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Abstract

DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in
development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide
analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to
promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA–binding
moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals
conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54
promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in
embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif,
DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline
genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of
autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of
DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of
germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound
evolutionary effects on genome organization and transcriptional regulatory networks.
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Introduction

The development of multi-cellular organisms is orchestrated by

transcription factors that coordinate the spatiotemporal expression

of sets of target genes. Transcription factors often act together in

the context of multi-protein complexes. For instance, DREAM is a

multi-protein complex conserved among Caenorhabditis elegans

(DRM), Drosophila melanogaster (dREAM/Myb-MuvB) and Homo

sapiens (hDREAM or LINC), and includes a retinoblastoma tumor

suppressor pRb-family protein and the DNA binding heterodimer

E2F/DP [1–7]. DREAM coordinates the expression of cell

division and differentiation genes during development, and its

subunit activities are altered in many human tumors [8].

In C. elegans, the genes that encode DRM subunits were originally

identified in genetic screens for mutations causing defects in vulva

development. Specifically, DRM subunits are encoded by synMuvB

(synthetic multivulva class B) genes, which act ‘‘synthetically’’ with

synMuvA genes to antagonize Ras signaling during vulva

development [9–12]. Most synMuvB genes are broadly expressed

chromatin-associated transcriptional regulators, and when mutated

affect a range of biological processes including embryo polarity [13],

apoptosis [14,15], sex determination [16], and RNA interference

[17,18]. Despite their important roles in disparate developmental

contexts, a genome-wide analysis of genes bound and regulated by

synMuvB proteins is lacking.

Biochemical studies of D. melanogaster identified the dREAM/

Myb-Muv-B complex and a partially overlapping testes-specific

complex called tMAC [1–3,19,20]. These complexes contain

homologs of C. elegans synMuvB proteins. dREAM-like protein

complexes were subsequently identified from C. elegans (DRM, [4])

and human cells (hDREAM/LINC, [5,7]). DRM includes LIN-

35(Rb), EFL-1(E2F), DPL-1(DP), LIN-54(Mip120), LIN-9(Mip130),

LIN-37, LIN-52, and LIN-53(Caf1). The human and fly complexes

share these subunits and additionally contain a Myb subunit that is

not apparent in C. elegans (Figure S1A).

Several DREAM subunits contribute to its sequence-specific

DNA binding, including E2F and DP, which together bind DNA

as a heterodimer, and Myb. In flies and humans, E2F/DP and

Myb act in a mutually exclusive manner to direct DREAM to its

target genes [5–7,21]. Human DREAM is targeted to different sets
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of promoters by subunit switching [5–7]. During the G0 phase of

the cell cycle, the DREAM complex incorporates the Rb-family

protein p130 and E2F4, but not Myb, to repress S phase genes. At

cell cycle entry, p130 and E2F4 dissociate from the complex, and

Myb is incorporated to promote activation of M phase genes. LIN-

54 is another DREAM component that has been reported to bind

DNA: D. melanogaster Mip120(Lin54) binds specific sequence

elements within the chorion gene cluster [1], C. elegans LIN-54

binds promoters in yeast one-hybrid (Y1H) assays [22], and

human Lin54 interacts with the human cdc2 promoter in vitro [23].

However, the overall contribution of LIN-54 DNA binding to

DREAM complex function has not yet been explored.

Genome-wide binding and expression profiling studies of

DREAM in mammalian cell culture primarily identified cell cycle

genes as targets for the complex [5], while D. melanogaster cultured

cell studies additionally revealed targets with sex- and develop-

ment-specific expression [2,21,24]. Thus, it is not clear whether

developmental gene regulation is a conserved DRM function.

With the exception of gene expression profiling of the C. elegans

germline [25], genome-scale studies of the DREAM complex were

performed in cultured differentiated cells. It is important to extend

genome-wide analyses of DREAM to multiple cell types and

tissues derived from intact organisms, to enable assessment of

DREAM function through development.

A key developmental function of D. melanogaster and C. elegans

DRM subunits is the regulation of gene expression in the germline

[19,20,25], which must occur within the context of specialized

germline gene expression features. The first such feature is a

germline-specific form of X chromosome silencing. In male

germlines of many species the single X is transcriptionally inactive

and in C. elegans hermaphrodite germlines the two X chromosomes

are partially silenced [26,27]. Whether transcription factors like

DREAM act equally on X-linked and autosomal genes, which

exist in different chromatin regulatory environments, is not known.

The second property special to germline-expressed genes is that

they primarily reside on autosomes, possibly because of an

evolutionary adaptation to X silencing [28–31]. It has not been

explored whether the chromosome-biased location of germline

differentiation genes is related to chromosome-biased binding sites

and chromosome-biased regulation by distinct transcription

regulatory networks.

Here we analyze genome-wide binding and function of C. elegans

LIN-54. We demonstrate that LIN-54 DNA-binding activity is

required for the DRM complex to efficiently bind and regulate

target genes containing adjacent putative E2F/DP and LIN-54

binding sites. We show that LIN-54 binds to the promoters of

genes involved in cell division, development, and reproduction,

and acts differently in the germline versus the soma. The E2F/DP-

LIN-54 binding motif, individual target genes, and overall DRM

function are conserved among worms, flies, and humans. Despite

this conservation, we discovered one striking feature of C. elegans

DRM not shared in flies or humans: it is depleted from X

chromosomes. We show that DRM binding, the E2F-LIN-54

hybrid motif, and LIN-54-regulated genes are all autosome-

enriched. One paradoxical exception occurs in the germline,

where DRM binds autosomes but genes down-regulated in DRM

mutants are enriched on X chromosomes. Evolutionary pressures

imposed by germline X chromosome silencing in C. elegans are

thought to have resulted in the autosome-biased location of

germline-expressed and essential genes, major targets of DRM-

mediated regulation. We propose that the autosome bias of C.

elegans DRM co-evolved with the redistribution of its target genes.

This example illustrates how sex chromosome gene regulation may

create a biased genomic location of gene sets and their

transcriptional regulatory networks.

Results

LIN-54 Binds DNA through Its Tesmin Domains
The lin-54 gene encodes two proteins, LIN-54a and LIN-54b,

both of which contain two tandem cysteine-rich repeats known as

the tesmin/CXC domain (Figure 1A). Genetic screens for synMuv

vulva development phenotypes identified the lin-54(n2990) and lin-

54(n2231) missense alleles which confer similar loss-of-function

phenotypes as a lin-54(n3423) deletion mutant [4,11]. These

missense alleles were independently isolated and contain the same

single-base substitution in the second tesmin domain (tesmin

domain 2), which changes glycine 252 to a glutamic acid (G252E).

The phenotypic effect of this mutation suggests that altering the

tesmin domain compromises LIN-54 function and control

experiments indicated that LIN-54 protein levels are normal in

lin-54(n2990) mutant animals (see below). The lin-54(n2231) allele

encodes a protein that contains an additional change in the C-

terminus (A442T) (Figure 1A). We reasoned that these mutant

alleles might result in loss of lin-54 function because the

corresponding protein fails to interact with other DRM complex

components, because it fails to bind DNA, or because of a

combination of these effects.

Previously, we found that LIN-54 can bind multiple C. elegans

gene promoters in Y1H assays [22]. To ask whether the tesmin

domains mediate DNA binding, we tested wild-type LIN-54, and

mutant versions of LIN-54 carrying lesions in a single tesmin

domain (G252E and G252E/A442T), or lesions in both tesmin

domains (K186E/G252E) in Y1H assays. We found that the

mutant proteins exhibited much weaker DNA binding compared

to the wild-type protein (Figure 1A and 1B). To examine the

function of the tesmin domains in DNA binding in vivo, we

performed chromatin immunoprecipitation (ChIP) experiments

with wild-type and lin-54(n2990) mutant animals. Because we had

noticed that LIN-54 binds its own promoter (Figure 1B), as well as

Author Summary

X chromosomes differ in number between the sexes and
differ from autosomes in their associated proteins and
gene regulatory properties. In C. elegans both X chromo-
somes are partially silenced in hermaphrodite germlines.
Germline-expressed and essential genes are autosome-
enriched and are thought to have fled the X chromosome
during evolution because silencing these genes would
result in sterility or lethality. We discovered that the C.
elegans DRM complex, which controls transcription of
genes implicated in development and cancer, avoids the X
chromosome. We first describe how DNA–binding com-
ponents of the DRM complex together recognize DNA
sequences upstream of its target genes, and we describe
that DRM controls different target genes in the germline
versus the soma. We show that the DRM binding motif, the
genes bound by DRM, and the embryonic genes regulated
by DRM are all under-represented on the X chromosome.
Interestingly, compromising DRM function in the germline
enhances X chromosome silencing, and we discuss how
autosome-bound DRM might regulate X-linked genes in
trans. We propose that autosome-enriched binding of
DRM co-evolved with the redistribution of its germline-
expressed and essential target genes to autosomes. Our
data highlight how X chromosome gene regulation may
impact both the genomic distribution of gene sets and
their transcriptional regulators.

