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ABSTRACT

Increasing demand for air transportation and growing environmental concerns motivate
the need to implement measures to reduce CO 2 emissions from aviation. Case studies

of historical changes in the aviation industry have shown that the implementation of
changes generally followed S-curves with relatively long time-constants. This research
analyzed the diffusion characteristics of a portfolio of CO2 emission mitigating measures
and their relative contribution to cumulative system wide improvements. A literature
review identified 41 unique measures, including (1) technological improvements, (2)
operational improvements, and (3) the use of alternative fuels. It was found that several
operational changes can be implemented in the short term but are unlikely to significantly
reduce CO 2 emissions. Technology retrofits and some operational changes can be
implemented in the medium term. 2 nd and 3rd generation biofuels can significantly reduce
carbon emissions but are likely to have long diffusion times and may not be available in
sufficient quantities to the aviation industry. Technology measures in the form of next
generation aircraft have the highest CO2 reduction potential, but only in the long term due
to slow fleet turnover.

An Aircraft Diffusion Dynamic Model (ADDM) was developed using System
Dynamics modeling techniques to understand how the fleet efficiency will be influenced
by the entry of various generations of aircraft with different levels of emissions
performance. The model was used to evaluate effects of several future potential scenarios
on the US narrow body jet fleet as well as their sensitivity to S-curve parameters.

Results from the model showed that strategies that emphasize the early entry into
service of available technology, as opposed to waiting and delaying entry for more fuel-
efficient technology, have greater potential to improve fleet fuel-burn performance. Also,
strategies that incentivize early retirement of older aircraft have marginal potential for
reducing fuel burn.

Future demand scenarios showed that the infusion of fuel-efficient aircraft alone
is unlikely to reduce emissions below 2006 levels. Instead, a portfolio of measures that
also include demand reduction mechanisms, operational improvements, and adoption of
alternative fuels will be required in order to limit the growth of CO2 emissions from
aviation.

Thesis Supervisor: R. John Hansman

Professor of Aeronautics and Astronautics and Engineering Systems
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Challenge of Reducing Emissions while Meeting Growing Demand for Air

Transportation

Air transportation has been, and remains, a key enabler to economic growth and

development by providing fast and reliable access to people and markets. Worldwide

increase in economic activity during the last few decades has resulted in significant rise

of demand for commercial aviation. As shown in Figure 1, the two largest markets in

terms of passenger traffic, North America and Europe have grown at an average annual

rate of 5.7% and 5.0% respectively over the last 20 years. Asia-Pacific has also exhibited

significant growth at 8.8% average annual growth rate. This market is now reaching

passenger traffic levels comparable to the European market. More recently, impressive

growth of traffic has been observed in the Middle East that exhibited an average annual

growth rate of 13% per year, between 2000 to 2007.

Disregarding the recent economic downturn in 2008 and 2009, the global aviation

industry has grown between 4.5% and 5% annually since 19901. Numerous forecasts

estimate that similar rates of growth are likely to prevail in the next decades (BCA 2008).

Data source: International Civil Aviation Organization (ICAO), Civil Aviation Statistics of the World,
ICAO Statistical Yearbook, ICAO, Table 1-16 (1986 tol987), Table 1-13 (1998 to 1999), Annual Review
of Civil Aviation 2001, 2002, 2003, ICAO Journal, vol. 57 No.6 2002, vol. 58, No. 6 2003, vol. 59, No. 6
2004, vol. 60, No. 6 2005, vol. 61 No. 6 2006 and International Air Transport Association (IATA) data for
years 2005 to 2007.
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Figure 1: Passenger traffic growth (RPK) worldwide from 1971 to 2007
(Data sources: ICAO (1970-2000), IATA (2001, 2007), Courtesy of Bonnefoy P.)

While demand was growing at a rate of approximately 4-5% every year, fuel

efficiency improvements ranged from 1.2 to 2.2% annually (BTS 2008). This rate of

improvement was not sufficient to compensate for demand growth and resulted in a net

increase in fuel bum (Figure 2).

200

180N1

160

140

120

100

80 Per year

60

40 -4- Revenue Passenger Miles (RPMs)

20 -- Fuel Cornsumption
-*--Fuel/ RPM

0

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Figure 2: Historical evolution of fuel consumption in the United States
(Data sources: DOT BTS T2 U.S. Air Carrier Traffic and Capacity

Statistics by Aircraft Type, Courtesy of Bonnefoy P.)

It is therefore expected that with growing demand and marginal improvements in

fuel efficiency, aviation's contribution to anthropogenic greenhouse gas emissions will
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increase in the future. The International Civil Aviation Organization (ICAO) recently

forecast that global CO 2 emissions from aviation would increase an additional 150%

above 2006 levels by 2036 (ICAO 2009). At this rate, emissions would quadruple by

2050.

Future increases in net emissions are likely to reinforce public and political pressure

on the aviation sector to reduce its greenhouse gas emissions (IATA 2009a)(DECC

2009).

Emissions Reduction Goals & Challenges

In order to reduce the adverse effects on climate change from aviation induced

emissions, governments and international agencies have set goals for future emissions

reduction. Figure 3 shows long-term emission trends, forecasts and targets for the

aviation industry. It should be noted that these targets are aspirational and non-binding.

350 1 0 Pew Global Center
Forecast

- -FAA Forecast

300 - EIA Forecast Pew Global O
- Forecast

(.0

-250 IATA Target
E

0 L A ICAO Target
'A 0

MA200 - UKCCCTarget

S0150

FAA US Forecast
.. EIA US Forecast

100 - ..'-

UKCCC 0
50 - IATA *

ICAO A

0 -

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

Figure 3: Long term targets for CO 2 emissions from Aviation.
Data sources: (IATA 2009b), (Flint 2009), (UKCCC 2009), (McCollum D. 2009) (FAA

2009)(ATA 2010)
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Targets for the Industry:

Targets for 2020:

1. The International Airline Industry Association (IATA) aims at achieving

carbon neutral growth of aviation in the medium term. It has set the following broad

aspirational goals (endorsed by the ATA) for the aviation sector (IATA 2009b):

* A cap on aviation CO 2 emissions from 2020 (carbon-neutral growth)

* An average improvement in fuel efficiency of 1.5% per year from 2009 to

2020

2. The International Civil Aviation Organization (ICAO) has adopted a target of a

"global annual average fuel efficiency improvement of 2%" for the airline industry

through 2020.

Targets for 2050:

1. IATA has a set a target reduction in CO2 emissions of 50% by 2050, relative to

2005 levels.

2. The ICAO has set "an aspirational global fuel efficiency improvement rate of

2% per annum in the long term from 2021 to 2050, calculated on the basis of volume of

fuel used per RTK performed (Flint 2009).

3. A report by the UK Committee on Climate Change (UKCCC 2009) estimates

fuel efficiency improvements of 0.8% under current technology trends and a subsequent

reduction of carbon intensity of 30% by 2050.

Targets for Aviation Alternative Fuels:

Targets for 2020:

1. The IATA has set separate goals for alternative fuels - 10% usage by 2017 and

assumes a 6% mix of second-generation biofuels (80% lower life cycle carbon intensity)

by 2020.

Targets for 2050:

1. The UKCCC research claims that biofuels will only account for at most 10% of

global aviation fuel consumption by 2050 because of land availability and sustainability

issues.
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Industry Forecasts:

Figure 3 shows these goals along with the emissions forecasts based on current

trends and potential improvements. The contrast between the goals and the forecast (e.g.

Pew Center for Global Climate Change estimates emissions increase by 300% by 2050)

compared to ICAO goals of 60% reduction) highlights the challenges of meeting these

goals.

The 'wedge' between projected and aspirational emissions will most likely require

the use of aggressive solutions to reduce aviation's emissions.

Levers for Reducing Emissions

From first principles, carbon dioxide (C0 2) emissions are proportional to aircraft fuel

burn. For every kilogram of jet fuel burnt, 3.15 kg of CO 2 are emitted. As shown in the

modified and expanded Breguet range equation (adapted from (Lee, et al. 2001), the fuel

consumption of an aircraft is a function of its weight, engine efficiency (i.e. specific fuel

consumption) and aerodynamic efficiency (i.e. lift-to-drag ratio) for a specified range and

speed.

CO2 Content in Fuel Type i Total Fuel of Type I Consumed

Total CO, Emissions = )* (W +W ) {eV -1

Pl Amiunsats Empty Payloadj
Mass Mass.....

Passenger Average Fleet Mix Range Sp. Fuel Dragilfft
Traffic Load (Aircraft Sizel and Consumption (Aerodynamics)
[Demand} Factor Speed (Propulsion}

Equation 1

Equation 1 illustrates that there are several levers to reduce C02 emissions assuming

constant demand' by:

reducing C02 content offuel by adopting alternative fuels with lower life-

cycle carbon content per unit of fuel,

This research excludes the discussion of mitigation of emissions through demand since to first order emissions scale with demand. In
addition, some airline business practices were not included because they do not follow S-curve dynamics. This includes for example
increasing aircraft load factor which also has limited potential for mitigation -at least in the United States. Load factors have been
approaching high levels (i.e. 80%) in recent years.
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* reducing Aircraft weight, through a reduction in empty weight and payload,

e improving Engine efficiency by reducing the specific fuel consumption,

e improving Aerodynamics by increasing the lift to drag ratio,

* increasing Average Load Factor,

* changing Fleet mix by using larger more fuel efficient aircraft

* changing Flight distance by modifying network topology,

* changing Cruise speed by flying at speeds that minimize fuel bum (e.g.

'Maximum Range Cruise' speed).

These levers can be grouped into 3 general areas of improvements, which will be

used as reference for the remainder of this study:

(1) Technology (i.e. Aircraft weight, Engine efficiency, Aerodynamics)

(2) Operations (i.e. Aircraft weight, load factor, fleet mix, flight distance, speed)

(3) The use of Alternative fuels (i.e. C02content offuel)

Challenges with the Implementation of Changes in the Air Transportation System

The previous sections motivated the need for the aviation industry to make significant

improvements in fleet wide fuel burn efficiency and reductions in net emissions. While

mitigation measures may be available for reducing emissions, it is expected that actual

benefits from these measures will not be instantaneous due to the long diffusion time into

the system.

Figure 4 illustrates the diffusion of the first generation jet aircraft into the aviation

industry in the 1960s and early 1970s. Even though the technology was disruptive in

terms of its performance and capabilities compared to previous generations of products

(i.e. piston powered aircraft), it took 15 years for jet aircraft to account for 80% of the

total aircraft fleet in the United States.
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Figure 4: Diffusion of early jets into the airline fleet took 15 years
(Data source: ATA Annual Reports 1958-1980)

It is expected that mitigating measures to reduce emissions from aviation (e.g.

technologies, operational improvements and alternative fuels) are also expected to follow

S-curve type diffusion dynamics and that changes are not going to be instantaneous.

Chapter 3 provides additional and more detailed cases supporting these expectations.

Summary

This chapter showed that rising demand for air transportation in the future and the

slower rates of improvement in fuel efficiency would result in net increase in emissions

and eventually pressure on the industry to reduce its carbon footprint. It is necessary to

implement mitigating measures to meet the emissions reduction goals. The modified

Breguet range equation has established three key areas of improvement - technology,

operations and alternative fuels that can reduce carbon emissions. The adoption of

mitigating measures within these three categories will most likely follow S-curve type

adoption dynamics with benefits that will accrue over a long time period.
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CHAPTER 2

RESEARCH APPROACH

2.1 Hypothesis and Research Questions

Changes and the diffusion of technology, procedures, and practices in the airline

industry have generally followed S-curve type dynamics. This type of dynamic is

characterized by, first, a slow growth rate, followed by a period of rapid diffusion and,

finally, declining growth once a system saturation point is reached. It is expected that

future mitigating measures that have the potential to reduce emissions from aviation are

likely to exhibit similar dynamics and that the full benefits will only be realized over a

long time horizon. Among the broad set of options to reduce CO 2 emission, some may

provide significant benefits but require a very long time to diffuse. Others may provide

short-term solutions but with very negligible impacts on the system.

This thesis aims at answering the following questions:

(1) What are the mitigating measures available to the aviation industry to reduce

CO 2 emissions?

(2) What are the measures that will have the highest impact toward reducing the

carbon footprint of aviation in the short, medium and long term?

(3) What are the adoption dynamics of these mitigating measures?

(4) What are the tradeoffs between a) time of entry of mitigating measures, b)

time of diffusion and c) potential for CO 2 emission reduction?

2.2 Research Approach

This research follows a five-step process to identify and categorize mitigating

measures and to investigate the dynamics that govern their implementation and diffusion

(see Figure 5).

The research first reviews examples of past changes in the aviation industry to

understand historical patterns of diffusion. Cases of technology adoption (e.g.

introduction of early jet engines), operational changes (e.g. implementation of reduced
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vertical separation minimum) and uptake of alternative fuels in the automobile industry

(as a proxy for dynamics that may be encountered in the airline industry) are analyzed.

Second, a framework to characterize the mitigating measures is developed. This

framework includes a) the modified Breguet range equation to identify the measures and

b) the Bass Diffusion model to capture the key parameters that characterize the impacts of

individual mitigating measures on emissions reduction; namely the development time (or

start date of diffusion), the diffusion time constant and the CO 2 reduction potential after

full adoption.

Third, a literature review is conducted using the framework to develop a broad

portfolio in the three key areas of mitigating measures that the aviation industry can

consider to reduce its carbon footprint.

Fourth, a bottom-up model is constructed based on the portfolio of measures to

estimate the CO 2 reduction from each of the three key areas of improvement -

technology, operations and alternative fuels.

Finally, a system dynamic model of aircraft fleet turnover is developed to study the

diffusion of next generation of fuel-efficient aircraft into the industry. The model is used

to conduct scenario analyses and trade-off studies that investigate the effects of future S-

curve dynamics in terms of: (1) time of entry into service, (2) potential fuel efficiency

improvements and (3) diffusion time on the fleet wide fuel burn performance.

Methods/Results

Develop framework to identify and evaluate mitigating ] Range Equation +
measures Diffusion model

Evaluate and Categorize Measures

Develop Aggregate and System Modelsl

Perform Scenario and Tradeoff Analysis

Figure 5: Schematic of the

'Meta' analysis from
Literature

Portfolio

Bottom Up +
System Dynamics +
Case studies

Policy
recommendation

Research Approach
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CHAPTER 3

BACKGROUND

3.1 Aviation Emissions and the Environment

Aircraft emit a wide variety of chemical species including greenhouse gases (Figure

6). Majority of these emissions occur in the upper troposphere and the lower stratosphere.

(5 miles and upward). The effect of the specimens on radiative forcing (i.e. difference in

incoming and outgoing energy in a given climate system) are expected to negatively

affect the climate and the effect is approximately double (J. Lee 2005) that due to burning

the same fuels at ground level.

