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Abstract

The parts of the genome transcribed by a cell or tissue reflect the biological processes and functions it carries out. We
characterized the features of mammalian tissue transcriptomes at the gene level through analysis of RNA deep sequencing
(RNA-Seq) data across human and mouse tissues and cell lines. We observed that roughly 8,000 protein-coding genes were
ubiquitously expressed, contributing to around 75% of all mRNAs by message copy number in most tissues. These mRNAs
encoded proteins that were often intracellular, and tended to be involved in metabolism, transcription, RNA processing or
translation. In contrast, genes for secreted or plasma membrane proteins were generally expressed in only a subset of
tissues. The distribution of expression levels was broad but fairly continuous: no support was found for the concept of
distinct expression classes of genes. Expression estimates that included reads mapping to coding exons only correlated
better with qRT-PCR data than estimates which also included 39 untranslated regions (UTRs). Muscle and liver had the least
complex transcriptomes, in that they expressed predominantly ubiquitous genes and a large fraction of the transcripts came
from a few highly expressed genes, whereas brain, kidney and testis expressed more complex transcriptomes with the vast
majority of genes expressed and relatively small contributions from the most expressed genes. mRNAs expressed in brain
had unusually long 39UTRs, and mean 39UTR length was higher for genes involved in development, morphogenesis and
signal transduction, suggesting added complexity of UTR-based regulation for these genes. Our results support a model in
which variable exterior components feed into a large, densely connected core composed of ubiquitously expressed
intracellular proteins.
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Introduction

A fundamental question in molecular biology is how cells and

tissues differ in gene expression and how those differences specify

biological function. A related question is what part of the cellular

machinery represents housekeeping functions needed by all cells

and how many genes encode such functions. The transcriptomes

of mammalian tissues have been extensively studied using methods

such as reassociation kinetics (Rot) [1], serial analysis of gene

expression (SAGE) [2], microarrays [3,4], and sequencing of

expressed sequence tags (ESTs) and full length transcripts [5].

Reassociation kinetics was used early on to study and compare

global properties of tissue transcriptomes [1,6]. From those studies

it was concluded that ,20,000 mRNAs are expressed in each cell

or tissue, and that roughly 90% of all mRNAs are common

between two tissues, drawing the first conclusions on tissue

transcriptome compositions [7]. Later studies of tissue transcrip-

tomes using SAGE [8] identified ,1,000 ubiquitously expressed

genes (i.e. expressed in all cell types examined) and concluded that

tissue-specific transcripts make up roughly 1% of mRNA mass of

cells. Focusing on colorectal cancer cell lines, for which the deepest

coverage was available, it was estimated that half of all mRNA

transcripts in these cells came from the 623 most highly expressed

genes. Comparing mRNA expression levels across panels of

human and mouse tissues by microarrays, Su and coworkers

identified tissue-specific genes for each tissue, and estimated that

,6% of genes were ubiquitously expressed, and that individual

tissues express 30–40% of all genes [9]. Using additional

microarray data, expression of ,8,000 genes was detected in

each tissue but as few as 1–3% of these were detected in all tissues

[10]. Similar conclusions were drawn from a second mouse tissue

atlas [11] that identified ,1,800 genes as ubiquitously expressed.

Altogether, microarrays and SAGE have been quite successful in

identifying tissue and cell specific genes [8–12]. However, the

discrepancy between estimates of the composition and character-

istics of tissue transcriptomes obtained by microarray and SAGE

methods on the one hand and reassociation kinetics studies on the

other has not been explained.

Deep sequencing of RNAs (RNA-Seq) has recently been used to

quantify gene and alternative isoform expression levels [13–17]. In

RNA-Seq, all RNAs of a sample (or, more often, polyA+ RNAs)

are randomly fragmented, reverse transcribed, ligated to adapters

and then these fragments are sequenced. Gene expression levels

can then be estimated from the number of sequence reads deriving

from each gene [15]. Expression estimates from RNA-Seq are

quantitative over five orders of magnitude and replicates of mouse
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tissues are highly reproducible [13]. Compared to microarrays,

RNA-Seq is more sensitive, both in terms of detection of lowly

expressed and differentially expressed genes [15,18], and expres-

sion values from RNA-Seq correlate better with protein levels

[19]. The greater accuracy and coverage of the expressed

transcriptome makes this method suitable for addressing global

features of transcriptomes.

We recently studied alternative isoform expressions across

tissues using RNA-Seq and found both a very high frequency of

alternative splicing and extensive tissue regulation of the

expression of alternative mRNA isoforms [14]. Here we instead

focused on a gene-centric analysis of transcript composition and

complexity. The highly quantitative nature of RNA-Seq has

motivated us to revisit the longstanding questions regarding the

composition of tissue transcriptomes, as well as the expression of

long non-coding RNAs, the variability in 39UTR length, and the

association between these features and gene function.