LIN-54 Recruits DRM to Autosomes
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Figure 1. LIN-54 binds DNA directly through its tesmin domains and recruits DRM to promoters. (A) C. elegans lin-54 gene structure for
wild-type isoforms (lin-54a and lin-54b), lin-54 mutant alleles, and yeast constructs used in this study. The lin-54 gene encodes a protein with two
tesmin/CXC domains (black boxes). lin-54(n3423) is a null allele in which the 59 end and most exons are deleted. lin-54(n2990) is a missense allele that

LIN-54 Recruits DRM to Autosomes
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promoters of genes encoding other DRM subunits (Figure S1B),

we assayed binding at the lin-9 and lin-54 promoters. We observed

a 4- and 2-fold decrease in LIN-54 binding in the lin-54(n2990)

mutant relative to wild-type animals at promoters of lin-9 and lin-

54, respectively (Figure 1C, Figure S1C, p-value,0.01). Further-

more, the binding of other DRM complex proteins was also

greatly reduced in lin-54(n2990) mutant animals (Figure 1C, p-

value,0.01). These findings were supported by immunofluores-

cence analysis, which showed reduced chromosome localization of

several DRM complex proteins in lin-54(n2990) mutant germlines

(Figure S1D). Control experiments showed that wild-type and lin-

54(n2990) mutant animals produce a comparable amount of full-

length, nuclear-localized LIN-54 protein (Figure 2A and 2B),

unlike lin-54(n3423) null animals which produce no detectable

LIN-54 protein and reduced amounts of other DRM subunits

(Figure 2B and [4]). Together, these results indicate that LIN-54,

in addition to EFL-1/DPL-1 (E2F/DP), is a DNA binding protein

involved in recruiting the DRM complex to its target genes.

LIN-54 Tesmin Domain Mutations Do Not Disrupt DRM
Complex Formation

We next tested whether LIN-54 tesmin mutations affect DRM

complex formation in addition to compromising DNA binding.

Using yeast two-hybrid assays, we found that both wild-type and

mutant LIN-54 proteins can interact with the DRM subunit LIN-9

(Figure 2C). In addition, other DRM complex members co-

precipitated in lin-54(n2231) mutant animals (Figure 2D). These

observations demonstrate that the tesmin mutation does not result

in an unstable protein and does not compromise the integrity of

the DRM complex. We conclude that the lin-54 tesmin mutant

phenotypes are most likely caused by a defect in DNA binding.

LIN-54 Binds Genes Involved in Development,
Reproduction, and Cell Division

We used ChIP-on-chip to identify genomic regions bound by

LIN-54 in mixed-stage wild-type animals. Reproducible peaks of

LIN-54 binding were detected in two biological replicas by the

program MA2C (model-based analysis of two-color arrays,

Figure 3A) [32]. Using the MA2C criteria described in Materials

and Methods, we identified 1992 LIN-54 binding peaks (Table

S1). We used the mode of each peak as a measure for the location

of LIN-54 association and found that 69% of the regions bound by

LIN-54 occur within intergenic regions (Figure 3B). We next

determined the relative position of intergenic LIN-54 peaks with

respect to surrounding genes. We found that 60% of intergenic

LIN-54 peaks occur within 1 kb upstream of protein-coding genes,

and that the occurrence of a LIN-54 peak dramatically declined

with distance from the translational start site (Figure 3B and 3C).

When transcription factors bind between divergently transcribed

genes it is difficult to determine whether they regulate one or both

genes, so in these cases we considered the binding to be associated

with both adjacent genes. Overall, LIN-54 bound to 1572 protein-

coding gene promoters (Table S1). These genes are highly

enriched for three major gene ontology (GO) branches: develop-

mental process (p-value,102100), reproduction (p-value,102100),

and cell division (p-value,10230) (Table S1). These results agree

with and extend observations of DREAM function in Drosophila

and human tissue culture cells [5,21] and show that DRM has

conserved roles in development.

LIN-54 Target Genes Are Conserved through Evolution
We discovered a significant degree of overlap among the

individual genes bound by LIN-54 in worms, flies and humans

(Figure 3D). The HomoloGene program has compared D.

melanogaster and C. elegans genomes and defined a total of 3015

orthologous gene pairs (see Materials and Methods). Restricting

our analysis to these defined fly-worm ortholog pairs, we note that

1267 are bound by LIN-54/Mip120 in flies [21], 647 are bound

by LIN-54 in worms (this study), and 327 are bound in both

species (p-value,1026). Commonly bound genes are enriched for

developmental GO terms such as sex differentiation as well as cell

division terms such as cytokinesis and cell cycle (Table S1).

Commonly bound orthologs are involved in multiple aspects of cell

division (smc-3, zyg-9, air-2, plk-1, cye-1), DNA replication and

repair (cdc-6, mcm-2, pri-1, mre-11, rad-51) and transcription and

chromatin regulation (rbp-6, taf-4, mys-1, ash-2, mrg-1). We also

found significant overlap of genes bound by worm and human

LIN-54: 62 orthologous gene pairs are bound in both species

(p-value,1024, Figure 3D) [5]. Further, in all three species,

DREAM binds immediately upstream of genes in proximal gene

promoters (this study; [5,21]). Thus, LIN-54 targets the DREAM

complex to genes involved in similar overall biological processes in

three different phyla by binding to the proximal promoters of

multiple orthologous genes.

In all three species DREAM bound the promoters of genes

encoding its own subunits. (Figure 1B and 1C, Figure 3A, Table

S1, Figure S1B) [5,21]. C elegans LIN-54 also bound the promoters

of other synMuvB class genes, including LIN-61/L(3)MBT, LIN-

15B, LIN-13, and LET-418 (Table S1). This may suggest

conserved transcriptional feedback between DRM subunits and

perhaps other synMuvB class genes. However, genes encoding

DREAM subunits show little change in expression upon LIN-54

depletion in D. melanogaster or C. elegans ([21], Table S2, data not

shown). Perhaps the effects of DREAM autoregulation are small

and required only to buffer DREAM levels and function.

A Hybrid E2F/DP and LIN-54 Putative Binding Motif
We identified two DNA motifs that are over-represented in

LIN-54-bound promoters in C. elegans (Figure 3E, Figure S2).

Motif 1 appears to be a hybrid E2F/DP and LIN-54 motif

(Figure 3E, top) and is usually found near the center of LIN-54

ChIP peaks (Figure 3F and Figure S2). The 59 end of this motif is

similar to previously reported E2F/DP binding sites in C. elegans

and other organisms ([25,33,34], http://jaspar.genereg.net). The

39 end of Motif 1 resembles a cis-regulatory element in the human

cdc2 promoter (called CHR, or cell cycle homology region), which

can be directly bound by hLin54 in vitro [23]. E2F/DP binding

sites co-occur with CHRs in the promoters of some human genes,

harbors a mutation in the second tesmin domain, and lin-54(n2231) has both the tesmin domain mutation and an additional point mutation.
Constructs equivalent to lin-54a, lin-54(n2990), and lin-54(n2231) were used in yeast one-hybrid (Y1H) assays, and are referred to as LIN-54a, LIN-
54G252E, and LIN-54G252E/A442T, respectively. An additional LIN-54 construct containing a point mutation in each tesmin domain was created and is
referred to as LIN-54K186E/G252E. Gray box = exon, black box = tesmin domain, white box = 39 untranslated region, asterisk = missense mutation.
(B) Y1H assays using wild-type LIN-54a, LIN-54G252E, LIN-54G252E&A442T, and LIN-54K186E/G252E mutant proteins with the promoters of the genes pos-
1, lin-54, and vha-15. AD = Gal4 activation domain, P = permissive media, S = selective media. (C) DRM subunit binding in wild-type and lin-54(n2990)
mutants, measured by ChIP-qPCR at the target promoters lin-9 and lin-54. Binding is shown as the amount of DNA amplified in each ChIP sample
relative to input, with the ratio in wild-type set to 1.0. Standard deviations from three independent experiments are shown.
doi:10.1371/journal.pgen.1002074.g001

LIN-54 Recruits DRM to Autosomes
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with a similar orientation and spacing as the motif we identified

here ([34], Figure 3E ‘‘human’’). Moreover, a related motif was

identified from Drosophila DREAM-regulated genes ([21],

Figure 3E ‘‘fly’’). These results suggest conserved recruitment of

the DREAM complex to its target genes by two DNA binding

moieties: EFL-1/DPL-1 (E2F/DP) and LIN-54. LIN-54 bound

promoters were also enriched for a periodic T-rich motif that

resembles a related motif in Drosophila DREAM-bound genes

(Motif 2, Figure S2, [21]). Other examples of periodic T-rich

promoter motifs include sequences that function as nucleosome

positioning signals [35] and elements with unknown function that

are enriched in C. elegans germline-expressed promoters [36].

