversion repository.

We initially analyzed each method in a scope of 5 instances of each type, an inte-
ger bitwidth of 4 (integers -8 to 7), and 3 loop unrollings. Most analyses completed
quickly, but a few of the more complex methods exceeded our timeout of four hours.
For those that timed-out, we progressively lowered the scope until the analysis com-
pleted within the time limit. The mean scope column in the table lists the average
maximum scope in which the analysis successfully completed, and mean time (sec) is
the mean time in seconds for a successful analysis. Note that these means are calcu-
lated over the analyses of the methods within a class, not over successive analyses of
the same class. As shown in the table, the average analysis time is roughly correlated
with the dslocc/method measure.

101

class | method error min bound
CandidateListMetadata | init under 1/3/1
KiesKring | addDistrict bug 1/3/1
VoteSet | addVote(String) over 1/3/1
KiesLijst | clear over 1/3/3
AuditLog | getCurrentTimeStamp over 2/1/1
Candidate | init under 2/3/1
CandidateList | addDistrict under 2/3/1
CandidateList | addKiesLijst over 2/3/1
CandidateList | init over 2/3/1
KiesKring | addKiesLijst bug 2/3/1
KiesKring | init under 2/3/1
KiesKring | make under 2/3/1
KiesLijst | addCandidate over 2/3/1
KiesLijst | compareTo bug 2/3/1
KiesLijst | make ' over 2/3/1
VoteSet | addVote(int) over 2/3/1
VoteSet | validateKiesKringNumber over 2/3/1
VoteSet | validateRedundantInfo over 2/3/1
KiesKring | clear over 2/3/3

Table 6.3: Specification violations: error classification and minimum bound (scope /
bitwidth / unrollings) necessary for the error’s detection.

6.2.1 Specification Violations

Table 6.2.1 gives statistics on the 19 specification violations detected. The methods
named init in the table are constructors. To evaluate the “small-scope hypothesis”,
for each violation found we progressively lowered the bound on the analysis (scope of
each type, bitwidth of integers, number of loop unrollings) until the analysis no longer
detected the counterexample. The minimum bound under which each counterexample
is found is given in the last column of Table 6.2.1. :
Every specification violation can be attributed to one of two causes: a bug in the
code or an error in the specification. As outside observers, we can make educated
guesses as to the cause, but classifying the violation with complete certainty requires
knowing the programmer’s intention. Does the specification accurately reflect the
programmer’s intention, in which case the violation indicates a bug in the code; or
did the programmer err in transcribing his or her intention into the specification?

Specification errors themselves can be divided into two subcategories: overspecifi-
cation and underspecification. A case of overspecification occurs when the specifica-
tion of the method under analysis requires too much from the implementation — either
its pre-condition is too weak or its post-condition is too strong. A case of underspec-
ification occurs when the method under analysis calls a method whose specification
provides too little to the caller — either the pre-condition of the called method is too
strong or its post-condition is too weak. (Recall that our analysis, being modular,

102

assumes that the specifications, not the implementations, of called methods define
their behavior.)

Specification errors, while not “bugs” per se, are still important to address. For
example, there may be methods whose correctness depends on the overspecification
of a called method. Fixing the overspecification may, therefore, reveal latent bugs
in dependent methods. In contrast, a case of underspecification doesn’t pose an
immediate problem, but it could allow a bug to be introduced in the future. That
is, the underspecified method’s implementation could be changed at a later date in a
way that still satisfies its contract, but causes dependent methods to fail.

As shown in Table 6.2.1, of the 19 violations found by Forge, we believe 3 to
be due to buggy code, 11 due to overspecification, and 5 due to underspecification.
From our follow-up “smallest scope” analyses of each violating method, we found that
every violation would have also been found in a scope of 2, a bitwidth of 3, and 3
loop unrollings. In fact, all but two of the violations required only 1 loop unrolling,
the exceptions being KiesKring.clear and KiesLijst.clear. Both clear methods
contain loops with if-statements in the body of the loop, and 3 unrollings were neces-
sary to cover all paths. Additionally, four violations needed only the minimal scope
of 1 and one violation was found in the minimal bitwidth of 1.

A minimal bitwidth of 3 (integers from -4 to 3) was needed for nearly every
analysis, because some static array fields in the code were required to be of at least
length 2. Lowering the bitwidth to 2 would allow a maximum integer of only 1.
These arrays were not required to be fully populated, however — they could contain
null elements — so their minimal length requirements did not in turn affect the minimal
scope necessary to detect violations.

6.2.2 Example Violations

In this section, we present and discuss a sample of four specification violations de-
tected by our analysis, two of which we’ve classified as bugs, one overspecification, and
one underspecification. For brevity, some of the code excerpts and JML specifications
shown below have been simplified.

(a) KiesLijst.compareTo [bug]

The body of this method contains a correct implementation of the compareTo method
in KiesKring, not KiesLijst. This is likely a copy-and-paste error:

class KiesLijst {
public int compareTo(final Object an_object) {
if (!(an_object instanceof KiesKring)) {
throw new ClassCastException();
}
final KiesKring k = (KiesKring) an_object;
return number() - k.number();
}
}

The instanceof check and the initialization of local variable k should refer to
KiesLijst, not KiesKring.

103

(b) KiesKring.addDistrict [bug]

The KiesKring class stores an array of districts in the my_districts field and a
count of the number of districts in the my district_count field. The specification
for KiesKring includes an invariant that the count is equal to the number of non-null
entries in the array:

private final /*@ non_null 0%/ District[] my_districts

private byte my_district_count;

- //@ invariant my_district_count == (\sum int i; O <= i &% i < my_districts.length;
//@ (my_districts[i] '= null) 2 1 : 0);

boolean addDistrict(final /*@ non_null @*/ District a_district) {
if (hasDistrict(a_district)) {
return false;
}
my_districts[a_district.number()] = a_district;
my_district_count++;
return true;

}

Each district has a number that is used as its index in the array. The hasDistrict
method returns true when the my_districts array contains a district with the same
number and name as its argument. Thus, if the a_district argument has the same
number but a different name than a district already in the array, the method will
overwrite an existing district and increment the district count in violation of the
invariant. The district count should only be updated only if there is no existing
district at that index.

This violation might be classified as a specification error if the programmer forgot
an invariant prohibiting two districts from having the same number but different
names. The rest of the code does not appear to rely on such an invariant, however.
Indeed, the District.equals method checks for equality by comparing not only the
number but also the name. '

(c) VoteSet.addVote [overspecification]

This method suffers from overspecification in the form of a missing precondition. Note
that it invokes the method Candidate.incrementVoteCount:

class VoteSet {

final void addVote(final int a_candidate_code) throws IllegalArgumentException {

if (!(my_vote_has_been_initialized &% !'my_vote_has_been_finalized)) {
throw new IllegalArgumentException();

}
final Candidate candidate = my_candidate_list.getCandidate(a_candidate_code);
candidate.incrementVoteCount () ;
candidate.kiesLijst().incrementVoteCount();

}

}

class Candidate {

//@ requires my_vote_count < AuditLog.getDecryptNrOfVotes();
//@ modifies my_vote_count;

//@ ensures my_vote_count == \old(my_vote_count + 1);

int incrementVoteCount() { . . . }

}

104

As shown, incrementVoteCount has a precondition that the number of votes
for the candidate be less than a preset number, but addVote does not ensure this
condition. We believe the programmer erred in not including the stronger inequality
constraint in the precondition of addVote. It is also possible that the programmer
intended addVote to be robust when the inequality is false, in which case we would
re-classify this violation as a bug.

(d) KiesKring.init [underspecification]

The post-condition of the KiesKring constructor invokes an underspecified
KiesKring.name method:

//@ requires a_kieskring name.length() <= KIESKRING_NAME_MAX_LENGTH;
//@ ensures number() == a_kieskring_number;
//@ ensures name().equals(a_kieskring_name);
private /*@ pure @*/ KiesKring(final byte a_kieskring number,
final /*@ non_null @*/ String a_kieskring name) {
my_number = a_kieskring number;
my_name = a_kieskring_name;

}

//@ ensures \result.length() <= KIESKRING_NAME_MAX_LENGTH;
/*@ pure non_null @+/ String name() { return my_name; }

The specification of the constructor claims that calling name() in the post-state
yields a string equal to the a_ kieskring name argument, and the constructor does
indeed assign the argument to the my_name field. However, even though the implemen-
tation of name returns the my_name field, its specification says merely that it returns
some string whose length is less than a fixed constant. Thus, the post-condition of
name is not strong enough to establish the post-condition of init. Indeed, an im-
plementation of name that always returns the empty string would satisfy its weak
specification, but would clearly cause init to violate its own specification.

6.2.3 Why were these problems missed?

Prior to our case study, the KOA software had been the subject of rigorous develop-
ment. The code, written according to a “verification-centric methodology” [52], had
been checked with ESC/Java2 and unit-testing. Despite these prior efforts, Forge
found that 19 of the 169 methods it analyzed to violate their specifications.

On one level, it may seem surprising that our bounded verification technique re-
vealed specification violations missed by unit testing. After all, bounded verification
is conceptually a form of testing, in which all tests up to some small size are exe-
cuted. However, two properties of our technique distinguish it from unit testing in
key ways. One important difference is that our technique is modular and, therefore,
can detect problems due to underspecification of called methods, while unit testing
cannot. While underspecification does not indicate the presence of bugs today, it
invites bugs in the future as later modifications are made to the code.

The major difference, however, is one of coverage. The voting code was subject
to nearly 8,000 unit tests, which on the face of it sounds like a large number of tests

105

to generate and run. Our technique, however, by exploiting the efficiency of Kodkod
and its underlying SAT-solving technology, is capable of analyzing thousands, if not
millions, of scenarios of every method individually.

Despite these differences, it still came as a surprise that unit testing did not
detect the buggy KiesLijst.compareTo method discussed in Section 6.2.2a. Perhaps
the static type of the compareTo parameter being Object (not KiesLijst) caused
the testing tool to feed the method arguments only of runtime type Object. In
these cases, the buggy version of the method would behave correctly by raising a
ClassCastException.

