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Abstract

Free space optical communication through the atmosphere has the potential to provide
secure, low-cost, rapidly deployable, dynamic, data transmission at very high rates.
However, the deleterious effects of turbulence can severely limit the utility of such a
system, causing outages of up to 100 ms. For this thesis, we investigate an architecture
that uses multiple transmitters and multiple coherent receivers to overcome these
turbulence-induced outages. By controlling the amplitude and phase of the optical
field at each transmitter, based on turbulence state information fed back from the
receiver, we show that the system performance is greatly increased by exploiting the
instantaneous structure of the turbulence. This architecture provides a robust high-
capacity free-space optical communication link over multiple spectral bands, from
visible to infrared.

We aim to answer questions germane to the design and implementation of the
diversity optical communication architecture in a turbulent environment. We analyze
several different optical field spatial modulation techniques, each of which is based
on a different assumption about the quality of turbulence state information at the
transmitter. For example, we explore a diversity optical system with perfect turbu-
lence state information at the transmitter and receiver that allocates transmit power
into the spatial modes with the smallest propagation losses in order to decrease bit
errors and mitigate turbulence-induced outages. Another example of a diversity op-
tical system that we examine is a diversity optical system with only a subset of the
turbulence state information: this system could allocate all power to the transmitter
with the smallest attenuation.

We characterize the system performance for the various spatial modulation tech-
niques in terms of average bit error rate (BER), outage probability, and power gain
due to diversity. We first characterize the performance of these techniques in the
idealized case, where the instantaneous channel state is perfectly known at both the
receiver and transmitter. The time evolution of the atmosphere, as wind moves tur-
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bules across the propagation path, can limit the ability to have perfect turbulence
state knowledge at the transmitter and, thus can limit any improvement realized by
optical field spatial modulation techniques. The improvement is especially limited if
the latency is large or the feedback rate is short compared to the time it takes for
turbules to move across the link. As a result, we make successive generalizations,
until we describe the optimal system design and communication techniques for sparse
aperture systems for the most general realistic case, one with inhomogeneous tur-
bulence and imperfect (delayed, noisy, and distorted) knowledge of the atmospheric
state.

Thesis Supervisor: Vincent W. S. Chan
Title: Joan and Irwin M. Jacobs Professor of Electrical Engineering and Computer
Science
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Chapter 1

Introduction

Many applications would benefit from a secure, low-cost, rapidly deployable, dy-

namic, high data rate communication link [7]. For example, a company may require

extra communication capacity to support a short term project. Installing new fiber,

with the right-of-way and installation costs, is very expensive. Microwave or radio

communication is limited in data rate and available spectrum. Free space optical

communication is an attractive solution because it provides license-free long range

operation at very high data rates without expensive installation costs. Additionally,

free space optical communication is relatively secure due to the high directionality

and narrowness of laser beams. The deleterious effects of the atmosphere can severely

limit the utility of such a system, however. Factors such as beam dispersion, atmo-

spheric absorption, rain, fog, snow, and scintillation, among other factors, can lead to

higher implementation costs [1]. In the clear atmosphere, turbulence can cause severe

fading that increases the cost and decreases the reliability of free space optical com-

munication [26, 27, 40]. The reliability of these systems is reduced considerably by

deep fades of 20 to 30 dB of typical duration of 1 to 100 ms [45]. Such fades, caused by

microscale atmospheric temperature fluctuation, may result in the corruption of 109

bits at 10 Gbps. A system engineer typically has four degrees of freedom to mitigate

the effects of fading: power, temporal diversity, frequency diversity, and/or spatial di-

versity. Increasing power to provide 30 dB of margin, or extra power, is prohibitively

costly. Similarly, increasing temporal diversity by implementing a space-time code is
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not an attractive solution because it requires a gigabit interleaver and long delays.

Frequency diversity can provide some additional robustness but is costly because of

the broadband components required. These components must be broadband because

of the large frequency coherence of atmospheric turbulence. Thus we are motivated

to explore architectures with a high degree of spatial diversity.

Specifically, this thesis investigates the use of spatial diversity with wavefront pre-

distortion based on feedback from the receiver and coherent detection to overcome

turbulence-induced outages, mitigate interference, and prevent eavesdropping. This

architecture provides a robust high-capacity free-space optical communication link

over multiple spectral bands, from visible to infrared. We focus on sparse aperture

systems: the primary goal of sparse aperture architecture is to increase spatial diver-

sity without the need for large, expensive, monolithic apertures such as deformable

mirrors. This requires systems with many transmit and receive apertures. Such sys-

tems can be readily implemented due to the relatively short coherence length of the

atmosphere at optical wavelengths.

With the successful shift toward net-centric systems, there is a desire to be able to

detect anything, from anywhere, at any time with a requirement to globally share this

information in real-time with high reliability and security. The desire for net-centric

operations and global information dissemination will place an increased burden on

existing and future communication systems. To realize the full bandwidth potential

of optical communication and provide seamless handoff with radio frequency (RF)

technologies, the optical phase and frequency must be preserved and controlled in

a manner similar to current RF phase and frequency treatments. This phase and

frequency control enables high-capacity communication through a dispersive fading

channel with a low probability of detection, intercept and denial of service. The use

of this coherent free space optical transmission, coupled with high-speed electronics

and real-time digital signal processing (DSP), enables these next generation free space

optical system architectures.
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1.1 Previous Work

Free space optical communication has been present since antiquity. In 405 BCE the

ancient Greeks used polished shields to signal during battle [11]. Circa 35 CE, the

Roman emperor Tiberius, by then very unpopular, ruled his vast empire from a villa

on the Isle of Capri, an island off the western coast of what is now Italy. It is thought

that he used a heliograph to send coded orders every day to the mainland, eight

miles away [20]. The ancient Chinese, Egyptians, and Romans all used beacons, large

fires stacked on hills or atop high towers, to send early warning messages. A famous

example from British history is the line of beacons set up along the southern coast of

England in the year 1588 to warn that the Spanish invasion fleet, the Armada, was

coming. By the time the fleet appeared on the horizon off Cornwall, the fires on the

hillsides were lit — sending the message to London faster than any horseman could

ride [38]. Not until April 1, 1880 did the world make its first wireless telephone call:

Alexander Graham Bell and his assistant Charles Sumner Tainter used a photophone,

a device that used sunlight reflected off a vibrating mirror and a selenium photo

cell to send sound and conversations on a beam of light, to place a call from the

Franklin School in Washington, D.C. to the window of Bell’s laboratory, 213 meters

away [4]. The photophone’s first practical use came several decades later when the

U.S. military used the system for communication. The invention of the laser in

the 1960s revolutionized the field, enabling modern optical communication systems.

Systems have been developed for ground-to-ground, ground-to-aircraft, ground-to-

satellite, satellite-to-satellite, and even satellite-to-submarine applications.

The feasibility of coherent free space optical systems was investigated in the early

1980s as a means to improve a receiver’s sensitivity, thereby increasing system per-

formance [5, 6]. In coherent detection, an optical local oscillator field is added to the

incoming field and the sum is detected by a square law detector. With a dual-detector

coherent receiver, quantum limited performance can be achieved [52]. In addition, in

contrast to existing optical direct-detection system technology, because optical coher-

ent detection systems can also detect not only an optical signal’s amplitude but phase

25



and polarization as well, a number of other modulation schemes were also possible,

potentially further improving the receiver sensitivity.

1.2 Modern Free Space Optical Systems

As free space optical communication systems proliferate, demands imposed on their

performance—higher data rates with increased reliability and security—require ad-

vanced techniques to achieve. There are several techniques employed to achieve the

required performance and overcome turbulence induced fading. Some current systems

use a single transmitter and single detector and simply use extra power to overcome

the 20 to 30 dB fades. This approach is prohibitively expensive due to the high cost

of 30 dB amplifiers at moderate to high power (> 1 W). Another approach, bor-

rowed from astronomy, is to employ a large deformable mirror to compensate for the

turbulence, essentially using spatial diversity to overcome turbulence induced fading

[46]. The deformable mirror concept performs well, but is there a way to exploit

spatial diversity without using large, expensive deformable mirrors? The answer is a

sparse aperture system, which uses many small transmitters and receivers configured

to achieve the same spatial diversity as the deformable mirror systems at a fraction

of the cost [44]. This thesis will address the efficient utilization of sparse aperture

systems and finds that this architecture effectively mitigates the effects of the turbu-

lent atmosphere. In this thesis, we focus on sparse aperture systems that are able to

measure the turbulence state at the receiver, feed back some information about the

turbulence state to the transmitter, and then use that information to exploit the in-

stantaneous structure of the turbulence by controlling the phase and magnitude of the

field of each transmitter. For example, a sparse aperture system with knowledge of

the turbulence at the transmitter could select the transmit aperture with the smallest

attenuation. Another example is a system that optimally allocates transmit power

into the spatial modes with the smallest propagation losses in order to decrease bit

errors and mitigate turbulence-induced outages. In addition to fade mitigation, spa-
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tial mode modulation and rejection provides robust communication in the presence

of interference by other users.

Previous work on sparse aperture coherent detection systems has focused on the

case in which the transmitter has no knowledge of the turbulence state. For this case,

it is optimal to allocate equal power with identical phase to each transmitter. The

average bit error rate (BER) was studied in [39, 21]. Outage probability was studied

in [28]. When the transmitter has knowledge of the turbulence state, the optimal

performance is achieved by allocating all of the transmit power to the input eigenmode

with the best performance [43]. The performance of this scheme when the channel

state is known perfectly at both the transmitter and receiver is addressed in this

thesis. Perfect knowledge of the channel state at both the transmitter and receiver is

not possible because, in the optical and infrared wavebands, the atmospheric channel

is continually changing because of wind and the evolution of turbulent eddies. The

dynamic nature of the atmosphere causes the receiver to necessarily have a delayed

estimate of the channel. Further, because of the dynamic nature of the atmosphere

and the finite rate feedback link, the transmitter will necessarily have a delayed and

distorted description of the turbulence state. For any system employing wavefront

predistortion based on turbulence state feedback, the amount of delay and distortion

of the turbulence state information must be small: how small should the delay and

distortion be? In this thesis, we develop a model of the dynamic atmosphere and

use it to find the optimal performance of the system as a function of latencies, both

estimation and feedback, feedback link rate, and fundamental system and physical

parameters, such as number of apertures, turbulence strength, link range, etc. We

also find a feedback scheme that achieves optimal performance. Where possible we

analyze data to validate the theory developed.

1.3 Thesis Overview and Outline

For the thesis, we attempt to use the simplest possible model while still capturing

the important effects. Most engineering work is, in fact, performed on simplified
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models; for example, researchers often model noise as an additive white Gaussian noise

(AWGN) random process while understanding that the AWGN model is valid only

for sufficiently small bandwidths. Of course, with AWGN we expect the model to be

very accurate when used properly. In contrast, statistical models characterizing the

optical atmospheric channel are relatively poor, providing only order-of-magnitude

guides to system design. The ultimate purpose of simplified models is to provide a

basis for comparison of different system approaches while guiding engineering design

intuition.

Often in this thesis we perform an asymptotic analysis, assuming the number

of transmitters and receivers grows infinite with a given aspect ratio (number of

transmitter to number of receivers). This analysis is never strictly exact for any

physically realizable system, but does admit a number of powerful and appealing

closed form solutions. We quantify the extent to which these asymptotic solutions

approximate physical, finite systems and, in the process, we find that these asymptotic

solutions are often very good approximations. Of course, there are times when an

asymptotic solution is a poor approximation to the finite system. However, just

as Shannon’s noisy-channel coding theorem (an example of an asymptotic analysis)

provided important performance bounds and insight into finite length codes to drive

the wireless revolution, we hope to provide performance bounds and insight to drive

free space optical communication innovation.

In Chapter 2, we review the background necessary to place the theory presented in

this thesis on a solid foundation. We begin with first principles, Maxwell’s equations

in this case, and derive the system model while emphasizing the assumptions required

for the theory to be applicable. First, we outline the derivation of scalar diffraction

theory from Maxwell’s equations. Next, we review the impact of micro-scale index

of refraction on optical beam propagation. Subsequently we discuss system power

budget, including the impact of coherent detection and propagation on signal power.

In the next chapter, Chapter 3, we examine the performance of sparse aperture

communication systems when the turbulence state is perfectly known by the trans-

mitter. We find closed-form performance expressions for various spatial modulation
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techniques including optimal wavefront predistortion diversity (allocate power to cou-

ple into the mode that propagates the most efficiently), selection diversity (allocate

all power to the transmit aperture that gives the best instantaneous performance),

and open-loop diversity (allocate equal power and identical phase to each transmit-

ter). For each of these diversity techniques, we find the average performance, outage

performance, and power margin. We show that, in the turbulent atmosphere, wave-

front predistortion based on receiver-to-transmitter feedback can significantly improve

transmit and receive diversity sparse aperture optical communication system perfor-

mance, both in terms of average performance and outage performance.

The time evolution of the atmosphere, as wind moves turbulent eddies across

the propagation path, can limit any improvement realized by wavefront predistortion

with feedback. The improvement is especially limited if the latency is large or the

feedback rate is small compared to the time it takes for turbulent eddies to move

across the link. In Chapter 4, we derive theoretical expressions relating latencies,

such as feedback latency and channel state estimate latency, and feedback rate to

optimal performance. Specifically, we find the theoretical optimal average BER as

a function of fundamental parameters such as wind speed, atmospheric coherence

length, feedback rate, feedback latency, and channel state estimate latency. Further,

we describe a feedback strategy to achieve the optimal BER. We find that the suffi-

cient feedback rate scales linearly with the inverse of the atmospheric coherence time

and sublinearly with number of transmitters. Under typical turbulence conditions,

low-rate feedback, on the order of hundreds of bits per second, with associated laten-

cies of less than a few milliseconds is sufficient to achieve most of the gain possible

from wavefront predistortion. We use the theory developed to answer design ques-

tions important to system implementation and deployment. How much do feedback

delay and computational time impact performance? Given a system geometry, what

feedback rate is needed to take full advantage of the diversity? Given a feedback link

rate, what is the best performance possible? How often does the transmitter need

channel state updates? At each update, what information does the transmitter need?

In terms of feedback information, we have two degrees of freedom: how often to feed
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back an update, and what information is fed back at each update. If we feed back

very infrequently with respect to the channel coherence time, we would need to send

back a full set of channel state information. If we update the state information more

frequently, we may not have to transmit the full set of channel state information. For

example, if we update the state information at a tenth of the channel coherence time,

we could possibly feed back a state update, or perturbation, instead of the full set of

channel state information (CSI). Finally, given a system geometry and performance

requirements, what is the trade between increasing transmit power and increasing

feedback rate?

In Chapter 5, we analyze data collected by an experimental system with a single

laser transmitter located 250 meters from two coherent receivers [28]. We first use

the data to validate the use of a two-state continuous time Markov process to model

outage statistics of the diversity system. In the two-state channel model, symbols

received during an outage are assumed to be lost, and symbols received during a

non-outage are assumed to be received correctly. This channel model can be used to

analyze the performance of the transport layer. Next, we use statistical and spectral

analysis techniques to create a linear prediction model for signal attenuation for both

the single-receiver and diversity systems. The prediction model is an optimal esti-

mator that predicts signal attenuation 1 ms into the future to 1.5 dB accuracy for

the single-receiver cases and to 1 dB accuracy for the diversity case. The maximum

amount of time the estimator can predict into the future with some confidence is

about 5 to 10 ms. This channel prediction and adaptation can be used to greatly

improve the efficiency of free-space optical communication systems in the atmosphere.

Despite the ability for free space optical technology to transmit a narrow beam of

light to a specific destination, it is still possible for an eavesdropper to gather light and

decode information intended for another user. Further, it is possible for an interferer

to couple light into the intended receiver’s aperture, thereby reducing the performance

of the communication link. Chapter 6 address security, interference rejection and

eavesdropper prevention, for the free space optical communication system. We find
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that wavefront predistortion is an effective technique to improve the security of free

space optical communication.

Finally, we conclude the thesis with Chapter 7. In this chapter, we highlight some

of the important contributions given in the thesis and provide recommendations for

future work. Further, we discuss how these contributions can be applied to future

communication systems.

31



32



Chapter 2

Background and Preliminaries

This chapter reviews the background necessary to place this thesis on solid theoretical

footing. First, we outline the derivation of scalar diffraction theory from Maxwell’s

equations. Next, we review the impact of micro-scale index of refraction on optical

beam propagation. Finally we discuss system power budget, including the impact of

coherent detection and propagation on signal power.

2.1 From Maxwell’s Equations to Scalar

Diffraction Theory

This section reviews the derivation of turbulent propagation theory from first princi-

ples focusing on the necessary assumptions for the topics of this thesis. By focusing on

assumptions of the derivation, we find the limitations of the results, the inaccuracies

of approximations, and the regions of applicability of the theory. First, we outline the

derivation of the scalar wave equation for laser propagation through free space. Next

we show the Green’s function formulation of propagation through free space. Finally,

we show the Green’s function formulation of propagation through atmospheric tur-

bulence. Here we specify a turbulence model and a model for how the interaction of

the turbulence affects the propagation of the field.
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In general, light is energy propagated through interacting, coupled electric and

magnetic fields. The propagation and coupling are fully described by Maxwell’s equa-

tions in the absence of free charge:

∇× ~E = −µ∂
~H
∂t

∇× ~H = ε
∂ ~E
∂t

∇ · ε~E = 0

∇ · µ ~H = 0

(2.1)

where~· denotes a vector quantity, ~E is the electric field, ~H is the magnetic field, µ is

the permeability of the propagation medium, ε is the permittivity of the propagation

medium, and t is time. The electric field ~E and magnetic field ~H are, in general, a

function of both time t and position ~P . We assume the atmosphere is nonmagnetic,

implying the relative permeability of the propagation medium is uniformly unity re-

gardless of time or position. In contrast, the permittivity of the atmosphere varies

with time and position. The primary cause of the spatial and temporal nonuniformity

of the permittivity is solar energy: convective mixing, due to heat from the Sun that

is transferred from the Earth’s surface to the surface air layer, along with wind-shear

induced turbulent mixing creates random atmospheric temperature variation, and

therefore permittivity variation, in the form of turbulent eddies. Further temporal

variation is caused by wind moving the eddies in bulk. Exact models describing the

permittivity variation are impractical, due to their sensitivity to local terrain, and not

particularly useful for developing a communication channel model. As a result, we

turn to a statistical description of the turbulence; this statistical model encapsulates

the germane effects of the permittivity variation while neglecting effects due to local

topography, etc. We review the statistical model used to describe the random per-

mittivity variation in Section 2.3, and continue now to develop a propagation model

with the understanding that the variation causes the propagation medium to be in-

homogeneous. For laser communication through the atmosphere, the propagation
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medium is approximately linear, isotropic, inhomogeneous, effectively nondispersive,

and nonmagnetic dielectric. Thus, Maxwell’s equations simplify to [16]:

∇2~E + 2∇
(
~E · ∇lnn

)
− n2

c2

∂2~E
∂t2

= 0 (2.2)

where c is the speed of light in the propagation medium and n is the index of refraction

in the medium, given by:

n =

√
ε

ε0
(2.3)

where ε0 is the permittivity of free space. The 2∇
(
~E · ∇lnn

)
term, which is nonzero

whenever the permittivity varies spatially, represents a coupling between the compo-

nents of the electric field. Because the term causes the wave to change polarization as

it propagates, we call it the polarization term. Detailed analysis in [45] has shown that

the polarization term is negligible for laser communication through the atmosphere.

As a result, equation (2.2) simplifies to the familiar wave equation:

∇2~E − n2

c2

∂2~E
∂t2

= 0 (2.4)

Because each component of the electric and magnetic field must satisfy equation (2.4),

we replace the vector equation with the scalar wave equation:

∇2u(~P , t)− n2

c2

∂2u(~P , t)

∂t2
= 0 (2.5)

where u(~P , t) is a function of both position ~P and time t and can represent any

component of the electric or magnetic field. Of course, the assumptions of the scalar

wave equation do not strictly hold because any field must be launched from a finite

aperture; the aperture represents sharp change in the permittivity that causes cou-

pling between the various polarizations, and even between the electric and magnetic

fields. The fields couple only in the region near (within several wavelengths of) the

boundary; far from the boundary the fields are uncoupled, as in equation (2.5). Thus,

as long as the aperture is large compared to a wavelength, λ = 10−6 m for a typi-
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cal optical communication system, the errors introduced by using scalar diffraction

theory will be small. [16]

If u(~P , t) is well approximated as a monochromatic wave, it can be written in the

following form:

u(~P , t) = <
{
U(~P ) exp

(
−j2π ct

nλ

)}
(2.6)

where c is the speed of light in the propagation medium and U(~P ) = A(~P ) exp(jφ(~P ))

is a complex function that contains all of the information about the amplitude A(~P )

and phase φ(~P ) of the wave. Substituting the expression for the monochromatic wave

into scalar wave equation gives the time-independent Helmholtz wave equation:

(
∇2 + k2

)
U = 0 (2.7)

where k = 2π/λ is commonly known as the wavenumber and λ is the wavelength in

the medium.

2.2 Vacuum Propagation, Scalar

Diffraction Theory

The Helmholtz wave equation describes a wave over all of space and time. For the

Helmholtz wave equation to be useful, we must be able to use it to calculate a field

in the receive plane given a field, or boundary condition, in the transmit field. More

formally, referring to figure 2-1 we would like to calculate the field Uo (~ρ ′) in the ~ρ ′-

plane given a monochromatic field Ui (~ρ) in the ~ρ-plane. The ~ρ-plane and ~ρ ′-plane are

separated by a length of L and are perpendicular to the propagation axis. The vectors

in the transmit and receive plane are real, two-dimensional vectors: ~ρ = [ρx, ρy]
T

and ~ρ ′ = [ρ′x, ρ
′
y]
T . Using Green’s theorem along with the proper choice of Green’s

function, the solution to the Helmholtz wave equation gives the Rayleigh-Sommerfeld
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diffraction formula [16]:

Uo (~ρ ′) =
1

jλ

∫

Rtx

Ui (~ρ )
exp(jk|~rtr|)
|~rtr|

cos (θ) d~ρ =
L

jλ

∫

Rtx

Ui (~ρ )
exp(jk|~rtr|)
|~rtr|2

d~ρ

(2.8)

where Uo is the propagated field, Rtx is the region where the launched field is non-

zero, ~rtr is the vector from ~ρ to ~ρ ′ as shown in figure 2-1, θ is the angle between ~rtr

and the z-axis and |~rtr| =
√
L2 + (ρ′x − ρx)2 + (ρ′y − ρy)2 is the length of the vector

~rtr.

Transmit Plane Receive Plane

Rtx Rrx

�ρ
�ρ �

z = 0 z = L

�rtr

Figure 2-1: Diffraction geometry

There are other solutions to the Helmholtz wave equation, such as Fresnel-Kirchhoff

diffraction formula and even another Rayleigh-Sommerfeld diffraction formula. It is

easy to show that they are effectively the same provided that the aperture linear

dimension is smaller than the propagation distance. This is always true for com-

munication systems addressed in this thesis. A nice physical interpretation of the

Rayleigh-Sommerfeld diffraction formula is that each point of the wave in the receive

plane may be regarded as the weighted superposition of infinitely many point sources

in the transmit plane. Each point source is weighted by the input field ~Ui and the

obliquity factor, cos(θ).

The Rayleigh-Sommerfeld diffraction formula defined above is the most general

diffraction formula; it is valid for very short propagation distances, on the order of a

few wavelengths, and at high angles off the optical axis. The Rayleigh-Sommerfeld
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diffraction formula is difficult to calculate for many applications, rarely having a

closed form solution. This is primarily due to the square-root operation when calcu-

lating the length of ~rtr in the exponent and denominator of equation (2.8). Because

the term exp(jk|~rtr|) is periodic as a function of |~rtr|, the requirement on the ap-

proximation error in the length calculation must be much smaller than 2π, regardless

of the magnitude of ~rtr. As such, we perform a binomial expansion to arrive at the

approximation for |~rtr| in the exponent of equation (2.8) [16]:

|~rtr| = L

√
1 +

(
ρx − ρ ′x
L

)2

+

(
ρy − ρ ′y
L

)2

≈ L

[
1 +

1

2

(
ρx − ρ ′x
L

)2

+
1

2

(
ρy − ρ ′y
L

)2
] (2.9)

The approximation error in the denominator of equation (2.8) must be small compared

to the magnitude of ~rtr. Thus, |~rtr| can further be approximated as |~rtr| = L. These

two approximations give rise to the Fresnel diffraction equation [16]:

Uo
(
ρ ′x, ρ

′
y

)
=
ejkL

jλL

∫ ∫

Rtx

Ui (ρx, ρy) exp

(
j
k

2L

[
(ρ′x − ρx)2 + (ρ′y − ρy)2

])
dρxdρy

(2.10)

Physically, the Fresnel diffraction equation replaces the infinitely many point sources

with spherical wavefront of Rayleigh-Sommerfeld diffraction with infinitely many

point sources with a quadratic wavefront. The Fresnel diffraction equation is ac-

curate provided that the length approximation in the exponent is accurate:

max
~ρ∈Rtx,~ρ ′∈Rrx

∣∣∣∣∣|~rtr| − L
[

1 +
1

2

(
ρx − ρ ′x
L

)2

+
1

2

(
ρy − ρ ′y
L

)2
]∣∣∣∣∣�

π

k

max
~ρ∈Rtx,~ρ ′∈Rrx

L

8

[(
ρx − ρ ′x
L

)2

+

(
ρy − ρ ′y
L

)2
]2

+ HOT� λ

2

(2.11)

where HOT represent higher order terms, which can be ignored. Rearranging the

terms provides a minimum propagation distance for the Fresnel approximation to be
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valid:

L3 � 1

4λ
max

~ρ∈Rtx,~ρ ′∈Rrx

[
(ρx − ρ ′x)2

+
(
ρy − ρ ′y

)2
]2

(2.12)

where Rtx is the transmitter region and Rrx is the receiver region. For a system with

the transmit aperture the same size as the receive aperture, each having a largest

linear dimension of 2w, the condition that a propagation calculation must satisfy for

the Fresnel diffraction formula to be valid simplifies to:

L3 � 64w4

λ
(2.13)

A more detailed analysis, such as in [16], shows that this sufficient condition is overly

stringent and can be relaxed significantly. We now continue to further simplify the

Fresnel diffraction equation. Expanding the quadratic term in the Fresnel diffraction

equation, we arrive at:

Uo
(
ρ ′x, ρ

′
y

)
= · · ·

ejkL

jλL
exp

(
j
k

2L

[
ρ′2x + ρ′2y

])∫ ∫

Rtx

Ui (ρx, ρy) exp

(
j
k

2L

[
ρ2
x + ρ2

y − 2ρyρ
′
y − 2ρxρ

′
x

])
dρxdρy

(2.14)

From this expression, the quadratic term inside the integral is approximately unity

under the condition that:

L� max
~ρ∈Rtx

k
(
ρ2
x + ρ2

y

)

2
(2.15)

Thus simplifying the Fresnel diffraction equation to:

Uo
(
ρ ′x, ρ

′
y

)
= · · ·

ejkL

jλL
exp

(
j
k

2L

[
ρ′2x + ρ′2y

])∫ ∫

Rtx

Ui (ρx, ρy) exp

(
−j k

L

[
ρyρ

′
y + ρxρ

′
x

])
dρxdρy

(2.16)

which is called the Fraunhofer diffraction equation. Before we continue to study the

effect of atmospheric turbulence, we provide the Fraunhofer diffraction for a circular
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aperture with radius w illuminated by a unit amplitude plane wave:

Uo (~ρ ′) = ejkLej
k|~ρ ′|2

2L
πw2

jλL

[
2
J1(kw|~ρ ′|2/L)

kw|~ρ ′|2/L

]
(2.17)

where J1(·) is a Bessel function of the first kind of order one. Later in this thesis, we

assert that the amplitude across the receive aperture is approximately constant. This

assertion is approximately true if the receiver aperture falls within the main lobe of

the diffraction pattern:

d <
2λL

w
(2.18)

where d is the maximum extent of the receive aperture. We now continue to present

scalar diffraction theory in the presence of atmospheric turbulence.

A wave can only be approximated as a monochromatic provided that:

∆λ

λ
� 1 and

λ2

∆λ
� n|~rtr| (2.19)

where λ is the peak wavelength of the spectrum and ∆λ is the full-width half max of

the source spectrum near λ.

For sources not well modeled as a monochromatic wave, we can simply use the set

of all monochromatic waves as a complete orthonormal set that spans the space of all

physically realizable (i.e., L2) waveforms. Because we assumed a linear propagation

medium, we can calculate the resulting field to any arbitrary wave by: (1) finding the

decomposition of the arbitrary wave into monochromatic waves (2) calculating the

resulting field due to the monochromatic waves and (3) constructing the output of the

arbitrary wave based on a recomposition of the monochromatic waves. Because we

can find the field of any arbitrary wave from linear combinations of monochromatic

waves, we consider only monochromatic waves in the following sections.
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2.3 Atmospheric Propagation, Scalar Diffraction

Theory

The refractive index in Earth’s atmosphere is a function of pressure, temperature, and

wavelength. At optical wavelengths, a good approximation, neglecting water vapor

pressure, for the index of refraction is [46]:

n1 = n− 1 = 77.6× 10−6
(
1 + 7.52× 10−3λ−2

) Pr
T

(2.20)

where λ, for this equation, is the wavelength in µm, Pr is the atmospheric pressure

in millibars and T is the temperature in Kelvin. The term n1, which represents the

deviation of the index of refraction from free space, is typically small, on the order of a

few parts per thousand. For example, at one atmosphere, approximately Pr = 1013.25

millibars, room temperature T = 300 K, and typical optical wavelengths on the order

of λ = 10−6µm the deviation from free space is n1 = 2.6 × 10−4. Therefore, a

small change in temperature δT translates to a small change in index of refraction δn

according to:

δn =

(−58× 10−6Pr
T 2

)
δT (2.21)

where we have assumed a wavelength of λ = 10−6µm. Thus, a one Kelvin change in

temperature can cause a 10−6 change in index of refraction at room temperature and

one atmosphere. As we will see, this one part in a million variation in the index of

refraction can substantially impact optical communication performance.

2.3.1 Model for Atmospheric Index of Refraction

Differential heating of the Earth’s surface causes wind and convective mixing. The

bulk of the turbulent energy is not due to convective mixing, but instead is due to

energy injected at large scales by wind shear. The energy of the large scale eddies,

parcels of air with characteristic velocity, vorticity, and pressure, cascades to smaller

scale structures by an inertial and inviscid mechanism. This process continues to
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create smaller and smaller eddies until the eddies are smaller than the inner-scale

l0, where viscous dissipation of energy finally takes place. The inner-scale typically

ranges between a few millimeters to a centimeter for optical wavelengths. Figure 2-2

shows the energy cascade through the inertial subrange.

Wind Shear
(Energy Injection)

Viscous Energy 
Dissipation

En
er

gy
T

ra
ns

fe
r

L0

l0

Inertial
Subrange

Figure 2-2: Energy cascade through the inertial subrange: energy is injected into large
scale eddies by wind shear, the eddies transfer their energy to smaller and smaller
eddies, when the eddies become smaller than the inner scale l0 the energy is dissipated
to heat [37].

A statistical characterization of the spatial structure of the turbulence is essential

to characterize wave propagation through random media. Specifically, we wish to find

the spatial index of refraction autocorrelation function and the power spectral density.

Because eddies in the largest range, eddies larger than the outer scale size of L0, are

governed by local geographical and meteorological conditions [17] there is no physics

based expression describing eddies of this scale. Typical values of the outer scale size,

which varies with height above the ground among other parameters, range from one

to one hundred meters for optical wavelengths. Optical communication is not strongly

effected by eddies in this range, thus it is not important to find an expression in this
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Table 2.1: Structure constant, C2
n, for various atmospheric conditions.

Weak Turbulence 10−16 m−2/3

Mild Turbulence 10−15 m−2/3

Moderate Turbulence 10−14 m−2/3

Strong Turbulence 10−12 m−2/3

range. Energy in eddies smaller than the outer scaled L0 but larger than the inner

scale l0, the so called inertial subrange of turbulence scales, is in equilibrium with

the net energy cascading to smaller energy where it is dissipated. Within the inertial

subrange, Kolmogorov showed that the random fluctuation of index of refraction has

a power spectral density of the following form [17]:

Φn(κ) = 0.033C2
nκ
−11/3, 2π/L0 < κ < 2π/l0 (2.22)

where κ is the spatial wavenumber in units of radians per meter and C2
n is the struc-

ture constant of refractive index fluctuations. Table 2.1 shows typical structure con-

stant values, which is a measure of the turbulence strength, for various atmospheric

conditions.

Energy for eddies smaller than the inner scale dissipates very rapidly, and thus

has only a very small effect on optical communication. Others have modified the

Kolmogorov spectrum in an attempt to increase its validity outside the inertial sub-

range (Tatarski, von Karman). For the remainder of this thesis however, we assume

Kolmogorov turbulence.

2.3.2 Wave Propagation through Random Media

Similar to free-space propagation, propagation through turbulence is governed by the

scalar wave equation:

∇2u(~P , t)− n2

c2

∂2u(~P , t)

∂t2
= 0 (2.23)

Unlike free-space propagation, however, the wave equation cannot be solved for the

turbulent atmosphere because the index of refraction varies both spatially and tem-

porally. Because the wave propagates much faster than the turbulence time scale,
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the temporal variation is generally ignored. Because the wave equation cannot be

solved exactly, the Born and Rytov approximations are widely used for solving the

wave equation in turbulence. The wave-fluctuation approximations derived by the

Born and Rytov approximations are simply the first terms in perturbation expan-

sions valid for sufficiently weak atmospheric inhomogeneities. Experimental results

have shown that the Rytov method yields better results for the region outside of

very weak turbulence. Within the region of very weak turbulence, both approxima-

tions yield roughly the same result. Consequently, we assume Rytov’s approximation

throughout this thesis. Without loss of generality, the field in the receive plane is

[46]:

Uo (~ρ ′) =
ejkL

jλL

∫

Rtx

Ui (~ρ ) exp

(
j
k

2L
|~ρ ′ − ~ρ |2

)
×exp (χ(~ρ, ~ρ ′) + jφ(~ρ, ~ρ ′)) d~ρ (2.24)

where χ(~ρ, ~ρ ′) is the stochastic turbulence induced log-amplitude fluctuation and

φ(~ρ ′, ~ρ) is the stochastic turbulence induced phase fluctuation. Further, within the

region of validity for the Rytov method, the stochastic perturbation terms are jointly

Gaussian random processes:


χ(~ρ, ~ρ ′)

φ(~ρ, ~ρ ′)


 = N




µχ
µφ


 ,


Cχ(~ρ, ~ρ ′) Cχ,φ(~ρ, ~ρ ′)

Cχ,φ(~ρ, ~ρ ′) Cφ(~ρ, ~ρ ′)




 (2.25)

where µχ and µφ are the log-amplitude mean and phase mean, respectively. Cχ is

the log-amplitude autocovariance, Cφ is the phase autocovariance, and Cχ,φ is the

cross covariance between the log-amplitude and phase. The quantities are defined as

[53, 32]:

µχ = 〈χ(~ρ, ~ρ ′)〉

µφ = 〈φ(~ρ, ~ρ ′)〉

Cχ(~ρ, ~ρ ′) = 〈[χ(~ρ1 + ~ρ, ~ρ ′1 + ~ρ ′)− µχ] [χ(~ρ1, ~ρ
′

1)− µχ]〉

Cφ(~ρ, ~ρ ′) = 〈[φ(~ρ1 + ~ρ, ~ρ ′1 + ~ρ ′)− µφ] [φ(~ρ1, ~ρ
′

1)− µφ]〉

Cχ,φ(~ρ, ~ρ ′) = 〈[χ(~ρ1 + ~ρ, ~ρ ′1 + ~ρ ′)− µχ] [φ(~ρ1, ~ρ
′

1)− µφ]〉

(2.26)
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where ~ρ1 is a vector in the transmit plane, ~ρ ′1 is a vector in the receive plane, and 〈·〉
is the ensemble average over all atmospheric states. Within the weak perturbation

regime, the two-source spherical wave auto and cross covariances can be expressed as

[46, 27]:

Cχ(~ρ, ~ρ ′) = 4π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)
sin2

[
u2z(L− z)

2kL

]
dzdu

Cφ(~ρ, ~ρ ′) = 4π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)
cos2

[
u2z(L− z)

2kL

]
dzdu

Cχ,φ(~ρ, ~ρ ′) = 2π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)
sin

[
u2z(L− z)

kL

]
dzdu

(2.27)

where J0(·) is a Bessel function of the first kind of order zero and Φn(·) is the refractive

index spatial frequency spectrum. And by convention, σ2
χ = Cχ(~0,~0) is the log-

amplitude variance and σ2
φ = Cφ(~0,~0) is the phase variance. Evaluating the two-

source spherical wave autocovariance at ~ρ = ~ρ ′ = ~0 over a horizontal path through

the clear atmosphere, the log-amplitude variance is:

σ2
χ = min

{
0.124k7/6C2

nL
11/6, 0.5

}
(2.28)

The variance saturates at approximately 0.5. When the log-amplitude fluctuations

are this high, the turbulence is in the strong fluctuation regime where the applicability

of the log-normal model becomes questionable. This is because the assumptions used

to derive the log-amplitude fluctuations are not strictly valid in the strong fluctuation

regime [1].