LIN-54 Can Activate or Repress Gene Expression
Mutations in lin-54 confer both germline and somatic

abnormalities ([4,11], Figure S3). To identify genes regulated by

LIN-54 in vivo, we performed microarray expression profiling

analysis of wild-type and lin-54 mutant C. elegans embryos and of

isolated germlines. We chose embryos because they consist

primarily of somatic cells, at a developmental stage with both

active cell divisions and dynamic developmental gene expression

programs. Since lin-54 null animals are sterile [4], embryos were

obtained from the lin-54(n2990) strain. lin-54(n2990) is a partial

loss-of-function allele that causes the same spectrum of phenotypes

as a null allele, albeit weaker, making it an appropriate strain in

which to examine partial loss of lin-54 function ([4], Figure S3A).

Germlines were dissected from lin-54 null adults that lack

detectable lin-54 transcript and protein ([4], Figure 2, and data

not shown), exhibit reduced levels of other DRM complex proteins

[4], and exhibit reduced germline chromosome association of

DRM complex proteins tested (Figure S1D). We isolated the

germline region from the tip until late pachytene stage of meiosis,

because nuclei in this region are morphologically similar between

wild-type and mutant (Figure S3B) and are undergoing X

chromosome silencing [26]. While embryos contain a few

primordial germ cells and dissected germlines contain some cells

of the somatic gonad, the two samples predominantly represent

somatic and germline tissue, respectively.

We identified 678 genes whose transcripts increased at least

1.5-fold in mutant embryos (Figure 4A, Table S2). Of these, 119

(18%) were also bound by LIN-54 (Figure 4A). We note that

ChIP was performed on mixed-stage animals to survey binding

sites, while microarray was performed on a single stage, which

may make it more difficult to identify all genes that are both

bound and regulated. Nevertheless, this degree of overlap is

similar to that observed in other ChIP and microarray studies

[21,37], and suggests that this gene set includes direct targets

bound and regulated by LIN-54. GO analysis of up-regulated

genes or of bound and up-regulated genes revealed over-

represented terms related to development (Table S2), terms that

were also enriched among genes bound by LIN-54 (Table S1).

Fewer genes showed reduced expression in mutant embryos (299,

Figure 4A). These genes showed no GO term overlap with LIN-

54 bound genes, and only 2% (7/299) contained LIN-54 ChIP

peaks at their promoters. This observation suggests that most of

these genes are regulated indirectly. We conclude that LIN-54

predominantly functions as a transcriptional repressor in embryos

(Figure 4B).

We noted that many up-regulated genes fell into discrete

functional sub-categories related to development. Some of these

gene sets might explain abnormalities of synMuvB mutant

animals. For instance in lin-54 mutant embryos, 18 up-regulated

genes are involved in meiosis (GO term GO0001726) and overall,

11% of the up-regulated genes normally show germline-specific or

Figure 2. LIN-54 tesmin domain mutation does not disrupt its
stability or association with DRM. (A) Immunofluorescence of LIN-
54 in embryos from wild-type and lin-54(n2990) animals. (B) Western
blots of whole worm extracts from wild-type, lin-54(n2990), and lin-
54(n3423) mutants, probed with antibodies against LIN-54, histone H3,
and actin. Lanes contain protein from 25, 50, and 100 worms. (C) Yeast
two-hybrid assay using either wild-type LIN-54 (top) or mutant LIN-
54G252E/A442T (bottom) as bait and LIN-9 as prey. DB = Gal4 DNA-binding
domain. AD = Gal4 activation domain. P = permissive media, S = selec-
tive media. (D) Immunoprecipitation using antibodies against LIN-37 in
lin-54(n2231) tesmin mutant extract, and probed with antibodies listed
at left.
doi:10.1371/journal.pgen.1002074.g002

LIN-54 Recruits DRM to Autosomes
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Figure 3. LIN-54 binding is enriched at promoters of genes involved in development, reproduction, and cell division that contain a
putative E2F-LIN-54 binding motif. (A) Representative MA2C derived peaks from two biological replicates of LIN-54 ChIP-chip from mixed-stage
worms. Arrows indicate genes and direction of transcription. (B) Relative locations of LIN-54 ChIP peaks. The distance between the mode of each LIN-
54 ChIP peak and the translational start site (TSS) of neighboring genes was calculated, and the percentages of four classes of LIN-54 locations are
indicated. Enriched gene ontology (GO) terms among genes with peaks within 1 kb of their TSS include development, reproduction, and cell cycle/
cell division. (C) The numbers of intergenic LIN-54 peaks relative to their distance from the nearest TSS. (D) Conservation of orthologous LIN-54

LIN-54 Recruits DRM to Autosomes
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enriched expression [38]. Previously, mutations in synMuvB genes

were shown to cause ectopic expression of certain germline P

granule components in the soma, proposed to reflect soma to

germline transformation [18,39]. Our genome-wide study

strengthens this model by indicating that LIN-54 represses

transcription of a variety of germline genes in embryo soma,

including the P granule protein glh-1, the meiotic recombination

protein spo-11, and the eggshell protein cpg-2. We also observed

up-regulation of many RNA interference pathway genes in lin-54

mutant embryos, including ego-1, rde-4, and sago-2. If these factors

are normally limiting for a full RNAi response, their up-regulation

might account for the enhanced RNAi phenotype that has been

observed in synMuvB mutants [17,18].

In the germline, 78 genes showed increased and 251 genes

showed decreased expression in mutant relative to wild-type

animals (Figure 4A, Table S2). Both sets of genes exhibit overlap

with LIN-54 ChIP peaks (18% and 12%, respectively) (Figure 4A).

Further, both up-regulated and down-regulated germline genes

are enriched for development GO terms, which again overlaps

with the terms found in the ChIP data (Figure 4B, Table S2).

These observations suggest that both up- and down-regulated

germline genes could include targets directly regulated by LIN-54.

While the development GO term is associated with both

embryonic and germline LIN-54 target genes, reproduction and

growth terms were only enriched in genes with decreased

expression in the lin-54 mutant germline. These reproduction

genes that we presume are normally activated by LIN-54 include

germline-produced transcripts required for meiosis, oogenesis and

early embryogenesis, as observed previously for EFL-1/DPL-1

[25]. Thus in contrast to embryos, in the germline LIN-54 appears

to both activate and repress gene expression, and activates a

distinct set of reproduction and growth genes required for

germline function.

LIN-54 Binding Is Under-Represented on the X
Chromosome

We discovered a striking non-uniform distribution of LIN-54

binding across the C. elegans genome: X chromosomes had

significantly fewer LIN-54 ChIP peaks than autosomes

(p-value,10215, Figure 5A). Each autosome had on average

369 LIN-54 ChIP peaks (23 peaks per Mb), whereas the X

chromosome contained only 145 (8 peaks per Mb) (Figure 5B,

Table S3A). On average, 8% of autosomal gene promoters, but

only 2% of X chromosome promoters, were bound by LIN-54

(Figure 5C, Table S3A, p-value,10241). This analysis shows that

LIN-54-bound promoters are significantly under-represented on

the X chromosome, independent of chromosome size and gene

density.

