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Abstract

Building on an idea in Abadie and Gardeazabal (2003), this article investi-
gates the application of synthetic control methods to comparative case studies.
We discuss the advantages of these methods and apply them to study the ef-
fects of Proposition 99, a large-scale tobacco control program that California
implemented in 1988. We demonstrate that following Proposition 99 tobacco
consumption fell markedly in California relative to a comparable synthetic con-
trol region. We estimate that by the year 2000 annual per capita cigarette sales
in California were about 26 packs lower than what they would have been in the
absence of Proposition 99. Using new inferential methods proposed in this ar-
ticle, we demonstrate the significance of our estimates. Given that many policy
interventions and events of interest in social sciences take place at an aggregate
level (countries, regions, cities, etc.) and affect a small number of aggregate
units, the potential applicability of synthetic control methods to comparative
case studies is very large, especially in situations where traditional regression
methods are not appropriate.
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I. Introduction

Social scientists are often interested in the effects of events or policy interventions that take

place at an aggregate level and affect aggregate entities, such as firms, schools, or geographic

or administrative areas (countries, regions, cities, etc.). To estimate the effects of these

events or interventions, researchers often use comparative case studies. In comparative

case studies, researchers estimate the evolution of aggregate outcomes (such as mortality

rates, average income, crime rates, etc.) for a unit affected by a particular occurrence of

the event or intervention of interest and compare it to the evolution of the same aggregates

estimated for some control group of unaffected units. Card (1990) studies the impact

of the 1980 Mariel Boatlift, a large and sudden Cuban migratory influx in Miami, using

other cities in the southern United States as a comparison group. In a well-known study

of the effects of minimum wages on employment, Card and Krueger (1994) compare the

evolution of employment in fast-food restaurants in New Jersey and its neighboring state

Pennsylvania around the time of an increase in New Jersey’s minimum wage. Abadie and

Gardeazabal (2003) estimate the effects of the terrorist conflict in the Basque Country on

the Basque economy using other Spanish regions as a comparison group.

Comparing the evolution of an aggregate outcome (e.g., state-level crime rate) between

a unit affected by the event or intervention of interest and a set of unaffected units requires

only aggregate data, which are often available. However, when data are not available

at the same level of aggregation as the outcome of interest, information on a sample of

disaggregated units can sometimes be used to estimate the aggregate outcomes of interest

(like in Card, 1990, and Card and Krueger, 1994).

Given the widespread availability of aggregate/macro data (for example, at the school,

city, or region level), and the fact that many policy interventions and events of interest

in the social sciences take place at an aggregate level, comparative case study research

has broad potential. However, comparative case study research remains limited in the

social sciences, perhaps because its empirical implementation is subject to two elusive

problems. First, in comparative case studies there is typically some degree of ambiguity
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about how comparison units are chosen. Researchers often select comparison groups on

the basis of subjective measures of affinity between affected and unaffected units. Second,

comparative case studies typically employ data on a sample of disaggregated units and

inferential techniques that measure only uncertainty about the aggregate values of the data

in the population. Uncertainty about the values of aggregate variables can be eliminated

completely if aggregate data are available. However, the availability of aggregate data does

not imply that the effect of the event or intervention of interest can be estimated without

error. Even if aggregate data are employed, there remains uncertainty about the ability

of the control group to reproduce the counterfactual outcome trajectory that the affected

units would have experienced in the absence of the intervention or event of interest. This

type of uncertainty is not reflected by the standard errors constructed with traditional

inferential techniques for comparative case studies.

This article addresses current methodological shortcomings of case study analysis. We

advocate the use of data-driven procedures to construct suitable comparison groups, as in

Abadie and Gardeazabal (2003). Data-driven procedures reduce discretion in the choice

of the comparison control units, forcing researchers to demonstrate the affinities between

the affected and unaffected units using observed quantifiable characteristics. In practice,

it is often difficult to find a single unexposed unit that approximates the most relevant

characteristics of the unit(s) exposed to the event of interest. The idea behind the synthetic

control approach is that a combination of units often provides a better comparison for the

unit exposed to the intervention than any single unit alone. For example, in their study of

the economic impact of terrorism in the Basque Country, Abadie and Gardeazabal (2003)

use a combination of two Spanish regions to approximate the economic growth that the

Basque Country would have experienced in the absence of terrorism. Card (1990) implicitly

uses a combination of cities in the southern United States to approximate the evolution

that the Miami labor market would have experienced in the absence of the Mariel Boatlift.

Relative to traditional regression methods, transparency and safeguard against extrap-

olation are two attractive features of the synthetic control method. Because a synthetic
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control is a weighted average of the available control units, the synthetic control method

makes explicit (1) the relative contribution of each control unit to the counterfactual of

interest; and (2) the similarities (or lack thereof) between the unit affected by the event

or intervention of interest and the synthetic control, in terms of pre-intervention outcomes

and other predictors of post-intervention outcomes. Because the weights can be restricted

to be positive and sum to one, the synthetic control method provides a safeguard against

extrapolation.

In addition, because the choice of a synthetic control does not require access to post-

intervention outcomes, the synthetic control method allows researchers to decide on study

design without knowing how those decisions will affect the conclusions of their studies.

Rubin (2001) and others have advocated that the ability to make decisions on research

design while remaining blind to how each particular decision affects the conclusions of the

study is an important device for promoting research honesty in observational studies.

We describe a simple model that justifies the synthetic control approach. The model

extends the traditional linear panel data (difference-in-differences) framework, allowing that

the effects of unobserved variables on the outcome vary with time. In addition, we propose

a new method to perform inferential exercises about the effects of the event or intervention

of interest. The inferential exercises proposed in this article produce potentially informative

inference regardless of the number of available comparison units, the number of available

time periods, and the level of aggregation of the data.

We apply the synthetic control method to study the effects of California’s Proposition

99, a large-scale tobacco control program implemented in California in 1988. We demon-

strate that following the passage of Proposition 99 tobacco consumption fell markedly in

California relative to a comparable synthetic control region. We estimate that by the year

2000 annual per capita cigarette sales in California were about 26 packs lower than what

they would have been in the absence of Proposition 99. Using new inferential methods

proposed in this article, we demonstrate the significance of our estimates.

The rest of the article is organized as follows. Section II describes the main ideas behind
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the synthetic control approach to comparative case studies of aggregate events. In section

III we apply synthetic control methods to estimate the effect of California’s Proposition

99. Section IV concludes. Appendix A lists the data sources for the application in section

III. Appendix B contains technical details.

II. Synthetic Control Methods for Comparative Case Studies

A. Comparative Case Studies

Case studies focus on particular occurrences of events or interventions of interest. Often,

the motivation behind case studies is to detect the effects of an event or policy intervention

on some outcome of interest by focusing on a particular instance in which the magnitude

of the event or intervention is large relative to other determinants of the outcome, or in

which identification of the effects of interest is facilitated by some other characteristic

of the intervention. In comparative case studies, researchers compare one or more units

exposed to the event or intervention of interest to one or more unexposed units. Therefore,

comparative case studies are only feasible when some units are exposed and others are not

(or when their levels of exposure differ notably).

