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Abstract

The dynamics of methane transport in lake sediments control the release of methane
into the water column above, and the portion that reaches the atmosphere may con-
tribute significantly to the greenhouse effect. The observed dynamics are poorly
understood. In particular, variations in the hydrostatic load on the sediments, from
both water level and barometric pressure, appear to trigger free gas bubbling (ebulli-
tion). We develop a model of methane bubble flow through the sediments, forced by
changes in hydrostatic load. The mechanistic, numerical model is tuned to and com-
pared against ebullition data from Upper Mystic Lake, MA, and the predictions match
the daily temporal character of the observed gas releases. We conclude that the com-
bination of plastic gas cavity deformation and flow through “breathing” gas conduits
explains methane venting from lake sediments. This research lays the groundwork
for integrated modeling of methane transport in the sediment and water column to
constrain the atmospheric flux from methane-generating lakes.
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Chapter 1

Introduction

1.1 Motivation

Methane is a potent greenhouse gas, and the contribution of lakes to the present

and future atmospheric methane source remains uncertain [57]. Over a century, a

molecule of CH4 captures 25 times as much radiative energy as one of CO2. This large

global warming potential causes anthropogenic methane emissions to constitute 17%

of the radiative forcing from all long-lived greenhouse gases [57]. Methane emissions

from lakes, however, are neglected in methane budgets and global circulation models,

despite recent evidence that this source may be larger than originally estimated (See

Table 1.1) [8, 12, 68]. Accurately estimating the contribution from various sources is

crucial to bracketing the risks associated with climate change because these sources

each respond differently to variations in climate.

Attribution of methane emissions to sources is relatively easy for anthropogenic

sources but not natural ones. Emissions from industry, agriculture, and biomass

burning may be estimated using bottom-up techniques to extrapolate well-understood

chemical processes over well-constrained regions of application [12]. Emissions from

natural sources like lakes, however, are patchy in space and episodic in time, and the

dominant release mechanisms at play have not been identified [68, 66]. So, extrap-

olating measurements taken over short time periods or with little spatial coverage

underestimate the strength of natural sources. Inverse techniques may attribute the

13
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Figure 1-1: Diagram showing relevant processes for vertical methane transport related
to ebullition.
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observed atmospheric accumulation to a limited number of sources, but so far lakes

have been lumped into the same behavior category as wetlands in such work [7, 8]. The

goal of this research is to model the dominant methane release mechanism from lakes

to improve future bottom-up estimates of their contribution to the global methane

source. A mechanistic understanding of lake methane emissions will also indicate

whether they behave differently enough from wetlands to warrant distinguishing the

two sources in inverse approaches and global circulation models.

Methane is generated in anoxic sediments through microbially-mediated decom-

position of organic matter [78]. It may be transported to the lake surface via two

primary pathways diagrammed in Figure 1-1: dissolved advection-diffusion and free-

gas bubbling, called ebullition. From its origin in the sediments, some dissolved

methane diffuses into the water column, but at high concentrations it exsolves into

gas bubbles that grow in and eventually escape from the sediments. These bubbles

efficiently transport methane due to buoyancy and high methane content, and field

studies suggest that they are the dominant mode of atmospheric release (see Ta-

ble 1.2) [10, 44, 31, 49, 68, 66, 11]. Some portion of the methane dissolves from the

bubbles during their rise to the lake surface, and the dissolved methane may either be

oxidized to carbon dioxide or be transported to the surface by turbulent mixing. The

amount lost to dissolution depends on the spatial and temporal concentration of gas

release because large bubble plumes create upwelling currents and locally saturate the

water with methane [38, 37, 19]. Bubble dissolution may also depend on the mode of

release because smaller bubbles dissolve faster [45], and the bubble size distribution

may depend on the rate of gas release [22]. A mechanistic model of methane release

must then reproduce the spatiotemporal concentration of free-gas releases to correctly

predict the fraction that escapes dissolution and reaches the atmosphere.

The mechanistic model presented below was inspired by two key observations. The

first is a sharp rise in ebullition events during periods of falling or low hydrostatic

pressure, the combination of water depth and barometric pressure that presses on the

sediment surface [43, 16, 77]. In particular, a high-resolution record of surface bubble

flux and hydrostatic pressure measurements on Upper Mystic Lake (UML), Mas-
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Figure 1-2: Seismic trace of the sediments in UML, showing distinct gas-bearing
sediment regions. Inset: sonar trace showing a bubble plume rising from the same
sediment location. Courtesy of Carolyn Ruppel, USGS.

sachusetts shows a strong nonlinear relationship between these two [66]. An acoustic

image of gas-bearing sediments and a plume rising from them in UML is shown in

Figure 1-2. The second key observation is the importance of grain rearrangement and

the formation of fractures or conduits for gas bubble growth and transport in fine,

shallow sediments [55, 4]. To incorporate both of these observations in predicting the

release of methane from lake sediments, we hypothesize that gas bubbles escape by

dilating conduits to the sediment surface during periods of falling hydrostatic pressure

as the gas bubbles overcome the confining stress from the sediments. This model of

“breathing” dynamic conduits for gas release couples continuum-scale poromechan-

ics theory with multiphase flow in porous media to predict the temporal signature

of ebullition, which impacts the fraction of methane generated that escapes to the

atmosphere.

This thesis describes the development, verification and validation of this mecha-

nistic model of methane ebullition from lakes. In Section 1.2 we review the physical
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processes involved in methane generation and bubble formation, release, and rise

through the water column. These processes are simplified and expressed mathemat-

ically in Chapter 2 on the model development. The model is tested in Chapter 3

for sensitivity to unconstrained parameters and then validated against a data set of

ebullition measurements from UML, a typical mid-northern latitude lake in many re-

spects, in Chapter 4. Chapter 5 discusses the results and concludes that multiphase

gas flow through dynamic conduits is a valid mechanism to model the concentration

of ebullition at the daily time scale and lake-wide spatial scale.

1.2 Physical processes

This section describes part of the methane cycle in lakes associated with atmospheric

releases. Relevant processes are discussed below and diagramed in Figure 1-1.

1.2.1 Methane generation in lake sediments

Methane is generated in anoxic lake sediments by microbial decomposition of organic

matter [29]. As formerly live matter sinks and is progressively buried, the organic

carbon is respired by microbes. The most energetically-favorable electron acceptors

are utilized first and highest in the sediment column until the depth where each is

depleted, in the order of oxygen, manganese(IV), nitrate, iron(III), and finally sulfate

[29]. At the bottom of this reduction-oxidation chain, bacteria anaerobically ferment

organic carbon to make hydrogen (H2) and acetate (CH3COOH), which are readily

converted to methane with the help of archaea in close physical proximity to the

fermenters. A balanced reaction with the fermentation step included reads:

(CH2O)106(NH3)16(H3POp)→ 53CO2 + 53CH4 + 16NH3 +H3PO4, (1.1)

which yields 350 kJ mol−1 of free energy at standard conditions [29]. A dimictic

lake like UML stratifies twice a year, and aerobic respiration quickly depletes the

hypolimnion of oxygen while it is isolated from the atmosphere. Though shallower
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sediments overlain by oxic water may contribute some methane, hypolimnetic sedi-

ments are the primary source in such a lake.

Methanogenesis rates vary both vertically and horizontally in lake sediments.

They are highest in the top 10-20 cm of sediments and decrease with depth [35].

However, alternative oxidizing molecules may also consume methane in these shallow

sediments so that the greatest dissolved accumulations occur 1-2 m below the sed-

iment surface [42, 66]. From an aerial perspective, methanogenesis rates vary with

organic matter input, sediment temperature and oxygen availability [32, 39]. For

example, we would expect elevated methanogenesis near a river mouth due to the fo-

cused organic matter deposition. In addition, the close-proximity microbial consortia

that link fermentation and methanogenesis occur in patches, and these patches may

further concentrate generation [25]. As methane concentrations rise locally, the solute

diffuses and smooths concentration gradients. However, the combined low solubility

in shallow lake sediment pore water (∼ 5 mM at 2.5 atm and 5◦ C [14]) and low

intrinsic fluid flow permeability of the fine-grained sediments (k ≤ 10−16 m2) suggests

that diffusion does not act over large spatial scales.

1.2.2 Bubble exsolution

Once the total pressure of all the dissolved gases exceeds the hydrostatic pressure,

the gases exsolve into a bubble. The equilibrium partial pressure of methane within

a bubble may be related to the aqueous concentration using Henry’s law:

P = kHC, (1.2)

which states that the pressure P is proportional to the dissolved concentration C.

For an ideal gas at constant temperature, Henry’s law implies that the volumetric

solubility ω, the volume that the dissolved gas would occupy at local conditions, is

constant. We can imagine a fixed volume fraction in the water into which gas may

be compressed by increasing the free gas pressure [71]. For pressure and temperature

conditions typical of lake sediments sediments (2.5 atm and 5◦ C), ω ≈ 5% [14],
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meaning that equal amounts of gas may be stored as bubbles and solute if the volume

fraction of gas in the fluid phases, or saturation, is about 5%. This dissolved store

may then replenish the population of bubbles as they escape because the gas pressure

drops and drives exsolution.

The character of bubble exsolution depends on whether bubbles may grow within

existing pores or must force open their own cavities. Both theory and observation

suggest that bubbles in lake sediments grow by cavity expansion. Because of the

interfacial energy associated with a gas-water interface, bubbles are only stable with

a minimum size. The Young-Laplace equation describes the equilibrium pressure

difference between the gas inside and water outside of a gas bubble, or capillary

pressure Pc, as the product of surface tension T and curvature κ:

Pc ≡ Pg − Pw = κT (1.3)

And for a spherical bubble with radius r, κ = 2/r:

Pc =
2T

r
(1.4)

The excess interfacial energy imposes a minimum stable bubble size, below which

the capillary and gas pressures would be too high and the bubble would dissolve

or depressurize by expansion. The characteristic grain size of mud is approximately

10 µm [24] and the largest void spaces are smaller than 100 µm [55]. If a bubble

was to grow in a 10 µm-sized pore, the equilibrium capillary pressure from Laplace’s

equation would be

Pc =
2T

r
≈ 30 kPa, (1.5)

where T = 0.07 N/m is the methane-water interfacial tension [54]. This capillary

pressure is larger than the contact pressure between grains in the first few meters of

sediment

σ′vw ≈ (ρb − ρw)gd < 5 kPa, (1.6)

where ρb and ρw are the bulk and water densities, g the gravitational constant, and
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d the depth within the sediments. So, a micron-sized bubble could not be stably

trapped in shallow sediments.

Observations of gas bubbles grown in shallow marine sediments confirm that the

minimum size of bubbles is much larger than the characteristic grain size [27] and

that addition of gas to synthetic mud samples creates pores in the 200-500 µm range

that did not exist in water-saturated samples [48, 61, 55]. Based on visual obser-

vations of the fine sediments below UML, we expect the same conditions in lakes.

Apparently, gas bubbles cannot fit within the existing pores and must rearrange solid

grains to open their own pore cavities. These large, highly-compressible inclusions

within a water-saturated sediment matrix should have markedly different behavior

than saturated soil containing interstitial bubbles.

The relative sizes of grains and bubbles impacts the pressure and volume changes

of exsolving bubbles. If the bubbles were smaller than the grains and able to grow by

squeezing through pore throats without moving grains, we would expect gas bubbles

to grow first in the largest pores. With rising gas pressure, they would either nucleate

in smaller pores or invade through similarly-sized throats between sediment grains.

Grain-scale numerical simulations demonstrate how this capillary invasion mode only

occurs for relatively large grains, and that gas invades fine-grained sediments, like lake

mud, by fracturing [26]. Experiments on gas bubble growth in marine mud confirm

that the bubble pressure rises until the it is sufficient to force grains apart, expand

the bubble and reduce the gas pressure [27]. X-ray CT scans of this same process

show that bubbles grow as sub-vertical, cornflake-shape fractures [4]. The cycle of

pressurization and expansion repeats and forms a saw-toothed pressure history with

no long-term trend of rising pressure.

While experiments show that the gas pressure in a bubble varies as it grows, the

magnitude of the variation may be small relative to the hydrostatic forcing. The

height of the pressure “teeth” is less than 5 kPa, and smaller for less-cohesive sedi-

ments that allow the bubble to expand more as if in a fluid rather than a solid [27].