We also found that the hybrid motif (Motif 1, Figure 3E), as well

as the T-rich motif (Motif 2, Figure S2A), were under-represented

on X compared to autosome promoters (Figure 5D, Figure S2B,

Table S3B, p-value,10213 for Motif 1). However, a published

EFL-1 consensus site alone shows no bias against X chromosomes

(Figure 5D, [33]). A uniform distribution was also observed for

three additional transcription factors for which a consensus DNA

binding motif has previously been determined (HLH-27, FLH-1,

Figure 4. LIN-54 can function as a transcriptional activator or repressor. (A) Microarray gene expression profiling analysis of lin-54(n2990)
embryos and lin-54(n3423) germlines. Genes that change expression in lin-54 mutant animals are grouped into four classes: ‘‘up in embryo’’, ‘‘down in
embryo’’, ‘‘up in germline’’ and ‘‘down in germline’’. Overlap with LIN-54 ChIP peaks is indicated. (B) Cartoon indicating the inferred regulation by
wild-type LIN-54 in embryo (left) or germline (right) and the major Gene Ontology (GO) terms associated with each class of regulated genes.
p-value,0.05 for all GO terms.
doi:10.1371/journal.pgen.1002074.g004

binding targets between worms, flies, and humans. (E) An overrepresented motif in LIN-54-bound promoters (Motif 1, top). Aligned below are
previously defined motifs: the C. elegans EFL-1 consensus [33], an extended Drosophila dE2F2 motif enriched among dE2F2, dLIN-9 and dLIN-54 co-
regulated genes [21] and the human CDE/CHR motif from the cdc2 promoter [23]. Dotted lines outline regions bound by human E2F4 and LIN-54 at
cdc2 and their homologous motif sequences in other organisms. (F) Examples of LIN-54 binding (ChIP peaks shown by black bars representing MA2C
score) and location of Motif 1 (orange square) at promoters of two genes (mrt-2 and C29E4.12, arrows = TSS; green boxes = exons).
doi:10.1371/journal.pgen.1002074.g003
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and NFI-1, Figure 5D) [40–42]. These results imply that the DRM

complex is recruited more frequently to autosomes than to the X

chromosome through the combined DNA binding activities of

LIN-54 and EFL-1.

lin-54 Mutants Exhibit Chromosome-Biased Gene
Expression Changes

We addressed whether the non-uniform binding of LIN-54 in
the genome results in differential regulation of autosomal versus

Figure 5. LIN-54 shows autosome-enriched binding and chromosome-biased gene regulation. (A) LIN-54 ChIP peaks along the entire X
chromosome (top) and chromosome IV (bottom). (B–C) Number of LIN-54 ChIP peaks per mega base (B) and percentage of promoters bound by
LIN-54 (C) on each C. elegans chromosome. LIN-54 ChIP peaks occur less frequently on the X chromosome, independent of chromosome size and
gene density. (D) Occurrence of putative E2F/DP-LIN-54 binding Motif 1 and other transcription factor binding motifs in promoter regions (1 kb
upstream from translational start site) of autosomal genes and X-linked genes. Motif 1 is under-represented in X-linked promoters. (E) Chromosome
distribution of genes up-regulated or down-regulated in lin-54(n2990) embryos (left), lin-54(n3423) germline (middle), or commonly co-regulated by
cluster analysis of lin-54(n3423), efl-1(n3639), dpl-1(n3316), and lin-35(n745) germlines (right). Overlap with LIN-54 ChIP peaks for an average autosome
or X chromosome is indicated below. Commonly up is group E, commonly down is group B from Figure S4. Data for efl-1, dpl-1, and lin-35 are from
[25]. (F) The percentage of genes located on the five autosomes (gray) or the X chromosome (black). Expected values are presented both for all genes
in the genome, and for all genes normally expressed (expressed genes) in embryo or germline, and compared to observed percentages of genes
up-regulated (genes up in mut) or down-regulated (genes down in mut) in lin-54 mutants. Asterisks indicate p-value,1023 by Fisher’s Exact test or
G-test.
doi:10.1371/journal.pgen.1002074.g005
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X-linked genes. LIN-54-responsive genes are distributed across all
six C. elegans chromosomes (Table S3), and we analyzed
chromosome bias in two ways. First, to normalize for the variable
number of genes on each chromosome, the percentage of LIN-54
responsive genes out of all genes per chromosome was calculated
(Figure 5E). Second, to compare expected to observed distribu-
tions, we calculated the percent of all genes in the genome located
on autosomes and compared that to the percent of LIN-54
responsive genes on autosomes (Figure 5F ‘‘all genes’’ versus
‘‘genes up in mut’’ or ‘‘genes down in mut’’). Additionally, because
the germline has an inherent autosomal bias in its expressed genes,
we also calculated the percent of autosomal genes typically
expressed in embryo or in germline as ‘‘expected’’ and compare
that to the ‘‘observed’’ percent of LIN-54 responsive genes that
reside on autosomes in each sample (Figure 5F ‘‘expressed genes’’
versus ‘‘genes up in mut’’ or ‘‘genes down in mut.’’

Embryonic genes that were up-regulated in lin-54 mutants are

over-represented on autosomes (633/678, 93% observed versus

86% expected by chance, p-value,1028, Figure 5E and Figure 5F

‘‘embryo up’’). This finding is consistent with the idea that LIN-54

is preferentially recruited to autosomes, and primarily acts as a

repressor in the embryo. Embryonic genes down-regulated in lin-

54 mutants showed no significant chromosomal bias, consistent

with our interpretation that these genes are mostly indirectly

regulated (244/299, 82% versus 86% expected by chance,

p-value = 0.03, Figure 5E and Figure 5F embryo down).

To our surprise, LIN-54 exhibited two different patterns of

chromosome-biased gene regulation in the germline. Genes up-

regulated in lin-54 mutants were over-represented on autosomes, to

a degree that is significantly different from all genes (77/78, 99%

versus 86% expected by chance for all genes, p-value,1023,

Figure 5E and Figure 5F), and comparable to the inherent bias of

the germline (99% versus 93% expected by chance for germline-

expressed genes, p-value = 0.06). This is consistent with the

autosome-biased localization of LIN-54. LIN-54 is likely a direct

repressor of at least some of these genes, since 18% overlap with

LIN-54 ChIP peaks (Figure 5F). In striking contrast, germline genes

that were down-regulated in lin-54 mutants were located more

frequently on the X chromosome than expected (64/251, 25%

versus 14% expected by chance for all genes, p-value,1025, or

versus 7% expected by chance for all germline-expressed X-linked

genes, p-value,10240, Figure 5E and Figure 5F, ‘‘germline down’’).

It appears paradoxical that LIN-54 and its binding motif are

preferentially located within autosomal gene promoters, yet in the

absence of LIN-54 more genes on the X chromosome than on an

average autosome decrease expression in the germline. One

possibility is that LIN-54 affects these X-linked genes indirectly,

which would predict less correlation between binding (ChIP peaks)

and gene expression changes. Indeed, down-regulated X-linked

genes overlap less frequently with LIN-54 ChIP peaks than down-

regulated autosomal genes (6% versus 13% overlap, Figure 5E).

Our interpretation of this observation is that LIN-54 is normally a

direct activator of at least some autosomal genes that are down-

regulated in the mutant, but that LIN-54 more indirectly regulates

X-linked genes. Perhaps LIN-54 regulates an autosomal gene

involved in X chromosome gene regulation, or prevents inappro-

priate spread of a repressor to the X chromosome (see Discussion).

Another apparent paradox is that LIN-54 loss leads to down-

regulation of X-linked genes, when X chromosomes already

undergo chromosome-wide silencing in the hermaphrodite germ-

line. However, when we examined transcripts normally expressed

in our wild-type germline samples using ‘‘present’’ calls from

microarrays, we found that 15% of all X-linked genes are in fact

expressed (376/2491 on array), consistent with published estimates

from SAGE analysis (Materials and Methods, [38]). Of the 376

total germline-expressed X-linked genes, 17% are down-regulated

in the lin-54 mutant (64/376) while only 4% of all germline-

expressed autosomal genes are down-regulated (187/5097). The

large percentage of total X-linked genes affected in the mutant

may support models in which LIN-54 has chromosome-wide

effects on X chromosome transcription (see Discussion). Thus on

the X chromosome, the loss of LIN-54 function causes further

silencing of X-linked genes.