To simplify the exposition, we proceed as if only one unit or region is subject to the in-

tervention of interest (otherwise, we could first aggregate the data from the regions exposed

to the intervention). In addition, we adopt the terms “region” or “unit” and “intervention”

or “treatment”, which can be substituted for “country”, “state”, “city”, etc. and “event”,

“shock”, “law”, etc., respectively for specific applications.

B. A Motivating Model

The following simple model provides a rationale for the use of synthetic control methods

in comparative case study research. Suppose that we observe J + 1 regions. Without

loss of generality, suppose also that only the first region is exposed to the intervention

of interest, so that we have J remaining regions as potential controls. Borrowing from

the statistical matching literature, we refer to the set of potential controls as the “donor

pool”. Also without loss of generality and to simplify notation, assume that the first region
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is uninterruptedly exposed to the intervention of interest after some initial intervention

period.

Let Y N
it be the outcome that would be observed for region i at time t in the absence

of the intervention, for units i = 1, . . . , J + 1, and time periods t = 1, . . . , T . Let T0 be

the number of pre-intervention periods, with 1 ≤ T0 < T . Let Y I
it be the outcome that

would be observed for unit i at time t if unit i is exposed to the intervention in periods

T0 + 1 to T . We assume that the intervention has no effect on the outcome before the

implementation period, so for t ∈ {1, . . . , T0} and all i ∈ {1, . . . , N}, we have that Y I
it = Y N

it .

In practice, interventions may have an impact prior to their implementation (for example,

via anticipation effects). In those cases, T0 could be redefined to be the first period in

which the outcome may possibly react to the intervention. Implicit in our notation is the

usual assumption of no interference between units (see Rosenbaum, 2007, for a detailed

discussion of the assumption of no interference between units). That is, we assume that

outcomes of the untreated units are not affected by the intervention implemented in the

treated unit. In section III we discuss this assumption in the context of our empirical

investigation.

Let αit = Y I
it − Y N

it be the effect of the intervention for unit i at time t, and let Dit

be an indicator that takes value one if unit i is exposed to the intervention at time t, and

value zero otherwise. The observed outcome for unit i at time t is

Yit = Y N
it + αitDit.

Because only the first region (region “one”) is exposed to the intervention and only after

period T0 (with 1 ≤ T0 < T ), we have that:

Dit =

{
1 if i = 1 and t > T0,
0 otherwise.

We aim to estimate (α1T0+1, . . . , α1T ). For t > T0,

α1t = Y I
1t − Y N

1t = Y1t − Y N
1t .

Because Y I
1t is observed, to estimate α1t we just need to estimate Y N

1t . Suppose that Y N
it is
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given by a factor model:

Y N
it = δt + θtZi + λtµi + εit, (1)

where δt is an unknown common factor with constant factor loadings across units, Zi is

a (r × 1) vector of observed covariates (not affected by the intervention), θt is a (1 × r)

vector of unknown parameters, λt is a (1 × F ) vector of unobserved common factors, µi

is an (F × 1) vector of unknown factor loadings, and the error terms εit are unobserved

transitory shocks at the region level with zero mean.

Consider a (J × 1) vector of weights W = (w2, . . . , wJ+1)
′ such that wj ≥ 0 for j =

2, . . . , J + 1 and w2 + · · · + wJ+1 = 1. Each particular value of the vector W represents a

potential synthetic control, that is, a particular weighted average of control regions. The

value of the outcome variable for each synthetic control indexed by W is:

J+1∑
j=2

wjYjt = δt + θt

J+1∑
j=2

wjZj + λt

J+1∑
j=2

wjµj +
J+1∑
j=2

wjεjt.

Suppose that there are (w∗
2, . . . , w

∗
J+1) such that:

J+1∑
j=2

w∗
jYj1 = Y11, . . . ,

J+1∑
j=2

w∗
jYjT0 = Y1T0 , and

J+1∑
j=2

w∗
jZj = Z1. (2)

In Appendix B, we prove that if
∑T0

t=1 λ′tλt is non-singular, then,

Y N
1t −

J+1∑
j=2

w∗
jYjt =

J+1∑
j=2

wj

T0∑
s=1

λt

(
T0∑

n=1

λ′nλn

)−1

λ′s(εjs − ε1s)−
J+1∑
j=2

w∗
j (εjt − ε1t). (3)

In Appendix B we prove also that, under standard conditions, the average of the right hand

side of equation (3) will be close to zero if the number of pre-intervention periods is large

relative to the scale of the transitory shocks. This suggests using

α̂1t = Y1t −
J+1∑
j=2

w∗
jYjt

for t ∈ {T0 + 1, . . . , T} as an estimator of α1t.

Equation (2) can hold exactly only if (Y11, . . . , Y1 T0 , Z
′
1) belongs to the convex hull of

{(Y21, . . . , Y2 T0 , Z
′
2), . . . , (YJ+11, . . . , YJ+1 T0 , Z

′
J+1)}. In practice, it is often the case that no
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set of weights exists such that equation (2) holds exactly in the data. Then, the synthetic

control region is selected so that equation (2) holds approximately. In some cases, it may not

even be possible to obtain a weighted combination of untreated units such that equation

(3) holds approximately. This would be the case if (Y11, . . . , Y1 T0 , Z
′
1) falls far from the

convex hull of {(Y21, . . . , Y2 T0 , Z
′
2), . . . , (YJ+1 1, . . . , YJ+1 T0 , Z

′
J+1)}. Notice, however, that

the magnitude of such discrepancy can be calculated for each particular application. So

for each particular application, the analyst can decide if the characteristics of the treated

unit are sufficiently matched by the synthetic control. In some instances, the fit many be

poor and then we would not recommend using a synthetic control.

Even if there is a synthetic control that provides a good fit for the treated units, inter-

polation biases may be large if the simple linear model presented in this section does not

hold over the entire set of regions in any particular sample. Researchers trying to minimize

biases caused by interpolating across regions with very different characteristics may restrict

the donor pool to regions with similar characteristics to the region exposed to the event or

intervention of interest.

Notice that, even if taken at face value, equation (1) generalizes the usual difference-

in-differences (fixed-effects) model that is often applied in empirical studies in the social

sciences. The traditional difference-in-differences (fixed-effects) model can be obtained if

we impose that λt in equation (1) is constant for all t. That is, the difference-in-differences

model allows for the presence of unobserved confounders but restricts the effect of those

confounders to be constant in time, so they can be eliminated by taking time differences.

In contrast, the factor model presented in this section allows the effects of confounding

unobserved characteristics to vary with time. Under this model, taking time differences

does not eliminate the unobserved confounders, µj. However, a synthetic control such that

J+1∑
j=2

w∗
jZj = Z1 and

J+1∑
j=2

w∗
jµj = µ1, (4)

would provide an unbiased estimator of Y N
1t . Choosing a synthetic control in this manner

is, of course, not feasible because µ1, . . . , µJ+1 are not observed. However, under fairly

standard conditions (see Appendix B), the factor model in equation (1) implies that a
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synthetic control can fit Z1 and a long set of pre-intervention outcomes, Y11, . . . , Y1T0 , only

as long as it fits Z1 and µ1, so equation (4) holds approximately.