Aircraft emissions and climate change
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Figure 6: Schematic showing aviation's impact on the environment
(Source: Lee et al, 2009)

According to the Intergovernmental Panel on Climate Change (IPCC) Working

Group Three (WGIII), aviation's contribution to total anthropogenic radiative forcing

(RF) was 3% in 2005. Figure 7 puts this in perspective with emissions from other

anthropogenic activities - power generation industry, road transportation, residential and

commercial buildings that use fuel and power etc. The Environmental Protection Agency
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(EPA 2009a) reported that all U.S. aviation (international and domestic commercial fuel,

general and military aviation) was responsible for 3.4%1 of total U.S. CO 2 emissions.

Other sources
Residential and services

18% - Transportation

313%
8%Y Aviation

13%
20 Rao and other

sources
74% Road

Power generation

Figure 7: Global Transportation's and Global Aviation's Contributions to Carbon
Dioxide Emissions
Source: (GAO 2009)

In December 2009, the EPA declared that increase in greenhouse gases (GHGs2) in

the atmosphere was the primary driver of climate change (EPA 2009b). i.e. "threaten the

public health and welfare of current and future generations". The evidence of

anthropogenic climate change is not limited to increase in average surface temperatures

but "includes melting ice in the Arctic, melting glaciers around the world, increasing

ocean temperatures, rising sea levels, acidification of the oceans due to excess carbon

dioxide, changing precipitation patterns, and changing patterns of ecosystems and

wildlife "(EPA 2009b).

Aviation's contribution to the net climate change problem is not fully understood.

For example, there are large uncertainties involved regarding the effects of contrails and

aviation induced cloud formation (AIC) that can multiply the contribution of aviation to

climate change (David S. Lee 2009). Sulfate aerosols on the other hand may have a

cooling effect by reacting with methane and reducing the global warming potential of

As per the UNFCCC's reporting guidelines, international bunker fuels are reported seperately and not
included in the domestic greenhouse gas inventory
2 The EPA identifies carbon dioxide (C02), methane (CH4), nitrous oxide (N20), hydrofluorocarbons
(HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) as GHGs. Source: EPA, Endangerment
and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act,
December 7, 2009, (URL: www.epa.gov, accessed March 24, 2010).
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CH4. Never the less, the aviation industry is under political and public pressure to reduce

its emissions footprint.

3.2 Literature Review on Reducing Emissions from Aviation

Historical Trends

The aviation sector has consistently adopted fuel efficiency measures that have

lowered system wide emissions by 70% since 1960 (Penner, et al. 1999). The trends

reported in literature have come from engine and/or airframe improvements and the

period has witnessed the introduction of several disruptive technologies - introduction of

jet engines to replace piston engines, introduction of high by pass ratio turbofan jet

engines, the introduction of large aircraft such as the Boeing 747 and the introduction of

twin engine long range aircraft after ETOPS. Lee (Lee, et al. 2001) and Peeters (Peeters

P.M. 2005) have reported efficiency improvements of 64% and 55% over the same time

period (1965-2000).

Future Trends

Table 1 summarizes the goals and forecasts for potential emissions reduction in

the future. Literature sources consistently report maximum benefits (-20% to -50%) from

technological improvements - new airframe and engines, in the long term. Operational

improvements till 2020 are reported between -5 to -15% in the medium term.

ETOPS = Extended-range Twin-engine Operational Performance Standards
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Table 1: Summary of goals and forecasts from literature review
Area of Improvement Reference Goals Forecasts Time Period Description

Technology - New aircraft (IPCC 1999) -20% by 2015 aircraft

-40 to -50% by 2050

Technology - New aircraft (J. Lee 2005) -1.2 to -2%/yr by 2025

Technology - New aircraft (Farries and Eyers 2008) -20 to -25% 2025 onwards

Technology - New engines (Farries and Eyers 2008) -10 to -15% 2025 onwards

Technology - New aircraft (IATA 2009c) -25 to -35% by 2020

Technology - New aircraft (IATA 2009c) -25 to -50% 2020 onwards

Operations- ATM (IPCC 1999) -8-18% by 2020
Upto -25% with

Operations (Farries and Eyers 2008) -10 to -15% by 2025 radical changes

Operations - CNS/ATM (Schifer, et al. 2009) -5 to -10% Medium term

Alternative Fuel (IATA 2009c) -80%

Retirement (IATA 2009c) -21% by 2020

While IATA claims a 80% reduction from the adoption of alternative fuels, a report by

The Pew Center (McCollum D. 2009) is circumspect about the impacts of alternative

fuels in the short or medium term and finds that the only feasible options for "drop-in"

replacements to petroleum-based jet fuels are hydroprocessed renewable jet fuel (HRJ)

and Fischer-Tropsch (FT) fuels. While most literature sources comment on the possibility

of increased aviation activity because of increased capacity from ATM improvements, no

scientific study has been conducted to quantify such second-order feedbacks.
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CHAPTER 4

HISTORICAL EXAMPLES OF PAST CHANGES IN THE

AVIATION INDUSTRY

Historically, most transitions in the commercial aviation industry have exhibited S-

curve dynamics with long time constants of diffusion. The implementation of mitigating

measures to reduce the carbon footprint of aviation is also expected to show similar

diffusion trends.

This chapter studies past diffusion trends of technological and operational changes

within the aviation industry. In addition, it presents the case of diffusion of ethanol in the

United States and Brazil. Large-scale transition to alternative fuels has been absent in the

aviation industry and the study of adoption of an alternative fuel by the automobile

industry can provide valuable insights into some of the dynamics that the aviation

industry could experience.

Table 2 shows the list of cases that were studied to understand the patterns of

diffusion in the industry.

Table 2: List of case studies of past changes in the aviation industry

Case Number Case Name Case Type System Impact

Tech Case I Jet Aircraft in the 1960s Technology Diffusion New aircraft fleet

Tech Case II Regional Jets Technology Diffusion New aircraft fleet

Tech Case III Blended Winglets Technology Diffusion Aircraft retrofit

Ops Case I E-tickets Operational Diffusion Airlines

Ops Case II Reduced Vertical Seperation Minimum Operational Diffusion Air traffic management

Alt. Fuels Case I&II Ethanol in the US and Brazil Alt. Fuels Diffusion Fuels

Methodology for Selecting Cases

Cases were chosen within each of the three categories of improvements i.e.

technology (new aircraft types and retrofit solutions), operations and alternative fuels.

Within the set of technology cases, the adoption of jet aircraft in the 1960s was

chosen to represent a paradigm shift in aircraft technology in the industry. The case of

regional jets was used to investigate the dynamics of diffusion of a more recent (1990s)
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aircraft type. The adoption of blended winglets illustrates the case of a component

technology that can diffuse with new aircraft and as a retrofit option.

Within the set of operational examples, the implementation of RVSM is illustrative

of a system wide change. The implementation of e-tickets represents as a solution that

improves the operational efficiency by reducing cost.

The case of adoption of ethanol in Brazil and in the US presents a comparison of two

markets where diffusion of an alternative fuel followed different rates of uptake because

of government policies.

For each case study, time series data of a representative metric was collected. For

example, for early jet aircraft, the fraction of aircraft that were powered by jet engines as

compared to the overall fleet was estimated from fleet data available from airline industry

reports. Key enablers and barriers that influenced the rate of adoption of each measure

were also evaluated for this study.

4.1 Patterns of Aircraft Technology Diffusion

Tech Case I: Diffusion of First Generation of Jet Aircraft in the 1960s and 1970s

The adoption of the first generation of jet aircraft demonstrated S-curve growth and

despite their advantages took a long time to diffuse into the fleet. Figure 8 shows that it

took 15 years to achieve approximately 80% fleet penetration by jet powered aircraft.

100%

20%

S60%

201/

1956 1958 1960 1962 1%4 1966 198 1970

Diffusion Time 15 yrs

Figure 8: Diffusion of Jet Aircraft into the U.S. Fleet
(Data: ATA Annual Reports 1957 to 1972)
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The entry and adoption of jet aircraft in the late 1950s and early 1960s

revolutionized air travel worldwide by making travel faster and safer (Smithsonian

National Air and Space Museum 2010). Early stage development of jet engines was

started to replace piston engine turboprops that were noisy and limited in speed (tip speed

of the propellers reaching mach velocity)'. The capability of higher climb rates, and

faster and high altitude cruising were attractive to the military, and jet engines were

developed primarily to meet the requirements of the U.S. Air Force. The Pratt & Whitney

JT3C turbojet engine that powered the first U.S. commercial airplane - the Boeing 707,
was actually developed as the J57 to power the experimental B52 bomber for the U.S. Air

Force2 . The spillover benefits of jet engine development for military applications resulted

in the technology becoming quickly available for commercial applications.

The early adoption of jet aircraft by airlines was slow because of large capital

investments required to purchase new aircraft in a period of economic downturn (ATA

1960). Jet aircraft also consumed more fuel and had higher operating costs. Pan Am was

the first adopter of jet aircraft in the U.S. and launched the Boeing 707-120 on a New

York-London route in 1958. Pan Am exploited the first mover advantage to full potential

by dominating the trans-Atlantic routes using the Boeing 707 fleet, subsequently

influencing Boeing to build the longer range 707-320 in 1958 for non-stop flights.

Passenger preferences for faster travel combined with the possibility of long-haul flight

made 11 airlines adopt the 707-320 within a year. Several key drivers influenced the

adoption dynamic from this point onwards. In 1958, the U.S. Congress passed the Federal

Aviation Act, which among other things reduced taxes on air transportation and aided in

making jet travel popular amongst travelers. American Airlines introduced the 707 to

operate between New York and Los Angeles in 1959 and started competition amongst

domestic airlines in the transcontinental market. TWA and United Airlines quickly joined

in the race by purchasing/leasing jet aircraft. Decline in airline ticket prices also

contributed to increasing passenger preference for air travel (ATA 1965,1966). The

'http://www.centennialofflight.gov (accessed - Feb 18, 2010)
2 http://www.globalsecuritv.org/military/svsterms/aircraft/systems/i57.htn (accessed - Feb 18, 2010)
3 http://www.centennialofflight.gov (accessed - Feb 18, 2010)
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growth in the cargo market and the expansion of the jet cargo fleet in the late 1960s

(ATA 1967) added to the rapid growth of jet aircraft in the U.S Fleet.

Tech Case 11: Regional Jets in the 1990s

The dynamic of diffusion of regional jets (i.e. 50 to 90 seat jet powered aircraft)

starting at the beginning of the 1990s also exhibited a S-curve dynamic. Figure 9 shows

the historical evolution of the number of regional jets registered in the United States from

1993 to 2008.
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Figure 9: Historical evolution of regional jets registered in United States from 1993
to 2008

(Data source: FAA Aircraft Registry Database)

During the 1990s, a very slow rate of growth of regional jets was observed starting

with the introduction of the Bombardier CRJ100. Due to pilot scope clauses (A. H.

Mozdzanowska 2003) and the improved performance of regional jets (i.e. range, speed,

cabin noise) compared to turboprop aircraft, regional jets became increasingly attractive

to airlines. This resulted in a rapid growth from 1998 to 2005. From 2006 onwards, the

rate of diffusion into the system decreased since the airline organizational structure was

changing (i.e. removal of pilot scope clauses) and the increasing cost of fuel was starting

to have a significant impact on operating regional jets as compared to more fuel-efficient

turboprops.

31 of 115



Tech Case III: Blended Winglets

Blended winglets are wingtip devices that are an efficient way of introducing

effective wingspan (increase aspect ratio) that reduces drag by limiting wingtip vortices.

Figure 10 illustrates the cumulative number of orders (all aircraft types) placed with

Aviation Partners (the sole supplier of winglets) and reflects the adoption of the

technology by the industry.
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Figure 10: Adoption of Blended Winglets
(Data source: Aviation Partners)

In 1999, Aviation Partners Boeing (APB) formed a joint venture to offer blended

winglets to Boeing aircraft after receiving FAA approval in 1993. The first supplemental

type certificate (necessary certification to retrofit blended winglets on existing aircraft)

was awarded in 2001 for the 737-800 and South African and Hapag-Lloyd were the early

adopters. Boeing also started offering factory-installed winglets. Adoption of the blended

winglet was initially slow because supplemental type certification was required for each

model of aircraft. Rapid diffusion started once significant fuel savings from using

blended winglets were reported and airlines accepted winglets as a retrofit option to save

on fuel costs. Diffusion of winglets followed two pathways - entry with new aircraft as

OEM and entry as a retrofit option.
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4.2 Patterns of Diffusion of Operational Procedures

Ops Case I: E-Tickets

An electronic ticket is used to represent the purchase of a seat on a passenger airline,

usually through a website, by telephone, airline ticket offices or travel agencies. This

form of airline ticket has rapidly replaced the old multi-layered paper tickets. The growth

pattern in the use of electronic tickets has also exhibited S-curve dynamics as shown in

Figure 11.
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Figure 11: Historical adoption of e-tickets by IATA airlines
(Data sources: IATA and (Peter P. Belobaba 2009))

The transition from paper tickets to e-tickets was driven by two major dynamics -

the reduced cost to airlines (e-tickets cost 10% the cost of a paper ticket) and the rapid

growth of the Internet distribution channels (Peter P. Belobaba 2009). In the United

States, Southwest and ValuJet were the first airlines to offer an e-ticket option in 1994.

The initial adopters were shorter-haul and leisure travelers that had simple itineraries and

were less likely to connect to other airlines and make changes to their tickets. Business

travelers who had more flexible schedules were reluctant to adopt since an e-ticket issued

by one airline was not accepted by another (i.e. lack of common IT communication

infrastructure). In the late 1990s and early 2000s, once the IT barriers were removed, the

increasing popularity of Internet based booking services resulted in rapid diffusion of e-

tickets. Increased use of e-tickets allowed the passengers to gather more information

online about ticket prices and gave them greater flexibility in travel planning. Passenger
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acceptance reinforced quick adoption. A spillover benefit for the airlines was better

revenue management - filling empty seats or 'distressed inventory' tickets. Finally an

IATA mandate, set for a complete phase out of paper tickets by 2008, led towards a full

adoption of e-tickets.

Ops Case H: Reduced Vertical Separation Minimum (RVSM)

Aircraft are expected to maintain a minimum vertical separation to ensure safety.

Historically, standard vertical separation was 1000 feet from the surface to FL290, 2000

feet from FL290 to FL410 and 4000 feet above this. This was because the accuracy of the

pressure altimeter decreased with height. With improvement in altitude measurement

instruments, it was found that the 2000 feet separation was overly cautious. The objective

behind implementing Reduced Vertical Separation Minimum (RVSM) was to reduce

vertical separation between flight levels 290 and 410 from 2000 ft to 1000 ft. This

allowed the aircraft to fly optimum cruise levels, reducing fuel burn and increasing

capacity. Figure 12 shows the historical evolution of cumulative area of coverage with

Reduced Vertical Separation Minimum (RVSM) across the world.
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Figure 1.2: RVSMI Implementation worldwvide
(Data: FAA 2007,IC.A() 2008.)