The DRM Complex Preferentially Localizes to Germline
Autosomes

We wondered whether the chromosome-biased localization and

function of LIN-54 are features shared by other members of the

DRM complex. We first compared germline expression profiles of

lin-54(n3423) with published germline expression profiles for efl-

1(n3639), dpl-1(n3316), and lin-35(n745) mutant animals ([25],

Figure S4). Genes commonly down-regulated in all four DRM

mutants were more frequently located on X chromosomes than

autosomes, consistent with observations in the lin-54 mutant

(Figure 5E, ‘‘commonly down’’ and Figure S4, group B). Also

consistent was the finding that commonly down-regulated X-

linked genes overlapped less frequently with LIN-54 ChIP peaks

than commonly down-regulated autosomal genes, again suggesting

that more X-linked genes are regulated indirectly (6% versus 16%

overlap, Figure 5E). Up-regulated genes common to all four

mutants were more difficult to define. However, we did note that a

commonly up-regulated group of genes primarily regulated in lin-

54(n3423) (Figure 5E ‘‘commonly up’’, Figure S4 group E) and

another cluster primarily up-regulated in lin-35(n745) (Figure S4

group I) were each autosome-enriched, as observed for the lin-54

mutant alone. These results show that similar patterns of

chromosome-biased gene regulation are exhibited by multiple

DRM subunits.

Next, we examined the chromosomal localization of DRM

complex members in the germline by immunofluorescence. Figure 6

shows nuclei in the pachytene stage of meiotic prophase, when

homologous chromosomes are paired and beginning to condense.

LIN-54 (red) co-localized with DNA (green), with the exception of

one prominent region (Figure 6A, arrowheads). We demonstrated

that this region corresponds to the X chromosome in two different

ways. First, LIN-54 colocalized with H4K12Ac (blue), a histone

modification associated with actively transcribed regions, which is

under-represented on the partially silenced X chromosome ([26],

Figure 6B). Second, LIN-54 did not co-localize with the H3K9me2-

stained X chromosome in him-8(e1489) mutants (Figure 6C). In

these mutants the X chromosomes do not pair during meiosis and

therefore acquire this heterochromatic histone mark [43].

The DRM complex members LIN-9, LIN-35, LIN-37, LIN-52,

and DPL-1 were also under-represented on the X chromosome in

the germline (Figure 6D and 6E). Thus, most DRM complex

members localize on autosomes. Only one DRM subunit was not

autosome-enriched. The CAF1 homolog LIN-53, which partici-

pates in multiple complexes [4], showed little localization to DNA

during this stage of meiotic prophase (Figure 6E). It is interesting

to note that despite the uniform genomic distribution of the EFL-

1/DPL-1 motif, DPL-1 was enriched on the autosomes in the

germline and co-localized with LIN-54 (Figure 6D). These results

support the hypothesis derived from our motif analysis that when

EFL-1/DPL-1 and LIN-54 jointly bind Motif 1, this complex

disfavors the X chromosome. These results are also consistent with

the finding that germline genes co-regulated by EFL-1/DPL-1 and

LIN-54 share similar biases in chromosome location. We conclude

that LIN-54 acts with other DRM complex members to govern

chromosome-biased gene regulation in C. elegans.

LIN-54 Recruits DRM to Autosomes
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Discussion

Our genome-scale analyses of LIN-54 provide new insights

into the binding and regulatory activities of the conserved

transcription factor complex DRM. Our results in C. elegans,

considered along with those available from Drosophila and human

cells, highlight both conserved and non-conserved features of

DRM. Conserved features include 1) DRM recruitment to

promoters with a hybrid E2F/DP and LIN-54 binding motif,

likely by the coordinated action of LIN-54 and E2F/DP, 2) its

regulation of genes involved in cell cycle, development, and

reproduction, and 3) its activity as both an activator or repressor.

Through analysis of cells from a developing organism, we

revealed conserved critical roles for DRM during animal

development and showed that DRM activities vary in different

tissues. Remarkably, we found that DRM binding and regulation

are chromosome-biased in C. elegans but not Drosophila or humans,

perhaps due to evolutionary pressures imposed by X chromo-

some silencing mechanisms.

Targeting the DREAM Complex to Promoters
Several members of the DREAM transcription factor complex

have known or presumed DNA binding activity, but how they act

in concert to direct promoter recognition was not well understood.

Here we show that the DRM component LIN-54 binds DNA

directly, helps recruit DRM to promoters in vivo, and likely

recognizes a hybrid E2F/DP and LIN-54 consensus motif. In

Drosophila and humans, Myb is a DNA-binding component of the

DREAM complex and it has been shown that Myb and E2F/DP

function in a mutually exclusive manner [5–7,21]. We show that

LIN-54 is another key DRM recruitment subunit and may

function coordinately with E2F/DP: the E2F/DP and LIN-54

motifs co-occur in LIN-54 target genes and both components

regulate a common set of genes. Our recognition that the C. elegans

hybrid Motif 1, the CDE/CHR element of human cell cycle

genes, and a motif identified in Drosophila DRM-bound genes are

related elements suggests that coordinate binding by E2F/DP and

LIN-54 is a conserved means of recruiting DRM to promoters (this

study, [5,21,34]). It has been observed that the E2F binding motif

is more widely distributed than E2F family protein binding in vivo,

and E2F family members often rely on cooperating transcription

factors bound to neighboring sites for specificity [44]. Simulta-

neous binding of adjacent sequence motifs by E2F/DP and LIN-

54 might increase the affinity of DREAM for target sites and might

provide increased selectivity for target gene recognition. Future

studies will reveal if there is a Myb-like component in the C. elegans

DRM complex, and whether other subunits contribute to DRM

targeting to the genome.

Figure 6. DRM complex members localize to germline autosomes. Shown are nuclei in the meiotic pachytene stage in the hermaphrodite
germline. Arrowheads indicate a chromosome in the nucleus with less LIN-54 staining (A–D) or less staining of other DRM subunits (E).
(A) Immunofluorescence with anti-LIN-54 antibody (red) and DNA dye (green, merge in yellow). (B) Antibodies against a histone modification
associated with active transcription (H4K12Ac, blue) show enrichment on autosomes, and co-localize with LIN-54 (red, DNA in green). (C) LIN-54 (red,
DNA in green) staining in the him-8(e1489) mutant in which X chromosomes do not pair and acquire the histone modification H3K9me2 (blue). (D)
Co-staining of LIN-54 (red) with DPL-1 (blue, DNA in green). Both are under-represented on the X chromosome (arrowhead). (E) Immunofluorescence
of DRM complex subunits (red) on wild-type germline nuclei (DNA, green; merge yellow). Images in A and B represent deconvolved confocal stacks.
Scale bar represents 5 mm (A) or 1 mm (B–E).
doi:10.1371/journal.pgen.1002074.g006
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Conservation of DREAM Function
Genes bound and regulated by C. elegans LIN-54 predominantly

function in development and differentiation, cell cycle and cell

division, and in reproduction. Similar categories of regulated genes

have been reported in genome-wide studies of Drosophila DREAM

[21]. In human tissue culture cells, however, only cell cycle genes

were enriched [5,7]. The similarities between C. elegans and

Drosophila suggest broad conservation of DREAM function in both

cell cycle and developmental gene regulation. Within the common

GO term categories targeted by the DREAM complex, interesting

functional subcategories were conserved. In all three organisms

DREAM binds groups of genes involved in cell division processes

such as sister chromatid cohesion, spindle assembly, and

cytokinesis, as well as DNA replication and DNA repair. Both

worm and fly DREAM bind and regulate genes involved in sex

differentiation such as those required for genitalia formation, and

genes required for germline functions including gametogenesis,

fertilization, and meiosis. It seems likely that DREAM also

regulates transcription of developmental and reproduction genes

in mammalian systems, given known developmental roles of its

individual subunits and the overall conservation of DREAM

function. Perhaps developmental genes were not observed in

mammalian studies because of the use of cultured cells derived

from differentiated tissues. We find that similarities of DREAM

function across species lie not only at the overall level of biological

processes: a remarkable degree of overlap exists among individual

target genes. Further, the genes targeted by DREAM in all these

organisms possess highly similar over-represented E2F/DP-LIN-

54 motifs. Altogether, our results unveil an evolutionarily

conserved mode of DNA binding that targets the DREAM

complex to similar sets of functionally coherent target genes.