Synthetic controls can provide useful estimates in more general contexts than the factor

model considered thus far. Consider, for example, the following autoregressive model with

time-varying coefficients:

Y N
i t+1 = αt Y

N
i t + βt+1 Zi t+1 + ui t+1,

Zi t+1 = γt Y
N
i t + Πt Zi t + vi t+1,

(5)

where ui t+1 and vi t+1 have mean zero conditional on Ft = {Yj s, Zj s}1≤j≤N, s≤t. Suppose

that we can choose {w∗
j}2≤j≤N such that:

J+1∑
j=2

w∗
j Yj T0 = Y1 T0 , and

J+1∑
j=2

w∗
j Zj T0 = Z1 T0 . (6)

Then, the synthetic control estimator is unbiased even if data for only a single pretreatment

period are available. See Appendix B for details.

C. Implementation

Let W be a (J×1) vector of positive weights that sum to one. That is, W = (w2, . . . , wJ+1)
′

with wj ≥ 0 for j = 2, . . . , J + 1 and w2 + · · · + wJ+1 = 1. Each value of W represents a

weighted average of the available control regions and, therefore, a synthetic control. Notice

that, although we define our synthetic controls as convex combinations of unexposed units,

negative weights or weights larger than one can be used at the cost of allowing extrapolation.

The outcome variable of interest is observed for T periods for the region affected by

the intervention Y1t, (t = 1, . . . , T ) and the unaffected regions Yjt, (j = 2, . . . , J + 1, t =

1, . . . , T ). Let T1 = T − T0 be the number of post-intervention periods. Let Y1 be the

(T1×1) vector of post-intervention outcomes for the exposed region, and Y0 be the (T1×J)

matrix of post-intervention outcomes for the potential control regions.

Let the (T0×1) vector K = (k1, . . . , kT0)
′ define a linear combination of pre-intervention

outcomes: Ȳ K
i =

∑T0

s=1 ksYis. For example, if k1 = k2 = · · · = kT0−1 = 0 and kT0 = 1,

then Ȳ K = YiT0 , the value of the outcome variable in the period immediately prior to
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the intervention. If k1 = k2 = · · · = kT0 = 1/T0, then Ȳ K
i = T−1

0

∑T0

s=1 Yis, the simple

average of the outcome variable for the pre-intervention periods. Consider M of such

linear combinations defined by the vectors K1, . . . , KM . Let X1 = (Z ′
1, Ȳ

K1
1 , . . . , Ȳ KM

1 )′

be a (k × 1) vector of pre-intervention characteristics for the exposed region, with k =

r+M . Similarly, X0 is a (k×J) matrix that contains the same variables for the unaffected

regions. That is, the j-th column of X0 is (Z ′
j, Ȳ

K1
j , . . . , Ȳ KM

j )′. The vector W ∗ is chosen to

minimize some distance (or pseudo-distance), ‖X1−X0W‖, between X1 and X0W , subject

to w2 ≥ 0, . . . , wJ+1 ≥ 0, w2 + · · · + wJ+1 = 1. One obvious choice for Ȳ K1
i , . . . , Ȳ KM

i is

Ȳ K1
i = Yi1, . . . , Ȳ

KT0
i = Yi T0 , that is, the values of the outcome variable for all the available

pre-intervention periods. In practice, however, the computation of the weights w∗
2, . . . , w

∗
J+1

can be simplified by considering only a few linear combinations or pre-intervention outcomes

and checking whether equation (2) holds approximately for the resulting weights.

To measure the discrepancy between X1 and X0W , we will employ ‖X1 − X0W‖V =
√

(X1 −X0W )′V (X1 −X0W ), where V is some (k×k) symmetric and positive semidefinite

matrix, although other choices are also possible. If the relationship between the outcome

variable and the explanatory variables in X1 and X0 is highly nonlinear and the support

of the explanatory variables is large, interpolation biases may be severe. (For example, an

equally weighted combination of a 65%-White 35%-Nonwhite state and a 95%-White 5%-

Nonwhite state will approximate the outcome of a 80%-White 20%-Nonwhite state if that

outcome is approximately linear in the racial composition of the states. However, if the

outcome is highly nonlinear in racial composition, the quality of the approximation may be

poor.) In that case, W ∗ can be chosen to minimize ‖X1−X0W‖ plus a set of penalty terms

specified as increasing functions of the distances between X1 and the corresponding values

for the control units with positive weights in W . Alternatively, as mentioned in section

II.B, interpolation biases can be reduced by restricting the comparison group to units that

are similar to the exposed units in term of the values of X1.

Although our inferential procedures are valid for any choice of V , the choice of V

influences the mean square error of the estimator. The optimal choice of V assigns weights
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to linear combinations of the variables in X0 and X1 to minimize the mean square error

of the synthetic control estimator. Sometimes this choice can be based on subjective

assessments of the predictive power of the variables in X1 and X0. The choice of V can

also be data-driven. One possibility is to choose V such that the resulting synthetic control

region approximates the trajectory of the outcome variable of the affected region in the pre-

intervention periods. Following Abadie and Gardeazabal (2003), in the empirical section

of this article we choose V among positive definite and diagonal matrices such that the

mean squared prediction error of the outcome variable is minimized for the pre-intervention

periods (see Abadie and Gardeazabal, 2003, Appendix B for details). Alternatively, if the

number of available pre-intervention periods in the sample is large enough, researchers may

divide them into an initial training period and a subsequent validation period. Given a

V , W ∗(V ) can be computed using data from the training period. Then, the matrix V can

be chosen to minimize the mean squared prediction error produced by the weights W ∗(V )

during the validation period.

D. Inference

The standard errors commonly reported in regression-based comparative case studies mea-

sure uncertainty about aggregate data. For example, Card (1990) uses data from the U.S.

Current Population Survey to estimate native employment rates in Miami and a set of com-

parison cities around the time of the Mariel Boatlift. Card and Krueger (1994) use data on

a sample of fast-food restaurants in New Jersey and Pennsylvania to estimate the average

number of employees in fast-food restaurants in these two states around the time when

the minimum wage was increased in New Jersey. The standard errors reported in these

studies reflect only the unavailability of aggregate data on employment (for native workers

in Miami and other cities, and in fast-food restaurants in New Jersey and Pennsylvania,

respectively). This mode of inference would logically produce zero standard errors if ag-

gregate data were used for estimation. However, perfect knowledge of aggregate data does

not eliminate all uncertainty about the parameters of interest. That is, even if aggregate

data are used for estimation, in most cases researchers would not believe that there is no
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remaining uncertainty about the value of the parameters of interest. The reason is that not

all uncertainty about the value of the estimated parameters come from lack of knowledge

of aggregate data. In comparative case studies, an additional source of uncertainty derives

from ignorance about the ability of the control group to reproduce the counterfactual of

how the treated unit would have evolved in the absence of the treatment. This type of

uncertainty is present regardless of whether aggregate data are used for estimation or not.

The use of individual micro data, as opposed to aggregate data, only increases the total

amount of uncertainty if the outcome of interest is an aggregate.

Large sample inferential techniques are not well-suited to comparative case studies when

the number of units in the comparison group and the number of periods in the sample are

relatively small. In this article, we propose exact inferential techniques, akin to permutation

tests, to perform inference in comparative case studies. The methods proposed here can be

used whether data are individual (micro) or aggregate (macro), and do not require a large

number of comparison units in the donor pool.