To catch the bug in hasDistrict, discussed in Section 6.2.2b, a unit-test would
need to first populate the pre-state with a non-empty array of districts, and then pair
the pre-state with a district argument with the same number but a different name
from an existing district in the array. Revealing such a bug requires a higher level of
coverage than can be expected from traditional unit-testing.

It is difficult for us to determine why ESC/Java2 failed to detect the specification
violations found in our study, and, unfortunately, the authors of the ESC study were
unable to provide additional information in this regard. We do know that ESC/Java2
was unable to establish the post-condition on 53% of the KOA methods it checked, so
perhaps all 19 violations fell into this category. Or perhaps it did claim to establish
the post-condition on some of those 19, but due to unsoundness in ESC, some were
in reality faulty. Kiniry, Morkan, and Denby [53] detail the sources of unsoundness
and incompleteness in ESC/Java2. , ,

Two examples where the unsoundness of ESC may have played a role are the
analysis of KOA methods KiesKring.clear and KiesLijst.clear. ESC/Java2 ex-
amines only one unrolling of each loop, but our case study found that at least three
unrollings were necessary to detect the overspecification of those methods.

6.3 Case Study 3: Strategy/Coverage Evaluation

This study uses 10 small benchmark Java methods to compare the performance of
the symbolic execution strategies, test the small-scope hypothesis, and evaluate the
effectiveness of the coverage metric. First, each of the 8 symbolic execution strategies
are run on the benchmarks and their relative performance is evaluated. Next, the 10
benchmark methods are automatically seeded with library of mutations, yielding 429
mutant methods. To test the “small-scope hypothesis,” we find the smallest bound
that kills each mutant.

These mutants methods are then used as a basis for evaluating the coverage metric.
Some of the mutants cannot be killed by bounded verification, because the mutation
led to an infinite loop in the code. We apply the coverage metric to these mutants
to test its ability to find missed statements in the presence of such non-terminating
behavior. Lastly, we evaluate the coverage metric’s ability alert the user of an insuffi-
cient bound. To do so, we apply bounded verification to mutants, but in a deliberately
insufficient bound, and for the mutants that survive, we note the number of missed
statements reported by the coverage metric.

106

name loc los fields arrays loops nested recurse alloc arith

bubble 16 3 X X X X
conloop 8 2 % X

conrec) 2 X P

copytree 8 2 X X B
createlist 10 2 X X X
insertion 11 3 X X X %
multiply 15 2 X X X
register 1 & X X

search 15 2 X X X
treeadd 22 5 X g ' e

Table 6.4: Characteristics of the benchmark problems.

Here’s a short description of each benchmark method:

- bubble: bubble sort

- conloop: checks whether an element is contained in a list using iteration (a loop)
- conrec: checks whether an element is contained in a list using recursion

- copytree: copies a binary tree data structure recursively

- createlist: creates a linked list of a specified length

- insertion: insertion sort

- multiply: implements multiplication using addition within nested loops

- register: web registration procedure from Chapter 4

- search: binary search

- treeadd: inserts an element into a binary search tree

Characteristics of the ten benchmark methods are shown in Table 6.4. The table
lists the the number of lines of code (“loc”) and number of lines of specification
(“los”) of each method, followed by whether the method does any of the following:
accesses fields (“fields”); accesses arrays (“arrays”); contains loops (“loops”); contains
nested loops (“nested”); contains recursion (“recurse”); performs dynamic allocation
(“alloc”); or performs integer arithmetic (“arith”). The benchmarks were hand-picked
to offer a diversity of these features.

Unlike the previous case studies whose specifications were in the Java Modeling
Language [58], the specifications of these methods were written in the JForge Specifi-
cation Language [90] (JFSL), a Java specification language based on relational logic.
(The example analysis of the linked list in Chapter 1 also used specifications written
in JFSL.) The benchmarks require so few lines of specification due to the concision
with which specifications can be expressed in JFSL, at least relative to JML.

All of the experiments in this section were run on a Mac Pro with two 3GHz
Dual-Core Intel Xeon processors and 4.5GB RAM running Mac OS X 10.5.6.

107

6.3.1 Performance of Symbolic Execution Strategies

Recall from Chapter 3 that three kinds of statements — assign, branch, and create —
can be symbolically executed with either an inline or constrain rule. These rules can
be arbitrarily combined, for a total of 8 strategy combinations. This study begins by
empirically comparing the performance of the 8 strategies on the 10 benchmarks.

The experiments confirmed our intuition that the inline strategy would usually
lead to better performance than the constrain strategy. Since the inline strategy
adding variables and constraints to the relational logic problem, it leads to smaller
SAT problems, and as a result faster SAT-solving times. Let’s examine the effect in
miniature on a small FIR code snippet and specification:

code: spec:
X:='a X = Xold
x:=xUb

The inline strategy declares only three relations — z, ag, by for the initial values of
X, a, and b — and generates one relational logic formula:

(a() U bo) =Ty

If Kodkod takes on the order of n Boolean variables in SAT to represent a relation,
then inlining produces a SAT encoding roughly on the order of 3n Boolean varlables
and n Boolean formulas to encode the equality. :
The constrain strategy, in contrast, declares five relations — 1z, ay, by, :1:1,:1:2 —
and generates three formulas: '

Ty = Qg
ZEQZ‘—“—.’IIIUbo
To F %o

This requires roughly 5n Boolean variables and 3n Boolean formulas and results in a
larger SAT problem and longer solving time. SR

The chart in Figure 6-1 summarizes the results of the analyses. Along the x-axis
are each of the symbolic execution strategies. Each strategy is abbreviated “aA cC
bB”, where A is the strategy rule used for assignment statements, C is the rule for
create statements, and B is the rule for branches, and A, B, and C are each either
‘I’ for “inline” or ‘C’ for “constrain.” For example, “al bC ¢C” is a strategy in which
assignment statements are inlined and branch and create statements are constrained.
The chart shows the average number of variables and clauses in the resulting SAT
problem and the average time of the analysis, across the the 10 benchmark problems,
as a factor of those values for the “al cI bI” strategy. For example, it shows that the
“aC cC bC” strategy, compare to “al cI bI”, generated on average a SAT problem
with almost 7 times as many variables and about 3 times as many clauses, and took
slightly over 3 times as long to solve.

As shown in the chart, using the constrain rule for create statements has only a
slight impact on the size of the problem and the speed of the analysis. This is likely
due to the sparsity of dynamic allocations in Java code. Using the constrain rule for
assignments has a bigger impact: both “aC cI bI” and “aC ¢C bI” almost double the

108

7.00 — . S
6.00
5.00
4.00 m[[]

, O vars
3.00 5 ::Ir::ses
2.00
m
0.00 | L. -

alcl bl alcCbl aCclbl aCcChl alcilbC alcCbC aCclbC aCcCBC

Figure 6-1: Strategy Performance Comparison. The bars show the average number of
variables, clauses, and time-to-solve for the SAT problems generated by each strategy,
as a factor of those numbers for the “al cI bI” strategy.

solving time of the analysis. Using the constrain rule for branch statements, though,
causes the biggest slow-down. Each time it is applied, it introduces new relations
for every FIR variable that is modified by either side of the branch, as well as two
additional constraints for each of those variables. Naturally, the biggest formulas and
slowest times come from the “aC c¢C bC” strategy, which uses the constrain strategy
for every statement it encounters.

6.3.2 Mutant Generation

The remainder of the study involves the application of Forge to mutant versions of the
benchmark problems. To generate the mutants, we used MuJava [61], a tool which
automatically applies a library of mutation operators to a user-provided method.
Each operator in the library, shown in Table 6.5, each makes a single change to the
method to yield a new mutant. The Arithmetic Replacement Operator (AOR), for
example, replaces an arithmetic operator in the code with another, such as replacing
a plus symbol (+) with a minus (-). For another example, the Conditional Operator
Insertion (COR) inserts a Boolean negation symbol (!) before a Boolean expression.
When applied to the 10 benchmarks methods, the mutant operators generated 429
mutants.

To evaluate the small-scope hypothesis — the hypothesis that bugs will usually
have small counterexamples — we applied the bounded verification analysis to each
of 429 mutants to find the smallest bound in which each mutant method produced a
counterexample, i.e., failed to satisfy its specification. Using standard testing termi-
nology, an analysis that finds a counterexample in a mutant method is said to have
killed the mutant.

109

Operator Description
AOR Arithmetic Operator Replacement
AOI Arithmetic Operator Insertion
AOD Arithmetic Operator Deletion
ROR Relational Operator Replacement
COR Conditional Operator Replacement

COI Conditional Operator Insertion
COD Conditional Operator Deletion
SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Deletion

ASR Assignment Operator Replacement

Table 6.5: MuJava Mutation Operators

Not every mutant can be killed by our bounded verification analysis, however.
This is for two reasons. The first reason is that some mutants are equivalent mutants;
that is, they behave the same as the original method on all inputs. For example the ;
following code that computes the absolute value of a number z:

if (x < 0) then abs = -x else abs = x

is equivalent to the mutant where the less-than (<) operator has been replaced Wlth :
a less-than-or-equal-to (<=) operator: :

if (x <= 0) then abs = -x else abs = x

Equivalent mutants cannot (and should not) be killed by any analysis, bounded ver-
ification or otherwise.

The second reason bounded verification may be incapable of killing a mutant is
that the mutation introduced non-termination. This is not to say that bounded veri-
fication can never find a counterexample in a method with an infinite loop. Indeed, if
the method with an infinite loop has at least one terminating execution on which it
behaves incorrectly, then that incorrect, terminating behavior will still be found (in a
sufficient bound). But what our bounded verification analysis cannot reveal (regard-
less of the bound) is non-termination itself, due to its use of finite loop unrolling. For
a mutant with an infinite loop to survive bounded verification, it must be equivalent
to the original program on all of its terminating inputs.