Figure 2-3 shows the log-amplitude variance as a function of horizontal path length

for various turbulence strengths. Without loss of generality for systems studied in

this thesis, the phase standard variation is very large with respect to two radians:

σφ � 2π (2.29)
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Figure 2-3: Log-amplitude variance, σ2
χ, over a horizontal path through the clear at-

mosphere for λ = 10−6 m. The structure constant for the various turbulence strengths
are defined in Table 2.1.

Conservation of energy implies [17]: µχ = −σ2
χ. Figure 2-4 shows the joint probability

density function (pdf) of the real and imaginary part of the multiplicative perturba-

tion exp (χ+ φ) for σ2
χ = 0.4. Notice that the pdf is zero mean, circularly symmetric.

It is the structure function of the turbulence, not the covariance, that influences

the performance of communication systems [17]. The structure functions are defined

as [27]:

Dχ(~ρ, ~ρ ′) = 2 [Cχ(0, 0)− Cχ(~ρ, ~ρ ′)]

Dφ(~ρ, ~ρ ′) = 2 [Cφ(0, 0)− Cφ(~ρ, ~ρ ′)]

Dχ,φ(~ρχ,φ, ~ρ
′) = 2 [Cχ,φ(0, 0)− Cχ,φ(~ρ, ~ρ ′)]

(2.30)
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Figure 2-4: Sample probability density function of multiplicative perturbation
exp (χ+ φ) for σ2

χ = 0.4.

The two-source wave functions are then given by [27]:

Dχ(~ρ, ~ρ ′) = 8π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)

[
1− J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)]
sin2

[
u2z(L− z)

2kL

]
dzdu

Dφ(~ρ, ~ρ ′) = 8π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)

[
1− J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)]
cos2

[
u2z(L− z)

2kL

]
dzdu

Dχ,φ(~ρ, ~ρ ′) = 4π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)

[
1− J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)]
sin

[
u2z(L− z)

kL

]
dzdu

D(~ρ, ~ρ ′) = 8π2k2

∫ L

0

∫ ∞

0

uC2
n(z)Φn(u)

[
1− J0

(
u|~ρ ′z + ~ρ(L− z)|

L

)]
dzdu

(2.31)

where we have defined the two-source spherical-wave wave structure function as

D(~ρ, ~ρ ′) = Dχ(~ρ, ~ρ ′)+Dφ(~ρ, ~ρ ′). For the special case where ~ρ = 0 and fixed structure
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constant along the propagation path:

D(0, ~ρ ′) = 1.09k2LC2
n|~ρ ′|5/3 (2.32)

If however, the structure constant varies along the propagation path, the two-source

spherical-wave wave structure function is [46]:

D(~ρ, ~ρ ′) = 2.91k2

∫ L

0

C2
n(z)

[ |~ρ ′z + ~ρ(L− z)|
L

]5/3

dz (2.33)

For any practical communication system, the phase variance is much larger than 2π

implying that the Green’s function statistical moments are [46]:

E [h(~ρ, ~ρ ′)] ≈ 0 (2.34)

E [h(~ρ+ ~ρ1, ~ρ
′ + ~ρ ′1)h(~ρ, ~ρ ′)] ≈ 0 (2.35)

where h(~ρ, ρ ′) is the Green’s function. This implies that, for any arbitrary input

fields, the output field statistical moments are approximately:

E [Uo(~ρ
′)] ≈ 0 (2.36)

E [Uo(~ρ
′

1)Uo(~ρ
′

2)] ≈ 0 (2.37)

By the extended Huygens-Fresnel principle, the mutual coherence function for an

arbitrary input field is then given by [46]:

E
[
Uo(~ρ

′
1)U †o (~ρ ′2)

]
=

∫ ∫
Ui (~ρ1)U †i (~ρ2)E

[
h(~ρ1, ~ρ

′
1)h†(~ρ2, ~ρ

′
2)
]
d~ρ1d~ρ2 (2.38)
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where (·)† is the conjugate and the field mutual coherence function, E
[
h(~ρ1, ~ρ

′
1)h†(~ρ2, ~ρ

′
2)
]
,

is given by:

E
[
h(~ρ1, ~ρ

′
1)h†(~ρ2, ~ρ

′
2)
]

=

(
1

λL

)2

E
[
eχ(~ρ1,~ρ ′1 )+χ(~ρ2,~ρ ′2 )+jφ(~ρ1,~ρ ′1 )−jφ(~ρ2,~ρ ′2 )

]
e
jk
2L(|~ρ ′1−~ρ1|2−|~ρ ′2−~ρ2|2)

=

(
1

λL

)2

e
jk
2L(|~ρ ′1−~ρ1|2−|~ρ ′2−~ρ2|2)− 1

2
D(~ρ1−~ρ2,~ρ ′1−~ρ ′2 )

(2.39)

For a spherical wave launched in the transmit plane, the distance required for two

points in the receiver plane to be approximately uncorrelated is given by the spherical

wave atmospheric coherence length [46]:

ρ′0 =

[
2.91k2

∫ L

0

C2
n(z)(z/L)5/3dz

]−3/5

(2.40)

Similarly, the atmospheric coherence length in the transmit plane is given by [46]:

ρ0 =

[
2.91k2

∫ L

0

C2
n(z)(1− z/L)5/3dz

]−3/5

(2.41)

If the structure constant is uniform along the propagation path, the coherence length

is the same in both the transmit and receive plane:

ρ0 = ρ′0 =
(
1.09k2C2

nL
)−3/5

Figure 2-5 shows the spatial coherence length for the clear atmosphere at various

turbulence strengths.

2.4 Coherent Detection

Optical coherent detection uses a local oscillator to mitigate limitations imposed by

avalanche photodiode (APD) excess noise, background noise, and amplifier noise [6].

A typical coherent detection receiver is shown in figure 2-6. In the figure, Uo is the
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Figure 2-5: Spatial coherence length for the clear atmosphere at various turbulence
strengths for λ = 10−6 m. The structure constant for the various turbulence strengths
are defined in Table 2.1.

received field collected over a detector area Arx and Ulo is the local oscillator. The two

fields are optically added with a mirror and then measured with a square-law detector.

Finally, the signal is bandpass filtered and an estimate of the amplitude and phase of

the incoming field is given in y(t). Not shown in the figure is the background noise

field.

At the detector plane, the optical field is given by:

uD(~ρ ′, t) = uo(~ρ
′, t) + ub(~ρ

′, t) + ulo(~ρ
′, t) (2.42)
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Figure 2-6: Pictorial representation of heterodyne detection. In the figure, we neglect
energy lost by the splitter.

The detector produces a conditional Poisson process, with average count rate of:

n(t) =
η

hf

∫

Rtx

|uD(~ρ ′, t)|2 d~ρ ′

=
η

hf

∫

Rtx

|uo(~ρ ′, t) + ub(~ρ
′, t) + ulo(~ρ

′, t)|2 d~ρ ′

=
η

hf

∫

Rtx

|uo(~ρ ′, t) + ub(~ρ
′, t)|2 d~ρ ′ + η

hf

∫

Rtx

|ulo(~ρ ′, t)|2 d~ρ ′

+
2η

hf
<
{∫

Rtx

(uo(~ρ
′, t) + ub(~ρ

′, t))u†lo(~ρ
′, t)d~ρ ′

}

(2.43)

where η is the detector quantum efficiency, h is Planck’s constant, and f is field

frequency. The last term in the last line is the information bearing beat term nib(t).

We assume the local oscillator frequency is chosen such that the intensity terms can

be filtered out completely while the beat term is left unperturbed. After such filtering,

the average count rate is then n(t) = nib(t). If we assume the information bearing

beat term varies much faster than the atmospheric coherence time, we can write the

received field as the product of a time varying complex envelope s(t) = as(t)e
jθs(t)

and spatially varying field Uo(~ρ
′):

uo(~ρ
′, t) = s(t)Uo(~ρ

′)ejωot (2.44)

where ωo = 2πf is the angular frequency of the incoming wave. Similarly, we write

the local oscillator as an time invariant amplitude term alo and a spatially varying

field Ulo(~ρ
′):

ulo(~ρ
′, t) = aloUlo(~ρ

′)ejωlot (2.45)
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where ωlo is the angular frequency of the local oscillator. The beat term is then:

nib(t) =
2η

hf
<
{∫

Rtx

(uo(~ρ
′, t) + ub(~ρ

′, t))u†lo(~ρ
′, t)d~ρ ′

}

=
2η

hf
<
{∫

Rtx

s(t)Uo(~ρ
′)ejωotaloU

†
lo(~ρ

′)e−jωlotd~ρ ′ +

∫

Rtx

ub(~ρ
′, t)aloU

†
lo(~ρ

′)e−jωlotd~ρ ′
}

(2.46)

Assuming the local oscillator is spatially matched to the propagated field, Uo(~ρ
′) =

Ulo(~ρ
′), the beat term simplifies to:

nib(t) =
2η

hf
as(t)alo cos((ωlo − ωo)t− θs(t))

∫

Rtx

Uo(~ρ
′)U †o (~ρ ′)d~ρ ′

+
2ηalo
hf
<
{
e−jωlot

∫

Rtx

ub(~ρ
′, t)U †lo(~ρ

′)d~ρ ′
}

=
2η

hf
as(t)alo cos((ωlo − ωo)t− θs(t))Po +

2ηalo
hf

b(t)

(2.47)

where we define the output field power as:

Po =

∫

Rtx

Uo(~ρ
′)U †o (~ρ ′)d~ρ ′ (2.48)

and the background noise process as:

b(t) = <
{
e−jωlot

∫

Rtx

ub(~ρ
′, t)U †lo(~ρ

′)d~ρ ′
}

(2.49)

In [12], the background noise process spectral level is ArxNo/4 over the optical band-

width centered at (ωo− ωlo). For blackbody background radiation of temperature T ,

the noise spectral level is:

No =
hf

ehf/κT − 1
(2.50)

where κ is the Boltzmann constant. Including the effects of shot and thermal noise

but excluding the effects of dark current, we arrive at the signal to noise ratio (SNR):

SNR =
2(qη/hf)2PloPo

[(q2η/hf)Plo + (2qη/hf)2Plo(No/4) +Noc]2Bc

(2.51)
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where Plo is the power in the local oscillator, q is the charge of an electron, Bc is the

optical carrier modulated bandwidth and Noc is the thermal noise level given by [12]:

Noc =
2κT

RL

(2.52)

where T in this case is the temperature of the load resistor and RL is the local

equivalent resistance. Within a bit period Tb we define the SNR as:

SNR =
2(qη/hf)2PloPoTb

[(q2η/hf)Plo + (qη/hf)2PloNo +Noc]
(2.53)

2.5 Problem Formulation

We assume transmitters are arranged in the ~ρ-plane and receivers are arranged in

~ρ ′-plane. The ~ρ- and ~ρ ′-planes are assumed to be parallel and separated by a length

of L, as shown in Fig. 2-7. The vector from the ~ρ-plane origin to transmitter k is

denoted ~ρk. Similarly, the distance from the ~ρ ′-plane origin to receiver j is denoted

~ρ ′j .

We assume a coherent monochromatic scalar field of wavelength λ is transmitted

from ntx apertures in the ~ρ-plane. Each transmit aperture is denoted by the region

Rtx,k in the ~ρ-plane. The union of all transmitter regions is denoted:

Rtx = ∪ntxk=1Rtx,k (2.54)

The area of the kth region, Rtx,k, is denoted Atx,k while the area of Rtx, is denoted

A∪tx.

The field propagates L meters through a linear, isotropic, statistically homoge-

neous medium to the ~ρ ′-plane where it is detected with nrx apertures. Each receive

aperture is denoted by the region Rrx,j in the ~ρ ′-plane. The union of all receiver

regions is denoted:

Rrx = ∪nrxj=1Rrx,j (2.55)
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The area of the jth region, Rrx,j, is denoted Arx,j/nrx while the area of Rrx, is denoted

A∪rx. The area of the jth region is normalized by nrx so the receive power remains

constant as the number of receive apertures is increased.

Transmit Plane Receive Plane
z = 0 z = L

�ρ �ρ �

Rtx = {Rtx,1 ∪ · · · ∪ Rtx,ntx
} Rrx = {Rrx,1 ∪ · · · ∪ Rrx,nrx

}

Figure 2-7: Sparse aperture system geometry: A field is transmitted from ntx trans-
mitters in the ρ-plane to nrx receivers the ρ′-plane.

Figure 2-8 shows a drawing of the optical communication system that we are

describing. A single laser source, with optical power Plaser, couples into a fiber. The

power is divided among ntx channels using a variable optical power splitter. A phase

modulator adjusts the phase of each channel before optical power is coupled into the

atmosphere. After propagating through the turbulence, the optical wave is coherently

detected and combined at the receive plane.

As derived in Section 2.3.2, the received field Uo is related to the transmitted field

Ui by the Green’s function:

Uo (~ρ ′) =
ejkL

jλL

∫

Rtx

Ui (~ρ ) ej
k
2L
|~ρ ′−~ρ |2 × eχ(~ρ,~ρ ′)+jφ(~ρ,~ρ ′)d~ρ

=
ntx∑

k=1

ejkL

jλL

∫

Rtx,k

Ui (~ρ ) ej
k
2L
|~ρ ′−~ρ |2 × eχ(~ρ,~ρ ′)+jφ(~ρ,~ρ ′)d~ρ

(2.56)
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Re{·} φ

Figure 2-8: Sparse aperture system geometry: A field is transmitted from ntx trans-
mitters in the ρ-plane to nrx receivers the ρ′-plane.

We now further assume that the transmit field is constant over each transmit

aperture, with only amplitude and phase varying from one transmitter to the next.

This constant field assumption is made for specificity, other transmit field distri-

butions which may not be constant over each transmit aperture are equally valid.

Mathematically, this assumption is stated as follows:

Ui(~ρ) =
ntx∑

k=1

xkZ
i
k(~ρ) (2.57)

where xk ∈ C represents the amplitude and phase at the kth transmitter and Zi
k(~ρ) is

a spatially constant field with non-zero values only within Rtx,k:

Zi
k(~ρ) =





√
Plaser

Atx
~ρ ∈ Rtx,k

0 ~ρ /∈ Rtx,k

(2.58)

where we have further assumed that each transmit aperture is the same size (i.e.,

Atx = Atx,k,∀k = 1 . . . ntx and Arx = Arx,j,∀j = 1 . . . nrx), although the transmit

apertures may be a different size from the receiver apertures. The amplitude and
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phase can be set arbitrarily provided that the power constraint is met:

ntx∑

k=1

E
[
|xk|2

]
= 1 (2.59)

where the expectation implies an average power constraint. This normalization en-

sures that the transmitted optical power remains constant Plaser as the number of

transmitters is increased. We can see this by examining the transmitted field power:

E
[∫

Rtx

|Ui(~ρ)|2 d~ρ
]

= E



∫

Rtx

∣∣∣∣∣
ntx∑

k=1

xkZ
i
k(~ρ)

∣∣∣∣∣

2

d~ρ




=
ntx∑

k=1

E
[
|xk|2

] ∫

Rtx,k

∣∣Zi
k(~ρ)

∣∣2 d~ρ

=
ntx∑

k=1

E
[
|xk|2

]
Plaser

= Plaser

(2.60)

Combining the propagation equation, equation (2.56), with the constraints gives:

Uo (~ρ ′) =
ejkL

jλL

∫

Rtx

(
ntx∑

k=1

xkZ
i
k(~ρ)

)
ej

k
2L
|~ρ ′−~ρ |2 × eχ(~ρ,~ρ ′)+jφ(~ρ,~ρ ′)d~ρ

=
ejkL

jλL

√
Plaser

Atx

ntx∑

k=1

xk

∫

Rtx,k

ej
k
2L
|~ρ ′−~ρ |2 × eχ(~ρ,~ρ ′)+jφ(~ρ,~ρ ′)d~ρ

(2.61)

If we further assume that each transmitter is smaller than a coherence length in the

transmit plane and each receiver is smaller than a coherence length in the receive

plane, we can simplify to:

Zo
j (~ρ ′) =

ejkL

jλL

√
Plaser

Atx

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j )

∫

Rtx,k

ej
k
2L
|~ρ ′−~ρ |2d~ρ (2.62)

56



where Zo
j (~ρ ′) ,∀j = 1 . . . nrx is the field in the region of the jth receiver.

Zo
j (~ρ ′) =





Uo(~ρ
′), ~ρ ′ ∈ Rrx,j

0 ~ρ ′ /∈ Rrx,j

(2.63)

Assuming Fraunhofer diffraction, wtx �
√
Lλ, where wtx is the radius of a single

transmitter, we find the received field:

Zo
j (~ρ ′) =

ejkL

jλL

√
Plaser

Atx

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j )Atxe

jkr2jk
2L

[
2J1(kwtx|~ρ ′ − ~ρk|/L)

kwtx|~ρ ′ − ~ρk|/L

]
(2.64)

The Fraunhofer diffraction assumption is not necessary, but we use it here for sim-

plicity. If we further assume that the receive field is constant over a single receive

aperture, which is true if wrx � L/kwtx, where wrx is the radius of a single receiver,

then:

Zo
j (~ρ ′) =

ejkL

jλL

√
Plaser

Atx

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j )Atxe

jkr2jk
2L

[
2J1(kwtx|~ρ ′j − ~ρk|/L)

kwtx|~ρ ′j − ~ρk|/L

]

(2.65)

If the field is not constant over a single receive aperture, we simply split up the

aperture in multiple apertures each with an approximately constant field. This is

tantamount to approximating a continuous function as piecewise constant. However,

we will usually assume the minimum distance between each transmitter is at least

a coherence length, far enough apart so that the statistics of all ntxnrx links are

uncorrelated. We refer to this geometry as a sparse aperture system. Finally, if we

assume all receivers are uniformly illuminated on average, maxj,k |~ρ ′j − ~ρk| < L/kwtx,

the equation describing the output field simplifies to:

Zo
j =

√
AtxPlaser

(λL)2

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j )e

jk|~ρ ′j −~ρk|
2

2L ejkL+jπ/2 (2.66)

57



We assume σφ � 2π so that the phase probability distribution function is approx-

imately uniform from zero to 2π, φ ∼ U [0, 2π]. This assumption implies that:

eχ(~ρk,~ρ
′
j )+jφ(~ρk,~ρ

′
j )e

jk|~ρ ′j −~ρk|
2

2L ejkL+jπ/2 d
= eχ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j ) (2.67)

where
d
= denotes equality in distribution. This simplifies the expression for the output

field even further to:

Zo
j =

√
AtxPlaser

(λL)2

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j ) (2.68)

Finally, after each field Zo
j is coherently detected as described in Section 2.4, the

instantaneous estimated amplitude and phase of the received field, yj, is given by:

yj =

√
2(qη/hf)2PloPlaserAtxArx

[(q2η/hf)Plo + (2qη/hf)2PloNo/4 +Noc]2Bc(λL)2nrx

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j )+wj

(2.69)

where wj, which represents background noise, shot noise, and thermal noise, is cir-

cularly complex Gaussian noise with unit variance. The area normalization, 1/nrx,

ensures that the received optical power remains constant as the number of receivers

is increased. Within a bit period Tb:

yj =

√
2(qη/hf)2PloPlaserTbAtxArx

[(q2η/hf)Plo + (qη/hf)2PloNo +Noc](λL)2nrx

ntx∑

k=1

xke
χ(~ρk,~ρ

′
j )+jφ(~ρk,~ρ

′
j ) + wj

(2.70)

where we have assumed that the turbulence is approximately fixed over the period of

a bit, Tb � to. Rewriting the previous equation in matrix notation, we have:

~y =

√
SNR

nrx
H~x+ ~w (2.71)

where ~x ∈ Cntx is a vector representing the amplitude and phase of the transmitted

field, ~y ∈ Cnrx is a vector representing amplitude and phase of the received field,

SNR ∈ R is the signal-to-noise ratio for a single aperture transmitter (area Atx)
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and a single-aperture heterodyne receiver (area Arx) in the absence of turbulence

when |xk|2 = 1 for that transmitter, and ~w ∈ Cntx represents independent identically

distributed additive white circularly symmetric complex Gaussian noise with unit

variance. The SNR is given by:

SNR =
2(qη/hf)2PloPlaserTbAtxArx

[(q2η/hf)Plo + (qη/hf)2PloNo +Noc](λL)2
(2.72)

Finally, H ∈ Cnrx×ntx represents the turbulence effects on propagation. Entry hkj

of H is the complex-value coupling from the kth transmit aperture to the jth receive

aperture:

H =




| | |
~h1

~h2 · · · ~hntx
| | |




=




h11 . . . hntx1

...
. . .

...

h1nrx . . . hntxnrx




=




eχ(~ρ1,~ρ ′1 )+jφ(~ρ1,~ρ ′1 ) · · · eχ(~ρntx ,~ρ
′
1 )+jφ(~ρntx ,~ρ

′
1 )

...
. . .

...

eχ(~ρ1,~ρ ′nrx )+jφ(~ρ1,~ρ ′nrx ) · · · eχ(~ρntx ,~ρ
′
nrx

)+jφ(~ρntx ,~ρ
′
nrx

)




(2.73)

Alternative Normalizations

The particular normalization that we have chosen (i.e., where the size of the individual

transmit apertures does not depend on the number of transmit apertures) implies that

the beam width at the receive plane is larger than the maximum extent of the convex

hull of the receive apertures, as shown in figure 2-9. Systems operating in this regime

exhibit relatively inefficient power transfer, because of the relatively large beam, but

can employ less complex and less expensive tracking systems. This normalization

is not symmetric because it treats transmit apertures and receive apertures differ-

ently. As a result, careful considerations must be taken to show reciprocity. There

are other meaningful normalizations, depending on the constraints of the particular

system. Consequently, we present a generalized normalization so that the appropriate
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Figure 2-9: Normalization implied by the system model: ~y =
√

SNR
nrx

H~x+ ~w. The red

lines pictorially represent the full width half maximum of a field emitted from a single
transmit aperture. The dashed black lines pictorially represent the receiver field of
view. Because of the relatively large beam in the receiver plane, this system has
relatively inefficient power transfer, but can employ less complex and less expensive
tracking systems.

normalization can be used for different systems with different constraints:

~y =

√
SNR

N
H~x+ ~w (2.74)

where N can be any function of the number of transmit apertures and receive aper-

tures. For systems operating in regimes where power transfer is very important,

the beam width at the receive plane should be equal to the maximum extent of the

convex hull of the receive apertures. As a result, if the number of transmitters is
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increased then, by diffraction theory, the beam width of each transmitter must be

increased. The corresponding normalization is N = ntxnrx. This normalization is

symmetric because it treats transmit apertures and receive apertures the same. For

Figure 2-10: Normalization implied by the system model: ~y =
√

SNR
ntxnrx

H~x+ ~w. The

red lines pictorially represent the full width half maximum of a field emitted from
a single transmit aperture. The dashed black lines pictorially represent the receiver
field of view. Because of the relatively small beam in the receiver plane, this system
has relatively efficient power transfer, but must employ more complex and expensive
tracking systems.

a systems where the engineer does not have control of the diameter of the trans-

mit and receive apertures (e.g., the engineer is restricted to using commercial off the

shelf parts), a normalization of N = 1 is appropriate. Other normalizations could

included the number of transmitters N = ntx or the number of independent channels

N = min(ntx, nrx).

In this thesis we normalize by the number of receive apertures N = nrx. We

see in the next chapter that this normalization provides a natural normalization for

comparing sparse aperture systems with and without feedback. Put another way, we

focus on the question: “What is the value of wavefront predistortion based on receiver

to transmitter feedback?” Other questions, such as “How much diversity should a

given system have?” or “Is it better to have more transmit apertures or more receive

apertures?” require a different normalization. Because other comparisons should use
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different normalizations, we provide corollaries for the generalized normalization of

key theorems.

2.5.1 Problem Formulation, Atmospheric Dynamics

The model developed in the previous section describes the atmospheric channel at a

particular instant. To study time dynamics of the turbulent channel, we must develop

a model that describes the way the atmosphere evolves from one state to another.

Specifically, to study the time dynamics of communication through turbulence, we

must find the atmospheric temporal field autocovariance function Rhh(t). We have

[32, 53]:

〈
h (~ρ1~ρ

′
1)h† (~ρ2, ~ρ

′
2)
〉

=

1

(λL)2
exp

{
jπ

λL

(
|~ρ ′1 − ~ρ1|2 − |~ρ ′2 − ~ρ2|2

)
−

1

2
D (~ρ ′1 − ~ρ ′2, ~ρ1 − ~ρ2)

}
(2.75)

where 〈·〉 denotes averaging over the turbulence ensemble, (·)† is the conjugate trans-

pose, and D(~ρ ′, ~ρ) is the two-source spherical-wave structure function given by:

D(~ρ ′, ~ρ) = 2.91k2

∫ L

0

C2
n(z)

[
1

L
|~ρ ′ + ~ρ(L− z)|

]5/3

dz (2.76)

where C2
n(·) is the refractive index structure constant along the propagation path and

k = 2π/λ is the angular wavenumber. Under the Taylor frozen atmosphere hypothesis

[47], we evaluate
〈
h (~ρ1~ρ

′
1)h† (~ρ2, ~ρ

′
2)
〉

at ~ρ1 = ~ρ ′1 = ~0 and ~ρ1 = ~ρ ′1 = [v⊥t, 0], where

v⊥ is the wind speed transverse to the optical path, to find the field autocovariance

function:

Rhh(t) = (λL)2
〈
h (0, 0)h† (v⊥t, v⊥t)

〉
=

exp

{
−1

2
D (v⊥t, v⊥t)

} (2.77)
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If the transmit or receive terminal is moving, the transverse wind speed should be the

apparent wind speed. The two-source spherical-wave structure function becomes:

D (v⊥t, v⊥t) = 2.91k2

∫ L

0

C2
n

[
1

L
|v⊥tz + v⊥t(L− z)|

]5/3

dz

=
2.91k2C2

n

L5/3

∫ L

0

(v⊥tL)5/3 dz

= 2.91k2C2
nL (v⊥t)

5/3

(2.78)

where we have assumed homogeneous turbulence so that the refractive index structure

constant C2
n(z) = C2

n. Therefore the atmospheric temporal field auto-covariance

function becomes:

Rhh(t) = exp

{
−2.91k2C2

nL

2
(v⊥t)

5/3

}

= exp

{
−1

2

(
v⊥t

ρ0

)5/3
} (2.79)

where ρ̃0 is the plane-wave atmospheric correlation length, given by:

ρ̃0 =

(
1

2.91k2C2
nL

)3/5

(2.80)

We also define the atmospheric coherence time, or the approximate time that it takes

for the atmosphere to become uncorrelated, as:

t0 =
ρ̃0

v⊥
(2.81)

We model the atmospheric evolution from some initial state H0 to some subsequent

state Hc(t) as the weighted combination of some initial state H0 and some innovations

matrix, H1:

Hc(t) =
√
Rhh(t)H0 +

√
1−Rhh(t)H1 (2.82)

where the innovations matrix H1 has the same statistics as the initial state H0.
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This model is appealing because Hc(t) is distributed approximately circularly sym-

metric log-normal [41] with the proper mean and variance for any value of t. Further,

the subsequent state Hc(t) has a physically realistic covariance structure relative to

the initial state H0,
〈
Hc(t)

√
Rhh(t)H0

〉
= Rhh(t), which implies that Hc(0) = H0

and limτ→∞Hc(τ) = H1. Within the regime of weak turbulence, the regime where

the Born approximation is valid, this additive time evolution model is the only pos-

sible model. For mild turbulence, outside the regime where the Born approximation

is valid but within the region where the Rytov approximation is valid, a multiplica-

tive model, as opposed to the additive model, may be more accurate. It is unclear

which time evolution model better approximates the atmospheric evolution’s impact

on communication performance in the mild turbulence regime. Further, there are

no closed form solutions for communication performance for a multiplicative model.

As such, we continue this thesis assuming the additive model. Physically, the field

auto-covariance accounts for the time evolution of turbules with sizes between the

inner and outer scale. This model is only appropriate for two atmospheric state anal-

ysis, a higher order model would be required for problems that require multiple state

analysis. We denote Hc(t) as Hc for simplicity when the time dependence is implicit

from the context.

2.5.2 Channel Measurement

There are many possible schemes to measure the instantaneous channel state, H.

Fundamentally, any scheme must somehow calculate the component of the output

due to each of the transmit apertures, thereby filling out the columns of the channel

matrix. The conceptually simplest method to decouple the output is to transmit a

pilot signal from each transmitter sequentially and recording the time variation of the

received field at each receiver. From this measurement, we can build up a channel

transfer matrix as a function of time and perform some operation to estimate the

appropriate channel matrix. This conceptually simple method however is inefficient:

time spent sending pilot symbols is time not spent transmitting data.
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Another way to decouple the effect of each transmitter on the field in the receive

plane is to superimpose a signal on each transmitter to uniquely identify it at the

receiver. Such a signal should be small compared to the information bearing sig-

nal, vary quickly compared to the atmospheric coherence time, and preferably each

transmitter’s identification signal should be orthogonal to every other transmitters

identification signal.

The communication system we have described relies on the instantaneous channel

state estimate being available to the transmitter via a feedback link. Implied in this

assumption is a feedback path from the receiver to the transmitter of sufficient rate

and delay to allow for some minimum set of channel information to be received at the

transmitter before the atmospheric state has changed. The delay is required to be less

than an atmospheric coherence time, on the order of 1 to 100 ms, which is reasonable

for communication links on the order of tens of kilometers. Additionally, we invoke

the Taylor frozen atmosphere hypothesis [47], assuming the atmosphere will remain

approximately constant over the period of a code word. For gigabit communication,

this assumption is easily satisfied.

For two way optical communication, systems may exploit reciprocity to get the

transmitter-side channel state information. Within regions where a feedback path

from the receiver to the transmitter of sufficient rate and delay to allow for some

minimum set of channel information to be received at the transmitter before the

atmospheric state has changed is not possible, such as a ground to satellite system,

reciprocity is an attractive method to measure the channel state.

2.5.3 Performance Metrics

A common metric for system performance is turbulence average bit error rate (BER).

While this metric is useful, it is incomplete when the variation about the turbulence

average is significant. In this case, we can define an additional metric to characterize

the variation’s impact on system performance, the outage probability. The outage

probability is the average proportion of time that the instantaneous BER, Pi, is
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greater than some prescribed BER threshold, P ∗:

Poutage(P
∗) = Pr(Pi > P ∗) (2.83)

Closely related to the probability of outage is the notion of diversity power margin,

which is the multiplicative power factor required to ensure a system experiencing

turbulence will perform at least as well a system not experiencing turbulence. In this

way, diversity power margin serves as a comparison of the two systems and as a proxy

for performance gain.

When an interferer is hampering communication, we again use the notion of aver-

age BER. In this case, however, there are two possible interpretations of the average,

based on different assumptions about the interaction between the transmitter and

the interferer. If the transmitter and interferer use spatial mode hopping to allocate

power according to some probability distribution, the average BER is interpreted

as being averaged over the turbulence, the transmitter power allocation probability

distribution and the interferer power allocation probability distribution. If the trans-

mitter and interferer simply allocate a fixed power to the various spatial modes, the

average is with respect to the turbulence alone. For either interpretation, we arrive

at the same results.

Another common metric for system performance is capacity. Ergodic capacity is

the maximum rate that reliable communication can be achieved, assuming the com-

munication duration is long enough to experience all channel states. Intuitively, this

means channel coding can eventually average over the channel states, hence the aver-

age capacity is of value. An atmospheric coherence time can be up to 100 ms, implying

a system needs to code over about 10 seconds to achieve ergodic channel capacity. If

a system’s delay requirements preclude coding over many atmospheric states, outage

capacity is an alternative notion that better describes achievable performance:

Poutage(R) = Pr(Ci < R)

= Pr(log (1 + SNRφ) < R)
(2.84)
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where R is some desired rate, Ci is the instantaneous channel capacity for a particular

atmospheric realization, and φ is a sufficient statistic for detection. The notion of

instantaneous channel capacity is justified for systems where the rate is much higher

than the atmospheric coherence time, so that long code words may be transmitted over

a particular atmospheric realization. If we wish to guarantee the outage probability

Poutage(R) is less than some ε, the largest attainable rate of transmission is called the

ε-capacity:

Cε = log
(
1 + F−1(1− ε) SNR

)
(2.85)

where F is the complementary cumulative distribution function of the sufficient statis-

tic φ.

2.5.4 Singular Value Distribution

We decouple the input-output relationship of H with a singular value decomposition

(SVD):
1√
nrx

H = UΓV† (2.86)

where the ith column of U is an output eigenmode, the ith row of V is an input

eigenmode, and the i, ith entry of the diagonal matrix Γ is γi, whose square is the

fractional power transfer for the ith input/output eigenmode. We define ~vi to be

column i of matrix V and ~ui to be column i of matrix U. For the context of this

thesis, an eigenmode is a particular spatial field distribution, or spatial mode. Using

the SVD to transform ~y =
√

SNR
nrx

H~x + ~w into parallel Gaussian channels, we arrive

at:

ỹ1 =
√

SNRγ1x̃1 + w̃1

ỹ2 =
√

SNRγ2x̃2 + w̃2

...
...

...

ỹnmin
=
√

SNRγnmin
x̃nmin

+ w̃nmin

(2.87)
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where nmin = min(ntx, nrx). The vectors ~̃x, ~̃y, and ~̃w are related to the vectors ~x, ~y,

and ~w through the usual SVD, such as in [48]. Note w̃i retains its circularly symmetric

complex Gaussian distribution. We denote the variance of w̃i as σ2 = 1.
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Chapter 3

Perfect Channel State Information

This chapter focuses on the performance of sparse aperture communication systems

when the channel information is perfectly known by the transmitter. As stated in the

previous chapter, minimizing bit error rate (BER) provides the maximum protection

against fading. Because turbulence induced fading, not link capacity, is the primary

limitation of atmospheric free space optical communication systems, the first section

provides closed-form expressions for average and outage BER in homogeneous tur-

bulence. The next section generalizes these results for inhomogeneous turbulence.

Despite capacity being an incorrect performance metric for free space optical com-

munication systems, some may wish to have knowledge of the capacity. As such, we

include closed-form expressions for capacity in the last section of the chapter.

3.1 Optimal Solution for Homogeneous Isotropic

Known Turbulence

In this section, we find the performance of sparse aperture systems under simplified

conditions: we assume perfect knowledge of the instantaneous Green’s function at

the receiver, homogeneous isotropic turbulence, and aperture spacing sufficient to

ensure independent link statistics. On the basis of these simplifying assumptions,

we find closed-form performance expressions for various spatial diversity communica-
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tion schemes, which we group based on the amount and quality of turbulence state

information at the transmitter:

• Perfect knowledge of the channel transfer matrix: because this system will pre-

distort the wavefront for optimal propagation, we call it the optimal wavefront

predistortion scheme.

• Knowledge of the transmitter with the best performance: because this system

selects the transmitter with the best performance, we will call it the selection

diversity scheme.

• No knowledge of channel: because this system does not require feedback, we

will call this the open loop diversity scheme.

While there are many schemes that operate with different transmitter turbulence state

information, we only describe and analyze a subset with engineering significance. For

example, we will study the case with perfect knowledge of the input mode with the

best performance along with an optimal modulation and demodulation because this

scheme provides a lower-limit on the achievable bit error rate. Further, this lower

limit provides us with a way to calculate the inefficiency introduced by limited or

imperfect information at the transmitter and/or suboptimal modulation and demod-

ulation schemes. On the other end, we will study the case where the transmitter has

no information about the channel because it provides performance where the feedback

link has been completely severed. We start by analyzing the performance of optimal

wavefront predistortion systems.

3.1.1 Optimal Wavefront Predistortion

For this section, we assume instantaneous channel state information (CSI) measured

by the receiver is perfectly fed back to the transmitter. Early work on this topic was

conducted by Poon et al. [42]. Implied in the assumption of perfect transmitter CSI

is a feedback path from the receiver to the transmitter of sufficiently high rate and

low delay to allow for some minimum amount of channel information to be received
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at the transmitter before the atmospheric state has changed. The delay is required

to be much less than an atmospheric correlation time, on the order of 1 to 100 ms,

which is reasonable for communication systems with link distances on the order of

tens of kilometers.

Asymptotic Analysis: Squared Singular Value Distribution

The ultimate goal of this chapter is to find the performance of the sparse aperture sys-

tem. The performance is entirely determined by the distribution of squared singular

values of the channel transfer matrix:

1√
nrx

H = UΓV† (3.1)

where the ith column of U is an output eigenmode, the ith column of V is an input

eigenmode, and the i, ith entry of the diagonal matrix Γ is the singular value, or

diffraction gain, associated with the ith input/output eigenmode. Consequently, we

calculate the distribution of singular values (specifically, we calculate the distribution

of squared singular values) in this section, then use the result to calculate average

BER and capacity in following sections. For finite nrx and ntx, there are limited

squared singular value distribution results. However, more insightful results come

from considering the asymptotic spectrum of 1√
nrx

H. Asymptotic spectrum refers

to the distribution of squared singular values for a particular matrix as the number

of receive and transmit apertures go to infinity, ntx, nrx → ∞, while the ratio of the

number of transmit apertures to the number of receive apertures is fixed, β = ntx/nrx.