The inferential techniques proposed in this article extend Abadie and Gardeazabal

(2003) in several directions. In their study of the economic effects of terrorism, Abadie

and Gardeazabal (2003) use a synthetic control region to estimate the economic growth

that the Basque Country would have experienced in the absence of terrorism. To assess

the ability of the synthetic control method to reproduce the evolution of a counterfactual

Basque Country without terrorism, Abadie and Gardeazabal (2003) introduce a placebo

study, applying the same techniques to Catalonia, a region similar to the Basque Country

but with a much lower exposure to terrorism. Similar falsification tests have been used to

assess the effects of computers on the distribution of wages (DiNardo and Pischke, 1997),

the effect of the Mariel Boatlift on native unemployment in Miami (Angrist and Krueger,

1999), and the validity of the rational addiction model for cigarette consumption (Auld

and Grootendorst, 2004). This type of “placebo tests” or “falsification tests” appear under

different names in the literature. Angrist and Krueger (1999) discuss empirical tests of

this type under the heading “refutability” tests. Rosenbaum (2002a) discusses the use of
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outcomes “known to be unaffected by the treatment” to evaluate the presence of hidden

biases. Placebo studies are also closely related to uniformity trials in agricultural research

(Cochran, 1937).

In this paper, we extend the idea of a placebo study to produce quantitative inference in

comparative case studies. The idea of the placebo test proposed here is akin to the classic

framework for permutation inference, where the distribution of a test statistic is computed

under random permutations of the sample units’ assignments to the intervention and non-

intervention groups. As in permutation tests, we apply the synthetic control method to

every potential control in our sample. This allows us to assess whether the effect estimated

by the synthetic control for the region affected by the intervention is large relative to the

effect estimated for a region chosen at random. This inferential exercise is exact in the

sense that, regardless of the number of available comparison regions, time periods, and

whether the data are individual or aggregate, it is always possible to calculate the exact

distribution of the estimated effect of the placebo interventions. Notice also that the infer-

ential exercise proposed here produces classical randomization inference for the case where

the intervention is indeed randomized across regions, a rather restrictive condition. More

generally, our inferential exercise examines whether or not the estimated effect of the actual

intervention is large relative to the distribution of the effects estimated for the regions not

exposed to the intervention. This is informative inference if under the hypothesis of no

intervention effect the estimated effect of the intervention is not expected to be abnormal

relative to the distribution of the placebo effects. In this sense, our inferential procedure

is related to that of DiNardo and Pischke (1997) and Auld and Grootendorst (2004). Di-

Nardo and Pischke (1997) compare the wage differential associated with computer skills (as

reflected in the on-the-job computer use) to the wage differentials associated with the use

of other tools (pencils, telephones, calculators) that do not proxy for skills that are scarce

in the job market. Similarly, to assess the validity of the rational addiction model, Auld

and Grootendorst (2004) compare the result of a test of rational addiction for cigarette

consumption to the results of the same test applied to substances that are not considered
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addictive (milk, eggs, oranges, apples).

For cases in which the number of available comparison regions is very small, one can use

the longitudinal dimension of the data to produce placebo studies, as in Bertrand, Duflo,

and Mullainathan (2004) where the dates of the placebo interventions are set at random.

Heckman and Hotz (1989) provides an earlier application of in-time placebos.

Our work is related to recent developments in inferential methods for difference-in-

difference models (see Wooldridge (2003), Athey and Imbens (2006) and Donald and Lang

(2007)) Section 6.5 in Wooldridge and Imbens (2008) provides a recent survey of this

literature. Also closely related to our work, Conley and Taber (2008) propose an alternative

method to do inference in comparative cases studies based on consistent estimation of

the distribution of regression residuals for the case where the number of regions in the

control group is large. Rosenbaum (2002a,b) provides a detailed discussion of the use of

permutation inference in randomized experiments and observational studies.

III. Estimating the Effects of California’s Proposition 99

A. Background

Anti-tobacco legislation has a long history in the United States, dating back at least as

far as 1893, when Washington became the first state to ban the sale of cigarettes. Over

the next 30 years 15 other states followed with similar anti-smoking measures (Dinan

and Heckelman, 2005). These early anti-tobacco laws were primarily motivated by moral

concerns; health issues were secondary (Tate, 1999). Almost 100 years later, after these

early laws had long since been repealed, widespread awareness of smoking’s health risks

launched a new wave of state and federal anti-tobacco laws across the United States and,

ultimately, overseas. Leading this wave, in 1988, was a voter initiative in California known

as Proposition 99, the first modern-time large-scale tobacco control program in the United

States.

Proposition 99 increased California’s cigarette excise tax by 25 cents per pack, ear-

marked the tax revenues to health and anti-smoking education budgets, funded anti-

smoking media campaigns, and spurred local clean indoor-air ordinances throughout the
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state (Siegel, 2002). Upon initial implementation, Proposition 99 produced more than $100

million per year in anti-tobacco projects for schools, communities, counties, and at the state

level. Almost $20 million a year became available for tobacco-related research. As Glantz

and Balbach (2000) put it, “[t]hese programs dwarfed anything that any other state or the

federal government had ever done on tobacco.”

Proposition 99 triggered a wave of local clean-air ordinances in California. Before

Proposition 99 no city or town in California required restaurants to be 100 percent smoke-

free. From 1989 to 2000 approximately 140 such laws were passed (Siegel, 2002). By 1993

local ordinances prohibiting smoking in the workplace protected nearly two-thirds of the

workers in California (Glantz and Balbach, 2000). In 1994 the State of California passed

additional legislation that banned smoking in enclosed workplaces. By 1996 more than 90

percent of California workers were covered by a smoke-free workplace policy (Siegel, 2002).

Non-smokers’ rights advocates view the wave of local ordinances passed under the impetus

of Proposition 99 as an important step in the effort to undercut the then existing social

support network for tobacco use in California (Glantz and Balbach, 2000).

The tobacco industry responded to Proposition 99 and the spread of clean-air ordinances

by increasing its political activity in California at both the state and local levels. Tobacco

lobby groups spent 10 times as much money in California in 1991-1992 as they had spent

in 1985-1986 (Begay et al., 1993). In addition, after the passage of Proposition 99, tobacco

companies increased promotional expenditures in California (Siegel, 2002).

In 1991 California passed Assembly Bill 99, a new piece of legislation implementing

Proposition 99. Contrary to the original mandate of Proposition 99, Assembly Bill 99

diverted a significant fraction of Proposition 99 tobacco tax revenues into medical services

with little or no connection to tobacco (Glantz and Balbach, 2000). Also in 1991 a new

governor began to exert increasing control over California’s anti-smoking media campaign.

In 1992 Governor Pete Wilson appointed a new Department of Health Services director and

halted the media campaign, which provoked a lawsuit by the American Lung Association

(ALA). The ALA won the suit and the campaign was back by the end of 1992, although
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with a reduced budget (Siegel, 2002).

Even so, Proposition 99 was widely perceived to have successfully cut smoking in Cal-

ifornia. From the passage of Proposition 99 through 1999 adult smoking prevalence fell

in California by more than 30 percent, youth smoking levels dropped to the lowest in the

country, and per capita cigarette consumption more than halved (California Department of

Health Services, 2006). Prior to 1988 per capita cigarette consumption in California trailed

the national average by 22.5 packs; ten years later per capita consumption was 40.4 packs

lower than the national average (Siegel, 2002).