Table 6.6 shows the number of mutants generated from each benchmark method - -
and their classification into three categories. The “Mutants” column lists the to-
tal number of mutants generated from that method. “Equivalent” lists the number
of those that behave equivalently to the original on all inputs. “Infinite” lists the
mutants that have non-terminating behavior but behave equivalently to the original
on terminating inputs. The number of “killable” mutants are those that are neither
“equivalent” or “infinite” — they are the ones that can be killed by bounded verifica- -
tion. Of the 429 mutants, 46 were equivalent and 16 infinite, leaving 367 killable.

110

Benchmark | Mutants | Equivalent | Infinite | Killable | Min Bound
bubble 71 5 4 62 1s 3b 2u
conloop 18 0 0 18 1s 2b 2u
conrec 22 2 0 20 1s 2b 1u
copytree 8 0 0 8 2s 2b 1u

createlist 21 3 4 14 2s 4b 1u
insertion 67 4 6 57 1s 3b 3u
multiply 71 8 2 61 Os 3b 2u
register 6 2 0 4 2s 2b 1u
search 99 17 2 80 1s 4b 3u
treeadd 46 3 0 43 3s 2b 1u
total/maz 429 46 16 367 3s 4b 3u

Table 6.6: Mutants per Benchmark and Minimal Bound for Detection of All Killable
Mutants. A mutant is not killable by bounded verification if it is equivalent to the
original method on all of its terminating executions. A bound of “sS bB uU” is a
scope of S on each type, a bitwidth of B, and U loop unrollings

99% 100%
100%

60%
40%

20%

percentage of mutants killed

0 1 2 3 4
bound (scope=bitwidth=unrollings)

Figure 6-2: Percentage of Mutants Killed per Bound. A bound of n is a scope of n,
bitwidth of n, and n loop unrollings.

111

Benchmark | Mutant | Missed Benchmark | Mutant | Missed
bubble original 2 insertion original 2
bubble AOI_S64 +12 insertion AOI_S80 +12
bubble AOI_S66 +12 insertion AOI_S80 +12
bubble AOI_S72 - 43 insertion AOI_S82 +12
bubble AOI.S74 +3 insertion AOQOI_S88 +5
insertion AOI_S90 +5
createlist original 1 insertion AQI_S101 +1
createlist AQOIS3 +3 insertion AOI_S103 +1
createlist AOIS5 +3 '
createlist AORB1 +3 multiply original 0
createlist AOR_B2 +3 multiply AOIS13- +11
' multiply AQOIS19 +2

Table 6.7: Infinite Loop Detection. The “missed” column lists the number of missed
statements measured in an infinitely-looping mutant compared to the original method.

The “Min Bound” column of Table 6.6 shows the minimal bound needed to kill all
the method’s killable mutants. As shown, all 367 killable mutants are killed with a
scope of 3, a bitwidth of 4, and 3 loop unrollings. The graph in Figure 6-2 shows the
percentage of killable mutants that were killed per bound. In a bound of 1 (scope of
1, bitwidth of 1, 1 loop unrolling) 21% of all killable mutants were killed. In a bound
of 2: 59%; bound of 3: 99%; and all were killed in a bound of 4.

6.3.3 Infinite Loop Detection

Although bounded verification cannot detect non-terminating behavior, the coverage
metric, as discussed in Chapter 4, can detect statements that the bounded verification
missed when non-terminating behavior occurs. In this part of the case study, we apply
the coverage metric to the 16 mutants that were unkillable due to non-terminating
behavior and compare the number missed statements measured in the mutant to the
number of missed statements found in the original method. (There are missed states
in the original method due to weakness in the specification or dead or redundant
code.) If the coverage metric measures more missed statements in the mutant, then
it has the potential to help users detect cases of non-termination.

The results of the 16 infinitely-looping mutants are shown in Figure 6.7. The
mutant named “original” refers to the original, non-mutant method and is listed
to show the number of missed statements in the original method. The number of
missed statements is listed as +n to indicate that the coverage metric found n more
statements in the mutant procedure to be missed compared to the original. On all 16,
the coverage metric found more missed statements in the mutant than in the original,
with the difference in missed statements ranging as high as 12 statements.

Here is the code of mutant A0I_S80 of the insertion method, which performs
insertion sort on an array:

112

00 static void insertion(int[] a) {
01 for (int i = 1; --i < a.length; i++) {

02 ing § = f=

03 int B = a[il;

04 while (j > 0 && al[j - 1] > B) {
05 aljl = alj - 11;

06 :

07 }

08 aljl = B;

09 }

10 }

The mutation is in Line 01, where a decrement operator (--) was inserted before the
variable i in the loop condition (--i < a.length). This decrement offsets the impact
of the increment (i++), causing the loop to continue infinitely. The 12 statements
in the FIR procedure that the coverage metric finds to be missed correspond to the
body of the for-loop. If the body of the for-loop were removed, this mutant will still
have no counterexamples within any finite number of unrollings.

6.3.4 Insufficient Bound Detection

This final part of the case study evaluates the coverage metric’s ability to help the user
detect an insufficient bound on the analysis. It asks the question, “If the bound on the
analysis is smaller than needed for a bug’s detection, does the coverage metric measure
more missed statements?” If the metric does measure more missed statements when
the bound is insufficient, it can potentially alert users to the insufficiency.

The evaluation was conducted as follows. For each benchmark method, we looked
up the minimal bound, found from the prior small-scope analysis, needed to detect all
killable mutants of that method. If the minimal bound was “sS bB ull” — scope of S,
bitwidth of B, and U loop unrollings — we analyzed all the mutants of the method in
three separate bounds: “s(S—1) bB uU” (a scope one smaller than necessary to reveal
the bug in every mutant), ‘sS b(B — 1) uU” (a bitwidth one smaller than necessary),
and ‘sS bB u(U —1)” (one fewer loop unrolling than necessary). Some mutants were
still killed in these smaller bounds, but many survived. For those that survived, we
recorded the number of missed statements the coverage metric reported and compared
it to the number of missed statements of the original method in the original bound.
If the coverage metric reported more missed statements on the mutant, we recorded
the insufficient bound as “detected.”

The results of these analyses are shown in Table 6.8. For each of the insufficient
bounds, the table lists the number of killable mutants that “survived” in that bound,
followed by the number of those mutants in which the insufficient bound was “de-
tected” (the coverage metric found more missed statements in the mutant). A dash
(—) in the table means the the bound already at their minimal level and, therefore,
could not be decremented. As shown in the table, all 260 cases in which a mutant
survived in a decremented scope, the coverage metric was able to detect the insuf-

113

scope - 1 bitwidth - 1 unrollings - 1
benchmark | survived detected | survived detected | survived detected
bubble
conloop
conrec
‘copytree
createlist
_insertion
multiply
| register
search
cond
total

Table 6.8: Insufficient Bound Detection.

ficient bound. It was less successful at detecting an insufficiency in the bitwidth or
number of loop unrollings, but still found 118 out of 135 decremented bitwidths and
24 out of 27 decremented unrollings. In total, the metric was able to detect 402, or
95%, of the 422 cases of an insufficient bound.

6.4 Chapter Summary

These case studies accomplished several goals. First, they showed Forge to be effective
at finding previously unknown bugs in code. In the linked list case study, a previously
unknown bug was discovered in the latest version of the GNU Trove library. In
the voting study, Forge found 19 of the 169 methods it analyzed to violate their
specifications. In the final study, all of the non-equivalent mutants were either killed
or found by the coverage metric to have more missed statements than the original.

Second, the studies provided additional support for the small-scope hypothesis.
In all three studies, every bug was found in a very small bound. Increasing the scope
from 2 to 5 in the voting study and 3 to 6 in the linked list study revealed no additional
errors. In the final benchmark study, all of the killable mutants were killed in a scope
of 3, bitwidth of 4, and 3 loop unrollings.

The benchmark study addressed additional questions the prior studies did not. It
provided empirical evidence to support our intuition that the inline strategy would
produce smaller SAT problems, and therefore faster solving times. The benchmark
study also substantiated the effectiveness of the coverage metric. The metric was
capable of measuring more missed statements in all infinitely-looping mutants and in
95% of the cases where the bound was too small.

Since the symbolic execution strategy that inlines whenever possible generally
leads to the best performance, we have configured it to be the default strategy in
Forge. However, the coverage metric, which depends upon the constrain strategy,
proved to be effective for the detection of infinite loops and insufficient bounds, so
Forge switches to the constrain strategy when the metric is enabled.

114

Chapter 7

Discussion

This chapter puts Forge in the context of related work, reflects on its usefulness,
and discusses how it might be improved. The chapter begins by comparing Forge
to related efforts to verify code with relational logic. It then divides the remaining
related work into three key categories: languages similar to the Forge Intermediate
Representation; program analyses related to our bounded verification technique; and
coverage metric similar to ours. Finally, drawing on insights from the related work,
the results of the case studies, and general experience with the Forge framework, the
chapter includes some final thoughts on the tool and suggestions for future directions.

7.1 Verification with Relational Logic

There have been three very related efforts to perform bounded verification via a trans-
lation to relational logic: Vaziri’s Jalloy tool [85], Taghdiri’s specification-inference
techniques [79], and Galeotti’s verification with DynAlloy [39].

7.1.1 Jalloy

A predecessor to Forge, Vaziri’s Jalloy tool was the first effort to perform bounded
verification via a translation to relational logic. Jalloy checked Java methods by
translating them to the Alloy modelling language [48] and solving the resulting Alloy
model with the Alloy Analyzer. Like its underlying Alloy analysis, Jalloy placed a
scope on each type and a bitwidth on the integers, and to completely finitize the
method under analysis, Jalloy limited the number of loop unrollings. Jalloy also
inlined the bodies of all called methods, so its analysis was not modular.

Vaziri demonstrated the feasibility of Jalloy on individual methods and data struc-
tures, but not on real programs composed on multiple interacting components. Forge
builds on the ideas of Jalloy, but exploits new model-finding technology and intro-
duces new features, including a new translation to logic, an intermediate representa-
tion with specification statements, and a coverage metric, and it incorporates these
features into a framework for program analysis that is applicable to real programs.