It took 11 years to achieve 67% RVSM worldwide coverage. The implementation

and diffusion of RVSM was initially slow because of the high cost for upgrading aircraft
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that were difficult to justify for 2-3% fuel savings (Mclaren 2005). The adoption was also

slowed down due to barriers such as the development and deployment of new avionics to

monitor aircraft separation and the design of accurate altitude indicators. In addition,

there were safety concerns with aircraft wake vortices and interactions with other system

components such as Traffic Collision Avoidance System (TCAS) which resulted in an

increased frequency of alerts. This procedural change required the training of air traffic

controllers and setting standards when transitioning airspaces to RVSM.

A key enabler to the implementation of RVSM over the North Atlantic Tracks

(NAT) was the large trans-oceanic fleet that could be upgraded at a fast rate for which

benefits could accrue rapidly.

4.3 Patterns of Diffusion of Alternative Fuels

Alt. Fuels Case I & II: Adoption of Ethanol in the US and Brazil

Alternative fuels hold the potential to reduce the carbon footprint of aviation,

mostly because of their reduced life-cycle (i.e. well-to-wake) carbon content. The

adoption dynamics of ethanol in the automotive industry in the United States and Brazil

were investigated to gain insights into the drivers and constraints of transitioning away

from petroleum-based jet fuels used in the airline industry. Figure 13 shows the trend of

ethanol production in the United States and Brazil from 1975 to 2004. It took

approximately 11 and 26 years for Brazil and the United States respectively to reach

similar levels of ethanol production.
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Figure 13: Historical evolution of ethanol use in Brazil and the US
(Data: EIA, 2008)
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These cases illustrate the effect of countries infrastructure and capabilities,

regulations and incentives on the time of diffusion:

In Brazil, the ethanol industry is more than 30 years old and had been stimulated

with the launch of the 1975 National Alcohol Program that guaranteed low-interest loans

to construct distilleries, guaranteed purchase of ethanol by the state owned oil companies

and incentivizing flex-fuel vehicles. In 1977, the government also mandated a 20% mix

of ethanol with gasoline. This led to the rapid development and diffusion of the ethanol

industry.

In the United States, ethanol is distilled from corn which is less efficient than

producing it from sugarcane (compared to Brazil). Ethanol production competes with

food and fodder use of corn, and has been the source of controversy. In the United States,

the buildup of production capabilities was significantly slower despite a federal subsidy

of 40 to 60 cents per gallon since 1978. Distribution of biofuels to end-use markets have

been hampered by several factors - limited rail and truck capacity, location of all

distilleries near the Midwest (to reduce raw material transportation costs) which is far

from major biofuel consumption centers (East and West coasts), limited number of

fueling stations and the general murky regulatory environment that surrounds use and

distribution at retail centers'. The uptake of ethanol as a flex fuel in the US has therefore

not been at par with that in Brazil.

Summary and Discussion of Key Barriers and Drivers

The examples discussed in this chapter have illustrated the patterns of change in

the aviation industry and the long time constants of diffusion associated with every

change. They also indicate that S-curves are one way of modeling the diffusion modes for

the industry. Every case has unique dynamics - driven by sets of barriers, enablers and

adopters. Several key barriers and dynamics were observed that have the potential to

delay the implementation of CO 2 emission reduction measures through the following

mechanisms.

'Biofuels in the U.S. Transportation Sector, EIA, February 2007.
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a) Barriers

Cost of adoption

High capital costs or the need for expensive upgrades/retrofits can delay the rate of

adoption of measures significantly - particularly in cases where the benefits are

uncertain. In the case of RVSM for example, high costs for instrumentation

upgrades and design costs were a barrier to implementation. Similarly, adoption of

early generation jet aircraft by airlines was delayed because of extremely high

capital costs. High costs of equipment also lead to slow fleet turnover - airlines

utilize aircraft for a long period of time. Entry of new and efficient aircraft is

blocked.

Coordination and standards setting

Approval processes that require coordination amongst stakeholders and require

setting standards can delay implementation of changes. The approval of RVSM

across airspaces required coordination amongst stakeholders involved in the

process, civil aviation authorities, air navigation service providers, air traffic

controllers, pilots and air navigation engineers/technicians. Safety concerns

increased the implementation time. The diffusion of e-tickets was initially slow

because of the lack of coordination amongst different airlines - a ticket issued by

one airline was not accepted by another that led to poor passenger service quality.

Certification

There are stringent certification requirements by the civil aviation authorities (FAA)

before any system change is implemented to ensure public safety. To meet the

safety standards, stakeholders have to undergo certification tests - like the type

certification for new aircraft. Winglets, for example, have to be certified for each

aircraft model and this adds on to the time to full adoption in the fleet.

Requirement for equipage

The need to equip aircraft, air traffic control stations or ground infrastructure with

instruments to achieve operational capabilities can delay the implementation

process. This was illustrated in the case of RVSM where upgrades to the TCAS

system and deployment of accurate altitude indicators preceded the approval of the

operational change.
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Production capability build-up

Technology and alternative fuel solutions generally require the development of

production capabilities, which is not instantaneous due to the need for infrastructure

build-up. Comparison of the adoption of ethanol in the US and Brazil show that the

lack of infrastructure for distribution of the biofuel to end-use markets hampered

the uptake by the consumers in the US.

Maintenance cycles (window of opportunity for retrofits)

Most of the aircraft retrofit measures are performed during aircraft maintenance

visit (i.e. D-checks), which happens approximately every 5 years. As a result, it

may take several years before an aircraft becomes available for a retrofit. Winglets

diffuse into the aircraft fleet through new aircraft as well as through retrofits. It will

take at least 5 years before there is a window of opportunity to retrofit all aircraft in

an airline fleet to achieve fuel efficiency improvements.

b) Drivers

Technology spillover

The commercial aircraft industry has derived spillover benefits from other sectors.

The evolution of the jet aircraft has been brought about by the research and

development conducted by the military. The adoption of E-tickets was accelerated

because of the existence of a well-established information technology infrastructure

that Internet distribution channels could take advantage of.

Passenger preference

Passenger preference plays a significant role in the rate of adoption of changes in

the air transportation system. One of the primary factors behind the transition to a

'jet age' is the preference for passengers for faster modes of travel (ATA

1965,1966). Increased use of e-tickets allowed passengers greater flexibility to plan

their travel and reinforced quick adoption.

Policies and mandates

Transitions in the air transportation system can be significantly accelerated through

policies and mandates. The IATA mandate in 2004 that demanded a complete phase

out of paper tickets by 2008 was instrumental in the moving towards a fully e-ticket

based reservation system. The National Alchohol Policy enacted in Brazil and a
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guaranteed market stimulated ethanol as an alternative automobile fuel. Pilot scope

clauses led to the development of regional jets.

c) Distribution of costs and benefits across stakeholders

Marais and Weigel (Marais and Weigel 2006) showed that while the overall cost

benefit analysis for a transition may be favorable, individual stakeholders may not

derive equal value from the transition. Stakeholders that are asked to bear a larger

share of the costs while reaping little benefit can be reluctant to cooperate with the

transition effort. Push back from stakeholders tends to be acute when changes

exhibit asymmetrical costs and benefits (A. Mozdzanowska 2008).
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CHAPTER 5

CONCEPTUAL DYNAMICS OF IMPLEMENTATION OF

MITIGATING MEASURES

5.1 Literature Review of Technology Diffusion

The implementation of a new technology or a procedure generally follows an S-

curve over time (Geroski 2000). In the consumer electronics industry for example, there

is a development phase during which a measure is being developed, evaluated and

certified. The diffusion phase begins with a phase of slow adoption driven by early

adopters (first movers or innovators). Then, reinforcing dynamics accelerate the adoption

process to a phase of maximum diffusion when most of the barriers are overcome and the

measure is generally accepted. This phase is followed by slower adoption by laggards and

exhibits diminishing returns.

There are two types of technology evolution. First and the most common transition is

one of sustained development with incremental improvements in performance

(Henderson and Kim 1990). The second type is that of a disruptive technology

(Christensen, 1997) that requires altering the current mode of behavior of the services

enabled by the innovation (Moore 1999).

Adoption of new technology or operational measures in air transportation, through

all phases of the life-cycle, is determined by how the transition can be used to create,
capture and deliver value to stakeholders (Campos 2008). An S-curve model can be

used to describe the path followed by technology development, showing the relationship

between levels of improvement in performance over time (see Figure 14). The returns to

improvements diminish as technology limits are reached (Utterback, 1994). At this point

disruptive new technology can enter the system. At first, transitioning into a new

technology may appear less efficient and more costly than the current technology.

However, after a period of maturation, the new technology can outperform the current

one (Foster, 1986).
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Figure 14: Technology life cycle as an S-curve
Source: (R. Henderson 2005)

Technology diffusion in air transport can also be analyzed using Roger's market

segmentation dynamics, where adopters are classified into: innovators, early adopters,

early majority, late majority and laggards (Campos 2008). There are very few adopters

under the category of innovators but their endorsement is fundamental to reassure

stakeholders that the technology is viable (Campos 2008). Early adopters buy into a

technology only to seek specific benefits from it. Approximately one third of the adopters

belong to the third category i.e. the early majority. Members in this segment will follow a

wait and see strategy and evaluate how a technology is beneficial to others before

deciding to adopt it. A strong baseline of proven benefits and the infrastructure to support

the technology are necessary to encourage this group to invest (Campos 2008). Another

third of the adopters falls under the fourth group - the late majority. They will wait until

the technology becomes an established standard and will try to maintain the status quo

unless change is necessary. The technology laggards represent the last segment.

Stakeholders in this category are not interested in adopting a new technology if given the

choice. This group is generally not particularly worth pursuing with targeted incentives

(Moore 1999).
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Source: (Everett 1983)

Another framework for investigating the diffusion of innovations is to derive a list of

factors that can be expected to influence adoption and diffusion dynamics (Hall and Khan

2003). The factors can be classified into four main groups of factors that affect:

(1) benefits achieved

(2) the costs of adoption

(3) industry or regulatory environment and

(4) uncertainty and information problems.

These factors contribute directly to the speed of diffusion (Hall and Khan 2003)

Benefit received from the new technology

The improvement of the new technology over the existing technology is the most

critical determinant of benefits. When a new technology is introduced, the relative

advantage is often relatively small but increases with learning and when adapted to

different environments to attract a different set of adopters (Rosenberg 1972). This

implies that the benefits increase over time and diffusion often appears delayed because

learning increases the size of the adopting population. Network effects where the

consumer and the firms benefit from the fact that other consumers and firms have also

chosen the same technology play a critical role in the speed of adoption as well. (Hall and

Khan 2003) classify this effect into two groups - direct and indirect benefits. Direct

benefits allow the adopter to communicate/operate with other adopters using the same

technology whereas indirect benefits lead to a particular standard being used by greater
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number of adopters and therefore survive. Standard setting accelerates adoption in

multiple ways - ease of communication and consumer learning being foremost (Hall and

Khan 2003).

Costs of adopting the new technology

The second main class of factors affecting the decision to adopt new technology is

those related to its cost. This includes not only the price of acquisition, but more

importantly the cost of the complementary investment and learning required to make use

of the technology. Such investment may include training of operators and the purchase of

necessary capital equipment (whose diffusion is therefore affected by the same factors).

Firm investment in new technologies is also sensitive to financial factors. The decision

to adopt new technology is fundamentally an investment decision made in an uncertain

environment, and therefore relationship between sources of finance and choice of

investment strategy has a role to play (Hall and Khan 2003). In hazardous market

conditions when liquidity is a concern, firms may be extremely risk averse, thereby

restricting adoption of new technologies by limiting investment.

Market size, industry environment and market structure

Large dominant firms can spread the costs of adoption over more units, but also

may not feel the pressure to reduce costs that leads to investment in new technologies.

Along with market size and structure, the general regulatory environment will have an

influence, tending to slow the rate of adoption in some areas due to the relative

sluggishness of regulatory change and increasing it in others due to the role of the

regulator in mandating a particular technical standard. As an example of accelerating the

adoption, Mowery (Mowery and Rosenberg 1981) described the extent to which airline

regulation by the Civil Aeronautics Board in the United States was responsible for

promoting the adoption of new innovation in airframes and jet engines, in its role as

standard setter and coordinator for the industry.

Information and uncertainty

The choice to adopt a new technology requires knowledge that it exists and some

information about its suitability to the potential adopter's situation. Therefore an
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important determinant of diffusion is information about the new technology and

experience. Upfront costs and long time lags to recover benefits and uncertainty surrounding

them will often slow diffusion (Hall and Khan 2003)

5.2 The Bass Diffusion Model

The Bass Diffusion model (Bass 2004) is a conceptual representation that captures

diffusion dynamics that result in S-curves. This model allows for asymmetric S-curve

growth between the early adoption period and the later imitation period and is therefore

more applicable to growth dynamics (i.e. "first mover advantage") seen in the aviation

industry. The model states that the ratio of the fraction of the adopters to the fraction of

those who are still to adopt is a linear function of the cumulative number of adopters.

This is mathematically represented as:

f(t)q-fW = p+-- F(t)
1-F(t) M

dF(t) A(t)f~t)=,F(t) -
dt M

Equation 2

where,

f(t) is the adopting fraction i.e. fraction of the potential market that adopts at time 't'

F(t) is the adopter fraction, i.e the fraction of the potential market that has adopted up

to time 't'

A (t) is the cumulative number of adopters till time 't'

'p' is the innovation coefficient and accounts for the early adoption dynamics

'q' is the imitation coefficient and accounts for new adoption influenced by older

adopters

'M' is the total number of potential adopters or market size

Figure 16 illustrates the different stages of implementation of a technology using the

Bass diffusion model. (Ti) denotes the development phase after which the technology

is ready for market adoption. At this juncture (called the Start Time of Diffusion) the
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technology has gone through the innovation, R&D, prototype testing and certification

process. From that point onwards, adoption is driven by early movers and then by

imitators (see Bass diffusion equation).

-- Adoptim fw'n
imitation

- - Adopion fron
innovation

- Oumulative
fraction of
adopters

TI T2 Year

Development Diffusion
Time Time

- Innovation Early adoption
+ R&D - Fast growth
- Prototype - Maturity
- Certification

Figure 16: Conceptual representation of the Bass diffusion model

The total time to full adoption is called the Diffusion Time (T2). For the purpose of

this study, the total period of development (z1) and diffusion (r2) is referred to as the

implementation period. Figure 16 shows rate of adoption by innovation and imitation (i.e.

left ordinate axis). The cumulative number of adoptions as a fraction of the total possible

adoptions is plotted along the right ordinate axis. The overall dynamic can be completely

represented using three parameters: (1) the development time (or start date of diffusion),

(2) the diffusion time and (3) the full adoption potential (scales to total number of

adopters).