Following early reports of California’s success with Proposition 99, other states adopted

similar policies. In 1993 Massachusetts raised taxes on cigarettes from 26 to 51 cents per

pack to fund a Health Protection Fund for smoking prevention and cessation programs.

Similar laws passed in Arizona in 1994, with a 50-cent tax increase, and Oregon in 1996,

where the tax on cigarettes rose from 38 to 68 cents per pack (Siegel, 2002). In November

1998 the tobacco companies signed a $206 billion Master Settlement Agreement that led the

industry to impose an immediate 45-cent increase in cigarette prices nationwide (Capehart,

2001). As of April 20, 2009, 30 states, the District of Columbia, and 792 municipalities

across the country had laws in effect requiring 100 percent smoke-free workplaces, bars, or

restaurants (ANRF, 2009).

Previous studies have investigated the impact of Proposition 99 on smoking prevalence

using a variety of methods. Breslow and Johnson (1993), Glantz (1993), and Pierce et al.

(1998) show that cigarette consumption in California after the passage of Proposition 99

in 1988 was lower than the average national trend and lower than the linearly extrapolated

pre-program trend in California. Hu, Sung and Keeler (1995) use time-series regression

to disaggregate the effects of Proposition 99’s tax hike and media campaign on per capita

cigarette sales.

A related literature has studied the effect of smoking bans on smoking prevalence.

Woodruff et al. (1993) show that smoking prevalence in California in 1990 was lower among

workers affected by workplace smoking restrictions than among unaffected workers. More
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generally, Evans, Farrelly, and Montgomery, (1999), Farrelly, Evans, and Sfekas (1999),

and Longo et al. (2001) have provided evidence on the effectiveness of workplace smoking

bans.

In a study closely related to the analysis in this section, Fichtenberg and Glantz (2000)

use least-squares regression to predict smoking rates in California as a function of the

smoking rate for the rest of the United States. The regressions in Fichtenberg and Glantz

(2000) estimate the effect of Proposition 99 as a time trend in per capita cigarette con-

sumption starting after the implementation of Proposition 99 in 1989. Fichtenberg and

Glantz (2000) allow also for a change in this trend after 1992, when the anti-tobacco media

campaign was first temporally eliminated and then reestablished but with reduced funds.

Using this regression specification, Fichtenberg and Glantz (2000) estimate that during

the period 1989-1992 Proposition 99 accelerated the rate of decline of per capita cigarette

consumption in California by 2.72 packs per year. Due to program cut-backs after 1992,

Fichtenberg and Glantz (2000) estimate that during the period 1993-1997 Proposition 99

accelerated the rate of decline of per capita cigarette consumption in California by only

0.67 packs per year.

B. Data and Sample

We use annual state-level panel data for the period 1970-2000. Proposition 99 was passed

in November 1988, giving us 18 years of pre-intervention data. Our sample period begins

in 1970 because it is the first year for which data on cigarette sales are available for all

our control states. It ends in 2000 because at about this time anti-tobacco measures were

implemented across many states, invalidating them as potential control units. Moreover, a

decade-long period after the passage of Proposition 99 seems like a reasonable limit on the

span of plausible prediction of the effect of this intervention.

Recall that the synthetic California is constructed as a weighted average of potential

control states, with weights chosen so that the resulting synthetic California best reproduces

the values of a set of predictors of cigarette consumption in California before the passage

of Proposition 99. Because the synthetic California is meant to reproduce the smoking
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rates that would have been observed for California in the absence of Proposition 99, we

discard from the donor pool states that adopted some other large-scale tobacco control

program during our sample period. Four states (Massachusetts, Arizona, Oregon, and

Florida) introduced formal statewide tobacco control programs in the 1989-2000 period and

they are excluded from the donor pool. We also discard all states that raised their state

cigarette taxes by 50 cents or more over the 1989 to 2000 period (Alaska, Hawaii, Maryland,

Michigan, New Jersey, New York, Washington). Notice that, even if smaller tax increases

substantially reduced smoking in any of the control states that gets assigned a positive

weight in the synthetic control, this should if anything attenuate the treatment effect

estimate that we obtain for California. Finally, we also exclude the District of Columbia

from our sample. Our donor pool includes the remaining 38 states. Our results are robust,

however, to the inclusion of the discarded states.

Our outcome variable of interest is annual per capita cigarette consumption at the state

level, measured in our dataset as per capita cigarette sales in packs. We obtained these

data from Orzechowski and Walker (2005) where they are constructed using information

on state-level tax revenues on cigarettes sales. This is the most widely used indicator

in the tobacco research literature, available for a much longer time-period than survey-

based measures of smoking prevalence. A disadvantage of tax-revenue-based data relative

to survey data on smoking prevalence is that the former is affected by cigarette smuggling

across tax jurisdictions. We discuss this issue later in the section. We include in X1 and X0

the values of predictors of smoking prevalence for California and the 38 potential controls,

respectively. Our predictors of smoking prevalence are: average retail price of cigarettes,

per capita state personal income (logged), the percentage of the population age 15-24, and

per capita beer consumption. These variables are averaged over the 1980-1988 period and

augmented by adding three years of lagged smoking consumption (1975, 1980, and 1988).

Appendix A provides data sources.

Using the techniques described in Section II, we construct a synthetic California that

mirrors the values of the predictors of cigarette consumption in California before the pas-
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sage of Proposition 99. We estimate the effect of Proposition 99 on per capita cigarette

consumption as the difference in cigarette consumption levels between California and its

synthetic versions in the years after Proposition 99 was passed. We then perform a series

of placebo studies that confirm that our estimated effects for California are unusually large

relative to the distribution of the estimate that we obtain when we apply the same analysis

to all states in the donor pool.

C. Results

Figure 1 plots the trends in per capita cigarette consumption in California and the rest of

the United States. As this figure suggests, the rest of the United States may not provide

a suitable comparison group for California to study the effects of Proposition 99 on per

capita smoking. Even before the passage of Proposition 99 the time series of cigarette

consumption in California and in the rest of the United States differed notably. Levels

of cigarette consumption were similar in California and the rest of the United States in

the early 1970’s. Trends began to diverge in the late 1970’s, when California’s cigarette

consumption peaked and began to decline while consumption in the rest of the United

States was still rising. Cigarette sales declined in the 1980’s, but with larger decreases in

California than in the rest of the United States. In 1988, the year Proposition 99 passed,

cigarette consumption was about 27 percent higher in the rest of the United States relative

to California. Following the law’s passage, cigarette consumption in California continued

to decline. To evaluate the effect of Proposition 99 on cigarette smoking in California, the

central question is how cigarette consumption would have evolved in California after 1988

in the absence of Proposition 99. The synthetic control method provides a systematic way

to estimate this counterfactual.

As explained above, we construct the synthetic California as the convex combination of

states in the donor pool that most closely resembled California in terms of pre-Proposition

99 values of smoking prevalence predictors. The results are displayed in Table 1, which com-

pares the pre-treatment characteristics of the actual California with that of the synthetic

California, as well as with the population-weighted average of the 38 states in the donor
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pool. We see that the average of states that did not implement a large-scale tobacco-control

program in 1989-2000 does not seem to provide a suitable control group for California. In

particular, prior to the passage of Proposition 99 average beer consumption and cigarette

retail prices were lower in the average of the 38 control states than in California. Moreover,

prior to the passage of Proposition 99 average cigarette sales per capita were substantially

higher on average in the 38 control states than in California. In contrast, the synthetic Cal-

ifornia accurately reproduces the values that smoking prevalence and smoking prevalence

predictor variables had in California prior to the passage of Proposition 99.