115

Where Jalloy used the Alloy Analyzer 3.0 as its model finder, Forge exploits
the latest advances offered by the Kodkod model finder. These advances include
improved symmetry breaking, improved sharing detection, and support for partial
instances [84]. Some of these new features, like symmetry breaking, require no spe-
cial work on the part of Forge to take advantage of: they are provided by Kodkod
automatically. Others, however, like partial instances, Forge must make an effort to
exploit. Partial instances are the constants that can be provided as a lower bound
on a relational logic variable (Section 3.1.1). One place where they are exploited
is in fixing a total ordering over each domain to optimize the symbolic execution’s
treatment of dynamic allocation (Section 3.4.2).

Unlike Forge, Jalloy did not use a symbolic execution to translate code to rela-
tional logic. Instead, it encoded the computation graph of a procedure in an Alloy
model [85]. Compared to Jalloy’s encoding, Forge’s symbolic execution is arguably
easier to understand, because it emulates the actual execution of the code. It also
lends itself to an inductive proof of its correctness (Section 3.3). Although not a sym-
bolic execution, Jalloy’s translation was similar to the constrain strategy, because it
declared new relations to store the values of modified variables. As evidenced by the
third case study (Section 6.3), the constrain strategy tends to not perform as well as
the inline strategy. Dolby and Vaziri have since updated the Jalloy translation Wlth
a logarithmic encoding of integers [32], an idea worth exploring in Forge.

Jalloy translated Java to relational logic directly, with no intermediate represen-
tation in between. One benefit to using an intermediate representation is a reduced
burden to building analyses for other high-level languages beyond Java. Toshiba Re-
search, for instance, is actively developing CForge [75], a front-end that translates
C code to FIR. FIR also introduced a clear separation of concerns into the design
of the framework; it separated the task of choosing a relational representation for
program constructs (performed by JForge and CForge) from the task of encoding im-
perative code in a declarative formula (performed by Forge). Most importantly, FIR’s
inclusion of specification statements supports a refinement methodology and allows
analyses of high-level programs to be modular. JForge, for example, abstracts away
the implementation of called methods into statements of their specification. Jalloy,
in contrast, can only inline the body of called methods, a key factor that limits its
scalability.

7.1.2 Karun

Taghdiri developed techniques for specification inference [79] and integrated them
into an early version of JForge. These techniques allowed JForge to analyze methods
without requiring specifications be written of called methods, nor requiring the full
body of those called methods be inlined. Instead, Taghdiri’s analysis, embodied in
a tool called Karun, infers partial specifications of the called methods from their
implementations.

Karun begins by performing an abstract interpretation of each called method
to obtain an initial, conservative abstraction of its behavior [80]. It then replaces
each method call with its abstraction, obtaining an abstracted version of the origi-

116

nal method. From there, it follows a standard CEGAR (Counter-Example Guided
Abstraction Refinement) approach. Karun applies Forge’s bounded verification on
the abstracted method. If the abstracted method satisfies the specification, then the
original method will necessarily satisfy it, so Karun terminates.

If, on the other hand, bounded verification finds a counterexample, the counterex-
ample witnesses a pre-/post-state pair for each method call. For each of these method
calls, Karun invokes the bounded verification again to search for an execution of the
called method that conforms to the pre-/post-state pair previously witnessed. If there
exists such an execution, then the counterexample was valid, and Karun reports the
counterexample to the user.

If no such execution exists, the counterexample is invalid and the abstraction is
refined. To refine the abstraction, Karun queries the underlying Kodkod model finder
for an unsatisfiable core of the analysis, which includes formulas generated from the
called method’s implementation that prohibit the existence of the execution. The
formulas in the core are then conjoined to the abstraction of the method, and the
analysis of the method is performed anew. This process continues until no counterex-
amples are found (the method is correct) or a valid counterexample is found (the
method is incorrect). In the worst case, the method calls are eventually refined to
the entire behavior of the called methods, the equivalent of inlining the method call.

Taghdiri found Karun to scale better than inlining when the specification being
checked was a partial property of the method’s behavior. In these cases, usually only
a limited specification for each called method needs to be inferred, and the analysis
completes more quickly than it would have had the method calls been inlined. When
checking a method against a very strong specification, however, the full behavior
of called methods is often necessary, and Karun winds up effectively inlining the
behavior of the called methods anyway. In these latter cases, the analysis would
have performed better by inlining the called methods upfront rather than waiting for
Karun’s CEGAR process to complete.

Karun’s CEGAR approach would be worth incorporating into the current version
of Forge framework. Doing so would offer Forge the option of performing more like
a standard static analysis, meaning a non-modular analysis of code with respect to a
partial property of its behavior. Being non-modular, the results of Karun’s analysis
would not hold if the implementation of a called method were to change, and it
would not scale to strong properties, but some users may prefer that tradeoff to the
work required to write specifications of called methods. Importantly, incorporating
Karun would allow Forge to refrain from taking a position on this tradeoff: it could
support both a modular/strong-property mode and a non-modular/weak-property
mode. Users could use either or both, and in different combinations, as they see fit.

Support for both modes of analysis would make Forge more conducive to an n-
cremental style of specification. A user could begin with a partial specification of a
method and no specifications of called methods, and yet still apply Karun’s CEGAR
approach to check the method against the partial property. But as the user’s desire
for greater confidence increases, the specification can incrementally become more de-
tailed and as Karun’s analysis slows, the user can add specifications of called methods
and transition to a modular analysis.

117

7.1.3 Verification with DynAlloy

DynAlloy [38] is an extension to the Alloy modelling language that includes ac-
tions from dynamic logic. Very recently, Galeotti, et. al. [39] have begun exploring
an alternative bounded verification approach that involves translating Java code to
DynAlloy, which is in turn translated to Alloy and analyzed with the Alloy Ana-
lyzer 4.0. Their initial results demonstrate significant performance gains from adding
symmetry-breaking predicates on fields that are known in advance to be acyclic. This
optimization would be worth exploring in our own work.

7.2 Related Languages & Representations

The two areas of work related to the Forge Intermediate Representation include:
(1) work on on relational programming languages and (2) work on intermediate rep-
resentations for program verification.

7.2.1 Relational Programming Languages

FIR is not the first programming language based on sets and relations. An early
example is SETL [30], a high-level programming language founded on set theory and
set operations. SETL and FIR have differences in terms of expressiveness. While in
FIR relations may be of any arity, in SETL they can be at most binary. SETL, on
the other hand, can expression higher-order sets — sets that contains sets — whereas
all sets and relations in FIR must be first-order. If relations in FIR could be higher-
order, it would not be amenable to analysis with the Kodkod model finder, which
allows only first-order relations. Like FIR, SETL offers set operators and universal
and existential quantification, but not being designed for the purposes of verification,
offers no form of specification statement.

Unlike SETL and like FIR, the CrocoPat Relational Manipulation Language [12]
allows relations of any arity. Unlike FIR, CrocoPat does not support dynamic object
allocation. Instead, their operations are performed on a finite pre-defined universe of
objects. CrocoPat does not offer any notion of a specification statement.

7.2.2 Intermediate Representations

Due to the complexities of dealing with high-level programming languages, many
program-verification techniques encode high-level programs in an intermediate repre-
sentation (IR) that is more amenable to analysis [59]. ESC/Java [37] and ESC/Java2 [23]
encode Java in a variant of Dijkstra’s guarded commands [31]; Boogie [9] encodes
.NET bytecode in BoogiePL [25]; the Bogor model checker [72] encodes Java in
the Bandera Intermediate Representation [46]; and Krakatoa [62] and Caduceus [36]
encode Java and C, respectively, into the Why language [35]. These intermediate
representations facilitate transformations (e.g. loop-unrolling and call-inlining) and
optimizations, and they simplify the eventual translation to verification conditions.

118

Most of these languages, including ESC’s IR, BoogiePL, and BIR, are variants and
extensions of Dijkstra’s guarded command language (GCL). One difference between
these GCL-based representations and FIR is in their support for branches in the
control-flow graph. While FIR offers a standard if-statement (a Boolean condition
and two successor statements), the GCL languages offer a more general “selection”
statement in which multiple guards may be enabled at once, and the control flow
passes non-deterministically to one of the enabled guarded commands.

Since high-level code contains only standard if-statements, we were not motivated
to have a more general construct in FIR. Putting selection statements in FIR would
have also complicated the inline symbolic execution rule for branches, because the
conditional expressions that the rule constructs relies on the strict binary choice
offered by if-statements. A lack of selection statements is not a fundamental limitation
on FIR’s expressiveness, because any degree of non-determinism can be obtained
with additional specification statements. For example, in the following code snippet,
control from the if-statement flows non-deterministically to statement St or S, based
on the result of a non-deterministic assignment to the Boolean variable b:

b := spec(true)
if b then S7 else Sr

In contrast to FIR, none of these IRs encode the heap of a program as relations.
Instead, they use a mix of arrays, uninterpreted functions, and axioms in first-order
logic. Since transitive closure cannot be axiomatized in first-order logic [45], some
properties expressible in FIR, including common reachability properties of data struc-
tures, cannot be expressed in these IRs. For example, in FIR one can refer to all the
nodes reachable from the root of a tree with the expression root.*(left + right), where
* is reflexive, transitive closure. With first-order logic alone, the closest alternative is
an inductively defined reachability function on nodes that encodes only an abstraction
of reachability [60]. Because this abstraction permits more states than are possible,
an analysis that uses it risks producing false alarms.

A related language that is founded on relations is DynAlloy [38], an extension to
the Alloy modelling language that includes actions from dynamic logic. While Dyn-
Alloy was originally designed as a usable modelling language, not an IR, it has been
used as an intermediate language for automated test-case generation [40] (discussed
below) and, more recently, for bounded verification [39] (discussed above).

7.3 Related Program Analyses

The Forge bounded verification analysis shares similarities with work in testing, the-
orem proving, model checking, and shape analysis. These will be compared to Forge
primarily along four dimensions: (1) modularity — several of these approaches, e.g.
model checking, conduct whole program (non-modular) analyses; (2) automation —
some, e.g. theorem proving, are not fully automated; (3) property strength - many
target partial properties, not strong specifications; and (4) coverage — some, e.g.
testing, do not offer high degrees of coverage of (and therefore confidence in) the
program’s behavior, while others provide greater coverage in the form of a proof.