Results

Excluding 39 UTR reads yields more accurate gene
expression estimates

We investigated the transcriptomes of a diverse collection of

human and mouse tissues and five breast and breast cancer cell

lines that were recently sequenced at a depth of roughly 20 million

short reads per sample using RNA-Seq protocols (Table S1). Gene

expression was initially estimated by calculating read density as

‘reads per kilobase of exon model per million mapped reads’

(RPKM) [13]. These estimates are typically performed using

common gene annotations (e.g., RefSeq) with the entire annotated

transcript representing the ‘exon model’. These expression level

estimates may however be confounded by the expression of shorter

isoforms due to alternative cleavage and polyadenylation (Figure

S1A and S1B). We found that excluding annotated 39UTRs –

which will sometimes vary between mRNA isoforms as a result of

alternative cleavage and polyadenylation – enabled estimation of

expression levels that correspond more closely with quantitative

RT-PCR measurements (Figure S1C). We noted that removing

the 39UTR from calculation of gene expression yields a .2-fold

change for over one thousand genes (Figure S1D), and that the

effect of 39UTRs on expression estimates does not seem to be a

technical issue caused by secondary structure in the 39UTR

(Figure S2). We therefore advocate excluding UTRs from such

estimates, and all subsequent gene expression estimates described

here excluded 39UTR regions.

Ubiquitous expression of ,8,000 human genes
We next sought to answer how many genes are expressed in a

tissue or cell type. A comparison between the expression levels of

exons and intergenic regions was used to first find a threshold for

detectable expression above background (Figure 1A, algorithm in

Figure S3), yielding a threshold RPKM value of 0.3 which balances

the numbers of false positives and false negatives. For individual

samples, we obtained threshold values between 0.2 and 0.8. As it is

difficult to identify untranscribed DNA regions with confidence

[20,21], it is very possible that the background was overestimated.

Applying the threshold 0.3 RPKM, the number of genes expressed

in most human and mouse tissues varied from 11,000 to 13,000,

corresponding to roughly 60–70% of RefSeq protein-coding genes

(Table 1). These gene number estimates were stable across different

sequencing depths (Figure 1B) and therefore represent bona fide

tissue differences. Testis was a clear outlier, expressing more than

15,000 different genes (84% of RefSeq genes). As many as 7,897

genes (42%) were observed to be expressed in all tissues and cell lines

(Dataset S1). The corresponding number for Ensembl annotation

was 8,214, or 38% of protein-coding genes (Ensembl is an

automated gene annotation system, whereas RefSeq is manually

curated). Each ubiquitous gene was typically expressed at roughly

the same order of magnitude in all tissues, suggesting that there were

few problems with genes being considered ubiquitous when they

were really specific to one or a few tissues but had a leaky, non-

functional expression elsewhere (Figure S4). While we observed

small numbers of reads for 8 genes known to have leaky

transcription [22,23] in several tissues, these genes were all too

weakly or narrowly transcribed outside their main tissue to be

detected as ubiquitous. The estimated number of ubiquitously

expressed genes appeared to plateau as the number of samples used

was increased to the full set of 24 (Figure 1C). The detection

threshold used affects the number of genes detected (Table 1), and

the number of detected ubiquitous genes can vary by up to ,2,000

genes depending on threshold used. The number of samples is large

enough that background is unlikely to cause relatively tissue-specific

genes to be detected in every sample. These differences between

thresholds therefore most likely reflect the presence of low-

abundance RNA species. The number of ubiquitous genes we

detected is much greater than the ,1,000 shared genes identified by

SAGE [8] and the 1–6% of genes from microarrays [9–11], but is in

relatively good agreement with the ,10,000 shared genes estimated

by reassociation kinetics [6] and the 3,140 to 6,909 estimated from

ESTs [24] (the higher number came from a cutoff of presence in 16

out of 18 tissues, used to remedy uneven EST sequencing across

tissues). The increased number of ubiquitously expressed genes

compared to SAGE and microarrays most likely results from the

increased depth of mRNA-Seq data and improved detection of

lowly expressed genes [22]. The number of genes expressed in a

tissue ranged from 11,199 to 15,518 genes (Table 2), so a majority of

the genes expressed in a specific tissue or cell type are ubiquitously

expressed genes. These genes contribute ,75% of the polyA+ RNA

molecules in most tissues (Table 3), although this fraction was higher

in the cancer cell lines, perhaps as a result of their elevated

metabolic rate.