Theorem 1 For a sparse aperture communication system with uniform average il-

lumination of the receive apertures (i.e., all receive apertures fall within the main

lobe of the propagating beam) and well-developed turbulence (i.e., σ2
φ � 2π) for a

single atmospheric state, as the number of transmit apertures and receive apertures

asymptotically approaches infinity, the empirical eigenvalue distribution of HH†/nrx
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converges almost surely to the Marcenko-Pastur density:

fγ2(x; β) = (1− β)+δ(x) +

√(
x−

(
1−√β

)2
)+ ((

1 +
√
β
)2 − x

)+

2πx
(3.2)

where β =
ntx
nrx

and (x)+ = max(x, 0). Because the nonzero squared singular values

of H/
√
nrx are the nonzero eigenvalues of HH†/nrx, the Marcenko-Pastur density

provides the empirical squared singular value distribution of H/
√
nrx.

Proof. For some matrix A, Bai [3] showed that the empirical eigenvalue distribution of

AA† asymptotically converges with probability one to the Marcenko-Pastur density

if the entries of A are complex random variables with the following properties:

• zero mean,

• variance of 1/nrx,

• fourth moment decreases at least as fast as 1/n2
rx,

• independent,

• and identically distributed.

Because the nonzero squared singular values of A are the nonzero eigenvalues of

AA†, the empirical eigenvalue distribution of AA† provides the empirical squared

singular value distribution of A. Thus, we must show that the normalized channel

transfer matrix 1√
nrx

H satisfies these conditions. As we showed in Section 2.3.2, well-

developed turbulence implies that the elements of H are zero mean, E[hkj/
√
nrx] = 0.

By conservation of energy, the variance condition is satisfied:

var

(
1√
nrx

hkj

)
=

1

nrx
E
[
e2χ(~ρk,~ρ

′
j )
]

=
1

nrx
(3.3)
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Again by conservation of energy, the fourth moment condition is satisfied:

E

[∣∣∣∣
1√
nrx

hkj

∣∣∣∣
4
]

=
1

n2
rx

E
[
e4χ(~ρk,~ρ

′
j )
]

=
1

n2
rx

e4σ2
χ (3.4)

Because each ray traverses a different path from transmitter k to receiver j, the en-

tries of H will be uncorrelated, and thus approximately independent for our purposes,

provided transmit apertures are separated by at least a transmit plane correlation

length and the receive apertures are separated by at least a receive plane correlation

length. If we assume that all receive apertures fall within the main lobe of the prop-

agating beam and that the area of the transmit and receive apertures are all equal

(note that the area of a transmit aperture does not have to equal the area of a receive

aperture), the amplitude statistics are approximately identically distributed for all

hkj. Thus, we have shown that the Marcenko-Pastur density is, with probability one,

the empirical squared singular value distribution (up to a normalization factor) of the

channel transfer matrix 1√
nrx

H for the sparse aperture communication systems. �

As a corollary to Theorem 1, the number of eigenmodes corresponding to nonzero

squared singular values converges, almost surely, to min(ntx, nrx). Additionally, the

maximum squared singular value converges, almost surely, to γ2
max = (1 +

√
β)2 while

the minimum nonzero squared singular value converges, almost surely, to γ2
min =

(1 − √β)2. The squared singular value distribution has an interesting structure;

β > 1 gives larger squared singular than the case where β < 1: this implies that

the feedback link is more important for systems with more transmit apertures than

receive apertures. Figure 3-1 shows the Marcenko-Pastur density for various system

geometries.

The uniform illumination of all receive apertures does not restrict the applicability

of Theorem 1: no practical system would be designed such that there are receive

apertures that are not illuminated by the main lobe. For all receive apertures to be

illuminated by the main lobe of the beam, the maximum extent of the convex hull of
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Figure 3-1: Marcenko-Pastur density: Probability density function of diffraction gain
γ2 under different transmitter/receiver aperture configurations where β = ntx/nrx.
Note the impulse function at the origin, if present, is not shown.

the receive apertures drx must satisfy:

drx <
2λL

w
− dtx (3.5)

where dtx is the maximum extent of the convex hull of the transmit apertures and w

is the radius of a single transmit aperture. Thus, there is a constraint on the extent

of the convex hull of both the transmit apertures and the receive apertures. We can

increase the extent of the convex hull of the transmit apertures by adding a linear

phase to the transmit apertures so that they ‘point’ toward the receiver.

Theorem 1 assumes a large number of apertures. The theorem’s usefulness de-

pends on the rate of convergence of the empirical distribution to the asymptotic

result: if 10 transmit apertures and 10 receive apertures are required for approximate

convergence to the Marcenko-Pastur distribution, then the theory is very useful. On
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the other hand, if 1000 transmit apertures and 1000 receive apertures are required

for approximate convergence to the Marcenko-Pastur distribution, then the theory

becomes much more limited in usefulness. For example, let us consider a system with

a link range of 10 km and 100 transmit apertures and 100 receive apertures (each in a

10-by-10 grid). For mild to moderate turbulence, the transmit apertures and receive

apertures must be placed about a centimeter apart to ensure independent statis-

tics. Thus, all the transmit (receive) apertures will fit into a 10 cm by 10 cm patch,

which is a very reasonable form factor for today’s communication systems. For this

example system, does the Marcenko-Pastur distribution approximate the empirical

squared singular value distribution? Figure 3-2 presents a comparison of the squared

singular value distribution of simulation versus theory for various cases where the

number of transmit apertures is 100. To create the histogram, we simulated many

atmospheric states and calculated the empirical distribution of the squared singular

values of these states. We see, even for the case with 100 transmit apertures and

100 receive apertures, that the simulated distribution has very nearly converged to

the Marcenko-Pastur density. Therefore, the theory is applicable for practical sys-

tems. As a note, we present non-asymptotic results for one, two, and three transmit

apertures later in Section 3.1.1.

The empirical squared singular value distribution in Theorem 1 does not depend

on turbulence strength or transmitter/receiver geometry as long as the transmit and

receive apertures are separated by at least a coherence length and the receive apertures

are uniformly illuminated on average. In fact, the turbulence could be distributed

in some way other than log-normal, as Rytov’s method predicts. This is surprising

to some. In some sense, the fact that the spectral distribution of squared singular

values of a wide class of independent identically distributed random matrices con-

verge to the Marcenko-Pastur distribution is analogous to the central limit theorem:

under the central limit theorem, the sum of a wide class of independent identically

distributed random variables converges to the Gaussian distribution. The underlying

distribution of the entries of the channel transfer matrix does impact the conver-

gence rate, however. The empirical squared singular value distribution converges to
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the Marcenko-Pastur density for a much smaller number of transmit/receive aper-

tures when the log-amplitude variance σ2
χ is small. Fortunately, for strong turbulence

where convergence is slower we can expect many more transmit apertures in a given

area (because the coherence length is small in strong turbulence).

Two power methods to measure the distance between two distributions, and thus

the convergence rate, are the Kolmogorov distance and Cramér-von-Mises distance.

The Kolmogorov distance is defined to be:

Dntx = sup
x
|Fγ2(x;ntx)− Fγ2(x; β)| (3.6)

where sup is the supremum, Fγ2(x; β) is the cumulative distribution function (cdf) of

f 2
γ (x; β) and F ∗γ2(x;ntx) is the empirical cdf created by averaging many realizations

of the channel state with ntx transmit apertures:

F ∗γ2(x;ntx) =
1

ntx

ntx∑

i=1

I
(
γ2
i ≤ x

)
(3.7)

where γ2
i is an observation and I(A) is the indicator of event A. Gotze et al. [18]

showed that the Kolmogorov distance between the spectral distribution function and

the distribution function of the Marcenko-Pastur law is of order O(n
−1/2
tx ), under the

condition that β is bounded away from one.

With regard to the Cramér-von-Mises distance, simulation shows that the empir-

ical distribution converges at a polynomial rate. The Cramér-von-Mises criterion is

defined as:

ω2 =

∫ ∞

−∞

[
F ∗γ2(x;ntx)− Fγ2(x; β)

]2
dFγ2(x) (3.8)

Figure 3-3 shows ω2 for a Monte Carlo simulation versus number of receive apertures

for various β and σ2
χ.

Based on simulation, the convergence of ω2 with nrx is approximately a power

law. We define the convergence exponent at α:

ω2 ∝ n−αtx (3.9)
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Simulation shows that α is about 2, invariant of β or σ2
χ. We conclude that the

Marcenko-Pastur density is practically very useful, even for systems with moderate

diversity. For a 3 × 3 grid of receive apertures and a 3 × 3 grid of transmit apertures,

we expect the empirical distribution to be within a Cramér-von-Mises distance of 10−4

from the asymptotic distribution. For transmission through thin clouds, where there

may be millions of independent channels, convergence is very good.
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Figure 3-2: Comparison of Marcenko-Pastur density with simulation: Probability
density function of diffraction gain γ2 under different transmitter/receiver aperture
configurations along with simulated squared singular value distribution. For β = 0.2,
ntx = 100 and nrx = 500. For β = 0.5, ntx = 100 and nrx = 100. For β = 1, ntx = 100
and nrx = 100. For β = 10, ntx = 100 and nrx = 10.
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Figure 3-3: Cramér-von-Mises criterion for a Monte Carlo simulation versus number
of receive apertures (nrx) for various β and σ2

χ.

Asymptotic Analysis: Average Bit Error Rate

In this section, we present the performance of sparse aperture systems with wave-

front control and coherent detection. As we have argued, the bit error rate is the

appropriate metric. Our goal is to now find the spatial field distribution for a known

atmospheric state that will minimize the BER. Assuming binary phase shift keying

(BPSK), the problem can be formulated as:

~x ∗ = arg min
~x:‖~x‖2=1

Q
(√

2SNR|φs|2
)

(3.10)
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where ‖·‖ is the vector norm, SNR is the signal to noise ratio as defined in Chapter 2,

Q(·) is the q-function, and φs is the recombination of the signal portion of the received

field. Other modulation types such as quadrature phase shift keying are certainly

possible. We focus on BPSK because it provides the best protection against fading.

The optimization in (3.10) finds the spatial field distribution, ~x ∗, that propagates

most efficiently through the turbulent atmosphere. Theorem 2 gives the solution to

equation (3.10).

Theorem 2 The spatial field distribution that minimizes instantaneous BER, as for-

mulated in (3.10), is given by:

~x ∗ = a~vmax (H) (3.11)

where we have used that ~vmax (H) is the input eigenvector of H associated with the

maximum squared singular value γ2
max of H. We will simply use ~vmax instead of

~vmax (H) when the context is clear. Data is encoded by variation of a ∈ C, which is

spatially constant at a particular time. For example, to transmit a bit C[n] ∈ {0, 1}
using binary phase shift keying (BPSK): a[n] = eiπC[n]. A sufficient statistic for

optimum detection is:

φ = Re{~u †max~y} (3.12)

where φ is the sufficient statistic and ~umax is the output eigenvector of H associ-

ated with the maximum squared singular value. The associated optimal instantaneous

probability of error for channel state H is:

Pr (error|H) = Q
(√

2SNRγ2
max

)
(3.13)

Proof. For binary transmission of data through a fixed atmosphere, the transmit

vector can take on one of two vectors: ~x ∈ {~xA, ~xB}. We assume, without loss of

generality, that ~x takes on ~xA and ~xB with equal probability. Consequently, we can
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write the transmit vector as:

~x = x

(
~xA − ~xB

2

)
+

(
~xA + ~xB

2

)
(3.14)

where the information is in the scalar x ∈ {−1, 1}. Because ~x takes on ~xA and ~xB

with equal probability, the scalar x takes on values of 1 and −1 with equal probability.

Additionally, the unit energy constraint on ~x implies that both transmit vectors ~xA

and ~xB must also have unit energy. We write the received vector ~y as:

~y −H

(
~xA + ~xB

2

)
=
√

SNRH

(
~xA − ~xB

2

)
x+ ~w (3.15)

We see the information is contained in a one-dimensional subspace of the nrx-dimensional

receive space. The subspace is:

~p =
H~xA −H~xB
‖H~xA −H~xB‖

(3.16)

The power received in ~y that is orthogonal to ~p is exclusively noise. Further, because

the entries of ~w are circularly symmetric and independent, the noise components in

directions orthogonal to ~p are independent of the noise in the direction of ~p. This

means that the components of the received vector ~y that are orthogonal to ~p are

irrelevant for detection and can be ignored. We ignore the component of the noise

orthogonal to the signal by projecting the received vector down onto the signal space

defined by ~p:

φ = Re

{
~p †
(
~y −
√

SNRH

(
~xA + ~xB

2

))}

= Re
{
~p †~y
} (3.17)
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where we have ignored H
(
~xA+~xB

2

)
because it does not contain any information. Con-

sequently, we arrive at the following scalar detection problem:

φ = Re
{
~p †~y
}

= Re

{(
H~xA −H~xB
‖H~xA −H~xB‖

)†(√
SNRH

(
~xA − ~xB

2

)
x+ ~w

)}

=

√
SNR

2
‖H(~xA − ~xB)‖x+Re{w̃}

(3.18)

where w̃ has the same distribution as each element of ~w. As a result, φ conditioned

on x is normally distributed:

φ|x ∼ N
(√

SNR

2
‖H(~xA − ~xB)‖x, 1

)
(3.19)

The optimal detector, with the smallest probability of error, chooses the symbol that

is most likely to have been transmitted given the received signal.

Pr(x = 1|φ)
x=−1

≶
x=1

Pr(x = −1|φ) (3.20)

Because both symbols are equally likely, we can use Bayes’ rule to simplify.

1√
π

exp


−1

2

(
φ−
√

SNR

2
‖H(~xA − ~xB)‖

)2

 x=−1

≶
x=1

1√
π

exp


−1

2

(
φ+

√
SNR

2
‖H(~xA − ~xB)‖

)2



(3.21)

Simplifying further gives the nearest neighbor detection rule:

∣∣∣∣∣φ−
√

SNR

2
‖H(~xA − ~xB)‖

∣∣∣∣∣
x=1

≶
x=−1

∣∣∣∣∣φ+

√
SNR

2
‖H(~xA − ~xB)‖

∣∣∣∣∣

→ φ
x=−1

≶
x=1

0

(3.22)
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The probability of error for this detection is then:

Pr(error|H) =
1

2
Pr(error|H, x = 1) +

1

2
Pr(error|H, x = −1)

= Pr(error|H, x = 1)

=
1√
2π

∫ ∞

0

exp


−

(
z −
√

SNR

2
‖H(~xA − ~xB)‖

)2

 dz

= Q

(√
SNR

‖H(~xA − ~xB)‖2

2

)

(3.23)

Consequently, we have an expression showing the dependence of BER with SNR and

the choice of transmit signals. We minimize BER by simply selecting the transmit

signals ~xA and ~xB that maximize ‖H(~xA − ~xB)‖2.

{xA, xB} = argmin
xA,xB :‖xA‖2=‖xB‖2=1

Q

(√
SNR

‖H(~xA − ~xB)‖2

2

)

= argmax
xA,xB :‖xA‖2=‖xB‖2=1

‖H(~xA − ~xB)‖2

(3.24)

Because each transmit vector ~xA and ~xB is unit energy, and by the triangle inequal-

ity (‖~xA + ~xB‖2 ≤ ‖~xA‖2 + ‖~xB‖2), the BER minimizing transmit vectors must be

antipodal: ~xA = −~xB. This simplifies the minimization problem:

~xA = argmin
xA:‖xA‖2=1

Q
(√

2SNR‖H~xA‖2
)

= argmax
xA:‖xA‖2=1

‖H~xA‖2

= argmax
xA:‖xA‖2=1

~x †AH†H~xA

= argmax
xA:
∑ntx

i |αi|2=1

(
ntx∑

j=1

α †j ~v
†
i=1

)
H†H

(
ntx∑

i=1

αi~vi

)

= argmax
xA:
∑ntx

i |αi|2=1

ntx∑

i=1

|αi|2γi(H)

= ~vmax

(3.25)
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where we have written ~xA as a linear combination of the orthonormal basis formed

by the input eigenmodes of the matrix H: ~xA =
∑ntx

i αi~vi where αi = ~v †i ~xA. By the

non-negativity of the squared singular values of H, the last expression is solved by

selecting α1 = 1, αi = 0, i = 2 . . . ntx. We have used the convention that γ1 ≥ γ2 ≥
· · · ≥ γntx . As a result, the optimal transmit vectors for a given atmospheric state

are ~xA = −~xB = ~vmax. The associated probability of error is:

Pr(error|H) = Q(
√

2SNRγ2
max) (3.26)

And the optimal detector is:

φ = Re{~v †max~y} (3.27)

�

We showed that the predistortion and recombination scheme given in Theorem

2 is optimal, in the sense that it minimizes BER, for the sparse aperture system.

The scheme presented in the theorem is, in fact, optimal for a much broader class of

systems: the condition that each transmit receive aperture pair experience indepen-

dent fading is not required for the scheme to be optimal. Thus, Theorem 2 provides

the optimal predistortion and recombination scheme for systems with transmit (or

receive) apertures spaced more closely to one another than a coherence length.

Additionally, Theorem 2 can be applied to large, with respect to the atmospheric

coherence length, aperture systems that have the ability to predistort the transmitted

wave. To apply the theorem, divide up the large transmit aperture into small ele-

ments. The elements should be much smaller than the atmospheric coherence length

at the transmitter. Each element then represents a transmit aperture in the context

of Theorem 2. The receive aperture should similarly be divided up into elements

that are much smaller than the atmospheric coherence length at the receiver. Each

element then represents a receive aperture in the context of Theorem 2.

While an equation for instantaneous probability of error is provided, we have not

presented a closed-form solution for the maximum squared singular value γ2
max and,

therefore, have not yet presented a closed-form expression for probability of error.
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We now calculate the maximum squared singular value and provide a closed-form

expression for turbulence average bit error rate.

For BPSK modulation, the turbulence average BER is:

E[Pr(error)] =

∫ ∞

0

Pr(error|x)fγ2max
(x)dx

=

∫ ∞

0

Q
(√

2SNRx
)
fγ2max

(x)dx

(3.28)

where fγ2max
(x) is the pdf of the largest squared singular value. This result is general

for any BPSK sparse aperture optical communication system, but depends on an

unknown pdf, fγ2max
(x). The pdf for the largest squared singular value is only known

in the asymptotic case. From Theorem 1 we know that, as the number of apertures

grows large, the pdf of the largest squared singular value converges almost surely to:

lim
ntx→∞

fγ2max
(x) = δ

(
x−

(
1 +

√
β
)2
)

(3.29)

where δ(·) is the Dirac delta. Using (3.29) to evaluate (3.28) provides a closed-form

expression for the probability of error:

lim
ntx→∞

E[Pr(error)] =

∫ ∞

0

Q
(√

2SNRx
)
δ

(
x−

(
1 +

√
β
)2
)
dx

= Q

(√
2SNR

(
1 +

√
β
)2
) (3.30)

While this result is only exact in the asymptotic case, it provides a very good

approximation for a finite but large number of apertures. The
(
1 +
√
β
)2

term is the

power gain over a system the same system without wavefront predistortion. Specifi-

cally, it is the gain over a system with the same geometry, no turbulence state informa-

tion at the transmitter, coherent detection, and optimal recombination. This power

gain term results from the ability to allocate all the system transmit power into the

spatial mode with the best propagation performance. Essentially, we select the mode

with the best constructive interference for the particular receiver aperture geometry

and atmospheric state. As the number of receive apertures becomes much larger than
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the number of transmit apertures, β → 0, the system performance approaches that

of the system without wavefront predistortion. This is an expected result. As the

system becomes very asymmetric, the ability to predistort the wavefront is lost.

Many would expect a balanced system, with an equal number of transmit and

receive apertures, to provide the best performance. Indeed, additional diversity at the

transmitter or receiver always increases performance (provided that power collected

at the receiver is not reduced by adding additional transmit or receive apertures).

The
(
1 +
√
β
)2

term does not imply that more transmitters relative to the number

or receivers is beneficial.

The gain, in terms of probability of error, of moving to a diversity system with

wavefront predistortion is:

E[Pr(error|sparseaperture)]

E[Pr(error|nodiversity)]
= e−((1+

√
β)2−1)SNR (3.31)

where we have bounded the probability of error with the Chernoff bound of the q-

function to derive the expression. At high-SNR, using the sparse aperture system

provides a large gain in BER compared to the no diversity system. At low-SNR, the

advantage of the more sophisticated system is less pronounced.

It is clear, in the asymptotic case, that the average BER does not depend on

turbulence strength. Effectively, the many apertures act to average out the spatial

variation induced by the atmospheric turbulence. Turbulence strength does factor

into the system design; in stronger turbulence, apertures may be placed more closely

together while in weaker turbulence, they must be placed farther apart. Further,

stronger turbulence causes slower convergence to the Marcenko-Pastur density; which

means more apertures are required for (3.30) to be valid.

Lastly, as the total aperture size increases for a single aperture system, the power

gain saturates as the aperture size approaches the correlation length. We have shown

that the sparse aperture system, however, does not saturate with total aperture size.

Indeed, the number of apertures used is only limited by form factor constraints and

the requirement for uniform illumination.
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A Monte-Carlo simulation was performed to validate the theory presented in

(3.30). In the simulation, we assumed that the instantaneous atmospheric state

was available at the transmitter. For a single atmospheric state, an equiprobable

binary source was encoded according to (3.11), transmitted through the simulated

atmosphere, detected coherently, and the number of raw bit errors recorded. This

process was repeated many times with independent realizations of the atmosphere to

arrive at the average BER presented in Figure 3-4. In the figure, we show theory and

simulation versus SNR. The number of transmit apertures was 100, 100, 200 and the

number of receive apertures was 100, 50, 20 giving β = 1, β = 0.5, and β = 0.1.
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Figure 3-4: BER versus SNR: A comparison of Monte-Carlo simulation and theory
for binary phase shift keying with σ2

χ = 0.1. The number of transmit apertures was
100, 100, 200 and the number of receive apertures was 100, 50, 20 giving β = 1,
β = 0.5, and β = 0.1.

From the figure, we see very good agreement between theory and simulation. As

we stated earlier, the theory provides an approximate solution to any system with a

large but finite number of apertures. Here, we see the approximation is very close to

the theory.
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Asymptotic Analysis: Outage Probability

There are many ways to measure the variability in system performance due to fading.

Outage probability defined in terms of BER is particularly useful because it guaran-

tees at least some minimum performance some fraction of the time. Formally, the

outage probability associated with some BER, P ∗, is the probability that any given

atmospheric state will yield an instantaneous BER more than P ∗:

Pout(P
∗) = Pr (Pi ≥ P ∗)

= 1− FBER(P ∗)
(3.32)

where Pout is the outage probability, Pi is the instantaneous probability of bit-error,

P ∗ is the minimum performance we wish to guarantee in terms of BER, and FBER(·)
is the BER cumulative distribution function (cdf). The following theorem provides

an asymptotic expression for the outage probability:

Theorem 3 The probability of outage, Pout, associated with a desired probability of

error, P ∗ is asymptotically given by:

lim
ntx,nrx→∞

Pout(s) = exp

(
−
∫ ∞

s

(x− s) q2(x)dx

)
,

s =
(Q−1 (P ∗))2/(2SNR)−

(
1 +

√
ntx
nrx

)2

(
1 +

√
ntx
nrx

)(
1√
ntx

+ 1√
nrx

)1/3

(3.33)

where Q−1(·) is the inverse Q-function and q(x) is the function that solves the non-

linear Painlevé II differential equation:

q′′(x) = xq(x) + 2q3(x) (3.34)

with the associated boundary condition:

q(x) ∼ Ai(x), x→∞ (3.35)
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where Ai(x) is the Airy function, given by:

Ai(x) =
1

π

∫ ∞

0

cos

(
1

3
t3 + xt

)
dt (3.36)

Proof. Starting from the definition of probability of outage:

Pout(P
∗) = Pr(Pi > P ∗)

= Pr
(
Q
(√

2SNRγ2
max

)
> P ∗

)

= Pr

(
γ2

max <
(Q−1(P ∗))

2

2SNR

)

= Fγ2max

(
(Q−1(P ∗))

2

2SNR

)

(3.37)

where Fγ2max
is the cdf of the largest eigenvalue of H†H. To find Fγ2max

, we first note

that a complex matrix Q with independent circularly symmetric Gaussian entries such

that Re{qkj}, Im{qkj} ∼ N (0, 1/2), the largest eigenvalue of Q†Q, with the proper

normalization, converges almost surely to the Tracy-Widom distribution [23]:

γ2
max −

(
1 +

√
ntx
nrx

)2

(
1 +

√
ntx
nrx

)(
1√
ntx

+ 1√
nrx

)1/3
∼ W2 (3.38)

where γ2
max is the largest eigenvalue of Q†Q and W2 is the Tracy-Widom distribution.

First we will show that the real and imaginary parts of the hkj are zero mean random

variables with variance equal to one half. Next we will show that the entries of H†H

are asymptotically Gaussian, and thus the largest squared singular value of H is

governed by the Tracy-Widom distribution. The mean of the real part of H is:

E[Re{hij}] = E[Re{eχ+jφ}]

= E[eχ cosφ]

= E[eχ]E[cosφ]

= 0

(3.39)
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where we have used that the atmosphere is log-normally distributed with eχ and cosφ

uncorrelated with each other. Note that in Chapter 2 we stated that χ and φ are not

independent random variables. Because the phase variation is much larger than 2π

eχ and cosφ are indeed approximately uncorrelated. Similarly, the imaginary part of

H is zero mean:

E[Im{hij}] = E[Im{eχ+jφ}]

= E[eχ sinφ]

= E[eχ]E[sinφ]

= 0

(3.40)

The variance of the real part of H is:

V ar[Re{hij}] = E[(Re{hij})2]

= E[e2χ cos2 φ]

= E[e2χ]E[cos2 φ]

= 1/2

(3.41)

where we used that E[e2χ] = 1 by conservation of energy. Similarly, the variance of

the imaginary part of H is:

V ar[Im{hij}] = E[(Im{hij})2]

= E[e2χ sin2 φ]

= E[e2χ]E[sin2 φ]

= 1/2

(3.42)

Thus, the mean and variance of H are the same as the mean and variance of Q. While

the entries of H are not circularly symmetric Gaussian, by central limit theorem the

entries of H†H are asymptotically Gaussian. Thus, the entries of H†H are distributed

the same as the entries of Q†Q when there are many transmit and receive apertures.
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Therefore, the theorem is proved for the asymptotic case.

�

The outage probability 3 dB point is about
(
1 +
√
β
)2

, which agrees with the

empirical cdf described by the Marcenko-Pastur distribution. Figure 3-5 shows the

probability of outage versus desired BER for various numbers of apertures. From the

figure, we see that increasing the number of apertures causes the outage probability

curve to decrease much faster. Calculating the integral and associated nonlinear

differential equation in Theorem 3 is computationally intensive. Corollary 1 provides

a high-SNR bound, in terms of elementary functions, that is much easier to compute.

Corollary 1 The high-SNR probability of outage, Pout, associated with a desired prob-

ability of error, P ∗ is asymptotically:

lim
ntx,nrx→∞

Pout(s) = e
−|s|3
12 , s� 0

s =
(Q−1 (P ∗))2/(2SNR)−

(
1 +

√
ntx
nrx

)2

(
1 +

√
ntx
nrx

)(
1√
ntx

+ 1√
nrx

)1/3

(3.43)

Proof. The Tracy-Widom distribution has the following tail [10]:

lim
s→−∞

W2(s) = exp
(
−|s|3/12

)
(3.44)

Substituting this expression into the proof of Theorem 3 proves the corollary. �

From Corollary 1, it is easy to prove the outage probability approaches a step

function as the number of apertures goes to infinity. This corollary shows that a sys-

tem designer can achieve any desired nonzero outage probability by adding apertures,

limited only by the ability to satisfy the assumption of uniform illumination. The

expression in Corollary 1 is still difficult to interpret. As such, we now specialize the

corollary for the case where ntx = nrx = n:
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Corollary 2 For the special case where ntx = nrx = n, probability of outage, Pout,

associated with a desired probability of error, P ∗ is asymptotically:

lim
ntx,nrx→∞

Pout(P
∗) = exp

(
−√n
192

(
4− (Q−1(P ∗))2

2SNR

)3
)
, Pout � 1 (3.45)

Proof. Substituting ntx = nrx = n into Corollary 1 and simplifying proves the

theorem. �

So, we see that for a given SNR and desired BER, the outage probability decreases

as exp (−√n).
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Figure 3-5: Wavefront predistortion probability of outage versus BER: Probability of
outage versus desired BER for various numbers of apertures and SNR=1.

Asymptotic Analysis: Finite Aperture Power Margin

Here we define finite aperture power margin in two equivalent ways. The first way

defines power margin as a comparison between the finite aperture system and the
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asymptotic system: finite aperture power margin is the multiplicative power increase

required for the finite sparse aperture system to perform at least as well as the infi-

nite sparse aperture system, at least Pout fraction of the time. The second, equivalent

way, defines finite aperture power margin as a comparison between the sparse aper-

ture system in and out of a fading environment: finite aperture power margin is

the power increase required to overcome fading, at least Pout fraction of the time.

Mathematically, finite aperture power margin is:

m = argm

{
Pr

[
Q
(√

(2γ2
maxSNR)m

)
≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]
= Pout

}

(3.46)

where Pout is the desired outage probability and γ2
max is a random variable. In general,

the finite aperture margin will be a function of outage probability; requiring a smaller

outage probability will increase the required finite aperture power margin.

Corollary 3 The finite aperture power margin at a specific outage probability Pout

for wavefront predistortion is:

m =
1

1−
(

1√
ntx

+ 1√
nrx

)1/3
1+
√

ntx
nrx

(
12 log

(
1

Pout

))1/3

≈ 1 +

(
1√
ntx

+ 1√
nrx

)1/3

1 +
√

ntx
nrx

(
12 log

(
1

Pout

))1/3

, ntx, nrx � 1

(3.47)

To gain additional insight, we look at the specific case where n = ntx = nrx, a balanced

system:

m =
1

1−
(

3√
n

log
(

1
Pout

))1/3

≈ 1 +

(
3√
n

log

(
1

Pout

))1/3

, ntx, nrx � 1

(3.48)
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Proof. Starting from the definition of finite aperture power margin,

m = argm

{
Pr

[
Q
(√

(2γ2
maxSNR)m

)
≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]
= Pout

}

(3.49)

Simplifying we get:

Fγ2max

(µntxnrx
m

)
= Pout (3.50)

where Fγ2max
is the cdf of the maximum squared singular value and µntxnrx =

(
1 +
√
β
)2

.

While we know Fγ2max
from Theorem 3, we will instead use the approximation for Fγ2max

in Corollary 1:

Pout = exp

(
− 1

12

∣∣∣∣
µntxnrx
σntxnrx

(
1

m
− 1

)∣∣∣∣
3
)

(3.51)

where σntxnrx =

(
1√
ntx

+ 1√
nrx

)1/3
1+
√

ntx
nrx

. Solving for m proves the corollary. Equation (3.48)

is then found by using n = ntx = nrx. �

As we would expect, finite aperture power margin is not a function of SNR.

This implies that the amount of power margin required to achieve turbulence-free

equivalent performance does not depend on the SNR, only the number of apertures

and the desired outage probability. An interesting interpretation of the finite aperture

power margin is this: it is the value, in terms of transmit power, of adding additional

apertures.

Figure 3-6 shows Corollary 3 for a balanced system as a function of the number

of receive apertures for various outage probabilities. In the figure, we show only the

finite aperture power margin in the regime where the corollary is applicable. When

operating around n ≈ loge(1/Pout) adding additional apertures greatly reduces re-

quired transmit power: each additional transmit has a high power value. However,

as the number of apertures becomes large n� loge(1/Pout), adding additional aper-

tures reduces the required transmit power quite slowly, as 1/n1/6: each additional

transmitter has a low power value.
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Figure 3-6: Finite aperture power margin: Finite aperture power margin for balanced
wavefront predistortion system versus number of receive apertures for various outage
probabilities.

Finite Analysis: Average BER, Outage BER, and Finite Aperture Power

Margin

Thus far, we have presented results for systems with a large number of transmit and

receive apertures. While the large number of apertures results provide important

insights and design intuition, we also wish to calculate the performance of systems

with ntx = nrx = 1 and ntx = nrx = 2. While these results are not as clean, and are

much more difficult to interpret, they provide an end point for the asymptotic results.

In this subsection, we calculate average BER, outage probability, and finite aperture

power margin for systems with a small number of apertures (ntx = nrx < 3).
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Single Aperture System For the single aperture system, ntx = nrx = 1, the exact

average BER is given by:

Eh[Pr(error)] =

∫ ∞

0

Pr(error|s)f|h|2(s)ds

=

∫ ∞

0

Q(
√

2SNRs)
1

s
√

8πσ2
χ

exp

(
−
(
log s+ 2σ2

χ

)2

8σ2
χ

)
ds

(3.52)

where h is the turbulence state matrix H when there is only a single element. This

expression must be calculated via numeric integration, which fails to provide any

insights about the dependencies. Here we provide the following closed-form approxi-

mation:

Theorem 4 The average bit error rate for a single aperture system is:

Eh[Pr(error)] ≈ Q

(
1

2σχ
log SNR− σχ

)
(3.53)

Proof. From the definition of average BER, we have:

Eh[Pr(error)] =

∫ ∞

0

Pr(error|s)f|h|2(s)ds

=

∫ s∗

0

Pr(error|s)f|h|2(s)ds+

∫ ∞

s∗
P (error|s)f|h|2(s)ds

(3.54)

If a system is in a deep fade, say |h|2SNR < 1, we would expect a very high BER.

Conversely, if a system is not experiencing a deep fade, |h|2SNR > 1, we would expect

a very low BER. Following that intuition, we now make the approximation that there

will always be an error in a deep fade, Pr(error|s) = 1/2,∀s < s∗, and it never makes

an error when not in a deep fade, Pr(error|s) = 0,∀s > s∗. Setting s∗ = 1/SNR, we

find:

Eh[Pr(error)] ≈
∫ 1/SNR

0

(1/2)f|h|2(s)ds

= (1/2)F|h|2(1/SNR)

(3.55)

Using the lognormal model of atmospheric turbulence, we prove the theorem. �
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Because the approximation is so coarse, this theorem is not useful for calculating

exact BER. It does capture the interplay between the turbulence strength σχ and

SNR. Next we present a closed-form expression for the outage probability of the

single aperture system.

Theorem 5 The probability of outage for a single aperture system is [29]:

Pout = Q

(
1

2σχ
log

(
2SNR

(Q−1(P ∗))2

)
− σχ

)
(3.56)

Proof. From the definition of outage probability, we write:

Pout = Pr
(
Q
(√

2SNR|h|2
)
≥ P ∗

)

= Pr

(
|h|2 ≤ (Q−1(P ∗))

2

2SNR

)

= F|h|2

(
(Q−1(P ∗))

2

2SNR

)
(3.57)

where P ∗ is the desired BER and F|h|2(·) is the cdf of |h|2. Noting that |h|2 is log-

normally distributed, |h|2 = eχ where χ ∼ N
(
−2σ2

χ, 4σ
2
χ

)
, we prove the theorem.

�

Finally, we calculate the finite aperture power margin for the single aperture

system. The finite aperture power margin, in this case, is the multiplicative power

increase required for the single sparse aperture system to perform at least as well as

the infinite sparse aperture system, at least Pout fraction of the time.

Corollary 4 The finite aperture power margin m for the single aperture system is

given by:

m =
(

1 +
√
β
)2

e2σ2
χ+2σχQ−1(Pout) (3.58)

where β is the ratio of the number of transmit apertures to receive apertures for the

comparison infinite sparse aperture system.
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Proof. We begin with the definition of the finite aperture power margin:

m = argm

{
Pr

[
Q
(√

(2|h|2SNR)m
)
≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]
= Pout

}

(3.59)

Simplifying gives:

m = argm

{
Pr

[
|h|2 ≤

(
1 +
√
β
)2

m

]
= Pout

}
(3.60)

Using the cdf for |h|2 from Theorem 5 gives:

Pout = Q

(
1

2σχ
log

(
m

(
1 +
√
β
)2

)
− σχ

)
(3.61)

Solving for m proves the corollary. �

Figure 3-7 shows the finite aperture power margin for a single aperture transmit

and receive system versus desired BER for various values of turbulence strength. As

expected, the margin increases as the desired BER becomes smaller. In stronger

turbulence, the margin increases faster as the desired BER becomes smaller. This is

intuitively satisfying, diversity has a larger impact in strong turbulence and a smaller

impact in weak turbulence.

Multiple Transmit, Multiple Receive Aperture System The analysis of the

multiple transmit aperture, multiple receive aperture system is considerably more

challenging than the analysis of the one transmit aperture, one receive aperture sys-

tem. Accordingly, we will focus on the most important and relevant of the metrics:

outage probability. The following outage probability upper and lower bound are valid

for any number of transmit and receive apertures.
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Figure 3-7: Finite aperture power margin: Finite aperture power margin for single
aperture transmit and receive system versus desired BER for various values of σ2

χ.