119

7.3.1 Testing

Testing shares with our bounded verification analysis an ability to check strong func-
tional correctness properties in a fully automated way. One key difference from our
approach, however, is that testing is a whole-program, not a modular, analysis. That
is, testing does not assume the specifications of called procedures; it executes them
directly. The benefit of a whole program analysis is that once it is complete, one can
be confident, without any further investigation, that the procedure under analysis
will yield the correct results for the inputs on which it was tested. A modular anal-
ysis of the same procedure, in contrast, requires a subsequent analysis of the called
procedures to check that they satisfy their specifications. On the other hand, if the
implementation of a called procedure changes, even if it continues to satisfy its spec-
ification, there is no guarantee from testing that the analyzed procedure (the caller)
will still behave correctly on the tested inputs.

Compared to testing, one disadvantage of Forge is that it can only analyze code
that can be translated into the intermediate representation. Currently, this means
Forge cannot be applied to code that performs real-number arithmetic, interacts with
I/O devices, or spawns new threads, as we have not yet developed techniques to
translate these into FIR. While Forge cannot analyze components that use these
features directly, it can still analyze methods that depend on components that do,
provided that specifications for the components can be written to abstract those
features from the method under analysis. This is currently the case, for example,
with JForge’s handling of Java HashMap. The implementation of HashMap performs
real number arithmetic to calculate load factors on its internal hash table, but an
analysis of a method that uses HashMap is shielded from those details, seeing it only
as a relation that maps keys to values. '

- Another difference with our approach is that testing requires, with some excep-
tions, that the specification (or oracle) be written imperatively in code. While this
lowers the learning curve, it also makes some kinds of specifications a challenge to
write. For instance, writing post-conditions that refer to the pre-state requires man-
ually introducing auxiliary variables that store their values, a laborious task if the
procedure under analysis updates fields across many objects, e.g. a procedure that
balances a binary search tree. Writing frame conditions or calculating a transitive
closure can be tedious, as well. It’s also difficult to express specifications of abstract
data types and their abstraction functions imperatively. That would require somehow
executing the abstraction function, which might not be feasible.

Testing and bounded verification also differ in terms of coverage. Testing usually
exercises only a tiny fraction of the input space, while our bounded verification ap-
proach can quickly explore the equivalent of millions or billions of tests. While there
are coverage metrics for testing, these metrics measure the degree to which code con-
structs (e.g. statements, branch, paths) are exercised, but they do not measure to
what extent the input space of the procedure (e.g. procedure arguments and state
of the heap) are explored. Bounded verification, in contrast, covers the entire input
space within a small bound.

120

Exhaustive Testing

To address the lack of coverage in traditional testing, some recent work has explored
“exhaustive testing,” an approach in which all tests within a bound are executed. Im-
plemented in the tools TestEra [63] and Korat [15], exhaustive testing generates every
test case that meets a user-provided precondition. With TestEra, the precondition
is provided as a formula in the Alloy modelling language [48] and the test inputs are
generated with the Alloy Analyzer. In Korat, the precondition is a Java predicate (a
method that returns Boolean) and the inputs are generated with backtracking search.

Exhaustive testing offers some advantages over our approach. When applied to
the analysis of an individual method that does not depend on other components,
exhaustive testing may very well scale better than our approach. Especially when
the precondition is highly constrained (few valid inputs), separating the generation
of those few inputs from their execution will likely perform better than combining
the input and execution constraints into one large formula. As all forms of testing, it
also faces fewer problems from programs involving real numbers and I/0, that cannot
yet be analyzed by Forge. (Currently, Forge reports and error if these features are
encountered and will not proceed with the analysis.)

When analyzing code that depends on several components, however, exhaustive
testing, being non-modular and unable to treat those components abstractly, may
find less success. Particularly when the precondition is relatively unconstrained, it
can become prohibitively expensive to generate all the test-cases within a small bound.
When TestEra was applied to the Galileo fault tree analysis tool [78], for instance, it
initially consumed too much memory to generate all test cases within a scope of 3, a
scope in which there were 1,276,324 fault trees. Successfully generating these (fairly
unconstrained) inputs required user-written post-processing scripts to offload aspects
of the generation and domain-specific symmetry-breaking predicates. In analyses
of code involving several dependent components, such as the voting system from
Section 6.2, or where the inputs are relatively unconstrained, bounded verification is
likely to offer better performance.

Unlike both Forge and TestEra, Korat accepts specifications written as Java pred-
icates, not relational logic formulas, a feature with both pros and cons. On the one
hand, allowing specifications in Java lowers the learning curve for a user of the tool.
On the other hand, as discussed above, it makes certain specifications inconvenient
to express. Writing the representation invariant of a binary search tree (BST), for
example, requires a carefully crafted worklist algorithm that is longer and arguably
more error-prone than the concise definition of BST possible in a relational logic [15].

Java Automated Testing with Dynalloy

Another approach to increasing the coverage offered by testing is offered by Galeotti
and Frias’s Java Automated Testing (JAT) tool [40]. By translating Java to DynAlloy,
an extension of the Alloy modelling language to include actions from dynamic logic,
JAT is capable of generating test suites that match user-chosen coverage criteria,
including statement, branch or path coverage. Due to its use of Alloy, JAT relies upon
the same finite model-finding technology and SAT solving used by our approach.

121

For each test case that is required by the criteria, JAT constructs a formula in
DynAlloy that is true if such a test case exists. If path coverage is chosen, for example,
JAT enumerates every path through the code and constructs a formula that is true
if the execution follows that path. Either that path is infeasible (within the bound
provided to the analysis), or its solution corresponds to a test case that takes that
path. So instead of automatically generating all tests within a bound, like exhaustive
testing, JAT generates just those tests needed to meet a user-chosen coverage metric.
Unlike bounded verification and exhaustive testing, this approach does not guarantee
any measurable coverage of the heap shapes, which could limit its ability to find bugs.

7.3.2 Theorem Proving

The basic process followed by an automated theorem prover is very similar to our
own. From the code of a procedure, they both generate logic formulas — “verification
conditions” — that are then discharged by one or more decision procedures. In our
analysis, that decision procedure is Kodkod, which requires a bound to finitize the
search space and make the problem decidable. In theorem proving, the decision
procedures do not-assume a bound, but as a result leave many problems undecidable.
These approaches rely upon additional user feedback such as user-provided loop
invariants, to complete the proof. :

There are two common methods that theorem provers use for generating verifica-
tion conditions. The traditional approach is to apply a weakest precondition calcu-
lus [31] that pushes the specification backwards through the code of a procedure to
determine the weakest precondition on the procedure that guarantees it will satisfy
the specification. It is not uncommon, however, for theorem provers to perform a
forward traversal of the code using symbolic execution [69], as we do. One advantage
of using symbolic execution is that the specification is needed only at the end of the
process, not in advance. As a result, symbolic execution, unlike weakest precondi-
tions, allows the same procedure to be checked against several specifications without
traversing the entire procedure anew for each specification.

While some theorem provers operate only on simple input representations, others
have been integrated into frameworks for verifying software directly. One example is
Boogie [9], which verifies programs written in Spec#, an extension of C# that includes
a strong specification language. Boogie translates Spec# code and specifications into
the BoogiePL intermediate representation and then encodes BoogiePL in verification
conditions accepted by the Z3 SMT solver. Another framework is Jahob [56], which
verifies Java code using a combination of different decision procedures.

Theorem proving techniques require a lot of effort and expertise on behalf of the
user. The decision procedures they employ are often not powerful enough to complete
the desired proof, thus requiring additional input and reasoning from the user. The
cost and difficulty of this effort often make theorem proving impractical. For example,
it is common for a theorem prover to carry a learning curve of about 6 months, even
for a highly skilled software developer [87, 6].

122

ESC/Java2

The Extended Static Checker for Java (ESC/Java) [37] and its successor ESC/-
Java2 [23] bring automation to, and thereby increase the practicality of, theorem
proving techniques, but they do so by the sacrificing soundness and completeness in
their analyses. The ESC tools analyze code by generating verification conditions in
a predicate first-order logic and discharging those conditions with the Simplify the-
orem prover [29]. While ESC/Java checked only weak specification properties such
as the absence of null pointer dereferences, ESC/Java2 targets strong specifications
expressed in the Java Modelling Language [58].

To make its analysis fully automated, ESC/Java2 makes a number of compromises
that render its analysis neither sound nor complete [53]. Like bounded verification,
it unwinds loops, and therefore does not require user-provided loop invariants. It
also reasons about integers as if they are unbounded, i.e., not limited by a bitwidth
as they truly are in Java. The Simplify theorem prover upon which ESC/Java2
depends also has its own limitations. Since it may loop forever, Simplify bounds its
analysis time in advance. It also relies upon a heuristic pattern-driven instantiation
of universal quantifiers to guide its proof search, but in the presence of arbitrary first-
order logic specifications provided by the user, the reliance on pattern matching can
cause Simplify to miss seemingly “obvious” proofs. These limitations may explain
why the bugs and specification errors we detected in the voting system case study
(Section 6.2) were missed by ESC/Java2.

7.3.3 Model Checking

Model checking was originally designed as a technique for verifying concurrent, finite-
state transition systems against properties written in temporal logic. These character-
istics made early model checkers well-suited to checking the conformance of hardware
systems to control-intensive specifications [22]. Extending model-checking techniques
to software was inhibited by at least two factors. First was the need to encode high-
level programming languages into the input languages of the model checkers, such as
the Promela language analyzed by SPIN [43]. This problem was addressed in part
by the Bandera toolset [24], which translates Java code into the languages of several
model checkers and maps their counterexamples back to Java source code. Second,
the complexity of realistic software systems exacerbated the state-space explosion
that arises from trying to reason about all feasible execution paths, a challenge which
limited the application of early model checkers to relatively small systems.

Abstraction-Based Model Checking

The model checkers SLAM [8], BLAST [13], and MAGIC [18], mitigate state-space
explosion through the the use of counterexample guided abstraction refinement (CE-
GAR). These model checkers map the potentially infinite states of a software system
into a finite number of abstract states. A property is checked by searching all the
reachable states of the abstract machine. If a counterexample is found, the model

123

checker employs a separate decision procedure to determine whether it is SpU.I'lOU.S a
possibility due to the abstraction.