Table 1 highlights an important feature of synthetic control estimators. Similar to

matching estimators, the synthetic control method forces the researcher to demonstrate

the affinity between the region exposed to the intervention of interest and the regions in

the donor pool. As a result, the synthetic control method safeguards against estimation of

“extreme counterfactuals,” that is, those counterfactuals that fall far outside the convex

hull of the data (King and Zheng, 2006). As explained in section II.C, we chose V among

all positive definite and diagonal matrices to minimize the mean squared prediction error of

per capita cigarette sales in California during the pre-Proposition 99 period. The resulting

value of the diagonal element of V associated to the log per capita GDP variable is very

small, which indicates that, given the other variables in Table 1, log GDP per capita does

not have substantial power predicting the per capita cigarette consumption in California

before the passage of Proposition 99. This explains the discrepancy between California and

its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the synthetic California. The

weights reported in Table 2 indicate that smoking trends in California prior to the passage

of Proposition 99 is best reproduced by a combination of Colorado, Connecticut, Montana,

Nevada, and Utah. All other states in the donor pool are assigned zero W -weights.

Figure 2 displays per capita cigarette sales for California and its synthetic counterpart

during the period 1970-2000. Notice that, in contrast to per capita sales in other U.S.

states (shown in Figure 1), per capita sales in the synthetic California very closely track the
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trajectory of this variable in California for the entire pre-Proposition 99 period. Combined

with the high degree of balance on all smoking predictors (Table 1), this suggests that the

synthetic California provides a sensible approximation to the number of cigarette packs per

capita that would have been sold in California in 1989-2000 in the absence of Proposition

99.

Our estimate of the effect of Proposition 99 on cigarette consumption in California is

the difference between per capita cigarette sales in California and in its synthetic version

after the passage of Proposition 99. Immediately after the law’s passage, the two lines begin

to diverge noticeably. While cigarette consumption in the synthetic California continued

on its moderate downward trend, the real California experienced a sharp decline. The

discrepancy between the two lines suggests a large negative effect of Proposition 99 on per

capita cigarette sales. Figure 2 plots the yearly estimates of the impacts of Proposition

99, that is, the yearly gaps in per capita cigarette consumption between California and

its synthetic counterpart. Figure 2 suggests that Proposition 99 had a large effect on

per capita cigarette sales, and that this effect increased in time. The magnitude of the

estimated impact of Proposition 99 in Figure 2 is substantial. Our results suggest that for

the entire 1989-2000 period cigarette consumption was reduced by an average of almost 20

packs per capita, a decline of approximately 25 percent.

In order to assess the robustness of our results, we included additional predictors of

smoking prevalence among the variables used to construct the synthetic control. Our

results stayed virtually unaffected regardless of which and how many predictor variables

we included. The list of predictors used for robustness checks included state-level measures

of unemployment, income inequality, poverty, welfare transfers, crime rates, drug related

arrest rates, cigarette taxes, population density, and numerous variables to capture the

demographic, racial, and social structure of states.

Our analysis produces estimates of the effect of Proposition 99 that are considerably

larger than those obtained by Fichtenberg and Glantz (2000) using linear regression meth-

ods. In particular, Fichtenberg and Glantz (2000) estimate that by 1997 Proposition 99

20



had reduced per capita cigarette sales in California by about 14 packs per year. Our esti-

mates increase this figure substantially, to 24 packs per year. Part of this difference is likely

to be explained by the fact that Fichtenberg and Glantz (2000) use per capita cigarette

sales in the rest of the United States to reproduce how this variable would have evolved

in California in the absence of Proposition 99. As explained above, after the enactment of

Proposition 99 in California, other states, like Massachusetts and Florida passed similar to-

bacco control legislation. While we eliminate these states as potential controls, Fichtenberg

and Glantz (2000) do not do so, which is likely to attenuate their estimates.

There are several ways in which the assumption of no interference between units of

section II could be violated in the context of our analysis of the effects of Proposition 99.

In our judgment, these potential violations do not appear to be severe, and in some cases

would likely attenuate the estimated effect of Proposition 99. Perhaps the most important

concern in this regard is that the increase in anti-tobacco sentiment created in California by

Proposition 99 could have spread to other states, contaminating the donor pool. Another

concern is that in response to Proposition 99 the tobacco industry could have diverted

funds from planned advertising campaigns in other states to California. In both cases,

interference would likely cause lower levels of smoking in the control states, attenuating our

estimate of Proposition 99. On the other hand, it is possible that the rise in tobacco taxes

implemented under Proposition 99 increased cigarette smuggling or cross-border purchases

from nearby jurisdictions. However, Lovenheim (2008) and DeCicca, Kenkel, and Liu

(2008) provide evidence that large distances to lower tobacco price jurisdictions keep low

the level of cross-border cigarette purchases for California. There is much less information

about organized smuggling, although it has been argued that the extent of this activity in

the US is likely to be small and in decline (e.g., Kleine, 1993). An increase in the number

of cigarettes smuggled into California after the passage of Proposition 99 would exacerbate

our estimates. However, given the large magnitude of the effects that we estimate in this

article, the increase in cigarettes smuggled into California after Proposition 99 would have

had to have been massive in order to explain our estimates.
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D. Inference about the effect of the California Tobacco Control Program

To evaluate the significance of our estimates, we pose the question of whether our results

could be driven entirely by chance. How often would we obtain results of this magnitude

if we had chosen a state at random for the study instead of California? To answer this

question, we use placebo tests. Similar to Abadie and Gardeazabal (2003) and Bertrand,

Duflo, and Mullainathan (2004), we run placebo studies by applying the synthetic control

method to states that did not implement a large-scale tobacco control program during the

sample period of our study. If the placebo studies create gaps of magnitude similar to the

one estimated for California, then our interpretation is that our analysis does not provide

significant evidence of a negative effect of Proposition 99 on cigarette sales in California.

If, on the other hand, the placebo studies show that the gap estimated for California is

unusually large relative to the gaps for the states that did not implement large-scale tobacco

control program, then our interpretation is that our analysis provides significant evidence

of a negative effect of Proposition 99 on cigarette sales in California.

To assess the significance of our estimates, we conduct a series of placebo studies by

iteratively applying the synthetic control method used to estimate the effect of Proposition

99 in California to every other state in the donor pool. In each iteration we reassign in

our data the tobacco control intervention to one of the 38 control states, keeping California

in the donor pool. That is, we proceed as if one of the states in the donor pool would

have passed a large-scale tobacco control program in 1988, instead of California. We then

compute the estimated effect associated with each placebo run. This iterative procedure

provides us with a distribution of estimated gaps for the states in which no intervention

took place.

Figure 4 displays the results for the placebo test. The gray lines represent the gap

associated with each of the 38 runs of the test. That is, the gray lines show the difference in

per capita cigarette sales between each state in the donor pool and its respective synthetic

version. The superimposed black line denotes the gap estimated for California. As the

figure makes apparent, the estimated gap for California during the 1989-2000 period is
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unusually large relative to the distribution of the gaps for the states in the donor pool.