5.3 Frameworks for Identifying, Categorizing and Evaluating

Measures

Framework 1: Systematic grouping of mitigating measures

Section 1.1 (Equation 1) introduced the modified Breguet range equation to

decompose the total CO2 emissions from the aviation industry. The equation is used as
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the first framework for identifying the different levers for emissions abatement. The main

categories are:

1. New Technologies: Entry with new aircraft models

a. Propulsion improvements

b. Aerodynamic improvement

c. Weight reduction

d. Retrofit existing aircraft

2. Operational improvements

a. Ground operations

b. Air Traffic Management (ATM) operations

c. Airline operations

3. Alternative Fuels

Framework 2: The Bass Diffusion Model

Section 5.2 introduced the bass diffusion model as one way of conceptualizing the S-

shaped growth that has been observed in past changes in the aviation industry. It lays the

framework for determining the implementation characteristic of each mitigating measure

based on three parameters: l)Start Time of Diffusion (i.e. Entry Into Service) 2)

Diffusion Time (i.e. time constant from first entry into service to market saturation)

3)Potential for CO2 reduction (when full adoption is achieved).

Using the two frameworks, each mitigating measure can be identified as belonging to

one of the three key areas of improvement and their impact on reducing system-wide

carbon emissions can be evaluated based on the three parameters that define the

implementation of characteristic of the measure.
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CHAPTER 6

IDENTIFICATION AND CATEGORIZATION OF

MITIGATING MEASURES

A broad range of technological and operational measures and fuel alternatives are

available to the aviation industry to reduce its carbon emissions. Each measure, have

unique development times, diffusion time constants and the potential to reduce emissions.

This chapter develops a portfolio of technology and operational measures, and

alternative fuels that are currently available or anticipated in the future. Measures are

categorized and analyzed using the frameworks developed in Section 4.3.

6.1 Methodology for Identification and Categorization of Mitigating

Measures

The first step to develop the portfolio of measures was to conduct a literature

survey of journals, conference papers and presentations, annual reports, websites, press

releases etc. The review identified 95 mitigating measures. The list is shown in Appendix

A: List of Mitigating Measures.

The second step was a filtering and aggregation process that led to the construction

of a portfolio of 41 unique measures. Technologies or concepts that have not reached

maturity were filtered out. The set of measures was further synthesized by aggregating

measures that were achieving similar goals (e.g. carrying less food and water, switching

to electronic flight bags, reducing duty free goods were all aggregated into a single empty

and payload weight reduction measure).
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6.2 Estimation of the Diffusion Characteristics of Mitigating

Measures

The discussion on S-curve type implementation showed three key parameters that

defined the dynamics of the process. The parameters are re-defined for the purpose of this

analysis and to better suit the aviation industry.

(1) The start time of diffusion is defined as the time of entry into service of the

measure when diffusing into the system can begin,

(2) The diffusion time is defined as the amount of time required to reach market

saturation and when most of the potential for improvement is achieved,

(3) The percentage CO2 emission reduction potential scales to the total impact on

the system when full adoption is achieved. For the purpose of this research, this

percentage is defined for an individual measure and assumes that there are no other

changes to the system apart from the adoption of this particular measure. As shown with

Equation 3, a baseline of 2006 was used for estimations of emissions reduction potential.

CO2Emission -OEiso
Potential CO2 Emission Re duction Potential = 2 n2006 - CO2Emissionladopion

CO2Emission2006

Equation 3

Estimation of the start time of diffusion

Based on program timelines and schedules gathered from the literature review,
estimates of start date of availability or certification were obtained. When multiple

sources were available a range of start time of availability is reported. It should be noted

that due to the nature of the forecasting exercise of program planning, these dates are

likely to change (i.e. start date being delayed). The reported numbers can therefore be

seen as being optimistic estimations of the start time of diffusion.

Assumptions for the diffusion time

The diffusion time of mitigating measures was based on direct quotes from literature

sources when available as well as assumptions based on past changes of similar nature.

Several measures involve the retrofit of components on existing aircraft. The window of
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opportunity for retrofits is dictated by D-check maintenance, which is generally

performed every 5 years. Because of production capability build-up constraints, retrofit

solutions (e.g. new engine, winglet) are not necessarily available to replace all the aircraft

that are scheduled for D-check during the first years of diffusion. As a result, it is

assumed that within two D-check cycles (i.e. approx. 10 years) retrofit measures should

be able to diffuse throughout the fleet.

The diffusion of new aircraft was assumed to take 20 years based on historical cases.

As shown on Figure 8 it took approximately 15 years for jet aircraft to diffuse through the

system. Given the disruptive character of this product, this is an optimistic number. The

regional jet took slightly longer to diffuse (while not fully replacing the aircraft in its

category).

Estimation of percentage of CO 2 emission reduction potential

Estimates of the percentage of CO2 emission reduction potential obtained from

the literature review were of two types:

(1) improvements with effects on a portion of the system (e.g. reduction in ground

emissions, new aircraft type that only account for a fraction of the total fleet) and

(2) improvements with system wide effects. Both types of information are reported

in Table 1 (Column 4 and 5) as verbatim from the literature.

In order to compare measures on the same basis, the measures that targeted one

segment of the fleet or a portion of the flight stages were scaled to system-wide potential

using 2006 BTS Form 41 data. For the purpose of scaling potential improvements, it was

assumed that the fleet size and its general composition would remain constant over time.

As an illustration, the NASA N+1 concept that is expected to replace the Boeing 737 is

reported to have a potential for CO2 emission reduction of 33% compared to current

generation aircraft. Given the 2006 fleet composition, its system wide impact is expected

to be 12%. Similarly, queue management and controlled pushback techniques that reduce

ground emissions by 60% are scaled to system-wide impacts by approximating the

percentage of fuel burnt taxiing on the ground compared to the total fuel burnt during all

phases of operations.
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Due to the forecasting nature of this exercise, the reported estimates exhibit some

level of uncertainty. An evaluation of the degree of confidence in the numbers quoted

was performed and is largely based on its correlation to the status of development or

adoption of the measures (see Column 9 in Table 5). Confidence in estimates for

measures in concept/R&D phase is generally low as compared to estimates for measures

that are already being implemented.

6.3 Evaluation of the Diffusion Characteristics of Mitigating

Measures

The portfolio of mitigating measures were divided into three main categories:

" technology applications for new aircraft and retrofit technologies for

existing aircraft,

" operational improvements through ground, airline and air traffic

management and the

* use of alternative fuels.

A short description of the mitigating measures is included in Table 3.
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Table 3: Brief Description of Technology Measures

Area of Improvement Mitigating Measure Description
The Boeing 787 Dreamliner is a mid-sized, wide-body, twin-engine jet
airliner developed by Boeing Commercial Airplanes. The Airbus A350 is
a long-range, mid-size, wide-body family of airliners currently under
development.

The C-series and the MRJ are the next generation regional jet aircraft
powered by the PW geared turbofan engine
N+1 is a concept aircraft one generation after the current
B737NG/A320 (single aisle tube architecture)

)ACC k* N+2 is two generations after the B777 and is a blended wing concept

N+3 NASA Subsonic

aircraft
N+3 is a concept aircraft three generations after the current
B737NG/A320

. Material, coatings, cooling technology Reduce weight and increase operating temperature of the combustion
Propulsion for engines chamber of engines

Engies -GTFPlanetary gear arrangement that allows fan and LP Turbine rotate at
Engines - GTFspeeds
Engines - Open rotor Unducted fan mounted on the same axis as the compressor blades.
Variable fan nozzle Better aerodynamic flow matching at off design conditions

Bleed air is taken from the engines to provide cabin air services and
No bleed architecture support other systems. By removing this requirement the engines can

__________________________operate more efficiently, reducing fuel consumption.
Develop 'all-electric/more-electric' Shift to all-electric architecture for most systems to save weight and
planes improve efficiency

Advanced aerodynamic blades for compressors and turbine cascade
New Engine Core (3D blades, low solidity, higher loading), twin annular preswiri

PaeaygaaragmnthtalwaanLPTrierttacombustors (TAPS)
Use of many small size turbofan engines along the airframe for lower

Embededdistibued mltifan fuel bum and noise
Nextgenraton igh ypas rtio Develop next generation HBR Engines (e.g. GE LEAP-X program) -

egner includes new engine core, LP compressor aerodynamics, new materials
and monitoring systems

Replace APU's with fuel cells Replace APU with Solid Oxide Fuel Cells
Ubiquitous composite engines Use of composites (ceramic matrix) to reduce the weight of engines

Aerodynamics Non-planar wings

Laminar nacelles

Riblets

Hybrid Laminar Flow(HLF) control

Higher aspect ratio wings

Morphing airframe

Variable Camber wings

Laminar flow wing profile

Winglets, Box-wings, Multi-wings that reduce vortex drag.
Achieve laminar flow over engine nacelles (e.g. shaping the nacelle
and applying uniform grey paint on the B787) and reduce airframe
drag.
Apply thin grooved layer of plastics to airswept surfaces - reduces skin
friction drag from the turbulent boundary layer
(HLFC) is an active form of control employing a combination of suitable
aerofoil shaping and boundary layer suction. Its objectives are to
achieve the characteristics of natural laminar flow designs at higher
values of chord Reynolds number and leading edge sweep - ie a wing
with laminar flow and reduced friction over its forward surfaces, giving
rise to reduced profile drag through reduced turbulent boundary layer
growth over the rear of the wing
Use higher aspect ratio wings to reduce induced drag
An aircraft able to change shape during flight, for example a wing able
to adapt
itself for different aerodynamic characteristics in flight, for optimisation
and effective

_aerodynamic control
Variable camber control of the wing for drag reduction throughout the
flight envelope
Shaping the wing profile so as to maintain gently accelerating flow
over the forward 50% or so of both upper and lower wing surfaces,
thereby maintaining laminar boundary layers over the first half of the
wing and reducing the pressure drag associated with rapid boundary
layer growth in the decelerating flow over the rear of the wing

Lightweight material. comosites etc

Advanced fly by wire technology

Fly by light technology

Friction stir welding (FSW)

Structural weight reduction using advanced composite materials
Replacement of bulky and heavy hydraulic circuits with electrical
power circuits
Utilization of fiber optics instead of electrical circuits for data transfer
to reduce weight
FSW is a solid-state joining process (meaning the metal is not melted
during the process) and is used for applications where the original
metal characteristics must remain unchanged as far as possible. This
process is primarily used on aluminum, and most often on large pieces
which cannot be easily heat treated post weld to recover temper
characteristics.
LBW is a welding technique used to join multiple pieces of metal
through the use of a laser. The beam provides a concentrated heat
source, allowing for narrow, deep welds and high welding rates
Reduce empty and payload weight by using lighter weight carpets,
seats, cargo containers etc
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Table 4: Brief Description of Mitigating Measures; Technology (Retrofit),
Operational Improvements and Alternative Fuels (cont.)

Area f Improvement
Map

X

ILl

0

0u

0

M itigatina Measue
Propulsion Retrofit engines

Technology insertion- Upgrade core

Aerodynamics Winglets

Riblets

Laminar Nacelles

Weight Reduced use of paint on airframes

Retrofit existing aircraft with higher efficiency engines
Replace engine core with more efficient technology insertion (e.g.

-TECH56 program)

Wingtip devices that reduce lift-induced drag from wingtip vortices
Apply thin grooved layer of plastics to airswept surfaces - reduces skin
friction drag from the turbulent boundary layer
Achieve laminar flow over engine nacelles (e.g. shaping the nacelle
and applying uniform grey paint on the B787) and reduce airframe
drag.

Reduce extra weight of paint on airframe by polishing instead of
painting

Ground Fixed electric ground power instead of
ops APU

Sinale enaine taxi

Implement queue management and
controlled pushback

Ground towing with diesel tugs
instead of engine power

ATM ops Fly at optimum cruise level
Use continuous descent approaches
(CDA)

Fly optimized routes

Airline ops Reduce cabin dead-weight

Engine washing

Fly at lower cruise speed

2nd Generation Biofuel (Nature by-
products/waste)
3rd Generation Biofuel (algae, switch
grass, jatropha, babassu and
halophytes)

Provide fixed electric ground power (FEGP) and preconditioned air
(PCA) to aircraft at terminal gates
Shutting down one or more engines during taxi
Limit build up of queues and congestion through improved queue
management.
Improve coordination on the surface though information sharing and
collaborative planning
Tow aircraft to runway rather than use engine power.
Start engines 5 mins before departure

Fly at optimal altitude for minimum cruise fuel bum
Continuous descent uses less engine thrust than stepped descent
(prevailing practice)
Current airspace system requires flight plans to be defined in terms of
predetermined routes.
Airlines can save cost by flying wind-optimal routes that minimize
flight time or fuel burn and flying great circle routes

Reduce empty and payload weight
Clean up deposits on engine blades to improve compressor efficiency

Fly at 'maximum range cruise' speed instead of long range speed

Mostly cellulosic material (that does not compete with feedstock)
_converted to biofuel using the Fischer Tropsch process

Drop-in jet fuel from renewable resources like algae, switchgrass etc

The portfolio of mitigating measures is shown in Table 5: Column 3 enumerates

the references; Column 4 and 5 enumerates the percent CO 2 emissions reduction; Column

6 scales Column 4 to system-wide impact or uses Column 5 as is; Column 7 and 8 shows

assumed start time of diffusion and time to full diffusion based on estimates from

literature; Column 9 shows the current stage of implementation - the earlier the state, the

less confidence in the numbers.
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Table 5: Portfolio of mitigating measures to reduce CO 2 emissions and estimates of
the diffusion characteristics (References: see Appendix B)

1 2 3 4 5 6 7 8 9

System-wide Assumed Status of
Number of uoted % CO2 %CO2 Assumed Time to Implementation
Sources Quoe % COo %C0 r Asme 100% of Measure

Area of Improvement Mitigating Measure Reviewed and Emissions Reduction Emissions Start Time Diffusion (degree of
[References] from Literature Reduction of Diffusion (Rounded to confidence

Potential Syrs) shaded***)

Individual System-wide

7-9% 2010 IntCeLaor
B787/A350
Bombardier C-series/Mitsubishi RJ
N+1 NASA Subsonic (*)
N+2 NASA Subsonic (*)

N+3 NASA Subsonic (*)

Material, coatings, cooling technology
for engines
Engines - GTF
Engines - Open rotor
Variable fan nozzle
No bleed architecture
Develop 'all-electric/more-electric'
planes
New Engine Core
Embedded distributed multi-fan
Next generation high bypass ratio
engine
Replace APU's with fuel cells
Ubiquitous composite engines

Aerodynamics Non-planar wings
Laminar nacelles

S'DRiblets

Hybrid Laminar Flow(HLF) control
Higher aspect ratio wings
Morphing airframe
Variable Camber with new control

a1 surfaces
E Laminar flow wing profile
U

Weight Lightweight material, composites etc
Advanced fly by wire technology
Fly by light technology
Friction stir welding
Laser beam welding
Wireless flight control system
Reduce OEW

- Propulsion Retrofit engines
Technology insertion- Upgrade core

' Aerodynamics Winglets
o on Riblets

Laminar Nacelles

W Weight Reduced use of paint on airframes

Ground Fixed electric ground power instead o
operations APU

3 [1,2,3]
3 [4,5,6]
4 [7,8,10,11]
3 [10,11,12]
3 [10,11,13]

2 [14,15]

3 [6,14,16,17]
6 [9,14,18-21]

2 [22,23]

2 [22,23]

3 [14,16,24]
1 [67]

25-30%
33%
40%
70%

12%
25-30%

1-2%

5-7%

3 [15,16,24] 16%

3 [25,26,27]
1 [67]

2 [28,29]
4 [14,30,31,32]
3 [14,33,46]
3 [14,33,34]
2 [35,36]
1 [67]

1 [67]

2 [31,33]

3 [36,37,38]
1 [39]
1 [67]
1 [67]
1 [67]
1 [67]
2 [39,40]

1 [14]
2 [41,42]

2-7%

1-3%

5 [14,43,44,45,46]
3 [14,33,46]
4 [14,30,31,32]

3 [14,36,37]

3 [46,48,49]

Single engine taxi 4 [40,48,49,5
Implement queue management and 3 [51-53]
controlled pushback
Ground towing with diesel tugs instead 2 [14,51]
of engine power

51]

2-3% 2013
12% 2015
12% 2018-2020
25% 2030-2035

3-5% 3-5%

12%
13-15%

1-2% 1-2%
0.5-1.5%

3% 3%

1.5-2.5%

1% 1%

2010

2013
2015-2017

2010
2010

2010

2015
2020

16% 2015-2016 C
0.2-0.8% 0.2-0.8% 2015
10-15% 10-15% 2020

1-2% 1-2% 2008
0.8-1% 0.8-1% 2010 .