In the standard CEGAR approach, a spurious counterexample causes the abstrac-
tion to be refined, the result of which is a new abstract transition system, and the
model checking is then performed anew. This refinement process continues until a
non-spurious counterexample is found or no counterexamples are detected. This pro-
cess may continue infinitely, causing the model checker not to terminate. It may also
produce false alarms due to limitations in the decision procedures ‘that determlne
whether a counterexample is spurious.

Because these model checkers rely on abstraction, the specifications they check
cannot be strong enough to require the full, precise behavior of the code. They seem
to be limited to checking very partial, temporal safety properties.

SAT-Based Model Checking

Another approach to controlling state-space explosion is by bounding the length of
execution paths examined. This approach, known as bounded model checking and
employed by the model checkers BMC [14] and NuSMV [21], unrolls the transition
relation a finite number of times, encodes the question of whether the resulting system
satisfies the provided property in a Boolean satisfiability (SAT') problem, and invokes
a SAT solver. The bounding technique and reliance on SAT make thls quite similar
to our approach. :

While these similarities make it tempting to label Forge a kind of bounded model
checking, the term “model checking” brings certain connotations to bear that would
not apply to our work. The term “model checking” connotes that the specifications
being analyzed are expressed in a temporal logic. It also suggests that the tool
performs a non-modular, whole-program analysis that might involve standard model
checking techniques like partial-order reductions or state hashing. None of these are -
true of Forge. Instead, we see Forge as being a bit closer to a formal verification
approach in that it generates verification conditions and then discharges them with a
decision procedure — the only difference being that the decision procedure we use is
bounded. Perhaps a useful analogy: bounded model checking is to traditional model
checking as bounded verification is to traditional verification.

Saturn [89] is another program analysis technique that encodes the behavior of
a procedure in SAT. It handles loops by either finite unwinding (which as in our
approach can cause errors to be missed), or by assuming they can cause arbitrary
state changes (which can generate spurious errors). Saturn checks whole programs
against properties expressible as finite state machines, a weaker specification language
that that supported by our approach. It has so far been used successfully to detect
two kinds of errors: (1) invalid locking sequences in Linux and (2) memory leaks.
Saturn generates small summaries that abstracts the behavior of called procedures,
an approach which allows it to scale, but which is another source of spurious errors.

124

Model Checking Strong Specifications

All the model-checking approaches discussed thus far have been limited in terms of
the complexity of the code and the strength of the specifications they can analyze.
However, a few recent model checkers, namely Bogor [72] and Java PathFinder [86],
can both handle the full or nearly full complexity of high-level programming languages
and can check programs in those languages against strong specifications. They are
both explicit-state model checkers that perform whole-program analyses.

To our knowledge, Bogor is the first application of traditional model-checking
techniques to the analysis of strong specifications. It translates Java code to the Ban-
dera Intermediate Representation (BIR), a guarded command language with support
for object-oriented features, including dynamic object allocation, threads, garbage
collection, and dynamic dispatch. The specifications it checks are a large subset of
the Java Modelling Language [58]. Bogor uses symmetry and partial-order reductions
to mitigate the state-space explosion introduced by these features. While there have
been demonstrations of its efficiency on small examples [72], being a whole-program
(non-modular) analysis, it is unclear whether it scales to real programs.

Like Bogor, Java PathFinder (JPF) can check strong specifications, though it is
not a “traditional” model checker. Unlike most model checkers, JPF does not ex-
plore every path of a model, but instead dynamically executes Java bytecode itself
and reports runtime assertion failures. Because it executes arbitrary runtime asser-
tions, JPF can check strong properties, but writing specifications in Java faces all
the challenges discussed earlier in the context of testing (Section 7.3.1). To control
state-space explosion, JPF makes unsound approximations, including state hashing,
a technique which treats unequal states as the same if they hash to the same value.
Moonwalker 73] is an adaptation of the JPF approach to check .NET bytecode.

A limitation of both Bogor and JPF is that they only analyze closed systems. That
is, they must be given a fixed pre-state they then attempt to analyze all behaviors
originating from that state, but they do not analyze code over all contexts of use.
As a result, they are often combined with test harnesses that automatically generate
inputs and repeatedly execute the tool on each. This strategy makes achieving high
code coverage challenging, particularly with the analysis of library code which could
be called in a wide variety of contexts. And if a program invokes outside modules
whose code is not available, then the program cannot be analyzed at all.

To adapt the techniques of Bogor and JPF to the analysis of open systems, the
developers of both have turned to symbolic execution. Out of the work on JPF has
come JPF-SE [4] and from Bogor has come Kiasan [26], both of which use techniques
of their predecessors instead treat their inputs as symbolic values drawn from un-
bounded domains and perform a symbolic execution of the code starting with those
values. Using symbolic values eliminates the need for a test harness and permits
modular analysis that does not require the implementation of called procedures. Due
to looping in programs, symbolic execution by itself may not terminate. To address
this problem, JPF-SE puts a finite limit on its search depth and the length of the
symbolic formulas it generates. More similar to our approach, Kiasan limits the size
of linked data structures, and as a last resort, will limit the number of loop unrollings.

125

7.3.4 Shape Analysis

The goal of shape analysis is the verification of programs with respect to data structure
properties. While these properties include deep, structural invariants on the heap,
they are nevertheless weaker than the arbitrary first-order logic specifications tar-
geted by our approach. But whereas our approach verifies programs within bounded
heaps, the goal of shape analysis is proving the correctness of the code for heaps
of unbounded size. Because the goal is a proof, shape analyses must either sacri-
fice full automation (and require that addition of user-provided annotations like loop
invariants) or completeness (and allow false alarms). '

The Three-Valued Logic Analyzer implements a technique called parametric shape
analysis (PSA) [74], which conservatively approximates the potential heap configura-
tions at each program point with a shape graph. The shape graph encodes the points-
to relationships of the heap using a three-valued logic that includes, true, false, and an
unknown value to represent uncertainty. TVLA requires the user provide predicates
for the abstraction and an operational semantics that defines how a set of primitive
actions affect the abstract state. Given an input shape graph, it performs an abstract
interpretation of the program and iterates until the abstract state reaches a fixed
point, reporting an error if it violates the user-provided property. Like other tech-
niques based on abstract interpretation, TVLA cannot produce a counterexample for
rejected programs, and it may reject correct ones. It has been used to verify quite
complex properties, including that a list-reversal procedure is correct.

The pointer assertion logic engine (PALE) [64] is another approach to shape anal-
ysis. PALE encodes the program and its specification in a monadic second-order logic
formula, whose validity is then checked with the MONA tool [54]. Because it does not
perform abstract interpretation, PALE does not require user-provided predicates and
does not issue false alarms like TVLA. Also unlike TVLA, it reports counterexamples
for any program it rejects. However, it is capable of analyzing only loop-free code
and, thus, requires the user annotate all loops with invariants in advance. MONA
has a worst-case non-elementary time complexity (bounded by a stack of exponen-
tials whose height is proportional to the formula length), but has been shown to be
efficient in practice. :

7.4 Related Coverage Metrics

While coverage metrics have existed for decades in testing, most static analyses lack
anything comparable. The one exception is in the area of model checking, where
recent work on coverage metrics is what inspired our development of a coverage metric -
for Forge. This section compares our coverage metric to those designed for testing
and model checking, and it concludes by pondering whether a coverage metric could
be developed for static analyses based on decision procedures, like ESC/Java.

126

7.4.1 Coverage Metrics for Testing

The Forge coverage metric has the same purpose as coverage metrics for testing: to
identify pieces of the code that were not exercised by the analysis, information a user
may in turn use to make the analysis more comprehensive. Of the many coverage
criteria for test suites, the Forge coverage metric is closest to statement coverage.
The statement coverage of a test suite are the statements that were exercised by the
suite, and the Forge coverage metric, to the first order, indicates which statements
were exercised by the bounded verification analysis.

Nevertheless, there are at least two key differences between statement coverage
in testing and the Forge coverage metric. First, the Forge metric labels statements
as covered if they were found to be necessary for correctness, while the statement
coverage of a test suite includes every statement executed, regardless of whether the
success of a test depended on it. Second, our coverage metric, unlike testing metrics,
can also indicate whether the specification itself was covered by the analysis.

7.4.2 Coverage Metrics for Model Checking

Coverage metrics for model checking originated from work on vacuity detection [57].
A specification is vacuously satisfied by a model if replacing a subformula of the
specification with an arbitrary formula does not affect its validity. For example, if
the specification is an implication whose antecedent is always false for the given model,
then the specification is vacuously satisfied, because the consequent can be replaced
with any formula to no effect. Vacuity can occur due to an accidental overconstraint
in the model or underconstraint in the specification, directly analogous to the cases
of overcontrained code or underconstrained specification detected by our technique.
Unlike our approach, the technique for determining vacuity does not depend upon an
unsatisfiable core detected by their analysis, but by re-running the model checker to
search for a witness of the model that satisfies the specification non-vacuously.

This work on vacuity detection spurred the development of coverage metrics for
model checking by Chockler [20]. Among her proposed metrics was one for code cover-
age, which defined coverage in the same way as this work: a statement is not covered
if its absence does not affect the satisfaction of the specification. She did not exper-
iment with the metric, but suggested it as one among many possible instantiations
of a more general coverage algorithm for model checking. Our work can be seen as
some empirical validation of the effectiveness of her code coverage definition, at least
within the context of our SAT-based technique.

7.4.3 A Coverage Metric for ESC?

Despite the advances in coverage metrics for model checking, static analyses based
on decision procedures, including ESC/Java2, provide no comparable measure. The
importance of knowing that a seemingly successful analysis may have “gone wrong”
is not lost on users of ESC/Java2. To quote its developers [53], “User awareness
of the soundness and completeness of the tool is vitally important in the verification

127

process, and lack of information about such is one of the most requested features from
ESC/Java2 users.” The closest feature in ESC/Java2 is the automated warning it
produces when the tool uses unsound or incomplete reasoning. When analyzing code
with a loop, for example, this warning feature notifies the user that “ESC/Java2 does
not consider all possible execution paths through a loop.” Such automated warnings
might be a useful addition to Forge in addition to the coverage metric.