Functions of ubiquitous and non-ubiquitous genes
To characterize the set of ubiquitously expressed genes we had

identified, we looked for functional enrichment compared to genes

expressed only in a subset of the tissues analyzed (hereafter called

non-ubiquitous). The protein products of human ubiquitously

Author Summary

A variety of genes are active within the nuclei of our cells.
Some are needed for the day-to-day maintenance of cell
functions, while others have roles that are more specific to
certain tissues or particular cell types; for example, only the
pancreas produces insulin. As a result, every tissue has its
own profile of gene activity. Since active genes produce
RNA, tissue differences in gene activity can be probed by
characterizing the RNA they contain. Essentially the entire
set of RNAs or ‘transcriptome’ has been sequenced from
various tissues, and we used these data to compare the
degree of specialization of different tissues and to
investigate the set of ‘core’ genes active in every tissue.
A central observation was that there are an abundance of
such core genes, and that these genes account for the
majority of the transcriptome in each tissue. These findings
will aid in the understanding of what makes tissues, and
cell types, different from each other and what each
requires to function.

Tissue Transcriptome Composition
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Figure 1. Functions of ubiquitous genes. (A) False discovery and negative rate for the detection of genes as a function of detection threshold
used, demonstrating how a threshold of 0.3 RPKM was chosen. (B) The number of genes detected (.0.3 RPKM) at different sequencing depths. Each
curve represents a sample. Above 3 million reads the sequence depth matters little for how many genes are detected as expressed. (C) The number of
ubiquitous genes (expressed .0.3 RPKM in all samples) as a function of the number of samples used. Error bars show the standard variation, black
line the mean. (D) The fraction of genes among ubiquitous and other genes with CpG-poor (purple), intermediate (yellow) or CpG-rich (green)
promoters. (E) Illustration of subcellular localizations aligned to protein functional and localization categories for significant categories enriched in
ubiquitously expressed genes (blue) and genes that were only expressed in one or a few tissues (red). For each category we have plotted the fraction
of all genes that were not ubiquitous (the overall fraction of non-ubiquitous genes are shown as a vertical dashed line). Extracellular functions and
membrane functions were highly enriched for non-ubiquitous genes while intracellular functions were dominated by ubiquitous genes. The
categories shown are a subset of all significant categories listed in Dataset S2 and S3.
doi:10.1371/journal.pcbi.1000598.g001

Tissue Transcriptome Composition

PLoS Computational Biology | www.ploscompbiol.org 3 December 2009 | Volume 5 | Issue 12 | e1000598



expressed genes were more likely to have intracellular localization

and to be involved in metabolism and other core cellular functions

such as macromolecule synthesis, general transcription and vesicles

(Figure 1E). Genes that were expressed in only one or a few tissues

were more often secreted or membrane-bound (Figure 1E; Dataset

S2 and S3), suggesting that cellular contacts and communication are

mediated more often by specialized tissue-specific components.

Interestingly, an exception to this inside-outside rule was sequence-

specific DNA binding proteins, which are nuclear yet seldom

ubiquitously expressed. Among these transcription factors we found

that POU, homeobox and forkhead genes had the fewest

ubiquitously expressed members, consistent with roles in specifying

cell and tissue identity [25], whereas e.g. basic-leucine zipper factors

were more often ubiquitous (Table 4). Functional characterization

of housekeeping genes has been done in the past [26,27] (and

indirectly by [28]), with comparable results, although transporters

were found to be relatively tissue-specific in one study [26]. Rather

than looking at ubiquitous expression, that study compared the

mean number of tissues where the genes were expressed, which

could explain the difference. Ubiquitous genes often had CpG

islands near their promoters (Figure 1D), as has been observed

previously for ubiquitous and developmental genes [29]. The set of

ubiquitous genes with CpG-poor promoters were not enriched for

any GO category compared to all ubiquitous genes, nor were those

with CpG-rich promoters. These observations suggest that

ubiquitous expression is a better indicator of housekeeping functions

than promoter CpG content. Together, these analyses suggest that

much of the internal cytoplasmic machinery and most nuclear

functions are common to most or all tissues, and that a large portion

of the differences between tissues lie primarily in expression of

receptors and ligands that mediate communication, and in a subset

of sequence-specific DNA binding transcription factors.

Estimating the fraction of the transcriptome devoted to
specific functions

As RNA-Seq expression measurements are highly quantitative,

we also explored tissue transcriptome composition in terms of

Table 1. Number of expressed and ubiquitous genes for
various minimum expression thresholds.