Different Activities of DRM in the Soma and Germline
We demonstrate that DRM acts differently in the soma versus

the germline. In embryos, LIN-54 appears to primarily repress

genes (a majority of genes are up-regulated in the mutant, and up-

regulated genes overlap with LIN-54 ChIP peaks and ChIP GO

terms). In the germline, LIN-54 appears to primarily activate

genes, yet may also serve as a repressor (a majority of genes are

down-regulated in the mutant, and both up- and down-regulated

genes overlap with ChIP peaks and ChIP GO terms). The target

genes regulated in embryo versus germline are largely distinct, and

fall into different enriched functional pathways (Figure 4, Table

S2). For example, in the germline LIN-54 promotes expression of

genes required for germline functions like oogenesis, meiosis, and

fertilization, as observed previously for EFL-1 and DPL-1 [25]. In

the embryo, however, LIN-54 does just the opposite: it represses

germline-specific genes to prevent their ectopic activation in the

soma. Even patterns of chromosome-biased gene regulation

mediated by LIN-54 showed differences between soma and

germline, as discussed below. Our results highlight how DRM

may serve as either an activator or repressor. The mechanisms by

which DRM may either activate or repress gene expression are at

present not well understood, but may involve sub-complexes with

different subunit composition or interactions with transcriptional

co-factors such as chromatin modifiers. Importantly, our results

provide the first genome-wide comparison of DRM function in

two cell types isolated from whole animals, and indicate that DRM

function differs depending on developmental context. Continued

genome-wide analyses of DREAM binding and regulation in a

variety of organisms, particularly using specific tissues isolated

from animals, will further our understanding of how this key

transcriptional complex functions during development and

reproduction.

Why Does C. elegans DRM Avoid X Chromosomes?
We discovered that C. elegans LIN-54 binding and gene

regulation are autosome-enriched. This bias is likely a feature of

the worm DRM complex as a whole, since the localization

patterns of all but one DRM subunit are autosome-enriched, as

are a class of germline genes co-regulated by multiple DRM

subunits. Biased binding appears to be directed by a biased

recruitment element, since the hybrid E2F/DP-LIN-54 recogni-

tion motif is also autosome-enriched in C. elegans. However, when

we examined the related hybrid motif in Drosophila (Figure 3E

‘‘fly’’), and the published Drosophila and human DREAM ChIP

profiles we found that they are evenly distributed between

autosome and X chromosome promoters (data not shown, [5,21]).

What evolutionary pressures might have driven the C. elegans

DRM complex to disfavor the X chromosome? X chromosomes

differ from autosomes in many aspects including histone variants

and modifications, gene regulation, and rates of gene divergence

and movement [45]. One possibility is that DRM targets are

under-represented on the X chromosome because some aspect of

this chromosomal environment is incompatible with DRM-

mediated transcription regulation. A second possibility is that

DRM localization and its differential regulation of autosomal and

X-linked genes reflects some role in balancing autosome and X

chromosome gene expression. Only a limited number of non-

histone proteins have been shown to exhibit X chromosome- or

autosome-biased localization, and these are involved in somatic

dosage compensation or germline X chromosome silencing [46–

48]. A third possibility is that the biased localization of DRM arose

as a consequence of X chromosome silencing in the germline. The

X chromosome is silenced in the germline by mechanisms that are

distinct from somatic X chromosome silencing [27]. Germline-

expressed genes and genes with essential functions are autosome

enriched, and thought to have ‘‘fled’’ the X chromosome to avoid

being silenced [28–30,49]. One hypothesis is that the DNA-

binding properties of the C. elegans DRM complex co-evolved with

the redistribution of its germline-expressed and essential target

genes across the genome, resulting in an autosomal bias. Silencing

of the X chromosome has not been reported in Drosophila or

mammalian female germlines, perhaps explaining why autosome

bias is specific to C. elegans DRM. The regulation of sex

chromosome gene expression, by processes that evolve rapidly

and vary widely among organisms, may therefore have conse-

quences on the genomic distribution of gene sets and, as shown

here, their transcriptional regulatory networks.

A Paradox in Chromosome-Biased Gene Regulation
In embryos, the biases in DRM localization and DRM-mediated

regulation correspond, but in the germline they do not. In lin-54

mutant embryos, up-regulated genes likely include direct targets

based on their overlap with LIN-54 ChIP peaks, and were

autosome-enriched like DRM binding. The down-regulated genes,

on the other hand, are more likely indirect targets and showed no

chromosome bias. In lin-54 mutant germlines, both up- and down-

regulated genes included direct DRM targets. As in embryos, the

up-regulated genes in the germline were primarily autosomal.

Interestingly, down-regulated germline genes were X-enriched.

How can we explain the paradox that the DRM complex

predominantly binds to autosomes, but that its loss results in a

decrease in expression of X-linked genes? First, some LIN-54 does

bind the X chromosome and might directly activate gene

expression. However, fewer LIN-54-responsive genes on the X

chromosome than on an average autosome are bound by LIN-54,

suggesting that many X-linked genes are indirectly regulated.

Second, loss of LIN-54 might induce ectopic soma-specific

LIN-54 Recruits DRM to Autosomes
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pathways that include X-linked genes. However, we found no

evidence for enrichment of particular pathways among the

affected X-linked genes and none are soma-specific. Other models

invoke chromosome-wide alterations in X chromosome gene

expression. A third model is that DRM regulates expression along

the X chromosome indirectly either by activating a gene involved

in X chromosome activation or by repressing a gene involved in X

chromosome silencing, so that in mutants the X becomes more

silenced. We did not find any obvious candidate for such a factor

among mis-regulated genes. Finally, a fourth model proposes that

a repressor that is normally concentrated on autosomes, perhaps

anchored there by DRM, spreads inappropriately to X chromo-

somes when DRM function is compromised. If that repressor is

limiting, autosomal genes will increase in expression while X-

linked genes become repressed, which is in agreement with our

observations (Figure 5E). Indeed, such reciprocal gene expression

changes have been observed when a limiting domain-specific

repressor such as the S. cerevisiae SIR proteins spread inappropri-

ately, thereby increasing repression at ectopic locations and

diluting repression at their normal site of action [50–52]. Related

models have been invoked to explain why loss of the autosome

bound MES-4 product de-silences germline X-linked genes and to

explain why loss of the X chromosome bound Dosage Compen-

sation Complex de-silences somatic X-linked genes and represses

some autosomal genes in C. elegans [53,54].

Opposing Actions of DRM and the Histone
Methyltransferase MES-4

MES-4 is an autosome-enriched histone methyltransferase that

confers the ‘‘active mark’’ H3K36me [53]. In many biological

contexts, mes-4 and synMuvB genes have opposing functions. For

example, mutations in mes-4 can suppress the defects in vulva

development, the increased RNAi and transgene silencing, and the

ectopic expression of germline genes in the soma caused by

mutations in synMuvB genes [18,39,55,56]. Here we define

another process in which mes-4 and synMuvB mutations have

opposite effects. We show that in the hermaphrodite germline

LIN-54 is autosome-enriched as is MES-4, but lin-54 mutants

down-regulate while mes-4 mutants up-regulate X-linked genes.

Bender et al. (2006) proposed that MES-4 indirectly regulates

X-linked genes, by repelling a ‘‘global repressor’’ from autosomes

and keeping it concentrated on the X chromosome. A possibility is

that LIN-54 and MES-4 affect the X chromosome versus

autosome distribution of the same repressor, in an opposite

manner. A candidate for such a repressor is the C. elegans Polycomb

Repressive Complex 2 (PRC2), which is composed of MES-2,

MES-3 and MES-6. MES-2 is an E(z) homolog that concentrates

the H3K27me3 ‘‘repressive mark’’ on the X chromosome in the

germline [53,57]. MES-2/-3/-6 also keeps MES-4 and other

active marks restricted to autosomes. Interestingly, it was recently

shown that a class of genes repressed by the Drosophila DREAM

complex is enriched for H3K27me2 and requires E(z) for

repression [58]. However, the cytological distribution of

H3K27me3 appears unaffected in mes-4 and lin-54 mutants

([53], data not shown). An important future direction is to explore

potential links between DRM, MES-4, and Polycomb Group

mediated gene repression, and to shed light on how these factors

might interact to govern gene regulation.

Materials and Methods

C. elegans Strains and Culture Conditions
All strains were cultured at 20uC unless otherwise noted, using

standard methods. The following strains were used: N2 (Bristol) as

wild-type, lin-54(n3423)/nT1 [qIS51], lin-54(n2990), lin-54(n2231)

[4,11], and him-8(e1489) [59]. Note: Previously, lin-54(n2231) was

reported to have a single mutation (A442T) [4]; however,

sequencing revealed an additional missense mutation (G252E).

Immunofluorescence
Embryos (Figure 2) were fixed with methanol/acetone [60].