Visual inspection of samples of UML sediments suggest that the top few decimeters

are very poorly cohesive, which would suggest minimal bubble pressurization. In
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addition, bubble pressurization in the Johnson et al. (2002) experiments may be

exaggerated, compared with natural settings, because they injected gas through a

fine needle rather than allowing bubbles to exsolve from supersaturated water on all

sides [27]. Therefore, the pressure and volume evolution during exsolution should re-

flect something between discrete fracture events and continuous expansion in fluidized

sediments.

A final forcing on the partitioning of methane between the aqueous and gaseous

phases is temperature. The Henry’s law constant kH increases with temperature, or

equivalently the volumetric solubility ω decreases. Then rising temperatures spur

exsolution and have been implicated in initiating ebullition events in shallow estuar-

ies and lakes [6, 11]. In UML, however, the thermal stratification ensures that the

temperature over the hypolimnetic sediments stays between 4 and 6◦ C [66]. So, the

impact of temperature variations on ebullition should be small, except when seasonal

temperature changes destroy the stratification and cause lake-wide mixing.

Exsolution of dissolved methane into free gas bubbles appears to be one controlling

factor on the rate of methane release to the atmosphere. The complex mechanisms

presented here will be parameterized in Chapter 2 as part of predicting the rate of

ebullition. The fate of exsolved bubbles depends on their evolution and transport,

subjects treated in the next sections.

1.2.3 Bubble evolution with hydrostatic pressure variations

Bubble exsolution may be fairly insensitive to temperature changes in stratified lakes,

but hydrostatic pressure fluctuations impact the gas pressure and volume and thereby

the conditions for gas release from sediments. This hydrostatic forcing, the sum

of contributions from water level and atmospheric pressure, pushes on the top of

the sediment column and compresses the individual components to different degrees.

This section will introduce relevant poromechanics concepts, including effective stress,

and review two experiments that shed light on the nature of the response in gassy

sediments.

When a sample of solid material is subjected to a stress, or force per area, it
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responds by deforming its shape. The nature of this strain, or relative displacement,

depends on whether the work applied is stored as potential energy or released as heat

or entropy generation. Elastic deformations store all the work in reversible strain and

rebound to their rest configuration when the applied stress is removed. Linear elastic

strain ε is proportional to the applied stress σ:

σ = C : ε (1.7)

where the bold indicates the tensorial nature of stress and strain and c is stiffness

tensor [9]. Purely plastic deformations, on the other hand, dissipate the energy during

irreversible deformation and maintain their final configuration when released. Both

types of deformation may occur within gassy sediments simultaneously, but we at-

tempt to identify conditions when one or the other dominates.

In a porous medium, the response of the solid and fluid components depends on

their compressibilities and the nature of the fluid flow. The hydrostatic load imposes

a stress on the sediments that is born to different extents by the solid and fluid

phases. Compression of the solid skeleton adds to the fluid pressure and drives fluid

flow. If the rate of loading is slow relative to the solid permeability to flow, then

any excess pore pressure is diffused away until the profile becomes hydrostatic within

the porous medium. This is known as a drained response. For low-permeability

sediments, however, rapid changes in hydrostatic loading can cause significant fluid

pressures in excess of their hydrostatic profiles. The limiting response with negligible

fluid outflow and pressure diffusion is called undrained [69]. Distinguishing between

drained and undrained responses is useful for modeling gassy sediments and will be

addressed below.

We can identify the elastic-plastic nature of gassy sediments using a published

experiment on compression of sythetic samples. Thomas (1987) progressively loaded

a sample of synthetic sediments saturated with water and gas bubbles with a unaxial

stress from 0 to ∼ 400 kPa and then slowly removed it, all the while recording the

change in total volume (strain) and fluid volume released [61, 55]. The difference

22



he attributed to change in gas volume, and by assuming the gas was ideal and that

dissolution followed Henry’s law, he calculated variations in the gas pressure. The

initial value of gas pressure was assumed equal to the total vertical stress, though it

could have been lower than this. Even though the drained experiment setup permit-

ted the water pressure to dissipate during loading, the gas bubbles remained trapped

in relatively large cavities that shrunk and pressurized. The gas pressure rose during

the loading phase but did not begin to fall during unloading until after the imposed

stress dropped below the gas pressure (see Figure 2-2A). If the bulk response had been

purely elastic, the sample would have stored the energy associated with compressing

it and released that energy by decompressing the gas as soon as the load was reduced.

The fact that it did not implies that the gas was pressurized by an irreversible re-

arrangement of the grains to reduce the cavity volume. Based on these observations

and scanning electron microscope images of the synthesized gassy sediments, the au-

thors propose a conceptual model where large, gas-filled cavities expand and contract

within continuous, plastically-incompressible matrix of sediment and water. These

experiments may not be directly applicable to lake sediments, which are subject to

smaller variations in hydrostatic load (∼ 5 kPa), are less consolidated in the top few

decimeters, and may have lower gas content. Still, they indicate that plastic cavity

contraction and expansion may play a central role in the pressure-stress evolution.

In understanding the plastic and elastic responses of porous media, effective stress

is a useful concept. Effective stress may be generally defined as the force normal to a

cross-sectional area that is transmitted through particles within that area, divided by

the area [51]. This stress transmitted through particles is reduced by interstitial fluid

pressure, which effectively cushions the grains. Because it depends on both bulk stress

and pore fluid pressure, effective stress is used in our model to constrain the evolution

of gas bubble pressure as the hydrostatic load rises and falls. In poromechanics theory,

effective stress simplifies analysis, for example by permitting a linear relationship

between effective stress and strain [9]:

σ′ = C : ε, (1.8)
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where σ is the total stress tensor, ε is the strain tensor, and C is a fourth-order

stiffness tensor. Terzaghi (1925) performed experiments on porous media filled with

a single fluid phase and suggested that the effective stress

σ′ = σ − Pf I (1.9)

was the primary determinant of soil behavior [60]. Various modifications to this

expression have been suggested. To account for the compressibility of the solid grains,

Biot (1941) proposed:

σ′ = σ − bPf I, (1.10)

where b is Biot coefficient, which reduces to 1 for incompressible solid grains [1, 69, 9].

For sediments with gas and water, Bishop (1959) included χ, the fraction of solid

surface contacting the water [2, 72]:

σ′ = σ − [Pg + χ(Pg − Pw)]I (1.11)

Others have proposed more complex variations in order to define a thermodynamically-

consistent quantity [20]. However, the desire for simplicity in the mechanistic model

developed here motivates an especially simple expression.

Another experiment performed by Thomas (1987) helps to identify the applicable

effective stress in gassy sediments. The sediment sample was compressed over a week

while the water drainage ports were alternately opened and closed to capture both

drained and undrained fluid responses. The volume and stress changes throughou

were tracked throughout the experiment, and the results showed that there was no

unique relationship between the total porosity changes or total strain and the vertical

consolidation stress, σ′vw:

σ′vw = σv − Pw (1.12)

where the v subscript indicates that the stress is in the vertical direction only and

w that it considers only water pressure. Terzaghi would have predicted a linear

relationship between this effective stress and total strain for water-saturated soils,

24



and this experiment shows how gassy soils behave differently [60]. The experiment at

hand did yield a unique relationship, however, between σ′vw and the volume fraction,

of the combined water and solid phases, occupied by water. Because both of these

constituents are relatively incompressible, the porosity of the grain-water matrix only

changed during the drained phases of the experiment due to water loss, and the

vertical consolidation stress captured this mud water porosity loss [61]. If we were

interested primarily in capturing the flow of water in lake sediments, then the vertical

consolidation stress would be the best choice for an effective stress to consider.

However, we are interested in the gas pressure evolution. Thomas’ experiment

showed that there was a strong relationship between the total vertical stress and the

gas volume and pressure. Considering that the sediment and water are both less

compressible than the gas voids, it becomes appealing to consider the three-phase

porous medium from a different perspective. Instead, we may model the system as

gas voids surrounded by a combined water-grain phase that as a whole acts the role

of the solid in two-phase poromechanics [76, 55]. In this case, the porosity of interest

is the gas volume fraction, changes in which equal the bulk volumetric strain. Our

interests shift from considering the inter-granuar stresses in water-saturated porous

media to the bulk stress holding the grain-water matrix against displacement by large

gas voids in lake sediments. So, we propose that the appropriate effective stress does

not contain the pressure of water, but of gas:

σ′hg = σh − Pg. (1.13)

This gas horizontal effective stress may be used to quantify changes in gas pressure

and volume and to predict the transition between elastic and plastic behavior. This

model will be developed in Chapter 2.

1.2.4 Ebullition

While understanding of the impact of hydrostatic pressure fluctuations on trapped

gas bubbles is mostly based on poromechanics theory, its impact on ebullition is a
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Figure 1-3: Record of hydrostatic head variations (left axis, blue) and cumulative gas
collected (right axis) from five traps moored just below the surface of UML. The flux
records from individual traps show some synchronicity especially during periods of
pronounced drop in hydrostatic head (gray bars)

process well-observed but as of yet not mechanistically modeled. This section reviews

observations of methane ebullition from lakes and highlights a record of ebullition

and hydrostatic pressure variations that is used to validate the proposed model.

We can gain some insight into the character and mechanism of ebullative methane

venting from observations of bubble growth and release into overlying water. In some

settings temperature changes [11] and wind-driven shear [28] seem to trigger release

events, but perhaps the best-established forcing for ebullition is hydrostatic pressure

variation. Studies have documented tidal influence on bubbling from estuarine [43]

and ocean [63] sediments, as well as the influence of water level change on peatland

ebullition [16, 62]. Contributing to observations of the relationship between ebullition

and hydrostatic pressure on lake sediments [59, 44, 68, 11], or its rate of change [77],

is a data set recently recorded in Upper Mystic Lake (UML), a temperate, eutrophic
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Figure 1-4: Image of a bubble trap on a dock at UML. The funnel at bottom collects
gas bubbles into the PVC cylinder, and the buoyancy of the gas column allows the
pressure sensor at top to estimate the collected volume. The traps were suspended
about 1 m below the water surface by the buoy. Courtesy of Charuleka Varadharajan.

lake north of Boston, MA (see Figure 1-3). Wavelet analysis of the gas flux record

shows significant variability in the timing, magnitude and locality of ebullition events

and a nonlinear relationship with hydrostatic pressure.

The data were collected using surface-buoyed bubble traps – inverted funnels

connected to PVC pipes that collect a column of free gas (Figure 1-4. A pressure

sensor measures the buoyant force from the gas as a proxy for the column height,

which allows estimation of the rate at which gas enters the funnel [66]. While the data

were recorded at five-minute resolution, surface waves corrupted the high-frequency

signal with pressure artifacts that imply negative bubble fluxes to the atmosphere

(Figure 4-2). These artifacts are partially removed by applying a one hour moving-

average filter to the flux data and then binning it into either hourly or daily flux

values. The hydrostatic pressure data are also smoothed using the moving-average

filter and passed to the model as a cubic spline with hourly resolution.

While there appears to be a relationship between ebullition and hydrostatic pres-

sure, or its rate of change, the data from [66] show that neither relationship is linear.

Figure 1-5 shows that the daily gas volume flux is poorly correlated with both the
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Figure 1-5: Correlations between daily volumetric gas fluxes and (top) relative hy-
drostatic head and (bottom) daily shift in relative hydrostatic head.
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relative hydrostatic head (around its seasonal mean) (R2 = 0.08) and the daily shift

in hydrostatic pressure (R2 = 0.06). The correlation coefficients are even smaller for

hourly fluxes and hydrostatic pressure (R2 = 0.02) and pressure shift (0.01). A valid

model of ebullition must then capture the nonlinear relationship between gas flux and

compression of the sediments.

Gas bubbles are buoyant with respect to water and sediment grains, and falling

hydrostatic load on the sediments clearly provides a mechanism for gas to deform the

sediments. However, theoretical analysis shows that spherical bubbles of realistic size

require storm-surge vertical stress variations, on the order 7.5 m of water head, to

be mobilized for vertical flow in sediments with reasonable shear strength [75]. This

implies that some other mechanism must mobilize bubbles for vertical transport. The

fact that bubbles grow in a cornflake-shaped fracture pattern [4], rather than as spher-

ical bubbles, suggests that this mode of growth may also allow for vertical mobility.

Fracturing has been implicated as a dominant mechanism for vertical gas transport

in methane hydrate-bearing ocean sediments [17, 41]. Following these observations,

we hypothesize that the dilation of sub-vertical conduits for free-gas flow is exactly

this missing mechanism.