Threshold RPKM In all 24 samples On average per sample

0.01 10,233 14,885

0.1 9,205 14,011

0.2 8,466 13,327

0.3 7,897 12,859

0.4 7,388 12,489

0.5 6,946 12,170

0.6 6,535 11,887

0.7 6,176 11,633

0.8 5,898 11,401

0.9 5,618 11,189

1 5,361 10,989

2 3,510 9,432

3 2,513 8,340

4 1,931 7,493

5 1,548 6,804

doi:10.1371/journal.pcbi.1000598.t001

Table 2. Number of human genes expressed per tissue.

Tissue/Cell
Number of
genes*

Fraction of
genes*

Ensembl
genes{

Skeletal muscle1 11,276 0.61 11,953

Liver1,3 11,392 0.61 12,191

BT4744 11,844 0.64 12,808

MB4354 11,847 0.64 12,726

HME5 12,084 0.65 12,920

T47D4 12,205 0.66 12,983

Heart 12,209 0.66 13,159

MCF74 12,281 0.66 13,216

Adipose tissue 12,553 0.68 13,503

Colon 13,016 0.70 14,052

Cerebellum2,3 13,132 0.70 14,043

Kidney 13,235 0.71 14,177

Brain1 13,298 0.71 14,107

Breast 13,406 0.72 14,537

Lymph node 13,534 0.73 14,686

Testes 15,518 0.84 16,869

*annotations from RefSeq, protein-coding genes.
{number of protein-coding genes, annotations from Ensembl.
1number of genes detected in mouse: skeletal muscle 11,799; liver 11,201; brain
13,626.

2standard deviation for samples from different individuals: 106.
3mean number for different individuals.
4breast cancer cell line.
5human mammary epithelial cell line.
doi:10.1371/journal.pcbi.1000598.t002

Table 3. Fraction of mRNA pool by copy number from
ubiquitous human genes.

Tissue/Cell Fraction ubiquitous

Liver2 0.31

Heart 0.66

Brain 0.74

HME4 0.75

Breast 0.75

Skeletal muscle 0.76

Cerebellum1,2 0.76

Testes 0.77

Kidney 0.78

Adipose tissue 0.81

Colon 0.82

Lymph node 0.84

T47D3 0.87

MB4353 0.89

MCF73 0.89

BT4743 0.90

1standard deviation for samples from different individuals: 0.01.
2mean number for different individuals.
3breast cancer cell line.
4human mammary epithelial cell line.
doi:10.1371/journal.pcbi.1000598.t003
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mRNA abundance classes [1] and the extent to which mRNA

populations are dominated by a few highly expressed genes. Genes

were sorted according to their expression and the fraction of the

total cellular polyA+ RNA pool devoted to the most highly

expressed genes was determined. This analysis showed that

mRNA expression in both tissues (Figure 2A) and cell lines

(Figure 2B) followed a continuous distribution rather than

separating into distinct abundance classes as reported in previous

studies (e.g. [1,6]).

In muscle and liver transcriptomes, a small number of genes

contributed a large fraction of the total mRNA pool, e.g. the ten

most highly expressed genes in liver and muscle made up roughly

20–40% of the mRNA population. Other tissue transcriptomes

were more complex, with the ten most highly expressed genes

contributing only 5–10% of the mRNAs in brain, kidney and

testis. The remaining tissues had intermediate levels of complexity

(Figure 2A). The breast cancer cell lines had similar or greater

complexity than normal breast tissue (Figure 2B). Biological

replicates in both human and mouse tended to have highly similar

complexity distributions (Figure 2C, 2D). Mouse tissues had

somewhat similar profiles to corresponding human tissues

(Figure 2D), although a much higher expression of several acute-

phase genes in both human liver samples shifted their curves

toward lower complexity compared to mouse liver. We conclude

that kidney, testes and brain tissues have more complex

transcriptomes due to the expression of more genes and with less

dominance of a few highly expressed genes, whereas liver and

muscle tissues are the least complex and express fewer genes, with

more dramatic contributions of highly expressed genes.