As Figure 4 indicates, the synthetic method provides an excellent fit for per capita

cigarette sales in California prior to the passage of Proposition 99. The pre-intervention

mean squared prediction error (MSPE) in California (the average of the squared discrepan-

cies between per capita cigarette sales in California and in its synthetic counterpart during

the period 1970-1988) is about 3. The pre-Proposition 99 median MSPE among the 38

states in the donor pool is about 6, also quite small, indicating that the synthetic control

method is able to provide a good fit for per capita cigarette consumption prior to Propo-

sition 99 for the majority of the states in the donor pool. However, Figure 4 indicates also

that per capita cigarette sales during the 1970-1988 period cannot be well-reproduced for

some states by a convex combination of per capita cigarette sales in other states. The state

with worst fit in the pre-Proposition 99 period is New Hampshire, with a MSPE of 3437.

The large MSPE for New Hampshire does not come as a surprise. Among all the states

in the donor pool, New Hampshire is the state with the highest per capita cigarette sales

for every year prior to the passage of Proposition 99. Therefore, there is no combination

of states in our sample that can reproduce the time series of per capita cigarette sales in

New Hampshire prior to 1988. Similar problems arise for other states with extreme values

of per capita cigarette sales during the pre-Proposition 99 period.

If the synthetic California had failed to fit per capita cigarette sales for the real California

in the years before the passage of Proposition 99, we would have interpreted that much of

the post-1988 gap between the real and the synthetic California was also artificially created

by lack of fit, rather than by the effect of Proposition 99. Similarly, placebo runs with poor

fit prior to the passage of Proposition 99 do not provide information to measure the relative

rarity of estimating a large post-Proposition 99 gap for a state that was well-fitted prior

to Proposition 99. For this reason, we provide several different versions of Figure 4, each

version excluding states beyond a certain level of pre-Proposition 99 MSPE.

Figure 5 excludes states that had a pre-Proposition 99 MSPE of more than 20 times the

MSPE of California. This is a very lenient cutoff, discarding only four states with extreme
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values of pre-Proposition 99 MSPE for which the synthetic method would be clearly ill-

advised. In this figure there remain a few lines that still deviate substantially from the zero

gap line in the pre-Proposition 99 period. Among the 35 states remaining in the figure,

the California gap line is now about the most unusual line, especially from the mid 1990’s

onward.

Figure 6 is based on a lower cutoff, excluding all states that had a pre-Proposition 99

MSPE of more than five times the MSPE of California. Twenty-nine control states plus

California remain in the figure. The California gap line is now clearly the most unusual

line for almost the entire post-treatment period.

In Figure 7 we lower the cutoff even further and focus exclusively on those states that we

can fit almost as well as California in the period 1970-1988, that is, those states with pre-

Proposition 99 MSPE not higher than twice the pre-Proposition 99 MSPE for California.

Evaluated against the distribution of the gaps for the 19 remaining control states in Figure

7, the gap for California appears highly unusual. The negative effect in California is now

by far the lowest of all. Because this figure includes 19 control states, the probability of

estimating a gap of the magnitude of the gap for California under a random permutation

of the intervention in our data is 5 percent, a test level typically used in conventional tests

of statistical significance.

One final way to evaluate the California gap relative to the gaps obtained from the

placebo runs is to look at the distribution of the ratios of post/pre-Proposition 99 MSPE.

The main advantage of looking at ratios is that it obviates choosing a cutoff for the exclusion

of ill-fitting placebo runs. Figure 8 displays the distribution of the post/pre-Proposition 99

ratios of the MSPE for California and all 38 control states. The ratio for California clearly

stands out in the figure: post-Proposition 99 MSPE is about 130 times the MSPE for the

pre-Proposition 99 period. No control state achieves such a large ratio. If one were to assign

the intervention at random in the data, the probability of obtaining a post/pre-Proposition

99 MSPE ratio as large as California’s is 1/39 = 0.026.
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IV. Conclusion

Comparative case study research has broad potential in the social sciences. However, the

empirical implementation of comparative case studies is plagued by inferential challenges

and ambiguity about the choice of valid control groups. In this paper, we propose data-

driven procedures to select synthetic comparison units in comparative case studies. We

show that the synthetic control estimator is valid under fairly standard conditions. In

addition, we propose a method to produce inference in comparative cases studies that

incorporates uncertainty about the validity of the control unit. Moreover, we provide

software to implement the estimators proposed in this article.

We demonstrate the applicability of the synthetic control method by studying the effects

of Proposition 99, a large-scale tobacco control program that California passed in 1988.

Our results suggest the effects of the tobacco control program are much larger than prior

estimates have reported. We show that if one were to relabel the intervention state in the

dataset at random, the probability of obtaining results of the magnitude of those obtained

for California would be extremely small, 0.026.
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Appendix A: Data Sources

In this appendix, we describe the data used in our analysis and provide sources.

• Per-capita cigarette consumption (in packs). Source: Orzechowski and Walker (2005).

These data are based on the total tax paid on sales of packs of cigarettes in a particular

state divided by its total population.

• Average retail price per pack of cigarettes (in cents). Source: Orzechowski and Walker

(2005). Price figures include state sales taxes, if applicable.

• Per-capita state personal income (logged). Source: Bureau of the Census, United

States Statistical Abstract. Converted to 1997 dollars using the Consumer Price

Index.

• State population and percent of state population aged 15-24. Source: U.S. Census

Bureau.

• Per-capita beer consumption. Source: Beer Institute’s Brewer’s Almanac. Measured

as the per capita consumption of malt beverages (in gallons).
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Appendix B: Technical Details

Consider the first model in section II.B,

Y N
it = δt + θtZi + λtµi + εit,

where λt = (λt1, . . . , λtF ) is a (1 × F ) vector of common factors, for t = 1, . . . , T , and

µi = (µi1, . . . , µiF )′ is an (F × 1) vector of factor loadings, for i = 1, . . . , J + 1. The

weighted average of the outcome in the donor pool, using weights {wj}2≤j≤J+1 is:

J+1∑
j=2

wjY
N
jt = δt + θt

(
J+1∑
j=2

wjZj

)
+ λt

(
J+1∑
j=2

wjµj

)
+

J+1∑
j=2

wjεjt.

As a result,

Y N
1t −

J+1∑
j=2

wjY
N
jt = θt

(
Z1 −

J+1∑
j=2

wjZj

)
+ λt

(
µ1 −

J+1∑
j=2

wjµj

)
+

J+1∑
j=2

wj(ε1t − εjt).

We assume that the terms εit are independent across units and in time. The analysis

can, however, be extended to more general settings. Notice that even with εit independent

across units and in time, the unobserved residual uit = λtµi + εit may be correlated across

units and in time because the presence of the term λtµi. Assume also that the terms εit

are mean-independent of {Zi, µi}J+1
i=1 . Let Y P

i be the T0 × 1 vector with t-th element equal

to Yit. Similarly, let εP
i be the (T0 × 1) vector with t-th element equal to εit. Finally, let

θP and λP be the (T0 × r) matrix and (T0 × F ) matrix with t-th rows equal to θt and λt,

respectively. We obtain,

Y P
1 −

J+1∑
j=2

wjY
P
j = θP

(
Z1 −

J+1∑
j=2

wjZj

)
+ λP

(
µ1 −

J+1∑
j=2

wjµj

)
+

J+1∑
j=2

wj(ε
P
1 − εP

j ).