1.2.5 Rise through the water column

Bubbles released from gassy sediments shed methane as they rise through the wa-

ter column, and the amount lost to dissolution depends on the partial pressures of

methane in the gas bubble and surrounding water, as well as the time the bubble

spends in transit. These in turn depend critically on the initial size and release depth

(Figure 1-6), as well as the spatial and temporal concentration of gas release. Large

bubble plumes create upwelling currents and locally saturate the water with methane,

inhibiting dissolution and keeping methane in rising bubbles inaccessible to oxidizing

microbes [38, 37, 19]. The mechanism and rate of methane ebullition clearly impact

the plume effects, but they may also influence the bubble size distribution [22, 64]. A

mechanistic model of methane release must then reproduce the spatiotemporal con-

centration of free-gas releases to correctly predict the fraction that escapes dissolution
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Figure 1-6: Impact of dissolution and depressurization on a rising bubble: (top)
percent change in bubble volume and (bottom) CH4 mass percent at the surface for
pure methane bubbles of various initial sizes released from multiple depths in the
range of conditions for hypolimnetic sediments in UML. Water data from [66] were
used as inputs for the Single Bubble GUI model [21].

30



and oxidation and enters the atmosphere.

An order of magnitude estimate suggests that plume effects should be minimal in

Upper Mystic Lake. The record of ebullative fluxes presented by Varahdarajan (2009)

included peak releases of up to 60 L m2 day−1 [66]. If we assume a constant rise of 6

mm diameter spherical bubbles at 25 cm s−1 [45], then the bubble density just below

the surface would be about 20 m−3. This would not be sufficient to call the bubbles

a plume, however the density may be higher in plumes at the sediment surface or in

ebullition events not captured by the eight bubble traps deployed without knowledge

of bubbling sites.

Methane dissolved in the water column is vulnerable to oxidation by chemosyn-

thetic microbes [29]. In oxic waters, the reaction:

CH4 + 2O2 → CO2 + 2H2O ∆G0 = −810 kJ mol−1, (1.14)

transforms methane into the less-potent greenhouse gas, CO2. During the summer

and fall, the hypolimnion is depleted of its oxygen by respiration and is not replenished

by mixing due to the stable density stratification. Significant quantities of methane

may be stored in the anoxic hypolimnion [66], and aerobic oxidation occurs primarily

at the thermocline, where oxygen diffuses down from the epilimnion (Figure 1-1).

This storage condition breaks down with late fall surface cooling that erodes the

stratification and mixes the lake [29]. During mixing, some portion of the dissolved

methane is oxidized by the newly-infused oxygen, while the rest degasses to the atmo-

sphere if it is advected to the surface. One study found that only 7% of the dissolved

methane was oxidized at the thermocline during summer stratification, but 60% was

oxidized during fall overturn and 40% escaped to the atmosphere [52, 59]. Further

study of methane during turnover is required to improve estimates of the mass re-

leased to the atmosphere and to quantify the impact of bubble dissolution that may

depend on the mode of release.
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1.3 Previous integrated modeling

Mechanistic modeling of methane-venting sediments remains in its infancy. Some

speculate that releases from the oceanic sediments occur by activation of successively

smaller pore throats with rising capillary pressure during periods of falling hydrostatic

pressure [3, 36]. Arguments based on analysis of the Fourier spectrum and phase

lag of venting events with surface waves suggest that pore throat activation may

be dominant in coarse marine sediments, but likely not so in fine lake sediments.

Some mechanistic numerical modeling was performed by [46], who treated methane

release from marine sediments as multiphase flow through porous media. However,

their steady-state model predicted no gas release at the sediment surface so cannot

explain the dynamic release structure observed at UML. A mechanistic model of

multiphase flow in static vertical sediment conduits was used to explain deep pore

water irrigation observed near oceanic vent sites [23]. However, no ebullition data

was available for comparison. We seek to validate the mechanism of flow through

dynamic sediment conduits by comparing predictions of fluxes from a model venting

site, forced by observed hydrostatic load variations, against field recordings of those

ebullative fluxes. This work can both expand our understanding of coupled flow

and mechanics problems in poorly-cohesive sediments and lay the groundwork for

predicting the upscaled atmospheric methane release from lakes.
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Table 1.1: Estimates of global methane emissions in Tg CH4 per year. Figures from
[68] suggest a 10 − 60% increase over previous estimates of methane emissions from
Northern lakes and wetlands combined, yet the contribution from lakes is not included
in any of [8, 57, 12]

Total Release Wetlands Lakes Estimation method Year Source

545-1035 130-620 1.25-25 Bottom-up 1974 [15]
- 6− 40† 3.8‡ Extrapolation 2006 [68]
596-597 120-180 - Inverse 2006 [8]
582 100-231 - All 2007 [57, 12]

†:

Northern wetlands only. ‡: North Siberian lakes only

Table 1.2: Percent of atmospheric methane releases via ebullition from lakes

Percent ebullition Water body Year Source

20-52 Beaver pond in Manitoba, Canada 1999 [13]
30-50 Wintergreen Lake, Michigan 1978 [59]
50 Mirror Lake, New Hampshire 1990 [44]
65 Lake Wohlen, Switzerland 2010 [11]
70 Lake Calado, Brazil 1988 [10]
70 Upper Mystic Lake, Massachusetts 2009 [66]
90 Lake Kasumigaura, Japan 1999 [49]
95 Two North Siberian lakes 2006 [68]
98 Gatun Lake, Panama 1994 [31]
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Chapter 2

Model development

In the following chapter we describe how gas bubbles grow and escape from a charac-

teristic, one-dimensional model gas venting site. The pressures and volumes of gas,

water and soil are mechanistically evolved at the continuum scale for each depth in the

model sediment domain in response to a fluctuating hydrostatic load on the sediment

surface. Under appropriate conditions, the model predicts activation of conduits, and

equations for multiphase fluid flow through the conduits yield a gas flux from the

sediment column. We then place these characteristic venting sites in the context of

a physical lake to compare model gas flux predictions with measurements made by

randomly-placed bubble traps at the lake surface.

2.1 Model domain

The core of our model is a column of sediments with vertical extent h and lateral area

Avent. This column is assumed to be laterally uniform so that only vertical variations

in properties need to be considered. The column is sliced into nz representative

elementary volumes (REV)s, each of which is associated with a characteristic pressure

and volume of the pure methane gas, pure water and solid grain phases. These state

variables vary as the top boundary is forced with hydrostatic stress variations that

are input using data from [66]. The fluid phases may flux across the horizontal

interfaces between the REVs and, critically, out through the top boundary into the
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water column. As described below, the model tracks variations in gas volume fraction,

or saturation Sg, but changes in the porosity and volumetric strain in each element are

neglected. Volume evolutions are forced to conserve mass, but the mass of methane

is not explicitly tracked because the data used to validate the model are volumetric

gas fluxes. The first step in modeling the release of methane from lake sediments is

parameterizing its generation.

2.2 Gas volume generation

As mentioned in Chapter 1, gas bubbles in fine sediments expand by displacing neigh-

boring grains, by fracturing. The pressure history of an individual growing bubble

displays a cyclic, saw-toothed pattern [27]. However, our model homogenizes this pro-

cess to the continuum scale by neglecting bubble pressurization with generation. In-

stead, gas exsolution forces constant bubble volume generation throughout the depth

of our 1D model. The rate of gas volume exsolved per volume of water is labeled Gg

and is the rate at which gas saturation Sg is generated. At each depth the model

tracks not only the volume of gas stored, but also a characteristic gas pressure for the

bubbles of interest. In essence, our model considers the rate of generation of bubbles

of a characteristic size that is sufficient to transport significant methane and to re-

duce the curvature decrease with growth enough to define a characteristic capillary

pressure (and thus gas pressure) at each depth. Smaller, higher pressure bubbles are

neglected until they reach this critical size, and Gg could equally be considered a rate

of transfer from the pool of small bubbles to large as a rate of exsolution.

2.3 Pressure-stress evolution

Given that ebullition appears to be controlled in lake settings by variations in hy-

drostatic pressure, modeling the pressure and volume responses of the gassy soil

components is critical. The predicted pressure changes should determine when the

gas cavities expand and contractwhile conserving the mass of gas exsolved in order
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to predict the flux to the water column accurately. This section will develop the

mathematical expressions for these mechanisms in the context poromechanics theory.

We begin with the derivation of state equations for an elastic-plastic porous

medium, following [9] but adapted for a convention of positive compressive stress,

which is more common in fluid flow modeling than solid mechanics. Consider a

porous, deformable solid with a stress tensor σ and with porosity φ filled with pore

fluid at pressure Pf . Assume that this porous medium is capable of plastic and elas-

tic deformation. Then the energy dissipated by performing plastic work δW p on the

sediment is

δW p = −σ : dε+ Pfdφ− dΨs ≥ 0, (2.1)

where Ψs is the free energy associated with the solid phase [9]. During elastic defor-

mation, δW p = 0 , and we recover the elastic state equations:

−σ =
∂Ψs

∂ε
; Pf =

∂Ψs

∂φ
(2.2)

To account for plastic deformation, we split the strain and porosity:

ε = εel + εp; φ = φel + φp (2.3)

where superscripts el and p denote elastic components of each. If we assume that the

free energy in the solid phase is only due to the elastic strain and porosity changes,

then it takes the form

Ψs = Ψs(ε− εp, φ− φp) (2.4)

Then plugging this functional form in 2.4 and the elastic state equations 2.2 into 2.1,

we find a more specific expression for the plastic work or dissipation:

δW p = −σ : dεp + Pfdφ
p ≥ 0, (2.5)

Equations 2.2 and 2.5 show that −σ and Pf are the thermodynamic driving forces

behind the strain and porosity change in both plastic elastic regimes. Choosing
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a scalar stress and strain simplifies the model considerably. The deformations we

model in lake sediments are forced by perturbations in the vertical stress, implying

that σv = σ33 could be the primary stress of interest in modeling gassy sediments.

However, bubbles expand in fine-grained sediments into oblate ellipsoidal,“cornflake-

shaped” fractures, often in a sub-vertical orientation [4]. A fracture opens against the

direction of least principal stress and extends normal to it. So, the stress that a near-

vertical, oblate ellipsoidal bubble must overcome to dilate is not the vertical stress

but the horizontal one, σh = σ11. Along with the horizontal stress, we consider the

volumetric strain, ε. In many materials the solid phase is plastically incompressible,

meaning that the grains may move but not change volume. For example, in normally-

consolidated clays, the ratio of grain to bulk compressibilities is 3 ∗ 10−5 [56]. Where

this is true, all of the plastic volumetric strain εp is due to plastic porosity change1:

εp = φp. (2.6)

Then, equation 2.6 simplifies equation 2.5 to:

δW p = −(σh − Pf )dφp ≥ 0, (2.7)

In this case it becomes clear that the thermodynamic driving force between plastic

strain and porosity change is simply the horizontal effective stress,

σ′hf ≡ σh − Pf , (2.8)

where the f subscript refers to a single fluid phase. This expression is clear for water-

saturated soils, but for sediments with both continuous water phase and discrete gas

bubbles, the appropriate fluid pressure must be specified.

In water-saturated rock and soil, the relationship between horizontal and vertical

1We only model the gas volume fraction change and neglect total deformation because, for values
of φg < 0.1, any gas volume growth dφg gives an order of magnitude larger percent change in φg

than in the total volume.
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effective stresses is often parameterized as,

k0 =
σ′hw
σ′vw

, (2.9)

where k0 ∈ [0, 1] is known as the lateral stress coefficient, and ν is the Poisson’s ratio

[69]. For many saturated soils, k0 usually ranges from 0.5 to 1, and experiments

suggest that equation 2.9 holds even for gassy soils and constrain k0 to the range of

0.74-0.76 for a wide range of conditions [61]. From this we adopt k0 = 0.75 for our

system, acknowledging that this value may not necessarily be the most appropriate

for gassy lake sediments. Estimating the horizontal stress from the vertical stress

requires both the lateral stress coefficient and water pressure:

σh = σ′hw + Pw = k0σv + (1− k0)Pw (2.10)

Using this thermodynamics framework, we model the response of lake sediment pres-

sures and stresses to vertical stress perturbations from changing water level and baro-

metric pressure.

