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50bDipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy

51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA

53Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55aINFN Sezione di Padova, I-35131 Padova, Italy

55bDipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
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We present an analysis of the decays B0 ! K�0ð892Þ� and Bþ ! K�þð892Þ� using a sample of

about 383� 106 B �B events collected with the BABAR detector at the PEP-II asymmetric energy B

factory. We measure the branching fractions BðB0 ! K�0�Þ ¼ ð4:47� 0:10� 0:16Þ � 10�5 and

BðBþ ! K�þ�Þ ¼ ð4:22� 0:14� 0:16Þ � 10�5. We constrain the direct CP asymmetry to be
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�0:033<AðB ! K��Þ< 0:028 and the isospin asymmetry to be 0:017<�0� < 0:116, where the

limits are determined by the 90% confidence interval and include both the statistical and systematic

uncertainties.

DOI: 10.1103/PhysRevLett.103.211802 PACS numbers: 13.20.He, 11.30.Er, 14.40.Nd

In the standard model (SM), the decays B ! K�� [1]
proceed dominantly through one-loop b ! s� electromag-
netic penguin transitions. Some extensions of the SM
predict new high-mass particles that can exist in the loop
and alter the branching fractions from their SM predic-
tions. Previous measurements of the branching fractions
[2–4] are in agreement with and are more precise than SM
predictions [5–9], which suffer from large hadronic
uncertainties.

The time-integrated CP (A) and isospin (�0�) asym-
metries have smaller theoretical uncertainties [10], and
therefore provide more stringent tests of the SM. They
are defined by

A ¼ �ð �B ! �K��Þ � �ðB ! K��Þ
�ð �B ! �K��Þ þ �ðB ! K��Þ ; (1)

�0� ¼ �ð �B0 ! �K�0�Þ � �ðB� ! K���Þ
�ð �B0 ! �K�0�Þ þ �ðB� ! K���Þ ; (2)

where the symbol � denotes the partial width. The SM
predictions forA are on the order of 1% [11], while those
for �0� range from 2% to 10% [8,12]. However, new
physics could alter these parameters significantly [12–
14], and thus precise measurements can constrain those
models. In particular, constraining the isospin asymmetry
to be positive can exclude significant regions of the mini-
mal supersymmetric model parameter space [12].

In this Letter, we report measurements of BðB0 !
K�0�Þ, BðBþ ! K�þ�Þ, �0�, and A. We use a data
sample containing about 383� 106 B �B events, corre-
sponding to an integrated luminosity of 347 fb�1, recorded
at a center-of-mass (c.m.) energy corresponding to the
�ð4SÞmass. The data were taken with the BABAR detector
[15] at the PEP-II asymmetric eþe� collider. We also make
use of events simulated using Monte Carlo (MC) methods
and a GEANT4 [16] detector simulation. These results
supercede the previous BABAR measurements [3].

B ! K�� decays are reconstructed in the following K�
modes: K�0 ! Kþ��, K�0 ! KS�

0, K�þ ! Kþ�0, and
K�þ ! KS�

þ. For each signal decay mode, the selection
requirements described below have been optimized for the

maximum statistical sensitivity of S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S and

B are the rates for signal and background, respectively, and
the assumed signal branching fraction is 4:0� 10�5 [3].
The dominant source of background is continuum events
[eþe� ! q �qð�Þ, with q ¼ u; d; s; c] that contain a high-
energy photon from a�0 or � decay or from an initial-state
radiation process. Backgrounds coming from B �B events
are mostly from higher-multiplicity b ! s� decays, where
one or more particles have not been reconstructed, and
from decays of one B ! K�� mode that enter the signal

selection of another mode by misreconstructing the K�
meson.
Photon candidates are identified as localized energy

deposits in the calorimeter (EMC) that are not associated
with any charged track. The signal photon candidate is
required to have a c.m. energy between 1.5 and 3.5 GeV,
to be well isolated and to have a shower shape consistent
with an individual photon [17]. In order to veto photons
from �0 and � decays, we form photon pairs composed of
the signal photon candidate and all other photon candidates
in the event. We then reject signal photon candidates con-
sistent with coming from a �0 or � decay based on a
likelihood ratio that uses the energy of the partner photon,
and the invariant mass of the pair.
Charged particles, except those used to form KS candi-

dates, are selected from well-reconstructed tracks that have
at least 12 hits in the drift chamber (DCH), and are required
to be consistent with coming from the eþe� interaction
region. They are identified as K or � mesons by the
Cherenkov angle measured in the Cherenkov photon de-
tector (DIRC) as well as by energy loss of the track
(dE=dx) in the silicon vertex tracker and DCH. The KS

candidates are reconstructed from two oppositely charged
tracks that come from a common vertex. In the K�0 !
KS�

0 (K�þ ! KS�
þ) mode, we require the invariant mass

of the pair to be 0:49<m�þ�� < 0:52 GeV=c2 (0:48<
m�þ�� < 0:52 GeV=c2) and the reconstructed decay
length of the KS to be at least 9.3(10) times its uncertainty.
We form �0 candidates by combining two photons (ex-

cluding the signal photon candidate) in the event, each of
which has an energy greater than 30 MeV in the laboratory
frame. We require the invariant mass of the pair to be
0:112<m�� < 0:15 GeV=c2 and 0:114<m�� <

0:15 GeV=c2 for the K�0 ! KS�
0 and K�þ ! Kþ�0

modes, respectively. In order to refine the �0 three-
momentum vector, we perform a mass-constrained fit of
the two photons.
We combine the reconstructed K and � mesons to form

K� candidates. We require the invariant mass of the pair to
satisfy 0:78<mKþ�� < 1:1 GeV=c2, 0:82<mKS�

0 <

1:0 GeV=c2, 0:79<mKþ�0 < 1:0 GeV=c2, and 0:79<

mKS�
þ < 1:0 GeV=c2. The charged track pairs of the

K�0 ! Kþ�� mode are required to originate from a com-
mon vertex.
The K� and high-energy photon candidates are com-

bined to form B candidates. We define in the c.m. frame
(the asterisk denotes a c.m. quantity) �E � E�

B � E�
beam,

where E�
B is the energy of the Bmeson candidate and E�

beam

is the beam energy. The beam-energy-substituted mass is

defined as mES �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
beam � p�2

B

q
, where p�

B is the momen-
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tum of the B candidate. In addition, we consider the
helicity angle �H of the K�, defined as the angle between
the momenta one of the daughters of the K� meson and the
B candidate in the K� rest frame. The distribution of cos�H
is sin2� for signal events. Signal events have �E close to
zero with a Gaussian resolution of approximately 50 MeV,
and an mES distribution centered at the mass of the B
meson with a Gaussian resolution of approximately
3 MeV=c2. We only consider candidates in the ranges
�0:3< �E< 0:3 GeV, mES > 5:22 GeV=c2, and
j cos�Hj< 0:75. To eliminate badly reconstructed events,
we apply a loose selection criterion to the vertex separation
(and its uncertainty) along the beam axis between the B
meson candidate and the rest of the event (ROE). The ROE
is defined as all charged tracks and neutral energy deposits
in the calorimeter that are not used to reconstruct the B
candidate.

In order to reject continuum background, we combine 13
variables into a neural network. One class of these varia-
bles exploits the topological differences between isotropi-
cally distributed signal events and jetlike continuum events
by considering correlations between the B meson candi-
date and the ROE. The other class exploits the fact that B
meson decays tend to not conserve flavor, while continuum
events tend to be flavor-conserving. The discriminating
variables are described in Ref. [18]. Each signal mode
has a separately trained neural network, whose output
peaks at a value of one for signal-like events and zero for
backgroundlike events. A selection is made upon the
output.

After applying all the selection criteria, there are, on
average, �1:1B0=Bþ candidates per event in simulated
signal events. In events with multiple candidates, we select
the candidate with the reconstructed K� mass closest to the
nominal K� mass [19].

We perform an unbinned extended maximum likelihood
fit to extract the signal yield, constructing a separate fit for

each mode. Since the correlations among the three observ-
ables ðmES;�E; cos�HÞj are small, we use uncorrelated

probability distribution functions (PDFs) each representing
the observables to construct the likelihood function. The
likelihood function is

L ¼ exp

�
�XM

i¼1

ni

��YN
j¼1

�XM
i¼1

niP ið ~xj; ~�iÞ
��

where N is the number of events, M ¼ 3 is the number of
hypotheses (signal, continuum, and B �B), and ni is the yield
of a particular hypothesis. P i is the product of one-
dimensional PDFs over the three dimensions ~x, and ~�
represents the fit parameters. All types of B �B background
are included in the B �B component, which is suppressed by
the use of cos�H. The signalmES distribution for theK

�0 !
KS�

0 and K�þ ! Kþ�0 modes is described by a Crystal
Ball function [20], which has two tail parameters that are
fixed to values obtained from MC simulation. For the
K�0 ! Kþ�� and K�þ ! KS�

þ modes, the signal mES

distribution is parametrized as a piecewise function fðxÞ ¼
expf�ðx��Þ2=½�2

L;R þ �L;Rðx��Þ2�g, defined to the

left (L) and right (R) of �, which is the peak position of
the distribution. Here, �L;R and �L;R are the widths and

measures of the tails, respectively, to the left and right of
the peak. We constrain �L ¼ �R, which is floated, and fix
�L;R to values obtained from MC simulation. This same

function also describes the signal �E distribution for each
mode, but with different values for the parameters. In
addition, we allow �L and �R to float independently. The
cos�H distribution for the signal component is modeled by
a second-order polynomial, with all of its parameters float-
ing in the fit. For the continuum hypothesis, themES PDF is
parametrized by an ARGUS function [21], with its shape
parameter floating in the fit. The continuum �E and cos�H
shapes are modeled by a first- or second-order polynomial
with its parameters floating in the fit. Various functional

5.22 5.24 5.26 5.28

2

0
200
400
600
800

1000
1200
1400

-π+K

)2 (GeV/cESM

2
E

ve
n

ts
 / 

4 
M

eV
/c

5.22 5.24 5.26 5.28

2

0
20
40
60
80

100
120
140

0πSK

)2 (GeV/cESM

2
E

ve
n

ts
 / 

4 
M

eV
/c

2

0π+K

)2 (GeV/cESM

2
E

ve
n

ts
 / 

4 
M

eV
/c

5.22 5.24 5.26 5.28
0

50
100
150
200
250
300
350
400
450 2

+πSK

)2 (GeV/cESM

2
E

ve
n

ts
 / 

4 
M

eV
/c

5.22 5.24 5.26 5.28
0

100

200

300

400

500

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

100
200
300
400
500
600
700

-π+K

 E (GeV)∆

E
ve

n
ts

 / 
30

 M
eV 0πSK

 E (GeV)∆

E
ve

n
ts

 / 
30

 M
eV

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

10
20
30
40
50
60
70
80
90

0π+K

 E (GeV)∆

E
ve

n
ts

 / 
30

 M
eV

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

50

100

150

200

250
+πSK

 E (GeV)∆

E
ve

n
ts

 / 
30

 M
eV

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

FIG. 1 (color online). mES and �E projections of the fits. The points are data, the solid line is the fit result, the dotted line is the B �B
background, and the dash-dotted line is the continuum background. The dashed line gives the total (B �B and continuum) contribution to
the background.
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forms are used to describe the B �B background, all parame-
ters of which are taken fromMC simulation and held fixed.
All of the component yields are floating.

Figure 1 and Table I show the results of the likelihood
fit to data. The branching fractions have been obtained
using Bð�ð4SÞ ! B0 �B0Þ ¼ 0:484� 0:006;Bð�ð4SÞ !
BþB�Þ ¼ 0:516� 0:006 [19]. Also shown are the com-
bined branching fractions, which have been calculated
taking into account correlated systematic errors.

The CP asymmetry A is measured in three modes:
K�0 ! Kþ��, K�þ ! Kþ�0, and K�þ ! KS�

þ. In
each of these modes, the final state of the signal B meson
is determined by its final state daughters. The fit is accom-
plished by performing a simultaneous fit to the two flavor
subsamples (K� and �K�) in each mode. All shape parame-
ters are assumed to be flavor independent and the A of
each component is floated in the fit. Table I gives the
individual and combined A results.

Table II lists the sources of systematic uncertainty for
the branching fractions for all four modes. The ‘‘fit model’’
systematic incorporates uncertainties due to imperfect
knowledge of the normalization and shape of the inclusive
B ! Xs� spectra, and the choice of fixed parameters. The
‘‘signal PDF bias’’ systematic uncertainty characterizes
any bias resulting from correlations among the three ob-
servables, or incorrect modeling of the signal PDFs. The
remaining sources of error on the signal efficiency are
studied using control samples in the data. From all of these
studies, we derive signal efficiency correction factors and

associated uncertainties. The total corrections are 0.953,
0.897, 0.919, and 0.936 for the K�0 ! Kþ��, K�0 !
KS�

0, K�þ ! Kþ�0, and K�þ ! KS�
þ modes, respec-

tively. The systematic error on A comes entirely from the
hadronic interaction of the final state mesons with the
detector material. This can cause asymmetries in tracking
efficiency, which is studied using existing hadronic inter-
action data, and in particle identification, which is studied
using a D�þ ! D0�þðD0 ! K��þÞ control sample. The
D�þ control sample gives a shift of �0:33% for K’s and
þ0:03% for �’s, while the hadronic data give a shift of
�0:38% for K’s and þ0:02% for �’s. The systematic
errors for the isospin asymmetry are calculated from the
branching fractions, taking into account correlated system-
atic errors.
We combine the branching fractions and the ratio of the

Bþ and B0 lifetime 	þ=	0 ¼ 1:071� 0:009 [19] to obtain
the isospin asymmetry �0� ¼ 0:066� 0:021� 0:022,
which corresponds to 0:017< �0� < 0:116 at the 90%
confidence interval. We also measure AðBþ ! K�þ�Þ ¼
0:018� 0:028� 0:007. The total combined CP asymme-
try is A ¼ �0:003� 0:017� 0:007, with a 90% confi-
dence interval of �0:033<A< 0:028.
Figure 2 shows the relativistic P-wave Breit-Wigner line

shape fit to the K� invariant mass distribution of data
events weighted using the sPlot technique [22] to project
out the signal component. For the K�0 ! KS�

0 and
K�þ ! Kþ�0 modes, we convolve the Breit-Wigner line
shape with a Gaussian with a width of 10 MeV (determined

TABLE I. The signal reconstruction efficiency 
, the fitted signal yield NS, branching fraction, B, and CP asymmetry, A, for each
decay mode. Errors are statistical and systematic, with the exception of 
 and NS, which have only systematic and statistical errors,
respectively.

Mode 
 (%) NS Bð�10�5Þ Combined Bð�10�5Þ A Combined A

Kþ�� 21:8� 0:8 2400:0� 55:4 4:45� 0:10� 0:17
�
4:47� 0:10� 0:16

�0:016� 0:022� 0:007
Ks�

0 13:0� 0:9 256:0� 20:6 4:66� 0:37� 0:35 �
� 0:003� 0:017� 0:007Kþ�0 15:3� 0:8 872:7� 37:6 4:38� 0:19� 0:26

�
4:22� 0:14� 0:16

þ0:040� 0:039� 0:007
Ks�

þ 20:1� 0:7 759:1� 33:8 4:13� 0:18� 0:16 �0:006� 0:041� 0:007

TABLE II. Systematic errors (in %) of the branching fractions.

Mode Kþ�� KS�
0 Kþ�0 KS�

þ

Bð�ð4SÞ ! B0 �B0Þ=Bð�ð4SÞ ! BþB�Þ 1.6 1.6 1.6 1.6

B �B sample size 1.1 1.1 1.1 1.1

Tracking efficiency 1.2 � � � 0.6 0.8

Particle identification 0.6 - 0.6 0.2

Photon selection 2.2 2.2 2.2 2.2

�0 reconstruction - 3.0 3.0 � � �
�0 and � veto 1.0 1.0 1.0 1.0

KS reconstruction � � � 0.7 � � � 0.7

Neural net efficiency 1.5 1.0 1.0 1.0

Fit model 0.8 5.6 3.1 1.7

Signal PDF bias 0.9 2.2 1.6 1.4

Sum in quadrature 3.9 7.5 5.7 4.1
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from MC simulation) to account for detector resolution.
For the K�0 ! Kþ�� and the K�þ ! KS�

þ modes, the
detector resolution is negligible. The results are consistent
with the signal events containing only P-wave K� mesons
and no other K� resonances. We estimate the contribution
from the K�ð1430Þ to the invariant mass regions mKþ�� ,
mKþ�0 , and mKS�

þ defined above by using the measured

values of the branching fractions of B0 ! K�0ð1430Þ� and
Bþ ! K�þð1430Þ� [23]. We find that the contribution is
�1 event or less.

We conclude that, using a sample that is almost 5 times
larger than previously used, we have made considerably
more precise measurements of the B ! K�� decay pro-
cesses than Refs. [2–4]. The measured isospin and CP
asymmetries and branching fractions are consistent with
SM expectations. By tightly constraining these observ-
ables, we have set limits on supersymmetric and other
new physics processes, which can interfere with SM
processes.
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Paris6, Université Denis Diderot-Paris7, F-75252 Paris,
France.
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FIG. 2 (color online). Fit of a single relativistic P-wave Breit-
Wigner line shape (solid line) to the K� invariant mass distri-
bution of the sPlot of data (points). For the K�0 ! KS�

0 and
K�þ ! Kþ�0, the Breit-Wigner is convolved with a Gaussian of
width 10 MeV.
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