Germlines (Figure 6 and Figure S1D) were fixed essentially as

described [61], with the addition of 5 ul of 2% Triton-X before

fixation in 4% paraformaldehyde. DNA was visualized either with

DAPI or OllieGreen (added at 1:1000 with 10 ug/ml RNAseA

with the secondary antibody). Whole worms (Figure S3) were

prepared in Carnoy’s fixative as described by [62]. Primary

antibodies to DRM subunits were described and validated in

[4,10,13]. Another second anti-LIN-54 antibody was generated in

rabbits against amino acids 207–306 (Strategic Diagnostics Inc.),

validated by western blot in wild-type and mutants, and showed

the same localization patterns. Primary antibodies were used at

1:100 dilutions, and detected with secondary antibodies conjugat-

ed to Alexa Fluor 568 (Invitrogen) at a 1:500 dilution, except

DPL-1 was performed as described [4,10]. Antibodies against

H4K12Ac (Serotec), and H3K9me2 (Cell Signaling) were used at

1:1000 (primary) and seconday antibodies at 1:1000. Images for

Figure 6 were captured by a Solamere Technology Group

modified Yokogawa CSU10 Spinning Disk Confocal scan head

attached to a Nikon TE-2000E2 inverted microscope and a 1006
Plan Apo objective, using MetaMorph software (Molecular

Devices). The images for Figure 6A and 6B were deconvolved

using the constrained iterative deconvolution algorithm developed

by the UMass Medical School Biomedical Imaging Group [63].

Yeast One-Hybrid and Two-Hybrid Assays
Y1H and Y2H assays were performed as described [22,64].

Representative images for Figure 1B were obtained for Ppos-1 at

10 mM 3AT 5 days, Plin-54 at 20 mM 3AT 9 days, and Pvha-15 at

60 mM 3AT 9days.

Western Blot, Immunoprecipitation, and Chromatin
Immunoprecipitation

For western blot (Figure 2B), whole worm lysates were created

from 200 hand-picked synchronized young adults boiled in 26
loading buffer (National Diagnostics EC-886) for 309 with

intermittent vortexing. Lysates equivalent to 25, 50, and 100

animals were loaded per lane and probed with anti-LIN-54, actin

(Abcam #ab3280, 1:400) and Histone H3 (Abcam #ab1791,

1:1000). Immunoprecipitation, western blotting, and probing with

DRM antibodies were performed as described [4], ChIP was

performed as described [65]. Briefly, mixed stage wild-type worms

were cultured in S-basal at 20uC. Lysates were cross-linked in 1%

formaldehyde, sonicated, and immunoprecipitated with anti-LIN-

54 antibody or pre-bleed antibody control. ChIP samples

including the input were subjected to two rounds of linear

amplification, using the genomePlex complete whole genome

amplification kit (Sigma), and minimum difference between

original precipitates and amplified precipitate confirmed by qPCR

(data not shown). Both experimental and input were processed at

NimbleGen, hybridized on 385K C. elegans Whole Genome 3-

Array Set (Roche NimbleGen). To assay DRM subunit binding at

the promoters of the lin-9 and lin-54 genes, ChIP was performed

with antibodies against LIN-54, LIN-9, LIN-37, or pre-bleed

control from wild-type or lin-54(n2990) mixed-stage extracts.

qPCR was used to calculate the amount of lin-54 or lin-9 promoter

DNA in ChIP samples relative to the total input DNA. The ratio
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in wild-type was set at 1.0. lin-9 promoter primers: 59-

cgactgtcaaacagcagctc-39 and 59-ttgaaatggcggttcttttc-39. lin-54 pro-

moter primers: 59-atgatgagtgacgtctacc-39 and 59-attgtttcgcgcgcc-

gaaatttg-39.

RNA Isolation and Microarray
Embryo. Animals were propagated on egg plates seeded with

E. coli HB101 at 20uC, bleached to obtain synchronized L1 larvae

and then grown at 25uC for 48 hours. Embryos from young adults

were harvested by the bleach-alkaline method, and filtered

through 100 micron mesh (Small Parts, Inc.). 200 mL of embryo

pellet was suspended in 1 mL of Tri reagent (Molecular Research

Center, Inc. TR118), flash-frozen, and dounced. Total RNA was

purified with RNAeasy mini kits (Qiagen), treated with DNase,

and integrity examined on agarose gel.

Germline. Animals were grown at 20uC and dissected in 16
egg buffer to excise the germline 24 hours after L4 stage.

Germlines were dissected to include mitotic tip through meiotic

late pachytene (Figure S3). RNA was isolated as described [25],

and linearly amplified once using MessageAmp II aRNA

Amplification Kit (Ambion).

Microarray. Probe-preparation, hybridization, and scanning

for DNA microarray were performed at the Genomics Core

facility at University of Massachusetts Medical School.

Fluorescence-labeled cDNA probes were prepared using the

One-Cycle kit (Affymetrix) and the Enzo HighYield RNA

Transcript Labeling Kit (Enzo) for embryo, and the 39 IVT

Express Kit (Affymetrix) for germline. cDNA probes of three

replicates were hybridized to GeneChip C. elegans genome arrays

(Affymetrix).

Chip Peak Analysis
Raw ChIP-chip data were analyzed using three independent

programs: MA2C [32], ChIPOTle [66] and NimbleScan (Roche

NimbleGen). While ChIPOTle called fewer and NimbleScan

called greater numbers of peaks than MA2C, each identified a

similar set of core peaks. MA2C analysis was performed with the

following settings: # MA2C Score Method (median), Band Width

(300), p-value cut off (26), and other parameters were set as

default. WS180 was used to annotate gene names. LIN-54 ChIP

peaks (Figure 3 and Figure 5A) were visualized using Affymetrix

Integrated Genome browser. Modes of LIN-54 peaks were used to

determine peak location for Figure 3, and each intergenic peak

was considered to associate with both neighboring genes.

Ortholog Pair Analysis
HomoloGene (Ce.01-08-2009) defines 3015 orthologous pairs

between C. elegans and D. melanogaster, and 3488 pairs between C.

elegans and human. 647 of 1572 genes bound by C. elegans LIN-54

have annotated fly orthologs; 730 genes have annotated human

orthologs. 1267 of 3147 fly genes bound by Mip120 have worm

orthologs (data from Table S3 in [21], using genes bound by

Mip120 within 1 kb of 59 end, lr peak = 2.). Of 975 human genes

bound by hLIN54 (data from Table S4 in [5], using genes bound

by hLIN54 within 1 kb of 59 end, during G0 and/or S phase), 186

have annotated worm orthologs.

Motif Analysis
To predict motifs enriched in LIN-54 bound promoters, we

defined significant peaks using ChIPOTle version 1.11 [66] with

window size 300 bp, step size 38 bp. We selected the top 50

promoter peaks from each chromosome, based on p-value, for a

total of 300 peaks, and analyzed the 1 kb sequence surrounding

their centers with MEME [67]. We searched for 7–11 mer DNA

motifs with parameters ‘‘-dna -mod zoops -minsites 20 -revcomp -

minw 7 -maxw 11’’ and 5th markov model of all C. elegans

promoter sequences as a background nucleotide distribution, and

then searched for 12–18 mer DNA motifs with parameters ‘‘-dna -

mod zoops -minsites 20 -revcomp -minw 12 -maxw 18’’ and the

same background markov model. We confirmed that predicted

motifs lie within ChIP peaks (Figure S2). We determined the

genomic distributions of promoter-associated TF motifs by

searching promoter regions (1 kb upstream from TSS) of all

20158 C. elegans genes (WS200) using MAST (Figure 5D) or FIMO

(Figure S2) in the MEME suite [67]. Although the absolute values

of motif occurrence varied depending on the p-value cutoff, the

under-representation of Motifs 1 and 2 on the X chromosome was

observed at multiple cutoffs. p-value cutoff used to search motifs in

Figure 5D and Table S3: 1025 (EFL-1, HLH-27), 1026 (Motif 1,

FLH-1), and 1027 (NFI-1).

GO Term Analysis
GO analysis was performed using GO-TermFinder [68], with

p-value cut off of 0.01 (for LIN-54 bound genes) or 0.05 (for LIN-

54 responsive genes) with Bonferroni correction for multiple

hypothesis testing. The evidence code Inferred from Electronic

Annotation (IEA) was excluded from the analysis.