1-2% 1-2% 2015-2020
10-20% 10-20% 2015-2020 C
7-16% 7-16% 2030-2035
5-10% 5-10% 2020

1-5% 1-5% 2010

1-2% 1-2% 2015

10-20%
1-3%
1-3%

1%

1%
1-3%
1%

10-20%
1-3%
1-3%
1%
1%

1-3%
1%

2010
2010
2010
2010
2010
2020
2010

2008 10
0.25-0.75% 2007 10

1-6% 1-6% 2004 10
1-2% 1-2% 2015 10
1% 1% 2010 10

0.3-0.8% 0.3-0.8% 2008 5

0.6% 0.6% 2008 10

0.4% 0.4%

2%

2%

2004 10

2010 10

2010

ATM operations Fly at optimum cruise level 2 [54,55]
Use continuous descent approaches 4 [56-59]
(CDA)
Fly optimized routes 4 [52,58,6

Airline Reduce cabin dead-weight
operations Engine washing

Fly at lower cruise speed

0,61]

4 [14,39,40,54]
2 [46,62,63]
3 [40,46,54]

2nd Generation Blofuel (Nature by- 4 [68, 64-66]
products/waste)
3rd Generation Biofuel (algae, switch
grass, jatropha, babassu and 4 [68,64-66]
halonhytes)

0.3-0.5% 0.3-0.5% 2008

1-2% 1-2% 2007

1-2% 1-2% 2015

1% 1% 2005
0.4-1.2% 0.4-1.2% 2007

1% 1% 2005

20%

30-50%60-100%

N refers to current generation aircraft with tube and wing architecture. In the NASA subsonic research program, N+1 is a concept aircraft one
generation after the current B737NG/A320 (single aisle tube architecture). N+2 is two generations after the B777 and is a blended wing concept
aircraft. N+3 is a concept aircraft three generations after the current B737NG/A320.

(**) Technology components introduced in a new aircraft diffuse with a time constant of 20 years (like new aircraft). However in order to diffuse through
the entire fleet, these components have to be embedded in airraft types across the spectrum. Since the first delivery dates of all types of new
aircraft do not happen simultaneously, there is a phased delay in the actual diffusion of a particular component across the system. As a result, the
total diffusion time can be as long as 30 years

(***) Degree of confidence generally scales with status of implementation of a measure. Degree of confidence is colored coded with darker shaded
depicting higher degree of confidence.
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A representation of the mitigation measures on a temporal chart is shown in Figure

17 where the vertical axis is Diffusion Time and the horizontal axis is Start Time of

Diffusion. The area of the bubble represents the percent CO2 emissions reduction.

Component technologies that diffuse with new aircraft are not included in this plot.
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Figure 17: Distribution of Mitigating Me sures based on Start'Time and Diffusion
Time

From Figure 17 several categories of mitigating measures can be identified

depending on the time horizon of their estimated start of diffusion and diffusion time:

Measures that can provide rapid improvements in the medium term (i.e. medium-

term start date and medium difusion time) are mostly operational (e.g. reducing payload

weight and engine washing). They have relatively low potential for improvements

ranging from 0.5 to 2%.

Measures with medium-term start date and long dffusion time include retrofitting

new engines on older aircraft, using laminar nacelles, upgrading the core of engines and

adding winglets. Within this category, operational measures were also identified (e.g.

single engine taxiing, queue management and controlled pushback and Continuous

Descent Approaches, ground towing, using fixed electric ground power instead of APU

and flying at optimum cruise levels and lower cruise speeds). The potential for reducing

CO2 emissions range from 0.5 to 7%.
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Measures with medium-term start date and ultra long diffusion time include among

others using composites for structures to reduce weight of aircraft, using no bleed

architecture and developing new all (or more)-electric planes. The reductions in

emissions from individual measures range from 1 to 20%.

Measures with long-term start date of implementation and medium diffusion time

include a technology measure (riblets) and an operational measure (flying optimized

routes). These measures have the potential to reduce emissions by 1 to 2% per measure.

Measures with long-term start date and ultra long diffusion time include technology

measures such as new engines (e.g. geared turbofan, open rotor), next generation high

bypass ratio engines, laminar flow airframes as well as N+1 and N+2 subsonic NASA

aircraft. Second and third generation biofuels also exhibit these diffusion characteristics

and have a significant potential for C02lifecycle savings.

Measures with ultra long-term start date and ultra long diffusion time that tend to be

less certain include new aircraft technologies like NASA N+3 aircraft and higher aspect

ratio wings.

Component technologies that are expected to enter into the technology mix with next

generation aircraft design are shown in Figure 18.

20% 0 Propulsion SAerodynamics - Wt. Reduction

HSS

S15% Conpste HLFC
1%Composites E'

SOpen Rotor

GT Ubiqueda Compeente Higher A..Ws

U11

*Morphinjnr am

-5%

Vr cambe are M ectr Engme core
VaC' t zl a Nat LamFlw Wrescotl

va Reduce OEW Pblets
No bleed arch. Daibuted prop.Lam.N Fly by wire/lght c

Welding
2010 2025 20 0 2025 2030 2035

N+ 1 a/c
N+2 a/c
N+3 a/c

Figure 18: Estimated availability of component technologies for new aircraft designs
(e.g. NASA N+1, N+2, N+3 programs) and their relative CO2 emissions reduction

potential
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The largest reduction in emissions from the N+1 generation aircraft is expected to

come from (1) next generation engines (like the GTF, HBPR or Open Rotor) and (2) the

use of composite materials. Natural laminar flow wings, increased use of electric

architecture, fly by wire systems are expected to have marginal effects on fuel

consumption reduction. The N+2 generation aircraft could be developed using

component technologies such as distributed propulsions, riblets along with the N+1

technologies; hybrid laminar flow control is expected to have the largest impact on

improving fuel efficiency. Morphing airframes, ubiquitous composites and high aspect

ratio wings are expected to be introduced within the N+3 generation aircraft.

Figure 18 also poses a strategic decision point for aircraft manufacturers. The

design of the next generation single-aisle aircraft that will replace the Boeing 737/Airbus

320 will depend on the availability and the maturity of component technologies that

reduce emissions. Between 2015 and 2020, several technologies become available that

can significantly reduce fuel bum of the aircraft (e.g. HLFC). Aircraft manufacturers will

have to trade-off between an early design freeze (i.e. early entry into service) and a later

design freeze that will incorporate higher performance technologies. The decision does

not solely depend on the availability of technologies but also on the market drivers -

development cost, competition, economic conditions and the regulatory environment (e.g.

imposition of CO 2 standards).

6.4 Cumulative estimation of the potential for CO 2 emissions

reduction by category of measures

Based on the portfolio of measures presented in Table 5, an assessment of the

relative potential for CO 2 emission reduction over time (by category of measures) was

conducted. Using the Bass diffusion model presented in Chapter 5, S-curves were

generated for each of the measures listed in the four categories of (1) technology

improvements through new aircraft, (2) technology improvements through the retrofit of

components of existing aircraft (3) operational improvements and (4) alternative fuels.

Technology measures that are components and will be introduced with new aircraft were

not included since they are accounted for in the potential reductions from new aircraft.

Each S-curve was constructed using the parameters presented in columns 6-8 in Table 5
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and formed the basis of an aggregate model to estimate potential fleet wide reduction in

CO 2 emissions.

Several assumptions were made for the construction of the aggregate CO2 reduction

system model. For estimating the benefits, the baseline for system-wide fuel consumption

(and CO 2 emissions) was set at the levels of the 2006 US fleet. The benefits from the four

categories of measures were assumed independent from each other i.e. the adoption of

one category of measure did not affect the uptake of another category.

To model the improvements from new aircraft introduction, the fleet itself was

divided into four non-overlapping categories, based on the number of seats. In order to

exclude the effects of changes in demand and therefore keep the total fleet size constant,

each new aircraft was assumed to replace an older aircraft in one of these categories. The

C-series/MRJ replaced aircraft in the 50-120 seat range, N+1/N+3 in the 120-200 seat

range, B787/A350 in the 200-300 seat range, and N+2 in the 300 and above seat range.

The N+3 aircraft replaced N+1 aircraft after entry into service. In-production aircraft

from 2006 onwards entered the system till a newer generation aircraft in that seat

category was available.

Retrofitting older aircraft with new technology was assumed to have two key

diffusion dynamics: a) engines and engine cores were replaced on 10-year-old airframes

and winglets, riblets and laminar nacelles were retrofitted on 5-year airframes during the

first D-check and b) retrofits (and one time operational improvements such as reducing

cabin weight) stay in the system till the older aircraft are replaced with newer aircraft. It

was assumed that no new aircraft is retrofitted.

With regard to the diffusion of biofuels, the use of second-generation biofuels was

assumed to continue till the third-generation biofuels are available. Both biofuels were

used as 50-50 blends with regular jet fuel.

Figure 19 shows the cumulative reductions of CO 2 emissions from four categories of

measures. The model suggests that retrofits and operational improvements have the

potential to contribute to reductions in CO 2 emissions in the short to medium term.

Significant reductions in emissions will only come from the adoption of new generation

aircraft and alternative fuels once they reach the stage of fast diffusion (post 2025).
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Figure 19: Cumulative Potential Reductions in CO2 Emissions from 2006 to 2050
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CHAPTER 7

MODELING THE DYNAMICS OF NEW AIRCRAFT

DIFFUSION

7.1 Introduction

As shown in Section 6.4, technology improvement, specifically the adoption of new

fuel-efficient aircraft, has the potential to significantly reduce aviation's emissions.

However, transforming these potential benefits into actual benefits is dependent upon the

rate of entry of new vehicles and the retirement of older generation aircraft that tend to

stay in the fleet for a long time (average life of an aircraft is on the order of 25-30 years).

Chapter 5.2 showed that these benefits will depend on the complex trades between

(1) technology/vehicle fuel efficiency improvement or percent CO2 reduction potential,

(2) the entry into service (EIS) of new technology/vehicle or the start time of diffusion

and (3) the rate of entry into the fleet or the diffusion time.

As a result, there is the need to understand how the fleet efficiency will be influenced

by the entry of various generations of aircraft with different levels of performance as well

as the trades between the characteristic S-curve parameters.

In order to assess these trades, an Aircraft Diffusion Dynamic Model (ADDM) was

developed using System Dynamics modeling approaches and techniques. The model was

used to evaluate outcomes of several future potential scenarios as well as to perform

sensitivity analyses of the S-curve parameters.

This chapter first presents the architecture of the model followed by the results of its

calibration for the US narrow-body jet aircraft family. It then presents the input and

assumptions for several potential scenarios and sensitivity analyses. Finally, it discusses

the results from the analysis and their implications for future technology development,

entry into the system and diffusion.
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7.2 Description of the Aircraft Diffusion Dynamic Model (ADDM)

Architecture of the Aircraft Diffusion Dynamic Model

The objective behind constructing the aircraft diffusion dynamics model is to capture

the dynamics of aircraft infusion and fleet turnover - entry, life and exit of aircraft from

the fleet. The model will be used to analyze scenarios of complex trades. between the S-

curve parameters and to perform sensitivity analysis.

ANNUAL DEMAND EIRMN
GROWTH SHORTFALL --
RATE MODULE~

NEWRAF AIRCRAFTN AVG.UFUE

AIRCRAFT ORDER uVE RY
AND TYPE e2u DLAAY

MODULE

A R AIRCRAFTRTYP

CONSUMPTION TOTA FLEE

FUEL PERFORMANCE COFLOWI STRUCTURE
NEW AIRCROT SVUMELO

AIRCRAFT TYPE 1

AIRCRAFT TYPE 2

AIRCRAFT TYPE 3

Figure 20: Architecture of the Aircraft Diffusion Dynamic Model (ADDM)'

As shown in Figure 20 the model is composed of five key components with four

exogenous inputs:

(1) Aging chains are used to capture the dynamics of the rate of change of stocks as

a function of the age of the stock. (Sterman 2001). In the airline industry, aircraft are

generally retired from the fleet based on their age. The retirement module simulates

the exit of aircraft from the system based on retirement curves. A retirement curve

plots the cumulative probability of survival of an aircraft in the fleet. Figure 21 is a

conceptual retirement curve that shows that the probability of survival of an aircraft

of age 25 or lower is 80%.

The Aircraft Diffusion Dynamic Model was implemented in Vensim@ DSS for Windows (Version 5.9e)
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(2) Coflow structures are used to keep track of attributes of the stocks in the system.

In this model they track the fuel consumption of aircraft stocks as they age and new

aircraft with improved fuel consumption enter the system.

(3) Orders and Deliveries module capture the dynamics of aircraft entry and exit

rates that are affected by the cyclical nature of the airline industry.

(4) Aircraft demand module that model the capacity needs from airlines to meet

external demand for air transportation.