Theorem 6 The probability of outage for a multiple transmit aperture, multiple re-

ceive aperture system with wavefront predistortion is lower and upper bounded by:

Q




log
(

n2
txn

2
rx

e4σ
2
χ−1+ntxnrx

)
− log

(
SNR

nminnrx(Q−1(P ∗))2

)

√
log
(
e4σ

2
χ−1

nrxntx
+ 1
)


 ≤ Pout(P

∗)

Pout(P
∗) ≤ Q




log
(

n2
txn

2
rx

e4σ
2
χ−1+ntxnrx

)
− log

(
SNR

nrx(Q−1(P ∗))2

)

√
log
(
e4σ

2
χ−1

nrxntx
+ 1
)




(3.62)

Proof. We wish to find the squared singular values of 1√
nrx

H or, equivalently, the

eigenvalues of 1
nrx

H†H. We begin by upper and lower bounding the maximum eigen-

value of H†H:
1

nmin

Tr
(
H†H

)
≤ γ2

max

(
H†H

)
≤ Tr

(
H†H

)
(3.63)
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where nmin = min (ntx, nrx) and γ2
max

(
H†H

)
is the maximum eigenvalue of H†H. We

have used that, for a symmetric matrix, the maximum eigenvalue must be less than

the sum of the eigenvalues and that the maximum eigenvalue must be more than the

average non-zero eigenvalue. Relating the maximum eigenvalue of γ2
max

(
H†H

)
to the

maximum eigenvalue of γ2
max

(
1
nrx

H†H
)

, γ2
max

(
H†H

)
= nrxγ

2
max

(
1
nrx

H†H
)

, we arrive

at:
1

nmin

Tr
(
H†H

)
≤ nrxγ

2
max ≤ Tr

(
H†H

)
(3.64)

Using the definition of the trace operation we arrive at the following bound:

1

nmin

ntx∑

k=1

nrx∑

j=1

|hkj|2 ≤ nrxγ
2
max ≤

ntx∑

k=1

nrx∑

j=1

|hkj|2 (3.65)

Since the log amplitude of the channel state is normally distributed, we approxi-

mate the summation as also being log normal:

(
ntx∑

k=1

nrx∑

j=1

|hkj|2
)
∼ Log−N

(
log

(
8√

e4σ2
χ + 3

)
, log

[
e4σ2

χ + 3

4

])
(3.66)

where we have used that |hkj|2 ∼ Log−N
(
−2σ2

χ, 4σ
2
χ

)
and that z, the sum of n

independent identically distributed log normal random variables with mean µ and

variance σ2, is distributed as [41]:

z ∼ Log−N
(

log n+ µ+
σ2

2
− 1

2
log

[
eσ

2 − 1

n
+ 1

]
, log

[
eσ

2 − 1

n
+ 1

])
(3.67)

Finally, the bound on the outage probability is established by the definition of outage

probability:

Pr

(
γ2

max ≤
nminnrx(Q

−1(P ∗))2

SNR

)
≤ Pout(P

∗) ≤ Pr

(
γ2

max ≤
nrx(Q

−1(P ∗))2

SNR

)
(3.68)

�

To validate the upper and lower bound on outage probability for a multiple trans-

mit aperture, multiple receive aperture sparse aperture system, we calculated the
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outage probability using a Monte Carlo simulation of a two transmit aperture, two

receive aperture system. For the simulation, we randomly generated many atmo-

spheric states, calculated the largest squared singular value for each state, and used

the results to calculate the outage probability. Figure 3-8 shows the results of the

simulation along with the upper and lower bound on outage probability presented in

Theorem 6. For the figure, σ2
χ = 0.2 and SNR = 1.
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Figure 3-8: Probability of outage versus desired BER, P ∗, for a two transmit aperture
two receive aperture system: This figure shows the outage probability for a simulated
two transmit aperture by two receive aperture system along with the upper and lower
bound on outage probability presented in Theorem 6. For the figure, σ2

χ = 0.2 and
SNR = 1.

From the simulation, it is clear that the lower bound on outage probability is

much tighter than the upper bound. Generally, for system geometries with ntx < 5

and nrx < 5, the lower bound will be tight. As a result, we use the lower bound to

calculate the finite aperture power margin. The finite aperture power margin, in this

case, is the multiplicative power increase required for the multiple transmit aperture,
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multiple receive aperture sparse aperture system to perform at least as well as the

infinite sparse aperture system, at least Pout fraction of the time.

Corollary 5 The finite aperture power margin m for sparse aperture systems with

fewer than five transmit apertures and fewer than five receive apertures is given by:

m = nrx

(
1 +

√
β
)2

exp


log

(
e4σ2

χ − 1 + ntxnrx
n2
txn

2
rx

)
+Q−1(Pout)

√
log

(
e4σ2

χ − 1

ntxnrx
+ 1

)


(3.69)

where β is the ratio of the number of transmit apertures to receive apertures for the

comparison infinite sparse aperture system.

Proof. We begin with the definition of the finite aperture power margin:

m = argm

{
Pr

[
Q
(√

(2γ2
maxSNR)m

)
≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]
= Pout

}

(3.70)

Simplifying gives:

m = argm

{
Pr

[
γ2

max ≤
(
1 +
√
β
)2

m

]
= Pout

}
(3.71)

Using the cdf for γ2
max from Theorem 6 gives:

Pout = Q




log
(

n2
txn

2
rx

e4σ
2
χ−1+ntxnrx

)
+ log

(
m

nrx(1+
√
β)

2

)

√
log
(
e4σ

2
χ−1

nrxntx
+ 1
)


 (3.72)

Solving for m proves the corollary. �

Figure 3-9 shows the finite aperture power margin for a two aperture transmit

and two receive system versus desired BER for various values of turbulence strength.

As expected, the margin increases as the desired BER becomes smaller. In stronger

turbulence, the margin increases faster as the desired BER becomes smaller. This is

intuitively satisfying, diversity has a larger impact in strong turbulence and a smaller

impact in weak turbulence.
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Figure 3-9: Finite aperture power margin: Finite aperture power margin for two
aperture transmit and two receive system versus desired BER for various values of
σ2
χ.

Finite Aperture Power Margin

We conclude this subsection on the performance of the sparse aperture system with

wavefront predistortion by comparing the margin results for both the finite and

asymptotic analysis. Figure 3-10 shows the finite aperture power margin for bal-

anced wavefront predistortion system versus number of receive apertures for various

outage probabilities. This figure shows results for:

• a one transmit aperture and one receive aperture system

• a two transmit aperture and two receive aperture system

• a three transmit aperture and three receive aperture system

• an asymptotically many transmit and receive apertures system
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Figure 3-10: Finite aperture power margin: Finite aperture power margin for bal-
anced wavefront predistortion system versus number of receive apertures for various
outage probabilities. This figure shows the finite results with σ2

χ = 0.5 along with the
asymptotic results.

From the figure, we see that diversity can decrease the necessary power required

to achieve 10−5 outage performance by more than 35 dB compared to a single trans-

mit/receive aperture system. Relative to a single transmit/receive aperture system,

a two transmit/two receive aperture system requires 10 dB less power to achieve the

same 10−5 outage performance. Relative to a single transmit/receive aperture system,

a three transmit/three receive aperture system requires 20 dB less power to achieve

the same 10−5 outage performance.

3.1.2 Selection Transmit Diversity

Another scheme, termed selection transmit diversity, is to allocate all transmit power

to the transmit aperture that will minimize the instantaneous bit error rate. This

scheme is attractive because no phase control is necessary and the power only needs

to be switched. The wavefront predistortion scheme required both phase control
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and power splitting between all transmit apertures. Additionally, only an integer

from 1 . . . ntx needs to be relayed to the transmitter; the feedback link can be very

low rate. The following provides the transmission and demodulation scheme that

minimizes BER for selection transmit diversity:

Definition 1 The BER minimizing power allocation for the selection transmit diver-

sity is:

~xs =





1 k = k∗

0 k 6= k∗
∀k ∈ 1..ntx (3.73)

Where k∗ is the transmitter associated with the maximum received power:

k∗ = arg max
k
‖~hk‖2 (3.74)

where ‖~hk‖2 is the norm squared of the kth column of the channel transfer matrix H.

We define ~hmax to be the channel transfer matrix column associated with k∗:

~hmax = ~hk∗ = max
k
‖~hk‖2 (3.75)

A spatially matched filter is the optimal receiver. Thus we can form a sufficient

statistic φ:

φ =
1

‖~hmax‖
Re
{
~h†max~y

}
(3.76)

where the normalization is selected such that:

∥∥∥∥∥
~hmax

‖~hmax‖

∥∥∥∥∥

2

= 1 (3.77)
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Proof. Here we show that this transmit scheme minimizes the BER among possible

selection diversity techniques.

k∗ = arg min
|φs|2

Q

(√
2SNR

nrx
|φs|2

)

= arg min
k=1...ntx

Q

(√
2SNR

nrx
‖hk‖2

)

= arg max
k=1...ntx

‖hk‖2

(3.78)

where φs is the signal portion of the sufficient statistic. Thus we have proved that,

among selection diversity techniques, allocating power to the transmitter associated

with the maximum received power minimizes BER. �

While the selection transmitter is less complex and the feedback rate is smaller

for selection transmit diversity compared to wavefront predistortion diversity, its per-

formance in terms of average BER and outage probability is significantly reduced.

Theorem 7 and 8 quantify the performance of this suboptimal scheme.

Theorem 7 For uncoded binary phase shift keying with selection transmit diversity,

the probability of error averaged over all atmospheric states, converges almost surely

as the number of transmit and receive apertures gets very large to:

lim
ntx,nrx→∞

EH [Pe] = Q




√√√√√2SNR


1 +

√
α log (ntx)

nrx





 (3.79)

where α = 2
(
e4σ2

χ − 1
)

.

Proof. The average error probability is given by the following expression:

EH [Pe] =

∫ ∞

−∞
f|φs|2(s)Q

(√
2SNRs

)
ds (3.80)

where f|φs|2(s) is the probability density function of the signal part of the sufficient

statistic, |φs|2 = 1
nrx
‖~hmax‖2. Therefore, we must find the distribution of 1

nrx
‖~hmax‖2.
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First we note that, by central limit theorem, |φs|2 is approximately Gaussian:

|φs|2 =
1

nrx
‖~hk‖2 ∼ N


1,

√(
e4σ2

χ − 1
)

nrx


 (3.81)

We define ξk as:

ξk =
1
nrx
‖hk‖2 − 1

√
1
nrx

(
e4σ2

χ − 1
) (3.82)

where we have chosen the particular normalization such that ξk ∼ N (0, 1). With

probability one, the maximum of (ξ1, . . . , ξntx), is
√

2 log ntx [13]:

Pr

(
lim

ntx→∞
(2 log(ntx))

−1/2 max
1<k≤ntx

ξk = 1

)
= 1

→ Pr


 lim
ntx→∞

(2 log(ntx))
−1/2 max

1<k≤ntx

1
nrx
‖~hk‖2 − 1

√
1
nrx

(
e4σ2

χ − 1
) = 1


 = 1

(3.83)

Solving for 1
nrx
‖hk‖2 indicates that the pdf of f|φs|2(s) converges almost surely to:

f|φs|2(s) = δ

(
s−

(
1 +

√
2
(
e4σ2

χ − 1
) log ntx

nrx

))
(3.84)

Because of the sifting property of the Dirac delta, we arrive at the following expression

for average error probability:

lim
ntx→∞

EH [Pe] = lim
ntx→∞

∫ ∞

−∞
f|φs|2(s)Q

(√
2SNRs

)
ds

=

∫ ∞

−∞
δ

(
s−

(
1 +

√
2
(
e4σ2

χ − 1
) log ntx

nrx

))
Q
(√

2SNRs
)
ds

= Q




√√√√√2SNR


1 +

√
2
(
e4σ2

χ − 1
) log (ntx)

nrx







(3.85)

�

We note that the average power gain due the feedback link is much lower for

selection transmit diversity than for wavefront predistortion diversity. Specifically,
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the average power gain due to feedback for selection transmit diversity increases

proportional to
√

log(nrx) while the average power gain due to feedback for wavefront

predistortion increases proportional to ntx. As such, the wavefront predistortion

system performs much better than the selection transmit diversity scheme. Next we

find the outage probability for selection transmit diversity.

Theorem 8 For uncoded binary phase shift keying with optimal selection transmit

diversity, the probability of outage converges almost surely as the number of transmit

and receive apertures gets very large to:

Pout(s) =

(
Q

(
−
√

nrx

(e4σ2
χ − 1)

(s− 1)

))ntx

≤ 1

2ntx
exp

(
−ntxnrx(s− 1)2

2
(
e4σ2

χ − 1
)
)
,∀s� 1

(3.86)

where s = (Q−1 (P ∗))2/2SNR for a desired outage threshold P ∗.

Proof. With the spatial matched filter, the outage probability is:

Pout(P
∗) = Pr

(
Q

(√
2SNR

nrx
‖~hmax‖2

)
≥ P ∗

)

= Pr

(
1

nrx
‖~hmax‖2 ≤ Q−1 (P ∗)

2SNR

) (3.87)

Using the change of variables s = (Q−1 (P ∗))2/2SNR gives:

Pout(s) = Pr
(
‖~hmax‖2 ≤ s

)

= Pr
(
‖~h1‖2 ≤ s, ‖~h2‖2 ≤ s, ..., ‖~hntx‖2 ≤ s

)

=
[
Pr
(
‖~h1‖2 ≤ s

)]ntx
(3.88)
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where we have used the fact that the random variable ‖~hk‖2 is iid for all k. Substi-

tuting in the definition of ‖~h1‖2, we get:

Pout(s) =

[
Pr

(
1

nrx

nrx∑

j=1

|h1j|2 ≤ s

)]ntx
(3.89)

While there is no closed-form expression for the distribution of
∑nrx

j=1 |h1j|2, we can

apply the central limit theorem as the number of receive apertures becomes large:

1

nrx

nrx∑

j=1

|h1j|2 ∼ N


1,

√
e4σ2

χ − 1

nrx


 (3.90)

The resulting outage probability is then:

Pout(s) =

(
1

2
erfc

(
−
√

nrx

2(e4σ2
χ − 1)

(s− 1)

))ntx
(3.91)

where erfc is the complementary error function. Finally, using the Chernoff bound of

the Q-function, Q(x) ≤ 1
2

exp(−x2/2) we arrive at the bound on outage performance.

�

The bound presented in Theorem 8 is only good for s� 1, which corresponds to

a low outage probability region. This bound shows that the product ntx×nrx is what

governs how fast the outage probability falls off. From the exact expression, we see

that the number of receive apertures only interacts through the error function, thus

increasing the number of receive apertures does not change the average probability

of error. Increasing the number of receive apertures does, however, exponentially

decrease the outage probability for any P ∗ > E[P ]. Physically, we see that increasing

the number of receive apertures tends to average out the turbulence thus reducing the

probability of outage while not increasing the average power received. As a result,

average probability of error is not a function of the number of receive apertures.

The number of transmit apertures interacts by exponentiating the entire expres-

sion. Therefore, we see that increasing the number of transmit apertures both de-
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creases the average probability of error and decreases the average probability of out-

age. Physically this decrease in both average and outage probability is reasonable:

• decrease outage probability: increasing the number of transmit apertures, each

seeing independent channel states, decreases the likelihood the system will ex-

perience a deep fade.

• decrease average probability of error: because the system allocates all of its

power to the transmitter with the best performance, increasing the number of

transmit apertures increases the likelihood that the system will have a transmit-

ter with exceptional performance. Because the performance gain depends on

transmit apertures with performance in the tails of the distribution, the decrease

in average BER resulting from increasing the number of transmit apertures is

generally very slow.

Finally, we define selection transmit diversity power margin as the multiplicative

power increase required for the finite sparse aperture system with the use of section

transmit diversity to perform at least as well as the infinite sparse aperture system

with the use of wavefront predistortion, at least Pout fraction of the time. Thus,

selection transmit diversity power margin is a comparison between a finite aperture

selection diversity system and an infinite aperture wavefront predistortion system.

Corollary 6 The selection transmit diversity power margin at a specific outage prob-

ability Pout is:

m =

(
1 +

√
ntx
nrx

)2

1 +Q−1
(
P

1/ntx
out

)√
e4σ

2
χ−1
nrx

(3.92)

Proof. Starting from the definition of diversity power margin,

m = argm



Pr


Q



√√√√
(

2‖~hmax‖2

nrx
SNR

)
m


 ≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]
= Pout

}

(3.93)
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Simplifying we get:

F‖~hmax‖2

(
(1 +

√
nrx
ntx

)2

m

)
= Pout (3.94)

where F‖~hmax‖2 is the cdf of ‖
~hmax‖2
nrx

. Using the cdf for ‖~hmax‖2 from Theorem 8 and

solving for m proves the corollary. �

We defer the comparison of the wavefront predistortion margin and selection trans-

mit margin to Subsection 3.1.4 and now continue to analyze the sparse aperture

system without feedback.

3.1.3 Open Loop Transmitter Diversity

If the feedback link is broken, not set up yet, or has a delay that exceeds the at-

mospheric coherence time, the transmitter will have no channel state information.

This situation represents a lower limit on diversity system performance. In this sub-

section, we define the optimal communication scheme with no transmitter channel

state information and give average and outage performance. First, we describe the

communication scheme.

Definition 2 Because the transmitter has no channel state information, an optimal

transmission scheme is simply equal power on each transmitter:

xk =
1√
ntx
∀k ∈ {1...ntx} (3.95)

The optimal recombination scheme is a spatial matched filter:

φ =
1

‖~hsum‖
Re
{
~h†sum~y

}
(3.96)

where we define ~hsum as:

~hsum =
ntx∑

j=1

~hj (3.97)
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where the normalization was chosen such that:

∥∥∥∥∥
~hsum

‖~hsum‖

∥∥∥∥∥

2

= 1 (3.98)

Theorem 9 For uncoded binary phase shift keying with no channel state information

(CSI) at the transmitter, as the number of transmit apertures becomes large the outage

probability is:

lim
ntx→∞

Pout(P
∗) =

γ

(
nrx,

nrx(Q−1(P ∗))
2

2SNR

)

(nrx − 1)!
(3.99)

where γ(·, ·) is the lower incomplete Gamma function given by:

γ(s, x) =

∫ x

0

ts−1e−tdt (3.100)

We have placed no assumption on the number of receive apertures.

Proof. By definition, the probability of outage for some desired BER P ∗ is:

Pout(P
∗) = Pr


Q



√

2SNR‖~hsum‖2

nrxntx


 > P ∗


 (3.101)

Rearranging the terms gives:

Pout(P
∗) = Pr

(
2

ntx
‖~hsum‖2 <

nrx(Q
−1(P ∗))2

SNR

)
(3.102)

Thus we must find the cdf of 2
ntx
‖~hsum‖2. Using the definition of ‖~hsum‖2 we arrive at

the following expression:

2

ntx
‖~hsum‖2 =

nrx∑

j=1

∣∣∣∣∣

√
2

ntx

ntx∑

k=1

hkj

∣∣∣∣∣

2

(3.103)
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By central limit theorem, as the number of transmit apertures becomes large, the term

inside the absolute value squared a circularly symmetric Gaussian random variable:

√
2

ntx

ntx∑

k=1

hkj ∼ CN
(

0,
1

2

)
(3.104)

where we have used that the atmosphere does not absorb energy, that the apertures

experience independent fades, and that the amplitude fluctuations are approximately

uncorrelated from the exponentiated phase fluctuations. We should note that, so

long as the number of transmit apertures is large, increasing the number of transmit

apertures does not change the distribution of the summation. Thus, the final out-

age calculations will not depend on the number of transmit apertures. The cdf of

2
ntx
‖~hsum‖2 is distributed as a chi-square distribution with 2nrx degrees of freedom.

∣∣∣∣∣

√
2

ntx

ntx∑

k=1

hkj

∣∣∣∣∣

2

∼ χ2
2 (3.105)

The sum of n independent chi-square random variables with two degrees of freedom

is a chi-square distribution with 2n degrees of freedom. Consequently, we arrive at

the distribution of 2
ntx
‖~hsum‖2:

2

ntx
‖~hsum‖2 =

nrx∑

j=1

∣∣∣∣∣

√
2

ntx

ntx∑

k=1

hkj

∣∣∣∣∣

2

∼ χ2
2nrx (3.106)

Finally, using the cdf of the chi-square distribution we find the probability of outage:

Pout(s) =
γ
(
nrx,

nrx(Q−1(P ∗))2

SNR

)

Γ(nrx)
=
γ
(
nrx,

nrx(Q−1(P ∗))2

SNR

)

(nrx − 1)!
(3.107)

�

Analysis using the lower incomplete gamma function used to calculate the outage

probability of the open loop sparse aperture system is difficult. As a result, in Corol-

lary 7 we present a simplified expression for outage probability that is valid when the

number of receive apertures and transmit apertures is very large.
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Corollary 7 For uncoded binary phase shift keying with no CSI at the transmitter,

as the number of transmit and receive apertures becomes large, the outage probability

is:

lim
ntx,nrx→∞

Pout(P
∗) = Q

((
1− (Q−1 (P ∗))

2

2SNR

)
√
nrx

)
(3.108)

Proof. We prove this corollary in two ways: we can invoke the central limit theorem

on the sum of the squared terms in equation (3.103) or we can look at the limiting

exact distribution in equation (3.107). Using the second method, we find:

lim
nrx→∞

γ(nrx, snrx)

(nrx − 1)!
= N (cdf)

(
s; 1,

1√
nrx

)
(3.109)

where s = (Q−1(P ∗))2/(2SNR). �

We define open loop diversity power margin as the multiplicative power increase

required for the finite sparse aperture system with transmit and receive diversity with

no CSI at the transmitter to perform at least as well as the infinite sparse aperture

system using wavefront predistortion, at least Pout fraction of the time. Thus, open

loop diversity power margin is a comparison between a finite aperture open loop

diversity system and an infinite aperture wavefront predistortion system.

Corollary 8 As the number of transmit apertures becomes large, the open loop di-

versity power margin at a specific outage probability Pout is:

m =
2nrx(1 +

√
ntx
nrx

)2

F−1
χ2 (Pout; 2nrx)

≈

(
1 +

√
ntx
nrx

)2

1−
(√

1/nrx

)
Q−1(Pout)

, nrx > 20
(
Q−1(Pout)

)2

≈
(

1 +

√
ntx
nrx

)2(
1 +

√
1

nrx
Q−1(Pout)

)
, nrx � 20

(
Q−1(Pout)

)2

(3.110)

where F−1
χ2 ( · ;n) is the inverse chi-square distribution with n degrees of freedom.
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Proof. Starting from the definition of diversity power margin,

Pout = Pr

[
Q
(√

(2SNR|φs|2)m
)
≥ Q

(√
2
(

1 +
√
β
)2

SNR

)]

= Pr


|φs|2 ≤

(
1 +

√
ntx
nrx

)2

m




= Pr


2‖~hsum‖2

nrx
≤

2nrx

(
1 +

√
ntx
nrx

)2

m




(3.111)

Noting that 2‖~hsum‖2
nrx

is random variable with a chi-square with 2nrx degrees of freedom

distribution, we arrive at the following expression:

Pout = Fχ2

(
2nrx(1 +

√
nrx
ntx

)2

m

)
(3.112)

where Fχ2( · ;n) is the chi-square distribution with n degrees of freedom. Solving

for m proves the equality in equation (3.110). Using the normal approximation for

large nrx (specifically, nrx > 20(Q−1(Pout))
2) gives the following expression for outage

probability in terms of open loop diversity power margin:

Pout = Q



√
nrx


1−

(
1 +

√
ntx
nrx

)2

m





 (3.113)

Solving for m proves the first approximation in equation (3.110). Finally, a Taylor

series expansion gives the last approximation in equation (3.110). �

Figure 3-11 shows applicability of the margin bounds for Pout = 10−5 and Pout =

10−10. The solid line denotes the exact expression, with the linear and normal

approximations shown as dashed lines. The ‘approximation valid’ line, placed at

n = 20 (Q−1(Pout))
2

shows where we expect the bounds to begin to be tight. For

n < 20
(
erfc−1(2Pout)

)2
, the bounds are very loose with the normal bound approach-

ing infinity as n ≈ 2 (Q−1(Pout))
2
.
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Figure 3-11: Open loop diversity power margin bounds for balanced sparse aper-
ture system: The applicability of the margin bounds is shown for Pout = 10−5 and
Pout = 10−10. The solid line denotes the exact expression, with the linear and normal
approximations shown as dashed lines.

This corollary has an interesting alternative interpretation: it provides a value,

in terms of power gain, of channel state information at the transmitter. The open

loop diversity power margin is the additional power that a system with no channel

state information needs to perform as well as a system with perfect CSI at least Pout

fraction of the time. An alternative name feedback power gain could be used because

it represents the equivalent power gain enabled by feedback.

Figure 3-12 shows the open loop diversity power margin (or, alternatively, the

feedback power gain). As the outage probability is reduced, the feedback power gain

is greatly increased: if a system is required to operate at a low outage probability,

the value of the feedback information is very high. As the number of apertures

increases, the value of feedback is diminished. Asymptotically, as the number of

apertures gets very large the feedback power gain approaches the average gain value

of (1 +
√
ntx/nrx)

2.

Finally, we present the asymptotic average BER for the sparse aperture system

with no channel state information.
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Figure 3-12: Feedback power gain: The additional power that an open loop system
needs to perform as well as the wavefront predistortion system versus number of
receivers for a balanced sparse aperture system.

Theorem 10 For uncoded binary phase shift keying with no CSI at the transmitter,

the turbulence average BER is:

lim
nrx,nrx→∞

EH[Pe] = Q
(√

2SNR
)

(3.114)

Proof. By definition, the turbulence average BER is:

EH[Pe] =

∫ ∞

−∞
f|φs|2(s)Q

(√
2SNRs

)
ds (3.115)

where f|φs|2(s) is the pdf of the sufficient statistic. From Corollary 7, we know the

asymptotic probability distribution of f|φs|2(s):

EH[Pe] =

∫ ∞

−∞
N
(
s; 1,

1√
nrx

)
Q
(√

2SNRs
)
ds (3.116)
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Noting that as the number of receive apertures increases, the normal distribution

approaches an impulse and the average BER:

lim
nrx→∞

∫ ∞

−∞
N
(
s; 1,

1√
nrx

)
Q
(√

2SNRs
)
ds

=

∫ ∞

−∞
δ(s− 1)Q

(√
2SNRs

)
ds = Q

(√
2SNR

) (3.117)

�

3.1.4 Comparison of Schemes

In this section, we will give a system designer some guidance when deciding which

diversity system to use: wavefront predistortion, selection, or open loop. While the

wavefront predistortion scheme has additional costs because it requires feedback and

hardware to predistort the transmitted wave, open loop has additional cost because

it must send significantly more power to achieve the same performance.

To compare systems, we define spatial modulation gain to be the average power

gain due to spatial modulation relative to the average power with no spatial modula-

tion. The metric provides a rough value in terms of SNR of a particular modulation

scheme. By definition, the open loop system attains 0 dB of spatial modulation gain.

For a balanced system, comparing the asymptotic BER given for wavefront predistor-

tion in (3.30) with the asymptotic BER for open loop given in (3.114), we see that an

open loop system, on average, performs as well as a wavefront predistortion system

with 6 dB less transmit power. The spatial modulation gain for the different systems

we have discussed is:

• Open loop, spatial modulation gain: 1

• Selection, spatial modulation gain: 1 +
√

2(exp(4σ2
χ)− 1) log(ntx)/nrx

• Wavefront predistortion, spatial modulation gain:
(

1 +
√
ntx/nrx

)2

Figure 3-13 shows the spatial modulation gain for all three systems versus number of

receive apertures for a fixed 100 transmit apertures. We see that, as the number of

118



receive apertures becomes large compared to the number of transmit apertures, the

modulation gain converges to 0 dB for all three systems. Intuitively, this is because

the large number of receive apertures tends to average out any modulation from the

transmitter.

Similarly, Figure 3-14 shows the spatial modulation gain for all three systems

versus number of transmit apertures for a fixed 100 receive apertures. As the number

of transmit apertures becomes large compared to the number of receive apertures,

the modulation gain grows unbounded. Intuitively, the more transmit apertures the

higher the probability the system will be able to exploit a favorable turbulence state.
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Figure 3-13: Spatial modulation gain: Spatial modulation gain of open loop, selection,
and wavefront predistortion schemes versus number of receive apertures for a 100
transmit apertures and σ2

χ = 0.5.

This average result, however, can be misleading for any real world system be-

cause instantaneous BER fluctuation around the mean can cause catastrophic out-

ages. Figure 3-15 shows a comparison of outage probability for open loop, selection,

and wavefront predistortion systems with ntx = nrx = 100. Because the outage prob-

ability for the open loop system falls off relatively slowly, it requires more than the
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Figure 3-14: Spatial modulation gain: Spatial modulation gain of open loop, selection,
and wavefront predistortion schemes versus number of transmit apertures for a 100
receive apertures and σ2

χ = 0.5.

average power gain, the spatial diversity gain, to perform as well as the wavefront

predistortion system with a reasonable outage probability.

We conclude this section with a comparison of margin for each diversity scheme

(wavefront predistortion, selection, and open loop). Figure 3-16 shows finite aper-

ture power margin for balanced systems versus number of receive apertures. In the

figure, finite aperture power margin for wavefront predistortion diversity is shown

in blue, diversity power margin for selection diversity is shown in red, and diversity

power margin for open loop is shown in green. The finite aperture power margin

for wavefront predistortion begins at 17 dB for a one transmit aperture/one receive

aperture system (a one-by-one system) and decreases rapidly to 9 dB for a two-by-

two system and 5 dB for a three-by-three system. As the number of transmit and

receive apertures gets to be large, the finite aperture power margin for wavefront

predistortion approaches 0 dB. Open loop diversity power margin begins at 14 dB

at ntx = nrx = 20 then decreases rapidly to its 6 dB asymptote. Thus wavefront
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Figure 3-15: Comparison of outage probability: Outage probability for open loop,
selection, and wavefront predistortion schemes versus desired BER for ntx = nrx =
100, SNR = 1, and σ2

χ = 0.5.

predistortion provides a large gain over open loop in the 2 to 100 aperture region.

For a large number of transmit and receive apertures wavefront predistortion provides

6 dB gain over open loop. Selection diversity power margin has approximately the

same asymptote (as the number of apertures becomes large) as open loop diversity

power margin, but does not increase nearly as quickly as the open loop system as the

number of apertures becomes small. Thus selection diversity does not provide signif-

icant gain compared to the simpler open loop system when the number of transmit

and receive apertures are large. Selection diversity does provide significant gain com-

pared to open loop when the number of transmit and receive apertures are small. As

a result, selection diversity should never be used for systems with a large number of

transmitters. When the number of transmit and receive apertures is small, transmit

diversity should be used if wavefront predistortion is unavailable. In summary, for
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balanced systems wavefront predistortion requires the least margin and thus should

be used when a sufficient feedback link is available. If a sufficient feedback link is un-

available, selection diversity should be used in the small number of aperture regime

(ntx = nrx < 500) and open loop should be used in the large number of aperture

regime (ntx = nrx > 500).
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Figure 3-16: Diversity power margin: Diversity power margin for balanced systems
versus number of receive apertures for wavefront predistortion diversity, selection
diversity, and open loop diversity. In this figure, σ2

χ = 0.1 and Pout = 10−5.

Figure 3-17 shows the diversity power margin versus number of transmit apertures

with a fixed number of receive apertures, nrx = 100. As the number of transmit

apertures increases, the wavefront predistortion becomes a better approximation for

an infinite aperture system and, as such, the finite aperture power margin approaches

0 dB. As the number of transmit apertures increases, both selection and open loop

diversity power margin increase rapidly. This is because, as the number of transmit

apertures becomes large relative to the number of receive apertures, the wavefront

predistortion system is able to exploit advantageous turbulence states while open

loop and selection are not. Thus, for systems with many more transmit apertures
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than receive apertures, wavefront predistortion should be used. For systems with

many more receive apertures than transmit apertures, wavefront predistortion and

selection diversity do not provide significant performance gains and, as a result, open

loop diversity should be used.
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Figure 3-17: Diversity power margin: Diversity power margin for wavefront predis-
tortion system versus β for wavefront predistortion diversity, selection diversity, and
open loop diversity. In this figure, σ2

χ = 0.1, Pout = 10−5 and nrx = 100.

3.2 System Performance in Inhomogeneous Tur-

bulence

Thus far, we have been concerned with system performance in homogeneous turbu-

lence. This implies a horizontal link or a limited vertical link. For the case of a vertical

link over kilometers, such as an aircraft or satellite terminal to a ground terminal,

turbulence will be inhomogeneous. The limiting Marcenko-Pastur distribution is still

valid provided the conditions in Theorem 1 are satisfied.
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To quantify the effects of the inhomogeneous turbulence, we define the average

wavefront predistortion gain:

Pgain =
(

1 +
√
β
)2

(3.118)

which represents the average power gain of a diversity system with wavefront pre-

distortion compared with a diversity system without wavefront predistortion. For

scenarios with small wavefront predistortion gain, there is negligible benefit to im-

plementing wavefront predistortion. On the other hand, for scenarios with a large

wavefront predistortion gain, there is significant benefit to implementing wavefront

predistortion. If we wish to maximize the protection against fading (e.g., we use as

many transmit and receive apertures as possible given a form factor constraint), for a

transmitter and receiver of linear extent L, the average wavefront predistortion gain

is:

P g−ac
gain =


1 +

floor
(
L
ρg

)
+ 1

floor
(
L
ρs

)
+ 1




2

P ac−g
gain =


1 +

floor
(
L
ρs

)
+ 1

floor
(
L
ρg

)
+ 1




2
(3.119)

where P g−ac
gain is the average wavefront predistortion gain for a system with transmit

apertures on the ground and receive apertures on an aircraft or spacecraft and P ac−g
gain

is the average wavefront predistortion gain for a system with transmit apertures on

an aircraft or spacecraft and receive apertures on the ground. The variable ρg is the

correlation length measured on the ground and ρs is the correlation length measured

at some altitude L above the surface:

ρg =

[
2.91k2

∫ L

0

C2
n(z)(z/L)5/3dz

]−3/5

ρs =

[
2.91k2

∫ L

0

C2
n(z)(1− z/L)5/3dz

]−3/5
(3.120)
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where C2
n(z) is the atmospheric structure constant. As the extent L grows very large,

the function approaches:

lim
L→∞

Pgain =

(
1 +

ρs
ρg

)2

(3.121)

This approximate equation is only valid when there are many coherence lengths within

the transmit and receive form factor. In its region of validity, it is apparent that the

average wavefront predistortion gain given in (3.119) is a discretized version of the

limiting average wavefront predistortion gain given in (3.121). Equation (3.121) is

therefore a useful metric for inhomogeneous turbulence average wavefront predistor-

tion gain. Figure 3-18 shows the average wavefront predistortion gain for a ground

to aircraft/spacecraft platform and an aircraft/spacecraft to ground platform. We

assumed a vertical clear air path with the structure constant variation shown in Fig-

ure 3-19 [35]. The structure constant data shown in the figure is the average of data

from three consecutive days, each day’s data consisting of one profile taken during

daylight hours [35]. For the power gain calculation, we assumed that the structure

constant was zero where data were not present. As a result, the wavefront predistor-

tion power gain curves represent a lower bound on the actual wavefront predistortion

power gain achievable under similar conditions. For the figure, the red line denotes

the altitude of an operational predator drone, the cyan line denotes the altitude of

a commercial aircraft, the purple line denotes a low earth satellite altitude and the

yellow line denotes the altitude of a geosynchronous satellite. For the ground to air-

craft/spacecraft link, the wavefront predistortion power gain starts at 0 dB because

the turbulence path between transmitter and receiver is too short for the transmitter

and receiver to experience many independent sublinks (we use the term sublink to

indicate a single transmit aperture to receiver aperture connection within a diversity

system with many such sublinks). At a vertical path length of approximately 40 m the

ground to aircraft/spacecraft wavefront predistortion gain begins to rapidly increase

as turbulence allows the transmitter and receiver to experience many independent

sublinks. At approximately 100 km vertical link distance, the wavefront predistor-

tion gain levels off because Earth’s atmosphere approaches vacuum. Similarly for the
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aircraft/spacecraft to ground link, the wavefront predistortion power gain starts at

0 dB because the turbulence path between transmitter and receiver is too short for

the transmitter and receiver to experience many independent sublinks. At a vertical

path length of approximately 40 m the aircraft/spacecraft to ground wavefront pre-

distortion gain begins to rapidly increase as turbulence allows the transmitter and

receiver to experience many independent sublinks. The aircraft/spacecraft to ground

wavefront predistortion gain reaches a maximum of 6 dB for a vertical path length of

approximately 100 m, then begins to decrease rapidly as fewer and fewer independent

sublinks are experienced by the transmitter.
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Figure 3-18: Average wavefront predistortion power gain in inhomogeneous turbu-
lence: Ground to aircraft and aircraft to ground average wavefront predistortion
power gain for clear air vertical turbulence as a function of altitude above sea level.
For this figure, the total area of the transmitter and receiver is 0.09 m2.