2.3.1 Loading function

Modeling elastic-plastic deformation of gassy soils requires two elements: a loading

function that defines the transition between elastic and plastic regimes, and a flow rule

that defines how the plastic deformation occurs. In porous media a loading function

is often assumed to have the form,

f(σ, Pf ) ≥ 0, (2.11)

where f defines the subspace of values σ and Pf may take2. When f > 0, the material

is assumed to behave elastically, and when f = 0 the plastic flow rule is applied so

that (σ, Pf ) remain within the feasible region [9].

2Here compressive stresses correspond to positive values of σ, however the formulation is equally
valid with the opposite convention as long as the feasible region is instead defined by f ≤ 0.
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The loading function’s dependence on σ and Pf may be simplified to a dependence

on the effective stress, σ′(σ, Pf ), and shear stress, τ(σ). Because the effective stress

relates to the intergranular contact forces, the excess or loss of which being a trigger

for fracture or plastic deformation, it seems a natural choice for a state variable.

The Mohr-Coulomb and Drucker-Prager yield envelopes are two examples of loading

functions that may be applied to porous materials using σ′ and τ [9].

If gas in sediments remains in the form of interstitial bubbles without interacting

directly with the solid grains, then the form of effective stress in gassy sediments would

be the same as in saturated soil [58, 74]. Experiments indicate, however, that gas

pressure is the primary determinant of porosity changes and volumetric strain and

relates to the stress (both vertical and horizontal) [61]. Applying this observation

to the model of mud as the solid phase and gas as the fluid phase, we consider

the horizontal normal stress σh, and the gas pressure Pg as the only essential state

variables for the loading function. When gas is the only fluid and the solid phase is

plastically incompressible, equation 2.7 suggests that these state variables do not act

independently to force deformation but through the horizontal gas effective stress,

σ′hg:

σ′hg ≡ σh − Pg (2.12)

If we assume that dominant shear effects are accounted for by this effective stress,

then an appropriate simplified loading function is:

f(σ′hg) =
I + C

2
−
∣∣∣∣σ′hg +

I − C
2

∣∣∣∣ ≥ 0, (2.13)

where I and −C denote the maximum and minimum values of σ′hg:

−C ≤ σ′hg ≤ I (2.14)

When the material is compressed until it reaches the limit of its elastic integrity, σ′hg =

I, it deforms plastically by compressing the gas cavities. In the limit of unloading

horizontal gas effective stress falls to an assumed cohesive strength, σ′hg = −C, and
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the cavities expand. For non-cohesive sediments, C = 0 and plastic expansion begins

as soon as the gas pressure exceeds the horizontal stress.

Previous theoretical work has suggested physical estimates and scalings for C and

I, the bounds on horizontal gas effective stress. Wheeler (1986) and Thomas (1987)

considered a simple geometry of a hollow sphere of a rigid, perfectly plastic material.

In this case, the difference in pressures outside the sphere (applied stress) and in the

hollow cavity (gas pressure) is limited by a function of the shear strength su [72]:

|Po − Pi| ≤ 4su ln

(
Ro

Rc

)
, (2.15)

where Ro and Rc are the radius of the sphere exterior and inner cavity, respectively.

The shear strength of a porous medium is the maximum amount of shear stress

that can be applied to it before plastic yielding. This model suggests that, during

loading with continual cavity contraction, the horizontal stress rises faster than the

gas pressure as Rc shrinks and I rises. The results show exactly this qualitative effect

[61]. If this isotropic model is compared with the form of our loading function in

equation 2.13, it implies that I = C, a symmetry between the processes of plastic

compression and expansion.

Following the work of Vesic (1972), they found another expression for the difference

between the uniform isotropic pressure imposed on the outside of the medium and

the pressure from the spherical cavity within:

|Po − Pi| ≤
4

3
su

(
ln

(
Gu

su

)
+ 1

)
, (2.16)

where Gu is the shear modulus of the solid medium [76]. This model assumes that

the saturated soil is frictionless and contains a spherical zone around the cavity in the

state of plastic equilibrium, outside of which the mass remains in elastic equilibrium.

This model suggests a different set of gas effective stress limits, I = C, that do not

depend on the gas volume fraction so should remain constant unless the shear strength

changes, as in a hardening process [9].

In addition to plastic deformation, a mechanism for imposing bounds on the gas
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pressure in large cavities is capillary invasion and drainage [73]. They Young-Laplace

equation describes how the capillary pressure, or difference between gas and water

pressures, reflects the energy stored in the curved interface they share (equation 1.3).

Because the equilibrium capillary pressure depends on the radius of curvature of the

interface, one may bound the capillary pressure based on characteristic length scales

of the porous medium. Sills et al. (1991) proposed the inequality:

Pmin
c =

2T

Rc

≤ Pg − Pw ≤
2T

Rt

= Pmax
c , (2.17)

where Rc is the radius of a gas cavities and Rt is the critical pore throat radius within

the grain-water matrix [55]. The mechanism captured by the lower bound is termed

“cavity flooding” and implies that, if the capillary pressure becomes so low that it

cannot support an interface with the minimum curvature of the gas voids, the water

will imbibe into the cavity and pressurize the gas. The upper bound implies that,

at high enough capillary pressures, the gas may invade into the tiny pore throats

surrounding the large cavities. As mentioned in Chapter 1, Rc is likely so small that

the upper bound would never be met in gassy sediments. Instead, during periods

of rising gas pressure, the system would reach the plastic limit for cavity expansion

before capillary invasion. These bounds could be expressed in terms of the horizontal

gas effective stress by considering the horizontal water effective stress, σ′hw = σh−Pw:

σ′hw − Pmax
c ≤ σ′hg ≤ σ′hw − Pmin

c (2.18)

Comparison with equation 2.14 show that these physical mechanisms imply the fol-

lowing plastic yield limits:

I = σ′vw − Pmin
c (2.19)

C = Pmax
c − σ′vw (2.20)

Because cohesion C is a property of the solid phase and has not been measured, we

leave it as an unconstrained parameter to be tuned to the data. The cavity integrity
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I has also not been measured, but we may speculate about its form. It is appealing

to choose a cavity compression condition that would account for increased integrity

with compression, as in equation 2.15. Instead of introducing two unconstrained

parameters into the model, we instead choose a condition for cavity compression

that may be constrained with limited system knowledge. We assume that cavity

compression is triggered by the same limit as cavity flooding, or I = σ′vw − Pmin
c . If

the elimination of gas-grain contacts with water flooding erodes the cavity structure

more than the consolidation with decreased water pressure in the grain-water matrix,

then this mechanism should be valid. The parameter Pmin
c may be constrained, based

a range of cavities of sufficient volume to impact gas release Rc ∈ [100, 500] µm in

equation 1.4, to Pmin
c ∈ [200, 1000] Pa. For an undrained response in deformable

grains, the vertical (and therefore horizontal) water effective stresses reduce to a

function of sediment depth, as will be explained in the next section on modeling

elastic sediment response.

2.3.2 Elastic regime

A loaded solid deforms elastically if the displacements store potential energy in

stretched molecular bonds so that the process is reversible and the energy recover-

able upon unloading. In our model gassy sediments, an elastic response is predicted

whenever the loading function f is strictly positive, so that the horizontal gas effective

stress is between the cohesion and integrity limits (equation 2.14).

To predict the response to hydrostatic loading, we consider the undrained limit

response. Here, the sediments are assumed so impermeable that the timescale for

fluid flow be much longer than that of pressure variations [70, 69]. For nearly water-

saturated sediments, this timescale may be approximated as:

tflow =
L

u
≈ µw(φcf + cm)L2

k
, (2.21)

where cf and cm are the compressibilities of the fluid and drained solid matrix, respec-

tively, weighted by porosity φ [53]. For the system of interest,reasonable estimates
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for these values are L ≈ 1 m, µw = 10−3 kg m−1 s−1, cm ≈ 6∗10−7 Pa−1, φ = 0.8, and

k ≈ 10−16 m2 [56, 66]. If so, we find tflow ≈ 50 days, which is longer than the about

daily variations in hydrostatic load on the sediment (Figure 1-3). If an undrained

response approximates the system well at the timescale of interest, elastic pressure

response of the fluid and matrix may be predicted with poroelasticity theory.

In an isotropic situation, or if k0 = 1, the water pressure response to loading may

be estimated using the mean stress, σm. The poroelastic coefficient weighting the

fluid pressure response to mean stress is call the Skempton coefficient, B:

B ≡ ∂Pf
∂σm

∣∣∣∣
ζ=0

, (2.22)

where ζ is the fluid content released, zero for an undrained response. This coefficient

is between zero and one and is large when the compressibility of the fluid is small

relative to the drained compressibility of the solid skeleton. When the individual solid

grains are incompressible relative to the fluid or the skeleton, the results of Gassmann

(1951) reduce to [18, 5]:

B =

(
φ
cf
cm

+ 1

)−1

(2.23)

An equivalent poroelastic coefficient has been derived for jacketed loading situations,

where a vertical load is applied and no horizontal deformation is permitted. The

loading efficiency, γ, predicts the fluid pressurization with variations in vertical stress,

σv:

γ ≡ ∂Pf
∂σv

∣∣∣∣
ζ=0

(2.24)

During jacketed compression experiments, pure volumetric compression is supple-

mented by shearing action. The shear modulus of the sediment matrix helps to

oppose the applied stress and remove some of the load from the fluid phase, so that

γ ≤ B. This can be seen by comparing equation 2.23 against equivalent expressions

for γ in sediments saturated with a single fluid phase and with incompressible grains:

γ =

(
φ
cf
cv

+ 1

)−1

, (2.25)
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Figure 2-1: Loading efficiency γ vs. φ
cf
cv

on log scale. For highly-incompressible water,

φ
cf
cv
� 1 and γw ≈ 1. For gas, literature values yield φ

cf
cv
< 0.1, but experiments imply

γg = 0.

where cv is the jacketed, drained compressibility of the solid phase [69]. This jacketed

compressibility may be related to the unjacketed one using the Poisson’s ratio:

cv =
1 + ν

3(1− ν)
cm ≤ cm, (2.26)

where cv = cm and γ = B when ν = 0.5→ k0 = 1 [30]. When ν = 3/7, cv = 0.83cm.

The loading efficiency is plotted against
cf
cv
φ in Figure 2-1.

In gassy sediments, each fluid phase α may respond to loading with its own Skemp-

ton coefficient Bα and γα [9]. For water-saturated clay, cf = 4.8∗10−10 Pa−1 for water

and cm ≈ 6∗10−7 Pa−1 [56, 69], and equations 2.23 and 2.25 suggest that the Skemp-

ton coefficient and loading efficiency for water are both greater than 0.999.

Given this, perturbations in the total stress force equal changes in water pres-

sure, and the water pressure remains is hydrostatic equilibrium. The water effective
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stresses, σ′hw becomes a constant function of sediment depth depth, z:

σ′hw(z) = k0σ
′
vw(z), (2.27)

σ′vw(z) = σv(z, t)− Pw(z, t) = (ρb − ρw)gz, (2.28)

ρb = (1− φ)ρs + φρw (2.29)

where ρb is the bulk density, ρs the solid density, g the gravitational acceleration.

Then the sediment integrity under compressibility also becomes a constant function

of depth:

I(z) = σ′hw(z)− Pmin
c , (2.30)

as long as Pmin
c may be satisfactorily constrained.

We may estimate the gas pressure response during elastic deformation in two

ways. The first method constrains gas pressure variations by assuming the presence

of gas only increases the water compressibility - decreasing the water pressure sensi-

tivity γw - and calculating the gas pressure from a saturation-capillary pressure curve

[70, 71, 40]. This method is appropriate when gas bubbles remain trapped in existing

pores, but the pore structure rearrangement with bubble growth in fine sediments

invalidates a static drainage-imbibition curve. Alternatively, we could derive theoret-

ical relationships for the Skempton coefficient and loading efficiency of the gas phase

by simplifying lake sediments into a binary system of gas within a grain-water matrix:

Bg =

(
cg
cm
φg + 1

)−1

, (2.31)

However, the shear properties of the sediment-water matrix are affected by the mor-

phology and distribution of gas cavities, making these expressions poorly constrained.

Instead, we infer from the constant gas pressure during initial experimental unload-

ing - the elastic regime before plastic yield - that the elastic sediment response does

not strongly compress the gas cavities and that the gas loading efficiency γg may be

approximated as zero (see Figure 2-2A, time period 3-4) [61]. We assume that the

experimental results also apply to small hydrostatic variations in lake sediments, that
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cavity compression is a purely plastic response.