(5) Multi-layeredfleet tracks fuel performance from different generations of aircraft

in the fleet.
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Figure 21: Conceptual retirement curve

Description of the Components of the Aircraft Diffusion Dynamic Model

i. Aging Chain Structure and Retirement Module

The Aircraft/Fleet aging chain module is based on 5 aircraft aging chain stocks (0-10

year old aircraft, 10-20 year old aircraft, 20-30 year old aircraft, 30-40 year old aircraft

and 40 year and above aircraft. Figure 22 illustrates two such stocks. New aircraft enter

into the 0-10 year old aircraft stock and the average time period of stay in the stock is 10

years after which aircraft enter the 10-20 year old aircraft stock. The total fuel

consumption of each stock changes with the inflow and outflow of aircraft from the stock

and is a function of the average fuel consumption of the stock.
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Aircraft are retired from each aging chain stock based on their survival factor. For

modeling purposes, the survival factor of the mid-range age aircraft is chosen to represent

the stock of which it is a part (i.e. 25 year old aircraft represents 20-30 year stock). It

should be noted that the conversion of retired aircraft into freighters or parking of aircraft

during periods of low demand is not considered in this study.

Retirenent Probability Retirement Probability
0-10 year aircrafl 10-20 aircraft

+ tiremeent rate of

Delay in Deliveries + toeren rate of 10-20 yr aircrafi

Shortfall-,, 
72-0ya lS 0 - y y ear old 2 --23 y ear o ld

+ Deliveries of new aircraft Outflowa0-10year anraft Outflow 10-20 year aircrat

O.ders for new aircraft ruold aircraft

~~~~~~~Figure 23,A~in thcodlussthiofo structure eptako h ulcnupino

each aging aircraft stock. The assumption that each aircraft unit leaving the main stock

removes marginal average fuel consumption of that stock is an approximation and a more

accurate model would require higher order aging chains.
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Figure 23: Fleet aging chain with fuel performance co-flow structure

iii. Orders/Deliveries Module

The entry of new aircraft is dependent on the airline orders and manufacturer

deliveries. Section 7.4 illustrates the cyclical nature of the industry (i.e. orders and

deliveries) that can be modeled using standard system dynamic delays. The model uses a

two-step approach to model the dynamic delays - 1) It uses a first order delay to trend the

exponential growth in demand and 2) uses a third order delay function to account for

manufacturing and supply chain time lags (Sterman 2001) to model the industry cycle.

The variable 'Order smooth' represents the aggressiveness of order placement. Higher

order smooth values reflect lower aggressiveness to reduce the risk of errors from

forecasting.
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Figure 24: Orders/Deliveries and Retirement

iv. Aircraft Demand module

Demand for aircraft is modeled as an exponential function with a constant growth

rate. The shortfall is the difference between the demand for new aircraft and the total fleet

size. Shortfall is driven by retirements from the fleet and the growth in demand.

Growt Aircraft Demand + Sotfall - Total Fleet Size
Anual Growvth

+f Rate+

Annual Growthf
Rate Constant

Figure 25: Demand module

v. Multi-Aircraft Type Layered Model

The fleet wide fuel performance at any time is dependent on the fleet mix that

consists and will be composed of several generations of aircraft. Modeling each aircraft

type with an aging chain and coflow structure captures the heterogeneity in the fleet mix.

Four layers of aircraft types are used to represent four generations of aircraft:

- Current 2006 fleet that is made of older generation Boeing 737 and A320

models

- 'In-Production' fleet i.e. models (new and re-engined B737/A320) being

manufactured and delivered 2006 onwards,

64 of'] 15



* Next generation narrow body fleet (Gen +1) following the 'In-Production'

generation

* Next to Next generation (Gen+2) narrow body fleet following the Gen+l

generation.

The complete multi-layered model is shown in Appendix C: Single Aisle SD Model

- Causal Loop Diagram

vi. Output of the Aircfrali )Ji(son Dynamic Model

At any point in time, the fleet wide fuel consumption is given as:

FleetwideFuelConsumption = # ofAircraftFleetType x Avg FuelConsumptionFleetType
FleetType

where, FleetType = {2006 aircraft, In production aircraft, Gen+l aircraft, Gen+2 aircraft}

The scenario analyses use 2050 fleet fuel consumption as a metric to evaluate the

sensitivity of the inputs.-The total fuel consumption of the fleet at a particular time can be

expressed as:

TotalF .Cyear = TotaiFleetyea, x AvgFleetF Cyear

GRXt %2006Aircraftyear x 2006AvgF .C + %In Pr odAircraftyear x In Pr odAvgF.C +
= Totalwleet- xe eGx

2%Gen + Aircraftearx Gen + lAvgF.C + %Gen + 2Aircraftyearx Gen + 2AvgF.C]

Equation 4

where , GR = Growth rate

F.C = Fuel Consumption

%Gen+lAircraftyear = Fraction of Gen+1 aircraft in the fleet

Gen+lAvg. F.C = Average fuel consumption of a Gen+1 aircraft

Based on the formulation of S-curves in 5.2, the fraction of a particular type of aircraft

will be a function of growth rate (overall market size), diffusion time and the start time of

diffusion.

%Gen + lAircraftyear = fn(GR,DiffusionTime,StartTime)

The average fuel consumption of the Gen+1 aircraft is also a function of the start time of

diffusion as shown in Figure 34 i.e.

Gen + lAvgF .C = fn(StartTime)
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Therefore, the response of the model to sensitivity scenarios will consider the output to

the following variables:

1. Fleet composition i.e. number of aircraft in the fleet by aircraft type

2. Net fuel consumption of the fleet and each aircraft type normalized by 2006 fleet

wide fuel consumption

3. Total normalized fleet wide fuel consumption and

4. Normalized fuel intensity defined as fleet wide fuel consumption/Fleet size

Given that most of the long-term industry CO 2 emission reduction use 2050 as a target

date, the performance of the fleet is assessed in 2050.

Also, Fuel consumption ratio (FCR) = 2050 Fleet Fuel Consumption/2006 Fleet Fuel

Consumption.

7.3 Scope of the Aircraft Diffusion Dynamic Model: Application to

the Single Aisle Aircraft Category

The modules discussed above are generic and can be applied to study the evolution

of any type of aircraft fleet provided the exogenous constants are known. Given the

importance of the single aisle aircraft category (see Figure 26) in terms of number of

aircraft and contribution to fleet wide emissions and potential for improvement, this study

will focus on the US single aisle aircraft fleet. It specifically investigates the evolution of

this category of aircraft in the context of the entry of the next generation fuel-efficient

aircraft that will replace the current aging narrow body fleet.
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Figure 26: World Airline Fleet
(Source: ATW, data from Air2laims 2005)

7.4 Assumptions for the Calibration of the Aircraft Diffusion

Dynamic Model

vii. Reference Fleet

The 2006 single aisle fleet information was extracted from BTS Form 41 Schedule B

43 database that reports data of airframe inventories by model type, number of seats and

date of entry into service. Figure 27 shows the distribution of number of aircraft by age.
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Figure 27: Distribution of 2006 single aisle fleet by age
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The average fuel consumption for each stock of the 2006 fleet in the aging chain

model is calculated based on Piano-X (Lissys Ltd 2010) data of a representative aircraft

model' and then normalized to the fuel efficiency of aircraft that are 0-10 years old in

2006. Efficiency changes from aging and maintenance is not considered in the model.

Table 6: Average fuel efficiency
Fuel Efficiency

Representative = Energy Fuel Burn Normalized
Age (yrs) aircraft / Payload* Distance Fuel Efficiency*
0-10 737-800/900/A321-200 0.007 1.0
10-20 737-500/600/A320-200 0.009 1.3
20-30 737-300/400 0.009 1.3
30-40 737-200 0.010 1.4
40 and above 727 0.014 2.0
* Normalized to 0-10 yr old Fuel Efficiency

ix. Fleet Retirement

The dynamic of aircraft retirements are generally captured in aircraft retirement

curves that describe the survival factor as a function of the age of the aircraft. The

survival factor is defined as the cumulative probability of an aircraft less than or equal to

a particular age, that will survive in the fleet. For the purpose of this model, the

retirement curve for the 'All Others' category from Figure 28 was used because the

Boeing 727 occupy a small percent of the 2006 fleet and the other aircraft fall in the

wide-body category.

http://www.boeing.com/commercial/737family/background.html
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Figure 28: Passenger aircraft retirement curves
(Source: CAEP/8 Modeling and Database Task Force)

The ICAO Committee on Aviation and Environmental Protection (CAEP)

published aircraft retirement curves in its Fleet and Operations Module (ICAO 2007) that

is used as inputs to the retirement probability for each aging stock in the Aircraft

Diffusion Dynamic Model.

To use this aircraft retirement curve as input to the model, the following ICAO
equation was used with the coefficients shown in Table 7

Survival Factor = Const + Ax +.Bx2 + Cx3 + Dx4 + Ex5 + Fx6

Table 7: ICAO regression constants for retirement curve (ICAO 2007)

Constants Const A B C D E F
Value 0.7912 0.0975 -0.0168 0.00135 -0.000053636 9.7731E-07 -6.58E-09

7.5 Calibration of the Aircraft Diffusion Dynamic Model

The world airline industry has been subject to boom and bust cycles. The cyclical

nature of the industry is driven by the delays between the orders placed by airlines and

the deliveries. As shown in Figure 29, airlines tend to place orders when they are

profitable (airline profitability and orders exhibit high correlation). However, due to

production lead times, the deliveries only occur several years after the orders are placed

(see Figure 29). This mismatch between the need for capacity -when airlines are
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profitable- and the actual introduction of additional capacity from new deliveries drives

the instability in the system and the profitability cycle.
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Figure 29: Boeing and Airbus orders and deliveries
(Data source: Orders & Deliveries: ICAO 2009., Financial: ICAO 2009 reported by ATA)

The profitability cycle in the industry is extremely uncertain to predict in the long

term (i.e. 20-30 years) and the model uses a first order delay between the orders and

deliveries, which does not produce cycles, to explore long term trends. To study the

effects of the cycle in the short term on fleet performance, the model uses a third order

delay between the orders and deliveries that generates a cycle. Historical data of orders

and deliveries of Boeing 737 and Airbus 320 (all models) to the US airlines are used to

calibrate the model and obtain estimates of the 'order smooth' and 'delay in deliveries'

that provide the best fit for the data. These two models of aircraft represent

approximately 85% of the single aisle fleet and can therefore approximate the fleet

evolution. Yearly data for orders and deliveries of Boeing 737 and Airbus 320 aircraft

only to US Airlines were obtained from two different sources: (1) Boeing database' and

(2) Airbus data2

Database available at
http://active.boeing.com/conmercial/orders/index.cfm?contentiserdefi.nedselection.cfm&pageid---ml5527

2 Data from OAG - FleetiNet database (Courtesy of Simon Pickup, Business Operations Director, Airbus)
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x. o1)del Calibration

The model was set up for calibration for two different purposes - 1) to represent the

long-term trends in the industry and 2) capture the short-term industry cycles.

Figure 1 has shown the exponential growth trend in aviation worldwide over a period

of 40 years. This trend was captured using a first order delay between orders and

deliveries in the model shown in Figure 31 and was calibrated using the data from Figure

30. Short term effects from the airline cycle was modeled using a third order delay

between orders and deliveries in the model and was calibrated using the same data from

Figure 30. The model was calibrated using the automated optimization routine in Vensim

that minimizes the square of the difference between the actual data and the model output

for each time step by varying the exogenous variables.
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Figure 30: Boeing 737 family and Airbus 320 family orders and deliveries to U.S
airlines

(Data Sources: Boeing, Airbus)
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Figure 31: Model to estimate calibration constants - 'order smooth' and 'delay'
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The output for the best fit is shown in Figure 33 and the following constants were

obtained from the calibration exercise:

Orders Deliveries
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Figure 32: Results of calibrating the Aircraft Diffusion Dynamic Model with
historical data using first order fits
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Figure 33: Results of calibrating the Aircraft Diffusion Dynamic Model with
historical data using third order fits
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7.6 Definition of Assumptions and Scenarios

The model is used to examine the future fleet wide fuel consumption for a variety of

scenarios:

- First, the effects of two technology improvement paths are assessed.

- Second, the effects of demand growth rates on fleet mix and performance are

examined.

- Third, the impacts of early and late retirement on fleet performance are

evaluated.

- Fourth, the effects of industry cycles on aircraft adoption rates and the fleet

performance are tested and

A set of sensitivity analyses was then conducted to evaluate the effects of varying the

dates of entry into service of new aircraft.

The list of technology options (i.e. re-engining and new aircraft designs) is presented

in Table 8.

Table 8: Summary of technology mitigating measures

Mitigating Measure Designation Description Assumptions

New Engine RE-ENGINE Re-engine B737/A320 with GTF -12% in 2015

New Aircraft N30  Next generation single aisle aircraft with 30% -30% in 2020
efficiency improvement

New Aircraft N50  Next generation single aisle aircraft with 50% -50% in 2023
efficiency improvement

New Aircraft N70  Next generation single aisle aircraft with 70% -70% in 2035
efficiency improvement

RE-ENGINE refers to the option of upgrading the power plants of current generation

In-Production aircraft with the next generation engines like the Geared Turbofan. N30,

N50 refer to the next generation narrow body (Gen+1) aircraft that are 30% and 50% more

efficient than current generation planes and N70 refers to the next to next generation

(Gen+2) aircraft that is 70% more efficient than current generation aircraft. Figure 34

presents the technology options in the context of historical evolution of fuel efficiency of

the industry and also constructs two possible technology paths - i) Emphasis on early

entry into service of available technology and ii) Delayed entry into service for more fuel

efficient technology. These two scenarios capture the entry into service vs. fuel efficiency

improvement trade-off. In one case, a less efficient aircraft may be introduced earlier
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the other case, aircraft manufacturers may decide to wait and delay the entry

for higher fuel efficiency.

+100%,B727

+40%, B737-200 +30%,B737-300
+30%,B737-500

0%,B737-900
2006 baseline aircraft
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Figure 34: Historical evolution of single aisle aircraft fuel efficiency by entry into
service dates and two technology improvement pathways (Inset - see Figure 35)
(Data sources: Boeing, Piano X for historical data, and author's projections for future

aircraft)
Scenario Analyses

This section describes the what-if scenarios and sensitivity analysis that are going

to be tested using the Aircraft Dynamic Diffusion Model. The scenarios are a

combination of technology, demand growth, fleet management (retirement) and industry

cycles that are going to impact the adoption of new aircraft and influence the fleet fuel

performance. Table 9 summarizes the list of scenarios that will be considered and the

combinations that make up each scenario. Details of each scenario are provided in the

section below.
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Table 9: Scenario Assumptions

Technology Path Annual Demand Shift in Retirement Curve Type of Delay
___________ Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order

technology fuel-efficient
technology

RE-ENGINE, N5  NO and N70
and N, _

0)

< V