From figure 3-18 we see that wavefront predistortion is much more useful for the

ground to aircraft/spacecraft link than the aircraft/spacecraft to ground link. For the
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Figure 3-19: Airplane-borne temperature sensor determination of C2
n versus height.

ground to aircraft/spacecraft link, the average wavefront distortion gain exceeds 10 dB

for all example platforms shown in the figure. In contrast, for the aircraft/spacecraft

to ground link the average wavefront predistortion gain is approximately 3 dB for the

predator drone altitude and is less than 1 dB for all other platforms shown in the

figure. Physically this is because the turbulence is near the transmitter for the ground

to aircraft/spacecraft link while the turbulence is very far from the transmitter for

the aircraft/spacecraft to ground link. With the transmitter far from the turbulence,

it is unable to predistort the wave to undo the turbulence.
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Alternatively, if we wish to minimize average BER, for a transmitter and receiver

of linear extent L the wavefront predistortion power gain is:

P g−ac
gain =

(
1 +

L

ρg

)2

P ac−g
gain =

(
1 +

L

ρs

)2
(3.122)

which is valid when the transmitter experiences many independent sublinks. Figure

3-20 shows the average wavefront predistortion power gain for clear air vertical turbu-

lence as a function of altitude above sea level for the case where we have maximized

the wavefront predistortion gain. For the figure, the red line denotes the altitude of

an operational predator drone, the cyan line denotes the altitude of a commercial air-

craft, the purple line denotes a low earth satellite altitude and the yellow line denotes

the altitude of a geosynchronous satellite.

Comparing figure 3-20 and figure 3-18, it is clear that maximizing the outage

protection or minimizing average BER has little effect on the wavefront predistortion

gain of the ground to aircraft/spacecraft link. The comparison shows, however, that

maximizing the outage protection or minimizing average BER gives different results

for the wavefront predistortion gain of the aircraft/spacecraft to ground link. This is

because, for the aircraft/spacecraft to ground link, we sacrifice receive apertures, and

thus independent sublinks between transmit and receive apertures. This decreases

average BER at the expense of outage protection.

Table 3.1 provides a summary of the applicability of diversity and wavefront pre-

distortion for the vertical clear air link. The particular vertical link numbers given in

the table are specific to the structure constant profile used. Despite this, the table

should give a good general idea regarding the regions of applicability.

3.3 Expected Channel Capacity

We now calculate the capacity of the sparse aperture system with wavefront predistor-

tion and coherent detection. Generally, the noisy-channel coding theorem states that
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Figure 3-20: Average wavefront predistortion power gain in inhomogeneous turbu-
lence: Ground to aircraft and aircraft to ground average wavefront predistortion
power gain for clear air vertical turbulence as a function of altitude above sea level.
For this figure, the total area of the transmitter and receiver is 0.09 m2.

capacity is the highest rate that can be achieved with an arbitrarily low probability

of error. More formally, capacity is the highest rate for which there exists a code of

length N that can be decoded with arbitrarily small probability of error. The notion

of capacity is not always applicable; for example, the noisy-channel coding theorem

is not applicable if the atmospheric state changes before a code word of length N can

be sent. Practically, if the time to transmit a single code word exceeds the overall

system delay requirements (for example, for voice over internet protocol the delay,

from mouth to ear, must be less than 150 ms) then the noisy-channel theorem cannot

be applied. For the time being, we will assume the atmospheric state is constant over

the time required to send a code word and that the system delay requirements do not

limit the use of the theorem.
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Table 3.1: Applicability of wavefront predistortion in inhomogeneous turbulence. No
Diversity means that neither diversity nor wavefront predistortion is possible. Wave-
front Predistortion means that either diversity or wavefront predistortion is possible,
but wavefront predistortion provides significant gain over diversity. Diversity means
diversity is possible, but wavefront predistortion is not possible.

Vertical Link Distance Ground to AC/SC Link AC/SC to Ground Link

0 km to 0.04 km No Diversity No Diversity
0.04 km to 100 km Wavefront Predistortion Wavefront Predistortion

100 km and up Wavefront Predistortion Diversity

We showed in the introduction that the system can be decomposed into parallel

Gaussian channels. From Chapter 2 the parallel channel is:

ỹ1 =
√

SNRγ1x̃1 + w̃1

ỹ2 =
√

SNRγ2x̃2 + w̃2

...
...

...

ỹnmin
=
√

SNRγnmin
x̃nmin

+ w̃nmin

(3.123)

where nmin = min(ntx, nrx). The constraint that E[‖~x‖2] = 1 implies a constraint on

the energy allocated to x̃i (assuming no energy is allocated to eigenmodes associated

with squared singular values with a value of zero):

nmin∑

i=1

Ei = 1 (3.124)

where Ei is the energy in x̃i, |x̃i|2 = Ei. For a channel that can be decomposed into

parallel Gaussian channels, the expected channel capacity is well known to be [14]:

E[C] = E

[
∞∑

i=1

log
(
1 + γ2

i E
∗
i SNR

)
]

(3.125)

where E∗i is the power allocation that maximizes the expression. The optimal power

allocation (OPA) is the so-called water filling technique:

E∗i =

(
µ+

1

SNRγ2
i

)+

(3.126)
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where (x)+ = max(x, 0) and µ is selected to satisfy the energy constraint
∑nmin

i=1 Ei =

1.

Thus, capacity is attained by measuring the channel state, adjusting the code-

book, and adjusting the power allocated to each eigenmode accordingly. By varying

the phase and power of each transmitter, we can adjust the power allocated to each

eigenmode independently. For the optimal power allocation, E∗i , the associated trans-

mit vector is:

~x =

nmin∑

i=1

~vi
√
E∗i (3.127)

Various modulation schemes can be used in conjunction with the optimal power allo-

cation. For example, if we wish to transmit a nmin-length code word across the nmin-

independent channels during bit period n with binary phase shift keying (BPSK), the

phase of each transmit vector should be set to:

~x[n] =

nmin∑

i=1

~vi
√
E∗i e

jπCi[n] (3.128)

where Ci[n] ∈ {0, 1} is the ith bit of the word transmitted during bit period n.

While we can implement a system with the optimal power allocation scheme, no

analytic solution exits for the expected capacity in equation (3.125). Instead, we

present the solution to a suboptimal power allocation scheme that allocates power

equally to all nonzero eigenmodes. We show this suboptimal power allocation scheme

provides a tight bound to the capacity-maximizing performance, especially at high

received SNR levels.

Theorem 11 As the number of transmit and receive apertures grow, the expected

capacity for the sparse aperture system with wavefront predistortion asymptotically
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converges and is lower bounded by:

E[C] ≥ ntx log

(
1 +

SNR

nmin

− 1

4
F
(

SNR

nmin

, β

))
+ nrx log

(
1 +

SNRβ

k
− 1

4
F
(
SNR

nmin

, β

))

· · · − nrxnmin

4SNR
F
(

SNR

nmin

, β

)

F
(

SNR

nmin

, β

)
=

(√
SNR

nmin

(1 +
√
β)2 + 1−

√
SNR

nmin

(1−
√
β)2 + 1

)2

(3.129)

Where the bound is tight when the SNR is sufficient to ensure that power is allocated

to every eigenmode associated with a nonzero squared singular value:

SNR ≥ 2 min(1, β3/2)

|1−√β||1− β| (3.130)

Proof. Starting with the definition of capacity for equal power allocation to eigen-

modes associated with nonzero squared singular values:

E[C] = E

[
nmin∑

i=1

log

(
1 +

γ2
i

nmin

SNR

)]
(3.131)

where we have used that there will be nmin spatial degrees of freedom implying nmin

nonzero squared singular values. As the number of transmit and receive apertures

grows, the width between squared singular values goes to zero and they represent a

finer and finer sampling of the continuous squared singular value distribution. So, a

good approximation to the capacity is:

lim
ntx,nrx→∞

E[C] = nmin

∫ ∞

0

log

(
1 +

x

nmin

SNR

)
fγ2(x)dx (3.132)
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Applying the general capacity expression to the specific case of the sparse aperture

system with high-SNR in turbulence, we arrive at:

lim
ntx,nrx→∞

1

nmin

E[C] = . . .

∫ (1+
√
β)2

(1−
√
β)2

log

(
1 +

x

nmin

SNR

) √(x− (1−√β)2
) (

(1 +
√
β)2 − x

)

2πx
dx

(3.133)

Where we have used Theorem 1 which states that, for a sparse aperture communi-

cation system with uniform average illumination of the receive apertures and well-

developed turbulence (i.e., σ2
φ � 2π) for a single atmospheric state, as the number

of transmit apertures and receive apertures asymptotically approaches infinity, the

empirical squared singular value distribution converges almost surely to the Marcenko-

Pastur density. With a change of variables, this expression has been evaluated in [50].

Thus the theorem is proven. �

It is common to describe optimal power allocation as water filling: consider the

thought experiment where we plot the values of 1/(SNRγi) versus the squared singular

value index, i, and imagine the line traced out as a vat which may hold water. Power

is allocated to eigenmodes such that the water level is constant 1/µ. Power is first

allocated to the eigenmodes with the largest squared singular value, the lowest point

in the vat. As power is increased, it is allocated to weaker and weaker eigenmodes.

Thus power is allocated to the various eigenmodes in the same way water would be

allocated if it were poured into the vat.

When the water level is deep, the difference between equal power allocation ca-

pacity and optimal power allocation capacity is small. The water level is deep when

the SNR is large compared with the reciprocal of the nonzero eigenvalues, which is

true when β is bounded from one (e.g., a small vat) or the SNR is large (e.g., a lot

of water). Consequently, the difference between equal power allocation capacity and

optimal power allocation capacity is asymptotically zero as SNR gets very large or
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β is very far from one. Finally we note that over a wide range of SNR, the gain of

optimal power allocation versus equal power allocation is small.

The bound on average capacity is a complicated function and, as a result, it is

difficult to gain intuition from Theorem 11. Accordingly, we present an asymptotic

expression for the expected capacity to better elucidate the dependencies. In the limit

as SNR grows, the average capacity lower bound approaches the following limit:

lim
ntx,nrx→∞

E[C] ≥





ntx log
(

SNR
ntx

(
1− ntx

nrx

))
ntx < nrx

ntx log
(

SNR
3ntx

)
ntx = nrx

nrx log
(

SNR
nrx

(
ntx
nrx
− 1
))

ntx > nrx

(3.134)

For a fixed number of receive apertures, capacity scales very differently for the

cases where ntx > nrx and ntx < nrx:

• ntx < nrx: capacity scales linearly with the number of transmit apertures

• ntx > nrx: capacity scales logarithmically with the number of transmit apertures

In both cases, the capacity scales logarithmically with SNR. Consequently, in the

ntx < nrx regime it is more efficient to increase capacity by adding additional transmit

apertures than by increasing SNR. In the nrx < ntx regime, capacity can be increased

by either adding additional transmit apertures or increasing SNR.

For a fixed number of transmit apertures, capacity increases as the number of

receive apertures decrease. The power increase (per receive aperture) more than

compensates for the decrease in the number of parallel channels (nmin). This intuition

is only valid in the regime where there are many transmit and receive apertures.

Figure 3-21 shows the SNR threshold for Theorem 11 to be valid as a function of

β. Near β = 1 a very large SNR is required for the theorem to be valid. For values of

β > 3 and β < 1/3, an SNR of one is sufficient for the theorem to be valid. Note that

an analytic solution for the expected capacity of a balanced system (β = 1) is known

only for asymptotically large SNR. The fact that no solution exists for the low-SNR

and β near one motivates us to find another bound that is useful in this region. As
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a result, we present a bound based on allocating all power to the highest eigenvalue

that is valid for any SNR, but is tight for low-SNR.
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Figure 3-21: SNR threshold for Theorem 11 to be valid as a function of β.

Figure 3-22 shows the expected asymptotic capacity lower bound (solid black line)

given in equation (3.129) as a function of SNR. In each panel in the figure, the ratio of

number of transmit apertures to receive apertures is the same while the total number

of apertures is varied: the upper-left panel shows ntx = 4, nrx = 1, the upper-right

panel shows ntx = 8, nrx = 2, the lower panel plot shows ntx = 20, nrx = 5 and the

lower right plot shows ntx = 40, nrx = 10. In all panels, the high-SNR equation for

expected capacity, equation (3.134), is shown as a blue line. A Monte-Carlo simula-

tion of capacity with optimal power allocation is shown as red ‘+’ symbols. For this

simulation, many independent turbulence states were generated. The optimal power

allocation and the associated capacity for each state were calculated and displayed as

a red ‘+’. Finally the capacity for equal power allocation (EPA) of a single simulated

atmospheric state is shown as magenta ‘x’ symbols. For this simulation, many inde-
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pendent turbulence states were generated. Each eigenmode associated with a nonzero

squared singular value was allocated equal power and the associated capacity for each

state was calculated and displayed as magenta ‘x’ symbols. All simulations were per-

formed with an atmospheric σ2
χ = 0.1. The EPA simulation is in excellent agreement

with the asymptotic theory. Note that the asymptotic theory provided under EPA

is a very good bound for the expected capacity under optimal. Because the optimal

scheme—water-filling—approaches equal power allocation at high-SNR, we expect a

very good bound at high-SNR. Because the eigenvalue density for small β is bounded

away from zero, we expect the EPA scheme to provide closer bounds for small values

of β (i.e., EPA must provide less power to small eigenvalues when β is small). Fi-

nally, the variation around the average capacity decreases rapidly. By ntx = 20 and

nrx = 5, the average capacity bound is a good approximation for the capacity of a

single turbulence state. For ntx = 4 and nrx = 1, the average capacity bound can be

very different from the capacity of any particular turbulence realization.

We have given a closed-form expression for the equal power allocation capacity,

which is a bound for the optimal power allocation capacity. While this bound is tight

when β is far from one or when the SNR is high, we now proceed to develop another

useful bound to the optimal power allocation capacity. This second bound, which

is tight for asymptotically low-SNR, is based on the intuition that at low received

power, the optimal scheme is to allocate all the transmit power to the eigenmode

associated with the largest squared singular value. For low-SNR, the optimal water

filling scheme allocates all the power to the strongest eigenmode. So, the expected

capacity is:

lim
SNR→small

E[C] = log
(

1 + SNR
(

max
i
γi

))

= log

(
1 + SNR

(
1 +

√
β
)2
)

≈ SNR
(

1 +
√
β
)2

(3.135)

where we arrived at the last inequality with a Taylor series expansion log(1 + |x|) ≈
|x|, |x| � 1. We see that capacity varies linearly with SNR. Additionally when
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Figure 3-22: Expected channel capacity versus SNR, theory and simulation: The solid
black line is the expected asymptotic capacity lower bound given in equation (3.129).
The blue line is the high-SNR capacity approximation. The red ‘+’ symbols are the
results of simulation with optimal power allocation and the magenta ‘x’ symbols are
the results of simulation with equal power allocation. All simulations were performed
with an atmospheric σ2

χ = 0.1.

ntx > nrx, capacity varies approximately linearly with the number of transmit aper-

tures. Therefore it is equally efficient, in the low-SNR region, to increase capacity by

increasing SNR or by increasing the number of transmit apertures.

Figure 3-23 shows the expected capacity in the low-SNR region as a function of

SNR. The solid black line is the asymptotic capacity lower bound given in equation

(3.129). The high-SNR and low-SNR bounds on capacity are shown as blue and red

lines, respectively. The cyan ‘+’ symbols are the results of a simulation with optimal

power allocation and the magenta ‘x’ symbols are the results of simulation with equal

power allocation. For SNR < 1 the low-SNR bound is in excellent agreement with

the optimal power allocation simulation.
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We conclude this section by noting that the optimal power allocation scheme

maximizing capacity in the small SNR regime is the same as the optimal scheme

for minimizing BER: allocate all transmit power to the eigenmode associated with

largest squared singular value. Thus, a system designed to maximize capacity with

optimal power allocation will automatically ‘switch’ to outage protection mode when

a fade occurs. When not in a fade, the system will opportunistically maximize the

data transfer through the advantageous channel. Because the bandwidth of the free

space optical channel is very large compared to typical system bit-rate requirements,

the complexity associated with transmitting information on multiple modes typically

not justified. If situation arise where multiple mode data transmission is necessary,

future research could focus on the performance of such a system. We have provided the

asymptotic average performance, but have not provided finite or ε-capacity analysis

necessary for a full exploration of such a system. Finite analysis will require an

analytic expression for the squared singular value distribution for finite matrices. ε-

capacity analysis will require an understanding of the way the squared singular value

distribution typically deviates from the Marcenko-Pastur distribution.

3.4 Alternative Normalization

We conclude by restating key results from this chapter with an alternative normal-

ization:

~y =

√
SNR

N
H~x+ ~w (3.136)

where N can be any function of the number of transmit apertures and receive aper-

tures. Under this normalization, the empirical eigenvalue distribution of HH†/N

is:

fγ2(x; β) = (1− β)+δ(x) +

√(
x−

(√
nrx
N
−√ntx

N

)2
)+ ((√

nrx
N

+
√

ntx
N

)2 − x
)+

2πxnrx/N
(3.137)

138



Similarly the empirical eigenvalue distribution of H†H/N is:

fγ2(x; β) =

(
1− 1

β

)+

δ(x) +

√(
x−

(√
nrx
N
−√ntx

N

)2
)+ ((√

nrx
N

+
√

ntx
N

)2 − x
)+

2πxntx/N
(3.138)

For both H†H/N and HH†/N , the maximum nonzero eigenvalue value is:

γ2
max =

(√
nrx
N

+

√
ntx
N

)2

(3.139)

while the minimum nonzero eigenvalue is:

γ2
min =

(√
nrx
N
−
√
ntx
N

)2

(3.140)

Thus it is clear that for any symmetric normalization (where transmit and receive

apertures are treated the same) the nonzero eigenvalue distribution is the same for

both H†H/N and HH†/N . The average BER as the number of apertures grows,

using optimal wavefront predistortion, and with the generalized normalization is:

lim
ntx,nrx→∞

E[Pr(error)] = Q



√

2SNR

(√
nrx
N

+

√
ntx
N

)2

 (3.141)

The average BER as the number of apertures grows, using selection transmission, and

with the generalized normalization is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNR

N

(
nrx +

√
2 (e4σ2 − 1) log(ntx)nrx

))
(3.142)

Finally, the average BER as the number of apertures grows, using open loop trans-

mission, and with the generalized normalization is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNRnrx

N

)
(3.143)
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It is now clear whyN = nrx is the preferred normalization: it is the only normalization

that gives sparse aperture without wavefront predistortion performance that does not

depend on the number of apertures. As a result, we are able to easily study the

improvement of spatial modulation over open loop systems.

For clarity, we now present three concrete examples. In all three examples we

assume perfect knowledge of the channel state at the receiver, and optimal recombi-

nation. First we calculate the performance of a fixed system (e.g., there is no control

over the number and size of all the apertures) both with and without feedback. Be-

cause the system is fixed, no normalization is necessary. In this case, the asymptotic

average performance without feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q
(√

2SNRnrx

)
(3.144)

And the asymptotic average performance with feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNR (

√
nrx +

√
ntx)

2

)
(3.145)

We see that without feedback, only the number of receive apertures contributes to

increasing performance. With the feedback link and wavefront predistortion, the num-

ber of receiver apertures or the number of transmit apertures contributes to increasing

performance. In this case, the value of the feedback is the ratio of
(√

nrx +
√
ntx
)2

and nrx. Simplifying, we see that the value of the feedback is Pgain =
(
1 +
√
β
)2

.

For the second example, we modify the fixed system so that we can choose which

side is the transmitter and which side is the receiver and calculate the performance

both with and without feedback. Because we can choose which is the transmitter

and receiver, we will always choose the arrangement where the transmitter has fewer

apertures. This arrangement is preferable because it performs better when there is

no feedback and because it requires a lower rate feedback link. In this case, the

asymptotic average performance without feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q
(√

2SNR max(ntx, nrx)
)

(3.146)
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And the asymptotic average performance with feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNR (

√
nrx +

√
ntx)

2

)
(3.147)

With the feedback link and wavefront predistortion, the number of receiver apertures

or the number of transmit apertures contributes to increasing performance. In this

case, the value of the feedback is the ratio of
(√

nrx +
√
ntx
)2

and max(ntx, nrx).

Simplifying, we see that the value of the feedback is:

Pgain =

(
1 +

√
min(ntx, nrx)

max(ntx, nrx)

)2

(3.148)

For the third case, we consider the bidirectional communication system with a fixed

number and size of apertures. For this case, we calculate the performance of the

worst case (without feedback) link and then calculate the performance of the same

link with feedback. The open loop system with the worst case performance is the one

with the fewest receive apertures. Thus the asymptotic average performance without

feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q
(√

2SNR min(ntx, nrx)
)

(3.149)

And the asymptotic average performance with feedback is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNR (

√
nrx +

√
ntx)

2

)
(3.150)

With the feedback link and wavefront predistortion, the number of receiver apertures

or the number of transmit apertures contributes to increasing performance. In this

case, the value of the feedback is the ratio of
(√

nrx +
√
ntx
)2

and min(ntx, nrx).

Simplifying, we see that the value of the feedback is:

Pgain =

(
1 +

√
max(ntx, nrx)

min(ntx, nrx)

)2

(3.151)
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Thus we see that, depending on the specific design constraints, the feedback power

gain can be very different.
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Figure 3-23: Expected channel capacity showing low-SNR region: The solid black line
is the expected asymptotic capacity lower bound given in equation (3.129). The blue
line is the high-SNR capacity approximation. The red line is the expected asymp-
totic capacity lower bound for lower SNR given in equation (3.135). The cyan ‘+’
symbols are the results of simulation with optimal power allocation and the magenta
‘x’ symbols are the results of simulation with equal power allocation. All simulations
were performed with an atmospheric σ2

χ = 0.1.
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Chapter 4

On the Time Dynamics of Optical

Communication through

Atmospheric Turbulence with

Feedback

In this chapter, we develop closed-form analytic expressions for the effects of the

dynamic atmosphere on system performance. The major consequence of the dynamic

channel state is that the system’s estimate of the channel may grow stale, causing

the transmitter to couple into spatial modes that propagate suboptimally and the

receiver to tune away from the information bearing spatial mode. Specifically, we

show how system performance degrades as the transmitter’s channel state estimate

becomes stale or both the receiver’s and transmitter’s estimate becomes stale. This

will allow us to address the impact of a lag in receiver channel state tracking.

We generalize our analysis to allow dynamically changing turbulence with finite

rate latent feedback in an attempt to answer design questions important to system

implementation and deployment. How much do feedback delay and computational

time impact performance? Given a system geometry, what feedback rate is needed

to take full advantage of the diversity? If the feedback link has a rate of r, what is
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the best performance possible? How often does the transmitter need channel state

updates? At each update, what information does the transmitter need? In terms

of feedback information, we have two degrees of freedom: how often to feed back

an update, and what information is fed back at each update. If we feed back very

infrequently with respect to the channel coherence time, we would need to send back

a full set of channel state information. If we update the state information more

frequently, we may not have to transmit the full set of channel state information. For

example, if we update the state information at a tenth of the channel coherence time,

we could possibly feed back a state update, or perturbation, instead of the full set of

channel state information (CSI). Finally, given a system geometry and performance

requirements, what is the trade between increasing transmit power and increasing

feedback rate?

Communication systems are designed with the worst-case performance as the pri-

mary driver of scale and expense. As a result, we wish to utilize the feedback link in

a way that achieves the best worst-case performance, the so called maximin problem:

BER∗ = min
feedback schemes

(
max
t

BER
)

(4.1)

where BER (bit error rate) is the probability of error averaged over all atmospheric

states, the maximization is over time, and the minimization is over all possible feed-

back schemes. We find a scheme that achieves the best worst-case performance by

breaking the problem into coupled subproblems: the channel time dynamics and the

description of the channel state.

First, using results from rate distortion theory we find the best possible perfor-

mance given some number of bits to describe the channel state. We also show exactly

what information to feed back to achieve the best performance. Next, we derive the

effects of atmospheric time dynamics and channel state estimate latencies, both at the

transmitter and receiver. Finally, we combine the reduction in performance because

of the limited number of bits to describe each channel state with the reduction in

performance due to channel time dynamics and latencies to quantify the effect of the
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dynamic atmosphere channel on the performance of systems that use feedback with

wavefront predistortion. We will provide the optimal performance of a system given

the fundamental design parameters: wind direction, atmospheric structure constant,

number of transmit and receive apertures, and feedback bit rate and latency.

4.1 Feedback Link Description

We assume a fixed atmosphere, with a limited amount of feedback information, Ru

bits, to describe the atmospheric state to the transmitter. We would like to find a

scheme that efficiently uses those bits to minimize the bit error rate resulting from

wavefront predistortion based on the feedback information. Notionally, we can express

the problem as:

min
R≤Ru

BER (4.2)

where R is the number of bits fed back and Ru is the maximum number of bits that

can be fed back. We have not yet specified if we want to minimize average BER or

the BER for a given outage probability. Because the feedback information is used to

tune the amplitude and phase of each transmit aperture, the minimization translates

to selecting a spatial field distribution for a given channel realization that can be fed

back in less than Ru bits and achieves the minimum BER. We can reformulate the

problem as finding a mapping g(·) : Cntx×nrx → Cntx from the channel transfer matrix

to a set of amplitude and phase tuning coefficients:

g∗(·) = arg min
g(Hc):H(g(Hc))≤Ru

BER (4.3)

where H(~x) is a function whose output is the average number of bits that it takes

to describe ~x and Hc is the current atmospheric state. If we view the transmit

field distribution as a vector in a metric space (the transmit vector), then the power

constraint implies that set of all possible transmit vectors must, on average, lie on a

2ntx dimensional unit sphere. Figure 4-1 shows a notional view of this metric space

when the number of transmit apertures is equal to two. The vectors ~vmax and ~vmin
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are input eigenvectors of a sample atmospheric state. As the field propagates through

the channel, the unit sphere is stretched and rotated, as shown in the figure. The

vectors ~umax and ~umin are output eigenvectors of a sample atmospheric state.

The limit on the amount of feedback information implies that the function g(·)
will necessarily produce a distorted representation of the information so that it can

be fed back with less than Ru bits. The function g(·) that produces the distorted

representation is generally referred to as quantization. We refer to the vector that

we calculate to be the optimal transmit vector as the ideal transmit vector and the

distorted transmit vector as the quantized transmit vector. There are many functions

g(·) to quantize the ideal transmit vector; a candidate function is to uniformly quan-

tize the real and imaginary part of each element of the ideal transmit vector. Figure

4-1 shows an example of a uniform quantizer: for a particular atmospheric realiza-

tion the uniform quantizer would select the grid point (shown as gray squares in the

figure) closest to the ideal transmit vector and feed back the index associated with

grid point. The grid point associated with the index is then the quantized transmit

vector. Uniform quantization is simple but inherently inefficient as it makes no use

of a priori information about the structure of the ideal transmit vector. For example,

the uniform quantizer does not use the a priori information that the ideal transmit

vector must have unit length on average. If we have a very large amount of feedback

information, the grid points can be placed very close to one another, and the trans-

mitter can therefore have near perfect knowledge of the ideal transmitter vector. In

this case, the optimal function for infinite information fed back is g∗∞−rate(·) [44]:

g∗∞−rate(Hc) ≈ ~vmax(Hc) (4.4)

where we have used the notation that the ~vmax(Hc) is the best input eigenmode

associated with a particular channel realization Hc. If we have no feedback link, and

therefore have no knowledge of the channel state at the transmitter, there will be zero
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grid points. In this case, the optimal function for zero rate feedback is g∗0−rate:

g∗0−rate(Hc) = κ (4.5)

where κ ∼ CN(0, 1), CN denotes complex circularly normal. Therefore, allocating

random amplitude and phase to each transmit aperture, independent of the channel

realization Hc, achieves minimum BER. If we have limited feedback, there are more

sophisticated quantization functions to minimize the BER given a feedback rate of

Ru.
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Figure 4-1: Metric space representation of input/output field (ntx = 2) with uniform
quantization grid overlaid in gray.

Another candidate function g(·) to quantize the ideal transmit vector is a vector

quantizer, as shown in figure 4-2. Similar to the uniform quantizer, for a particular

atmospheric realization the vector quantizer selects the grid point (shown as gray

squares in the figure) closest to the ideal transmit vector and feeds back the index

associated with the grid point. The quantized transmit vector is then the grid point

associated with the fed back index. The vector quantizer is inherently more efficient

than the uniform quantizer because it is able to take advantage of the structure of the

ideal transmit vector to optimize the quantization regions. A straightforward vector
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quantization would simply place grid points equally spaced on the surface of the unit

sphere. Is there a better way to place the grid points on the sphere? If there are some

regions on the sphere where atmospheric states are more likely to occur, it would

increase performance to quantize more finely there, while quantizing more coarsely

in regions of the sphere where atmospheric states are less likely to occur. Indeed, we

will find that the optimal quantization scheme does just that.
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Figure 4-2: Metric space representation of input/output field (ntx = 2) with vector
quantization grid overlaid in gray.

4.1.1 Asymptotic Analysis of Full Update

In this section, we find the optimal mapping g∗(·) as the number of transmit and

receive apertures grows asymptotically large. As the number of transmit and receive

apertures grows large, the weak law of large numbers takes effect causing the variation

around the expected value to be very small. We therefore focus on minimizing the

average BER.

Theorem 12 For a given rate Ru and an asymptotically large number of transmit and

receive apertures, with probability one, the minimum achievable average probability of

error is:

E[Pr(error)] = Q



√√√√2SNR

[(
1 +

√
ntx∗

nrx

)2 (
1− 2

−Ru
ntx∗

)
+ 2

−Ru
ntx∗

]

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where Q(·) is the Q-function, nrx is the number of receive apertures and ntx∗ is the

number of transmit apertures that are allocated a nonzero rate (if a transmit aperture

is not allocated rate, it is turned off):

ntx∗ = argmax
ntxo:ntxo≤ntx

(
1 +

√
ntxo
nrx

)2 (
1− 2

−Ru
ntxo

)
+ 2

−Ru
ntxo

Proof. We start by finding the performance assuming the amount of feedback infor-

mation is large enough so that allocating bits to all the transmit apertures is optimal.

Then we generalize our solution for the case where the amount of information is too

small for allocating bits to every transmit aperture to be optimal. We start with the

most general expression:

E[Pr(error)] = min
g(Hc):H(g(Hc))≤Ru

E[BER]

= min
g(Hc):H(g(Hc))≤Ru

E
[
Q
(√

2SNR |φs|2
)] (4.6)

where φs is the signal portion of the sufficient statistic. Assuming an infinite number

of receive apertures, the sufficient statistic variance becomes small so that we can

move the expectation inside the Q-function:

E[Pr(error)] = min
g(Hc):H(g(Hc))≤Ru

Q
(√

2SNR · E [|φs|2]
)

(4.7)

If we use the optimal spatial matched filter to detect the received field, we can write

the sufficient statistic in terms of the transmitted field, ~x′, and the square singular

values of Hc:

E[Pr(error)] = min
g(Hc):H(g(Hc))≤Ru

Q



√√√√2SNR · E

[∫ γ2max

γ2min

s
〈
~x′, ~v(s)

〉
ds

]


where < ·, · > is a vector inner product, γ2
min is the minimum nonzero square singu-

lar value of Hc, and γ2
max is the maximum square singular value of Hc . Asymp-

totically, the minimum nonzero square singular value converges almost surely to

151



(
1−

√
ntx/nrx

)2

and the maximum square singular value converges almost surely

to
(

1 +
√
ntx/nrx

)2

. Consequently, the expectation can be moved inside the inte-

gral:

E[Pr(error)] = min
g(Hc):g(Hc)≤Ru

Q




√√√√2SNR

∫ (1+
√

ntx
nrx

)
2

(1−
√

ntx
nrx

)
2
sE
[〈
~x′, ~v(s)

〉]
ds


 (4.8)

Physically, assuming the limits on the integral have reached their asymptotic value

is the same as assuming that the spatial modes will change but the distribution

of square singular values will remain approximately the same. Because we assume

the amount feedback information is large enough to support sending information

about each transmit aperture, the optimal solution is to allocate all of the feedback

information to a ntx-dimensional vector as close, in the L2-norm sense, to the best

input eigenmode as possible. As such, we break the integral into two parts:

E[Pr(error)] = min
g(Hc):g(Hc)≤Ru

Q

([
2SNR

((
1 +

√
ntx
nrx

)2

× . . .

E

[〈
~x′, ~v

((
1 +

√
ntx
nrx

)2
)〉]

+ . . .

∫ (1+
√

ntx
nrx

)
2

(1−
√

ntx
nrx

)
2
sE
[〈
~x′, ~v(s)

〉]
ds

)]1/2



(4.9)

Now we define the average distortion D between the transmit vector ~x′ and the

best input eigenmode ~vmax as:

D = E
[(
~x′ − ~vmax

)2
]

(4.10)

Because the entries of ~vmax are independent complex Gaussian random variables with

variance 1/ntx, rate distortion theory tells us that the minimum distortion is:

D = 2
−Ru
ntx (4.11)
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By orthogonality of the distortion error with the estimate, we have:

E
[∥∥∥~x′

∥∥∥
2
]

= D + E
[〈
~x′, ~vmax

〉]
= 1 (4.12)

Rearranging terms gives:

E
[〈
~x′, ~vmax

〉]
= 1− 2

−Ru
ntx (4.13)

Giving a probability of error of:

E[Pr(error)] = Q

([
2SNR

((
1 +

√
ntx
nrx

)2 (
1− 2

−Ru
ntx

)
+ . . .

∫ (1+
√

ntx
nrx

)
2

(1−
√

ntx
nrx

)
2
sE
[〈
~x′, ~v(s)

〉]
ds

)]1/2



(4.14)

Because we are using all available bits to provide information about the best input

eigenmode, the quantized transmit vector orthogonal to the direction of the best input

eigenmode will couple into all other eigenmodes with equal probability. This gives:

E[Pr(error)] = Q

([
2SNR

((
1 +

√
ntx
nrx

)2 (
1− 2

−Ru
ntx

)
+ . . .

2
−Ru
ntx

∫ (1+
√

ntx
nrx

)
2

(1−
√

ntx
nrx

)
2
sfγ2(s)ds

)]1/2



where fγ2(s) is the probability density function of square singular values of Hc, which

is almost surely the Marcenko-Pastur density for large ntx, nrx. The mean of the

Marcenko-Pastur density is one, so:

E[Pr(error)] = Q



√√√√2SNR

[(
1 +

√
ntx
nrx

)2 (
1− 2

−Ru
ntx

)
+ 2

−Ru
ntx

]


This expression provides the minimum BER under the requirement that the system

uses all available transmit apertures. If we allow the system to allocate zero bits to
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some transmit apertures (to turn off transmit apertures), then we find the minimum

BER:

E[Pr(error)] = Q



√√√√2SNR

[(
1 +

√
ntx∗

nrx

)2 (
1− 2

−Ru
ntx∗

)
+ 2

−Ru
ntx∗

]


where ntx∗ is the optimal number of transmit apertures that are allocated some rate:

ntx∗ = argmax
ntxo:ntxo≤ntx

(
1 +

√
ntxo
nrx

)2 (
1− 2

−Ru
ntxo

)
+ 2

−Ru
ntxo (4.15)

It is important to note that for a finite system the BER could be further reduced by

selecting the subset of transmit apertures with the largest maximum square singular

value. In the asymptotic case, however, the maximum square singular value is deter-

mined solely by the number of utilized transmit and receive apertures.

�

Figure 4-3 shows the minimum BER as a function of normalized rate (Ru/ntx) for

SNR = 5. The result is only exact asymptotically, but is a very good approximation

when the variation of the sufficient statistic φs is small compared to the rate of

change of the Q-function and when the Marcenko-Pastur distribution is applicable.

This translates to the following condition for the theorem to be approximately true:

ntx � max (20, 2 · SNR) (4.16)

4.1.2 Optimal mapping, channel state description

We derived Theorem 12 without specifying a mapping g (Hc). The following describes

the mapping:

• Generation of a codebook. At system initialization randomly generate a rate

distortion codebook C consisting of |C| = 2R
0
u sequences ~x′ drawn iid ∼ N(~0, I).

Index these code words by m ∈ {1, 2, · · · , 2R0
u}. Reveal this codebook to the

transmitter and receiver.
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Figure 4-3: Asymptotic BER as a function of normalized rate Ru/ntx

• Calculate codebook variance. For each channel state update, calculate the code-

book variance:
(
1− 2−Ru/ntx∗

)
/ntx∗ . Reveal the variance to both the trans-

mitter and the receiver; the transmitter and receiver should create a scaled

codebook.

• Encoding. For each full update, find the code word w in the scaled codebook

closest to the optimal spatial mode ~vmax(Hc). Make the index w known to both

the transmitter and receiver; thus R0
u bits suffice to describe the index m of the

scaled codebook.

• Decoding. The decoded code word is simply ~x′(m).

The physical intuition here is clear: the optimal mapping g∗(·) quantizes more

finely in regions of the unit sphere where atmospheric states typically occur while

quantizing more coarsely in regions of the sphere where atmospheric states do not

typically occur. Figure 4-4 shows an example of such an optimal mapping: for a

particular atmospheric realization the quantizer would select the grid point (shown
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as gray squares in the figure) closest to the ideal transmit vector and feed back the

index associated with grid point. The grid point associated with the index is then

the quantized transmit vector. The crucial point for the optimal mapping is that the

grid points have been chosen to minimize the average BER.
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Figure 4-4: Metric space representation of input/output field (ntx = 2) with optimal
mapping quantization grid overlaid in gray.