We next asked what fractions of total cellular mRNA are

allocated to genes involved in different biological processes across

the different tissues and cell lines. For this purpose, we developed a

tool called FRACT (Functional Relative Allocation of Transcripts)

that assesses relative gene expression from RNA-Seq read density

for arbitrary sets of genes or broad gene ontology (GO) categories

(results for a subset of tissues are shown in Figure 3A). This analysis

provided a perspective on the functional priorities of cells in each

tissue, since allocating a large fraction of the polyA+ RNA content

in a cell (and likely of translational capacity) to one functional

category represents a major investment of cellular resources. For

some categories, including ‘metabolic process’, ‘transport’, and

also ‘regulation of cell proliferation’, FRACT allocation varied

relatively little across the tissues and cell lines (as measured by the

coefficient of variation, CV, of the transcriptome fraction),

consistent with the expected ‘housekeeping’ functions of these

gene categories. Other categories had a far higher fraction of

transcripts allocated to them in one tissue than in others, e.g.

immune response (high in lymph node), muscle contraction, heart

development and electron transport (all high in heart), and signal

transduction and G protein-coupled receptor signaling (both high

in brain). These examples, representing more specialized activities

expected to be of increased importance in the corresponding

tissues, provided a molecular-level validation of the integrity of the

tissue samples and protocol used. In some cases, differences not

readily apparent from the broad GO categorization shown in

Figure 3A, could be detected by finer sub-classification of

categories – an example is shown in Figure 3B.

We also investigated the expression of thousands of large non-

coding RNAs (ncRNAs). These genes were found to contribute a

small fraction of transcripts to polyA+ transcriptomes compared to

mRNAs (Figure 4A) as a result of their considerably lower

expression levels (Figure 4B). These levels are lower than for

mRNAs for all degrees of tissue-specificity (Figure 4C).

Tissue-specific gene expression is fairly well conserved
Muscle and brain tissues from human and mouse were observed

to have similar expression and FRACT distributions (Figure 2D

and data not shown), raising the question of the extent of

conservation of tissue-specific expression patterns. We compared

global gene expression levels between human and mouse tissues

and observed high correlations between expression of orthologous

genes between human and mouse (Pearson correlation 0.76 for

muscle, 0.77 for liver and brain). When different tissues were

compared (e.g. human brain vs. mouse muscle) substantially

weaker correlations were observed (Pearson correlations in the

range 0.47 to 0.61). These observations indicate a fairly strong

overall conservation of gene expression levels between mouse and

man, consistent with previous studies based on microarrays [30].

39 UTR length varies 3-fold between different functional
groups of genes

The lengths of mRNAs were studied by mapping the reads to

coding and untranslated regions. Using RefSeq annotations, the

density of reads in untranslated regions was lower than in coding

regions (Figure 5A), suggesting that expression of mRNAs with

UTRs shorter than or distinct from those annotated in RefSeq is

common. We therefore estimated the lengths of the UTRs as their

relative number of reads to coding regions using the annotated

coding region length. Mouse data from [13] was chosen for this

analysis as this dataset had little 39 bias (Figure S5). In all three

mouse tissues studied, significant negative correlations were

observed between expression level and transcript length (20.31

in liver and muscle, 20.16 in brain; all tissues p,10287), showing

that shorter mRNAs tend to be expressed at higher levels

(Figure 5B). This result agrees with that from reassociation kinetics

data [31]. Weighting each gene by the expression level to obtain

length estimates for the bulk mRNA population in tissues to obtain

the average mRNA length in each tissue, we found that brain

mRNAs have longer 39UTRs on average than liver and muscle

mRNAs, by 300–400 nucleotides (Figure 5C).

To assess the protein functions encoded by transcripts with long

or short UTRs, we calculated the median length of 59 and 39UTRs

of genes associated with each GO biological process category

Table 4. Expression of sequence-specific transcription
factors.

Transcription factor
classification

Number of
genes

Fraction non-
ubiquitous

POU 14 0.93

Homedomain 239 0.89

Forkhead 41 0.78

ETS 28 0.71

Helix-loop-helix 86 0.67

p53 family 42 0.67

Other 152 0.66

Nuclear hormone receptor 47 0.66

Zinc finger, C2H2 623 0.61

High mobility group 39 0.59

IPT/TIG1 17 0.47

Basic-leucine zipper 53 0.42

1IPT: Immunoglobin-like fold shared by Plexins and Transcription factors; TIG:
Transcription factor ImmunoGlobin.

doi:10.1371/journal.pcbi.1000598.t004

Tissue Transcriptome Composition
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(Figure 6B and data not shown). Transcripts coding for proteins

involved in metabolism and RNA processing had the shortest

UTRs (medians below 500 bp), while the longest median UTR

lengths were observed in transcripts encoding proteins involved in

development, morphogenesis and signal transduction (Figure 6A).

The median lengths in the longest categories ranged between 1000

and 1500 nt, i.e. two- to three-fold longer than for typical

metabolism- or RNA processing-associated transcripts. Some of

these differences might reflect an increased role for 39UTR

sequences in localization of proteins to specific membrane

locations, likely to be more common for proteins involved in

signal transduction and morphogenesis than for metabolic or RNA

processing-associated proteins, which are typically cytoplasmic or

nuclear, respectively. These differences could also reflect differ-

ences in the complexity of translational regulation among these

classes of genes.