U

xi. Efet of Techniology Path on Fleet Performance

Next generation fuel-efficient narrow-body aircraft are expected to replace the

current generation Boeing 737/Airbus 320 fleet. The fleet fuel performance will be

determined by the relative efficiency improvement from the adoption of new

technologies as detailed in Figure 18. While the fuel efficiency of the next generation

aircraft is uncertain, estimates can be drawn from the NASA subsonic fixed wing

programi and engine upgrades that manufacturers are considering to make current

production aircraft more efficient. This research considers the following technology

strategies constructed on decisions taken by the manufacturer about the time of entry of

the next generation narrow body aircraft/engines:

Emphasis on early entry into service of technology:

In this scenario, the manufacturers re-engine the In-Production aircraft with the geared

turbofan engine in 2015 and introduce an early version of the N70 aircraft - the N50 in

2023. This aircraft is consistent with recent MIT findings of "a version that could be built

I http://www.aeronautics.nasa.gov/fap/subfixed.html
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with conventional aluminum and current jet technology that would bum 50 percent less

fuel and might be more attractive as a lower risk, near-term alternative" (Bettex 2010).

The N70 is introduced in 2035 as the Gen+2.

Strategy of delayed entry into service with more fuel-efficient technology:

Under this scenario, the manufacturers do not re-engine the In-Production aircraft in 2015

but introduce a more 'technology mature' next generation aircraft the N30 in 2020 that is

30% more fuel-efficient than the Boeing 737-900 aircraft. The next to next generation

aircraft -the N70 is introduced in 2035 with 70% less fuel burn than the 737-900.

2006 baseline aircraft
O....... -. ... . ........ ... ... . ...... ..... .......................... .....

RE-ENGINING
c0

"0 -25%

Delayed entry into service with
more fuel-efficient technologyE IFo

Early entry into service of
technology

UN

70
In-Production Next generation (Gen+])

U.-75%

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Next to Next generation (Gen+2)

Figure 35: Aircraft technology improvement scenarios by generation of aircraft

xii. E/etl of Demand Growth on Fleet Performane

The ADDM is tested with three different demand scenarios - annual growth rates

of 1, 3 and 5% as shown Figure 36. The three scenarios are placed in the perspective of

historical demand growth since the 1990s.
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Figure 36: Exponential demand growth scenarios in scheduled revenue passenger
miles

The effect of demand growth rate is tested on the re-engining and late but more

efficient entry scenario technology path for a baseline retirement case and without

industry cycles.

xiii Effect of Fleet Retirement on Fleet Performance

The impact of different retirement rates on the fleet performance is tested. The

baseline retirement curve is shifted by ±10% to get faster and slower fleet turnover as

shown in Figure 37. The effects on fleet performance are tested using the Aircraft

Diffusion Dynamic Model on the Early entry into service of technology scenario.
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Figure 37: Retirement curve scenarios
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xiv. E 3cc of Lndstry Cycle on Fleet Per/ormnce

In this scenario, the effect of industry cycles on aircraft diffusion rates and fleet

performance is tested. The cycle is generated using the constants extracted from the

calibration exercise shown in Figure 33.

x 1.1Sensiivi' fN Aircraf- Entr y into Servce nFee Perf or mance

Aircraft entry dates for the aggressive entry intro service scenario is varied to test

the sensitivity on fleet wide fuel consumption. When testing the sensitivity, it is assumed

that the efficiency changes linearly, depending on the entry dates as shown in Figure 38.

2006 baseline aircraft

RE-ENGINING

Assumed Tech. 'J , N30
improvement path

CL 35% Delayed entry into service with more
E %fuel-efficient technology
o

UI

41"'Assumed Tech.
Early entry into service of \So % improvement path
technology 50 N 70

LL

-85%

2006 2010 2014 2018 2022 2026 2030 2034 2038 2042 2046 2050

Figure 38: Assumed variation of performance with entry into service dates for
sensitivity analysis

The following ranges are tested -

Early entry into service of technology:

Entry into service of N50 : 2020 to 2030

Entry into service of N70: 2030 to 2045

Delayed entry into service with more fuel-efficient technology:

Entry into service of N30: 2015 to 2030

Entry into service of N70: 2030 to 2045
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7.1 Simulation Results

xvi. E et of, Technoogy Patlh on Fleet Per finance

Setup:

Technology Path Annual Demand Shift in Retirement Curve Type of Delay
Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order

technology fuel-efficient
technology

RE-ENGINE, Ns* N3o andN o
and N70

The comparison of fleet fuel consumption for the two technology path scenarios

shows that the early entry into service of technology case has better fuel performance in

the 2050 time frame (Figure 39). Introducing the N50 aircraft in 2023 allows more time

for the In-production re-engined aircraft to diffuse into the fleet and they occupy a larger

percentage of the fleet in 2050 as compared to the 'Delayed entry into service of

technology' scenario. The difference in fuel bum from the in-production fleet between

these two scenarios is not large because of the higher efficiency of the re-engined aircraft.

At the same time, introducing the N30 in 2020 as compared to the N50 in 2023 causes a

higher number of inefficient (30% vis-a-vis 50%) next generation aircraft in the 2050

fleet. This results in a better fuel performance of the early entry into service of technology

case.
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Early entry into service of technology scenario
Delayed entry into service of technology scenario

2030 2038 2046
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Figure 39: Normalized fleet fuel consumption under 'Early entry into service of
technology' and 'Delayed entry into service with more fuel-efficient technology'

scenarios

x ii. EffRct of Demand Growth on Fleet Performance

Setup:

Technology Path Annual Demand Shift in Retirement Curve Type of Delay
__________ _________ Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order
technology fuel-efficient

technology

RE-ENGINE, Ns"
and N7O

N3o and No

Figure 40 shows the normalized fleet fuel consumption under three annual

demand growth rates. Fleet fuel consumption is below 2006 levels only for a 1% demand

growth scenario.
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2006 2010 2014 2018 2022 2026 2030 2034 2038 2042 2046 2050
Tirne (year)

Annual demand growth rate of 1% 1 1
Annual demand growth rate of 3% 3 3 39
Annual demand growth rate of 5%

1 1 1 1 1
3 33 3

Figure 40: Normalized fleet consumption for 1, 3, 5% annual demand growth
scenarios

The diffusion of an aircraft type in the fleet is sensitive to the growth rate as shown

in Figure 41. The higher the growth rate the shorter the time to diffuse. This can be

explained by considering the example of diffusion and retirement of the N50 and N70

aircraft. The Gen+1 aircraft continues to be ordered till the N70 becomes available. If the

growth rate is higher, and the N70 is not available, a larger number of N50 aircraft will be

ordered to meet demand and N50 will occupy a higher percentage of the fleet mix. Also,

when there is a larger percentage N5o aircraft in the fleet, there will be a higher number of

retirements that are N50 aircraft. The growth rate affects the fleet mix at any instant of

time by increasing diffusion and in turn retirement rates. Figure 42 tracks the fuel

intensity of the fleet (normalized to the 2006 fleet fuel intensity) over time. Higher annual

demand growth rate reduces the fleet fuel intensity by enforcing increased diffusion of

the more efficient aircraft - the N70.
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0

2006 2010 2014
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Annual demand growth
Annual demand growth
Annual demand growth
Annual demand growth
Annual demand growth

Tne (year)

rate of 1%, N50 aircraft 1 1 1 1 1 1
rate of 3%, N50 aircraft
rate of 5%, N50 aircraft
rate of 1%, N70 aircraft .
rate of 3%, N70 aircraft
rate of 5%, N70 aircraft .

Effect of annual demand growth rate
aircraft

on the diffusion of N5o and N70

2014 2022 2030 2038 2046
Time (year)

Annual demand growth rate of 1% -
Annual demand growth rate of 3%
Annual demand growth rate of 5%'

1 1 1 1 1 11
i 3 3 3 33 3 '

Figure 42: Normalized fuel intensity for 1%, 3% and 5% annual demand growth
rate
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xviii. Effect of Fleet Retirement on Fleet Performance

Setup:

Technology Path Annual Demand Shift in Retirement Curve Type of Delay
__________ _________ Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order
technology fuel-efficient

I technology

RE-ENGINE, N5
and N70

N3o and No

In this scenario, the fleet mix determines the fuel consumption in 2050 (Figure

43) since the efficiency improvement is kept constant with the time of entry of new

aircraft. With higher retirement rates, the 2006 fleet expectedly declines faster. This

creates a shortfall in the industry that is taken up by higher orders and deliveries of In-

production aircraft. Similar dynamic is exhibited by the take-up of N7o aircraft with

higher N50 retirement. With faster retirement, the fleet is 2% more fuel efficient in 2050

than the baseline scenario. With slower retirement, the fleet is 1.8% less fuel efficient in

2050.

014 2022 2030
Tne (year)

Early retirement (-10%) E E
Baseline I

Late retirement (+10%) L L

2038 2046

E E E E E E
DUD DO

L L L L L L L

Figure 43: Normalized fuel consumption for early, baseline and late retirement
scenarios
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Figure 44: Effect of retirement rates on the diffusion and retirement of the 2006
fleet

3,200

Early retirement-

4- 2,400

1;>600 Late retirement
E

800

2006 2014 2022 2030 2038 2046
Time (year)

In Production aircraft: Early retirement (-10%) r r r r
In Production aircraft: Baseline a c D f

In Production aircraft: Late retirement (+10%)

Figure 45: Effect of retirement rates on the diffusion and retirement of the In-
Production fleet

xix. E et ofIndutry 'ycle on Fleet Performance

Setup:
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Technology Path Annual Demand Shift in Retirement Curve Type of Delay
_____________________ Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order
technology fuel-efficient

I technology 1

RE-ENGINE, N,,
and N,

No and No

U

The effect of the airline industry cycle on the fleet wide fuel burn is shown in Figure 46.

While it is difficult to predict the cycle in the long term, its effect on the adoption of new

aircraft in the short to medium term cannot be de-emphasized. The timing of the new

aircraft entry into service with respect to and upturn or downturn in the industry cycle is

vital to its fast adoption.

di 1.7

U-

UL 1.

E

0

0.8

2006 2014 2022 2030 2038 2046
Time (Near)

Early entry into service of technology scenario without cycle t--i--------1-
Early entry into service of technology scenario with cycl e '

Figure 46: Effect of airline industry cycle on normalized fleet fuel consumption

Industry down cycles can, mn some cases, significantly delay the diffusion rate

(see In-production and Gen+1 aircraft adoption in Figure 48) and timing of the aircraft

entry into service has to be synchronized with the cycle for maximum penetration (i.e. a

trade exists between the timing and the diffusion rate). The timing of the introduction of
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new aircraft also determines the retirement of inefficient generations of aircraft. The

order rate for new aircraft (i.e. the diffusion rate) depends on the retirements from the

fleet. One example of a trade-off is: retiring the In-Production aircraft faster by

introducing the Gen+1 earlier can lead to a high number of Gen+1 aircraft in the fleet.

The long time that the Gen+1 aircraft stays in the fleet can block the fast adoption of

Gen+2 aircraft and adversely affect the 2050 fleet wide fuel consumption.

10,000

7,500

0

CD 5,000

2,500

0

2006 2014 2022 2030 2038
Time (year)

Early entry into service of technology scenario without cycle ~1~f~~
Early entry into service of technology scenario with cycle - - -t

Figure 47: Airline industry cycle and fleet evolution
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Figure 48: Airline industry cycle and fleet mix
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xx. sen~i, - | \ r I , 11 4 into Service on F1fleet Ierfrmance

Setup:

Technology Path Annual Demand Shift in Retirement Curve Type of Delay
___________Growth Rate

Delayed entry
Early entry into into service

service of with more 1% 3% 5% -10% 0% 10% 1st order 3rd order
technology fuel-efficient

technology

RE-ENGINE, N50 NPo and N7,
and No

The following ranges are tested -

Early entry into service of technology:

Entry into service of N50 : 2020 to 2030

Entry into service of N70: 2030 to 2045

Delayed entry into service with more fuel-efficient technology:

Entry into service of N30 : 2015 to 2030

Entry into service of N70 : 2030 to 2045

The results from the two sensitivity scenarios are shown in Figure 49 and Figure 51

and can be explained using Equation 4 and the dynamics of fleet evolution.

For the best performance in terms of fleet wide fuel consumption in 2050, the fleet

has to be ideally composed of the most efficient aircraft (the Gen+2) and the lowest

number of the inefficient aircraft. This can be achieved by: introducing the most efficient

aircraft early and retiring the inefficient aircraft. However, the coupled nature of the fleet

turnover system gives rise to trade-offs in the following way:

1. Trade between Efficiency and Start time: The efficiency of the aircraft is a

function of when it is introduced into the fleet. Thus, introducing an aircraft

early can make it occupy a larger share of the fleet but only at the cost of

efficiency (See Figure 38).

2. Trade between Start time and Diffusion time: The share of the fleet that the

aircraft occupies depends on the time that it has to diffuse.
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3. Trade between Start time and Diffusion rate: The timing of the introduction

of new aircraft determines the retirement of inefficient categories of aircraft.

The order rate for new aircraft (i.e. the diffusion rate) depends on the

retirements from the fleet. One example of a trade-off is: retiring the In-

Production aircraft faster by introducing the Gen+1 earlier can lead to a high

number of Gen+1 aircraft in the fleet. The long time that the Gen+1 aircraft

stays in the fleet can block the fast adoption of Gen+2 aircraft and adversely

affect the 2050 fleet wide fuel consumption.

Case: Early entry into service of technology:

The results from the sensitivity analysis are shown in Figure 49. The minimum fleet

fuel bum in 2050 is attained when the entry of the N5 0 and N70 aircraft are at 2027 and

2040 respectively. Delayed entry of the next generation of aircraft result in a higher

number of In-Production aircraft to diffuse into the fleet. Around the 2040 time period a

significant number of this category of aircraft retire, abetting the diffusion of the more

efficient N70. The minimum point of entry is reached for an optimal combination of fleet

mix and efficiency as shown in Equation 4. The evolution of the fleet wide fuel

consumption for the baseline entry (i.e. 2023 and 2035) is plotted against the optimal

entry (2027,2040) in Figure 50. Delayed entry of the N50 and the N70 causes higher fuel

bum in the short term but the fleet has better fuel performance in the long run. This result

also shows that the optimal choice of entry dates will be strongly affected by the choice

of horizon at which minimum fuel bum is being calculated.
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Early entry into service of technology scenario
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Figure 49: Effect of entry dates for N5o and N7 aircraft on 2050 fleet fuel
consumption for 'Early entry into service of technology' scenario
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Figure 50: Normalized fleet fuel consumption for minimum settings and baseline for
'Early entry into service of technology' scenario
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Case: 'Delayed entry into service with more fuel-efficient technology' :

Under this technology path, the minimum fleet fuel bum in 2050 is attained when the

entry of the.N30 and N70 aircraft are at 2028 and 2039 respectively. Similar arguments (as

in the previous case) about the impacts of delayed entry on fleet evolution hold in this

case. Compared to the 'Early entry into service of technology' technology path, this