4.1.3 Asymptotic Analysis of Incremental Update

A full update is inherently inefficient: there is no mechanism to take advantage of the

fact that the transmitter already has some knowledge of the channel state from the

previous update. Here we investigate an incremental update strategy that utilizes

a priori transmitter knowledge. While a full update is required for initialization

and periodically to refresh the channel state estimate at the receiver, an incremental

update, where the transmitter only receives the change in channel state from the

previous state, will have better performance when the update rate is sufficiently fast.

Formally, we define an incremental update as the following:

~vincremental = ~vmax(Hc)− ~vtx (4.17)

where ~vmax(Hc) is the current channel state and ~vtx is the channel state estimate at

the transmitter from the previous update. For this analysis, we still assume we have
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some amount of feedback information to describe a fixed atmosphere; the difference

is the transmitter already has some information that is correlated with the current

fixed atmosphere. The update rate, how often an incremental update is fed back

to the transmitter, will control the amount of correlation. This update scheme will

have better performance than simply feeding back Hc at every update provided the

update rate is fast enough for ~vincremental to have smaller variance than ~v(Hc). For

the incremental update scheme, Theorem 12 becomes:

E[Pr(error)] = Q



√√√√2SNR

[(
1 +

√
ntx∗

nrx

)2 (
1−Ψ(τ)2

−Ru
ntx∗

)
+ Ψ(τ)2

−Ru
ntx∗

]


(4.18)

where Ψ(τ) is the average energy of update vector ~vincremental for a given time τ

between updates. The number of transmit apertures that are allocated a nonzero

rate, ntx∗ , is then given by:

ntx∗ = argmax
ntxo:ntxo≤ntx

(
1 +

√
ntxo
nrx

)2 (
1−Ψ(τ)2

−Ru
ntxo

)
+ Ψ(τ)2

−Ru
ntxo

The average energy of the incremental update vector can be simplified to:

Ψ(τ) = E
[
‖~vincremental‖2

]

≈ E
[
‖~v †max (Hc)− ~vtx‖2

]

= 2
(
1− E

[
~v †max (Hc)~vmax (Htx)

])
+D0 +D1

= 2
(
1− E

[
~v †max (Hc)~vmax (Htx)

])
+ 2−R

0
u/ntx + Ψ(τ)2−Ru/ntx

(4.19)

where D0 is the distortion of ~vtx because of the finite size of the full-update codebook

and D1 is the distortion of ~vtx because of the size of Ru. We have used that the

average energy in ~vmax(Hc) and ~vtx is unity. Solving for Ψ(τ) yields:

Ψ(τ) =
2
(
1− E

[
~v †max (Hc)~vmax (H0)

])
+ 2−R

0
u/ntx

1− 2−Ru/ntx
(4.20)
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This shows that Ψ(τ) depends on the number of bits used to describe the initial

channel state, the number of bits used to describe the channel state update, and the

covariance between the current channel state, ~v †max (Hc), and the channel state at

the last update, ~vmax (H0): as ~v †max (Hc) and ~vmax (H0) become more correlated, the

average energy in ~vincremental becomes less and, as a result, fewer bits are needed to

describe the channel state. The denominator term 1 − 2−Ru/ntx represents a pole in

the system; physically, this arises because the energy in each update depends on the

distortion of the previous update. If the distortion of the previous update is small,

then the current update will require few bits. Conversely, if the distortion of the

previous update is large, the current update will require more bits. If the average

energy in the incremental update vector is less than the average energy in the full

update vector Ψ(τ) < 1, it is better to use the incremental update scheme. If however,

the average energy in the incremental update vector is more than the average energy

in the full update vector Ψ(τ) > 1, it is better to use the full update scheme. We will

more generally refer to Ψ(τ) as the average energy associated with the best update

strategy. As a result, the average energy of the update vector must be less than or

equal to one, Ψ(τ) ≤ 1.

Using the data processing inequality, in conjunction with our full update result,

we find the following bound on Ψ(τ):

min

(
2 (1−Rhh(τ)) + 2−R

0
u/ntx

1− 2−Ru/ntx
, 1

)
≤ Ψ(τ) ≤ 1 (4.21)

Figure 4-5 shows the upper and lower bounds from equation (4.21) along with

a simulation versus atmospheric temporal autocovariance function. Comparing the

bounds with the simulation, it is clear the lower bound is too optimistic. As a result,

the following approximation was derived to fit the simulation results:

Ψ(τ) ≈ min

(
2 (1− (Rhh(τ))10) + 2−R

0
u/ntx

1− 2−Ru/ntx
, 1

)
(4.22)
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Figure 4-5: Update average energy versus atmospheric temporal autocovariance for
ntx = nrx.

Equations (4.18) and (4.19) in conjunction with equation (4.22) fully specify the

performance for the full update and incremental update schemes. It is optimal to

transition from full update to incremental update whenever the update rate is suffi-

ciently fast:

tu ≤
(

1

5
log 2

)3/5

t0 ≈ 0.93t0 (4.23)

where tu is the time between updates. Physically, it is intuitively appealing that the

transition should be approximately the atmospheric coherence time: if the update

rate is much larger than the coherence time, the transmitter’s a priori information is

uncorrelated with the current channel state and we should therefore feed back a full

update.

159



4.1.4 Optimal Mapping, Channel State Description

We derived this theorem without specifying a mapping g (Hc) for an incremental

update. The following describes the mapping for a full update or incremental update:

• Generation of a codebook. At system initialization randomly generate a rate

distortion codebook C consisting of 2R
0
u sequences ~x′ drawn iid ∼ N(~0, I).

Index these code words by m ∈ {1, 2, · · · , 2R0
u}. Reveal this codebook to the

transmitter and receiver.

• Calculate codebook variance. For each channel state update, calculate the code-

book variance:
(
1−Ψ(τ)2−Ru/ntx∗

)
/ntx∗ . For a full update, Ψ(τ) = 1 and

Ru = R0
u. For an incremental update Ψ(τ) should be calculated according to

equation (4.22) while Ru can be chosen to be any integer smaller than R0
u. Re-

veal Ψ(τ) and Ru to both the transmitter and the receiver; the transmitter and

receiver should create a scaled codebook with Ψ(τ).

• Encoding.

– For a full update, find the code word m in the scaled codebook closest to

the optimal spatial mode ~vmax(Hc). Make the index m known to both the

transmitter and receiver; thus R0
u bits suffice to describe the index w of

the scaled code word.

– For an incremental update, divide the scaled codebook into

{Ci,∀i ∈ 1, · · · , 2(R0
u−Ru)} scaled sub-codebooks each consisting of 2Ru

code words. Index these code words m′ ∈ {1, 2, · · · , 2Ru}. For the first

incremental update, find the code word m′ in the first scaled sub-codebook

closest to the optimal spatial mode ~vincremental. Make the index m′ known

to the transmitter and receiver; thus Ru bits suffice to describe the index

m′. For the second incremental update, use the second scaled sub-codebook

and so on. When all of the scaled sub-codebooks have been used, start

over at the first scaled sub-codebook.
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• Decoding. The decoded code word is simply ~x′(m) ∈ C for a full update or

~x′(m′) ∈ Ci for an incremental update.

4.1.5 Large and Small Rate Limits

In the limit as the rate Ru becomes very large, the minimum BER converges to the

minimum BER with perfect state knowledge:

lim
Ru→∞

E[Pr(error)] = Q



√

2SNR

(
1 +

√
ntx
nrx

)2

 (4.24)

Similarly, as the rate Ru tends to zero the minimum BER converges to the minimum

BER with no state knowledge:

lim
Ru→0

E[Pr(error)] = Q
(√

2SNR
)

(4.25)

It is satisfying that both limits converge to previously known results. It is interesting

to look at what happens when the number of transmit apertures is increased without

increasing the number of receive apertures or the rate:

lim
Ru→small

E[Pr(error)] = Q

(√
2SNR

(
1 +

Ru

nrx
log(2)

))

In this rate-starved case, the average power gain is linear in rate Ru.

4.1.6 Optimal Number of Transmit Apertures

While Theorem 12 provides an exact expression, it must be solved for numerically.

Figure 4-6 shows the optimal number of transmit apertures versus rate for various

numbers of receive apertures. We assumed an unlimited number of transmit aper-

tures for the calculation. Given a desired feedback rate Ru and a number of receive

apertures nrx, the figure provides the number of transmit apertures that should be

used, ntx∗ . If the system has more transmit apertures than ntx∗ , then ntx − ntx∗ ,
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Figure 4-6: Optimal number of transmit apertures as a function of rate Ru

transmit apertures will be unused. While the exact BER solution requires an nu-

meric solution, we can upper bound the minimum performance by requiring that all

transmit apertures be used:

E[Pr(error)] ≤ Q



√√√√2SNR

[(
1 +

√
ntx
nrx

)2 (
1− 2

−Ru
ntx

)
+ 2

−Ru
ntx

]
 (4.26)

This upper bound is tight when the normalized rate is large. Figure 4-7 shows the

bound and exact expression versus normalized rate. From the figure, it is clear that

the bound is tight even in the rate-starved region.
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Figure 4-7: Asymptotic BER (exact and bound) as a function of normalized rate
Ru/ntx. SNR is dimensionless.

4.2 Atmospheric Time Dynamics

We have described the optimal scheme to describe a fixed atmospheric state given

some number of bits in the previous section. In this section, we relax the fixed

atmospheric state assumption to study the effects of latency on system performance.

We begin by explicitly defining transmitter and receiver knowledge of the channel

state at each time: the current channel state is denoted by Hc ∈ Cnrx×ntx , the receiver

estimate of the channel state is denoted by Hrx ∈ Cnrx×ntx , and the transmitter
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estimate of the optimal propagation mode is ~vtx ∈ Cntx . The signal portion of the

associated sufficient statistic is then:

|φs|2 =

∣∣∣~v†txH†rxHc~vtx

∣∣∣
2

‖Hrx~vtx‖2
(4.27)

Essentially, the receiver is projecting the measured spatial field distribution onto a

unit vector in the direction of the receiver’s estimate of the propagated field distri-

bution, thereby ignoring noise and interference components orthogonal to the signal.

The performance of the optimal detector is then:

E[BER] = Q
(√

2SNR · E[|φs|2]
)

(4.28)

The system performance is entirely characterized by the statistical distribution of

|φs|2. The wavefront predistortion power gain is given by:

Υ =
E [|φs|2]

E [|φNF |2]
(4.29)

where φNF is the signal portion of the sufficient statistic for the coherent detection

diversity system without wavefront predistortion and |φs|2 is the sufficient statistic for

the comparison system. The wavefront predistortion power gain is the multiplicative

gain resulting from a coherent detection diversity system with wavefront predistortion

relative to a coherent detection diversity system without wavefront predistortion. We

now calculate the average BER and wavefront predistortion power gain, Υ, for five

cases. First we investigate the degenerate cases of no channel state knowledge at the

transmitter and perfect channel state knowledge at the transmitter; we show that

these two cases agree with previous results [44] [28]. Next we investigate a more

interesting case where the transmitter has delayed channel state knowledge while the

receiver has perfect channel state knowledge. This case allows us to find the impact

of feedback latency. Next we investigate a case where the transmitter has no channel

state knowledge and the receiver has delayed channel state knowledge. This allows us

to find the impact of receiver channel state estimation latency for a system without
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wavefront predistortion. Finally, we investigate a case where the transmitter and

receiver have delayed channel state knowledge. This will allow us to find the impact

of receiver channel state estimation latency.

4.2.1 No CSI at Transmitter, Perfect CSI at Receiver

We first consider the case where the feedback link is either down or nonexistent: the

receiver has perfect knowledge of the channel state Hrx = Hc, and the transmitter

has no channel state knowledge ~vrx = ~r, where ~r is any unit average energy vector

chosen independently of the channel state. The wavefront predistortion gain is:

E
[
|φs|2

]
= E

[∣∣~r †H†cHc~r
∣∣2

‖Hc~r‖2

]
= 1 (4.30)

This result is intuitively satisfying; we expect the sufficient statistic to average to

unity because the atmosphere conserves energy. This result agrees with the results

in [28]. The wavefront power gain, by definition, is unity for this case, Υ(1) = 1.

4.2.2 Perfect CSI at Transmitter, Perfect CSI at Receiver

If the receiver and the transmitter have perfect knowledge of the channel state, then

Hrx = Hc,
1

‖Hrx~vtx‖

∣∣∣~v†txH†rx
∣∣∣ = ~umax (Hc), and ~vtx = ~vmax (Hc). We have used the

notation that ~vmax (Hc) and ~umax (Hc) are the input and output singular modes of

the matrix Hc, respectively. The wavefront predistortion gain is:

Υ(2) = E




∣∣∣~vmax (Hc)
†H†cHc~vmax (Hc)

∣∣∣
2

‖Hc~vmax (Hc)‖2




= E
[
‖Hc~vmax (Hc)‖2]

= γ2
max (Hc)

=

(
1 +

√
ntx
nrx

)2

(4.31)
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where γ2
max (Hc) is the maximum square singular value of the matrix Hc. Physically,

the transmitter has perfect knowledge of the instantaneous turbulence state and is

therefore able to couple into the optimal propagation mode. Further, the receiver

has perfect knowledge of the instantaneous receive wavefront shape and is therefore

able to tune the phase and amplitude of each aperture to maximize performance.

This result agrees with work in [44], which addressed the idealized performance of

the sparse aperture system with wavefront predistortion and feedback.

4.2.3 Delayed CSI at Transmitter, Perfect CSI at Receiver

Here we find the performance for the case where the receiver has perfect knowledge of

the channel state while the transmitter has delayed knowledge of the channel state.

This would be particularly applicable for systems that experience significant feedback

latencies resulting, for example, from a long link or relatively slow feedback data rate.

The transmitter receives a stale channel state estimate, Htx = H0, that is τtx

seconds delayed from the current channel state Hc. As a consequence, the transmit-

ter will predistort the transmitted waveform on the basis of the stale channel state

estimate ~vtx = ~vmax(H0). The receiver has perfect knowledge of the channel state so

that Hrx = Hc. The wavefront predistortion power gain is then:

Υ(3) = E

[∣∣~v †max(H0)H†cHc~vmax(H0)
∣∣2

‖Hc~vmax(H0)‖2

]

= Rhh(τtx)γ
2
max(H0) + (1−Rhh(τtx))

= e
−
(
v⊥τtx
ρ0

)5/3 (
1 +

√
ntx
nrx

)2

+

(
1− e−

(
v⊥τtx
ρ0

)5/3)
(4.32)

Physically, this shows that the ability of the transmitter to couple into the optimal

propagation mode is degraded as the transmitter’s estimate of the atmospheric state

becomes decorrelated from current atmosphere state. As we would expect, the delay

must be much smaller than the coherence time for good performance. In the limit

as the transmitter channel estimate delay approaches zero, the wavefront predistor-

tion power gain approaches that gain found in the case with perfect channel state
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knowledge at both the transmitter and receiver:

lim
τrx→0

Υ(3) = Υ(2) (4.33)

Similarly, as the transmitter channel estimate delay becomes very long, the wavefront

power distortion gain approaches that gain found in the case where the transmitter

has no channel state knowledge:

lim
τrx→∞

Υ(3) = Υ(1) (4.34)

These two limits give the intuition that some portion of the predistorted wave is

coupled into the optimal propagation mode while the remaining is coupled with equal

probability into all other modes. The proportion that is coupled into the optimal

propagation mode is governed by the atmospheric autocovariance function.

4.2.4 No CSI at Transmitter, Delayed CSI at Receiver

Here we find the performance for the case where the receiver has delayed knowledge

of the channel state while the transmitter has no knowledge of the channel state.

This subsection is useful for analyzing coherent detection systems without feedback.

Receiver latencies can result from computation delays or delays in the reaction time

of the coherent detectors.

The receiver has a stale channel state estimate, Hrx = H0, that is τrx seconds de-

layed from the current channel state Hc. Because the transmitter has no channel state

knowledge, ~vrx = ~r, where ~r is any unit average energy vector chosen independently

of the channel state. The wavefront predistortion power gain is then:

Υ(4) = E




∣∣∣r†H†0Hcr
†
∣∣∣
2

‖H0r†‖2




= Rhh(τrx)

(4.35)
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Physically this shows that as the receiver’s estimate of the received spatial mode

becomes stale, the receiver is unable to tune to the right spatial mode. In the limit as

the receiver channel estimate delay approaches zero, the wavefront predistortion power

gain approaches that gain found in the case with perfect channel state knowledge at

the receiver:

lim
τrx→0

Υ(4) = Υ(1) (4.36)

As the estimate delay becomes large, the power gain approaches zero which implies

that systems with long estimate delays should use noncoherent detection techniques.

4.2.5 Delayed CSI at Transmitter, Delayed CSI at Receiver

Here we find the performance for the case where both the transmitter and receiver

have delayed knowledge of the channel state. This subsection is useful for analyzing

coherent detection systems with wavefront predistortion. Receiver and transmitter

estimate latencies are assumed to be the same and, as a result, this analysis is par-

ticularly useful for two way communication systems that use reciprocity to measure

the channel’s state.

The receiver and transmitter have a stale channel state estimate, Hrx = Htx = H0,

that is τrx seconds delayed from the current channel state Hc. As a consequence, the

transmitter will predistort the transmitted waveform on the basis of the stale channel

state estimate ~vtx = ~vmax(H0). The wavefront predistortion power gain is then:

Υ(5) = E




∣∣∣~v†max(H0)H†0Hc~vmax(H0)
∣∣∣
2

‖H0~vmax(H0)‖2




= Rhh(τrx)γ
2
max(H0)

= Rhh(τrx)

(
1 +

√
ntx
nrx

)2

(4.37)

Physically this shows that as the system’s estimate of the channel state becomes stale,

the transmitter is unable to couple into the optimal spatial mode while the receiver
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is unable to tune to the right spatial mode. In the limit, as the system channel

estimate delay approaches zero, the wavefront predistortion power gain approaches

that gain found in the case with perfect channel state knowledge at both the receiver

and transmitter:

lim
τrx→0

Υ(5) = Υ(2) (4.38)

As the estimate delay becomes large, the power gain approaches zero which implies

that systems with long estimate delays should use noncoherent detection techniques.

�

Figures 4-8 and 4-9 show the wavefront predistortion gain and average BER for

each of the five cases versus latency for the special case where ntx = nrx.

We see that case two, perfect CSI at the transmitter and receiver, provides an

upper bound on the performance of these systems. Similarly, case one, without CSI

at the transmitter and perfect CSI at the receiver provides a lower bound on the

performance of coherent detection systems with perfect receiver knowledge of the

channel state. Case three, with delayed CSI at the transmitter and perfect CSI at the

receiver, transitions smoothly from the upper bound to the lower bound as the latency

grows. To achieve at least 80% of the wavefront predistortion gain, the transmitter

must be updated at least every 0.5 coherence times. If the latency is more than two

coherence times, any gain from wavefront predistortion is effectively gone.

Cases four and five both transition to a region with gain of less than one be-

cause they both include the effect of imperfect coherent detection. For both cases,

as the receiver’s knowledge of the incoming spatial mode becomes more stale the

performance becomes significantly degraded. A delay of one coherence time causes

a 50% reduction in performance. This shows that, if the receiver cannot update its

spatial mode knowledge at least once a coherence time, noncoherent communication

techniques should be employed.
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Figure 4-8: Wavefront predistortion gain versus latency for five cases: (1) no trans-
mitter CSI and perfect receiver CSI, (2) perfect transmitter CSI, perfect receiver
CSI, (3) transmitter CSI delayed by τtx, perfect receiver CSI, (4) no transmitter CSI,
receiver CSI delayed by τrx, and (5) transmitter and receiver CSI delayed by τrx.

4.3 Optimal Feedback Link in the Presence of

Atmospheric Time Dynamics

We now investigate the combined effects of latency and feedback rate on the system

performance. We assume that the receiver has perfect knowledge of the channel

state, Hrx = Hc. The transmitter channel state knowledge is distorted according

the scheme described in Section 4.1.4: we represent this distortion as the mapping

f(·) : Cntx → Z2Ru . The distorted transmitter knowledge of the channel state is

delayed by τ0 because of receiver processing time and time of flight, among other

delays. Additionally, the transmitter does not update its estimate until the entire

new estimate is received. This causes an additional delay of Ru/r where Ru is the
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Figure 4-9: Average bit error rate versus latency for five cases: (1) no transmitter
CSI and perfect receiver CSI, (2) perfect transmitter CSI, perfect receiver CSI, (3)
transmitter CSI delayed by τtx, perfect receiver CSI, (4) no transmitter CSI, receiver
CSI delayed by τrx, and (5) transmitter and receiver CSI delayed by τrx.

number of bits per update and r is the feedback link data rate in bits per second;

thus τ0 = τtx +Ru/r. Combining the results from sections investigating the feedback

link and atmospheric time dynamics—Sections 4.2 and 4.1 respectively—we arrive at

the following:

171



Υ(T ) = E

[∥∥∥∥∥

(√
Rhh

(
τ0 +

Ru

r
+ t

)
H0 . . .

+

√
1−Rhh

(
τ0 +

Ru

r
+ t

)
H1

)
f (~vmax(H0))

∥∥∥∥∥

2



= Rhh

(
τ0 +

Ru

r
+ t

)
E
[
‖H0f(~vmax(H0))‖2

]
. . .

+

(
1−Rhh

(
τ0 +

Ru

r
+ t

))
E
[
‖H1f(~vmax(H0))‖2

]

= Rhh

(
τ0 +

Ru

r
+ t

)(
γ2
max(H0)

(
1−Ψ(Ru/r)2

−Ru/ntx
)

+ Ψ(Ru/r)2
−Ru/ntx

)
. . .

+

(
1−Rhh

(
τ0 +

Ru

r
+ t

))

= e
−
(
τ0+Ru/r+t

t0

)5/3 (
1 +

√
ntx
nrx

)2 (
1−Ψ(Ru/r)2

−Ru/ntx
)
. . .

+ e
−
(
τ0+Ru/r+t

t0

)5/3
Ψ(Ru/r)2

−Ru/ntx . . .

+

(
1− e−

(
τ0+Ru/r+t

t0

)5/3)

(4.39)

where t is the time since the most recent update arrived at the transmitter. Equa-

tion (4.39) relates the fundamental system quantities, the transverse wind velocity,

the atmospheric coherence length, the number of transmit and receive apertures, the

feedback latency, and the feedback rate to system performance. To maximize the

performance, we wish to minimize the distortion of the transmit vector after each

update, making Ru large while, at the same time, minimizing the time between up-

dates, Ru/r. These are competing objectives however, decreasing the distortion of the

transmit vector increases the time between updates. Evaluating equation (4.39) at
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t = Ru/r gives the performance just before a new update, the worst-case performance:

Υ(T ) = e
−
(
τ0+2Ru/r

t0

)5/3 (
1 +

√
ntx
nrx

)2

. . .

− e−
(
τ0+2Ru/r

t0

)5/3 (
1 +

√
ntx
nrx

)2

Ψ(Ru/r)2
−Ru/ntx . . .

+ e
−
(
τ0+2Ru/r

t0

)5/3
Ψ(Ru/r)2

−Ru/ntx . . .

+

(
1− e−

(
τ0+2Ru/r

t0

)5/3)
(4.40)

Figure 4-10 shows the worst-case wavefront predistortion gain as a function of

the update length, Ru. The full update is shown as a dashed line while the optimal

update, either incremental or full depending on which performs better, is shown as the

solid line. For the graph, the number of transmit apertures is ntx = 10, the number

of receive apertures is nrx = 10, the atmospheric coherence time is ρ0/v⊥ = 1 second,

the feedback latency is τ0 = 0.1 seconds, the feedback rate is 80 bits per second, and

the full update length is R0
u = 10000 bits.

It is clear from figure 4-10 that an incremental update rate of Ru = 1 bits is

sometimes optimal. In this region, the additional gain achieved by using a longer

description is overwhelmed by the penalty incurred by delaying update to the trans-

mitter and increasing the number of bits required for an incremental update. The

rates for which Ru > 1 is optimal is the rate-starved region while the rates for which

Ru = 1 is optimal is the rate-rich region. The transition between the rate-rich and

rate-starved regions is given by:

rs ≈
v⊥
ρ0

[
1

5
log

(
2

1 + 2−1/ntx + 2−|C|/ntx

)]− 3
5

(4.41)

In the rate-starved region, it is optimal to feed back full updates. In the rate-rich

region, incremental updates with Ru = 1 provide the optimal performance. Using the

optimal incremental update length in the rate-rich region gives an expression for the

rate required to achieve (1 − α) × 100% of the infinite rate wavefront predistortion

gain, where the infinite rate wavefront predistortion gain is defined to be the wavefront
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Figure 4-10: Wavefront predistortion gain as a function of the update length, Ru. The
full update is shown as a dashed line while the optimal update, either incremental or
full depending on which performs better, is shown as the solid line. For the graph, the
number of transmit apertures is ntx = 10, the number of receive apertures is nrx = 10,
the atmospheric coherence time is ρ0/v⊥ = 1 second, the feedback latency is τ0 = 0.1
seconds, the rate is 80 bits per second, and the full update length is R0

u = 10000 bits.
In the figure, rs is the transition between the rate-starved and the rate-rich region
given in equation (4.41).

predistortion gain achievable if the system utilized an infinite rate but finite latency

feedback link:

r∗ ≥ v⊥
ρ0

[
1

5
log

(
2

2− α(1− 2−1/ntx) + 2−|C|/ntx

)]− 3
5

(4.42)

Figure 4-11 shows the required rate, r∗ to achieve (1 − α) × 100% of the infinite

rate gain for various codebook sizes, |C|. If the size of the codebook is too small for

a given number of transmit apertures, then the number of transmit apertures that

can be supported, even with an arbitrarily large rate, is limited. The codebook hard
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limit on number of transmit apertures is given by:

|C| ≥ ntx log2

(
107

2− α (1− 2−1/ntx)

)

≈ 25ntx

(4.43)

Where the approximation is valid for large ntx. Thus if the cardinality of the code-

book is larger than 25ntx, the cardinality of the codebook will not impact system

performance. Conversely, if the number of transmit apertures is more than |C|/25,

the size of the codebook will significantly reduce the system performance. Under the

condition that the cardinality of the codebook does not impact the system, equation

(4.42) can be approximated for large values of ntx as:

r∗ ≥ v⊥
ρ0

(
10ntx
α log(2)

)3/5

(4.44)
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So, the rate necessary to achieve good performance varies sublinearly with the number

of transmit apertures and linearly with the coherence time inverse. Physically, the

rate varies sublinearly with the number of transmit apertures because of the structure

of the atmospheric turbulence. The approximation is shown as a solid line in figure

4-11. Finally, we show the optimal wavefront predistortion gain versus rate for both

the full update scheme and the optimal update scheme in figure 4-12. Also shown is

the rate-starved to rate-rich transition given in equation (4.41) and the full gain rate

given by equation (4.41).
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Figure 4-12: Wavefront predistortion gain, Υ(T ), as a function of Rate, r, for optimal
update length, ntx = nrx = 10, coherence time v⊥/ρ0 = 1 seconds, and feedback
latency τ0 = 0.1 seconds.

Finally, we note that that the feedback latency bounds the system away from

idealized performance even if the system is given infinite feedback rate. The reduction

in wavefront predistortion gain due to latency for an infinite rate feedback system is:

Υ(T )

Υ(2)

≤ e
−
(
τ0
t0

)5/3 (
1 +

√
ntx
nrx

)2

+

(
1− e−

(
τ0
t0

)5/3)
(4.45)
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As a result, a system should not use wavefront predistortion if the latency is a sig-

nificant fraction of the coherence time. In this case, the performance of a wavefront

predistortion system will be no different from a system without the wavefront predis-

tortion.

4.4 Conclusion

Sparse aperture communication with transmitter and receiver diversity has the po-

tential to provide efficient, cost-effective gigabit communication through atmospheric

turbulence. To further protect against fading, such a system can employ wavefront

predistortion based on channel state information fed back from the receiver. In this

section, we characterized the performance of such a wavefront predistortion system

in the presences of dynamically evolving turbulence, system latencies, and finite rate

feedback. Specifically, we developed a model of the dynamic atmosphere and used it

to find the optimal performance of the system in terms of fundamental system and

physical parameters, such as latencies, both estimation and feedback, feedback link

rate, number of apertures, turbulence strength, link range, etc. We also presented a

feedback scheme that achieves optimal performance.

The following describes the asymptotically optimal feedback strategy: a) initial-

ization i) create a codebook, known to both the transmitter and receiver; ii) at the

receiver, for each update, find the codebook entry closest, in the L2-sense, to the

input spatial mode associated with the largest square singular value; iii) feed back

the index of the closest codebook entry; b) steady state operation i) find the optimal

update rate, and make it known to both the transmitter and receiver; ii) calculate

the update vector, which is the difference between the current channel state and the

current transmitter channel state estimate; iii) find the scaled sub-codebook entry

closest, in the L2-sense, to update vector; iv) feed back the index of the closest scaled

sub-codebook entry. To prevent the size of the codebook from degrading system per-

formance, a system designer should make a codebook with a cardinality of 25 × ntx
known to both the transmitter and receiver. If the cardinality of the codebook is
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smaller than 25× ntx, the system’s performance will be bounded away from the per-

formance achievable with perfect knowledge regardless of feedback rate and latency.

Given a sufficiently large codebook, the feedback rate necessary to take full advan-

tage of the diversity, given in equation (4.44), varies sublinearly with the number of

transmit apertures and linearly with the coherence time inverse. Given that there is

sufficient feedback rate, the optimal feedback scheme is to create |C|/2 sub-codebooks

and feed back one-bit updates. Further, the time it takes for an update to reach the

transmitter τ0 + 2Ru/r should be much smaller than the atmospheric coherence time;

the performance degrades roughly exponentially as the time it takes for an update

to reach the transmitter increases. In general, the system performance, in terms of

wavefront predistortion gain, is given in equation (4.39). If the size of the codebook

and rate are sufficient, the performance, given in equation (4.45), is limited only by

latency.

While this asymptotic analysis provides insight into the impact of limited rate

feedback on wavefront predistortion optical systems, future work should focus on

performing an outage analysis for finite systems. This outage analysis would require

finding the probability density function of the largest square singular value of optical

systems (already known) and finding the probability density function of the distortion

distance (unknown). The results describing the feedback information are asymptoti-

cally optimal. However, for a finite number of transmit apertures other schemes may

converge to the asymptotic result faster than the scheme described. Future work could

include developing more efficient schemes for a finite number of transmit apertures.
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Chapter 5

Markov Model for the Sparse

Aperture System

In this chapter, we analyze experimental data to build a model of the memory proper-

ties of the turbulent atmosphere suitable for analyzing the performance of the network

Transport Layer. This treatment of outages is especially important when the link is

part of a larger network running network protocols because it captures the channels

memory. First we analyze data collected by an experimental system with a single laser

transmitter located 250 meters from two direct detection receivers. We use the data

to validate the use of a two-state continuous-time Markov process to model outage

statistics of the diversity system. In the two-state channel model, symbols received

during an outage are assumed to be lost, and symbols received during a non-outage

are assumed to be received correctly. This channel model can be used to analyze the

performance of the Transport Layer.

Next, we use statistical and spectral analysis techniques to show that the log-

amplitude fluctuations can be modeled as a Gauss-Markov random process. We

create a linear prediction model for signal attenuation for both the single-receiver and

diversity systems. The prediction model is an optimal estimator that predicts signal

attenuation 1 ms into the future to 1.5 dB accuracy for the single-receiver cases and

to 1 dB accuracy for the diversity case. The maximum amount of time the estimator

can predict into the future with some confidence is about 5 to 10 ms. This channel

179



prediction and adaptation can be used to greatly improve the efficiency of free-space

optimal communication systems in the atmosphere. Finally we theoretically show

that, as a consequence of the log-amplitude Gauss-Markov properties, the outage

statistics of systems with many transmitters and many receivers are well modeled as

a two-state continuous-time Markov process.

5.1 Atmospheric Markovianity from Experimental

Perspective

Work presented in this section was performed in collaboration with Rui Jin as a part

of the MIT Undergraduate Research Opportunities Program (UROP). Much of the

analysis follows the same path as [8].

5.1.1 Experimental Setup

Etty Lee and Shane Haas collected two receiver, one transmitter free-space optical

communication performance data using the setup shown in figure 5-1 [28, 19]. The

transmitter directs 0.6 mW of laser light through a telescope. The light then travels

through 125 meters of clear air, reflects off a mirror, and travels another 125 meters

through clear air to the receiver plane. The field is received by two telescopes, which

couple the received power into single mode fibers. Received signals are optically

amplified, filtered, and detected every millisecond for a total of six minutes. The

received power for each channel was recorded for analysis.

Figure 5-1: Experimental setup: In the figure, EDFA is an erbium doped fiber am-
plifier [28].
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5.1.2 Outage Statistics

In [28], the authors suggested that outage statistics arising from clear-air propagation

is well modeled by a two state continuous-time Markov process, in which the two

states represent outage and non-outage conditions. Such a two-state representation

is depicted in figure 5-2. In the two-state channel model, symbols received during an

outage (labeled as state ‘Outage’) are assumed to be lost, and symbols received during

a non-outage (labeled as state ‘Non-Outage’) are assumed to be received correctly.

This channel model keeps memory of the current channel state.

While the authors of [28] calculated expected outage and non-outage duration,

we use the data to further validate the use of the Markov outage model. A physical

process is well modeled as a two-state Markov process if the frequency distribution

of the time spent in a given state is approximately exponential. We can show this by

showing the memoryless property of the exponential distribution. Define a random

variable X as the time spent in the outage state. Then X is memoryless if and only

if:

Pr(X > t+ s|X > t) = Pr(X > s) (5.1)

for some non-negative times t and s. We can rewrite this condition as

Pr(X > t+ s|X > t)

Pr(X > t)
= Pr(X > s) (5.2)
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Figure 5-2: Two-state continuous-time Markov channel model.
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Now examine the exponential distribution. Let e−kt be the probability that the

wait time is greater than t for some positive value k. Then we see that the exponential

distribution fits the memoryless property:

e−k(t+s)

e−kt
= e−ks (5.3)

Only the exponential and geometric distributions have such a property. Since a

memoryless process is not dependent on the occurrence of previous states (because

otherwise the conditional probabilities would not equal the unconditional probabili-

ties), a memoryless process is Markovian. Thus, the duration of time spent in states

Outage and Non-Outage, namely the outage and non-outage durations respectively,

are exponentially distributed (as a direct consequence of Markov processes). If we

let toutage and tnonoutage be the outage and non-outage durations respectively, their

probability density functions are given by:

ftoutage(toutage) = νo−ne
νo−ntoutage , toutage ≥ 0

ftnonoutage(tnonoutage) = νn−oe
νn−otnonoutage , tnonoutage ≥ 0

(5.4)

where

νo−n =
1

E[outage duration]
(5.5)

and

νn−o =
1

E[non− outage duration]
(5.6)

We now show that the outage statistics are well modeled as a two-state continuous-

time Markov model by showing that the frequency distribution of the outage and

non-outage durations are exponential.

Figure 5-3 shows the cumulative distribution functions (cdfs) of the outage du-

rations of the diversity system and of the two separate channels of the two receivers

for the outage threshold power equal to the signal mean. The left figure shows the

outage cdfs while the right figure shows the non-outage cdfs. If the cdfs arise from

an exponential process, the complementary cumulative distribution function should
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Figure 5-3: Experimental cumulative probability distribution of outage and non-
outage duration.

be linear in log-space. Figure 5-4 shows the complementary cdf of the outage and

non-outage durations with the y-axis scaled logarithmically. For long outage/non-

outage, the data is noisy as evidenced in the figures. This is because long outages

become very unlikely; the statistics do not have enough data to converge. More data

would reduce the noise, smoothing the curves, for long outages. The linearity of the

curves in figure 5-4 suggests an exponential distribution of the outage durations in

all cases, and we evaluate this suggestion using statistical tools. We fit the log com-

plementary cdfs of the outage and non-outage durations with a line constrained to

pass through the origin (0, 0). The slope of the line was chosen to minimize the mean

squared error for outage durations less than 20 ms. Figure 5-5 shows the results of

this minimization. Clearly, an exponential distribution approximates the data well

for outage/non-outage durations that are most likely. However, the exponential dis-
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Figure 5-4: Experimental log complementary cumulative probability distribution of
outage and non-outage duration.

tribution under-predicts the likelihood of long outage/non-outages. The mean outage

duration was 9.5 ms, 8.8 ms, and 4.6 ms for channel 1, channel 2, and diversity respec-

tively. The mean non-outage duration was 9.4 ms, 8.7 ms, and 137.5 ms for channel

1, channel 2, and diversity respectively. As theory predicts, diversity increases the

mean non-outage duration and decreases the mean outage duration.

The parameters found by fitting a line to the log complementary cdf were used

to generate the cdfs shown in figure 5-6. The results drawn from the cdf are the

same as those found from the log complementary cdf: the exponential distribution

approximates the data well for short outage durations but is a poor approximation

for longer outages.

184



0 50 100 150
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Outage Length, ms

O
u
ta

g
e
 C

o
m

p
le

m
e
n
ta

ry
 C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

 

 

Channel 1
Channel 2
Diversity
Linear Fit, Channel 1
Linear Fit, Channel 2
Linear Fit, Diversity

0 50 100 150
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Non−Outage Length, ms

N
o
n
−

O
u
ta

g
e
 C

o
m

p
le

m
e
n
ta

ry
 C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

 

 

Channel 1
Channel 2
Diversity
Linear Fit, Channel 1
Linear Fit, Channel 2
Linear Fit, Diversity

Figure 5-5: Experimental log complementary cumulative probability distribution of
outage and non-outage duration with exponential fits.