Discussion

A surprise in our analysis was the large number of ubiquitous

genes found expressed in all tissues and cell lines, and that these

genes account for a majority of the mRNA pool. This pattern

suggests that tissue identity derives less from expression of distinct

sets of genes in different tissues than was previously thought.

Ubiquitous genes can still vary in relative expression levels

between tissues however, and in expression of alternative mRNA

Figure 2. Complexity of tissue transcriptomes. (A) The fraction of all mRNAs derived from the most highly expressed genes for a number of
mouse and human tissues. For example, the 10 most expressed genes in mouse liver contribute 25% of all mRNAs in that tissue. (B) Same as A, but
with cell lines from breast. HME is a transformed cell line from normal mammary epithelium, breast is the normal tissue, the others are breast cancer
cell lines from invasive ductal carcinoma. Gray lines are the tissues in A. (C) Same as B, but with 2 human livers and 6 human cerebellar samples from
different individuals, to illustrate the degree of reproducibility in this type of plot and little inter-individual variation. (D) Same as B, but with three
tissues from mouse.
doi:10.1371/journal.pcbi.1000598.g002

Tissue Transcriptome Composition
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isoforms [14]. Although a still limited set of tissue and cell lines was

available for this meta-analysis (24 in total), the observation

appears robust to inclusion of additional tissues (Figure 1C). Many

genes had a low and rather constant expression across tissues. This

could mean our expression detection was affected by subpopula-

tions of cells, limiting the extent our conclusions can be

extrapolated to single cells, but it could also indicate the existence

of a large population of lowly but universally expressed genes. One

subpopulation that could potentially impact these estimates would

be organism-wide cell types. For example, blood-related cells may

be found in all vascularized tissues and genes specific to these cells

may be detected as ubiquitous. Our study limited this effect by

requiring ubiquitous genes to also be detected in cell lines. Future

analyses of pure cell populations could definitely assess the

contributions of common cell types. When single-cell transcrip-

tomes (like [32]) are available for multiple cell types, it will be

possible to identify the core set of genes expressed in every

mammalian cell. Still, our analyses of tissue transcriptomes points

to a higher number of core genes even in individual cells than

previously inferred.

Transcriptome complexity varied substantially across tissues,

with brain, kidney and testis having higher complexity in that they

expressed more genes and had more diverse mRNA populations.

This increased transcriptome complexity may stem from the

presence of more heterogeneous cell types in brain and testis or

from a need for more diverse protein repertoires. The lower

Figure 3. FRACT analysis of tissue transcriptomes. (A) Pie graphs show estimated fraction of cellular transcripts deriving from genes belonging
to a set of top-level Gene Ontology Biological Process categories for 7 human tissues and 1 cell line. Fractions were estimated from read density
(RPKM) of Ensembl transcripts for each gene. Names of categories, distribution of transcriptome fraction across the samples (each line is a sample),
and the coefficients of variation are shown at right. Biological processes with significantly higher or lower densities in individual tissues and cell lines
are denoted by arrows. (B) FRACT analysis of sub-categories of the top-level ‘Development’ category in brain and testes.
doi:10.1371/journal.pcbi.1000598.g003

Tissue Transcriptome Composition
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complexity observed in liver, muscle and heart presumably reflects

more specialized functions of these tissues. Our FRACT analysis

estimated the fraction of mRNA populations devoted to biological

processes that are more specific for muscle and liver cells, such as

muscle contraction, metabolism, electron transport and acute-

phase response. At this point we have only static pictures of the

functional allocation of mRNA resources across tissues and cell

lines. Following the dynamic regulation of mRNA allocations

during developmental or disease progression would therefore be of

great interest, and might lead to robust gene expression signatures

that are diagnostic of cellular state.

Many studies (e.g. [33,34]) cite the existence of three distinct

abundance classes of mRNAs, originally observed by reassociation

kinetics [1,6] (reviewed in [7]). Although we detected mRNA

expression levels that varied across several orders of magnitude, we

observed no separation of mRNAs into distinct expression level

classes, instead finding a continuum of expression levels. Similarly,

no separation into distinct expression classes was observed in

SAGE data (Figure 4 in [35]), although the authors discussed the

larger impact of sequencing errors. This discrepancy with

reassociation kinetics analyses may result from the limited number

of data points used in these earlier studies, in conjunction with line

fitting algorithms that could artificially add inflection points [1,36].