Perhaps ESC/Java2 and other techniques based on automated theorem proving
could incorporate a coverage metric like that presented in this thesis. Like our ap-
-proach, these techniques could maintain a mapping from each statement to the ver-
ification conditions generated from that statement. Then, if the automated theorem
prover could log the verification conditions necessary for the proof, those condition
could be mapped back to “covered” statements in the code. :

7.5 Conclusions

The results of the case studies suggest the Forge framework could effectively reduce
the number of bugs in code if integrated more broadly into software development
practice. Prior to the electronic voting case study, the KOA software had been the -
subject of rigorous development. The code, written according to a “verification-
centric methodology” [52], had been analyzed with both ESC/Java2 and unit-testing.
Despite these prior efforts, Forge found 19 of the 169 methods it analyzed to violate
their specifications. Similarly, in the linked list case study, a previously unknown bug
was discovered in the latest version of the GNU Trove library, and several bugs were
detected in an earlier version of the library. In the final study, all of the non-equivalent
mutants were either killed by bounded verification or found by the coverage metric .
to have more missed statements than the original. ’

The case studies also provide additional support for the small-scope hypothesis.
In all three studies, every bug was found in a very small bound. That fact alone,
however, is not direct support for the “small-scope hypothesis” since it is possible
that the software analyzed is riddled with bugs beyond the bounds chosen. Ideally,
one would increase the scope step by step until all errors are revealed, and then
determine their distribution. This is possible when the errors are known in advance,
as they were in the third study, in which all 367 killable mutants were killed within a
scope of 3, bitwidth of 4, and 3 loop unrollings. It was not possible for the other case -
studies, but we were able to approximate this in miniature by increasing the scope
until the analysis became intractable, and by noting the smallest scope in which each
error is revealed. Increasing the scope from 2 to 5 in the electronic voting study and
3 to 6 in the linked list study revealed no additional errors, evidence that, at least
within that range, the small-scope hypothesis holds.

Although our bounded verification analysis is unsound, as the final case study at-
tests, the coverage metric we developed is capable of mitigating that unsoundness. In
all of the mutants that bounded verification failed to kill due to their non-termination,
the coverage metric was able to highlight missed statements that could have help the
user detect and eventually eliminate the bug. Furthermore, in 95% of the analyses

128

in which the bound was too small to kill a mutant, the metric was again able to find
“suspiciously” missed statements that could have alerted the user to the insufficiency.

Some Future Work. Despite these positive results, we still have concerns with
the practicality of our analysis and see several opportunities for future work. One
open question, for example, is how much effort is truly required to write formal,
declarative specifications of code. In the first two studies, specifications in the Java
Modeling Language (JML) had already been written for us, and they were at times
quite verbose. Fortunately, initial experience with the JForge Specification Language
developed by Yessenov [90], suggests the burden of formal specification is less when the
specification language is based on relational logic. Also, when the property analyzed
is more partial, incorporating Taghdiri’s techniques for specification inference [79], as
discussed in Section 7.1.2, could eliminate the need to write specifications of called
methods, while still allowing the analysis to scale adequately.

The scalability of the analysis has room for improvement. For the linked list study,
the analysis scaled adequately for the task at hand, in all cases terminating within a
few minutes. But in the voting case study, while the analysis scaled adequately for
most methods, we were disappointed it did not scale to our desired scope of 5 for all
of them. One opportunity for improved performance could come from exploiting the
presence of generics in Java source code. For example, each Java Map in the code, and
there are many in KOA, introduces a ternary relation in Kodkod whose second and
third columns range over the universe of all objects, an expensive relation to encode
in SAT. If the translation from Java to FIR could exploit the type arguments for the
keys and values of a Map, it could significantly reduce the number of bits needed to
represent that ternary relation in SAT and improve the scalability of the analysis.

Looking at related work offers additional ideas for improved performance. Dolby
and Vaziri’s logarithmic encoding of integers [32] or Galeotti’s symmetry breaking
for acyclic fields [39], for example, if integrated into Forge could reduce the search
space that the Kodkod model finder must explore. Another idea, in use by Kiasan,
is to check each path through the code individually, rather than the Forge approach
that checks the entirety of the procedure at once. Checking the paths individually
opens up an opportunity for parallelization that could improve the performance of
the analysis on multi-core machines.

We also see longer-term opportunities for improving the soundness of the analysis
by combining our bounded verification technique with decision procedures common
to other program analyses. Several modern program verifiers like Boogie [9] use SMT
solvers capable of handling multiple decidable theories, a choice that requires them
to either limit the richness of their specification language or require additional help
from the user. It might be possible to use SMT for just the decidable verification
conditions and discharge the undecidable ones with Kodkod.

A Final Thought. This thesis began with the hypothesis that there exists a
large, under-served market of developers wishing to check their code against strong,
functional-correctness properties. For the developer who can afford to invest very

129

little in correctness, it seems unlikely that any technique within budget could offer
better confidence than testing; and for those who can afford a very high degree of
investment, no technique could offer better confidence than theorem proving. What'’s
traditionally been lacking, however, are techniques that offer a good return for the
wide swath of developers who can afford a moderate degree of investment.

To bridge this gap, there has emerged in recent years a new crop of techniques
that aim for a different cost/confidence tradeoff. These techniques, which include
ESC/Java2, Java PathFinder-SE, and Kiasan, as well as Forge, seem to defy classifi-
cation. They don’t fit the traditional notion of “testing,” a term typically reserved for
non-modular, dynamic analyses, and these techniques are neither. At the same time,
they are unsound, and therefore don’t qualify as “formal verification,” either. Per-
haps oxymorons like “unsound verification” or “formal testing” are good descriptors. -
Regardless of their name, we expect and encourage more interest in these techniques
in the future. As they have begun to show, high confidence does not always require
high cost. ' : ‘ '

130

Bibliography

[1] The Astrée static analyzer. http://www.astree.ens.fr/.
[2] FindBugs. http://findbugs.sourceforge.net/.

[3] GNU Trove: high performance collections for Java.
http:/ /trovedj.sourceforge.net/.

[4] Saswat Anand, Corina S. Pasareanu, and Willem Visser. JPF-SE: A symbolic
execution extension to Java PathFinder. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS 2007), pages
134-138, Braga, Portugal, March 2007.

[5] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov.
Evaluating the “Small-Scope Hypothesis”. Technical report, MIT CSAIL, 2002.

[6] Arvind. Why formal verification remains on the fringes of commercial develop-
ment, May 2008. Formal Methods 2008 Tutorial.

[7] Ralph J. Back. On the Correctness of Refinement Steps in Program Development.
PhD thesis, University of Helsinki, 1978.

[8] Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debugging system
software via static analysis. In POPL ’02: Proceedings of the 29th ACM Sympo-

sium on the Principles of Programming Languages, New York, NY, USA, 2002.
ACM Press.

[9] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Formal Methods for Components and Objects (FMCO’05), pages
364387, Amsterdam, The Netherlands, November 2005.

[10] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In Proceedings of the Construction and Analysis of
Safe, Secure and Interoperable Smart devices (CASSIS’04), Marseille, France,
2004.

[11] Boris Beizer. Software Testing Techniques. International Thomson Computer
Press, 1990.

131

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22

Dick Beyer. Relational programming with CrocoPat. In Proceedings of the 28th
International Conference on Software Engineering, May 2006.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
software model checker BLAST: Applications to software engineering. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 9(5-6):505—
525, 2007. ‘

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In 5th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’99), Amster-
dam, The Netherlands, 1999.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-
mated testing based on Java predicates. In ISSTA ’02: Proceedings of the 2000
ACM SIGSOFT International Symposium on Software Testing and Analysis,
July 2002.

C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4), 1972. o ‘ :

Thomas Ball Carlos Pacheco, Shuvendu K. Lahiri. Finding errors in .NET with
feedback-directed random testing. In International Symposium on Software Test-
ing and Analysis (ISSTA’08), Seattle, Washington, July 2008.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-
ular verification of software components in C. In ICSE ’03: Proceedings of the

25th International Conference on Software Engineering, pages 385-395, Wash-
ington, DC, USA, 2003.

Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In ECOOP’02, pages 231-255, Malaga, Spain,
June 2002.

Hana Chockler, Orna Kupferman, and Moshe Vardi. Coverage metrics for formal
verification. In Correct Hardware Design and Verification Methods (CHARME),
October 2003.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In 11th International Conference on Computer Aided Verification
(CAV’99), Trento, Italy, pages 495-499, July, 2003.

Edmund M. Clarke, Anubhav Gupta, Himanshu Jain, and Helmut Veith. Model
checking: Back and forth between hardware and software. In Verified Software:
Theories, Tools, Ezperiments (VSTTE’05), volume 4171 of Lecture Notes in
Computer Science, pages 251-255, Zurich, Switzerland, October 2005. Springer.

132

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Proceedings of the Construction and Analysis of Safe, Secure and Interoperable
Smart Devices (CASSIS’04), pages 108-128, Marseille, France, March 2004.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Bandera: A
source-level interface for model checking Java programs. Software Engineering,
International Conference on, 0:762, 2000.

Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical Report MSR-TR-2005-70, Mi-
crosoft, March 2005.

Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems. In Proceedings
of the 21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’06), pages 157-166, Washington, DC, USA, 2006. IEEE Computer
Society.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification
of code with SAT. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’06), Portland, Maine, July 2006.

Greg Dennis, Kuat Yessenov Chang, and Daniel Jackson. Bounded verification
of voting software. In Second IFIP Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE’08), Toronto, Canada, October 2008.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, Systems Research Center,
HP Laboratories Palo Alto, July 2003.

Robert Dewer. The SETL Programming Language, 1979.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, 1976.

Julian Dolby, Mandana Vaziri, and Frank Tip. Finding bugs efficiently with
a SAT solver. In ACM/SIGSOFT Symposium on the Foundations of Software
Engineering (FSE’07), September 2007.