Let ξ(M) be the smallest eigenvalue of:

1

M

T0∑
t=T0−M+1

λ′tλt.

Assume that ξ(M) is bounded away from zero: ξ(M) ≥ ξ > 0, for each positive integer,

M . Assume also that there exists a constant, λ̄, such that |λtf | ≤ λ̄ for all t = 1, . . . , T ,

27



f = 1, . . . , F . Therefore, because λP ′λP is not singular:

Y N
1t −

J+1∑
j=2

wjY
N
jt = λt(λ

P ′λP )−1λP ′
(

Y P
1 −

J+1∑
j=2

wjY
P
j

)

+ (θt − λt(λ
P ′λP )−1λP ′θP )

(
Z1 −

J+1∑
j=2

wjZj

)

− λt(λ
P ′λP )−1λP ′

(
εP
1 −

J+1∑
j=2

wjε
P
j

)
+

J+1∑
j=2

wj(ε1t − εjt).

Suppose that there exist {w∗
2, . . . , w

∗
J+1} such that equation (2) holds. Then

Y N
1t −

J+1∑
j=2

w∗
jY

N
jt = R1t + R2t + R3t,

where

R1t = λt(λ
P ′λP )−1λP ′

J+1∑
j=2

w∗
jε

P
j , R2t = −λt(λ

P ′λP )−1λP ′εP
1 ,

and R3t =
∑J+1

j=2 w∗
j (εjt − ε1t). Consider the case of t > T0. Then, R2t and R3t have mean

zero. Notice that,

R1t =
J+1∑
j=2

w∗
j

T0∑
s=1

λt

(
T0∑

n=1

λ′nλn

)−1

λ′sεjs.

Because
∑T0

t=1 λ′tλt is symmetric and positive definite, so is its inverse. Then, applying the

Cauchy-Schwarz Inequality, we obtain:


λt

(
T0∑

n=1

λ′nλn

)−1

λ′s




2

≤

λt

(
T0∑

n=1

λ′nλn

)−1

λ′t





λs

(
T0∑

n=1

λ′nλn

)−1

λ′s




≤
(

λ̄2F

T0 ξ

)2

.

Let

ε̄L
j =

T0∑
s=1

λt

(
T0∑

n=1

λ′nλn

)−1

λ′sεjs

for j = 2, . . . , J + 1.
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Assume that, for some even p, the p-th moments of |εjt| exist for j = 2, . . . , J + 1 and

t = 1, . . . , T0. Using Hölder’s Inequality:

J+1∑
j=2

w∗
j |ε̄L

j | ≤
(

J+1∑
j=2

w∗
j |ε̄L

j |p
)1/p

≤
(

J+1∑
j=2

|ε̄L
j |p

)1/p

.

Therefore, applying again Hölder’s Inequality:

E

[
J+1∑
j=2

w∗
j |ε̄L

j |
]
≤

(
E

[
J+1∑
j=2

|ε̄L
j |p

])1/p

.

Now, using Rosenthal’s Inequality:

E|ε̄L
j |p ≤ C(p)

(
λ̄2F

ξ

)p

max





1

T p
0

T0∑
t=1

E|εjt|p,
(

1

T 2
0

T0∑
t=1

E|εjt|2
)p/2



 ,

where C(p) is the p-th moment of minus one plus a Poisson random variable with param-

eter equal to one (see Ibragimov and Sharakhmetov, 2002). Let σ2
jt = E|εjt|2, σ2

j =

(1/T0)
∑T0

t=1 σ2
jt, σ̄2 = maxj=2,...,J+1 σ2

j , and σ̄ =
√

σ̄2. Similarly, let mp,jt = E|εjt|p,
mp,j = (1/T0)

∑T0

t=1 mp,jt, and m̄p = maxj=2,...,J+1 mp,j. We obtain that, for t > T0,

E|R1t| ≤ C(p)1/p

(
λ̄2F

ξ

)
J1/p max

{
m̄

1/p
p

T
1−1/p
0

,
σ̄

T
1/2
0

}
.

Last equation shows that the bias of the estimator can be bounded by a function that goes

to zero as the number of pre-treatment periods increases.

Consider now the autoregressive model in equation (5). Notice that

Y N
i T0+1 =

(
αT0 + βT0+1 γT0

)
Yi T0 + βT0+1 ΠT0 Zi T0 + βT0+1 vi T0+1 + ui T0+1,

where {uit, vit}T0+1≤t≤T0+n have mean zero conditional on FT0 . Working recursively, it can

be shown that conditional on Yi T0 and Zi T0 , Y N
i T0+n is a linear function of {uit, vit}T0+1≤t≤T0+n,

for n ≥ 1. Then, because {w∗
j}2≤j≤N is a deterministic function of FT0 and {uit, vit}T0+1≤t≤T0+n

have mean zero conditional on FT0 , the bias of the synthetic control estimator is equal to

zero if equation (6) holds.
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Figure 1: Trends in Per-Capita Cigarette Sales: California vs. the Rest of the United States
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Figure 2: Trends in Per-Capita Cigarette Sales: California vs. Synthetic California

1970 1975 1980 1985 1990 1995 2000

0
20

40
60

80
10

0
12

0
14

0

year

pe
r−

ca
pi

ta
 c

ig
ar

et
te

 s
al

es
 (

in
 p

ac
ks

)

California
synthetic California

Passage of Proposition 99

34



Figure 3: Per-Capita Cigarette Sales Gap Between California and Synthetic California
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Figure 4: Per-Capita Cigarette Sales Gaps in California and Placebo Gaps in all 38 Control
States
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Figure 5: Per-Capita Cigarette Sales Gaps in California and Placebo Gaps in 34 Con-
trol States (Discards States with Pre-Proposition 99 MSPE Twenty Times Higher than
California’s)
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Figure 6: Per-Capita Cigarette Sales Gaps in California and Placebo Gaps in 29 Control
States (Discards States with Pre-Proposition 99 MSPE Five Times Higher than Califor-
nia’s)
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Figure 7: Per-Capita Cigarette Sales Gaps in California and Placebo Gaps in 19 Control
States (Discards States with Pre-Proposition 99 MSPE Two Times Higher than Califor-
nia’s)
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Figure 8: Ratio of Post-Proposition 99 MSPE and Pre-Proposition 99 MSPE: California
and 38 Control States
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Table 1: Cigarette Sales Predictor Means

California Average of
Variables Real Synthetic 38 control states
Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15-24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81
Note: All variables except lagged cigarette sales are averaged for the
1980-1988 period (beer consumption is averaged 1984-1988). Cigarette
sales are measured in packs.
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Table 2: State Weights in the Synthetic California

State Weight State Weight
Alabama 0 Montana 0.199
Alaska - Nebraska 0
Arizona - Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey -
Connecticut 0.069 New Mexico 0
Delaware 0 New York -
District of Columbia - North Carolina 0
Florida - North Dakota 0
Georgia 0 Ohio 0
Hawaii - Oklahoma 0
Idaho 0 Oregon -
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Iowa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland - Vermont 0
Massachusetts - Virginia 0
Michigan - Washington -
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0
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