Previous studies using ESTs and microarrays have found a bias

towards the usage of longer 39UTRs in brain tissues [14,37] and

found that 39UTR length can be dynamically regulated in

response to activating and mitogenic signals [38]. The short read

sequencing data allowed us to estimate the average lengths of

transcripts in different tissues and we found that brain expressed

mRNAs with 39UTRs 300–400 bp longer on average than in

other tissues. An important factor seems to be the brain-specific

expression of genes with long 39UTRs (data not shown). Perhaps

this is required in a tissue where many mRNAs are transported far

away from the nuclei, or the variety among neurons requires a

large regulatory capacity housed in the UTRs. Interestingly,

transcripts coding for specific protein functions seem to require

longer 39UTRs and 59UTRs, including proteins involved in axon

guidance which have on average almost three times the UTR

length of ribosome biogenesis genes [39], suggesting extensive

UTR-based regulation, e.g. of translation and/or mRNA

localization, in this class of genes [40,41].

It was striking how many protein-coding genes were expressed

in all samples studied, even including many transcription factors.

This pattern could help in identifying determinants of cell identity

and responses, as ubiquitous genes are less interesting candidates

and could be discarded or separated when clustering samples by

gene expression. It could also make it easier to select candidate

disease genes after genetic linkage or association studies as

ubiquitous genes are less involved in hereditary diseases [42].

Furthermore, it accentuates the importance of cell communication

as a regulatory mechanism, as these components are mostly

restricted to particular tissues and cell types and play a role in

‘calculating’ what state a cell should have [43], information that is

then transmitted through a relatively static interior of the cell.

These components have relatively recent origins as a result of their

importance in multicellular organisms [28,44], and sit on the

periphery of the protein interaction network, conveying informa-

tion directly to and from the center consisting of highly connected

and generally ubiquitously expressed genes [45–47].

Methods

Short-read RNA sequence data
We used short read data from human tissues from [14]

(SRA002355.1) and [18], mouse tissues from [13] (downloaded

from http://woldlab.caltech.edu/html/rnaseq), mouse embryonic

cell and body data from [16] (http://grimmond.imb.uq.edu.au/

mESEB.html) and cerebellum data from non-schizophrenic

humans from [48]. See respective papers for details on library

preparation, sequencing and general read mapping statistics. The

data from [18] were mapped to build hg18 with bowtie [49] with

setting –best and ambiguous reads were removed. Two human

brain samples were used. The sample with lower sequencing depth

from a mix of individuals was used in the comparison with RT-

PCR data, while the deeper sample was used everywhere else.

Gene expression estimates
We mapped read positions onto gene models and estimated

gene densities as the number of reads divided by the number of

read start positions. We used only reads that mapped uniquely to

the genome, and only positions where a read could potentially

map uniquely counted toward exon length. For testing different

ways of measuring gene expression (by removing different parts of

the gene structure), we selected a set of genes with .2 exons and

only one annotated isoform in RefSeq whose expressions had been

measured by the MicroArray Quality Control project [50] in the

same two samples, UHR (universal human reference) RNA and

Figure 4. Non-coding RNA expression. (A) Relative fractions of
polyA+ transcripts from protein-coding RNA (mRNA), curated non-
coding RNA (ncRNA) and lincRNA, presented as the mean across human
tissues. (B) The number of genes above a particular RPKM threshold (in
one or more tissues) as a function of the threshold. (C) The maximum
tissue expression level of mRNAs, curated ncRNAs and lincRNAs as a
function of the number of tissues with detected expression. The
average and standard deviations of the max expression levels in each
group of genes are shown.
doi:10.1371/journal.pcbi.1000598.g004
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Figure 5. Variation in tissue transcriptome structures. (A) Read density in RefSeq gene annotation in the untranslated regions (UTRs) divided
by that in the coding region (CDS) for the samples with least 39 bias (mouse brain, muscle, embryonic stem cell and embryoid body; human adipose
tissue and heart). Vertical lines indicate mean values. (B) Plot of mRNA length against abundance in mouse liver, showing that short mRNAs tend to
have more copies. Pearson correlation and the number of mRNAs plotted are listed. (C) Expression-weighted average lengths of all mRNAs in three
mouse tissues.
doi:10.1371/journal.pcbi.1000598.g005

Figure 6. Associations between UTR lengths and protein functions. (A) The length distribution of 39UTRs for genes in categories with the
shortest respectively longest UTRs. The 25, 50 and 75% percentile lengths for each GO biological process category are presented. (B) The distribution
of median lengths across all GO biological process categories.
doi:10.1371/journal.pcbi.1000598.g006
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brain. Cleavage and polyadenylation sites are from [51,52].