Microarray Analysis
Statistical analyses were performed using R, a system for

statistical computation and graphics ([69]; http://www.r-project.

org). The rma method in the affy package from Bioconductor was

used in R to summarize probe level data and to normalize the

dataset to remove across array variation [70,71]. Log transformed

data were used in subsequent analysis and plotting. WormBase

version WS190 was used.To determine differentially expressed

genes between wild-type and mutants, moderated T Statistics in

limma [72] was used with p-value#0.01, fold change $1.5. When

multiple probes sets correspond to one gene, the average fold

change was determined. Raw data from [25] was re-analyzed with

the same criteria described above, and genes responsive to efl-

1(n3639), dpl-1(n3316), lin-35(n745), and lin-54(n3423) were

clustered by the centroid-linkage hierarchical analysis (Cluster

3.0, [73]). Clusters were visualized with Java Treeview [74]. To

calculate the percent of genes per chromosome responsive to

DRM members, we used the number of genes common between

the custom arrays of [25] and those represented on GeneChip C.

elegans genome arrays (Affymetrix).

To estimate genes normally expressed in wild-type embryos or

germlines, we utilized the detection (present/absent) call generated

by the Affymetrix microarray suite. Each probe set received numeric

score based on the detection calls (present = 1, marginal = 0, and

absent = 21), and the sum of the score for three biological replicas

were calculated for each probe set (i.e. present in all three

replicas = 3). A gene was considered expressed if the average score

was more than 1.5, and absent if less than 21.5. Our lists of

expressed genes were comparable with those determined by SAGE

analysis [38].

The microarray and ChIP data in this publication have been

deposited in NCBI’s Gene Expression Omnibus and are accessible

through GEO Series accession number GSE28494. http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE28494

Supporting Information

Figure S1 The conserved DRM complex, its binding to

promoters of genes encoding DRM subunits, and disruption of
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its binding in the lin-54(n2990) mutant. (A) Cartoon represents the

eight-subunit C. elegans DRM complex. Table shows DRM

subunits and their homologs in the D. melanogaster dREAM/

MMB complex and in the H. sapiens LINC/DREAM complex. D.

melanogaster also has a paralogous tMAC complex that is testis-

specific. A Myb subunit has not been identified in C. elegans DRM.

(B) LIN-54 and other DREAM subunits bind to the 59 ends

(within 1 kb of TSS) of genes encoding DREAM subunits in

worms (this study), flies [21], and humans [5,7]. *LIN-54 binding

at its own promoter is indicated here because a strong, broad, peak

was observed. Because its mode is just inside the coding region it

did not meet our definition of LIN-54 bound genes in Table S1.

(C) DRM subunit binding in wild-type and lin-54(n2990) mutants,

measured by ChIP-qPCR at the target promoters lin-9 and lin-54.

Binding is shown as the amount of DNA amplified in each ChIP

sample relative to input, without setting the ratio in wild-type to

1.0 as in Figure 1C. Results from three independent experiments

are shown. (D) Immunofluorescence of hermaphrodite germline

nuclei with antibodies against DRM subunits LIN-54, DPL-1,

LIN-9, or LIN-37 in wild-type, lin-54(n2990) and lin-54(n3423) at

20uC. Strength of chromosome-associated staining was scored

blind and assigned a score of 3 (strong), 2 (moderate), 1 (weak), or 0

(none) from at least two independent experiments and at least 20

different germlines; average score shown. lin-54(n3423) null strain

severely disrupts association of other DRM subunits and the lin-

54(n2990) strain partially disrupts association. Nuclei scored in

region from germline tip until mid-pachytene stage of meiosis, as

indicated above. 1. Harrison et al. 2006 [4] 2. Korenjak et al.

2004 [2] 3. Lewis et al. 2004 (MMB also includes Rpd3 and

L(3)MBT) [3] 4. Beall et al. 2007 (tMAC also includes Comr and

Topi) [19] 5. Litovchick et al. 2007 [5] 6. Schmit et al. 2007 [7] 7.

Detected only in MMB 8. Detected only in hDREAM 9. Detected

only in LINC 10. Georlette et al. 2007 [21].

(TIF)

Figure S2 An additional motif enriched in LIN-54 bound

promoters and location of Motif 1 relative to ChIP peak (A) Motif

2, enriched in LIN-54 bound promoters, and a related

motif identified in Drosophila DREAM-bound promoters [21].

(B) Occurrence of Motif 2 in promoter regions of autosomal genes

(gray bars) and X-linked genes (black bar). Motif 2 is under-

represented within X-linked gene promoters (p-value,1025).

(C) The distance between the mode of LIN-54 ChIP peaks and

the location of Motif 1. Based on criteria described in Materials

and Methods, 356 genes contained both a LIN-54 ChIP-peak and

Motif 1 within 1 kb upstream from their TSS. More than half of

those promoters had ChIP-peak modes that lie within 100 bp from

the putative E2F-LIN-54 binding consensus (Motif 1).

(TIF)

Figure S3 lin-54(n2990) mutants show similar, but weaker,

phenotypes compared with lin-54(n3423) null mutants. (A) Wild-

type (top) and lin-54(n2290) (bottom) young adult hermaphrodites

stained for DNA. lin-54 mutants exhibit an endomitotic oocyte

(EMO) phenotype (left) which can result from various defects

including defects in meiotic cell cycle, somatic sheath cell

formation, or fertilization. lin-54 mutants also exhibit inappropri-

ately connected gut nuclei (right), which may result from defects in

mitotic chromosome segregation. Table shows comparison of

these phenotypes in lin-54(n2990) and lin-54(n3423) at 20uC and

25uC. M+Z2 (homozygous animals from heterozygous mother);

M2Z2 (homozygous animals from M+Z2 hermaphrodites). %

EMO: the percentage of animals with EMO phenotype 24 hrs.

after L4 stage. % gut bridges: percentage calculated as the number

of gut nuclei with an obvious connection/total gut nuclei6100.

(B) Dissected hermaphrodite germlines from wild-type (top), lin-

54(n2990) (middle) and lin-54(n3423) (bottom) stained for DNA.

Arrowheads indicate endomitotic oocytes. Box indicates region

excised for germline microarray, chosen because germline nuclear

morphology is similar between wild-type and mutant and because

these stages precede re-activation of the X chromosome [26].

(TIF)

Figure S4 LIN-54, EFL-1, DPL-1, and LIN-35 co-regulated

genes show chromosomal bias. Hierarchical clustering analysis of

genes that changed expression in efl-1(n3639), dpl-1(n3316), lin-

35(n745), and/or lin-54(n3423) (left). The chromosomal distribu-

tion and the enriched Gene Ontology terms of ten clusters of genes

are shown (right). p-value cutoff used for GO term search ,0.01

with Bonferroni correction. NS = no significant GO found.

* p-value,1025.

(TIF)

Table S1 LIN-54 ChIP peak locations, bound genes, GO terms

of bound genes, and genes commonly bound between C. elegans

and D. melanogaster or human. (Tab 1) Genomic locations of LIN-

54 ChIP peaks and overlapping or nearby genes. LIN-54 ChIP

peaks from two biological replicas were analyzed and merged

using the MA2C program. Peak modes that are intragenic, 59 to

gene, or 39 to gene are indicated. (Tab 2) LIN-54 bound genes

defined in this study. (Tab 3) Gene Ontology terms enriched in

genes containing LIN-54 ChIP peaks within 1 kb from TSS

(p-value,0.01) (Tab 4) Genes with worm-fly orthologs defined by

HomoloGene that are commonly bound by LIN-54 in C. elegans

and D. melanogaster [21]. (Tab 5) Genes with worm-human

orthologs defined by HomoloGenes that are commonly bound

by LIN-54 in C. elegans and human [5]. FDR = False Discovery

Rate. For details see Materials and Methods.

(XLS)

Table S2 LIN-54 responsive genes and their GO terms. (Tab 1)

Genes with changed expression in lin-54(n2990) embryos. (Tab 2)

Genes with changed expression in lin-54(n3423) germlines. (Tab 3)

Gene Ontology terms enriched in genes up-regulated or down-

regulated in lin-54(n2990) embryos or lin-54(n3423) germline.

(p-value,0.05). (Tab 4) Genes with both LIN-54 ChIP peaks in

their promoters and changed expression in lin-54 mutants (‘‘bound

and regulated’’). (Tab 5) Enriched Gene Ontology terms of LIN-54

‘‘bound and regulated’’ gene set. FDR = False Discovery Rate.

logFC = log fold change. For details see Materials and Methods.

(XLS)

Table S3 Chromosomal distribution of (A) LIN-54 ChIP peaks,

(B) Binding motifs for E2F-LIN-54 (Motif 1) and other

transcription factors. p-value cutoff used to search motifs is 1025

(EFL-1, HLH-27), 1026 (Motif 1, FLH-1), and 1027 (NFI-1).

(C) LIN-54 responsive genes in embryos and germlines.

(PDF)
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