scenario has 8% higher fuel bum at the optimal point.

Delayed entry into service with more fuel-efficient technology scenario

2.2 - {N30,N7,FCR}= --

(2028,2039,1.29}

21 t
-Baseline

2 {2023,2035} ......
1.9

1.8

1.7

i *-5

1.4

1.3

1.2

2030 2031 2032 2033 2034 2035 2036 2 2 0 0 0 0

250 203 2038 2039 2040 24
2022043 2044 2045

N70 Entry Into Service

A2.

2-

M 1.4

=1.

E 1.

S1.

5 1.

- 1.

2015 Al .

2019 Al-

2023

N30 Entry
2027 into service

Figure 51: Effect of entry dates for N30 and N70 aircraft on 2050 fleet fuel
consumption for 'Delayed entry into service with more fuel-efficient technology'

scenario
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Figure 52: Normalized fleet fuel consumption. for minimum settings and baseline for

'Delayed entry into service with more fuel-efficient technology' scenario

Comparison of the two scenarios indicates that there are steep penalties in fuel burn

if the N30 or N50 aircraft is not introduced at the optimal point of entry. The fuel penalty is

less pronounced for the N70 entry into service (even less so for the 'Early entry into

service of technology' scenario). From a purely environmental standpoint, the challenge

for the airline industry will be to time the entry of the aircraft not only based on optimal

fleet fuel burn but also on the industry cycle.

Both scenarios indicate that the entry of the N30 /N5o aircraft and the N70 aircraft

should be in the range of 2027-2028 and 2039-2040 respectively, for minimum fuel burn

performance in 2050. Figure 50 and Figure 52 also show that while these dates of entry

into service minimize fuel burn in 2050, the cumulative fuel consumption is significantly

higher. As a result, the cumulative fuel burn should be considered as a metric alongside

fleet performance, when evaluating the environmental impacts of the entry into service of

next generation fuel-efficient aircraft.
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7.1 Discussion and Implications for Aircraft Manufacturer

Strategies and Public Policy

This chapter has investigated the possibilities of improving the fuel efficiency

performance of the single-aisle fleet by inducting the next two generations of single aisle

aircraft. Fleet turnover dynamics was modeled using System Dynamic techniques and

various scenarios were tested.

The results show that the 'Early entry into service of technology' scenario is a

better alternative to reducing aviation CO2 emissions as compared to an 'Delayed entry

into service with more fuel-efficient technology' scenario. Retiring older aircraft from the

fleet also improves the fleet fuel performance but only moderately. Under high demand

growth scenarios, introducing new aircraft is not sufficient to curb rising emissions

because the technology improvement is not sufficient to mitigate the increase in fuel burn

from a larger number of aircraft. Results also show that the industry cycle can adversely

impact the adoption of new aircraft and thereby affect fleet performance. Sensitivity

analysis for the entry into service dates of the next and next to next generation aircraft

indicate that fleet fuel burn can be minimized in 2050 by suitably selecting the date of

entry. However, this might be lead to higher cumulative fuel burn till 2050.

The results have several implications for implementing policies to combat the

high carbon emissions growth scenario from aviation as predicted by forecasts. CO 2

emissions from the aviation industry is an externality and there are several approaches to

tackling it:

1. Internalize the cost of the externality - cap and trade and fuel tax

2. Reduce externality at the source - use efficient aircraft, reduce demand for

air travel

3. Command and control - impose standards for CO 2 emissions and enforce

compliance

Fleet turnover dynamics has an impact on each approach and is discussed below.

Technology:
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CO2 Standards: The Aircraft Diffusion Dynamic Model has shown that drastic

technology improvements as in the 'Early entry into service of technology'scenario is the

best alternative to reduce fuel burn. A CO 2 standard for new and in-production aircraft

can help incentivize the introduction of technology. The policymakers have to be careful

about designing the standard. If it is made applicable to new aircraft only, manufacturers

will delay the introduction of new models and continue with incremental improvements

on existing production lines. This can also incentivize re-engining the in-production

aircraft. At the same time, if the standard is designed too stringently for in-production

aircraft, it can encourage re-engining to meet the standards in the short run and also delay

the introduction of new aircraft.

Implications for Aircraft Manufacturers: Developing a new aircraft is a risky

undertaking. The onus is on the aircraft manufacturers to timely bring new and fuel

efficient aircraft to the market. With an estimated demand growth of 3% the ideal time of

entry for the Gen+1 aircraft (like the Boeing Y1 and the Airbus NSR 2) is in the

2028/2029 time frame. Given that an aircraft development program lasts over 10 years

before entry into service(Clark 2007), the Gen+1 program has to start in the 2017 time

frame.

The 'Early entry into service of technology' scenario with a 50% efficiency

improvement by 2023 has proved to be the best technology improvement pathway that

can reduce fuel burn in the long run. If the next generation single aisle aircraft is to enter

into service in 2023, the design freeze will have to occur much earlier (see Figure 53 for

average timelines of new aircraft development). Technology development to meet the

'Early entry into service of technology' path has to be accelerated.

The timing of the Gen+1 and Gen+2 entry will also impact the total number of

aircraft that are sold by the manufacturer. Early introduction of the Gen+ 1 and the Gen+2

will cannibalize the sales of In-production and the Gen+ 1 models respectively.

The industry cycle is also an important consideration for the manufacturers for

short-term strategies. The simulation predicts that the current downturn in the cycle will

lhttp://www.flightglobal.com/articles/2006/03/03/205223/boeing-firms-up-737-replacement-studies-by-
appointing.html
2http://www.aviationweek.com/aw/generic/storychannel.jsp?channel=comm&id=news/aw07O2O7p3.xml
&headline=Airbus%2OMay%2ONot%2ODo%20A320%2OReplacement%20Alone
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end by 2014, which is approximately co-incidental with the expected entry of the re-

engined single aisle aircraft. The timing will be right for fast adoption of the re-engined

aircraft. On the other hand, the industry is predicted to enter into another downturn in the

2020-2024 time frame. This can significantly delay the sales of the new next generation

narrow body aircraft. Going strictly by the cycle, the manufacturers are more likely to re-

engine the in-production aircraft and delay the introduction of the next generation narrow

body.

The growing demand for aircraft has encouraged new manufacturers to eye the

single aisle market. This has competitive implications for the two largest manufacturers -

Airbus and Boeing. If they do not develop the Gen+1 aircraft and resort to re-engining as

a strategy, manufacturers like Bombardier (C-Series) and Comac (C919) can derive

competitive advantage with better technology offerings as well from imminent

regulations.
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Development Timeline of Commercial Aircraft

737 Entry into service
737 Certification
737 First flight

1
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± 757 First flight

737 Launch 700 LIuh A320 Launch
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747 First fight

747 Launch - 747 Certification 767 Launch 767 Firstfl Crtifti
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Figure 53: Launch to entry into service timelines for different aircraft types
(Source: Flightglobalcom, crj900.com, Embraer, aviastar.com, airliners.net, BBC, b737.org, Boeing)
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Demand:

Adoption of new aircraft will not be sufficient to counterbalance the rise in fuel

consumption from growth in demand. A market-based mechanism that imposes a cost on

carbon emissions (like fuel tax or cap and trade) is expected to increase the price of air

travel and reduce demand. Reduced demand influences fleet dynamics in multiple ways -

influencing the industry cycle that has second order effects on reduced orders of new

aircraft and slow diffusion rates.

Retirement:

CO 2 Standards and taxes on older aircraft: The retirement curves can be

influenced by imposing taxes or by emission standards and older aircraft will retire at a

faster rate (i.e., the curve shifts to the left). The Aircraft Dynamic Diffusion Model has

shown that aircraft from the 2006 fleet will retire at a faster rate but this will increase the

orders for in-production aircraft to meet demand. In the short run, this can reduce fleet

fuel consumption if the in-production aircraft are made more efficient by imposing CO 2

standards.
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CHAPTER 8

CONCLUSIONS

Increasing demand for air transportation worldwide and growing environmental

concerns motivate the need to implement mitigating measures to reduce CO2 emissions.

The maximum potential of benefits can only be realized after full adoption of the

measures by the industry.

Case studies of historical changes in the air transportation industry have shown

that implementation and diffusion of technology or operational changes generally follow

S-curve type dynamics with relatively long time-constants. Each study indicated key

barriers and enablers in the implementation process that could impact the diffusion time

of future mitigating measures. This research developed a portfolio of CO2 emission

mitigating measures, analyzed their diffusion characteristics and their relative

contribution to cumulative system wide improvements. First, a literature review identified

over 90 proposed mitigating measures, which were aggregated into 41 unique measures,
including: (1) technological improvements, (2) operational improvements, and (3) use of

alternative fuels. It was found that in the near term, operational changes have the highest

potential for improvements but are unlikely to significantly reduce CO2 emissions. In the

medium term, both technology retrofit and operational measures have the potential to
reduce emissions. In the long term, the use of 2 nd and 3 rd generation of biofuels have

significant potential for reducing the carbon footprint of aviation but are likely to have

long diffusion times and may not be available exclusively to the aviation sector and in

sufficient quantities due to demand from and competition with other industry sectors.

Technology measures such as next generations of aircraft have the highest potential for

reducing CO2 emissions but only in the long term due to slow turnover dynamics of the

fleet.

An Aircraft Diffusion Dynamic Model (ADDM) was developed using System

Dynamics modeling approaches and techniques that could evaluate the fleet efficiency

with the entry of various generations of aircraft at different levels. The model could also

perform the trades between the characteristic S-curve parameters. It was found that new
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aircraft diffusion was strongly influenced by a) the annual growth rate in demand, b) the

industry cycle and c) the retirement of older aircraft.

Results from the model showed that strategies that emphasize the early entry into

service of available technology, as opposed to waiting and delaying entry for more fuel-

efficient technology, have greater potential to improve fleet fuel-bum performance. Also,

strategies that incentivize early retirement of older aircraft have marginal potential for

reducing fuel burn. The timing of the entry of the newer generation aircraft has a

significant impact on the fleet fuel performance in 2050. Sensitivity analysis for the entry

into service dates of the next and subsequent generation aircraft indicate that fleet fuel

burn can be minimized in 2050 by suitably selecting the date of entry. However, this

might be lead to higher cumulative fuel burn till 2050. As a result, the cumulative fuel

bum should be considered as a metric alongside fleet performance, when evaluating the

environmental impacts of the entry into service of next generation fuel-efficient aircraft.

Future demand scenarios have also shown that the infusion of fuel-efficient

aircraft alone, is unlikely to reduce emissions below 2006 levels. Instead, a portfolio of

measures that include operational improvements, demand reduction mechanisms and

adoption of alternative fuels will be needed for tackling the emissions growth problem.
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Appendix A: List of Mitigating Measures

Area of Improvement

z

Mitigating Measure
B787/A350
Bombardier C-series/Mitsubishi RI
N+1 NASA Subsonic
N+2 NASA Subsonic
N+3 NASA Subsonic
Hydrogen Cryoplane

Propulsion Material, coatings, cooling technology for engines
Engines - GTF
Engines - Open rotor
Variable fan nozzle
Variable geometry chevron
No bleed architecture
Develop 'all-electric/more-electric' planes
New Engine Core
Embedded distributed multi-fan
Next generation high bypass ratio engine
Replace APU's with fuel cells
Ubiquitous composite engines
Variable and adaptive cycles
Pulse detonation engines

Aerodynamics

Weight

Non-planar wings
Laminar nacelles
Riblets
Hybrid Laminar Flow(HLF) control
Higher aspect ratio wings
Morphing airframe
Variable Camber wings
Laminar flow wing profile
Develop laminar surfaces using coatings and paintings
Utilize slotted cruise airfoils
Ski-jump shaped wheel fairing
Use Leading Edge Droop
Redesign engine mount to reduce interference drag
Implement better design methodology like PAI, Multi-objective
optimization and integrative design
Design laminar vertical tailplane and horizontal tailplane
Use shock wave/boundary layer devices (like micro-vortex
generators)to reduce stagnation pressure loss

Lightweight material, composites etc
Advanced fly by wire technology
Fly by light technology
Friction stir welding (FSW)
Laser beam welding (LBW)
Reduce OEW
Use lightweight alloys on secondary load bearing structures
Use lighter cabin seats
Remove passive interior noise treatment (wall bags, environment
control ducts)by active noise control technology
Use fewer coats of paint
Use anti-corrosion coating instead of paint
Use lighter carpet
Make lavatories out of composite material
Use light weight life jackets
Use light weight tires
Use light weight cargo containers
Use databus for electrical systems
Change to electronic freight bags from paper manuals
in the cockpit
Integrate avionics - merge multiple systems
Use composite wiring and connectors
Replace windshield wiper with rain repellant coating
User lighter carbon brakes (Boeing next gen 737)
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Area of Improvement Mitigating Measure
h Propulsion Retrofit engines

Technology insertion- Upgrade core
Use improved air-conditioning and pressurization systemsX that use less engine bleed

L ~ More efficient APU
Lithium batteries for secondary power

0 . Aerodynamics Winglets
Riblets
Laminar Nacelles
Raked Wingtips

Weight Reduced use of paint on airframes
Install zonal driers to reduce moisture trapped
in the insulation between the outer skin and cabin lining
Use LED lighting

Ground Fixed electric ground power instead of APUops
Single engine taxi
Implement queue management and controlled pushback
Airframe washing
Use starting grids
Use alternative fuels for ground tugs
Improved operations at closely spaced runways
Ground towing with diesel tugs instead of engine power

cu ATM ops Fly at optimum cruise level
E Use continuous descent approaches (CDA)
0 Fly optimized routes

RNAV and RNP
E Reduced horizontal seperation to 3 miles
CC Airline ops Reduce cabin dead-weight
0

Engine washing
Fly at lower cruise speed

0.o Use optimal take-off power
Optimize climb/descent (flap settings, engine power etc)
Use idle reverse thrust instead of maximum reverse
thrust after landing
Do not use A/C Pacs in high flow
Do not use unnecessary cargo heat
Conduct formation flying
Do not use unnecessary anti-ice
Air to Air refueling

2nd Generation Biofuel (Nature by-products/waste)
cu 3rd Generation Biofuel (algae, switch grass, jatropha, babassu and

halophytes)
Hydrogen

E_ Coal to liquid
_) Gas to liquid

Hydrogenated oil/fat
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Appendix C: Single Aisle SD Model - Causal Loop Diagram

2006 Fleet Turnover Model:
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In Production Fleet Turnover Model:
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Gen+1 Fleet Turnover Model:
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Gen+2 Fleet Turnover Model:
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