Jonathan Edwards, Daniel Jackson, Emina Torlak, and Vincent Yeung. Subtypes
for constraint decomposition. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA’04), Boston, MA, July 2004.

Fintan Fairmichael. Full verification of the KOA tally system, March 2005.
University College Dublin. Bachelor’s Thesis.

Jean-Christophe Fillidtre. Why: a multi-language multi-prover verification tool.
Technical Report 1366, LRI, Universite Paris Sud, 2003.

133

[36]

[37]

[38]

[39]

[40]

[43]

[44]

[45]

Jean-Christophe Fillidtre and Claude Marché. Multi-prover verification of C
programs. In Formal Methods and Software Engineering, 6th International Con-
ference on Formal Engineering Methods (ICFEM’04), volume 3308 of Lecture
Notes in Computer Science, pages 15—29, Seattle, WA, USA, November 2004.
Springer.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended Static Checking for Java. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI’02), pages 234-245, 2002.

Marcelo F. Frias, Juan P. Galeotti, Carlos G. Lépez Pombo, and Nazareno M.
Aguirre. DynAlloy: upgrading alloy with actions. In ICSE ’05: Proceedings of

the 27th international conference on Software engineering, pages 442-451. ACM,
2005.

Juan P. Galeotti, Nicolas Rosner, Carlos G. Lopez Pombo, and Marcelo F. Frias.
Efficient SAT-based analysis of annotated OO programs by automated compu-
tation of tight bounds for class fields. In Submitted for publication, March 2009.

Juan Pablo Galeotti and Marcelo Frias. DynAlloy as a formal method for the
analysis of Java programs. In K. Sacha, editor, Software Engineering Techniques:
Design for Quality, volume 227, pages 249-260. IFIP International Federation

for Information Processing, Springer, 2006.

John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993.

Brian Hackett and Radu Rugina. Region-based shape analysis with tracked
locations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL’05), pages 310-323, New York, NY,
USA, 2005. ACM.

Gerard J. Holzmann. The model checker SPIN. In IEEE Trans. Softw. Eng.,
volume 23, 1997.

International Atomic Energy Agency (IAEA). Investigation of an accidental
exposure of radiotherapy patients in Panama: Report of a team of experts, 26
May — 1 June 2001, August 2001.

Neil Immerman, Alex Rabinovich, Tom Reps, Mooly Sagiv, and Greta Yorsh.
The boundary between decidability and undecidability for transitive-closure log-
ics. In 18th International Workshop of Computer Science Logic (CSL’04), vol-
ume 3210 of Lecture Notes in Computer Science, pages 160—174. Springer-Verlag,
September 2004. ‘

Radu Iosif, Matthew B. Dwyer, and John Hatcliff. Translating Java for multiple
model checkers: The Bandera back-end. Form. Methods Syst. Des., 26(2):137-
180, 2005.

134

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Daniel Jackson. Object models as heap invariants. FEssays on Programming
Methodology, pages 247-268, 2000.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, Cambridge, MA, 2006.

Bart Jacobs. Counting votes with formal methods. In Algebraic Methodology and
Software Technology, 10th International Conference (AMAST 04), pages 21-22,
Stirling, Scotland, UK, July 2004.

James C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385-394, 1976.

Joeseph Kiniry. Formally counting electronic votes (but still only trusting paper).
In 12th IEEE International Conference on Engineering Complex Computer Sys-
tems (ICECCS 2007), pages 261-269, Washington, DC, 2007. IEEE Computer
Society.

Joseph Kiniry, Alan Morkan, Dermot Cochran, Fintan Fairmichael, Patrice
Chalin, Martijn Oostdijk, and Engelbert Hubbers. The KOA remote voting
system: A summary of work to date. In Proceedings of Trustworthy Global Com-
puting (TGC’06), Lucca, Italy, 2006.

Joseph Kiniry, Alan Morkan, and Barry Denby. Soundness and completeness
warnings in ESC/Java2. In SAVCBS ’06: Proceedings of the 2006 conference
on Specification and verification of component-based systems, pages 19-24, New
York, NY, USA, 2006. ACM.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Manual. BRICS,
Department of Computer Science, Aarhus University, January 2001. Notes Series
NS-01-1. Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-
3.

Viktor Kuncak and Daniel Jackson. Relational analysis of algebraic datatypes.
In ESEC/FSE-13: Proceedings of the 10th European software engineering confer-
ence held jointly with 18th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 207-216, New York, NY, USA, 2005. ACM.

Viktor Kuncak and Martin Rinard. An overview of the Jahob analysis system:
Project Goals and Current Status. In NSF Nezt Generation Software Workshop,
2006.

Orna Kupferman and Moshe Vardi. Vacuity detection in temporal model check-
ing. In Correct Hardware Design and Verification Methods (CHARME), Septem-
ber 1999.

Gary Leavens. Java Modeling Language. http://www.jmlspecs.org.

135

[59] Hermann Lehner and Peter Miiller.: Formal translation of bytecode into Boo-
giePL. Electron. Notes Theor. Comput. Sci., 190(1):35-50, 2007.

[60] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Shmuel Sagiv, S. Srivastava,
and Greta Yorsh. Simulating reachability using first-order logic with applications
to verification of linked data structures. In 20th International Conference on
Automated Deduction (CADE’05), volume 3632 of Lecture Notes in Computer
Science, pages 99-115, Tallinn, Estonia, July 2005. Springer.

[61] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: a mutation system for
Java. In ICSE ’06: Proceedings of the 28th International Conference on Software
Engineering, pages 827-830, New York, NY, USA, 2006. ACM.

[62] C. Marche, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certi-
fication of Java/JavaCard programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1-2):89-106, 2004.

[63] D. Marinov and S. Khurshid. TestEra: A novel framework for automated test-
ing of Java programs. In ASE ’2001: 16th IEEE International Conference on
Automated Software Engineering, pages 22-31, 2001.

[64] Anders Mgller and Michael I. Schwartzbach. The pointer assertion logic engine.
In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’01), June 2001. Also in SIGPLAN Notices 36(5) (May
2001). '

[65] Carroll Morgan. The specification statement. In ACM Trans. Program. Lang.
Syst., volume 10, pages 403—419, New York, NY, USA, 1988. ACM Press.

[66] Carroll Morgan. Programming from Specifications. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, 1994.

[67] Joseph M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of Computer Programming, 9(3):287-306, 1987.

[68] National Institute of Standards and Technology. The economic im-
pacts of inadequate infrastructure for software testing, May 2002.
http://www.nist.gov/public_affairs/releases/n02-10.htm.

[69] George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. ACM SIGPLAN Notices, 33(5):333-344, 1998.

[70] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(4):517-561, 1989.

[71] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,
James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew
Merzbacher, David Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan

136

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

[82]

Traupman, and Noah Treuhaft. Recovery oriented computing (ROC): Motiva-
tion, definition, techniques, and case studies. Technical Report UCB//CSD-02-
1175, U.C. Berkeley, March 2002.

Robby, Edwin Rodriguez, Matthew B. Dwyer, and John Hatcliff. Checking strong
specications using an extensible software model checking framework. In Proceed-
ings of the Tenth International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’04), volume 2988 of Lecture Notes
in Computer Science, Barcelona, Spain, March 2004. Springer.

Theo C. Ruys and Niels H. M. Aan de Brugh. MMC: the Mono Model Checker.
Electron. Notes Theor. Comput. Sci., 190(1):149-160, 2007.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 105-118,
New York, NY, USA, 1999. ACM.

Masahiro Sakai and Takeo Imai. CForge: A bounded verifier for the C language.
In The 11th Programming and Programming Language workshop (PPL’09), 2009.

Donna Scott. Assessing the costs of application downtime. Technical report,
Gartner Group, May 1998.

Ilya Shlyakhter. Declarative Symbolic Pure Logic Model Checking. PhD thesis,
Massachusetts Institute of Technology, Februrary 2005.

Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jack-
son. Software assurance by bounded exhaustive testing. In International Sympo-
sium on Software Testing and Analysis (ISSTA’04), pages 133-142. ACM, July
2004.

Mana Taghdiri. Automating Modular Program Verification by Refining Specifi-
cations. PhD thesis, Massachusetts Institute of Technology, February 2008.

Mana Taghdiri, Robert Seater, and Daniel Jackson. Lightweight extraction of
syntactic specifications. In Proceedings of the 14th ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE’06), Portland, Oregon, November
2006.

Robert Tarjan. Testing flow graph reducibility. In Proceedings of the fifth annual
ACM symposium on Theory of computing (STOC’73), pages 96-107, New York,
NY, USA, 1973. ACM.

Emina Torlak. A Constraint Solver for Software Engineering. PhD thesis, Mas-
sachusetts Institute of Technology, 2009.

137

[83]

[87]

[83]

[89]

[90]

Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding minimal un-
satisfiable cores of declarative specifications. In F'M ’08: Proceedings of the 15th
international symposium on Formal Methods, pages 326341, Berlin, Heidelberg,
2008. Springer-Verlag. .

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Proceedings of 13th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’07), Braga, Portugal, March 2007.

Mandana Vaziri. Fmdmg Bugs in Software with a Constraint Solver. PhD thesis, -
MIT, February 2004. ' ’

Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
checking programs. In ASE ’2000: 15th IEEE International Conference on Au-
tomated Software Engineering, pages 3—11, 2000.

Charles B. Weinstock and Fred B. Scheneider. Dependable software technology
exchange. Technical Report CMU/SEI-93-SR-004, Software Engineering Insti-
tute, Carnegie Mellon University, June 1993.

J. Woodcock and J. Davies. Using Z—Specification, Refinement, and4 Proof.
Series in Computer Science. Prentice Hall International, 1996.

Yichen Xie and Alex Aiken. Saturn: A SAT-based tool for bug detection. In
17th International Conference on Computer Aided Verification (CAV 2005), Ed-
inburgh, Scotland, UK, 2005. ' ‘

Kuat Yessenov. The JForge Specification Langauage Reference Manual, Septem-
ber 2008. http://sdg.csail.mit.edu/forge/refman.pdf.

138