2.3.3 Plastic regime

When the system reaches the limits of elastic behavior at f(σ′hg) = 0, it deforms

plastically according to a flow rule. For the one-dimensional loading function con-

sidered here, the flow rule reduces to enforcing gas pressure variations to satisfy

−C ≤ σ′hg ≤ I. Our model may be placed in the context of poromechanics theory, as

outlined by [9]. The general form of the loading function (equation 2.11) constrains

volume changes when f = 0:

df =
∂f

∂σ
dσ +

∂f

∂Pf
dPf ≥ 0, (2.32)

which states that any change in the states σ and Pf must not cause the system to

leave the feasible region by making f negative. In order to satisfy this, the plastic

volume changes are restricted by the flow rules:

dεp = dλ
∂f

∂σ
; dφp = dλ

∂f

∂φ
, (2.33)

where dλ is called the plastic multiplier and obeys the Kuhn-Tucker conditions:

dλ ≥ 0; f ≥ 0; dλ · f = 0; dλ · df = 0 (2.34)

In our model, the flow rules simplify due to the one-dimensional nature of the loading

function (equation 2.13):

dφpg = dεp = −dλsign

(
σ′hg +

I − C
2

)
, (2.35)

so that the porosity rises during expansion and falls during compression. The magni-

tude of the contraction, dλ, is determined by the change in gas pressure dPg required

to constrain the horizontal gas effective stress between−C and I, given a perturbation
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dσv:

df = dσ′hg = 0→ dPg = dσv (2.36)

dλ = |dφpg| = φgcgdPg, (2.37)

where cg = P−1
g for an ideal gas, a good approximation at near-standard conditions

[34].

2.3.4 Synthesis

The combined elastic and plastic response of the model pressures is idealized in Fig-

ure 2-2 for a arbitrary depth within the sediment column. The left side of the figure

(parts A-C) shows a schematic representation of the results from a drained loading

and unloading experiment [61, 55], and the right side (D-F) demonstrates the model

undrained response for the same loading and unloading path. The analysis figures

B and C for the experiment are presented in terms of vertical stress because only

those data were published, but the model analysis in D and E uses the horizontal

stress. Both curves are parallel during an undrained response with γw = 1, as seen in

subfigure D. The following compares the evolution in experiment and model.

The first row of subfigures shows the time evolution of stresses and pressures.

The initial evolution between time points 0 and 1 is elastic, although this response

is assumed to end instantly in the experiment. Time point 1 marks the onset of

plastic cavity collapse. The vertical gas effective stress σ′vg = σv − Pg grows with

increasing plastic compression in the experiment, but the model assumes I to be a

constant function of depth within the sediment so that σhg remains constant during

compression. This plastic deformation halts between time points 2 and 3, when the

imposed stress is held constant. The water pressure continues to fall in the drained

experiment, which allows the system to compress (C), but in the undrained model

it has no outlet to diffuse the pressure buildup. During the initial unloading period

(3-4), gas pressure remains constant in both the experiment and model because we

assume γg = 0. Only at point 4, when the gas pressure reaches the sum of vertical
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Figure 2-2: Idealizations of pressure and stress responses of gassy sediments. The
left side shows the results from drained experiments by [61, 55], and the right side
demonstrates the model response for an undrained experiment. A,D: time series of
total vertical stress (black), gas pressure (red), and water pressure (blue). The six
time indices in green correspond to (0) the initial condition, (1) beginning of plastic
deformation (2) end of loading, (3) beginning of unloading, (4) onset of gas expansion,
and (5) final condition. B,E: phase plane of vertical stress and gas pressure. C,F:
horizontal gas effective stress σ′hg versus compressive volumetric strain −ε. See text
for details.

49



stress and cohesion, does it begin to fall.

The second row of subfigures shows the phase plane of vertical stress and gas

pressure. At left, the slope between 1 and 2 reflects increase in cavity integrity I

during plastic cavity compression, which was tuned in the experimental interpretation

as an empirical parameter [61]. This dynamic integrity is not captured by the model,

which instead separates the compression into an elastic regime with slope γg = 0 and

plastic one with constant slope due to constant I.

The stress-strain curves in the bottom row of highlight the utility of using an

effective stress that includes the gas pressure to model the elastic-plastic system

response. This horizontal gas effective stress is constrained at all times between

limits I and −C, which are assumed constant in the model (F) but appear to vary

with the loading state in experiments (C).

While the experiments above inform the nature of the sediment response over

a single loading-unloading cycle, the nature of hydrostatic pressure variations on a

lake sediment surface includes many cycles. Figure 2-3 shows the impact of measured

hydrostatic pressure variations on the modeled vertical sediment stress, gas and water

pressures at z = 0.5 m over a 15-day period. The top figure demonstrates the simplest

case, a purely plastic response with γg = C = Pmin
c = 0. Sandwiched between

the water pressure and horizontal stress is the gas pressure, forced to rise during

periods of cavity compression (and consequent volume reduction) and to fall when

the cavities expand. Due to the highly-incompressible water and sediment grains,

γw ≈ 1 and the horizontal water effective stress σ′hw = σh − Pw remains constant

for each depth (equation 2.28). Gray bars indicate periods when the plastic cavity

expansion condition is met and conduits are dilated so that gas becomes mobile for

upward flow, as will be addressed in the next section. The bottom figure demonstrates

the model response with both elastic deformation (γg = 0.7) and plastic deformation

with C = Pmin
c = 200 Pa.
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Figure 2-3: Evolution of horizontal stress (black), gas pressure (red), and water pres-
sure (blue) at z = 0.5 m over 15 days of hydrostatic pressure variations. Top: plastic
deformation only with γg = 0 and simple loading function limits C = Pmin

c = 0
and lateral stress coefficient k0 = 1. Shaded bars highlight periods where the cavity
expansion condition is met and the flow conduits are open at that depth. Bottom:
combined elastic and plastic deformation with γg = 0.7, C = Pmin

c = 200 Pa, and
k0 = 0.75. The conduit is not necessarily open during periods of falling gas pressure,
as in the top subfigure, but the open periods are not marked with shaded bars.
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2.4 Escape: multiphase flow through dilated con-

duits

While the growth and development of trapped bubbles can be modeled with plas-

tic and elastic poromechanics, their escape another mechanism. Instead of modeling

the rise of a single bubble through sediments, we assume that the cavity expansion

mechanism dilates a vertical conduit for free gas flow. These conduits may be preex-

isting and un-healed fractures, or new paths through non-cohesive sediments. Within

a one-dimensional model domain, we assume that one vertical flow conduit may be

opened by an expanding cavity at any depth and mobilize all the bubbles above that

depth for rise to the surface. As in the poromechanics framework, the gas transport

is treated as a continuum process, where fluxes of gas are predicted with equations

for multiphase flow in porous media.

As gas-filled cavities expand due to excess gas pressure over sediment stress, they

in essence dilate sub-vertical conduits through which gas may begin to flow. These

conduits may be preexisting and un-healed fractures, or new paths through non-

cohesive sediments. In the model, a conduit extends from the sediment surface to

the maximum depth where gas pressure at least equals stress (Pg ≥ σ), and gas and

water are free to flow in that depth range (Figure 2-4(A)).

The mass balance for a species i ∈ {w,m} for water and methane may be expressed

as:
∂mi

∂t
+∇ · Fi = gi, (2.38)

where mi is the mass per control volume, Fi is the mass flux across control interfaces,

and gi is the rate of mass generation. The species mass may, in principle, partition

over two phases α ∈ {a, g} for aqueous and gas, so that mi = φ
∑

α Sαραχiα, where Sα

is the volume fraction of phase α in the pore space, ρα the phase density, and χiα the

mass fraction of species i in α. However, we neglect dissolved transport of methane

and have pure phases of aqueous water and gaseous methane: χwa = χmg = 1 and

χwg = χma = 0. Then the species masses become mw = φSwρw and mm = φSgρg,
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Figure 2-4: (A) Conceptual model for gas venting with water level drop. The left
pane shows a lake overlying a sediment column with gas bubbles trapped for the entire
depth where gas pressure Pg (red) is less than sediment stress σh (black). The right
pane shows the impact of falling water level on σh, Pg and Pw (blue), and the opening
of a gas-flow conduit to the depth where Pg = σh. (B) Plan view schematic placing
1D model venting sites (gray circles) within the sediment area, with randomly-placed
bubble traps (blue triangles) at the lake surface.
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where the saturations sum to one. Also, a general advection-diffusion expression for

the mass flux Fi,

Fi = φ
∑
α

[vαραχiα −Diα∇ (ραχiα)] , (2.39)

reduces to

Fw = φvwρw, Fm = φvgρg (2.40)

To relate with the binary poromechanics framework above, we may express φα =

φSα. When φ is large (measured above 80% in UML [66]) relative changes in gas

saturation Sg < 10% are much larger and porosity variations may be neglected. We

further assume that all changes in gas pressure and density are accounted for by the

poromechanics evolution, so that the only role of flow through porous media is volume

translation. In this case the mass balance for the gas phase simplifies to

∂Sg
∂t

+∇ · vg = Gg, (2.41)

where Gg = gg/(φρg). We adopt Muskat’s multiphase extended form of Darcy’s law

[47] to describe the gas velocity:

vg = −kkrg
φµg

(∇Pg − ρgg) (2.42)

where k is the intrinsic permeability, krg the gas relative permeability (assumed equal

to saturation Sg), µg the gas viscosity, and ~g the gravitational constant vector, point-

ing downward with z. The density of methane may be estimated using the ideal gas

equation of state:

ρg =
m

V
=

Pg
RTM

, (2.43)

which states that the ratio of gas mass m to volume V is proportional to the ratio

of pressure Pg to the product of the gas constant R, temperature T , and molar mass

M [34]. At conditions characteristic of UML sediments, the gas density ranges from

1-3 kg m−3. The gas velocity vg is used both to evolve the saturation equation (2.41)

and to predict the flux of gas from the sediments into the water column above.

54



Given an initially-hydrostatic water pressure profile within the sediment and a

loading efficiency of γw = 1, the water pressure remains in hydrostatic equilibrium

even with perturbations in the hydrostatic load on the sediment surface. The water

velocity according to Muskat’s extended Darcy’s law then equals zero everywhere:

vw = −kkrw
φµw

(∇Pw − ρww) (2.44)

In fact, some water is entrained by gas bubbles rising through sediments, but such

momentum-transfer effects are not captured by this multiphase expression. Labora-

tory experiments suggest that the volume ratio of entrained water to gas by bubbles

rising through fine sediments is less than 0.1 [33]. This, combined with the low

methane solubility of lake water, suggests that transport of dissolved methane in

entrained water may be safely neglected.

The flow equations may be nondimensionalized to reduce the number of uncon-

strained parameters, and this is especially convenient when the gas relative perme-

ability is proportional to the gas saturation. In one dimension, equation 2.41 may be

normalized by Gg and made dimensionless using a characteristic time t∗ and length

scale h:
∂S̄

∂t̄
+

∂

∂z̄

(
S̄v̄g
)

= 1, , (2.45)

where S̄ = Sg/(Ggt
∗) is the dimensionless accumulated methane exsolution time

(shown on the left side of Figure 2-6), t̄ = t/t∗ is dimensionless time, and ∂
∂z̄

= h ∂
∂z

is a dimensionless vertical gradient. This equation is then solved on the domain

z ∈ [0, 1] instead of [0, h]. The dimensionless velocity, v̄g, is defined:

v̄g =
vgt
∗

Sgh
= −α

(
∂

∂z̄

(
Pg
P ∗

)
− ρg
ρw

)
, (2.46)

α =
kρwgt

∗

µgφh
(2.47)

P ∗ = ρwgh (2.48)

where α is the characteristic dimensionless velocity, the number of t∗s required for
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a burp of gas to rise from depth h to the sediment surface. The dimensional time

required for this traverse is α/t∗. While we could define t∗ = G−1
g so that S̄ would

equal the physically-understood gas saturation, Sg, leaving these two independent

allows us to estimate the unconstrained generation rate while comparing against data

referenced to real, dimensional time. The dimensionless flux,

F̄g = S̄gv̄g =
φvg
φhGg

, (2.49)

is exactly what we need to predict the atmospheric flux using constrained parameters,

as described below in Section 2.5. Instead

Combining equations 2.45 and 2.46, we see that the saturation equation would

have the form of the hyperbolic, first-order wave equation

∂S̄g
∂t̄

+ α
∂S̄g
∂z̄

= 1, (2.50)

if the normalized gas pressure gradient was constant and equal to one. The ratio

of gas to water densities in equation 2.46 is less than 0.003 so may be neglected.