Next we calculate the log-amplitude power spectral density and autocovariance

to determine if the log-amplitude fluctuations are well modeled as a Gauss-Markov

random process.

5.1.3 Log-Amplitude Statistics

Proving that the outage statistics are well modeled as a two-state continuous-time

Markov does not imply that the log-amplitude fluctuations are Markovian. Thus, we

proceed to show that the log-amplitude fluctuations are well modeled as a Gauss-

Markov random process. To prove that the log-amplitude fluctuations are well mod-

eled as a Gauss-Markov process, we must:
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Figure 5-6: Cumulative probability distribution of outage and non-outage duration
with exponential fits.

1. Show the log-amplitude fluctuations are well modeled as a Gaussian process and

2. Show that the log-amplitude power spectral density is well modeled as a single

pole spectrum.

To address the first issue, we note that Rytov’s method predicts that the log-amplitude

fluctuations should be normally distributed, specifically that the power fading is mod-

eled by e2χ, where χ is normally distributed. We verify the prediction with the data

collected. Figures 5-7 and 5-8 show the cdf of the log-amplitude against the corre-

sponding normal cdf curves with maximum likelihood mean and variance estimates.

The figures show a good agreement between Rytov’s method prediction of normality

and the log-amplitude data.
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Figure 5-7: Cumulative probability distribution of log-amplitude received with fitted
normal curve, channel 1.

While the figures show good qualitative agreement, we quantitatively test that the

log-amplitude data is drawn from a normal distribution using the Cramér-von-Mises

test. We define the null hypothesis, H0, as the log-amplitude data was drawn from a

Gaussian process while our alternative hypothesis, Hα, where 1− α is the confidence

level, as log-amplitude data was not drawn from a Gaussian process. For an observed

data set, d1, d2, · · · , dn in increasing order, we cannot reject the null hypothesis with

1 − α confidence if T is less than the critical value associated with α, where T is

defined as [2]:

T =
1

2n
+

n∑

i=1

[
2i− 1

2n
− F (di)

]2

(5.7)

A confidence level of 0.9, α = 0.1, corresponds to a critical value of 0.347 [9]. The

test statistics are T = 8.47 × 10−4 for channel 1 and T = 8.71 × 10−4 for channel 2.

Thus, we cannot reject the null hypothesis in all cases, and we provide evidence that

the log-amplitude fluctuations are normally distributed.
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Figure 5-8: Cumulative probability distribution of log-amplitude received with fitted
normal curve, channel 2.

Having shown that the log-normal amplitude data is well modeled as a Gaussian

process, we now continue to show that it is well modeled as a Gauss-Markov process

by demonstrating that the log-amplitude has the temporal statistics characteristic of

Markov processes:

1. The power spectral density (PSD) is well modeled as a one pole spectrum and

2. The autocovariance is approximately exponential.

First we examine the power spectral density.

Power Spectral Density Analysis

We use Welch’s method of averaged periodograms to estimate the power spectral den-

sity (PSD). We then fit these power spectral curves with autoregressive (AR) models

of different orders; if the PSD of the log-amplitude fluctuations are well modeled with
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a single-pole AR model, then we say the log-amplitude fluctuations are well modeled

as a Gauss-Markov random process. By using an AR model, we model the fluctua-

tions as the output of an all-pole filter H(s) driven by zero-mean white noise. AR

modeling uses well-known techniques like those described in [8]. If the log-amplitude

fluctuations are symmetric Gauss-Markov random processes, then, theoretically, the

diversity power fluctuations are Markovian. We also fit the diversity power fluctua-

tion PSD with AR models of various order to determine agreement between theory

and experiment.

To calculate the PSD, we must first calculate the magnitude of the signal attenu-

ation of the received power. We used Welch’s method to estimate the power spectral

density:

1. The data was divided into overlapping 5 second segments.

2. Each segment was weighted with a hamming window.

3. The periodogram of each weighted segment was calculated using the discrete

Fourier transform. The result was an estimate of the frequency spectrum with

2 Hz bins from 0 Hz to 500 Hz.

4. The periodograms were then averaged to reduce the variance of each frequency

bin.

We fit the PSD with a first order and second order AR model. The AR coefficients

are computed by solving the Yule-Walker equations to minimize the mean-squared

prediction error. If y[n] is the current output and x[n] is a zero-mean white noise

input, then the AR model is given by:

p∑

k=0

a[k]y[n− k] = x[n] (5.8)
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where p is the order and a[k] are the AR coefficients. This is a discrete-time system

that we would like to find the spectral characteristics for in continuous-time in order

to compare to our PSDs. To do this, we first find a discrete-time transfer function

for the AR model system by rearranging the above equation:

H(z−1) =
1∑p

k=0 a[k]z−k
(5.9)

The PSD of signal attenuation along with first and second order AR model fre-

quency response curves are shown in figures 5-9 through 5-14 for channel 1, channel

2, and diversity.

Figure 5-9: Log-amplitude sampled power spectral density and modified 1st order
autoregressive models, channel 1.

In all three cases, the first order AR model seems not rich enough to fit the log-

normal power spectrum, which rolls off faster, and the second order AR model seems

too rich, since the power spectrum rolls off more slowly. The problems in fit are

largely due to both tails of the spectrum. The left tail is especially interesting since

we observe more power in the lower frequencies than expected.
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Figure 5-10: Log-amplitude sampled power spectral density and modified 2nd order
autoregressive models, channel 1.

Figure 5-11: Log-amplitude sampled power spectral density and modified 1st order
autoregressive models, channel 2.
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Figure 5-12: Log-amplitude sampled power spectral density and modified 2nd order
autoregressive models, channel 2.

Figure 5-13: Diversity spectral density and modified 1st order autoregressive models,
diversity.
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Figure 5-14: Diversity power spectral density and modified 2nd order autoregressive
models, diversity.

In figures 5-15 through 5-18 we disregard the tails and fit the mid-frequencies of

the spectrums for channel 1, channel 2, and diversity.

Now, it is clear that in all cases the first order AR models fit the power spectrum

very well compared to the second order models, which are too rich (e.g., over fit the

data) for the power spectral data.

In reality, systems should be designed to operate in the main body of the frequen-

cies, since the spectral characteristics of the tails can change widely given different

environmental conditions. Thus, for normally operating systems we can model the

signal attenuation at the receiver by a first order AR model. More specifically we

can model the fluctuations of the signal attenuation in the channel as the output

of a low-pass first order filter driven by white noise. Since a first order AR model

represents a system defined by the equation a[0]y[n] + a[1]y[n− 1] = x[n] the system

represents a one-pole low pass filter. Also, since the current output y[n] depends only

on the input and the immediately previous state y[n− 1], we may model the channel

as Markovian.
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Figure 5-15: Log-amplitude sampled power spectral density and modified 1st order
autoregressive models, channel 1.

Figure 5-16: Log-amplitude sampled power spectral density and modified 2nd order
autoregressive models, channel 1.
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Figure 5-17: Log-amplitude sampled power spectral density and modified 1st order
autoregressive models, channel 2.

Figure 5-18: Log-amplitude sampled power spectral density and modified 2nd order
autoregressive models, channel 2.
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Figure 5-19: Diversity power sampled power spectral density and modified 1st order
autoregressive models, diversity.

Figure 5-20: Diversity power spectral density and modified 2nd order autoregressive
models, diversity.
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Autocovariance Analysis

For a wide sense stationary process the Wiener-Khinchin theorem states that the

inverse Fourier transform of the PSD provides the autocorrelation function of a ran-

dom process. As a result, because we showed that the log-amplitude PSD exhibits

Markov (i.e. single-pole) structure, we expect the log-amplitude autocovariance to

exhibit Markov structure. Thus, on the basis of the PSD analysis, we expect the

log-amplitude to have an exponential autocovariance structure.

Figures 5-21 through 5-24 show the estimated log-amplitude covariance for both

channel 1 and channel 2. On each figure, we fit a test autocovariance function of the

form:

f(t) = e−|t/t0|
$/2 (5.10)

where $ is the exponential power and t0, the atmospheric coherence time, is chosen

to fit the data. For figure 5-21, $ = 1 corresponding to an exponential, or Markov,

autocovariance function. Figure 5-22 shows a fit with $ = 1.1, the value of $ that

minimizes the mean squared error over all $ > 0. Figure 5-23 shows a fit with

$ = 5/3 and figure 5-24 shows a fit with $ = 2.

It is clear from the figures that $ = 1.1 fits the data the most closely. The Markov

fit, $ = 1, fits the data reasonably well. Thus, we confirm that the log-amplitude

fluctuations can be modeled as approximately a Gauss-Markov random process. The

fact that the log-amplitude fluctuations are Gauss-Markov implies that the diversity

power fluctuations can be modeled as a Markov random process. Additionally, we

verified that the diversity power fluctuation data exhibits Markov dynamics. In ad-

dition, we may model the fluctuations in the signal attenuation as the output of a

one-pole low-pass filter driven by white noise. In the next section we attempt to for-

mulate a prediction model for the signal attenuation based on the first order model

we just derived.

Next, we use the single pole spectrum model of the log-amplitude fluctuation to

find the optimal channel prediction.
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Figure 5-21: Autocovariance of channel 1 and channel 2 with a best fit autocovariance
from Gauss-Markov class of processes.

5.1.4 Channel Prediction

We wish to use our knowledge of the channel dynamics to predict the future at-

mospheric state on the basis of the atmospheric state time history. Because the

Markovianity of the atmospheric dynamics, the future state can be optimally pre-

dicted based on only the current atmospheric state. Thus, we use the one-pole filter

behavior of the log-normal atmosphere fluctuations as a way to predict the signal at-

tenuation in the future given the present turbulence state. If χ[n] is the log-amplitude

state at time n, then we may optimally predict the log-amplitude j time steps later

using the equation:

χ̂[n+ j] = µχ[n] + c(χ[n]− µχ[n]) (5.11)

where we have assumed that the log-amplitude mean µχ varies slowly and c is a

calculated constant. This is the linear least-squares (LLS) estimator; the Gauss-

Markov theorem states that the LLS estimator has the minimum variance of all

estimators that are linear combinations of the observations. Further, because the log-
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Figure 5-22: Autocovariance of channel 1 and channel 2 with a best fit autocovariance
with $ = 1.1.

amplitude fluctuations are normally distributed, the LLS estimator is simultaneously

the optimal Bayes’ least square estimator and minimum a priori (MAP) estimator

[51].

The value of c is calculated from the modified Yule-Walker equation [51]. From

the orthogonality principle of LLS estimation, we have:

E [(χ̂[n+ j]− χ[n+ j])χ[n]] = 0

⇒ E [(χ̂[n+ j])χ[n]] = E [χ[n+ j]χ[n]]
(5.12)

We define the covariance function of χ[n] as Kχχ[j] = E[χ[n]χ[n+ j]] and rewrite the

last equation as:

cKχχ[0] = Kχχ[j]

⇒ c =
Kχχ[j]

Kχχ[0]

(5.13)
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Figure 5-23: Autocovariance of channel 1 and channel 2 with a best fit autocovariance
with $ = 5/3.

Thus, the value of c is the quotient of two covariances. In practice a system would

calculate the covariances using the sample correlation function K̂χχ[j] from past data

and make the approximation that Kχχ[j] = K̂χχ[j]. The amount of past data used to

estimate the covariance should be around the time for which the process is approx-

imately wide sense stationary, the stationarity time. Because the stationarity time

of the atmosphere is on the order of 103 to 104 seconds, we use around 103 seconds

of data, or 106 data points (since the sampling period is 1 ms), to estimate the cor-

relation function. In practice, significantly fewer than 103 data points would yield

a sufficient estimate of the correlation function. The sample correlation function at

time n using the past N data is defined as

K̂χχ[j] =
1

N − |j|

n−|j|∑

k=n−N+1

χ[k]χ[k + |j|] (5.14)

provided that |j| ≤ N − 1. Note that the sample correlation function, and thus our

values for c, will change at each time step and will therefore be recalculated at each
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Figure 5-24: Autocovariance of channel 1 and channel 2 with a best fit autocovariance
with $ = 2.

time step. In practice a system would only need to update the covariance estimate

at some fraction of the stationarity time, thus significantly reducing the number of

calculations required.

For the data, we calculate the covariances and the prediction for the log-amplitude

fluctuations for channel 1 and channel 2. To predict the diversity case, we calculate

the linear models for each log-amplitude channel individually, then exponentiate and

sum the result. This method implicitly assumes the channels are uncorrected.

The predictions are calculated for all time steps starting at 100 + j ms (j is the

number of ms to predict into the future at time n given data χ[n]). We use this

process to predict the signal attenuation for j = 1, 3, 5 ms for channel 1, channel

2, and diversity. Figures 5-25, 5-26, and 5-27 show the predicted signal attenuation

(dotted lines) and actual signal attenuation values (solid lines) for channel 1, channel

2, and diversity and predictions for times of one, three, and five milliseconds in the

future. The graphs show the predictions in a 200 ms window. For channel 1,

the estimator is able to predict the signal attenuation to within 1.5 dB for a 1 ms
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Figure 5-25: Predicted signal attenuation versus actual for 1, 3, and 5 ms prediction
times, channel 1.

prediction time (1.5 dB is worst case, typical prediction error is smaller), within 2

dB for a 3 ms prediction time, and within 2.5 dB for a 5 ms prediction time. The

range of signal attenuation is 4.5 dB. For channel 2, the estimator is generally able

to predict the signal attenuation to within 1.5 dB for a 1 ms prediction time, within

2 dB for a 3 ms prediction time, and within 2 dB for a 5 ms prediction time. The

exception is a spike at around 220 ms, at which the error is 2 dB for a 1 ms prediction

time and around 4 dB for a 3 ms prediction time and a 5 ms prediction time. The
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Figure 5-26: Predicted signal attenuation versus actual for 1, 3, and 5 ms prediction
times, channel 2.

range of signal attenuation is 3.5 dB (without the spike) or 6 dB (with the spike).

For diversity, the estimator is able to predict the signal attenuation to within 1 dB

for a 1 ms prediction time, within 1.2 dB for a 3 ms prediction time, and within 1.5

dB for a 5 ms prediction time. The range of signal attenuation is 3 dB.

The error in the diversity case is smaller because the range is tighter. In all

cases, as the prediction time increases the error increases because the predicted signal

attenuation shows decreasing variation with the variation of the data. In other words,
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Figure 5-27: Predicted signal attenuation versus actual for 1, 3, and 5 ms prediction
times, diversity.

the value calculated for c = Kχχ[j]

Kχχ[0]
decreases as the prediction time increases. This

reflects our decreased confidence in predicting further into the future. We analyze

this confidence in the next section.
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Channel Prediction Confidence

It is important to learn how far into the future we can predict with high confidence. As

we predict further into the future using the equation χ̂[n+j] = µχ[n]+c(χ[n]−µχ[n]),

the value of c = Kχχ[j]

Kχχ[0]
decreases, reflecting our decreased ability to predict the future.

We plot the value of c as a function of delay, time-averaged over 1000 successive

calculations of c (one second of observations) in order to eliminate random variations

in the covariance estimate. Figure 5-28 shows the log-amplitude autocovariance for

channel 1 and channel 2.
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Figure 5-28: Log-amplitude autocovariance, Kχχ[j].

In both cases, the value of c drops rapidly so that at j = 5 ms, c is only about 0.5.

After j = 10 ms, the value of c is bound below 0.2. This indicates that the maximum

amount of time that we should predict into the future with some confidence is 5 to 10

ms. Beyond that, we are only about as confident as if we simply predicted the mean

value. The covariance ripple, which shows up as a resonance peak in the PSD shown

in figure 5-28, is interesting and, as of yet, unexplained. The resonance peak could be

205



due to mirror vibration or some other artifact caused by the particular experimental

setup.

The LLS estimator is the optimal estimator for predicting the log-amplitude atten-

uation in the atmospheric channel. The LLS estimator is not optimal for estimating

the power attenuation; nonetheless it is a good estimator. The errors in prediction

are substantial — when predicting 1 ms into the future, we make up to a 1.5 dB error

in prediction for channel 1 and channel 2 and a 1 dB error in prediction for diversity.

Additionally, the maximum time we can predict into the future with any confidence

is about 5 to 10 ms. The LLS estimator is not more accurate at predicting the signal

attenuation in the diversity channel per se. Relative to the range of the actual signal

attenuation data, the predicted signal attenuation values are not more accurate. The

fact that the predicted values are closer to the actual values is due to the smaller

range of the actual signal attenuation data.

5.2 Atmospheric Markovianity from Theoretic

Perspective

In this section, we use the experimentally derived model for the turbulent atmosphere

to establish properties of the sparse aperture communication system performance;

specifically, we use the property that the log-amplitude fluctuations are approxi-

mately a Gauss-Markov process to show that the received signal power, after optimal

recombination, of a sparse aperture system without feedback is well modeled as a

Gauss-Markov process. We continue to derive the transition rates for the process.

We prove that, under some restricted conditions, the sparse aperture system with-

out feedback can be modeled as a Gauss-Markov process. Next, we find the level

crossing rate, a measure of the rapidity of fading, then continue to find the average

outage/non-outage duration, and finally find the Markov transition rates.

Theorem 13 For a sparse aperture system without feedback, optimal recombination,

and many transmitters and receivers, the received signal power is a Gauss-Markov
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process. The distribution of the received power at a single time instant is:

‖~y‖2 ∼ N
(

SNR,
SNR2

ntxnrx

(
e4σ2

χ − 1
))

(5.15)

and the autocovariance is:

R‖~y‖2‖~y‖2(t) =
SNR2

ntxnrx

(
e4σ2

χ − 1
)
e−

1
2 | tto | (5.16)

Proof. If we allocate equal power to each transmitter, the power received at a single

receiver is:

|yj|2 =
SNR

ntxnrx

∣∣∣∣∣
ntx∑

k=1

hkj

∣∣∣∣∣

2

=
SNR

ntxnrx

[
ntx∑

k=1

|hkj|2 +
ntx∑

k1=1

(
ntx∑

k2=1,k2 6=k1

h†k1jhk2j + hk1jh
†
k2j

)]

=
SNR

ntxnrx

[
ntx∑

k=1

|hkj|2 + 2
ntx∑

k1=1

(
ntx∑

k2=1,k2 6=k1

Re
{
h†k1jhk2j

})]

=
SNR

ntxnrx

[
ntx∑

k=1

|hkj|2 + 2
ntx∑

k1=1

(
ntx∑

k2=1,k2 6=k1

eχk1j
+χk2j cos (φk1j − φk2j)

)]

(5.17)

The cos (φk1j − φk2j) term is a zero mean random variable. As a result, as the number

of transmitters becomes very large the second summation approaches zero. Therefore

equation (5.17) asymptotically simplifies to:

|yj|2 =
SNR

ntxnrx

[
ntx∑

k=1

|hkj|2
]

(5.18)
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Assuming optimal recombination, the received power is:

‖~y‖2 =
SNR

ntxnrx

[
nrx∑

j=1

|yj|2
]

=
SNR

ntxnrx

[
ntx∑

j=1

ntx∑

k=1

|hkj|2
]

=
SNR

ntxnrx

[
ntx∑

j=1

ntx∑

k=1

e2χkj

]
(5.19)

If we wish to perform an analysis for a system with a finite number of transmitters

and receivers, we would need measurements of the phase. Because the data analyzed

was incoherently detected, phase information is not available. By the central limit

theorem, the received power is normally distributed:

‖~y‖2 ∼ N
(

SNR,
SNR2

ntxnrx

(
e4σ2

χ − 1
))

(5.20)

Assuming weak turbulence, σ2
χ ≤ 0.1, we apply a Taylor series expansion to the

received power to calculate the autocovariance of the optimally recombined received

power:

R‖~y‖2‖~y‖2(t) =
SNR2

ntxnrx

(
e4σ2

χ − 1
)
e−

1
2 | tto | (5.21)

Since the autocovariance function is exponential, the received power is a Gauss-

Markov process. �

Theorem 14 For a sparse aperture system without feedback, optimal recombination,

and many transmitters and receivers, the received signal power level crossing rate is

given by:

LCR(R) =
1

4πto
exp

(
−ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

where LCR is the received signal power level crossing rate and R is the threshold

normalized to the root mean squared signal level.
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Proof. The level crossing rate for a normal random variable z with mean µz, variance

σ2
z , and autocovariance gz(t) is given by [36]:

LCR(R) =
1

2π

√
g′′z (0)

gz(0)
exp

(
−1

2

(
R− µz
σz

)2
)

(5.22)

Using the statistics of the received signal power given in Theorem 13, we obtain the

level crossing rate:

LCR(R) =
1

4πto
exp

(
−ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

�

Generally, the LCR is inversely proportional to the coherence time, decreases

as the number of transmitters (receivers) increases, and increases as the turbulence

becomes stronger. Next we find the average fade duration.

Theorem 15 For a sparse aperture system without feedback, optimal recombination,

and many transmitters and receivers, the average outage duration is given by:

τ̄out(R) = Q

([−(R− SNR)

SNR

]√
ntxnrx

e4σ2
χ − 1

)
4πto exp

(
ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

(5.23)

Similarly, the average non-outage duration is given by:

τ̄notout(R) = Q

([
R− SNR

SNR

]√
ntxnrx

e4σ2
χ − 1

)
4πto exp

(
ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

(5.24)

Proof. The average outage duration is given by [22]:

τ̄out(R) = Pr(r ≤ R)/LCR(R) (5.25)
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Using the statistics given by Theorem 13 and the level crossing rate given by Theorem

14, we obtain the average outage duration of the received signal power:

τ̄out(R) = Q

([−(R− SNR)

SNR

]√
ntxnrx

e4σ2
χ − 1

)
4πto exp

(
ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

(5.26)

By symmetry, the average not-outage duration of the received signal power is:

τ̄notout(R) = Q

([
R− SNR

SNR

]√
ntxnrx

e4σ2
χ − 1

)
4πto exp

(
ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
)

(5.27)

�

The average outage and non-outage duration as a function of the product of the

number of transmitters and receivers for various normalized thresholds is shown in

figure 5-29.
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Figure 5-29: Conjectured low probability of outage Markov model for a sparse aper-
ture system without feedback.
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The average outage/non-outage durations can be used to find the transition times

for the two-state continuous-time Markov channel model:

νo−n =
1

τ̄out(R)

νn−o =
1

τ̄notout(R)

(5.28)

Thus we have found the Markov transition rates in terms of fundamental atmospheric

parameters and system parameters: the turbulence strength, σ2
χ, the turbulence co-

herence time, to, the number of transmitters and receivers, ntx and nrx, and the SNR.

Figure 5-30 shows the low outage probability Markov model for the sparse aperture

system without feedback. If we look at the special case where R = SNR, the transi-

tion rates should be equal, indicating that the system will spend an equal amount of

time in outage as non-outage. Indeed, the outage and non-outage times are equal:

τ̄out(R) = 2πto → νo−n =
1

2πto

τ̄notout(R) = 2πto → νn−o =
1

2πto

(5.29)

A typical system will operate in the region where the probability of outage is small,

given by R− SNR� SNR. For this special case, we can accurately approximate the

Q-function using the well known bound:

Q(x) ≤ 1

x
√

2π
e−

x2

2 (5.30)

This simplifies the average outage and non-outage durations to:

τ̄out(R) = 2to

(
SNR

SNR−R

)√
2π(e4σ2

χ − 1)

ntxnrx

τ̄notout(R) = 4πto exp

(
ntxnrx

2
(
e4σ2

χ − 1
)
(
R− SNR

SNR

)2
) (5.31)

Increasing the product of the number of transmitters and the number of receivers can

reduce the average outage duration while increasing the average non-outage duration.
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Figure 5-30: Low probability of outage Markov model for a sparse aperture system
without feedback.

Both of these performance gains can be realized without bound, provided that the

assumptions stated in Chapter 2 continue to hold. Increasing the SNR can reduce

the average outage duration while increasing the average non-outage duration. As

SNR becomes very large, however, performance gains experience diminishing returns.

In the limit as the SNR grows very large, the SNR no longer has an effect of outage

and non-outage durations. Stronger turbulence increases the outage duration and

decreases the non-outage duration. Finally an increase in the coherence time increases

both outage and non-outage durations.

Of importance when designing a Transport Layer protocol, the outage duration

varies polynomially with SNR, the number of transmitter and receivers, and turbu-

lence strength while the non-outage duration varies exponential in those same vari-

ables. Thus, a system designer cannot substantially reduce the outage duration, but

can only increase the time between outages.
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5.2.1 Markovianity Discussion

The goals of this section were threefold: first, to show that experimental data supports

a Markov model for outage statistics and a Gauss-Markov model for the log-amplitude

fluctuations; second, to formulate a linear prediction model for the signal attenuation

in the channel; third, to analyze the effect of diversity on the channel model and the

prediction model. All goals were satisfactorily investigated.

The outage statistics can be modeled as a Markov process: we can model the

channel as a two-state Markov process with the states being outage and non-outage.

The system is in outage when the received power is below a threshold. We demon-

strated the validity of this model by showing that the distribution of outage times

is approximately exponential. The log-amplitude fluctuations can be modeled as a

Gauss-Markov process: we can model the log-amplitude fluctuation as Gaussian with

a single-pole PSD. We demonstrated the validity of this model by fitting a first or-

der autoregressive model to the power spectral density and by fitting an exponential

function to the autocovariance.

We used the Gauss-Markov process behavior of the log-amplitude to create a linear

least squares estimator for the signal attenuation in the channel. Such an estimator is

optimal for predicting the log-amplitude fluctuations but not for predicting the power

fluctuations. The estimator can predict the signal attenuation 1 ms in the future to

within 1.5 dB in the single-receiver cases and to within 1 dB in the diversity case.

The maximum time the estimator can predict into the future with any confidence is

about 5 to 10 ms.

Diversity decreases the probability and duration of outages, from a maximum

outage duration of 38 ms in channel 1 to a maximum outage duration of 8 ms for

diversity. The model of the channel in the diversity case is still Markovian like the

other cases. The linear estimator is approximately as accurate in the diversity case

as in the other cases.

We used the Gauss-Markov model of the log-amplitude fluctuations to derive the

outage statistics of a sparse aperture system without feedback and many transmitters
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and receivers. We further conjectured the transition rates for a Markov outage model

of a sparse aperture system with feedback and many transmitters and receivers.

Future research should focus on explaining unexpected results from the data. For

example, a few outages are longer than expected. Also, the signal attenuation has

higher power at the lowest frequencies and lower power at the highest frequencies

than expected. It is likely that other experiments will show different results for these

regions. Future research should make sure that protocols and systems avoid these

extreme regions, or attempt to model these regions.

The linear least squares estimator is a promising tool for predicting the state of the

channel a couple of milliseconds into the future. For wavefront predistortion systems

based on feedback, this information can be calculated at the transmitter side and

used to improve performance between channel state updates. Future research should

investigate exactly how the channel state should be predicted at the transmitter to

optimize performance.
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Chapter 6

Security of Free Space Optical

Communication

Free space optical communication systems are susceptible to eavesdroppers and in-

terferers. An eavesdropper is any user that attempts to receive and decode the in-

formation intended for another user. An interferer is a user that (either intentionally

or unintentionally) transmits power into a receiver that decreases the ability of that

user to receive and decode information from other users. Techniques to mitigate the

susceptibility to eavesdroppers and interferes include:

• Polarization diversity

• Spatial diversity

• Temporal diversity

• Frequency diversity

The goal of these techniques is to: 1. increase minimum the eavesdropper’s receiver

sensitivity required to intercept information intended for other users and 2. increase

the minimum interferer transmit power required to degrade the intended receiver’s

performance. Because the topic of this thesis is the efficient use of spatial diversity, we

only address the ability of spatial diversity to mitigate interference and eavesdropping.

We compare diversity systems with and without feedback on the basis of the minimum

215



amount of interferer power required to impair the system. We also compare the

systems on the basis of the maximum amount of information that can be transferred

to intended receivers while ensuring zero information is transferred to eavesdroppers.

6.1 Sparse Aperture Performance in the Presence

of an Interferer

Any deployed system will be affected by interference. In a densely populated urban

area, other systems might inadvertently couple power into the receiver. There are

other situations where a hacker might couple power into the receiver in an attempt to

deny service. We modify the channel transfer equation given in Chapter 2 to include

the effects of an interferer:

~y =

√
SNR

nrx
H~x+

√
SIR~y I + ~w (6.1)

where ~y I is magnitude and phase of the spatial distribution of the coherently detected

interferer field at the interferer receiver plane (normalized to unit energy) and SIR is

the interference signal power to noise power ratio.

‖~y I‖2 = 1

SIR =
2(qη/hf)2PloPIArxTb

[(q2η/hf)Plo + (qη/hf)2PloNo +Noc]nrx

(6.2)

where PI is the radiative flux at the intended receiver’s aperture, Tb is the bit period

of the intended receiver, and Plo is the local oscillator power of the intended receiver.

Note that we have placed no restriction on the geometry or capabilities of the inter-

fering transmitter. We have only assumed that it is able to couple PI power into the

intended receiver’s aperture. Using the SVD to transform the channel into parallel
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Gaussian channels, we arrive at:

ỹ1 =
√

SNRγ1x̃1 +
√

SIRỹI
1 + w̃1

ỹ2 =
√

SNRγ2x̃2 +
√

SIRỹI
2 + w̃2

...
...

...

ỹnmin
=
√

SNRγnmin
x̃nmin

+
√

SIRỹI
nmin

+ w̃nmin

(6.3)

where ỹI
i is the projection of the received interference field onto the ith output eigen-

mode of H, ỹI
i = ~u†i (H)~y I, and nmin = min(ntx, nrx). The vectors ~̃x, ~̃y, and ~̃w are

related to the vectors ~x, ~y, and ~w through the usual SVD, such as in [48]. Note

w̃i retains its circularly symmetric complex Gaussian distribution. We denote the

variance of w̃i as σ2 = 1. The constraint that E[‖~x‖2] = 1 implies a constraint on

the energy allocated to x̃i (assuming no energy is allocated to eigenmodes associated

with singular values with a value of zero):

E

[
nmin∑

i=1

Ei

]
= 1 (6.4)

where Ei is the energy in x̃i, |x̃i|2 = Ei. Similarly, the constraint that ‖~y I‖2 = 1

implies a constraint on the energy allocated to ỹ I
i :

E

[
nrx∑

i=1

Ii

]
= 1 (6.5)

where Ii is the energy in ỹ I
i , |ỹ I

i |2 = Ii. We now bound the impact that an interferer

can have on the sparse aperture system by looking at two cases: 1. (lower bound)

a basic interferer is an interferer that has no ability to predistort its wavefront and

no knowledge of the channel state and 2. (upper bound) an advanced interferer is

an interferer that has knowledge of the power allocation at the receiver arriving from

the intended transmitter and the ability to control the spatial distribution of the

interference field at the intended receiver. For both cases, we assume that the power

coupled into the intended receiver is Gaussian distributed after being integrated over
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a bit period. Throughout this chapter, we assume BPSK as the modulation scheme

because it provides the best protection against both fading and interference. Based

on these results, we provide fuller analysis and insight into the system performance

in the presence of interference.

6.1.1 Basic interference

A basic interferer, one that has no knowledge of the turbulence state, will couple

power equally into each output eigenmode E[Ii] = 1/nrx. As a result, as the number

of receive apertures grows, the average probability of error for a sparse aperture

system with perfect turbulence state knowledge (the wavefront predistortion system)

in the presence of a basic interferer is:

lim
ntx,nrx→∞

E[Pr(error)] = Q



√

2SNR(1 +
√
β)2

1 + SIR/nrx


 (6.6)

As the number of receive apertures grows, the average probability of error for a sparse

aperture system without turbulence state knowledge (the open loop system) in the

presence of a basic interferer is:

lim
ntx,nrx→∞

E[Pr(error)] = Q

(√
2SNR

1 + SIR/nrx

)
(6.7)

For both systems, with and without turbulence state knowledge, the interference

power must be such that SIR > 0.1nrx for the interferer to degrade system perfor-

mance. Wavefront predistortion based on turbulence state knowledge does not affect

the interference power needed to impact the system performance. This is because the

interferer spreads its power equally among the output eigenmodes. The open loop

system can increase SNR or the number of receivers to overcome the effects of the

turbulence. The wavefront predistortion system, in contrast to the open loop system,

can overcome the effects of the interferer by either increasing the SNR, increasing the

number of receive apertures or increasing the number of transmitters.
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Figure 6-1 shows average performance in the presence of a basic interferer versus

interference power, SIR, for a balanced sparse aperture system with SNR = 2. In

the figure, the blue line represents the average BER for a sparse aperture system

with wavefront predistortion. The green line represents the average BER for a sparse

aperture system without wavefront predistortion. The black dashed line represents

the minimum interference power necessary to degrade system performance.
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Figure 6-1: Sparse aperture system performance in the presence of a basic interferer:
This figure shows average BER versus interference power, SIR, for a balanced sparse
aperture system with SNR = 2. In the figure, the blue line represents the average BER
for a sparse aperture system with wavefront predistortion. The green line represents
the average BER for a sparse aperture system without wavefront predistortion. The
black dashed line represents the minimum interference power necessary to degrade
system performance.

6.1.2 Advanced interference

In this section we analyze the effects of an advanced interferer: an advanced interferer

has knowledge of the power allocation at the receiver arriving from the intended
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transmitter and the ability to control the spatial field distribution of the interference

at the intended receiver. We first note that, given some interference power allocation,

the optimal transmitter allocates all power to the output eigenmode that provides

the best performance:

Ei =





1, i = argmax
j

γ2j
1+SIRIj

0, else

(6.8)

The advanced interferer then allocates all power to that same output eigenmode to

degrade performance. When the intended receiver detects the degraded channel,

the intended transmitter will hop to another eigenmode. As a consequence, the

intended transmitter and the interferer both continually hop eigenmodes, with the

intended transmitter attempting to minimize BER and the interferer attempting to

maximize BER. To find the steady state of this eigenmode hopping, we interpret this

process in a probabilistic sense by defining p(Ei) as the probability that all transmit

power is allocated to the ith output eigenmode. For a sparse aperture optical system

with wavefront predistortion and eigenmode hopping, transmitting using BPSK, the

average worst-case BER is:

E[Pr(error)] = EH


 min
p(Ei):

∑
p(Ei)=1


 max
Ii:
∑
Ii=1

nmin∑

i=1

p(Ei)Q



√

2SNRγ2
i

1 + SIRIi






 (6.9)

where the expectation EH[·] is over the atmospheric turbulence. In this formulation

the interferer is able to shape its waveform to couple an arbitrary, but limited, amount

of energy into each eigenmode. This formulation implicitly assumes that the trans-

mitter can change its spatial mode much faster than the interferer can measure the

transmitter’s spatial mode and adapt. This assumption is required for convergence.

Thus the optimization can be interpreted as follows. For a given distribution of in-

terference power, Ii, the transmitter allocates power to minimize BER. For a given

distribution of transmit power p(Ei), the interferer allocates power to maximize BER.

The solution to the optimization problem in equation (6.9) is presented in Theorem

16.
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Theorem 16 For the problem setup in equation (6.9), the interference power alloca-

tion that maximally degrades system performance is:

Ii =

(
γ2
i

µ
− 1

SIR

)+

(6.10)

where µ is chosen to satisfy the total power constraint:

nmin∑

i=1

(
γ2
i

µ
− 1

SIR

)+

= 1 (6.11)

The optimal transmitter power allocation is then uniform:

p(Ei) =
1

|S| , ∀i ∈ S

S =

{
i

∣∣∣∣i = argmax
j

γ2
j

1 + SIRIj

} (6.12)

where |S| is the cardinality of the set S. The associated BER is then:

E[Pr(error)] = EH


Q



√√√√2SNR

( ∑|S|
i=1 γ

2
i

SIR + |S|

)


 (6.13)

Proof. Suppose we are given a transmit power allocation, p(Ei). The maximization

in equation (6.9) becomes:

E[Pr(error)] = EH


 max
Ii:
∑
Ii=1

nmin∑

i=1

p(Ei)Q



√

2SNRγ2
i

1 + SIRIi




 (6.14)

The objective function in equation (6.14) is jointly concave in Ii. As a result, we solve

this problem by the method of Lagrange multipliers. Consider the Lagrangian:

L(µ, I1, . . . , Inmin
) =

nmin∑

i=1

p(Ei)Q



√

2SNRγ2
i

1 + SIRIi


− µ

nmin∑

i=1

Ii (6.15)
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where µ is the Lagrange multiplier. The Karush-Kuhn-Tucker (KKT) conditions for

the optimal interference power allocation are:

∂L
∂Ii





= 0 if Ii > 0

≤ 0 if Ii = 0

(6.16)

The following satisfies the KKT conditions and is therefore the optimal interference

power allocation given p(Ei):

Ii =

(
P (Ei)γ

2
i

µ
− 1

SIR

)+

(6.17)

with the Lagrange multiplier as the solution to:

nmin∑

i=1

(
P (Ei)γ

2
i

µ
− 1

SIR

)+

= 1 (6.18)

Substituting the optimal interference power into equation (6.9) gives:

E[Pr(error)] = . . .