RefSeq or Ensembl gene annotations without 39UTRs were then

used for all gene expression estimates. For genes with multiple

splice variants, we fitted an RPKM value to each variant by least

square regression and used the sum of the expression of all

isoforms (Figure S6). Isoforms that did not overlap directly but

were grouped only through overlap with a third isoform were not

considered to represent the same gene. All Pearson correlations

were calculated based on log-transformed expression. False

discovery and false negative rates were estimated using the

algorithm presented in Figure S3, which seeks to correct for the

presence of spurious reads mapping to non-expressed genes. The

extent of leaky ubiquitous transcription by comparison of the

ubiquitous set of genes to shuffled controls (Figure S4).

Gene ontology and CpG content
For three mouse tissues, we calculated RPKM values in the

same way as had been done for the human ones. Mouse genes

were matched to human orthologs using Entrez Gene. A list of

acute-phase genes was taken from http://www.informatics.jax.

org. DAVID [53] was used for finding enriched gene ontology

categories. Categorization of promoters by CpG content was

performed as described in [29]. Transcription factor annotations

are from [54].

Non-coding RNA
RefSeq gene annotation was used for protein-coding RNA (i.e.

accessions starting with NM_) and curated non-coding RNA

(NR_). We used the liftOver tool from the UCSC genome browser

to obtain human positions for lincRNA regions from [21].

Transcriptome analysis with FRACT
GO annotations for Ensembl transcripts were downloaded from

Ensembl (BioMart). The read density for each transcript in each

tissue was distributed among its annotated GO categories (total

transcript density/no. GO categories for the transcript). GO

categories were sorted by the total transcriptome density across

tissues and cell lines, and the 400 categories with greatest density

(accounting for 94% of total density) were aggregated into 17

broad classes; the remaining categories (6% of total transcriptome

density) were aggregated into an ‘‘other’’ class (see Dataset S4 for

mappings). The total density of transcripts devoted to each class in

each tissue was tabulated. The coefficient of variation in the

fraction of each transcriptome devoted to different classes was

computed, and a Z-score for each class was computed to identify

particular tissues which devote a significantly different fraction of

the transcriptome to particular classes (|Z-score|.2).

Length of the untranslated regions
The UTR lengths were calculated as the number of reads in a

UTR divided by the number of reads in CDS multiplied by the

CDS length. For the expression weighted average gene lengths, we

used the CDS length from Refseq gene annotation, but weighted

according to the expression of each gene. To see the correlation

between mRNA length and abundance, we took the CDS length

from RefSeq annotation for gene isoforms and added UTR length

according to the distribution of reads in the three regions. Only

those expressed above 0.3 RPKM were included, in order to

exclude genes with few reads that could drive an artificial

correlation. To compare 39 bias between samples, i.e. to what

extent genes get more reads as you go in the 39 direction, we

plotted the average read density for all genes (weighted so that

each gene contributed equally) across the coding region and fit a

line y = kx+m where y = read density, x = location along coding

region, and k/m is a measure of 39 bias.

Supporting Information

Table S1 Tissue transcriptome data used

Found at: doi:10.1371/journal.pcbi.1000598.s001 (0.25 MB PDF)

Figure S1 Gene expression estimates using different gene

models

Found at: doi:10.1371/journal.pcbi.1000598.s002 (0.66 MB PDF)

Figure S2 Folding of 39UTR and expression level estimates

Found at: doi:10.1371/journal.pcbi.1000598.s003 (0.19 MB PDF)

Figure S3 Estimation of false discovery and negative rates at

different expression levels

Found at: doi:10.1371/journal.pcbi.1000598.s004 (0.38 MB PDF)

Figure S4 Estimation of false discovery and negative rates at

different expression levels

Found at: doi:10.1371/journal.pcbi.1000598.s005 (0.24 MB PDF)

Figure S5 Read density across genes

Found at: doi:10.1371/journal.pcbi.1000598.s006 (0.17 MB PDF)

Figure S6 Gene expression for genes with multiple mRNA

isoforms

Found at: doi:10.1371/journal.pcbi.1000598.s007 (0.19 MB PDF)

Dataset S1 Ubiquitously expressed human genes

Found at: doi:10.1371/journal.pcbi.1000598.s008 (0.45 MB XLS)

Dataset S2 Enriched gene ontology categories among ubiqui-

tous genes

Found at: doi:10.1371/journal.pcbi.1000598.s009 (0.16 MB XLS)

Dataset S3 Enriched gene ontology categories among non-

ubiquitous genes

Found at: doi:10.1371/journal.pcbi.1000598.s010 (0.14 MB XLS)

Dataset S4 Functional Relative Allocation of Transcripts

Found at: doi:10.1371/journal.pcbi.1000598.s011 (0.17 MB XLS)
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