Averaged over the model domain, the gas pressure gradient should be constrained by

the water pressure and horizontal stress gradients so that

1 ≤ ∂

∂z̄

(
Pg
P ∗

)
≤ ∂zσh
∂zPw

= k0

[
(1− φ)

ρs
ρw

+ φ

]
+ (1− k0) ≈ 1.3, (2.51)

where the first equality is derived from equations 2.29 and 2.9, and the given estimate

assumes k0 = 0.75, φ = 0.8, and ρs/ρw = 2.7. Of course, the gradient may vary

outside of these bounds to some extent, due to local gas pressure variations, and

cause local gas accumulation, So, we integrate the full dimensionless equation 2.45

rather than the approximate equation 2.50. The flow equations are discretized with a

secund-order finite volume scheme using linear reconstruction and a monotized central

limiter [65]. They are integrated over each time step with a second-order Runge-

Kutta method, following the poromechanical evolutions in a staggered manner. The

numerical grid is the same for both poromechanics and flow, with 64 control volumes
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in the vertical direction so that the height of an REV is on the cm scale. No flux is

allowed across the bottom boundary or at any depth below the bottom extent of the

open conduit. The gas pressure at the top of the conduit is assumed hydrostatic, and

a natural outflow boundary condition is imposed at the sediment surface. The gas

flux vg(z = 0) out the top of the domain is used to estimate the atmospheric flux by

placing the one-dimensional model within context of a physical lake.

2.5 Bubble rise through the free water column

The combination of gas generation, cavity compression and flow through conduits

allows our model to predict volumetric fluxes of gas at the sediment surface based on

input hydrostatic pressure variations. These mechanisms are validated by comparing

the flux history against four months of ebullative flux measurements taken at UML by

bubble traps [67]. The record from five traps placed effectively randomly on the lake

surface is taken to represent the lake-wide ebullative atmospheric flux. In fact, the

strong episodicity and spatial concentration of venting events means that this record

likely misses some large venting events [68], but the spatiotemporal complexity of the

signal should capture much of the important release dynamics [66]. Because the flow

model output is volumetric gas flux at the sediment surface but the data are collected

at the lake-atmosphere interface, our model must specify what happens to the gas

volume during rise through the water column.

As seen in Figure 1-2, both sediment gas accumulation and ebullition are concen-

trated into distinct areal pockets. Our model neglects the lateral transport mecha-

nisms probably required to form and maintain gassy sediment pockets, but it does

account for spatial concentration of the exsolution and release processes. The one-

dimensional model venting site is assumed to have identical clones scattered uniformly

over the sediment surface, as shown in Figure 2-4(B). The relationship between the

flux F sed of gas volume per active venting sediment area predicted by our model, and
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Figure 2-5: Seismic surveys of UML sediments in June and December, 2009, showing
persistence of a venting site.

lake surface flux F atm that the bubble traps measure, may be expressed as:

F atm = D̄ĀF sed, (2.52)

F sed = φvg(z = 0), (2.53)

where D̄ is the ratio of individual bubble volumes at the lake and sediment surfaces,

Ā = Avent ∗ nvent/Ased is the fraction of the sediment surface covered by venting

sites. The bubble volume ratio D̄ should be closer to one during periods of vigorous

venting, when upwelling currents and local methane saturation inhibit dissolution

[37, 19]. However, Figure 1-6(top) suggests that it should depend strongly on the

bubble sizes, a yet unconstrained parameter. As a first approximation, we assume

a distribution of bubble diameters centered around 4 mm so that D̄ is a constant

approximately one.

The areal ratio Ā accounts for the spread of a bubble plume during rise, or from a

statistical perspective that the expected flux captured by randomly-placed point-sized

bubble traps is proportional to the density and area of influence of individual venting

sites. The active areal fraction could change as venting sites become active or dormant

by accumulating excess bubble volume or exhausting their stores. However, repeated

surveys of UML sediments in June and December, 2009 (Figure 2-5) detected a pocket

58



of gassy soil at the same location, implying that these features may be persistent on

the annual scale of interest. Inspection of Figure 1-2 suggests that the vent spacing

may be on the order of 100 m so that Ā ≈ 10−4, but the use of a normalized model

allows us to eliminate this poorly-constrained parameter.

Because the flow equations assume incompressible fluids, the bubble rise within the

sediment does not feed back to the conduit opening or closing conditions. Information

flows only one direction, from the hydrostatic pressure forcing, to the poromechanical

evolutions, to the conditions to open or close flow conduits, to the rate of gas flux

into the water column and atmosphere. Experiments and physical reasoning suggest

that, once a gas bubble becomes mobile within the sediment, it will rise all the way

to the sediment surface [4]. Our model has no self-reinforcing mechanism to ensure

this behavior. Instead, a “burp” of gas may be mobilized by a deepening conduit

during a period of hydrostatic pressure drop, only to be trapped again higher in the

sediments by a rebound in the hydrostatic pressure forcing. This behavior can be

seen in Figure 2-6, where a burp is mobilized (top) and then trapped (bottom).

2.5.1 Cumulative release tuning

When bubble flux attenuation between the sediment and atmosphere by dissolution

and spreading is assumed constant, we may eliminate the unconstrained parameters

D̄, Ā, and Gg using the seasonally-integrated measured bubble flux. This is because

the entire model then becomes linear in gas saturation when the relative permeability

is also linear (krg = Sg). The seasonally-averaged flux at the sediment and atmo-

sphere,

F̃ atm ≡ 1

tf − ti

∫ tf

ti

F atmdt, (2.54)

F̃ sed ≡ 1

tf − ti

∫ tf

ti

F seddt, (2.55)
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Figure 2-6: Depth profiles of gas volume (left) and pressures (right) for two instants
in time: (top) a burp of gas at 0.55 m in the sediment is mobilized by a the deepening
flow conduit, but the same burp becomes trapped an hour later as the conduit shallows
with a rising hydrostatic pressure input (not shown). The next day (bottom), the
horizontal stress has risen noticeably and kept the gas burp trapped at depth even
as it grows with the uniform exsolution rate, Gg. In these simulations C = Pmin

c = 0
so that gas pressure is constrained between the water pressure and horizontal stress.
The sediment permeability, k, is 5 ∗ 10−14 m2 (α ≈ 2), and such trapped bubbles
would not occur frequently in higher-permeability sediments where the bubble rise
time is shorter (larger α). The gas inventory is normalized saturation S̄g.
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are related by F̃ atm = D̄ĀF̃ sed ,when D̄ and Ā are constant. These are further related

to the average volume generation rate per venting site area by:

F̃ gen ≡ 1

tf − ti

∫ tf

ti

∫ d

0

φhGgdzdt = φdGg, (2.56)

where the second equality holds true when the generation rate and porosity are con-

stant and uniform over the depth of methane-generating sediments, h. The integrated

sediment flux and areal generation are related by

R̄ ≡ F̃ sed

F̃ gen
, (2.57)

where R̄ = 1 if the system is at steady-state between ti and tf . The atmospheric flux

is related to the generation rate by

F̃ atm = D̄ĀR̄φhGg, (2.58)

which may be estimated using the integrated bubble trap data in equation 2.54. This

atmospheric flux, averaged over five bubble trap records with continuous continuous

monitoring from August eighth to December first, 2008, is F̃ atm = 27 mL m−2 day−1.

Then the product

G̃ = D̄ĀφhGg =
F̃ atm

R̄
(2.59)

is the effective areal exsolution rate at the lake surface. If we can assume a value for

R̄, G̃ is estimated by the average trap data, and equation 2.52 shows it may be used

to model the atmospheric flux:

F atm = F̄gG̃, (2.60)

F̄g =
F sed

φhGg

, (2.61)

where equations 2.49, 2.53, and 2.61 confirm that the desired flux F̄g is the output of

the dimensionless saturation equation 2.45.
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Owing to this simplification, we could imagine two extreme cases that our model

treats as equivalent. In the first, rapid gas generation creates large saturations and

release rates that are concentrated on a small fraction of the sediment surface. In the

second case, lower generation rates are spread more evenly over the whole area, cre-

ating lower gas saturations and sediment fluxes. In both cases the atmospheric fluxes

F atm and parameter G̃ are identical. It should be reiterated that this simplification

allows us to constrain the product including D̄, Ā, and Gg only when they are all

assumed constant. This should not remain the case for dynamic dissolution mecha-

nisms, to be considered in future work. For a first attempt the parameter constraint

is appealing because it only requires extra input data and not explicit tuning. In

general we assume steady state to estimate fatm ≈ F̃ atmF̄g and measure R̄ from the

fraction of methane generated that is released by the model into the water column.

R̄ can be distilled from equations 2.57, 2.56, and 2.61 in terms of F̄g:

R̄ =
1

t̄f − t̄i

∫ t̄f

t̄i

F̄gdt̄ (2.62)

However, one can also use the above equation to tune R̄ without any knowledge of

F̃ atm, in which case G̃ is constrained and the seasonal cumulative model gas release

matches the data exactly. Sensitivity analysis and results will specify in each case

whether R̄ is treated as a tuned input or a measured output.

The model presented above may be used to simulate methane ebullition from lake

sediments in response to hydrostatic pressure variations. In modeling gas volume

generation, bubble evolution and release, a number of unconstrained parameters were

introduced. The following chapter analyzes the model sensitivity to these parameters.
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Table 2.1: Summary of parameters and constants, including the method or source
used to constrain them.

Parameter Name Units Range Constraint method

α characteristic velocity - 0.1-100 model tuning
k intrinsic permeability m2 10−14 − 10−12 model tuning (α)
h active sediment height m 0.5-3 model tuning
C sediment cohesion Pa 0-5000 model tuning
Pmin
c minimum capillary pressure Pa 200-500 tuning, [55, 54]
R̄ release ratio - 0− 1 model tuning

F̃ atm average surface flux mL m−2 day−1 27 [66]
d0 mean water depth m 10-25 [66]
φ porosity - 0.8-0.95 [66]
k0 lateral stress coefficient - 0.74-0.76 [61]
µw water dynamic viscosity kg m−1 s−1 1.8 ∗ 10−3 [34]
µg gas dynamic viscosity kg m−1 s−1 1.7 ∗ 10−5 [34]
ρw water density kg m−3 1000 [34]
T sediment temperature ◦ C 4-6 [66]
R ideal gas constant J K−1 mol−1 8.314 [34]
M methane molecular mass g mol−1 16
γw water loading efficiency - 1 [56, 69]

γg gas loading efficiency - 0 [61, 55]
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Chapter 3

Model Sensitivity

This chapter investigates the model sensitivity to the primary unconstrained param-

eters. Except where otherwise noted, the model is run from August 6 to December 1,

2008, and the cumulative release volumes and fluxes are averaged to the day.The de-

fault parameter values are: h = 1.5 m, Pmin
c = C = 0, and α = 4↔ k = 10−13.While

much of the interesting model dynamics occur at the sub-daily timescale, the research

goal is to match the daily gas flux record from the bubble traps. So, most of the sen-

sitivity analysis is presented in terms of daily fluxes, while future work will focus on

finer temporal resolution.

3.1 Model height

Figure 3-1 shows the model sensitivity to h, the height of the sediment column that is

actively generating and releasing methane. When h = 1, the flow conduit frequently

opens throughout the entire model domain and empty the venting site of its accumu-

lated methane volume, so that 98% of the methane generated is released (R̄ = 0.98).

For a deeper model h = 2, the conduit reaches the bottom less frequently and only

88% of the methane exsolved is released. However, the storage of methane out of

reach of small hydrostatic pressure perturbations allows greater cumulative release

during these extreme pressure drop events, as near September 29. Figure 3-2 shows

that this large gas release is not due to a faster flux rate, but because the source of
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Figure 3-1: Cumulative methane volumes released to the atmosphere from model
sediments for sediment column heights h = 1, 2 and 3 m. For increasing active
sediment depth given the same areal generation rate estimated from the data, the
volume released is less because the conduit does not open through the entire model
depth and the bubbles take longer to rise.

methane takes longer to be depleted so that the flux peak is wider. These trends

continue for an even deeper model (h = 3), which keeps nearly 40% of the generated

methane trapped because so much of the model is inaccessible to the gas conduit given

hydrostatic head variations of less than half a meter (equivalent to ∼ 5 kPa). At this

point the assumption of a steady state inventory of gas over the season (R̄ = 1) for

estimating G̃ is no longer valid, and the generation rate Gg would have to be tuned

considering this long-term methane storage.