EH


 min

µ,p(Ei):
∑
p(Ei)=1,

∑( γ2
i
µ
− 1

SIR

)+

=1





nmin∑

i=1

p(Ei)Q



√√√√ 2SNRγ2

i

1 + SIR
(
P (Ei)γ

2
i

µ
− 1

SIR

)+











(6.19)

The objective function is jointly convex in p(Ei) and µ. As a result, we solve this

problem by the method of Lagrange multipliers. Consider the Lagrangian:

L(µ, p(E1), . . . , p(Enmin
)) = . . .

−
nmin∑

i=1

p(Ei)Q



√√√√ 2SNRγ2

i

1 + SIR
(
P (Ei)γ

2
i

µ
− 1

SIR

)+




− λ1

nmin∑

i=1

p(Ei)− λ2

nmin∑

i=1

(
P (Ei)γ

2
i

µ
− 1

SIR

)+

(6.20)
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where λ1 and λ2 are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) condi-

tions for the optimal power allocation are:

∂L
∂p(Ei)





= 0 if p(Ei) > 0

≤ 0 if p(Ei) = 0

∂L
∂µ





= 0 if µ > 0

≤ 0 if µ = 0

(6.21)

The following satisfies the KKT conditions and is therefore the optimal power allo-

cation:

p(Ei) =
1

|S| , ∀i ∈ S

S =

{
i

∣∣∣∣i = argmax
j

γ2
j

1 + SIRIj

} (6.22)

Substituting the optimal power allocation into the expression for optimal interference

power allocation proves the theorem. The average BER is then:

E[Pr(error)] = EH



nmin∑

i=1

p(Ei)Q



√

2SNRγ2
i

1 + SIRIi




 (6.23)

Using the optimal transmit and interference power allocation, we have:

E[Pr(error)] = EH


Q



√√√√ 2SNRγ2

1(
1 + SIR

(
γ21
µ
− 1

SIR

))







= EH

[
Q

(√
2SNRµ

SIR

)] (6.24)

Substituting the following expression for µ:

µ =

∑|S|
i=1 γ

2
i

1 + |S|/SIR
(6.25)
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and simplifying proves the average BER portion of the theorem. �

The interference power allocation stated in Theorem 16 is much like water-filling;

we plot the values of 1/γ2
i versus the square singular value index, i, and imagine

the line traced out as a vat which may hold water. Interference power is allocated to

eigenmodes such that the water level on the graph (which represents the inverse of the

signal-to-interference noise ratio) is SIR/µ. Interference power is first allocated to the

eigenmode associated with the largest square singular value. As interference power

is increased, it is allocated to weaker and weaker eigenmodes. Thus, as expected,

the optimal weak interferer degrades the channel by allocating its total power to the

strongest eigenmode. A strong interferer allocates some power to all eigenmodes,

effectively creating a channel where all nonzero eigenmodes have equal signal to in-

terference noise ratio. Figure 6-2 shows the effect of a moderate interferer. In the top

graph, we show the square singular value distribution (blue histogram) some atmo-

spheric state. The red histogram shows the resulting signal to interference noise ratio

after the interferer has optimally selected its interference power allocation according

to Theorem 16. We see that the resulting maximum signal to noise interference ratio

is constant over many eigenmodes at a level of µ. The optimal transmitter power

allocation pdf, shown as the green histogram, is uniform over the eigenmodes with a

signal to interference noise ratio of µ/SIR.

The transmit power hops randomly among the eigenmodes with maximum signal

to interference noise power γ2
i /(1+SIRIi). The frequency at which the transmit power

hops eigenmodes is governed by the ability of the interferer to measure the transmit

waveform. If the interferer can measure the waveform quickly, the transmitter must

mode hop faster.

In general, |S|, and consequently average BER, in Theorem 16 must be solved for

numerically. By taking the limit, as the number of transmit and receive apertures

grow, we can use the Marcenko-Pastur density of square singular values to derive

closed form average BER expressions. Next we present the performance of sparse

aperture system as the number of apertures grows large for three different interference

power regimes, a weak interferer, a moderate interferer, and a strong interferer. These
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Figure 6-2: Moderate interference: Signal to noise ratio (eigenmode gain without
interference) and signal to interference noise (eigenmode gain with interference) ratio
versus eigenmode number and optimal transmitter eigenmode hopping pdf.

three regimes cover all possible interference powers. First, we present performance in

the presence of a strong interferer.

Theorem 17 For a sparse aperture system with a large number of apertures, the

expected BER in the presence of a strong interferer is:

lim
nrx,nrx→∞

E[Pr(error)] = Q

(√
2SNR

(
βnmin

SIR + nmin

))
(6.26)

225



Provided the interferer has sufficient total power:

SIR ≥ nmin

(
2
√
β − 1

)
(
1−√β

)2 (6.27)

Proof. To prove this theorem, we begin with the optimal interference power allocation

given in Theorem 16 and assume the interferer has enough power to interfere with

each nonzero eigenmode:

(
γ2
min

µ
− 1

SIR

)
= 0

→ µ = SIR(1−
√
β)2

(6.28)

where we have used that the minimum nonzero square singular value is, almost surely,
(
1−√β

)2
. Using the power constraint on the optimal interference power allocation,

we solve for the condition on interference power for each nonzero eigenmode to be

allocated power:

1 =

nmin∑

i=1

(
γ2
i

µ
− 1

SIR

)

=

∑nmin

i=1 γ2
i

SIR(1−√β)2
− nmin

SIR

→ SIR ≥ nmin

(
2
√
β − 1

)
(
1−√β

)2

(6.29)

where we have used, for a large number of apertures, that the number of nonzero

square singular values converges, almost surely, to nmin and that the average square

singular value converges, almost surely, to β. The average BER is then:

lim
nrx,nrx→∞

E[Pr(error)] = EH


Q



√√√√2SNR

( ∑|S|
i=1 γ

2
i

SIR + |S|

)




= EH

[
Q

(√
2SNR

( ∑nmin

i=1 γ2
i

SIR + nmin

))]

= EH

[
Q

(√
2SNR

(
nminβ

SIR + nmin

))]

(6.30)
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Thus, we have proven the theorem. �

This result is intuitively satisfying. As the number of system apertures is in-

creased, the interferer must spread its power among more spatial modes thus reducing

its impact. Indeed, as the number of apertures becomes large the interferer is com-

pletely rejected. Physically, the condition on the interference power guarantees that

some interference power is allocated to each nonzero eigenmode. Put into water-filling

terms, the interferer has enough water to completely fill the vat.

Figure 6-3 shows the SNR, signal to interference noise ratio, and transmitter power

allocation pdf for the case of a strong interferer. In this case, the interferer has enough

power to effectively interfere with all nonzero eigenmodes. As a result, the transmitter

allocates power equally to all eigenmodes. Next we give the performance for weak

interference.

Theorem 18 For a sparse aperture system with a large number of apertures, the

expected BER in the presence of a weak interferer is:

lim
nrx,nrx→∞

E[Pr(error)] = Q

(√
2SNR

(
(1 +

√
β)2

1 + SIR

))
(6.31)

Provided the interferer’s total power is small:

SIR� 1 (6.32)

Proof. From Theorem 16 the average BER is:

lim
nrx,nrx→∞

E[Pr(error)] = EH


Q



√√√√2SNR

( ∑|S|
i=1 γ

2
i

SIR + |S|

)




= EH

[
Q

(√
2SNR

(
γ2
max

SIR + 1

))]

= EH

[
Q

(√
2SNR

(
(1 +

√
β)2

SIR + 1

))]

(6.33)
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Figure 6-3: Strong interference: Signal to noise ratio (eigenmode gain without in-
terference) and signal to interference noise (eigenmode gain with interference) ratio
versus eigenmode number and optimal transmitter eigenmode hopping pdf.

Where we have used that, for weak interference, the only eigenmode that is allocated

power is the one associated with the largest square singular value. �

Figure 6-4 shows the system performance in the presence of a weak interferer. As

expected, the interferer and transmitter allocate power to only the strongest eigen-

mode. For a weak advanced interferer, eigenmode hopping is not necessary. Next we

give the performance for moderate interference.
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Figure 6-4: Weak interference: Signal to noise ratio (eigenmode gain without interfer-
ence) and signal to interference noise (eigenmode gain with interference) ratio versus
eigenmode number and optimal transmitter eigenmode hopping pdf.

Theorem 19 For a sparse aperture system with a large number of apertures, the

expected BER in the presence of a moderate interferer is:

lim
nrx,nrx→∞

E[Pr(error)] = EH

[
Q

(√
2SNRγ2

eff

)]
(6.34)
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where γ2
eff is:

γ2
eff = arg

x∗

{
SIR =

√
(a− x∗)(x∗ − b)(a+ b+ 2x∗)

8πx∗

−

(
a2 − 2(b− 2x∗ + 16)a+ 64

√
a+ b2 + 4bx∗ − 8

(√
abx∗ + 4

))

32x∗

+
((a− b)2 − 4(a+ b)x∗)

16πx∗
tan−1

(
a+ b− 2x∗

2
√

(a− x∗)(x∗ − b)

)

+

√
ab

2π
tan−1

(
2ab− (a+ b)x∗

2
√
ab(a− x∗)(x∗ − b)

)}

(6.35)

where, as before, a =
(
1−√β

)2
, is the minimum square singular value and b =

(
1 +
√
β
)2

is the maximum square singular value. Moderate interference power is

defined as:

1 < SIR <
nmin

(
2
√
β − 1

)
(
1−√β

)2 (6.36)

Proof. As the number of apertures grows the spacing between square singular values

becomes smaller until, in the limit, the square singular values form a continuous dis-

tribution. For infinitely many transmit and receive apertures, the optimal interference

power allocation given in Theorem 16 becomes:

I(γ2) =

(
γ2

µ
− 1

SIR

)+

(6.37)

with the associated constraint on interference power:

1 =

∫ ∞

0

(
γ2

µ
− 1

SIR

)+
√

(γ2 − a)+(b− γ2)+

2πγ2
dγ2

=
1

SIR

∫ b

x∗

(
γ2

x∗
− 1

)+
√

(γ2 − a)+(b− γ2)+

2πγ2
dγ2

(6.38)

where x∗ is the value of the minimum square singular value that is allocated interfer-

ence power:
x∗

µ
− 1

SIR
= 0 (6.39)
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Evaluating the integral in the last expression in equation (6.38) gives the expression

for γ2
eff in the theorem. Finally, we prove the theorem by noting that the largest signal

to interference noise power is given by the value of x∗ that solves equation (6.38). �

The equation for γ2
eff in equation (6.35) is highly nonlinear and cannot be solved

in closed form. Fortunately, the function is monotonically decreasing in x∗ and can

be efficiently solved with numerical methods.

Finally, we provide the average performance of a sparse aperture system without

wavefront predistortion (open loop system) in the presence of an advanced interferer:

E[Pr(error)] = Q

(√
2SNR

1 + SIR

)
(6.40)

where we have used that the average square singular value is one and that an advanced

interferer can couple all power into the information bearing spatial mode. For an

open loop sparse aperture system experiencing an advanced interferer, increasing the

number of apertures does not improve interference mitigation.

Figure 6-5 shows average performance in the presence of an advanced interferer

versus interference power SIR for a balanced sparse aperture system with SNR = 2.

In the figure, the red line represents the average BER for a sparse aperture system

with wavefront predistortion. The cyan line represents the average BER for a sparse

aperture system without wavefront predistortion. For comparison, the dashed lines

show average performance in the presence of a basic interferer for sparse aperture

system with and without wavefront predistortion.

6.1.3 Interference margin

To compare the effects of the basic and advanced interferer on sparse aperture sys-

tems with and without wavefront predistortion, we define interference margin as the

additional power required to have the same performance as a wavefront predistortion

system without interference. The interference margin for a sparse aperture system
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Figure 6-5: Sparse aperture system performance in the presence of a basic and ad-
vanced interferer: This figure shows average performance in the presence of an ad-
vanced interferer versus interference power SIR for a balanced sparse aperture system
with SNR = 2. In the figure, the red line represents the average BER for a sparse
aperture system with wavefront predistortion. The cyan line represents the average
BER for a sparse aperture system without wavefront predistortion. For comparison,
the dashed lines show average performance in the presence of a basic interferer for
sparse aperture system with and without wavefront predistortion.

with predistortion in the presence of a basic interferer is:

m = arg
m



Q



√

2mSNR(1 +
√
β)2

1 + SIR/nrx


 = Q

(√
2SNR(1 +

√
β)2

)


= 1 +
SIR

nrx

(6.41)
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where we have used the average performance of a sparse aperture system with predis-

tortion in the presence of a basic interferer given in equation (6.6). The interference

margin for a sparse aperture system without predistortion in the presence of a basic

interferer is:

m = arg
m

{
Q

(√
2mSNR

1 + SIR/nrx

)
= Q

(√
2SNR(1 +

√
β)2

)}

=
(

1 +
√
β
)2
(

1 +
SIR

nrx

) (6.42)

where we have used the average performance of a sparse aperture system without

predistortion in the presence of a basic interferer given in equation (6.7). The inter-

ference margin for a sparse aperture system with predistortion in the presence of an

advanced interferer is:

m = arg
m



Q



√√√√2mSNR

( ∑|S|
i=1 γ

2
i

SIR + |S|

)
 = Q

(√
2SNR(1 +

√
β)2

)


=
(

1 +
√
β
)2
(

SIR + |S|
∑|S|

i=1 γ
2
i

) (6.43)

where S is defined in Theorem 16. We have used the average performance of a

sparse aperture system with predistortion in the presence of an advanced interferer

given in Theorem 16. The interference margin for a sparse aperture system without

predistortion in the presence of an advanced interferer is:

m = arg
m

{
Q

(√
2mSNR

1 + SIR

)
= Q

(√
2SNR(1 +

√
β)2

)}

=
(

1 +
√
β
)2

(1 + SIR)

(6.44)

where Ii is defined in Theorem 16. We have used the average performance of a sparse

aperture system without predistortion in the presence of an advanced interferer given

in equation (6.40).
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Figure 6-6 shows the interference margin versus SIR for sparse aperture systems

with SNR = 2 and ntx = nrx = 100. The dashed lines represent systems that are

experiencing a basic interferer while the solid lines represent systems that are expe-

riencing an advanced interferer. At low SIR, the interference margin is the same for

basic and advanced interferers. As the SIR increases, compensating for the advanced

interferer requires more power than compensating for the basic interferer. At high

SIR, eigenmode hopping provides more than 18 dB of gain relative to an open loop

system when being degraded by an advanced interferer. This is because, when eigen-

mode hopping is used, an advanced interferer must degrade every nonzero eigenmode.

In contrast, an interferer must only degrade a single eigenmode when an open loop

system is used.

6.2 Eavesdropper

An eavesdropper is any user that attempts to receive and decode the information

intended for another user. Khisti and Wornell have performed parallel work on the

impact of eavesdroppers for radio frequency systems with multiple antennas [24, 25].

Confidentiality is the ability of the intended receiver to decode source information

while ensuring that unintended users are unable to decode source information. Con-

ventional techniques to ensure confidentiality are based on encryption: a transmitter

and receiver use a key to encrypt and decrypt source information [34]. Any user with

a key can decode source information while any user without a key will be unable

to decode source information. The confidentiality is achieved by distributing keys

to intended users while ensuring unintended users do not have a key. Traditional

key encryption is difficult for free space optical systems because of the lack of a way

to pass keys to potential users (especially if the intended users are change rapidly)

and the complexity associated with key distribution for a dynamic topology of users.

Therefore, we take an information theoretic approach (without the use of encryp-

tion keys) to free space optical confidentiality. This approach exploits the inherent

randomness of the atmospheric turbulence to ensure confidentiality. As a result, we
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Figure 6-6: Interference margin versus interference power (SIR): The dashed lines rep-
resent systems that are experiencing a basic interferer while the solid lines represent
systems that are experiencing an advanced interferer.

provide provable security that is robust to eavesdroppers within the main optical

beam with unlimited computational resources and knowledge of the communication

strategy employed including coding and decoding algorithms [31]. In the section, we

address the use of spatial diversity and turbulence to prevent an eavesdropper from

intercepting information. We model the eavesdropper as follows:

~y =

√
SNR

nrx
H~x+ ~w

~y E =

√
SER

nErx
HE~x+ ~wE

(6.45)
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where ~y E is the field amplitude and phase received by the eavesdropper, SER is the

eavesdropper’s signal to noise ratio, HE is the turbulence channel transfer between the

intended transmitter and the eavesdropper, nErx is the number of eavesdropper receive

apertures, and ~wE is white noise at the eavesdropper’s receiver. If the eavesdropper

does not use a sparse aperture system, each element of ~y E represents the discrete

version of eavesdroppers continuous aperture. We cannot ensure that the eavesdrop-

per will receive zero power from the transmitter, but we can ensure that with proper

coding the eavesdropper will not be able to decode any information. Thus, we define

secrecy capacity as the maximum data transfer rate achievable while ensuring perfect

confidentiality. We upper bound and lower bound the amount of information that

can be sent to the intended receiver, while ensuring zero information can be inter-

cepted by the eavesdropper, by providing the secrecy capacity for the case where the

transmitter has no knowledge of the eavesdropper (lower bound) and the case where

the transmitter has perfect knowledge of the eavesdropper (upper bound). We first

provide the upper bound.

Theorem 20 The secrecy capacity rate, the largest rate achievable with perfect con-

fidentiality, when the transmitter has perfect knowledge of the eavesdropper is:

Cs ≥
(

1

2
log
(
1 + γ2

max

(
HKE

)
SNR

)
− 1

2
log (1 + εSER)

)+

(6.46)

where KE is the ε-kernel of HE. The ε-kernel of HE is defined in the proof.

Proof. To prove this theorem, first define the singular value decomposition for the

eavesdropper channel:
1√
nErx

HE = UEΓE(VE)† (6.47)

where the ith column of UE is an output eigenmode, the ith row of VE is an input

eigenmode, and the (i, i)th entry of the diagonal matrix ΓE is the singular value, or

diffraction gain, associated with the ith input/output eigenmode. We define ~vEi to

be column i of matrix VE, ~uEi to be column i of matrix UE, and γEi to be diagonal

element (i, i) of matrix ΓE. Using the SVD to transform ~yE =
√

SER
nErx

~x + ~wE into
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parallel Gaussian channels, we arrive at:

ỹE1 =
√

SERγE1 x̃
E
1 + w̃E1

ỹE2 =
√

SERγE2 x̃
E
2 + w̃E2

...
...

...

ỹEnEmin
=
√

SERγEnmin
x̃Enmin

+ w̃Enmin

(6.48)

where nminE = min(ntx, n
E
rx). The vectors ~̃xE, ~̃yE, and ~̃wE are related to the vectors

~xE, ~yE, and ~wE through the usual SVD, such as in [48]. Note w̃Ei retains its circularly

symmetric complex Gaussian distribution. We form an ε-kernel (or nullspace) to the

eavesdropper channel transfer matrix by selecting only input eigenmodes that are

associated with small singular values:

KE =




| | |

~vEi∗ ~vEi∗+1 · · · ~vEntx

| | |




(6.49)

where i∗ is given by:

i∗ = min
s.t.:(γEi )

2
<ε

i (6.50)

We restrict the transmit vector to be within the nullspace of the eavesdropper:

~x =
KE~a

‖KE~a‖ (6.51)

where ~a ∈ Cntx−i∗ is now the information bearing signal. Thus, we transform the

system:

~y =

√
SNR

nrx
H

KE~a

‖KE~a‖ + ~w

~y E =

√
SER

nErx
HE KE~a

‖KE~a‖ + ~wE
(6.52)
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The spatial field distribution that minimizes instantaneous BER is given by:

~a = b~vmax

(
HKE

)
(6.53)

where we have used that ~vmax

(
HKE

)
is the input eigenvector of HKE associated

with the maximum square singular value γ2
max of HKE. Data is encoded by variation

of b ∈ C, which is spatially constant at a particular time. A sufficient statistic for

optimum detection is:

φ = Re
{
~u †max

(
HKE

)
~y
}

(6.54)

where φ is the sufficient statistic. The associated received power is normally dis-

tributed:

|φ|2 ∼ N
(
SNRγ2

max

(
HKE

)
, 1
)

(6.55)

A sufficient statistic for eavesdropper optimum detection is:

φE = Re
{(
~uEmax

) †
~yE
}

(6.56)

where φE is the sufficient statistic for the eavesdropper. The associated eavesdropper

received power is normally distributed:

|φE|2 ∼ N
(

SER
ntx∑

i=i∗

ai(γ
E
i )2, 1

)
(6.57)

This is then a Gaussian wire-tap channel, in which the outputs at the intended receiver

and at the eavesdropper are corrupted by additive white Gaussian noise. Using the

secrecy capacity from [30], we arrive at:

Cs =

(
1

2
log
(
1 + γ2

max

(
HKE

)
SNR

)
− 1

2
log

(
1 + SER

ntx∑

i=i∗

ai(γ
E
i )2

))+

(6.58)
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We can bound the secrecy capacity by noting that ε ≥ ∑ntx
i=i∗ ai(γ

E
i )2 for any choice

of ~a. Thus, a lower bound on the secrecy capacity is:

Cs ≥
(

1

2
log
(
1 + γ2

max

(
HKE

)
SNR

)
− 1

2
log (1 + εSER)

)+

(6.59)

�

This theorem suggests the following intuition. The system begins with ntx degrees

of freedom to control the wavefront. It uses i∗ degrees of freedom to null out the

receiver and has ntx − i∗ degrees of freedom to provide wavefront predistortion gain.

For a particular atmospheric realization, ε should be chosen to maximize the se-

crecy capacity. Decreasing ε decreases the power at the eavesdropper’s receiver at the

expense of reducing the degrees of freedom for information to be communicated to the

intended receiver. Conversely, increasing ε increases the power at the eavesdropper’s

receiver while increasing the degrees of freedom for information to be communicated

to the intended receiver. As a result, secrecy capacity is convex in ε. As the number

of transmit apertures, intended receiver receive apertures, and eavesdropper receive

apertures grow, we use the asymptotic square singular value distribution to derive a

closed form expression for secrecy capacity.

Corollary 9 As the number of transmit apertures, intended receiver receive aper-

tures, and eavesdropper receive apertures grow, the secrecy capacity is:

Cs =

(
1

2
log

(
1 + SNR

(
1 +

√
βFHE(ε)

)2
)
− 1

2
log
(

1 + (γ2(ε))SER
))+

≥
(

1

2
log

(
1 + SNR

(
1 +

√
βFHE(ε))

)2
)
− 1

2
log (1 + εSER)

)+ (6.60)
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where γ2(ε) is the average square singular value of HE up to ε:

γ2(ε) =

(
aE − bE

)2

32β
−

(aE − bE)2 tan−1

(
aE+bE−2ε

2
√

(bE−ε)(ε−aE)

)

16πβ

−
√

(aE − ε)(ε− bE)aEbE
√

(aE − ε)(ε− bE)− 2ε
√

(aE − ε)(ε− bE)

16πβ

(6.61)

and FHE(·) is the square singular value distribution of HE:

FHE(ε) = 1− aE + bE − 2
√
aEbE

8
−

(aE + bE) tan−1

(
aE+bE−2ε

2
√

(bE−ε)(ε−aE)

)

4π

−

√
aEbE tan−1

(
−2aEbE+εbE+aEε

2
√
aEbE(bE−ε)(ε−aE)

)

2π
+

√
(aE − ε)(ε− bE)

2π

(6.62)

where aE =

(
1 +

√
ntx
nErx

)2

and bE =

(
1−

√
ntx
nErx

)2

. The expressions in equation

(6.60) are only satisfied for eavesdroppers using a sparse aperture receiver.

Proof. From Theorem 20, the secrecy capacity is given by:

Cs =

(
1

2
log
(
1 + γ2

max

(
HKE

)
SNR

)
− 1

2
log

(
1 + SER

ntx∑

i=i∗

ai(γ
E
i )2

))+

(6.63)

As the number of apertures grows, and the spacing between square singular values

becomes infinitesimally small, the capacity becomes:

Cs =

(
1

2
log
(
1 + γ2

max

(
HKE

)
SNR

)
− 1

2
log

(
1 + SER

∫ ε

0

(γE)2f(γE)2((γ
E)2)d(γE)2

))+

(6.64)

where f(γE)2(·) is the distribution of square singular values of HE, which is given by:

f(γE)2(x) =
(
1− βE

)+
δ(x) +

√(
x−

(
1−

√
βE
)2
)+((

1 +
√
βE
)2

− x
)+

2πx
(6.65)
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where βE = ntx/n
E
rx. Thus the average square singular value of HE up to ε is:

γ2(ε) =

∫ ε

0

(γE)2f(γE)2((γ
E)2)d(γE)2

=

∫ ε

aE

√(
x−

(
1−

√
βE
)2
)+((

1 +
√
βE
)2

− x
)+

2π
dx

=

(
aE − bE

)2

32β
−

(aE − bE)2 tan−1

(
aE+bE−2ε

2
√

(bE−ε)(ε−aE)

)

16πβ

−
√

(aE − ε)(ε− bE)aEbE
√

(aE − ε)(ε− bE)− 2ε
√

(aE − ε)(ε− bE)

16πβ

(6.66)

The term γ2
max

(
HKE

)
is related to the degrees of freedom of the transformed system:

γ2
max

(
HKE

)
=

(
1 +

√
d

nrx

)2

(6.67)

where d is the number of degrees of freedom at the transmitter after the eavesdropper’s

power can be constrained to be less than ε. For the finite system, d = ntx − i∗.

Asymptotically, d = ntxFHE(ε) we have:

γ2
max

(
HKE

)
=
(

1 +
√
βFHE(ε)

)2

(6.68)

where FHE(ε) are the degrees of freedom not being used to ε-null the eavesdropper,

given by:

FHE(ε) =

∫ ε

aE

√(
x−

(
1−

√
βE
)2
)+((

1 +
√
βE
)2

− x
)+

2πx
dx

= 1− aE + bE − 2
√
aEbE

8
−

(aE + bE) tan−1

(
aE+bE−2ε

2
√

(bE−ε)(ε−aE)

)

4π

−

√
aEbE tan−1

(
−2aEbE+εbE+aEε

2
√
aEbE(bE−ε)(ε−aE)

)

2π
+

√
(aE − ε)(ε− bE)

2π

(6.69)
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Thus the theorem is proven. �

For a particular atmospheric realization, ε should be chosen to maximize the

secrecy capacity. The optimization problem is convex, one dimensional, and bound.

As a result, the maximum secrecy capacity for a particular geometry (ntx, nrx and

nErx) can be efficiently solved for using standard numeric techniques. Figure 6-7 shows

the secrecy capacity as a function of ε for SNR=SER=2 and various values of β. We

have assumed, for the figure, that the number of receive apertures at the intended

receiver is equal to the number of receive apertures at the eavesdropper, nrx = nErx.

For β = 1 the optimal ε is 0.5. Thus the optimal strategy is to null all eavesdropper

eigenmodes associated with square singular values more than 0.5. The remaining

degrees of freedom should be used to predistort the wavefront to the intended receiver.
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Figure 6-7: Secrecy capacity versus ε for SNR=SER=2 and various values of β. We
have assumed, for this figure, that the number of receive apertures at the intended
receiver is equal to the number of receive apertures at the eavesdropper, nrx = nErx.

We establish the lower bound, when the transmitter has no information about the

eavesdropper, on secrecy capacity by allocating zero degrees of freedom to nulling the
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eavesdropper:

Cs =

(
1

2
log
(
1 + γ2

max(H)SNR
)
− 1

2
log
(

1 + γ2SER
))+

(6.70)

where γ2 is the average square singular value of HE. For a particular atmospheric

realization, the secrecy capacity can be calculated. Asymptotically, we can calculate

the secrecy capacity using the Marcenko-Pastur density:

Cs =

(
1

2
log

(
1 +

(
1 +

√
β
)2

SNR

)
− 1

2
log (1 + SER)

)+

(6.71)

where we have used the maximum square singular value of the channel transfer matrix

is γ2
max(H) =

(
1 +
√
β
)2

and the average square singular value of HE is one. Figure

6-8 shows the secrecy capacity when the transmitter has no information about the

eavesdropper versus β for various values of SNR and SER.
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mitter has no information about the eavesdropper versus β for various values of SNR
and SER
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Figure 6-9 shows the maximum secrecy capacity versus β (optimized over ε for

each value of β). Also shown for comparison is the channel capacity in the absence

of an eavesdropper and the secrecy capacity if the transmitter has no information

about the eavesdropper. We have assumed, for the figure, that the number of re-

ceive apertures at the intended receiver is equal to the number of receive apertures

at the eavesdropper, nrx = nErx. In the figure, we see that increasing the number of

transmit apertures relative to the number of receive apertures (both intended and

eavesdropper) increases the secrecy capacity. This result is expected: if there are

many degrees of freedom (number of transmit apertures) relative to the number of

constraints (number of eavesdropper and intended receive apertures) is large, the

system can easily null the eavesdropper and predistort the wavefront to the transmit-

ter. We also note that, for a balanced system, knowledge of the eavesdropper only

increases capacity by approximately 50%. For a ground to aircraft/spacecraft link,

when β is large, knowledge of the eavesdropper does not increase the secrecy capac-

ity. This is because these systems have an excess of degrees of freedom and thus it’s

not important to allocate them optimally. For the aircraft/spacecraft to ground link,

when β is small, knowledge of the eavesdropper is very important. This is because

these systems have a dearth of degrees of freedom and thus it’s important that they

are allocated optimally.

We note that these results can easily be generalized to the case where there are

multiple eavesdroppers located in various positions. In closing this chapter, we note

that even when the eavesdropper and intended receiver are both in the main beam

with equal receiver sensitivity, confidential communication is achievable. Without

wavefront predistortion, confidential communication would not be possible.
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Chapter 7

Conclusion

Optical communication over the turbulent atmosphere has the potential to provide

reliable rapidly-reconfigurable multi-gigabit class physical links. Such systems, how-

ever, are prone to long (up to 100 ms) and deep (10 to 20 dB) fades. In this thesis, we

have shown that for many practical endoatmospheric communication links, a sparse

aperture system with spatial wavefront control in homogeneous turbulence provides

significant protection against fading: (i) a balanced sparse aperture system with feed-

back and wavefront control can provide 35 dB of gain compared to a system without

diversity and (ii) a balanced sparse aperture system with feedback can provide at

least 10 dB of gain compared to a balanced sparse aperture with diversity but with-

out feedback. If the sparse aperture system has more transmit apertures than receive

apertures, the gain can be even larger.

Sparse aperture systems are less efficient than filled aperture systems of the same

total extent. By using a sparse aperture system, we trade power transfer efficiency

for implementation advantages. Sparse aperture systems tend to weigh less than

comparable filled aperture systems because there is no need for a deformable mirror

at the transmitter and receiver and because the gimbals for sparse aperture systems

tend to weigh less (gimbals for sparse aperture systems don’t need to be as accurate

or support the as large of a load). Further, sparse aperture systems tend to be less

complex than a filled aperture system–there is no need for a deformable mirror and

tracking can be less accurate. The reduced weight and complexity of the sparse

247



aperture system means that the sparse aperture system can be field at less expense

than comparable systems.

Because today’s optical communication systems operate at a very high rate but

suffer from deep fades, we focused on schemes that communicate over a single spatial

mode instead of communicating on multiple modes simultaneously. Accordingly, our

results center on metrics related to communicating on a single spatial mode at any

given instant, such as average BER and outage probability in terms of BER. Given

BER as the appropriate metric, we showed that coupling all transmit power into the

input eigenmode associated with the largest singular value is the optimal predistor-

tion. Further, we showed that a spatial matched filter is the optimal recombination

scheme.

In this thesis, we proved that given fairly benign conditions on the placement and

size of the system transmit and receive apertures, the square singular value decompo-

sition converges almost surely to the Marcenko-Pastur distribution. We showed the

the Marcenko-Pastur distribution approximates the square singular value distribution

for as few as 10 transmit and 10 receive apertures. Using the distribution of the square

singular values, we derived the asymptotic average BER, outage probability, and di-

versity power margin (the multiplicative power increase required for the finite sparse

aperture system to perform at least as well as the infinite sparse aperture system, at

least Pout fraction of the time). In contrast with a single aperture system, if average

BER needs improvement, the total aperture area (i.e., the sum of the sub-aperture

areas) can be increased without saturation. Either adding additional apertures of the

same size, or increasing the area of existing apertures, up to the coherence area, can

increase the total aperture area. Outage performance can be improved by adding

additional apertures. Finally, we showed that the protection against fading in terms

of power margin, provided by increasing the number of apertures, diminishes greatly

after about 100 apertures. These significant performance gains result from spatial

mode control.

For the vertical ground to aircraft/spacecraft link, we showed that wavefront pre-

distortion is much more useful for the ground to aircraft/spacecraft link than the
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aircraft/spacecraft to ground link. For the ground to aircraft/spacecraft link, the

average wavefront predistortion gain for a balanced system exceeds 10 dB for all ex-

ample platforms. In contrast, for the aircraft/spacecraft to ground link the average

wavefront predistortion gain is approximately 3 dB for the predator drone altitude

and is less than 1 dB for all other platforms analyzed. Physically this is because the

turbulence is near the transmitter for the ground to aircraft/spacecraft link while the

turbulence is very far from the transmitter for the aircraft/spacecraft to ground link.

With the transmitter far from the turbulence, it is unable to predistort the wave to

undo the turbulence.

In the presence of an interferer, we showed that eigenmode hopping can provide

more than 18 dB of gain relative to a system without eigenmode hopping capabil-

ities. This is because, when eigenmode hopping is used, a strong interferer must

degrade every nonzero eigenmode. In contrast, an interferer must only degrade a

single eigenmode when an eigenmode hopping is not available. We also showed that

wavefront predistortion can significantly increase the receiver complexity required for

an eavesdropper to intercept information intended for another user.

It may seem strange that we motivated the use of BER as the relevant metric

by noting that fading, not data rate, is the main challenge for free space systems,

then proceeded to study the asymptotic case where the fading issue is nonexistent.

There are two reasons why asymptotic BER is the relevant metric for optical commu-

nication. First, asymptotic results are useful only as far as they approximate finite

results from practical systems. Because schemes that minimize BER achieve maxi-

mal diversity gain, the asymptotic results are applicable for much smaller values of

ntx, nrx than a rate maximization scheme. Second, asymptotic analysis allows for

an elegant solution that illuminates the relationship of feedback rate, the number

of receivers, and the number of transmitters, separated from variation in the square

singular values. Finally, we showed an asymptotically optimal mapping from channel

state matrix to feedback information, which can be used as guidance for the design

of practical systems.
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Because of the presence of dynamically evolving turbulence, system latencies, and

fsinite rate feedback, the transmitter cannot have perfect knowledge of the turbu-

lence state. As a result, we developed a model of the dynamic atmosphere and used

it to find the optimal performance of the system in terms of fundamental system

and physical parameters, such as latencies, both estimation and feedback, feedback

link rate, number of apertures, turbulence strength, link range, etc. The following

describes the asymptotically optimal feedback strategy: (a) initialization (i) create a

codebook, known to both the transmitter and receiver; (ii) at the receiver, for each

update, find the codebook entry closest, in the L2-sense, to the input spatial mode as-

sociated with the largest square singular value; (iii) feed back the index of the closest

codebook entry; (b) steady state operation (i) find the optimal update rate, and make

it known to both the transmitter and receiver; (ii) calculate the update vector, which

is the difference between the current channel state and the current transmitter chan-

nel state estimate; (iii) find the scaled sub-codebook entry closest, in the L2-sense,

to update vector; (iv) feed back the index of the closest scaled sub-codebook entry.

To prevent the size of the codebook from degrading system performance, a system

designer should make a codebook with a cardinality of 25 × ntx known to both the

transmitter and receiver. If the cardinality of the codebook is smaller than 25× ntx,
the system’s performance will be bound away from the performance achievable with

perfect knowledge regardless of feedback rate and latency. Given a sufficiently large

codebook, the feedback rate necessary to take full advantage of the diversity, given

in equation (4.44), varies sublinearly with the number of transmitters and linearly

with the coherence time inverse. Given sufficient feedback rate, the optimal feedback

scheme is to create |C|/2 sub-codebooks and feed back one-bit updates. Further,

the time it takes for an update to reach the transmitter τ0 + 2Ru/r should be much

smaller than the atmospheric coherence time; the performance degrades roughly ex-

ponentially as the time it takes for an update to reach the transmitter increases.

Occasionally, a new input eigenvector will need to be fed back to the transmitter.

In this case, simply feed back a full update. If the feedback rate is not increase, a

temporary performance degradation will occure. In general, the system performance,
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in terms of wavefront predistortion gain, is given in equation (4.39). If the size of the

codebook and rate is sufficient, the performance, given in equation (4.45), is limited

only by latency.

While this asymptotic analysis provides insight into the impact of limited rate

feedback on wavefront predistortion optical systems, future work could focus on per-

forming an outage analysis for finite systems. This outage analysis requires the prob-

ability density function of the largest singular value of optical systems (Section 3.1.1)

and the probability density function of the distortion distance (unknown). Addi-

tionally, the use of reciprocity to generate turbulence state estimates in bidirectional

system should be investigated. As the global Internet becomes increasingly heteroge-

neous, incorporating both terrestrial fiber and wireless systems, the results from this

thesis can be used to study the impact of the free space optical physical layer links.

Based on the performance of results for the sparse aperture system with feedback,

efficient routing and congestion control algorithms should be designed to maximize

resource utilization.
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