3.2 Conduit permeability

The intrinsic permeability k is the least-constrained part of the derived flow parameter

α, defined in equation 2.47. The dimensional k reflects the ease with which fluids
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Figure 3-2: Model methane fluxes for three sediment column heights h = 1, 2 and
3 m. The left axes and solid blue line show the model input, hydrostatic pressure
variations (in terms of cm water head), and the right axes show the scale of gas fluxes.
For increasing h the initial peak magnitudes are smaller (e.g. August 25th), but the
model continues to release methane for longer during extreme pressure drop events
like near October first and reaches higher peak flux rates during repeated pressure
drop events in mid-October, when the shallow model (h = 1) is relatively depleted.
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Figure 3-3: Cumulative methane volumes released to the atmosphere from model
sediments for dimensionless velocities α = 0.4, 2, and 40. These correspond to open-
conduit permeabilities k = 10−14, 5 ∗ 10−14, and 10−12 m2. More methane is released
from more permeable conduits, although increasing α past 2 has little impact on the
cumulative release because the characteristic release time is reduced below 12 hours.

are transported vertically out of the venting site, and in the context of our model

gassy sediments it should capture both the aperture of the flow conduits and an

unspecified lateral gas transport mechanism that transfers bubbles into the conduits.

The characteristic dimensionless time for a gas bubble to rise through the sediments

is α−1, and the dimensional time is t∗/α. Comparison with the data was easiest using

t∗ = 3600 ∗ 24 seconds, or one day in SI units. So, when α > 1, the timescale for

release is less than a day, and the releases are essentially instantaneous at the daily

timescale (Figures 3-3 and 3-4). The current work focuses on matching the daily

release record, however future work on capturing the spatiotemporal concentration of

ebullition will require higher-frequency modeling that should be sensitive to values of

α > 1.

Low values of α may delay the methane release, attenuate the flux rate, or prevent

a gas burp from reaching the sediment surface at all. This last case, of gas mobilized

and then re-trapped, is exhibited in Figure 2-6. For values of α > 1, hourly resolution

is required to visualize the difference in flux records, as shown in Figure 3-5. The
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Figure 3-4: Daily-average model methane fluxes for three dimensionless velocities
α = 0.4, 2, and 40, corresponding to permeabilities k = 10−14, 5 ∗ 10−14, and 10−12

m2. The two higher-permeability models exhibit much sharper peaks during the
maximum August and September ebullition events. The lower-permeability model
maintains a high flux rate during the October first event because it takes time for
the bubbles to rise to the sediment surface, while the higher-permeability models
evacuate their inventories instantaneously on the daily time scale. Higher temporal
resolution is required for the model to be sensitive to alpha values above 1.
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Figure 3-5: Hourly-average model methane fluxes for three dimensionless velocities
α = 0.4, 2, and 40. More conductive models have sharper peaks and greater cumula-
tive releases (Figure 3-3).

70



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.4
2
20

Period (days)

Sp
ec

tr
al

 p
ow

er

Figure 3-6: Power spectra for an hourly-resolution simulation from August 6 to
September 1, with α = 0.4, 2, and 20, corresponding to k = 10−14, 5 ∗ 10−14, and
5 ∗ 10−13 m2.

α = 0.4 model has both lower flux values and smoother peaks compared with the more

conductive models. The impact of conductivity may be visualized with the power

spectrum of the signal (the squared magnitude of the Fourier transform), shown in

Figure 3-6. Larger α values increase the power at most frequencies. Not only is more

methane released, but the portion of the signal from high-frequency (small-period)

components is higher because individual burps of gas may evacuate the sediment

column faster, shortening the flux event.

3.3 Plastic limits

The two plastic deformation coefficients left unconstrained in Chapter 2 are the sed-

iment cohesion, C, and minimum capillary pressure, Pmin
c . Increasing cohesion tends

to inhibit ebullition, while increasing the minimum capillary pressure encourages it,
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Figure 3-7: Cumulative methane volumes released to the atmosphere from model
sediments for cohesion C = 0, 0.5, and 1 kPa. Increased cohesion demands a greater
hydrostatic pressure drop to initiate conduit flow, but once open the conduit emits
larger bursts of gas Figure 3-8. As can be seen from the different seasonal cumulative
releases, the values of R̄ = 95, 91, and 88% were not used to match the seasonal data.

as explained below.

3.3.1 Cohesion

The influence of nonzero sediment cohesion on the gas pressure evolution may be seen

in Figure 2-3. Cohesion allows the sediment stress to drop below the gas pressure

during hydrostatic unloading, delaying or preventing the release from a given depth.

So, the cumulative release record in Figure 3-7 is smaller for more cohesive sediments.

However, the gas stored at depth during minor events may still be released during

major events so that the distribution of mean flux rates per event is more highly

weighted to large fluxes (Figure 3-8).

3.3.2 Minimum capillary pressure

While sediment cohesion tends to delay or inhibit ebullition by requiring larger-

magnitude hydrostatic pressure drops, the minimum capillary pressure has the op-
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Figure 3-8: Histogram of average gas flux rate per event (period with daily flux rate
above 15 mL m−2 day−1) for cohesion C = 0, 0.5, and 1 kPa. More cohesive sediments
release more of their gas in temporally-concentrated bursts.
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Figure 3-9: Cumulative methane volumes released to the atmosphere from model sed-
iments for minimum capillary pressures 0, 0.5, and 1 kPa. Increasing this minimum
capillary pressure forces the gas pressure higher during periods of rising hydrostatic
pressure, and these high gas pressures trigger earlier and more frequent conduit open-
ing. The cumulative release record then stays closer to a straight line.
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Figure 3-10: Histogram of mean flux rates per venting event for Pmin
c = 0, 0.5, and 1

kPa. Larger minimum capillary pressure forces more frequent, smaller venting.

posite effect of encouraging frequent ebullition. During periods of rising hydrostatic

pressure input, the gas pressure is held above the water pressure by Pmin
c , and for

larger values of this parameter the gas pressure is left higher at the end of plastic

cavity compression. This high gas pressure encounters falling sediment stress dur-

ing smaller drops in hydrostatic pressure, so the gas becomes mobile easier at every

depth. Figure 3-9 shows that increasing Pmin
c forces the cumulative release record to

resemble better a straight line, composed of tiny variations rather than large jumps

characteristic of vigorous venting periods. The transition to many, small releases may

also be seen in the histogram in Figure 3-10.

3.4 Spatial resolution

Figure 3-11 shows that the model is insensitive to the vertical discretization, even at

hourly resolution. This is important because the mobilization of gas in a particular

control volume is a discrete process, and given a characteristic gas velocity α that

is rapid relative to the rate at which the conduit extends in depth, the magnitude

of individual bursts at high temporal resolution would be controlled by the rate at
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Figure 3-11: Confirmation that the flux rate is insensitive to the vertical resolution.
The normalized cumulative release is the number of days required to exsolve the
volume released and is almost indistinguishable for nz = 16, 32, and 64, even at
hourly resolution.

which control volumes join the growing conduit. The models insensitivity to vertical

resolution at hourly temporal resolution suggests that the value α = 2 is small enough

to avoid this numerical artifact. Because t∗ = 1 day, α = 2 corresponds to a bubble

transit time of about 12 hours. Then during falling hydrostatic pressure and vertical

extension of the conduit at an observed rate of about half a meter per day, multiple

control volumes are mobilized within the time period of rise. In future work, the

desire for greater temporal resolution may demand explicit modeling of more rapid

bubble rise than considered here, and care must be taken to prevent the numerical

scheme from impacting the temporal characteristics of ebullition.
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Chapter 4

Results

4.1 Best fit

The results we seek are a good fit between the model-predicted and measured volumet-

ric gas fluxes. Because the seasonally-integrated flux is tuned from the data and ratio

of methane generated that is released, the overall magnitude of the model flux has

little significance. The timing and relative magnitudes of the venting events, though,

are characteristics that our model predicts given the input hydrostatic pressure varia-

tions and a limited number of unconstrained parameters. The four parameters tuned

in the following results are the dimensionless gas flux rate through open conduits α,

the model sediment depth h, minimum capillary pressure Pmin
c and sediment cohe-

sion C. An analysis of the model sensitivity to these parameters was performed in

Chapter 3, and the best-fit results presented below will be interpreted in terms of

their implications for the physical processes at play in lake sediments.

Figure 4-1 compares the modeled and measured daily-averaged gas fluxes at the

lake surface, after tuning parameters to a local maximum correlation and minimum

root mean squared error (RMSE) between data and model fluxes. This is not necessar-

ily the global correlation maximum or RMSE minimum, as an exhaustive parameter

search was not performed. However, the parameters fell within the expected range,

and the fit is visually reasonable. Both records can be seen to respond with peaks

in flux, or venting events, during periods of falling hydrostatic pressure. The model
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Figure 4-1: Best fit of data and model gas fluxes. The left axis and solid blue
line show a time series of the hydrostatic pressure forcing, and the right axis shows
the methane fluxes from the bubble trap data (black, dashed) and model (orange,
solid). The fluxes are binned daily, and the cumulative model release is tuned to the
data. The model accurately predicts the timing of large flux events and usually their
magnitude, as well.

seems to capture the timing and relative magnitude of venting events. Spurious model

flux peaks may correspond to venting events not recorded by any of the five traps

because they were not placed over an active vent, while exaggerated peaks may corre-

spond to slow-leakage events that mostly dissolved during the rise through the water

column (a dynamic process neglected when D̄ is assumed constant).

The parameter values that yielded this fit are α = 4, h = 1.5 m, Pmin
c = 200

Pa, and C = 1000 Pa. Increasing values of the gas loading efficiency γg above zero

flattened the early flux peaks by keeping the conduits extent shallower, but then

the late October peaks were excessively large compared with the data. The value of

α = 4 is high enough to reproduce the sharp flux peaks and evacuate gas from the

sediment within about six hours of mobilizing it. Increasing α to 5 or reducing it to 3
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decreases the correlation coefficient only slightly from 0.6 to 0.58 or 0.56, respectively,

and increases the RMSE flux from 31 to 32 or 33.

A model sediment depth of 1.5 m allowed a balance of deep storage to provide

high flux events during extreme pressure drops, and low total generation to allow

small flux peaks otherwise. The correlation drops from 0.6 to 0.5 when h is increased

to 2 m and to 0.4 when h is reduced to 1 m. The RMSE in flux increases to 40 mL

m−2 day−1 in either case.

The minimum capillary pressure makes the model more prone to venting with

small drops in hydrostatic head, and the best-fit value is Pmin
c = 200 Pa. The daily

flux results are not sensitive to values below this, but increasing even to 500 Pa

increases the RMSE flux from 31 to 32 mL m−2 day−1 and reduces R2 from 0.6 to

0.52. So, the minimum capillary pressure in the system does not seem to play a

large role in controlling ebullition. The sediment cohesion has the opposite effect, of

delaying or inhibiting gas releases, and C = 1 kPa gives the right amount of delay at

the daily scale. Increasing C to 1.5 kPa reduces R2 from 0.6 to 0.5 and increases the

RMSE flux from 31 to 42 mL m−2 day−1, while decreasing it to 0.5 kPa has the same

effect on R2 and increases RMSE flux to 33 mL m−2 day−1. Sediment cohesion then

appears to play a significant role in ebullition.

In all cases the sediments are assumed to be initially free of gas bubbles because an

initial gas content elevates the August flux peaks even farther above the data without

improving the overall fit. The value of R̄ is measured after each model run and used

in equation 2.57 to normalize the season-scale cumulative release. The parameter

values tuned to match the model and data flux records in Figure 4-1 represent a local

minimum of error and maximum of correlation in the five-dimensional space. While

exhaustive parameter searching was not performed, the tuned values have reasonable

physical implications, as will be discussed in Chapter 5.
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Figure 4-2: Time series of hydrostatic pressure forcing (left axis, blue color) and
methane fluxes (right axis) from the bubble trap data (black, dashed) and model
(orange, solid) with hourly binning. The negative data fluxes are artifacts of surface
waves acting on the pressure sensor used to estimate gas volume in the bubble traps,
which were suspended by buoys below the surface. Such artifacts erode confidence in
physical inferences based on fitting a model to the data at this time scale.
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4.2 Increased temporal resolution

The ultimate goal of this modeling effort is to estimate the lake-wide atmospheric

methane release in a way that can be applied to other lakes. One component of

such an application is understanding the methane loss from bubbles during their rise

through the water column, which as discussed in Chapter 1 may depend strongly

on the rate and mechanism of release. In particular, dissolution depends on the

concentration of bubbles in a rising plume, and estimating the population of bubbles

rising at about 25 cm sec−1 requires temporal resolution on the order of seconds to

minutes, not hours or days. We may find through field work that such effects do not

play a role because the fluxes at the sediment surface are simply too small to generate

any bubble interaction, but for now the unconstrained areal spread mechanism and

possibility that the few deployed traps missed the most vigorous venting sites prevent

us from ruling them out. If we must consider the temporal concentration of venting

on the minute timescale, more sophisticated modeling and more reliable data will be

required. Figure 4-2 shows how the data, even averaged over five traps and smoothed

with a one-hour moving-average filter, still display negative gas flux rates.

4.3 Multiple Traps

The data in Figure 4-1 are the average of the five traps with continuous flux records

over the fall of 2008. The flux records from individual traps in Figure 1-3 show

some synchronicity but also more intense flux rates during less-frequent events. This

emphasis on low-frequency and high-power venting is visible both in a histogram

(Figure 4-3) and in a comparison of the power spectra of the model against the

average data and those from individual traps (Figure 4-4), which have much more

power concentrated at monthly frequencies than either the average data or the model.

81



50 150 250 350 450
0

5

10

15

20

 

 

Data Mean
Model
Individual Traps

Ev
en

t f
re

qu
en

cy
 p

er
 tr

ap

Mean flux per event (mL m-2 day-1)

Figure 4-3: Histogram of mean gas flux rate per event for the mean data, individual
trap data, and model output. A flux event is defined as a continuous daily flux
rate above 15 mL m−2 day−1. Because the sum of histograms from five individual
traps records more flux events than an individual record (model or mean data), the
“individual trap” histogram is normalized by the number of traps. Consistent with
Figure 4-1, the data mean and model distributions match, but both are missing events
with large flux rates seen in the record from individual traps (“9mA” in particular
saw more vigorous venting – see green line in Figure 1-3).
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Figure 4-4: Power spectra for individual traps, mean data from five traps, and model
output. In the 30-100 day range the mean data, and even more so the model flux,
lack the spectral power of the flux record from individual traps. This suggests that
individual traps have some delay mechanism that imposes a month-scale induction
time averaged out by the mean data and not captured by the model.
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Chapter 5

Discussion and Conclusions

5.1 Implications of data-model fit

The goal of this modeling work was to identify the dominant mechanism linking

methane ebullition in lakes to changes in water level and atmospheric pressure. we

hypothesized that the combination of plastic gas cavity expansion in deformable sed-

iments and multiphase flow through vertical conduits was sufficient to explain this

link. The mechanistic, numerical model developed was forced with a record of hydro-

static pressure at Upper Mystic Lake, MA, and the predicted methane fluxes were

tuned against recorded methane fluxes at the surface. Because the initial correlation

between the hydrostatic forcing and ebullition was so poor (R2 = 0.08), the model

had to capture significant nonlinear behavior. We may conclude, from the visual

match and greatly-improved correlation between the predicted and measured fluxes

(R2 = 0.6) compared with the hydrostatic forcing, that the proposed model is valid for

predicting the temporal concentration of ebullition at the daily timescale given that

forcing. The combined poromechanics and multiphase flow equations may be said

to represent the physics at play because the tuned parameter values have reasonable

physical interpretations, as discussed below.

The model depth of h = 1.5 m suggests that free-gas transport within the sediment

occurs primarily within this depth range. This is consistent with our knowledge that

the methane is of totally biological origin, that no deep, geothermal sources contribute
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to the release. The assumption that the gas exsolves uniformly with depth may be

refined with further field investigation. If, for example, methanogenesis peaks at a

shallow depth and decreases exponentially downward, then the active depth range

would be shallower, and a better fit would be obtained by assuming less-permeable

flow conduits.

The tuned sediment cohesion C = 1 kPa has a clear physical relationship to plas-

tic cavity expansion and should strongly impact the ebullition record. The analysis

in Chapter 4 shows that the data-model fit is sensitive to C in this range. This

tuned cohesion value is small compared with those found by Johnson et al. (2002),

which showed pressure fluctuations of up to 5 kPa during cycles of pressurization

and fracturing by individual bubbles [27]. This supports the interpretation that lake

sediments are poorly cohesive and suggests that neglecting transient bubble pressur-

ization by exsolution is a valid approximation for this system. Future laboratory

experiments should be able to constrain further this parameter.

The best-fit minimum capillary pressure of 200 Pa suggests that gas bubbles of

sufficient size to impact the ebullition record may be 1 mm in diameter. Such bubbles

are larger than the void spaces measured in synthetic gassy sediments [55], and the

mismatch may be explained in at least two ways. Either the lower-stress conditions

in lake sediments allow larger gas cavities, or plastic cavity compression is not related

to capillary effects and equation 2.19 is not appropriate. Even so, the data-model

fit suggests that plastic cavity expansion and compression is a valid mechanism for

evolving the gas pressure in lake sediments. Fruitful model improvements may come

from investigating dynamic plastic deformation limits. For example, equation 2.15

suggests that the scaling C ∼ S
− 1

3
g could capture the increase in gas effective stress

with cavity compression (reduction in Sg) based on the dynamics of a perfectly plastic

sediment-water matrix [61].

The open-conduit dimensionless conductivity value α = 4 implies that a bubble

rises through the sediment column in about 6 hours once it is mobilized. This value

corresponds to a permeability of 10−13 m2, which is small relative to the expected

effective permeability of a 100-µm conduit [50]. However, a lower permeability is
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Figure 5-1: Schematic relationship between three possible venting site states. The far
left venting site contains multiple exsolved bubbles that have currently activated their
ebullition mechanism and are escaping into the water column. The local pressure drop
within the site drives not only further exsolution from the methane-rich pore water,
but also some lateral pore water advection. This dissolved methane transport may
help maintain the methane concentrations within the area of influence of the free-gas
flow mechanisms by pulling in methane from outside that area. The timescales of ver-
tical and horizontal transport should determine the characteristic size and persistence
of active venting sites. Even as bubbles in the left site escape, those at the central
site remain trapped, perhaps because the bubble growth pattern inhibits opening of
flow conduits during some induction time after a venting event.
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reasonable for our model because a single conduit drains a characteristic area, possibly

on the scale of meters, and the conduit permeability should account for both vertical

transport and lateral transfer of gas within the venting site to the conduit. So, the low

permeability is consistent with the horizontal homogenization into a one-dimensional

model.

The model was shown to match the flux history and distribution from the mean

of five bubble trap records, but Section 4.3 demonstrates that the same was not true

of individual traps. Individual traps typically record more vigorous and less frequent

ebullition events than their average because not all venting sites activate simultane-

ously (Figure 1-3). If individual traps reflect the behavior of individual venting sites

better than the average, then this observation implies some mechanism is forcing an

induction time between releases from individual sites. For example, the pressure gra-

dients away from venting sites created after gas release may drive slow lateral methane

transport. Figure 5-1 highlights some proposed behaviors, including lateral methane

transport and dormancy of vents. The current model represents better the upscaled,

lake-wide gas flux signal character than that from any one location. In the sense

that we seek to model the lake-wide atmospheric flux, this is fortunate. However, be-

cause we hypothesize that the bubble interactions that attenuate the methane release

depend on the spatial and temporal concentration of flux events, this observation mo-

tivates us to capture whatever mechanism causes the induction time associated with

events from individual venting sites. Future work should incorporate the behavior

of individual sites and characterize their interactions and relationship in space and

time.

The seasonal cumulative methane flux from the model is either estimated from

the data, or even tuned to match the data and model gas fluxes (see Section 2.5.1).

So, the temporal concentration of flux into peaks of relative height, width and timing

is the unconstrained contribution of the numerical model. This tuning was performed

by assuming that neither the fraction methane in bubbles rising through the water

column that dissolves, nor the spacing of venting sites, depended on the rate of

gas release from the sediments. Because a reasonable fit was obtained with this
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assumption, we could conclude that bubble dissolution is insensitive to the rate of

release. However, research on the bubble interactions in plumes [38, 37, 19] and

the relationship between bubble sizes and rates of release [22, 64] motivates us to

refine the model further by considering these dynamic dissolution effects. By linking

the mode of gas release to dissolution, these effects determine how strongly the lake

system attenuates atmospheric methane emissions from the amount generated in lake

sediments. If the lake’s effective “chemical resistance” to the greenhouse potential

of methane, via dissolution and oxidation of CH4 to CO2, depends on ebullition

parameters that may be measured, then the global atmospheric methane contribution

from lakes may be better constrained.

5.2 Future Work

In addition to adding complexity to the model, we will seek to observe directly the

dynamic flow conduit mechanism proposed and constrain the physical parameters

with field observations. Figure 5-2 diagrams a number of proposed field measurements

and describes how each may help constrain the dynamics of methane venting from

lake sediments. For example, video analysis of rising bubble plumes (label (h)) will

allow us to quantify accurately the density and size distribution of bubbles, both

of which impact the fraction dissolved during rise (Figure 1-6). Sediment-surface

bubble traps (5-2 (f)) will capture the gas flux from identified venting sites and will be

impacted less by dissolution and surface-wave corruption, which hinder data analysis

and model development at better than daily resolution. Repeated seismic surveys

(5-2 (d)) will constrain the longevity of venting sites and determine whether dormant

sites (Figure 5-1) preferentially re-activate because preexisting conduits heal with

lower sediment cohesion. Push cores of the shallow sediments (5-2 (c)) will allow

estimates of the evolving gas content and determine the validity of the undrained

assumption via flow permeability tests. Not shown on this figure is another possible

field observation, the 2D imaging of trapped bubbles and flow conduits using an X-

ray source and film inserted directly into a known venting site. If a bubble trap
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Figure 5-2: Cartoon placing the central processes and field techniques into a region of
lake overlying methane-generating sediments: (a) Methane generated in the sediments
forms bubbles (red, enlarged) that are released through open vertical flow conduits
(purple); (b) Methane is transported as a solute (wavy blue lines) laterally toward
venting sites within the sediments and vertically into the water column; (c) Tran-
sect of push cores characterizes sediment properties; (d) Boat-based seismic survey,
with orange downward-facing chirp signal penetrating the sediments, detects trapped
gas. Orange switchback pattern projected on sediment surface depicts boat path and
survey coverage; (e) Sidescan sonar survey (yellow fan-shaped ping) detects a bubble
plume (red) in the water column rising from venting sites; (f) Bubble trap records the
free-gas flux at the sediment surface with high resolution; (g) Ping from an acoustic
transducer rotating on a benthic platform captures the spatiotemporal variability of
gas releases; (h) Video recording of rising plumes by ROV captures bubble size dis-
tribution and plume effects. Multiple sub-models downloaded from the Google 3D
Warehouse
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is positioned just above this site, then it could trigger the X-ray source exposure

triggered when bubble release is detected.

While the current model is almost completely insensitive to the mean water depth

parameter, which impacts the absolute pressures but not relative changes, Figure 1-6

shows that incorporating a depth-dependent dissolution model will make the depth

more important. An improved bathymetric map, already under development thanks

to initial field work by the USGS’s Carolyn Ruppel on UML, will allow us to incor-

porate the distribution of depths if not explicitly model the distributed lake system

to improve the atmospheric release estimate. The primary unknown not scheduled to

be addressed is the fate of dissolved methane in the deep, anoxic hypolimnion, which

may escape to the atmosphere or be oxidized first to carbon dioxide.

The proposed field campaign will be supplemented by laboratory experiments.

Small sediment microcosms may be imaged in two dimensions (ant farm-shaped con-

tainment cell) with a high-speed camera and in three dimensions (aquarium-shaped)

with a medical X-ray computer-aided tomography system. Gas may be fed into the

system either by a needle [4], from a free-gas reservoir below, by exsolution from source

pore water supersaturated by methane, or even by incubation of anoxic methanogenic

communities. As the gas bubbles grow and mobilize with controlled variations in the

overlying water level, we may observe both the morphology and rate of gas release.

Simultaneous observation of bubbles in the sediment and water column will support

or disprove the proposed link between the rate of gas release and free bubble size.

The combination of these laboratory and field investigations will support refinements

of the model both to describe the mechanisms governing gas release and to constrain

the quantity of methane that lakes contribute to the atmosphere.
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